-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathre_ranking.py
424 lines (383 loc) · 20.5 KB
/
re_ranking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import copy
import itertools
import numpy as np
from tqdm import tqdm
from os.path import join
from datetime import datetime
from eval_metrics import eval_sysu, eval_regdb, eval_llcm
def print_time(text):
time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print('[{}] {}'.format(time, text))
class Distmat:
def __init__(self, dataset, feat_dir, method):
assert dataset in ('sysu', 'regdb', 'llcm')
self.dataset = dataset
self.feat_dir = feat_dir
self.method = method
self.alpha, self.beta = 1/2, 2/3
print_time('Start ReRanking on Dataset [{}] with Method [{}]'.format(dataset.upper(), method.upper()))
self.load_features() # load all labels and features
print_time('Features Loaded')
self.compute_original_distmat() # compute original distance
print_time('OriDist Computed')
def _load_npy(self, name, trial=None):
if trial is not None:
name += '_{}'.format(trial)
name += '.npy'
try:
return np.load(join(self.feat_dir, name))
except FileNotFoundError:
return None
def _compute_ori_dist(self, x, y, distance='cosine', norm=False):
assert distance in ('cosine', 'euclidean')
fn_norm = lambda x: x / np.sqrt(np.sum(x ** 2, axis=1))[:, np.newaxis]
if norm:
x, y = fn_norm(x), fn_norm(y)
if distance == 'cosine':
return 1 - np.dot(x, y.T)
elif distance == 'euclidean':
return np.sqrt(
np.sum(x ** 2, axis=1)[:, np.newaxis] +
np.sum(y ** 2, axis=1)[np.newaxis, :] -
2 * np.dot(x, y.T) + 1e-5
)
def load_features(self):
self.q_num = []
self.g_num = []
self.all_num = []
self.query_label = []
self.query_cam = []
self.gallery_label = []
self.gallery_cam = []
self.all_feat_1 = []
self.all_feat_2 = []
self.all_feat_3 = []
self.all_feat_4 = []
self.all_feat_5 = []
self.all_feat_6 = []
self.all_feat_txt = []
self.all_feat_joint = []
if self.dataset in ('sysu', 'llcm'):
query_feat_1 = self._load_npy('query_feat1')
query_feat_2 = self._load_npy('query_feat2')
query_feat_3 = self._load_npy('query_feat3')
query_feat_4 = self._load_npy('query_feat4')
query_feat_5 = self._load_npy('query_feat5')
query_feat_6 = self._load_npy('query_feat6')
query_feat_txt = self._load_npy('query_feat-txt')
query_feat_joint = self._load_npy('query_feat-joint')
self.query_label.append(self._load_npy('query_pid'))
self.query_cam.append(self._load_npy('query_cam'))
self.q_num = [query_feat_1.shape[0]] * 10
for trial in range(10):
# load features
if self.dataset == 'regdb':
query_feat_1 = self._load_npy('query_feat1', trial)
query_feat_2 = self._load_npy('query_feat2', trial)
query_feat_3 = self._load_npy('query_feat3', trial)
query_feat_4 = self._load_npy('query_feat4', trial)
query_feat_5 = self._load_npy('query_feat5', trial)
query_feat_6 = self._load_npy('query_feat6', trial)
query_feat_txt = self._load_npy('query_feat-txt', trial)
query_feat_joint = self._load_npy('query_feat-joint', trial)
self.query_label.append(self._load_npy('query_pid', trial))
self.q_num.append(query_feat_1.shape[0])
else:
self.gallery_cam.append(self._load_npy('gallery_cam', trial))
gallery_feat_1 = self._load_npy('gallery_feat1', trial)
gallery_feat_2 = self._load_npy('gallery_feat2', trial)
gallery_feat_3 = self._load_npy('gallery_feat3', trial)
gallery_feat_4 = self._load_npy('gallery_feat4', trial)
gallery_feat_5 = self._load_npy('gallery_feat5', trial)
gallery_feat_6 = self._load_npy('gallery_feat6', trial)
gallery_feat_txt = self._load_npy('gallery_feat-txt', trial)
gallery_feat_joint = self._load_npy('gallery_feat-joint', trial)
self.gallery_label.append(self._load_npy('gallery_pid', trial))
self.g_num.append(gallery_feat_1.shape[0])
# concatenation
self.all_feat_1.append(np.concatenate([query_feat_1, gallery_feat_1], axis=0))
self.all_feat_2.append(np.concatenate([query_feat_2, gallery_feat_2], axis=0))
self.all_feat_3.append(np.concatenate([query_feat_3, gallery_feat_3], axis=0))
self.all_feat_4.append(np.concatenate([query_feat_4, gallery_feat_4], axis=0))
self.all_feat_5.append(np.concatenate([query_feat_5, gallery_feat_5], axis=0))
self.all_feat_6.append(np.concatenate([query_feat_6, gallery_feat_6], axis=0))
self.all_feat_txt.append(np.concatenate([query_feat_txt, gallery_feat_txt], axis=0))
self.all_feat_joint.append(np.concatenate([query_feat_joint, gallery_feat_joint], axis=0))
self.all_num.append(self.all_feat_1[trial].shape[0])
def compute_original_distmat(self):
self.ori_distmat = []
self.ori_rank = []
self.ori_distmat_Q2Q = []
self.ori_distmat_Q2G = []
self.ori_distmat_G2Q = []
self.ori_distmat_G2G = []
self.ori_rank_Q2Q = []
self.ori_rank_Q2G = []
self.ori_rank_G2Q = []
self.ori_rank_G2G = []
self.ori_rank_QG2Q = []
self.ori_rank_QG2G = []
for trial in range(10):
distmat_v = self._compute_ori_dist(self.all_feat_1[trial], self.all_feat_1[trial]) + \
self._compute_ori_dist(self.all_feat_2[trial], self.all_feat_2[trial]) + \
self._compute_ori_dist(self.all_feat_3[trial], self.all_feat_3[trial]) + \
self._compute_ori_dist(self.all_feat_4[trial], self.all_feat_4[trial]) + \
self._compute_ori_dist(self.all_feat_5[trial], self.all_feat_5[trial]) + \
self._compute_ori_dist(self.all_feat_6[trial], self.all_feat_6[trial])
distmat_t = self._compute_ori_dist(self.all_feat_txt[trial], self.all_feat_txt[trial])
distmat_joint = self._compute_ori_dist(self.all_feat_joint[trial], self.all_feat_joint[trial])
if self.dataset in ('sysu', 'llcm'):
original_dist = (distmat_v + distmat_t + distmat_joint) / 8.
elif self.dataset == 'regdb':
original_dist = (distmat_v + distmat_joint) / 7.
q_num = self.q_num[trial]
ori_distmat_Q2Q = original_dist.copy()[:q_num, :q_num]
ori_distmat_Q2G = original_dist.copy()[:q_num, q_num:]
ori_distmat_G2Q = original_dist.copy()[q_num:, :q_num]
ori_distmat_G2G = original_dist.copy()[q_num:, q_num:]
ori_distmat_Q2Q /= ori_distmat_Q2Q.max(axis=1)[:, np.newaxis]
ori_distmat_Q2G /= ori_distmat_Q2G.max(axis=1)[:, np.newaxis]
ori_distmat_G2Q /= ori_distmat_G2Q.max(axis=1)[:, np.newaxis]
ori_distmat_G2G /= ori_distmat_G2G.max(axis=1)[:, np.newaxis]
self.ori_distmat_Q2Q.append(ori_distmat_Q2Q)
self.ori_distmat_Q2G.append(ori_distmat_Q2G)
self.ori_distmat_G2Q.append(ori_distmat_G2Q)
self.ori_distmat_G2G.append(ori_distmat_G2G)
ori_rank_Q2Q = np.argsort(ori_distmat_Q2Q).astype(int)
ori_rank_Q2G = np.argsort(ori_distmat_Q2G).astype(int)
ori_rank_G2Q = np.argsort(ori_distmat_G2Q).astype(int)
ori_rank_G2G = np.argsort(ori_distmat_G2G).astype(int)
self.ori_rank_Q2Q.append(ori_rank_Q2Q)
self.ori_rank_Q2G.append(ori_rank_Q2G)
self.ori_rank_G2Q.append(ori_rank_G2Q)
self.ori_rank_G2G.append(ori_rank_G2G)
self.ori_rank_QG2Q.append(np.concatenate([ori_rank_Q2Q, ori_rank_G2Q], axis=0))
self.ori_rank_QG2G.append(np.concatenate([ori_rank_Q2G, ori_rank_G2G], axis=0))
original_dist /= original_dist.max(axis=1)[:, np.newaxis]
original_rank = np.argsort(original_dist).astype(int)
self.ori_distmat.append(original_dist)
self.ori_rank.append(original_rank)
def _get_k_reciprocal_index(self, query_index, rank_1, rank_2, k):
forward_k_neighbor_index = rank_1[query_index, :k + 1] # forward retrieval
backward_k_neighbor_index = rank_2[forward_k_neighbor_index, :k + 1] # backward retrieval
k_reciprocal_row = np.where(backward_k_neighbor_index == query_index)[0]
k_reciprocal_index = forward_k_neighbor_index[k_reciprocal_row]
return k_reciprocal_index
def _compute_jaccard_dist(self, features, q_num, g_num, all_num, fast=True):
"""
- fast_version: fast calculation based on some tricks. It runs much faster, but harder to read.
"""
jaccard_dist = np.zeros((q_num + g_num, q_num + g_num), dtype=np.float16)
assert features.shape[0] == q_num + g_num
assert features.shape[1] == all_num
if fast:
q_non_zero_index = [np.where(features[i, :] != 0)[0] for i in range(q_num + g_num)]
g_non_zero_index = [np.where(features[:, j] != 0)[0] for j in range(all_num)]
for i, query_feature in enumerate(features):
minimum = np.zeros(q_num + g_num, dtype=np.float16)
q_non_zero_index_i = q_non_zero_index[i]
indices = [g_non_zero_index[idx] for idx in q_non_zero_index_i]
for idx1, idx2 in zip(indices, q_non_zero_index_i):
minimum[idx1] += np.minimum(features[i, idx2], features[idx1, idx2])
jaccard_dist[i] = 1 - minimum / (2 - minimum)
else:
for i, query_feature in enumerate(features):
for j, gallery_feature in enumerate(features):
minimum = np.minimum(query_feature, gallery_feature).sum()
maximum = np.maximum(query_feature, gallery_feature).sum()
jaccard_dist[i, j] = 1 - minimum / maximum
return jaccard_dist
def _re_rank(self, original_dist, original_rank, k1, k2, q_num, g_num, all_num, trial, k3=None):
"""re-ranking"""
'''1) k-reciprocal features'''
k_reciprocal_features = np.zeros_like(original_dist, dtype=np.float16) # i.e., `V` in paper
for i in range(all_num):
k_reciprocal_index = self._get_k_reciprocal_index(i, original_rank, original_rank, k=k1)
if self.method == 'extended':
if i < q_num:
extended_k_reciprocal_index = self._get_k_reciprocal_index(
i, self.ori_rank_Q2G[trial], self.ori_rank_G2Q[trial], k=k1,
) + q_num
else:
extended_k_reciprocal_index = self._get_k_reciprocal_index(
i - q_num, self.ori_rank_G2Q[trial], self.ori_rank_Q2G[trial], k=k1,
)
k_reciprocal_index = np.unique(
np.append(k_reciprocal_index, extended_k_reciprocal_index)
)
k_reciprocal_incremental_index = k_reciprocal_index.copy() # index after incrementally adding
'''incrementally adding'''
for j, candidate in enumerate(k_reciprocal_index):
candidate_k_reciprocal_index = self._get_k_reciprocal_index(
candidate, original_rank, original_rank, k=round(k1 * self.alpha))
if len(np.intersect1d(k_reciprocal_index, candidate_k_reciprocal_index)) \
> self.beta * len(candidate_k_reciprocal_index):
k_reciprocal_incremental_index = np.append(
k_reciprocal_incremental_index, candidate_k_reciprocal_index)
k_reciprocal_incremental_index = np.unique(k_reciprocal_incremental_index)
'''compute '''
weight = np.exp(-original_dist[i, k_reciprocal_incremental_index]) # reassign weights with Gaussian kernel
k_reciprocal_features[i, k_reciprocal_incremental_index] = weight / weight.sum()
'''2) local query expansion'''
if k2 != 1:
k_reciprocal_expansion_features = np.zeros_like(k_reciprocal_features)
for i in range(all_num):
if k3 is None:
indices = original_rank[i, :k2]
else:
assert k3 <= k2
indices = np.concatenate([
self.ori_rank_QG2Q[trial][i, :k2-k3],
self.ori_rank_QG2G[trial][i, :k3] + q_num,
])
k_reciprocal_expansion_features[i, :] = \
np.mean(k_reciprocal_features[indices, :], axis=0)
k_reciprocal_features = k_reciprocal_expansion_features
return k_reciprocal_features
def _re_rank_constrained(self, ori_dist, ori_rank, k1, k2, q_num, g_num, all_num):
"""re-ranking"""
dist_Q2G, dist_G2Q, dist_G2G = ori_dist[:q_num, q_num:], ori_dist[q_num:, :q_num], ori_dist[q_num:, q_num:]
rank_Q2G, rank_G2Q, rank_G2G = ori_rank[:q_num, q_num:], ori_rank[q_num:, :q_num], ori_rank[q_num:, q_num:]
'''1) k-reciprocal features'''
k_reciprocal_features = np.zeros_like(ori_dist, dtype=np.float16) # i.e., `V` in paper
for i in range(all_num):
if i < q_num:
k_reciprocal_index = self._get_k_reciprocal_index(i, rank_Q2G, rank_G2Q, k=k1)
else:
k_reciprocal_index = self._get_k_reciprocal_index(i - q_num, rank_G2G, rank_G2G, k=k1)
k_reciprocal_incremental_index = k_reciprocal_index.copy() # index after incrementally adding
'''incrementally adding'''
for j, candidate in enumerate(k_reciprocal_index):
candidate_k_reciprocal_index = self._get_k_reciprocal_index(
candidate, rank_G2G, rank_G2G, k=round(k1 * self.alpha)
)
if len(np.intersect1d(k_reciprocal_index, candidate_k_reciprocal_index)) \
> self.beta * len(candidate_k_reciprocal_index):
k_reciprocal_incremental_index = np.append(
k_reciprocal_incremental_index, candidate_k_reciprocal_index)
k_reciprocal_incremental_index = np.unique(k_reciprocal_incremental_index)
'''compute '''
if i < q_num: # reassign weights with Gaussian kernel
weight = np.exp(-dist_Q2G[i, k_reciprocal_incremental_index])
else:
weight = np.exp(-dist_G2G[i - q_num, k_reciprocal_incremental_index])
k_reciprocal_features[i, k_reciprocal_incremental_index] = weight / weight.sum()
'''2) local query expansion'''
if k2 != 1:
k_reciprocal_expansion_features = np.zeros_like(k_reciprocal_features)
for i in range(all_num):
if i < q_num:
k_reciprocal_expansion_features[i, :] = \
np.mean(k_reciprocal_features[rank_Q2G[i, :k2], :], axis=0)
else:
k_reciprocal_expansion_features[i, :] = \
np.mean(k_reciprocal_features[rank_G2G[i - q_num, :k2], :], axis=0)
k_reciprocal_features = k_reciprocal_expansion_features
return k_reciprocal_features
def re_ranking(self, k1, k2, lam, trial, k3=None):
q_num, g_num, all_num = self.q_num[trial], self.g_num[trial], self.all_num[trial]
original_dist, original_rank = self.ori_distmat[trial], self.ori_rank[trial],
if self.method in ('baseline', 'extended', 'divided', 'masked'):
if self.method == 'divided':
ori_dist = np.block([
[self.ori_distmat_Q2Q[trial], self.ori_distmat_Q2G[trial]],
[self.ori_distmat_G2Q[trial], self.ori_distmat_G2G[trial]],
])
ori_rank = np.block([
[self.ori_rank_Q2Q[trial], self.ori_rank_Q2G[trial]],
[self.ori_rank_G2Q[trial], self.ori_rank_G2G[trial]],
])
else:
ori_dist = original_dist
ori_rank = original_rank
k_reciprocal_features = self._re_rank(
ori_dist,
ori_rank,
k1, k2,
q_num, g_num, all_num,
trial,
k3,
)
jaccard_dist = self._compute_jaccard_dist(k_reciprocal_features, q_num, g_num, all_num)
return lam * original_dist[:q_num, q_num:] + (1 - lam) * jaccard_dist[:q_num, q_num:]
elif self.method == 'constrained':
'''constrained in gallery domain'''
ori_dist = np.block([
[self.ori_distmat_Q2Q[trial], self.ori_distmat_Q2G[trial]],
[self.ori_distmat_G2Q[trial], self.ori_distmat_G2G[trial]],
])
ori_rank = np.block([
[self.ori_rank_Q2Q[trial], self.ori_rank_Q2G[trial]],
[self.ori_rank_G2Q[trial], self.ori_rank_G2G[trial]],
])
k_reciprocal_features_G = self._re_rank_constrained(ori_dist, ori_rank, k1, k2, q_num, g_num, all_num)
jaccard_dist_G = self._compute_jaccard_dist(k_reciprocal_features_G, q_num, g_num, all_num)[:q_num, q_num:]
'''constrained in query domain'''
ori_dist = np.block([
[self.ori_distmat_G2G[trial], self.ori_distmat_G2Q[trial]],
[self.ori_distmat_Q2G[trial], self.ori_distmat_Q2Q[trial]],
])
ori_rank = np.block([
[self.ori_rank_G2G[trial], self.ori_rank_G2Q[trial]],
[self.ori_rank_Q2G[trial], self.ori_rank_Q2Q[trial]],
])
k_reciprocal_features_Q = self._re_rank_constrained(ori_dist, ori_rank, k1, k2, g_num, q_num, all_num)
jaccard_dist_Q = self._compute_jaccard_dist(k_reciprocal_features_Q, g_num, q_num, all_num)[:g_num, g_num:]
'''final distance'''
jaccard_dist = (jaccard_dist_G + jaccard_dist_Q.T) / 2.
return lam * original_dist[:q_num, q_num:] + (1 - lam) * jaccard_dist
if __name__ == '__main__':
dataset = ['sysu', 'regdb', 'llcm'][0]
method = ['baseline', 'constrained', 'extended', 'divided'][2]
if dataset == 'sysu':
FEAT_DIR = '/data1/dyh/results/Refer-VIReID/Git/SYSU_YYDS/all'
# FEAT_DIR = '/data1/dyh/results/Refer-VIReID/Git/SYSU_YYDS/indoor'
elif dataset == 'regdb':
FEAT_DIR = '/data1/dyh/results/Refer-VIReID/Git/RegDB_YYDS'
elif dataset == 'llcm':
FEAT_DIR = '/data1/dyh/results/Refer-VIReID/Git/LLCM_YYDS'
SEARCH_SPACE = {
'k1': [35],
'k2': [35],
'lam': [0.1],
'k3': [4], # only for MA-LQE
}
for k, v in SEARCH_SPACE.items():
print('============> {}: {} <==========='.format(k, v))
DIST = Distmat(dataset, FEAT_DIR, method)
results = []
BEST_METRIC = -1
BEST_CMC, BEST_MAP = None, None
BEST_PARAM = None
for params in tqdm(list(itertools.product(*SEARCH_SPACE.values()))):
params = {k: v for k, v in zip(SEARCH_SPACE, params)}
CMC, MAP = 0, 0
if params['k2'] > params['k1']:
continue
for trial in range(10):
distmat = DIST.re_ranking(**params, trial=trial)
if dataset in ('sysu', 'llcm'):
query_label = DIST.query_label[0]
query_cam = DIST.query_cam[0]
gallery_label = DIST.gallery_label[trial]
gallery_cam = DIST.gallery_cam[trial]
cmc, mAP, _ = eval('eval_'+dataset)(distmat, query_label, gallery_label, query_cam, gallery_cam)
elif dataset == 'regdb':
query_label = DIST.query_label[trial]
gallery_label = DIST.gallery_label[trial]
cmc, mAP, _ = eval_regdb(distmat, query_label, gallery_label)
CMC += cmc
MAP += mAP
CMC /= 10
MAP /= 10
results.append([params, CMC[0], CMC[4], CMC[9], CMC[19], MAP])
if CMC[0] + MAP > BEST_METRIC:
BEST_CMC = CMC
BEST_MAP = MAP
BEST_PARAM = params
BEST_METRIC = CMC[0] + MAP
print(results)
print('BEST_PARAMS: ', BEST_PARAM.items())
print('BEST_METRICS: Rank-1: {:.2%} | Rank-5: {:.2%} | Rank-10: {:.2%}| Rank-20: {:.2%}| mAP: {:.2%}'.format(
BEST_CMC[0], BEST_CMC[4], BEST_CMC[9], BEST_CMC[19], BEST_MAP))
print_time('Done!')