forked from santi-pdp/pase
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunsupervised_data_cfg_librispeech.py
131 lines (117 loc) · 5.41 KB
/
unsupervised_data_cfg_librispeech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import json
#import librosa
import argparse
import random
from random import shuffle
import numpy as np
import torchaudio
import os
def get_file_dur(fname):
try:
x, rate = torchaudio.load(fname)
except RuntimeError:
print(f"Error processing {fname}")
return (0)
return x.shape[1]
def main(opts):
random.seed(opts.seed)
spk2idx = np.load(opts.libri_dict, allow_pickle=True)
spk2idx = dict(spk2idx.any())
data_cfg = {'train':{'data':[],
'speakers':[]},
'valid':{'data':[],
'speakers':[]},
'test':{'data':[],
'speakers':[]},
'speakers':[]}
with open(opts.train_scp, 'r') as train_f:
train_files = [l.rstrip() for l in train_f]
shuffle(train_files)
if opts.valid_scp is None:
N_valid_files = int(len(train_files) * opts.val_ratio)
valid_files = train_files[:N_valid_files]
train_files = train_files[N_valid_files:]
train_dur = 0
for ti, train_file in enumerate(train_files, start=1):
print('Processing train file {:7d}/{:7d}'.format(ti,
len(train_files)),
end='\r')
spk = spk2idx[train_file]
if spk not in data_cfg['speakers']:
data_cfg['speakers'].append(spk)
data_cfg['train']['speakers'].append(spk)
data_cfg['train']['data'].append({'filename':train_file,
'spk':spk})
train_dur += get_file_dur(os.path.join(opts.data_root,
train_file))
data_cfg['train']['total_wav_dur'] = train_dur
print()
if opts.valid_scp is None:
valid_dur = 0
for ti, valid_file in enumerate(valid_files, start=1):
print('Processing valid file {:7d}/{:7d}'.format(ti,
len(valid_files)),
end='\r')
spk = spk2idx[valid_file]
if spk not in data_cfg['speakers']:
data_cfg['speakers'].append(spk)
data_cfg['valid']['speakers'].append(spk)
data_cfg['valid']['data'].append({'filename':valid_file,
'spk':spk})
valid_dur += get_file_dur(os.path.join(opts.data_root,
valid_file))
data_cfg['valid']['total_wav_dur'] = valid_dur
print()
if opts.valid_scp is not None:
with open(opts.valid_scp, 'r') as valid_f:
valid_files = [l.rstrip() for l in valid_f]
valid_dur = 0
for ti, valid_file in enumerate(valid_files, start=1):
print('Processing valid file {:7d}/{:7d}'.format(ti,
len(valid_files)),
end='\r')
spk = spk2idx[valid_file]
if spk not in data_cfg['speakers']:
data_cfg['speakers'].append(spk)
data_cfg['valid']['speakers'].append(spk)
data_cfg['valid']['data'].append({'filename':valid_file,
'spk':spk})
valid_dur += get_file_dur(os.path.join(opts.data_root,
valid_file))
data_cfg['valid']['total_wav_dur'] = valid_dur
print()
with open(opts.test_scp, 'r') as test_f:
test_files = [l.rstrip() for l in test_f]
test_dur = 0
for ti, test_file in enumerate(test_files, start=1):
print('Processing test file {:7d}/{:7d}'.format(ti,
len(test_files)),
end='\r')
spk = spk2idx[test_file]
if spk not in data_cfg['speakers']:
data_cfg['speakers'].append(spk)
data_cfg['test']['speakers'].append(spk)
data_cfg['test']['data'].append({'filename':test_file,
'spk':spk})
test_dur += get_file_dur(os.path.join(opts.data_root,
test_file))
data_cfg['test']['total_wav_dur'] = test_dur
print()
with open(opts.cfg_file, 'w') as cfg_f:
cfg_f.write(json.dumps(data_cfg))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str,
default='data/LibriSpeech/Librispeech_spkid_sel')
parser.add_argument('--train_scp', type=str, default=None)
parser.add_argument('--valid_scp', type=str, default=None)
parser.add_argument('--test_scp', type=str, default=None)
parser.add_argument('--val_ratio', type=float, default=0.1,
help='Validation ratio to take out of training '
'in utterances ratio (Def: 0.1).')
parser.add_argument('--cfg_file', type=str, default='data/librispeech_data.cfg')
parser.add_argument('--libri_dict', type=str,
default='data/LibriSpeech/libri_dict.npy')
parser.add_argument('--seed', type=int, default=3)
opts = parser.parse_args()
main(opts)