-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathData_Analysis.Rmd
943 lines (702 loc) · 59.8 KB
/
Data_Analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
---
title: "Data Analysis"
subtitle: 'STAT 385, Spring 2019'
author: "Ajay Dugar (dugar3)"
date: 'May 9th, 2019'
output:
html_document:
theme: readable
toc: yes
toc_float:
collapse: false
always_allow_html: yes # required for PDF
---
```{r,echo=FALSE}
pkg_list = c("ggplot2", "plyr", "tidyr", "dplyr", "rvest", "stringr", "ballr", "magrittr", "fmsb", "rsconnect", "plotly", "data.table")
mia_pkgs = pkg_list[!(pkg_list %in% installed.packages()[,"Package"])]
if(length(mia_pkgs) > 0) install.packages(mia_pkgs)
loaded_pkgs = lapply(pkg_list, require, character.only=TRUE)
```
```{r}
years = (1989:2019)
#Combining raw and advanced statistics
for (i in years){
assign(paste0("players_", i), cbind(NBAPerGameAdvStatistics(season = i), NBAPerGameStatistics(season = i)))
}
for (i in years){
#remove duplicate columns
assign(paste0("players_", i), get(paste0("players_", i))[, !duplicated(colnames(get(paste0("players_", i))))])
#removing the players that are duplicated
assign(paste0("players_", i), get(paste0("players_", i))[!duplicated(get(paste0("players_", i))$rk), ])
#Removing players who haven't played a minimum of 70% of the games in the season
assign(paste0("players_", i), get(paste0("players_", i))[get(paste0("players_", i))$g > (55/82)*max(get(paste0("players_", i))$g),])
}
for (i in years) {
df_name = paste0("players_",i)
set(get(df_name), j = "player", value = str_remove_all(get(df_name)$player, "\\*"))
}
```
```{r}
year_names = c()
for (i in years){
year_names = c(year_names, paste0("players_", i))
}
```
```{r}
for (i in year_names){
assign(i, subset(get(i), select = -c(x, x_2) ))
}
for (i in year_names){
assign(i, subset(get(i), select = -c(tm, link) ))
}
```
```{r}
# NBA Award Winners
players_1989 <- within(players_1989, mvp <- ifelse(players_1989$player == "Magic Johnson", 1, 0))
players_1989 <- within(players_1989, roy <- ifelse(players_1989$player == "Mitch Richmond", 1, 0))
players_1989 <- within(players_1989, dpoy <- ifelse(players_1989$player == "Mark Eaton", 1, 0))
players_1989 <- within(players_1989, smoy <- ifelse(players_1989$player == "Eddie Johnson", 1, 0))
players_1989 <- within(players_1989, mip <- ifelse(players_1989$player == "Kevin Johnson", 1, 0))
players_1990 <- within(players_1990, mvp <- ifelse(players_1990$player == "Magic Johnson", 1, 0))
players_1990 <- within(players_1990, roy <- ifelse(players_1990$player == "David Robinson", 1, 0))
players_1990 <- within(players_1990, dpoy <- ifelse(players_1990$player == "Dennis Rodman", 1, 0))
players_1990 <- within(players_1990, smoy <- ifelse(players_1990$player == "Ricky Pierce", 1, 0))
players_1990 <- within(players_1990, mip <- ifelse(players_1990$player == "Rony Seikaly", 1, 0))
players_1991 <- within(players_1991, mvp <- ifelse(players_1991$player == "Michael Jordan", 1, 0))
players_1991 <- within(players_1991, roy <- ifelse(players_1991$player == "Derrick Coleman", 1, 0))
players_1991 <- within(players_1991, dpoy <- ifelse(players_1991$player == "Dennis Rodman", 1, 0))
players_1991 <- within(players_1991, smoy <- ifelse(players_1991$player == "Detlef Schrempf", 1, 0))
players_1991 <- within(players_1991, mip <- ifelse(players_1991$player == "Scott Skiles", 1, 0))
players_1992 <- within(players_1992, mvp <- ifelse(players_1992$player == "Michael Jordan", 1, 0))
players_1992 <- within(players_1992, roy <- ifelse(players_1992$player == "Larry Johnson", 1, 0))
players_1992 <- within(players_1992, dpoy <- ifelse(players_1992$player == "David Robinson", 1, 0))
players_1992 <- within(players_1992, smoy <- ifelse(players_1992$player == "Detlef Schrempf", 1, 0))
players_1992 <- within(players_1992, mip <- ifelse(players_1992$player == "Pervis Ellison", 1, 0))
players_1993 <- within(players_1993, mvp <- ifelse(players_1993$player == "Charles Barkley", 1, 0))
players_1993 <- within(players_1993, roy <- ifelse(players_1993$player == "Shaquille O'Neal", 1, 0))
players_1993 <- within(players_1993, dpoy <- ifelse(players_1993$player == "Hakeem Olajuwon", 1, 0))
players_1993 <- within(players_1993, smoy <- ifelse(players_1993$player == "Clifford Robinson", 1, 0))
players_1993 <- within(players_1993, mip <- ifelse(players_1993$player == "Mahmoud Abdul-Rauf", 1, 0))
players_1994 <- within(players_1994, mvp <- ifelse(players_1994$player == "Hakeem Olajuwon", 1, 0))
players_1994 <- within(players_1994, roy <- ifelse(players_1994$player == "Chris Webber", 1, 0))
players_1994 <- within(players_1994, dpoy <- ifelse(players_1994$player == "Hakeem Olajuwon", 1, 0))
players_1994 <- within(players_1994, smoy <- ifelse(players_1994$player == "Dell Curry", 1, 0))
players_1994 <- within(players_1994, mip <- ifelse(players_1994$player == "Don MacLean", 1, 0))
players_1995 <- within(players_1995, mvp <- ifelse(players_1995$player == "David Robinson", 1, 0))
players_1995 <- within(players_1995, roy <- ifelse(players_1995$player == "Grant Hill" | players_1995$player == "Jason Kidd", 1, 0))
players_1995 <- within(players_1995, dpoy <- ifelse(players_1995$player == "Dikembe Mutombo", 1, 0))
players_1995 <- within(players_1995, smoy <- ifelse(players_1995$player == "Anthony Mason", 1, 0))
players_1995 <- within(players_1995, mip <- ifelse(players_1995$player == "Dana Barros", 1, 0))
players_1996 <- within(players_1996, mvp <- ifelse(players_1996$player == "Michael Jordan", 1, 0))
players_1996 <- within(players_1996, roy <- ifelse(players_1996$player == "Damon Stoudamire", 1, 0))
players_1996 <- within(players_1996, dpoy <- ifelse(players_1996$player == "Gary Payton", 1, 0))
players_1996 <- within(players_1996, smoy <- ifelse(players_1996$player == "Toni Kukoc", 1, 0))
players_1996 <- within(players_1996, mip <- ifelse(players_1996$player == "Gheorghe Muresan", 1, 0))
players_1997 <- within(players_1997, mvp <- ifelse(players_1997$player == "Karl Malone", 1, 0))
players_1997 <- within(players_1997, roy <- ifelse(players_1997$player == "Allen Iverson", 1, 0))
players_1997 <- within(players_1997, dpoy <- ifelse(players_1997$player == "Dikembe Mutombo", 1, 0))
players_1997 <- within(players_1997, smoy <- ifelse(players_1997$player == "John Starks", 1, 0))
players_1997 <- within(players_1997, mip <- ifelse(players_1997$player == "Isaac Austin", 1, 0))
players_1998 <- within(players_1998, mvp <- ifelse(players_1998$player == "Michael Jordon", 1, 0))
players_1998 <- within(players_1998, roy <- ifelse(players_1998$player == "Tim Duncan", 1, 0))
players_1998 <- within(players_1998, dpoy <- ifelse(players_1998$player == "Dikembe Mutombo", 1, 0))
players_1998 <- within(players_1998, smoy <- ifelse(players_1998$player == "Danny Manning", 1, 0))
players_1998 <- within(players_1998, mip <- ifelse(players_1998$player == "Alan Henderson", 1, 0))
players_1999 <- within(players_1999, mvp <- ifelse(players_1999$player == "Karl Malone", 1, 0))
players_1999 <- within(players_1999, roy <- ifelse(players_1999$player == "Vince Carter", 1, 0))
players_1999 <- within(players_1999, dpoy <- ifelse(players_1999$player == "Alonzo Mourning", 1, 0))
players_1999 <- within(players_1999, smoy <- ifelse(players_1999$player == "Darrell Armstrong", 1, 0))
players_1999 <- within(players_1999, mip <- ifelse(players_1999$player == "Darrell Armstrong", 1, 0))
players_2000 <- within(players_2000, mvp <- ifelse(players_2000$player == "Shaquille O'Neal", 1, 0))
players_2000 <- within(players_2000, roy <- ifelse(players_2000$player == "Elton Brand" | players_2000$player == "Steve Francis", 1, 0))
players_2000 <- within(players_2000, dpoy <- ifelse(players_2000$player == "Alonzo Mourning", 1, 0))
players_2000 <- within(players_2000, smoy <- ifelse(players_2000$player == "Rodney Rogers", 1, 0))
players_2000 <- within(players_2000, mip <- ifelse(players_2000$player == "Jalen Rose", 1, 0))
players_2001 <- within(players_2001, mvp <- ifelse(players_2001$player == "Allen Iverson", 1, 0))
players_2001 <- within(players_2001, roy <- ifelse(players_2001$player == "Mike Miller", 1, 0))
players_2001 <- within(players_2001, dpoy <- ifelse(players_2001$player == "Dikembe Mutombo", 1, 0))
players_2001 <- within(players_2001, smoy <- ifelse(players_2001$player == "Aaron McKie", 1, 0))
players_2001 <- within(players_2001, mip <- ifelse(players_2001$player == "Tracy McGrady", 1, 0))
players_2002 <- within(players_2002, mvp <- ifelse(players_2002$player == "Tim Duncan", 1, 0))
players_2002 <- within(players_2002, roy <- ifelse(players_2002$player == "Pau Gasol", 1, 0))
players_2002 <- within(players_2002, dpoy <- ifelse(players_2002$player == "Ben Wallace", 1, 0))
players_2002 <- within(players_2002, smoy <- ifelse(players_2002$player == "Corliss Williamson", 1, 0))
players_2002 <- within(players_2002, mip <- ifelse(players_2002$player == "Jermaine O'Neal", 1, 0))
players_2003 <- within(players_2003, mvp <- ifelse(players_2003$player == "Tim Duncan", 1, 0))
players_2003 <- within(players_2003, roy <- ifelse(players_2003$player == "Amar'e Stoudemire", 1, 0))
players_2003 <- within(players_2003, dpoy <- ifelse(players_2003$player == "Ben Wallace", 1, 0))
players_2003 <- within(players_2003, smoy <- ifelse(players_2003$player == "Bobby Jackson", 1, 0))
players_2003 <- within(players_2003, mip <- ifelse(players_2003$player == "Gilbert Arenas", 1, 0))
players_2004 <- within(players_2004, mvp <- ifelse(players_2004$player == "Kevin Garnett", 1, 0))
players_2004 <- within(players_2004, roy <- ifelse(players_2004$player == "LeBron James", 1, 0))
players_2004 <- within(players_2004, dpoy <- ifelse(players_2004$player == "Metta World Peace", 1, 0))
players_2004 <- within(players_2004, smoy <- ifelse(players_2004$player == "Antawn Jamison", 1, 0))
players_2004 <- within(players_2004, mip <- ifelse(players_2004$player == "Zach Randolph", 1, 0))
players_2005 <- within(players_2005, mvp <- ifelse(players_2005$player == "Steve Nash", 1, 0))
players_2005 <- within(players_2005, roy <- ifelse(players_2005$player == "Emeka Okafor", 1, 0))
players_2005 <- within(players_2005, dpoy <- ifelse(players_2005$player == "Ben Wallace", 1, 0))
players_2005 <- within(players_2005, smoy <- ifelse(players_2005$player == "Ben Gordon", 1, 0))
players_2005 <- within(players_2005, mip <- ifelse(players_2005$player == "Bobby Simmons", 1, 0))
players_2006 <- within(players_2006, mvp <- ifelse(players_2006$player == "Steve Nash", 1, 0))
players_2006 <- within(players_2006, roy <- ifelse(players_2006$player == "Chris Paul", 1, 0))
players_2006 <- within(players_2006, dpoy <- ifelse(players_2006$player == "Ben Wallace", 1, 0))
players_2006 <- within(players_2006, smoy <- ifelse(players_2006$player == "Mike Miller", 1, 0))
players_2006 <- within(players_2006, mip <- ifelse(players_2006$player == "Boris Diaw", 1, 0))
players_2007 <- within(players_2007, mvp <- ifelse(players_2007$player == "Dirk Nowitzki", 1, 0))
players_2007 <- within(players_2007, roy <- ifelse(players_2007$player == "Brandon Roy", 1, 0))
players_2007 <- within(players_2007, dpoy <- ifelse(players_2007$player == "Marcus Camby", 1, 0))
players_2007 <- within(players_2007, smoy <- ifelse(players_2007$player == "Leandro Barbosa", 1, 0))
players_2007 <- within(players_2007, mip <- ifelse(players_2007$player == "Monta Ellis", 1, 0))
players_2008 <- within(players_2008, mvp <- ifelse(players_2008$player == "Kobe Bryant", 1, 0))
players_2008 <- within(players_2008, roy <- ifelse(players_2008$player == "Kevin Durant", 1, 0))
players_2008 <- within(players_2008, dpoy <- ifelse(players_2008$player == "Kevin Garnett", 1, 0))
players_2008 <- within(players_2008, smoy <- ifelse(players_2008$player == "Manu Ginobili", 1, 0))
players_2008 <- within(players_2008, mip <- ifelse(players_2008$player == "Hedo Turkoglu", 1, 0))
players_2009 <- within(players_2009, mvp <- ifelse(players_2009$player == "LeBron James", 1, 0))
players_2009 <- within(players_2009, roy <- ifelse(players_2009$player == "Derrick Rose", 1, 0))
players_2009 <- within(players_2009, dpoy <- ifelse(players_2009$player == "Dwight Howard", 1, 0))
players_2009 <- within(players_2009, smoy <- ifelse(players_2009$player == "Jason Terry", 1, 0))
players_2009 <- within(players_2009, mip <- ifelse(players_2009$player == "Danny Granger", 1, 0))
players_2010 <- within(players_2010, mvp <- ifelse(players_2010$player == "LeBron James", 1, 0))
players_2010 <- within(players_2010, roy <- ifelse(players_2010$player == "Tyreke Evans", 1, 0))
players_2010 <- within(players_2010, dpoy <- ifelse(players_2010$player == "Dwight Howard", 1, 0))
players_2010 <- within(players_2010, smoy <- ifelse(players_2010$player == "Jamal Crawford", 1, 0))
players_2010 <- within(players_2010, mip <- ifelse(players_2010$player == "Aaron Brooks", 1, 0))
players_2011 <- within(players_2011, mvp <- ifelse(players_2011$player == "Derrick Rose", 1, 0))
players_2011 <- within(players_2011, roy <- ifelse(players_2011$player == "Blake Griffin", 1, 0))
players_2011 <- within(players_2011, dpoy <- ifelse(players_2011$player == "Dwight Howard", 1, 0))
players_2011 <- within(players_2011, smoy <- ifelse(players_2011$player == "Lamar Odom", 1, 0))
players_2011 <- within(players_2011, mip <- ifelse(players_2011$player == "Kevin Love", 1, 0))
players_2012 <- within(players_2012, mvp <- ifelse(players_2012$player == "LeBron James", 1, 0))
players_2012 <- within(players_2012, roy <- ifelse(players_2012$player == "Kyrie Irving", 1, 0))
players_2012 <- within(players_2012, dpoy <- ifelse(players_2012$player == "Tyson Chandler", 1, 0))
players_2012 <- within(players_2012, smoy <- ifelse(players_2012$player == "James Harden", 1, 0))
players_2012 <- within(players_2012, mip <- ifelse(players_2012$player == "Ryan Anderson", 1, 0))
players_2013 <- within(players_2013, mvp <- ifelse(players_2013$player == "LeBron James", 1, 0))
players_2013 <- within(players_2013, roy <- ifelse(players_2013$player == "Damian Lillard", 1, 0))
players_2013 <- within(players_2013, dpoy <- ifelse(players_2013$player == "Tyson Chandler", 1, 0))
players_2013 <- within(players_2013, smoy <- ifelse(players_2013$player == "Marc Gasol", 1, 0))
players_2013 <- within(players_2013, mip <- ifelse(players_2013$player == "J.R. Smith", 1, 0))
players_2014 <- within(players_2014, mvp <- ifelse(players_2014$player == "Kevin Durant", 1, 0))
players_2014 <- within(players_2014, roy <- ifelse(players_2014$player == "Michael Carter-Williams", 1, 0))
players_2014 <- within(players_2014, dpoy <- ifelse(players_2014$player == "Joakim Noah", 1, 0))
players_2014 <- within(players_2014, smoy <- ifelse(players_2014$player == "Jamal Crawford", 1, 0))
players_2014 <- within(players_2014, mip <- ifelse(players_2014$player == "Goran Dragic", 1, 0))
players_2015 <- within(players_2015, mvp <- ifelse(players_2015$player == "Stephen Curry", 1, 0))
players_2015 <- within(players_2015, roy <- ifelse(players_2015$player == "Andrew Wiggins", 1, 0))
players_2015 <- within(players_2015, dpoy <- ifelse(players_2015$player == "Kawhi Leonard", 1, 0))
players_2015 <- within(players_2015, smoy <- ifelse(players_2015$player == "Lou Williams", 1, 0))
players_2015 <- within(players_2015, mip <- ifelse(players_2015$player == "Jimmy Butler", 1, 0))
players_2016 <- within(players_2016, mvp <- ifelse(players_2016$player == "Stephen Curry", 1, 0))
players_2016 <- within(players_2016, roy <- ifelse(players_2016$player == "Karl-Anthony Towns", 1, 0))
players_2016 <- within(players_2016, dpoy <- ifelse(players_2016$player == "Kawhi Leonard", 1, 0))
players_2016 <- within(players_2016, smoy <- ifelse(players_2016$player == "Jamal Crawford", 1, 0))
players_2016 <- within(players_2016, mip <- ifelse(players_2016$player == "CJ McCollum", 1, 0))
players_2017 <- within(players_2017, mvp <- ifelse(players_2017$player == "Russell Westbrook", 1, 0))
players_2017 <- within(players_2017, roy <- ifelse(players_2017$player == "Malcolm Brogdon", 1, 0))
players_2017 <- within(players_2017, dpoy <- ifelse(players_2017$player == "Draymond Green", 1, 0))
players_2017 <- within(players_2017, smoy <- ifelse(players_2017$player == "Eric Gordon", 1, 0))
players_2017 <- within(players_2017, mip <- ifelse(players_2017$player == "Giannis Antetokounmpo", 1, 0))
players_2018 <- within(players_2018, mvp <- ifelse(players_2018$player == "James Harden", 1, 0))
players_2018 <- within(players_2018, roy <- ifelse(players_2018$player == "Ben Simmons", 1, 0))
players_2018 <- within(players_2018, dpoy <- ifelse(players_2018$player == "Rudy Gobert", 1, 0))
players_2018 <- within(players_2018, smoy <- ifelse(players_2018$player == "Lou Williams", 1, 0))
players_2018 <- within(players_2018, mip <- ifelse(players_2018$player == "Victor Oladipo", 1, 0))
```
```{r}
year_names = c()
for (i in years){
year_names = c(year_names, paste0("players_", i))
}
```
```{r}
for (i in year_names){
assign(i, subset(get(i), select = -c(x, x_2) ))
}
for (i in year_names){
assign(i, subset(get(i), select = -c(tm, link) ))
}
```
```{r}
#per + tspercent + x3par + ftr + orbpercent + drbpercent + trbpercent + astpercent + stlpercent + blkpercent + tovpercent + usgpercent + ows + dws + obpm + dbpm + vorp + g + mp + gs + x3p + x3pa + x2p + x2pa + ft + fta + orb + drb + trb + ast + stl + blk + tov + pf + pts
```
```{r}
players_all = players_1989[FALSE,]
for (i in year_names){
players_all <- rbind(players_all, get(i))
}
```
```{r}
players_all$PG = ifelse(players_all$pos == "PG", 1, 0)
players_all$SG = ifelse(players_all$pos == "SG", 1, 0)
players_all$SF = ifelse(players_all$pos == "SF", 1, 0)
players_all$PF = ifelse(players_all$pos == "PF", 1, 0)
players_all$C = ifelse(players_all$pos == "C", 1, 0)
```
```{r}
#mvp
indep.vars_normal <- ~age + mp + x3p + x3pa + x2p + x2pa + ft + fta + orb + drb + ast + stl + blk + tov + pf + PG + SG + SF + PF + C
indep.vars_advanced <- ~age + mp + per + tspercent + orbpercent + drbpercent + astpercent + blkpercent + tovpercent + usgpercent + ows + dws + PG + SG + SF + PF + C
object <- glm(mvp ~ 1, family=binomial(link="logit"), data=players_all)
#swout_mvp_normal <- step(object, scope = indep.vars_normal, direction = "both")
#summary(swout_mvp_normal)
#vcov(swout_mvp_normal)
swout_mvp_advanced <- step(object, scope = indep.vars_advanced, direction = "both")
summary(swout_mvp_advanced) #better
vcov(swout_mvp_advanced)
```
```{r}
#roy
object <- glm(roy ~ 1, family=binomial(link="logit"), data=players_all)
swout_roy_normal <- step(object, scope = indep.vars_normal, direction = "both")
summary(swout_roy_normal) #better
#vcov(swout_roy_normal)
#swout_roy_advanced <- step(object, scope = indep.vars_advanced, direction = "both")
#summary(swout_roy_advanced)
#vcov(swout_roy_advanced)
```
```{r}
# dpoy
object <- glm(dpoy ~ 1, family=binomial(link="logit"), data=players_all)
#swout_dpoy_normal <- step(object, scope = indep.vars_normal, direction = "both")
#summary(swout_dpoy_normal)
#vcov(swout_dpoy_normal)
swout_dpoy_advanced <- step(object, scope = indep.vars_advanced, direction = "both")
summary(swout_dpoy_advanced) #better
#vcov(swout_dpoy_advanced)
```
```{r}
#smoy
object <- glm(smoy ~ 1, family=binomial(link="logit"), data=players_all[which(players_all$gs < 41),])
#swout_smoy_normal <- step(object, scope = indep.vars_normal, direction = "both")
#summary(swout_smoy_normal)
#vcov(swout_smoy_normal)
swout_smoy_advanced <- step(object, scope = indep.vars_advanced, direction = "both")
summary(swout_smoy_advanced) #better
#vcov(swout_smoy_advanced)
```
```{r}
# mip
object <- glm(mip ~ 1, family=binomial(link="logit"), data=players_all)
swout_mip_normal <- step(object, scope = indep.vars_normal, direction = "both")
summary(swout_mip_normal) #better
#vcov(swout_mip_normal)
#swout_mip_advanced <- step(object, scope = indep.vars_advanced, direction = "both")
#summary(swout_mip_advanced)
#vcov(swout_mip_advanced)
# # mip
#
# object <- glm(mip ~ 1, family=binomial(link="logit"), data=players_all)
# #swout_mip_normal <- step(object, scope = indep.vars_normal, direction = "both")
# #summary(swout_mip_normal)
#
# #vcov(swout_mip_normal)
#
#
# #swout_mip_advanced <- step(object, scope = indep.vars_advanced, direction = "both")
# summary(swout_mip_advanced) #better
#
# #vcov(swout_mip_advanced)
```
Dummy variables to account for position
```{r}
#applying the model
players_2019$PG = ifelse(players_2019$pos == "PG", 1, 0)
players_2019$SG = ifelse(players_2019$pos == "SG", 1, 0)
players_2019$SF = ifelse(players_2019$pos == "SF", 1, 0)
players_2019$PF = ifelse(players_2019$pos == "PF", 1, 0)
players_2019$C = ifelse(players_2019$pos == "C", 1, 0)
```
MVP Predictions
```{r}
players_2019$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2019$per + 0.25109*players_2019$tovpercent + 0.56602*players_2019$dws))))
players_2019$mvp_odds = players_2019$mvp/sum(players_2019$mvp)*100
mvp_2019 = players_2019[with(players_2019, order(-mvp_odds)),]
players_2018$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2018$per + 0.25109*players_2018$tovpercent + 0.56602*players_2018$dws))))
players_2018$mvp_odds = players_2018$mvp/sum(players_2018$mvp)*100
mvp_2018 = players_2018[with(players_2018, order(-mvp_odds)),]
players_2017$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2017$per + 0.25109*players_2017$tovpercent + 0.56602*players_2017$dws))))
players_2017$mvp_odds = players_2017$mvp/sum(players_2017$mvp)*100
mvp_2017 = players_2017[with(players_2017, order(-mvp_odds)),]
players_2016$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2016$per + 0.25109*players_2016$tovpercent + 0.56602*players_2016$dws))))
players_2016$mvp_odds = players_2016$mvp/sum(players_2016$mvp)*100
mvp_2016 = players_2016[with(players_2016, order(-mvp_odds)),]
players_2015$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2015$per + 0.25109*players_2015$tovpercent + 0.56602*players_2015$dws))))
players_2015$mvp_odds = players_2015$mvp/sum(players_2015$mvp)*100
mvp_2015 = players_2015[with(players_2015, order(-mvp_odds)),]
players_2014$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2014$per + 0.25109*players_2014$tovpercent + 0.56602*players_2014$dws))))
players_2014$mvp_odds = players_2014$mvp/sum(players_2014$mvp)*100
mvp_2014 = players_2014[with(players_2014, order(-mvp_odds)),]
players_2013$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2013$per + 0.25109*players_2013$tovpercent + 0.56602*players_2013$dws))))
players_2013$mvp_odds = players_2013$mvp/sum(players_2013$mvp)*100
mvp_2013 = players_2013[with(players_2013, order(-mvp_odds)),]
players_2012$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2012$per + 0.25109*players_2012$tovpercent + 0.56602*players_2012$dws))))
players_2012$mvp_odds = players_2012$mvp/sum(players_2012$mvp)*100
mvp_2012 = players_2012[with(players_2012, order(-mvp_odds)),]
players_2011$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2011$per + 0.25109*players_2011$tovpercent + 0.56602*players_2011$dws))))
players_2011$mvp_odds = players_2011$mvp/sum(players_2011$mvp)*100
mvp_2011 = players_2011[with(players_2011, order(-mvp_odds)),]
players_2010$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2010$per + 0.25109*players_2010$tovpercent + 0.56602*players_2010$dws))))
players_2010$mvp_odds = players_2010$mvp/sum(players_2010$mvp)*100
mvp_2010 = players_2010[with(players_2010, order(-mvp_odds)),]
players_2009$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2009$per + 0.25109*players_2009$tovpercent + 0.56602*players_2009$dws))))
players_2009$mvp_odds = players_2009$mvp/sum(players_2009$mvp)*100
mvp_2009 = players_2009[with(players_2009, order(-mvp_odds)),]
players_2008$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2008$per + 0.25109*players_2008$tovpercent + 0.56602*players_2008$dws))))
players_2008$mvp_odds = players_2008$mvp/sum(players_2008$mvp)*100
mvp_2008 = players_2008[with(players_2008, order(-mvp_odds)),]
players_2007$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2007$per + 0.25109*players_2007$tovpercent + 0.56602*players_2007$dws))))
players_2007$mvp_odds = players_2007$mvp/sum(players_2007$mvp)*100
mvp_2007 = players_2007[with(players_2007, order(-mvp_odds)),]
players_2006$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2006$per + 0.25109*players_2006$tovpercent + 0.56602*players_2006$dws))))
players_2006$mvp_odds = players_2006$mvp/sum(players_2006$mvp)*100
mvp_2006 = players_2006[with(players_2006, order(-mvp_odds)),]
players_2005$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2005$per + 0.25109*players_2005$tovpercent + 0.56602*players_2005$dws))))
players_2005$mvp_odds = players_2005$mvp/sum(players_2005$mvp)*100
mvp_2005 = players_2005[with(players_2005, order(-mvp_odds)),]
players_2004$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2004$per + 0.25109*players_2004$tovpercent + 0.56602*players_2004$dws))))
players_2004$mvp_odds = players_2004$mvp/sum(players_2004$mvp)*100
mvp_2004 = players_2004[with(players_2004, order(-mvp_odds)),]
players_2003$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2003$per + 0.25109*players_2003$tovpercent + 0.56602*players_2003$dws))))
players_2003$mvp_odds = players_2003$mvp/sum(players_2003$mvp)*100
mvp_2003 = players_2003[with(players_2003, order(-mvp_odds)),]
players_2002$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2002$per + 0.25109*players_2002$tovpercent + 0.56602*players_2002$dws))))
players_2002$mvp_odds = players_2002$mvp/sum(players_2002$mvp)*100
mvp_2002 = players_2002[with(players_2002, order(-mvp_odds)),]
players_2001$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2001$per + 0.25109*players_2001$tovpercent + 0.56602*players_2001$dws))))
players_2001$mvp_odds = players_2001$mvp/sum(players_2001$mvp)*100
mvp_2001 = players_2001[with(players_2001, order(-mvp_odds)),]
players_2000$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_2000$per + 0.25109*players_2000$tovpercent + 0.56602*players_2000$dws))))
players_2000$mvp_odds = players_2000$mvp/sum(players_2000$mvp)*100
mvp_2000 = players_2000[with(players_2000, order(-mvp_odds)),]
players_1999$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_1999$per + 0.25109*players_1999$tovpercent + 0.56602*players_1999$dws))))
players_1999$mvp_odds = players_1999$mvp/sum(players_1999$mvp)*100
mvp_1999 = players_1999[with(players_1999, order(-mvp_odds)),]
players_1998$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_1998$per + 0.25109*players_1998$tovpercent + 0.56602*players_1998$dws))))
players_1998$mvp_odds = players_1998$mvp/sum(players_1998$mvp)*100
mvp_1998 = players_1998[with(players_1998, order(-mvp_odds)),]
players_1997$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_1997$per + 0.25109*players_1997$tovpercent + 0.56602*players_1997$dws))))
players_1997$mvp_odds = players_1997$mvp/sum(players_1997$mvp)*100
mvp_1997 = players_1997[with(players_1997, order(-mvp_odds)),]
players_1996$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_1996$per + 0.25109*players_1996$tovpercent + 0.56602*players_1996$dws))))
players_1996$mvp_odds = players_1996$mvp/sum(players_1996$mvp)*100
mvp_1996 = players_1996[with(players_1996, order(-mvp_odds)),]
players_1995$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_1995$per + 0.25109*players_1995$tovpercent + 0.56602*players_1995$dws))))
players_1995$mvp_odds = players_1995$mvp/sum(players_1995$mvp)*100
mvp_1995 = players_1995[with(players_1995, order(-mvp_odds)),]
players_1994$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_1994$per + 0.25109*players_1994$tovpercent + 0.56602*players_1994$dws))))
players_1994$mvp_odds = players_1994$mvp/sum(players_1994$mvp)*100
mvp_1994 = players_1994[with(players_1994, order(-mvp_odds)),]
players_1993$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_1993$per + 0.25109*players_1993$tovpercent + 0.56602*players_1993$dws))))
players_1993$mvp_odds = players_1993$mvp/sum(players_1993$mvp)*100
mvp_1993 = players_1993[with(players_1993, order(-mvp_odds)),]
players_1992$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_1992$per + 0.25109*players_1992$tovpercent + 0.56602*players_1992$dws))))
players_1992$mvp_odds = players_1992$mvp/sum(players_1992$mvp)*100
mvp_1992 = players_1992[with(players_1992, order(-mvp_odds)),]
players_1991$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_1991$per + 0.25109*players_1991$tovpercent + 0.56602*players_1991$dws))))
players_1991$mvp_odds = players_1991$mvp/sum(players_1991$mvp)*100
mvp_1991 = players_1991[with(players_1991, order(-mvp_odds)),]
players_1990$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_1990$per + 0.25109*players_1990$tovpercent + 0.56602*players_1990$dws))))
players_1990$mvp_odds = players_1990$mvp/sum(players_1990$mvp)*100
mvp_1990 = players_1990[with(players_1990, order(-mvp_odds)),]
players_1989$mvp = as.numeric(1/(1+exp(-1*(-29.55824 + 0.65215*players_1989$per + 0.25109*players_1989$tovpercent + 0.56602*players_1989$dws))))
players_1989$mvp_odds = players_1989$mvp/sum(players_1989$mvp)*100
mvp_1989 = players_1989[with(players_1989, order(-mvp_odds)),]
```
ROY Predictions
```{r}
players_2019$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2019$age + 0.0012159*players_2019$mp + 0.7284919*players_2019$orb + 0.4127871*players_2019$ast))))
players_2019$roy_odds = players_2019$roy/sum(players_2019$roy)*100
roy_2019 = players_2019[with(players_2019, order(-roy_odds)),]
players_2018$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2018$age + 0.0012159*players_2018$mp + 0.7284919*players_2018$orb + 0.4127871*players_2018$ast))))
players_2018$roy_odds = players_2018$roy/sum(players_2018$roy)*100
roy_2018 = players_2018[with(players_2018, order(-roy_odds)),]
players_2017$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2017$age + 0.0012159*players_2017$mp + 0.7284919*players_2017$orb + 0.4127871*players_2017$ast))))
players_2017$roy_odds = players_2017$roy/sum(players_2017$roy)*100
roy_2017 = players_2017[with(players_2017, order(-roy_odds)),]
players_2016$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2016$age + 0.0012159*players_2016$mp + 0.7284919*players_2016$orb + 0.4127871*players_2016$ast))))
players_2016$roy_odds = players_2016$roy/sum(players_2016$roy)*100
roy_2016 = players_2016[with(players_2016, order(-roy_odds)),]
players_2015$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2015$age + 0.0012159*players_2015$mp + 0.7284919*players_2015$orb + 0.4127871*players_2015$ast))))
players_2015$roy_odds = players_2015$roy/sum(players_2015$roy)*100
roy_2015 = players_2015[with(players_2015, order(-roy_odds)),]
players_2014$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2014$age + 0.0012159*players_2014$mp + 0.7284919*players_2014$orb + 0.4127871*players_2014$ast))))
players_2014$roy_odds = players_2014$roy/sum(players_2014$roy)*100
roy_2014 = players_2014[with(players_2014, order(-roy_odds)),]
players_2013$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2013$age + 0.0012159*players_2013$mp + 0.7284919*players_2013$orb + 0.4127871*players_2013$ast))))
players_2013$roy_odds = players_2013$roy/sum(players_2013$roy)*100
roy_2013 = players_2013[with(players_2013, order(-roy_odds)),]
players_2012$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2012$age + 0.0012159*players_2012$mp + 0.7284919*players_2012$orb + 0.4127871*players_2012$ast))))
players_2012$roy_odds = players_2012$roy/sum(players_2012$roy)*100
roy_2012 = players_2012[with(players_2012, order(-roy_odds)),]
players_2011$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2011$age + 0.0012159*players_2011$mp + 0.7284919*players_2011$orb + 0.4127871*players_2011$ast))))
players_2011$roy_odds = players_2011$roy/sum(players_2011$roy)*100
roy_2011 = players_2011[with(players_2011, order(-roy_odds)),]
players_2010$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2010$age + 0.0012159*players_2010$mp + 0.7284919*players_2010$orb + 0.4127871*players_2010$ast))))
players_2010$roy_odds = players_2010$roy/sum(players_2010$roy)*100
roy_2010 = players_2010[with(players_2010, order(-roy_odds)),]
players_2009$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2009$age + 0.0012159*players_2009$mp + 0.7284919*players_2009$orb + 0.4127871*players_2009$ast))))
players_2009$roy_odds = players_2009$roy/sum(players_2009$roy)*100
roy_2009 = players_2009[with(players_2009, order(-roy_odds)),]
players_2008$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2008$age + 0.0012159*players_2008$mp + 0.7284919*players_2008$orb + 0.4127871*players_2008$ast))))
players_2008$roy_odds = players_2008$roy/sum(players_2008$roy)*100
roy_2008 = players_2008[with(players_2008, order(-roy_odds)),]
players_2007$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2007$age + 0.0012159*players_2007$mp + 0.7284919*players_2007$orb + 0.4127871*players_2007$ast))))
players_2007$roy_odds = players_2007$roy/sum(players_2007$roy)*100
roy_2007 = players_2007[with(players_2007, order(-roy_odds)),]
players_2006$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2006$age + 0.0012159*players_2006$mp + 0.7284919*players_2006$orb + 0.4127871*players_2006$ast))))
players_2006$roy_odds = players_2006$roy/sum(players_2006$roy)*100
roy_2006 = players_2006[with(players_2006, order(-roy_odds)),]
players_2005$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2005$age + 0.0012159*players_2005$mp + 0.7284919*players_2005$orb + 0.4127871*players_2005$ast))))
players_2005$roy_odds = players_2005$roy/sum(players_2005$roy)*100
roy_2005 = players_2005[with(players_2005, order(-roy_odds)),]
players_2004$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2004$age + 0.0012159*players_2004$mp + 0.7284919*players_2004$orb + 0.4127871*players_2004$ast))))
players_2004$roy_odds = players_2004$roy/sum(players_2004$roy)*100
roy_2004 = players_2004[with(players_2004, order(-roy_odds)),]
players_2003$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2003$age + 0.0012159*players_2003$mp + 0.7284919*players_2003$orb + 0.4127871*players_2003$ast))))
players_2003$roy_odds = players_2003$roy/sum(players_2003$roy)*100
roy_2003 = players_2003[with(players_2003, order(-roy_odds)),]
players_2002$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2002$age + 0.0012159*players_2002$mp + 0.7284919*players_2002$orb + 0.4127871*players_2002$ast))))
players_2002$roy_odds = players_2002$roy/sum(players_2002$roy)*100
roy_2002 = players_2002[with(players_2002, order(-roy_odds)),]
players_2001$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2001$age + 0.0012159*players_2001$mp + 0.7284919*players_2001$orb + 0.4127871*players_2001$ast))))
players_2001$roy_odds = players_2001$roy/sum(players_2001$roy)*100
roy_2001 = players_2001[with(players_2001, order(-roy_odds)),]
players_2000$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_2000$age + 0.0012159*players_2000$mp + 0.7284919*players_2000$orb + 0.4127871*players_2000$ast))))
players_2000$roy_odds = players_2000$roy/sum(players_2000$roy)*100
roy_2000 = players_2000[with(players_2000, order(-roy_odds)),]
players_1999$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_1999$age + 0.0012159*players_1999$mp + 0.7284919*players_1999$orb + 0.4127871*players_1999$ast))))
players_1999$roy_odds = players_1999$roy/sum(players_1999$roy)*100
roy_1999 = players_1999[with(players_1999, order(-roy_odds)),]
players_1998$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_1998$age + 0.0012159*players_1998$mp + 0.7284919*players_1998$orb + 0.4127871*players_1998$ast))))
players_1998$roy_odds = players_1998$roy/sum(players_1998$roy)*100
roy_1998 = players_1998[with(players_1998, order(-roy_odds)),]
players_1997$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_1997$age + 0.0012159*players_1997$mp + 0.7284919*players_1997$orb + 0.4127871*players_1997$ast))))
players_1997$roy_odds = players_1997$roy/sum(players_1997$roy)*100
roy_1997 = players_1997[with(players_1997, order(-roy_odds)),]
players_1996$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_1996$age + 0.0012159*players_1996$mp + 0.7284919*players_1996$orb + 0.4127871*players_1996$ast))))
players_1996$roy_odds = players_1996$roy/sum(players_1996$roy)*100
roy_1996 = players_1996[with(players_1996, order(-roy_odds)),]
players_1995$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_1995$age + 0.0012159*players_1995$mp + 0.7284919*players_1995$orb + 0.4127871*players_1995$ast))))
players_1995$roy_odds = players_1995$roy/sum(players_1995$roy)*100
roy_1995 = players_1995[with(players_1995, order(-roy_odds)),]
players_1994$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_1994$age + 0.0012159*players_1994$mp + 0.7284919*players_1994$orb + 0.4127871*players_1994$ast))))
players_1994$roy_odds = players_1994$roy/sum(players_1994$roy)*100
roy_1994 = players_1994[with(players_1994, order(-roy_odds)),]
players_1993$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_1993$age + 0.0012159*players_1993$mp + 0.7284919*players_1993$orb + 0.4127871*players_1993$ast))))
players_1993$roy_odds = players_1993$roy/sum(players_1993$roy)*100
roy_1993 = players_1993[with(players_1993, order(-roy_odds)),]
players_1992$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_1992$age + 0.0012159*players_1992$mp + 0.7284919*players_1992$orb + 0.4127871*players_1992$ast))))
players_1992$roy_odds = players_1992$roy/sum(players_1992$roy)*100
roy_1992 = players_1992[with(players_1992, order(-roy_odds)),]
players_1991$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_1991$age + 0.0012159*players_1991$mp + 0.7284919*players_1991$orb + 0.4127871*players_1991$ast))))
players_1991$roy_odds = players_1991$roy/sum(players_1991$roy)*100
roy_1991 = players_1991[with(players_1991, order(-roy_odds)),]
players_1990$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_1990$age + 0.0012159*players_1990$mp + 0.7284919*players_1990$orb + 0.4127871*players_1990$ast))))
players_1990$roy_odds = players_1990$roy/sum(players_1990$roy)*100
roy_1990 = players_1990[with(players_1990, order(-roy_odds)),]
players_1989$roy = as.numeric(1/(1+exp(-1*(12.8345287 + -1.0762097*players_1989$age + 0.0012159*players_1989$mp + 0.7284919*players_1989$orb + 0.4127871*players_1989$ast))))
players_1989$roy_odds = players_1989$roy/sum(players_1989$roy)*100
roy_1989 = players_1989[with(players_1989, order(-roy_odds)),]
```
DPOY predictions
```{r}
#DPOY predictions
players_2019$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2019$dws + -0.3212441*players_2019$usgpercent + 0.3284959*players_2019$per + -0.0018602*players_2019$mp))))
players_2019$dpoy_odds = players_2019$dpoy/sum(players_2019$dpoy)*100
dpoy_2019 = players_2019[with(players_2019, order(-dpoy_odds)),]
players_2018$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2018$dws + -0.3212441*players_2018$usgpercent + 0.3284959*players_2018$per + -0.0018602*players_2018$mp))))
players_2018$dpoy_odds = players_2018$dpoy/sum(players_2018$dpoy)*100
dpoy_2018 = players_2018[with(players_2018, order(-dpoy_odds)),]
players_2017$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2017$dws + -0.3212441*players_2017$usgpercent + 0.3284959*players_2017$per + -0.0018602*players_2017$mp))))
players_2017$dpoy_odds = players_2017$dpoy/sum(players_2017$dpoy)*100
dpoy_2017 = players_2017[with(players_2017, order(-dpoy_odds)),]
players_2016$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2016$dws + -0.3212441*players_2016$usgpercent + 0.3284959*players_2016$per + -0.0018602*players_2016$mp))))
players_2016$dpoy_odds = players_2016$dpoy/sum(players_2016$dpoy)*100
dpoy_2016 = players_2016[with(players_2016, order(-dpoy_odds)),]
players_2015$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2015$dws + -0.3212441*players_2015$usgpercent + 0.3284959*players_2015$per + -0.0018602*players_2015$mp))))
players_2015$dpoy_odds = players_2015$dpoy/sum(players_2015$dpoy)*100
dpoy_2015 = players_2015[with(players_2015, order(-dpoy_odds)),]
players_2014$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2014$dws + -0.3212441*players_2014$usgpercent + 0.3284959*players_2014$per + -0.0018602*players_2014$mp))))
players_2014$dpoy_odds = players_2014$dpoy/sum(players_2014$dpoy)*100
dpoy_2014 = players_2014[with(players_2014, order(-dpoy_odds)),]
players_2013$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2013$dws + -0.3212441*players_2013$usgpercent + 0.3284959*players_2013$per + -0.0018602*players_2013$mp))))
players_2013$dpoy_odds = players_2013$dpoy/sum(players_2013$dpoy)*100
dpoy_2013 = players_2013[with(players_2013, order(-dpoy_odds)),]
players_2012$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2012$dws + -0.3212441*players_2012$usgpercent + 0.3284959*players_2012$per + -0.0018602*players_2012$mp))))
players_2012$dpoy_odds = players_2012$dpoy/sum(players_2012$dpoy)*100
dpoy_2012 = players_2012[with(players_2012, order(-dpoy_odds)),]
players_2011$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2011$dws + -0.3212441*players_2011$usgpercent + 0.3284959*players_2011$per + -0.0018602*players_2011$mp))))
players_2011$dpoy_odds = players_2011$dpoy/sum(players_2011$dpoy)*100
dpoy_2011 = players_2011[with(players_2011, order(-dpoy_odds)),]
players_2010$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2010$dws + -0.3212441*players_2010$usgpercent + 0.3284959*players_2010$per + -0.0018602*players_2010$mp))))
players_2010$dpoy_odds = players_2010$dpoy/sum(players_2010$dpoy)*100
dpoy_2010 = players_2010[with(players_2010, order(-dpoy_odds)),]
players_2009$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2009$dws + -0.3212441*players_2009$usgpercent + 0.3284959*players_2009$per + -0.0018602*players_2009$mp))))
players_2009$dpoy_odds = players_2009$dpoy/sum(players_2009$dpoy)*100
dpoy_2009 = players_2009[with(players_2009, order(-dpoy_odds)),]
players_2008$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2008$dws + -0.3212441*players_2008$usgpercent + 0.3284959*players_2008$per + -0.0018602*players_2008$mp))))
players_2008$dpoy_odds = players_2008$dpoy/sum(players_2008$dpoy)*100
dpoy_2008 = players_2008[with(players_2008, order(-dpoy_odds)),]
players_2007$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2007$dws + -0.3212441*players_2007$usgpercent + 0.3284959*players_2007$per + -0.0018602*players_2007$mp))))
players_2007$dpoy_odds = players_2007$dpoy/sum(players_2007$dpoy)*100
dpoy_2007 = players_2007[with(players_2007, order(-dpoy_odds)),]
players_2006$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2006$dws + -0.3212441*players_2006$usgpercent + 0.3284959*players_2006$per + -0.0018602*players_2006$mp))))
players_2006$dpoy_odds = players_2006$dpoy/sum(players_2006$dpoy)*100
dpoy_2006 = players_2006[with(players_2006, order(-dpoy_odds)),]
players_2005$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2005$dws + -0.3212441*players_2005$usgpercent + 0.3284959*players_2005$per + -0.0018602*players_2005$mp))))
players_2005$dpoy_odds = players_2005$dpoy/sum(players_2005$dpoy)*100
dpoy_2005 = players_2005[with(players_2005, order(-dpoy_odds)),]
players_2004$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2004$dws + -0.3212441*players_2004$usgpercent + 0.3284959*players_2004$per + -0.0018602*players_2004$mp))))
players_2004$dpoy_odds = players_2004$dpoy/sum(players_2004$dpoy)*100
dpoy_2004 = players_2004[with(players_2004, order(-dpoy_odds)),]
players_2003$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2003$dws + -0.3212441*players_2003$usgpercent + 0.3284959*players_2003$per + -0.0018602*players_2003$mp))))
players_2003$dpoy_odds = players_2003$dpoy/sum(players_2003$dpoy)*100
dpoy_2003 = players_2003[with(players_2003, order(-dpoy_odds)),]
players_2002$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2002$dws + -0.3212441*players_2002$usgpercent + 0.3284959*players_2002$per + -0.0018602*players_2002$mp))))
players_2002$dpoy_odds = players_2002$dpoy/sum(players_2002$dpoy)*100
dpoy_2002 = players_2002[with(players_2002, order(-dpoy_odds)),]
players_2001$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2001$dws + -0.3212441*players_2001$usgpercent + 0.3284959*players_2001$per + -0.0018602*players_2001$mp))))
players_2001$dpoy_odds = players_2001$dpoy/sum(players_2001$dpoy)*100
dpoy_2001 = players_2001[with(players_2001, order(-dpoy_odds)),]
players_2000$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_2000$dws + -0.3212441*players_2000$usgpercent + 0.3284959*players_2000$per + -0.0018602*players_2000$mp))))
players_2000$dpoy_odds = players_2000$dpoy/sum(players_2000$dpoy)*100
dpoy_2000 = players_2000[with(players_2000, order(-dpoy_odds)),]
players_1999$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_1999$dws + -0.3212441*players_1999$usgpercent + 0.3284959*players_1999$per + -0.0018602*players_1999$mp))))
players_1999$dpoy_odds = players_1999$dpoy/sum(players_1999$dpoy)*100
dpoy_1999 = players_1999[with(players_1999, order(-dpoy_odds)),]
players_1998$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_1998$dws + -0.3212441*players_1998$usgpercent + 0.3284959*players_1998$per + -0.0018602*players_1998$mp))))
players_1998$dpoy_odds = players_1998$dpoy/sum(players_1998$dpoy)*100
dpoy_1998 = players_1998[with(players_1998, order(-dpoy_odds)),]
players_1997$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_1997$dws + -0.3212441*players_1997$usgpercent + 0.3284959*players_1997$per + -0.0018602*players_1997$mp))))
players_1997$dpoy_odds = players_1997$dpoy/sum(players_1997$dpoy)*100
dpoy_1997 = players_1997[with(players_1997, order(-dpoy_odds)),]
players_1996$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_1996$dws + -0.3212441*players_1996$usgpercent + 0.3284959*players_1996$per + -0.0018602*players_1996$mp))))
players_1996$dpoy_odds = players_1996$dpoy/sum(players_1996$dpoy)*100
dpoy_1996 = players_1996[with(players_1996, order(-dpoy_odds)),]
players_1995$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_1995$dws + -0.3212441*players_1995$usgpercent + 0.3284959*players_1995$per + -0.0018602*players_1995$mp))))
players_1995$dpoy_odds = players_1995$dpoy/sum(players_1995$dpoy)*100
dpoy_1995 = players_1995[with(players_1995, order(-dpoy_odds)),]
players_1994$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_1994$dws + -0.3212441*players_1994$usgpercent + 0.3284959*players_1994$per + -0.0018602*players_1994$mp))))
players_1994$dpoy_odds = players_1994$dpoy/sum(players_1994$dpoy)*100
dpoy_1994 = players_1994[with(players_1994, order(-dpoy_odds)),]
players_1993$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_1993$dws + -0.3212441*players_1993$usgpercent + 0.3284959*players_1993$per + -0.0018602*players_1993$mp))))
players_1993$dpoy_odds = players_1993$dpoy/sum(players_1993$dpoy)*100
dpoy_1993 = players_1993[with(players_1993, order(-dpoy_odds)),]
players_1992$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_1992$dws + -0.3212441*players_1992$usgpercent + 0.3284959*players_1992$per + -0.0018602*players_1992$mp))))
players_1992$dpoy_odds = players_1992$dpoy/sum(players_1992$dpoy)*100
dpoy_1992 = players_1992[with(players_1992, order(-dpoy_odds)),]
players_1991$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_1991$dws + -0.3212441*players_1991$usgpercent + 0.3284959*players_1991$per + -0.0018602*players_1991$mp))))
players_1991$dpoy_odds = players_1991$dpoy/sum(players_1991$dpoy)*100
dpoy_1991 = players_1991[with(players_1991, order(-dpoy_odds)),]
players_1990$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_1990$dws + -0.3212441*players_1990$usgpercent + 0.3284959*players_1990$per + -0.0018602*players_1990$mp))))
players_1990$dpoy_odds = players_1990$dpoy/sum(players_1990$dpoy)*100
dpoy_1990 = players_1990[with(players_1990, order(-dpoy_odds)),]
players_1989$dpoy = as.numeric(1/(1+exp(-1*(-7.6440321 + 1.6298305*players_1989$dws + -0.3212441*players_1989$usgpercent + 0.3284959*players_1989$per + -0.0018602*players_1989$mp))))
players_1989$dpoy_odds = players_1989$dpoy/sum(players_1989$dpoy)*100
dpoy_1989 = players_1989[with(players_1989, order(-dpoy_odds)),]
```
6th man of the year predictions
```{r}
#6th man of the year predictions
players_2019$smoy = ifelse(players_2019$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2019$usgpercent + 1.206e+00*players_2019$dws + -1.090e+00*players_2019$blkpercent + 4.005e+01*players_2019$tspercent + 2.762e-03*players_2019$mp)))), 0)
players_2019$smoy_odds = players_2019$smoy/sum(players_2019$smoy)*100
smoy_2019 = players_2019[with(players_2019, order(-smoy_odds)),]
players_2018$smoy = ifelse(players_2018$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2018$usgpercent + 1.206e+00*players_2018$dws + -1.090e+00*players_2018$blkpercent + 4.005e+01*players_2018$tspercent + 2.762e-03*players_2018$mp)))), 0)
players_2018$smoy_odds = players_2018$smoy/sum(players_2018$smoy)*100
smoy_2018 = players_2018[with(players_2018, order(-smoy_odds)),]
players_2017$smoy = ifelse(players_2017$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2017$usgpercent + 1.206e+00*players_2017$dws + -1.090e+00*players_2017$blkpercent + 4.005e+01*players_2017$tspercent + 2.762e-03*players_2017$mp)))), 0)
players_2017$smoy_odds = players_2017$smoy/sum(players_2017$smoy)*100
smoy_2017 = players_2017[with(players_2017, order(-smoy_odds)),]
players_2016$smoy = ifelse(players_2016$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2016$usgpercent + 1.206e+00*players_2016$dws + -1.090e+00*players_2016$blkpercent + 4.005e+01*players_2016$tspercent + 2.762e-03*players_2016$mp)))), 0)
players_2016$smoy_odds = players_2016$smoy/sum(players_2016$smoy)*100
smoy_2016 = players_2016[with(players_2016, order(-smoy_odds)),]
players_2015$smoy = ifelse(players_2015$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2015$usgpercent + 1.206e+00*players_2015$dws + -1.090e+00*players_2015$blkpercent + 4.005e+01*players_2015$tspercent + 2.762e-03*players_2015$mp)))), 0)
players_2015$smoy_odds = players_2015$smoy/sum(players_2015$smoy)*100
smoy_2015 = players_2015[with(players_2015, order(-smoy_odds)),]
players_2014$smoy = ifelse(players_2014$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2014$usgpercent + 1.206e+00*players_2014$dws + -1.090e+00*players_2014$blkpercent + 4.005e+01*players_2014$tspercent + 2.762e-03*players_2014$mp)))), 0)
players_2014$smoy_odds = players_2014$smoy/sum(players_2014$smoy)*100
smoy_2014 = players_2014[with(players_2014, order(-smoy_odds)),]
players_2013$smoy = ifelse(players_2013$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2013$usgpercent + 1.206e+00*players_2013$dws + -1.090e+00*players_2013$blkpercent + 4.005e+01*players_2013$tspercent + 2.762e-03*players_2013$mp)))), 0)
players_2013$smoy_odds = players_2013$smoy/sum(players_2013$smoy)*100
smoy_2013 = players_2013[with(players_2013, order(-smoy_odds)),]
players_2012$smoy = ifelse(players_2012$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2012$usgpercent + 1.206e+00*players_2012$dws + -1.090e+00*players_2012$blkpercent + 4.005e+01*players_2012$tspercent + 2.762e-03*players_2012$mp)))), 0)
players_2012$smoy_odds = players_2012$smoy/sum(players_2012$smoy)*100
smoy_2012 = players_2012[with(players_2012, order(-smoy_odds)),]
players_2011$smoy = ifelse(players_2011$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2011$usgpercent + 1.206e+00*players_2011$dws + -1.090e+00*players_2011$blkpercent + 4.005e+01*players_2011$tspercent + 2.762e-03*players_2011$mp)))), 0)
players_2011$smoy_odds = players_2011$smoy/sum(players_2011$smoy)*100
smoy_2011 = players_2011[with(players_2011, order(-smoy_odds)),]
players_2010$smoy = ifelse(players_2010$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2010$usgpercent + 1.206e+00*players_2010$dws + -1.090e+00*players_2010$blkpercent + 4.005e+01*players_2010$tspercent + 2.762e-03*players_2010$mp)))), 0)
players_2010$smoy_odds = players_2010$smoy/sum(players_2010$smoy)*100
smoy_2010 = players_2010[with(players_2010, order(-smoy_odds)),]
players_2009$smoy = ifelse(players_2009$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2009$usgpercent + 1.206e+00*players_2009$dws + -1.090e+00*players_2009$blkpercent + 4.005e+01*players_2009$tspercent + 2.762e-03*players_2009$mp)))), 0)
players_2009$smoy_odds = players_2009$smoy/sum(players_2009$smoy)*100
smoy_2009 = players_2009[with(players_2009, order(-smoy_odds)),]
players_2008$smoy = ifelse(players_2008$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2008$usgpercent + 1.206e+00*players_2008$dws + -1.090e+00*players_2008$blkpercent + 4.005e+01*players_2008$tspercent + 2.762e-03*players_2008$mp)))), 0)
players_2008$smoy_odds = players_2008$smoy/sum(players_2008$smoy)*100
smoy_2008 = players_2008[with(players_2008, order(-smoy_odds)),]
players_2007$smoy = ifelse(players_2007$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2007$usgpercent + 1.206e+00*players_2007$dws + -1.090e+00*players_2007$blkpercent + 4.005e+01*players_2007$tspercent + 2.762e-03*players_2007$mp)))), 0)
players_2007$smoy_odds = players_2007$smoy/sum(players_2007$smoy)*100
smoy_2007 = players_2007[with(players_2007, order(-smoy_odds)),]
players_2006$smoy = ifelse(players_2006$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2006$usgpercent + 1.206e+00*players_2006$dws + -1.090e+00*players_2006$blkpercent + 4.005e+01*players_2006$tspercent + 2.762e-03*players_2006$mp)))), 0)
players_2006$smoy_odds = players_2006$smoy/sum(players_2006$smoy)*100
smoy_2006 = players_2006[with(players_2006, order(-smoy_odds)),]
players_2005$smoy = ifelse(players_2005$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2005$usgpercent + 1.206e+00*players_2005$dws + -1.090e+00*players_2005$blkpercent + 4.005e+01*players_2005$tspercent + 2.762e-03*players_2005$mp)))), 0)
players_2005$smoy_odds = players_2005$smoy/sum(players_2005$smoy)*100
smoy_2005 = players_2005[with(players_2005, order(-smoy_odds)),]
players_2004$smoy = ifelse(players_2004$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2004$usgpercent + 1.206e+00*players_2004$dws + -1.090e+00*players_2004$blkpercent + 4.005e+01*players_2004$tspercent + 2.762e-03*players_2004$mp)))), 0)
players_2004$smoy_odds = players_2004$smoy/sum(players_2004$smoy)*100
smoy_2004 = players_2004[with(players_2004, order(-smoy_odds)),]
players_2003$smoy = ifelse(players_2003$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2003$usgpercent + 1.206e+00*players_2003$dws + -1.090e+00*players_2003$blkpercent + 4.005e+01*players_2003$tspercent + 2.762e-03*players_2003$mp)))), 0)
players_2003$smoy_odds = players_2003$smoy/sum(players_2003$smoy)*100
smoy_2003 = players_2003[with(players_2003, order(-smoy_odds)),]
players_2002$smoy = ifelse(players_2002$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2002$usgpercent + 1.206e+00*players_2002$dws + -1.090e+00*players_2002$blkpercent + 4.005e+01*players_2002$tspercent + 2.762e-03*players_2002$mp)))), 0)
players_2002$smoy_odds = players_2002$smoy/sum(players_2002$smoy)*100
smoy_2002 = players_2002[with(players_2002, order(-smoy_odds)),]
players_2001$smoy = ifelse(players_2001$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2001$usgpercent + 1.206e+00*players_2001$dws + -1.090e+00*players_2001$blkpercent + 4.005e+01*players_2001$tspercent + 2.762e-03*players_2001$mp)))), 0)
players_2001$smoy_odds = players_2001$smoy/sum(players_2001$smoy)*100
smoy_2001 = players_2001[with(players_2001, order(-smoy_odds)),]
players_2000$smoy = ifelse(players_2000$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_2000$usgpercent + 1.206e+00*players_2000$dws + -1.090e+00*players_2000$blkpercent + 4.005e+01*players_2000$tspercent + 2.762e-03*players_2000$mp)))), 0)
players_2000$smoy_odds = players_2000$smoy/sum(players_2000$smoy)*100
smoy_2000 = players_2000[with(players_2000, order(-smoy_odds)),]
players_1999$smoy = ifelse(players_1999$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_1999$usgpercent + 1.206e+00*players_1999$dws + -1.090e+00*players_1999$blkpercent + 4.005e+01*players_1999$tspercent + 2.762e-03*players_1999$mp)))), 0)
players_1999$smoy_odds = players_1999$smoy/sum(players_1999$smoy)*100
smoy_1999 = players_1999[with(players_1999, order(-smoy_odds)),]
players_1998$smoy = ifelse(players_1998$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_1998$usgpercent + 1.206e+00*players_1998$dws + -1.090e+00*players_1998$blkpercent + 4.005e+01*players_1998$tspercent + 2.762e-03*players_1998$mp)))), 0)
players_1998$smoy_odds = players_1998$smoy/sum(players_1998$smoy)*100
smoy_1998 = players_1998[with(players_1998, order(-smoy_odds)),]
players_1997$smoy = ifelse(players_1997$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_1997$usgpercent + 1.206e+00*players_1997$dws + -1.090e+00*players_1997$blkpercent + 4.005e+01*players_1997$tspercent + 2.762e-03*players_1997$mp)))), 0)
players_1997$smoy_odds = players_1997$smoy/sum(players_1997$smoy)*100
smoy_1997 = players_1997[with(players_1997, order(-smoy_odds)),]
players_1996$smoy = ifelse(players_1996$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_1996$usgpercent + 1.206e+00*players_1996$dws + -1.090e+00*players_1996$blkpercent + 4.005e+01*players_1996$tspercent + 2.762e-03*players_1996$mp)))), 0)
players_1996$smoy_odds = players_1996$smoy/sum(players_1996$smoy)*100
smoy_1996 = players_1996[with(players_1996, order(-smoy_odds)),]
players_1995$smoy = ifelse(players_1995$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_1995$usgpercent + 1.206e+00*players_1995$dws + -1.090e+00*players_1995$blkpercent + 4.005e+01*players_1995$tspercent + 2.762e-03*players_1995$mp)))), 0)
players_1995$smoy_odds = players_1995$smoy/sum(players_1995$smoy)*100
smoy_1995 = players_1995[with(players_1995, order(-smoy_odds)),]
players_1994$smoy = ifelse(players_1994$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_1994$usgpercent + 1.206e+00*players_1994$dws + -1.090e+00*players_1994$blkpercent + 4.005e+01*players_1994$tspercent + 2.762e-03*players_1994$mp)))), 0)
players_1994$smoy_odds = players_1994$smoy/sum(players_1994$smoy)*100
smoy_1994 = players_1994[with(players_1994, order(-smoy_odds)),]
players_1993$smoy = ifelse(players_1993$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_1993$usgpercent + 1.206e+00*players_1993$dws + -1.090e+00*players_1993$blkpercent + 4.005e+01*players_1993$tspercent + 2.762e-03*players_1993$mp)))), 0)
players_1993$smoy_odds = players_1993$smoy/sum(players_1993$smoy)*100
smoy_1993 = players_1993[with(players_1993, order(-smoy_odds)),]
players_1992$smoy = ifelse(players_1992$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_1992$usgpercent + 1.206e+00*players_1992$dws + -1.090e+00*players_1992$blkpercent + 4.005e+01*players_1992$tspercent + 2.762e-03*players_1992$mp)))), 0)
players_1992$smoy_odds = players_1992$smoy/sum(players_1992$smoy)*100
smoy_1992 = players_1992[with(players_1992, order(-smoy_odds)),]
players_1991$smoy = ifelse(players_1991$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_1991$usgpercent + 1.206e+00*players_1991$dws + -1.090e+00*players_1991$blkpercent + 4.005e+01*players_1991$tspercent + 2.762e-03*players_1991$mp)))), 0)
players_1991$smoy_odds = players_1991$smoy/sum(players_1991$smoy)*100
smoy_1991 = players_1991[with(players_1991, order(-smoy_odds)),]
players_1990$smoy = ifelse(players_1990$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_1990$usgpercent + 1.206e+00*players_1990$dws + -1.090e+00*players_1990$blkpercent + 4.005e+01*players_1990$tspercent + 2.762e-03*players_1990$mp)))), 0)
players_1990$smoy_odds = players_1990$smoy/sum(players_1990$smoy)*100
smoy_1990 = players_1990[with(players_1990, order(-smoy_odds)),]
players_1989$smoy = ifelse(players_1989$gs < 41, as.numeric(1/(1+exp(-1*(-4.334e+01 + 4.575e-01*players_1989$usgpercent + 1.206e+00*players_1989$dws + -1.090e+00*players_1989$blkpercent + 4.005e+01*players_1989$tspercent + 2.762e-03*players_1989$mp)))), 0)
players_1989$smoy_odds = players_1989$smoy/sum(players_1989$smoy)*100
smoy_1989 = players_1989[with(players_1989, order(-smoy_odds)),]
```
Normalize statistics to get quantile data
```{r}
#Normalize statistics to get quantile data
normalize_data <- function(x) {
return((100)*(x - rep(min(x), length(x))) / (rep(max(x), length(x)) - rep(min(x), length(x))))
}
```