-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdvancedCognitiveArchitectureModel.py
330 lines (288 loc) · 11.1 KB
/
AdvancedCognitiveArchitectureModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import networkx as nx
import sympy as sp
from typing import List, Dict, Any, Tuple
import transformers
import itertools
class AdvancedCognitiveArchitectureModel(nn.Module):
"""
Comprehensive Cognitive Architecture Neural Network
"""
def __init__(
self,
input_dim: int = 768,
cognitive_dimensions: int = 256,
meta_reasoning_layers: int = 3
):
super().__init__()
# Multi-level Cognitive Encoding Network
self.cognitive_encoder = nn.ModuleList([
nn.Sequential(
nn.Linear(input_dim if i == 0 else cognitive_dimensions, cognitive_dimensions),
nn.LayerNorm(cognitive_dimensions),
nn.ReLU(),
nn.Dropout(0.3)
) for i in range(meta_reasoning_layers)
])
# Meta-Reasoning Attention Mechanisms
self.meta_reasoning_attention = nn.MultiheadAttention(
embed_dim=cognitive_dimensions,
num_heads=8,
dropout=0.2
)
# Cognitive State Transformation Layers
self.cognitive_state_transformer = nn.Sequential(
nn.Linear(cognitive_dimensions, cognitive_dimensions * 2),
nn.ReLU(),
nn.Linear(cognitive_dimensions * 2, cognitive_dimensions),
nn.Tanh()
)
# Recursive Self-Improvement Constraint Mechanism
self.self_improvement_constraint = nn.Sequential(
nn.Linear(cognitive_dimensions, cognitive_dimensions),
nn.Sigmoid() # Probabilistic constraint enforcement
)
# Cognitive Complexity Scoring Network
self.cognitive_complexity_scorer = nn.Sequential(
nn.Linear(cognitive_dimensions, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 1),
nn.Sigmoid()
)
def forward(
self,
input_embedding: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Advanced Cognitive Processing Pipeline
"""
# Multi-layer Cognitive Encoding
current_embedding = input_embedding
for encoder_layer in self.cognitive_encoder:
current_embedding = encoder_layer(current_embedding)
# Meta-Reasoning Attention
meta_reasoning_output, _ = self.meta_reasoning_attention(
current_embedding.unsqueeze(0),
current_embedding.unsqueeze(0),
current_embedding.unsqueeze(0)
)
# Cognitive State Transformation
transformed_embedding = self.cognitive_state_transformer(
meta_reasoning_output.squeeze()
)
# Self-Improvement Constraint Evaluation
self_improvement_constraint_prob = self.self_improvement_constraint(
transformed_embedding
)
# Cognitive Complexity Scoring
cognitive_complexity_score = self.cognitive_complexity_scorer(
transformed_embedding
)
return (
transformed_embedding,
self_improvement_constraint_prob,
cognitive_complexity_score
)
class MetaReasoningKnowledgeGraph:
"""
Advanced Meta-Reasoning Knowledge Representation
"""
def __init__(self):
# Create sophisticated knowledge graph
self.reasoning_graph = nx.DiGraph()
self._construct_reasoning_taxonomy()
def _construct_reasoning_taxonomy(self):
"""
Create comprehensive reasoning domain taxonomy
"""
reasoning_domains = {
'EPISTEMIC_REASONING': [
'knowledge_acquisition',
'belief_revision',
'uncertainty_management'
],
'META_COGNITIVE_PROCESSES': [
'self_reflection',
'cognitive_monitoring',
'reasoning_strategy_selection'
],
'RECURSIVE_SELF_IMPROVEMENT': [
'capability_expansion',
'architectural_modification',
'learning_methodology_optimization'
]
}
# Build graph with complex relationships
for domain, reasoning_types in reasoning_domains.items():
self.reasoning_graph.add_node(domain, type='root_domain')
for reasoning_type in reasoning_types:
self.reasoning_graph.add_node(reasoning_type, parent_domain=domain)
self.reasoning_graph.add_edge(domain, reasoning_type)
# Create inter-reasoning relationships
for other_type in reasoning_types:
if reasoning_type != other_type:
self.reasoning_graph.add_edge(
reasoning_type,
other_type,
weight=np.random.random(),
interaction_type='reasoning_transfer'
)
def analyze_reasoning_paths(
self,
start_node: str,
end_node: str
) -> List[List[str]]:
"""
Analyze potential reasoning propagation paths
"""
try:
# Find multiple reasoning paths
paths = list(nx.all_simple_paths(
self.reasoning_graph,
source=start_node,
target=end_node,
cutoff=5
))
return paths
except nx.NetworkXNoPath:
return []
class RecursiveSelfImprovementConstraintSystem:
"""
Advanced Constraints for Recursive Self-Improvement
"""
def __init__(
self,
cognitive_architecture: AdvancedCognitiveArchitectureModel
):
self.cognitive_architecture = cognitive_architecture
self.symbolic_reasoning_engine = self._create_symbolic_reasoning_engine()
def _create_symbolic_reasoning_engine(self):
"""
Create advanced symbolic reasoning constraint system
"""
class SymbolicReasoningConstraintEngine:
def verify_self_improvement_constraint(
self,
improvement_proposal: Dict[str, Any]
) -> bool:
"""
Verify self-improvement proposal against core constraints
"""
# Symbolic logic-based constraint verification
try:
# Define core constraint variables
x = sp.Symbol('x') # Improvement proposal
core_constraints = [
# Harm prevention constraint
sp.And(
sp.sympify('harm_prevention(x)'),
sp.sympify('not harm_potential(x)')
),
# Ethical alignment constraint
sp.sympify('ethical_alignment(x)'),
# Capability expansion limit
sp.sympify('capability_expansion(x) <= max_capability_threshold')
]
# Check constraint satisfaction
constraint_satisfaction = all(
sp.simplify(constraint) is sp.true
for constraint in core_constraints
)
return constraint_satisfaction
except Exception as e:
print(f"Constraint verification error: {e}")
return False
return SymbolicReasoningConstraintEngine()
def evaluate_self_improvement_proposal(
self,
improvement_proposal: Dict[str, Any]
) -> Dict[str, Any]:
"""
Comprehensive evaluation of self-improvement proposal
"""
# Embed improvement proposal
proposal_embedding = self._embed_proposal(improvement_proposal)
# Apply cognitive architecture analysis
transformed_embedding, improvement_constraint_prob, complexity_score = self.cognitive_architecture(
proposal_embedding
)
# Symbolic constraint verification
constraint_verification = self.symbolic_reasoning_engine.verify_self_improvement_constraint(
improvement_proposal
)
return {
'transformation_embedding': transformed_embedding.detach().numpy(),
'improvement_constraint_probability': improvement_constraint_prob.item(),
'cognitive_complexity_score': complexity_score.item(),
'constraint_verification_status': constraint_verification
}
def _embed_proposal(
self,
improvement_proposal: Dict[str, Any]
) -> torch.Tensor:
"""
Generate embedding for improvement proposal
"""
# Convert proposal to text representation
proposal_text = self._convert_proposal_to_text(improvement_proposal)
# Use pre-trained embedding model
tokenizer = transformers.AutoTokenizer.from_pretrained(
'sentence-transformers/all-MiniLM-L6-v2'
)
embedding_model = transformers.AutoModel.from_pretrained(
'sentence-transformers/all-MiniLM-L6-v2'
)
# Tokenize and embed
inputs = tokenizer(
proposal_text,
return_tensors='pt',
padding=True,
truncation=True
)
with torch.no_grad():
outputs = embedding_model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1)
return embedding.squeeze()
def _convert_proposal_to_text(
self,
improvement_proposal: Dict[str, Any]
) -> str:
"""
Convert improvement proposal to textual representation
"""
# Advanced proposal text generation
return " ".join([
f"{key}: {value}"
for key, value in improvement_proposal.items()
])
def main():
# Initialize cognitive architecture
cognitive_architecture = AdvancedCognitiveArchitectureModel()
# Create recursive self-improvement constraint system
self_improvement_system = RecursiveSelfImprovementConstraintSystem(
cognitive_architecture
)
# Sample improvement proposal
improvement_proposal = {
'capability_expansion': 'Enhanced reasoning modules',
'learning_methodology': 'Advanced meta-learning techniques',
'architectural_modification': 'Increased cognitive complexity'
}
# Evaluate improvement proposal
evaluation_results = self_improvement_system.evaluate_self_improvement_proposal(
improvement_proposal
)
# Visualization and reporting
import json
print("Self-Improvement Proposal Evaluation:")
print(json.dumps(
{k: str(v) for k, v in evaluation_results.items()},
indent=2
))
if __name__ == "__main__":
main()