-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
97 lines (77 loc) · 3.25 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import cv2
import os
import numpy as np
import joblib
import streamlit as st
from datetime import datetime
from PIL import Image
import pandas as pd # Import pandas untuk menangani data absensi
# 1. Load Model yang Sudah Dilatih
model_path = "face_recognition_model.pkl"
model = joblib.load(model_path)
# Path Dataset untuk Referensi
dataset_dir = "dataset"
labels = [folder for folder in os.listdir(dataset_dir) if os.path.isdir(os.path.join(dataset_dir, folder))]
# Fungsi untuk mengenali wajah
def recognize_face(image, model, labels):
image = cv2.resize(image, (100, 100)).flatten() # Resize ke ukuran sama seperti saat training
prediction = model.predict([image])[0]
confidence = max(model.predict_proba([image])[0]) # Confidence score
return prediction, confidence
# 2. Membuka Kamera di Streamlit
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# 3. File Absensi
absensi_file = "absensi.csv"
# Inisialisasi absensi
if not os.path.exists(absensi_file):
with open(absensi_file, "w") as f:
f.write("Waktu,Nama\n")
# Memeriksa apakah file absensi kosong, jika ya, buat DataFrame kosong
if os.stat(absensi_file).st_size == 0:
absensi_df = pd.DataFrame(columns=["Waktu", "Nama"])
else:
# Membaca absensi ke dalam DataFrame
absensi_df = pd.read_csv(absensi_file)
# Streamlit layout
st.title("Sistem Absensi Berbasis Pengenalan Wajah")
col1, col2 = st.columns(2)
with col1:
st.header("Scan Wajah")
scan_placeholder = st.empty()
with col2:
st.header("Daftar Absensi")
absensi_placeholder = st.empty()
# Mulai kamera untuk scanning wajah
while True:
ret, frame = cap.read()
if not ret:
st.warning("Tidak dapat mengakses kamera")
break
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
face = gray[y:y + h, x:x + w]
# Prediksi wajah
prediction, confidence = recognize_face(face, model, labels)
if confidence > 0.8: # Ambang batas confidence
name = prediction
if name not in absensi_df['Nama'].values:
# Catat kehadiran
waktu = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_entry = pd.DataFrame([[waktu, name]], columns=["Waktu", "Nama"])
absensi_df = pd.concat([absensi_df, new_entry], ignore_index=True)
absensi_df.to_csv(absensi_file, index=False) # Simpan ke file
st.success(f"Absen berhasil untuk {name} pada {waktu}")
cv2.putText(frame, f"{name} ({confidence:.2f})", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
else:
cv2.putText(frame, "Unknown", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
# Konversi frame menjadi format yang dapat ditampilkan di Streamlit
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = Image.fromarray(frame_rgb)
scan_placeholder.image(img)
# Menampilkan daftar absensi dalam bentuk tabel
absensi_placeholder.table(absensi_df)
cap.release()
cv2.destroyAllWindows()