Skip to content

Latest commit

 

History

History
55 lines (43 loc) · 1.47 KB

installation.md

File metadata and controls

55 lines (43 loc) · 1.47 KB

Installation

Repository

First, clone this repository and the git submodules:

git clone --recurse-submodules https://github.com/dsx0511/ADA-Track

Environment Information

This repository was tested with:

  • Python == 3.7 and 3.8
  • CUDA == 11.3.1
  • CUDNN == 8
  • Pytorch == 1.10.0

It should work with other versions as well.

Docker

We recommand using Docker to setup the environment. We provide an example of Dockerfile here. Fist, build the docker image:

cd docker
docker build -t ada_track:v1.0 .

After the docker image is built, you can run the docker container using this script

bash run.sh $nusc_data_dir $repo_dir $exp_dir

while setting the arguments:

  • $nusc_data_dir: path to the root of the nuscenes dataset,
  • $repo_dir: path to this repository,
  • $exp_dir: path to your workspace.

Inside the interactive session of the docker container, run thi script to install mmdetection3d and this repository as plugin:

cd docker && bash setup_in_container.sh

Custom Installtion

If you prefer an installation using e.g. pip or conda, these dependencies are most critical:

  • numpy>=1.21.0
  • mmcv-full==1.4.0
  • mmdet==2.25.3
  • mmsegmentation==0.30.0
  • torch_geometric==2.0.4, torch_scatter==2.0.9, torch_sparse==0.6.13 , torch_cluster==1.6.0, torch_spline_conv==1.2.1
  • nuscenes-devkit==1.1.10
  • motmetrics==1.1.3
  • (optional for flash attention) einops, flash-attn==0.2.2