This repository has been archived by the owner on Nov 2, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathtokenizer.lua
351 lines (315 loc) · 12 KB
/
tokenizer.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
--
-- Copyright (c) 2015, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- Author: Marc'Aurelio Ranzato <[email protected]>
-- Sumit Chopra <[email protected]>
-- Michael Auli <[email protected]>
-- Wojciech Zaremba <[email protected]>
--
-- Script that tokenizes the dataset and groups together samples with the
-- same source sentence length into the same bin.
require('math')
local tds = require('tds')
local pl = require('pl.import_into')()
local wordTokenizer = {}
local function cleanup_sentence(s)
s = s:gsub("\t", "")
-- remove leading and following white spaces
s = s:gsub("^%s+", ""):gsub("%s+$", "")
-- convert multiple spaces into a single space: this is needed to
-- make the following pl.utils.split() function return only words
-- and not white spaes
s = s:gsub("%s+", " ")
return s
end
function wordTokenizer.build_dictionary(filename, threshold)
local kMaxDictSize = 5000000
local dict = {}
dict.symbol_to_index = {} -- string -> id
dict.index_to_symbol = {} -- id -> string
dict.index_to_freq = torch.Tensor(kMaxDictSize) -- id ->freq
-- first add the <unk> token and the </s> token to the dictionary
dict.symbol_to_index['<unk>'] = 1
dict.index_to_symbol[1] = '<unk>'
dict.index_to_freq[1] = 0
dict.symbol_to_index['</s>'] = 2
dict.index_to_symbol[2] = '</s>'
dict.index_to_freq[2] = 0
dict.separatorIndex = dict.symbol_to_index['</s>']
-- now start counting the words
local nr_words = 2 -- number of unique words
local tot_nr_words = 0 -- total number of words in corpus
local cnt = 0
-- local inpath = paths.concat(config.root_path, filename)
print("[ Reading from " .. filename .. ' ]')
for s in io.lines(filename) do
-- remove all the tabs in the string
s = s:gsub("\t", "")
-- convert multiple spaces into a single space: this is needed to
-- make the following pl.utils.split() function return only words
-- and not white spaes
s = s:gsub("%s+", " ")
local words = pl.utils.split(s, ' ')
for i, word in pairs(words) do
if word ~= "" then -- somehow the first token is always ""
if dict.symbol_to_index[word] == nil then
nr_words = nr_words + 1
dict.symbol_to_index[word] = nr_words
dict.index_to_symbol[nr_words] = word
dict.index_to_freq[nr_words] = 1
else
local indx = dict.symbol_to_index[word]
dict.index_to_freq[indx] = dict.index_to_freq[indx] + 1
end
cnt = cnt + 1
end
end
-- count </s> after every line
local indx = dict.symbol_to_index["</s>"]
dict.index_to_freq[indx] = dict.index_to_freq[indx] + 1
cnt = cnt + 1
end
dict.index_to_freq:resize(nr_words)
tot_nr_words = dict.index_to_freq:sum()
print("[ Done making the dictionary. ]")
print("Training corpus statistics")
print("Unique words: " .. nr_words)
print("Total words " .. tot_nr_words)
dict.tot_nr_words = tot_nr_words
-- map rare words to special token and skip corresponding indices
-- if the specified threshold is greater than 0
local removed = 0
local net_nwords = 1
if threshold > 0 then
for i = 2, dict.index_to_freq:size(1) do
local word = dict.index_to_symbol[i]
if dict.index_to_freq[i] < threshold then
dict.index_to_freq[1] =
dict.index_to_freq[1] + dict.index_to_freq[i]
dict.index_to_freq[i] = 0
dict.symbol_to_index[word] = 1
removed = removed + 1
else
-- re-adjust the indices to make them continuous
net_nwords = net_nwords + 1
dict.index_to_freq[net_nwords] = dict.index_to_freq[i]
dict.symbol_to_index[word] = net_nwords
dict.index_to_symbol[net_nwords] = word
end
end
print('[ Removed ' .. removed .. ' rare words. ]')
-- print('[ Effective number of words: ' .. net_nwords .. ' ]')
dict.index_to_freq:resize(net_nwords)
else
net_nwords = nr_words
end
print('[ There are effectively ' .. net_nwords .. ' words in the corpus. ]')
dict.nwords = net_nwords
return dict
end
-- map source sentence words to id vector
local function get_source_indices(sent, dict)
-- remove extra white spaces
local clean_sent = cleanup_sentence(sent)
local words = pl.utils.split(clean_sent, ' ')
local nwords
nwords = #words + 1
local indices = torch.LongTensor(nwords)
local cnt = 0
local nsrc_unk = 0
local unk_idx = dict.symbol_to_index['<unk>']
local eos_idx = dict.symbol_to_index['</s>']
for i, word in pairs(words) do
if word ~= "" then
local wid = dict.symbol_to_index[word]
cnt = cnt + 1
if wid == nil then
indices[cnt] = unk_idx
nsrc_unk = nsrc_unk + 1
else
indices[cnt] = wid
if wid == unk_idx then
nsrc_unk = nsrc_unk + 1
end
end
end
end
-- add an extra </s> at the end
cnt = cnt + 1
indices[cnt] = eos_idx
return indices, indices:size(1), nsrc_unk
end
-- map target sentence words to id vector
local function get_target_indices(sent, dict, sidx)
-- remove extra white spaces
local clean_sent = cleanup_sentence(sent)
local words = pl.utils.split(clean_sent, ' ')
local nwords
nwords = #words + 1
local indices = torch.LongTensor(nwords, 3)
local cnt = 1
local ntgt_unk = 0
local unk_idx = dict.symbol_to_index['<unk>']
-- add </s> at the beginning of the sentence
indices[cnt][1] = dict.symbol_to_index["</s>"]
indices[cnt][2] = sidx
indices[cnt][3] = cnt
for i, word in pairs(words) do
if word ~= "" then
local wid = dict.symbol_to_index[word]
if wid == nil then
cnt = cnt + 1
indices[cnt][1] = unk_idx
indices[cnt][2] = sidx
indices[cnt][3] = cnt
ntgt_unk = ntgt_unk + 1
else
cnt = cnt + 1
indices[cnt][1] = wid
indices[cnt][2] = sidx
indices[cnt][3] = cnt
if wid == unk_idx then
ntgt_unk = ntgt_unk + 1
end
end
end
end
return indices, indices:size(1), ntgt_unk
end
function wordTokenizer.tokenize(config, dtype, tdict, sdict, shuff)
local tfile = paths.concat(config.root_path, config.targets[dtype])
local sfile = paths.concat(config.root_path, config.sources[dtype])
local tf = torch.DiskFile(tfile, 'r')
local sf = torch.DiskFile(sfile, 'r')
tf:quiet()
sf:quiet()
local source_sent_data = tds.Vec()
local source_sent_len = {}
local source_sent_ctr = 0
local source_sent_nwords = 0
local target_sent_data = tds.Vec()
local target_sent_len = {}
local target_sent_ctr = 0
local target_sent_nwords = 0
local max_target_len = 0 -- keep track of longest target sen
local target_sen, source_sen
target_sen = tf:readString('*l')
source_sen = sf:readString('*l')
while target_sen ~= '' and source_sen ~= '' do
local tclean_sent = cleanup_sentence(target_sen)
local twords = pl.utils.split(tclean_sent, ' ')
local sclean_sent = cleanup_sentence(source_sen)
local swords = pl.utils.split(sclean_sent, ' ')
source_sent_ctr = source_sent_ctr + 1
source_sent_data[source_sent_ctr] = sclean_sent
target_sent_ctr = target_sent_ctr + 1
target_sent_data[target_sent_ctr] = tclean_sent
-- add an extra </s> at the end
local nwords = #swords + 1
source_sent_len[source_sent_ctr] = nwords
source_sent_nwords = source_sent_nwords + nwords
nwords = #twords + 1 -- add an extra </s> at the end
target_sent_len[target_sent_ctr] = nwords
target_sent_nwords = target_sent_nwords + nwords
max_target_len = math.max(nwords, max_target_len)
target_sen = tf:readString('*l')
source_sen = sf:readString('*l')
end
tf:close()
sf:close()
assert(source_sent_ctr == target_sent_ctr)
print('Number of sentences: ' .. target_sent_ctr)
print('Max target sentence length: ' .. max_target_len)
-- create the bins and their info
local bins = {} -- each element has size, targets, sources, toffset, soffset
bins.data = {}
bins.nbins = 0
-- loop over the source sentences to get bin sizes
for i = 1, source_sent_ctr do
local slen = source_sent_len[i]
if bins.data[slen] == nil then
bins.nbins = bins.nbins + 1
bins.data[slen] = {}
bins.data[slen].size = 1
else
bins.data[slen].size = bins.data[slen].size + 1
end
end
-- populate the bins to store the actual source and target word indices
for bin_dim, bin in pairs(bins.data) do
local bin_size = bin.size
local target_tensor_len = max_target_len * bin_size
bin.sources = torch.LongTensor(bin_size, bin_dim):zero()
bin.soffset = 0
bin.targets = torch.LongTensor(target_tensor_len, 3):zero()
bin.toffset = 1
end
collectgarbage()
collectgarbage()
local perm_vec
-- get the permutation vector over target sentences
if shuff == true then
print('-- shuffling the data')
perm_vec = torch.randperm(target_sent_ctr)
else
print('-- not shuffling the data')
perm_vec = torch.range(1, target_sent_ctr)
end
collectgarbage()
collectgarbage()
print('-- Populate bins')
-- now loop over the sentences (source and target) and populate the bins
local nsrc_unk = 0
local ntgt_unk = 0
local nsrc = 0
local ntgt = 0
for i = 1, target_sent_ctr do
local idx = perm_vec[i]
if i % 10000 == 0 then
collectgarbage()
collectgarbage()
end
local curr_source_sent = source_sent_data[idx]
local curr_target_sent = target_sent_data[idx]
local bnum = source_sent_len[idx]
local curr_bin = bins.data[bnum]
curr_bin.soffset = curr_bin.soffset + 1
local curr_source_ids, ssize, nus =
get_source_indices(curr_source_sent, sdict)
local curr_target_ids, tsize, nut =
get_target_indices(curr_target_sent, tdict, curr_bin.soffset)
nsrc = nsrc + ssize
ntgt = ntgt + tsize
nsrc_unk = nsrc_unk + nus
ntgt_unk = ntgt_unk + nut
-- load the indices into appropriate bins
curr_bin.sources:select(1,curr_bin.soffset):copy(curr_source_ids)
curr_bin.targets:narrow(1,curr_bin.toffset,tsize):copy(curr_target_ids)
curr_bin.toffset = curr_bin.toffset + tsize
end
collectgarbage()
collectgarbage()
-- resize the bins.targets: yet to be done
for bin_dim, bin in pairs(bins.data) do
bin.targets = bin.targets:narrow(1,1,bin.toffset-1):clone()
end
-- finally collect all the binned source and target sentences
local sources = {}
local targets = {}
for bin_dim, bin in pairs(bins.data) do
sources[bin_dim] = bin.sources
targets[bin_dim] = bin.targets
end
-- note unk rates affected by seos
print(string.format('nlines: %d, ntokens (src: %d, tgt: %d); ' ..
'UNK (src: %.2f%%, tgt: %.2f%%)',
target_sent_ctr, nsrc, ntgt, nsrc_unk/nsrc*100,
ntgt_unk/ntgt*100))
return targets, sources
end
return wordTokenizer