forked from Sumith1896/motion2prog_release
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit.py
187 lines (151 loc) · 8.27 KB
/
fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import sys
import json
import math
import shutil
import random
import argparse
from pathlib import Path
import cv2
import numpy as np
from PIL import Image
import lvizgen
import lkeypoints
import lglobalvars
import lprimitives
def main():
parser = argparse.ArgumentParser()
# input/output paths
parser.add_argument('-d', '--directory', default='./data/output/test/',
help='Directory containing frames and poses')
parser.add_argument('-o', '--output-dir', default='./visualization/static/data/13Sept_debug',
help='Output directory name')
# keypoint loading parameters (configure pose detectors/body type)
parser.add_argument('-k', '--keypoint-type', type=str, default='posewarp',
help='Keypoint body format to use (default is 14 posewarp keypoints)')
parser.add_argument('-m', '--mat-file', help='Use .mat file to precomputed poses (for posewarp data)', action='store_true')
parser.add_argument('-a', '--alphapose', help='Use Alphapose poses (if neither -m or -a, then use OpenPose)', action='store_true')
parser.add_argument('-c', '--normalize', help='Normalize the videos w.r.t skeleton', action='store_true')
# segmentation parameters
parser.add_argument('-s', '--single-primitive', action='store_true',
help='Fit one primitive per keypoint instead of a sequence of primitives')
parser.add_argument('-r', '--reg', type=float, default=1600,
help='Regularization term to be used in DP (use -1 to infer automatically)')
parser.add_argument('-p', '--points-pp', type=int, default=5,
help='Search only for primitive lengths in multiples of points_pp (reduces search space)')
parser.add_argument('-w', '--window', type=int, default=20,
help='Window around which primitive is searched (i.e. max prim len = points_pp * window) (prefers even number)')
# primitive fitting parameters
parser.add_argument('--stat-thres', type=float, default=30,
help='Points lying inside square of this edge length will be marked stationary')
parser.add_argument('--span-thres', type=float, default=56.56,
help='If primitive start/end points are closer than this, then label it stationary')
parser.add_argument('--r-penalty', help='Add radius penalty for large/small circles', action='store_true')
# for synthesizing primitives in video subsequence
parser.add_argument('--first-n', type=int, default=0,
help='If not 0, then use only the first n frames')
parser.add_argument('--start-f', type=int, default=0,
help='If not both start_f and end_f not 0, then use [start_f:end_f] frames')
parser.add_argument('--end-f', type=int, default=0,
help='If not both start_f and end_f not 0, then use [start_f:end_f] frames')
# misc parameters
parser.add_argument('--cores', type=int, default=1, help='# of cores used to parallelize DP precomputation')
parser.add_argument('--no-acc', help='Do not use acceleration term for primitives', action='store_true')
parser.add_argument('-x', '--no-videos', help='Do not synthesize visualization videos', action='store_true')
global ARGS
ARGS = parser.parse_args()
lglobalvars.ARGS = ARGS
print("=" * 50)
# set input paths
data_path = os.path.abspath(ARGS.directory)
print(f"Input video: {data_path}")
poses_dir = os.path.join(data_path, "poses/")
frames_dir = os.path.join(data_path, "frames/")
# set output paths
lglobalvars.filename = ARGS.directory.rstrip("/").split("/")[-1]
output_dir = os.path.abspath(os.path.join(ARGS.output_dir, lglobalvars.filename)) + "/"
if not os.path.exists(output_dir):
temp_path = Path(output_dir)
temp_path.mkdir(parents=True, exist_ok=True)
if not ARGS.no_videos:
os.system("cp -r " + frames_dir + " " + output_dir)
os.system("cp " + data_path + "/video.* " + output_dir)
# convert avi to mp4
if os.path.isfile(output_dir + "/video.avi"):
os.system("ffmpeg -i " + output_dir + "/video.avi " + output_dir + "/video.mp4")
os.system("rm " + output_dir + "/video.avi")
else:
shutil.rmtree(output_dir)
os.mkdir(output_dir)
# save the video resolution as a global variable
im = Image.open(frames_dir + next(os.walk(frames_dir))[2][0])
lglobalvars.W, lglobalvars.H = im.size
# load the keypoints from pose detector
pose_detector = None
if ARGS.alphapose:
pose_detector = "alphapose"
if ARGS.mat_file:
pose_detector = "mat_file"
pose_detector = "openpose" if pose_detector is None else pose_detector
keypoints = lkeypoints.load(data_path, pose_detector, pose_type=ARGS.keypoint_type)
# fix missing / badly detected keypoints
keypoints = lkeypoints.fix_failed(keypoints)
# use only a subsequence of video, if specified
if ARGS.first_n != 0:
keypoints, _ = lkeypoints.prune(keypoints, first_n=ARGS.first_n)
if ARGS.start_f != 0 or ARGS.end_f != 0:
keypoints = lkeypoints.keypoints_between(keypoints, ARGS.start_f, ARGS.end_f)
_, _, files = next(os.walk(frames_dir))
frames = sorted(files)
# center & normalize the keypoints wrt body size
if ARGS.normalize:
lglobalvars.center = [(keypoints[9][0][0] + keypoints[12][0][0]) // 2, (keypoints[9][0][1] + keypoints[12][0][1]) // 2]
lglobalvars.scale = lglobalvars.scale_factor / lkeypoints.get_scale(keypoints)
print(f"Re-center video at: {lglobalvars.center}")
print(f"Scale video by: {lglobalvars.scale}")
unscaled_keypoints = keypoints
keypoints = lkeypoints.normalize(keypoints)
print("=" * 50)
#############################################################################
# Main synthesis #
#############################################################################
base_dir = output_dir + "base"
if not os.path.exists(base_dir):
print("Starting the synthesis module...")
type_fit = "single_primitive" if ARGS.single_primitive else "dp_all"
synt_args = {"points_pp": ARGS.points_pp, "stat_thres": ARGS.stat_thres, \
"span_thres": ARGS.span_thres, "r_penalty": ARGS.r_penalty, \
"no_acc": ARGS.no_acc, "REG": ARGS.reg, 'cores': ARGS.cores, \
"window": ARGS.window}
lglobalvars.synt_args = synt_args
all_prim = lkeypoints.generate_all_primitives(keypoints, type_fit, synt_args)
base_prim = all_prim
os.mkdir(base_dir)
new_keypoints, color_codes = lkeypoints.trace_keypoints(all_prim)
print("Generating keypoint visualization & programs...")
lvizgen.gen_trace_viz_prog(keypoints, new_keypoints, all_prim, base_dir, time_start=0)
def dummy_func(keypoints):
if lglobalvars.ARGS.normalize:
keypoints_un = lkeypoints.unnormalize(keypoints)
return keypoints_un
return keypoints
json_dump = {'filename': ARGS.directory[4:], 'synt_args': synt_args, \
'frames': list(range(len(keypoints[0]))), \
'input_keypoints': keypoints, 'primitives': all_prim, \
'ref_frames': list(range(len(keypoints[0]))), 'generated_keypoints': new_keypoints, \
'input_keypoints_unscaled': dummy_func(keypoints), \
'generated_keypoints_unscaled': dummy_func(new_keypoints)}
with open(output_dir + "base.json", 'w') as outfile:
json.dump(json_dump, outfile)
print("Generating detected pose visualization...")
lvizgen.gen_pose(keypoints, base_dir, pose_type=ARGS.keypoint_type, cores=ARGS.cores)
print("Generating predicted pose visualization...")
lvizgen.gen_pred(new_keypoints, color_codes, base_dir, pose_type=ARGS.keypoint_type, cores=ARGS.cores)
if not ARGS.no_videos:
print("Generating video + gt pose visualization...")
lvizgen.gen_video_pose(keypoints, frames_dir, base_dir)
print("Generating overlay of detected and predicted pose visualization...")
lvizgen.gen_overlay(keypoints, new_keypoints, color_codes, base_dir)
print("Completed.")
if __name__== "__main__":
main()