diff --git a/docs/book/README.md b/docs/book/README.md index 118b599..c5ff495 100644 --- a/docs/book/README.md +++ b/docs/book/README.md @@ -34,8 +34,8 @@ ML observability course is organized into six modules. You can follow the comple [Module 1. Introduction to ML monitoring and observability](ml-observability-course/module-1-introduction/readme.md). {% endcontent-ref %} -{% content-ref url="ml-observability-course/module-2-ml-monitoring-metrics.md" %} -[Module 2. ML monitoring metrics: model quality, data quality, data drift](ml-observability-course/module-2-ml-monitoring-metrics.md). +{% content-ref url="ml-observability-course/module-2-ml-monitoring-metrics/readme.md" %} +[Module 2. ML monitoring metrics: model quality, data quality, data drift](ml-observability-course/module-2-ml-monitoring-metrics/readme.md). {% endcontent-ref %} {% content-ref url="ml-observability-course/module-3-ml-monitoring-for-unstructured-data.md" %} diff --git a/docs/book/SUMMARY.md b/docs/book/SUMMARY.md index f41e3b6..a96ba4a 100644 --- a/docs/book/SUMMARY.md +++ b/docs/book/SUMMARY.md @@ -13,11 +13,11 @@ * [Module 2: ML monitoring metrics](ml-observability-course/module-2-ml-monitoring-metrics/readme.md) * [2.1. How to evaluate ML model quality](ml-observability-course/module-2-ml-monitoring-metrics/evaluate-ml-model-quality.md) * [2.2. Overview of ML quality metrics. Classification, regression, ranking](ml-observability-course/module-2-ml-monitoring-metrics/ml-quality-metrics-classification-regression-ranking.md) - * [2.3. Evaluating ML model quality CODE PRACTICE](ml-observability-course/module-2-ml-monitoring-metrics/ml-model-quality-code-practice.md) + * [2.3. Evaluating ML model quality [CODE PRACTICE]](ml-observability-course/module-2-ml-monitoring-metrics/ml-model-quality-code-practice.md) * [2.4. Data quality in machine learning](ml-observability-course/module-2-ml-monitoring-metrics/data-quality-in-ml.md) - * [2.5. Data quality in ML CODE PRACTICE](ml-observability-course/module-2-ml-monitoring-metrics/data-quality-code-practice.md) + * [2.5. Data quality in ML [CODE PRACTICE]](ml-observability-course/module-2-ml-monitoring-metrics/data-quality-code-practice.md) * [2.6. Data and prediction drift in ML](ml-observability-course/module-2-ml-monitoring-metrics/data-prediction-drift-in-ml.md) - * [2.8. Data and prediction drift in ML CODE PRACTICE](ml-observability-course/module-2-ml-monitoring-metrics/data-prediction-drift-code-practice.md) + * [2.8. Data and prediction drift in ML [CODE PRACTICE]](ml-observability-course/module-2-ml-monitoring-metrics/data-prediction-drift-code-practice.md) * [Module 3: ML monitoring for unstructured data](ml-observability-course/module-3-ml-monitoring-for-unstructured-data.md) * [Module 4: Designing effective ML monitoring](ml-observability-course/module-4-designing-effective-ml-monitoring.md) * [Module 5: ML pipelines validation and testing](ml-observability-course/module-5-ml-pipelines-validation-and-testing.md)