forked from facebookarchive/MIXER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReinforceCriterion.lua
168 lines (156 loc) · 6.24 KB
/
ReinforceCriterion.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
--
-- Copyright (c) 2015, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- Author: Marc'Aurelio Ranzato <[email protected]>
-- Sumit Chopra <[email protected]>
-- Michael Auli <[email protected]>
-- Wojciech Zaremba <[email protected]>
--
local ReinforceCriterion, parent = torch.class('nn.ReinforceCriterion',
'nn.Criterion')
-- This criterion implements the REINFORCE algorithm under the assumption that
-- the reward does not depend on the model parameters.
-- The constructor takes as input a function which is used to compute the reward
-- given the ground truth input sequence, the generated sequence and the current
-- time step.
-- The input to the criterion is a table whose entries are the output of the
-- RNN at a certain time step, namely:
-- (chosen_word, predicted_cumulative_reward)_t
-- It computes the total reward and bprop the derivative
-- w.r.t. the above provided inputs.
-- reward_func: user provided function to compute the reward
-- given ground truth, current sequence and current time step.
-- seq_length is the length of the sequence we use
-- skips is the number of time steps we skip from the input and target (init)
-- weight is the weight on the loss produced by this criterion
-- weight_predictive_reward is the weight on the gradient of the cumulative
-- reward predictor (only)
function ReinforceCriterion:__init(reward_func, seq_length, eos_index,
padding_index, skips, weight,
weight_predictive_reward)
parent.__init(self)
self.gradInput = {}
self.seq_length = seq_length
for tt = 1, seq_length do
self.gradInput[tt] = {}
self.gradInput[tt][1] = torch.Tensor()
self.gradInput[tt][2] = torch.Tensor()
end
self.sizeAverage = false
self.reward_func = reward_func
self.reward = torch.Tensor()
self.cumreward = torch.Tensor()
self.skips = (skips == nil) and 1 or skips
assert(self.skips <= seq_length)
assert(seq_length >= self.skips)
-- by default, update the cumulative reward predictor
-- at a slower pace.
self.weight_predictive_reward =
(weight_predictive_reward == nil) and 0.01 or weight_predictive_reward
self.weight = (weight == nil) and 1 or weight
self.num_samples = 0
self.normalizing_coeff = 1
self.eos = eos_index
self.padding = padding_index
self.reset = torch.Tensor()
end
function ReinforceCriterion:type(tp)
parent.type(self, tp)
for tt = 1, self.seq_length do
self.gradInput[tt][1] = self.gradInput[tt][1]:type(tp)
self.gradInput[tt][2] = self.gradInput[tt][2]:type(tp)
end
self.reward = self.reward:type(tp)
self.cumreward = self.cumreward:type(tp)
return self
end
function ReinforceCriterion:set_weight(ww)
self.weight = ww
end
function ReinforceCriterion:set_skips(ss)
self.skips = ss
self.reward_func:set_start(ss)
end
-- input is a table storing the tuple:
-- (chosen_word, predicted_cumulative_reward)_t, t=1..T
-- target is also a table storing the labels at each time step.
function ReinforceCriterion:updateOutput(input, target)
-- compute the reward at each time step
local mbsz = target[1]:size(1)
local num_steps = self.seq_length - self.skips + 1
self.reward:resize(mbsz, num_steps)
self.cumreward:resize(mbsz, num_steps)
self.num_samples = 0
for tt = self.seq_length, self.skips, -1 do
local shifted_tt = tt - self.skips + 1
self.reward:select(2, shifted_tt):copy(
self.reward_func:get_reward(target, input, tt))
if tt == self.seq_length then
self.cumreward:select(2, shifted_tt):copy(
self.reward:select(2, shifted_tt))
else
self.cumreward:select(2, shifted_tt):add(
self.cumreward:select(2, shifted_tt + 1),
self.reward:select(2, shifted_tt))
end
end
self.num_samples = self.reward_func:num_samples(target, input)
self.normalizing_coeff =
self.weight / (self.sizeAverage and self.num_samples or 1)
-- here there is a "-" because we minimize
self.output = - self.cumreward:select(2,1):sum() * self.normalizing_coeff
return self.output, self.num_samples
end
-- bprop through input at each time step.
-- derivative through chosen action is:
-- (predicted_cumulative_reward - actual_cumulative_reward)_t.
function ReinforceCriterion:updateGradInput(input, target)
local mbsz = target[1]:size(1)
for tt = self.seq_length, self.skips, -1 do
local shifted_tt = tt - self.skips + 1
-- derivative w.r.t. chosen action
self.gradInput[tt][1]:resizeAs(input[tt][1])
self.gradInput[tt][1]:add(
input[tt][2]:squeeze(), -1, self.cumreward:select(2, shifted_tt))
self.gradInput[tt][1]:mul(self.normalizing_coeff)
-- reset gradient to 0 if input (at any time) has PAD
self.reset:resize(mbsz)
self.reset:ne(input[tt][1], self.padding) -- set in RNNreinforce
self.gradInput[tt][1]:cmul(self.reset)
-- copy over to the other input gradient as well
self.gradInput[tt][2]:resizeAs(input[tt][2])
self.gradInput[tt][2]:copy(self.gradInput[tt][1])
self.gradInput[tt][2]:mul(self.weight_predictive_reward)
end
-- fill the remaining (skipped) steps with 0s
for tt = self.skips - 1, 1, -1 do
self.gradInput[tt][1]:resizeAs(input[tt][1])
self.gradInput[tt][1]:fill(0)
self.gradInput[tt][2]:resizeAs(input[tt][2])
self.gradInput[tt][2]:fill(0)
end
return self.gradInput
end
function ReinforceCriterion:get_num_samples(input, target)
return self.reward_func:num_samples(target, input)
end
function ReinforceCriterion:reset_reward()
return self.reward_func:reset_vars()
end
function ReinforceCriterion:get_corpus_score()
return self.reward_func:get_corpus_score()
end
function ReinforceCriterion:get_counts_corpus(target, pred)
return self.reward_func:get_counts_corpus(target, pred)
end
function ReinforceCriterion:training_mode()
self.reward_func:training_mode()
end
function ReinforceCriterion:test_mode()
self.reward_func:test_mode()
end