-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathargparser.py
225 lines (200 loc) · 11.6 KB
/
argparser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import argparse
import task
from methods import methods
def modify_command_options(opts):
if not opts.visualize:
opts.sample_num = 0
if opts.batch_size == -1:
if opts.step == 0:
opts.batch_size = 24
else:
opts.batch_size = 10
if opts.backbone is None:
opts.backbone = 'resnet101'
if opts.method == "PIFS":
opts.method = "WI"
opts.norm_act = "iabr"
opts.loss_kd = 10
opts.dist_warm_start = True
elif opts.method == 'LWF':
opts.loss_kd = 10 if opts.loss_kd == 0 else opts.loss_kd
opts.method = "FT"
elif opts.method == 'MIB':
opts.mib_kd = 10 if opts.mib_kd == 0 else opts.mib_kd
opts.mib_ce = True
opts.init_mib = True
opts.method = "FT"
elif opts.method == 'ILT':
opts.loss_kd = 10 if opts.loss_kd == 0 else opts.loss_kd
opts.loss_de = 10 if opts.loss_de == 0 else opts.loss_de
opts.method = "FT"
elif opts.method == 'RT':
opts.train_only_novel = True
opts.train_only_classifier = True
opts.method = "FT"
opts.lr_cls = 1
elif opts.method == 'AFHN' and opts.step > 0:
opts.train_only_novel = True
opts.train_only_classifier = True
opts.method = "AFHN"
opts.lr_cls = 10
if opts.train_only_classifier:
opts.freeze = True
opts.lr_head = 0.
opts.no_cross_val = not opts.cross_val
opts.pooling = round(opts.crop_size / opts.output_stride)
opts.crop_size_test = 500 if opts.dataset == "voc" else 640
opts.test_batch_size = 1
return opts
def get_argparser():
parser = argparse.ArgumentParser()
# Performance Options
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--random_seed", type=int, default=42,
help="random seed (default: 42)")
parser.add_argument("--num_workers", type=int, default=2,
help='number of workers (default: 2)')
parser.add_argument("--device", type=int, default=None,
help='Specify the device you want to use.')
# Dataset Options
parser.add_argument("--data_root", type=str, default="data",
help="path to Dataset")
parser.add_argument("--dataset", type=str, default='voc',
choices=['voc', 'coco', 'coco-stuff'], help='Name of dataset')
# Task Options
parser.add_argument("--step", type=int, default=0,
help="Step (0 is base)")
parser.add_argument("--task", type=str, default="15-5", choices=task.get_task_list(),
help="Task to be executed (default: 15-5)")
parser.add_argument("--nshot", type=int, default=5,
help="If step>0, the shot to use for FSL (Def=5)")
parser.add_argument("--ishot", type=int, default=0,
help="First index where to sample shots")
parser.add_argument("--input_mix", default="novel", choices=['novel', 'both'],
help="Which class to use for FSL")
parser.add_argument("--masking", action='store_true', default=False,
help='Mask old classes in incremental steps (def: False)')
# Train Options
parser.add_argument("--epochs", type=int, default=30,
help="epoch number (default: 30)")
parser.add_argument("--iter", type=int, default=None,
help="iteration number (default: None)\n THIS OVERWRITE --EPOCHS!")
parser.add_argument("--fix_bn", action='store_true', default=False,
help='fix batch normalization during training (default: False)')
parser.add_argument("--batch_size", type=int, default=-1,
help='batch size (default: 24/10)')
parser.add_argument("--crop_size", type=int, default=512,
help="crop size (default: 512)")
parser.add_argument("--crop_size_test", type=int, default=None,
help="test crop size (default: = --crop_size)")
parser.add_argument("--lr", type=float, default=0.01,
help="learning rate (default: 0.01)")
parser.add_argument("--freeze", action='store_true', default=False,
help="Freeze body (default: False)")
parser.add_argument("--lr_head", type=float, default=1,
help="learning rate scaler for ASPP (default: 1)")
parser.add_argument("--lr_cls", type=float, default=1,
help="learning rate scaler for classifier (default: 1)")
parser.add_argument("--momentum", type=float, default=0.9,
help='momentum for SGD (default: 0.9)')
parser.add_argument("--weight_decay", type=float, default=1e-4,
help='weight decay (default: 1e-4)')
parser.add_argument("--lr_policy", type=str, default='poly',
choices=['poly', 'step'], help="lr schedule policy (default: poly)")
parser.add_argument("--lr_decay_step", type=int, default=5000,
help="decay step for stepLR (default: 5000)")
parser.add_argument("--lr_decay_factor", type=float, default=0.1,
help="decay factor for stepLR (default: 0.1)")
parser.add_argument("--lr_power", type=float, default=0.9,
help="power for polyLR (default: 0.9)")
# Logging Options
parser.add_argument("--logdir", type=str, default='./logs',
help="path to Log directory (default: ./logs)")
parser.add_argument("--name", type=str, default='Experiment',
help="name of the experiment - to append to log directory (default: Experiment)")
parser.add_argument("--sample_num", type=int, default=0,
help='number of samples for visualization (default: 0)')
parser.add_argument("--debug", action='store_true', default=False,
help="verbose option")
parser.add_argument("--visualize", action='store_false', default=True,
help="visualization on tensorboard (def: Yes)")
parser.add_argument("--print_interval", type=int, default=10,
help="print interval of loss (default: 10)")
parser.add_argument("--val_interval", type=int, default=1,
help="epoch interval for eval (default: 1)")
# Segmentation Architecture Options
parser.add_argument("--backbone", type=str, default=None,
choices=['resnet50', 'resnet101', 'resnext101'], help='backbone for the body')
parser.add_argument("--deeplab", type=str, default="v3",
choices=['v3', 'v2', 'none'], help='network head')
parser.add_argument("--output_stride", type=int, default=16,
choices=[8, 16], help='stride for the backbone (def: 16)')
parser.add_argument("--no_pretrained", action='store_true', default=False,
help='Wheather to use pretrained or not (def: True)')
parser.add_argument("--norm_act", type=str, default="iabn_sync",
# choices=['riabn_sync', 'riabn_sync2', 'iabn_sync', 'iabn', 'abn', 'rabn', 'ain'],
help='Which BN to use (def: iabn_sync')
parser.add_argument("--n_feat", type=int, default=256,
help="Feature size (default: 256)")
parser.add_argument("--relu", default=False, action='store_true',
help='Use this to enable last BN+ReLU on Deeplab-v3 (def. False)')
parser.add_argument("--no_pooling", default=False, action='store_true',
help='Use this to DIS-enable Pooling in Deeplab-v3 (def. False)')
# Test and Checkpoint options
parser.add_argument("--test", action='store_true', default=False,
help="Whether to train or test only (def: train and test)")
parser.add_argument("--ckpt", default=None, type=str,
help="path to trained model. Leave it None if you want to retrain your model")
parser.add_argument("--continue_ckpt", default=False, action='store_true',
help="Restart from the ckpt. Named taken automatically from method name.")
parser.add_argument("--ckpt_interval", type=int, default=1,
help="epoch interval for saving model (default: 1)")
parser.add_argument("--cross_val", action='store_true', default=False,
help="If validate on training or on validation (default: Val)")
# Checkpoint to start in IL steps
parser.add_argument("--step_ckpt", default=None, type=str,
help="path to trained model at previous step. Leave it None if you want to use def path")
# Method
parser.add_argument("--method", type=str, default='FT',
choices=methods, help="The method you want to use.")
parser.add_argument("--embedding", type=str, default="fastnvec", choices=['word2vec', 'fasttext', 'fastnvec'])
parser.add_argument("--amp_alpha", type=float, default=0.25,
help='Alpha value for the proxy adaptation.')
# parameters for IL methods
parser.add_argument("--mib_ce", default=False, action='store_true',
help='Use the MiB classification loss (Def No)')
parser.add_argument("--init_mib", default=False, action='store_true',
help='Use the MiB initialization (Def No)')
parser.add_argument("--mib_kd", default=0, type=float,
help='The MiB distillation loss strength (Def 0.)')
parser.add_argument("--loss_kd", default=0, type=float,
help='The distillation loss strength (Def 0.)')
parser.add_argument("--kd_alpha", default=1, type=float,
help='The temperature value of KD loss (Def 1.)')
# other distillation choices on features
parser.add_argument("--l2_loss", default=0, type=float,
help='The MSE feature (Deeplab-output) loss strength (Def 0.)')
parser.add_argument("--loss_de", default=0, type=float,
help='The MSE on body (resnet-output) feature loss strength (Def 0.)')
parser.add_argument("--l1_loss", default=0, type=float,
help='The L1 feature loss strength (Def 0.)')
parser.add_argument("--cos_loss", default=0, type=float,
help='The Cosine distillation on feature loss strength (Def 0.)')
parser.add_argument("--ckd", default=False, action='store_true',
help='Use cosine KD loss and not the CE loss.')
parser.add_argument("--dist_warm_start", default=False, action='store_true',
help='Use warm start for distillation.')
parser.add_argument("--born_again", default=False, action='store_true',
help='Use born again strategy (use --ckpt as model old).')
parser.add_argument("--train_only_classifier", action='store_true', default=False,
help="Freeze body and head of network (default: False)")
parser.add_argument("--train_only_novel", action='store_true', default=False,
help="Train only the classifier of current step (default: False)")
parser.add_argument("--bn_momentum", default=None, type=float,
help="The BN momentum (Set to 0.1 to update of running stats of ABR.)")
# Parameters for DWI
parser.add_argument("--dyn_lr", default=1., type=float,
help='LR for DynWI (Def 1)')
parser.add_argument("--dyn_iter", default=1000, type=int,
help='Iterations for DynWI (Def 1000)')
return parser