Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Installation overwrites PyTorch version on Jetson AGX Orin #1193

Open
Andymulb opened this issue Jan 13, 2025 · 1 comment
Open

Installation overwrites PyTorch version on Jetson AGX Orin #1193

Andymulb opened this issue Jan 13, 2025 · 1 comment

Comments

@Andymulb
Copy link

🐛 Bug

Hi, I just tried to install xformers on an NVIDIA Jetson AGX Orin with Ubuntu 22.04, Jetpack 6.1 and CUDA 12.6. It requires the specific PyTorch version 2.5.0a0+872d972e41.nv24.08. I'm building xformers from source as described in the README. However, after the build process finished, it uninstalls PyTorch 2.5.0a0+872d972e41.nv24.08 and installs PyTorch 2.5.1.

python -m xformers.info
WARNING[XFORMERS]: xFormers can't load C++/CUDA extensions. xFormers was built for:
    PyTorch 2.5.0a0+872d972e41.nv24.08 with CUDA 1206 (you have 2.5.1)
    Python  3.10.16 (you have 3.10.16)
  Please reinstall xformers (see https://github.com/facebookresearch/xformers#installing-xformers)
  Memory-efficient attention, SwiGLU, sparse and more won't be available.
  Set XFORMERS_MORE_DETAILS=1 for more details
xFormers 0.0.30+6440945.d20250113
memory_efficient_attention.ckF:                    unavailable
memory_efficient_attention.ckB:                    unavailable
memory_efficient_attention.ck_decoderF:            unavailable
memory_efficient_attention.ck_splitKF:             unavailable
memory_efficient_attention.cutlassF-pt:            available
memory_efficient_attention.cutlassB-pt:            available
[email protected]:         available
[email protected]:         available
[email protected]:             unavailable
[email protected]:             unavailable
memory_efficient_attention.triton_splitKF:         available
indexing.scaled_index_addF:                        unavailable
indexing.scaled_index_addB:                        unavailable
indexing.index_select:                             unavailable
sequence_parallel_fused.write_values:              unavailable
sequence_parallel_fused.wait_values:               unavailable
sequence_parallel_fused.cuda_memset_32b_async:     unavailable
sp24.sparse24_sparsify_both_ways:                  unavailable
sp24.sparse24_apply:                               unavailable
sp24.sparse24_apply_dense_output:                  unavailable
sp24._sparse24_gemm:                               unavailable
[email protected]:                 available
[email protected]:                        available
swiglu.dual_gemm_silu:                             unavailable
swiglu.gemm_fused_operand_sum:                     unavailable
swiglu.fused.p.cpp:                                not built
is_triton_available:                               False
pytorch.version:                                   2.5.1
pytorch.cuda:                                      not available
dcgm_profiler:                                     unavailable
build.info:                                        available
build.cuda_version:                                1206
build.hip_version:                                 None
build.python_version:                              3.10.16
build.torch_version:                               2.5.0a0+872d972e41.nv24.08
build.env.TORCH_CUDA_ARCH_LIST:                    8.7
build.env.PYTORCH_ROCM_ARCH:                       None
build.env.XFORMERS_BUILD_TYPE:                     None
build.env.XFORMERS_ENABLE_DEBUG_ASSERTIONS:        None
build.env.NVCC_FLAGS:                              None
build.env.XFORMERS_PACKAGE_FROM:                   None
source.privacy:                                    open source

Environment

Collecting environment information...
PyTorch version: 2.5.0a0+872d972e41.nv24.08
Is debug build: False
CUDA used to build PyTorch: 12.6
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (aarch64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.31.4
Libc version: glibc-2.35

Python version: 3.10.16 (main, Dec 11 2024, 16:18:56) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.148-tegra-aarch64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.6.85
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: Orin (nvgpu)
Nvidia driver version: 540.4.0
cuDNN version: Probably one of the following:
/usr/lib/aarch64-linux-gnu/libcudnn.so.9.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_adv.so.9.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_cnn.so.9.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_engines_precompiled.so.9.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_graph.so.9.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_heuristic.so.9.6.0
/usr/lib/aarch64-linux-gnu/libcudnn_ops.so.9.6.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       aarch64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
CPU(s):                             12
On-line CPU(s) list:                0-11
Vendor ID:                          ARM
Model name:                         Cortex-A78AE
Model:                              1
Thread(s) per core:                 1
Core(s) per cluster:                4
Socket(s):                          -
Cluster(s):                         3
Stepping:                           r0p1
CPU max MHz:                        2201,6001
CPU min MHz:                        115,2000
BogoMIPS:                           62.50
Flags:                              fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp uscat ilrcpc flagm paca pacg
L1d cache:                          768 KiB (12 instances)
L1i cache:                          768 KiB (12 instances)
L2 cache:                           3 MiB (12 instances)
L3 cache:                           6 MiB (3 instances)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-11
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:           Mitigation; __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; CSV2, but not BHB
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] torch==2.5.0a0+872d972e41.nv24.8
[pip3] torchaudio==0.13.1
[pip3] torchvision==0.14.1
[pip3] torchviz==0.0.2
[pip3] triton==3.2.0+git7cc6799d
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] torch                     2.5.0a0+872d972e41.nv24.8          pypi_0    pypi
[conda] torchvision               0.14.1                   pypi_0    pypi
[conda] triton                    3.2.0+git7cc6799d          pypi_0    pypi
  • PyTorch Version: 2.5.0a0+872d972e41.nv24.08
  • OS: Ubuntu 22.04
  • How you installed PyTorch:
pip install numpy==1.26.4
export TORCH_INSTALL=https://developer.download.nvidia.com/compute/redist/jp/v61/pytorch/torch-2.5.0a0+872d972e41.nv24.08.17622132-cp310-cp310-linux_aarch64.whl
pip install $TORCH_INSTALL torchvision torchaudio
nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Tue_Oct_29_23:53:06_PDT_2024
Cuda compilation tools, release 12.6, V12.6.85
Build cuda_12.6.r12.6/compiler.35059454_0
  • GPU models and configuration: Nvidia Jetson AGX Orin 64GB
@johnnynunez
Copy link

johnnynunez commented Jan 22, 2025

pip install pytorch xformers --index-url=https://pypi.jetson-ai-lab.dev/jp6/cu126

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants