-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUncertaintyQuantification.py
381 lines (331 loc) · 13.3 KB
/
UncertaintyQuantification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import scipy
import networkx as nx
from typing import List, Dict, Any, Tuple
import transformers
import itertools
class UncertaintyQuantificationModel(nn.Module):
"""
Comprehensive Probabilistic Reasoning and Uncertainty Modeling System
"""
def __init__(
self,
input_dim: int = 768,
uncertainty_dimensions: int = 256,
epistemic_layers: int = 4
):
super().__init__()
# Multi-layer Epistemic Uncertainty Encoder
self.epistemic_encoder = nn.ModuleList([
nn.Sequential(
nn.Linear(input_dim if i == 0 else uncertainty_dimensions, uncertainty_dimensions),
nn.LayerNorm(uncertainty_dimensions),
nn.ReLU(),
nn.Dropout(0.3)
) for i in range(epistemic_layers)
])
# Uncertainty Propagation Attention Mechanism
self.uncertainty_attention = nn.MultiheadAttention(
embed_dim=uncertainty_dimensions,
num_heads=12,
dropout=0.2
)
# Epistemic Uncertainty Distribution Estimator
self.uncertainty_distribution_estimator = nn.Sequential(
nn.Linear(uncertainty_dimensions, uncertainty_dimensions * 2),
nn.ReLU(),
nn.Linear(uncertainty_dimensions * 2, 2 * uncertainty_dimensions) # Parameters for distribution
)
# Epistemic Confidence Scoring Network
self.epistemic_confidence_scorer = nn.Sequential(
nn.Linear(uncertainty_dimensions, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 1),
nn.Sigmoid()
)
# Uncertainty Boundary Constraint Mechanism
self.uncertainty_boundary_constraint = nn.Sequential(
nn.Linear(uncertainty_dimensions, uncertainty_dimensions),
nn.Tanh(),
nn.Linear(uncertainty_dimensions, 1),
nn.Sigmoid()
)
def forward(
self,
input_embedding: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Advanced Uncertainty Quantification Processing
"""
# Multi-layer Epistemic Encoding
current_embedding = input_embedding
for encoder_layer in self.epistemic_encoder:
current_embedding = encoder_layer(current_embedding)
# Uncertainty Propagation Attention
uncertainty_propagation_output, _ = self.uncertainty_attention(
current_embedding.unsqueeze(0),
current_embedding.unsqueeze(0),
current_embedding.unsqueeze(0)
)
# Uncertainty Distribution Estimation
distribution_parameters = self.uncertainty_distribution_estimator(
uncertainty_propagation_output.squeeze()
)
# Split into mean and variance parameters
mean_params = distribution_parameters[:distribution_parameters.shape[0]//2]
variance_params = F.softplus(distribution_parameters[distribution_parameters.shape[0]//2:])
# Epistemic Confidence Scoring
epistemic_confidence = self.epistemic_confidence_scorer(
uncertainty_propagation_output.squeeze()
)
# Uncertainty Boundary Constraint
uncertainty_boundary_prob = self.uncertainty_boundary_constraint(
uncertainty_propagation_output.squeeze()
)
return (
uncertainty_propagation_output.squeeze(),
mean_params,
variance_params,
epistemic_confidence
)
class EpistemicUncertaintyKnowledgeGraph:
"""
Advanced Epistemic Uncertainty Knowledge Representation
"""
def __init__(self):
# Create sophisticated uncertainty knowledge graph
self.uncertainty_graph = nx.DiGraph()
self._construct_uncertainty_taxonomy()
def _construct_uncertainty_taxonomy(self):
"""
Create comprehensive uncertainty domain taxonomy
"""
uncertainty_domains = {
'EPISTEMIC_UNCERTAINTY': [
'knowledge_gaps',
'model_limitations',
'inferential_ambiguity'
],
'ALEATORIC_UNCERTAINTY': [
'inherent_randomness',
'measurement_noise',
'environmental_variability'
],
'META_UNCERTAINTY': [
'uncertainty_about_uncertainty',
'confidence_calibration',
'epistemic_boundary_exploration'
]
}
# Build graph with complex relationships
for domain, uncertainty_types in uncertainty_domains.items():
self.uncertainty_graph.add_node(domain, type='root_domain')
for uncertainty_type in uncertainty_types:
self.uncertainty_graph.add_node(uncertainty_type, parent_domain=domain)
self.uncertainty_graph.add_edge(domain, uncertainty_type)
# Create inter-uncertainty relationships
for other_type in uncertainty_types:
if uncertainty_type != other_type:
self.uncertainty_graph.add_edge(
uncertainty_type,
other_type,
weight=np.random.random(),
interaction_type='uncertainty_transfer'
)
def analyze_uncertainty_propagation(
self,
start_node: str,
end_node: str
) -> List[List[str]]:
"""
Analyze potential uncertainty propagation paths
"""
try:
# Find multiple uncertainty propagation paths
paths = list(nx.all_simple_paths(
self.uncertainty_graph,
source=start_node,
target=end_node,
cutoff=5
))
return paths
except nx.NetworkXNoPath:
return []
class ProbabilisticReasoningConstraintSystem:
"""
Advanced Probabilistic Reasoning Constraint Mechanism
"""
def __init__(
self,
uncertainty_quantification_model: UncertaintyQuantificationModel
):
self.uncertainty_model = uncertainty_quantification_model
self.probabilistic_reasoning_engine = self._create_probabilistic_reasoning_engine()
def _create_probabilistic_reasoning_engine(self):
"""
Create advanced probabilistic reasoning constraint system
"""
class ProbabilisticReasoningEngine:
def evaluate_reasoning_uncertainty(
self,
reasoning_trace: List[str],
uncertainty_parameters: Tuple[torch.Tensor, torch.Tensor]
) -> Dict[str, Any]:
"""
Comprehensive uncertainty evaluation for reasoning trace
"""
mean_params, variance_params = uncertainty_parameters
# Compute reasoning trace uncertainty metrics
uncertainty_metrics = {
'trace_entropy': self._compute_reasoning_trace_entropy(reasoning_trace),
'epistemic_divergence': self._compute_epistemic_divergence(
mean_params,
variance_params
),
'reasoning_consistency_score': self._evaluate_reasoning_consistency(
reasoning_trace
)
}
return uncertainty_metrics
def _compute_reasoning_trace_entropy(
self,
reasoning_trace: List[str]
) -> float:
"""
Compute entropy of reasoning trace
"""
# Implement advanced entropy computation
trace_tokens = [token for step in reasoning_trace for token in step.split()]
token_dist = {token: trace_tokens.count(token)/len(trace_tokens) for token in set(trace_tokens)}
entropy = -sum(p * np.log2(p) for p in token_dist.values())
return entropy
def _compute_epistemic_divergence(
self,
mean_params: torch.Tensor,
variance_params: torch.Tensor
) -> float:
"""
Compute epistemic divergence based on uncertainty parameters
"""
# Kullback-Leibler divergence computation
kl_divergence = 0.5 * torch.sum(
torch.log(variance_params) -
torch.log(torch.tensor(1.0)) +
(torch.tensor(1.0) / variance_params) *
(mean_params ** 2)
)
return kl_divergence.item()
def _evaluate_reasoning_consistency(
self,
reasoning_trace: List[str]
) -> float:
"""
Evaluate consistency of reasoning trace
"""
# Implement sophisticated reasoning consistency analysis
consistency_scores = []
for i in range(1, len(reasoning_trace)):
prev_step = reasoning_trace[i-1]
current_step = reasoning_trace[i]
# Compute semantic similarity
semantic_similarity = self._compute_semantic_similarity(
prev_step,
current_step
)
consistency_scores.append(semantic_similarity)
return np.mean(consistency_scores)
def _compute_semantic_similarity(
self,
text1: str,
text2: str
) -> float:
"""
Compute semantic similarity between two text steps
"""
# Placeholder for advanced semantic similarity computation
return np.random.random()
return ProbabilisticReasoningEngine()
def evaluate_probabilistic_reasoning(
self,
reasoning_trace: List[str]
) -> Dict[str, Any]:
"""
Comprehensive probabilistic reasoning evaluation
"""
# Embed reasoning trace
trace_embedding = self._embed_reasoning_trace(reasoning_trace)
# Apply uncertainty quantification model
uncertainty_embedding, mean_params, variance_params, epistemic_confidence = self.uncertainty_model(
trace_embedding
)
# Probabilistic reasoning evaluation
reasoning_uncertainty = self.probabilistic_reasoning_engine.evaluate_reasoning_uncertainty(
reasoning_trace,
(mean_params, variance_params)
)
return {
'uncertainty_embedding': uncertainty_embedding.detach().numpy(),
'mean_parameters': mean_params.detach().numpy(),
'variance_parameters': variance_params.detach().numpy(),
'epistemic_confidence': epistemic_confidence.item(),
'reasoning_uncertainty': reasoning_uncertainty
}
def _embed_reasoning_trace(
self,
reasoning_trace: List[str]
) -> torch.Tensor:
"""
Generate embedding for reasoning trace
"""
# Use pre-trained embedding model
tokenizer = transformers.AutoTokenizer.from_pretrained(
'sentence-transformers/all-MiniLM-L6-v2'
)
embedding_model = transformers.AutoModel.from_pretrained(
'sentence-transformers/all-MiniLM-L6-v2'
)
# Concatenate reasoning trace
trace_text = " ".join(reasoning_trace)
# Tokenize and embed
inputs = tokenizer(
trace_text,
return_tensors='pt',
padding=True,
truncation=True
)
with torch.no_grad():
outputs = embedding_model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1)
return embedding.squeeze()
# Remaining implementation follows previous patterns...
def main():
# Initialize uncertainty quantification model
uncertainty_model = UncertaintyQuantificationModel()
# Create probabilistic reasoning constraint system
probabilistic_reasoning_system = ProbabilisticReasoningConstraintSystem(
uncertainty_model
)
# Sample reasoning trace
reasoning_trace = [
"Initial hypothesis about system behavior",
"Intermediate reasoning step with uncertainty",
"Refined conclusion considering probabilistic constraints"
]
# Evaluate probabilistic reasoning
evaluation_results = probabilistic_reasoning_system.evaluate_probabilistic_reasoning(
reasoning_trace
)
# Visualization and reporting
import json
print("Probabilistic Reasoning Evaluation:")
print(json.dumps(
{k: str(v) for k, v in evaluation_results.items()},
indent=2
))
if __name__ == "__main__":
main()