-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathruNNer.py
executable file
·748 lines (650 loc) · 25.3 KB
/
ruNNer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
# python3
# Created by Daniele Silvestro on 2019.05.23
import matplotlib
import datetime
matplotlib.use("Agg")
# import keras
import numpy as np
from numpy import *
import scipy.special
np.set_printoptions(suppress=1) # prints floats, no scientific notation
np.set_printoptions(precision=3) # rounds all array elements to 3rd digit
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import MinMaxScaler
# from tensorflow import set_random_seed
import matplotlib.backends.backend_pdf
import matplotlib.pyplot as plt
import tensorflow as tf
# import tensorflow.keras.backend
from tensorflow.keras import backend
import argparse, sys, copy
import os
try:
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # disable tf compilation warning
except:
pass
p = argparse.ArgumentParser() # description='<input file>')
p.add_argument("-mode", choices=["train", "predict", "test"], default=None, required=True)
p.add_argument("-t", type=str, help="array of training features", default="", metavar="")
p.add_argument("-l", type=str, help="array of training labels", default=0, metavar=0)
p.add_argument("-e", type=str, help="array of empirical features", default=0, metavar=0)
p.add_argument("-r", type=str, help="file with rescaling array or float", default=1, metavar=1)
p.add_argument("-feature_indices", type=str, help="array of feature indices to select", default=0, metavar=0, nargs = "+")
p.add_argument("-head", type=int, help="header in training or empirical features file", default=0, metavar=0)
p.add_argument("-train_instance_indices",type=str,help="array of indices for selecting training instances",default=0,metavar=0)
p.add_argument("-test",type=float,help="fraction of training used as test set",default=0.1,metavar=0.1)
p.add_argument("-outlabels", type=str, nargs="+", default=[])
p.add_argument("-layers", type=int, help="n. hidden layers", default=1, metavar=1)
p.add_argument("-dropout", type=float, default=[], metavar=[], nargs = "+")
p.add_argument("-outpath", type=str, help="", default="")
p.add_argument("-outname", type=str, help="", default="")
p.add_argument("-batch_size", type=int, help="if 0: dataset is not sliced into smaller batches", default=0, metavar=0)
p.add_argument("-epochs", type=int, help="", default=1000, metavar=1000)
p.add_argument("-rescale_data", type=int, help="If set to 0 data are not rescaled between 0 and 1; 2: standardization", default=1, metavar=1)
p.add_argument("-class_weight", type=int, help="0) uniform weights; 1) weight for imbalanced classes ", default=1, metavar=1)
p.add_argument("-sub_sample_classes", type=int, help="0) use all data; 1) use sub-sampling to balance classes ", default=0, metavar=0)
p.add_argument("-optim_epoch", type=int, help="0) min loss function; 1) max validation accuracy", default=0)
p.add_argument("-verbose", type=int, help="", default=0, metavar=0)
p.add_argument("-loadNN", type=str, help="", default="", metavar="")
p.add_argument("-seed", type=int, help="", default=0, metavar=0)
p.add_argument("-actfunc", type=int, help="1) relu; 2) tanh; 3) sigmoid", default=1, metavar=1)
p.add_argument("-kerninit", type=int, help="1) glorot_normal; 2) glorot_uniform", default=1, metavar=1)
p.add_argument("-nodes", type=float, help="n. nodes (if > 2: multiplier of n. features)", nargs="+", default=[1.0])
p.add_argument("-randomize_data", type=float, help="shuffle order data entries", default=1, metavar=1)
p.add_argument("-threads", type=int, help="n. of threads (0: system picks an appropriate number)", default=0, metavar=0)
p.add_argument("-cross_val", type=int, help="Set number of cross validations to run. Set to 0 to turn off.", default=0)
p.add_argument("-validation_off", action="store_true",help='No validation set will be used when training the model, training will run until number of epochs set with "-epochs" flag', default=False)
p.add_argument("-no_bias_node", action="store_true",help='Turn off the bias node in the NN.', default=False)
args = p.parse_args()
if args.no_bias_node:
useBiasNode = False
else:
useBiasNode = True
args = p.parse_args()
#set_optimizer = tf.keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False)
#set_optimizer = tf.keras.optimizers.Adadelta(learning_rate=1.0, rho=0.95)
set_optimizer = "adam"
out_activation_func = "softmax" # "sigmoid" #
loss_function = "categorical_crossentropy" # "binary_crossentropy" # #"kullback_leibler_divergence" # "mean_squared_error" #
# with "sparse_categorical_crossentropy" no one-hot encoding is required
print_full_test_output = 0
# NN SETTINGS
n_hidden_layers = args.layers # number of extra hidden layers
max_epochs = args.epochs
batch_size_fit = args.batch_size # batch size
units_multiplier = args.nodes # number of nodes per input
if n_hidden_layers != len(units_multiplier):
units_multiplier = np.repeat(units_multiplier[0], n_hidden_layers)
print("Using node multiplier:", units_multiplier)
plot_curves = 1
train_nn = 1
test_nn = 0
randomize_data = args.randomize_data
# run_test_accuracy = 0
# run_tests = 0
if args.mode == "train":
run_train = 1
run_empirical = 0
elif args.mode == "predict":
run_train = 0
run_empirical = 1
elif args.mode == "test":
run_train = 0
run_empirical = 0
test_nn = 1
try:
rescale_factors = float(args.r)
except (ValueError):
rescale_factors = np.loadtxt(args.r)
# SET SEEDS
if args.seed == 0:
rseed = np.random.randint(1000, 9999)
else:
rseed = args.seed
np.random.seed(rseed)
np.random.seed(rseed)
tf.random.set_seed(rseed)
# n_threads = args.threads
# session_conf = tf.ConfigProto(intra_op_parallelism_threads=n_threads, inter_op_parallelism_threads=n_threads)
# sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
# keras.backend.set_session(sess)
activation_functions = ["relu", "tanh", "sigmoid"]
activation_function = activation_functions[args.actfunc - 1]
kernel_initializers = ["glorot_normal", "glorot_uniform"]
kernel_init = kernel_initializers[args.kerninit - 1]
dropout = args.dropout
if len(args.dropout) == 0:
dropout = np.zeros(n_hidden_layers)
outpath = args.outpath
if outpath == "":
outpath = os.path.dirname(args.t)
if outpath == "":
outpath = os.path.dirname(args.e)
elif not os.path.exists(outpath):
os.makedirs(outpath)
if args.loadNN == "":
if args.cross_val > 1:
model_out = os.path.join(outpath, "cv%s" % args.outname)
if not os.path.exists(model_out):
os.makedirs(model_out)
else:
model_out = outpath
input_file_raw = os.path.basename(args.t)
input_file = os.path.splitext(input_file_raw)[0] # file name without extension
model_name = os.path.join(model_out, "%s_NN%s" % (input_file, args.outname))
# model_name = os.path.join(model_out,"trained_model_NN_%slayers%sepochs%sbatch%s%s_%s" % (n_hidden_layers,max_epochs,batch_size_fit,activation_function,kernel_init,rseed))
else:
model_name = args.loadNN
# input files
file_training_data = args.t # empirical data
file_empirical_data = args.e # empirical data
file_training_labels = args.l # training labels
# if labels are provided read them, because they will be used by training or prediction mode
if file_training_labels:
try:
training_labels = np.loadtxt(file_training_labels) # load txt file
except:
training_labels = np.load(file_training_labels).astype(float) # load npy file
# the following is necessary because of the following line that tries to get the min value of the array
try:
training_labels = training_labels.astype(int)
except:
quit('Labels must be integers and not text.') # load npy file
if np.min(training_labels) > 0:
training_labels = training_labels - np.min(training_labels)
if file_training_data:
try:
training_features = np.loadtxt(file_training_data,skiprows=args.head) # load txt file
except:
training_features = np.load(file_training_data) # load npy file
training_features /= rescale_factors
# scale data using the min-max scaler (between 0 and 1)
if args.rescale_data == 1:
scaler = MinMaxScaler()
scaler.fit(training_features)
training_features = scaler.transform(training_features)
if args.rescale_data == 2:
training_features = (training_features - np.mean(training_features, axis=0)) / np.std(training_features, axis=0)
# process train dataset
train_nn = 0
if run_train:
# select features and instances, if files provided:
if args.feature_indices:
try:
feature_index_array = np.loadtxt(args.feature_indices[0], dtype=int)
except:
feature_index_array = np.array([int(i) for i in args.feature_indices])
training_features = training_features[:, feature_index_array]
if args.train_instance_indices:
instance_index_array = np.loadtxt(args.train_instance_indices, dtype=int)
training_features = training_features[instance_index_array, :]
training_labels = training_labels[instance_index_array]
if args.sub_sample_classes:
count_per_category = np.unique(training_labels, return_counts = True)
min_n_instances = np.min(count_per_category[1]) #count_per_category[0][np.argmin(count_per_category[1])]
print("count per category:", len(training_labels))
subsampled_indx = []
for label_class in count_per_category[0]:
indx_class = np.where(training_labels==label_class)[0]
subsampled_indx = subsampled_indx + list(np.random.choice(indx_class, min_n_instances, replace=False))
training_features = training_features[subsampled_indx, :] + 0
training_labels = training_labels[subsampled_indx] + 0
dSize = np.shape(training_features)[0]
if randomize_data:
rnd_indx = np.random.choice(np.arange(dSize), dSize, replace=False)
# shuffle data
training_features = training_features[rnd_indx, :] + 0
training_labels = training_labels[rnd_indx] + 0
init_training_features = copy.deepcopy(training_features)
init_training_labels = copy.deepcopy(training_labels)
train_indx = range(int(training_features.shape[0] * (1 - args.test)))
if args.test:
# split into training and test set
test_indx = range(int(training_features.shape[0] * (1 - args.test)), training_features.shape[0])
input_test = training_features[test_indx, :]
input_testLabels = training_labels[test_indx].astype(int)
input_testLabelsPr = tf.keras.utils.to_categorical(input_testLabels)
input_training = training_features[train_indx, :]
input_trainLabels = training_labels[train_indx].astype(int)
input_trainLabelsPr = tf.keras.utils.to_categorical(input_trainLabels)
test_nn = 1
else:
input_training = training_features
input_trainLabels = training_labels
input_trainLabelsPr = tf.keras.utils.to_categorical(input_trainLabels)
test_nn = 0
if batch_size_fit == 0:
batch_size_fit = int(input_training.shape[0])
print("\nTraining data shape:", input_training.shape)
train_nn = 1
# DEF SIZE OF THE FEATURES
hSize = np.shape(input_training)[1]
nCat = np.shape(input_trainLabelsPr)[1]
dSize = np.shape(input_training)[0]
index = input_training.shape[0]
if args.cross_val > 1:
training_data = []
training_labels = []
validation_data_list = []
skf = StratifiedKFold(n_splits=int(args.cross_val))
for train, test in skf.split(input_training, input_trainLabelsPr[:, 0]):
training_data.append(input_training[train, :])
training_labels.append(input_trainLabelsPr[train, :])
validation_features = input_training[test, :]
validation_labels = input_trainLabelsPr[test, :]
validation_data_list.append((validation_features, validation_labels))
elif args.validation_off:
training_data = [input_training]
training_labels = [input_trainLabelsPr]
validation_features = []
validation_labels = []
validation_data_list = [(validation_features, validation_labels)]
else:
index = int(input_training.shape[0] * 0.8)
training_data = [input_training[:index, :]]
training_labels = [input_trainLabelsPr[:index, :]]
validation_features = input_training[index:, :]
validation_labels = input_trainLabelsPr[index:, :]
validation_data_list = [(validation_features, validation_labels)]
# GET CLASS WEIGHT
if args.class_weight:
# res = dict(zip(test_keys, test_values))
from sklearn.utils import class_weight
class_weights = class_weight.compute_class_weight(
"balanced", np.unique(input_trainLabels[:index]), input_trainLabels[:index]
)
print("Estimated class weights:", class_weights)
else:
class_weights = np.ones(nCat)
print("Using equal class weights:", class_weights)
accuracy_scores = []
loss_scores = []
best_epochs = []
if units_multiplier[0] < 2:
multiplier_nodes = hSize
else:
multiplier_nodes = 1
for i, input_training in enumerate(training_data):
input_trainLabelsPr = training_labels[i]
validation_data = validation_data_list[i]
modelFirstRun = Sequential() # init neural network
### DEFINE from INPUT HIDDEN LAYER
modelFirstRun.add(
Dense(
input_shape=(hSize,),
units=int(units_multiplier[0] * multiplier_nodes),
activation=activation_function,
kernel_initializer=kernel_init,
use_bias=useBiasNode,
)
)
if dropout[0] > 0:
modelFirstRun.add(
Dropout( rate=dropout[0]
)
)
### ADD HIDDEN LAYER
for jj in range(n_hidden_layers - 1):
modelFirstRun.add(
Dense(
units=int(units_multiplier[jj + 1] * multiplier_nodes),
activation=activation_function,
kernel_initializer=kernel_init,
use_bias=useBiasNode,
)
)
if dropout[jj+1] > 0:
modelFirstRun.add(
Dropout( rate=dropout[jj]
)
)
modelFirstRun.add(
Dense(
units=nCat,
activation=out_activation_func,
kernel_initializer=kernel_init,
use_bias=False,
)
)
modelFirstRun.summary()
modelFirstRun.compile(loss=loss_function, optimizer="adam", metrics=["accuracy"])
print("Running model.fit")
log_dir= os.path.join(model_name, "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
# if no validation data (set by user) just train until final epoch
if len(validation_data[0]) == 0:
np.random.seed(rseed)
np.random.seed(rseed)
tf.random.set_seed(rseed)
history = modelFirstRun.fit(
input_training,
input_trainLabelsPr,
epochs=max_epochs,
batch_size=batch_size_fit,
verbose=args.verbose,
class_weight=class_weights,
)
model = modelFirstRun
print("Running training without validation set")
else:
np.random.seed(rseed)
np.random.seed(rseed)
tf.random.set_seed(rseed)
import datetime
history = modelFirstRun.fit(
input_training,
input_trainLabelsPr,
epochs=max_epochs,
batch_size=batch_size_fit,
validation_data=validation_data,
verbose=args.verbose,
class_weight=class_weights,
callbacks=[tensorboard_callback]
)
if plot_curves:
fig = plt.figure(figsize=(20, 8))
fig.add_subplot(121)
plt.plot(history.history["loss"], "r", linewidth=3.0)
plt.plot(history.history["val_loss"], "b", linewidth=3.0)
plt.legend(["Training loss", "Validation Loss"], fontsize=12)
plt.xlabel("Epochs", fontsize=12)
plt.ylabel("Loss", fontsize=12)
plt.title("Loss Curves", fontsize=12)
# Accuracy Curves
fig.add_subplot(122)
# print(history.history)
plt.plot(history.history["accuracy"], "r", linewidth=3.0)
plt.plot(history.history["val_accuracy"], "b", linewidth=3.0)
plt.legend(["Training Accuracy", "Validation Accuracy"], fontsize=12)
plt.xlabel("Epochs", fontsize=12)
plt.ylabel("Accuracy", fontsize=12)
plt.title("Accuracy Curves", fontsize=12)
# OPTIM OVER VALIDATION AND THEN TEST ON TEST DATASET (THAT'S THE FINAL ACCURACY)
if args.optim_epoch == 0:
optimal_number_of_epochs = np.argmin(history.history["val_loss"])
elif args.optim_epoch == 1:
optimal_number_of_epochs = np.argmax(history.history["val_accuracy"])
best_epochs.append(optimal_number_of_epochs + 1)
# print loss and accuracy at best epoch to file
loss_at_best_epoch = history.history["val_loss"][optimal_number_of_epochs]
accuracy_at_best_epoch = history.history["val_accuracy"][optimal_number_of_epochs]
print("optimal number of epochs:", optimal_number_of_epochs+1, accuracy_at_best_epoch)
tnsordboard = "tensorboard --logdir %s " % log_dir
print("\n\n To visualize the ouput type: \n%s\n\n" % tnsordboard)
model = Sequential() # init neural network
model.add(
Dense(
input_shape=(hSize,),
units=int(units_multiplier[0] * multiplier_nodes),
activation=activation_function,
kernel_initializer=kernel_init,
use_bias=useBiasNode,
)
)
if dropout[0] > 0:
model.add(
Dropout( rate=dropout[0]
)
)
for jj in range(n_hidden_layers - 1):
model.add(
Dense(
units=int(units_multiplier[jj + 1] * multiplier_nodes),
activation=activation_function,
kernel_initializer=kernel_init,
use_bias=useBiasNode,
)
)
if dropout[jj+1] > 0:
model.add(
Dropout( rate=dropout[jj]
)
)
model.add(
Dense(
units=nCat,
activation=out_activation_func,
kernel_initializer=kernel_init,
use_bias=False,
)
)
model.summary()
model.compile(loss=loss_function, optimizer=set_optimizer, metrics=["accuracy"])
np.random.seed(rseed)
np.random.seed(rseed)
tf.random.set_seed(rseed)
history = model.fit(
input_training,
input_trainLabelsPr,
epochs=optimal_number_of_epochs + 1,
batch_size=batch_size_fit,
validation_data=validation_data,
verbose=args.verbose,
class_weight=class_weights,
)
accuracy = history.history["val_accuracy"][-1]
print("retrained valiadation accuracy:",accuracy)
accuracy_scores.append(np.round(accuracy, 6))
loss_scores.append(history.history["val_loss"][-1])
if args.cross_val > 1:
weight_file_name = model_name + "_cv_%i" % i
else:
weight_file_name = model_name
weight_file_name = weight_file_name + ".model"
# model.save_weights(weight_file_name)
model.save(weight_file_name)
print("Model saved as:", weight_file_name)
try:
# plot all accuracy curves (multiple pages in case of cv)
file_name = "%s_res.pdf" % (model_name.replace("trained_model_", ""))
pdf = matplotlib.backends.backend_pdf.PdfPages(file_name)
for figure in range(1, fig.number + 1):
pdf.savefig(figure)
pdf.close()
plt.close("all")
except:
no_plot = True
# write output text file
info_out = os.path.join( "%s_info.txt" % model_name.replace("trained_model_", "")
)
args_data = vars(args)
# adjust seed since it may have been randomely drawn
args_data["seed"] = rseed
# add the shape of the training data input
args_data["total_training_array_shape"] = str(input_training.shape)
if not args.validation_off:
cv_avg_epochs = int(np.round(np.mean(best_epochs)))
cv_avg_accuracy = np.mean(accuracy_scores)
cv_avg_loss = np.mean(loss_scores)
args_data["best_epoch"] = str(best_epochs)
args_data["accuracies"] = str((accuracy_scores))
args_data["loss_scores"] = str((loss_scores))
args_data["avg_epoch"] = str(cv_avg_epochs)
args_data["avg_accuracy"] = str(cv_avg_accuracy)
args_data["avg_loss"] = str(cv_avg_loss)
print("Best epoch (average):", cv_avg_epochs)
print("Validation accuracy (average):", cv_avg_accuracy)
print(accuracy_scores)
out_file = open(info_out, "w")
for i in args_data:
out_file.writelines(f"{i}\t{str(args_data[i])}\n")
if args.cross_val > 1:
# re-train the NN based on entire dataset (no validation)
# and run it on test set
input_training = init_training_features[train_indx, :]
input_trainLabels = init_training_labels[train_indx].astype(int)
input_trainLabelsPr = tf.keras.utils.to_categorical(input_trainLabels)
if units_multiplier[0] < 2:
multiplier_nodes = hSize
else:
multiplier_nodes = 1
model = Sequential() # init neural network
model.add(
Dense(
input_shape=(hSize,),
units=int(units_multiplier[0] * multiplier_nodes),
activation=activation_function,
kernel_initializer=kernel_init,
use_bias=useBiasNode,
)
)
if dropout[0] > 0:
model.add(
Dropout( rate=dropout[0]
)
)
for jj in range(n_hidden_layers - 1):
model.add(
Dense(
units=int(units_multiplier[jj + 1] * multiplier_nodes),
activation=activation_function,
kernel_initializer=kernel_init,
use_bias=useBiasNode,
)
)
if dropout[jj+1] > 0:
model.add(
Dropout( rate=dropout[jj]
)
)
model.add(
Dense(
units=nCat,
activation=out_activation_func,
kernel_initializer=kernel_init,
use_bias=False,
)
)
model.summary()
model.compile(loss=loss_function, optimizer=set_optimizer, metrics=["accuracy"])
np.random.seed(rseed)
np.random.seed(rseed)
tf.random.set_seed(rseed)
history = model.fit(
input_training,
input_trainLabelsPr,
epochs=cv_avg_epochs,
batch_size=batch_size_fit,
verbose=args.verbose,
class_weight=class_weights,
)
model.save(model_name + "_CV")
# model.save_weights(model_name+"_CV")
print("Model saved as:", model_name + ".CVmodel")
if test_nn and args.test > 0.0: # and not args.cross_val > 1:
if args.mode == "test":
input_test = training_features
if args.feature_indices:
try:
feature_index_array = np.loadtxt(args.feature_indices[0], dtype=int)
except:
feature_index_array = np.array([int(i) for i in args.feature_indices])
input_test = input_test[:, feature_index_array]
input_testLabels = training_labels.astype(int)
input_testLabelsPr = tf.keras.utils.to_categorical(input_testLabels)
hSize = np.shape(input_test)[1]
nCat = np.shape(input_testLabelsPr)[1]
dSize = np.shape(input_test)[0]
model = tf.keras.models.load_model(model_name)
info_out = os.path.join(outpath, "%s_info.txt" % model_name.replace("_NN_", ""))
out_file = open(info_out, "w")
print(
"\n\nUsing %.3f of the data as test set.\nDimensions of resulting test set: %s."
% (args.test, str(input_test.shape))
)
print("\nTest data shape:", input_test.shape)
estimate_par = model.predict(input_test)
predictions = np.argmax(estimate_par, axis=1)
if print_full_test_output:
for i in range(len(estimate_par)):
print(input_testLabels[i], estimate_par[i], input_testLabelsPr[i])
cM = confusion_matrix(input_testLabels, predictions)
print("Confusion matrix (test set):\n", cM)
rescaled_cM = (np.array(cM).T / np.sum(np.array(cM), 1)).T
print(rescaled_cM)
scores = model.evaluate(input_test, input_testLabelsPr, verbose=0)
print("\nTest accuracy rate: %.2f%%" % (scores[1] * 100))
print("Test error rate: %.2f%%" % (100 - scores[1] * 100))
print("Test cross-entropy loss:", round(scores[0], 3), "\n")
out_file.writelines(f"\nTest accuracy rate\t%s " % (scores[1]))
out_file.writelines(f"\nTest cross-entropy loss\t%s " % (scores[0]))
out_file.writelines(f"\nConfusion matrix:\n%s" % cM)
out_file.writelines(f"\nRescaled confusion matrix:\n%s" % rescaled_cM)
if args.mode == "test":
out_file = open(info_out.replace(".txt", "") + "_class_prob.txt", "w")
out = "label\t"
for i in np.unique(input_testLabels):
out += "P_%s\t" % i
out_file.writelines(out)
for i in range(len(estimate_par)):
line_list = [input_testLabels[i]] + list(estimate_par[i])
out = "\n"
for j in line_list:
out = out + "%s\t" % j
out_file.writelines(out)
np.savetxt(
info_out.replace(".txt", "") + "_CM.txt",
rescaled_cM,
fmt="%.3f",
delimiter="\t",
)
######## TEST EMPIRICAL DATA SETS
if run_empirical:
print("Loading input file...")
try:
empirical_features = np.loadtxt(file_empirical_data,skiprows=args.head)
# print(empirical_features.shape)
except:
empirical_features = np.load(file_empirical_data)
empirical_features /= rescale_factors
# print(np.amin(empirical_features, 0))
# print(np.amax(empirical_features, 0))
# select features and instances, if files provided:
if args.feature_indices:
try:
feature_index_array = np.loadtxt(args.feature_indices[0], dtype=int)
except:
feature_index_array = np.array([int(i) for i in args.feature_indices])
empirical_features = empirical_features[:, feature_index_array]
out_file_stem = os.path.basename(model_name)
input_file_stem = os.path.basename(file_empirical_data)
input_file_stem = input_file_stem.replace(".txt","")
input_file_stem = input_file_stem.replace(".npy","")
out_file_stem = out_file_stem + args.outname
# scale data using the min-max scaler (between 0 and 1)
if args.rescale_data == 1:
scaler = MinMaxScaler()
scaler.fit(empirical_features)
empirical_features = scaler.transform(empirical_features)
if args.rescale_data == 2:
empirical_features = (empirical_features - np.mean(empirical_features, axis=0)) / np.std(empirical_features, axis=0)
print("Loading model...")
model = tf.keras.models.load_model(model_name)
estimate_par = model.predict(empirical_features)
# print(estimate_par.shape)
size_output = estimate_par.shape[1]
outfile = os.path.join(outpath, "%slabelsPr_%s.txt" % (input_file_stem, out_file_stem))
if file_training_labels:
try:
lab = np.sort(np.arange(list(set(training_labels))).astype(int))
except:
lab = np.sort(np.array(list(set(training_labels))))
elif args.outlabels:
lab = np.array(args.outlabels)
else:
lab = np.arange(size_output)
col_names = ""
for i in lab:
col_names = col_names + "%s\t" % i
np.savetxt(outfile, np.round(estimate_par, 4), delimiter="\t", fmt="%1.4f", header=col_names)
print("\nResults saved as:", outfile, "\n")
indx_best = np.argmax(estimate_par, axis=1)
outfile = os.path.join(outpath, "%slabels_%s.txt" % (input_file_stem, out_file_stem))
np.savetxt(outfile, lab[indx_best], delimiter="\t", fmt="%s")
try:
out_file.close()
except:
pass