-
Notifications
You must be signed in to change notification settings - Fork 611
/
Copy pathjasvet.py
680 lines (566 loc) · 19.1 KB
/
jasvet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
#!/usr/bin/env python
# jackjack's signing/verifying tool
# verifies base64 signatures from Bitcoin
# signs message in three formats:
# - Bitcoin base64 (compatible with Bitcoin)
# - ASCII armored, Clearsign
# - ASCII armored, Base64
#
# Licence: Public domain or CC0
import base64
import hashlib
import random
import time
import CppBlockUtils
from armoryengine.ArmoryUtils import getVersionString, BTCARMORY_VERSION, \
ChecksumError
FTVerbose=False
version='0.1.0'
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
BEGIN_MARKER = '-----BEGIN '
END_MARKER = '-----END '
DASHX5 = '-----'
RN = '\r\n'
RNRN = '\r\n\r\n'
CLEARSIGN_MSG_TYPE_MARKER = 'BITCOIN SIGNED MESSAGE'
BITCOIN_SIG_TYPE_MARKER = 'BITCOIN SIGNATURE'
BASE64_MSG_TYPE_MARKER = 'BITCOIN MESSAGE'
BITCOIN_ARMORY_COMMENT = 'Comment: Signed by Bitcoin Armory v' +\
getVersionString(BTCARMORY_VERSION, 3)
class UnknownSigBlockType(Exception): pass
def randomk():
# Using Crypto++ CSPRNG instead of python's
sbdRandK = CppBlockUtils.SecureBinaryData().GenerateRandom(32)
hexRandK = sbdRandK.toBinStr().encode('hex_codec')
return int(hexRandK, 16)
# Common constants/functions for Bitcoin
def hash_160_to_bc_address(h160, addrtype=0):
vh160 = chr(addrtype) + h160
h = Hash(vh160)
addr = vh160 + h[0:4]
return b58encode(addr)
def bc_address_to_hash_160(addr):
hash160 = b58decode(addr, 25)
return hash160[1:21]
def Hash(data):
return hashlib.sha256(hashlib.sha256(data).digest()).digest()
def sha256(data):
return hashlib.sha256(data).digest()
def sha1(data):
return hashlib.sha1(data).digest()
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
__b58base = len(__b58chars)
def b58encode(v):
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += (256**i) * ord(c)
result = ''
while long_value >= __b58base:
div, mod = divmod(long_value, __b58base)
result = __b58chars[mod] + result
long_value = div
result = __b58chars[long_value] + result
nPad = 0
for c in v:
if c == '\0': nPad += 1
else: break
return (__b58chars[0]*nPad) + result
def b58decode(v, length):
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += __b58chars.find(c) * (__b58base**i)
result = ''
while long_value >= 256:
div, mod = divmod(long_value, 256)
result = chr(mod) + result
long_value = div
result = chr(long_value) + result
nPad = 0
for c in v:
if c == __b58chars[0]: nPad += 1
else: break
result = chr(0)*nPad + result
if length is not None and len(result) != length:
return None
return result
def ASecretToSecret(key):
vch = DecodeBase58Check(key)
if vch and vch[0] == chr(128):
return vch[1:]
else:
return False
def DecodeBase58Check(psz):
vchRet = b58decode(psz, None)
key = vchRet[0:-4]
csum = vchRet[-4:]
hashValue = Hash(key)
cs32 = hashValue[0:4]
if cs32 != csum:
return None
else:
return key
def regenerate_key(sec):
b = ASecretToSecret(sec)
if not b:
return False
b = b[0:32]
secret = int('0x' + b.encode('hex'), 16)
return EC_KEY(secret)
def GetPubKey(pkey, compressed=False):
return i2o_ECPublicKey(pkey, compressed)
def GetPrivKey(pkey, compressed=False):
return i2d_ECPrivateKey(pkey, compressed)
def GetSecret(pkey):
return ('%064x' % pkey.secret).decode('hex')
def i2d_ECPrivateKey(pkey, compressed=False):#, crypted=True):
part3='a081a53081a2020101302c06072a8648ce3d0101022100' # for uncompressed keys
if compressed:
if True:#not crypted: ## Bitcoin accepts both part3's for crypted wallets...
part3='a08185308182020101302c06072a8648ce3d0101022100' # for compressed keys
key = '3081d30201010420' + \
'%064x' % pkey.secret + \
part3 + \
'%064x' % _p + \
'3006040100040107042102' + \
'%064x' % _Gx + \
'022100' + \
'%064x' % _r + \
'020101a124032200'
else:
key = '308201130201010420' + \
'%064x' % pkey.secret + \
part3 + \
'%064x' % _p + \
'3006040100040107044104' + \
'%064x' % _Gx + \
'%064x' % _Gy + \
'022100' + \
'%064x' % _r + \
'020101a144034200'
return key.decode('hex') + i2o_ECPublicKey(pkey, compressed)
def i2o_ECPublicKey(pkey, compressed=False):
if compressed:
if pkey.pubkey.point.y() & 1:
key = '03' + '%064x' % pkey.pubkey.point.x()
else:
key = '02' + '%064x' % pkey.pubkey.point.x()
else:
key = '04' + \
'%064x' % pkey.pubkey.point.x() + \
'%064x' % pkey.pubkey.point.y()
return key.decode('hex')
def hash_160(public_key):
md = hashlib.new('ripemd160')
md.update(hashlib.sha256(public_key).digest())
return md.digest()
def public_key_to_bc_address(public_key, v=0):
h160 = hash_160(public_key)
return hash_160_to_bc_address(h160, v)
def inverse_mod( a, m ):
if a < 0 or m <= a: a = a % m
c, d = a, m
uc, vc, ud, vd = 1, 0, 0, 1
while c != 0:
q, c, d = divmod( d, c ) + ( c, )
uc, vc, ud, vd = ud - q*uc, vd - q*vc, uc, vc
assert d == 1
if ud > 0: return ud
else: return ud + m
class CurveFp( object ):
def __init__( self, p, a, b ):
self.__p = p
self.__a = a
self.__b = b
def p( self ):
return self.__p
def a( self ):
return self.__a
def b( self ):
return self.__b
def contains_point( self, x, y ):
return ( y * y - ( x * x * x + self.__a * x + self.__b ) ) % self.__p == 0
class Point( object ):
def __init__( self, curve, x, y, order = None ):
self.__curve = curve
self.__x = x
self.__y = y
self.__order = order
if self.__curve: assert self.__curve.contains_point( x, y )
if order: assert self * order == INFINITY
def __add__( self, other ):
if other == INFINITY: return self
if self == INFINITY: return other
assert self.__curve == other.__curve
if self.__x == other.__x:
if ( self.__y + other.__y ) % self.__curve.p() == 0:
return INFINITY
else:
return self.double()
p = self.__curve.p()
l = ( ( other.__y - self.__y ) * \
inverse_mod( other.__x - self.__x, p ) ) % p
x3 = ( l * l - self.__x - other.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def __mul__( self, other ):
def leftmost_bit( x ):
assert x > 0
result = 1L
while result <= x: result = 2 * result
return result / 2
e = other
if self.__order: e = e % self.__order
if e == 0: return INFINITY
if self == INFINITY: return INFINITY
assert e > 0
e3 = 3 * e
negative_self = Point( self.__curve, self.__x, -self.__y, self.__order )
i = leftmost_bit( e3 ) / 2
result = self
while i > 1:
result = result.double()
if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self
if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self
i = i / 2
return result
def __rmul__( self, other ):
return self * other
def __str__( self ):
if self == INFINITY: return "infinity"
return "(%d,%d)" % ( self.__x, self.__y )
def double( self ):
if self == INFINITY:
return INFINITY
p = self.__curve.p()
a = self.__curve.a()
l = ( ( 3 * self.__x * self.__x + a ) * \
inverse_mod( 2 * self.__y, p ) ) % p
x3 = ( l * l - 2 * self.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def x( self ):
return self.__x
def y( self ):
return self.__y
def curve( self ):
return self.__curve
def order( self ):
return self.__order
INFINITY = Point( None, None, None )
def str_to_long(b):
res = 0
pos = 1
for a in reversed(b):
res += ord(a) * pos
pos *= 256
return res
class Public_key( object ):
def __init__( self, generator, point, c ):
self.curve = generator.curve()
self.generator = generator
self.point = point
self.compressed = c
n = generator.order()
if not n:
raise RuntimeError, "Generator point must have order."
if not n * point == INFINITY:
raise RuntimeError, "Generator point order is bad."
if point.x() < 0 or n <= point.x() or point.y() < 0 or n <= point.y():
raise RuntimeError, "Generator point has x or y out of range."
def verify( self, hashValue, signature ):
if isinstance(hashValue, str):
hashValue=str_to_long(hashValue)
G = self.generator
n = G.order()
r = signature.r
s = signature.s
if r < 1 or r > n-1: return False
if s < 1 or s > n-1: return False
c = inverse_mod( s, n )
u1 = ( hashValue * c ) % n
u2 = ( r * c ) % n
xy = u1 * G + u2 * self.point
v = xy.x() % n
return v == r
def ser(self):
if self.compressed:
if self.point.y() & 1:
key = '03' + '%064x' % self.point.x()
else:
key = '02' + '%064x' % self.point.x()
else:
key = '04' + \
'%064x' % self.point.x() + \
'%064x' % self.point.y()
return key.decode('hex')
class Signature( object ):
def __init__( self, r, s ):
self.r = r
self.s = s
def ser(self):
return ("%064x%064x"%(self.r,self.s)).decode('hex')
class Private_key( object ):
def __init__( self, public_key, secret_multiplier ):
self.public_key = public_key
self.secret_multiplier = secret_multiplier
# def der( self ):
# hex_der_key = '06052b8104000a30740201010420' + \
# '%064x' % self.secret_multiplier + \
# 'a00706052b8104000aa14403420004' + \
# '%064x' % self.public_key.point.x() + \
# '%064x' % self.public_key.point.y()
# return hex_der_key.decode('hex')
def sign( self, hashValue, random_k ):
if isinstance(hashValue, str):
hashValue=str_to_long(hashValue)
G = self.public_key.generator
n = G.order()
k = random_k % n
p1 = k * G
r = p1.x()
if r == 0: raise RuntimeError, "amazingly unlucky random number r"
s = ( inverse_mod( k, n ) * \
( hashValue + ( self.secret_multiplier * r ) % n ) ) % n
if s == 0: raise RuntimeError, "amazingly unlucky random number s"
return Signature( r, s )
class EC_KEY(object):
def __init__( self, secret, c=False):
curve = CurveFp( _p, _a, _b )
generator = Point( curve, _Gx, _Gy, _r )
self.pubkey = Public_key( generator, generator * secret, c )
self.privkey = Private_key( self.pubkey, secret )
self.secret = secret
def decbin(d, l=0, rev=False):
if l==0:
a="%x"%d
if len(a)%2: a='0'+a
else:
a=("%0"+str(2*l)+"x")%d
a=a.decode('hex')
if rev:
a=a[::-1]
return a
def decvi(d):
if d<0xfd:
return decbin(d)
elif d<0xffff:
return '\xfd'+decbin(d,2,True)
elif d<0xffffffff:
return '\xfe'+decbin(d,4,True)
return '\xff'+decbin(d,8,True)
def format_msg_to_sign(msg):
return "\x18Bitcoin Signed Message:\n"+decvi(len(msg))+msg
def sqrt_mod(a, p):
return pow(a, (p+1)/4, p)
curve_secp256k1 = CurveFp (_p, _a, _b)
generator_secp256k1 = g = Point (curve_secp256k1, _Gx, _Gy, _r)
randrange = random.SystemRandom().randrange
# Signing/verifying
def verify_message_Bitcoin(signature, message, pureECDSASigning=False, networkVersionNumber=0):
msg=message
if not pureECDSASigning:
msg=Hash(format_msg_to_sign(message))
compressed=False
curve = curve_secp256k1
G = generator_secp256k1
_a,_b,_p=curve.a(),curve.b(),curve.p()
order = G.order()
sig = base64.b64decode(signature)
if len(sig) != 65:
raise Exception("vmB","Bad signature")
hb = ord(sig[0])
r,s = map(str_to_long,[sig[1:33],sig[33:65]])
if hb < 27 or hb >= 35:
raise Exception("vmB","Bad first byte")
if hb >= 31:
compressed = True
hb -= 4
recid = hb - 27
x = (r + (recid/2) * order) % _p
y2 = ( pow(x,3,_p) + _a*x + _b ) % _p
yomy = sqrt_mod(y2, _p)
if (yomy - recid) % 2 == 0:
y=yomy
else:
y=_p - yomy
R = Point(curve, x, y, order)
e = str_to_long(msg)
minus_e = -e % order
inv_r = inverse_mod(r,order)
Q = inv_r * ( R*s + G*minus_e )
public_key = Public_key(G, Q, compressed)
addr = public_key_to_bc_address(public_key.ser(), networkVersionNumber)
return addr
def sign_message(secret, message, pureECDSASigning=False):
if len(secret) == 32:
pkey = EC_KEY(str_to_long(secret))
compressed = False
elif len(secret) == 33:
pkey = EC_KEY(str_to_long(secret[:-1]))
secret=secret[:-1]
compressed = True
else:
raise Exception("sm","Bad private key size")
msg=message
if not pureECDSASigning:
msg=Hash(format_msg_to_sign(message))
eckey = EC_KEY(str_to_long(secret), compressed)
private_key = eckey.privkey
public_key = eckey.pubkey
addr = public_key_to_bc_address(GetPubKey(eckey,eckey.pubkey.compressed))
sig = private_key.sign(msg, randomk())
if not public_key.verify(msg, sig):
raise Exception("sm","Problem signing message")
return [sig,addr,compressed,public_key]
def sign_message_Bitcoin(secret, msg, pureECDSASigning=False):
sig,addr,compressed,public_key=sign_message(secret, msg, pureECDSASigning)
for i in range(4):
hb=27+i
if compressed:
hb+=4
sign=base64.b64encode(chr(hb)+sig.ser())
try:
networkVersionNumber = str_to_long(b58decode(addr, None)) >> (8*24)
if addr == verify_message_Bitcoin(sign, msg, pureECDSASigning, networkVersionNumber):
return {'address':addr, 'b64-signature':sign, 'signature':chr(hb)+sig.ser(), 'message':msg}
except Exception as e:
# print e.args
pass
raise Exception("smB","Unable to construct recoverable key")
def FormatText(t, sigctx=False, verbose=False): #sigctx: False=what is displayed, True=what is signed
r=''
te=t.split('\n')
for l in te:
while len(l) and l[len(l)-1] in [' ', '\r', '\t', chr(9)]:
l=l[:-1]
if not len(l) or l[len(l)-1]!='\r':
l+='\r'
if not sigctx:
if len(l) and l[0]=='-':
l='- '+l
r+=l+'\n'
r=r[:-2]
global FTVerbose
if FTVerbose:
print ' -- Sent: '+t.encode('hex')
if sigctx:
print ' -- Signed: '+r.encode('hex')
else:
print ' -- Displayed: '+r.encode('hex')
return r
def crc24(m):
INIT = 0xB704CE
POLY = 0x1864CFB
crc = INIT
r = ''
for o in m:
o=ord(o)
crc ^= (o << 16)
for i in xrange(8):
crc <<= 1
if crc & 0x1000000:
crc ^= POLY
for i in range(3):
r += chr( ( crc & (0xff<<(8*i))) >> (8*i) )
return r
def chunks(t, n):
return [t[i:i+n] for i in range(0, len(t), n)]
def ASCIIArmory(block, name, addComment=False):
r=BEGIN_MARKER+name+DASHX5+RN
if addComment:
r+= BITCOIN_ARMORY_COMMENT
r+=RNRN
r+=RN.join(chunks(base64.b64encode(block), 64))+RN+'='
r+=base64.b64encode(crc24(block))+RN
r+=END_MARKER+name+DASHX5
return r
def readSigBlock(r):
# Take the name off of the end because the BEGIN markers are confusing
r = FormatText(r, True)
name = r.split(BEGIN_MARKER)[1].split(DASHX5)[0]
if name == BASE64_MSG_TYPE_MARKER:
encoded,crc = r.split(BEGIN_MARKER)[1].split(END_MARKER)[0].split(DASHX5)[1].strip().split('\n=')
crc = crc.strip()
# Always starts with a blank line (\r\n\r\n) chop that off with the comment oand process the rest
encoded = encoded.split(RNRN)[1]
# Combines 64 byte chunks that are separated by \r\n
encoded = ''.join(encoded.split(RN))
# decode the message.
decoded = base64.b64decode(encoded)
# Check sum of decoded messgae
if base64.b64decode(crc) != crc24(decoded):
raise ChecksumError
# The signature is followed by the message and the whole thing is encoded
# The message always starts at 65 because the signature is 65 bytes.
signature = base64.b64encode(decoded[:65])
msg = decoded[65:]
elif name == CLEARSIGN_MSG_TYPE_MARKER:
# First get rid of the Clearsign marker and everything before it in case the user
# added extra lines that would confuse the parsing that follows
# The message is preceded by a blank line (\r\n\r\n) chop that off with the comment and process the rest
# For Clearsign the message is unencoded since the message could include the \r\n\r\n we only ignore
# the first and combine the rest.
msg = r.split(BEGIN_MARKER+CLEARSIGN_MSG_TYPE_MARKER+DASHX5)[1]
msg = RNRN.join(msg.split(RNRN)[1:])
msg = msg.split(RN+DASHX5)[0]
# Only the signature is encoded, use the original r to pull out the encoded signature
encoded = r.split(BEGIN_MARKER)[2].split(DASHX5)[1].split(BITCOIN_SIG_TYPE_MARKER)[0]
encoded, crc = encoded.split('\n=')
encoded = ''.join(encoded.split('\n'))
signature = ''.join(encoded.split('\r'))
crc = crc.strip()
if base64.b64decode(crc) != crc24(base64.b64decode(signature)):
raise ChecksumError
else:
raise UnknownSigBlockType()
return signature, msg
#==============================================
def verifySignature(b64sig, msg, signVer='v0', networkVersionNumber=0):
# If version 1, apply RFC2440 formatting rules to the message
if signVer=='v1':
msg = FormatText(msg, True)
return verify_message_Bitcoin(b64sig, msg, networkVersionNumber = networkVersionNumber)
def ASv0(privkey, msg):
return sign_message_Bitcoin(privkey, msg)
def ASv1CS(privkey, msg):
sig=ASv0(privkey, FormatText(msg))
r=BEGIN_MARKER+CLEARSIGN_MSG_TYPE_MARKER+DASHX5+RN+BITCOIN_ARMORY_COMMENT+RNRN
r+=FormatText(msg)+RN
r+=ASCIIArmory(sig['signature'], BITCOIN_SIG_TYPE_MARKER)
return r
def ASv1B64(privkey, msg):
sig=ASv0(privkey, FormatText(msg))
return ASCIIArmory(sig['signature']+sig['message'], BASE64_MSG_TYPE_MARKER, True)
#==============================================
#
# Some tests with ugly output
# You can delete the print commands in FormatText() after testing
#
if __name__=='__main__':
pvk1='\x01'*32
text0='Hello world!'
text1='Hello world!\n'
text2='Hello world!\n\t'
text3='Hello world!\n-jackjack'
text4='Hello world!\n-jackjack '
text5='Hello world!'
FTVerbose=True
sv0=ASv0(pvk1, text1)
print sv0
print verifySignature(sv0['b64-signature'], sv0['message'], signVer='v0')
print ASv1B64(pvk1, text1)
print
print ASv1CS(pvk1, text1)
print
print ASv1CS(pvk1, text2)
print
print ASv1CS(pvk1, text3)
print
print ASv1CS(pvk1, text4)
print
print ASv1CS(pvk1, text5)