From e1245a1eee38ea59ccf7a9a4b195ca9172e53d90 Mon Sep 17 00:00:00 2001 From: Sword York Date: Sat, 10 Dec 2016 16:30:42 +0800 Subject: [PATCH] new release Former-commit-id: e26c5ac74b5f6b230ceee97bdb6d0ec56c2059d4 --- README.md | 4 ++-- deep_learning_research.tex | 16 ++++++++-------- 2 files changed, 10 insertions(+), 10 deletions(-) diff --git a/README.md b/README.md index 9d1e140..809a102 100644 --- a/README.md +++ b/README.md @@ -23,7 +23,7 @@ 面向的读者 -------------------- -请直接下载[PDF](https://github.com/exacity/deeplearningbook-chinese/releases/download/v0.1.1-alpha/dlbook_cn_v0.1.1-alpha.pdf)阅读(PDF 12月9日已更新)。 +请直接下载[PDF](https://github.com/exacity/deeplearningbook-chinese/releases/download/v0.1.2-alpha/dlbook_cn_v0.1.2-alpha.pdf)阅读(PDF 12月9日已更新)。 这一版读起来肯定费劲,我们建议英文好的或者研究者直接读原版。 这一版面向的读者是英语不好,急于想入门深度学习的同学。或者希望帮忙校对的各路大哥也可以读读,只要不嫌弃。 @@ -36,7 +36,7 @@ - 由于版权问题,我们不能将图片和bib上传,请见谅。 - Due to copyright issues, we would not upload figures and the bib file. - 可用于学习研究目的,不得用于任何商业行为。谢谢! - - 大约每周release一个版本,[PDF](https://github.com/exacity/deeplearningbook-chinese/releases/download/v0.1.1-alpha/dlbook_cn_v0.1.1-alpha.pdf)文件每天更新。 + - 大约每周release一个版本,[PDF](https://github.com/exacity/deeplearningbook-chinese/releases/download/v0.1.2-alpha/dlbook_cn_v0.1.2-alpha.pdf)文件每天更新。 - 大家不要watch啊,邮箱可能会炸。 - **先不要打印,这一版不值得打印,浪费钱,** 给我们一个月时间,我们给出我们自己满意的版本。打印版仅供学习参考和找茬纠错,正式出版后,希望大家多多支持纸质正版书籍。 diff --git a/deep_learning_research.tex b/deep_learning_research.tex index d15ef2b..890ccdc 100644 --- a/deep_learning_research.tex +++ b/deep_learning_research.tex @@ -3,11 +3,11 @@ \part{深度学习研究} \label{part:deep_learning_research} -%\input{Chapter13/linear_factor_models.tex} -%\input{Chapter14/autoencoders.tex} -%\input{Chapter15/representation_learning.tex} -%\input{Chapter16/structured_probabilistic_modelling.tex} -%\input{Chapter17/monte_carlo_methods.tex} -%\input{Chapter18/confronting_the_partition_function.tex} -%\input{Chapter19/approximate_inference.tex} -\input{Chapter20/deep_generative_models.tex} +\input{Chapter13/linear_factor_models.tex} +\input{Chapter14/autoencoders.tex} +\input{Chapter15/representation_learning.tex} +\input{Chapter16/structured_probabilistic_modelling.tex} +\input{Chapter17/monte_carlo_methods.tex} +\input{Chapter18/confronting_the_partition_function.tex} +\input{Chapter19/approximate_inference.tex} +%\input{Chapter20/deep_generative_models.tex}