-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInception.py
86 lines (60 loc) · 3.25 KB
/
Inception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torchvision.models as models
import torch.nn as nn
import torch
class pretrained_Resnet_LSTM_Decoder(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, decoder_last2,decoder_last1, embedding_matrix):
super(pretrained_Resnet_LSTM_Decoder, self).__init__()
resnet = models.resnet34(pretrained=True)
for param in resnet.parameters():
param.requires_grad = False
num_ftrs = resnet.fc.in_features
#layers = list(resnet.children())[:-1]
#self.resnet = nn.Sequential(*layers)
self.resnet = resnet
for param in self.resnet.parameters():
param.requires_grad = False
self.batch_normalizer1 = nn.BatchNorm1d(num_ftrs)
self.batch_normalizer2 = nn.BatchNorm1d(512)
self.encoder_last = nn.Linear(num_ftrs, embed_size)
self.embedding_layer = nn.Embedding(vocab_size, embed_size) # _weight=torch.from_numpy(embedding_matrix))
# self.embedding_layer.weight.requires_grad = False
# self.embedding_layer.requires_grad_(False)
#self.embedding_layer = nn.Embedding.from_pretrained(torch.from_numpy(embedding_matrix))
#self.embedding_layer = nn.Embedding(1004,300)
# self.lstm_decoder = nn.LSTM(input_size=embed_size, hidden_size=hidden_size, num_layers=1, batch_first=True)
self.lstmcell = nn.LSTMCell(input_size=embed_size , hidden_size= hidden_size)
self.decoder_last2 = nn.Linear(hidden_size, decoder_last2)
# self.decoder_last1 = nn.Linear(decoder_last2 , decoder_last1)
self.last = nn.Linear(decoder_last2, vocab_size)
self.out_activation = nn.Softmax(dim=2)
def forward(self, images, captions):
# hidden = torch.zeros((1, images.size(0), 512)).cuda()
# memory = torch.zeros((1, images.size(0), 512)).cuda()
# lstm_hidden = (hidden, memory)
features = self.resnet(images)
batch_size = features.size(0)
features = features.view(batch_size, -1)
#features = self.batch_normalizer1(features)
hx = torch.zeros((batch_size, 512), device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
cx = torch.zeros((batch_size, 512), device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
# features = self.batch_normalizer(features)
# features = features / features.max()
features = self.encoder_last(features)
print(f"Max1: {torch.max(features)}")
# features = torch.tanh(features)
captions = captions[:, :-1]
embed = self.embedding_layer(captions.long())
embed = torch.cat((features.unsqueeze(1), embed.float()), dim=1)
lstm_output = torch.zeros((batch_size, 17, 512) , device=torch.device('cuda'))
for i in range(17):
hx, cx = self.lstmcell(embed[:, i,:], (hx, cx))
lstm_output[:, i, :] = hx
# lstm_decoder_outputs, self.hidden = self.lstm_decoder(embed , self.hidden)
#lstm_decoder_outputs = torch.tanh(lstm_decoder_outputs)
out = self.decoder_last2(lstm_output)
print(f"Max2: {torch.max(out)}")
out = torch.nn.functional.relu(out)
out = self.last(out)
print(f"Max3: {torch.max(out)}")
out = self.out_activation(out)
return out