diff --git a/README.md b/README.md index 00debfaf8..f97c7035c 100644 --- a/README.md +++ b/README.md @@ -50,18 +50,18 @@ retinanet-train coco /path/to/MS/COCO The pretrained MS COCO model can be downloaded [here](https://github.com/fizyr/keras-retinanet/releases/download/0.1/resnet50_coco_best_v1.2.2.h5). Results using the `cocoapi` are shown below (note: according to the paper, this configuration should achieve a mAP of 0.343). ``` - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.325 - Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.513 - Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.342 - Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.149 - Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.354 + Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.345 + Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.533 + Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.368 + Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.189 + Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.380 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.465 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.288 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.437 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.464 - Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.263 - Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.510 - Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.623 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.301 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.482 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.529 + Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.364 + Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.565 + Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.666 ``` For training on [OID](https://github.com/openimages/dataset), run: @@ -118,7 +118,7 @@ from keras_retinanet.models.resnet import custom_objects model = keras.models.load_model('/path/to/model.h5', custom_objects=custom_objects) ``` -Execution time on NVIDIA Pascal Titan X is roughly 75msec for an image of shape `1000x600x3`. +Execution time on NVIDIA Pascal Titan X is roughly 75msec for an image of shape `1000x800x3`. ## CSV datasets The `CSVGenerator` provides an easy way to define your own datasets.