-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcvc_2pt_conn_mpitriv.c
1012 lines (930 loc) · 43 KB
/
cvc_2pt_conn_mpitriv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/****************************************************
* cvc_2pt_conn_mpitriv.c
*
* Tue Sep 3 21:11:42 CEST 2013
*
* PURPOSE:
* - originally copied from cvc_2pt_conn
* - trivial MPI parallelization
****************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <mpi.h>
#ifdef OPENMP
# include <omp.h>
#endif
#include <getopt.h>
#define MAIN_PROGRAM
#include "cvc_complex.h"
#include "cvc_linalg.h"
#include "global.h"
#include "cvc_geometry.h"
#include "cvc_utils.h"
#include "mpi_init.h"
#include "io.h"
#include "propagator_io.h"
#include "gauge_io.h"
#include "Q_phi.h"
#include "fuzz.h"
#include "read_input_parser.h"
#include "smearing_techniques.h"
#include "make_q_orbits.h"
void usage() {
fprintf(stdout, "Code to perform contractions for connected contributions\n");
fprintf(stdout, "Usage: [options]\n");
fprintf(stdout, "Options: -v verbose [no effect, lots of stdout output it]\n");
fprintf(stdout, " -f input filename [default cvc.input]\n");
fprintf(stdout, " -l Nlong for fuzzing [default -1, no fuzzing]\n");
fprintf(stdout, " -a no of steps for APE smearing [default -1, no smearing]\n");
fprintf(stdout, " -k alpha for APE smearing [default 0.]\n");
EXIT(0);
}
int n_c=1, n_s=4;
char pre_string[6];
static inline void get_propagator_filename(char*filename, char*prefix, int*sc, int i, int*source_momentum, int conf, int flavor) {
int isc;
switch(g_source_type) {
case 0: // point source
isc = i % (n_s*n_c);
switch(flavor) {
case 0:
sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d.inverted", prefix, conf, sc[0], sc[1], sc[2], sc[3], isc);
break;
case 1:
if(format == 2) {
sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2ds%.2dc%.2d.pmass.%s.inverted", prefix, conf, sc[0], sc[1], sc[2], sc[3], isc/n_c, isc%n_c, pre_string);
} else if(format == 3) {
sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.pmass.%s.%.2d.inverted", prefix, conf, sc[0], sc[1], sc[2], sc[3], pre_string, isc);
}
break;
case -1:
if(format == 2) {
sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2ds%.2dc%.2d.nmass.%s.inverted", prefix, conf, sc[0], sc[1], sc[2], sc[3], isc/n_c, isc%n_c, pre_string);
} else if(format == 3) {
sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.nmass.%s.%.2d.inverted", prefix, conf, sc[0], sc[1], sc[2], sc[3], pre_string, isc);
}
break;
}
break;
case 2: // timeslice source
case 3: // timeslice source
if(g_sink_momentum_set) {
sprintf(filename, "%s.%.4d.%.2d.%.2d.qx%.2dqy%.2dqz%.2d.inverted", prefix, conf, g_source_timeslice, i,
source_momentum[0], source_momentum[1], source_momentum[2]);
} else {
sprintf(filename, "%s.%.4d.%.2d.%.2d.inverted", prefix, conf, g_source_timeslice, i);
}
break;
}
fprintf(stdout, "# [get_propagator_filename] filename = %s\n", filename);
return;
}
/****************************************************************************************
*
* main program
*
****************************************************************************************/
int main(int argc, char **argv) {
int src_momentum_zero[] = {0,0,0};
int c, i, j, ll, sl, status;
int filename_set = 0;
int timeslice=2, mms1=-1;
int l_LX_at, l_LXstart_at;
int x0, x1, x2, ix, idx;
int VOL3, icol;
int K=20, nK=20, itype;
int use_mms=0;
int full_orbit=0;
int do_shifts = 0, shifts_num=1, ishift;
int source_coords[4], source_coords_orig[4], source_proc_coords[4], source_proc_id, source_location, lsource_coords[4];
double *cconn = (double*)NULL;
double *nconn = (double*)NULL;
double *work=NULL;
int verbose = 0;
int fermion_type = 0; // twisted mass fermion
char filename[200];
double ratime, retime;
double plaq_r, plaq_m;
double *gauge_field_timeslice=NULL, *gauge_field_f=NULL;
double **chi=NULL, **chi2=NULL, **psi=NULL, **psi2=NULL;
double *Ctmp;
double correlator_norm;
FILE *ofs;
/* double sign_adj5[] = {-1., -1., -1., -1., +1., +1., +1., +1., +1., +1., -1., -1., -1., 1., -1., -1.}; */
double conf_gamma_sign[] = {1., 1., 1., 1., 1., -1., -1., -1., -1.};
int *qlatt_id=NULL, *qlatt_count=NULL, **qlatt_rep=NULL, **qlatt_map=NULL, qlatt_nclass;
double **qlatt_list=NULL;
int snk_momentum_runs = 1, snk_momentum_id=0, snk_momentum[3], src_momentum[3], imom;
int shift_vector[5][4] = {{0,0,0,0}, {1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {0,0,0,1}};
size_t nconn_length=0, cconn_length=0;
/**************************************************************************************************
* charged stuff
* here we loop over ll, ls, sl, ss (order source-sink)
* pion:
* g5-g5, g5-g0g5, g0g5-g5, g0g5-g0g5, g0-g0, g5-g0, g0-g5, g0g5-g0, g0-g0g5
* rho:
* gig0-gig0, gi-gi, gig5-gig5, gig0-gi, gi-gig0, gig0-gig5, gig5-gig0, gi-gig5, gig5-gi
* a0, b1:
* 1-1, gig0g5-gig0g5
**************************************************************************************************/
int gindex1[] = {5, 5, 6, 6, 0, 5, 0, 6, 0,
10, 11, 12, 1, 2, 3, 7, 8, 9, 10, 11, 12, 1, 2, 3, 10, 11, 12, 7, 8, 9, 1, 2, 3, 7, 8, 9,
4, 13, 14, 15};
int gindex2[] = {5, 6, 5, 6, 0, 0, 5, 0, 6,
10, 11, 12, 1, 2, 3, 7, 8, 9, 1, 2, 3, 10, 11, 12, 7, 8, 9, 10, 11, 12, 7, 8, 9, 1, 2, 3,
4, 13, 14, 15};
/* due to twisting we have several correlators that are purely imaginary */
int isimag[] = {0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0};
/**************************************************************************************************
* neutral stuff
* here we loop over ll, ls, sl, ss (order source-sink)
* pion:
* g5-g5, g5-g0g5, g0g5-g5, g0g5-g0g5, 1-1, g5-1, 1-g5, g0g5-1, 1-g0g5
* rho:
* gig0-gig0, gi-gi, gig0g5-gig0g5, gig0-gi, gi-gig0, gig0-gig0g5, gig0g5-gig0, gi-gig0g5, gig0g5-gi
* a0, b1:
* g0-g0, gig5-gig5
**************************************************************************************************/
int ngindex1[] = {5, 5, 6, 6, 4, 5, 4, 6, 4,
10, 11, 12, 1, 2, 3, 13, 14, 15, 10, 11, 12, 1, 2, 3, 10, 11, 12, 13, 14, 15, 1, 2, 3, 13, 14, 15,
0, 7, 8, 9};
int ngindex2[] = {5, 6, 5, 6, 4, 4, 5, 4, 6,
10, 11, 12, 1, 2, 3, 13, 14, 15, 1, 2, 3, 10, 11, 12, 13, 14, 15, 10, 11, 12, 13, 14, 15, 1, 2, 3,
0, 7, 8, 9};
int nisimag[] = {0, 0, 0, 0, 0, 1, 1, 1, 1,
0, 0, 0, 0, 0, 1, 1, 1, 1,
0, 0};
double isneg_std[]= {+1., -1., +1., -1., +1., +1., +1., +1., -1.,
-1., +1., -1., -1., +1., +1., +1., -1., +1.,
+1., -1.};
double isneg[20];
/* every correlator for the rho part including gig0 either at source
* or at sink has a different relative sign between the 3 contributions */
double vsign[]= {1., 1., 1., 1., 1., 1., 1., 1., 1., 1., -1., 1., 1., -1., 1., 1., -1., 1.,
1., -1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.};
double nvsign[] ={1., 1., 1., 1., 1., 1., 1., 1., 1., 1., -1., 1., 1., -1., 1., 1., -1., 1.,
1., 1., 1., 1., -1., 1., 1., -1., 1., 1., -1., 1., 1.};
int namelen, nproc, proc_id;
char processor_name[MPI_MAX_PROCESSOR_NAME];
MPI_Init(&argc, &argv);
while ((c = getopt(argc, argv, "soh?vguf:p:F:P:")) != -1) {
switch (c) {
case 'v':
verbose = 1;
break;
case 'f':
strcpy(filename, optarg);
filename_set=1;
break;
case 'p':
n_c = atoi(optarg);
fprintf(stdout, "# [cvc_2pt_conn] will use number of colors = %d\n", n_c);
break;
case 'u':
use_mms = 1;
break;
case 'F':
if(strcmp(optarg, "Wilson") == 0) {
fermion_type = _WILSON_FERMION;
} else if(strcmp(optarg, "tm") == 0) {
fermion_type = _TM_FERMION;
} else {
fprintf(stderr, "[cvc_2pt_conn] Error, unrecognized fermion type\n");
EXIT(145);
}
fprintf(stdout, "# [cvc_2pt_conn] will use fermion type %s ---> no. %d\n", optarg, fermion_type);
break;
case 'o':
full_orbit=1;
fprintf(stdout, "# [cvc_2pt_conn] will loop over full orbit\n");
break;
case 's':
do_shifts=1;
fprintf(stdout, "# [cvc_2pt_conn] will include shifts +e_\\mu of source location\n");
break;
case 'P':
sprintf(pre_string, "pre%.2d", atoi(optarg));
fprintf(stdout, "# [cvc_2pt_conn] will use precision string \"%s\"\n", pre_string);
break;
case 'h':
case '?':
default:
usage();
break;
}
}
// MPI initialization by hand
MPI_Comm_size(MPI_COMM_WORLD, &nproc);
MPI_Comm_rank(MPI_COMM_WORLD, &proc_id);
MPI_Get_processor_name(processor_name, &namelen);
fprintf(stdout, "# [cvc_2pt_conn] proc%.4d running on host %s\n", proc_id, processor_name);
// set the default values
if(filename_set==0) strcpy(filename, "cvc.input");
sprintf(filename, "%s.%.4d", filename, proc_id);
fprintf(stdout, "# [cvc_2pt_conn] proc%.4d reading input from file %s\n", proc_id, filename);
read_input_parser(filename);
// some checks on the input data
if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
fprintf(stdout, "proc%.4d Error, T and L's must be set\n", proc_id);
usage();
}
if(g_kappa == 0.) {
if(proc_id==0) fprintf(stdout, "kappa should be > 0.n");
usage();
}
if(!g_sink_momentum_set && full_orbit) {
fprintf(stderr, "[cvc_2pt_conn] Error, full orbit but no sink momentum specified\n");
EXIT(123);
}
// initialize MPI parameters
// - g_nproc <- 1
// - g_proc_id <- 0
mpi_init(argc, argv);
//g_nproc = nproc;
// g_proc_id = proc_id;
mms1 = g_mms_id;
fprintf(stdout, "# [cvc_2pt_conn] proc%.4d mms id = %d\n", proc_id, mms1);
T = T_global;
Tstart = 0;
l_LX_at = LX;
l_LXstart_at = 0;
FFTW_LOC_VOLUME = T*LX*LY*LZ;
VOL3 = LX*LY*LZ;
fprintf(stdout, "# [cvc_2pt_conn] proc%.4d parameters:\n"\
"# [cvc_2pt_conn] proc%.4d T = %3d\n"\
"# [cvc_2pt_conn] proc%.4d Tstart = %3d\n"\
"# [cvc_2pt_conn] proc%.4d l_LX_at = %3d\n"\
"# [cvc_2pt_conn] proc%.4d l_LXstart_at = %3d\n"\
"# [cvc_2pt_conn] proc%.4d FFTW_LOC_VOLUME = %3d\n",
proc_id, proc_id, T, proc_id, Tstart, proc_id, l_LX_at,
proc_id, l_LXstart_at, proc_id, FFTW_LOC_VOLUME);
if(init_geometry() != 0) {
fprintf(stderr, "ERROR from init_geometry\n");
EXIT(1);
}
geometry();
// prepare momentum lists
if(g_sink_momentum_set && full_orbit) {
status = make_qcont_orbits_3d_parity_avg( &qlatt_id, &qlatt_count, &qlatt_list, &qlatt_nclass, &qlatt_rep, &qlatt_map);
if(status != 0) {
fprintf(stderr, "\n[baryon_corr_qdep] Error while creating O_3-lists\n");
EXIT(4);
}
fprintf(stdout, "# [baryon_corr_qdep] number of classes = %d\n", qlatt_nclass);
}
/**********************************
* check for shifts
**********************************/
if(do_shifts && g_source_type == 0) {
shifts_num = 5;
} else {
shifts_num = 1;
}
/**********************************
* source coordinates
**********************************/
if(g_source_type==0) {
source_coords[0] = g_source_location / (LX_global * LY_global * LZ_global);
source_coords[1] = ( g_source_location % (LX_global * LY_global * LZ_global) ) / (LY_global * LZ_global);
source_coords[2] = ( g_source_location % (LY_global * LZ_global) ) / LZ_global;
source_coords[3] = g_source_location % LZ_global;
fprintf(stdout, "# [cvc_2pt_conn] global source_location %d ---> global source coordinates = (%d, %d, %d, %d)\n", g_source_location,
source_coords[0],source_coords[1], source_coords[2], source_coords[3]);
//g_source_timeslice = source_coords[0];
memcpy(source_coords_orig, source_coords, 4*sizeof(int));
source_proc_coords[0] = source_coords[0] / T;
source_proc_coords[1] = source_coords[1] / LX;
source_proc_coords[2] = source_coords[2] / LY;
source_proc_coords[3] = source_coords[3] / LZ;
source_proc_id = proc_id;
lsource_coords[0] = source_coords[0] % T;
lsource_coords[1] = source_coords[1] % LX;
lsource_coords[2] = source_coords[2] % LY;
lsource_coords[3] = source_coords[3] % LZ;
if(proc_id == source_proc_id) {
source_location = g_ipt[lsource_coords[0]][lsource_coords[1]][lsource_coords[2]][lsource_coords[3]];
fprintf(stdout, "# [cvc_2pt_conn] local source_location %d ---> local source coordinates = (%d, %d, %d, %d)\n", source_location,
lsource_coords[0], lsource_coords[1], lsource_coords[2], lsource_coords[3]);
}
} else {
source_coords[0] = 0;
source_coords[1] = 0;
source_coords[2] = 0;
source_coords[3] = 0;
memcpy(source_coords_orig, source_coords, 4*sizeof(int));
memcpy(lsource_coords, source_coords, 4*sizeof(int));
}
for(i = 0; i < 20; i++) isneg[i] = isneg_std[i];
// allocate memory for the contractions
idx = 8*K*T_global;
cconn_length = idx;
cconn = (double*)calloc(idx, sizeof(double));
if( cconn==(double*)NULL ) {
fprintf(stderr, "[cvc_2pt_conn] Error, could not allocate memory for cconn\n");
EXIT(3);
}
for(ix=0; ix<idx; ix++) cconn[ix] = 0.;
idx = 8*nK*T_global;
nconn_length = idx;
nconn = (double*)calloc(idx, sizeof(double));
if( nconn==(double*)NULL ) {
fprintf(stderr, "[cvc_2pt_conn] Error, could not allocate memory for nconn\n");
EXIT(5);
}
for(ix=0; ix<idx; ix++) nconn[ix] = 0.;
if( (Ctmp = (double*)calloc(2*T, sizeof(double))) == NULL ) {
fprintf(stderr, "[cvc_2pt_conn] Error, could not allocate mem for Ctmp\n");
EXIT(4);
}
if( N_Jacobi>0 || use_mms) {
fprintf(stdout, "# [cvc_2pt_conn] allocating gauge field\n");
alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);
// read the gauge field
switch(g_gauge_file_format) {
case 0:
sprintf(filename, "%s.%.4d", gaugefilename_prefix, Nconf);
fprintf(stdout, "# [cvc_2pt_conn] proc%.4d reading gauge field from file %s\n", proc_id, filename);
status = read_lime_gauge_field_doubleprec(filename);
break;
case 1:
sprintf(filename, "%s.%.5d", gaugefilename_prefix, Nconf);
fprintf(stdout, "# [cvc_2pt_conn] proc%.4d reading gauge field from file %s\n", proc_id, filename);
status = read_nersc_gauge_field(g_gauge_field, filename, &plaq_r);
break;
}
if(status != 0) {
fprintf(stderr, "[cvc_2pt_conn] proc%.4d Error, could not read gauge field\n", proc_id);
EXIT(21);
}
// measure the plaquette
plaquette(&plaq_m);
fprintf(stdout, "# [cvc_2pt_conn] proc%.4d plaquette values measures = %25.16e; read = %25.16e\n", proc_id, plaq_m, plaq_r);
fprintf(stdout, "# [cvc_2pt_conn] proc%.4d apply fuzzing of gauge field and propagators with parameters:\n"\
"# Nlong = %d\n# N_ape = %d\n# alpha_ape = %f\n", proc_id, Nlong, N_ape, alpha_ape);
} else {
g_gauge_field = NULL;
} // of if N_Jacobi > 0 or use_mms
#ifdef OPENMP
/*****************************************
* set number of openmp threads
*****************************************/
omp_set_num_threads(g_num_threads);
#endif
if( N_Jacobi>0) {
alloc_gauge_field(&gauge_field_f, VOLUMEPLUSRAND);
// copy the gauge field to smear it
memcpy(gauge_field_f, g_gauge_field, 72*VOLUMEPLUSRAND*sizeof(double));
fprintf(stdout, "# [cvc_2pt_conn] APE-smearing / fuzzing gauge field with Nlong=%d, N_APE=%d, alpha_APE=%f\n", Nlong, N_ape, alpha_ape);
#ifdef OPENMP
if(N_ape>0) {
APE_Smearing_Step_threads(gauge_field_f, N_ape, alpha_ape);
}
if(Nlong>0) {
fprintf(stdout, "[cvc_2pt_conn] Warning, no threaded version of fuzzing\n");
alloc_gauge_field(&gauge_field_timeslice, VOL3);
for(x0=0; x0<T; x0++) {
memcpy( gauge_field_timeslice, gauge_field_f + _GGI(g_ipt[x0][0][0][0],0), 72*VOL3*sizeof(double));
fuzzed_links_Timeslice(gauge_field_f, gauge_field_timeslice, Nlong, x0);
}
free(gauge_field_timeslice);
}
#else
alloc_gauge_field(&gauge_field_timeslice, VOL3);
for(x0=0; x0<T; x0++) {
memcpy((void*)gauge_field_timeslice, (void*)(g_gauge_field+_GGI(g_ipt[x0][0][0][0],0)), 72*VOL3*sizeof(double));
for(i=0; i<N_ape; i++) {
APE_Smearing_Step_Timeslice(gauge_field_timeslice, alpha_ape);
}
if(Nlong > 0) {
fuzzed_links_Timeslice(gauge_field_f, gauge_field_timeslice, Nlong, x0);
} else {
memcpy((void*)(gauge_field_f+_GGI(g_ipt[x0][0][0][0],0)), (void*)gauge_field_timeslice, 72*VOL3*sizeof(double));
}
}
free(gauge_field_timeslice);
#endif
// test: print the fuzzed APE smeared gauge field to stdout
// for(ix=0; ix<36*VOLUME; ix++) {
// fprintf(stdout, "%6d%25.16e%25.16e\n", ix, g_gauge_field[2*ix], g_gauge_field[2*ix+1]);
// }
}
// allocate memory for the spinor fields
no_fields = n_s;
if( fermion_type==0 || (g_sink_momentum_set && ( g_source_type==2 || g_source_type==3 || g_source_type==4) ) ) no_fields+=n_s;
if(Nlong>0) no_fields += n_s;
no_fields *= n_c;
no_fields++;
fprintf(stdout, "# [cvc_2pt_conn] total number of fields = %d\n", no_fields);
g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
for(i=0; i<no_fields-1; i++) alloc_spinor_field(&g_spinor_field[i], VOLUME);
alloc_spinor_field(&g_spinor_field[no_fields-1], VOLUMEPLUSRAND);
timeslice = g_source_timeslice;
// check source/sink momentum
if(g_sink_momentum_set) {
/*
if(g_source_momentum[0]<0) g_source_momentum[0] += LX_global;
if(g_source_momentum[1]<0) g_source_momentum[1] += LY_global;
if(g_source_momentum[2]<0) g_source_momentum[2] += LZ_global;
*/
if(g_sink_momentum[0]<0) g_sink_momentum[0] += LX_global;
if(g_sink_momentum[1]<0) g_sink_momentum[1] += LY_global;
if(g_sink_momentum[2]<0) g_sink_momentum[2] += LZ_global;
fprintf(stdout, "# [cvc_2pt_conn] using final sink momentum ( %d, %d, %d )\n", g_sink_momentum[0], g_sink_momentum[1], g_sink_momentum[2]);
g_source_momentum[0] = (-g_sink_momentum[0] + LX_global ) % LX_global;
g_source_momentum[1] = (-g_sink_momentum[1] + LY_global ) % LY_global;
g_source_momentum[2] = (-g_sink_momentum[2] + LZ_global ) % LZ_global;
fprintf(stdout, "# [cvc_2pt_conn] using final source momentum ( %d, %d, %d )\n", g_source_momentum[0], g_source_momentum[1], g_source_momentum[2]);
if(full_orbit) {
snk_momentum_id = qlatt_id[g_ipt[0][g_sink_momentum[0]][g_sink_momentum[1]][g_sink_momentum[2]]];
snk_momentum_runs = qlatt_count[snk_momentum_id] + 1;
}
}
fprintf(stdout, "# [cvc_2pt_conn] number of runs = %d\n", snk_momentum_runs);
// set the correlator norm
// correlator_norm = 1. / ( (double)VOL3 * g_kappa * g_kappa * 2.);
correlator_norm = 1.;
fprintf(stdout, "# [cvc_2pt_conn] using correlator norm %e\n", correlator_norm);
/*************************************
* loop on shifts of source location
*************************************/
for(ishift=0; ishift<shifts_num; ishift++) {
memset(cconn, 0, cconn_length*sizeof(double));
memset(nconn, 0, nconn_length*sizeof(double));
if(ishift>0) {
source_coords[0] = (source_coords_orig[0] + shift_vector[ishift][0] ) % T_global;
source_coords[1] = (source_coords_orig[1] + shift_vector[ishift][1] ) % LX_global;
source_coords[2] = (source_coords_orig[2] + shift_vector[ishift][2] ) % LY_global;
source_coords[3] = (source_coords_orig[3] + shift_vector[ishift][3] ) % LZ_global;
source_proc_coords[0] = source_coords[0] / T;
source_proc_coords[1] = source_coords[1] / LX;
source_proc_coords[2] = source_coords[2] / LY;
source_proc_coords[3] = source_coords[3] / LZ;
source_proc_id = proc_id;
lsource_coords[0] = source_coords[0] % T;
lsource_coords[1] = source_coords[1] % LX;
lsource_coords[2] = source_coords[1] % LY;
lsource_coords[3] = source_coords[1] % LZ;
source_location = g_ipt[lsource_coords[0]][lsource_coords[1]][lsource_coords[2]][lsource_coords[3]];
}
/*************************************
* loop on sink momentum runs
*************************************/
for(imom=0; imom<snk_momentum_runs;imom++) {
if(imom == 0) {
if(full_orbit) {
snk_momentum[0] = 0;
snk_momentum[1] = 0;
snk_momentum[2] = 0;
src_momentum[0] = 0;
src_momentum[1] = 0;
src_momentum[2] = 0;
} else {
snk_momentum[0] = g_sink_momentum[0];
snk_momentum[1] = g_sink_momentum[1];
snk_momentum[2] = g_sink_momentum[2];
src_momentum[0] = (-g_sink_momentum[0] + LX_global) % LX_global;
src_momentum[1] = (-g_sink_momentum[1] + LY_global) % LY_global;
src_momentum[2] = (-g_sink_momentum[2] + LZ_global) % LZ_global;
}
} else {
snk_momentum[0] = qlatt_map[snk_momentum_id][imom-1] / (LY_global*LZ_global);
snk_momentum[1] = ( qlatt_map[snk_momentum_id][imom-1] % (LY_global*LZ_global) ) / LZ_global;
snk_momentum[2] = qlatt_map[snk_momentum_id][imom-1] % LZ_global;
src_momentum[0] = (-snk_momentum[0] + LX_global ) % LX_global;
src_momentum[1] = (-snk_momentum[1] + LY_global ) % LY_global;
src_momentum[2] = (-snk_momentum[2] + LZ_global ) % LZ_global;
}
fprintf(stdout, "# [cvc_2pt_conn] run no. %d with source momentum (%d, %d, %d) and sink momentum (%d, %d, %d)\n", imom,
src_momentum[0], src_momentum[1], src_momentum[2],\
snk_momentum[0], snk_momentum[1], snk_momentum[2]);
for(ix=0; ix<8*K*T_global; ix++) cconn[ix] = 0.;
for(ix=0; ix<8*K*T_global; ix++) nconn[ix] = 0.;
/*************************************
* begin loop on LL, LS, SL, SS
*************************************/
ll = 0;
// for(j=0; j<4; j++)
for(j=0; j<1; j++)
{
work = g_spinor_field[no_fields-1];
if(j==0) {
// local-local (source-sink) -> phi[0-3]^dagger.p[0-3] -> p.p
ll = 0;
for(i=0; i<n_s*n_c; i++) {
if(use_mms) {
sprintf(filename, "%s.%.4d.%.2d.%.2d.cgmms.%.2d.inverted", filename_prefix, Nconf, timeslice, i, mms1);
read_lime_spinor(work, filename, 0);
xchange_field(work);
// Qf5(g_spinor_field[i], work, -g_mu);
g_mu = -g_mu;
Q_phi_tbc(g_spinor_field[i], work);
g_mu = -g_mu;
g5_phi(g_spinor_field[i]);
if(fermion_type == 0) {
// Qf5(g_spinor_field[i+n_s*n_c], work, g_mu);
Q_phi_tbc(g_spinor_field[i+n_s*n_c], work);
g5_phi(g_spinor_field[i+n_s*n_c]);
}
} else {
get_propagator_filename(filename, filename_prefix, source_coords, i, src_momentum_zero, Nconf, +1);
check_error(read_lime_spinor(g_spinor_field[i], filename, g_propagator_position), "read_lime_spinor", NULL, 15);
if(g_sink_momentum_set) {
get_propagator_filename(filename, filename_prefix, source_coords, i, src_momentum, Nconf, +1);
check_error(read_lime_spinor(g_spinor_field[i+n_s*n_c], filename, g_propagator_position), "read_lime_spinor", NULL, 15);
}
if(fermion_type == 0) { // read down propagators
get_propagator_filename(filename, filename_prefix2, source_coords, i, src_momentum, Nconf, -1);
check_error(read_lime_spinor(g_spinor_field[i+n_s*n_c*(1+g_sink_momentum_set)], filename, g_propagator_position), "read_lime_spinor", NULL, 16);
// check_error(read_lime_spinor(g_spinor_field[i+n_s*n_c*(1+g_sink_momentum_set)], filename, 1), "read_lime_spinor", NULL, 16);
}
} // of if use_mms
} // of loop on isc
chi = &g_spinor_field[0];
psi = &g_spinor_field[g_sink_momentum_set*n_s*n_c];
if(fermion_type==0) {
chi2 = &g_spinor_field[0];
psi2 = &g_spinor_field[n_s*n_c*(1+g_sink_momentum_set)];
} else {
chi2 = NULL;
psi2 = NULL;
}
} else if(j==1) {
if(Nlong>0) { // fuzzed-local -> phi[0-3]^dagger.phi[4-7] -> p.f
ll = 2;
chi = &g_spinor_field[0];
psi = &g_spinor_field[n_s*n_c];
if(fermion_type == 0) {
chi2 = &g_spinor_field[0];
psi2 = &g_spinor_field[2*n_s*n_c];
} else {
chi2 = NULL;
psi2 = NULL;
}
for(i=n_s*n_c; i<2*n_s*n_c; i++) {
if(use_mms) {
sprintf(filename, "%s.%.4d.%.2d.%.2d.cgmms.%.2d.inverted", filename_prefix, Nconf, timeslice, i, mms1);
read_lime_spinor(work, filename, 0);
Qf5(g_spinor_field[i], work, -g_mu);
if(fermion_type==0) {
Qf5(g_spinor_field[i+n_s*n_c], work, g_mu);
}
} else {
get_propagator_filename(filename, filename_prefix, source_coords, i, src_momentum, Nconf, 0);
check_error( read_lime_spinor(g_spinor_field[i], filename, g_propagator_position), "read_lime_spinor", NULL, 17);
if(fermion_type==0) {
get_propagator_filename(filename, filename_prefix2, source_coords, i, src_momentum, Nconf, 0);
check_error( read_lime_spinor(g_spinor_field[i+n_s*n_c], filename, g_propagator_position), "read_lime_spinor", NULL, 17);
/* read_lime_spinor(g_spinor_field[i+n_s*n_c], filename, 1); */
}
}
}
} else {
// local-smeared
ll = 1;
chi = &g_spinor_field[0];
psi = &g_spinor_field[g_sink_momentum_set*n_s*n_c];
if(fermion_type==0) {
chi2 = &g_spinor_field[0];
psi2 = &g_spinor_field[n_s*n_c*(1+g_sink_momentum_set)];
} else {
chi2 = NULL;
psi2 = NULL;
}
for(i = 0; i < ( (fermion_type==0) + (g_sink_momentum_set) + 1)*n_s*n_c; i++) {
#ifdef OPENMP
Jacobi_Smearing_Step_one_threads(gauge_field_f, g_spinor_field[i], work, N_Jacobi, kappa_Jacobi);
#else
for(x0 = 0; x0 < T; x0++) {
Jacobi_Smearing_Steps(gauge_field_f, g_spinor_field[i], N_Jacobi, kappa_Jacobi, x0);
}
#endif
}
}
} else if(j==2) {
if(Nlong>0) {
// local-fuzzed -> phi[0-3]^dagger.phi[4-7] -> p.pf
ll = 1;
chi = &g_spinor_field[0];
psi = &g_spinor_field[ n_s*n_c];
chi2 = fermion_type == 0 ? &g_spinor_field[0] : NULL;
psi2 = fermion_type == 0 ? &g_spinor_field[2*n_s*n_c] : NULL;
for(i=0; i<n_s*n_c; i++) {
if(use_mms) {
sprintf(filename, "%s.%.4d.%.2d.%.2d.cgmms.%.2d.inverted", filename_prefix, Nconf, timeslice, i, mms1);
read_lime_spinor(work, filename, 0);
xchange_field(work);
Qf5(g_spinor_field[i+n_s*n_c], work, -g_mu);
if(fermion_type==0) {
Qf5(g_spinor_field[i+2*n_s*n_c], work, g_mu);
}
} else {
get_propagator_filename(filename, filename_prefix, source_coords, i, src_momentum, Nconf, 0);
check_error( read_lime_spinor(g_spinor_field[i+n_s*n_c], filename, g_propagator_position), "read_lime_spinor", NULL, 18);
if(fermion_type==0) {
get_propagator_filename(filename, filename_prefix2, source_coords, i, src_momentum, Nconf, 0);
check_error(read_lime_spinor(g_spinor_field[i+2*n_s*n_c], filename, g_propagator_position), "read_lime_spinor", NULL, 19);
//status = read_lime_spinor(g_spinor_field[i+2*n_s*n_c], filename, 1);
}
}
fprintf(stdout, "# fuzzing prop. with Nlong=%d\n", Nlong);
Fuzz_prop(gauge_field_f, g_spinor_field[i+n_s*n_c], Nlong);
if(fermion_type==0) {
Fuzz_prop(gauge_field_f, g_spinor_field[i+2*n_s*n_c], Nlong);
}
}
} else {
// smeared-local
ll = 2;
// fprintf(stdout, "# [cvc_2pt_conn] processing ll = 2\n");
chi = &g_spinor_field[0];
psi = &g_spinor_field[g_sink_momentum_set*n_s*n_c];
chi2 = fermion_type == 0 ? &g_spinor_field[0] : NULL;
psi2 = fermion_type == 0 ? &g_spinor_field[n_s*n_c*(1+g_sink_momentum_set)] : NULL;
for(i=0; i<n_s*n_c; i++) {
if(use_mms) {
sprintf(filename, "%s.%.4d.%.2d.%.2d.cgmms.%.2d.inverted", filename_prefix, Nconf, timeslice, i+n_s*n_c, mms1);
read_lime_spinor(work, filename, 0);
xchange_field(work);
Qf5(g_spinor_field[i], work, -g_mu);
if(fermion_type==0) {
Qf5(g_spinor_field[i+n_s*n_c], work, g_mu);
}
} else {
get_propagator_filename(filename, filename_prefix, source_coords, i+n_s*n_c, src_momentum_zero, Nconf, 0);
check_error( read_lime_spinor(g_spinor_field[i], filename, g_propagator_position), "read_lime_spinor", NULL, 20);
if(g_sink_momentum_set) {
get_propagator_filename(filename, filename_prefix, source_coords, i+n_s*n_c, src_momentum, Nconf, 0);
check_error( read_lime_spinor(g_spinor_field[i+n_s*n_c], filename, g_propagator_position), "read_lime_spinor", NULL, 20);
}
if(fermion_type==0) {
get_propagator_filename(filename, filename_prefix2, source_coords, i+n_s*n_c, src_momentum, Nconf, 0);
check_error( read_lime_spinor(g_spinor_field[i+n_s*n_c*(1+g_sink_momentum_set)], filename, g_propagator_position), "read_lime_spinor", NULL, 21);
//status = read_lime_spinor(g_spinor_field[i+n_s*n_c], filename, 1);
}
}
}
}
} else if(j==3) {
// smeared-smeared -> phi[0-3]^dagger.phi[4-7] -> f.pf
ll = 3;
// fprintf(stdout, "# [cvc_2pt_conn] processing ll = 3\n");
if(Nlong>0) {
chi = &g_spinor_field[0];
psi = &g_spinor_field[ n_s*n_c];
chi2 = fermion_type == 0 ? &g_spinor_field[0] : NULL;
psi2 = fermion_type == 0 ? &g_spinor_field[2*n_s*n_c]: NULL;
for(i=0; i<n_s*n_c; i++) {
if(use_mms) {
sprintf(filename, "%s.%.4d.%.2d.%.2d.cgmms.%.2d.inverted", filename_prefix, Nconf, timeslice, i+n_s*n_c, mms1);
read_lime_spinor(work, filename, 0);
xchange_field(work);
Qf5(g_spinor_field[i], work, -g_mu);
} else {
get_propagator_filename(filename, filename_prefix, source_coords, i+n_s*n_c, src_momentum_zero, Nconf, 0);
check_error( read_lime_spinor(g_spinor_field[i], filename, g_propagator_position), "read_lime_spinor", NULL, 22);
}
}
} else {
chi = &g_spinor_field[0];
psi = &g_spinor_field[g_sink_momentum_set*n_s*n_c];
chi2 = fermion_type==0 ? &g_spinor_field[0]: NULL;
psi2 = fermion_type==0 ? &g_spinor_field[n_s*n_c*(1+g_sink_momentum_set)]: NULL;
for(i = 0; i < ( (fermion_type==0) + g_sink_momentum_set + 1)*n_s*n_c; i++) {
#ifdef OPENMP
Jacobi_Smearing_Step_one_threads(gauge_field_f, g_spinor_field[i], work, N_Jacobi, kappa_Jacobi);
#else
for(x0 = 0; x0 < T; x0++) {
Jacobi_Smearing_Steps(gauge_field_f, g_spinor_field[i], N_Jacobi, kappa_Jacobi, x0);
}
#endif
}
}
}
/************************************************************
* the charged contractions
************************************************************/
sl = 2*ll*T*K;
itype = 1;
// pion sector
for(idx=0; idx<9; idx++)
{
contract_twopoint_snk_momentum(&cconn[sl], gindex1[idx], gindex2[idx], chi, psi, n_c, snk_momentum);
//for(x0=0; x0<T; x0++) fprintf(stdout, "pion: %3d%25.16e%25.16e\n", x0,
// cconn[sl+2*x0]/(double)VOL3/2./g_kappa/g_kappa, cconn[sl+2*x0+1]/(double)VOL3/2./g_kappa/g_kappa);
sl += (2*T);
itype++;
}
// rho sector
for(idx = 9; idx < 36; idx+=3) {
for(i = 0; i < 3; i++) {
for(x0=0; x0<2*T; x0++) Ctmp[x0] = 0.;
contract_twopoint_snk_momentum(Ctmp, gindex1[idx+i], gindex2[idx+i], chi, psi, n_c, snk_momentum);
for(x0=0; x0<T; x0++) {
cconn[sl+2*x0 ] += (conf_gamma_sign[(idx-9)/3]*vsign[idx-9+i]*Ctmp[2*x0 ]);
cconn[sl+2*x0+1] += (conf_gamma_sign[(idx-9)/3]*vsign[idx-9+i]*Ctmp[2*x0+1]);
}
//for(x0=0; x0<T; x0++) {
// x1 = (x0+timeslice)%T_global;
// fprintf(stdout, "rho: %3d%25.16e%25.16e\n", x0,
// vsign[idx-9+i]*Ctmp[2*x1 ]/(double)VOL3/2./g_kappa/g_kappa,
// vsign[idx-9+i]*Ctmp[2*x1+1]/(double)VOL3/2./g_kappa/g_kappa);
//}
}
sl += (2*T);
itype++;
}
// the a0
contract_twopoint_snk_momentum(&cconn[sl], gindex1[36], gindex2[36], chi, psi, n_c, snk_momentum);
sl += (2*T);
itype++;
// the b1
for(i=0; i<3; i++) {
for(x0=0; x0<2*T; x0++) Ctmp[x0] = 0.;
idx = 37;
contract_twopoint_snk_momentum(Ctmp, gindex1[idx+i], gindex2[idx+i], chi, psi, n_c, snk_momentum);
for(x0=0; x0<T; x0++) {
cconn[sl+2*x0 ] += (vsign[idx-9+i]*Ctmp[2*x0 ]);
cconn[sl+2*x0+1] += (vsign[idx-9+i]*Ctmp[2*x0+1]);
}
}
#if 0
#endif
/************************************************************
* the neutral contractions
************************************************************/
if(fermion_type == 0) {
sl = 2*ll*nK*T;
itype = 1;
// pion sector first
for(idx=0; idx<9; idx++) {
contract_twopoint_snk_momentum(&nconn[sl], ngindex1[idx], ngindex2[idx], chi2, psi2, n_c, snk_momentum);
sl += (2*T);
itype++;
}
// the neutral rho
for(idx=9; idx<36; idx+=3) {
for(i=0; i<3; i++) {
for(x0=0; x0<2*T; x0++) Ctmp[x0] = 0.;
contract_twopoint_snk_momentum(Ctmp, ngindex1[idx+i], ngindex2[idx+i], chi2, psi2, n_c, snk_momentum);
for(x0=0; x0<T; x0++) {
nconn[sl+2*x0 ] += (nvsign[idx-9+i]*Ctmp[2*x0 ]);
nconn[sl+2*x0+1] += (nvsign[idx-9+i]*Ctmp[2*x0+1]);
}
}
sl += (2*T);
itype++;
}
// the X (JPC=0+- with no experimental candidate known)
contract_twopoint_snk_momentum(&nconn[sl], ngindex1[36], ngindex2[36], chi2, psi2, n_c, snk_momentum);
sl += (2*T);
itype++;
// the a1/f1
for(i = 0; i < 3; i++) {
for(x0=0; x0<2*T; x0++) Ctmp[x0] = 0.;
idx = 37;
contract_twopoint_snk_momentum(Ctmp, ngindex1[idx+i], ngindex2[idx+i], chi2, psi2, n_c, snk_momentum);
for(x0=0; x0<T; x0++) {
nconn[sl+2*x0 ] += (nvsign[idx-9+i]*Ctmp[2*x0 ]);
nconn[sl+2*x0+1] += (nvsign[idx-9+i]*Ctmp[2*x0+1]);
}
}
#if 0
#endif
} // of if fermion_type == 0
} // of j=0,...,3
// write to file
if(g_source_type == 0) {
sprintf(filename, "charged.t%.2dx%.2dy%.2dz%.2d.%.4d", source_coords[0], source_coords[1], source_coords[2],
source_coords[3], Nconf);
} else {
sprintf(filename, "charged.%.2d.%.4d", timeslice, Nconf);
}
if(use_mms) {
sprintf(filename, "%s.%d", filename, mms1);
}
if(imom==0) {
ofs=fopen(filename, "w");
} else {
ofs=fopen(filename, "a");
}
if( ofs == (FILE*)NULL ) {
fprintf(stderr, "Error, could not open file %s for writing\n", filename);
EXIT(6);
}
fprintf(stdout, "# writing charged correlators to file %s\n", filename);
fprintf(ofs, "# %3d%3d%3d%3d%10.6f%8.4f (%d,%d,%d) (%d,%d,%d)\n", T, LX, LY, LZ, g_kappa, g_mu,
src_momentum[0], src_momentum[1], src_momentum[2], snk_momentum[0], snk_momentum[1], snk_momentum[2]);
for(idx=0; idx<K; idx++)
// for(idx=0; idx<1; idx++)
{
// for(ll=0; ll<4; ll++)
for(ll=0; ll<1; ll++)
{
x1 = (0+timeslice) % T_global;
i = 2* ( (x1/T)*4*K*T + ll*K*T + idx*T + x1%T ) + isimag[idx];
fprintf(ofs, "%3d%3d%4d%25.16e%25.16e\n", idx+1, 2*ll+1, 0, isneg[idx]*cconn[i]*correlator_norm, 0.);
for(x0=1; x0<T_global/2; x0++) {
x1 = ( x0+timeslice) % T_global;
x2 = (-x0+timeslice+T_global) % T_global;
i = 2* ( (x1/T)*4*K*T + ll*K*T + idx*T + x1%T ) + isimag[idx];
j = 2* ( (x2/T)*4*K*T + ll*K*T + idx*T + x2%T ) + isimag[idx];
//fprintf(stdout, "idx=%d; x0=%d, x1=%d, x2=%d, i=%d, j=%d\n", idx, x0, x1, x2, i, j);
fprintf(ofs, "%3d%3d%4d%25.16e%25.16e\n", idx+1, 2*ll+1, x0, isneg[idx]*cconn[i]*correlator_norm, isneg[idx]*cconn[j]*correlator_norm);
}
x0 = T_global/2;
x1 = (x0+timeslice) % T_global;
i = 2* ( (x1/T)*4*K*T + ll*K*T + idx*T + x1%T ) + isimag[idx];
fprintf(ofs, "%3d%3d%4d%25.16e%25.16e\n", idx+1, 2*ll+1, x0, isneg[idx]*cconn[i]*correlator_norm, 0.);
//for(x0=0; x0<T_global; x0++) {
// x1 = x0;
// i = 2* ( (x1/T)*4*K*T + ll*K*T + idx*T + x1%T );
// fprintf(ofs, "%3d%3d%4d%25.16e%25.16e%3d%3d%3d\n", idx+1, 2*ll+1, x0, isneg[idx]*cconn[i]*correlator_norm, isneg[idx]*cconn[i+1]*correlator_norm,
// snk_momentum[0], snk_momentum[1], snk_momentum[2]);
//}
}
}
fclose(ofs);
if(fermion_type==0) {
if(g_source_type == 0) {
sprintf(filename, "neutral.t%.2dx%.2dy%.2dz%.2d.%.4d", source_coords[0], source_coords[1], source_coords[2],
source_coords[3], Nconf);
} else {
sprintf(filename, "neutral.%.2d.%.4d", timeslice, Nconf);
}
if(use_mms) {
sprintf(filename, "%s.%d", filename, mms1);
}
if(imom==0) {
ofs=fopen(filename, "w");
} else {
ofs=fopen(filename, "a");
}
if( ofs == (FILE*)NULL ) {
fprintf(stderr, "Error, could not open file %s for writing\n", filename);
EXIT(7);
}
fprintf(stdout, "# writing neutral correlators to file %s\n", filename);
fprintf(ofs, "# %3d%3d%3d%3d%10.6f%8.4f (%d,%d,%d) (%d,%d,%d)\n", T, LX, LY, LZ, g_kappa, g_mu,
src_momentum[0], src_momentum[1], src_momentum[2], snk_momentum[0], snk_momentum[1], snk_momentum[2]);
for(idx=0; idx<nK; idx++)
// for(idx=0; idx<1; idx++)
{
// for(ll=0; ll<4; ll++)
for(ll=0; ll<1; ll++)
{
x1 = (0+timeslice) % T_global;
i = 2* ( (x1/T)*4*K*T + ll*K*T + idx*T + x1%T ) + nisimag[idx];
fprintf(ofs, "%3d%3d%4d%25.16e%25.16e\n", idx+1, 2*ll+1, 0, isneg[idx]*nconn[i]*correlator_norm, 0.);
for(x0=1; x0<T_global/2; x0++) {
x1 = ( x0+timeslice) % T_global;
x2 = (-x0+timeslice+T_global) % T_global;
i = 2* ( (x1/T)*4*nK*T + ll*nK*T + idx*T + x1%T ) + nisimag[idx];
j = 2* ( (x2/T)*4*nK*T + ll*nK*T + idx*T + x2%T ) + nisimag[idx];
fprintf(ofs, "%3d%3d%4d%25.16e%25.16e\n", idx+1, 2*ll+1, x0, isneg[idx]*nconn[i]*correlator_norm, isneg[idx]*nconn[j]*correlator_norm);
}
x0 = T_global/2;
x1 = (x0+timeslice) % T_global;
i = 2* ( (x1/T)*4*nK*T + ll*nK*T + idx*T + x1%T ) + nisimag[idx];
fprintf(ofs, "%3d%3d%4d%25.16e%25.16e\n", idx+1, 2*ll+1, x0, isneg[idx]*nconn[i]*correlator_norm, 0.);
//for(x0=0; x0<T_global; x0++) {
// x1 = x0;
// i = 2* ( (x1/T)*4*nK*T + ll*nK*T + idx*T + x1%T );
// fprintf(ofs, "%3d%3d%4d%25.16e%25.16e%3d%3d%3d\n", idx+1, 2*ll+1, x0, isneg[idx]*nconn[i]*correlator_norm, isneg[idx]*nconn[i+1]*correlator_norm,
// snk_momentum[0], snk_momentum[1], snk_momentum[2]);
//}
}
}
fclose(ofs);
} // of if fermion_type == 0
} // of loop on sink momenta
} // of loop on shift vectors
/****************************************************
* free the allocated memory, finalize
****************************************************/
if(g_gauge_field != NULL) {
free(g_gauge_field);
g_gauge_field = NULL;
}
for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
free(g_spinor_field); g_spinor_field=(double**)NULL;
free_geometry();
free(cconn);
free(nconn);
free(Ctmp);
free(gauge_field_f);
finalize_q_orbits(&qlatt_id, &qlatt_count, &qlatt_list, &qlatt_rep);
if(qlatt_map != NULL) {
free(qlatt_map[0]);
free(qlatt_map);
}