diff --git a/examples/mms/lid_rerank/README.md b/examples/mms/lid_rerank/README.md index 3fa599f08a..977f15de13 100644 --- a/examples/mms/lid_rerank/README.md +++ b/examples/mms/lid_rerank/README.md @@ -3,7 +3,7 @@ This project provides N-best re-ranking, a simple inference procedure, for impro The workflow is as follows: 1) run LID+ASR inference (MMS and Whisper are supported), 2) compute external re-ranking features, 3) tune feature coefficients on dev set, and 4) apply on test set. -For more information about our method, please refer to the paper: "Improving Multilingual ASR in the Wild Using Simple N-best Re-ranking". +For more information about our method, please refer to the paper: ["Improving Multilingual ASR in the Wild Using Simple N-best Re-ranking"](https://arxiv.org/abs/2409.18428). ## 1) Commands to Run LID+ASR Inference @@ -112,4 +112,4 @@ The re-ranked LID and ASR will be in `"path/to/rerank/results"/reranked_1best_li journal={arXiv}, year={2024} } -``` \ No newline at end of file +``` diff --git a/examples/mms/lid_rerank/mms/prep_wav_list.py b/examples/mms/lid_rerank/mms/prep_wav_list.py index 725274fcbe..455ee25ec0 100755 --- a/examples/mms/lid_rerank/mms/prep_wav_list.py +++ b/examples/mms/lid_rerank/mms/prep_wav_list.py @@ -4,6 +4,7 @@ if __name__ == "__main__": parser = argparse.ArgumentParser(description='Example argument parser') parser.add_argument('--src', type=str) + parser.add_argument('--dst', type=str) args = parser.parse_args() wavs = [x.strip() for x in open(args.src, "r").readlines()]