-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
51 lines (42 loc) · 2.09 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
from sentence_transformers import util, SentenceTransformer
class Evaluation:
def __init__(self, generated_phrases_path_folder: str):
self.generated_phrases_path = generated_phrases_path_folder
self.folder_names = self.prepare_folder_names()
self.model = SentenceTransformer('all-MiniLM-L6-v2')
self.cosine_scores = self.compute_cosine_scores()
def prepare_folder_names(self):
def process_folder_name(name):
return name.replace('_', ' ').replace('-', ',')
folder_names = {}
for folder in os.listdir(self.generated_phrases_path):
processed_folder_name = process_folder_name(folder)
folder_names[processed_folder_name] = []
with open(f"{self.generated_phrases_path}/{folder}/interrogations.txt", "r") as f:
folder_names[processed_folder_name] = f.readlines()
return folder_names
def print_to_file(self) -> None:
"""
Print the results to two files "cosine_scores.txt"
for each folder, grouping the content of each cosine similarity
"""
def process_folder_name(name):
return name.replace(' ', '_').replace(',', '-')
for folder, scores in self.cosine_scores.items():
if scores:
with open(f"{self.generated_phrases_path}/{process_folder_name(folder)}/cosine_scores.txt", "w") as f:
for score in scores:
f.write(f"{score}\n")
f.write(f"Mean: {sum(scores) / len(scores)}\n")
def compute_cosine_scores(self):
"""
Compute the cosine similarity between the generated phrases and the folder name
"""
cosine_scores = {}
for folder, phrases in self.folder_names.items():
cosine_scores[folder] = []
for i, p in enumerate(phrases):
cosine_scores[folder].append(util.cos_sim(self.model.encode(p, convert_to_tensor=True),
self.model.encode(folder, convert_to_tensor=True)).item())
return cosine_scores