-
Notifications
You must be signed in to change notification settings - Fork 9
/
evaluate_attacks.py
408 lines (352 loc) · 15.8 KB
/
evaluate_attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from __future__ import print_function
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.autograd import Variable
import torch.optim as optim
from torchvision import datasets, transforms
from models.wideresnet import *
from models.resnet import *
import numpy as np
parser = argparse.ArgumentParser(description='PyTorch CIFAR PGD Attack Evaluation')
parser.add_argument('--test-batch-size', type=int, default=200, metavar='N',
help='input batch size for testing (default: 200)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--epsilon', type=float, default=8.0/255.0,
help='perturbation')
parser.add_argument('--num-steps', type=int, default=20,
help='perturb number of steps')
parser.add_argument('--step-size', type=float, default=2.0/255.0,
help='perturb step size')
parser.add_argument('--random',
default=True,
help='random initialization for PGD')
parser.add_argument('--model-path',
default='./checkpoints/model_cifar_wrn.pt',
help='model for white-box attack evaluation')
parser.add_argument('--source-model-path',
default='./checkpoints/model_cifar_wrn.pt',
help='source model for black-box attack evaluation')
parser.add_argument('--target-model-path',
default='./checkpoints/model_cifar_wrn.pt',
help='target model for black-box attack evaluation')
parser.add_argument('--white-box-attack', default=True,
help='whether perform white-box attack')
parser.add_argument('--attack-method', default='PGD')
parser.add_argument('--dataset', type=str, default='cifar10', help='dataset')
args = parser.parse_args()
print(args)
# settings
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 8, 'pin_memory': True} if use_cuda else {}
# set up data loader
transform_test = transforms.Compose([transforms.ToTensor(),])
if args.dataset == 'cifar10':
testset = torchvision.datasets.CIFAR10(root='../data', train=False, download=True, transform=transform_test)
elif args.dataset == 'cifar100':
testset = torchvision.datasets.CIFAR100(root='../data', train=False, download=True, transform=transform_test)
elif args.dataset == 'svhn':
args.epsilon = 4.0 / 255.0
args.step_size = 1.0 / 255.0
testset = torchvision.datasets.SVHN(root='../data', split='test', download=True, transform=transform_test)
else:
raise NotImplementedError
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, **kwargs)
def one_hot_tensor(y_batch_tensor, num_classes, device):
y_tensor = torch.cuda.FloatTensor(y_batch_tensor.size(0),
num_classes).fill_(0)
y_tensor[np.arange(len(y_batch_tensor)), y_batch_tensor] = 1.0
return y_tensor
class CWLoss(nn.Module):
def __init__(self, num_classes, margin=50, reduce=True):
super(CWLoss, self).__init__()
self.num_classes = num_classes
self.margin = margin
self.reduce = reduce
return
def forward(self, logits, targets):
"""
:param inputs: predictions
:param targets: target labels
:return: loss
"""
onehot_targets = one_hot_tensor(targets, self.num_classes,
targets.device)
self_loss = torch.sum(onehot_targets * logits, dim=1)
other_loss = torch.max(
(1 - onehot_targets) * logits - onehot_targets * 1000, dim=1)[0]
loss = -torch.sum(torch.clamp(self_loss - other_loss + self.margin, 0))
if self.reduce:
sample_num = onehot_targets.shape[0]
loss = loss / sample_num
return loss
def _pgd_whitebox(model,
X,
y,
epsilon=args.epsilon,
num_steps=args.num_steps,
step_size=args.step_size):
out = model(X)
err = (out.data.max(1)[1] != y.data).float().sum()
X_pgd = Variable(X.data, requires_grad=True)
if args.random:
random_noise = torch.FloatTensor(*X_pgd.shape).uniform_(-epsilon, epsilon).to(device)
X_pgd = Variable(X_pgd.data + random_noise, requires_grad=True)
for _ in range(num_steps):
opt = optim.SGD([X_pgd], lr=1e-3)
opt.zero_grad()
with torch.enable_grad():
loss = nn.CrossEntropyLoss()(model(X_pgd), y)
loss.backward()
eta = step_size * X_pgd.grad.data.sign()
X_pgd = Variable(X_pgd.data + eta, requires_grad=True)
eta = torch.clamp(X_pgd.data - X.data, -epsilon, epsilon)
X_pgd = Variable(X.data + eta, requires_grad=True)
X_pgd = Variable(torch.clamp(X_pgd, 0, 1.0), requires_grad=True)
err_pgd = (model(X_pgd).data.max(1)[1] != y.data).float().sum()
print('err pgd (white-box): ', err_pgd)
return err, err_pgd
def _cw_whitebox(model,
X,
y,
epsilon=args.epsilon,
num_steps=args.num_steps,
step_size=args.step_size):
out = model(X)
err = (out.data.max(1)[1] != y.data).float().sum()
X_pgd = Variable(X.data, requires_grad=True)
if args.random:
random_noise = torch.FloatTensor(*X_pgd.shape).uniform_(-epsilon, epsilon).to(device)
X_pgd = Variable(X_pgd.data + random_noise, requires_grad=True)
for _ in range(num_steps):
opt = optim.SGD([X_pgd], lr=1e-3)
opt.zero_grad()
with torch.enable_grad():
loss = CWLoss(100 if args.dataset == 'cifar100' else 10)(model(X_pgd), y)
loss.backward()
eta = step_size * X_pgd.grad.data.sign()
X_pgd = Variable(X_pgd.data + eta, requires_grad=True)
eta = torch.clamp(X_pgd.data - X.data, -epsilon, epsilon)
X_pgd = Variable(X.data + eta, requires_grad=True)
X_pgd = Variable(torch.clamp(X_pgd, 0, 1.0), requires_grad=True)
err_pgd = (model(X_pgd).data.max(1)[1] != y.data).float().sum()
print('err cw (white-box): ', err_pgd)
return err, err_pgd
def _fgsm_whitebox(model,
X,
y,
epsilon=args.epsilon):
out = model(X)
err = (out.data.max(1)[1] != y.data).float().sum()
X_fgsm = Variable(X.data, requires_grad=True)
opt = optim.SGD([X_fgsm], lr=1e-3)
opt.zero_grad()
with torch.enable_grad():
loss = nn.CrossEntropyLoss()(model(X_fgsm), y)
loss.backward()
X_fgsm = Variable(torch.clamp(X_fgsm.data + epsilon * X_fgsm.grad.data.sign(), 0.0, 1.0), requires_grad=True)
err_pgd = (model(X_fgsm).data.max(1)[1] != y.data).float().sum()
print('err fgsm (white-box): ', err_pgd)
return err, err_pgd
def _mim_whitebox(model,
X,
y,
epsilon=args.epsilon,
num_steps=args.num_steps,
step_size=args.step_size,
decay_factor=1.0):
out = model(X)
err = (out.data.max(1)[1] != y.data).float().sum()
X_pgd = Variable(X.data, requires_grad=True)
if args.random:
random_noise = torch.FloatTensor(*X_pgd.shape).uniform_(-epsilon, epsilon).to(device)
X_pgd = Variable(X_pgd.data + random_noise, requires_grad=True)
previous_grad = torch.zeros_like(X.data)
for _ in range(num_steps):
opt = optim.SGD([X_pgd], lr=1e-3)
opt.zero_grad()
with torch.enable_grad():
loss = nn.CrossEntropyLoss()(model(X_pgd), y)
loss.backward()
grad = X_pgd.grad.data / torch.mean(torch.abs(X_pgd.grad.data), [1,2,3], keepdim=True)
previous_grad = decay_factor * previous_grad + grad
X_pgd = Variable(X_pgd.data + step_size * previous_grad.sign(), requires_grad=True)
eta = torch.clamp(X_pgd.data - X.data, -epsilon, epsilon)
X_pgd = Variable(X.data + eta, requires_grad=True)
X_pgd = Variable(torch.clamp(X_pgd, 0, 1.0), requires_grad=True)
err_pgd = (model(X_pgd).data.max(1)[1] != y.data).float().sum()
print('err mim (white-box): ', err_pgd)
return err, err_pgd
def _pgd_blackbox(model_target,
model_source,
X,
y,
epsilon=args.epsilon,
num_steps=args.num_steps,
step_size=args.step_size):
out = model_target(X)
err = (out.data.max(1)[1] != y.data).float().sum()
X_pgd = Variable(X.data, requires_grad=True)
if args.random:
random_noise = torch.FloatTensor(*X_pgd.shape).uniform_(-epsilon, epsilon).to(device)
X_pgd = Variable(X_pgd.data + random_noise, requires_grad=True)
for _ in range(num_steps):
opt = optim.SGD([X_pgd], lr=1e-3)
opt.zero_grad()
with torch.enable_grad():
loss = nn.CrossEntropyLoss()(model_source(X_pgd), y)
loss.backward()
eta = step_size * X_pgd.grad.data.sign()
X_pgd = Variable(X_pgd.data + eta, requires_grad=True)
eta = torch.clamp(X_pgd.data - X.data, -epsilon, epsilon)
X_pgd = Variable(X.data + eta, requires_grad=True)
X_pgd = Variable(torch.clamp(X_pgd, 0, 1.0), requires_grad=True)
err_pgd = (model_target(X_pgd).data.max(1)[1] != y.data).float().sum()
print('err pgd black-box: ', err_pgd)
return err, err_pgd
def _cw_blackbox(model_target,
model_source,
X,
y,
epsilon=args.epsilon,
num_steps=args.num_steps,
step_size=args.step_size):
out = model_target(X)
err = (out.data.max(1)[1] != y.data).float().sum()
X_pgd = Variable(X.data, requires_grad=True)
if args.random:
random_noise = torch.FloatTensor(*X_pgd.shape).uniform_(-epsilon, epsilon).to(device)
X_pgd = Variable(X_pgd.data + random_noise, requires_grad=True)
for _ in range(num_steps):
opt = optim.SGD([X_pgd], lr=1e-3)
opt.zero_grad()
with torch.enable_grad():
loss = CWLoss(100 if args.dataset == 'cifar100' else 10)(model_source(X_pgd), y)
loss.backward()
eta = step_size * X_pgd.grad.data.sign()
X_pgd = Variable(X_pgd.data + eta, requires_grad=True)
eta = torch.clamp(X_pgd.data - X.data, -epsilon, epsilon)
X_pgd = Variable(X.data + eta, requires_grad=True)
X_pgd = Variable(torch.clamp(X_pgd, 0, 1.0), requires_grad=True)
err_pgd = (model_target(X_pgd).data.max(1)[1] != y.data).float().sum()
print('err cw (black-box): ', err_pgd)
return err, err_pgd
def _fgsm_blackbox(model_target,
model_source,
X,
y,
epsilon=args.epsilon):
out = model_target(X)
err = (out.data.max(1)[1] != y.data).float().sum()
X_fgsm = Variable(X.data, requires_grad=True)
opt = optim.SGD([X_fgsm], lr=1e-3)
opt.zero_grad()
with torch.enable_grad():
loss = nn.CrossEntropyLoss()(model_source(X_fgsm), y)
loss.backward()
X_fgsm = Variable(torch.clamp(X_fgsm.data + epsilon * X_fgsm.grad.data.sign(), 0.0, 1.0), requires_grad=True)
err_pgd = (model_target(X_fgsm).data.max(1)[1] != y.data).float().sum()
print('err fgsm (black-box): ', err_pgd)
return err, err_pgd
def _mim_blackbox(model_target,
model_source,
X,
y,
epsilon=args.epsilon,
num_steps=args.num_steps,
step_size=args.step_size,
decay_factor=1.0):
out = model_target(X)
err = (out.data.max(1)[1] != y.data).float().sum()
X_pgd = Variable(X.data, requires_grad=True)
if args.random:
random_noise = torch.FloatTensor(*X_pgd.shape).uniform_(-epsilon, epsilon).to(device)
X_pgd = Variable(X_pgd.data + random_noise, requires_grad=True)
previous_grad = torch.zeros_like(X.data)
for _ in range(num_steps):
opt = optim.SGD([X_pgd], lr=1e-3)
opt.zero_grad()
with torch.enable_grad():
loss = nn.CrossEntropyLoss()(model_source(X_pgd), y)
loss.backward()
grad = X_pgd.grad.data / torch.mean(torch.abs(X_pgd.grad.data), [1,2,3], keepdim=True)
previous_grad = decay_factor * previous_grad + grad
X_pgd = Variable(X_pgd.data + step_size * previous_grad.sign(), requires_grad=True)
eta = torch.clamp(X_pgd.data - X.data, -epsilon, epsilon)
X_pgd = Variable(X.data + eta, requires_grad=True)
X_pgd = Variable(torch.clamp(X_pgd, 0, 1.0), requires_grad=True)
err_pgd = (model_target(X_pgd).data.max(1)[1] != y.data).float().sum()
print('err mim (white-box): ', err_pgd)
return err, err_pgd
def eval_adv_test_whitebox(model, device, test_loader, attack_method):
"""
evaluate model by white-box attack
"""
model.eval()
robust_err_total = 0
natural_err_total = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
X, y = Variable(data, requires_grad=True), Variable(target)
if attack_method == 'PGD':
err_natural, err_robust = _pgd_whitebox(model, X, y)
elif attack_method == 'CW':
err_natural, err_robust = _cw_whitebox(model, X, y)
elif attack_method == 'MIM':
err_natural, err_robust = _mim_whitebox(model, X, y)
elif attack_method == 'FGSM':
err_natural, err_robust = _fgsm_whitebox(model, X, y)
else:
raise NotImplementedError
robust_err_total += err_robust
natural_err_total += err_natural
print('natural_err_total: ', natural_err_total)
print('robust_err_total: ', robust_err_total)
def eval_adv_test_blackbox(model_target, model_source, device, test_loader, attack_method):
"""
evaluate model by black-box attack
"""
model_target.eval()
model_source.eval()
robust_err_total = 0
natural_err_total = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
X, y = Variable(data, requires_grad=True), Variable(target)
err_natural, err_robust = _pgd_blackbox(model_target, model_source, X, y)
if attack_method == 'PGD':
err_natural, err_robust = _pgd_blackbox(model_target, model_source, X, y)
elif attack_method == 'CW':
err_natural, err_robust = _cw_blackbox(model_target, model_source, X, y)
elif attack_method == 'MIM':
err_natural, err_robust = _mim_blackbox(model_target, model_source, X, y)
elif attack_method == 'FGSM':
err_natural, err_robust = _fgsm_blackbox(model_target, model_source, X, y)
else:
raise NotImplementedError
robust_err_total += err_robust
natural_err_total += err_natural
print('natural_err_total: ', natural_err_total)
print('robust_err_total: ', robust_err_total)
def main():
if args.white_box_attack:
# white-box attack
print('white-box attack')
model = WideResNet(depth=28, num_classes=100 if args.dataset == 'cifar100' else 10).to(device)
model.load_state_dict(torch.load(args.model_path))
eval_adv_test_whitebox(model, device, test_loader, args.attack_method)
else:
# black-box attack
print('black-box attack')
model_target = WideResNet(depth=28, num_classes=100 if args.dataset == 'cifar100' else 10).to(device)
model_target.load_state_dict(torch.load(args.target_model_path))
model_source = WideResNet(depth=28, num_classes=100 if args.dataset == 'cifar100' else 10).to(device)
model_source.load_state_dict(torch.load(args.source_model_path))
eval_adv_test_blackbox(model_target, model_source, device, test_loader, args.attack_method)
if __name__ == '__main__':
main()