-
Notifications
You must be signed in to change notification settings - Fork 0
/
Hintikka.thy
33 lines (28 loc) · 1.86 KB
/
Hintikka.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
section \<open>Hintikka sets for SeCaV\<close>
theory Hintikka
imports Prover
begin
text \<open>In this theory, we define the concept of a Hintikka set for SeCaV formulas.
The definition mirrors the SeCaV proof system such that Hintikka sets are downwards closed with
respect to the proof system.\<close>
text \<open>This defines the set of all terms in a set of formulas (containing \<open>Fun 0 []\<close> if it would
otherwise be empty).\<close>
definition
\<open>terms H \<equiv> if (\<Union>p \<in> H. set (subtermFm p)) = {} then {Fun 0 []}
else (\<Union>p \<in> H. set (subtermFm p))\<close>
locale Hintikka =
fixes H :: \<open>fm set\<close>
assumes
Basic: \<open>Pre n ts \<in> H \<Longrightarrow> Neg (Pre n ts) \<notin> H\<close> and
AlphaDis: \<open>Dis p q \<in> H \<Longrightarrow> p \<in> H \<and> q \<in> H\<close> and
AlphaImp: \<open>Imp p q \<in> H \<Longrightarrow> Neg p \<in> H \<and> q \<in> H\<close> and
AlphaCon: \<open>Neg (Con p q) \<in> H \<Longrightarrow> Neg p \<in> H \<and> Neg q \<in> H\<close> and
BetaCon: \<open>Con p q \<in> H \<Longrightarrow> p \<in> H \<or> q \<in> H\<close> and
BetaImp: \<open>Neg (Imp p q) \<in> H \<Longrightarrow> p \<in> H \<or> Neg q \<in> H\<close> and
BetaDis: \<open>Neg (Dis p q) \<in> H \<Longrightarrow> Neg p \<in> H \<or> Neg q \<in> H\<close> and
GammaExi: \<open>Exi p \<in> H \<Longrightarrow> \<forall>t \<in> terms H. sub 0 t p \<in> H\<close> and
GammaUni: \<open>Neg (Uni p) \<in> H \<Longrightarrow> \<forall>t \<in> terms H. Neg (sub 0 t p) \<in> H\<close> and
DeltaUni: \<open>Uni p \<in> H \<Longrightarrow> \<exists>t \<in> terms H. sub 0 t p \<in> H\<close> and
DeltaExi: \<open>Neg (Exi p) \<in> H \<Longrightarrow> \<exists>t \<in> terms H. Neg (sub 0 t p) \<in> H\<close> and
Neg: \<open>Neg (Neg p) \<in> H \<Longrightarrow> p \<in> H\<close>
end