-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBasics.agda
138 lines (99 loc) · 3.11 KB
/
Basics.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
module Basics where
open import Level
open import Relation.Binary.Core public using (_≡_; refl; _≢_)
open import Relation.Nullary.Core public using (¬_)
open import Relation.Binary.PropositionalEquality using (trans)
_o_ : forall {i j k}
{A : Set i}{B : A -> Set j}{C : (a : A) -> B a -> Set k} ->
(f : {a : A}(b : B a) -> C a b) ->
(g : (a : A) -> B a) ->
(a : A) -> C a (g a)
f o g = \ a -> f (g a)
id : forall {k}{X : Set k} -> X -> X
id x = x
record Sg {l : Level}(S : Set l)(T : S -> Set l) : Set l where
constructor _,_
field
fst : S
snd : T fst
open Sg public
_*_ : {l : Level} -> Set l -> Set l -> Set l
S * T = Sg S \ _ -> T
infixr 4 _,_ _*_
vv_ : forall {k l}{S : Set k}{T : S -> Set k}{P : Sg S T -> Set l} ->
((s : S)(t : T s) -> P (s , t)) ->
(p : Sg S T) -> P p
(vv p) (s , t) = p s t
infixr 1 vv_
record One {l : Level} : Set l where
constructor <>
open One public
{-data _==_ {l}{X : Set l}(x : X) : X -> Set l where
refl : x == x
infix 1 _==_
{-# BUILTIN EQUALITY _==_ #-}
{-# BUILTIN REFL refl #-}
-}
subst : forall {k l}{X : Set k}{s t : X} ->
s ≡ t -> (P : X -> Set l) -> P s -> P t
subst refl P p = p
_=!!_>>_ : forall {l}{X : Set l}(x : X){y z} -> x ≡ y -> y ≡ z -> x ≡ z
_ =!! refl >> q = q
_<<_!!=_ : forall {l}{X : Set l}(x : X){y z} -> y ≡ x -> y ≡ z -> x ≡ z
_ << refl !!= q = q
_<QED> : forall {l}{X : Set l}(x : X) -> x ≡ x
x <QED> = refl
infixr 1 _=!!_>>_ _<<_!!=_ _<QED>
data Two : Set where tt ff : Two
_<?>_ : forall {l}{P : Two -> Set l} -> P tt -> P ff -> (b : Two) -> P b
(t <?> f) tt = t
(t <?> f) ff = f
--_+_ : Set -> Set -> Set
--S + T = Sg Two (S <?> T)
{-
data Zero : Set where
magic : forall {l}{A : Set l} -> Zero -> A
magic ()
Dec : Set -> Set
Dec X = X + (X -> Zero)
-}
data Pair (A B : Set) : Set where
_,_ : A -> B -> Pair A B
data Unit : Set where
unit : Unit
pi1 : forall {A B} -> Pair A B -> A
pi1 (x , y) = x
pi2 : forall {A B} -> Pair A B -> B
pi2 (x , y) = y
data Either (A B : Set) : Set where
inl : A -> Either A B
inr : B -> Either A B
Case : {A B : Set} -> {C : Either A B -> Set}
-> ((a : A) -> C (inl a)) -> ((b : B) -> C (inr b)) -> (c : Either A B) -> C c
Case d e (inl a) = d a
Case d e (inr b) = e b
--trans : forall {A : Set} {x y z : A} -> (x ≡ y) -> (y ≡ z) -> (x ≡ z)
--trans refl refl = refl
infixr 7 _===_
_===_ = trans
symm : forall {A : Set} {x y : A} -> (x ≡ y) -> (y ≡ x)
symm refl = refl
{-
cong : ∀ {A : Set} {B : Set}
(f : A → B) {x y} → x ≡ y → f x ≡ f y
cong f refl = refl
-}
coerce : ∀ {A B : Set} → A ≡ B → A → B
coerce refl = id
--coerce-gen : forall {A : Set} {X Y : A} -> (X ≡ Y) -> (X -> Y)
--coerce-gen refl = id
cong-gen : forall {t : Set} {A B : t} (f : t -> Set) -> A ≡ B -> (f A ≡ f B)
cong-gen f refl = refl
cong-coerce : forall {t : Set} {A B : t} (f : t -> Set) -> A ≡ B -> (f A -> f B)
cong-coerce f refl = id
{-
data Inspect {a} {A : Set a} (x : A) : Set a where
_with-≡_ : (y : A) (eq : x ≡ y) → Inspect x
inspect : ∀ {a} {A : Set a} (x : A) → Inspect x
inspect x = x with-≡ refl
-}