-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjax_filters.py
181 lines (155 loc) · 7.94 KB
/
jax_filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import jax
import jax.numpy as jnp
from jax import random, jit, lax
from jax.scipy.linalg import inv, svd, eigh, det
from jax.numpy.fft import fft, ifft
from functools import partial
@partial(jit, static_argnums=(3))
def filter_step_linear(m_C_prev, y_curr, K, n, M, H, Q, R):
"""
Apply a single forecast and Kalman filter step with fixed gain.
Tuple of updated state estimate (mean) and covariance, both for return and for next step.
"""
_, _, m_prev, C_prev = m_C_prev
m_pred = M @ m_prev
C_pred = M @ C_prev @ M.T + Q
m_update = (jnp.eye(n) - K @ H) @ m_pred + K @ y_curr
C_update = (jnp.eye(n) - K @ H) @ C_pred @ (jnp.eye(n) - K @ H).T + K @ R @ K.T #+ K @ H @ Q @ (K @ H).T
return (m_pred, C_pred, m_update, C_update), (m_pred, C_pred, m_update, C_update)
@partial(jit, static_argnums=(4))
def apply_filtering_fixed_linear(m0, C0, y, K, n, M, H, Q, R):
"""
Applies the filtering process to estimate the system state over time.
Returns:
m: Estimated states (mean) over time.
C: Covariance matrices of the state estimates over time.
"""
partial_filter_step = lambda m_C_prev, y_curr: filter_step_linear(m_C_prev, y_curr, K, n, M, H, Q, R)
_, m_C = lax.scan(partial_filter_step, (m0, C0, m0, C0), y)
m_preds, C_preds, m_updates, C_updates = m_C
return m_preds, C_preds, m_updates, C_updates
@partial(jit, static_argnums=(3))
def filter_step_nonlinear(m_C_prev, y_curr, K, n, state_transition_function, jacobian_function, H, Q, R):
"""
Apply a single forecast and Kalman filter step for a non-linear model.
Returns:
Tuple of updated state estimate (mean) and covariance for both the return and next step.
"""
_, _, m_prev, C_prev = m_C_prev
m_pred = state_transition_function(m_prev)
F_jac = jacobian_function(m_prev)
m_update = (jnp.eye(n) - K @ H) @ m_pred + K @ y_curr
C_pred = F_jac @ C_prev @ F_jac.T + Q
C_update = (jnp.eye(n) - K @ H) @ C_pred @ (jnp.eye(n) - K @ H).T + K @ R @ K.T #no discard yet
return (m_pred, C_pred, m_update, C_update), (m_pred, C_pred, m_update, C_update)
@partial(jit, static_argnums=(4))
def apply_filtering_fixed_nonlinear(m0, C0, y, K, n, state_transition_function, jacobian_function, H, Q, R):
"""
Applies the filtering process to estimate the system state over time for a non-linear model.
"""
partial_filter_step = lambda m_C_prev, y_curr: filter_step_nonlinear(m_C_prev, y_curr, K, n, state_transition_function, jacobian_function, H, Q, R)
_, m_C = lax.scan(partial_filter_step, (m0, C0, m0, C0), y)
m_preds, C_preds, m_updates, C_updates = m_C
return m_preds, C_preds, m_updates, C_updates
@jit
def ledoit_wolf(P, shrinkage):
return (1 - shrinkage) * P + shrinkage * jnp.trace(P)/P.shape[0] * jnp.eye(P.shape[0])
@jit
def sqrtm(M):
eigenvalues, eigenvectors = jnp.linalg.eigh(M)
inv_sqrt_eigenvalues = jnp.sqrt(eigenvalues)
Lambda_inv_sqrt = jnp.diag(inv_sqrt_eigenvalues)
M_sqrt = eigenvectors @ Lambda_inv_sqrt @ eigenvectors.T
return M_sqrt.real
@jit
def ensrf_step(ensemble, y, H, Q, R, localization_matrix, inflation, key):
n_ensemble = ensemble.shape[1]
x_m = jnp.mean(ensemble, axis=1)
raw_A = (ensemble - x_m.reshape((-1, 1)))
C_pred = (raw_A @ raw_A.T) / (n_ensemble - 1) + Q
C_pred = ledoit_wolf(C_pred, 0.1)
A = raw_A * inflation
P = localization_matrix*(A @ A.T) / (n_ensemble - 1) + Q
K = P @ H.T @ jnp.linalg.inv(H @ P @ H.T + R)
x_m += K @ (y - H @ x_m)
M_sqrt = sqrtm(jnp.eye(x_m.shape[0]) - K@H)
updated_A = M_sqrt @ A
updated_ensemble = x_m.reshape((-1, 1)) + updated_A
updated_P = (updated_A @ updated_A.T / (n_ensemble - 1))
updated_P = ledoit_wolf(updated_P, 0.1) #shrinkage
return ensemble, C_pred, updated_ensemble, updated_P
@partial(jit, static_argnums=(2))
def ensrf_steps(state_transition_function, ensemble_init, num_steps, observations, observation_interval, H, Q, R, localization_matrix, inflation, key):
model_vmap = jax.vmap(lambda v: state_transition_function(v), in_axes=1, out_axes=1)
key, *subkeys = random.split(key, num=num_steps + 1)
subkeys = jnp.array(subkeys)
def inner(carry, t):
ensemble, covar = carry
ensemble_predicted = model_vmap(ensemble)
def true_fun(_):
x_m, C_pred, ensemble_updated, Pf_updated = ensrf_step(ensemble_predicted, observations[t, :], H, Q, R, localization_matrix, inflation, subkeys[t])
return x_m, C_pred, ensemble_updated, Pf_updated
def false_fun(_): # will require an update for larger observation intervals
return ensemble_predicted, covar, ensemble_predicted, covar
_, C_pred, ensemble_updated, Pf_updated = lax.cond(t % observation_interval == 0, true_fun, false_fun, operand=None)
return (ensemble_updated, Pf_updated), (ensemble_predicted, C_pred, ensemble_updated, Pf_updated)
n = len(Q[0])
covariance_init = jnp.zeros((n, n))
_, (ensemble_preds, C_preds, ensembles, covariances) = jax.lax.scan(inner, (ensemble_init, covariance_init), jnp.arange(num_steps))
return ensemble_preds, C_preds, ensembles, covariances
@jit
def kalman_step(state, observation, params):
m_prev, C_prev = state
state_transition_function, jacobian_function, H, Q, R = params
m_pred = state_transition_function(m_prev)
F_jac = jacobian_function(m_prev)
C_pred = F_jac @ C_prev @ F_jac.T + Q
S = H @ C_pred @ H.T + R
K_curr = C_pred @ H.T @ jnp.linalg.inv(S)
m_update = m_pred + K_curr @ (observation - H @ m_pred)
C_update = (jnp.eye(H.shape[1]) - K_curr @ H) @ C_pred
return (m_update, C_update), (m_update, C_update, K_curr)
@jit
def kalman_filter_process(state_transition_function, jacobian_function, m0, C0, observations, H, Q, R):
params = (state_transition_function, jacobian_function, H, Q, R)
initial_state = (m0, C0)
_, (m, C, K) = lax.scan(lambda state, obs: kalman_step(state, obs, params),
initial_state, observations)
return m, C, K
@jit
def resample_particles(key, particles, weights):
num_particles = particles.shape[0]
cumulative_sum = jnp.cumsum(weights)
indices = jnp.searchsorted(cumulative_sum, random.uniform(key, (num_particles,)))
return particles[indices]
@jit
def update_weights(particles, observation, H, R):
# Calculate the likelihood of each particle given the observation
predicted_observations = jax.vmap(lambda x: jnp.dot(H, x), in_axes=0, out_axes=0)(particles)
obs_dim = observation.shape[0]
inv_R = jnp.linalg.inv(R)
diff = observation - predicted_observations
likelihood = jnp.exp(-0.5 * jax.vmap(lambda d: jnp.dot(d, jnp.dot(inv_R, d.T)), in_axes=0, out_axes=0)(diff))
likelihood = likelihood / likelihood.sum() # Normalize the weights
return likelihood
@partial(jit, static_argnums=(1,2))
def particle_filter(key, num_particles, num_steps, initial_state, observations, observation_interval, state_transition_function, H, Q, R):
mean = jnp.tile(initial_state, (num_particles, 1))
particles = random.multivariate_normal(key, mean, Q, shape=(num_particles,))
step = jax.vmap(state_transition_function, in_axes=0, out_axes=0)
ensemble = []
#for now we will assume observation_interval of 1
def body_fn(carry, t):
key, particles = carry
key, subkey = random.split(key)
# Transition particles to the next state
particles = step(particles) + random.multivariate_normal(subkey, jnp.zeros(particles.shape[1]), Q, shape=(num_particles,))
# Update weights and resample every step
observation = observations[t]
weights = update_weights(particles, observation, H, R)
particles = resample_particles(subkey, particles, weights)
return (key, particles), particles
keys_and_particles = jax.lax.scan(body_fn, (key, particles), jnp.arange(num_steps))
ensemble = keys_and_particles[1]
return jnp.transpose(ensemble, (0, 2, 1))
# Transpose to (timestep, state_dim, num_particles)