-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrainer.py
199 lines (146 loc) · 7.38 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/usr/bin/env python
"""learningratefinder.py: Learning rate finder algorithm."""
__author__ = "David Bertoldi"
__email__ = "[email protected]"
import os
import argparse
import models
import processing
import utils
from datetime import datetime
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from clr_callback import CyclicLR
import tensorflow_datasets as tfds
import tensorflow_hub as hub
from processing import Processing
import time
from collections import Counter
import statistics
np.random.seed(42)
tf.random.set_seed(42)
# exp was not used for this work
CLRS = ['triangular', 'triangular2', 'exp']
def parse_arguments():
parser = argparse.ArgumentParser(description='Flower Recognition Neural Network')
parser.add_argument('--batch', type=int, const=64, default=64, nargs='?', help='Batch size used during training')
parser.add_argument('--arch', type=str, const='resnet18', default='resnet18', nargs='?', choices=models.ARCHITECTURES.keys(), help='Architecture')
parser.add_argument('--opt', type=str, const='Adam', default='Adam', nargs='?', choices=models.OPTIMIZERS.keys(), help='Optimizer')
parser.add_argument('--clr', type=str, const='triangular', default='triangular', nargs='?', choices=CLRS, help='Cyclical learning rate')
parser.add_argument('--step', type=float, const=8, default=8, nargs='?', help='Step size')
parser.add_argument('--dropout', type=float, const=0.5, default=0.5, nargs='?', help='Dropout rate')
parser.add_argument('--config', type=str, const='config.yml', default='config.yml', nargs='?', help='Configuration file')
parser.add_argument('--mp', default=False, action='store_true', help='Enable mixed precision operations (16bit-32bit)')
parser.add_argument('--da', default=False, action='store_true', help='Enable Data Augmentation')
parser.add_argument('--epoch', type=int, const=50, default=50, nargs='?', help='Set the number of epochs')
return parser.parse_args()
if __name__ == '__main__':
args = parse_arguments()
config = utils.read_configuration(args.config)
# Do not allocate all the memory during initialization
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
# Enable 16bit operations for larger models
if args.mp:
policy = tf.keras.mixed_precision.Policy('mixed_float16')
tf.keras.mixed_precision.set_global_policy(policy)
print('Mixed precision enabled!')
print('Operations dtype: {}'.format(policy.compute_dtype))
print('Variables dtype: {}'.format(policy.variable_dtype))
# Get the model
architecture = models.ARCHITECTURES[args.arch]
architecture = architecture(args.dropout)
preprocessor = architecture.preprocess()
model = architecture.get_model()
model.summary(show_trainable=True)
target_size = architecture.size
# Get the optimizer
optimizer = models.OPTIMIZERS[args.opt]['get']()()
learning_rate = models.OPTIMIZERS[args.opt]['lr']
# Download and preprocess the dataset with data augmentation
p = None
if args.da:
p = Processing(target_size=target_size,
batch_size=args.batch,
config=config,
preprocessor=preprocessor)
# or without data augmentation
else:
p = Processing(target_size=target_size,
batch_size=args.batch,
config=config,
brightness_delta=0,
zoom_delta=0,
flip=False,
rotation=0)
train_preprocessed, validation_preprocessed, test_preprocessed = p.get_dataset()
train_cardinality, validation_cardinality = train_preprocessed.n, validation_preprocessed.n
# Finalize the model
model.compile(loss=config['training']['loss'], optimizer=optimizer, metrics=['acc'])
# Checkpoints
mcp_save_acc = ModelCheckpoint(utils.get_path(config['paths']['checkpoint']['accuracy'].format(args.arch)),
save_best_only=True,
monitor='val_acc', mode='max')
mcp_save_loss = ModelCheckpoint(utils.get_path(config['paths']['checkpoint']['loss'].format(args.arch)),
save_best_only=True,
monitor='val_loss', mode='min')
# Define how many iterations are required to complete a learning rate cycle
step_size_train = np.ceil(train_cardinality / args.batch)
step_size_valid = np.ceil(validation_cardinality / args.batch)
stepSize = args.step * step_size_train
# Define the Cyclic Learnin Rate
clr = CyclicLR(mode=args.clr,
base_lr=learning_rate[0],
max_lr=learning_rate[1],
step_size=stepSize)
# Define the Early Stopping strategy
es = EarlyStopping(monitor='val_acc',
patience=10,
mode='max',
#restore_best_weights=True,
min_delta=0.005,
verbose=1)
start_time = time.time()
# Train
history = model.fit(train_preprocessed,
epochs=args.epoch,
verbose=1,
steps_per_epoch=step_size_train,
validation_data=validation_preprocessed,
validation_steps=step_size_valid,
callbacks=[clr, mcp_save_acc, mcp_save_loss, es],
#workers=64,
#use_multiprocessing=False,
#max_queue_size=32
)
total_time = time.time() - start_time
os.makedirs(utils.get_path(config['paths']['plot']['base'].format(args.arch)), exist_ok=True)
# Plot training & validation accuracy values
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.savefig(utils.get_path(config['paths']['plot']['accuracy'].format(args.arch, args.batch, args.step, args.opt, args.clr, args.da)))
plt.clf()
# Plot training & validation loss values
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper right')
plt.savefig(utils.get_path(config['paths']['plot']['loss'].format(args.arch, args.batch, args.step, args.opt, args.clr, args.da)))
accuracy = np.max(history.history['val_acc'])
loss = np.min(history.history['val_loss'])
print('Best accuracy model: {}'.format(accuracy))
print('Best loss model: {}'.format(loss))
# Save the results log
with open('results.txt', 'a') as f:
f.write('accuracy\t{}\t{}\t{}\t{}\t{}\t{}\n'.format(args.arch, args.batch, args.step, args.opt, args.clr, accuracy))
f.write('loss\t{}\t{}\t{}\t{}\t{}\t{}\n'.format(args.arch, args.batch, args.step, args.opt, args.clr, loss))
f.write('--- {}ms ---\n\n'.format(total_time))