-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathviterbi_s.m
96 lines (95 loc) · 4.06 KB
/
viterbi_s.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
function [decoder_output,survivor_state,cumulated_metric]=viterbi_s(G,k,channel_output)
%VITERBI The Viterbi decoder for convolutional codes
% [decoder_output,survivor_state,cumulated_metric]=viterbi(G,k,channel_output)
% G is a n x Lk matrix each row of which
% determines the connections from the shift register to the
% n-th output of the code, k/n is the rate of the code.
% survivor_state is a matrix showing the optimal path through
% the trellis. The metric is given in a separate function metric(x,y)
% and can be specified to accomodate hard and soft decision.
% This algorithm minimizes the metric rather than maximizing
% the likelihood.
n=size(G,1);
% check the sizes
if rem(size(G,2),k) ~=0
error('Size of G and k do not agree')
end
if rem(size(channel_output,2),n) ~=0
error('channel output not of the right size')
end
L=size(G,2)/k;
number_of_states=2^((L-1)*k);
% generate state transition matrix, output matrix, and input matrix
for j=0:number_of_states-1
for l=0:2^k-1
[next_state,memory_contents]=nxt_stat(j,l,L,k);
input(j+1,next_state+1)=l;
branch_output=rem(memory_contents*G',2);
nextstate(j+1,l+1)=next_state;
output(j+1,l+1)=bin2deci(branch_output);
end
end
state_metric=zeros(number_of_states,2);
depth_of_trellis=length(channel_output)/n;
channel_output_matrix=reshape(channel_output,n,depth_of_trellis);
survivor_state=zeros(number_of_states,depth_of_trellis+1);
% start decoding of non-tail channel outputs
for i=1:depth_of_trellis-L+1
flag=zeros(1,number_of_states);
if i <= L
step=2^((L-i)*k);
else
step=1;
end
for j=0:step:number_of_states-1
for l=0:2^k-1
branch_metric=0;
binary_output=deci2bin(output(j+1,l+1),n);
for ll=1:n
branch_metric=branch_metric+metric_s(channel_output_matrix(ll,i),2*binary_output(ll)-1);
end
if((state_metric(nextstate(j+1,l+1)+1,2) > state_metric(j+1,1)...
+branch_metric) | flag(nextstate(j+1,l+1)+1)==0)
state_metric(nextstate(j+1,l+1)+1,2) = state_metric(j+1,1)+branch_metric;
survivor_state(nextstate(j+1,l+1)+1,i+1)=j;
flag(nextstate(j+1,l+1)+1)=1;
end
end
end
state_metric=state_metric(:,2:-1:1);
end
% start decoding of the tail channel-outputs
for i=depth_of_trellis-L+2:depth_of_trellis
flag=zeros(1,number_of_states);
last_stop=number_of_states/(2^((i-depth_of_trellis+L-2)*k));
for j=0:last_stop-1
branch_metric=0;
binary_output=deci2bin(output(j+1,1),n);
for ll=1:n
branch_metric=branch_metric+metric_s(channel_output_matrix(ll,i),2*binary_output(ll)-1);
end
if((state_metric(nextstate(j+1,1)+1,2) > state_metric(j+1,1)...
+branch_metric) | flag(nextstate(j+1,1)+1)==0)
state_metric(nextstate(j+1,1)+1,2) = state_metric(j+1,1)+branch_metric;
survivor_state(nextstate(j+1,1)+1,i+1)=j;
flag(nextstate(j+1,1)+1)=1;
end
end
state_metric=state_metric(:,2:-1:1);
end
% generate the decoder output from the optimal path
state_sequence=zeros(1,depth_of_trellis+1);
state_sequence(1,depth_of_trellis)=survivor_state(1,depth_of_trellis+1);
for i=1:depth_of_trellis
state_sequence(1,depth_of_trellis-i+1)=survivor_state((state_sequence(1,depth_of_trellis+2-i)...
+1),depth_of_trellis-i+2);
end
decodeder_output_matrix=zeros(k,depth_of_trellis-L+1);
for i=1:depth_of_trellis-L+1
dec_output_deci=input(state_sequence(1,i)+1,state_sequence(1,i+1)+1);
dec_output_bin=deci2bin(dec_output_deci,k);
decoder_output_matrix(:,i)=dec_output_bin(k:-1:1)';
end
decoder_output=reshape(decoder_output_matrix,1,k*(depth_of_trellis-L+1));
cumulated_metric=state_metric(1,1);
end