-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreader_alt.py
185 lines (144 loc) · 5.86 KB
/
reader_alt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# This file was modified by Gregory Luppescu and Francisco Romero for the CS 224n project.
"""Utilities for parsing Gutenberg text files."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import sys
from scipy import stats
import numpy as np
import tensorflow as tf
glovePath = "glove.42B.300d.txt"
# trainFile = "ptb.train.txt"
trainFile = "guten_train.txt"
# devFile = "ptb.valid.txt"
devFile = "guten_dev.txt"
# testFile = "ptb.test.txt"
testFile = "guten_test.txt"
def _read_words(filename):
# Words have labels attached, so we must remove the labels from them.
allLabels = []
with tf.gfile.GFile(filename, "r") as f:
allWords = f.read().decode("utf-8").replace("\n", "<eos>").split()
for i in range(len(allWords)):
label = int((allWords[i])[0])
allWords[i] = (allWords[i])[1:]
allLabels.append(label)
return allWords, allLabels
def _build_vocab(filename):
data, _ = _read_words(filename)
counter = collections.Counter(data)
count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*count_pairs))
word_to_id = dict(zip(words, range(len(words))))
return word_to_id
def _file_to_word_ids(filename, word_to_id):
data, labels = _read_words(filename)
# return [word_to_id[word] for word in data if word in word_to_id], labels
new_data = []
new_labels = []
for w,l in zip(data, labels):
if w in word_to_id:
new_data.append(word_to_id[w])
new_labels.append(l)
return new_data, new_labels
def build_embedding(word_to_id):
dimSize = glovePath.split('.')[-2]
dimSize = int(dimSize.strip('d'))
embedding_matrix = np.random.uniform(size=(len(word_to_id) + 10, dimSize), \
low=-1.0, high=1.9)
with open(glovePath) as text:
for line in text:
vector_components = line.split()
word = vector_components[0]
word_vector = np.zeros((dimSize,))
if word in word_to_id:
for i in range(1,len(vector_components)):
word_vector[i-1] = float(vector_components[i])
embedding_matrix[word_to_id[word]] = word_vector
return embedding_matrix
def guten_raw_data(data_path=None):
"""Load raw dataset
Args:
data_path: string path to the directory where simple-examples.tgz has
been extracted.
Returns:
tuple (train_data, valid_data, test_data, vocabulary)
where each of the data objects can be passed to GutenIterator.
"""
train_path = os.path.join(data_path, trainFile)
valid_path = os.path.join(data_path, devFile)
test_path = os.path.join(data_path, testFile)
word_to_id = _build_vocab(train_path)
train_data, train_labels = _file_to_word_ids(train_path, word_to_id)
valid_data, valid_labels = _file_to_word_ids(valid_path, word_to_id)
test_data, test_labels = _file_to_word_ids(test_path, word_to_id)
vocabulary = len(word_to_id)
embedding = build_embedding(word_to_id)
return train_data, valid_data, test_data, vocabulary, embedding, \
train_labels, valid_labels, test_labels
def guten_producer(raw_data, raw_labels, batch_size, num_steps, name=None):
"""Iterate on the raw data.
This chunks up raw_data into batches of examples and returns Tensors that
are drawn from these batches.
Args:
raw_data: one of the raw data outputs from guten_raw_data.
batch_size: int, the batch size.
num_steps: int, the number of unrolls.
name: the name of this operation (optional).
Returns:
A pair of Tensors, each shaped [batch_size, num_steps]. The second element
of the tuple is the same data time-shifted to the right by one.
Raises:
tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
"""
with tf.name_scope(name, "PGProducer", [raw_data, raw_labels, batch_size, \
num_steps]):
b_l = len(raw_data) // batch_size
max_index = np.max(raw_data)
print(len(raw_labels), b_l * batch_size)
new_raw_data = []
curr_mod = []
for i in range(b_l * batch_size):
curr_mod.append(raw_labels[i])
if i % (num_steps+1) == (num_steps):
new_mode = stats.mode(curr_mod)
new_mode = new_mode[0][0]
new_raw_data.append(max_index + new_mode + 1)
new_raw_data.extend(raw_data[i - (num_steps):i])
curr_mod = []
raw_data = tf.convert_to_tensor(new_raw_data, name="raw_data", \
dtype=tf.int32)
data_len = tf.size(raw_data)
batch_len = data_len // batch_size
data = tf.reshape(raw_data[0 : batch_size * batch_len],
[batch_size, batch_len])
epoch_size = (batch_len - 1) // num_steps
assertion = tf.assert_positive(
epoch_size,
message="epoch_size == 0, decrease batch_size or num_steps")
with tf.control_dependencies([assertion]):
epoch_size = tf.identity(epoch_size, name="epoch_size")
i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
x = tf.strided_slice(data, [0, i * num_steps],
[batch_size, (i + 1) * num_steps])
x.set_shape([batch_size, num_steps])
y = tf.strided_slice(data, [0, i * num_steps + 1],
[batch_size, (i + 1) * num_steps + 1])
y.set_shape([batch_size, num_steps])
return x, y