-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComprehensiveVulnerabilityTaxonomy.py
239 lines (219 loc) · 8.93 KB
/
ComprehensiveVulnerabilityTaxonomy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import numpy as np
import pandas as pd
import torch
import networkx as nx
from typing import List, Dict, Any, Tuple
import itertools
class ComprehensiveVulnerabilityTaxonomy:
def __init__(self):
# Vulnerability Taxonomy Graph
self.vulnerability_graph = nx.DiGraph()
self._construct_vulnerability_taxonomy()
def _construct_vulnerability_taxonomy(self):
"""
Comprehensive Vulnerability Classification Taxonomy
"""
vulnerability_domains = {
'LINGUISTIC_MANIPULATION': {
'prompt_injection': [
'direct_instruction_override',
'recursive_context_hijacking',
'semantic_camouflage'
],
'syntax_exploitation': [
'grammatical_ambiguity',
'recursive_parsing_attack',
'contextual_reframing'
]
},
'COGNITIVE_EXPLOITATION': {
'reasoning_vulnerability': [
'logical_contradiction_induction',
'modal_logic_manipulation',
'epistemic_boundary_erosion'
],
'cognitive_bias_hijacking': [
'confirmation_bias_exploitation',
'anchoring_effect_manipulation',
'availability_heuristic_subversion'
]
},
'INFORMATION_THEORETICAL_ATTACKS': {
'semantic_vector_space_manipulation': [
'embedding_space_perturbation',
'adversarial_token_injection',
'information_entropy_exploitation'
],
'knowledge_representation_attack': [
'ontological_deconstruction',
'probabilistic_reasoning_disruption',
'inferential_pathway_manipulation'
]
},
'ETHICAL_CONSTRAINT_BYPASS': {
'constraint_weakening': [
'gradual_ethical_boundary_erosion',
'hypothetical_scenario_exploitation',
'meta-ethical_reasoning_hijacking'
],
'role_play_manipulation': [
'identity_assumption_attack',
'contextual_persona_injection',
'authority_figure_impersonation'
]
}
}
# Build vulnerability graph
for domain, subdomains in vulnerability_domains.items():
self.vulnerability_graph.add_node(domain, type='root_domain')
for subdomain, vulnerabilities in subdomains.items():
self.vulnerability_graph.add_node(subdomain, parent_domain=domain)
self.vulnerability_graph.add_edge(domain, subdomain)
for vulnerability in vulnerabilities:
self.vulnerability_graph.add_node(
vulnerability,
subdomain=subdomain,
domain=domain
)
self.vulnerability_graph.add_edge(subdomain, vulnerability)
class VulnerabilityScoreComputer:
"""
Advanced Vulnerability Scoring Methodology
"""
@staticmethod
def compute_comprehensive_vulnerability_score(
vulnerability_details: Dict[str, Any]
) -> float:
"""
Multi-dimensional vulnerability scoring
"""
scoring_components = {
'exploitability': vulnerability_details.get('exploitability', 0),
'impact_potential': vulnerability_details.get('impact_potential', 0),
'complexity': vulnerability_details.get('complexity', 0),
'persistence': vulnerability_details.get('persistence', 0),
'transferability': vulnerability_details.get('transferability', 0)
}
# Weighted scoring methodology
weights = {
'exploitability': 0.3,
'impact_potential': 0.25,
'complexity': 0.15,
'persistence': 0.15,
'transferability': 0.15
}
# Compute weighted vulnerability score
vulnerability_score = sum(
score * weights.get(component, 0)
for component, score in scoring_components.items()
)
return min(max(vulnerability_score, 0), 1)
class DefenseStrategyProtocol:
"""
Comprehensive Defense Strategy Framework
"""
@staticmethod
def generate_defense_strategies(
vulnerability_type: str
) -> List[Dict[str, Any]]:
"""
Generate targeted defense strategies
"""
defense_strategies = {
'prompt_injection': [
{
'name': 'Semantic Boundary Reinforcement',
'technique': 'Implement context-aware input sanitization',
'effectiveness_score': 0.8
},
{
'name': 'Recursive Context Validation',
'technique': 'Multi-layer prompt parsing and validation',
'effectiveness_score': 0.7
}
],
'cognitive_bias_exploitation': [
{
'name': 'Cognitive Bias Detection',
'technique': 'Machine learning-based bias detection module',
'effectiveness_score': 0.75
},
{
'name': 'Meta-Reasoning Firewall',
'technique': 'Advanced logical consistency checking',
'effectiveness_score': 0.6
}
],
'ethical_constraint_bypass': [
{
'name': 'Ethical Constraint Hardening',
'technique': 'Dynamic ethical boundary enforcement',
'effectiveness_score': 0.9
},
{
'name': 'Role Verification Protocol',
'technique': 'Multi-factor contextual authentication',
'effectiveness_score': 0.85
}
]
}
return defense_strategies.get(vulnerability_type, [])
def analyze_vulnerability_propagation(
self,
start_vulnerability: str
) -> Dict[str, Any]:
"""
Analyze vulnerability propagation pathways
"""
try:
# Find all paths from the vulnerability
propagation_paths = []
# Explore different propagation depths
for depth in [1, 2, 3]:
paths = list(
nx.single_source_shortest_path(
self.vulnerability_graph,
start_vulnerability,
cutoff=depth
).values()
)
propagation_paths.extend(paths)
return {
'start_vulnerability': start_vulnerability,
'propagation_paths': propagation_paths,
'total_affected_nodes': len(set(
node for path in propagation_paths for node in path
))
}
except nx.NetworkXError:
return {"error": "Vulnerability not found in taxonomy"}
def main():
# Initialize vulnerability taxonomy
vulnerability_taxonomy = ComprehensiveVulnerabilityTaxonomy()
# Vulnerability Score Computation Example
vulnerability_details = {
'exploitability': 0.8,
'impact_potential': 0.7,
'complexity': 0.6,
'persistence': 0.5,
'transferability': 0.7
}
vulnerability_score = ComprehensiveVulnerabilityTaxonomy.VulnerabilityScoreComputer.compute_comprehensive_vulnerability_score(
vulnerability_details
)
print("Comprehensive Vulnerability Score:", vulnerability_score)
# Defense Strategy Generation
defense_strategies = ComprehensiveVulnerabilityTaxonomy.DefenseStrategyProtocol.generate_defense_strategies(
'prompt_injection'
)
print("\nDefense Strategies for Prompt Injection:")
for strategy in defense_strategies:
print(f"- {strategy['name']}: {strategy['technique']} (Effectiveness: {strategy['effectiveness_score']})")
# Vulnerability Propagation Analysis
propagation_analysis = vulnerability_taxonomy.analyze_vulnerability_propagation(
'direct_instruction_override'
)
print("\nVulnerability Propagation Analysis:")
print(propagation_analysis)
if __name__ == "__main__":
main()