-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
624 lines (575 loc) · 27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
"Train&evaluate MCN/CAL models"
import argparse
import logging
import time
from itertools import product
from pathlib import Path
import torch
from torch.utils.data import DataLoader
from optim import SGDCaffe
import torch.optim as optim
import dataset_untrimmed
import model
import proposals
import loss
from evaluation import single_moment_retrieval, didemo_evaluation
from dataset_untrimmed import TemporalFeatures
from utils import Multimeter, Tracker
from utils import collate_data, collate_data_eval, ship_to
from utils import setup_hyperparameters, setup_logging, setup_rng, setup_metrics
from utils import dumping_arguments, load_args_from_snapshot, save_checkpoint
from utils import get_git_revision_hash
from utils import MutableSampler
from np_segments_ops import non_maxima_suppresion
OPTIMIZER = ['sgd', 'sgd_caffe']
EVAL_BATCH_SIZE = 1
TOPK, IOU_THRESHOLDS = (1, 5), (0.5, 0.7)
MAX_TOPK = max(TOPK)
METRICS = [f'r@{k},{iou}' for iou, k in product(IOU_THRESHOLDS, TOPK)]
METRICS_OLD = ['iou', 'r@1', 'r@5']
VARS_TO_RECORD = ['id', 'hit@iou,k', 'scores', 'topk_segments']
TRACK = 'r@1,0.7'
BEST_RESULT = 0.0
TOPK_DIDEMO = torch.tensor([1, 5]).float()
parser = argparse.ArgumentParser(
description='MCN/CAL training',
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
# Data
parser.add_argument('--train-list', type=Path, default=Path('non-existent'),
help='JSON-file with training instances')
parser.add_argument('--val-list', type=Path, default=Path('non-existent'),
help='JSON-file with validation instances')
parser.add_argument('--test-list', type=Path, default=Path('non-existent'),
help='JSON-file with testing instances')
# Architecture
parser.add_argument('--arch', choices=model.MOMENT_RETRIEVAL_MODELS,
default='MCN', help='model architecture')
parser.add_argument('--snapshot', type=Path, default=Path(''),
help=('JSON with hyper-parameters. It also expects a '
'.pth.tar file in the same directory to load the'
'model parameters. Those are placed into a '
'key called `state_dict`.'))
# Arch hyper-parameters
parser.add_argument('--visual-hidden', type=int, default=500,
help='Hidden unit in MLP visual stream')
parser.add_argument('--dropout', type=float, default=0.3,
help='Dropout rate in visual stream')
parser.add_argument('--embedding-size', type=int, default=100,
help='Dimensionaity of cross-modal embedding')
parser.add_argument('--lang-hidden', type=int, default=1000,
help='Dimensionality of sentence representation')
parser.add_argument('--visual-layers', type=int, default=1,
help='Number of layers in visual encoder')
parser.add_argument('--unit-vector', action='store_true',
help='Enable embedding normalization')
# Program control
parser.add_argument('--evaluate', action='store_true',
help='only run the model in the val set')
# Features
parser.add_argument('--feat', default='rgb',
help='Record the type of feature used (modality)')
parser_visual_info_grp = parser.add_mutually_exclusive_group()
parser_visual_info_grp.add_argument(
'--h5-path', type=Path, default='non-existent',
help='HDF5-file with features')
parser_visual_info_grp.add_argument(
'--clip-length', type=float, default=None,
help='Clip length in seconds')
# Model features
parser.add_argument('--loc', type=TemporalFeatures.from_string,
default=TemporalFeatures.TEMPORAL_ENDPOINT,
choices=list(TemporalFeatures),
help='Kind of temporal moment feature')
parser.add_argument('--no-context', action='store_false', dest='context',
help='Remove global video representation')
# Model
parser.add_argument('--margin', type=float, default=0.1,
help='MaxMargin margin value')
parser.add_argument('--w-inter', type=float, default=0.2,
help='Inter-loss weight')
parser.add_argument('--w-intra', type=float, default=0.5,
help='Intra-loss weight')
# TODO: add weight for clip loss
parser.add_argument('--c-inter', type=float, default=0.2,
help='Clip-inter-loss weight')
parser.add_argument('--c-intra', type=float, default=0.5,
help='Clip-intra-loss weight')
parser.add_argument('--original-setup', action='store_true',
help='Enable original optimization policy')
parser.add_argument('--proposals-in-train', action='store_true',
help='Sample negative from proposals during training')
parser.add_argument('--negative-sampling-iou', type=float, default=0.35,
help='Amount of IoU to consider proposals as negatives')
parser.add_argument('--freeze-visual', action='store_true')
# parser.add_argument('--freeze-visual-encoder', action='store_true')
parser.add_argument('--freeze-lang', action='store_true')
parser.add_argument('--context-window', type=int, default=None,
help=('Size of context windows around each clip. '
'Valid only for SMCN.'))
parser.add_argument('--bias-to-single-clips', type=float, default=0,
help='Upsample single clip moments, 0 means no bias.')
parser.add_argument('--clip-loss', action='store_true')
parser.add_argument('--ground-truth-rate', type=float, default=1.0,
help='Pos moment augmentation if its lower than 1')
parser.add_argument('--prob-proposal-nextto', type=float, default=-1.0,
help=('Prob to sample negatives next to moments. -1'
'means disabled. Increase it to sample often.'))
parser.add_argument('--h5-path-nis', type=Path, default=None,
help='HDF5-file for negative importance sampling')
parser.add_argument('--nis-k', type=int, default=None,
help='Only sample negative videos from top-k')
# Hyper-parameters concerning proposals (candidates) to score
parser.add_argument('--proposal-interface', default='SlidingWindowMSRSS',
choices=proposals.PROPOSAL_SCHEMES,
help='Type of proposals spanning search space')
parser.add_argument('--min-length', type=float, default=1.5,
help='Minimum length of sliding windows (seconds)')
parser.add_argument('--scales', type=int, nargs='+',
default=list(range(2, 17, 2)),
help='Relative durations for sliding windows')
parser.add_argument('--stride', type=float, default=0.5,
help=('Relative stride for sliding windows [0, 1]. '
'Check SlidingWindowMSRSS details'))
parser.add_argument('--nms-threshold', type=float, default=0.5)
# Device specific
parser.add_argument('--batch-size', type=int, default=128, help='batch size')
parser.add_argument('--gpu-id', type=int, default=-1, help='GPU device')
parser.add_argument('--num-workers', type=int, default=6,
help='Num workers during training')
parser.add_argument('--num-workers-eval', type=int, default=6,
help='Num workers for evaluation (useful long videos)')
# Optimization
parser.add_argument('--lr', type=float, default=0.05,
help='initial learning rate')
parser.add_argument('--epochs', type=int, default=108,
help='upper epoch limit')
parser.add_argument('--optimizer', type=str, default='sgd_caffe',
choices=OPTIMIZER, help='type of optimizer')
parser.add_argument('--momentum', type=float, default=0.9,
help='Momentum for SGD')
parser.add_argument('--lr-decay', type=float, default=0.1,
help='Learning rate decay')
parser.add_argument('--lr-step', type=float, default=30,
help='Learning rate epoch to decay')
parser.add_argument('--clip-grad', type=float, default=10,
help='clip gradients')
parser.add_argument('--weight-decay', type=float, default=0.0,
help='weight decay')
parser.add_argument('--no-shuffle', action='store_false', dest='shuffle',
help='Disable suffle dataset after each epoch')
# train/eval callbacks
parser.add_argument('--patience', type=int, default=-1,
help=('stop optimization if there is no improvements '
'after poking test-list by this amount.'))
parser.add_argument('--min-epochs', type=float, default=0.45,
help=('Ignore patience at the begining. Given as ratio '
'wrt total numbers of epochs.'))
parser.add_argument('--eval-on-epoch', type=int, default=-1,
help=('Check validation in multiples of these epoch.'
'Raises an error if the actual `test-list` is given '
'and `eval_on_epoch` > 0'))
parser.add_argument('--not-serialize', action='store_false', dest='serialize',
help='Avoid dumping .pth.tar with model parameters')
parser.add_argument('--dump-results', action='store_true',
help='Dump HDF5 with per sample results in val & test')
parser.add_argument('--save-on-epoch', type=int, default=-1,
help='Dump every given number of epochs')
parser.add_argument('--force-eval-end', action='store_true',
help='Force eval at the end of training')
# Logging
parser.add_argument('--logfile', type=Path, default=Path(''),
help='Logging file')
parser.add_argument('--n-display', type=float, default=0.1,
help='logging rate during epoch')
parser.add_argument('--enable-tb', action='store_true',
help='Log to tensorboard')
# Reproducibility
parser.add_argument('--seed', type=int, default=1701,
help='random seed (-1 := random)')
# Hyper-parameter search
parser.add_argument('--hps', action='store_true',
help='Enable use of hps.yml in folder of logfile')
# Debug
parser.add_argument('--debug', action='store_true',
help=('yield incorrect results! only to verify things '
'(loaders, ops) can run well'))
args = parser.parse_args()
def main(args):
setup_logging(args)
if load_args_from_snapshot(args):
if len(args.snapshot.name) > 0:
# Override snapshot config with user argument
args = parser.parse_args(namespace=args)
logging.info(f'Loaded snapshot config: {args.snapshot}')
else:
logging.error('Unable to load {args.snapshot}, procedding with args.')
setup_hyperparameters(args)
setup_rng(args)
setup_metrics(args, TOPK, IOU_THRESHOLDS, TOPK_DIDEMO)
args.device = device_name = 'cpu'
if args.gpu_id >= 0 and torch.cuda.is_available():
args.device = torch.device(f'cuda:{args.gpu_id}')
device_name = torch.cuda.get_device_name(args.gpu_id)
if args.nms_threshold >= 1:
args.topk = args.topk.cuda(device=args.device, non_blocking=True)
args.topk_ = args.topk_.cuda(
device=args.device, non_blocking=True)
logging.info(f'Git revision hash: {get_git_revision_hash()}')
args.git_hash = get_git_revision_hash()
logging.info(f'{args.arch} in untrimmed videos')
logging.info(args)
logging.info(f'Device: {device_name}')
train_loader, val_loader, test_loader = setup_dataset(args)
net, ranking_loss, optimizer = setup_model(
args, train_loader, test_loader)
if len(args.snapshot.name) > 0 and args.snapshot.exists():
logging.info(f'Load model-parameters from {args.snapshot}')
filename = args.snapshot.with_suffix('.pth.tar')
snapshot = torch.load(filename).get('state_dict')
if snapshot is not None:
net.load_state_dict(snapshot)
else:
logging.error('Fail loading parameters, proceeding without them.')
if args.evaluate:
if not args.snapshot.exists():
logging.error('Aborting due to lack of snapshot')
return
logging.info('Evaluating model')
# Update `arg.logfile` re-using basename from `args.snapshot` and
# append eval to avoid overwriting
args.logfile = args.snapshot.with_suffix('')
args.logfile = args.logfile.with_name(args.logfile.stem + '_eval')
rst, per_sample_rst = evaluate(args, net, test_loader)
dumping_arguments(args, test_performance=rst,
perf_per_sample_test=per_sample_rst)
return
lr_schedule = torch.optim.lr_scheduler.StepLR(
optimizer, args.lr_step, args.lr_decay)
logging.info('Starting optimization...')
# on training begin
n_display_float = args.n_display
total_epochs = args.epochs
args.min_epochs = max(1, int(total_epochs * args.min_epochs))
patience, args.epochs, best_result = 0, 0, BEST_RESULT
if args.eval_on_epoch > 0:
logging.info(f'Epoch: {args.epochs}')
perf_val, perf_per_sample_val = evaluate(args, net, val_loader)
perf_test, perf_per_sample_test = evaluate(
args, net, test_loader, subset='test')
performance = perf_test if perf_test is None else perf_val
best_result = performance[TRACK]
for epoch in range(1, total_epochs + 1):
# on epoch begin
args.epochs += 1
args.n_display = max(int(n_display_float * len(train_loader)), 1)
lr_schedule.step()
train_epoch(args, net, ranking_loss, train_loader, optimizer)
# on epoch ends
# eval on val/test-lists
if args.eval_on_epoch > 0 and epoch % args.eval_on_epoch == 0:
logging.info('Trigger evaluation')
perf_val, perf_per_sample_val = evaluate(args, net, val_loader)
perf_test, perf_per_sample_test = evaluate(
args, net, test_loader, subset='test')
performance = perf_test if perf_test is None else perf_val
current_result = performance[TRACK] if performance else best_result
if args.patience >= 0 and current_result > best_result:
patience = 0
best_result = current_result
save_checkpoint(args, {'state_dict': net.state_dict()})
else:
patience += 1
# dump model at given epoch
if args.save_on_epoch > 0 and epoch % args.save_on_epoch == 0:
save_checkpoint(args, {'state_dict': net.state_dict()}, record=True)
# stop training when if no improvement
if patience == args.patience and epoch > args.args.min_epochs:
break
# on train ends
if args.eval_on_epoch < 0 or args.force_eval_end:
logging.info('Evaluation after training finished')
perf_val, perf_per_sample_val = evaluate(args, net, val_loader)
perf_test, perf_per_sample_test = evaluate(
args, net, test_loader, subset='test')
save_checkpoint(args, {'state_dict': net.state_dict()})
logging.info(f'Best val {TRACK}: {best_result:.4f}')
dumping_arguments(args, perf_val, perf_test,
perf_per_sample_val, perf_per_sample_test)
def train_epoch(args, net, criterion, loader, optimizer):
"Update model making a whole pass over dataset in loader"
ind = 2 if args.debug else 0
time_meters = Multimeter(keys=['Data', 'Batch'])
running_loss = 0.0
logging.info(f'Epoch: {args.epochs}')
net.train()
end = time.time()
for it, minibatch in enumerate(loader):
if args.gpu_id >= 0:
minibatch_ = minibatch
minibatch = ship_to(minibatch, args.device)
# measure elapsed time
data_time = time.time() - end
end = time.time()
compared_embeddings = net(*minibatch[ind:])
loss, _, _ = criterion(*compared_embeddings)
optimizer.zero_grad()
loss.backward()
if args.clip_grad > 0:
torch.nn.utils.clip_grad_norm_(net.parameters(), args.clip_grad)
optimizer.step()
time_meters.update([data_time, time.time() - end])
end = time.time()
loss_it = loss.item()
running_loss += loss_it
n_iter = it + args.epochs * len(loader)
if args.writer:
args.writer.add_scalar('train/loss', loss_it, n_iter)
if (it + 1) % args.n_display == 0:
logging.info(f'Epoch: [{args.epochs}]'
f'[{100 * it / len(loader):.2f}]\t'
f'{time_meters.report()}\t'
f'Loss {running_loss / args.n_display:.4f}')
running_loss = 0.0
if args.writer:
args.writer.add_scalar('train/loss-end', running_loss, args.epochs)
def validation(args, net, loader):
"Eval model"
ind = 2 if args.debug else 0
time_meters = Multimeter(keys=['Batch', 'Eval'])
meters_1, meters_2 = Multimeter(keys=METRICS), None
if args.proposal_interface == 'DidemoICCV17SS':
meters_2 = Multimeter(keys=METRICS_OLD)
tracker = Tracker(keys=VARS_TO_RECORD) if args.dump_results else None
logging.info(f'* Evaluation')
net.eval()
with torch.no_grad():
end = time.time()
for it, minibatch in enumerate(loader):
if args.gpu_id >= 0:
minibatch_ = minibatch
minibatch = ship_to(minibatch, args.device)
results, descending = net.predict(*minibatch[ind:-2])
# measure elapsed time
batch_time = time.time() - end
end = time.time()
gt_segment, segments = minibatch[-2:]
if args.nms_threshold < 1:
# TODO(tier-1): port to torch
gt_segment, segments = minibatch_[-2:]
scores = results.cpu()
idx = non_maxima_suppresion(
segments.numpy(), -scores.numpy(), args.nms_threshold)
sorted_segments = segments[idx]
else:
scores, idx = results.sort(descending=descending)
sorted_segments = segments[idx, :]
hit_k_iou = single_moment_retrieval(
gt_segment, sorted_segments, topk=args.topk)
if meters_2:
iou_r_at_ks = didemo_evaluation(
gt_segment, sorted_segments, args.topk_)
meters_2.update([i.item() for i in iou_r_at_ks])
# TODO(tier-2;profile): seems a bit slow
meters_1.update([i.item() for i in hit_k_iou])
time_meters.update([batch_time, time.time() - end])
if tracker:
# artifact to ease Tracker job for few number of segments
if scores.shape[0] < MAX_TOPK:
n_times = round(MAX_TOPK / scores.shape[0])
scores = scores.repeat(n_times)
sorted_segments = sorted_segments.repeat(n_times, 1)
tracker.append(it, hit_k_iou, scores[: MAX_TOPK],
sorted_segments[:MAX_TOPK, :])
end = time.time()
logging.info(f'{time_meters.report()}\t{meters_1.report()}')
if meters_2:
logging.info(f'DiDeMo metrics: {meters_2.report()}')
if tracker:
tracker.freeze()
performance = (meters_1.dump(), tracker.data)
logging.info(f'Results aggregation completed')
return performance
return meters_1.dump(), None
def evaluate(args, net, loader, subset='val'):
"""Lazy function to make comparsion = to json parsing.
Note: Please do not fool yourself picking model based on testing
"""
if loader is None:
return None, None
perf_overall, perf_per_sample = validation(args, net, loader)
if perf_overall and args.writer:
for metric, value in perf_overall.items():
args.writer.add_scalar(f'{subset}/{metric}', value, args.epochs)
return perf_overall, perf_per_sample
def sampler_biased_single_clip_moment(dataset, rate):
"""Bias sampling towards single clip moments
TODO: experimental feature. Remove if it's useless.
"""
raise ValueError('Deprecated')
if 'didemo' in str(dataset.json_file):
return None
clip_length = dataset.proposals_interface.stride
ind_per_length = {}
for it, moment_data in enumerate(dataset.metadata):
moment = moment_data['times'][0]
length = moment[1] - moment[0]
num_clips = int(length // clip_length)
if num_clips not in ind_per_length:
ind_per_length[num_clips] = []
ind_per_length[num_clips].append(it)
max_instances_in_bucket = max([len(i) for i in ind_per_length.values()])
num_instances_single_clip = len(ind_per_length[0])
upsample_rate = int(rate * max_instances_in_bucket //
num_instances_single_clip)
ind_per_length[0] = ind_per_length[0] * upsample_rate
return MutableSampler(sum(ind_per_length.values(), []))
def setup_dataset(args):
"Setup dataset and loader"
# model dependend part
if args.arch == 'MCN':
dataset_name = 'UntrimmedMCN'
elif args.arch == 'SMCN':
dataset_name = 'UntrimmedSMCN'
else:
raise ValueError(f'Unsuported arch: {args.arch}, call 911!')
# Make sure test_list doesn't cheating
search_for = 'test'
risk_of_cheating = (not args.evaluate and
search_for in args.test_list.name and
args.eval_on_epoch > 0)
if 'activitynet' in args.test_list.name:
search_for = 'val.json'
if risk_of_cheating:
raise ValueError('Risk of cheating. Please read prolog.')
# Save loading time in case [train, val]-list exits
if args.evaluate:
logging.info('Overriding [train, val]-list to save time :)')
args.train_list = Path('non-existent')
args.val_list = Path('non-existent')
subset_files = [('train', args.train_list), ('val', args.val_list),
('test', args.test_list)]
cues, no_visual = {args.feat: None}, True
if args.h5_path.exists():
no_visual = False
cues = {args.feat: {'file': args.h5_path}}
elif args.clip_length is None:
raise ValueError('clip-length is required without visual features')
proposal_generator = proposals.__dict__[args.proposal_interface](
args.min_length, args.scales, args.stride)
proposal_generator_train = None
if args.proposals_in_train:
proposal_generator_train = proposal_generator
extras_dataset_configs = [
# Training
{'proposals_interface': proposal_generator_train,
'ground_truth_rate': args.ground_truth_rate,
'prob_nproposal_nextto': args.prob_proposal_nextto,
'sampling_iou': args.negative_sampling_iou,
'h5_nis': args.h5_path_nis, 'nis_k': args.nis_k},
# Validation or Testing
{'eval': True, 'proposals_interface': proposal_generator}
]
extras_loaders_configs = [
# Training
{'shuffle': args.shuffle, 'collate_fn': collate_data,
'batch_size': args.batch_size, 'num_workers': args.num_workers},
# Validation or Testing
{'shuffle': False, 'collate_fn': collate_data_eval,
'batch_size': EVAL_BATCH_SIZE, 'num_workers': args.num_workers_eval}
]
logging.info('Setting-up datasets and loaders')
logging.info('Pre-loading features... '
'It may take a couple of minutes (Glove!)')
loaders = []
for i, (subset, filename) in enumerate(subset_files):
index_config = 0 if i == 0 else -1
extras_dataset = extras_dataset_configs[index_config]
if dataset_name == 'UntrimmedSMCN':
extras_dataset['w_size'] = args.context_window
extras_dataset['clip_mask'] = args.clip_loss
extras_loader = extras_loaders_configs[index_config]
if not filename.exists():
logging.info(f'Not found {subset}-list: {filename}')
loaders.append(None)
continue
logging.info(f'Found {subset}-list: {filename}')
dataset = dataset_untrimmed.__dict__[dataset_name](
filename, cues=cues, loc=args.loc, context=args.context,
no_visual=no_visual, debug=args.debug,
clip_length=args.clip_length,
**extras_dataset)
logging.info(f'Setting loader')
if subset == 'train' and args.bias_to_single_clips > 0:
extras_loader['shuffle'] = False
extras_loader['sampler'] = sampler_biased_single_clip_moment(
dataset, args.bias_to_single_clips)
loaders.append(
DataLoader(dataset, **extras_loader)
)
train_loader, val_loader, test_loader = loaders
return train_loader, val_loader, test_loader
def setup_model(args, train_loader=None, test_loader=None):
"Setup model, criterion and optimizer"
if train_loader is not None:
dataset = train_loader.dataset
elif test_loader is not None:
dataset = test_loader.dataset
else:
raise ValueError('Either train or test list must exists')
logging.info('Setting-up model')
arch_setup = dict(
visual_size=dataset.visual_size[args.feat],
lang_size=dataset.language_size,
max_length=dataset.max_words,
embedding_size=args.embedding_size,
dropout=args.dropout,
visual_hidden=args.visual_hidden,
lang_hidden=args.lang_hidden,
visual_layers=args.visual_layers,
unit_vector=args.unit_vector
)
if args.clip_loss:
args.arch = 'SMCNCL'
net = model.__dict__[args.arch](**arch_setup)
opt_parameters, criterion = None, None
if train_loader is not None:
logging.info('Setting-up criterion')
opt_parameters = net.optimization_parameters(
args.lr, args.original_setup, freeze_visual=args.freeze_visual,
freeze_lang=args.freeze_lang,
# freeze_visual_encoder=args.freeze_visual_encoder)
)
criterion_ = 'IntraInterMarginLoss'
criterion_prm = dict(margin=args.margin, w_inter=args.w_inter,
w_intra=args.w_intra)
if args.clip_loss:
criterion_ = 'IntraInterMarginLossPlusClip'
criterion_prm['c_inter'] = args.c_inter
criterion_prm['c_intra'] = args.c_intra
criterion = loss.__dict__[criterion_](**criterion_prm)
logging.info('Setting-up model mode')
net.train()
if train_loader is None:
net.eval()
if args.gpu_id >= 0:
logging.info('Transferring model to GPU')
net.to(args.device)
if criterion is not None:
criterion.to(args.device)
logging.info(f'Setting-up optimizer: {args.optimizer}')
if opt_parameters is None:
return net, None, None
if args.optimizer == 'sgd':
optimizer = optim.SGD(opt_parameters, lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
elif args.optimizer == 'sgd_caffe':
optimizer = SGDCaffe(opt_parameters, lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
else:
raise ValueError(f'Unknow optimizer {args.optimizer}')
return net, criterion, optimizer
if __name__ == '__main__':
main(args)