-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcharlieplex.c
207 lines (188 loc) · 7 KB
/
charlieplex.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// Could be defined here, or in the processor defines.
#define SYSTEM_CORE_CLOCK 48000000
#include "ch32v003fun.h"
#include <stdio.h>
#define APB_CLOCK SYSTEM_CORE_CLOCK
// This example shows how to flexibly drive arbitrary charlieplexed displays
// It uses two layers of lookup to determine the port data for each LED.
// The first layer converts the LED# to two virtual pin#.
// The second layer converts the virtual pin# to the GPIO register values.
// This is an example for an 8 signal charlieplexed display using only port C
#define CHARLIE_PINS_N 8
#define CHARLIE_LEDS (CHARLIE_PINS_N * (CHARLIE_PINS_N - 1))
// Create masks for the GPIO configuration registers to show which bits we control
// We use all of port C
#define CHARLIE_CFGLRC_MASK (~(GPIO_CFGLR_MODE0 | \
GPIO_CFGLR_MODE1 | \
GPIO_CFGLR_MODE2 | \
GPIO_CFGLR_MODE3 | \
GPIO_CFGLR_MODE4 | \
GPIO_CFGLR_MODE5 | \
GPIO_CFGLR_MODE6 | \
GPIO_CFGLR_MODE7 | \
GPIO_CFGLR_CNF0 | \
GPIO_CFGLR_CNF1 | \
GPIO_CFGLR_CNF2 | \
GPIO_CFGLR_CNF3 | \
GPIO_CFGLR_CNF4 | \
GPIO_CFGLR_CNF5 | \
GPIO_CFGLR_CNF6 | \
GPIO_CFGLR_CNF7))
// We use none of port D
#define CHARLIE_CFGLRD_MASK 0xffffffff
// We also need a value to set all of the pins to input
#define CHARLIE_CFGLRC_IN ((GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*0) | \
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*1) | \
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*2) | \
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*3) | \
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*4) | \
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*5) | \
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*6) | \
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*7))
#define CHARLIE_CFGLRD_IN 0x0
// And a value to use to reset all the pins
#define CHARLIE_BSHRC_PINS (GPIO_BSHR_BR0 | GPIO_BSHR_BR1 | GPIO_BSHR_BR2 | GPIO_BSHR_BR3 | \
GPIO_BSHR_BR4 | GPIO_BSHR_BR5 | GPIO_BSHR_BR6 | GPIO_BSHR_BR7)
#define CHARLIE_BSHRD_PINS 0x0
// Define an array of structures containing the values for the port C and D
// configuration and bit set/reset registers to drive a physical pin--indexed
// by virtual pin number. Virtual pin 0 is PC0 though pin 7 being PC7
const struct {
uint32_t cfglrc;
uint32_t cfglrd;
uint16_t bshrc;
uint16_t bshrd;
} charlie_pin_data[CHARLIE_PINS_N] = {
{((GPIO_Speed_2MHz | GPIO_CNF_OUT_PP) << (4*0) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*1) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*2) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*3) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*4) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*5) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*6) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*7)),
0x0,
GPIO_BSHR_BS0,
0x0},
{((GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*0) |
(GPIO_Speed_2MHz | GPIO_CNF_OUT_PP) << (4*1) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*2) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*3) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*4) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*5) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*6) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*7)),
0x0,
GPIO_BSHR_BS1,
0x0},
{((GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*0) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*1) |
(GPIO_Speed_2MHz | GPIO_CNF_OUT_PP) << (4*2) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*3) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*4) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*5) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*6) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*7)),
0x0,
GPIO_BSHR_BS2,
0x0},
{((GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*0) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*1) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*2) |
(GPIO_Speed_2MHz | GPIO_CNF_OUT_PP) << (4*3) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*4) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*5) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*6) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*7)),
0x0,
GPIO_BSHR_BS3,
0x0},
{((GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*0) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*1) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*2) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*3) |
(GPIO_Speed_2MHz | GPIO_CNF_OUT_PP) << (4*4) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*5) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*6) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*7)),
0x0,
GPIO_BSHR_BS4,
0x0},
{((GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*0) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*1) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*2) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*3) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*4) |
(GPIO_Speed_2MHz | GPIO_CNF_OUT_PP) << (4*5) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*6) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*7)),
0x0,
GPIO_BSHR_BS5,
0x0},
{((GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*0) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*1) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*2) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*3) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*4) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*5) |
(GPIO_Speed_2MHz | GPIO_CNF_OUT_PP) << (4*6) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*7)),
0x0,
GPIO_BSHR_BS6,
0x0},
{((GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*0) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*1) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*2) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*3) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*4) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*5) |
(GPIO_Speed_In | GPIO_CNF_IN_ANALOG) << (4*6) |
(GPIO_Speed_2MHz | GPIO_CNF_OUT_PP) << (4*7)),
0x0,
GPIO_BSHR_BS7,
0x0}
};
// Functions to translate and led# into virtual pins to set/reset
uint32_t get_led_set( uint32_t led ){
return((led + 1 + (led / 8)) % 8);
}
uint32_t get_led_reset( uint32_t led ){
return(led/7);
}
void set_led( uint32_t led){
uint32_t temp, set_pin, reset_pin;
// Start by setting all the pins to input/floating to prevent ghosting
// Compute the virtual pin# for set and reset
reset_pin = get_led_set( led );
set_pin = get_led_reset( led );
temp = GPIOC->CFGLR;
temp &= CHARLIE_CFGLRC_MASK;
temp |= (CHARLIE_CFGLRC_IN & CHARLIE_CFGLRC_MASK);
GPIOC->CFGLR = temp;
temp = GPIOD->CFGLR;
temp &= CHARLIE_CFGLRD_MASK;
temp |= (CHARLIE_CFGLRD_IN & CHARLIE_CFGLRD_MASK);
GPIOD->CFGLR = temp;
// Clear the output values for our pins
GPIOC->BSHR = CHARLIE_BSHRC_PINS;
GPIOD->BSHR = CHARLIE_BSHRD_PINS;
// Configure the pins for input/output
GPIOC->CFGLR |= charlie_pin_data[set_pin].cfglrc | charlie_pin_data[reset_pin].cfglrc;
GPIOD->CFGLR |= charlie_pin_data[set_pin].cfglrd | charlie_pin_data[reset_pin].cfglrd;
// Set the set pin
GPIOC->BSHR = charlie_pin_data[set_pin].bshrc;
GPIOD->BSHR = charlie_pin_data[set_pin].bshrd;
}
int main()
{
SystemInit();
Delay_Ms(1000);
// Enable GPIOs
RCC->APB2PCENR |= RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOC;
while(1){
for( uint32_t led = 0; led < CHARLIE_LEDS; led++){
set_led(led);
// Delay_Ms(100);
}
}
}