-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsample_save.py
882 lines (779 loc) · 36.7 KB
/
sample_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
"""
---
title: DS-DDPM sampling
---
# [Denoising Diffusion Probabilistic Models (DDPM)](index.html) evaluation/sampling
This is the code to generate images and create interpolations between given images.
"""
from multiprocessing import reduction
from turtle import Turtle
from typing import List
import torch
import torch.utils.data
import torchvision
from PIL import Image
from labml import lab, tracker, experiment, monit
from labml.configs import BaseConfigs, option
from labml_helpers.device import DeviceConfigs
from src.EEGNet import EEG_Net_8_Stack
from src.unet_eeg_subject_emb import sub_gaussion
from src.unet_eeg import UNet
from typing import Tuple, Optional
from cgi import test
from threading import stack_size
import numpy as np
import torch
from matplotlib import pyplot as plt
from torchvision.transforms.functional import to_pil_image, resize
from typing import Optional, Tuple
from labml import experiment, monit
# from labml_nn.diffusion.ddpm import DenoiseDiffusion, gather
from src.utils import gather
# from diffusion_uncon_bci_compiv import Configs
from unet2d_overlap import Configs
import torch
import torch.nn.functional as F
import torch.utils.data
from torch import nn
from src.utils import gather
import torch
import torch.nn.functional as F
import torch.utils.data
from torch import nn
import numpy as np
import scipy.io as sio
import csv
import math
import matplotlib.pyplot as plt
import numpy as np
# the following import is required for matplotlib < 3.2:
from mpl_toolkits.mplot3d import Axes3D # noqa
import os
import mne
import scipy.io as sio
from src.utils import raw_construct_mne_info
# from visualization.visualize_utils_mne import raw_construct_mne_info
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import LinearLocator
from scipy.interpolate import griddata
from PIL import Image
import gif
# subject_instance = UNet_sub()
class ArcMarginProduct(nn.Module):
r"""Implement of large margin arc distance: :
Args:
in_features: size of each input sample
out_features: size of each output sample
s: norm of input feature
m: margin
cos(theta + m)
"""
def __init__(self, in_features, out_features, s=30.0, m=0.50, easy_margin=False):
super(ArcMarginProduct, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.s = s
self.m = m
self.weight = torch.nn.parameter.Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_uniform_(self.weight)
self.easy_margin = easy_margin
self.cos_m = math.cos(m)
self.sin_m = math.sin(m)
self.th = math.cos(math.pi - m)
self.mm = math.sin(math.pi - m) * m
def forward(self, input, label):
# --------------------------- cos(theta) & phi(theta) ---------------------------
# torch.nn.functional.linear(input, weight, bias=None)
# y=x*W^T+b
cosine = F.linear(F.normalize(input), F.normalize(self.weight))
sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
# cos(a+b)=cos(a)*cos(b)-size(a)*sin(b)
phi = cosine * self.cos_m - sine * self.sin_m
if self.easy_margin:
# torch.where(condition, x, y) → Tensor
# condition (ByteTensor) – When True (nonzero), yield x, otherwise yield y
# x (Tensor) – values selected at indices where condition is True
# y (Tensor) – values selected at indices where condition is False
# return:
# A tensor of shape equal to the broadcasted shape of condition, x, y
# cosine>0 means two class is similar, thus use the phi which make it
phi = torch.where(cosine > 0, phi, cosine)
else:
phi = torch.where(cosine > self.th, phi, cosine - self.mm)
# --------------------------- convert label to one-hot ---------------------------
# one_hot = torch.zeros(cosine.size(), requires_grad=True, device='cuda')
# 将cos(\theta + m)更新到tensor相应的位置中
one_hot = torch.zeros(cosine.size(), device='cuda')
# scatter_(dim, index, src)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
# -------------torch.where(out_i = {x_i if condition_i else y_i) -------------
output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
# you can use torch.where if your torch.__version__ is 0.4
output *= self.s
# print(output)
return output
class ArcMarginHead(nn.Module):
r"""Implement of large margin arc distance: :
Args:
in_features: size of each input sample
out_features: size of each output sample
s: norm of input feature
m: margin
cos(theta + m)
"""
def __init__(self, in_features, out_features, load_backbone = '/home/yiqduan/Data/bci/EEG_MI_DARTS/Mudus_BCI/logs/subjects_normal/BCI_IV_EEGNet_batchsize256_lr0.05_gamma0.5_step20_maxepoch100_exp1/max_acc.pth', s=30.0, m=0.50, easy_margin=False):
super(ArcMarginHead, self).__init__()
self.arcpro = ArcMarginProduct(in_features, out_features, s=30.0, m=0.50, easy_margin=False)
self.auxback = EEG_Net_8_Stack(mtl=False)
pretrained_checkpoint = torch.load(load_backbone)
print("loading the pretrained subject EEGNet weight and convert to arc..{}".format(pretrained_checkpoint.keys()))
self.auxback.load_state_dict(pretrained_checkpoint['params'])
print("backbone loading successful")
def forward(self, input, label):
# --------------------------- cos(theta) & phi(theta) ---------------------------
# torch.nn.functional.linear(input, weight, bias=None)
# y=x*W^T+b
emb = self.auxback(input)
# print(output)
output = self.arcpro(emb, label)
return output
class DenoiseDiffusion:
"""
## Denoise Diffusion
"""
def __init__(self, eps_model: nn.Module, n_steps: int, device: torch.device, sub_theta: nn.Module, sub_arc_head: nn.Module, debug=False):
"""
* `eps_model` is $\textcolor{lightgreen}{\epsilon_\theta}(x_t, t)$ model
* `n_steps` is $t$
* `device` is the device to place constants on
"""
super().__init__()
self.eps_model = eps_model
self.sub_theta = sub_theta
self.sub_arc_head = sub_arc_head
# Create $\beta_1, \dots, \beta_T$ linearly increasing variance schedule
self.beta = torch.linspace(0.0001, 0.02, n_steps).to(device)
# $\alpha_t = 1 - \beta_t$
self.alpha = 1. - self.beta
# $\bar\alpha_t = \prod_{s=1}^t \alpha_s$
self.alpha_bar = torch.cumprod(self.alpha, dim=0)
# $T$
self.n_steps = n_steps
# $\sigma^2 = \beta$
self.sigma2 = self.beta
self.debug = debug
self.step_size = 75
self.window_size = 224
# self.step_size = 93.5
# self.window_size = 93.5
self.subject_noise_range = 9
# self.arcmargin = ArcMarginProduct()
def q_xt_x0(self, x0: torch.Tensor, t: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
#### Get $q(x_t|x_0)$ distribution
\begin{align}
q(x_t|x_0) &= \mathcal{N} \Big(x_t; \sqrt{\bar\alpha_t} x_0, (1-\bar\alpha_t) \mathbf{I} \Big)
\end{align}
"""
# [gather](utils.html) $\alpha_t$ and compute $\sqrt{\bar\alpha_t} x_0$
if self.debug:
print("the selected alpha bar would be {}".format(gather(self.alpha_bar, t).shape))
mean = gather(self.alpha_bar, t) ** 0.5 * x0
# $(1-\bar\alpha_t) \mathbf{I}$
var = 1 - gather(self.alpha_bar, t)
#
return mean, var
def q_sample(self, x0: torch.Tensor, t: torch.Tensor, eps: Optional[torch.Tensor] = None):
"""
#### Sample from $q(x_t|x_0)$
\begin{align}
q(x_t|x_0) &= \mathcal{N} \Big(x_t; \sqrt{\bar\alpha_t} x_0, (1-\bar\alpha_t) \mathbf{I} \Big)
\end{align}
"""
# $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
if eps is None:
eps = torch.randn_like(x0)
# get $q(x_t|x_0)$
mean, var = self.q_xt_x0(x0, t)
# Sample from $q(x_t|x_0)$
return mean + (var ** 0.5) * eps
def p_sample(self, xt: torch.Tensor, t: torch.Tensor):
"""
#### Sample from $\textcolor{lightgreen}{p_\theta}(x_{t-1}|x_t)$
\begin{align}
\textcolor{lightgreen}{p_\theta}(x_{t-1} | x_t) &= \mathcal{N}\big(x_{t-1};
\textcolor{lightgreen}{\mu_\theta}(x_t, t), \sigma_t^2 \mathbf{I} \big) \\
\textcolor{lightgreen}{\mu_\theta}(x_t, t)
&= \frac{1}{\sqrt{\alpha_t}} \Big(x_t -
\frac{\beta_t}{\sqrt{1-\bar\alpha_t}}\textcolor{lightgreen}{\epsilon_\theta}(x_t, t) \Big)
\end{align}
"""
# $\textcolor{lightgreen}{\epsilon_\theta}(x_t, t)$
eps_theta = self.eps_model(xt, t)
# [gather](utils.html) $\bar\alpha_t$
alpha_bar = gather(self.alpha_bar, t)
# $\alpha_t$
alpha = gather(self.alpha, t)
# $\frac{\beta}{\sqrt{1-\bar\alpha_t}}$
eps_coef = (1 - alpha) / (1 - alpha_bar) ** .5
# $$\frac{1}{\sqrt{\alpha_t}} \Big(x_t -
# \frac{\beta_t}{\sqrt{1-\bar\alpha_t}}\textcolor{lightgreen}{\epsilon_\theta}(x_t, t) \Big)$$
mean = 1 / (alpha ** 0.5) * (xt - eps_coef * eps_theta)
# $\sigma^2$
var = gather(self.sigma2, t)
# $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
eps = torch.randn(xt.shape, device=xt.device)
# Sample
return mean + (var ** .5) * eps
def p_sample_noise(self, xt: torch.Tensor, t: torch.Tensor, s: torch.Tensor):
"""
#### Sample from $\textcolor{lightgreen}{p_\theta}(x_{t-1}|x_t)$
\begin{align}
\textcolor{lightgreen}{p_\theta}(x_{t-1} | x_t) &= \mathcal{N}\big(x_{t-1};
\textcolor{lightgreen}{\mu_\theta}(x_t, t), \sigma_t^2 \mathbf{I} \big) \\
\textcolor{lightgreen}{\mu_\theta}(x_t, t)
&= \frac{1}{\sqrt{\alpha_t}} \Big(x_t -
\frac{\beta_t}{\sqrt{1-\bar\alpha_t}}\textcolor{lightgreen}{\epsilon_\theta}(x_t, t) \Big)
\end{align}
"""
# $\textcolor{lightgreen}{\epsilon_\theta}(x_t, t)$
eps_theta = self.sub_theta(xt, t, s)
# [gather](utils.html) $\bar\alpha_t$
alpha_bar = gather(self.alpha_bar, t)
# $\alpha_t$
alpha = gather(self.alpha, t)
# $\frac{\beta}{\sqrt{1-\bar\alpha_t}}$
eps_coef = (1 - alpha) / (1 - alpha_bar) ** .5
# $$\frac{1}{\sqrt{\alpha_t}} \Big(x_t -
# \frac{\beta_t}{\sqrt{1-\bar\alpha_t}}\textcolor{lightgreen}{\epsilon_\theta}(x_t, t) \Big)$$
mean = 1 / (alpha ** 0.5) * (xt - eps_coef * eps_theta)
# $\sigma^2$
var = gather(self.sigma2, t)
# $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
eps = torch.randn(xt.shape, device=xt.device)
# Sample
return mean + (var ** .5) * eps
def loss(self, x0: torch.Tensor, noise: Optional[torch.Tensor] = None, debug=False):
"""
#### Simplified Loss
$$L_simple(\theta) = \mathbb{E}_{t,x_0, \epsilon} \Bigg[ \bigg\Vert
\epsilon - \textcolor{lightgreen}{\epsilon_\theta}(\sqrt{\bar\alpha_t} x_0 + \sqrt{1-\bar\alpha_t}\epsilon, t)
\bigg\Vert^2 \Bigg]$$
"""
# Get batch size
batch_size = x0.shape[0]
# Get random $t$ for each sample in the batch
if debug:
print("the shape of x0")
print(x0.shape)
t = torch.randint(0, self.n_steps, (batch_size,), device=x0.device, dtype=torch.long)
if debug:
print("the shape of t")
print(t.shape)
# $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
if noise is None:
noise = torch.randn_like(x0)
if debug:
print("the shape of noise")
print(noise.shape)
# Sample $x_t$ for $q(x_t|x_0)$
xt = self.q_sample(x0, t, eps=noise)
if debug:
print("the shape of xt")
print(xt.shape)
# Get $\textcolor{lightgreen}{\epsilon_\theta}(\sqrt{\bar\alpha_t} x_0 + \sqrt{1-\bar\alpha_t}\epsilon, t)$
eps_theta = self.eps_model(xt, t)
# MSE loss
return F.mse_loss(noise, eps_theta)
def loss_with_diff_constraint(self, x0: torch.Tensor, label: torch.Tensor,
noise: Optional[torch.Tensor] = None, debug=False,
noise_content_kl_co = 1, arc_subject_co = 0.1):
"""
#### Simplified Loss
$$L_simple(\theta) = \mathbb{E}_{t,x_0, \epsilon} \Bigg[ \bigg\Vert
\epsilon - \textcolor{lightgreen}{\epsilon_\theta}(\sqrt{\bar\alpha_t} x_0 + \sqrt{1-\bar\alpha_t}\epsilon, t)
\bigg\Vert^2 \Bigg]$$
"""
# Get batch size
debug = self.debug
batch_size = x0.shape[0]
# Get random $t$ for each sample in the batch
if debug:
print("the shape of x0")
print(x0.shape)
t = torch.randint(0, self.n_steps, (batch_size,), device=x0.device, dtype=torch.long)
# s = torch.randint(0, self.subject_noise_range, (batch_size,), device=x0.device, dtype=torch.long)
s = label
if debug:
print("the shape of t")
print(t.shape)
print(t)
# $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
if noise is None:
noise = torch.randn_like(x0)
if debug:
print("the shape of noise")
print(noise.shape)
# Sample $x_t$ for $q(x_t|x_0)$
xt = self.q_sample(x0, t, eps=noise)
if debug:
print("the shape of xt")
print(xt.shape)
# Get $\textcolor{lightgreen}{\epsilon_\theta}(\sqrt{\bar\alpha_t} x_0 + \sqrt{1-\bar\alpha_t}\epsilon, t)$
eps_theta = self.eps_model(xt, t)
subject_mu, subject_theta = self.sub_theta(xt, t, s)
# print(subject_theta.shape)
if debug:
print("the shape of eps_theta")
print(eps_theta.shape)
constraint_panelty = 0
# eps_layernorm = F.layer_norm(eps_theta, [eps_theta.shape[1], eps_theta.shape[2], eps_theta.shape[3]])
for i in range(eps_theta.shape[3] - 1):
# i * self.step_size, i * self.step_size + self.window_size
# (i + 1) * self.step_size, (i + 1) * self.step_size + self.window_size
if debug:
print("logging with constraint panelty value")
# print(F.mse_loss(eps_layernorm[:, :, (i + 1) * self.step_size : i * self.step_size + self.window_size, i], eps_layernorm[:, :, (i + 1) * self.step_size : i * self.step_size + self.window_size, i + 1], reduction='none').shape)
# print(F.mse_loss(eps_layernorm[:, :, self.step_size:, i], eps_layernorm[:, :, :-self.step_size, i + 1], reduction='none').shape)
# print(F.mse_loss(eps_layernorm[:, :, self.step_size:, i], eps_layernorm[:, :, :-self.step_size, i + 1], reduction='mean'))
print(F.mse_loss(eps_theta[:, :, self.step_size:, i], eps_theta[:, :, :-self.step_size, i + 1], reduction='mean'))
# constraint_panelty = constraint_panelty +F.mse_loss(eps_layernorm[:, :, self.step_size:, i], eps_layernorm[:, :, :-self.step_size, i + 1], reduction='mean')
constraint_panelty = constraint_panelty +F.mse_loss(eps_theta[:, :, self.step_size:, i], eps_theta[:, :, :-self.step_size, i + 1], reduction='mean')
if debug:
print("logging with constraint panelty value")
print(constraint_panelty)
# MSE loss
# return F.mse_loss(noise, eps_theta + subject_theta) + constraint_panelty, constraint_panelty
# noise_conent_kl = F.kl_div(eps_theta.softmax(dim=-1).log(), subject_theta.softmax(dim=-1), reduction='sum')
noise_conent_kl = F.kl_div(eps_theta.softmax(dim=-1).log(), subject_theta.softmax(dim=-1), reduction='mean')
subject_arc_logit = self.sub_arc_head(subject_theta.permute(0,3,2,1), s)
subject_arc_loss = F.cross_entropy(subject_arc_logit, s.long())
# print('arcloss is {}'.format(subject_arc_loss))
# return F.mse_loss(noise, eps_theta + subject_theta) + 0.01 * 1/noise_conent_kl, constraint_panelty, noise_conent_kl
return F.mse_loss(noise, eps_theta + subject_theta) - noise_content_kl_co * noise_conent_kl + arc_subject_co *subject_arc_loss, constraint_panelty, noise_content_kl_co * noise_conent_kl, arc_subject_co *subject_arc_loss
# return F.mse_loss(noise, eps_theta), constraint_panelty
class Sampler:
"""
## Sampler class
"""
def __init__(self, diffusion: DenoiseDiffusion, eeg_channels: int, window_size: int, step: int, stack_size: int, device: torch.device):
"""
* `diffusion` is the `DenoiseDiffusion` instance
* `eeg_channels` is the number of channels in the image
* `device` is the device of the model
"""
self.device = device
# self.image_size = image_size
self.eeg_channels = eeg_channels
self.diffusion = diffusion
self.window_size = window_size
self.stack_size = stack_size
self.step = step
# $T$
self.n_steps = diffusion.n_steps
# $\textcolor{lightgreen}{\epsilon_\theta}(x_t, t)$
self.eps_model = diffusion.eps_model
self.subnoise_model = diffusion.sub_theta
# $\beta_t$
self.beta = diffusion.beta
# $\alpha_t$
self.alpha = diffusion.alpha
# $\bar\alpha_t$
self.alpha_bar = diffusion.alpha_bar
# $\bar\alpha_{t-1}$
alpha_bar_tm1 = torch.cat([self.alpha_bar.new_ones((1,)), self.alpha_bar[:-1]])
# To calculate
#
# \begin{align}
# q(x_{t-1}|x_t, x_0) &= \mathcal{N} \Big(x_{t-1}; \tilde\mu_t(x_t, x_0), \tilde\beta_t \mathbf{I} \Big) \\
# \tilde\mu_t(x_t, x_0) &= \frac{\sqrt{\bar\alpha_{t-1}}\beta_t}{1 - \bar\alpha_t}x_0
# + \frac{\sqrt{\alpha_t}(1 - \bar\alpha_{t-1})}{1-\bar\alpha_t}x_t \\
# \tilde\beta_t &= \frac{1 - \bar\alpha_{t-1}}{a}
# \end{align}
# $\tilde\beta_t$
self.beta_tilde = self.beta * (1 - alpha_bar_tm1) / (1 - self.alpha_bar)
# $$\frac{\sqrt{\bar\alpha_{t-1}}\beta_t}{1 - \bar\alpha_t}$$
self.mu_tilde_coef1 = self.beta * (alpha_bar_tm1 ** 0.5) / (1 - self.alpha_bar)
# $$\frac{\sqrt{\alpha_t}(1 - \bar\alpha_{t-1}}{1-\bar\alpha_t}$$
self.mu_tilde_coef2 = (self.alpha ** 0.5) * (1 - alpha_bar_tm1) / (1 - self.alpha_bar)
# $\sigma^2 = \beta$
self.sigma2 = self.beta
def show_image(self, img, title=""):
"""Helper function to display an image"""
img = img.clip(0, 1)
img = img.cpu().numpy()
plt.imshow(img.transpose(1, 2, 0))
plt.title(title)
plt.show()
data_path = '/home/yiqduan/Data/ddpm/ddpm/logs/diffuse/visualize_celebA/{}.png'.format(title)
plt.savefig(data_path)
def make_video(self, frames, path="video.mp4"):
"""Helper function to create a video"""
import imageio
# 20 second video
writer = imageio.get_writer(path, fps=len(frames) // 20)
# Add each image
for f in frames:
f = f.clip(0, 1)
f = to_pil_image(resize(f, [368, 368]))
writer.append_data(np.array(f))
#
writer.close()
def sample_animation(self, n_frames: int = 1000, create_video: bool = False, overlap_cover = True, debug=False, subject_id = [5], dataroot=None, apply_step=20):
"""
#### Sample an image step-by-step using $\textcolor{lightgreen}{p_\theta}(x_{t-1}|x_t)$
We sample an image step-by-step using $\textcolor{lightgreen}{p_\theta}(x_{t-1}|x_t)$ and at each step
show the estimate
$$x_0 \approx \hat{x}_0 = \frac{1}{\sqrt{\bar\alpha}}
\Big( x_t - \sqrt{1 - \bar\alpha_t} \textcolor{lightgreen}{\epsilon_\theta}(x_t, t) \Big)$$
"""
# $x_T \sim p(x_T) = \mathcal{N}(x_T; \mathbf{0}, \mathbf{I})$
xt = torch.randn([1, self.eeg_channels, self.window_size, self.stack_size], device=self.device)
# print('shape of xt is {}'.format(xt.shape))
s = torch.tensor(subject_id, dtype=torch.long, device=self.device)
# Interval to log $\hat{x}_0$
interval = self.n_steps // n_frames
# Frames for video
frames = []
# Sample $T$ steps
real_cureves_list = []
real_noises_list = []
# for t_inv in monit.iterate('Denoise', self.n_steps):
for t_inv in monit.iterate('Denoise', apply_step):
# $t$
# t_inv = 150 - t_inv
t_ = self.n_steps - t_inv - 1
# print(t_inv)
# if t_inv > 20:
# break
# $t$ in a tensor
t = xt.new_full((1,), t_, dtype=torch.long)
# $\textcolor{lightgreen}{\epsilon_\theta}(x_t, t)$
eps_theta = self.eps_model(xt, t)
if debug:
print("validating shape of t and s")
print(t.shape)
print(s.shape)
_, subnoise_theta = self.subnoise_model(xt,t,s)
if debug:
print("validating shape of noise and eps")
print(subnoise_theta.shape)
print(eps_theta.shape)
real_waves_list = []
real_noise_list = []
if t_ % interval == 0:
# Get $\hat{x}_0$ and add to frames
x0 = self.p_x0(xt, t, eps_theta)
x0_noise = self.p_x0(xt, t, subnoise_theta)
# frames.append(x0[0])
x0 = x0.detach().cpu().numpy()
x0_noise = x0_noise.detach().cpu().numpy()
real_waves = np.ones((x0.shape[0], 22, 750))
real_noises = np.ones((x0.shape[0], 22, 750))
if overlap_cover:
for i in range(x0.shape[3]):
if debug:
print("{}-{}".format(0 + i* self.step, self.window_size + i * self.step))
real_waves[:,:,0 + i* self.step: self.window_size + i * self.step] = x0[:,:,:,i]
real_noises[:,:,0 + i* self.step: self.window_size + i * self.step] = x0_noise[:,:,:,i]
else:
for i in range(x0.shape[3]):
if debug:
print("{}-{}".format(0 + i* self.step, self.window_size + i * self.step))
real_waves[:,:,0 + i* self.step: self.window_size + i * self.step] = x0[:,:,:,i]
real_noises[:,:,0 + i* self.step: self.window_size + i * self.step] = x0_noise[:,:,:,i]
real_waves_list.append(real_waves)
real_noise_list.append(real_noises)
# dataroot='/home/yiqduan/Data/ddpm/ddpm/visualization/generated_subject_noise/subject_1'
curve_temp_path = "{}/curve_{}_subject_{}.png".format(dataroot, "tmp", subject_id)
noise_temp_path = "{}/noise_{}_subject_{}.png".format(dataroot, "tmp", subject_id)
# curve_temp_path = "{}/curve_channel1{}.png".format(dataroot, t_)
plt.clf()
annimate_curve_change(test_X = real_waves[0:,0:6,:400], given_path=curve_temp_path, color='b')
annimate_curve_change(test_X = real_noises[0:,0:6,:400], given_path=noise_temp_path, color='g')
real_cureves_list.append(Image.open(curve_temp_path))
real_noises_list.append(Image.open(noise_temp_path))
# Sample from $\textcolor{lightgreen}{p_\theta}(x_{t-1}|x_t)$
xt_noise = self.p_sample(xt, t, subnoise_theta)
# xt_noise = F.normalize(xt_noise, p=2, dim=2)
xt = F.normalize(self.p_sample(xt, t, eps_theta) + xt_noise, p=2, dim=2)
# xt = self.p_sample(xt, t, eps_theta) + xt_noise
current_path = "{}/curve_animate_content{}.gif".format(dataroot, "all")
current_noise_path = "{}/noise_curve_animate_subject_{}.gif".format(dataroot, subject_id , 'all')
# fig.colorbar(surf, shrink=0.2, aspect=5)
gif.save(real_cureves_list, current_path, duration=1000)
gif.save(real_noises_list, current_noise_path, duration=1000)
sample_labels = ((torch.rand(real_waves_list[-1].shape[0], 1)) * 4 + 1).long()
# visualize_animate_surface(test_X=real_waves_list[-1], test_y=sample_labels, given_path='./visualization/bci_comp4/')
# Make video
if create_video:
self.make_video(frames)
def sample_save_data(self, n_frames: int = 1000, create_video: bool = False, overlap_cover = True, debug=False, subject_id = 1, batch_size= 64):
"""
sample EEG singals, Subject noise and clean contnet and save it to matlab format.
"""
# $x_T \sim p(x_T) = \mathcal{N}(x_T; \mathbf{0}, \mathbf{I})$
xt = torch.randn([batch_size, self.eeg_channels, self.window_size, self.stack_size], device=self.device)
# print('shape of xt is {}'.format(xt.shape))
s = torch.tensor([subject_id] * batch_size, dtype=torch.long, device=self.device)
# Interval to log $\hat{x}_0$
interval = self.n_steps // n_frames
# Frames for video
frames = []
# Sample $T$ steps
for t_inv in monit.iterate('Denoise', self.n_steps):
# $t$
t_ = self.n_steps - t_inv - 1
# $t$ in a tensor
t = xt.new_full((1,), t_, dtype=torch.long)
# $\textcolor{lightgreen}{\epsilon_\theta}(x_t, t)$
eps_theta = self.eps_model(xt, t)
if debug:
print("validating shape of t and s")
print(t.shape)
print(s.shape)
_, subnoise_theta = self.subnoise_model(xt,t,s)
if debug:
print("validating shape of noise and eps")
print(subnoise_theta.shape)
print(eps_theta.shape)
if t_ % interval == 0:
# Get $\hat{x}_0$ and add to frames
x0 = self.p_x0(xt, t, eps_theta)
x0_noise = self.p_x0(xt, t, subnoise_theta)
x0 = x0.detach().cpu().numpy()
x0_noise = x0_noise.detach().cpu().numpy()
xt_noise = self.p_sample(xt, t, subnoise_theta)
# xt_noise = F.normalize(xt_noise, p=2, dim=2)
# xt = F.normalize(self.p_sample(xt, t, eps_theta) + xt_noise, p=2, dim=2)
xt = self.p_sample(xt, t, eps_theta)
real_waves = np.ones((x0.shape[0], 22, 750))
real_noises = np.ones((x0.shape[0], 22, 750))
real_mix = np.ones((x0.shape[0], 22, 750))
x_mix = x0 + x0_noise
if overlap_cover:
for i in range(x0.shape[3]):
if debug:
print("{}-{}".format(0 + i* self.step, self.window_size + i * self.step))
real_waves[:,:,0 + i* self.step: self.window_size + i * self.step] = x0[:,:,:,i]
real_noises[:,:,0 + i* self.step: self.window_size + i * self.step] = x0_noise[:,:,:,i]
real_mix[:,:,0 + i* self.step: self.window_size + i * self.step] = x_mix[:,:,:,i]
else:
for i in range(x0.shape[3]):
if debug:
print("{}-{}".format(0 + i* self.step, self.window_size + i * self.step))
real_waves[:,:,0 + i* self.step: self.window_size + i * self.step] = x0[:,:,:,i]
real_noises[:,:,0 + i* self.step: self.window_size + i * self.step] = x0_noise[:,:,:,i]
real_mix[:,:,0 + i* self.step: self.window_size + i * self.step] = x_mix[:,:,:,i]
data_sampled_path = './results'
output_path = os.path.join(data_sampled_path, 'undersampled')
if not os.path.exists(output_path):
os.makedirs(output_path)
file_path = '{}/{}{}{}'.format(output_path, 'single_subject_data_', str(subject_id+1), '.mat')
sio.savemat(file_path, {"real_waves": real_waves, "real_noises": real_noises, "real_mix": real_mix})
def p_sample(self, xt: torch.Tensor, t: torch.Tensor, eps_theta: torch.Tensor):
"""
#### Sample from $\textcolor{lightgreen}{p_\theta}(x_{t-1}|x_t)$
\begin{align}
\textcolor{lightgreen}{p_\theta}(x_{t-1} | x_t) &= \mathcal{N}\big(x_{t-1};
\textcolor{lightgreen}{\mu_\theta}(x_t, t), \sigma_t^2 \mathbf{I} \big) \\
\textcolor{lightgreen}{\mu_\theta}(x_t, t)
&= \frac{1}{\sqrt{\alpha_t}} \Big(x_t -
\frac{\beta_t}{\sqrt{1-\bar\alpha_t}}\textcolor{lightgreen}{\epsilon_\theta}(x_t, t) \Big)
\end{align}
"""
# [gather](utils.html) $\bar\alpha_t$
alpha_bar = gather(self.alpha_bar, t)
# $\alpha_t$
alpha = gather(self.alpha, t)
# $\frac{\beta}{\sqrt{1-\bar\alpha_t}}$
eps_coef = (1 - alpha) / (1 - alpha_bar) ** .5
# $$\frac{1}{\sqrt{\alpha_t}} \Big(x_t -
# \frac{\beta_t}{\sqrt{1-\bar\alpha_t}}\textcolor{lightgreen}{\epsilon_\theta}(x_t, t) \Big)$$
mean = 1 / (alpha ** 0.5) * (xt - eps_coef * eps_theta)
# $\sigma^2$
var = gather(self.sigma2, t)
# $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
eps = torch.randn(xt.shape, device=xt.device)
# Sample
return mean + (var ** .5) * eps
def p_x0(self, xt: torch.Tensor, t: torch.Tensor, eps: torch.Tensor):
"""
#### Estimate $x_0$
$$x_0 \approx \hat{x}_0 = \frac{1}{\sqrt{\bar\alpha}}
\Big( x_t - \sqrt{1 - \bar\alpha_t} \textcolor{lightgreen}{\epsilon_\theta}(x_t, t) \Big)$$
"""
# [gather](utils.html) $\bar\alpha_t$
alpha_bar = gather(self.alpha_bar, t)
# $$x_0 \approx \hat{x}_0 = \frac{1}{\sqrt{\bar\alpha}}
# \Big( x_t - \sqrt{1 - \bar\alpha_t} \textcolor{lightgreen}{\epsilon_\theta}(x_t, t) \Big)$$
return (xt - (1 - alpha_bar) ** 0.5 * eps) / (alpha_bar ** 0.5)
def visualize_animate_surface(test_X = None, test_y = None, given_path = None):
if test_X is None:
test_X = np.ones((8,22,750))
if test_y is None:
test_y = np.ones((test_X.shape[0],))
custom_epochs = raw_construct_mne_info(test_X, test_y, visual_len=200)
events = mne.pick_events(custom_epochs.events, include=[1])
evoked = custom_epochs.average()
info = custom_epochs.info
info.set_montage('standard_1020')
# print(evoked.data.shape)
# print(info)
# print(info['chs'][0])
location_dict_1020 = {}
xp_1020 = []
yp_1020 = []
zp_1020 = []
for itm in info['chs']:
# print(itm)
print('the channel name is {} the location is {}'.format(itm['ch_name'], itm['loc'][:3]))
location_dict_1020[itm['ch_name']] = itm['loc'][:3]
xp_1020.append(itm['loc'][0])
yp_1020.append(itm['loc'][1])
zp_1020.append(itm['loc'][2])
xp_64 = []
yp_64 = []
zp_64 = []
info.set_montage('biosemi64')
location_dict_64 = {}
for itm in info['chs']:
# print(itm)
print('the channel name is {} the location is {}'.format(itm['ch_name'], itm['loc'][:3]))
location_dict_64[itm['ch_name']] = itm['loc'][:3]
xp_64.append(itm['loc'][0])
yp_64.append(itm['loc'][1])
zp_64.append(itm['loc'][2])
# scatter
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(xp_1020, yp_1020, zp_1020, c='r', marker = "^", label='10-20system')
ax.scatter(xp_64, yp_64, zp_64, c='g', marker="*", label='64-system')
plt.savefig('./visualization/montage.png')
fig = plt.figure()
plt.scatter(xp_1020, yp_1020, c='r', label='10-20system')
plt.scatter(xp_64, yp_64, c='g', label='64-system')
plt.savefig('./visualization/montage_2d.png')
# print(test_X.shape)
for idx in range(test_X.shape[0]):
if idx > 100:
break
# print(test_X[idx].shape)
# print(test_y[idx])
images = []
"""
fig = plt.figure()
ax.set_aspect('auto')
ax = fig.gca(projection='3d')
# set figure information
ax.set_title("trace of activation in spatial wise {}".format(events_id[str(int(test_y[idx]))]))
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("activation")
"""
for step in range(len(test_X[idx][1])):
# print(step)
fig = plt.figure()
ax.set_aspect('auto')
ax = fig.gca(projection='3d')
# set figure information
ax.set_title("trace of activation in spatial wise {}".format(events_id[str(int(test_y[idx]))]))
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("activation")
plt.gca().set_box_aspect((1,1,0.5))
indices = [n for n in range(len(xp_1020))]
# print(len(indices))
# activation_points = test_X[idx][indices][:]
# print(test_X[idx].shape)
# activation_points = standardization(test_X[idx][:, step])
activation_points = test_X[idx][:, step]
act_x = [xp_1020[i] for i in indices]
act_y = [yp_1020[i] for i in indices]
meshx, meshy = np.meshgrid(act_x, act_y)
grid_activation = griddata((act_x, act_y), activation_points, (meshx, meshy), method='nearest')
# Plot the surface.
surf = ax.plot_surface(meshx, meshy, grid_activation, cmap=plt.cm.coolwarm,
linewidth=0, antialiased=False, animated=True)
fig.colorbar(surf, shrink=0.2, aspect=5)
current_path = "{}/surface_graph_id_{}.png".format(given_path, "temp")
plt.savefig(current_path)
# ax.set_aspect('auto')
images.append(Image.open(current_path))
current_path = "{}/surface_graph_id_{}.gif".format(given_path, idx)
# fig.colorbar(surf, shrink=0.2, aspect=5)
gif.save(images, current_path)
def annimate_curve_change(test_X = None, test_y = None, given_path = None, color='b'):
if test_X is None:
test_X = np.ones((1, 22,750))
if test_y is None:
test_y = np.ones(1,)
# print(test_X.shape)
t = np.arange(0, test_X.shape[2], 1)
for channel in range(test_X.shape[1]):
ax1 = plt.subplot(test_X.shape[1], 1, channel+1)
plt.plot(t, test_X[0, channel, :], color=color, linewidth=0.3)
plt.setp(ax1.get_xticklabels(), fontsize=2)
plt.xlim(1, test_X.shape[2])
# plt.show()
current_path = given_path
plt.savefig(current_path)
def annimate_curve_change_with_diff(test_X = None, test_y = None, given_path = None):
# plt.cla()
if test_X is None:
test_X = np.ones((1, 22, 400, 8))
if test_y is None:
test_y = np.ones(1,)
print(test_X.shape)
for channel in range(test_X.shape[1]):
ax1 = plt.subplot(test_X.shape[1], 1, channel+1)
for seg in range(test_X.shape[3]):
t = np.arange(0, test_X.shape[2], 1)
plt.plot(t, test_X[0, channel, :], color='b', linewidth=0.2)
plt.setp(ax1.get_xticklabels(), fontsize=2)
plt.xlim(1, test_X.shape[2])
plt.show()
current_path = given_path
plt.savefig(current_path)
def main():
"""Generate samples"""
# Training experiment run UUID
# 这个是没做normalized 成功案例
run_uuid = "2f81aedecde611ed949ae4434b7708ee"
# Start an evaluation
experiment.evaluate()
# Create configs
configs = Configs()
# Load custom configuration of the training run
configs_dict = experiment.load_configs(run_uuid)
# Set configurations
experiment.configs(configs, configs_dict)
# Initialize
configs.init()
# Set PyTorch modules for saving and loading
experiment.add_pytorch_models({'eps_model': configs.eps_model, 'subject_theta': configs.sub_theta})
# Load training experiment
experiment.load(run_uuid,8052)
# window_size = 400
# stack_size = 8
configs.window_size = 224
configs.stack_size = 8
step_size = (750 - configs.window_size) // (configs.stack_size - 1)
print(step_size)
# Create sampler
sampler = Sampler(diffusion=configs.diffusion,
eeg_channels=configs.eeg_channels,
device=configs.device, window_size=configs.window_size, step=step_size, stack_size=configs.stack_size)
# Start evaluation
with experiment.start():
# No gradients
with torch.no_grad():
# Sample an image with an denoising animation
for i in range(9):
sampler.sample_animation(n_frames=1000, subject_id = [i], dataroot='./visualization/')
# sampler.sample_save_data(n_frames=20, subject_id = i, batch_size= 8)
#
if __name__ == '__main__':
main()