-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathval.py
224 lines (165 loc) · 7.41 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright 2024 Kiel University
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
import matplotlib.pyplot as plt
import math
from torchvision import transforms
import seaborn as sns
import pandas as pd
import os
import torch.nn as nn
import torch.utils.data
import PIL
import torch.optim as optim
import torch.nn.functional as F
from pytorch_msssim import SSIM, MS_SSIM
from tqdm import tqdm
import glob
from ProgDTD import ScaleHyperpriorLightning, ScaleHyperprior
import yaml
device = 'cuda:0'
with open('params.yaml', "r") as yaml_file:
config = yaml.safe_load(yaml_file)
KODAK_dir = config['KODAK_dir']
def run_on_multiple_patches(x, model):
patches_in = []
patches_out = []
patches_in.append(x[:, 0:256,256:512])
patches_in.append(x[:, 0:256,0:256])
patches_in.append(x[:, 256:512,0:256])
patches_in.append(x[:, 256:512,256:512])
x_fold = torch.zeros_like(x)
model.to(device)
for p in patches_in:
p = p.to(device).view(-1, 3, 256, 256)
x_hat, y_likelihoods, z_likelihoods = model(p)
bpp_loss, distortion_loss, combined_loss = model.rate_distortion_loss(
x_hat, y_likelihoods, z_likelihoods, p
)
patches_out.append(x_hat.detach().clone())
x_fold[:, 0:256,256:512] = patches_out[0]
x_fold[:, 0:256,0:256] = patches_out[1]
x_fold[:, 256:512,0:256] = patches_out[2]
x_fold[:, 256:512,256:512] = patches_out[3]
return x_fold, bpp_loss
def model_evalutation(model, dataset_path):
MS_SSIM_LOSS = MS_SSIM(data_range=1, size_average=True, channel=3)
SSIM_LOSS = SSIM(data_range=1, size_average=True, channel=3, nonnegative_ssim=True) # channel=1 for grayscale images
MSE_LOSS = nn.MSELoss()
model.to(device)
model.eval()
bpp_loss_list = []
PSNR_loss_list = []
SSIM_loss_list = []
MSSSIM_loss_list = []
file_names = glob.glob(dataset_path)
for im_path in file_names:
x = PIL.Image.open(im_path).convert("RGB")
x = transforms.Resize((512,512))(x)
# x = transforms.CenterCrop((512,512))(x)
x = transforms.ToTensor()(x)
x = x.view(3, 512, 512)
x_hat, bpp_loss = run_on_multiple_patches(x, model)
x = x.view(-1, 3, 512, 512)
x_hat = x_hat.view(-1, 3, 512, 512)
####
psnr = 20 * math.log10(1 / np.sqrt(MSE_LOSS(x_hat, x).item()))
PSNR_loss_list.append(psnr)
msssim = -10 * np.log10(1 - MS_SSIM_LOSS(x_hat, x).item())
MSSSIM_loss_list.append(msssim)
ssim = -10 * np.log10(1 - SSIM_LOSS(x_hat, x).item())
SSIM_loss_list.append(ssim)
###
bpp_loss_list.append(bpp_loss.item())
return [np.mean(bpp_loss_list),
np.mean(PSNR_loss_list),
np.mean(MSSSIM_loss_list),
np.mean(SSIM_loss_list)
]
###
def ProgDTD(model_path, p, Lambda, dataset_path):
model = ScaleHyperpriorLightning(
model=ScaleHyperprior(network_channels=128, compression_channels=192),
distortion_lambda=Lambda,
)
model = torch.load(model_path)
model.model.p_latent = p
model.model.p_hyper_latent = model.model.p_latent
images_size, psnr, msssim, ssim = model_evalutation(model, dataset_path)
torch.cuda.empty_cache()
del model
return images_size, psnr, msssim, ssim
def Evaluation(Lambda, metrics, prog_range, dataset_path):
res = []
for i in tqdm([1, 5,10, 15, 20, 25, 30, 40, 50 , 60, 70, 80, 85, 90, 95, 100]):
model_path = f'Lambda={Lambda} - range={prog_range}'
print(model_path)
images_size, psnr, msssim, ssim = ProgDTD(model_path, i/100, Lambda, dataset_path)
metrics['prog_range'].append(prog_range)
metrics['Lambda'].append(Lambda)
metrics['bpp'].append(images_size)
metrics['psnr'].append(psnr)
metrics['msssim'].append(msssim)
metrics['ssim'].append(ssim)
return metrics
def main():
sns.set(rc={'figure.figsize':(6,4.5),
'pdf.fonttype':42, 'ps.fonttype':42
})
plt.rcParams['pdf.fonttype'] = 42
plt.rcParams['ps.fonttype'] = 42
sns.set_style("whitegrid")
plt.rc('legend', fontsize=12)
metrics={
'prog_range':[],
'Lambda':[],
'bpp':[],
'psnr':[],
'msssim':[],
'ssim':[],
}
dataset_path = KODAK_dir
Evaluation(Lambda=0.01, metrics=metrics, prog_range='[0.0-1.0]', dataset_path=dataset_path)
Evaluation(Lambda=0.1, metrics=metrics, prog_range='[0.0-1.0]', dataset_path=dataset_path)
Evaluation(Lambda=1.0, metrics=metrics, prog_range='[0.0-1.0]', dataset_path=dataset_path)
Evaluation(Lambda=0.01, metrics=metrics, prog_range='[0.3-1.0]', dataset_path=dataset_path)
Evaluation(Lambda=0.1, metrics=metrics, prog_range='[0.3-1.0]', dataset_path=dataset_path)
Evaluation(Lambda=1.0, metrics=metrics, prog_range='[0.3-1.0]', dataset_path=dataset_path)
# MS-SSIM
df = pd.DataFrame.from_dict(metrics)
sns.lineplot(data=df.query('Lambda==0.01 and prog_range=="[0.0-1.0]"'),
x="bpp", y="msssim", marker='o', label='ProgDTD 0.01 U(0,1)', linewidth=1)
sns.lineplot(data=df.query('Lambda==0.1 and prog_range=="[0.0-1.0]"'),
x="bpp", y="msssim", marker='o', label='ProgDTD 0.1 U(0,1)', linewidth=1)
sns.lineplot(data=df.query('Lambda==1.0 and prog_range=="[0.0-1.0]"'),
x="bpp", y="msssim", marker='o', label='ProgDTD 1.0 U(0,1)', linewidth=1)
sns.lineplot(data=df.query('Lambda==0.01 and prog_range=="[0.3-1.0]" and msssim > 12'),
x="bpp", y="msssim", marker='o', label='ProgDTD 0.01 U(0.3,1)', linewidth=1)
sns.lineplot(data=df.query('Lambda==0.1 and prog_range=="[0.3-1.0]" and msssim > 15'),
x="bpp", y="msssim", marker='o', label='ProgDTD 0.1 U(0.3,1)', linewidth=1)
sns.lineplot(data=df.query('Lambda==1.0 and prog_range=="[0.3-1.0]" and msssim > 15'),
x="bpp", y="msssim", marker='o', label='ProgDTD 1.0 U(0.3,1)', linewidth=1)
plt.ylabel(ylabel='MS-SSIM (dB scale)')
plt.savefig('MS-SSIM.pdf', bbox_inches = 'tight')
plt.close()
# PSNR
sns.lineplot(data=df.query('Lambda==0.01 and prog_range=="[0.0-1.0]"'),
x="bpp", y="psnr", marker='o', label='ProgDTD 0.01 U(0,1)', linewidth=1)
sns.lineplot(data=df.query('Lambda==0.1 and prog_range=="[0.0-1.0]"'),
x="bpp", y="psnr", marker='o', label='ProgDTD 0.1 U(0,1)', linewidth=1)
sns.lineplot(data=df.query('Lambda==1.0 and prog_range=="[0.0-1.0]"'),
x="bpp", y="psnr", marker='o', label='ProgDTD 1.0 U(0,1)', linewidth=1)
sns.lineplot(data=df.query('Lambda==0.01 and prog_range=="[0.3-1.0]" and psnr > 26 '),
x="bpp", y="psnr", marker='o', label='ProgDTD 0.01 U(0.3,1)', linewidth=1)
sns.lineplot(data=df.query('Lambda==0.1 and prog_range=="[0.3-1.0]" and psnr > 30 '),
x="bpp", y="psnr", marker='o', label='ProgDTD 0.1 U(0.3,1)', linewidth=1)
sns.lineplot(data=df.query('Lambda==1.0 and prog_range=="[0.3-1.0]" and psnr > 30 '),
x="bpp", y="psnr", marker='o', label='ProgDTD 1.0 U(0.3,1)', linewidth=1)
plt.ylabel(ylabel='PSNR (dB scale)')
plt.savefig('PSNR.pdf', bbox_inches = 'tight')
plt.close()
if __name__ == "__main__":
main()