forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensor.py
732 lines (612 loc) · 43.5 KB
/
tensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
# inspired by https://github.com/karpathy/micrograd/blob/master/micrograd/engine.py
from __future__ import annotations
import time, math
from collections import defaultdict
from functools import partialmethod, reduce
from itertools import accumulate
import numpy as np
from typing import List, Tuple, Callable, Optional, ClassVar, Type, Union, Sequence
from tinygrad.helpers import ImageDType, argfix, make_pair, getenv, IMAGE, DEBUG, flatten, DType, dtypes
from tinygrad.lazy import LazyBuffer
from tinygrad.ops import Device, LoadOps
# An instantiation of the Function is the Context
class Function:
def __init__(self, device:str, *tensors:Tensor):
self.device = device
self.needs_input_grad = [t.requires_grad for t in tensors]
self.requires_grad = True if any(self.needs_input_grad) else None if None in self.needs_input_grad else False
if self.requires_grad: self.parents = tensors
def forward(self, *args, **kwargs): raise NotImplementedError(f"forward not implemented for {type(self)}")
def backward(self, *args, **kwargs): raise RuntimeError(f"backward not implemented for {type(self)}")
@classmethod
def apply(fxn:Type[Function], *x:Tensor, **kwargs) -> Tensor:
ctx = fxn(x[0].device, *x)
ret = Tensor(ctx.forward(*[t.lazydata for t in x], **kwargs), device=ctx.device, requires_grad=ctx.requires_grad)
if ctx.requires_grad and not Tensor.no_grad: ret._ctx = ctx # used by autograd engine
return ret
import tinygrad.mlops as mlops
# **** start with two base classes, Tensor and Function ****
class Tensor:
__slots__ = "lazydata", "requires_grad", "grad", "_ctx"
__deletable__ = ('_ctx',)
training: ClassVar[bool] = False
no_grad: ClassVar[bool] = False
default_type: ClassVar[DType] = dtypes.float32
def __init__(self, data:Union[int, float, list, LazyBuffer, np.ndarray], device:Optional[str]=None, dtype:Optional[DType]=None, requires_grad:Optional[bool]=None):
assert dtype is None or isinstance(dtype, DType), f"invalid dtype {dtype}"
device = Device.canonicalize(device)
# tensors have gradients, buffers do not
self.grad: Optional[Tensor] = None
# NOTE: this can be in three states. False and None: no gradient, True: gradient
# None (the default) will be updated to True if it's put in an optimizer
self.requires_grad: Optional[bool] = requires_grad
# internal variables used for autograd graph construction
self._ctx: Optional[Function] = None
if isinstance(data, LazyBuffer): assert dtype is None or dtype == data.dtype, "dtype doesn't match, and casting isn't supported"
elif isinstance(data, (int, float)):
self.lazydata = LazyBuffer.loadop(LoadOps.CONST, tuple(), dtype or Tensor.default_type, device, data)
return
elif data.__class__ is list:
assert dtype is None or dtype.np is not None, f"{dtype} doesn't have a numpy dtype"
data = LazyBuffer.fromCPU(np.array(data, dtype=(dtype or Tensor.default_type).np))
elif isinstance(data, np.ndarray):
data = LazyBuffer.fromCPU(data)
else: raise RuntimeError(f"can't create Tensor from {data}")
self.lazydata = data if data.device == device else LazyBuffer.loadop(LoadOps.FROM, data.shape, data.dtype, device, src=data)
def __repr__(self):
return f"<Tensor {self.lazydata!r} on {self.device} with grad {(self.grad.lazydata if self.grad else None)!r}>"
# Python has a non moving GC, so this should be okay
def __hash__(self): return id(self)
@property
def device(self) -> str: return self.lazydata.device
@property
def shape(self) -> Tuple[int, ...]: return self.lazydata.shape
@property
def dtype(self) -> DType: return self.lazydata.dtype
# ***** data handlers ****
def realize(self) -> Tensor:
self.lazydata.realize()
return self
def assign(self, x) -> Tensor:
# TODO: this is a hack for writing to DISK
if self.device.startswith("DISK"):
if x.__class__ is not Tensor: x = Tensor(x, device="CPU", dtype=self.dtype)
self.lazydata.realize().realized._copyin(x.numpy()) # type: ignore
return self
if x.__class__ is not Tensor: x = Tensor(x, device=self.device, dtype=self.dtype)
assert self.shape == x.shape and self.device == x.device, f"assign shape mismatch {self.shape} != {x.shape} or device mismatch {self.device} != {x.device}"
assert not x.requires_grad # self requires_grad is okay?
if DEBUG >= 4: print(f"assign {self.lazydata} <- {x.lazydata}")
if self.lazydata.realized is not None and not getenv("DISALLOW_ASSIGN"): x.lazydata.output_buffer = self.lazydata.realized
self.lazydata = x.lazydata
return self
def detach(self): return Tensor(self.lazydata, device=self.device, requires_grad=False)
def numpy(self) -> np.ndarray: return self.lazydata.toCPU()
# TODO: if things are realized this won't work
def to_(self, device:str):
assert self.lazydata.realized is None
self.lazydata.device = device
if self.grad: self.grad.to_(device)
def to(self, device:str) -> Tensor:
ret = Tensor(self.lazydata, device)
if self.grad: ret.grad = self.grad.to(device)
return ret
# ***** creation llop entrypoint *****
@staticmethod
def _loadop(op, sz, device:Optional[str]=None, dtype:Optional[DType]=None, arg=None, **kwargs):
return Tensor(LazyBuffer.loadop(op, [sz], Tensor.default_type if dtype is None else dtype, Device.canonicalize(device), arg), dtype=dtype, device=device, **kwargs)
@staticmethod
def empty(*shape, **kwargs): return Tensor._loadop(LoadOps.EMPTY, math.prod(shape), **kwargs).reshape(shape)
_seed: int = int(time.time())
@staticmethod
def manual_seed(seed=0): Tensor._seed = seed
@staticmethod
def rand(*shape, **kwargs):
Tensor._seed += 1
return Tensor._loadop(LoadOps.RAND, math.prod(shape), arg=Tensor._seed, **kwargs).reshape(shape)
# ***** creation helper functions *****
@staticmethod
def full(shape:Tuple[int, ...], fill_value, **kwargs): return Tensor(fill_value, **kwargs).reshape([1]*len(new_shape := argfix(shape))).expand(new_shape)
@staticmethod
def zeros(*shape, **kwargs): return Tensor.full(argfix(*shape), 0, **kwargs)
@staticmethod
def ones(*shape, **kwargs): return Tensor.full(argfix(*shape), 1, **kwargs)
@staticmethod
def arange(start, stop=None, step=1, **kwargs):
if stop is None: stop, start = start, 0
return Tensor.full((math.ceil((stop-start)/step),), step, **kwargs).cumsum() + (start - step)
@staticmethod
def eye(dim:int, **kwargs): return Tensor.full((dim,1),1,**kwargs).pad(((0,0),(0,dim))).reshape(dim*(dim+1)).shrink(((0,dim*dim),)).reshape(dim, dim)
def full_like(self, fill_value, **kwargs):
return Tensor.full(self.shape, fill_value=fill_value, dtype=kwargs.pop("dtype", self.dtype), device=kwargs.pop("device", self.device), **kwargs)
def zeros_like(self, **kwargs): return self.full_like(0, **kwargs)
def ones_like(self, **kwargs): return self.full_like(1, **kwargs)
# ***** rng hlops *****
@staticmethod
def randn(*shape, dtype:Optional[DType]=None, **kwargs) -> Tensor:
# https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
src = Tensor.rand(2, *shape, **kwargs)
return src[0].mul(2*math.pi).cos().mul((1 - src[1]).log().mul(-2).sqrt()).cast(Tensor.default_type if dtype is None else dtype)
@staticmethod
def normal(*shape, mean=0.0, std=1.0, **kwargs) -> Tensor: return (std * Tensor.randn(*shape, **kwargs)) + mean
@staticmethod
def uniform(*shape, low=-1.0, high=1.0, **kwargs) -> Tensor:
dtype = kwargs.pop("dtype", Tensor.default_type)
return ((high-low) * Tensor.rand(*shape, **kwargs)).cast(dtype) + low
@staticmethod
def scaled_uniform(*shape, **kwargs) -> Tensor: return Tensor.uniform(*shape, **kwargs).mul(math.prod(shape)**-0.5)
# https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform
@staticmethod
def glorot_uniform(*shape, **kwargs) -> Tensor: return Tensor.uniform(*shape, **kwargs).mul((6/(shape[0]+math.prod(shape[1:])))**0.5)
# https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_uniform_
@staticmethod
def kaiming_uniform(*shape, a:float = 0.01, **kwargs) -> Tensor:
bound = math.sqrt(3.0) * math.sqrt(2.0 / (1 + a ** 2)) / math.sqrt(math.prod(shape[1:]))
return Tensor.uniform(*shape, low=-bound, high=bound, **kwargs)
# https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_normal_
@staticmethod
def kaiming_normal(*shape, a:float = 0.01, **kwargs) -> Tensor:
std = math.sqrt(2.0 / (1 + a ** 2)) / math.sqrt(math.prod(shape[1:]))
return Tensor.normal(*shape, mean=0.0, std=std, **kwargs)
# ***** toposort and backward pass *****
def deepwalk(self):
def _deepwalk(node, visited, nodes):
visited.add(node)
if getattr(node, "_ctx", None):
for i in node._ctx.parents:
if i not in visited: _deepwalk(i, visited, nodes)
nodes.append(node)
return nodes
return _deepwalk(self, set(), [])
def backward(self):
assert self.shape == tuple(), f"backward can only be called for scalar tensors, but it has shape {self.shape})"
# fill in the first grad with one. don't use Tensor.ones because we don't need contiguous
# this is "implicit gradient creation"
self.grad = Tensor(1, device=self.device, requires_grad=False)
for t0 in reversed(self.deepwalk()):
assert (t0.grad is not None)
grads = t0._ctx.backward(t0.grad.lazydata)
grads = [Tensor(g, device=self.device, requires_grad=False) if g is not None else None
for g in ([grads] if len(t0._ctx.parents) == 1 else grads)]
for t, g in zip(t0._ctx.parents, grads):
if g is not None and t.requires_grad:
assert g.shape == t.shape, f"grad shape must match tensor shape, {g.shape!r} != {t.shape!r}"
t.grad = g if t.grad is None else (t.grad + g)
del t0._ctx
# ***** movement mlops *****
def reshape(self, shape, *args) -> Tensor:
new_shape = argfix(shape, *args)
assert 0 not in new_shape, f"zeros not allowed in shape {new_shape}"
return mlops.Reshape.apply(self, shape=tuple([-math.prod(self.shape) // math.prod(new_shape) if s == -1 else s for s in new_shape]))
def expand(self, shape, *args) -> Tensor: return mlops.Expand.apply(self, shape=tuple([x if x != -1 else s for s,x in zip(self.shape, argfix(shape, *args))]))
def permute(self, order, *args) -> Tensor: return mlops.Permute.apply(self, order=argfix(order, *args))
def flip(self, axis, *args) -> Tensor: return mlops.Flip.apply(self, axis=[x if x >= 0 else x+len(self.shape) for x in argfix(axis, *args)])
def shrink(self, arg:Tuple[Tuple[int, int], ...]) -> Tensor: return mlops.Shrink.apply(self, arg=arg) if any(x != (0,s) for x,s in zip(arg, self.shape)) else self
def pad(self, arg: Tuple[Tuple[int, int], ...], value:float=0) -> Tensor:
ret = mlops.Pad.apply(self, arg=arg) if any(x != (0, 0) for x in arg) else self
return ret if 0 == value else ret + mlops.Pad.apply(Tensor.ones_like(self), arg=arg).where(0, value)
# ***** movement hlops *****
# - Negative indices are taken relative to the end of the sequence, so X[-2] returns the 2nd-to-last element
# - A slice i:j returns the elements with indices in [i, j)
# - If omitted, i and j will default to 0 and N, respectively, where N is the length of the sequence
# - Negative values for i and j are taken relative to the end of the sequence
# - Both i and j will be clamped to the range (-N, N], where N in the length of the sequence
# - Indexing with None on a given axis will add a new dimension of size one before that axis
# - Empty slices are not allowed (tensors with 0s in shape have to be supported first, for all backends).
# - For a slice [i:j:k] finding the correct indices is delegated to slice.indices(len).
# - Strides > 1 and < 0 are now allowed!:
# - This works by applying Shrink -> [[Flip -> ] Pad -> Reshape -> Shrink] -> Reshape (ops in brackets are optional)
# - Idea of stride < 0 support:
# - Do the slice first, flip the axes were slice.step is negative, do slice.step -> -slice.step. Go to steps below.
# - Idea of stride `s` > 1 support (Pad -> Reshape -> Shrink):
# - Instead of doing [::s] on axis [dim_sz], do [:, 0] on axes [dim_sz_padded // s, s].
# - So pad dim_sz with as many zeros as needed (dim_sz -> dim_sz_padded) so that reshape to [dim_sz_padded // s, s]
# is possible.
# - Apply Shrink to do the slice [:, 0] on axes of shapes [dim_sz_padded // s, s].
# - Fancy indexing and combined indexing is supported
# - Combined indexing works by letting regular slicing finish first -> computing the resulting dims w.r.t to Tensors passed in -> fancy indexing
# - Any Tensors passed in __getitem__ will perform (CMPEQ with arange -> MUL with self -> SUM_REDUCE) iteratively
# - The first iteration will expand the dim of self while consecutive iterations will reduce the dim
# - There's a special case where a permute is needed at the end:
# - if first Tensor passed in (expand dims) is not at dim 0
# - and following Tensors does not follow consecutively to the end of fancy indexing's dims
def __getitem__(self, val): # val: Union[int, slice, Tensor, None, Ellipsis, Tuple[Union[int, slice, Tensor, None, Ellipsis], ...]]
def normalize_int(e, i, dim_sz):
if -dim_sz <= e < dim_sz: return e if e != -1 else dim_sz-1
raise IndexError(f"index {e} is out of bounds for dimension {i} with size {self.shape[i]}")
orig_slices = list(val) if isinstance(val, tuple) else [val]
count = defaultdict(list)
for i,v in enumerate(orig_slices): count[type(v)].append(i)
if (num_slices := len(count[int]) + len(count[slice]) + len(count[Tensor])) > len(self.shape): raise IndexError(f"too many indices for tensor of dimension {len(self.shape)}")
if len(ellipsis_found := count[type(Ellipsis)]) > 1: raise IndexError("an index can only have a single ellipsis ('...')")
ellipsis_idx = ellipsis_found[0] if ellipsis_found else len(orig_slices)
orig_slices[ellipsis_idx:ellipsis_idx+1] = [slice(None)] * (len(self.shape) - num_slices)
valid_slices = [v for v in orig_slices if v is not None]
valid_slices = [v if isinstance(v, slice) else slice(y_ := normalize_int(v, i, dim_sz), y_+1) if isinstance(v, int) else slice(None) for i, (v, dim_sz) in enumerate(zip(valid_slices, self.shape))]
start, stop, strides = zip(*y) if (y := [s.indices(dim_sz) for s, dim_sz in zip(valid_slices, self.shape)]) else ((), (), ())
new_slice = tuple((s, e) if st > 0 else (e+1, s+1) for s, e, st in zip(start, stop, strides))
sliced_tensor = self.shrink(new_slice).flip(axis=[i for i, s in enumerate(strides) if s < 0])
new_shape = sliced_tensor.shape
if any(abs(s) != 1 for s in strides):
strides = tuple(abs(s) for s in strides)
# Pad: add pad at the end: [dim_sz] -> [dim_sz_padded]
padded_tensor = sliced_tensor.pad(tuple((0, s-(dim_sz % s) if dim_sz % s != 0 else 0) for s, dim_sz in zip(strides, sliced_tensor.shape)))
# Reshape: [dim_sz_padded] -> [dim_sz_padded // s, s]
reshaped_tensor = padded_tensor.reshape(flatten([sh // s, s] for sh, s in zip(padded_tensor.shape, strides)))
new_shape = reshaped_tensor.shape[::2]
# Shrink: do [:, 0]
sliced_tensor = reshaped_tensor.shrink(tuple(flatten(((0, sh), (0, 1)) for sh in new_shape)))
final_shape, it_shape, dim, tensors, dim_collapsed = [], iter(new_shape), [], [], 0
for i,s in enumerate(orig_slices):
if s is None: final_shape.append(1)
else: # s is int or slice or Tensor
dim_shape = next(it_shape)
if isinstance(s, int):
dim_collapsed += 1
else:
final_shape.append(dim_shape)
if isinstance(s, Tensor):
tensors.append(s)
dim.append(i-dim_collapsed)
ret = sliced_tensor.reshape(tuple(final_shape))
if tensors: # Fancy/tensor indexing
# normalize idx
# TODO: first contiguous fixes torch+cpu_only CI, but it causes llvm to fail. Second one fixes llvm
idx = [t.sign().contiguous().__neg__().contiguous().relu() * ret.shape[d] + t for d,t in zip(dim, tensors)]
max_dim = max(i.ndim for i in idx)
# compute sum_dim, arange, and idx
sum_dim = [d if n==0 else d+max_dim-n for n,d in enumerate(dim)]
arange = [Tensor.arange(ret.shape[d], dtype=dtypes.int32, requires_grad=False, device=self.device).reshape(*[1]*sd, ret.shape[d], *[1]*(ret.ndim + max_dim - n - sd - 1)) for n,(sd,d) in enumerate(zip(sum_dim, dim))]
first_idx = [idx[0].reshape(*[1]*dim[0], *[1]*(1 + max_dim - idx[0].ndim), *idx[0].shape, *[1]*(ret.ndim - dim[0] - 1))]
rest_idx = [i.reshape(*[1]*dim[0], *[1]*(max_dim - i.ndim), *i.shape, *[1]*(ret.ndim - dim[0] - n)) for n,i in enumerate(idx[1:], 1)]
idx = first_idx + rest_idx
ret = ret.reshape(*ret.shape[:sum_dim[0]+1], *[1]*max_dim, *ret.shape[sum_dim[0]+1:])
# iteratively fancy index
for a,i,sd in zip(arange, idx, sum_dim): ret = (a==i).mul(ret).sum(sd)
# special permute case
if dim[0] != 0 and len(dim) != 1 and dim != list(range(dim[0], dim[-1]+1)):
ret_dims = list(range(ret.ndim))
ret = ret.permute(ret_dims[dim[0]:dim[0]+max_dim] + ret_dims[:dim[0]] + ret_dims[dim[0]+max_dim:])
return ret
# NOTE: using slice is discouraged and things should migrate to pad and shrink
def slice(self, arg:Sequence[Optional[Tuple[int, int]]], value:float=0) -> Tensor:
arg_ = tuple([a if a is not None else (0,s) for s,a in zip(self.shape, arg)])
padding = tuple([(max(0, -p[0]), max(0, p[1]-self.shape[i])) for i,p in enumerate(arg_)])
return self.pad(padding, value=value).shrink(tuple([(p[0] + padding[i][0], p[1] + padding[i][0]) for i,p in enumerate(arg_)]))
def gather(self: Tensor, idx: Tensor, dim: int):
assert idx.ndim == self.ndim, "self.ndim must equal idx.ndim"
assert all(s >= i for s,i in zip(self.shape, idx.shape)), "all dim of idx.shape must be smaller than self.shape"
if dim < 0: dim += self.ndim
idx = idx.transpose(ax1=dim, ax2=0).unsqueeze(-1)
permarg = list(range(self.ndim))
permarg = permarg[1:dim] + [permarg[0]] + permarg[dim+1:] + [permarg[dim]] if dim != 0 else permarg[1:] + [permarg[0]]
return ((idx == Tensor.arange(self.shape[dim], dtype=dtypes.int32, requires_grad=False, device=self.device)) * self.permute(*permarg).shrink(tuple([*[(0,sh) for sh in idx.shape[1:-1]], (0,self.shape[dim])])).unsqueeze(0)).sum(-1).transpose(ax1=0, ax2=dim)
def cat(self, *args, dim=0):
dim = (dim + len(self.shape)) if dim < 0 else dim
assert all(len(y.shape) == len(self.shape) and all(y.shape[i] == s for i,s in enumerate(self.shape) if i != dim) for y in args)
catargs = [self, *args]
assert all(t.shape for t in catargs), "zero-dimensional tensor cannot be concatenated"
shapes = [s.shape[dim] for s in catargs]
shape_cumsum = [0, *accumulate(shapes)]
slc = [[(0, 0) for _ in self.shape] for _ in catargs]
for shp,k,s in zip(shapes, shape_cumsum[:-1], slc):
s[dim] = (k, shape_cumsum[-1] - k - shp)
return reduce(Tensor.__add__, [arg.pad(tuple(s)) for arg,s in zip(catargs, slc)])
@staticmethod
def stack(tensors, dim=0):
first = tensors[0].unsqueeze(dim)
unsqueezed_tensors = [tensor.unsqueeze(dim) for tensor in tensors[1:]]
# checks for shapes and number of dimensions delegated to cat
return first.cat(*unsqueezed_tensors, dim=dim)
def repeat(self, repeats):
base_shape = (1,) * (len(repeats) - self.ndim) + self.shape
new_shape = [x for b in base_shape for x in [1, b]]
expand_shape = [x for rs in zip(repeats, base_shape) for x in rs]
final_shape = [r*s for r,s in zip(repeats, base_shape)]
return self.reshape(new_shape).expand(expand_shape).reshape(final_shape)
def chunk(self, num:int, dim:int) -> List[Tensor]:
dim, step = dim + self.ndim if dim < 0 else dim, math.ceil(self.shape[dim]/num)
slice_params = [[slice(None)]*dim + [slice(k, k + step)] for k in range(0, self.shape[dim], step)]
return [self[tuple(sl)] for sl in slice_params]
def squeeze(self, dim=None):
if dim is None: return self if 1 not in self.shape else self.reshape(*[size for size in self.shape if size != 1])
if dim <= 0 and self.ndim == 0: return self # This is to match PyTorch behavior
if not -self.ndim <= dim < self.ndim: raise IndexError(f"Dimension out of range (expected to be in range of [{-self.ndim if self.ndim > 0 else self.ndim-1}, {self.ndim-1 if self.ndim > 0 else self.ndim}], but got {dim})")
if dim < 0: dim += self.ndim
return self if self.shape[dim] != 1 else self.reshape(*[size for idx, size in enumerate(self.shape) if idx != dim])
def unsqueeze(self, dim):
if dim < 0: dim = len(self.shape) + dim + 1
return self.reshape(self.shape[:dim] + (1,) + self.shape[dim:])
# (padding_left, padding_right, padding_top, padding_bottom)
def pad2d(self, padding:Union[List[int], Tuple[int, ...]], value:float=0):
slc = [(-p0, s+p1) for p0,p1,s in zip(padding[::2], padding[1::2], self.shape[::-1])][::-1]
return self.slice([(0,s) for s in self.shape[:-(len(padding)//2)]] + slc, value=value)
@property
def T(self) -> Tensor: return self.transpose()
def transpose(self, ax1=1, ax2=0) -> Tensor:
order = list(range(len(self.shape)))
order[ax1], order[ax2] = order[ax2], order[ax1]
return self.permute(order)
def flatten(self, start_dim=0): return self.reshape(shape=self.shape[:start_dim] + (-1,))
# ***** reduce ops *****
def _reduce(self, fxn:Type[Function], axis:Optional[Union[int, Tuple[int, ...]]]=None, keepdim=False):
axis_: List[int] = list(range(len(self.shape))) if axis is None else ([axis] if axis.__class__ is int else list(axis)) # type: ignore
axis_ = [x if x >= 0 else x+len(self.shape) for x in axis_]
shape = [s for i,s in enumerate(self.shape) if i not in axis_]
ret = fxn.apply(self, new_shape=tuple([1 if i in axis_ else s for i,s in enumerate(self.shape)]))
return ret if keepdim else ret.reshape(shape=shape)
def sum(self, axis=None, keepdim=False): return self._reduce(mlops.Sum, axis, keepdim)
def max(self, axis=None, keepdim=False): return self._reduce(mlops.Max, axis, keepdim)
def min(self, axis=None, keepdim=False): return -((-self).max(axis=axis, keepdim=keepdim))
def mean(self, axis=None, keepdim=False):
out = self.sum(axis=axis, keepdim=keepdim)
return out * (math.prod(out.shape)/math.prod(self.shape))
def std(self, axis=None, keepdim=False, correction=1):
square_sum = ((self - self.mean(axis=axis, keepdim=True)).square()).sum(axis=axis, keepdim=keepdim)
return (square_sum / (math.prod(self.shape)/math.prod(square_sum.shape)-correction)).sqrt()
def _softmax(self, axis):
m = self - self.max(axis=axis, keepdim=True)
e = m.exp()
return m, e, e.sum(axis=axis, keepdim=True)
def softmax(self, axis=-1):
_, e, ss = self._softmax(axis)
return e.div(ss)
def log_softmax(self, axis=-1):
m, _, ss = self._softmax(axis)
return m - ss.log()
def argmax(self, axis=None, keepdim=False):
if axis is None:
idx = (self == self.max(axis)) * Tensor.arange(math.prod(self.shape)-1,-1,-1, dtype=dtypes.int32, requires_grad=False, device=self.device).reshape(self.shape)
return math.prod(self.shape) - idx.max() - 1
axis = axis + len(self.shape) if axis < 0 else axis
m = self == self.max(axis=axis, keepdim=True)
idx = m * Tensor.arange(self.shape[axis]-1,-1,-1, dtype=dtypes.int32, requires_grad=False, device=self.device).reshape(self.shape[axis], *[1]*(self.ndim-axis-1))
return self.shape[axis]-idx.max(axis=axis, keepdim=keepdim)-1
def argmin(self, axis=None, keepdim=False): return (-self).argmax(axis=axis, keepdim=keepdim)
# ***** processing ops *****
def _pool(self, k_:Tuple[int, ...], stride:Union[Tuple[int, ...], int]=1, dilation:Union[Tuple[int, ...], int]=1) -> Tensor:
assert len(self.shape) >= len(k_), f"can't pool {self.shape} with {k_}"
s_, d_ = make_pair(stride, len(k_)), make_pair(dilation, len(k_))
assert len(k_) == len(s_) and len(k_) == len(d_), f"stride/dilation mismatch kernel:{k_} stride:{s_} dilation:{d_}"
slc_prefix, prefix, i_ = [(0,x) for x in self.shape[0:-len(k_)]], self.shape[0:-len(k_)], self.shape[-len(k_):]
if any(k > s for k,s in zip(k_, s_)) or any(d != 1 for d in d_):
o_ = [(i - d * (k-1) - 1)//s + 1 for i,d,k,s in zip(i_, d_, k_, s_)]
e_ = [math.ceil(k*(i+d) / i) for k,i,d in zip(k_, i_, d_)] # expands such that we don't need padding
xup = self.reshape(*prefix, *flatten((1,i) for i in i_)).expand(*prefix, *flatten((e,i) for e,i in zip(e_, i_))).reshape(*prefix, *[e*i for e,i in zip(e_, i_)])
# slide by dilation
xup = xup.slice(slc_prefix + [(0,k*(i+d)) for k,i,d in zip(k_, i_, d_)])
xup = xup.reshape(*prefix, *flatten((k,i+d) for k,i,d in zip(k_, i_, d_)))
xup = xup.slice(slc_prefix + flatten(((0,k), (0,o*s)) for k,o,s in zip(k_, o_, s_)))
# handle stride, and permute to move reduce to the end
xup = xup.reshape(*prefix, *flatten((k,o,s) for k,o,s in zip(k_, o_, s_)))
xup = xup.slice(slc_prefix + flatten(((0,k), (0,o), (0,1)) for k,o in zip(k_, o_)))
xup = xup.reshape(*prefix, *flatten((k,o) for k,o in zip(k_, o_)))
return xup.permute(*range(len(prefix)), *[len(prefix)+i*2+1 for i in range(len(k_))], *[len(prefix)+i*2 for i in range(len(k_))])
# TODO: once the shapetracker can optimize well, remove this alternative implementation. or not if the CPU implementation doesn't use ShapeTracker
o_ = [(i+(s-k))//s for i,s,k in zip(i_, s_, k_)]
xup = self.slice(slc_prefix + [(0,o*s) for o,s in zip(o_, s_)])
xup = xup.reshape(*prefix, *flatten(((o, s) for o,s in zip(o_, s_))))
xup = xup.slice(slc_prefix + flatten(((0,o), (0,k)) for o,k in zip(o_, k_)))
return xup.permute(*range(len(prefix)), *[len(prefix)+i*2 for i in range(len(k_))], *[len(prefix)+i*2+1 for i in range(len(k_))])
# NOTE: these work for more than 2D
def avg_pool2d(self, kernel_size=(2,2), stride=None): return self._pool(make_pair(kernel_size), stride if stride is not None else kernel_size).mean(axis=tuple(range(0-len(make_pair(kernel_size)), 0)))
def max_pool2d(self, kernel_size=(2,2), stride=None, dilation=1): return self._pool(make_pair(kernel_size), stride if stride is not None else kernel_size, dilation).max(axis=tuple(range(0-len(make_pair(kernel_size)), 0)))
def conv_transpose2d(self, weight:Tensor, bias:Optional[Tensor]=None, groups=1, stride=1, dilation=1, padding=0, output_padding=0) -> Tensor:
HW, trailing = weight.shape[2:], list(range(3, len(weight.shape)+1))
x, w = self, weight.reshape(groups, weight.shape[0]//groups, weight.shape[1], *weight.shape[2:]).permute(0,2,1,*trailing).flip(trailing)
stride = make_pair(stride, len(HW))
if any(s>1 for s in stride):
x = x.reshape(*x.shape[:2], *flatten((k,1) for k in x.shape[2:]))
x = x.pad(((0,0), (0,0), *flatten(((0,0),(0,s-1)) for s in stride)))
x = x.reshape(*x.shape[:2], *[k*s for k,s in zip(x.shape[2::2], stride)])
x = x.shrink(((0,x.shape[0]), (0,x.shape[1]), *[(0,k-(s-1)) for k,s in zip(x.shape[2:], stride)]))
padding = flatten((((k-1)*d-p,(k-1)*d-p+op) for k,d,p,op in reversed(list(zip(HW, make_pair(dilation, len(HW)), make_pair(padding, len(HW)), make_pair(output_padding, len(HW)))))))
return x.conv2d(w.reshape(w.shape[0]*w.shape[1],*w.shape[2:]), groups=groups, bias=bias, dilation=dilation, padding=padding)
wino = int(getenv("WINO", "0"))
def conv2d(self, weight:Tensor, bias:Optional[Tensor]=None, groups=1, stride=1, dilation=1, padding=0) -> Tensor:
(bs,cin_), (cout,cin), HW = self.shape[:2], weight.shape[:2], weight.shape[2:]
assert groups*cin == cin_ and len(self.shape) == len(weight.shape), f"Input Tensor shape {self.shape} does not match the shape of the weights {weight.shape}. ({groups*cin} vs. {cin_})"
if isinstance(padding, (tuple,list)): assert len(padding) == 2*len(HW) or len(padding) == len(HW), f"Expected padding of length {2*len(HW)} or {len(HW)}, but got {len(padding)} for tensor of shape {self.shape}"
padding_ = [padding]*2*len(HW) if isinstance(padding, int) else (padding if len(padding) == 2*len(HW) else [p for p in padding for _ in range(2)][::-1])
# conv2d is a pooling op (with padding)
x = self.pad2d(padding_)._pool(HW, stride, dilation) # (bs, groups*cin, oy, ox, H, W)
rcout, oyx = cout//groups, x.shape[2:-len(HW)]
if not all(x == 3 for x in HW) or stride != 1 or dilation != 1 or not Tensor.wino:
# normal conv
x = x.reshape(bs, groups, cin, 1, *oyx, *HW).expand(bs, groups, cin, rcout, *oyx, *HW).permute(0,1,3,*[4+i for i in range(len(oyx))],2,*[4+len(oyx)+i for i in range(len(HW))])
# conv! broadcasted to (bs, groups, rcout, *oyx, cin, *HW)
ret = (x * weight.reshape(1, groups, rcout, *[1] * len(oyx), cin, *HW)).sum([-1-i for i in range(1+len(oyx))], keepdim=True).reshape(bs, cout, *oyx)
return ret if bias is None else ret.add(bias.reshape(1, -1, *[1] * len(HW)))
# winograd conv 3 kernel f(4x4,3x3) see: http://arxiv.org/abs/1509.09308
def apply_matrix(mat, t, dim=0): return t if dim == len(HW) else Tensor.stack([apply_matrix(mat, sum(mat[i][j] * t[j] for j in range(len(mat[i])) if mat[i][j]), dim=dim+1) for i in range(len(mat))])
HWI, HWO = (6,) * len(HW), (4,) * len(HW) # F(4x4,3x3) winograd tiles
winograd_Bt = [[4, 0, -5, 0, 1, 0], [0, -4, -4, 1, 1, 0], [0, 4, -4, -1, 1, 0], [0, -2, -1, 2, 1, 0], [0, 2, -1, -2, 1, 0], [0, 4, 0, -5, 0, 1]]
winograd_G = [[1/4, 0, 0], [-1/6, -1/6, -1/6], [-1/6, 1/6, -1/6], [1/24, 1/12, 1/6], [1/24, -1/12, 1/6], [0, 0, 1]]
winograd_At = [[1, 1, 1, 1, 1, 0], [0, 1, -1, 2, -2, 0], [0, 1, 1, 4, 4, 0], [0, 1, -1, 8, -8, 1]] # applying At in pre-order almost doubles compilation time
# todo: stride == dilation
# use padding to round up to 4x4 output tiles
d = self.pad2d(sum([[padding_[i*2], padding_[i*2+1] + (-(dim + sum(padding_[i * 2:(i + 1) * 2]) - 2) % 4)] for i, dim in enumerate(self.shape[-len(HW):])], []))._pool(HWI, HWO) # (bs, cin_, tyx, HWI)
d = d.permute(*range(len(d.shape)-len(HW),len(d.shape)), *range(len(d.shape)-len(HW))).contiguous_backward() # move HW to the front: # (HWI, bs, cin_, tyx)
tyx = d.shape[-len(HWI):] # dim of tiling
g = weight.permute(*range(len(weight.shape)-len(HW),len(weight.shape)), *range(len(weight.shape)-len(HW))) # move HW to the front
# compute 6x6 winograd tiles: GgGt, BtdB
gfactors = apply_matrix(winograd_G, g).contiguous().reshape(*HWI, 1, groups, rcout, cin, *([1]*len(tyx))) # (HWI, groups * rcout, cin) -> (HWI, bs=1, groups, rcout, cin, tyx=(1,1))
dfactors = apply_matrix(winograd_Bt, d).contiguous().reshape(*HWI, bs, groups, 1, cin, *tyx) # (HWI, bs, cin_, tyx) -> (HWI, bs, groups, 1 ,cin, *tyx)
ret = apply_matrix(winograd_At, (gfactors * dfactors).sum(axis=-1-len(HW))) # matmul; sum across cin: (HWI, bs, groups, rcout, *tyx); then HWI -> HWO: (HWO, bs, groups, rcout, *tyx)
ret = ret.permute([*range(len(HW), len(ret.shape)-len(HW)), *[i+o for i in range(len(HW)) for o in [len(ret.shape)-len(HW),0]]]) # interleave tyx and HWO: (bs, groups, rcout, oy, HO, ox, WO)
ret = ret.reshape(bs, cout, *[c * HWO[i] for i, c in enumerate(tyx)]).shrink(tuple((0, s) for s in [bs, cout, *oyx])) # merge groups and rcout, tyx and HWO: (bs, groups, cout, *yx), shrink to final
return (ret if bias is None else ret.add(bias.reshape(1, -1, *[1 for _ in range(len(HW))]))).contiguous().contiguous_backward()
def dot(self, w:Tensor) -> Tensor:
n1, n2 = len(self.shape), len(w.shape)
assert n1 != 0 and n2 != 0, f"both arguments to matmul need to be at least 1D, but they are {n1}D and {n2}D"
assert self.shape[-1] == w.shape[-min(n2, 2)], f"Input Tensor shapes {self.shape} and {w.shape} cannot be multiplied ({self.shape[-1]} != {w.shape[-min(n2, 2)]})"
x = self.reshape(*self.shape[0:-1], *[1]*min(n1-1, n2-1, 1), self.shape[-1])
w = w.reshape(*w.shape[0:-2], *[1]*min(n1-1, n2-1, 1), *w.shape[-min(n2, 2):]).transpose(-1, -min(n2, 2))
return (x*w).sum(-1)
def cumsum(self, axis:int=0) -> Tensor: return self.transpose(axis,-1).pad2d((self.shape[axis]-1,0))._pool((self.shape[axis],)).sum(-1).transpose(axis,-1)
# ***** mlops (unary) *****
def __neg__(self): return mlops.Neg.apply(self)
def contiguous(self): return mlops.Contiguous.apply(self)
def contiguous_backward(self): return mlops.ContiguousBackward.apply(self)
def log(self): return mlops.Log.apply(self)
def log2(self): return mlops.Log.apply(self)/math.log(2)
def exp(self): return mlops.Exp.apply(self)
def relu(self): return mlops.Relu.apply(self)
def sigmoid(self): return mlops.Sigmoid.apply(self)
def sin(self): return mlops.Sin.apply(self)
def sqrt(self): return mlops.Sqrt.apply(self)
def rsqrt(self): return (1/self).sqrt()
def cos(self): return ((math.pi/2)-self).sin()
def tan(self): return self.sin() / self.cos()
@staticmethod
def _tri(r:int, c:int, k:int=0, **kwargs) -> Tensor: return Tensor.arange(r, **kwargs).unsqueeze(1).expand(r,c) <= Tensor.arange(-k, c-k, **kwargs).unsqueeze(0).expand(r,c)
def triu(self, k:int=0) -> Tensor: return Tensor._tri(self.shape[-2], self.shape[-1], k=k, dtype=self.dtype, device=self.device).where(self, Tensor.zeros_like(self))
def tril(self, k:int=0) -> Tensor: return Tensor._tri(self.shape[-2], self.shape[-1], k=k+1, dtype=self.dtype, device=self.device).where(Tensor.zeros_like(self), self)
# ***** math functions (unary) *****
def trunc(self: Tensor) -> Tensor: return self.cast(dtypes.int32).contiguous().cast(self.dtype)
def ceil(self: Tensor) -> Tensor: return (self > (b := self.trunc())).where(b+1, b)
def floor(self: Tensor) -> Tensor: return (self < (b := self.trunc())).where(b-1, b)
def square(self): return self*self
def clip(self, min_, max_): return self.maximum(min_).minimum(max_)
def abs(self): return self.relu() + (-self).relu()
def sign(self): return self / (self.abs() + 1e-10)
def reciprocal(self): return 1.0/self
# ***** activation functions (unary) *****
def elu(self, alpha=1.0): return self.relu() - alpha*(1-self.exp()).relu()
def celu(self, alpha=1.0): return self.maximum(0) + (alpha * ((self / alpha).exp() - 1)).minimum(0)
def swish(self): return self * self.sigmoid()
def silu(self): return self.swish() # The SiLU function is also known as the swish function.
def relu6(self): return self.relu() - (self-6).relu()
def hardswish(self): return self * (self+3).relu6() * (1/6)
def tanh(self): return 2.0 * ((2.0 * self).sigmoid()) - 1.0
def hardtanh(self, min_val=-1, max_val=1): return self.clip(min_val, max_val)
def gelu(self): return 0.5 * self * (1 + (self * 0.7978845608 * (1 + 0.044715 * self * self)).tanh())
def quick_gelu(self): return self * (self * 1.702).sigmoid()
def leakyrelu(self, neg_slope=0.01): return self.relu() - (-neg_slope*self).relu()
def mish(self): return self * self.softplus().tanh()
def softplus(self, beta=1): return (1/beta) * (1 + (self*beta).exp()).log()
def softsign(self): return self / (1 + self.abs())
# ***** broadcasted binary mlops *****
def _broadcasted(self, y:Union[Tensor, float], reverse:bool=False) -> Tuple[Tensor, Tensor]:
x: Tensor = self
if not isinstance(y, Tensor):
y = Tensor(y, device=self.device, requires_grad=False, dtype=self.dtype if self.dtype != dtypes.bool and self.dtype.__class__ is not ImageDType else dtypes.float32)
if reverse: x, y = y, x
if (xshape:=x.shape) == (yshape:=y.shape): return (x, y)
shape_delta = len(xshape) - len(yshape)
if shape_delta > 0: y = y.reshape((1,) * shape_delta + yshape)
elif shape_delta < 0: x = x.reshape((1,) * -shape_delta + xshape)
if (xshape:=x.shape) == (yshape:=y.shape): return (x, y)
shape_ret = tuple([max(x, y) for x, y in zip(xshape, yshape)])
if xshape != shape_ret: x = x.expand(shape_ret)
if yshape != shape_ret: y = y.expand(shape_ret)
return (x, y)
def add(self, x:Union[Tensor, float], reverse=False) -> Tensor: return mlops.Add.apply(*self._broadcasted(x, reverse)) if x.__class__ is Tensor or x else self
def sub(self, x:Union[Tensor, float], reverse=False) -> Tensor: return mlops.Sub.apply(*self._broadcasted(x, reverse)) if x.__class__ is Tensor or x else (-self if reverse else self)
def mul(self, x:Union[Tensor, float], reverse=False) -> Tensor:
if x.__class__ is not Tensor and x == 0.0: return mlops.Zero.apply(self)
if x.__class__ is not Tensor and x == -1.0: return -self
return mlops.Mul.apply(*self._broadcasted(x, reverse)) if x.__class__ is Tensor or x != 1.0 else self
def div(self, x:Union[Tensor, float], reverse=False) -> Tensor: return mlops.Div.apply(*self._broadcasted(x, reverse)) if x.__class__ is Tensor or reverse or not x or not dtypes.is_float(self.dtype) else self.mul(1/x)
def pow(self, x:Union[Tensor, float], reverse=False) -> Tensor:
if x.__class__ is not Tensor and not reverse:
# simple pow identities
if x < 0: return (1.0/self).pow(-x)
if x == 3.0: return self*self*self
if x == 2.0: return self*self
if x == 1.0: return self
if x == 0.5: return self.sqrt()
if not isinstance(x, Tensor) and reverse and x > 0: return self.mul(math.log(x)).exp()
ar = self.abs().log().mul(x).exp() if not reverse or isinstance(x, Tensor) else self.mul(math.log(abs(x))).exp()
# correct sign of negative numbers raised to a power (cos has a period of 2pi so we use it here to get the oddness of the power)
sign = (x * math.pi).cos() if isinstance(x, Tensor) else math.cos(x * math.pi) if not reverse else (self * math.pi).cos()
# we only need to correct the sign if the base is negative
base_sign = ((self.sign() if not reverse else x.sign() if isinstance(x, Tensor) else math.copysign(1, x)) - 1) / -2
# we need 0 to be positive so we need to correct base_sign when the base is 0
base_sign = base_sign - (1.5 * (1 - (self.sign().abs() if not reverse else x.sign().abs() if isinstance(x, Tensor) else abs(int(bool(x))))))
# inject nan if the base is negative and the power is not an integer
to_nan = (((x - x.trunc()) * 1e10).abs().clip(0, 1) if isinstance(x, Tensor) else int(bool(x - int(x))) if not reverse else ((self - self.trunc()) * 1e10).abs().clip(0, 1)) * base_sign
inject_nan = ((((-to_nan) * 2) + 1)).log().add(1) if isinstance(to_nan, Tensor) else 1 if not to_nan else float("nan")
return ar.mul(sign * base_sign + (1 - base_sign)).mul(inject_nan)
def matmul(self, x:Tensor, reverse=False) -> Tensor: return x.dot(self) if reverse else self.dot(x)
def maximum(self, x:Union[Tensor, float]) -> Tensor: return (self<x).detach().where(x, (self>x).detach().where(self, (self+x)/2))
def minimum(self, x:Union[Tensor, float]) -> Tensor: return -((-self).maximum(-x))
def where(self:Tensor, input_:Union[Tensor, float], other:Union[Tensor, float]):
x_,y = self._broadcasted(input_)
x,z = x_._broadcasted(other)
return mlops.Where.apply(x, *y._broadcasted(z))
# ***** binary op wrappers (18 wasted lines to make the typechecker happy) *****
# NOTE: __pow__ and friends are broken in mypyc with the ** operator
def __add__(self, x) -> Tensor: return self.add(x)
def __sub__(self, x) -> Tensor: return self.sub(x)
def __mul__(self, x) -> Tensor: return self.mul(x)
def __pow__(self, x) -> Tensor: return self.pow(x)
def __truediv__(self, x) -> Tensor: return self.div(x)
def __matmul__(self, x) -> Tensor: return self.matmul(x)
def __radd__(self, x) -> Tensor: return self.add(x, True)
def __rsub__(self, x) -> Tensor: return self.sub(x, True)
def __rmul__(self, x) -> Tensor: return self.mul(x, True)
def __rpow__(self, x) -> Tensor: return self.pow(x, True)
def __rtruediv__(self, x) -> Tensor: return self.div(x, True)
def __rmatmul__(self, x) -> Tensor: return self.matmul(x, True)
def __iadd__(self, x) -> Tensor: return self.assign(self.add(x))
def __isub__(self, x) -> Tensor: return self.assign(self.sub(x))
def __imul__(self, x) -> Tensor: return self.assign(self.mul(x))
def __ipow__(self, x) -> Tensor: return self.assign(self.pow(x))
def __itruediv__(self, x) -> Tensor: return self.assign(self.div(x))
def __imatmul__(self, x) -> Tensor: return self.assign(self.matmul(x))
def __lt__(self, x) -> Tensor: return mlops.Less.apply(*self._broadcasted(x, False))
def __gt__(self, x) -> Tensor: return mlops.Less.apply(*self._broadcasted(x, True))
def __ge__(self, x) -> Tensor: return 1.0-(self<x)
def __le__(self, x) -> Tensor: return 1.0-(self>x)
def __ne__(self, x) -> Tensor: return (self<x) + (self>x) # type: ignore
def __eq__(self, x) -> Tensor: return 1.0-(self != x) # type: ignore
# ***** functional nn ops *****
def linear(self, weight:Tensor, bias:Optional[Tensor]=None):
x = self.mul(weight) if len(weight.shape) == 1 else self.dot(weight)
return x.add(bias) if bias is not None else x
def sequential(self, ll:List[Callable[[Tensor], Tensor]]): return reduce(lambda x,f: f(x), ll, self)
def layernorm(self, axis=-1, eps:float=1e-5) -> Tensor:
y = (self - self.mean(axis, keepdim=True))
return y.mul((y*y).mean(axis, keepdim=True).add(eps).rsqrt())
def batchnorm(self, weight:Optional[Tensor], bias:Optional[Tensor], mean:Tensor, invstd:Tensor) -> Tensor:
x = (self - mean.reshape(shape=[1, -1, 1, 1]))
if weight: x = x * weight.reshape(shape=[1, -1, 1, 1])
ret = x.mul(invstd.reshape(shape=[1, -1, 1, 1]) if len(invstd.shape) == 1 else invstd)
return (ret + bias.reshape(shape=[1, -1, 1, 1])) if bias else ret
def dropout(self, p=0.5) -> Tensor:
if not Tensor.training or p == 0: return self
mask = (Tensor.rand(*self.shape, requires_grad=False, device=self.device) >= p).cast(dtypes.bool)
return self * mask * (1/(1.0 - p))
def scaled_dot_product_attention(self, key:Tensor, value:Tensor, attn_mask:Optional[Tensor]=None, dropout_p:float=0.0, is_causal:bool=False) -> Tensor:
if is_causal: attn_mask = Tensor.ones(self.shape[-2], key.shape[-2], requires_grad=False, device=self.device).tril(0).cast(dtypes.bool)
if attn_mask is not None and attn_mask.dtype == dtypes.bool: attn_mask = (attn_mask == 0).where(-float("inf"), attn_mask)
return (self @ key.transpose(-2,-1) / math.sqrt(self.shape[-1]) + attn_mask).softmax(-1).dropout(dropout_p) @ value
def sparse_categorical_crossentropy(self, Y, ignore_index=-1) -> Tensor:
loss_mask = Y != ignore_index
y_counter = Tensor.arange(self.shape[-1], dtype=dtypes.int32, requires_grad=False, device=self.device).unsqueeze(0).expand(Y.numel(), self.shape[-1])
y = ((y_counter == Y.flatten().reshape(-1, 1)).where(-1.0, 0) * loss_mask.reshape(-1, 1)).reshape(*Y.shape, self.shape[-1])
return self.log_softmax().mul(y).sum() / loss_mask.sum()
# ***** cast ops *****
def cast(self, dtype:DType) -> Tensor: return mlops.Cast.apply(self, dtype=dtype) if self.dtype != dtype else self
def bitcast(self, dtype:DType) -> Tensor:
assert self.dtype.itemsize == dtype.itemsize, "can't bitcast mismatched dtype itemsizes"
return mlops.Cast.apply(self, dtype=dtype, bitcast=True) if self.dtype != dtype else self
def float(self) -> Tensor: return self.cast(dtypes.float32)
def half(self) -> Tensor: return self.cast(dtypes.float16)
# ***** convenience stuff *****
@property
def ndim(self) -> int: return len(self.shape)
def numel(self) -> int: return math.prod(self.shape)
def element_size(self) -> int: return self.dtype.itemsize
def nbytes(self) -> int: return self.numel() * self.element_size()
def is_floating_point(self) -> bool: return dtypes.is_float(self.dtype)
# register functions to move between devices
for device in Device._buffers:
setattr(Tensor, f"{device.lower()}", partialmethod(Tensor.to, device))
setattr(Tensor, f"{device.lower()}_", partialmethod(Tensor.to_, device))
if IMAGE:
# if IMAGE>0 we install these replacement functions in Tensor (hack!)
from tinygrad.nn.image import image_conv2d, image_dot
setattr(Tensor, "conv2d", image_conv2d)
setattr(Tensor, "dot", image_dot)