Install required tools:
- cmake version 3.24 or higher
- go version 1.22 or higher
- gcc version 11.4.0 or higher
brew install go cmake gcc
Optionally enable debugging and more verbose logging:
# At build time
export CGO_CFLAGS="-g"
# At runtime
export OLLAMA_DEBUG=1
Get the required libraries and build the native LLM code:
go generate ./...
Then build ollama:
go build .
Now you can run ollama
:
./ollama
Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!
Install cmake
and golang
as well as NVIDIA CUDA
development and runtime packages.
Typically the build scripts will auto-detect CUDA, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable CUDA_LIB_DIR
to the location of the shared
libraries, and CUDACXX
to the location of the nvcc compiler. You can customize
a set of target CUDA architectures by setting CMAKE_CUDA_ARCHITECTURES
(e.g. "50;60;70")
Then generate dependencies:
go generate ./...
Then build the binary:
go build .
Your operating system distribution may already have packages for AMD ROCm and CLBlast. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!
Install CLBlast and ROCm development packages first, as well as cmake
and golang
.
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable ROCM_PATH
to the location of the ROCm
install (typically /opt/rocm
), and CLBlast_DIR
to the location of the
CLBlast install (typically /usr/lib/cmake/CLBlast
). You can also customize
the AMD GPU targets by setting AMDGPU_TARGETS (e.g. AMDGPU_TARGETS="gfx1101;gfx1102"
)
go generate ./...
Then build the binary:
go build .
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the render
group, or run as root.
By default, running go generate ./...
will compile a few different variations
of the LLM library based on common CPU families and vector math capabilities,
including a lowest-common-denominator which should run on almost any 64 bit CPU
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
load. If you would like to build a CPU-based build customized for your
processor, you can set OLLAMA_CUSTOM_CPU_DEFS
to the llama.cpp flags you would
like to use. For example, to compile an optimized binary for an Intel i9-9880H,
you might use:
OLLAMA_CUSTOM_CPU_DEFS="-DGGML_AVX=on -DGGML_AVX2=on -DGGML_F16C=on -DGGML_FMA=on" go generate ./...
go build .
If you have Docker available, you can build linux binaries with ./scripts/build_linux.sh
which has the CUDA and ROCm dependencies included. The resulting binary is placed in ./dist
Note: The Windows build for Ollama is still under development.
First, install required tools:
- MSVC toolchain - C/C++ and cmake as minimal requirements
- Go version 1.22 or higher
- MinGW (pick one variant) with GCC.
- The
ThreadJob
Powershell module:Install-Module -Name ThreadJob -Scope CurrentUser
Then, build the ollama
binary:
$env:CGO_ENABLED="1"
go generate ./...
go build .
In addition to the common Windows development tools described above, install CUDA after installing MSVC.
In addition to the common Windows development tools described above, install AMDs HIP package after installing MSVC.
Lastly, add ninja.exe
included with MSVC to the system path (e.g. C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja
).