-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path:w
88 lines (63 loc) · 2.34 KB
/
:w
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import random
import math
import cv2
import numpy as np
from scipy.signal import medfilt
import track_ic.ellipse_lib as el
from track_ic.ellipse_model import EllipseModel
from track_ic.ransac import ransac
def fit_ellipse(center_coords, gray, iris_max, iris_min):
ellipse_radius = np.linspace(iris_min, iris_max, 40)
radii = np.unique(np.round(ellipse_radius))
angles = np.linspace(0, 2 * math.pi, 40)
# Make more efficient, find out how to not go over the entire image
gx = cv2.Scharr(gray, cv2.CV_64F, 1, 0)
gy = cv2.Scharr(gray, cv2.CV_64F, 0, 1)
candidate_radii = []
for theta in angles:
temp_best_mag = -1;
temp_best_r = -1
r_dot_g_thresh = 1
g_mag_threshold = 100
for r in radii:
pt = np.round([
center_coords[0] + r * math.sin(theta),
center_coords[1] + r * math.cos(theta)]).astype(int)
g_mag = math.sqrt(
gx[pt[0]][pt[1]] * gx[pt[0]][pt[1]] +
gy[pt[0]][pt[1]] * gy[pt[0]][pt[1]])
g_hat = (gx[pt[0]][pt[1]]/ g_mag, gy[pt[0]][pt[1]]/ g_mag)
if g_mag < g_mag_threshold:
continue
r_vec = (r * math.cos(theta), r * math.sin(theta))
r_dot_g = np.dot(r_vec, g_hat)
if r_dot_g < r_dot_g_thresh:
continue
if temp_best_mag < g_mag:
temp_best_mag = g_mag
temp_best_r = r
if temp_best_r > 0:
candidate_radii.append(temp_best_r)
candidate_points = []
filtered_radii = medfilt(candidate_radii, 5)
for angle, mag in zip(angles, filtered_radii):
pt = np.round([
center_coords[0] + mag * math.sin(angle),
center_coords[1] + mag * math.cos(angle)]).astype(int)
candidate_points.append(pt)
candidate_points = np.array(candidate_points)
rand_pt = random.sample(candidate_points, 5)
new_mat = []
# return candidate_points
#RANSAC
ellipse_model = EllipseModel()
ransac_fit, ransac_data = ransac(
candidate_points, ellipse_model,
5, 1000, 7e3, 300,
return_all=True)
cp_transpose = np.transpose(rand_pt)
new_mat.append(cp_transpose[1])
new_mat.append(cp_transpose[0])
lsqe = el.LSqEllipse()
lsqe.fit(new_mat)
return lsqe.parameters()