We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi authors,
I'm trying to run your train/eval code, but I got the following error:
(LAR) [fjd@gpu10 LAR-Look-Around-and-Refer]$ python train_referit3d.py --transformer --model mmt_referIt3DNet -scannet-file $scanfile -referit3D-file $nr3dfile_csv --log-dir log/$exp_id --n-workers 2 --gpu 0 --unit-sphere-norm True --feat2d clsvecROI --mode evaluate --pretrained-path $pretrain_path/best_model.pth -load-dense False -load-imgs False --img-encoder False 1.13.1+cu117 Number of available GPUs is: 1 True {'augment_with_sr3d': None, 'batch_size': 32, 'camaug': False, 'checkpoint_dir': 'log/test/06-20-2023-13-43-55/checkpoints', 'clspred3d': False, 'cluster_pid': None, 'cocoon': False, 'config_file': None, 'context_2d': None, 'context_info_2d_cached_file': None, 'context_obj': None, 'contrastiveloss': False, 'dgcnn_intermediate_feat_dim': [128, 128, 128, 128], 'dist_backend': 'nccl', 'dist_url': 'tcp://224.66.41.62:23456', 'eval_path': None, 'experiment_tag': None, 'feat2d': 'clsvecROI', 'feat2ddim': 2048, 'fine_tune': False, 'freeze_backbone': False, 'geo3d': False, 'gpu': 0, 'graph_out_dim': 128, 'img_encoder': False, 'imgaug': False, 'imgsize': 32, 'init_lr': 0.0005, 'knn': 7, 'lang_cls_alpha': 0.5, 'language_fusion': 'both', 'language_latent_dim': 768, 'load_dense': False, 'load_imgs': False, 'log_dir': 'log/test/06-20-2023-13-43-55', 'max_distractors': 51, 'max_seq_len': 24, 'max_test_objects': 88, 'max_train_epochs': 100, 'mentions_target_class_only': True, 'min_word_freq': 3, 'mmt_latent_dim': 768, 'mmt_mask': None, 'mode': 'evaluate', 'model': 'mmt_referIt3DNet', 'multiprocessing_distributed': False, 'n_workers': 2, 'obj_cls_alpha': 0.5, 'object_encoder': 'pnet_pp', 'object_latent_dim': 768, 'patience': 10, 'points_per_object': 1024, 'pretrained_path': '/share/data/2pals/fjd/SAT_release/SAT_clsvecROI_Nr3D/best_model.pth', 'random_seed': 2020, 'rank': -1, 'referit3D_file': '/share/data/2pals/fjd/referit3d/refer_it_3d/nr3d_train.csv', 'resume_path': None, 's_vs_n_weight': None, 'save_args': True, 'scannet_file': '/share/data/2pals/fjd/referit3d/keep_all_points_00_view_with_global_scan_alignment/keep_all_points_00_view_with_global_scan_alignment.pkl', 'sceneCocoonPath': None, 'sharetwoTrans': False, 'softtripleloss': False, 'tensorboard_dir': 'log/test/06-20-2023-13-43-55/tb_logs', 'train_scanRefer': False, 'train_vis_enc_only': False, 'transformer': True, 'tripleloss': False, 'twoStreams': False, 'twoTrans': False, 'unit_sphere_norm': True, 'vocab_file': None, 'warmup': True, 'word_dropout': 0.1, 'word_embedding_dim': 64, 'world_size': -1} Use GPU: 0 for training starting caching the pkl files..... Loaded in RAM 707 scans 524 instance classes exist in these scans #train/test scans: 1201 / 312 Finish caching the pkl files, Done Dropping utterances without explicit mention to the target class 28716->28716 95-th percentile of token length for remaining (training) data is: 20.0 Dropping utterances with more than 24 tokens, 28716->28716 (mean) Random guessing among target-class test objects nan Dropped 196 scans to reduce mem-foot-print. Length of vocabulary, with min_word_freq=3 is 1288 511 training scans will be used. 90-th percentile of number of objects in the (training) scans is: 52.00 Traceback (most recent call last): File "train_referit3d.py", line 445, in main_worker(args.gpu, ngpus_per_node, args) File "train_referit3d.py", line 95, in main_worker mean_rgb, vocab = compute_auxiliary_data(referit_data, all_scans_in_dict, args) File "/share/data/ripl/fjd/LAR-Look-Around-and-Refer/referit3d/in_out/neural_net_oriented.py", line 199, in compute_auxiliary_data obj_cnt = objects_counter_percentile(testing_scan_ids, all_scans, prc) File "/share/data/ripl/fjd/LAR-Look-Around-and-Refer/referit3d/in_out/neural_net_oriented.py", line 45, in objects_counter_percentile return np.percentile(all_obs_len, prc) File "<array_function internals>", line 6, in percentile File "/share/data/ripl/fjd/miniconda3/envs/LAR/lib/python3.7/site-packages/numpy/lib/function_base.py", line 3868, in percentile a, q, axis, out, overwrite_input, interpolation, keepdims) File "/share/data/ripl/fjd/miniconda3/envs/LAR/lib/python3.7/site-packages/numpy/lib/function_base.py", line 3988, in _quantile_unchecked interpolation=interpolation) File "/share/data/ripl/fjd/miniconda3/envs/LAR/lib/python3.7/site-packages/numpy/lib/function_base.py", line 3564, in _ureduce r = func(a, **kwargs) File "/share/data/ripl/fjd/miniconda3/envs/LAR/lib/python3.7/site-packages/numpy/lib/function_base.py", line 4098, in _quantile_ureduce_func n = np.isnan(ap[-1]) IndexError: index -1 is out of bounds for axis 0 with size 0
I appreciate if you could provide any insights on why this error could happen and how to possibly solve it. Thanks!
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hi authors,
I'm trying to run your train/eval code, but I got the following error:
I appreciate if you could provide any insights on why this error could happen and how to possibly solve it. Thanks!
The text was updated successfully, but these errors were encountered: