-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit.py
88 lines (86 loc) · 7.1 KB
/
init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
"""
HoloGAN implementation in PyTorch
May 17, 2020
"""
import argparse
def initializer():
"""initializer of the program.
This parses and extracts all training and testing settings.
"""
#pylint: disable=C0326, C0330
parser = argparse.ArgumentParser(description="PyTorch HoloGAN implementation")
parser.add_argument("--seed", type=int, default=23, metavar="N",
help="random seed")
parser.add_argument("--image-path", type=str, default="../dataset/celebA/",metavar="S",
help="training dataset directory path (default: \'../dataset/celebA/\')")
parser.add_argument("--dataset", type=str, default="celebA", choices=["celebA"],
help="dataset selection (default: celebA)")
parser.add_argument("--gpu", action="store_true", default=False,
help="flag to enable cuda computation (default: False)")
parser.add_argument("--batch-size", type=int, default=32, metavar="N",
help="training batch size of the model (default: 32)")
parser.add_argument("--max-epochs", type=int, default=50, metavar="N",
help="the maximum number of epochs for training (default: 50)")
parser.add_argument("--epoch-step", type=int, default=25, metavar="N",
help="epoch step to compute the adaptive learning rate (default: 25)")
parser.add_argument("--z-dim", type=int, default=128, metavar="N",
help="the length of the generative model input (default: 128)")
parser.add_argument("--d-lr", type=float, default=0.0001, metavar="N",
help="the learning rate of the discriminator (default: 0.0001)")
parser.add_argument("--g-lr", type=float, default=0.0001, metavar="N",
help="the learning rate of the generator (default: 0.0001)")
parser.add_argument("--beta1", type=float, default=0.5, metavar="N",
help="minimum betas parameter of the Adam optimizer (default: 0.5)")
parser.add_argument("--beta2", type=float, default=0.999, metavar="N",
help="maximum betas parameter of the Adam optimizer (default: 0.999)")
parser.add_argument("--lambda-latent", type=float, default=0.0, metavar="N",
help="the lambda latent coefficient given in the paper (default: 0.0)")
parser.add_argument("--elevation-low", type=int, default=0, metavar="N",
help="the minimum elevation angle (default: 70)")
parser.add_argument("--elevation-high", type=int, default=0, metavar="N",
help="the maximum elevation angle (default: 110)")
parser.add_argument("--azimuth-low", type=int, default=25, metavar="N",
help="the minimum azimuth angle (default: 220)")
parser.add_argument("--azimuth-high", type=int, default=65, metavar="N",
help="the maximum azimuth angle (default: 320)")
parser.add_argument("--scale-low", type=float, default=1.0, metavar="N",
help="the minimum scaling value of 3D transformation (default: 1.0)")
parser.add_argument("--scale-high", type=float, default=1.0, metavar="N",
help="the maximum scaling value of 3D transformation (default: 1.0)")
parser.add_argument("--transX-low", type=int, default=0, metavar="N",
help="the minimum translation factor across the X-axis (default: 0)")
parser.add_argument("--transX-high", type=int, default=0, metavar="N",
help="the maximum translation factor across the X-axis (default: 0)")
parser.add_argument("--transY-low", type=int, default=0, metavar="N",
help="the minimum translation factor across the Y-axis (default: 0)")
parser.add_argument("--transY-high", type=int, default=0, metavar="N",
help="the maximum translation factor across the Y-axis (default: 0)")
parser.add_argument("--transZ-low", type=int, default=0, metavar="N",
help="the minimum translation factor across the Z-axis (default: 0)")
parser.add_argument("--transZ-high", type=int, default=0, metavar="N",
help="the maximum translation factor across the Z-axis (default: 0)")
parser.add_argument("--log-interval", type=int, default=1000, metavar="N",
help="logging interval in terms of batch size (default: 1000)")
parser.add_argument("--update-g-every-d", type=int, default=5, metavar="N",
help="do not save the current model")
parser.add_argument("--no-save-model", action="store_true", default=False,
help="flag to not save the current model (default: False)")
parser.add_argument("--rotate-elevation", action="store_true", default=False,
help="rotate the z sampling with elevation (default: False)")
parser.add_argument("--rotate-azimuth", action="store_true", default=False,
help="rotate the z sampling with azimuth (default: False)")
parser.add_argument("--load-dis", type=str, default=None, metavar="S",
help="the path for loading and/or evaluating the discriminator")
parser.add_argument("--load-gen", type=str, default=None, metavar="S",
help="the path for loading and/or evaluating the generator")
parser.add_argument("--sampling", action="store_true", default=False,
help="enable the sampling mode (default: False)")
parser.add_argument("--device", help=argparse.SUPPRESS)
parser.add_argument("--start-epoch", help=argparse.SUPPRESS)
parser.add_argument("--recorder", help=argparse.SUPPRESS)
parser.add_argument("--results-dir", help=argparse.SUPPRESS)
parser.add_argument("--models-dir", help=argparse.SUPPRESS)
parser.add_argument("--samples-dir", help=argparse.SUPPRESS)
parser.add_argument("--hist-file", help=argparse.SUPPRESS)
#pylint: enable=C0326, C0330
return parser.parse_args()