-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProject2_DocumentScanner.py
96 lines (73 loc) · 2.83 KB
/
Project2_DocumentScanner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import cv2
import numpy as np
#################################################
widthImg = 480
heightImg = 640
###################################################
#read video from webcam
cap = cv2.VideoCapture(0) #0-> ID of the camera
cap.set(10,150) #10-> Brighness
# cap.set(3,widthImg) #3-> width
# cap.set(4,heightImg) #4-> height
###################################################
def preProcessing(img):
imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur = cv2.GaussianBlur(imgGray,(5,5),1)
imgCanny = cv2.Canny(imgBlur,200,200)
kernel = np.ones((5,5))
imgDilate = cv2.dilate(imgCanny,kernel,iterations=2)
imgThreshold = cv2.erode(imgDilate,kernel,iterations=1)
return imgThreshold
def getContours(img):
biggest = np.array([])
maxArea = 0
contours,hierarchy = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
for cnt in contours:
area = cv2.contourArea(cnt)
#minimum threshold for the area
if area>5000:
# cv2.drawContours(imgContour,cnt,-1,(255,0,0),3)
peri = cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt,0.02*peri,True)
if area > maxArea and len(approx) ==4:
biggest = approx
maxArea = area
cv2.drawContours(imgContour,biggest,-1,(255,0,0),20)
return biggest
def reorder(myPoints):
# we have to reshape the points
# because when we print bigest it shows (4,1,2)
# in which 4 is the points 2 is the x and y cordinets and we have to get rid of 1
myPoints = myPoints.reshape((4,2))
myPointsNew = np.zeros((4,1,2),np.int32)
# now we have to reorder the cordinets
add = myPoints.sum(1)
myPointsNew[0] = myPoints[np.argmin(add)]
myPointsNew[3] = myPoints[np.argmax(add)]
diff = np.diff(myPoints,axis=1)
myPointsNew[1] = myPoints[np.argmin(diff)]
myPointsNew[2] = myPoints[np.argmax(diff)]
return myPointsNew
def getWarp(img,biggest):
# biggest = reorder(biggest)
#defining points
pts1 = np.float32(biggest)
#defining the locations(corners) of the points
pts2 = np.float32([[0,0],[widthImg,0],[0,heightImg],[widthImg,heightImg]])
#transfermation matrix
matrix = cv2.getPerspectiveTransform(pts1,pts2)
#generating output image
imgOutput = cv2.warpPerspective(img,matrix,(widthImg,heightImg))
return imgOutput
#############################################################
while True:
success, img = cap.read()
img = cv2.resize(img,(widthImg,heightImg))
imgContour = img.copy()
imgTherhold = preProcessing(img)
biggest = getContours(imgTherhold)
imgWarped = getWarp(img,biggest)
cv2.imshow("Video", imgWarped)
#stop when video ends OR when user press 'q'
if cv2.waitKey(1) & 0xFF ==ord('q'):
break