forked from yangxudong/soft_mask_bert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsoft_mask_bert_keras.py
executable file
·349 lines (305 loc) · 13 KB
/
soft_mask_bert_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#!/usr/bin/python3
# import os
# os.environ['TF_KERAS'] = '1'
# import tensorflow as tf
import keras
from keras import backend as K
from keras_bert import load_vocabulary, Tokenizer, get_checkpoint_paths, load_model_weights_from_checkpoint
from keras_bert.layers import TokenEmbedding, PositionEmbedding
import json
from data_generator import load_data, convert_to_sample, DataGenerator
import numpy as np
from tqdm import tqdm
pretrained_path = "/Users/weisu.yxd/Code/bert/chinese_L-12_H-768_A-12"
# pretrained_path = "chinese_L-12_H-768_A-12"
paths = get_checkpoint_paths(pretrained_path)
token_dict = load_vocabulary(paths.vocab)
mask_id = token_dict.get("[MASK]")
tokenizer = Tokenizer(token_dict)
id2token = {j: i for i, j in token_dict.items()}
char_start_index = 670
char_end_index = 7991
def get_model_from_embedding(
inputs,
embed_layer,
transformer_num=12,
head_num=12,
feed_forward_dim=3072,
dropout_rate=0.1,
attention_activation=None,
feed_forward_activation='gelu',
trainable=None,
output_layer_num=1):
"""Get BERT model.
See: https://arxiv.org/pdf/1810.04805.pdf
:param inputs: raw inputs
:param embed_layer: input embeddings.
:param transformer_num: Number of transformers.
:param head_num: Number of heads in multi-head attention in each transformer.
:param feed_forward_dim: Dimension of the feed forward layer in each transformer.
:param dropout_rate: Dropout rate.
:param attention_activation: Activation for attention layers.
:param feed_forward_activation: Activation for feed-forward layers.
:param trainable: Whether the model is trainable.
:param output_layer_num: The number of layers whose outputs will be concatenated as a single output.
Only available when `training` is `False`.
:return: The built model.
"""
from keras_transformer import get_encoders, gelu
from keras_layer_normalization import LayerNormalization
if attention_activation == 'gelu':
attention_activation = gelu
if feed_forward_activation == 'gelu':
feed_forward_activation = gelu
if trainable is None:
trainable = True
def _trainable(_layer):
if isinstance(trainable, (list, tuple, set)):
for prefix in trainable:
if _layer.name.startswith(prefix):
return True
return False
return trainable
if dropout_rate > 0.0:
dropout_layer = keras.layers.Dropout(
rate=dropout_rate,
name='Embedding-Dropout',
)(embed_layer)
else:
dropout_layer = embed_layer
embed_layer = LayerNormalization(
trainable=trainable,
name='Embedding-Norm',
)(dropout_layer)
transformed = get_encoders(
encoder_num=transformer_num,
input_layer=embed_layer,
head_num=head_num,
hidden_dim=feed_forward_dim,
attention_activation=attention_activation,
feed_forward_activation=feed_forward_activation,
dropout_rate=dropout_rate,
)
model = keras.models.Model(inputs=inputs, outputs=transformed)
for layer in model.layers:
layer.trainable = _trainable(layer)
if isinstance(output_layer_num, int):
output_layer_num = min(output_layer_num, transformer_num)
output_layer_num = [-i for i in range(1, output_layer_num + 1)]
outputs = []
for layer_index in output_layer_num:
if layer_index < 0:
layer_index = transformer_num + layer_index
layer_index += 1
layer = model.get_layer(name='Encoder-{}-FeedForward-Norm'.format(layer_index))
outputs.append(layer.output)
if len(outputs) > 1:
transformed = keras.layers.Concatenate(name='Encoder-Output')(list(reversed(outputs)))
else:
transformed = outputs[0]
return transformed, model
def get_inputs(seq_len):
"""Get input layers.
See: https://arxiv.org/pdf/1810.04805.pdf
:param seq_len: Length of the sequence or None.
"""
names = ['Token', 'Segment', 'Masked']
return [keras.layers.Input(
shape=(seq_len,),
dtype='int32',
name='Input-%s' % name,
) for name in names]
def custom_loss(args, alpha=0.8):
"""
:param args: arguments to compute loss
:param alpha: can not be a part of args, because constant can not be serialize to model config."""
mask_float, char_labels, mistake_labels, error_prob, predict = args
correct_loss = K.sparse_categorical_crossentropy(char_labels, predict)
correct_loss = K.sum(correct_loss * mask_float, axis=1) / K.sum(mask_float, axis=1)
correct_loss = K.sum(correct_loss)
detect_loss = K.binary_crossentropy(mistake_labels, error_prob)
detect_loss = K.sum(detect_loss * mask_float, axis=1) / K.sum(mask_float, axis=1)
detect_loss = K.sum(detect_loss)
loss = alpha * correct_loss + (1.0 - alpha) * detect_loss
return loss
def build_csc_model(max_seq_len):
# build detect model
with open(paths.config, 'r') as reader:
config = json.load(reader)
if max_seq_len is not None:
config['max_position_embeddings'] = min(max_seq_len, config['max_position_embeddings'])
seq_len = config["max_position_embeddings"]
inputs = get_inputs(seq_len) # [input_ids, segment_ids, input_mask]
token_num = len(token_dict)
embed_dim = config["hidden_size"]
# config["num_hidden_layers"] = 1
token_embedding_lookup = TokenEmbedding(
input_dim=token_num,
output_dim=embed_dim,
mask_zero=True,
trainable=True,
name='Embedding-Token',
)
segment_embedding_lookup = keras.layers.Embedding(
input_dim=2,
output_dim=embed_dim,
trainable=True,
name='Embedding-Segment',
)
position_embed_layer = PositionEmbedding(
input_dim=seq_len,
output_dim=embed_dim,
mode=PositionEmbedding.MODE_ADD,
trainable=True,
name='Embedding-Position',
)
token_emb, embed_weights = token_embedding_lookup(inputs[0])
seg_emb = segment_embedding_lookup(inputs[1])
add = keras.layers.Add(name='Embedding-Token-Segment')
embeddings = position_embed_layer(add([token_emb, seg_emb]))
# embeddings = keras.layers.Embedding(input_dim=token_num, output_dim=embed_dim, mask_zero=True)(inputs[0])
mask = K.cast(inputs[2], dtype='bool')
x = keras.layers.Bidirectional(keras.layers.GRU(256, return_sequences=True))(embeddings, mask=mask)
err_prob = keras.layers.Dense(1, activation='sigmoid', name="error_prob")(x) # shape: (None, seq_len, 1)
# detect_model = keras.Model(inputs, err_prob)
# detect_model.summary()
# build correct model
num_classes = char_end_index - char_start_index + 2 # add extra id representing the oov original char
mask_ids = K.constant(mask_id, shape=(1, max_seq_len))
mask_emb, _ = token_embedding_lookup(mask_ids)
soft_emb = err_prob * mask_emb + (1. - err_prob) * token_emb # broadcast, shape(None, seq_len, emb_size)
new_embeddings = position_embed_layer(add([soft_emb, seg_emb]))
bert_output, bert = get_model_from_embedding(
inputs, new_embeddings,
transformer_num=config['num_hidden_layers'],
head_num=config['num_attention_heads'],
feed_forward_dim=config['intermediate_size'],
feed_forward_activation=config['hidden_act'])
load_model_weights_from_checkpoint(bert, config, paths.checkpoint)
output = keras.layers.Dense(num_classes, activation='softmax', name="correct_prob")(bert_output + embeddings)
error_prob = err_prob[:, :, 0] # squeeze
correct_model = keras.Model(inputs, [output, error_prob])
# correct_model.summary()
mistake_labels = keras.layers.Input(shape=(seq_len,), dtype='float32', name="mistake_labels")
char_labels = keras.layers.Input(shape=(seq_len,), dtype='int32', name="char_labels")
# 训练模型
train_model = keras.Model(
inputs=inputs + [mistake_labels, char_labels],
outputs=[output, error_prob]
)
# 去掉头部的[CLS]和尾部的[SEP]
mask_sum = K.sum(inputs[2], axis=-1)
diff = K.one_hot(mask_sum - 1, seq_len) + K.one_hot(0, seq_len)
mask_float = K.cast_to_floatx(inputs[2]) - diff
args_for_loss = (mask_float, char_labels, mistake_labels, error_prob, output)
loss = keras.layers.Lambda(custom_loss)(args_for_loss)
train_model.add_loss(loss)
train_model.summary()
train_model.compile(optimizer=keras.optimizers.Adam(learning_rate))
return train_model, correct_model
SEQ_LEN = 128
learning_rate = 5e-4
min_learning_rate = 1e-4
model, predict_model = build_csc_model(SEQ_LEN)
def extract_items(sample, start=char_start_index, end=char_end_index): # process one by one
inputs, labels = convert_to_sample(sample, tokenizer, SEQ_LEN, start, end)
raw_ids, segment_ids, mask = inputs
inputs = [np.array([raw_ids], dtype=np.int32), np.array([segment_ids], dtype=np.int32), np.array([mask], dtype=np.int32)]
output, err_prob = predict_model.predict(inputs, batch_size=1)
num_chars = sum(mask) - 1 # account for [CLS] and [SEP]
oov = end - start + 1
ids = np.argmax(output[0, :, :], axis=-1) # shape (seq_len,)
mistakes = []
chars = list(sample["text"])
for i in range(1, num_chars):
if ids[i] == oov:
if start <= raw_ids[i] <= end:
mistakes.append({"loc": i, "wrong": id2token.get(raw_ids[i]), "correct": "[OOV]"})
chars[i - 1] = "[OOV]" # predict to oov incorrectly
else:
correct_id = start + ids[i]
if correct_id != raw_ids[i]:
mistakes.append({"loc": i, "wrong": id2token.get(raw_ids[i]), "correct": id2token.get(correct_id)})
chars[i - 1] = id2token.get(correct_id)
predict_sentence = ''.join(chars)
seq_len = len(raw_ids)
chars = list(sample["text"])
for mistake in sample["mistakes"][:]:
loc = int(mistake["loc"]) - 1
if loc >= seq_len - 1:
sample["mistakes"].remove(mistake)
continue
chars[loc] = mistake["correct"]
correct_sentence = ''.join(chars)
return {"predict": predict_sentence, "correct": correct_sentence, "mistakes": mistakes}
train_data_file = "data/train.sgml"
dev_data_file = "data/train15.sgml"
train_data = load_data(train_data_file)
dev_data = load_data(dev_data_file)
class Evaluate(keras.callbacks.Callback):
def __init__(self):
super().__init__()
self.F1 = []
self.best = 0.
self.passed = 0
self.stage = 0
def on_batch_begin(self, batch, logs=None):
"""第一个epoch用来warmup,第二个epoch把学习率降到最低
"""
if self.passed < self.params['steps']:
lr = (self.passed + 1.) / self.params['steps'] * learning_rate
K.set_value(self.model.optimizer.lr, lr)
self.passed += 1
elif self.params['steps'] <= self.passed < self.params['steps'] * 2:
lr = (2 - (self.passed + 1.) / self.params['steps']) * (learning_rate - min_learning_rate)
lr += min_learning_rate
K.set_value(self.model.optimizer.lr, lr)
self.passed += 1
def on_epoch_end(self, epoch, logs=None):
f1, precision, recall, accuracy = self.evaluate()
self.F1.append(f1)
if f1 > self.best:
self.best = f1
model.save_weights('best_model.weights')
print('f1: %.4f, precision: %.4f, recall: %.4f, accuracy: %4f, best f1: %.4f\n' % (f1, precision, recall, accuracy, self.best))
def evaluate(self):
TP, FP, TN, FN = 0, 0, 0, 0
F = open('dev_pred.json', 'w')
for sample in tqdm(iter(dev_data)):
pred = extract_items(sample)
positive = "mistakes" in sample and sample["mistakes"]
if pred["predict"] == pred["correct"]:
if positive:
TP += 1
else:
TN += 1
else:
if positive:
FN += 1
else:
FP += 1
s = json.dumps({
'text': sample['text'],
'new_text': pred['predict'],
'mistakes': sample['mistakes'] if 'mistakes' in sample else [],
'predict': pred['mistakes'] if 'mistakes' in pred else []
}, ensure_ascii=False, indent=4)
F.write(s + '\n')
F.close()
precision = TP / (TP + FP + 1e-10)
recall = TP / (TP + FN + 1e-10)
accuracy = (TP + TN) / (TP + FP + TN + FN)
f1 = 2 * precision * recall / (precision + recall)
return f1, precision, recall, accuracy
BATCH_SIZE = 32
assert BATCH_SIZE <= len(train_data)
train_generator = DataGenerator(train_data, tokenizer, SEQ_LEN, BATCH_SIZE)
evaluator = Evaluate()
if __name__ == '__main__':
initial_epoch = 0
if initial_epoch > 0:
model.load_weights('best_model.weights')
model.fit(train_generator, epochs=20, initial_epoch=initial_epoch, callbacks=[evaluator])
model.save_weights("last_model.weights")
else:
model.load_weights('best_model.weights')