-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathATR.py~
262 lines (232 loc) · 11.1 KB
/
ATR.py~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import numpy as np
import matplotlib.pyplot as plt
import random
cell_width = 1 # set value later
error_radius = 2 # set value later
trajectory_length = 10
def make_candidate_set(point):
# find the maximum values of a and b such that they are less then the error radius
a_max = int(point[3] / (cell_width))
size_set = int(np.pi * (error_radius/cell_width)**2) + 1 # figure out a better approximation later
# use different values of a and b with like both being an integer between [-2,2]
candidate_set = [[0 for i in range(3)] for j in range(size_set)]
i = 0
for j in range(-a_max, a_max+1):
for k in range(-a_max, a_max+1):
if((k**2 + j**2)**0.5 <= point[3]):
if(i > len(candidate_set) - 1):
i = 0 # reset i
candidate_set[i][0] = j + point[0]
candidate_set[i][1] = k + point[1]
i = i + 1
for k in range(len(candidate_set)):
candidate_set[k][2] = point[2] # put the time in index 2 of the candidate set
return candidate_set
def distance(first_point, second_point):
return ((first_point[0] - second_point[0])**2 + (first_point[1] - second_point[1])**2)**0.5
def repair_distance_tendency(observation_point, candidate_point):
# return the distance between these two points
return distance(observation_point, candidate_point)
def travel_distance_tendency(prev_candidate, candidate):
# return distance between the two points
return distance(prev_candidate, candidate)
def speed_of_point(first_point, second_point):
if(second_point[2] - first_point[2] == 0):
return np.iinfo(np.int32).max
return distance(first_point, second_point)/(second_point[2] - first_point[2])
def speed_change_tendency(prev_candidate, candidate, after_candidate):
# calculate the speech change of candidate
return np.abs(speed_of_point(prev_candidate, candidate) - speed_of_point(candidate, after_candidate))
def normalize_speed(prev_candidate, candidate, after_candidate, prev_candidate_set, candidate_set, after_candidate_set):
numerator = np.exp(speed_change_tendency(prev_candidate, candidate, after_candidate))
denominator = 0
for prev in prev_candidate_set:
for now in candidate_set:
for after in after_candidate_set:
denominator = denominator + np.exp(speed_change_tendency(prev, now, after))
return numerator / denominator
def normalize_travel(prev_candidate, candidate, prev_candidate_set, candidate_set, after_candidate_set):
numerator = np.exp(travel_distance_tendency(prev_candidate, candidate))
denominator = 0
for prev in prev_candidate_set:
for now in candidate_set:
denominator = denominator + np.exp(travel_distance_tendency(prev, now))
return numerator / (len(after_candidate_set) * denominator)
def normalize_repair(point, candidate, prev_candidate_set, candidate_set, after_candidate_set):
numerator = np.exp(repair_distance_tendency(point, candidate))
denominator = 0
for now in candidate_set:
denominator = denominator + np.exp(repair_distance_tendency(point, now))
return numerator / (len(prev_candidate_set) * len(after_candidate_set) * denominator)
def movement_score(prev_point, point, after_point, prev_candidate, candidate, after_candidate, prev_candidate_set, candidate_set, after_candidate_set):
return normalize_repair(point, candidate, prev_candidate_set, candidate_set, after_candidate_set) + normalize_travel(prev_candidate, candidate, prev_candidate_set, candidate_set, after_candidate_set) + normalize_speed(prev_candidate, candidate, after_candidate, prev_candidate_set, candidate_set, after_candidate_set)
def quality_repair(point, candidate, candidate_set):
numerator = np.exp(distance(point, candidate))
denominator = 0
for now in candidate_set:
denominator = denominator + np.exp(distance(point, now))
return numerator / denominator
def quality_travel(prev_point, candidate, candidate_set):
numerator = np.exp(distance(prev_point, candidate))
denominator = 0
for now in candidate_set:
denominator = denominator + np.exp(distance(prev_point, now))
return numerator / denominator
def quality_speed(prev_point, candidate, after_point, candidate_set):
numerator = np.exp(speed_change_tendency(prev_point, candidate, after_point))
denominator = 0
for now in candidate_set:
denominator = denominator + np.exp(speed_change_tendency(prev_point, now, after_point))
return numerator / denominator
def quality_candidates(candidate_set, prev_point, point, after_point):
# get indices of candidates that pass quality repair, travel, and speed
repair_candidates = []
travel_candidates = []
speed_candidates = []
i = 0
for candidate in candidate_set:
if(quality_repair(point, candidate, candidate_set) <= quality_repair(point, point, candidate_set)):
repair_candidates.append(i)
if(quality_travel(prev_point, candidate, candidate_set) <= quality_travel(prev_point, point, candidate_set)):
travel_candidates.append(i)
if(quality_speed(prev_point, candidate, after_point, candidate_set) <= quality_speed(prev_point, point, after_point, candidate_set)):
speed_candidates.append(i)
i = i + 1
# get the union between those sets
union_candidates = list(set(repair_candidates) | set(travel_candidates) | set(speed_candidates))
# return the candidates from this unioned set
quality_set = []
for j in union_candidates:
quality_set.append(candidate_set[j])
return quality_set
def dynamic_programming(trajectory, error_radius, cell_width):
# in trajector index 0 is x, 1 is y, 2 is time, and 3 is the error radius
trajectory.append([0,0,len(trajectory)+1,0]) # maybe change the times later
trajectory.insert(0,[0,0,-1,0])
candidate_set_list = []
for point in trajectory:
candidate_set_list.append(make_candidate_set(point))
quality_set_list = []
j = 0
for candidate_set in candidate_set_list:
if(j <= 0):
quality_set_list.append(candidate_set);
elif(j >= len(trajectory) - 1):
quality_set_list.append(candidate_set);
break
else:
quality_set_list.append(quality_candidates(candidate_set, trajectory[j-1], trajectory[j], trajectory[j+1]))
j = j + 1
#quality_set_list = candidate_set_list # without quality selection
# trace is trellis from p'i-1 to p'i. Values of F and its index is stored
F = [[] for j in range(len(trajectory))] # make F be 2 trellises
for i in range(1, len(trajectory)):
for k in range(len(quality_set_list[i-1])):
F[i].append([])
for l in range(len(quality_set_list[i])):
F[i][k].append(0)
# trace is trellis from p'i-1 to p'i. Values of traj and its index is stored
trace = [[] for j in range(len(trajectory))] # trace should be a 3d array
for i in range(1, len(trajectory)):
for j in range(len(quality_set_list[i-1])):
trace[i].append([])
for k in range(len(quality_set_list[i])):
trace[i][j].append(0)
# loop for the dynamic programming algorithm
for i in range(2,len(trajectory)):
j = 0
for candidate in quality_set_list[i]:
k = 0
for prev_candidate in quality_set_list[i-1]:
F[i][k][j] = np.iinfo(np.int32).max # machine limits for integer types, for floats do finfo
n = 0
for before_candidate in quality_set_list[i-2]:
l = movement_score(trajectory[i-2], trajectory[i-1], trajectory[i], before_candidate, prev_candidate, candidate, quality_set_list[i-2], quality_set_list[i-1], quality_set_list[i])
if F[i-1][n][k] + l < F[i][k][j]:
F[i][k][j] = F[i-1][n][k] + l
trace[i][k][j] = n
print(i,j,k,n, F[i-1][n][k] + l)
n = n + 1
k = k + 1
j = j + 1
# choose p'n in Cn, p'n+1 in Cn+1 with minimum F(n+1,pn',p'n+1)
# Find the trajectory of F at at len(trajectory) + 1
# At Fn is the culmination of all the Fs before
min_pn = 0 # p'n
min_pn1 = 0 # p'n+1
min_Fn = np.iinfo(np.int32).max
for j in range(0,len(F[len(trajectory)-1])):
for k in range(0, len(F[len(trajectory)-1][j])):
if(F[len(trajectory)-1][j][k] < min_Fn):
min_pn = j
min_pn1 = k
min_Fn = F[len(trajectory)-1][j][k]
repaired_trajectory = [] # have to reverse it later as value will be put in reverse
repaired_trajectory.append(quality_set_list[len(trajectory)-1][min_pn1])
repaired_trajectory.append(quality_set_list[len(trajectory)-2][min_pn])
trace_pi1 = min_pn
trace_pi = min_pn1
# this loop first gets n-1
for i in range(len(trajectory)-3, -1, -1):
pi2 = trace[i+2][trace_pi1][trace_pi] # get i -2
print(i,pi2)
repaired_trajectory.append(quality_set_list[i][pi2])
# shift the shift pis down one
trace_pi = trace_pi1
trace_pi1 = pi2
repaired_trajectory.reverse()
return repaired_trajectory
def load_data(data):
return 0
def load_test(): # make sine wave
# put the constant radius on the trajectory data in index 3
# trajectory = [[j,j,j,1] for j in range(40)] # make F be 2 trellises
# above makes a straight line trajectory
x = lambda t : 0.0005*(t-1)*(t-100)*(t+100)
y = lambda t : 2*t
arr_x = []
arr_y = []
trajectory = []
for t in range(trajectory_length):
arr_x.append(x(t))
arr_y.append(y(t))
trajectory.append([x(t), y(t), t, 1])
#for t in range(10, 30, 5):
# arr_x[t] = random.randrange(-3,3) + arr_x[t]
# arr_y[t] = random.randrange(-3,3) + arr_y[t]
# trajectory[t][0] = arr_x[t]
# trajectory[t][1] = arr_y[t]
#arr_x[4] = random.randrange(-1,1) + arr_x[4]
#arr_y[4] = random.randrange(-1,1) + arr_y[4]
#trajectory[4][0] = arr_x[4]
#trajectory[4][1] = arr_y[4]
trajectory[4][0] = random.randrange(-2,2) + trajectory[4][0]
trajectory[4][1] = random.randrange(-2,2) + trajectory[4][1]
return trajectory, arr_x, arr_y
def extract_xy(trajectory):
arr_x = []
arr_y = []
for t in range(len(trajectory)):
arr_x.append(trajectory[t][0])
arr_y.append(trajectory[t][1])
return arr_x, arr_y
def main():
trajectory, arr_x, arr_y = load_test()
repaired_trajectory = dynamic_programming(trajectory, error_radius, cell_width)
before_x, before_y = extract_xy(trajectory)
after_x, after_y = extract_xy(repaired_trajectory)
plt.figure(1)
plt.scatter(arr_x, arr_y, label = "Ground Truth")
#plt.legend()
#plt.figure(2)
plt.scatter(before_x, before_y, label = "Noisy Version")
#plt.legend()
#plt.figure(3)
plt.scatter(after_x, after_y, label = "Corrected Version")
plt.legend()
plt.show()
print(trajectory)
print("ATR Processing")
print(repaired_trajectory)
if __name__ == '__main__':
main()