diff --git a/3413-differentials.ipynb b/3413-differentials.ipynb new file mode 100644 index 000000000..3e8a413a4 --- /dev/null +++ b/3413-differentials.ipynb @@ -0,0 +1,2615 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "1dee6578-0f48-43c8-8f50-20c9d34ad588", + "metadata": {}, + "source": [ + "# Differentials on (3, 4, 13)\n", + "\n", + "All computations are done on an unfolding of the (3, 4, 13) triangle, after inserting 4 marked points in some strategic locations. The (Delaunay triangulated) surface looks like this; the big red dot is the 26π singularity, the smaller one the 6π one." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4b8cd8aa-49f4-4678-8217-5abaa36c10de", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'S' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m G \u001b[38;5;241m=\u001b[39m \u001b[43mS\u001b[49m\u001b[38;5;241m.\u001b[39mgraphical_surface(edge_labels\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, zero_flags\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n", + "\u001b[0;31mNameError\u001b[0m: name 'S' is not defined" + ] + } + ], + "source": [ + "G = S.graphical_surface(edge_labels=False, zero_flags=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "635ee889-b8ea-4779-86e7-fe378f59f3a3", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAGZCAYAAAAErnwzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUZdeH79mSLUlISKfXhCa9CEgTQrGAgAooWCgK+gFSRYoiJUixUKQjUl+pgqKIBUQREUGkSEkoISQhCSmkbsmW+f5YQZH07GZ3w9zXlSvJtOfs7uzMb85ziiCKooiEhISEhISEhITbI3O2ARISEhISEhISEvZBEnYSEhISEhISEuUESdhJSEhISEhISJQTJGEnISEhISEhIVFOkISdhISEhISEhEQ5QRJ2EhISEhISEhLlBEnYSUhISEhISEiUEyRhJyEhISEhISFRTpCEnYSEhISEhIREOUESdhISEhISEhIS5QRJ2ElISEhISEhIlBMkYSchISEhISEhUU6QhJ2EhISEhISERDlBEnYSEhISEhISEuUESdhJSLgB//sfZGQ42woJCQkJCVfnwRV2167B4cNw/bqzLZGQyJeLF+GJJ0QGD4YxY5xtjYSEhISEq/PgCbvLl6FbN6hTBx59FGrXhh49IDra2ZZJSNwlJgaGDhV56CGR06fNNG6s49AhEaPR2ZZJSEhISLgygiiKorONKDNu3YLmzeHmzfvXVasGp0+Dn1+ZmyUhcYekJJg3D1atEvH2tvDKK7d49tnbxMZ60K9fXVatEnj1VWdbKSEhISHhqjxYHruVK/MWdQCxsbB2bdnaIyHxN+npMGMG1Kkj8umnFkaOvMX+/VEMHpyGh4dInTpGevTIZN48EZPJ2dZKSEhISLgqD5aw++KL0q2XkLAzOh0sWAC1a4t88IGVgQNT+OabKF59NRmt1nrPtiNH3iImRmDTJicZKyEhISHh8iicbUCZYjYXvF5yhUiUEbm5sG4dzJkjkpICTz+dxsiRyQQG5n+OhoYa6d49g7lzK/DiiwJKZRkaLCEhISHhFjxYHrtu3QpcbeocXkaGSDyoWCyweTPUqycyerRI69bpfPllFDNmJBQo6u4wcmQy168L/O9/ZWCshISEhITb8WAlT1y7Bs2aQVbWfavS8aFfnbMs+bw6TZqUvWkS5RtRhC+/hOnTRc6fF+jaNZPRo5MIDS1+musbb1QnJsabS5cEFA+Wz11CQkJCohAeLI9d7dqwfz/UrHnP4tuV/Dm7YC035UG0aSOyfLntRiwhYQ8OHYK2bUX69gUvLx1bt15lyZIbJRJ1YIu1u3pVYNs2+9opISEhIeH+PFgeu7/JzrTytM/3jH7qLHV7qXlV3M7KjqswGgU++CCEzz7zp3dvkU8/FfD3d7a1Eu7K77/DtGkiBw8KNG6sZ+zYRNq2zbHLsUePrkFCghcXLgjI5XY5pISEhIREOeDB8tj9zbnzMr6jJ/rn+2Hp8Cg1K9Ti/O3zqFQi06YlsHRpDEeOWGnaVOTwYWdbK+FunD8P/fuLPPwwXL+ey+LFMWzdetVuog5g1KhbREUJ7Nhht0NKSEhISJQDHkhhd+YMyOW22mAAz9d5ns+ufnZ3/aOPZrFr12UqV9bRtavI228XnlArIREdDS+9JNK4scjvv5uYNy+O3bsv061bFoJg37EeekhPx45ZzJ4tYrUWvr2EhISExIPBAyvsatfORaWyzUJX86qGzqwjxZByd5vgYDNr10YzevQt3ntPpGNHUWorK5EniYkwerQt0/WbbyxMm5bAvn2X6d073aHTpCNH3uLSJYHdux03hoSEhISEe/FAxti1bSsSEJDB/Plxd5cdSzrGmbQzjGow6r7tT5/WMGVKdXJyFKxdK/Dss2VprYSrcvs2LFwIS5aIKJVWhg5N5vnnU9Fqy+4rNXJkTTIyPDl7VkD2QD6mSUhISEj8mwfuVmC1wl9/Qb16hnuWtw1qy8nkk5is9xcpbtZMz86dl3n44UwGDIARI0Ry7BcuJeFm5OTY+rnWqiWyZImVIUOS+eabSEaMSClTUQe2WLvz5wX27i3TYSUkJCQkXJQHzmN3+TKEhcHq1ddp3z77nnU7ru3AU+HJE9WfyHNfUYQ9eyoyf34lqlcX2L5doGnTsrBawhUwGmHNGoiIEElLg2efTeOVV24REGBxql0jRtREr/fk9GnB7rF8EhISEhLuxQPnsTtzxvY7LEx/37onqz/Jvhv78t1XEKB//9ts23YVMNKmjciyZVLNu/KOxQIbN9pi6MaNE2nbNp19+6KYOjXB6aIObF67s2cFvvzS2ZZISEhISDibB1LYBQSY87whaxVa6laoy9m0swUeo3ZtI1u3XuXZZ1MZOxb69LH1+5QoX4gifP45PPSQyMsvQ1hYJp9/foW5c+OpUsV1+gq3aqWjdescZs0SpYcMCQkJiQecB1DYidSrd7+37g7P1XmO7Ve3F3oclUrkrbcSWbYshqNHrTRpInLokD0tlXAWogjffw+tW4s8/TT4+eWwbdsVPvww9m6JHFdj5Mhb/PmnwP79zrZEQkJCQsKZPHDC7s8/ISzMkO/6Kp5VMFqNJOuTi3S8Ll1sNe+qVcshPFxk+nQwuY4zR6KY/PYbdO0q0qMHmM161q+PZvXq6zRqlP854wq0aZNDixY63n1X8tpJSEhIPMg8UMIuLQ3i4oT7MmL/y4BaA9gRXfSS/kFBZtasuc7YsUksWGCreRcdXVprJcqSc+dsU+rt2sHNm0aWLYth8+ZrtG7tHunPggAjRyZx8qTAt9862xoJCQkJCWfxQAm7s3+HzhUm7FoHtubPlD/JteQW+dhyOYwYkcLGjdeIizPRrJnI9sJndCWczNWrMGSISNOmImfOmJg/P5adO6/QpYv9u0U4mnbtcmjWTPLaSUhISDzIPFDC7swZ8PAQqVmz4DgpQRDoVa0X38YV3/XRtKmenTuv0L59BoMGwbBhUs07V+TmTRg1SqR+fZHvv7cwY8ZN9u6N4oknMty20K/Na3eL48cFfvjB2dZISEhISDiDB6qO3bBhcPy4ge3brxS6rd6sZ9yxcazqsAqhBK4bUYS9e315773KVKsmsG2bQPPmJbFawp6kptq6RSxbJqJSWRk+/BaDBqWhVjv2a7Bu3Tp++OEHoqOjUavVNG3alPHjx1OrVq272zRu3DjPfSdMmMDQoUOLNI4owuDBdfD2VvPLL1JdOwkJCYkHDTf1TZSM06cLzoj9NxqFhvq+9TmTdqZEYwkC9OuXzvbtV5DJjLRtK7JkiVTzzqG8/jp4ednefLkcHn4YIiMByM6GuXOhdm2Rjz+28uKLyezfH8nLL6c6XNQBnDx5kkGDBrF161bWrFmDxWJh5MiR6HS6u9v8+OOP9/zMnj0bQRAIDw8v8jiCAKNGJfHrrwI//uiIVyIhISEh4co8MB47kwm8vEQmTEhg8OC0Iu2ToEtgyV9LmN9mfqnGzs0V+OijYLZsCeDxx0U2bBAIDCzVISX+S+vWcPLkfYtFpZLNk84waV19MjJgwIBURoxIxt/fuYWF09LS6Ny5M59++imtWrXKc5uxY8ei0+lYt25dsY4tijBoUB0CAtT89JPkspOQkJB4kHhgPHaRkTaBVVCpk/9SSVuJ0Y1Gl3psDw+RKVMSWb78OseO2WreHTxY6sNK3GHPnjxFHYBgMtH4vefp2PE2X30VxZQpiU4XdQDZ2bZ2dj4+PnmuT0lJ4ciRI/Tr16/Yx74Ta/fzzwI//VQqMyUkJCQk3IwHxmO3dSsMGQK//HIBHx+r0+xITlYwbVpVjh/35M03BebMAaXSaeaUD9q0gRMn8l0tAr/+8QtmqxmLaMEiWu79WzRjsVru/m8RLVisfy//++8723UK6YRGoSmVuaIoMnbsWDIzM9m4cWOe26xfv55PPvmEQ4cOoVKpSjAGPPtsXapUUXHwoOS1k5CQkHhQUDjbgLLizBmoXNnkVFEHEBhoZvXq63z6aQAffBDMoUOwbZtA7dpONcu9uX27wNUC8OHJeaBSIxfkyAU5Cpni7t9ymfyf5YLinmUKQXHP3/YgIiKCqKiofEUdwJ49e3jiiSdKJOrgTqzdLcaPr84vv0CHDiW1VkJCQkLCnXhghN3p0yJhYUVLnHA0MhkMH55CmzY5TJlSjWbNlKxeLfDcc862zE2pVw+u5J/pnIuSCsc2MXFiwt3kFWdli86bN4/Dhw+zYcMGQkJC8tzmjz/+4Pr167z//vulGqtr10xCQw3Mnq3iu+8kr52EhITEg8ADE2N35kzhhYnLmsaN9ezYcYUOHTJ4/nkYOlTk79ArieLwwQcFro5pGk54eDoqlYrTp/146qlQUlLK9plGFEUiIiI4ePAgn3zyCVWrVs13288//5yGDRtSr169Uo0pk9li7b7/XuC330p1KAkJCQkJN+GBEHaJiXDrVuGtxJyBl5eVBQvimDs3jh07RJo3Fzl1ytlWuRn16sG77+a5KjFAg+HTCJo21WM0GtFqc+jQIYvKleVotVpmz67Kzp0VHW5iREQEX3/9NfPnz8fT05OUlBRSUlIwGO49J7Ozs/n+++95+umn7TJu9+6Z1KljZNasByKUVkJCQuKB54EQdmf+LkXnisIObNOCTz1lq3nn4WGgbVuRjz4Cq3PDAd2LmTNtH3S3bugqVuEC9bk2YTrL1o1n3dUNdzerV8/Im28mkptrJCdHh1JpwdNThlar5cYNT957rxIZGXK7m7d9+3aysrIYNmwYjz766N2fAwcO3LPdN998gyiKPPbYY3YZVyaDV1+9xYEDQkH5JRISEhIS5YQHIit24UKYPdvKr79ecPl2Ubm5AkuWBLNpUwC9eols3CgQFORsq9yLU6egZUvYuvUqjRvrmHVqFl0rd6VTpU4F7nfkiBcffVSJL76IRy43s2OHlpo1jTRr5hqxmSXFYoF+/UJp2NCDr76SYu0kJCQkyjMuLnPsw5kzEBpqcHlRB7aad5MnJ7Jy5XVOnLDQpInI99872yr34k5oWnS0CkEQmNpsKluvbCU6K7rA/Tp2zObzzy9jsegwGnP57LMAjh/3Q6VSkZYm56efvDGZ3E8YyeXwyiu3+PprQZrml5CQkCjnuIHUKT2nT1tdJiO2qHTokM2uXVeoXTuHHj1gyhTIzXW2Ve6BpydUry5y7ZqtVIhKrmJ2q9nM/XMu2aaiZacIAmzbdoWhQ29iNBo5dsyHN96ojsmkBuDyZRV6vfuIvMcey6BGjVxmzy73DnoJCQmJB5pyL+wMBoiMdM3EicIICDCzatV1JkxI5MMPRR55ROTqVWdb5R7Ur2/z2N0hWBPMmEZjmPnHTKxi0YIXBcHmQQV44ok09u+PQqvVI5PJGTeuJosX2zJbc3MFsrNd+6ukUNi8dl98IdyNOZWQkJCQKH+49t3IDly4ABaLewo7sAW/Dx2awubN17h1y0SzZiJbtzrbKtenYUOB6Gj1Pcua+TejXXA7Vl9cXaJjVq5sAsBqtbByZTRDhiQhl8s5ftyfzp3r3y2hYnF+x7I8efzxdKpVy2XOHMlrJyEhIVFeKffC7vRpEASR0FD3FHZ3eOghW827Ll0yGDIEXnxRJCvL2Va5LvXrQ2ys8r6YuGdqPUOqMZVDNw+V6vjVq+dSrVouFouFevXSmTHjJkFBVrRaLa+8UoeVKwNLdXxHoFTCiBHJ7N4tcO6cs62RkJCQkHAE5V7YnTkDNWqY0Grd30vh6WnlvffimDcvjs8/t9W8O3nS2Va5Jg0a2Dy1N2543LduStMp7Ly2k6uZ9pnXDgoy069fOlarlZwcHT173qZZMz0ajYaLF30ZNqwWKSn2L6FSEnr3vk3lyibmznX/74OEhISExP2Ue2F3+rRIaKh7JU4URu/e6ezYcQWNxkD79iIffCDVvPsv9evbft9JoPg3SpmSOa3mMO/0PDJzM+06riDAwIFptGuXjV6vJzfXiL+/mcqVPdBqtSxbFsyBAxXsOmZxsHntbrFzpy1MQUJCQkKifFGuhZ0owtmzrluYuDRUr57Lpk3XGDw4hUmToFcvkcREZ1vlOgQGgp+feE8Cxb8JUAcw/qHxzPxjJhbRcUFxTZvqWbQoltxcPTk5OmJjPcjM1KDVaklIULFuXQBZWWX7NezbN52QELPktZOQkJAoh5RrYRcbC+npAvXrl17Ybd++nf79+9O2bVvatm3L4MGDOXLkyN31Op2OiIgIunXrRqtWrejTpw/bt28v9bgFoVSKTJyYxKpV1/nzTwtNm4p8+61Dh3QbBMFWzy4vj90dHvJ7iM6VOrP8/PIys2nhwlgGDEhCp9Nx4YIHmzcH4O2tQS631ckryF57oVSKDB+ezLZtcOmSw4eTkJCQkChDyrWws2crseDgYMaNG8e2bdvYtm0bDz/8MGPHjuXKlSsALFy4kKNHjzJ//ny++OILXnjhBd577z0OHSpdkH5ReOSRbHbuvExoaDa9esHkyVLNO7Blxl6/XrBQ6luzLzqzju/ivisjq/6hW7csDh68BORgNlv44INK7NsXiEKhICtLxvnzahzVF6Zfv9sEBZmZN0/y2klISEiUJ8q1sDt9Gnx8LAQHm0p9rC5dutCpUydq1qxJzZo1GTt2LFqtlrNnzwJw5swZ+vTpQ+vWralSpQrPPvssYWFhnD9/vtRjF4WAAAsrVsQwaVICS5aItGsncvlymQztstypZVdY/OHEJhP5MuZLojKiysawf6GwVUhBEGDXrssMHXoTs9nMkSN+PPdcHdLTbSVbbt1S2DWO0sNDZOjQZLZu5YE/TyQkJCTKE+Va2J05IxIWZkCwc4MAi8XCN998g16vp2nTpgA0b96cw4cPk5SUhCiK/P7778TExPDII4/Yd/ACkMngpZdS2bz5KqmpJpo3F9m0qcyGdzkaNACdTsatW8oCt1PKlMxuNZuFZxaSkZtRRtbdj4eHSIUKNvXWvXsKW7deo2JFAx4eHowaVZsFC6oAtjp59qiV98wztwkIsEheOwkJCYlyRLkWdqdPi9SrZ7+M2KioKNq0aUPLli2ZM2cOixcvpk6dOgBMnTqVOnXqEB4eTosWLRg1ahQzZsygRYsWdhu/qDRqZGD79it065bOSy/BkCEimfZN/nQLGjSw/S5K3Jqfyo+JTSby9sm3MVvNDrascJRKaNzYdu4ajblMnx5H//6pKJVK/vjDn27d6pOcrCjVGCqVyMsvJ7N5M1y7Zg+rJSQkJCScTbkVdtnZcO2aQFiY/TJia9Wqxa5du9i6dSsDBgxgxowZXP27x9fWrVs5e/Ysy5YtY9u2bUyaNIm5c+dy7Ngxu41fHDw9rURExPPee7F88YVIs2Yiv//uFFOcRo0aNvESHX1/Lbu8aODbgJ5Ve7Li4goHW1Y8BAFattRRr54Bk8lEcHAWgwenUqmSgFarZfLkGmzc6F+iYz/zTBoVK1qIiJC8dhISEhLlgXIr7M6dA1G0bysxpVJJ9erVadSoEePGjSMsLIwtW7ZgMBhYsmQJkydPpkuXLtSrV4/nn3+eXr16sXHjRruNXxKefDKDHTuu4OVl4JFHRBYufHBq3snlEBYmFivT9InqTzCk7hAHWlV6atTI5ZVXkjGbTeTk6KhVS0+1arauF9euefPmm1VJSytaQWSNxua127QJrl93rN0SEhISEo6n3Aq7M2dAoRCpU8fo0HFyc3Mxm82YzWaE/wTzyWQyrC6goqpVy2Xjxmu8+GIKU6ZAz54iCQn/2eh//4MNG8pdOm2DBvf3jC0MP5Wfg6yxP4IAr79+i65db6PT6UhJsZKcrCQ4WIVarWbLFn9++cWrwGM8+2wa3t5W3ntPhOXLISLC5vKWkJCQkHA7yq2wO30aatXKRaWyzxTTkiVL+OOPP4iPjycqKoqlS5dy4sQJnnjiCby8vGjVqhUffvghJ06cIC4ujr1797Jv3z66detml/FLi1IpMn58EqtXR3PmjK3m3TffAE8+acu6GDwYhg4FlQratXO2uXbDJuwcXxvOVWjTJodPP43GZNKh1xs4csSbyMgKqNVqkpMV7Nnji15/7wOIVivym7Yzq9bIYPRomDEDvL2hUiUnvQoJCQkJiZIiiKKjKmU5l7ZtRQICMpg/P84ux3vnnXc4fvw4ycnJeHt7ExoayrBhw2jfvj0AKSkpLF68mGPHjpGRkUGlSpV45plnePHFF+/z5Dmb1FQ5b79dlXeO9CWcfOrs1a8PFy+WrWEOYNs2eO45+OWXC/j4ON976gysVpt2/+47X6ZOrcxvv8WgVOZw+rSGqlVzaTVxCJ6nTpHnWerlBVlZZW2yhISEhEQJKZfCzmqFChVERo5MYujQFGeb45JYc/Q0btsm75v5Ha5cgb+zft2VM2egWTPYvPkqzZqVr57BJSEzU/Z3SRWBxx8Po1MnHZu3+hZ8HuzeDf37l5GFEhISEhKloVxOxV69Cjk59k2cKG+ErFpR8M0cYMKEsjDFoYSFgSDk3zP2QeNOnTwQ2bLlCu8q3in8PJg40cFWSUhISEjYi3Ip7O60EgsLkzw0+ZGbnFP4RuUggF6jgRo1JGGXF35+FnxMRfBol7OEGgkJCYnyTLkVdoGBZgIC7FCevxyRkmIrgSGTyXj1z0kUOgc/fLjDbSoLGjQQilXy5EEi9cUXCz0P/qzeh5wiPAdISEhISDifcirsRMlb9zfmv5so/PCDL+Hh9cnJ0WK1Whm62A9TBd/891Oq4fnny8ZIB9OggcD168UrefKgYK5SBatX/uVQrMDDf6ygZk2R+fOlPAoJCQkJV6dcCrs//8SuHSfclREjarFmTRXUajUtW2Yxf34scrlN8DZoYODK/q+waDT37WcSlDQwnWb9+rK22DE0aACxsUqMRtfKTnYFTCaIPnIEq1J5n+dOBE5+OIuvvoqiW7c0Zs4UqVlTJCICMpzXUldCQkJCogDKnbBLS4O4uAczceL33z0ZOLAucrknKpWKxx5Lp0WLdAwGAxUrWujVKxO1+p/bt9XHh98PnuR15WqSA0PJrl6Fz55pzMXTp2gxIIARI8RyIe7q1werVeDGjaK1FntQOH1aQ58+9bic4MmFU6e4+dZb5AYEYPDyZRMvsHzjL4xXf0tgiI4ZMxL4+utIevZMY/Zsm8CbPRvS0539KiQkJCQk/k25K3dy+DA8+ijs2XOZunUd23XCFVi6NIi6dS0884yey5dlrF7twxtvJOLvX5z4Qg1GowGVSmTUL6NY1WEVVitERFRi504/1q0TGDbMYS/B4aSmQkAAvP/+DXr2zHS2OS6DTqdlyRIfxo9PvEfwiyLo9Sq0WiMH4w9yMuUkU5pOubv+1i0Fn34awM6dfqjVAm+8IfDGG+DnPg07JCQkJMot5c5jd+YMeHiI1KxZPkVddLQHS5YEo1B4oNVqSUtTkZoKOp2OKlWymT07vliiThQFQH+3Q0dlbWVis2ORyWD69ASefTbN7T13/v4QECBlxt7h9GkNBoMWT089U6cm3CPqwNamTKs1olAo6VrZ1jnlYPzBu+uDgsxMmZLIgQNR9O2bysKFVmrWFJk+HVKkspESEhISTqVcCrvQUAMKhbMtsR+//urJuXMaPDw8yMry4quvfImLE9HpdLz7biwvvJBaouOmpcnp2rUef/yhvbusfXB7jt06BlCuxF39+kiZsYDJJPDWW9VZssSHgpz1CQlKwsNrc+qUlgmNJ7Dj2g7icu7t4hIQYGbSpEQOHIjkmWdSWLzYJvDeeguSkx39SiQkJCQk8qLcCbvTp0W3T5zIzRU4ccITAJVKxccfV+KLL/zIzc3loYfS+PbbSEJCTKUex2qF/v2zqFXrH+9mm8A2/J78+93/y4u4s3dm7MmTJxk9ejRdu3alcePGHDx48J71K1asoHfv3rRp04b27dszYsQIzp49a7fxS4q3t4pVq67zxhuJBW4XHGyiZ88sKlY0o5QpebvF28w5NQeT9f7zzt/fwoQJSRw4EMnzzyezfLlN4E2eDElJjnolEhISEhJ5Ua6EnckE589DvXruV+pEpxNITbXVmTtyxI9hw2qRlKTCaDSyYkU006fHAzahJbPTpxYYaGXs2Jv4+f0zdVvBowI5phws4j/LyoO4a9DANo1ttVO7WL1eT1hYGNOmTctzfY0aNZg2bRq7d+9m06ZNVKlShZEjR5KWlmYfA4rJiROezJ5djZwcIzVrGu+bfv0vMhmMH3+TevVs21X1rMqA2gP48NyH+e5TsaKFsWNvceBAJC+8kMyqVVZq1RIZPx4SEuz6ciQkJCQk8qFcCbvISJu3y108dv8uv/Hcc6GsW1cZuVxOu3Zp7N17meBgmyfN19eCYOdKHRkZMr78MpDs7PsP3KhiI87fPn/PMncXd/Xrg8EgIyFBaZfjdezYkbFjxxIeHp7n+ieeeIJ27dpRrVo16taty+TJk8nOziYqKsou4xeXnBw1iYkyTMVw9JpM8P33vkRH27KJu1W5P94uL3x8LIwefYtvv73E0KG3WL/eQq1aImPHQlxcgbtKSEhISJSSciXs/mkl5vrC7vDhCnTu3ACTyROZTMbUqfE8/3wSFosFrVakTh3HJn+cOaPlnXcCycm5/xRoH9yeX5N+vW+5O4u7Bg1sv52RQGEymdi1axfe3t7Uq1evTMdOTFSgVqt59NE0li+PKdRT929kMpg505+ff/a+uyy/eLu8qFDBymuvJXPgQCSvvnqLzZst1Kkj8vrrcONGiV6OhISEhEQhlDthV7myCR8fO8232ZkJE6qxcWMlNBoNjRrp+b//S8Jo1GO1WmnbNodq1cquJ2fnzjn89NMlgoLM961r7NeYc2nn8tzPXcVd9eqg0YhlmkDx008/0aZNG1q2bMnmzZtZs2YNFStWLLPx4+KU9OkTxt69KkRRLLbXVy6HL7+MYvjwf6oRFxZvlxfe3lZefdUm8F57LYlt2yzUrSvy6qsi168Xz6ZyQ0wMPPYYPPUU3LrlbGskJCTKEeVK2NkSJ1wnvu70aQ2jR9dAodCg0Who2NBApUo56PV6AgNNvPBCKl5eZS9CrVbw8FBRoULeZVGUMiUquYocU94NQt1R3MlkEBZWth671q1bs2vXLjZv3swjjzzCpEmTSE0tWQZzSahTR86MGTfp0qXktft8fKx4eNwbm1iUeLu88PS0MmJECgcORDJmTBK7d1sIDRUZPlzk2rUSm+h+WK02F/KBA/Dll7Y4AQkJCQk7Ua6E3ZkzOL3jxJYt/vz0UwU0Gg0+Ph6YzZCQYEKv1zNiRDI9eji/QO633/rw2GPV0enyd+G0DmzNieQT+a53R3HXsKFQpsJOq9VSvXp1mjZtyuzZs5HL5ezZs8fh45444cnvv/uRm2ukT5/0Yk2/5sXLLwezYkXQPcuKGm+XF1qtlaFDU/jmm0jGjUvkyy8thIWJDB0qcvlyqUx1DyIjQf+vB9Dbt9GluX74iISEhHtQboRdYiLculX2rcQSE5Vs3eqHTCZHq9Xy228VuHBBhV6vp1atDFatiiEw8P7pTmdSvbqRnj0z0Grzv+G3C2rHr7fuj7P7N+4m7urXh+ho+5U8KS6iKJKb6/jp9t27A9i0yRur1T5NZTp2zKB58/u/V8WJt8sLrVbkpZdS+eabSCZPTmD/fgv164u8+KJIZGRprXZdYj3qkMs/STzZeFK7oYolS8Ag6TsJCYlSUm7K+N5JnCgLYRcVpUKhgNBQMzduVGDp0mC6dcsiJETHsmXRds9gtTctW0KjRgUXGKvhVYMb2YVHuN8RdwAjRvgBrtt+rEEDW1Hm9HQ5vr7Fabl2Pzqdjhv/ygCIj4/n0qVL+Pj44OPjw9q1a+nSpQuBgYGkp6ezfft2kpKS6NGjR2lfRr6YzeDlpWbu3FjM5uLH1OXHc8+lodVq0enuXf7veLuPH/kYpaxkGcdqtcjgwWk888xtPv+8IuvXB7Jli4JBg2DGDIGGDe3wIlyE2Fjo3F1JaMBhlir64KMJZtSTVXn4RhoTJ/qxcCFMny4wfDiopHraEhISJaDceOzOnLHF8FStan+PiCj+07VAoVDw1ls12Lw5CIvFQosWqfz008W7BYNdXdSdP6/m8GEvCusQLAgCIZoQEnSFFyBzF8/dnVAme0zHnj9/nmeffZZnn30WgEWLFvHss8/y8ccfI5fLiY6OZsKECTz55JOMHj2atLQ0Nm7cSN26dUs9dl6cPq2hX78wrl61olBYSz39+l/++MODo0e97lt+J95uyV9LSj2GSiXy3HNpfP11FDNm3OSnn8w89JDIwIEi5/LO5XErYmOhc2eR3FwTTRec5r3XllEp+jyNHn4C/4GT+eKLy7RokcHo0SKhoSJr11Ks8jQSEhISAIJYUF8hN2LwYLhwQcfmzfaJwrZawWAQ0GpFvv3Wj8mTK3HkSDQ+PjpiYz0ICTGhVLrfW7doUQi//ebF7t1XCt3227hvyTHl0L9W/yId22qFiIhK7Nzpx7p1rue5MxjA01PknXdu8vTTt51tjl3JzvZk8WIfJk26v/erPXjzzapkZSlYufJ6nutTDCkEqAPsOqbJJPDll76sXRtIfLwH/fuLvPOOQNOmdh2mTPi3qPvkk2g+iB3Dmw1mIRiqEhCQwbwzc+hWpRvtg9tz7ZqKlSsDOXDAl5o1RWbOFBgyhHLVJlFCQsJxlBuP3enT1lJ3nPi3xH3++bqsXVsFpVJJu3bprFlzHU9P21xUtWq5binqAGbMuM369UUTvw8HPsxvyb8V+diu7rlTq6FmzfLVM/bsWQ0mkxZvbx0zZtx0iKgDmDHjJp9+mn9ZDnuLOgClUuTpp2+zb18Us2fHcfKkiWbN4KmnRE6dsvtwDuO/oq5icAYW0UKIjzc1ahiRy2FSk0msj1xPiiGF2rWNLFoUx+7dl6lbN4uhQ6FBA5GtW8FSuggCCQmJB4ByIewMBoiMLF3HiV9+8eKxx+oBniiVSoYOvUW3bqmYTCYqVLDVmXP3J2arFeRyeZHr/PmqfMnMzbynvVhhuLq4a9jQOUWKHUFursDEidVZsqQCjna8V6hgBax2a8lWHJRK6NcvnS++iCIiIo4zZ0y0bAlPPiny+++F7+9M/ivqqlQx8XPiz3QM6QjAxo1efPaZHxqFhjebvsmcP+dgFW1vcliYkY8+usGOHVeoWjWLIUPgoYdEduzAKZ+DhISEe1AuhN3582CxFD8jds6cSuzZE4hWq6VOHQs9eqSTnm7AZDLRs2cmDz3kOjXx7MGsWZWZNMmvWPs09G3IpfRLxdrHlcVd/fqCUzNj7UmFCipWr45h9OiCE2HsxccfezF8eK0yGSsvFAro08cm8ObPj+XixVwefhh69RL5reiO5TIjL1EHcOjmIbpW7vr3Ngri420PGmE+YbQLasfmy5vvOU6DBgaWLbvBZ59dJSAgm4EDoWlTkT17KDRWVkJC4sGjXAi7M2dAEERCQwsWdpcuqZk1qzIeHmq0Wi0aDYiiGZ1OR6VKeiZMSCp1tqQr06GDkdats4u1T7vgdhxLOlbssVxV3DVoAPHxCgwGF89yKYATJzyZN68aOp2R2rUNDpt+/S+NGunp2VPvdDEhl8MTT2Tw+eeXWbToBlev5tKuHXTvLnL0qHNtu0N+os5gMaAz6fBT2R6wJk1KZPr0tLv7Daw9kHO3z93XqxngoYf0rFwZw+bNV/HyyqF/f2jRQuSrrySBJyEh8Q/lRtjVqGHKsy7bN9/4cOKEFrVajdWq4dw5LXFxNjE3aVIC/fuXryD6gnjqKT29e6cXa59m/s04k3amROO5orirXx9EUSAmxn2nYzMzNcTGyso8Y7JduxyGDs1wmcxvuRx69cpk9+7LfPjhDWJjjXToAN26ifz0k/Psyk/UARxNPEr74Pb3bC8I8ruxc4IgMKPZDD4892G+nV+aNdOzdu111q+/hkKho3dvaNNG5MABSeBJSEiUE2F3+rRIaKht2jQjQ8b331dAEATUajWffRbIkSMVMBgMNGx4m127ruTZH7W8c/CgN+fOFf/jVsqUdAjuUOIYLlcTdw0a2H5HR3s415AScOuWArVaTXh4KitWxKBSlf1d/OpVC19+6Vvm4xaETAbdu2eyY8cVFi+OISHBSJcu0KmTyKFDZSt2ChJ1YJuGDa8S/q/tPWjSpCZ//qm9u8xX5cuoBqNYcHZBgWO1bq1j/fpo1q6NxmzW89hj8MgjIgcPSgJPQuJBxu2FnSjCqVNQpUougiBw5owfEydWIyFBgcFgYO3aq0yYkOhsM52KKMLy5SHs3etZov0H1hmIUAo3jSuJu4oVIShI5No194qzi4314Mknw/jqKw9E0X7Fh4vL8eNa5s2rTE6O6106ZDLo1i2L7duvsGxZDLdvG+jWDTp0sGWUOjrhoDBRl2vJ5XbubYI0/7RnCwkxMW5c2n3btg5sTZA6iK9vfF3gmIIAbdvmsGnTNVauvE52toHwcOjSReTnn+332iQkJNwHt69j98MP0L277QL5/feRGI0CWVlyAgIePK9cQXh4aElLM+Dl5bx0Olepc9e5s4hWm8GiRSVrheUMVCo1n32m4fHHS9/7tTQYDAIajQZR1BW+sZMRRThyxIuVK4P56y8N4eHw/feOGaswUQfwc8LPRGdF81LYS/csVyqVmPKYVzdbzYz5dQzTmk2jmle1ItkhivDTT94sXx7MpUtqunUTmTNHoF27kr0uCQkJ98P1HruLydKlImq1lbAwI6Joq14vibp7sVpBFE1OFXXgOp67hg3dJzP2xAlP/vijIrm5Rvr3v+1UUQf8Pb7eLcptCAJ06pRNly6ZyOUiM2c6ZpyiiDqAgzcP3jMNe4eLF2UcOeJ933KFTMHbzd8m4nQEJmvRAioFAbp0sXktP/roBjduGGnfHh57TOTEieK9LgkJCffErYXdiROwb5/AjBk3Wbr0Op6eWhITlVJ8yb+wWqFfv1B27CjZNKy9cQVxV78+XL/u4RbFXnfsCGTjRm+H16krDr//rqF79/qkp8udbUqhZGTI2bgxgNdfF+jQwf7HL6qoM1vNJOmTqOJZ5b51+/b5Mm9epTz3q+xZmX41+7H8wvJi2SWTQXh4Jrt2XWHRohtEReXSpg307i1y+nSxDiUhIeFmuLWwmzZNpE4dI08+mY5cDomJBgYOrMumTf7ONs1lMJkE+vXLKVXxZnvjbHHXoAEYjTJu3ixZ0/qywGwGtVpNRMQNFi6MdbY591CrlpG+fbMwu4FjfP36AKxWGdOn2//YRRV1ACdTTtIqoFWe60aMSObbb/P/jHtW7UlmbmaJyw716pXJ559fZt68WM6dM9G8OTz9tMhffxX7cBISEm6A2wq7H3+EH34QGDMmEfnfjoMKFaxMnx7Pc88ZnWvc32zfvp3+/fvTtm1b2rZty+DBgzly5Mjd9dOnT6dx48b3/AwePNiuNqhUIq++mkKjRq4j7MC54q5+fdtvV+1AceqUlqefDiM62oqHh9Xp06//JSDAwhtvJBAQULjL8+TJk4wePZquXbvSuHFjDh48eHedyWTiww8/pF+/frRp04auXbsybdo0bt3Kv3VZcUhOVvC///kzbpxAcLBdDnmX4og6gB/if8hzGhbA29uKWl1wNszkJpP5JPIT0oxpBW6XH3I59O6dwd69UcyZE8fvv5to0kRk0CCRS8WrPy4hIeHiuKWwE0WYOlWkcWM9Xbtm3bOuR49MPDyy0es9+fDDYEwm5xXdCg4OZty4cWzbto1t27bx8MMPM3bsWK5cuXJ3m0ceeYQff/zx7s+KFSvsNr4owu7dAdy86ZoBUc4Sd1Wrgqen6LLCrk4dgZYts6lYsYwL1RWDrCzYty+IzMyCLyF6vZ6wsDCmTZt23zqDwcDFixcZOXIk27dv56OPPiImJoYxY8bYxcbVqwPRaAQmTbLL4e5SXFFnES3EZsdS07tmnuvNZnj99SB+/tkr32NoFBomN5nMnFNzSjUtr1BA377pfPllFO+8c5OffzbTqJHICy+I/OuyJCEh4ca4pbDbtw+OH7d56/Ir+3DmDBw44EtSkvMavHbp0oVOnTpRs2ZNatasydixY9FqtZw9e/buNh4eHgQEBNz98fHxsdv4cXFK5s0LJirKNQUMOEfcyWQQFgbXrrnW+3LunAazWYOvr4533rnpcp66f5OVJePttwM5e1Zb4HYdO3Zk7NixhIff763y9vZm7dq19OrVi1q1atG0aVOmTp3KhQsXSEhIKJV9sbFKdu/2Y8oUAV/fUh3qP8ctnqgDOJ16mmb+zfJdb+tBLSKKBT+E1vOtR+vA1my9srV4RueBUgnPPHObr76KYurUBL77zkL9+iJDh4pER5f68BISEk7E7YSd1WqLrWvTJoe2bfOuzA622k779kVRt64cs1nm9LpbFouFb775Br1eT9OmTe8uP3nyJJ07d+bJJ5/k3XffJTU11W5jVqtm4rffrtGmTf7vkyvgDHHnapmxRqPA+PE1WLrUx6USJfIjJMTMzz9H0qFD8VrUFUZWVhaCIODtfX+WaHFYuTKIgACwk/MPKJmog4KnYe/w/vsxdO6cVeA2AM/VeY4/U//kYvrFIo1dGB4eIoMGpbF/fySTJiXy1VcWwsJEXn1V5MYNuwwhISFRxjjPnVVCPvsMzp8X2LIlf2/dHVQqEYPBQERENa5fV7B+fXSZF3aNiopiyJAh5ObmotVqWbx4MXXq1AFs3oyePXtSqVIl4uPj+fjjjxkxYgTbt2/Hw6N0nRFEEeRyBUql3h4vw+HcEXcAI0b4AY6tc1e/Pnz9tQpRxCVaZPn4qFi58jrVqrlGfGhRqFDBjFqtRqczILPDc5PRaGTx4sU8/vjjeHnlPy1ZGJcvq/jqK18+/lhAW7BDsciUVNSJosiVzCvUrVC3kO0gM1OFj0/Bn78gCMxoPoPJxyeztP1StAr7vECVSmTIkFSefjqN7dv9WL8+iI0bZbzyisDUqVDl/mReCQkJF8WtPHYmE7z9tsijj2bStGnRBcszzyQzfHg6cnnZv9xatWqxa9cutm7dyoABA5gxYwZXr14FoFevXnTq1InQ0FC6dOnCypUruX79Oj/boWT81asqunWry9WrrjXdWBBl6blr0ADS0+Xcvu3ckh0nTniycGFV9HojoaEGl55+/S86nYzHHqvOd99VKPWxTCYTkydPRhRFZsyYUapjffxxMDVqwIgRpTYLKLmoA/jr9l80rti40M4t27f78eijdYuUaVxRVZFX67/KwjMLi2xHUdFoRF5+OZUDByJ57bUktmyxUKeOyLhxkPhgN/CRkHAb3ErYffIJXL8OY8YkFWu/Ro0MdOhwG7lczvbtASQmlp2jUqlUUr16dRo1asS4ceMICwtjy5YteW4bGBhI5cqViYmJKfW4arWVXr2yqFYtt9THKkvKStzd6Rnr7Di71FQt167JyXWvjwkArdZK9+4ZpT7HTCYTkyZNIj4+njVr1pTKW3f2rIZDhyowe7ZAKZ3eQOlEHcD38d8XOg0L0KFDFh9/nFTkGpxtgtrgp/bjt1u/FcueoqLVWhkxIoUDByIZPvwW69dbqF1b5M03ITnZIUNKSEjYCbcRdjodzJol8sQTGYSGlmy6KjXVwvr1/vz8s699jSsmufncxdPT00lMTCQwMLDUY9SoYWXixHg8PNzHA3SHshB3deuCXO68zNiUFAVqtZrHHkth5coYVCr3+5wAXn89iZYtS77/HVF348YN1q5di28pMx2WLg2mUSOR558v1WGA0os6URS5mH6RBr4NCt22alUT4eE6lMUorfh6g9dpE9imWDYVFy8vK6+9lsw330Ty4ovJrFxppVYtkenTIa1klVck3JWtW2HIEBg7Fm7edLY17k1ODmzfDqtXw8mTdj+828TYLV8OKSnw+uslr3FVoYKVXbsuU7GiDEFQkpVldujU15IlS+jQoQMhISHk5ORw4MABTpw4wcqVK9HpdKxYsYLw8HACAwO5efMmS5YswdfXl27dupVq3IQEJefP+9KxY4rbCgZHx9x5eEDt2qJTPHYxMR4MGFCXBQvi6NLF4BIxfiVFFOHwYS+8vcmzVqJOp+PGv6Lw4+PjuXTpEj4+PgQGBjJhwgQuXrzI8uXLsVqtpKSkAODj44OyOCoH+O03T44f92LPHu7WtiwppRV1AJEZkdTzqVfoNOwdvvhCg68vtG5dtD68ClnZXb59fKyMHn2LIUNS2bAhgI8+8mfZMoHx4wXGj8eumccSLsbp09C5M2Rm/rNs2TJ4+mnYtctpZrktq1fDm2/e+362awc7dthqcdkBQXSDFLyMDNtNuHv3NGbMKF0ZhDv8/rs3U6dWYcOGaw6brnznnXc4fvw4ycnJeHt7ExoayrBhw2jfvj0Gg4E33niDS5cukZmZSWBgIK1bt2bMmDGEhISUatw9e3yZP78yhw9fRKNx+Y+3QKxWiIioxM6dfqxbZ19x99RTImlp2axcWfqp7+KgUqnZskVL797O7/1qD/r1C+WRR7KYNOn+IKwTJ04wLI8PrU+fPrz++uv06tUrz2OuX7+e1q1bF9kGUYTBg+ug0aj57TehVGLZHqIOYNn5ZXQM6VhgqZN/8/zzdWjePIfJk10/mC01Vc6nnwaybZsfGo3AxIkCY8dChdKHW0q4EmYzeHuDIZ8C9+PGwUcflalJbs3evdCvX97rGjaEs2dL/1SKmwi7d96BRYusfP11FEFB9uljlJ4uZ/PmAMaNS8dicZ9MxKIgl8tJSwMfHzdohloEHCXu3noLtmwxceBApH0OWAgnTmjx8PCgWbMMtyhpUlQyMmQEBSkxGp33PTp40Jtx42pw8CB07Vry49hL1AHMODmD2S1nIxOKFvFiNoOHhwyr1TULiudFcrKCTz4JYOdOf7y84M03BUaPBk/XaE0tUVrefRdmzcp/vUZji5OSKBpt28Lx4/mv//zz/IVfMXB5YXfrls1bN2BAChMmFC9poijIZDKuXfPk1i2ry9d7KwpWK3h5adGVsy+bI8Tdhg0wdCgcP34erdbxX4Px42titVpZsqT8FQjTarVkZ+vsUvakuFgs8PTTodSs6cEPP5TcVWdPUVdSVCqVUwVySUlMVLBuXSCff+6Hry+89ZbAqFHYrdyMhJNo1Qr++KPATU7vvUJupRplZJD7IjPoaNW5kAYEo0fbprlLicvH2M2bB4JgZfjwFIcc32q1smaND3FxKjZuvOrW8U4AW7b48/33Fdm48YpTbrKOwhExd3cyY2NiVDRo4LheuhYLeHqqmT//Rrny1P2biRP9USh8mTmz7IOqv/7al6tXVfzvfyU/hiuIuvPn1cyeXY3ly6MJCLDPzERZERJiZsaMBIYOTWHt2kDefLMiixbBtGkCr7wCatepBS5RHBQFSwQR6NnXk1uuLyWcjgcqdMiQU4BHvphxxfnh0p/GjRuwcqWtib0jpxXffTcevV6OVqshK0tf2Lns0jRoYMRiSbebqFu3bh0//PAD0dHRqNVqmjZtyvjx46lVq9bdbX744Qd27tzJhQsXSE9PZ+fOndSvX98+BvwLe4u7OyZeu+Y4YXfqlJY5c6qwatV1goPLZoptxYoVrFy58p5l/v7+HD582GFjtmqVhadn2T9JmEwCK1YE8dRTIm3alOypzBVEHYCvr4XGjY1FqmXnqlSpYuLdd28yfHgKq1YFMm6cLwsWwIwZtu+qPUrQSJQhw4YVOHVo9PRm2fpsQGo0XBRuvdeRSqd/yn+Dp56yyzguLWHefVfEy8vCCy/Yr81WXnh4iHh4mElOtvLKK6EMGXKLJ57IcOiYjqJzZyutW9vPu3ny5EkGDRrEQw89hMViYenSpYwcOZK9e/ei/XueRa/X06xZM3r06MG7775rt7Hzwp7izscHQkIcW/KkVi0ZTZro8PEp27t13bp1Wbt27d3/ZQ523z71VDparbbMw2127arIzZtKIiLcW9SBTRTNnXsLg8GNld3fVKuWS0REPK+8kszKlUG8/roP8+fD228LvPii3RwTEo7m1VexTH8becr91ShEYPkTAWSqN/NMrWeKnP39IKOb9ArWYceQ5VXyrHt3W/axHXDZybrISNi4EV55JRmttmw8HVqtlVatMmnSpEyGszsnTmg5dsy+ImXVqlX07duXunXrUq9ePebMmUNCQgIXLly4u03v3r157bXXaNu2rV3Hzg971rlr0MAxRYr/+kuD1arBzy+HWbPiyzz7VS6XExAQcPfHz8/P4WOeOyfj0KHS9XgtDjqdwJo1QbzwAjRqVPz9XUnU3SE5WSQ2tvyonpo1c1mwII49e65Qr14mI0ZAvXoiGzfi1p7JBwVRhOeaXuCirCH/voIZBRU/9ZhC+Iw9GC1Gxvw6htjsWKfZ6S7omzZl59ANnOaffvGo1fDKK7aMWTvhssLu7bdFgoPNDBhQdlUwZTKYODGJatUy8PDQ8sMP7pW7v3OnPytWONbm7Gxb03cfn0KCQB2MvcRdgwYC16/bNwBIrxcYM6YGS5dWcFpM3Y0bN+jatSu9evVi8uTJxMY6/qK7e7cXy5eXrlRPcfjf//zJyJDz7rvF9xS4oqgDePvtIObMKX+NWevUMfLBB7Hs2nWZ2rWzePllaNhQ5H//s8WgSrgmS5fCzoP+/LjsayIPHOCDwaHEfPQRk0fHkPrqSOSCnCGhQ5jSdAoLzixg8+XNWETpA80PiwWmfd+fqb3+hL/+gqNHIT4e1qyxa6aRS2bFnjoFLVvC7Nlx9OuX7hQbfvihApMnV2P37svUru0e/Z7Uag1JSUZ8fBzj4RRFkbFjx5KZmcnGjRvvWx8fH0+vXr0cFmOXF6XNlv34Y5g4UeT48fN2i61Uq9WcOSNQo4Zzer8eOXIEg8FAjRo1SE1NZc2aNURHR7N3795Sd3YoiOxsGX5+anJzHT8fm5kp47HH6vHCC3I+/rh4+7qqqAO4fFmFRqOgalX3z9AviAsX1KxYEcxPP3nToIHIrFkCTz9NuUr4cnf+/BPathUZODCVN9+01VYc8+sYlrW3ZW3aQi/++a6Losju67v5If4H3mzyJrUr1HaK3a7Mvn0+TJtWjd9/h2KU6Sw2Lvk1mjZNpHZtI717pzvNhvDwTD7//DIPPWS727ue/L0XqxUEAYeJOoCIiAiioqJYsGCBw8YoLqX13NWvD7m5Ajdvlj6q+8QJTz76qAoGg5F69fROKz7csWNHunfvTlhYGO3atWP58uUAfPHFFw4d18vLCpgpizJsGzYEYDLJmD69ePu5sqgDCA01EhrqPnXsSkrDhgY+/jiGrVuv4ueXzYAB0KyZyN69rn+tfRDIzoaBA0Xq1DEyblzeZcbOnbMyfXo1TCabx1wQBJ6p9QzvtniXZeeXsfbSWkxW1/p+OROzGVavDqZ3b9Ghog5cUNj9/DN8+63A//1fktOzU2vVykWn07FpUyVmzqzi0hecN96oznvvOW4adt68eRw+fJhPPvmk1J0x7E1pxN2dkif2iLNLStJy6ZKSfFoBOw2tVktoaOg9rb0cxbZtnjz9dKhDvyspKQq2bAngjTcEKlUq+n6uLurAVuz5o4/8iIl5MNJHmzTRs2pVDBs3XkOr1dGvH7RsKfL115LAcyZjx4rEx4ssXHgj337jVqvI5ctqkpLuvVGHaEP4sO2HhGhDeP3o61xKv1QWJrs8+/b5EhPjwaxZjk8ycSlhJ4owdapIw4Z6wsMzC9+hjKhYUU/16qJL17jr1s1Ikyb2nwITRZGIiAgOHjzIJ598QlU79bKzNyUVd5Urg7d36TJjU1PlqNVqevdOYeXK6/leCJ1Fbm4u165dIyAgwOFjhYUZeOqpnLtP8Y5g7dpAPDwE3nyz6Pu4g6gDW9mwXbu8iY9/MITdHVq00LFuXTTr10cjCHqefNI2Dfjdd5LAK2u2bYNPPxWYOvUmNWv+85Rqtprv6aISGmpk+/bL/Kvy1V0EQaB39d681/o91ketZ9n5ZeRaXOyJtwwxmWD16iD69xdp3tzx47mUsNu/H379VWDs2CSXirXo3TudESNuotFoOH1ag9Hoegrv+eez6No1y+7HjYiI4Ouvv2b+/Pl4enqSkpJCSkoKhn/1DszIyODSpUtcvXoVgOvXr3Pp0qW7Dd3LipKIO0GAevVK7rGLjvbgiSfq8d13SkRRdInz9v333+fEiRPExcVx9uxZJkyYQE5ODk/ZqUZSQTz0kJ5XX01xmLiNj1eyc6cfb74pULFi0fZxF1EH4Olp5eefr9G+fbazTXEKrVvnsGHDNdasicZo1NOzJ3TsKPLjjwXslJtLmcz/PwBER8PIkSKPPZbOU0+l37NOZ9ahVdwb4C8IkJCg4bff8u4hF6AOYGGbhdT3rc/rR1/nbNpZR5nu0uzdayvLVBbeOnCh5AmrFZo3F/Hw0P391OZsi+4nM1NGr171GDYsmREjyla0FMQ33/jQsKGBGjXs34qocePGeS6fM2cOffv2BWDv3r28/fbb923z2muv8frrr9vdpsIobkLFiy/C2bM6tmy5VuyxVCo1mzZpeeqp206LqfsvkydP5o8//uD27dv4+fnRpEkTRo8eTZ06dcpk/JQUBT//7EO/fql2/x7PmFGFY8d8uXZNKFI/UncSdRL3Iorwyy9erFgRzF9/aejSRWTOHIEOHf7eICIC3n8f0tNt/1eubPv/ueecZbJbYzLZRHR8vIkdO67g7X2vWE7UJbIuch0zms+4Z/n06VW4ckXDtm1XCvy+Z+Rm8P7Z96ngUYHRDUejUWgc8TJcjtxcgSefDKNTJwXbtj1gwm7bNtv3cdOmazRv7rp9Ti9eVNOwoQjkukR7KJMJunevz9Chybz0kmMLObsTxRF3770H8+db+OWXi0UWIidOaNFqPXjooQyXOA9ciV9+8eKNN2rw5ZdRdhVSV6+q6N+/LosXC4wZU/j27irqPv00gIMHfdiy5aqzTXEJRBEOH/Zm+fJgIiPVhIeLbNW8QtC+T/LeYflycMIDpbszfTosXCiyceM1mjTR37f+WuY19sbsZULjCfcsv31bTsWKKqBo9+2fE35m4+WNjGowitaBDs4icAE++8yP+fMrcf68QBkVi3ANYWcyQYMGIlWqZLN8eYyzzSkScXFeREQEMG9eLBUrOrduj1yuJStLXyaN7N2Jooq7PXugf3/48cdLRe7ROXp0LRQKC4sXOz4hwd0wmQA0KJX33xxKw/jx1bl82ZvISAFVITPn7irqAI4f9+TaNW+eey7RLsc7efIkGzZs4MKFCyQnJ7N48WK6det2d71Op+Ojjz7i0KFDZGRkULlyZQYPHszAgQPtMr69sFrh4MEK/G+pnOPXqyEjn+udRkOZt0Bxcw4dgvBwkbFjk/KdjTqXdo6jSUcZ1WBUnut1OhWCkItGU/h9KNuUzeK/FgMw7qFxeCm9Smy7K2MwCDzxRD169JCzeXPZTUO6QEQQbNgAV6/aYuvchZwcE2azDLlc7lQ7rFYQRYMk6vKgqDF3dzJji5JAYbXa6tQtWhTD/PlSpfW8UCpBqdQjCPb7bvz1l4YffqjArFnlW9QBPPxwDsOH2y95TK/XExYWxrRp0/Jcv3DhQo4ePcr8+fP54osveOGFF3jvvfc4dOiQ3WywBzIZdO+eyf4OU/MXdQB6PXz1VdkZ5uakpMCQISIPP5zDsGH5hxjpzDo8FXnHP+j1Ao89Vptt2/yLNKaX0osZzWfQo0oPpvw+BbO1fLYh2bnTj9RUOe+8U7axZU4Xdno9zJplC9asV88xjdgdQb16RtauvYa/v0h2tgc3b5Z9GyC9XqBnz3ocOlSEYKMHlKKIuzp1QKEQC02g+OMPLQMHhhIba0GjsbpMTJ0rcvmyivDwULu1a1u6NJj69UWGDCl4O3cXdWCbevzzT5XdrikdO3Zk7NixhIeH57n+zJkz9OnTh9atW1OlShWeffZZwsLCOH/+vF3GtzeKtCKEnJRBp5XygCjCyy+LGAxWIiLiCkz+yjHn3Jc8cQeNRmTatHj69y9eYe02QW34uP3HKGQu3ba+ROh0Ap98EsgLL0BoaNmO7XRht3IlJCbC//3f/U2Gi8u6desYNGgQDz/8MJ07d2bs2LFER0fnu/2sWbNo3LgxmzdvLvGYJpOJ2bNDGD++RqnT8rNMWXx07qNijC3w9NPZ1Klj/6SJ8kRh4k6ptIm76OiCS0zUqCGjfn0d3t7l8+nSnlSvnkuvXtl4eJQ+W/H33z05dsyLiAiBghzk5UHU3WHo0BD27y+btn3Nmzfn8OHDJCUlIYoiv//+OzExMTzyyCNlMn5xyWnTpvCN8hGxEvfy8cfw9dcCc+fGEhRU8HWtII8dQM+emYSEFL88jeCKmZJ2YPt2W8vDsvbWAThVJmdmwrx5Iv363aZGjdLXuDl58iSDBg3ioYcewmKxsHTpUkaOHMnevXvR/qcP28GDBzl37hxBQUGlHnfSpJtkZHjg4aHEZCr5zcRb6U1kRmSRt69Qwcr//V8iFqnZYqHcEXcAI0b4AffG3DVsCNeu5d0z9vx5NY0aCQQG5jBnzoNZhqK4qFQiEyfGIZPJSlWJQhRt3rqWLUX69cv/AlmeRJ0gwGefRRMUVDYPbFOnTuXdd98lPDwchUKBIAjMmjWLFi1alMn4xeW3RoPpr1mATJ9PDGdoaNm7SNyQM2dg0iSRIUNS6dSp8OuazqwjRFNwcfpjx2DBgrqsWXPtvqzaB4mcHBmffhrI0KHkWefP0TjVY/fhh5CVBSNHlt5bB7Bq1Sr69u1L3bp1qVevHnPmzCEhIYELFy7cs11SUhLz5s1j/vz5KOzQ3iIoyExoqA6TyUpERFX++qvkadw+Hj6kG9ML3S43V2DPnkDS0qTpwKJSkOeufn2B69fvnzbU6QRef70mH39cQcp+LSZGo8B33/mTmFjyKcXDh705c0bLe+8J+WYslydRd4caNQx4eZXN5Xnr1q2cPXuWZcuWsW3bNiZNmsTcuXM5duxYmYxfHH7+2Ytnn63Lz9M+wZrXtbtCBTh8uMztcjdycmwtw2rXNjJ+fNFi2/OqY/dfKlc2UaOGCZ3O6ZOBTuWzz/zIyZExY4ZzvJFOe/dTUuCDD0Seey6VkBDHTG1lZ9ueQnx8/pnSsFqtTJs2jaFDh1K3bl27jpeTI3LlipLU1JILu6Z+TYtUxPHiRTWzZgVx61bZx/a5M/mJuwYNICFBed8Fyc9PxcqVMYwYYZ+HjwcJiwWmTQvMt3hpYVitsGxZMF26iPnOrJVHUQdw+rSG6dMd38bQYDCwZMkSJk+eTJcuXahXrx7PP/88vXr1YuPGjY4dvBhkZMiRy+WEh5tZteo6AX0bc+noUb4LG841ZZjN5T53Lty+batnJ1Egb7whcuOGyIIF+bcM+y8FxdjdISjIzPz5MVSr9uAKu6wsGRs2BPLKKwLVqzvHBqdNxb73HoDI8OHJDjm+KIosWrSIFi1aEPovt/z69euRy+UMHjzY7mN6elr55JNo5HIBlUrN5csWqlUr3o2mqX9TDt48SKdKnQrerqmeX365jKfng9umpaTkNS17pw5zdLQHjRoZOHHCk+PHfRk9+ubfdQsliotWK/L995FUrCiWaDp2/34fLl9Ws2kTeXrrnCHqzGYzK1asYP/+/aSkpBAQEMBTTz3FyJEjkdmx7YhOJyMuTklOjgwvL8dNaZnNZsxm831xTrYpdNeYSjtxQsuYMTXZvDma0FA9d0L/rFotM3yWULOvlh07ymecliPYsQM++URg9ux4atcu+v0jx5RTYIzdvzl+3JPr17X065deQivdly1b/DEYZEyd6jwbnCKr4+Jg+XKRF19MdlgNuIiICKKioliwYMHdZefPn2fLli3MnTvXYQGbMplNVO7f78FTT4Vx7Vrxej6G+YQRlR5V4DaiCB4eKry8cl2yQ4c78F/P3YkTtuV3sjjj4jw5e1ZJrqSbS4WPjwWVSlVsz5PJBCtWBNO7t0jbtvevd5anbv369ezcuZNp06bxxRdfMGHCBDZs2MD//vc/u47Tvn0O27Yl2EXU6XQ6Ll26xKVLtmbs8fHxXLp0iYSEBLy8vGjVqhUffvjh3TZ0e/fuZd++fffUunMGd0KH27aF115LombNe6smiCJERqpp1ky6CBaV69fh1VdFevVKp2/f9GLtW5Sp2Dv8+KMHBw74PXB9fjMyZGzeHMBrrwlUqeI8O5zisZs1S0SrtfLii47plDBv3jwOHz7Mhg0bCAn5J9jz1KlTpKWl0aNHj7vLLBYL77//Plu2bOHbb7+1mw0dO2Yxd24cDRvKMRSjiotSpkRExGw155sCfvy4J3PmVGXjxqtFLqgrcT//9tzV/r/nsPI9TAPz0hD6//ADTz3lGr1fXYWfE36mQ0iHexqBF4bVCs88U4VevdIYPDityPvt2VORuDglX399/03bmdOvZ86c4dFHH6VTJ5tHvUqVKnzzzTcOKQ1isVgxmQSUytLdHc+fP8+wf2UKLVq0CIA+ffoQERHBokWLWLx4MW+99RYZGRlUqlSJMWPGMGDAgFKNWxouXlQzeXJ1PvkknuDgHF566f6Cw4mJSjIz5TRt6gQD3RCzGZ57TsTLy8Tbb98stlNAZ9bhqSyax2706Ft4e6swPmAFGzZtCsBsljFlinPtKHNhd/kyfPopjB9/C09P+7r6RVFk3rx5HDp0iPXr11O1atV71vfu3Zu2/3n8HzVqFE8++eTdvqf2QqkUefzxDAwG+P13f2JirDz77O0i7VvPpx5RGVE0rNgwz/X+/ma6d8/C318SdaXljrhrvON77lznFImJeB44QHbPnk61zdVI1Cfy1u9vMbPFzCJf4GUyePTRDMLCin6FNxgEVq8O5vnn4b+tip0dU9e8eXN27tzJ9evXqVmzJpGRkZw6dYopDriSDxpUmbAw/d2Hj5LSunVrzp07l+/6gIAA5s6dW6ox7E1YmJyWLXOQy/M/by5dsmWxS8KuaMyaBSdOwIYNsVSoUPx7r96iRy3Pu3LAf/HwEDEaDcTGVsDTMwc/P/vPzBXWUWX69Ol8+eWX9+zTpEkTtm7dandbwNZabevWAEaPFggpOHnY4ZS5sHvnHZHAQDODBhX96b2oREREsH//fpYsWYKnpycpKbYq2l5eXqjVanx9ffH19b1nH4VCQUBAALUcmJN85IiCuDgtzzxzu0hPSc38m3Em7Uy+wq5RI5HQ0Jt2trL8k5CgJCVFQePG+r8Lc9ZmwIBMnn32Xm+AAFS4dIkT1Qfy9tsBLF9+neBgM5cvq5DLoXbtB+wx9G8G1B5A3Qp1eePYG7zT4h2qexUtMnjYsGQ0Gg35Vaf4L5995k9ampxZs+79sjhb1AEMHz6c7Oxs+vTpg1wux2KxMHbsWB5//HG7jzV4cAoBAQ9OKaP4eCXz51dm4cIUNJocZs0quNhtZKQaPz+RKlWkqdjCOHwYIiJExoy5RbNmJWv1J4pisbz1BoPAoEFVGDw4lddft3/y2Z2OKn379mX8+PF5bvPII4/c89CiVDou2XDDhgBAYPJkhw1RZMpU2J0+Ddu2CcyceQuVyv6T79u3bwe4Z9oBYM6cOXb3yBWHCROSMJvB01NLXJyRihUtBQq8Jn5N2B+7n+fqPHffuqtXVdy86U379ikFFmt9UNHpZJhMAj4+FqKjPVi6NJi3306mcmXYsiWQX3/VsH9/DCaTiaZNc/Dz06PT6RDlcoS/g3pE4N2eGjoK2TRurMXfX0SlUrF6dSUyM+Vs2hSP2Wxh7NgQBg1Ko02bHHJyZJjNtnHLMy0CWjC31Vxm/jGTF0JfoENIhyLt99tvasxmgZYtC+7hmZUlY/36QIYPtxWNvoMriDqAAwcO8NVXX7FgwQLq1KlDZGQkCxYsIDAwkKeeesquY/XokYmHh8cDE+fp5aUkPV3OzZvmez77/IiKUtO0ad6JNRL/kJICgweLtGqlY9gwxyQr5oVaLbJmTTSNG1OqWpb50bFjRzp27FjgNh4eHgQEBNh/8P+Qmirns8/8GT9eIDDQ4cMVSpkKu+nTRWrUMNG3b9GmJItLQdMN+WHPuLr8EARbd4OkJAPPPhvGyy8n88IL+ccX+qp8Sc9Nz3PdoUMV2LbNj++/z7+nX3lHFG0/MhmcPKnl9Gktr7ySilKp5PHHa9GzZw5vvZWKp6dAdrac9HQrfn65vPRSAi+/DEajbQp7wgRb/SazGerVyuELoTcVrak0S/uZoebFLM8Yxdtvvo1CEYzRaOHtt2PJypJhMNjqNBmNMuRyBRqNhv37vZkyJYgzZ64glxvZvdsXLy8LPXpk3mNveSBEG8LS9kuZd3oelzIuMTxseKHJSB9/7IOfn7lQYbdxYwAGg+yeau2uIuoAPvjgA4YPH85jjz0GQFhYGDdv3mTdunV2F3bp6XJ+/92HDh1Sym0v6JwcGWvWBDJ+fDY+Pjls2nStyEItKkpTYNFqCdt1Z9gwEZ3OynvvxZbKGfBWs7eKvU+jRgaUShUZGYJTWjCePHmSzp074+3tTatWrRgzZgz+/kXrZ1sc1q8PRKEQmDjR7ocuEWV2qzl6FPbvFxg9OhE71AR2S7y9rYwdm8jTTxf+CB6oDiRZf//T1euvp/P551fKjUgoCsePe3LypC0bKzFRRYcODfjrLz+0Wi0xMd58950vVqtIbm4u77wTR58+t9Dr9QQF6Vi79vrdlP6gIDOBgffHJVosAn375nDxvRVc27iF3v1zebJqfyY2mciMkzP48eaPgC3Ds2pVm6jQaq0sXx5Dy5YZ6PV6WrZMY8mSGGQyA6Io8ttv3pw5UwGtVovB4EXbtg05frwCAFFRKr7/voJbZ4yp5CrebfEuWrmWt068hc5csGB7//1YliwpOFkqNVXO5s0BjBkj3C1F5kqiDmx13/5b1kQulzukePXNm0omTgwmOto+/XZdkbQ0NV9+WZHTp20unaKKOp1Oxo0bSim+rhBWrIB9+wRmz44jOLh0MdlVPasWvlEeHDmiIDy8fqkKlZeEjh07Mn/+fNatW8ekSZP466+/GDFiBLl2doEnJyvYvt2P8eMF/PzseugSI4hlUE5fFKFTJ5GUFCPbtz9YoiQ/LBZP1qzR8soryXkK3d3Ru/Hx8CG8yj+VWUXRNp2r0xV8E3U3LBbbtEpwsAk/Pws//ujN2rVB7NoVj0Ih48UXQ/DxsbBoUSxGo5UNGwLp1Su92DUC80OhUGCxWO65OavVagwGA7mWXD766yOsopUJjSegkhf/JpuRIWPv3or07JlJ5coW1qwJZts2H3799QaiKDJ6dCBNm+YwZEgqBoNAZKSa+vUNDglXcAQnkk+w5tIaZraYWeDFX6PRoNPp8715L1gQwpdf+nPtmoC/v+uJOrAFZP/222/MnDmTOnXqcOnSJWbNmkXfvn2ZMGGCXccymwG0KBTl6/tutcLXX/vSv78Ri8WITicW25tz+rSGF16ow59/QrNmjrHT3Tl7Ftq0EenfP41p00qXgFMacnJkbN0axKBBt0qUtFEUGjdufF/yxH9JTk6mR48eLFq0iHA79hJ+771K7N/vR3S0wH9C+J1GmUisb7+FX34RGDMmsVyKuovpF9kYtZFUQ9HLtxw/LrB9uz83b+Zd566pf1NOp56+Z9lHHwUzcmTpe9s6A1GEtDT5XS/V9u1+rFsXiIeHBwqFloED63D0qD8eHh74+1to2FBHRoYRnU7HBx9cZ/78GKxWK0olvPJKst1E3Vdf+bBhQyBW6703ln37PFm3LgAPuQdTmk7hkeBH+L+j/8fVzKvFHsPHx8pLL6USEmLCarUyYkQCe/dGodPp0Ov1VK9uIDjYjIeHB9ev+zBkSB1u3qyAh4cH+/b5snTpP5/5v99DV6F1YGtmtZjF7FOzOZaUfxuqefN8GDcu74SLhAQlO3b4M3my64o6gGnTptGjRw/mzp3LU089xfvvv88zzzzDmDFj7D6WQgEajWu8bnty5YqKmTOrcPiwHKvVWqIpushIDQqFSIMGDjCwHKDT2VqG1ahhZOLERKfa4ulp5dVXEwkOdq7nOTAwkMqVKxMTE2O3YyYmKti1y4+JE11H1EEZxNhZrTB1qkjz5no6diyfDdTrVqhLoi6ReafnAdC7em86hHTItw4dQPv22ezfH4W/v4qsLDCb741BqO1dm2tZ1+7Zp3Vro8vc4PJDFG3TKaIImzb507SpjhYtjPz8sy+vvVaZ336LISDATEaGB7dv87dbPJdt265So0YuublWmjTJpUmTf7wU9i6L82/i4zXcuCG7z4sUHS0jJkaLKKYgCNCpUica+DZg9p+z6VypM0/XfLpURa7/XXh2zBhbxlhuLtSubWLHDgNVqhjJzRXJyPAmNdUDtVqNIMjo06cGw4ffZvjwW8TEyDlwwJeBA1OpUMF69713BpU9K7Ok3RLm/jmXqIwoXgx98b73p0mTHGrXzvuzXLkyCB8feOMN1xV1AJ6enkyZMsUh5U3yYt26CqSmKu7Gg7oz58+radrUwkMPiXz1VRSVK5f8c7V5tUVUKinGLi/GjRO5fl1k27ZYl/H8796tJSqqAuPGOedcTk9PJzExkUA7ZjesXRuIl5ftuuVKOFzY7d4Np08LbNiQWG6zl5QyJY9WfpRHKz9KqiGVr258xdajW6nvU5++NftSp0LeKV5arRW9Xs/ChdWIjpazZs31u++RTJChEBTkWnLxkNu8ej175rrUNGxGhoxjx7zo2DEbT08rK1eGcPy4Jzt22Nz+n3/uj1Ip0KyZngYNMvjgAzOCkINeb+XVV+9NuW/YsBhVnO3I+PGZ5OTc/56+8koyKtW9GYmBmkCWtFvCp1GfMuXEFKY3m46Ph899+5YGDw+RBg3+eS+GDLF5gQ0G20PS3Llx1KhhxGq1cuOGJxs3BjBsmA6tVmTKlAB0Oliw4AYA33zjQ/PmOkJCykYYaRQa5raay6bLm5jxxwzebv72PXWvunXLQqu18N9TODragy++8OXDDwXS011X1DkDhUJEpXL/aY6rV1U891wdliyJ5dFHM0vdzjUqSk2zZu7/vjiCXbtg7VqBmTNvUqeO65Rmun1bJCNDZbcHUJ1Ox40bN+7+f6ejio+PDz4+PqxYsYLw8HACAwO5efMmS5YswdfX124dVeLjlezZ48ecOQLe3nY5pN1waIyd2WyruRYcnM2KFfZzf7oDoihy/vZ59sbsJS4njm6Vu9GrWi+8lfefAadPa0hJ0dK9e9o9cV6rLq6ibVBbmvk345dfvAgMlFGvXmZZvgwyM2UkJHhQr55NbMyYUYWHHspl6NBsIiNVPPFEVXbsiKVhw0yOHtUSF+fBgAG2rGdnepAKw2AQOHKkIl27puWbKSaK8OefflSqlEWlSvcKjLNpZ1ny1xJGNxxN84DmZWBx3vz7PT540BuDQcaTT2ZiMKho1aouH32URO/e2Rw8qGb9eh+WL49BpRK5ds2DChUsDquTdizpGJ9GfcqslrOopK10d/mNG2rOn1fx2GMZd5dNnFiNCxcqcOiQQM+ekqj7L3fiPd2RtDQ5AQG2ckGHD8to3Tqn1OE4Viu0a9eQWbNkTJpkHzvLCzEx0KyZSJs2mbz/fqzLXX+VSiUmk32+1ydOnLivtBnYOqq8/fbbvPHGG1y6dInMzEwCAwNp3bo1Y8aMuacbVWmYObMyR45UJDpawLNo9drLDIcKu/XrYfhw2LHjyj1eiAcNg8XAoZuHOBB7AC+lF0/VeIrWga3vK/bo4eHBrl2etG+fSUCAhd9u/UZkeiQvhb3E0KG1qVLFyNy58Xa3z2oFg0GGVmslLU3OsmXBvPhiGvXri6xe7ceaNb788Uc0VquF99/3o3ZtA717Z2A2Q06O3C1rtx086M3EidXZty8q33g9g0GgZ896PP98KiNH3p+hnGXK4r3T71Hdqzqv1H8FueBahQV1OhmCIKLRiBw/7smXX/qyYEESCoWCgQOrUq2aiUWLEklPNzN3bghDh6ZQt64Rvd7Wxqq02eux2bHMOjWLkQ1G0jqwNQCffhrA5s0BfPfdJRQKuHBBzcCBdVm0CFaskERdXpjNXphMOWg0rjGlVlRiYjz+/mzj6dgxo/AdinHcJ58M47vvoHt3ux3W7TGbbd7u69fN7NhxGR8fx4WwlBRRhKNH/alWLYsaNdy3QGNsrAe9e4eycKGAnXOm7IJ9hd21a7B6NfzxBxZvX0YdeY74lo+y8AOpS8IdEnQJfBHzBSeTT9IyoCV9avShiqetW3BWloy+fUMZOjSNId3/IvTZZ/C4nW7bURCIG/gSGdNLXyjn6lUVP/3kzbBhKSgUCoYOrU5wsIUPP0wmK0tk4MAqvPXWTVq10pGUpCA9XU5YmNHlnv5Kg1Kp5Pp1ChUQN28qqV1bgcGQd7V2URT58saXfBf3HW83f5sQrZN7yRSRGzc8sFqhZs1cbt5UMnlydWbPTqZxYzMrV/ry6acV+OWXK5jNZnbvrkjNmsZCa9Dlhc6sY/ap2TTxa8JzdZ5Ds/NLar/3LoIt5RO9TMvzgd9zRtMOk0kSdf8lLU1O584N+OijG4SHl623vqSYzXcSP7SsX6+mT590u8bJfvddBSZOrE5SEgS5Zy6ZQ5g5E+bOFdmwIZrmzV0nZOff5OYKPPFEGM8+m8arr5ZdsWR7M316FX7/3ZerVwW0Wmdbcz/2E3Z798KgQfy36++t5h1IXrcE0SPv7M8HFato5Y+UP/gi5gsycjPoWbUn4VXC0WV4UjXpPLUGPMt/dZQIGCtV4sp33xV6/KgoFVlZclq21GEwCDzzTCgTJqTx5JM6vv7ak5kz/Tlw4DJarYVff/VCq7WUuNWMu5GSoqBaNSX6Iva4UiqVJCSIBATkXwfqetZ1Ik5HMKj2ILpVsU8Mh7O4ckXFtWsqevTIRBAEBgyoQ7duOsaNS+fSJSUjRoSwYsV16tY1EhmpRqeTFXgjEUWR9VHrGTh3Gw+fTszzvJ7rNZc2u56RRN1/EEU4eNCPpk0z86zB6GokJCh59dWaRETcokkT+3np/s3SpUHs2xdIQkI5etIsJT/9BF27irz22i1GjXJtwZSaKqdqVY8iX39djehoD/r2DWXxYgEHJMPbBfsIu9RUqFaN/JpBJr3+OsmvvVbqYcor2aZsvo37lh/if6CSthLbXt6FLJ+PRQSiP/6YnE6dSUpSolRa8fe3cO6cho8+CmH16kR8fAQmTQokOlrJtm229lnLlgXRtWsmjRoZsFrLTxeE4qLTyejVK4wRI5J58cWilaf55Rcvxo6tweefX6ZmzfynD3ItuSw5v4RcSy4Tm0wscsNsd+DOORMfr2TXLj+GDk3G31/O229X4uJFFV98EY/FYmHUqGCefDKd7t0zycmRkZqqoEqVXORyaNS48X2i7g4icL4EnWMeBGQyGVZH9GRyAEqlhtmzKzJkSArVqjlmqm306Bqo1V4cOCAJO7Ddfps2FalUSce6ddFu0WpSqVRy7Rp2K1tVlkyZUpUzZ3y4ckVA7aKXePvc3jdtylfUAfjt2oXLFd9yIbyUXjxd62lWdljJEL/eCAW8VwJQY9IkNBo1AwbU5csvg1Gr1Xh5gZ+fmdu3Teh0OsaNi2PNmqt3A1XHjLlFo0a2OMcHVdQBqNVW5s5NoUePok9rtW6dw8yZSYV6kzzkHkxuMplOlTox+uhormReKa25LsOdc6ZKFRNvvJFEhQpWTCYTU6fGsnRp9N81+Yx4eVnQam0B/6dO+fHEE2Ho9Z7UfuaZfEXdHfyXLXP463BHzp5VsXu3/dsg2Yvbt+WMGVOduDgfTCY9U6fedJiogzsZsZKoA9ttdfhwkZyc0rcMK0t++knFE0+EERXlXl1VrlxR8c03PsyY4bqiDuxV7iQqqsDVylu3SLzqhUXjZZfhyjM1v0su9AYoMxoxGAwsWRJD1aq5GAxmatWytW26g5+f+yU0lAUajYpOnYrXZ1elEnnqqRS02qJ1/egY0pEGvg2YdWoWHUM68mytZ0tV886VUSrFu1OEMhlERNiSewwGaNIkl7Vr9Xh65uDxr7IEeSEAPj/+SKqrzm04kZMntWzfHkD//qkuGedaoYICo1FOUpKJqiXrOlVkMjLkJCRIrcTusGoVfPGFwOLFcYSEuP5U/R1at87mgw9cqxxLUVi5Mojq1SGPZFyXwj5TsbNn2yI38yEdH/xIQyy71rRuS3WucJ3QAsWdRSHn4p+ny8qkcsOaNYGkpqqZOjW28I3zYMuWQC5d8ihyZrJVtLIxaiMX0y8yvbn9a965E3V79ECdUHBbo++qPU/l/VPLyCL3wWIBb2/XaiWYmyuwalUgL7+sx8cn2yG9cvPixAlPhg2rxfnz0LBhmQzpspw7B61bi/Ttm8aMGc5rGVYatFotOTk6l3xg+S+RkWqeeaYu69bZqn24Mvbx2L30EsyaZQvEyYPcgS9y8k1J1P0XgwGOHYODB0WOHIHsbIHckBpQQAcYEfisfyNW/TKKRys9Sq9qvR5owVAcgoNFoORld3x8cqla1aPI9flkgoyh9YZyLu0cx24do1fVXiUe2925snkzjcLDC4yx2/fUYsZrszAYrEyaFMCwYSnUr//glkm6gytOrxkMCg4cqEiDBga6dy+7MJvISDUqlUhYmBsoAQei08Fzz4lUr25k0iTntgwrDcuXe3H2rD8ffVSyh+2yZMWKIGrVEnnxRdc/9+wj7GrUgIULybNaZMOGBC2fSZDrhoiUKdnZsH8/7Nolsn8/5OQI1K2by5AhGYSHZxAWZiT+f29RZf78PG+CZqWKZm9vZakllx8TfmTmHzNRy9X0qdGHh4Medrlaaq7EwIHZpSr02rt3BgpFDhaLUCwPRWO/xjT2a1ziccsFwcHoQqqiTYzLMys2o1MnRo5MQqezlZhJSPBAo1GhVsN33ym4fVvBU0+lO8Fw5yOK8MILIfTseZv+/W871Y5vvvEhPNyEn18ue/dG4eFRtrHTkZFqHnqIUtdYdHcmTBC5csXWMqwkvXZdherV9chkCpdP6Dt/Xs2hQxXYuBGUSmdbUzj2rWP33XewdCmcOgW+vvD88zB6NC7VHdcJpKfDvn2we7fIt9/aCt82aGAgPNwm5mrXvj/Q2HvfPipPexsF/8TKXVPVY9OUn3j22XvT2ZP0SeyL2cdvt36jqX9T+tboSzWvao5+WW7D7dtyduwIYvDgpHt6tJYEkwm++CKEhx5Kl7xJxeToUW9qj3+NcP03d5eJCKQMfp5bb72V734ffFCJa9c0rF+fgF5vYM8eHzp3znqg4kiXLKlEixZZTu23nZoqp3fvMMaPT+TZZ50jMAcMqEv79mrWrXPK8C7B55/D00/D22/H3+3y487I5XIsFtf+Lv/f/9UgIcGLCxcEt3iocGjniQeZlBT44gubZ+7gQTCZBJo21REenkG3bplFSvM+eDAQb28dbdrkALZYG61WhdGYd8CpKIr8mfonX8R8Qaohle5Vu9O9Sne0ChesoFiG/PyzF++8U5U9ey5TsWLpLiBmMzz9dCgDBqQxeHDRyqVI2NBoNNzOzGT88bGseGQlcXHehIRkFekJ+E7R29hYD/r0CWXdugRatbrN9etKPDzE+1q+lUcEoXieYntx4YKaevUsaLUybtywEBzsnCB9kwnatm3E+++7bv0wR3Pjhq20SatWWXz44Q23iE0rDJNJ4LPPQmjSJN0la6mePath8OA6bN1q81W5A5KwsyMJCbBnj80z99NPtpDDli3/EXPFzVrSaDR5FnH8/PMQwFjgtIzOrOO7uO/4If4H/NX+9K3Rl2b+zcptdmZBqNVqMjKMqFT2OdWNRoGKFTUuFczuypw4oeXYsYq89lo8f9z+jb9u/8WIeiNKLFQyMuR4elpQKgWmTavO5cse7Np1FavVSmKikpCQ8ify9HqBmze9qFMnq0zHzciQ06NHPf7v/27x4ovFyya3N5cvq+jfP5SffoJOnZxqilMwm+HRR0WuXjWzc+cVt2zlmBdWKwwZUofevdN57jnXe1geObImt297cu6c4JLxrnnhBk5F1+bGDZtrfNcukV9/tcUJtG6dw7RpGXTtmlVgt4KC+N///GnRIof69e9fd/68gLe3Fshf2GkVWvrW7Evfmn25kX2DvTF7WX5hOW2D2tK7Rm+CNcElssvdOHNGQ/PmVruJOrCVPzEYjPz5pyfNm+fY7bjllbg4LX/9pUQmgx9v/sjA2gMBOHTIixMnvHnzzeK1HLxzQxNFkalTY0lMVGK1Wrl925Pu3WuxbFksXbpkkJtr63lbHp5lDh+uwJtvVuPo0QtUqOD4YsWpqXJ8fS1UqqRi9epoGjVyviclMtJWOKxJEycb4iQiIuDXX2H9+thyI+rAds/ctOkqFSpocbVn5VOntPz6qxc7drhmElN+SB67EnDlCuzebRNzJ08KeHiItG2bTXh4Bo8+moWvb+m+dLm5An36hDFs2K08YyisVlAq5YiiWKyK9BbRwvFbx/ky5ksMFgOPVXuMRys9ioe8fLZ7y8qS0a1bfV5/PYmXX7bvk+CRI168/npNdu26Qr16UqxdfgiCgFKpxGDIRRBERv4yktUdViMIAl9+6cv331dk6dJou4gvo1HgyBFvHn44m4AAJe+9F8TFiwrWro0u/cGdTHq6nOTkCtSsedvhwdtZWTJ69w7j1VfTeP75W44drBh8+GEwBw8GEBNTDpR6MTlyBLp0ERk16havvWb/lmHr1q3jhx9+IDo6GrVaTdOmTRk/fjy1atW6u01KSgofffQRx44dIysri5YtWzJ16lRq1KhhFxtEUcYvv3jSoUOWyzyMDR9eC71ey+nTgksnd/wXSdgVkQsX/hFzZ88KqNVWHnkki/DwTDp3zsLb275P0SqVhuxsA0pl/h/PkSP+/PmnnLFji3/xzcjN4JvYbziTdoZ5reaV2yna69e98ffPsfvnY7XCuXOeNGumc0rckzuwc2dFrFYVAwfayjFEpkfy1Y2vmNhk4t1tilr0uST8/rsnSUkKnnnGgF6v4OmnKzNtWjytW7uYW6CI5BeaYS9MJlsco6enlh07PGjf3rUSVEaOrElAgCdffFE+r1X5kZZmi6sLDra1DHNE8P6oUaPo1asXDz30EBaLhaVLl3L58mX27t2LVqtFFEWGDBmCQqFg8uTJeHp6smnTJo4ePXp3m9Ly22+evPJKLbZvv0LDhs5/WP79d0+GD6/Fnj3Qt6+zrSke0lRsPoginDnzj5i7dEnA09NKp06ZvPRSJh06ZKHVOuaGnpsrQxAKFnUA8fEisbHau4HlxcHHw4dBdQYxqM6gUljquhiNAj4+amrWdExMkkwGTZvmoNFouX1bb9ep3vLCrVsa0tP/eV8OJRyiS+Uu92wjirbPyhHv352kI6MR0tIsNGuWQ/XqNjG5dauWGzfkvPFGkt3HdRRbtnji6amkV6+it8MrKjk5Ml5+uRZDh2by+OPJPPmk64nfyEg14eEPlqgTRXjlFZGsLCvr18c5LCNz1apV9/w/Z84cOnfuzIULF2jVqhUxMTGcPXuWPXv2ULduXQBmzJhB586d+eabb3j66adLbcPDD+fw+edXCQszOr0DqSjC8uXBNG8u8tRT7nfOuZFz0fGIIhw/Dm++CXXqiDRvDkuXWggLS2fp0hh++ukiCxfG0aNHpsNEXWamjE6d6nPoUOHt1wYOTGPRohi02vI5lVoaFi4M4dVXHR9HOG9eBUaNqun0C5GrIZfLGTMmkWnT/qmIfyb1DM38m92zXbduVVm3LtDh9gQEmJk58ybBwTp0Oh1ZWSI6nQKtVotc7sHChSFcu+ba36Pjx9X89ZdjMtz9/T3o2jWH2rXLNjmjqKSkKEhNVTxwrcTWrIHPPxd49934Ms38zs62ldXx8bEVv8/NtZXkUqn+6e0ql8tRKpWcOnXKLmMKAoSG6tFoNGRlOVeaHDvmyalTWubMEVxmWrg4PPAeO4vFFpC6e7ctmzUuTsDPz8yjj2YyZUombdrkFOo5sycyGYwfn1akYGXbCSdy6pSKrVuDmDs3zq0CPB3J448bSUx0vNehffssGjRwfDC7O/Hhh8E0a2aha9eUuxfFRF0igerA+wpo/9//JVG9etn3i3zxRVvMpU4H8fFKDh2qQN++RlQqgWPH5OTkyJxaMy4vFi6MQ6lUYrLT/d1gEHjnnSo8+6ye1q1Tee011+1gcCdx4kESdufPw7hxIgMGpBEebn8vbX6IosiiRYto0aIFoaGhANSqVYvKlSuzePFi3nnnHbRaLRs3biQlJYWUFPtmS8+dW4HjxyuxbdtVp4iqO966Nm1EHn/cDVUdD6iwM5vh8GGbmNuzRyQpSSAoyEzXrhl0755JixY5TitC6O0tMmhQUrHitvR6C8nJKrKz5U7Jljp58iQbNmzgwoULJCcns3jxYrp163Z3vSiKrFy5kl27dpGZmUnjxo2ZPn36XZe+I2jXLvvuU6YjadMmB0HQIQiyYiWylIbC3m9nYjZDSoqGlJSMe5b/mPAjXSp1uW/7xx7LsKtYKQlVqpj45psowDZt+/XXVbh2TU14uAmj0cgvv3jRsmUOGo3z3bIKhQKTnd4srVaOTCYnM9Px35PSEhmpxstLpFYt97zRFhe9HgYOFKlaNZfJk8tWcEdERBAVFcXGjRvvLlMqlXz44YfMnDmTDh06IJfLadu2LR06dLD7+OHhGbRu7ZxaiWBLjDt7Vsu33xatdaQr8sBMxRqNtlZew4dDSIhI9+6wb5+Jnj1T2bz5Kt9/f4np0xNo08Z5oi4nR8b69SGkpBTvY2ndWsfatVcJCXHOVJJerycsLIxp06bluX79+vVs2rSJadOm8dlnnxEQEMCrr75KTo79S4XExnowZUpNbt4sO4FrNML8+VU4erTw6XN7UNj77Uw8PVVERFy/rzPBsaRjtAtud9/2KSlyPv+8Ikajc6+ggvDPRXzGjHiWLo3GaDQSH6/mtddqcupURQCSkxXk5DjnshkVpaJt2xpcvqwqfON8sFhg3boArlzxBazMnx9Dt24lm35dt24dgwYN4uGHH6Zz586MHTuW6Oh7M5CnT59O48aN7/kZPHhwsceKjFTTuLFrt52yJxMn2lqGLVx4o0xbhs2bN4/Dhw/zySefEBIScs+6Ro0asWvXLn799VcOHTrEqlWryMjIoEqVKna1oUkTPZ06pSKXl/2HLYqwYkUw7dvbNIK7Uq49dno9fPutLflh3z7IzBSoUSOXvn0z6N49g4YNDS6lyC9fVrF6dUW6d08BiidMBAEiI0UWLqxJRMQNfHzKbnqwY8eOdOzYMc91oiiyZcsWXnnlFcLDwwHbE2GXLl34+uuvGTBggF1tSUxUcPOmvNStw4qDUikSGytw+3bZNBEs6P12FmYzTJ1ajcGDM2jW7N6p1SxTFgqZIs8OKPHxHkyfHkiDBhnUrVv2U7J5IQjczaKuUsXAV19FERJiQi6Xs3JlZc6eVbFr12UAdDrBYfG2/yU42MSgQZmlyvAWRRmHD/ui0aRRt27pviMnT55k0KBB92RSjhw58r4syUceeYS5c+fe/V9Zgnotly9rHpjEib17YeVKgRkzEggNLZvvhCiKzJs3j0OHDrF+/XqqVq2a77be3t4AxMTEcP78eUaPHm13e3JzRSIiqtOhw+0ynYb+8Udvzp/XcOiQ+3rroBwKu+xs+PprW7zc/v2QkyMQGmpk8OBMwsMzCA01uuwH1qyZnl9+iUShKJm3SaGwkJUlJyNDgY+Pa0yvxMXFkZKSQvv27e8u8/DwoGXLlpw5c8buwq5TJ5HWra/a9ZiFIQiwbNmNv0t3lOnQLkNOjozsbCVW6/1TKEcTj9IhOO8pm0aN9Jw7F40ouoaoy4saNWzfJYvFwvDhCSQlKZHJZGRna+jUqQYffniDTp2yEUXH3gx8fKyMHZuK0Vj8qdjDh72pX99KtWq5fPrpVbvEDReWSXkHDw8PAgICSjyO0Shw7ZrHAxFfFxsLw4aJdO2axYABaWU2bkREBPv372fJkiV4enrejZvz8vJCrbbFN3777bf4+fkREhLC5cuXWbBgAV27dr3n2m4vlEowmSxYLGUXNG612rx1nTuLPPqoi4qEIlIuhF16OuzbZxNzBw7YLgQNGxoYPtwm5mrVcg2RUxBmM39/gUpev6dyZRMbNlzF01OLTucarzk11Rak7u/vf89yf39/EhIS8tqlxOzb50OnTkb+TuQqc1JTjezf70+/fqkPzJTRHUJCVKxYcS1PYfNT4k9MbDzx/hXYyvQoFCanxtgVhypVTFSpYsJqBYtFz4QJiTRpYkSj0bB4cUWiouR88EGsw8a/cgXS0jQ0bVr0enYmk8D771eme/d03ngjyWEFjv+bSXmHkydP0rlzZ7y9vWnVqhVjxoy573pQEFeuqLBYBJo1s6e1rofFAoMHi6hUZmbPji9TB8T27dsBGDZs2D3L58yZQ9+/i7ilpKSwaNEiUlNTCQwMpHfv3owaNcphNkVExJXpw/IPP1QgMlLN2rVlM54jcVthl5Jic1nv2iVy6JDt4tWsmZ4xY2x9WatWdZM7xd/89JM3s2dXZe/eqFI1qhcEiI01MnNmLSZMuEnt2q7hCcmrALI9iyJnZMiYP78yen0iAwY4p7jlxYsqIiJCaNQoh/r1nV9gsyzIyJAzZUp13nzzJrVr37/eZDWRkZtBgDp/j82aNT4kJiqZOtW+Qt/ReHtbef55m1dFrzdRu7YST08lGo0Go1Fg+PAgxoxJokkT+xUV/uQTfy5c0LJjx5VCt712TYWfn5VKlRRs2HAVf3/HBaTnlUkJtrCBnj17UqlSJeLj4/n4448ZMWIE27dvx8OjaDHBUVFqBEHkoYfc24tSGPPmwdGjsG5d2bcMO3fuXKHbDB48uETxkaUhKcnI558HMnhwskNj3y0Wm7cuPFykY0f3P8/cStglJMCePTbP3OHDtmUtW+qYONEm5kJCnJdJU1rq1jUyfHhKqUTdHbRaKyaTSHa2AnCusLvzZJ6SkkJg4D/1ylJTU4v11F4YPj5WvvvuGh4ezvNUtmih47vvIgkOFrG4TsF+h5KdLcdiEdBq847XOpl8kpYBLQs8hqenhYoVyyY+0ZF0726LBdLrbbGearUVf38FGo2GL7/0ICFBcbfMSkn5v/+7hZdX4YLIbIb/+7+adOqUxdSpNynFTGiRyCuTEqBXr153/w4NDaVRo0b06NGDn3/++W7MbWFERqqpW1fE09P9b7j5cfQovPuuyKuvJrttZxRHcOOGkuXLA2nVKotGjRz3sPzttz5cvapiyxaHDVGmuLywu3EDPv8cdu4UOXbM1oi3TZscZszIoGvXTPz9y8cdNCxMoEYN+/QA1GhEVq++/ncLIrscssRUrVqVgIAAjh07RoMGDQAwmUz88ccfjBs3zi5jpKQoCApS4elp/yzb4hIQYEah0BIXZyrTgqLOIjRUwdq11/Jd/2PCjwyqXXB3kwEDbrvEuWpPQkLMLFt2A7AJvcuXvbl+XYNWq8dgMPLJJxXp1Suj2OdIYKAZrdYj3+mpzEwZCgUEBKj56KOYMqkReCeTcsOGDfdlUv6XwMBAKleuTExMTJGPHxWloVmz8ivqbt+G558XadpUz8iRrtOb1xVo1MjAwYORVKwoYHaQ38ZshpUrg3jsMZG2bcvHeeaSwu7KlX9aeZ08KeDhIdKuXTazZ2fw6KNZTqnV5kjOndNw/XoFHn88ya4FhtPTDcycWZOePVN59FHHVZTX6XTcuHHj7v/x8fFcunQJHx8fKlWqxJAhQ1i3bh01atSgevXqrF27FrVazRNPPGGX8SMiKnH7tpING/IXGGXJjBk+nDzpxZ49lx0Sa1fY+10WXLmiYtGiKkRE3CjQGxSXE0ftCnnM0f4LUYTUVAUWi8zuPX1dhddfv4Uo2goix8UpWb06kBYtrFSrlsn58zavZ1H6Y+p0MubMCaBPn+T74uwsFnjxxTq0bavnrbfiqF/fUa/GRnEyKe+Qnp5OYmLiPd77gseweezcsa1TUbjTMiw93cratbFOK7Xlynh7WwAt0dEyh8TLf/ONL9evq9i50+6HdhqOPY0+/BAWLIDkZFsBombNbD1SWrS4b9MLF2xibudOkXPnBNRqKx06ZLFgQSadOmWVafmKsub33z358ssKPPmkfftWeniIyOVmZDLHTnOdP3/+nqDbRYsWAdCnTx8iIiIYNmwYRqORuXPn3i1QvHr1ajw9Pe0y/tSpGcTGus40/HPPpTFokMFhCRSFvd9lQW6uAqXSgpdXwQ9ZS9otKcKxBNq1q84779zk6advF7q9u3InpLRqVRM//3wJuVzEbIYtWypz5YqKXbuuYzKZiIxUExp6//mjOn6chiNHss1igR22ZWYfHy789AuiCN7eGiZOTKJOnbJxfRaWSanT6VixYgXh4eEEBgZy8+ZNlixZgq+vb5ELaickKMnMlJfbjNh162D3boEPPoincuXy7+EvKe++68PRo9589VWUXZ0fJhOsWhVEnz4irVqVn4cHQSxOi4Pi8OKLsHnz/ctlMvjxR8SOnTh9+h/PXGSkgJeXlY4dM+nePZNHHskqs/pQzkalUpGVlYuHh2Ner1KpxGw2Y7WKLlvqpaSIIiiVCsyO8tOXAluXAHO5fM81GjUGg/1iXo4d86Vu3WwCA13vc3Q0JhMkJyupXNnErVtaunWrzeLF8XTrdpvsbBkajRWvY79Q+7XXyOtUsiIw+rVUXn89vkztbty4cZ7L72RSGgwG3njjDS5dukRmZiaBgYG0bt2aMWPGFDple4cff/Rm7Nga3LgB1arZ03rnc+ECtGol8sQTt5k586azzXFpYmOVgJZq1TIK3bY47NnjyzvvVOX06fLVrs4xwu7qVSigXVS6VxVaBMYSHS3g42Ohc2ebmGvXLhuV6sEQc3cwGgV8fTXo9Y4LmBVFWLy4Kt7eBkaMsG9fP2dy5oyGiIiqLFsWTXCwawkCk0lg7Nha9OiRRr9+6c42x24cPOjN118HMG/edbtXxBcEoVit9IrK9u3b2b59Ozdv2m6ederUYdSoUS5X5Bls06mnTmlp1MiAj4+ciIgQ/vxTxdkLnggFtKyLr/cwt3etK0NLy4ZVqwL57LMgUlLcsxl7fhgM0Lq1iF6fy2efXXGJdnXugEKhxGg02cVrZzIJPPlkGO3bK9i5sxydXDhqKnbGjAJX+2TH07PjWZq/5UPr1tkOq6vkDixaFEJcnJpVq6IL37iECAKo1UZ8fcuu2GNZoFKJNGyoJyDAtUQd2LpR1KuXQ6VK5euCrdEo8fLKtfsDWGSkip9/rsgrr9i/L2ZwcDDjxo2jevXqAHz55ZeMHTuWnTt3OrRfcUmQy7mbFWkyWXnyyWRatVLCGwWHolSOPE55nMSOilLTtKl7dwHIi0mTRKKi4H//uyGJuiJiMsHQodUJD7/N4MGlL968Z48vCQkK3n23nJ1cOErYFVJ4VgAmP30S3cMPO2R4d+Kxx3QkJzs+m/O115KRyWTIZOVnerBFCxn168c524x8GTcuqdxke4oiyOUyOnfOon17+1fEtwUv+zB48K18S6eUlC5dutzz/9ixY9m+fTtnz54tM2EniiImq4kccw455hx0Zh06s44cUw46i+13jjkHvVl/d/2d3ya1iTFlYqXrERWloV8/N79YjRkDn3xiS4+Wy0mr1YLPrnzNpGkm6tVzjTqj7oBSCY88kkGDBqV/kDcaBdauDWLQIGjUyA7GuRiOEXZNmsBPP+W7WgT+7/YaLL9tp3HFxjT1b0rDig1Ry9UOMceV6djRhK6MSmtbrVY++yyA06c9mDcvzq3F3bJlwTz2WFZBM/4uQXS0mS1bKjN2bILDYijLglWrAsnKUjN5cqxDzpsePTLp18+MTufYJCmLxcJ3332HXq+nqYOCat4/+z4x2feX81DKlHgqPPFUeKJVaNEqtXf/9lJ6EaQJQqv4Z5mnwhNPpScZaRqgQYFjWpFhNlOusipzcmTcuKF079inBg3g0qV//rdY8LtygltUIvLRb7ES7Dzb3JARI1Ls8rC8e3dFbt1SMHOmG98EC8Axl4F582D5clvztTzQh9ZjUa9P0Jl1/JX2F3+k/MGmy5vIteZSw6sGzfyb0cy/GcGa8n3S79/vQ1AQ/KutosPx9TVQtaoSqxW7ZheVJenpcn74wYdGjXQuL+x0OoEDByrQu3eqWz+dV6ki49YtvcMeBgTB9uDhKKKiohgyZAi5ublotVoWL15MnTp1HDLWpCaT7HIcq9WWaxYXV4FsPPEmb8++CLzPeN5t15AXXkjh9ddvlQuBd/myClEU3FfYffLJvaLuX8ixUGfYUC7v31/GRrk/V66YWbu2Km++GV+iBEuDQeCTT4IYMgTq1XOAgS6A47JiV66E11+/b3GmUIG3nv6N12feXybBKlq5nnWdM2lnOJN6hiR9Et5Kb5r6N6WZfzPCfMJQOrh0R1kyalQtqlUzMH162bdSUqvV6PUGt/TaCYKAxSIgCFa3sN9stsWmmdylIeq/EEXw8LBlVTvqUnGHt96qhp+fiTfftH+cnclkIiEhgaysLL7//ns+//xzPv30U4eJu9Ly8cdBxMZq+eijmxiNueTcNvNw5+b3ZcWKgNnbm+mjLrFyZTDZ2XLUamu5EHjbt/sxf34lsrMFVCpnW1MCKlcuMCxJBM4XoZWXxL3ExysZNaoW779/g3r1ip+Zv2mTPx9+GMKlS4LLOwZKiuOEHcD58zBhArknTpN4W4XuyR6c6jeesCYa1OqiTT9m5GZwLu0cp1NPE5kRiVW0EuoTSjO/ZjT1b0pFVUWHme9otFot6el6p0zRHT7sy4YNFVmz5rpbTRFGRakICvLA19dxBZcdQW6uJxcuWGnWzH0C7kQRpkypRtOmuQwebN8ai3mxY0dFfH1FevRId/hYI0aMoFq1asycOdPhYxWVCxfUBAVZqF5dyb59KhITBZ5/Pu3uw8vKCyt5d/JuAm78/VkIAn90b85nr3ZhaL2hiKLtprVqVdA9Au+11265ZYLa7NmVuXjRl3PnHFQQ0tF4elJQB/s7wu7WLQU6nYwaNXLd4kHVFRBFUKk8yM0tXsFinU7g8cfr0aePnPXry++b7djnuUaN4NtvOfmrgUceUbP9hSs0aWgAdOj1nmzcqOXVV5MLLOTq4+FDh5AOdAjpAIBFtHAl4wqnU0+z6OwiRtQbUWhl+7worATCihUr+Oabb0hKSkKhUNCwYUPGjh1LkyZNij1WXhiNAh4eZqeJqpAQA3XqmDGboYi9uF2CxYtD0OtlfPqpewm7hQsrcPSoN19/HeWwwsX2RhQhLMxCUFDZiNEBA26jUqkwltGMdXFvCo7EaJTx6qu1eOGFNEaOTKJbt3sFQVxOHJcyLpH41ffEGGUkJVUgODgTlcrK6d/GcT3rOjW9a/LSS6m88EIqGzf6s3p1EGvXBrF5c8DfAi8ZpdKdHuLUNGvmJl+WvKhYsUBhB7Yapvv2+bNxow+//x6N2Wzmo4/8CAsz0LNnJmazrYD3g1LTtagIAqSlKTl3Tkm7dkVPPty2zZ+MDDnvvFN+RR2A0741v/0mY+dOf5KSivcoKRfk1POtx8A6A5nXel6JRB38UwJh27ZtbNu2jYcffpixY8dy5coVAGrUqMG0adPYvXs3mzZtokqVKowcOZK0tNJnBIoiPPNMKKtWVSj1sUpK/foG3n47loAATX6hkC7Jxx+nMGtW2RZitQejRiWzc+dNtxF1VitotWpGjLh5t7m9ozEaBf78U0t2tn3fpCVLlvDHH38QHx9PVFQUS5cu5cSJE3ZraVdSoqJUvPFGdcATrVZg/fprDB+et2d08V+LGffQOARB4No1FU8+WY1r11QIgsCUJlNYeHYhVtH2RZbJYOjQVH799SLjxycgl4usXRtE+/YNWLYsiNxc17+pWa1w+bLafePrABYuLHC1vkZ1jEYj/fsnsXJlNAaDAbPZzPXrKm7fVqPRaLhxw5eHH25EVJQ3giDw22+efPGFb9nY7+IsX+7NrFlVsRSxw2hOjowNGwIZNgxq1nSoaU7HabeZRx/NYt++SOrUsQXyOzh85z66dOlCp06dqFmzJjVr1mTs2LFotVrOnj0LwBNPPEG7du2oVq0adevWZfLkyWRnZxMVFVXqsa1WGDUqg4cfzi71sUrL77/bRGZysmsH44gi6PVyFAo91au7jqelqAQEmPHyykYQPDAaXfvGajQKvPhibb76qmyz1G/dUjBwYBXOnNHa9bipqalMmzaN3r1788orr3D27FlWrlxJ+/bt7TpOUbBaITFRgVwux99fRVqagthYExaLhbAwY54xcb8k/kIVbRVqedcCoGZNI59/HkfNmjbXZmXPynQK6cT2a9vv2U8mg2HDUjl69CJjxyYik/0/e+cdHkW5xeF3tmfTeyAJISEQqiCC9A6KSEeaoAhILyoIKIIICoJYKCJIR0AEQpfeRSlSRKmhh57ed7N17h97iQLp2U02kPd5eLx3Z3a+bzezM7853zm/I7JwoQ8NGlRizhwfuz4P79xRoNFIirewe/NNeOklMru1maRS2g/15FbKLdzdTVSp8m+u2Dff3KFHj2i0Wi3u7il88cVdAgLSEEWREydc2LjRE7VajVqtpnPn8oSHewAQFyfl8GFn0tPt9+9qTQYNimHz5ju5LgJcvdqTtDQJEyY8+99PkcYP1GqR1FQNH31UlkWLctcU2haYTCZ27tyZpQWCwWAgPDwcZ2dnwqxQRiOVQufOiY/9mIuK0qV1VK6cjkRi36H+gwedefXVCjx4UExCXplgMECHDmX56Sevop5KtogiVK2qp0yZws0H9Pc3sHXrbV5+2bq+jlOmTGH37t2cOXOGw4cPs3jx4iIRdQDTpvkzdGgIJpMZT89kVq68QWBg1g8qepOeZVeWMajSoIzX1GqRF17QPbY81y2kG0ceHuFe2tPRbKkUBgyI5Y8/LjFixEMEQWTRIm8aNKjE7Nk+dikELl+2PFQUa2EH/D7rFJP4DJ3SCVEQMAhy/nRrxqXff2d8s6+Z/vd0fnvwW5bvd3c30aFDYoa343vvPWDZsutoNBpSUzW0bp1IaKgWqVTKP/+4MXx4EOCISqVi4UJfZs3611ni2jWlXYv5vOLmZkKl0iCKKjSa7O8LKSkSVqzwYuBA4ZlrTZcZti2e+D9HH+XYrb1G5cpPi5klS7yoVAnq1y/cdldPWiBMnz6dxo0bZ2w/fPgwY8aMIT09HW9vb2bPnk3VqlULPO6yZT40a5ZI2bL2E3lSq9WkpGjs1gIlJkbBrl0uvPVW8W6JtmmTGzVrmggKss8cQZMJnJ3Vheat+CQSicSmtieFjdEIGze6U62akZdeMvHXXybS0yVUr5470bwkYgml1aV5LfC1jNdiYmRs2uRDp07Rj/XWjUyJ5Jtz3zC73myEbLLwDQaBJUu8WLrUG61WQKkUeeutWAYOjLF5FwSTaGLv3b20Dmyd7X5z5viwdas3Dx8WXyEiitC4sUhsrI61a68hkcBff6lxclJQvnwiYBHu085Ow9/Rn3fD3s3275ab8aKiZPj5Wc6Jn37yJD1dwvDhSaSny6hePYSvvoqmQ4dETp2SsWuXC++/H4VCIZKeLli9RWBhYDRCp04VaNUqkZEjo7Pc74cffFi2zJvr1wVKly7ECRYRdhH+6N8/lvr1Y1Gr1UREFF5de3BwMOHh4axevZpu3boxYcIErl+/nrG9du3ahIeHs3LlSho0aMCHH35IXFxcgcaMi5OyfLknN2/aV/3+tWsGunSpwN9/OxT1VDIlKEhWKKJu8eLFVKtWjRkzZtjk+J06JRIWZp+2J1FRMjp2rMDRo0V3gd+/35HZs3PXIN6eeeRso1IpWL/ei+PHlWg0GsLCdLkWdQ81D/kr9i9aBzwughISpKxb50JCwuNPYUHOQdT0qsnmyM3ZHlcuFxk8OIbff7/E4MHRCAIsXuxNo0aVmDXLB43GdmJKKkjZdnsbaYbso7KPWokVZ3btgt9/Fxgx4mFGbu2LL2qoXv3fB3qFVMGkmpNwkjsx7s9xaIz5f6ASBDJEHcDbb8cxcGAMer0ek0nDypXXqV07Dr1ez8OHMk6fdsLZWYlarWbEiBAmTiyDRCJBrxdYscKTBw/sv5RaJoMRIx7SvXvW31tSkpSVK70YMuT5EHVgJ8LuEbt2SejaNZSIiMLJ7ZHL5ZQpU4YqVarw/vvvU6FCBVatWpWxXa1WU6ZMGapXr86UKVOQSqVs2rSpQGN6epr4/fcbNGpkXxEbb28DNWum4WVnq4QmE7z/fhCHDtn+VD1//jzh4eFUqFDBpuNcvCgyZEgwSUl29fNDpYJatTQEBRVdJDk2Vsa1a/b5cJFb/vnHgVatKhIX54zRqGf16mv07Zv3h5LZF2bzXtX3noriVKig448/IqlQ4eny4bfKv8WuO7uI1mYdvXiEQiEybFgMR45cYuDAGACWLPGmceNKzJrlS1qabc7P1oGt2X13d7b7XLniwIsvFt9ondkM48eLvPiihkaNHs+l3r1b9ljqkSAI9CzXk24h3Rh5dCR3Uu9YfT5yOdSoocXLy1Jp8Moryaxdew2dLh2NRsNbb0XRrl0cZrOZ6Ggl33/vS0KCE2q1mg0bfHj77X+LFE+dUnP3rv2IvldeSSYoKOs2YytWeGI2C4wbV4iTKmLs6s7SsGEq338fSY0aRfeDzs4CQRTFAlskmEwyTKbMk6SLErkcPv30HiEhZozGwi9myYrUVCmiKEGpzGXpUz7RaDR89NFHTJo0CRcX21Yru7gYMRoF4uPt5yQwGsHPT86kSXdxd8/9d/3LL7/QunVrXnrpJbp168bp06cLNI+uXRNYssT2nnnWJiZGxtGjTqhUKqpWhfbtExBFS2QuP5ZGf0b/iZvCjfKu5fP0PqkgZUz1MUz/e3quDaVVKpERI6L57bdLvPtuDKJoSY9p3Lgi333na/Uq5Vb+rdhzb0+W25OSpDx4ULxbiYWHw9mzAu+99/Apb7obN+T89ZfTU9fYWt61+KLWF3z+1+ccjTpaeJMFGjdOzchtDQhI58SJi4SFJaDRaChdOo0GDVIQBAGlUsmECYFs2eKDg4MDDx+qGTasDHfuWDyzYmNlJCUVfj7P+fMib79djtjYx6+pCQlSVq/2YvhwAd9nu5HVY9iVsJNILCeYVqvl6FFPjh51stlY2VkgaDQaZs+ezd9//839+/e5ePEikyZNIioqildeeSXfY965o6B+fftd7gRISNDTp0+o3ZTUe3jAnDm3cr18lV+mTp1Ko0aNqFevnk3HAfDyMrFo0Q0qVbKPn9/Zsw507FiBq1fz1lx7165dzJgxgwEDBrB+/XpeeuklhgwZwoNs3PZzgyha8sCKEytX+jFlij9paelIJFpGjYrCyyt/zcoNZgMLLy9kaOWnO/cAXL+u5PXXA7h+PfN0jlCXUCq4VmDX3V15GletFnnvvWh+++0y/fpZInhLl3rRpElFvvnGl+Rk65yvKqmKAMcAriVfy3T7lSvFu3DCaIQJE0QaNUrhpZeeXiJ8++04li+PytSM2E/tx5z6c9hxZwfLIpbZvNtLVkgk/7acrFcvjUGDYhBFEZ1Oxy+/XKNnz4dotVpSUy0PgS4uEhwcHFiypBT9+oWgVCqRSCTMmePDqVOWKneTKcsuowXG29uAh4fpqYeQZcu8kEgExoyxzbj2in3cWZ5AFGHtWkd27PCw2RjZWSBIpVJu3rzJqFGjaNu2LcOHDyc+Pp4VK1YQWoAeJGq1iSFDEihfvuirYbNCrRapVy+ZypWLPmR39KgT//zjavOL286dO7l48SLvv/++Tcd5kqtX5ezY4VqoY2ZGqVLQoEEKfn55y/376aef6Ny5M126dCEkJIRx48bh5+fH2rVrc35zNjRrFsDy5XaWE/AEJhNMmODPrl3eKBQK+vV7wLp1V61SfPTL9V9oF9QOZ7lzptsdHc3UqaPF0THru2T/sP5suLmBeF3efTcdHc188EE0hw5dpk+fWEQRli/3olmzinz9ta9VIjJdgruw8ebGTLdFRKhQKkVsnBFhM1asgKtXBUaMyDzyLAig0+mytJhSSVV8/tLnyCQyxp8aj9ZoX91q3NxMeHhYBF1oqI55827j6pqOVqulZ88oJky4h06nw2Aw88cfzsTEOKJWqzl1ypO6dSsTH295IDl61MlqwRtXVzOzZt2iYsV/JU1srJRffvHkvfcEu0sxsjV2URWbGTqdgEwGarUCrVZXbIxds6M4VfzJZDJMJjN6vbnI2hGNHl0GoxFmz75tszEePnxI9+7dWbhwYYaVTd++falYsSLjbJyUMWeODwcPuhIebh1BkFdE0RJdcHJSostjuweDwUDt2rX55ptvaNGiRcbr06dP5/Llyyxfvjzf89q61Y1y5dLtwg7oSa5fVxISosPRUc2ECe5Uq5ZKu3ZJVjt+bHosE05N4IcGPyARsr7oOTg4oNVmf8O/kHCBVddW8WXtLws0p6QkCQsW+PDLL54YjZa0jR494hgwICZPy/ZPMujIIObWn4tC+njrmwkT/Llzx43Tp4tX1BYgPR1CQ0WqVk3m66+zzpVbs8aD2bP9OHz4Ekpl1rfg49HHWRKxhM9qfoa/o78NZlx43Lkj5+BBF3r3jkMqFRg9ugwmk4Qff4xCrxdp2zaAUaMe0LhxKtHRMh48kFO1qjZP18Zr11z46y8pXbsm8NVXfmzZ4snNmwIetosR2SV2K5eUShGpVCQiQqBLl/Jcu2ZfVaR55eFDGatXWz9fxVYYDEZGjSrDd98VXYXivHmxfPHFXZuOceHCBeLj4+nevTs1atSgRo0anDp1itWrV1OjRg1MubU1zwfvvhvD5s23i8xiZtMmd956qzwJCXmv0k1ISMBkMuHp6fnY656engWuHG/fPpHq1fO3jGlLzp9X07Fjef76yxmNRsP48fesKuoAZp+fzcgqI7MVdTqdwK1bshw9yaq4V8HXwZcD9w8UaE6urmbGjXvIgQOX6dkzDlGElSs9adGiIjNm+BEfn78TuFnpZhx8cPCp169ccSjSPOuCsGABPHwIw4ZlnyfatGkK334bnaN/aF2fukyqOYlJpydxIvqENada6AQGGnj77TgkEku++tdfRzJ9+i00Gg2JiTrq10/Bx8eIXC7n8GFP+vULwcHBAYVCwdy5vqxda1Fnj0y+MwtJHTqk4OiqJGSzlnN6TSyjRj1/og7sWNg9wsNDT9WqWnx9i+cP/REXLzowZ45bUU8j1wgC1K+fRNOmhW/NYTAI3L3rQHq6Bmdn20Y469aty8aNG1m/fn3GvypVqvD666+zfv16pDZUXWq1iCjqSEtzfMq6ojCoUcNEkyb/mp9aA2ssAMTGStm61T3DMqQoOXVKzaJFPqjVal54QcfcuZG88IJtKtrPxp1FKVVS2b1ytvtdv66kZcugLHPs/suQSkNYfW01SfqCC1B3dxPjxz9k377LdOsWj9kMq1ZZBN706X7ExubtHG4T2IYdd3Y89prBYPl8xTG/LiUFpk4V6dAhgeDg7IvsSpUy0LhxYq5WQwIcA5hTfw6bbm1i5dWVRZZ3ZwseRSudnMyMHfuQihXTMRgMtG0bzfr119Drtej1ejQaAYNBikqlIj7ehVatKnLqlDtSqZQTJxxZtsyy1jo8YB17blSh4pJvOG+sxOiAn4vy4xUZdi/sXFzMfP75XdzcDGg0Sh4+tJ8y67zQsmUahw9fxsmpeCzFAnTpkkCdOvEoFIpC7S+5bZsb7duHPFXhZAscHR0pX778Y/8cHBxwc3OjfPm8VSTmB6MROnYMKNTOKwaDgCBIKV8+jSFDYvJ1DHd3y0X1yehcfHz8U1G8vHLzppJx43y5d0+R8842wGyG9HQBqVTK3bvOHD7sRFKSFrPZRNOmKTapaDeJJuZdnMfwysNz3DcoSM+qVfdyZUujlCoZXnk435771hrTBCyWTRMnPmDv3gi6dEnAbIaff/akVauKTJ1aKtftCV0ULjjJnLifdj/jtVu3lOj1AjVqWG26hcasWZCcTK5/U1evSpg6NSBXhUJqmZova3+JwWzg09Ofkm6yvzQFa+LgIBIS8m96yLhxD+ndO4b09HTUaot7RoUKSZhMJq5ccWD/flfUajVB33zJo29TAJw+GVUk8y9q7F7YPcJkMvHJJ36MHl3Gbqw4covBICCXK/NlewAW09wePXpQp04dmjRpwsiRI7l58+Zj+4iiyA8//EDz5s2pVasWffv25dq1zKvO8oIoisyc6cnw4UE2q2h6ko4d05g9OzLfVYXFCZkMpk27y8iRyYU25jff+DJiRBmMxvwvM8vlcipXrsyxY8cee/3YsWPUKOBduUYNLX//fbNIOrOIIrz9dgiLF/tjNptp1y6KlStvIJfb9qKz4eYGWvm3wk3pluO+jo5m6tZNz7Z44r+86PUiapna6hYa3t5GPvvsPrt3R9Chg0XgrV3rQatWYXzxRSmionIWeB3LdnzMUPmRh+kLL1h1qjYnLg6+/lqkW7e4XBch6fUSTpxQ59oIWBAE+oX1o3VAa0YeHclDzcOCTLnYolabadIkBVdXy/n/1luxrFplabOmkT7RZ9rJds4a9kyxEXYAo0ff54svHiKT2WnfqyzYuNGdZs3K5NvC4dSpU/To0YPVq1ezcOFCTCYTgwYNeqzt09KlS/npp58YP348a9aswcvLi4EDB5KWVvC+m3XqJNOxoybT8nxrYzKBo6P0KVPPwmTZsmU2L5z4L7Vrp+HiYsSG6XyP8eqrBpo1Syjw3/Ptt99mw4YNbNq0iRs3bjBjxgwePHhAt27dCnRcuVxEpSq8dVidTmDDBnfMZgWOjmq6d4+nceM4RFFEKqVQzvumpZrSJbhLrvaNjZWyaJFbnpY+R1QZwZKIJTl2fMgPfn5GPv/8Pjt2XKFdu0TMZli3zoNXXw1jypTS2QqXWl61OBN7BpNoOfmvXFFRpoyIm5vVp2lTpk8Hk0lkwIDcR8ArVEhn+/YblCmTtweYBn4NmPDiBB5oCmYr9KwREaGidvJvaAUHRLA4rh8oWH5pccVuq2KzQxAU/PCDO717x9g8B8saRESoOHNGTc+eebceyIz4+HiaNGnCsmXLqFWrFqIo0rx5c3r37k3//v0Bi9Fy06ZNef/99wt8o32Eg4MD8fHpNusnqdUKdO8eynvvPaRFC/vqzGFrLl5UMWpUEEuW3MDf3zaiRqsVcHGRYzBYLxL2yy+/sGzZMmJiYggNDWXs2LHUqlWrwMddutSLhAQpo0fbzqxYFC2i7f59R9q2LcvcuZE0aFB0DxS5JSJCRf/+wSxZcpOwsNxfT0/GnEQhUVDd07YJbHfuKJg715tdu9wQBMt33KFDAgMHxmR6bi+OWEwl10o08GvAwIFl8fZ2ZMuW4pNTfe+epRK2T58Yhg/PuePHk6SmOqBSae3OtL44ERGh4t13gwkJkbBvn4C7e1HPqGgpVhG7R0RGwtq17pw/r855ZzugRg3BaqIOIDXVcvNxdbV4oN29e5fY2Fjq16+fsY9CoeCll17i77//ttq4q1Y58MYb5W3WashkEmjRQptpq6RnnbJldTRpkopUahvRbDbDiBFBTJ9uXUOnHj16sHv3bs6cOcO6deusIuoAlEozarXtbu7bt7syaFAIKpUDpUunsWfP5WIh6gDCwtI5ffpWnkQdQG3v2jYXdQCBgXq++uoeW7ZcpWXLJEwm2LzZnTZtKjBxYmnu3Hk8gtehTAe2RG4BHvWILT6iDmDKFBGVykyfPnlvG3fjhoIGDUI4c8bRBjN7PigRdU9TLJ8RypTRs2PHFTw8FKSnW25a9upzd/y4I2lpalq0sI7JpCXnbSY1a9bMSO5/lMCemfVEQbsA/JeXX04lLU2BSmWbKKmHh4z33rOtvYm9olaLfPzxvf/7k1k/t1AigW7d0nBzy3+T8cKkV6/4/38X1jtmbKwMrVagfHkpAQECwcFaEhPTUanI6KFZgvUIDtbzzTd3uXYthrlzfThwwJVt29zZutWdtm0TGTgwhqAgPd4O3hhFI1fvpRAXJytWFbHXrsHSpfDee9H5Wj0KDtYzbdrDPIv0EiyUiLrMsVM5lDNqtZn09HRWrvTj/ffLFFp+Ul45csSZVausl8A5depUrly5wowZM57a9mSz8Kxeyy+BgXrefvshzs5qNBrrnjobNrizaZObVY9ZHDl0SMH8+datkNVoLO1+XnklJqMfZHEgMVFqteiwKMKQIcHMm1ea9PR0qldP5OOPH6BSFbNKLODmTQVvvOHPzZtFUzWcV0JDdcyefYfw8Ks0bJiC2Sywfbsb7dqV5+OPLZ+jfZn2rP79PECxqoidNEnEw8NEjx75W5ERBHj99Ti8vIrtrbjIKBF1WVPsz6ayZVOpXt1otxG7Tz9N4scfb1nlWNOmTePQoUMsWbIEP79/jYMfRepiYx9fCoiLiyuw9URm7N8v0Lp1BW7ftt6N5epVR/76q3gVxdiC69el/POPM0YrBe3S0iS88UYoK1bYb3/izEhLk1CrVlkOHHDJ9zFiY6VMnOhPYqITSqWCzz+/w/jxWXcDKC4olSLly+uz7Vhgj4SF6fj++9v88ss16tVLRRQFdu1yo0OH8vz6XS/+OKrGyUkkOLioZ5o7/vkH1qyBQYOiCvSAoNEIzJ7tw4ULKivO7tmmRNRlj53KodzTqFEq/fvfx9FRzZUrykKz5MgNer2AIAj5tjl5hCiKTJ06lf3797NkyRICAgIe2x4QEICXl9dj1hMGg4HTp09T3QbrGtWra+nVK4FSpawXJv3ss1jGjy+p8urRI57Fi+9YLZHawcHMW28l0aBB8SpGcXQ0M2/ePerUyXveW2Ki5QHBw0PFhQtqrl4V0ev1VKyYjouLHV0g8knp0ga+/DKG0qXtwME5H1Spks78+ZGsXn2d2rUtAu/AfjceHngThYPebh/Sn+STT0QCAw106pRQoOOoVCL796u5fbt4d1cqLEpEXc4Uk59Qzty8qefNN8uxaZP9/JXHjAlk1KiC9zOZOnUq27dvZ/r06Tg6OhIbG0tsbCzp6Za8DEEQ6N27N4sXL2b//v1cvXqVTz75BJVKxeuvv17g8Z9ErTYzaFAULi6KArdIS06WcOKEO1pterG5oNsSicQiyq9dcytwRDQ1VYKTk5qePaNsVmlrSxo3TsDXN28PD7/84kmHDhXQ6+VIJGls2HCV2rWLz/JzbjAYIDpaahedOQrCCy9oWbgwkhUrblCjhgakOsyiyPbt2L1X6dGj8OuvAkOHRhW4l7ZEAuHhV2nfvnjkvxYlJaIudzwzt1JfXyOzZ9+me3f7qajs1i2VVq0K3spn7dq1pKSk0K9fP5o1a5bxb9euXRn79OvXj969e/PFF1/Qo0cPoqOj+fHHH3F0tF211aVLJlq3DuPo0fyPsXu3K8OGlcp3v0l752jUUaadnZYn/zCTCUaM8OHnn/P/UHD7toLWrcPYu7f4/sQjIlQsX+6T435Hjzpx/LgzarWapk1TGTv2PhKJRfUUhgddYXP1qor69cty9eqzsXRXs6aGpUtvsnTRA0LKmGnbFurWFdmzxz4FnijCxx+LVKiQzmuvWadXsCCA2awgKan4/l5tTYmoyz3F0scuJx48cOXwYWm+E1qthVqtfsxE+FnDbIbly73p2TMZB4f8CWqFQsmVK2KRdBkoLP6M/pOFlxfSL6wf9X3r5/wGLF5goaEydLr8nT8mk5QVKzzp0SMGtdoO7465YNs2V2bNKsWOHRFP5ZM9qoSXSCQMHx6Ek5OBadOej4rqlBQJFy64U6VKQrHw8cwLogjHjjkyb54v//yjpkEDkc8/F2jWrKhn9i979sCrr8LcuZE0bWqdFAdRhNdfr0CrVkl88IHtvBuLKyWiLm88k8JuyRIvduzwYPXqq0VW9bZhgzthYXqqVn22loEyQ6FQEBtrxMnJnKfl1IQEKaVKyTOWlJ9lNEYNcy/MRWvUMqraKFwUORcFyGQyYmPBzS1vlRRJSRL8/JRorekVUgSIIjg6Pv1wFB0tY8CAYKZNi6Nq1QRSUgQcHc3PZHQuKyxWMMX775sdogi//+7EDz/4cv68A02bWgRew4ZFP69atUTMZi0//XTDqufc4cPOhIQYCQx8dv+u+aFE1OWdZzLu269fLCtXXsPDw6FIiilEEdas8eLo0eJhoFxQEhKMvPFGBVavzn0FbkKClNdeC2P9+ucjYVgtUzOu+jg6lu3IqOOjOHA/51Y3f/0lp0WLCnmqljt61InWrSty4YKd+v/kAcvylOUHrNMJHD/uiFwup0wZBS+/nIpcnoYoijg5PV+iLj5eysqVLs9s+gJY/vaNGqXy88/XmTMnkgcPdDRqBK+8InL8eNHNa+NGOHNGYOTIKKufc02apBAWZrsT+dSpUwwfPpzmzZtTrVo19u/f/9j2atWqZfpv2bJlNptTTpSIuvzxTAo7QbAk+EdHp/POO6Hs3Zt/y4T8jr99+z3eeSfvTuT2QFx6XJ72d3Q0M3BgFG3b5n451snJxPjxMTRsWDzc/q1FDc8azGswj3Px5/j45MfE67JOF6hcWcuYMdEEB+c+S75WLSODB0cRHPxsLG0PHerL7Nk+bNvmxdChZYmONpOeruGTTx48lx1KAKKi5Eyb5kVUVAGz9osBggDNmqWwbt01vv32Njdv6qlXD9q0ETl9unDnYjRaKmHr10+1WUHOmjWObN7sZpNja7VaKlSowPjx4zPdfvDgwcf+TZkyBUEQaNmypU3mkxMloi7/FMvOE7nFwcFMxYpplCtXuI/zer2AVKorsM1JUbHu5jrOxZ+jfVB7WpRugVyS8w3kjTcSkEgk6PVy9HoTanX2oVJnZxXt2+e+YfazhFKq5L2q73Ex4SIf/fkRncp2onVA66fMpKVS6NEjNle5mmYzpKTI8PIy0adP3oR5UZOUJEGtNiOXw/79zly+7MDIkXHIZDL++EPNlSsqJk68w8aNV3F3L/6RyIJSqVI6ly7dQKt99lMYHiGRQKtWybRokczu3a7Mn+9DrVpK2rcXmTJFKJRuFatWQUSEwC+/PLTZGH/9JUelkgOJVj92o0aNaNSoUZbbvbwebzd48OBBXn75ZQIDA60+l5woEXUF45mM2D1CKoXx4x9QrlwycrmKa9dsv+xnMAi0bBnGxo3ONh/LVgypNISZL88kPj2eIb8PYfHlxSTocvZqMpnM9OtXhhkz/LLdb84cH2bPLvmlVnavzLwG87idepsxf44hWpt5A/G1a1WMGxeQ6bZHrFrlSZcuoSQk2Kfw0en+Fa2rVnly8KAzEomEa9dcaNiwMpGRbjg4OBAb60BEhAMmkwmdTseXX96jXDkt5cvLik2BTVpaGjNmzOCVV16hVq1a9O7dm/Pnzxf1tJ4JJBJ47bUkNm26yrRpdzl71kCNGtC1q8iFC7YbV6ezdJlo1SqJKlVsJ6gnTbrPlCmJNjt+bomNjeXIkSN06tSp0McuEXUF55kWdo8QRZGFC514++0Qm5eTm0zw3nuJVK9evKthHeWOvBn6JgsbLaSiW0Umn5nMpNOTuJx4Ocv3CAL06xfNu+9mv0zh4iJFpSoeN2lbI5fIGVRpEIMrDebT05+y6dYmnqxnUqsNuLsL2fqWdeqkY/jwhzg5FV2V5KN81qQkCYsXe3H/vhxBEPjpJ19atw5DrVajVqs5dsyFiAgHzGYzpUunMHPmbby8UtBqtXTvHs2cOZEZx9y/340ePeLw8EhGInHg00/9n2oib29MmjSJY8eOMW3aNDZu3Ej9+vUZMGAAUVHWqXaMjFTw9tuliIwsHi3FbIFUCu3aJbJlyxWmTLnLsWMGqlUTefNNkYgI64+3cCHcvQvDh2f+8GUtBAGMRjOxsUWbP7l161bUanWhL8OWiDrr8FwIO4AePeKYNesuPj62vSmoVCLdu8cWm+hCTkgECQ39GjKr3iz6VujLplubGPbHMPbe24vR/HS1ZtOmKQQGJiGTKbNM7h40KL7YLRfamlCXUOY1mEeyPpn3jr3H/bT7GdtatEhh/Ph7KBRPpxSkpVmWv11c0ujYMbHQ5nvjhoJffvnXZ2/kyLJ88UUZ1Go1Dg5qlizx5s4dB0RRpE6dREaPfkBamgaNRsO8eTcZPNhyg1SrRVq3TsbN7elIo8EgkJAgw2CwfO7ISBP//KNGr7df/7b09HT27dvHqFGjqFWrFmXKlGHo0KH4+/uzdu1aq4whlVr6k0qlxTPVw5rIZNCpUyLbtl1lwoT7HDxopHJlkT59RK5ds84YqanwxRci7dolEhJi+7zOCRM8GDq0rM3HyY5Nmzbx+uuvo1QWXnFbiaizHs+NsHNwEHn55RQMBgPh4d7cuGH9E9ZohKVL/bj7jNpplXUuy8c1PmbGyzOI0kQx+PfBLI1YSpL+aZPOTz7xZuTIIEQRPH/8kYD33iNtxynWrPEjOfnZEL3WRipI6VOhDx++8CHTzk5jzfU1mEVLGMxoNLNnjzcX98YRMHo0vl9+CcD06aXo27cMZrP1b/Jnzzpw/LjFfDo1VULr1hU4csQTtVrN1atufPedH0aj5UGpTZt4mjePR6PRoFCkcvToJerUSQYsPULbtk3KcxWhXC6yfPlDGje2FNgEBurZuPEq5cqloFKpWb7cE43Gvi5hJpMJk8mEQvF4NE2pVPLXX39ZZYyAAAOzZkUTEGC91hM5VUzGxsbyySef0Lx5c2rXrs3gwYOJjIzM4miFj1wu0q1bAtu3X2HcuAfs2mWiYkWR/v1Fbt0q2LFnz4bERBg61LbRuke88UY8EycWrE1ZQTh9+jS3bt2iS5cuhTZmiaizLvZ1VSwEtFqRn3925bff3Kx+7MhIJYsWeRAX90zXpOAkd6J3+d4sbLSQUJdQPj39KZPPTOZK0pWMfbp1i+VXoT1VX6iG3/ff43bgAC+P68vn03yQ/fV3Ec7e/injVIY59ecgQcKIoyOITIlESEtl+Ch/uo5qituePXj//DNVqlVj1Z8vMmhQ/qwXzGY4etQxY2nz6FFH2ratAFiWTH/5xZdly3yRyWQ4Oppp0yYRH580NBoNLVpEc/z4RWQyi7ho3Tr5sQpna1hBGAzCU3ZFj3wS//nHxIIFvly+bLvOKvnB0dGR6tWr8+OPPxIdHY3JZGLbtm2cO3eO2FjrVMmbTJCSImCyYjpldhWToijy3nvvcffuXebMmcO6desoVaoUAwYMsDsDdoVC5M0349m+PYLRox+yZYuJChVEBg8WuXMn78eLj4eZM0W6do0rtN68lSunU7t20X2vGzdupHLlyoSFhRXKeCWizvo8kwbFOaHRSHBxsdwh9HqjVXuUiqIC0D9XvloAN5Jv8PP1n4nSRtExqCO95u3Hc9s2MvsaRODC6dOgeH5zhHLL/bT7zPhnBnsHHsj0KUwE0suU4fr27Zm+Py1NwoULDrz4oga5XGTpUi9u31YxfXosgiChevWyDBsWT79+cVy6JGHjRncGDYrG1dVMWpoEB4e8mU5bk+XLPVm2zJtDhy5n+ntKSpLg4SEgk8nZu1dGw4apdtFv+M6dO0ycOJHTp08jlUqpVKkSQUFBXLp0iS1bthT4+BcvqujePdRm19Nq1aoxa9YsWrRoAcCtW7do164dmzZtIjQ0FLBEJps0acIHH3xQqJGdvKLRCKxdazmP0tIkDBwoMH48lCqVu/d/9BHMnWtm+/YIvLwKrzDpzBlHjhxx5r33rFeBq9FouH37NgBdu3ZlzJgxvPzyy7i6ulLq/19IamoqzZs358MPP6Rbt25WGzsrSkSdbbCDy2Dho1abMRqNHD3qSI8eoSQkFDxR1RJZUCAIz5+oAwhxCWHCixOYWmsqd9PuZinqAAQgtEOHwpxesaW0Y2l+/j0g2+9Sdfv2YxXf48f7s3OnByqVihs33OjfP5ioKGfkcjleXkZ8fXWkp6ej1WrYvPkKPXs+xGAwEBqqY+zYh7i6WsJkjo5FJ+oA6tVLZdy46Cx/T66uZkwmE2fOwLBhZfnzT/uI3gUGBrJ8+XJOnDjB3r17WbNmDUajEX9/f6sc399fz5w5D/H3L5yUBr3eMs5/862kUilyuZwzZ84Uyhzyi1ot0rdvLDt3RjB4cDQrV5oICRGZPPAe+npNoHRp+OSTTN/74AHMmSPSq1dsoYo6gPv3Zfz5p9Nj1eQF5cKFC3Tt2pWuXbsCMHPmTLp27cr333+fsc/OnTsRRZHXXnvNauNmRYmosx3PpbB7hK+vlqpV03FyKvixzp5V06BBOW7ffr6jUC4KF/pU6JPjfsq7d0lPF7h4UYVGY7l4xcTIuHLl35vH9etKHj60LBPqdJZ909Isp2xsrJSIiH+T6G/eVHD/vmVfg8ES1UhJsewbHy/l0qV/942MVHD3rmVfk8my76Nq6cREKRcvqjKaj9+5o+DOHcvfVBQt+yYmWh4EkpIkXLyoylgSu3tX/lil4qVLqowCkpQUy76PKlvv35dz8+a/+0ZEqDIq4dLSLPs+uqh7rfklS2EHFnF3562FODg4oFAoUCpFRNFEeno6oaEJbN16BT+/ZAwGA+3bJzJkyL/+gX5+RmR2mjkQFqajTZuc+z1XqZJOePhVGjc2IJfL7eY3qFar8fb2JikpiaNHj9LMSg1PXV3NtGmTliHAbU1wcDClS5dm1qxZJCUlYTAYWLx4MbGxsVZbXrY1jo5mBgyIYefOCPr1i6bqsg9QHP/Not6mTYN9+556zxdfgEJhLhKj+ddfT2LjxntP9UguCLVr1+bcuXNP/Zs6dWrGPl27duXkyZM4O9vWrqtE1NkWuxN2a9eupXPnztStW5e6devSq1cvjhw5krHdmkm8QUF6Pv30Lo6OUu7dU2SIhvzg52egX794AgKe38KAixdVhIfn/hd6/74j3buHcvu2E3K5nA0bLN0F5HI5crmcsWPLsGKFD3K5nLg4B7p3DyUiwrLvjh2e9O8fnLHvxImBLFrki1wuJzXVslT1zz8uyOVy9u3zoFevkIx9p071Z+7cUsjlcoxGJd27h3LqlCtyuZwjR9zo3j0UicSy78yZpZk5szRyuRyJRE737qEcOeKGXC7n1ClXuncPxWhUIpfLmTu3FFOn+meM06tXCPv2eSCXy/nnHxe6dw8lNVWFXC5n0SJfJk4MzNi3f/9gduzwRC6XExHhRPfuocTFOSCXyzEbc76Bt6t5Ba1Wi16vZ9Kk+7RpYylocXAQCQ7W2614y469ez1ybekRFqZDr9dz5oycdu3Kc+pU0bXz++OPP/j999+5e/cuR48epX///pQtW5aOHTta5fiJiVI2bHDOeMCwNXK5nG+//ZbIyEgaNmxI7dq1OXXqFA0bNkRiD2vfecDZ2UzDhqkEqp8Qa/GPP0DcuAELF4r07RuDi0vhWwgJgqXCOi7Ovq198kOJqLM9dpdjd+jQISQSCWXKlAEsfjrLli1j/fr1lCtXjt69eyOTyRgzZgyOjo789NNP/PHHH2zevBm1On8Xc5MJOneuQI0aaUyefC9fx5DL5RiyMxp7RtDpBFJSJHh5mYiJkTF2bCDjxsVRs6aRpUtdWbLEhb17r1ClWtVso0xahYRlmxfjmdyQ4GA9arVITIyMhARpRquo69eVODqa8fMzoNMJXL+uJChIj6OjxecpLk5OWJjlfLp50xKpKl3agMEAV6+qCAzU4+xsJj5eSlSUnEqVLPtGRiqQSkUCAgyYTJYLjb+/HldXM4mJUu7ft+wrCGRE6wID9YiiJQpXurQBNzcTSUkS7t1TEBaWjlRqidiZTAJBQRZxf+mSCl9fAx4eJlJSJNy5o6B8+XTkckvETqcTMlp/RUSo8PQ04OVlIi1NQmSkgnLldCiVIgGdeuB2LWv3VRG4sG8f+PoW8K9rP5jN8PLLlRk9+iE9e+Yctfvv+/bscaFDBwMGg47UVHLsgmJtdu3axezZs4mKisLV1ZWWLVsycuRIq0VBCjvH7r+kpFicBTw8PHjzzTepXLkyEyZMsPocbMHFiyp++MGXw4edeSdwH4uiOyDTaeDll+HgQfjP/ePtt0V27TKxfXsEDg5FYyuzb58Lo0cHsn//5UJfCrYVJaKucLA7YZcZDRo0YPTo0dSsWdNmSbznzjkQHCzBySnvPQCvX1fyzz9utGkTbdXQuT1w+7aCgwedefvtOORyGf36lcHV1cz330eh0RgZM8aPvn1jqFIlHYPB4it1K/UmNdu+gX985tFLETj87bdsCLjByZiT1PSqSYegDvg7WicH6VmkSrVqWQpls0zGRStZadgTUqmatDQtKlX+flMREY68+24ZFiy4adNuAYWNKIJC4YBer7VJPm92wu4RkZGRtG/fnvnz51O/fn3rT8KKREQo+eEHXw4ccCE0VGTyZIHu3UEaFw3370Plyo8Vcp0/Dy+8IDJ+/AN69Mj9Q8XixYvZt28fN2/eRKVSUb16dT744AOCg4Mz9vnhhx/YuXMnUVFRyGQyKleuzMiRI3nhhReeOl5SkpTTp92pXz8u378Be6JE1BUedh1HN5lM7Ny5E61WS/Xq1W2axFutmhYnpzT0ejXz53tjfNp7N0v++kvN3LnuxdYw1GCA6GjLWp3JBIMHB3HokMWv7N49F+bP9yUxUY7RaGTo0Ae8++5DtFotgmDg66/vZNw0BamRpVeWMPv8bI6t2U0aap78RkTgV2UnEsq2Z1ClQSxstJDa3rWZf2k+I46OYNvtbWiN2sL9AooB9z76KNPv0oTAznXPnqgDUCop0A0tIEBLz55xVK9uuczZ/hG2cBAEywOUNUWdRqPh8uXLXL5s6Sxz7949Ll++zIMHDwDYvXs3J0+e5M6dOxw4cICBAwfSvHlzuxZ1168rGT06kDfeKM/Nm84sXw6XLgm8+aalcwU+PlCjxlPV+RMmiPj7G+jSJW9ecqdOnaJHjx6sXr2ahQsXYjKZGDRo0GOWMEFBQYwfP54NGzbw008/4e/vz6BBg4iPf1pAurqaaNGiRNSVkHfsMmJ35coVevfujV6vR61WM336dBo3bozBYKBt27ZUrVqVTz/9FLVazYoVK5g9ezb169fnxx9/LPBcjx1z5KOPyrBixfVcd4+w5HUZi020LjZWys6dbnTokIC7u8DkyaX55x8V27bdxWg0MmGCNy1aWHzJjEaLd1hOqTQRSRF8+8+3vF7mddoGtuO994I4d86ZbvJwvo7ph0pIR+/ry7XwcAxKZxwd5eh0RpKShIyuA2mGNHbf3c2++/vwc/CjQ1AHXvB4AeF5LDN+gi1bXJkwIZDL7rUol3IWsyAQ9c5AFpeaQNeuicCzsVTziIMHndmxw5MZM25ZpTI3KsqJkSP9mD79dsbyd3Hlzh0FX3/tz4cf3iMw0Dqf5eTJk/Tr1++p19u3b8/UqVNZvXo1y5YtIy4uDm9vb9q1a8fgwYORy+0vB+zWLQXz5/uwc6crgYEwcaJAnz6Qm6meOAF168K0aXdp1y6xQPOIj4+nSZMmLFu2jFq1amW6T2pqKvXq1WPRokXUrVv3qe0PH8pYsaIUgwbdz7Q7S3GgRNQVPnaZUh0cHEx4eDgpKSns3buXCRMmsGzZMsqVK8e3337LpEmTaNiwIVKplLp169KwYUOrjV2vXho7d0bg5aUiNdViXZKdrtDrBRwc5CiV9pVfZzJBTIwcPz/LvCZO9KdiRQPvvpuCXq9g9mxfXnopHReXNLp2jeb116VotZZI2aRJ/7azyinp3mA2sPDyQiJTIplaeypeKi9+/tmDQ4dcWLAABg/uStisl2nRIiXjPXJE9Ho9c+eWYv9+J8LDryGXizjKHekc3JnOwZ25mXKTLZFb+P7i99T3qU+7oHZ4qbys/0UVA0QRvv66FHK5mdS9K1iZ/CcXEy7Sp0IfuhKHSqXi9m0BH588hJmLATKZ9exW9HodgYE6AgNlQPEWdrbgUcVkVvTq1YtevXoV4ozyzp07chYs8OHXX90oVQrmzRPo3z9vdpmffCISGqqnTZvEAs8nNdVi2O3q6prpdksXpHCcnZ2zNAOWyeDgQTWvvabAza34rWSUiLqiwS6FnVwuzyieqFKlCufPn2fVqlVMmjSJKlWqZIi+J5N4rYVabSYtTcOUKUG4uaXz/vtZN+9euNCb3393Yc2aa0XqX6fRCGzb5k79+ikEBZlYudKHefM8OHv2FmazEV9fI87OerRaLX5+Wo4fT8oQbWFh+et/eD7+PLPOz6JbSDeGVR4GWH7I33xTihEjICEBHBzM1K+fmun7O3WKpXLldNRq2VOFJ8HOwbxf9X2MZiNHo47y1d9fYRSNvB74Oo1LNUYusb9Iga1Ys8aDxEQZvXvHolSKqGVq0oz/5oJeuCDSrVsFZs26TaNGmX/XxY1mzVJo0SLtqc4T+SUw0JI2AKDVOjFlihujRz8olknpgYF6Fi58iFZbIlDBUoi0cKE3W7a44+UF330nMHAgqPLYUnj/fti/X2D27IeWpdoCIIoiM2fOpGbNmpQvX/6xbYcPH2bMmDGkp6fj7e3NwoULcc9C8Xh5Gdm9+yqiWPiVuQWlRNQVHXYp7DLjUX7dIx5VmEVGRnLhwgWGDx9u1fEEAcqXT8HXN/tfeJMmWvz9C8eUWBTh4UM5pUpZRND33/ug08mYMCEBiUTCzJl+fPmlSGBgAs2axREamkJamgapFIYP/1ec5mZpNTvSTenMuzCPBH0CX9f5GjelG2ARl2PHBhIWBl99BQ0bijRsmJJlVVlgoIHAwAREUcamTV5UrZpC+fKPi0yZREbjUo1pXKoxCboEdtzZwbA/hhHqEkrHsh2p4Foh/x+kGGA2w9y5viiVZkaNsrjQO8ocHxN2ISE6xo9/QKNGz07ELjlZhrOz0Sa/q2vXTFy54oBUKqc4LmGLoqUvtShaN8+uuPHwoYzFi73ZuNEDNzeYPl1gyJDHiltzjSjCxx+LvPCClmbNUnJ+Qw5MnTqVK1eusGLFiqe21a5dm/DwcBISEtiwYQMffvghq1evxtPTM4u5mTEaHTEaNcUm365E1BUtdlc8MXv2bE6fPs29e/e4cuUKc+bM4eTJk7z++utA4Sbx9uoVT8uWMajV6seMc/9LnTomOnVKtPrYYLnYbNrkxoULKgRB4LffPHjllTDS0pxRKpV4eprw8LBE4czmNI4du0irVpaE34AAA/XqpRX4yfNJTseeZtgfw6jtXZsvan2RIeoAvvqqFA8eKFi7VuDhQzh9WqBVq+Qcj6nVmvj5ZzcOHsz+1++udKdXaC8WNlpIu6B2bLi5gUFHBrH+xvqCfiy7ZelST1JTpfTpE5uRI6SWqdEY/03IFgTo0iUBudxETIw8T4U/9kq7dqEsXOhtk2NXq6Zl/fqreHjoAEcWL/bCYCg+CunSJRUVK5Z7zHT7eSImRsb06X68/noYe/d68PnnAjduCIwenT9RB7BlC5w8KTByZP76Lv+XadOmcejQIZYsWYKfn99T29VqNWXKlKF69epMmTIFqVTKpk2bsjxeYqKUOnWC2LfPpWATKyRKRF3RY3cRu7i4OMaPH09MTAzOzs6UL1/+sZL62NhYZs6c+VQSb265kXyDr/75ijJOZajjXYfa3rVxUWT/g/ntN+jbtzwrV16nRo1/8xwOHHBGpZJRv37+GzaLIsTGynB1NaFQiKxb586pU87MmRONRCJh0SJfunVLpEqVKF54IYl58/RIJGnodCI9ez4e3bJlHnOaIY3ZF2ZjNBuZVW8WzvLHPbl273ZhwwYPFi2CSpXg228tDbkbN8756VcuF1mx4gaOjiCXK0hMNOboPVbJrRKValRCb9JzLiHr3KDijNEICxf64OBgZujQ6IzXn4zYPSI+3kSXLmH06xfNO+/EFeZUrYoowrRpMZQqZbtlZYnEslx29KjA8uXevPpqCoGB+UtJKGxKlzYwY0Z0oTWltxfi4qQsXerN2rUeODgITJwoMHIkuBRQ75hMMH68SN26adSpk3e7q0eIosi0adM4cOAAS5cuJSAgINfve3JF6r+4uZn4/PP71K6d/7kVFiWizj6wy6pYWyOKIrdTb3M8+jinYk+RakiloltF6vjU4UXPF1FKlU/sD7/95syrrxpJT/9X2I0bF4jZLDJz5t08jb9/v/P/c8/SuHXLmXbtgli79h4vvqjh119VnD3rwJgxlmU3g8G2gi03HI06ypKIJQysOJA6PnWe2n7/vpw33gildWsJa9cKCALUry+iVKYwd+7tPI114YIDQ4aUZf78Z8t7LD/MmuXDkiU+vP/+Q/r3/9cp3yyaee/Ye8ytP/ep9+zZ40LTpiYUCvu/CWSHWq1+zCbClqSkSHB3l2A2SzlwQEHTpgVfirM1Dg4OGcVOzzqJiVKWLfNizRpPZDKBDz4Q+OADcHOzzvFXroS334aff75OtWr5/06/+OILduzYwezZsx/zrnNyckKlUqHRaFi0aBFNmzbF29ubxMRE1q5dy6+//sratWszvFmzQqVSkZ5uv9fEElFnPzyXwu5JTKKJy4mXORF9grNxZxERqe5Rnbo+dankXgmp8O965l9/eZCYaKBZsxTUajUJCdpMbU6SkqTIZCKOjmYOHXJmxQovfv75AVKphLfe8sPf39LOzGCAw4ddqF07DVdX+8r3SdIn8e25b1HL1IyoMgK17Ol1DqMR+vYNISHBgbNnBdzcLJ6f/v4wdepd2rdPzNOY6ekCS5Z4M2JEKmZz4dzY7RGdTqB+/UooFCJ//HHpqZzIEUdHZCrsACQSCSkpcoxGQ6H1E7Um168ruXzZjVdfjSrUVmh79rgwdmwgW7ZczegeYo8kJUk4c8aDmjXji+XfN7ckJUn46ScvVq/2AgRGjrQst2aRipYv9HoICxMpVy6FWbPy9hD6JNWqVcv09c8//5yOHTui0+kYN24c586dIyEhATc3N6pUqcKgQYOoWrVqtsc2m2HZstJUqZJE3br299BWIursC7tbii0KpIKUKu5VqOJeBQC9Sc/f8X9z8MFBfrj0AyqpilpetajrU5df1vqj17lSv34qKpU5Q9T9+acjiYlSXnklGYNBQaNG5Zk+PYbOnZNxdxcpU0ZHYqIOBweR77+/kRGFk8uhZcuc89AKm/339rPm+hqGVxlODc8aWe63YIEP58458NtvQsYT9KZNIJOJNGmS98+lUokMGxaNKArExDjz118Cr7xif9+PrfnmG1/0egmjRt3Pc6GL0WjmnXfKEBam4Ysv8tciryg5fVrNt9960qZN1tXotuCVV5IpV+4aFSoIGI0yrl6VEBJifwLv3j0FI0f6sXZtKq6u9vegXFBSUyWsXOnJypVeGI0Shg0TGDsWvG2QcrloEURGwnffFfxcy84uBizG+rNmzcrXsSUS+P13JQ4OSrsTdiWizv4oidjlglRDKqdiTnEi5gTXk26iSivPkW/GotCW4eDeKLy84JNPvLh1S8bixTcRRZEDB5ypUkWLr2/xy2SffnY6apmaQZUGPbUs/V9OnnSkf/+yTJki8N92kU2bihiNqSxYEFmgecya5cuhQ66sX38Vudx2p+mpU6dYvnw5Fy9eJCYm5ql2Svv27WP9+vVcvHiRxMRE1q9fT8WKFW02n7Q0CQ0bVsTR0cxvv13OVNhlF7EDy4NGhQoS3Nzsf1kxM0RRhiAU3W9n5043PvnEn61brxAQYF+5bCYTiKIaQdBYvTiqKNFoJPz8swcrVnij1UoYPFjgo48gk/oDq5CWBuXKidSpk8jUqfb/ACSKoFIp0ensJxe0RNTZJyURu1zgJHeiaemmvOjYgiVLvPh5jQcmoxFRZSI52YBabWDs2NvI5f+2LWrevHjeUAFGVBmBo9wx230SE6V8/HEAjRrBxx//+3pMDBw5AhMnFjzKNnJkFH36xOLq6kBSksZmuYZarZYKFSrQsWNHPvjgg0y316hRg1deeYXPPvvMNpP4D19+6YfRmL9o3SNefvnRU70DDx4YMyxyigtFKeoAWrZMRKUyUaGCHI3GQGqqBCcn+1j2lErBwUHkWUmx02oF1q71YOlSH1JTJQwYIDB+vCWdw1aIInz0EcTFwZAh0Tm/wQ4QBDCbpSQmSu2iC0WJqLNfSoRdLtBoLEsDy5d7IYoSPhwtULmylF69LO19/PwMRV7gYE1yEnWiCJMm+WMwyFi9WngsarB5s+W/zZsXXNhJJODubiIpScvAgeVo2jSRPn2sX+3ZqFEjGjVqlOX2du3aAZb+mbYmPl7Ktm3ueHoarWKjM2aMN3fvyvn55+tW9TzLTcPz/DJqVBCNGiXZzEYoN8jlFpNkjQYOH/bg0099WLv2ekYnl6Lk7l058+b5MGzYfbuLJuYFnU5g/XoPlizxJjFRSt++MGGCwP+96a2O2QzHj8OGDRAeLnL7toBKJRar77BnTz8CA3VFHmEsEXX2TYmwywa9XmD9encWLfIhJUXK4MGWJ0lfX4u4+eorkQULfKhd+2ZRT7VQWbvWgwMHXNi8GZ6s6A8PF3npJQ0eHtZ7opTJRBo2TKJuXfuImNiSL74ohdksMHbs/RyFmCiKOfbRHTw4CplMaXUj20cNz6tWrYrJZGLOnDkMGjSIzZs3o86vmdj/8fMz4eJS9BGJR1StmsQ770gIDpaj1RqK3BjYZBKIj5diMhUf773/otcLbNxoua7GxUl56y1LP9eQEOuPZTJZVhA2bIANG0QePBDw8jLSokUSQ4ea8PBIRalUcu+enJ9+cmTAgBicne33OjNkSBS+vkVrP1si6uwfuzMotgeMRosxcLt2Ffjqq1K0ayflyhWB2bMtog4sF/ZJkwT+/NOR06cLdiMrTly5omTmzFIMHSrSocPj2xIS4MABaNUqyapjCgL07x9LWFgCKpWaX391tVqrKXvi4UMZ+/a54utr4LXXso94qqQq0k0556uWK6cjKCgZpVLNjRtZ50vmlQULFtCxY0dCQ0MJCwvj888/58GDB1y8eLHAx/7ss/jHegsXNZ6eJvr2jUWr1XDunDtvvlmO2NiiS24LCtLz008P7LpyNzMMBggPd6dduwpMm1aKV16RcumSwLJl1hV1BgPs3g0DB0KpUiLNmsGGDQZatIhj+fIb7Nt3mTZtkli71oUKFXTodDrOnRM4cMAVR0fLb0Svt0/RXK9eGlWrFt1DT4moKx6UROz+gyjC3r0uzJvny40bSt54Q2TKFIFKlTLfv0MHqFrVErVbtOhWoc61KNBqBcaOLUOFCvD1109f+LZtA6NRoEUL21WxHj8uMmFCAP7+Bl588dmyQ5k82R9RFBg/Pudo3aPuEw4yh1wd+7vvnPjlFw927YpArbZ+IUpODc9zfxwJGo0UBwf7bJcll2upUEFHqVJyDAb7iSraM0YjbNvmxsKFPty9q6B7d5FJk7K+ruaH9HTYu9cSlduyBRITBQID9bRtm0SrVslUrap97HxSKs2ULavPyFVr1iyFxo1TkEhAr1fx2mtl+fjj+3bpWLBtm5KHD1X06hVfqOOWiLriQ0nEDoug++MPJ3r2LMfo0WUIDVVw6hSsX5/9xUcisUTtjh934uzZ3N1gizMzZ5bi/n1LyzCHTD7u+vUiNWpo8PGxXeJ7jRpatm27Qv36FnHyrETuIiMV/P67EwEB+lz1qnyyrVhO9OoVx5w593HMPn0yX2TX8Dyv7NvnQp06Qeh0dqjqgIoV05k8+S4GQzp37rgyYYI/aWmFexm9dElFpUohdt9SzGSCbdtc6dChAp9+GsDLL8v55x/45RfriLq0NMsSa8+eIt7eIu3bw++/6+nWLYb166+xffsVRo2Kolo17VMPCVWqpDN16r3H8oMf/W+jUU/XrnG89JIRlcpiGP/wof0kUV+4IOeff5wKdcwSUVe8eO4jdmfPOjBnjh8nTzpSt67IoUPQpEnubyqdO0OVKiI//ujD/PkFs/ewZ/budWH9eg9+/BEqV356e0qK5Yl5xAjrLsNmRmCgAa3WwJYtPuzZo2LWrDs2tUMpDD791B8QmDDhXq4iVXkVdq6uJmrUSEapdODvv0XCwqxnO5Rdw/O8Ur9+KgsX3isWzc5v3jRx544KpVIKFN4Thq+vgfHjY/H1tc+kf7PZYvY8f75l5aNtW5HNm+HFFwsu1pOT4ddfLZG5nTstqwgVK+ro08cSmStXLndWINeuqfH312b6gKpWmxk8OAawRAK//rocfn4mvv76VoHnbw1GjIjG0VFNITVmKRF1xZDnVthFRCiZO9ePw4edqVZNZNs2eP11Ic/LPxKJJfG3Rw9nzp1zKFBLGnvlwQM5n33mT5cuIgMGZP4Fbd9uqXIrzKULb+80wsLkBa5I1mg03L79r+v8vXv3uHz5Mq6urpQqVYqkpCQePHhAdLTFFuHWrVsAeHl54eXlVbDBsURgzpxxJDhYR4MGuTMfzapfbE5s3izno48C2br1KmXKFDxH61HD8+XLl2fa8Dyv+PgY8fNLKhaR2MaNU2nUKBWpVEJ8vBNbtih56624fFvU5BYPDxNvvZWMVmtfS8GiCPv3u/DDDz5cvari1VdFfvkFatcumKCLj4etWy0rAvv2WfLfqlVLZ/DgJFq2TM7zeWwwCHTrFsyYMQ/o2TPn5cwff7xJaqoEhULBn386snmzA+PGPcDBoWgePgQB9HoDsbEyvLxsawtUIuqKJ8+dsLt9W8H33/uwa5crwcHw88/QvbtQoIvxG29Y2tIsWODDvHnWj9qtXbuWtWvXcv/+fQDKlSvH4MGDM7XomDx5MuHh4YwdO5a33nqrwGMbjfDRR4G4uEhYtChr4bthg0jVqun4+xdeFKF+/TTq109DqVRy8qSUoKD0fLVYunDhAv369cv4/zNnzgSgffv2TJ06lYMHDzJx4sSM7WPGjAFgyJAhDB06tICfAj77zGLYNXFi7i0M8hqxe0TLlsnMn3+bkBAzxgLcE/Lb8DwnwsM9CA5O56WXikf+pMVbzMzBgzJ+/tmLTp0ScHGxrSpNSZFw/LiaKlV0dlHBKYpw+LAzP/zgy6VLKlq0EFm+HOrXz7+gi4qyWCeFh1tWUUwmePFFLe+/bxFzBfFllEhE1q+/h6traq72d3Q04+hoRq+H6GgVsbEK3N1VpKdriY+XWtUBILfMnevG+vWe7NuXuYG5NSgRdcWX50bYRUXJWLDAh02b3PH1hQULBPr2xSr+c1KpJWrXu7czFy6orN683tfXl/fff58y/zd42rp1KyNHjmT9+vWPNY7ev38/586dw8fHx2pjL1zow9mzDhw+nPUPW6OBHTtgwADbL8NmRmqqnrFjK9CsWTLjxj3I8/tr166dbTugjh070rFjxwLMMGvOnHHg4kUHKlTQUrt27sVMfiN2MhnUq5eCVKrk7Fk5Vao8nX+UG6ZOnZrR8NzR0ZHY2Fjg34bn+WXdOg+aNUsqNsLuEZ06JfLKK8m4uUlJSVFw+rSMBg1yJxzyyp07CgYMKMXatWlF2snnUW7yDz/4cu6cA40a5T2V5b/cuwcbN1oic3/8YRHNtWun8dFHyTRvnoy3t3WiU1IpVK2qQ6vN+/FeeSWZV15JJj0d7txxpEOHssybd4t69azf5ksURVKNqTjLnZ/a9uqrSdSqZcZWfaNKRF3x5plvKZaQIGXJEm9++cUDJyeBjz8WGDqUTHMrCoLJBJUqiQQEpDBnTsGaSeeGBg0aMHr0aDp37gxAVFQUb775Jj/++CPDhg2jd+/eBY7YnT6tpl+/YCZNEvj006z327TJkmv4669XisyC4eZNBWXKCCgURkwm+1qiygpRhI4dQ7lxQ8WqVdepXj33y/j77+0n2ZBMp7Kd8jV2RISKN94IZd68WzRunHcBklPD8/zi4OCARpM/sWkvLFvmxeLF3uzcGWGT6J3BAOnpTqhUqUVijC6KcOKEI/Pm+XL2rJq6dUW++EKgefO8VzLfvPmvYfCJEwJyuUjduqm0bJlMs2bJuLtb/7f866+u6PVyOneOLdBx0tMFtm51o2vXNNRqKZs2ySlfXpfrPL+cSNInMfr4aObWn5tp9btCoUCvt/71tkTUFX+e2YhdWpqEn37y5KefvAGBceMERo8GFxfbjCeVWlzT+/Rx+X/Vmm0ErMlkYs+ePWi1WqpXrw5YloLGjx9P3759H4vgFYSkJCkffxxIgwbwySfZ7xseLlKhgq5IfbWCgy1jP3jgwMcf+zF58l27d5Q/csSJGzdUVK2qyZOoA6jsXplUQ/4jQmFh6SxadJMmTUzkp/VkTg3P84sg5D3P1d54551YmjdPxtdXSXKynvv3pVb9bcjl4OJiKpKWYqdOqZk3z5dTpxypVctSwPDqq3n7m0VE/Cvm/vpLQKk006BBKtOmJdOkSbLNl7IvXXIgMVHK/5+J841KJdKtWwIAqamwYEEArVppGDbMOl0hXBWu9Avrx1f/fMWkmpOe2v7PPxK2bvVnzJjcFVzlhhJR92zwzAk7nc7Sd3DxYh80GglDhwp8/DF4e9t+7DffhMmTLRWys2ZZN2p35coVevfujV6vR61WM2vWLMqVKwfA0qVLkUql9OrVyypjiaIl7ys9/emWYU+i01mq1Hr3Lppl2CcxmYzI5SIODjLAfoWdKMLUqaUBmDDhfp7fX0pdqsBzqFs3DaNRyqVLakJCtCiVRVuJ+scfTnz/fSkWLrxuF7lj+UUQLCbCWi0sW+bLypUW/0BHR+t8pvv35Sxe7M277z6gdOnCOcfPnnVg3jxfjh93onp1ka1boW3b3Ak6UYTz5yE83CLmLl4UUKvNNGqUwsyZSTRunIpaXXh/7wkTEtDl52kmG6RSWLfuGkajgFwuZ/16D37/XcGMGXeyvX7mRH3f+pyKPcW229toV6bdY9sSE6UcP+5IXJwUL6+CRzZLRN2zwzMj7IxG2LLFnQULfIiJkfHOOxaPucDAwpuDTGaJ2vXr50JEhJKwMOtdPIKDgwkPDyclJYW9e/cyYcIEli1bRnp6OqtWrWLdunU5tpfKLevXu7NvnwsbN5Lj97dvHyQnF241bHaUKmVgwYJbSKVS0tOVREZCaKh1L+LWYNcuF+7fV1CzZprVczLzQny8SN++ZRk0KJq+fQu2NFVQXF1NVK2ajpNT8RV1T9K7dzQvvJCKt7eKlBQNWq2kwJ9PpxO4elVRKF5/58458MMPPvz+uzNVqohs2AAdO+ZcbCaKcPr0v5G5a9cEnJ1NNGmSwsCBSTRokFokljZmM0gktukaolCIKBQiBoMZBwctAQESnJ3VaDRarl1T5Ps6NLTSUEYeG0kVtyqEuPzboqNOnTS2b49EpysRdSU8TrHPsXvkmfT9935ERiro1s3SLSIszKrD5BqDAcqXF6lYMZmvv75js3HeffddAgMDCQkJYebMmUj+c6U1mUxIJBL8/PzYvXt3no577ZqSHj3K0bevwPz5Od84+vWDQ4d0bNly1e6W0GbMKMWBAy78+usVu/K5MxqhVaswYmPlhIdfteoDQH44e9aB2rUFDIaiL1iQy+UYDPYbaS0IK1f6smaNKxs2XC2wVYaDgwNaG67FXrqk4ocffDh0yIWwMMs19Y03yFbQmc1w/LglMrdhg8jt2wLu7iaaNbNUstatm1bkv8MjR5yYMCGQDRuu2twq5BHHj7syYEAg4eHX8u0fGa2NZvzJ8Znm2yUkKHFz0+X7+lsi6p49im3EThQtP9K5c/24fFlF69YimzZZxwSzIMjl8MknAoMGuXDtmtKm0SK9Xk+7du2oW7fuY68PHjyYtm3b5jmJPT1dYOzYQEJDBb79Nufv0WCALVtEunRJsjtRBzBsWBTt2iXh5KSw+tJLQdi0yY3YWDl166YUuagDSzcPo1Hg3j1HZDIdvr6Fc8N7kps3FXh4mChgV7JMiYqK4rvvvuP3339Hp9MRFBTE5MmTqVKlivUHy4LmzeNxdDTg4aFCo9EiitkLpaLgyhUl8+f7sm+fC+XKiaxcCT17Zp2OYTTCkSOWyNzGjSIPHgh4extp3jyJiROTqVUrDZkd3WUCAvS89VYiHh6Fd47XqpXEvHkmKlUyoFKpmT3bkQYNUvIU5PBx8Mk03+7sWQfefjuE9euv5etaUiLqnk3s6CeXe86cUTN7th9nzqhp0EDkt9+gUSP7URZ9+sAXX8DChd589dXdAh9v9uzZNGzYED8/P9LS0ti1axcnT55k/vz5uLm54ebm9tj+MpkMLy8vgoOD8zTO11/7ceeOkpMnM28Z9iSHD0N8vP0swz6Jk5OZypU16HQC33wTQO3aifmqALUmer3A7NmlAJGPPnpYpHP5L0ajyJAhpalRQ8OUKdZJ/s4rH3wQRN26KVb/XpKSknj77bepXbs28+fPx8PDgzt37uBiq0qqLPD3N9C5czxaLezc6cOGDWp++CEyz7mNEREq+vcvy5IlN63WQeTGDSU//ODD7t2ulC0rsmwZ9O4tZCrKDAY4cMAi5jZtEomNFShVykCLFpbuD9WrawqUV2ZLgoP1DBwYVagG2DKZxczabIbYWC3bt/sTECBQpYoOg0HMtfCt71uf07GnH8u3q1IlnS+/jMqXf2iJqHt2KVbC7tIlFXPn+nLkiDPVq4vs2AGtW9tfFZ1Cwf9tVVwZPDiakJCCVcTFxcUxfvx4YmJicHZ2pnz58syfP5/69etbacawf78za9d6Mn8+VK2au/eEh1tuVraqALYWBoPInTsSKlZUA0Ur7NascScpSULjxilWs0WwBlIpfPPNbUJDi+6SMHt2FBKJ9c+lpUuX4ufnxxdffJHxmr+/v9XHyQteXmlUry7F2VmeZ8sKT08Dgwcn4ulZ8CXryEgFCxb4sGOHK6VLw8KF8M47wlM2KunpsGePZYl161ZITBQoU0ZPu3YWMVe1avGwqDl82I2wsFT8/Iomj1OtFtm48er/o7VSZs0qzcOH5DptZ0ilIbx37L2MfDu5XOT112ORSqXkxeWpRNQ92xSLHLtbtxTMm+fDrl1uhIZaPJO6drW/ZYz/otNBuXIiNWokMX16waN2tuThQzlvvBFK8+YSNmzInVA2maB0aZHXXovjww/tJ/KUFaJoqVZUq9VcvGikbNnCt2bRaCQ0axaGVith69arRTKH3JCa6sS9e0ar9pPNDWq1Go0NGmB26NCB+vXrExUVxenTp/Hx8aF79+688cYbVh8rrwiCwIkTHuzfr+DDDx/k2peuoDl2d+7IWbjQh23b3PD1taSP9O8PSuW/+6Slwc6dFjH366+QmipQrpyOFi2SeOWVZCpUSC8WYu4ROp1AnTqVmTDhPm+8kVDU0wHg4EFnkpLkvPlmOvHxOs6dU1GrVlq23+uT+XZJSVKWLStFp07RubLVKRF1zz52LI0sguOzz0rTsWN5zp1zZdEiuHRJoHt3+xZ1YLlAfvyxwM6drty6pSjq6WSJyQQffxyAk5OExYtzH/384w+IjhZo2dI+bE5y4tHnOnpUpEOH8pw5oy70OSxf7olGI6Fly2S7FXUAn3ziweef+9vM1T4zbt5UMGuWOykp1v9h3717l3Xr1hEUFMSCBQvo2rUr06dPZ+vWrVYfK6+Iosi9eyZiY5UoFLn77GlpEo4fV5GWlvfvytL3uTTt21fg2DE3vvlG4Pp1i2m7UglJSbB6NXTuLOLtLdK1K/z9t4533olmy5arbN58lREjogkLK16iDkCpFDl1KpLXXrOfa1azZil07BiPRqNh1y5XBg4sS1xc9veL/+bbASiVZvbuVXP7ds73mRJR93xglxG7+Hgpixd7s3atJy4uMH68wJAhUIBORUVCejqEhIjUrp3I1KlFk7eUEwsWeDN/vg8HDwo0bpz79733Hqxda2DPngi7F9n/RRQtVdQdOxrRaguvCjQpSUqLFmHo9QLbt18lMNB+hd3DhzKcnBQ4ORXe93PkiBOffRbAtm0RqNXWvSS9+OKLVKlShVWrVmW89uWXX3L+/HlWr15t1bHyiyiCTCbl0iUnzp+X0KlTQpbC6eJFFd27h+ZpBSQqSsaiRd5s3OiBqyuMG2cRc2o1xMXB1q0WW5J9+yx5oNWqaWnZ0rLMas/nal6xdTVxQRBFS/FKpUoGFAoVo0d70KNHHNWqZT7fuRfmUta5LO3KtEMUQSqVYM4mebBE1D0/2NUtOTVVwrx5PrRpE8bmzZ588onAjRsCH3xQ/EQdWOY8bpzA9u1u3Lljf1G7v/5SM3++DxMn5k3Umc2W5ZkWLZKLlagDS+Tu1VeT0Wo1XLzozvz53oUSmfrxRy90OoE2bRLt/kbp52fEyUmD2ezIyZOOhTJmo0ap/P77TauLOgBvb+8MM+9HhISE8PCh/aQQCILFpmj/fgUbNnhizKZos1w5Hfv2ReYqRzM2VsaMGX60aRPGnj0eTJ4scPOmwFtvwcqV0LKliK+vSP/+Ig8favngg4fs3RvBzz9fp1+/WLs/V/PCihWefPutDUqurYQgQFiYDrPZzN27eiIjFSgUKiQSCcnJkqeuU0MqDWHXnV3cSL6BIIDZ7EBqauYX5BJR93xhF7fl9HSB5cs9ee21MJYv92bIEAk3blj6kzo/3f+4WDFwIHh5waJFhdD6Ig8kJUn46KNA6tWDCRPy9t4//4R794rPMmxWnDkj4fRpF4xG264pxcTIWLPGE4kERo6MtulY1mTuXCfGjg0kPb1w1txs5V9Xo0YNbt269dhrt27dolSpgnfvsDZDhsSwePF1nJyU3LvnwNmzT5enK5UiZcsas62mjY+X8s03vrz2WgW2bbM8JP/xh4CjI7RpI1KqlMiwYSJpaWl8/PEDDhyIYMWKG/TuHYef37PpI2g2CxgMxcP82svLyMqVNwgLS0AURT76qCyffBLw2D4yiYxJNScx7ew0krVaGjUqQ3j404qtRNQ9f9h+KfbsWa6v/o0pX7vSaUkVQl/+N/RmMMCmTe78+KMvcXFS+veHTz8VKOKCNavz7bcwbpzItm1X7KJ/qSjC6NGBnDzpwt9/C5Qpk7f3jxkDy5YZ2b//st3aGuQWoxFcXNTcvq3D3d1kk88zaVJpNm1yp2PHBKZMyXv7sKJCoxFISFASGKjPdonHGgwfHkRYmJYRI6wvfM+fP89bb73F0KFDefXVVzl37hyTJ0/m008/pW3btlYf75frvyCXyCnnUo4Q5xBcFPmzVfnii9KcOuXEhg1XMs5LxfnzBA0eipiiRR8YwO1fNz32nsREKStWePHzz55IpQJ9+gh4e8OOHSInTgjI5SJ166bSqlUSTZum4O5e8K4FxQWlUmlXfpZ54cQJRyQSaNJE5MYNM+fPK2je3LJicjTqKHvv7aXJ7Ym8uaYvTnH30AUGEjl3LhH3vEpE3XOI7YRdbCz06AH792e8ZJQriRs0gKgBg9i505UffvDlzh05PXvC5MkCVupfb3doNBAcLNKoUQKffVb0N/bwcHcmT/YnPBy6dMnbe0XRkjdYq1YCkyYV/WexBgaDQJcu5WnSJInRo6Oseuw7d+S0bVsBQYBduyLw8ysa89+CIJU6sG+fjGbNUmw2xrp1Pnh5aWne3DZjHD58mFmzZnH79m38/f15++23bVYVezv1NleTrnI95TrXkq+RakhFgoRAp0BCnEMo51KOci7lcFVkvyxoNEJMjJxy5eTcvaunTtu6KFKS+G/8VAQS2rTh8iczWbnSi1WrvDAaBV5+WSAhQeTcOQGl0kyDBqm0bJlEkyYpuLgUj6iVNUlPF5DL1UilaUU9lQKzYoUXy5Z5sWfPNRQKy/XE+HYbqv9156lzI1zWjekv/FIi6p4zbCfsGja0lE5mwiTfuUyJGs7rr4tMmybwwgs2mYFdMXMmfPKJyK+/Xim0xt2Zcf26pWXY228L/Phj3pfY/voLataEH3+8Rf36efeEW7x4Mfv27ePmzZuoVCqqV6/OBx98kGGmbDAYmDt3LkeOHOHevXs4OTlRt25d3n//fXx8fPI8Xm45eNCZF14AT0/rCosPPwxkzx4XunWLZ8KEB1Y9dmHx66+ufPppANu2XcmXEWpusOekdmtgEk3cS7vHteRr3Ei+wfWU6yTrkxEQKO1YmnLO5TIEn7vy6Tuwun53glMuktkvVgRay/ew39wSNzeIixNQq800apRCq1ZJNGqUilr9/Im5/7J/vzPvvx/EwYOXC62VmC2JjZXi5WXCZHLkt1dXMDxqcpbnRup3P+L8/sDCnmIJRYhthN2RI2SXjX9PFULkvmvUb1DM6uULQGqqJWrXokXR3eB1OoE33yyHVKrk1CkBdT4cPyZMgO+/N3Hw4KVce279l8GDB9O6dWuqVq2KyWRizpw5XL16lc2bN6NWq0lJSWHUqFF06dKFsLAwkpOT+eqrrzAajaxduzbvA+YRUXRg9mwXBg6MLnAi/9WrSjp3DkUmgz17IvD2Lp43FFGEW7eUhIWJeTbTzQ3JyRKiolwJCkpEobCfnr6FgUk0cT/tPjdSbnA9+TrXk6+ToE9AggQ/tZ9F7DmXo2+L/pneuB+RippSTikZfVnr109FpXq+vsvsiImRcfasKy1bxhU7m5bsuH9fTpPW1VGK2SwxOzpabkAlPDfYRth9/jl8+mn2+9y8CWXLWn1oe2b6dJg0SWT79qJZkps2rRQbN3pw8qRAtWp5f78oQsWKIpUqJfLFF9axb4mPj6dJkyYsW7aMWrVqZbrP+fPn6dmzJ3v27LF5wvvFiyqGDSvLDz9EUqlSwSJIQ4eW4fffnenVK45x4+ynAjO/yGRyfv1VTatWSVbNRTx82Jnhw4PYu/dysVyqtgVm0cxDzUNLhC/lBjO7fJOtsBOBs2fOI5eXiLmsEASBQnD3KnSqVKuW7bkBUKimlCUUObapis1NKEdhf/YftmbYMHBygqVLC79C9uBBZ9as8eTbb/Mn6gAuXoQrVwRatbJeb9jU/z9JumbT+T0lJQVBEHAuhBLpypXT2bEjgho1zAiCJEv7gJz4+28HjhxxQS6Hd9+NsfIsi4Z//pEyblwAf/5pXQuUl19OZfPm2/j4lIi6R0gECaUdS9O4VGNqGwbn6j0loi5rVq/2ISLi2bjnmEQTN1NusuvOLmadn1XU0ynBDrGNsOvYMfvttWtD6dI2GdqecXaGDz4Q2LDBg+jowuvJGRUl49NPA2jfXmTIkPwfZ8MGcHIyU6+edcL6oigyc+ZMatasSfny5TPdR6fTMWvWLNq0aYOTk5NVxs0JBwcRnU7H/Pm+9OkTgsGQ97Wbb7/1QxBEevWKxdPz2ag8rFw5nW3brtK8ee7ztdZcX5PjPg4OIhUraoudJ6KtMBrh99+diI6WoVAoOHMm56x3g6dnIcyseKLTCSxc6Mnly09bx9g7GqOGv+P+Zt2NdUw5M4WhfwzlvaPvsf7GevRmPa8FvobBMYcHXhvmJpdgn9iueOLtty0OmE8ilcL27fDqqzYZ1t5JSoKyZUXati2c5TmTCQYMCOb+fTV//y1QkOv/Cy+IBAQk8dVX1ul9+8UXX3DkyBFWrFiBn5/fU9sNBgOjR4/m4cOHLF26tNCE3SNu3FBw4YIznTolYczOMfYJjh1zZODAYJRKM/v2ReDm9mwIu0dIJBL27XOhdu1knJ2zF3kjj45kZp2ZKKXKLPf56SdPvLxMtGmTaOWZFh/S0wVu31ZQoYIOo1FF3bohjB0bTbdusej1AmUnjsV9x44sE+Q/ffcfyjdypGbNwusWkhvWrl3L2rVruX/fUkFfrlw5Bg8eTKNGjTL2uXHjBt999x2nTp3CbDYTGhrK119/bdW0CwcHNampmlylEOQ052pZLHmMGjWKvn375mt+oigSmx7L5aTLRCRGEJEUgcaoQSVVUd61PBVdK1LRrSK+Dr4I/0kSFEWY1/YK8293yXo59sgRSzFjCc8NtgsbLVkCfn7w44+Q/P+lu0qVYMaM51bUAbi6wvvvC3z5pQf9+8favEJryRJvTp1Sc/BgwUTdtWtw7pxAv37WWYadNm0ahw4dYvny5VmKug8//JB79+6xZMmSQhd1ACEhekJC4gAZu3Z5UKlSao5NtkXREq2TSET69Im1iah79dVXM246/6V79+5MyKvbdD6IixP45JNSjBwpoWfP+Gz3fdHzRc7EnqGeb70s97l8WY2fX/H0FysIGo0EiUREpRL58cfSbNnizMGDV5HJ0tm69SqlSlkqkBUKkb8/+xD1tSO8fCUl4wb+6In8+oxv2LE2hLalNXYn7Hx9fXn//fcp83+zzK1btzJy5EjWr19PaGgod+7c4e2336Zz584MHToUJycnbt68icLqqTpirvNCc5rzwYMHH9v/yJEjTJo0iZYtW+Z5VhqjhnF/jsMsmvFWeRPmFkZNr5r0KNcDJ3nW1zyNRoJeL1C6tJLXv6/KzX1jCZ77FYggYDk3BEGApUtLRN1ziO0NitPS4MIFS1PCqlVtOlRxISHBErXr1CmODz+0XdTu7FkH3nknhPHjBaZMKdixZsyAyZPNHD58CQeH/J8yoigybdo0Dhw4wNKlSwkKCnpqn0ei7vbt2yxZsgQPD4+CTL3AGAwC3bqVo3nzNEaMyL6i+ZGtglptZs+ey7i6Wt9mIj4+/jHD4KtXrzJw4ECWLl1K7dq1rT5eZty7Jyc0VJ5jv92IxAi239nOqGqjstxHpVKRnp67nqfFHZPJsmiRkiKhRYuKTJkSS5s2sdy9KyU9XSAk5OkHB71Jz8hjIxn7wlh8JKFcaDKbV0ufwtyvI8mdOgGW5VupFBwd1WzcqKBGjTS77SDRoEEDRo8eTefOnRkzZgwymYwvv/zSZuN9840vKSlyPvss/ysN/53zk4wcORKNRsPixYvzfFxRFDGJJmSS3MdYRBH69g3By8vM11/fynh9/MnxTLtRgZR1t1n+oAM/JvfK83xKeDawfaKXoyO8/LLNhylOuLvDe+8JzJzpQd++MTbJwUpOljBuXBlefjnnAuXcEB4u0rBhSoFEHcDUqVPZsWMHs2fPxtHRkdjYWACcnJxQqVQYjUZGjRrFpUuXmDdvHmazOWMfV1dX5PnxWCkgcrnIihU3cHUVkMsVpKYaMrXlMJngu+8suXXvvBNjE1EHPCV0lyxZQmBgYJZVxbbA39+AVmvgr7/ccXNLIzg480hmedfyXDl/JcvjiKJlafd5YPlyL/bscWPTpntIJDomTrxPjRppmM1mSpfO+lyZ/vd0eoT0IMQlBDDT7NI4EtI0j9l2yP5/JU9I0DJ7dgCdOqUwcKB9+SaaTCb27NmDVqulevXqmM1mfvvtN/r27cugQYO4fPky/v7+9O/fnxYtWlht3AoV9KSm5k/kPjnnJ4mNjeXIkSN88cUX+Tq+IAjIhNzdhkXR8pDp6qrivfeicXf/9zeXrE8m1ZAK3d/hD1cXFo4pw5fxUMTPxCUUEc/HFdUOef99kMkEVqzwsvqxRRGmTPEnLU3GmjVCxkU/v0RGwqlTAi1bFnwZdu3ataSkpNCvXz+aNWuW8W/Xrl0AREVFcejQIaKionjjjTce2+fs2bMFHj+/uLiYEUUT589LadOmAhcvqp7aZ/t2NyIjlTg6ivTuHVco8zIYDPz666906tTpsdybwsBohMmTvVi7Nus1fokgwV3pTlx65t/H3387ULt2EJGRz0bF4n9JTpYwYEBZzpzxwMHBgWrVtLRpk0Bamhaz2Uy7dok5RtXW3ViHj4MPTUs3zXhNFMUsvdiUSpFffrlG374PUKvVnD3rUGi9frPiypUrvPzyy7z00kt8/vnnzJo1i3LlyhEfH49Go2Hp0qU0aNCAH3/8kebNm/PBBx9w8uRJq43ftas2x5SB3M75SbZu3Yparc7XMmxeGTMmkGnTyqDVannxxVTKlv1X2O26u4s2gW0AMh6yLl+2+ZRKsFMKrzSzhMfw8IARIwRmz/akb99Yq/Zs3LTJnd27XVm3DjJZ6cwzGzda8nwaNy54V4Zz585lu93f3z/HfYqSgAAdrVsnERb2+M3SYBCYM8cHiUSkf//oHIsKrMX+/ftJSUmhQ4cOhTLef5HJYOHCmwQEyMnOt7iuT11OxJzIuPH8Fy8vI336JOLtbZ/Lhnll/35nzp51YsKERFQqy+czmXRotVpeegleein3La3+iv2LkzEnmfHyjIzXvv/eh9u3VXz11e0s3/coUhwXp2XkyIr06BHP0KHWbZWXF4KDgwkPDyclJYW9e/cyYcIEli1blmFf1LRpU95++20AKlasyN9//8369eutklaQlCThxg0VZcqk5+kBN6s5PynuNm3axOuvv45SmXVxUEERRVAo5LRunYZCkfkP7cD9A8yuNxuAoCAdgiBy+bJA/fo2m1YJdkxJxK4IGTXKEor/6SfrRe1u3FAyfXop3n1XpGtX6xwzPFykXr1UnJye77ZEAGq1mQ8/fIhMlk5iohO//WZJcA4PdycqSo6Tk5k338xbdKAgbNq0iYYNG9q03Vp2+PgY0eu1REa6ceJE5v52dX3qcizqWKbbAgIMDBkSX+AuH0WFRiOwbJkXt26pUKvVaDQOREbKSUvTkp6u5csv71K7dt77k0Zpo5h3cR6f1fwMifDvZbpCBR0vvJC74zk4iCxdeoN+/eJQqVQ8eCAvEp9auVxOmTJlqFKlCu+//z4VKlRg1apVuLu7I5PJnhJLwcHBPHhgnWXkY8ec6NAhgJSUvDlqZzXn/3L69Glu3bpFl7w23M4Dc+f6MH++PwaDgZYt42nc+GmrqevJ1wlwDMioPFepRPz9jVy6ZLNplWDnlAi7IsTLC4YNE1izxpOkpIJb+et0AmPHBhIUJDB7tnWWXx48gGPHoFWrJKsc71lBFEWWLHFkxgx/kpMlzJ/vgyDAgAHRhdaX8/79+xw/fjzThO7CZtYsF5Yty1xc+jr4EpMek6nr/7lzDly+XLwuQ5GRCvbvd0YqleLi4sCqVV5cuKBEo9HQrl00c+bcLpAnn86kY9LpSUx8cSKO8sfFctu22jwt84eG6lCpjMTF6enZs1yRmKNnhl6vRy6XU6VKFW7duvXYtsjISKtZnTRpksL69ZFWWRF5sp3exo0bqVy5MmFhYQU+dmZIJBI8PCQ4OGRfMb751mY6le302GvBwelcvlw8H5ZKKDjF64r6DDJ6NIiiwMqVBTcY/e47X27dUvLLL/nrA5sZmzZZqu2aNrVet4lnhffei2LKlDt89FFZEhKkuLmZ6N698KJ1mzdvxsPDg8bZ9GUuLD777C4//JB1m7lg52BupNx46vVvvvFj/nz7NtcVRYiIUJGYKEUmk7F3rxdfflkag8GE0ahh9+7LvP66dR58RFFk2tlp9ArtRZDz43kUer3AuXPqfOXMOTqa+fTTe3TvnoZcLkenK5y8u9mzZ3P69Gnu3bvHlStXmDNnDidPnuT1118HoG/fvuzatYvw8HBu377Nzz//zOHDh+nRo4dVxndwEKlUKW+G6jnNGSwdc/bu3WuTaN327a5s2uSNRCKhV6+H9O0bm+W+BrOBiKQIKrtVfuz14GAdFy9afWolFBNKcuyKGB8fGDJE4McfvXjrrdh8V1IeOuTM6tVezJ0LmRRv5ZsNG0RefjnNZhWexQ1RhKtXlezd68q+fa5cu6ZEKrU8GQ8cGFPgquHcYjab2bx5M+3bt0dW0OoYK2A5P/QkJLhw7JhAmzaPC536vvU5FnWMci6PL7vNn/+A1FT7ayUmipbG8T4+RrRaBT16lGP8+Gi6do2he/eHvPXWg4yonDW//jXX1xDoFEgjv0ZPbbt+XUm3bgGsWqWjevW89zFu3tySI5uUJKVHj/L07RtNp06JBZ1ytsTFxTF+/HhiYmJwdnamfPnyzJ8/n/r/T/5q0aIFn376KYsXL2b69OmULVuWb7/9lpo1a1pl/OnTA2jVKp6XXsq9v19OcwbYuXMnoijy2muvWWWe/+XyZReSksx06pTz7+L3h7/T0K/hU4VTISE6Vq2C9HRQPV3nVcIzju197ErIkYcPIThYpF+/aIYMyXtf0ehoGW+8UZ4GDSRs3SpkWTGXV2JiwM9PZMKE+3TtmmCdgxZDRBEuXlRliLnISAUuLiLt2sEbbwisXSty4ICJ7dsjUKkK5+d09OhRBg0axLZt2yhbtmyhjJkb5s3zYedONzZuvPqYJYzGqGH8yfHMqjfrsf0dHBzQavMuUmyB2Wz5J5PBnDml2LHDhf37b2Iw6Dl/3oGwsHSb9mM9GXOS8JvhTK89PdMKZ71e4M4dF/z9kwt0nplMFuPyjh3T8fNLw2QyW+2aYU/odAIDBpSjT58oWrQoeOGXLblwQUVCgpIWLdLRaHRIJOTqb/LhiQ8ZX2M8HsrHfU3OnFHTp08I//xDvnuDl1B8KVmKtQP8/GDQIIFVq7xIScnbn8Rkgo8/DsTBQcKyZdYTdQBbtlj+27z587cMazZbDJ5nzvTjtdfC6NEjlE2bvGjRQsH27RAdLbBqlUBYGKxbB+++G11oog6gfv36nDt3zq5EHcDAgdH88ssN1OrHc0bVMjVGsxGD+d/q13v35Iwd68P9+4XvTfgkyckSWrasyO+/eyOXy3n99XgmT76LTmfJq6paVWtTUfdA84AfL/3IpJqTsrStUShEKlXSFvg8k0ot0WUfnxRMJilDhwZz5Ejhd3axNUqlSHj4fbsXdQA//+zLihXupKfrkEpzJ+oeWQg9KerAErGDEsuT55WiX8MpAYCxY2HBAgk//+zJoEG5j9otW+bFyZNq9u8X8LKyJV54uMhLL2memSb2OWE0wpkzjuzd68KBA65ER8vw9RXp1EmgSxdo0kTgSX/kyZNFfH2NdOny/EY0/4tcDnK5keRkBzZtcuHNN+MzblI1PGtwNu4stb0tNhYpKVJu3pQjkRTNosG6de789psbS5dGIZcb6N07lsDAFAwGA+XKQblyhdPmTGvUMun0JCbVnIRalnVy7OrVHri4mGjXLvu2dnlBozHh5GSgVKln71ZgMPBYhxZ7Iy5OSnS0gpdeEhg//g4KRdb+hJnx6+1faRvYNtNtbm4mPDxMXLpU8KK8EoofJRE7O6F0aRgwQGDlSi/S0nL3Z/n7bwe+/96X8eMFmjWz7nwSE+HAAWjZ8tmuhjUY4I8/nPjss9K0aFGR/v2DOXLEg549Zfz2G9y7JzB/PrRsyVOi7tw5S7RuwIDoTDtRPM8cOSJnwQJfoqL+/dLq+dZ7zPakYsV01q27i59f4eTYpaRIGD/en4sXXVGr1fj7mwkN1ZCaqsFgMNCvX2yhiblHiKLIF399Qd8KfQl0Csx238uXHblxw7oJU46OZmbOvEtoaCIKhYoZM0pz5YrtPNkKk88+86d//6f7UNsLM2YE8Nln/qSlaXB0NOcpIiyKIn9E/UFDv6z7wAYHp5dYnjynPHuPacWYceNg4UIJa9Z48O67WVdCgeUmNW5cILVrw6RJ1p/Ltm0W090WLZ69ZVidTuDoUSf27XPh0CEXkpOlBAeL9O9viczVri3kyq5i8mQRf38DHTuWROue5NVXk6lbNw0fHxm6/2ulim4V+f7C9xn7GI2Wlk225M8/HTl/3oGhQ1NRqSTExCiIizOh0Who0AAaNCjaB5efrv5EBdcK1POtl+O+M2fG2LSn7sOHBv78U03TpulA4QpcW9C+fTKpeSuItTkGg0BcnIyQEDljxtxDEPIWpXvExcSLhLmGZdtjNjhYx6VLauAZTKAsIVtKInZ2REAA9O8v8NNP3mg0Wf9pLC3DSpOSImfNmqeXB61BeLhIjRoafH3tr2IxP2g0Anv2uDB2bABNmlRi5MggIiLcGDlSyl9/wfXrAl99BXXqkCtRd/YsbNggMHBgtE2+/2cBV1cTaWlmFi/2Qa8XkApSnBXOJOoSARg1qgzvvWfdiIpOJ7Btmyv37ytQqVTcuOHCwYMuaDTppKdrWLToJo0a2cfd/ljUMa4kXeHt8m/nuG9h9NT18DCxbt016tSJR61Ws3atB4mJxXcpr0kTg93l102e7M/IkWVJTdXg7W3Eyyt/Dzabbm2iY9mO2e4THKzjyhVLvnAJzxclws7O+OgjSE2VsHZt1t2bN292Y9cuNxYuFLBF7nxKCuzeXfyXYVNTJWzf7sr77wfSpEklRo8uw717rowbJ+HCBbh8WeDzz6FGjdwlK/+XTz8VCQrS065doi2m/sxw/bqUpUs9M3rr1vGuw4mYEwB065ZE+/YFj3YmJEg5c0aNIAioVA5MnerPn386kZ6eTrduD1i58kaBDINtwd20uyy9spQJL07IVY/fw4edqVUriPh42wot6f8PHxmp5/vvfTl+3NWm49mK6GgZO3c6o9XaR7RKqxVQKpUMGBDPpEl3CmxgfTft7lPWQU8SEqJDqxW4nXX3uRKeUUqWYu2MMmXgnXdg+XIvevSIe8oX7eZNBV9+WZp+/US6d7fNRWvHDkvkI7fLsEazkd8e/kbz0s1tMp+8kJQk5cABZ/btc+X4cSf0eoFatUQmTxbo3BlCQwv+nZ08Cdu2CUybFmVVD7NnkbCwdHbvjsDXV4VGA/V86rHw8kJeDXiVFi3S0enyt+QXGyvDwcGMk5PIqlV+bNzozIEDEQiChj17LuPiYglT2Juge8ThB4eZXHMyDjKHXO0fFKTjnXcSrNpTOju8vY1s23YFNzczarWlOKt27bRic76fOaNmzBhfjh6NA4o2//Xbb305d86JJUuuW6V394H7B3J1rQ0Otvy2Ll3CJgGAEuwXO73sPd+MHy+QnCxl3brHo3Z6vcDYsWUIDBSYM8d2T6IbNohUrqwlICDnxuwGs4FPTn2C0Vx0S7axsVLWrXNn4MCyNGlSkUmT/DGZnJgxQyAyEk6eFBg7FkJDrTPep5+KhITonjLhLSFznJ3NpKZqWbHCF4W2DA80D0hNFdi1yzlPrfQeRV9SUmS0ahXGwYNeiKJIz55RrF9/DUGw3MAfiTp7pldoL0o7ls71/sHBet59N7pQ/ebc3EyAyPXrBoYNK8v27e6FN3gBad06mePHr+LsXHTngiiCTCajVat0OneOtdpDxs47O3ktMGdj5FKlDKhU5hLLk+eQYvL89XxRtiy89Rb8tSiS0fcXoNCloq1cmUlX+nHjhpITJwQcM++3XmC0WkvE7t13cxYtBrOB8SfH0zqgNS38W9hmQlnw8KGM/ftd2LfPldOn1Ugk0KQJzJkj0KkTWKnV5FMcOwa7dgnMnBmVsWxVQs4kJUlYudKNMvKbbFx0Fu+4atQSBZKDK3J/w6qnS47/jyhalskXLPBh9243du26A2iZNes2NWpYugl4eT0beaDZcfSoM4GB6QQGFr5QKVXKwJo116lUyYhcruTaNTOBgTk/9BU1jo5FVwDyyy8e/P23M9On36FatSSrmQQ/0DzASe6Es9w5x30lEssDwaVLJa0nnjdKhJ09YjYzO7Evzkk/wc//f23DBqaxgJajtlOjRm2bDb17N6SlCbRsmf0yrMFs4OOTH9MmsE2hLcHevStn3z6LmPv7bzVyuUiLFrBokUCHDljdxy8zJk4UKV9exyuvPHvVwrbE3d3E8W4fE/TlNxk1ehJEPG5exL1mTa4vX076Sy9l7J+UJOHdd0P48MMEmjRJo2HDFAIDdaSlaf8v4u0rKd6WiCKMHRvAO+/E5FgtbyvCwtIxmy1FRh07lmfq1Lu0bm2fvwFRhGHDgunWLZamTQv/PBEEAX9/Cffvp2M0mq36ALg1saxOggAAR1VJREFUcivtg9rnev+yZdO5dElJSWXs80WJsLNHvvkG500/PfWyDzF0X90Opt6yWQPA8HCLcClbNmsTVL1Jz0cnP6JDUAealGpik3k84uZNRUYrr0uXVKhUIq++CqNHQ7t2Am5uNh3+MX77DfbvF/juu2i7zd2yZ4LmfpPp7UUAyvXty4xpkZw86czMmfEoFCZq1UrF0VFDeno6Vatauj88jwgCHDp0h7S03Pc7tRX+/gamTr3La6/pkUikpKaaC60/cm7R6wU8Pc04OBRudPOPP5z45x9nRo6MpVGjWBo93e63wLgr3XnZ++Vc7x8crGPdOuvPowT7pkTY2RtmM3z/fZabhagoWLsW+vSx+tA6ncW/rlevrJ/EdSYdH/35EZ3KdqJxqcZWn4MowpUrSvbts4i5a9eUODqKvP46fPYZtGkj4FQE3Y9E0RKtq1hR91y2WCso/h98kH3MQBSpen4rf4pvkpqqQSKBceMeFtb07B4XFzMyWdHnDgqCJX9NFOHePQU9e5bn88/v0rChfVjIgKWV2DffxKDRFK4Qjopy4u+/FWg0BptZIHUL6Zan/UNCdMTGCsTGFs6KRgn2QYmwszcSEsixPv3sWZsIu/37ITlZyNLmJN2Uzkd/fkTX4K408GtgtXFFES5eVGVE5iIjFbi6irRrBzNnwquvCjjkrnjQZhw8CL/9JjB3blRJtC4PmEwWCw2nU6ey3U8AmlxeRtnlto0AF0f273fmjz/cmTjxdqEWT+SEu7uBLl3iqVvXsvxoNufPbNfaxMTIcHc3F0oFb2Skgr//dqRbNy2dOj2kY0f7qsT+b8/Yhlk3qSjhGcOOTsESAHB0BIUi+33cbVOdtmEDlC2rp3z5p5OOtUYtY06MoXtId6uIOrMZ/vpLzVdf+fHaa2H06BHK5s1etGypYMcOiI4WWLlSoGNHilzUiSJMmCBStar2ucrtyitmM+zc6cr165aWVL/95kadOpUxmx0xu+bsh6b397f1FIslWq2ElJS8ey3aGqVSZPjwaGSyVFJTlfTuXY7z54v4xwrMnOlH//65rzguCHv2eLJkiRfJyToEwb5EHUBQkB6JRCxpLfacURKxszdUKujcGX75JfPtggC9ell9WKMRtmwR6dQp6akbiNaoZeyfY+kd2ps6PnUKNMaZM47s3evCgQOuREfL8PMT6dTJ0sqrSRPBLn2y9uyBY8cEfvghyu5uroWNRiNw+bIDVatqUShEFi/24vp1NbNmxQACU6eWZsiQOEJDYwgJSeODDx6i1Wq59d13VOjcOcvlWBF4MHVqIX6S4kO7dsm0bWvf1jparREfHwOBgdb9AWuNWkRE1DJ1rt8zdGg8SUm2y/tLTZVw6ZIDTZqI9O37gDfflNhtr2iFQiQw0MDlyzkEC0p4prDD22gJfPEFHDgA0dFPbxszBspl7zieHw4fhri4p5dhNUYNY0+MpU+FPtT2zns1rsEgcOKEI/v2WcRcQoKUgACRnj0F3ngD6tUT7No25FG0rkYNrV3lEdkSsxni46UZ7Y6++sqPatW0dOyYzqVLDvTpE8Cvv94hNFSDv78BUdSi1VoKG/bsiUCtNiOKEBBgoFeveAAM5ctj8PJCHhv7lLgTgfMudTAahDw1Qn9e0OkUKBT23bvVy8vId989SiFRM3GiB4MHR+HvXzBblNOxp7mceJl3K76b6/dUrGi2aU/dpUt92bzZlR07IlCpsIvcx+ywVMbKKamMfX6ws8BxCYBFuB07ZmlB8Wgd8oUXYOlSmDHDJkOGh1sq3ipX/veCqDFq+PDEh/QN65snUafTCRw86Mwnn/jTtGlFhgwpy19/uTNggJQTJ+D2bYFZsyw5H/Ys6gC2b4dTpwSGDn32onXi/zVUQoKU+fO9efBAjlQqZcGC0vTsWR61Wo1KpSIxUU5qqgSdTkdwcBKbNl2ldOkkDAYDr72WxIABMRnHVKuzvsldOXiQ1NCKT/UBePhye2qlH2PMmEAMhmfsSy4gaWkSXnqpPDt3Fp/WXrduGTl3zgGzueCV+/V963M8+jgGc+4EYmSkgvnzPUhJse6tzWyG27cVODg4MGBAFCtWXEelKh4PISEhOi5dKh5zLcE6CKIolvzF7RlRBIMh57y7AmAygb+/yKuvxjFmjKUSMc2QxocnPmRgxYG86PVijsfQaAR+/92ZvXtdOHLEhbQ0CRUrirzxhiUy98IL9pcjlBOiCDVrishkGpYuvVns5v9f7t6V888/6oxuGSNGlMXf38iUKfHExkp47bUAvv32Li+9lMqNG0oePJDToIH1I5TbtrkxfnwAd8/G4l9WDv/Pvdu+HTp3FmnUKIWZM++URO7+j1Yr8McfXlStmoifn/2bAj/CbLbkmymVaubPV9OjRxxqdf7+pj9f+xkPlQetA1rnuO/hw85MnBjA7t2XrWrDMn++D2vXerBjR0S+P0dRsWmTG5Mm+ZOWVvRFaCUUDiXCrgSOHIHGjWHlyuvUqKEl1ZDKhyc+ZHClwdTwrJHl+1JSJBw+7My+fS788Ycz6ekSqle3iLkuXaBSpcL7DLZg0yZLuuPSpTeoXbvoPcRyIipKRlqahJAQPampEkaMCGLYsAQaN9azfr0zEyZ4cfr0VaRSA1u3uuDqaqJx48JdXh45sgwajTPHjz+tkkvEXeY4ODhkLHUXNy5dUtG3bwiLFt2mWrX8nWtphjTG/DmGHxr8kKv9ZTI5RqN1RHBamgR3dxlxcRIuXJBSt26aVY5bmJw968Bbb5Xj7FmoXr2oZ1NCYVCyFFsCGzaAj4+RF17QkmJI4cMTHzK08tBMRV1iopRNm9wYOjSIpk0r8fHHgSQnuzB5soRr1+DsWYEJE4q/qDObLT1h69ZNtStRp9cLaDQWUXTxooqPPgrAZJKiUqmYOTOQr74KQKVS4eoqoVQpPVKpHo1GQ/Pm0Rw7dhGJRI8oirRrl1Tooi4tTcIffzjzxhuZhz5ffx02bhQ4csS5ZFn2//z5pyMHDhTfllCVKqWzZ89lqlfXoFSqOHTImbyGEhzljgQ5BXEh4UKO+wqCYDVRt2aNB926lSchwYizc3qxFHVgMSkGSipjnyNKiieeV44ehUWLEG/epNGfgXjU70qK0ZOxJ8YyosoIqnpUzdg1NlbKgQMu7N3rysmTjpjN0KABfPWVQOfOEBj47N2Aw8Ph/HmBn37KpIClEDl+3JH79xV07pyAVCqncePyfPBBPH37JiMIch48UJCQICCVpjN8+D2USpH0dMuNbdq0exnHsYfuAEeOOKHXW6K5WfFI3HXubBF3z3vkbssWN6Ki5NSrl1DUU8k3Li5mzGY4cUJgxIggVqy4Sc2aeRNJPcv1ZNHlRXxe6/Ms9xFFaNu2PIMHRxWoilgUQSaT0qqVAbM5Jtu80eKAq6sZLy8jly+X3O6fF0qWYp9HPv0UPn/6ArmmRSkkk76jinsVHj6UsX+/pS/r6dNqJBJo2hS6dBHo1An8/Ap/2oWFyQRVq4p4eqayYEGkzcf7809HXF2NhIXpuHjRgeHDg1iz5j7BwUZmzHDnzBkly5ffRBRFdu92ISwsPduWb/bK6NGBxMS4cOZMzg8C9rIse+rUKZYvX87FixeJiYlh1qxZtGjRItN9J0+eTHh4OGPHjuWtt96yyvgymYy0NBNK5bNxmb5yRUnVqiKiKHLtmkBQUO7P41HHR/FJjU/wVHlmul2vF1i5shR168ZTpUr+qmL37XPh55+9WbToFlKpKV/HsEf69QsmONiRtWuLeiYlFAYlS7HPG4cOZSrqAHruf0DKtwZ69SpHq1YV+eabUnh7q1m8WODhQ4F9+wSGDHm2RR1YLAQvXxYYNsw60TqjEW7cUKLRWH5u27a5MmpUGZRKJWq1mi+/9GfLFm9kMhm+vno6d44HNGg0GoYPv8eyZTd49Pz16qvJxVLUpadbimuyWoZ9EntZltVqtVSoUIHx48dnu9/+/fs5d+4cPj4+Vh1fJpM9M6IOoEIFHXq9nmPH5LRvX56//859Nv8bwW8QfjM8y+0KhciIEYn5FnUAISESypTRotcX7yjdkwQHp5dUxj5HlAi7540ff8x2s9/WdYSEqFi50tL9YccOgX79np8+g0YjfPaZSJMmKVSrlreE9Ue5bwA//eTJpk1uyOVyEhOd6dChPBcuuKNUKnF2FnF1NZKerkOj0bBo0XVGj76L0WjE09PE8OHR+PoageJXSZwVf/zhhEYjyXYZ9knsQdw1atSIkSNH0rJlyyz3iYqKYtq0aUyfPh2ZFR2279xR0KNHADdvPnvmsi++qOGrr+5Qpw5IJJKMh57sqOdTj1Oxp7K0PomIUBIRkfdb2rlzDkyZEoBMpiAkJJHPPrtvF6kL1iQkRMeVK5bViBKefUqE3fPGtWvZbm4TepVNmwR69wY3t8KZkj2xahVcuyYwbFhUtvvpdAJr1nhw44blprtlixcNG1ZGoVDj4OBAZKQDd+8qMRgMeHiksHTpTSpVSkCn09G0aTKTJt3PEG1eXia79/MrKHv3ulK5skhYWN7eZw/iLjvMZjPjx4+nb9++hIaGWvXYFhsiA87Oz97dWCq1RJ/T07WcO6fm1VfDiIjIvkhEEARa+bdi7729mW7/X3t3HhZV2f9x/H2AYRk2FVRQAVncMlNzebQnl9TcchdcU3NHza2ftmq5pKmZ2WZlZq65V2YuJe6mlpm5g+IGArLvA8MMc35/zKNFAqIzwyzcr+vq6nLmcM4NA3M+cy/f+/PPqzFv3qN/AlWrXbh61ZHUVNv7Od8TGFiAWi1x65a5WyKUBxHsKhpf31KftvOroPt19u6NLEmMGCkR6xJMgwb5ZGTYc/CgO7r/jcosXuzLW2/5o1QqcXNzYflyHyIj3QBo0iSLuXPvkJur34Vh9uw7TJ6sD4d2dtCiRS5ubrY1vFNWBQUSR454lHkY9t8sOdytXr0ae3t7hppgm7/atQtYuvTu/R1AbJW/v4ohQ1Jo1Eh/Oypt1ncP/x78ePvHYp9btCiJOXPiin3u35KSHFi71hsXFxeaN09j/fobeHra7s85KEi/MjYy0swNEcqFCHYVzahRpT8/cmT5tMPCyD/+iIR+052aeTeo9NtvXL1aialTA0hNdcXe3p5GjVQ0a5aNSqVCo1Fx4sRlunfXb5kVEFBAz56ZFXoFZ0lOnXIlJ8eO0NDHP4clhrtLly6xYcMG3n33XSQTjJknJCjIzNQa/byWxt1dx4QJyRQUqIiPd2fQoBBiYoofflY6KAnxCOFC2oUHnqtc2a7MW5idPevJ2rXexMbq56vaypSHklSvrkGp1ImSJxWECHYVTe/eUFLvQr9+MGhQ+bbHzLRaWLeu6GMSoIuPp1GjNA4ejMTbO5fCwkK6d8+kX7+/y07Y+vCpsUREeBISIvPkkw8/tjSWFu7+/PNP0tLS6Ny5M02aNKFJkybEx8ezdOlSunTpYvD5Z8zw5913bXyl0r9oNGoCAtT4+ZU8V3FQ8CA2X99c5LHISGdee60aGRkl/1EWFEgcPuyOUqmkS5dUdu26avO9ofdIkr6eneixqxhEsKtoJAnWr9enmWefhVq1oHVr+Ppr2Lq1wqSVwkLYtAkaNpQZMQLuONW8v4ep1tGJT7PH4OIiU7Wq1uY/zZuSVguHD+uHYY3xc7SkcNezZ0927NjBtm3b7v9XrVo1XnrpJb744guDzz93bjLDh6cYoaXWIyCggCVLYpEkFTk57rzxRi3S0oq+J9VyrUV+YT4p+X//bLKy7ImOVuDqWvJ0hz17KjNjhh+3bul76Uo71hbVrq3m8mUxolARiIqFFZEkwbBh+v8qGJ0OvvtOv6vElSsS7drlMOGNswxVB7FR8xpSSirLssI5HFGJwYPTxNCqgf74w5X0dPtHWg37MOVZxFilUhETE3P/33FxcURGRuLp6Ymvry+V/rXCyMHBAW9vbwIDAw2+9lNPaVGp1AadY9WqVURERHDz5k2cnZ1p3Lgx06dPL9I+lUrFhx9+yMGDB8nMzKRGjRoMHTqUgQMHGvotGCQ6Wkt0tDMKhQIo2rM2IGgAW29sZeITEwFo2TKXzZtvodUW/T2QZX2poYYNJfr2zaRJkxyqVTPf8HZZXg+AGzdu8OGHH/LHH3+g0+kICQlh6dKl+D5kjnRpgoLUnDih/5mID6u2TfTYCRWCLMMPP0CTJjJhYVClSg7ffnudDz+OZmve60wJmsNB91Du9ghj1KgUVq26jqenS5ESJsKj27/fA39/mWbNjHve8uq5u3TpEmFhYYSFhQHw/vvvExYWxqeffmqS690THe3E559XIi/PsO/rjz/+YNCgQWzcuJGVK1dSWFjI+PHjUan+3iZvyZIl/PrrryxatIidO3cybNgw3nvvPQ4ePGjot2GQJk3y2Lo1Gnf3fAoLXVm1yhvN/6bQtazakrOpZyko1Pe+5efbo9U+GNh++qkSAwaEcPNmIbJcaPYakGV5PWJjYxk+fDiBgYGsXr2a7du3M378eBwdDSt7ExioJj1dIjnZ0O9CsHRi5wnBpsky7NkDs2fLnD0r8Z//5DJpUiJNm+rfSJeeX0pTr6bIV/oyfbo/hw5duT/vRqWyY8iQEMLCUhg6NM2c34ZVKiyETp3qM2yYA8uWmeYalrJDhbH9/LMHCxfW4MCBSIxYGo+0tDTatWvHN998Q/PmzQHo27cvXbp0ITw8/P5xAwYMoE2bNkyePNl4FzfA0aNuzJrlx5YtN/D11fdibr+5naaHL9Fl++/ciHHl6EuLePb/ggDIzrajShV7tFp7jhxxKPd9kcuquNdj5syZODg48N577xn1WtevO9GnTx2OHIG2bY16asHCiB47wSbJMvzyC7RqJdOjB9jZqVi9+iarVt28H+qO3z1OfmE+HWt25LnnsoiIuImX199DPkqljn79UunUyfZXJprCX38pSUlxMGg17MNY0pw7Y+rSJYvjx6ONGuoAcnL0AcfT0/P+Y02bNuXw4cMkJiYiyzK///47t2/f5r///a9xL26Atm1z2LMnCj+/QiTJid+3Z/F2n/n0WrYd55gYnuAK49f0pkHz5hw86E737vWIjZWQ5XyLDXXw4Ouh0+k4evQoAQEBjB8/nnbt2jFkyBAOHDhg8LX8/Quwt5fFytgKQAQ7weYcOgRt2sh06QJqdR4rV97km29u0qLF3xuPp+SnsObqGmY8NQPQrxnx9c17YO7J8OGpVK+ehb29kp9/9ijPb8PqRUR44Osr06qVaa9ji+FOkiQKC437gUKWZd5//32efvpp6tSpc//xN954g+DgYDp16sTTTz9NeHg4s2bN4umnnzbq9Q3l5qZDq9Xy00/OjJj7LHY6Hf98pSXAXq1m4hsNGTkyGW9vy956r7jXIy0tDZVKxerVq/nvf//Ll19+SYcOHZg+fTqnT5826HoKhYyfn0asjK0AxOIJwWYcP65fFHHokMSTT+azYkUizz6b80BY08k65v05j9cav4azvb7a/ZIlNXjqqRy6ds0q9ty7dimYPbsmDRteo1atstXKqshkGQ4c8KRfPwm7cvj4WJ4LKsrDwIHBhIWl0r9/+sMPLqMFCxZw9epV1q5dW+TxjRs3cv78eT755BN8fX05c+YM7777Lt7e3rRu3dqga15Mu8ju2N0oHZS4OrgW+b/SQYmr4sHHFHaKUs85/O4y7Cj5tbVX5TKqx2VwMO6+vcZW3Ouh+1819Pbt2zN8+HAA6tevz7lz59i2bRstWrQw6JqBgflcvqwArP/Dj1AyEewEq3fqlD7Q7d8vUa+emo8/TqR9++wSV36tu7aOZ32epY7n370WaWkKVKqSS710755Jo0Z51K2rQKUSwe5hLl50ISFBYdTVsA9jK+FOp4PnnlMREGDYith/WrhwIYcPH2bNmjX4+PxdGy8/P5+PPvqIjz76iLb/m3hVr149oqKiWLt2rcHBLtgjmMHBg1FpVeRqc+//P0uTRYIqAVWhilyN/vF7zxXKxdeWc5AcUCqUrP3651JjiQT4zZlD7IoVBrXdlEp6PSpXroyDgwPBwcFFjg8MDOTs2bMGXzcwUM3+/e4Gn0ewbCLYCVbrzBn9ooi9eyVCQgpYtiyRjh2zSu0huph2kUvpl1jSckmRxz/+OLnIyrTi+PkVkJtbwBdf1MTBoYCxY8XyspLs3++Bt7dMmzbl2zNgC+HOzg6mT8946O9jWciyzMKFCzl48CCrV6+mVq1aRZ7XarVotdoHds6ws7O733tkCBcHF/zd/A0+D4BGp0GlVeHicBR4SOgtj27ix/Cw10OhUNCwYUNu/WtT19u3bxtU6uSeoCA1sbESubng6mrw6QQLZZm//YJQinPnoHdvmebNISqqgPffj2HHjms8/3zpoS5Xk8uHFz9kVtNZRW5kBQUShWUsQK//sgJcXcVnopLIsn63ib59JaNP/i8La59zFx+vICqq9OHIslqwYAG7d+9m0aJFuLq6kpKSQkpKCvn5+QC4ubnRvHlzli1bxunTp7lz5w4//PADu3btomPHjkZpg7Eo7BR4OnqSMmp0KQOxIANL63xocKkYU3jY6wEwcuRI9u3bx/bt24mJieHbb7/lyJEjDDLCrkCBgfpAHBVl8KkECybKnQhW49IlmDNHZvt2CX//AsLDk+jePaPMm2XM+mMWfQL60Lxq8yKPb9xYhc8+q87x41ce6YO+Uqnk4kUtQUGWPUm7vEVGOhMWFsK+fWCEnbUem7WWQlm+vDp79lTil18Mv/s2atSo2Mfnz59Pnz59AEhJSWH58uWcPHmSzMxMfH19CQ0NZfjw4SbZA/dxrVxZFUly4OWX0wipVw+phFtXrsKDSnIGlSoVMmpUMmFhaTg7W8ZrX5bXA+D7779n1apVJCYmUrt2bSZOnEiHDh0Mvn52th3PPPMEGzfCkCEGn06wUCLYCRYvKgrmzpXZvBlq1NAwfnwSPXtmPFJv0K7bu4jNjb1fqf6frl934soVV3r0eLRaddevO9G/fwjLlsXQoUP2I32tMf3xxx+sWbOGy5cvk5yczPLlyx/obTFFJfuSfPJJNbZurUpiooSBNVUNZo3hLjPTjqQkBXXqGG+OnbXKyrLD2VnG3d2RL76oglqtJTw8GW1iAk927oy97u9lADIgublBdjY3b8L8+TLr1oGXVyFjxiTRv386jo6W//qbWseO9Rk3zoH5883dEsFUxFCsYLGio2HECJknnpA5fFjL7Nnx7Np1jb59Hy3UxeTEsCd2D+Pqjyv2+ZCQgkcOdQDBwWqWLo2lWzfzbiSel5dH3bp1efPNN4t93lSV7Ety4IAnvXph9lAH1jks6+1tL0IdkJNjxwsv1OOHH6qhVqsZOTKB8HD9vNb1GftYtHM+tz76iAy/upzmaS5uuQDZ+g9YgYGwerXElSsSXbrYs2iRLz161GXbtspW8TtgSoGB+URGioBry0SwEyzOrVswerRM/foy+/YV8vrrCfz001XCwtIfucdFo9Ow4OwC3n76bRzsik+DO3d6ERv7eHOaOnXKQq1WcetWJdat83qscxiqTZs2TJkyhU6dOhX7/Mcff0ybNm145ZVXaNCgAX5+frRt2xYvL+O39/p1p//1ZFrOzdOawp1GA2+/7UNUlLO5m2IWKpUd27dXRqFwpGpVJ157LZ7nnkstcsyt7Fv8lfYXvQN6k9uhAwc+3EdLzqAJefKB89WpA+vWSVy8KNGunQPz59egZ886fP99JYrZgaxCqF1bzeXLItjZMhHsBIsRGwvjx8vUqSOzc2ch//d/d9m9O4rBg9Meewjlk0ufEBoUiq+y+CHH3Fw73nmnOhcuKA1pOocOObBvX2UKCiwrNJiykn1x9u/3wM1NpnNnk5z+sVlLuMvIcODSJWdUqor51nz1qjsLF9bg4kWJvLw8evTIpGrVvxOYTtax5PwSXnvqtUea/9egAWzaJHH+vESrVgrefrsWffrUZdcuzzIvnLIVQUFqoqOlChtsK4KK+e4hWJT4eJg8GUJCZLZt0zFlSiJ79kQxbFiqQZOeTySeIFeTy/M1ny/xGFdXHRcv3qRTp+ILE5fVyJEpfPPNdSpVciE/33JCgykr2RcnIsKTHj3A2QI7nKwh3FWtqmXnzjv3t72rCHbv9mT+/Fq4uLjQpEkmv/wSRb16xQ9Fb7mxhbY+banhWuOxrvXkk7B9u8TZs/DUUwrefNOPfv3qsG+fB0ao7mIVgoLUFBRI3Lxp7pYIpiKCnWA2iYnwyisQHCyzfn0h4eFJ7N0bxciRKSiVhg0VpOSnsDpq9f0tw0rj4CAbZVK1k5NMSkoeQ4fWYePGKgafzxj+Xcm+fv36jBkzhnbt2rFt2zajXis21pGoKGeLGob9N0sPdzodRqkfZ+kKCiSys+1QKBQ4OjpSUCCTnZ0HgLd38V1JcblxHL97nAFBAwy+fpMm8OOPEqdPQ926jsyc6U9oaAgREbYf8O6VPBFbi9kuEeyEcpeSAq+9BkFBMl99pWPUKH2gGzs2GVdXw99VdbKO+Wfn82rjV3FxcCn12HXrvJg923ghTKmU6dUrleees4zxndIq2SckJBj1Wvv3e+DiItOtm1FPa3SWHO5mz67JxInVzd0Mk5JlGDYsmBUraqLRaHj++WTmz48rdUGULMssPreYV596FTvJeLet5s1h716JEycgIMCJ6dP9GTgwhMOH3bHVehHVqmlxc9Nx5Yq5WyKYigh2QrlJS4NZsyAwUOazz3S8+GIy+/ZFMmFCMu7uxvuYvP7aelpXa01dz7oPPdbVVYebm3G3CBsxIpUaNTJRKJRERHgY9dyPytSV7P8pIsKTrl2to6K9pYa7bt2y6dYtw9zNMDqtFnbtqoRarcDVVcn48YmEhiaV+et/uP0DzbybEeAeYJL2tW4N+/dLHDkC1ao5MXlyAEOGBHPsmJvNBTxJ0vfaiWBnu0SwE0wuMxPmztUHumXLdAwYkMLevVFMnpyEp6dxxz0upV/iQvoFBgYNLNPxgwblMGVK2W8wj2LXLgdee82PmBjT1v1QqVRERkYS+b+xlbi4OCIjI+/3yJmykv09CQkKLlxwsehh2H+zxHDXqVMBnTsbNt/TEqWmOjFnTk2OHXNBpVLRoUM2wcFlK+mSlJfEz3d+5sU6L5q4ldC2LRw+LHHgALi7OzNxYm2GDw/i5ElXmwp4gYH5XLliQ9+QUIQoUCyYTHY2fPwxLF0qk5cnM3BgGiNHJuPtbZphylxNLlNOTuGD/3xAJadKDz1eq4XsbDcqVcrBVAX2b992pEEDB6Ps+1mS06dPM2rUqAce79WrFwsWLABMV8n+nvXrvVi+3IekJAlPT6OdtlxYShHjrCw7zp+vQtOmaUaZkmBup08r+fZbb1asSKGgII/ERHuqVXu0pZiyLDPz95mENwgnxCOk2GOiolwJDQ3kzBl4+mljtPzeteGXX/T7UZ8+LdG8eS4TJybSooX1L2xZtcqbNWuqk54umey9TzAfEewEo8vNhc8+gyVLZLKzITQ0jdGjkx/5Tf1RXc28SrYmm2bezcp0fHS0E3371mHNmhs0a2baN+uvv66BTqdh7Nhkk17HXEaMCMLHx4Xdu63zLmEJ4e7kSVfGjQtk9+6r+Ptb5zZ1sgxZWfZUrixz9aonS5d68N57d6hc+fE+zO2L3cetnFuENwgv8RhTBbt7ZFn/+zF7tsxff0m0apXDpEmJNGmSZ/yLlZMDB9yZNi2AhATw8TF3awRjE0OxgtHk5cGHH+oXRcyaJdOxYxq7d1/ljTcSTB7qAOp61i1zqAPw9dXw1VcJ1K+f//CDDVRQoEGhMM7G7pYmJcWBs2ddCA21zlAHljEs26pVLidO3KRmTesMdQBvvVWLV18NQJZlQkLS+eKL248d6tLUaey4tYPR9UYbuZWPRpKgRw/480+J776DnBxXhg0LJjw8gAsXSl+cZanurYwV8+xskwh2gsHUavj0U32gmzlT5tln09m16yqzZyfg42PchQnG5Oqqo127nHIZ9powIZmXXopHqVRy+7YF7LVlRAcOeGBnB716mbslhjF3uJMkqFxZjb19uV7WILIMv/7qRny8E0qlktDQDMaMuYsxBoKWnl/KtCenobCzjA9EkgR9+8K5cxJbt0JqqhtDhgTz8ssBXLligYUbS+HnV4CDgyxKntgoEeyEx1ZQAF9+qa9DN3WqTMuWGezadY25c+OpWdNyA909P/3kyf795RuyLl7U0qdPHQ4ccC/X65pSRIQH7duDCXYoK3fmDHfvv+/Dli3W9XtRUGDHrFm12LXLE5VKxdNP5xhlDtqh+ENUc6lGw8oNjdBK47Kzg7AwuHhRYsMGiItzY8CAEKZN8ycqysnczSsThQL8/QtEj52NEsFOeGQaDaxeDXXrykyYIPPUU5n88MM1FiyIw8/PeoaRfvmlEocPl++NNCiogMWLY+nWzTLq3BkqPd2e06ddCQuz3mHYfzNXuNNoHNBqLf/neOuWIy+/HIBG44aLC2zadJ1x44y3sjyrIIuN0RuZ0GCC0c5pCvb2MHQoXLkisWYN3LjhTmhoHWbM8OP6dcsPeGJlrO0SwU4os8JCWLcO6teXGT0a6tXL4rvvolmy5A6BgdYT6O5ZuTKR2bPjy/26nTtnUVCgIjbWkw0brLub69AhfaX+Pn3M3RLjMke4mz8/lYED00x+nceVmam/XVSt6kR2tj0xMRp0Oh0+PhqjrqxcdmEZLzd8GSd7yw9HAA4OMGIEREVJfPUVXL7sQd++Ibz+ei1u3bLcaRdBQaKWna0SwU54qMJC2LQJnnhCZsQIqF07m+3bo/ngg1hCQspWi8oS2dnZmXWpf0SEgh9/rIJabfm9NCWJiPDg2Wehug1ullCe4S4/X6KgwHLfjlet8mbw4DrodPa4umazdu2NMtehexQnEk/g4uBCE68mRj+3qSkUMGYMXLsm8dlnEn/95Unv3nWYNasmsbGWMU/wnwIDC4iLk8jONndLBGOz3HcSwex0Oti+HRo3lhkyBHx8cti8OZqPPoqhXj3TryQ1pVOnXOnevSZpaeabqT5yZApr10ZTubKLVYa7rCw7Tp1ys+rVsA9TXuFu715PnnqqtkX9HkRGOnPpkjNKpZJOnVRMmZIAmG4KgUqrYnXUaiY3nGyya5QHJyeYMAGioyU+/FDi1KlK9OpVlzlzahAfbzkBLyhI/x4eFWXmhghGJ4Kd8ABZhp07oWlTmbAw8PTMZcOG63z22W0aNrTuQHdPpUqFNG+eh6eneee6ubjIpKXlMWJECOvXW9ew7JEj7mg0Ev36mbslplUe4a5581zeey8BJyfLmfO0cGEt1q2rhkqlonZtFV27ZmFnwjuGk70Tc5vNRemgNN1FypGzM0yZAjduSCxaJHH0aGV69KjLu+/6kphYysa45aR2bf30GTEca3tEgWLhPlmGvXv1hTj//FOiZUt9pXVTF+81F3t7ewoLLWMRw5o1XnTsqMXPL9PcTSmzqVP9yc1159Qpy+llMiVLKGJsShkZ9ixc6MvkyVkEBeVx546Ml5cWB/NnkFKZukCxseTk6MtCvf++TE4OhIWlMmZMCt7epq/xWZLnn6/HqFEK/rdBjWAjRI+dgCzD/v3QurXMCy+ALOfx9dc3+frrmzYb6iIjlaSkmLsVf3vppVT8/DJxdFRaRSkUlcqOX3+17WHYfzNlz93333sTHW2exQLZ2frbgLe3E8nJjty5U4hGo6F6dcsPddbEzQ1efx1u3pSYNUvip5+86NatLkuX+phtSkjt2mqxMtYGiWBXwR06BG3ayHTuDHl5eXz55U3Wrr1By5a55m6aSYWH+7N5cxVzN+MBu3c7MGOGv0WvpgM4etQNtdqO/v3N3ZLyZYpwp9XCkiVVOXu2/IcgIyI86Ny5HpmZzmi1Kr755gatW9v23765eXjA7Nlw65bEq6/a8d13XnTrVo/ly6uTkVG+AU+sjLVNYii2gjp+HN5+W+bQIYmGDfOYODGRNm1yKsyG0PHxHtjbq6he3XzDICW5ccORJ590QKWy3N7SGTP8SEz04OzZCvIL8y/GHpZ1dlaSna2iPHadS0hQEBvrSLt2OlJTZb7/Xkn//uk4O1vnrcBahmJLkpoKH3wAH38sI0kyQ4emMHx4Ch4ept8RZ/PmKixe7ItKJZXL755QPkSPXQXz22/QubNMmzYQH6/mo49us2nTddq2rTihDiAkRGuRoQ70RYxVKhVr19bgq6+qmrs5D8jP1/dYVaRh2H8zds+dJMnldmP98ktfliypgUqVh1KZz9ChaVYb6myBlxcsXKhfZBEebse6dVXp2rUeX3xRlZwc096ig4LUaLUSN26Y9DJCORPBroI4cwZeeEGmVSu4caOADz6IYevWaDp0yK5QgQ7g5ElXli6thKX3VatUGsDyhmRPnHBDpap4w7D/Zqxwt2lTFaZOrWbk1v1No4HFi304caIKTk5OTJ4cx9q11yvc372lq1YN3n9fH/BGjbJn1apqdOtWj1WrvFGpTHOrDgzU1yIUw7G2RQQ7axcTA598on9HOHXqgafPnYPevWWaN4fLl/XbWe3YcY3OnU1busCS3bnjyOnTzhZ/Y5swIZmxY+NQKpXExlpOwNu/35MnnpCpX9/cLTE/Y4S7ypW1+PgYv4xQbq7+D9zd3ZnERGfu3pVRq9V4eRXi6mr6YT7h8fj4wPLlcP26xJAh9qxYUZ2uXeuxZo0XeXnGfdPy9tbi7l5IZKRRTyuYmZhjZ610Opg6FT7/XL81xD1t2sB333Ep0Zs5c2S2b5fw8ysgPDyJ7t0zxCo3K3T7tiP9+tVh0aJYnn8+y6xt0Wgk2rWrz/Tp9syda9amWBRD5tyZouxOVJQzI0YEsX59HHXqWE8Jncdh7XPsHiYmBubPl1mzRl9/c/ToZMLC0oxW8/DFF4No3FjJ2rVGOZ1gASpon40NeO89fVGkf98Qjh3jUsMwGjWSOXFCy9y5cezceZVevSwj1G3ZsoV+/frRqlUrWrVqxdChQzl27BgAGo2GZcuW0bdvX1q2bEmHDh148803SUoy3gbjAA4O1jVLOCCggAULYunWzfxzAk+dciU7277CD8P+2+P23Ol0EBurRKMxvA1ZWXYcPeqGk5MTTz4JY8cmUbVqjuEnFszK3x+++koiKkqiRw973n/fh+7d67F5cxUKCgzvwRMlT2yPCHbWqKAAPvqoxKcbJh1mxag9/PTTVfr1S7eo1U7Vq1dn2rRpbN68mc2bN/Of//yHKVOmEB0dTX5+PleuXGH8+PFs2bKFDz/8kNu3bzN5svG2GFKrJVq0CLGKWnH/1LVrFlqtioQETzZuNLxMy6X0S4/1dRERHgQHyzRqZHATbM7jhLu7dxV06RLAyZNuBl//hx+q8frrfqSladBo8hk9OoVKlSyjALdguKAg+OYbiStXJJ5/Xl9MumfPumzfXtmgDwZBQWoiI7H4OcdC2YlgZ42ioiA5udRDelc+bJGV8du3b0/btm2pXbs2tWvXZsqUKSiVSs6fP4+7uztfffUVXbt2JTAwkMaNG/PGG29w+fJlEhISjHL9wkKJyZMzCAkx/gbm5eGXXxz47jtvg+farL22lgx1xiN9jVYLhw55EhoqWfz8RHN51HBXpYqWjRvjadLk8UrbrF/vxbZtVXF2diY0NImdO6+J+XM2rm5d2LBB4tIliWefdWDu3Jr06lWXH36ohPYxOvUDA9VkZ0vExxu/rYJ5iGBnjZydH3qIXIZjzK2wsJC9e/eSl5dH48aNiz0mOzsbSZJwdzdOD5tSqWPMmEwCAgqMcr7yNmJEKuvXX8PLy8WgYZhWVVtxKvnBxTalOXPGlfR0e0JDH/uyFcKjhDtnZ5mWLVWPVLMsP1+isBAUCgVJSS7Ex9uRn5+PUqmjalXzD9cL5aNBA9iyReL8eWjZUsHs2bXo06cuP/3k+cAMndIEBek/5IoFFLZDBDtrVKcOlBCEALSSAynPdizHBj2aq1ev0rJlS5o1a8b8+fNZvnw5wcHBDxynVqtZvnw53bt3x83N8KEqgMuXnTl71gImGxpAqZRJT8/jpZeCWbfO67HO0bp6a04lPlqw27/fA39/mWbNHuuSFUpZw92ePZ7s3OlS5vNmZtrTvXs9Dh6sikaj4ZVX7jB1aqKxmi1YoUaNYMcOiT//hEaNFLzxhh/9+9dh3z4PdGX4vFCzZgGOjrIoeWJDRLCzVgsXgn3x2898Ik1h4LRW3LxpOSUy/ikwMJDt27ezceNGBgwYwKxZs7h+/XqRYzQaDTNnzkSWZWbNmmW0a69Z482iRY8XhiyJk5NMp04ZtGnzeHOofJW+JKgSKOuieJ0ODh70pH9/MQxbVmUJd6dOuXH0aOlbiWk0EgcOuKNQKPDxcWTkyGTq188AEK+FcF/TprBrl8Rvv0FIiCMzZ/oTFqafT1zan7mDg36Bluixsx0i2Fmr7t3hxx+hSZO/H/P1hSVLeO6Ppeh0TgwcGML331teIV6FQoG/vz8NGzZk2rRp1K1blw0bNtx/XqPRMGPGDOLi4li5cqXReusA3nsvkSVLYo12PnMaNSqFwMAMnJyUHDr06EPVAe4B3M65XaZj//pLSXKyg1gN+4geFu4WL05hwYK4Us9x6pQn06f7ExUlkZeXx7Bhqfj5GWEZrWCTWraEffskjh8HPz8npk0LYODAEI4cKTng1a6dL1bG2hAR7KxZ9+5w9izcuAGXL8Pt2zBzJk2aSvz5p8TgwRJvv12LV1+tRXa2Zb/UBQX6OW/3Ql1MTAxfffUVlSpVMup1XF3tbW4e0p499kyf7s+NG4/WQ/tMtWc4kXiiTMfu3++Bj49M69aP08KKrbRwZ1dClfCICA8++8wHpVLJs89msHPnNYKCLGteaGmliwAiIiIYP348bdq0oVGjRkSKLqFy9d//QkSExOHD4OXlxMsvBzB0aDDHj7s9EPACA9ViKNaGWPbdXiibwED9TNp/1DVxdYWvv5bYsgVOnvQkLCyEc+fKPpfHVD766CPOnDlDXFwcV69e5eOPP+b06dO88MILaLVaXnnlFS5dusSiRYvQ6XSkpKSQkpKCxgiFvu7eVTB1qo/Buzg87IYmyzIrVqygQ4cONG/enJEjRxIdHW1o80vUsWM227dH8+STjzZ3sEXVFvyR8sdDj5Nl/TBsv35Shd2txFDFhbu//nKhQwd/4uL0f7eFhfpyPPb29qSnK7lxQ0FOjgpJgsBAywp1UHrpIoC8vDyaNGnCtGnTzNvQCq5dOzh6VCIiAlxdnZkwoTbDhwdx6pTr/YAXGKgmIUEi07ZrWVcY1j2LXHioAQOgZUuJwYMVjBgRxKRJSYwalVzS9DyTS01N5c033yQ5ORl3d3fq1KnD559/zjPPPENcXByHDx8GIPRfSy9Xr15NixYtDLp2To4dqan2BpeBuXdD8/f3B+DHH39kypQpbNu2jZCQEFavXs26det49913CQgIYOXKlYwbN45du3bh6upq0LVLEhKiRqWCTZt8yc3VMGZMykO/xlXhirpQjUanQWFXcrHDS5dciI9XiNWwBroX7vr1c+f1V6rzhV0437hWxsNrGjodDBsWTLt2+YSHxxMaepewMHO3uHTt27cv8u8pU6awZcsWzp8/T0hICD179gQgLq70oWbB9CQJOnaEDh0kfv4ZZs92YezYQJo3z2XSpERC/LPpyl7itlfCc7Tolrd2IthVALVrw7FjEnPnwoIF1Th1yo2FC2OpXr38hyTnzZtX4nM1a9bkwoULJrt2SIiaDRviyM83rPevtBtacHAwGzZsYOzYsXTq1AmABQsW0L59e3bv3s2AAQMMuvbDZGRokWWnMh/fqEojLqRd4Gnvkvdi+uUXD7y9Zdq0ETP1DXUv3D3Xwx8leQQC2g5bifnrLAMGpBEcnI8sy1a3KKKwsJBffvml1NJFgvlJEnTtCl26SPz0E8yerWTMSH9OuXdgL8dgDBA3F95+29xNFQwgBlYqCAcHmD8fDhyQuHNHSVhYHY4csa7dFwylUtlRUGDcSef/rsV3584dUlJSeOaZZ+4f4+joSLNmzTh37pxRr12cCROSmTAhDqVSeX+IrzTPVC99np0sw4EDnvTpI1nElnS24IWqv6Mk7/6/7bOzUKWm0qdPOo0a5ZXylZanrKWLBMsiSdCzJ/z5p8S+ZVdonv33VBJWrDBfwwSjEMGugnnuOTh3TuLZZ+14+eUA3nvPF7XayroHHtOECbV56y0fo5yrpBtaamoqAF5eRUuqeHl5kZLy8OFRY5AkiIrS0Lu3vpZVaRpWbljq9mJXrzoTE+MoVsMaU0jIAw+NmvQEZ86UXvbEEpWldJFguezsoNOQakUL2gcEmK9BglGIYFcBeXvDzp0Sn34KO3ZUYejQYG7cKPvwnbWaODGdfv3SjXKuh93QpGLG0op7zFT8/DTMmxfHCy+UPtxuL9njqnAls6D4WdP793vg6SnToYMpWllBVakCM2eCvT2ygwOXRixGrVby0ktBjBtX2yIWOZXVw0oXCVagenWkHTugdWvo1g02bTJ3iwQDiWBXQUkSTJoEv/8uIUlODBwYzI4dlS2u5p0xPfecmqZNH29Pzn8r6YZ2r6fu371zqampD/TimVr37pkUFqpITPTg22+rlHjcf6r+h9PJp4t9LiLCk969wdEya11bryVLQKtF0mh4cs2rnD0rsX07ZGa68uKLwUycGMClS5a/LWBx7pUuEqxI9+5w4gTs2QNBQeZujWAgEewquKeegjNnJIYNk5gzpyYzZviRlWV7vxaxsQp27HAz6bBzQUEBtWrVwtvbm5MnT95/XKPRcObMGbNNKv/5ZwVbt3qjUhX/vbeu3rrYeXY3bjhx/boT/ftXjKF6c7Kzg/794cIFiU2bIDHRjUGDQpg61Z/ISMsMeKWVLgLIzMwkMjLyfk/2rVu3iIyMLLcpCYJQUdneHVx4ZEolrFwpsW0b/P67B2FhdfjrL+sZDiqLv/5S8uabVY2y2rC0G5okSbz44ousWrWKAwcOcO3aNd566y2cnZ3v3/DK2/DhqXz7bTTe3i7FbmtVy7UW8ar4Bx7fv98DNzeZzp3Lo5UC6APeoEFw+bLEunVw65Y7YWEhvPKKH9HRljVd4l7pop49ezJ27FjOnz9/v3QRwKFDhwgLC2PSpEkAzJw5k7CwMLZu3WrOZguCzZPksm4WKVQIt2/DkCEyv/0GEyYkMWaM+WreGZtW64iDg+HDRG+//Ta//fZbkVp8o0aNun9Dk2WZzz//nG3btpGVlUWjRo146623qFOnjsHXNkRBgcSYMcF07JjOiBGpRZ579+y7jKgzAj83v/uPhYWF0LixE5s3ix47c9FqYd06mDdPJiYGunbNJDw8yeJ2oTCnqChXQkMDOXMGni65ao8gVBgi2AkP0Gr1pVHefVemWTMVCxfG4uNj3dtwSZJU5g3vbdnXX3vTrp2WkJCMIo8fiDtAqjqVAUH6OnuxsQq6d6/H1q1YfKHciqCgANasgfnzZeLj4YUXMggPT8bfXwQ8EewEoSgxFCs8wMEB5s6Fgwcl4uP1Ne8OHrTumneTJwewZ4+nuZthsAtpF3j999f54dYPJOYlPvLXjx6dQkhIBs7OSo4edbv/eMtqLfkt6bf7/46I8MTFRaZbN6M0WzCQoyOMGwfR0RIffyxx+nQlevWqw9tv1yxTvUJBECoOEeyEErVrp69517atHVOnBrBggS/5+dY3LCfLUK2aDje3QnM3xWCNqjRi5lMzUdgp+OTSJ4w/Np7F5xZzNOEoKm3ZV/zu2WPP5MkB9+dtuSvcySvMQ6vT98xGRHjStSu4uZV2FqG8OTnpV7PfuCGxdKnEr79WokePusybV4O7d0XAEwRBDMUKZSDL8Pnn8MorMgEBapYsiSU4WG3uZj0SpVKJSmWcUieWRJZlbmTf4ETiCc6knEGj09DUqymtq7emQaUG2Eklf3a7etWJJk3s7/9cVlxeQf9brnjn+tFq3hhWbVAydGh5fSfC48jN1W8UsHixTHY29O+fxpgxyVSrZt1TJx6FGIoVhKJEsBPK7MIFGDhQ5uZNmVdfTSA0NN0q9rRMT7fH2dkZF5dcczfF5AoKCziXdo4TiSe4knEFD4UHraq1onX11vgqfYv9mh07fGj90zw6nvsce40+EBRih67j8yh+2aNfqilYtOxs+OQTWLpURqWSGTAgjVGjkvH2tv5e6ocRwU4QihLBTngkKhVMny6zcqXE889n8s47cXh66szdrFJ99lk1tm+vwqFDkeZuSrnLUGdwKvkUJxNPcld1lwD3AJ6p9gwtqrbAVeEKQNzwlXQ++wnFZvRmzeCPP8q1zcLjy8yE5cth2TIZjUZm0KBURo5MoXJl2w14ItgJQlEi2AmP5bvvYPRoGRcXLYsWxfL005Y7zBkXpyA+3pEWLWy/x640sixzK+cWJxNPcjr5NGqdmsZVGrN86Bf3e+qKdfYsNGlSbu0UDJeeDh98AB99JCPLMkOGpDBiRCqenrYX8ESwE4SiRLATHltMjL7m3cmTEB6exLhxllnzzsHBAa224sw5KiuNTkPKnnU8/8by0g8cOhTE/p9WKSUF3n8fPv1Uxs5Ox7BhqQwbloK7u2X3sj8KEewEoSgxeUZ4bP7+cPiwxOzZEl98UY0xYwItbmVeYaF+KPbmTbHZ6b8p7BT45Pg9/MC8PNM3RjAJb29YvFi/inbsWHu++aYqXbvWY+XKquTmird/QbBF4i9bMIiDA8yZow94d+8qCQ0N4cABy6l5l5rqwJYtHiQkWFbgNKe4OAVr13oxbFgQzywYg6742XV/GziwfBommEz16rBsGVy/LjFihD1fflmNbt3qsXp1yXsIC4JgncRQrGA0aWkwZozM999LDByYyowZd3F2Nv+vl1KpJDdXZRUreE3l5k1HIiI8iYjw4PJlF5ycZLp2hf79JQat6oji6MHiv7BKFUhNLf45wWrFxsKCBTKrV4OHRyGjRiUzYECaRfy9PioxFCsIRYlgJxiVLMOXX+pXztaqVcCSJTHUqWPemndOTk6o1dZVd89QsgzXrjndD3PXrjnj6irTvTuEhkp07/6P4sNaLTRvDufOFT1JlSr6FbGBgeXefqF83Lql36Zs7Vrw8ipk9OgkQkPTcXS0ntuCCHaCUJQIdoJJXLwIgwbJREfra96FhZmn5t3ixT7k5Dgwf/6d8r94OZNluHzZmf37PYmI8OT2bUc8PWV69tT3zHXpAi4upZzg9Gn9Usr8fP0GsaI6cYVx/TrMmyezYQNUq6Zl7Ngk+vbNQKGw/NuDCHaCUJQIdoLJ5OXB//2fzOefS3TsmMXcuXHlXm5h9+7KqFQQFpZertctLzodnD/vwv79nhw44ElcnAIvL5nevSVCQ6FjR/0+o4JQFlFRMHeuzObNUKOGhvHjk+jRIwOFBU9RFcFOEIoSwU4wue+/19e8c3LS8t57sTRvXn4172xxGFarhT//dGX/fg8OHvQkKckBHx+Zvn0l+vfX7/Hr4GDuVgrW7NIlmDNHZvt2CX//AsaPT+KFFzIsspyRCHaCUJQIdkK5iI2FoUNlfv0Vxo9PZty4JJOHD5XKjjt3PAkIyMDJybp/zTUa+P13N/bv9+DQIQ/S0hyoVUumf399z1zr1ljkTVewbufOwdtvy/z4o0RgoJoJE5Lo0iXTonaZE8FOEIoSwU4oN4WFsHChviegSZM8Fi2KxddXY7LrnT6tZNSoIHbuvEZQkPX12qnVEidOuBER4cHhwx5kZdkTGCgTFqbvmWvRggq90lcoP2fO6APenj0SISFqJkxIpFOnLIsIeCLYCUJRItgJ5e74cRg8WCYrS8ecOXE8/3yWSa6jVkvcueOBv3+mRc8R+ieVSuL4cXciIjw4etSD3Fw76teXCQ3Vh7nGjUWYE8zn1Cl9wNu/X6JevXwmTkzkueeyzfo7KYKdIBQlgp1gFunpMHaszI4dEmFhacycmYCLi/F/FRUKBRqN6XoFjSE7244jR/Rh7tdf3cnPt+Opp/7umWvQwNwtFISijh2D2bNljhyRaNgwj4kTE2nTJscsAU8EO0EoSgQ7wWxkGVatgqlTZWrU0Ne8q1vXeEOmq1dXpWZNNV26mKZH0BAZGfYcOuRORIQnp065UVAg0aLF3z1zwcHmbqEgPNyhQzBrlsyJExKNG6uYODGR1q1zyzXgiWAnCEVZwAwJoaKSJBg7Fv74Q8LFxZHBg0PYvLkKxvqoceWKkthYy6n1kZJiz9atlRk7tjbt29fnnXdqUljoxpIlEjEx8PvvEq++KkKdYD2eew6OH5f4+WdwcnJh/PhARo4M5PRpV3M3TRAqLNFjJ1iEvDyYMUNmxQqJDh30Ne8qVTKs5p2Liwt5Zt7A/u5dBw4c8CAiwpMzZ5TY2UH79vqCwX37go+PWZsnCEYjy7B3r36I9s8/Jf7zn1wmTUqkaVPTljcSPXaCUJQIdoJF2bkTRo2SUSj0Ne9atHi8m4JOB25uSlSq8quZd8+dOwoiIvRh7tw5JQqFTMeOEBYm0asXeHuXe5MEodzIMvz4oz7gXbgg8cwzOUyalMhTT5nmQ5YIdoJQlBiKFSxK795w7pxE/foOjB4dyKefVkOrffTz7NnjSfPmAeTllc9knxs3HFm5sioDBoTQrVs9PvvMh8BAF9avh6Qkib17JUaNEqFOsH2SpP87/usviW3bID3dlaFDg5k0KYBLl5zN3TxBsHmix06wSIWF8N57+pp3jRrlsXhxLDVqlH1169WrTvz2WyWGDUs0SftkWX+NiAj9vqzR0U64usq88AKEhkp06wZubia5tCBYlcJC2LoV3nlH5to1/VSLiRMTqVfPOAulRI+dIBQlgp1g0U6cgCFDZNLSdLzzTpxZV7jKMly65ML+/R4cOODJ7duOeHrK9OqlnzPXuTO4uJiteYJg0bRa+PZb/Ye1mzclOnfOZMKEJEJCDAt4ItgJQlEi2AkWLyMDxo2T2bZNon//NF59NQGlsvRf22PHPAkJURm8s4VOB+fOKe/vyxoXp8DLS6ZPH/1WXh06gKPlLLwVBIun0cC6dTB/vkxMDHTrlkl4eBKBgQWPdT4R7AShKBHsBKsgy/D11zBlioyvbwFLlsRSr15+sccWFkKLFg2ZOTOBwYPTHvlaWi2cOeP6v31ZPUlKcsDHR6ZfP32NubZtMfk+t4Jg6woKYPVqePddmYQE6NEjg/DwZPz8Hi3giWAnCEWJYCdYlStXYOBAmago+L//0we34oqharVu5OercHPTlem8Go3Eb7+5EhGh75lLT7fHz0+mf399z1zr1ljEvpiCYGvy8+Grr2DhQpnkZOjTJ51x45LLPKdWBDtBKEoEO8Hq5OfDq6/CJ59A+/ZZzJsXR+XK+pp3Hnv24HbyJJKPDwkjRqArZQVDfr7EiRNuRER4cOSIB1lZ9gQH/737Q/PmYl9WQSgveXnwxRewaJFMejr07ZvG2LHJ+PiUvixeBDtBKEoEO8Fq7doFI0fK2NsX8tXYH3lh+XDsc3PvPy9LEmlhYSTMnn3/MZXKjmPH9GHu2DEPcnPtaNBAH+ZCQ6FRIxHmBMGccnPhs89gyRKZ7GwIDU1jzJhkqlYtPuCJYCcIRYlgJ1i1uDgYPTiXnceq4MSDc3NkIGbiK3xbaxoREZ78+qsbarUdjRvLhIXpe+bq1y//dguCULrsbPj4Y1i6VCYvT2bgwDRGjUrGy0vfO6+4cwevTZuwP3aGazeV1JrYmxrzwsHLy8wtFwTzEsFOsHq6yVOw+/STEp9PozJepNGy5d/DrEFB5dhAQRAeW0YGLF8OH34oo9HIDB6cypSm+3jy9QlFeugB8PODI0cgMNAcTRUEiyCCnWD96teHqKgSn5aBOzc0+AWKpayCYK3S0uCDD+CT5Vou5gXjL8cUf2CXLrBvX/k2ThAsiAh2gvV74gn9ctnSFBaKZa2CYAMytuyj0qBuJR8gSXDrFvj7l1ubBMGSiDudYP0GDCj9eV9fEeoEwUZUSr9V+gGyDLGx5dIWQbBE4m4nWL9Zs8DdveTnFy0qv7YIgmBatWuX/rwk6efaCUIFJYKdYP0cHODixQff8J2d9ZNyhg83S7MEQTCB558vfZi1c2cxDCtUaGKOnWBbLl6EX36BWrUePkQrCIJ1On4cunfX10T5J7EqVhBEsBMEQRCs0M2b+krGBw+CQgG9e8P48aKOnVDhiWAnCIIgCIJgI8QcO0EQBEEQBBshgp0gCIIgCIKNEMFOEARBEATBRohgJwiCIAiCYCNEsBMEQRAEQbARItgJgiAIgiDYCBHsBEEQBEEQbIQIdoIgCIIgCDZCBDtBEARBEAQbIYKdIAiCIAiCjRDBThAEQRAEwUaIYCcIgiAIgmAj/h/r5LStM1EAdAAAAABJRU5ErkJggg==", + "text/plain": [ + "Graphics object consisting of 202 graphics primitives" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "G.plot() + sum([v.plot(color=\"red\", size=v.angle() * 3) for v in S.singularities()])" + ] + }, + { + "cell_type": "markdown", + "id": "126967fe-2442-4bec-bd91-71a5b86924ec", + "metadata": {}, + "source": [ + "We now compute the harmonic differential with a cohomology class (real part) that comes from the tangent space, namely we take this cohomology class (the keys are the homology class where `B[(label, edge)]` refers to the class of the edge of the triangle with ``label`` in the above picture and the ``edge`` in counterclockwise order starting from 0 at the green segment.):" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "c18c6225-0ecb-4018-a0aa-8235900efe93", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{B[(12, 1)] - B[(24, 0)]: 0.330984859362568, B[(20, 2)] + B[(27, 1)]: 0.0298448861506505, B[(14, 1)] - B[(18, 2)]: 1.00000000000000, B[(17, 0)]: 0.330984859362568, B[(28, 0)]: -0.409119785695342, B[(5, 1)] - B[(18, 2)]: 0.374920589337810, B[(8, 0)] + B[(18, 2)]: -0.613679678543013, B[(9, 2)]: -0.271295087061267, B[(0, 2)] + B[(6, 0)]: -0.758549799089383, B[(10, 0)]: 0.468809557996643, B[(2, 2)]: 0.468809557996643, B[(1, 0)] + B[(18, 2)]: -0.0737806161258918, B[(13, 2)]: -0.487254712028116, B[(6, 2)]: 0.319585127243391, B[(21, 0)]: 0.126424966514897, -B[(11, 0)] + B[(36, 0)]: -0.535544752210239}" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "F" + ] + }, + { + "cell_type": "markdown", + "id": "c520ae42-2864-4faf-ad95-36f6e90c65c4", + "metadata": {}, + "source": [ + "We represent the differential with a power series at each of the vertices in the surface. To compute these power series we solve a linear system that is roughly 350×350 (actually probably about twice that size) with double precision entries. The condition number of the system is 2e46. (For reference, a random permutation of the matrix entries only has condition number 1e4 or so.)\n", + "\n", + "This produces 6 power series. For somewhat mysterious empirical reasons, we use different (and probably far-from-optimal) numbers of coefficients for the different power series.\n", + "\n", + "At the non-singular points we get these series:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "b42e4550-15d5-411d-b57e-22018e352552", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Power series at Vertex 1 of polygon 11\n", + "Power series: -0.039626706943261425 - 0.013105322709162814*I + (0.0007003925064263763 + 3.217643472853054e-06*I)*z3 + (0.01301872259659336 - 0.004151124519188824*I)*z3^2 + (0.10543841984858954 - 0.07575909835239229*I)*z3^3 + (0.36154084293331 - 0.4921861685384022*I)*z3^4 + (0.3373537624945319 - 1.020099734527775*I)*z3^5 + (-0.004245992234578906 + 0.8111943089020764*I)*z3^6 + (1.3378159815536195 + 4.193315850457734*I)*z3^7 + (9.224531185187683 + 12.84051582872556*I)*z3^8 + (26.138758576946763 + 19.20569820886117*I)*z3^9 + (20.34276256156427 + 6.746743578426327*I)*z3^10 + (-9.640376939100669 - 0.1320064702655412*I)*z3^11 + (338.1831346287219 - 109.78981660542647*I)*z3^12 + (2395.6780416926013 - 1736.4358954002716*I)*z3^13 + (8874.183792410706 - 12158.152031347276*I)*z3^14 + (20418.939108641283 - 61121.36018462475*I)*z3^15 + (6907.396314003927 - 269731.54784567206*I)*z3^16 + (-323895.6182359394 - 1202543.1442429975*I)*z3^17 + (-3945905.117917603 - 6187091.408351345*I)*z3^18 + (-39174013.969873145 - 31312997.46204437*I)*z3^19 + (-297474676.62793833 - 103579251.88849449*I)*z3^20 + (-1589838898.6635988 + 28033156.64278588*I)*z3^21 + (-5192998807.173564 + 2359899148.885962*I)*z3^22 + (-1396637516.8906097 + 9087275735.049881*I)*z3^23 + (100344072449.5138 - 51649409920.27526*I)*z3^24 + (640297481499.8428 - 930566358392.8811*I)*z3^25 + (1567596479523.5974 - 6761136119952.72*I)*z3^26 + (-4571898917812.0625 - 28069830608970.766*I)*z3^27 + (-35130336688827.906 - 21368652461015.35*I)*z3^28 + (333812597908064.8 + 661239515116375.5*I)*z3^29 + (7073635923717941.0 + 5406107234109717.0*I)*z3^30 + (6.480755046048237e+16 + 1.8305159634036184e+16*I)*z3^31 + (3.9323904138425197e+17 - 3.787209761509431e+16*I)*z3^32 + (1.6597542924111163e+18 - 8.650264499308404e+17*I)*z3^33 + (4.3482725143533706e+18 - 5.555535038969701e+18*I)*z3^34 + (1.8745157958662671e+18 - 1.96570668467186e+19*I)*z3^35 + (-4.034713792875166e+19 - 1.998958028006262e+19*I)*z3^36 + (-1.735057248571166e+20 + 2.201861659135004e+20*I)*z3^37 + (-1.0552114099872419e+20 + 1.6366426138786584e+21*I)*z3^38 + (2.3137889868900097e+21 + 6.491787631631122e+21*I)*z3^39 + (1.395915264959897e+22 + 1.7363864563682841e+22*I)*z3^40 + (4.594742016629936e+22 + 3.2361516005640255e+22*I)*z3^41 + (9.87081724344114e+22 + 4.369206225504879e+22*I)*z3^42 + (1.3836129123357765e+23 + 6.293321151578179e+22*I)*z3^43 + (1.2253763637486365e+23 + 1.614031714147279e+23*I)*z3^44 + (9.828107032187166e+22 + 3.991150747391167e+23*I)*z3^45 + (1.706245727263905e+23 + 6.122754296564376e+23*I)*z3^46 + (2.493828801608536e+23 + 5.0256991708346816e+23*I)*z3^47 + (1.4220530270635552e+23 + 1.6698117393764213e+23*I)*z3^48 + O(z3^49)\n", + "Absolute values of the coefficients:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHWCAYAAAD+VRS3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0WUlEQVR4nO3df1xUdaL/8feIAWkyiCRJ/Ijsx2qskFAGqybm4o6laVezuovUat91t3KJb79Yd2vXrcvebrdsI93Y7q617d7ISurbUkY3FZJqRcXcfu1aKKQoCxUjmIPCfP+Y29DIDxFmOHNmXs/HYx53PmcOZ97cE9u7z/llcTqdTgEAAMC0hhkdAAAAAINDoQMAADA5Ch0AAIDJUegAAABMjkIHAABgchQ6AAAAk6PQAQAAmByFDgAAwOQCrtA5nU7Z7XZxv2QAABAsAq7QHT58WFarVYcPHzY6CgAAMJnYWMli6XqtWdP7uu+/L4WGdq07bdrQ5TxRwBU6AACAb/rLX6Tvf1/6+c+lr77qe90JE/oef9OuXdKxY13jbdsGnnGwhhv31QAAAL719tvSvHlSZ6drXFcnPfVU7+s/84x0221Sfb10001SVlbv6156qTRihHTkiGs8Y4bXYp8yCh0AAAhYW7d2lTlJqqzse/1x46Tnn+/fts87T3rzTenJJ6Uzz5QKCgaec7AodAAAIGBNmeI6v+3rayUvu8z7258yxbvbHAgKHQAACFjTpknr10v//d/SOedIv/ylsXleeEH66CPJZpMmT/bedi3OALu/h91ul9VqVUtLiyIiIoyOAwAAvGzLFmnJEumLL6Q773Rd7GAGDz4o3X23631oqOvw76WXemfbhl3lWl9frxkzZmjixImaNGmS1q9fL8l125FLLrlEqamp+va3v63f/e53RkUEAABDyG7vOjTal8WLXRc3HD4s3Xuv68IHM3juua737e3Syy97b9uGFbrhw4dr9erV+uCDD/TGG2/o9ttvV1tbm0aMGKEtW7aopqZG7777rgoLC9Xc3GxUTAAA4GN2uzR1qmS1SklJrkOSvenslE6sBf/8p2/zect553mOx4/33rYNK3Tjxo1TamqqJGns2LGKiorS559/rpCQEI0YMUKSdPToUXV0dPDUBwAAAtijj7quRpWkfftch1F7M2yY9KMfdY0nTuz71iL+pKhIuuYa173t7rlHuvFG7217wIWuoqJCc+fOVWxsrCwWi0pLS7uts2bNGiUlJSk8PFxpaWmq7OVa4erqanV2dio+Pl6S9OWXXyolJUVxcXG66667FB0dPdCYAADAADt2SFdcIU2fLv3P//S9blub57i1te/1f/Mb6bXXXBc6vP22NGrU4LIOleho10URH3wgFRa6rr71lgEXura2NqWkpKioqKjHz0tKSpSXl6eVK1dq586dmjZtmmw2m+rq6jzWa25u1pIlS1RcXOxeFhkZqV27dqm2tlZ//vOfdejQoYHGBAAAQ8zhcF3F+eabrhP/582TDh7sff0f/lA66yzX+/Bw1+zVycyeLV13ncT1jy5eucrVYrFow4YNmj9/vnvZlClTNHnyZK1du9a9bMKECZo/f74KCwslSQ6HQ9/97nd18803Kycnp8dt/+hHP9LMmTO1aNGiHj93OBxyOBzusd1uV3x8PFe5AgBgkP37pbg4z2Xvvtv3FZ3NzVJNjes8s8REn8YLSD45h669vV3bt29Xdna2x/Ls7GxVVVVJkpxOp2688UbNnDnTo8wdOnRIdrtdkqucVVRU6MILL+z1uwoLC2W1Wt2vrw/bAgAAY4wbJ11ySdf43HNd57r1ZcwY1yFaytzA+OTGwk1NTero6FBMTIzH8piYGB383znXrVu3qqSkRJMmTXKff/fHP/5R7e3tWrp0qZxOp5xOp2699VZNmjSp1+8qKChQfn6+e/z1DB0AAPCuLVtc56xlZEiXX977esOGSeXlrosA2tul5culM84YupzByKdPirCccLaf0+l0L5s6dao6v/lwtW+oqanp93eEhYUpLCxswBkBAMDJlZa6rtB0Ol0n869fL/3Lv/S+vtUqrVw5ZPGCnk8OuUZHRyskJMQ9G/e1xsbGbrN2AADA/5WUdN301+l0FTr4D58UutDQUKWlpam8vNxjeXl5uTIzM33xlQAAwIfOPddznJRkTA70bMCHXFtbW7Vnzx73uLa2VjU1NYqKilJCQoLy8/OVk5Oj9PR0ZWRkqLi4WHV1dVq+fLlXggMAgKHzs59JBw5Ib70lfec7rkduwX8M+LYlmzdvVlYPt2bOzc3VunXrJLluLPzggw+qoaFBycnJeuSRRzR9+vRBBT4Zu90uq9XKbUsAAEDQ8Mp96PwJhQ4AgP5pb5defVU67TTpe99zXZ0Kc/LpVa4AAMA/HT/e9TQHSbr2WteFDzAnujgAAEHovfe6ypwkPfec1NBgXB4MDoUOAIAgNHq05yHWsDBu/mtmFDoAAIJQUpL02GOuEhcZKT31lDRqlNGpMFBcFAEAAGByzNABAACYHIUOAADA5Ch0AAAECKdTevJJacUKqazM6DQYShQ6AAACxL/9m3Tzza6LHa66ynXTYAQHCh0AAAFi48au906n5xiBjUIHAECAmDTJc5ySYkwODD0e/QUAQID4j/+QLBZp927Xs1lvusnoRBgq3IcOAADA5DjkCgAAYHIUOgAAAJOj0AEAAJgchQ4AAD/X2iodO2Z0CvgzCh0AAH7sllukUaMkq1V68UWj08BfcZUrAAB+assWacaMrnFEhNTSYlgc+DFm6AAA8FNtbZ7jr76SOjqMyQL/RqEDAMBPzZolTZvWNb73XikkxLg88F88KQIAAD8VGiq98Yb0zjtSZGT3R3sBX6PQAQDgx0JDpenTjU4Bf8chVwAAAJOj0AEAAJgchQ4AAMDkKHQAAAAmR6EDAAAwOQodAABD7K23pGeekRoajE6CQMFtSwAAGEKPPirl5bnejx0rbdsmJSQYGgkBgBk6AACG0OOPd71vbJTWrzcuCwKHYYWuvr5eM2bM0MSJEzVp0iSt/8Y/0a+88oouvPBCnX/++XryySeNiggAgNeNHes5jokxJgcCi8XpdDqN+OKGhgYdOnRIqampamxs1OTJk/Xxxx8rLCxMEydO1KZNmxQREaHJkyfr3XffVVRUVL+2a7fbZbVa1dLSooiICB//FgAAnJoPP5SuvVbau1e6/nrpt7+VhnG8DINk2Dl048aN07hx4yRJY8eOVVRUlD7//HPV19froosu0tlnny1JmjNnjjZu3Kjrr7/eqKgAAHjNhAnS7t1Gp0CgGfB/E1RUVGju3LmKjY2VxWJRaWlpt3XWrFmjpKQkhYeHKy0tTZWVlT1uq7q6Wp2dnYqPj9eBAwfcZU6S4uLitH///oHGBAAACHgDLnRtbW1KSUlRUVFRj5+XlJQoLy9PK1eu1M6dOzVt2jTZbDbV1dV5rNfc3KwlS5aouLhYktTTEWCLxTLQmAAAAAFvwIXOZrPp/vvv1zXXXNPj5w8//LCWLl2qZcuWacKECVq9erXi4+O1du1a9zoOh0MLFixQQUGBMjMzJUlnn322x4zcZ5995j40CwAAgO58chpme3u7tm/fruzsbI/l2dnZqqqqkuSaibvxxhs1c+ZM5eTkuNe59NJL9be//U379+/X4cOHVVZWptmzZ/f6XQ6HQ3a73eMFAAAQTHxS6JqamtTR0aGYE67FjomJ0cGDByVJW7duVUlJiUpLS5WamqrU1FTt3r1bw4cP13/+538qKytLF198se68806NGTOm1+8qLCyU1Wp1v+Lj433xKwEAAPgtn17leuK5b06n071s6tSp6uzs7PHn5s2bp3nz5vXrOwoKCpSfn+8e2+12Sh0AAAgqPil00dHRCgkJcc/Gfa2xsbHbrN1ghYWFKSwszKvbBADgVBw54nqE17hx0gUXGJ0Gwcgnh1xDQ0OVlpam8vJyj+Xl5eXuix8AAAgEdrt02WXSjBmue8z9/vdGJ0IwGvAMXWtrq/bs2eMe19bWqqamRlFRUUpISFB+fr5ycnKUnp6ujIwMFRcXq66uTsuXL/dKcAAA/MH69V03Cu7slO67T/rBD4zNhOAz4EJXXV2trKws9/jr89hyc3O1bt06LV68WM3NzVq1apUaGhqUnJyssrIyJSYmDj41AAB+YsQIz/HIkcbkQHAz7FmuvsKzXAEAQ+n4cWnxYunFF6XISGnDBtfhV2AoGfYsVwAAAsHw4dILL0gtLa7ZueH8mxUG8MlFEQAAmNnevdJVV0lTpkhPP92/n7FaKXMwDv/oAQBwgn/5F2nHDtf7bdukiROl9HRjMwF9YYYOAIATfPhh13unU/r4Y+OyAP1BoQMA4ATffFhRZKQ0fbphUYB+4ZArAAAnePppKTNTamyUcnIknigJf8dtSwAAAEyOQ64AAAAmR6EDAAS89nbp2mul0FBp0iTpG0+uBAIChQ4AEPCKi13PXD12zPXc1dtuMzoR4F0UOgBAwGtq6nsMmB2FDgAQ8L7/fWnMGNf7YcOkFSuMzQN4G7ctAQAEvPPOk957T6qslC64QLr4YqMTAd7FbUsAAABMjkOuAAAAJkehAwAAMDkKHQDAtD79VHr/fSmwTh4CTh2FDgBgSv/2b9L48VJysnTddZQ6BDcuigAAmM6RI9IZZ3iWuKoqKSPDuEyAkZihAwCYzrBhrtc3DedGXAhiFDoAgOmEh0urV3eVuptvli65xNBIgKE45AoAMK3mZunoUenss41OAhiLCWoAgGl9/TgvINhxyBUAAMDkKHQAAAAmR6EDAAAwOQodAACAyVHoAAB+4ehRKSdHiouTFiyQWlqMTgSYB4UOAOAX/v3fpWeekfbvl0pLpZ/+1OhEgHlQ6AAAfqG+3nNcV2dMDsCMKHQAAL9www1dj++yWFyHXwH0DzcWBgD4hZkzpXffld56S0pLk77zHaMTAeZh6AzdggULNHr0aC1cuNC97OOPP1Zqaqr7dfrpp6u0tNS4kACAITN5srRiBWUOOFWGPst106ZNam1t1VNPPaXnn3++2+etra0655xztG/fPo0cObJf2+RZrgAAINgYOkOXlZWlUaNG9fr5yy+/rCuuuKLfZQ4AACAYDbjQVVRUaO7cuYqNjZXFYunxsOiaNWuUlJSk8PBwpaWlqbKy8pS+47nnntPixYsHGhEAACAoDLjQtbW1KSUlRUVFRT1+XlJSory8PK1cuVI7d+7UtGnTZLPZVNfP69Dtdru2bt2qOXPmDDQiAABAUBjwVa42m002m63Xzx9++GEtXbpUy5YtkyStXr1aGzdu1Nq1a1VYWHjS7b/00kuaPXu2wsPD+1zP4XDI4XC4x3a7vZ+/AQAAQGDwyTl07e3t2r59u7Kzsz2WZ2dnq6qqql/b6O/h1sLCQlmtVvcrPj5+QJkBAL7xySfSp58anQIIbD4pdE1NTero6FBMTIzH8piYGB08eNA9nj17thYtWqSysjLFxcVp27ZtkqSWlhb99a9/1ezZs0/6XQUFBWppaXG/6k+81TgAwDC33y6dd540frx0551GpwECl09vLGyxWDzGTqfTY9nGjRt7/Dmr1apDhw716zvCwsIUFhY28JAAAJ+orZVWr+4aP/SQdNttUkKCYZGAgOWTGbro6GiFhIR4zMZJUmNjY7dZOwBAYDrhv+l7XQZg8HxS6EJDQ5WWlqby8nKP5eXl5crMzPTFVwIA/Mw550h33901XrlS4jRnwDcGfMi1tbVVe/bscY9ra2tVU1OjqKgoJSQkKD8/Xzk5OUpPT1dGRoaKi4tVV1en5cuXeyU4AMD//frX0q23umbmzj7b6DRA4BpwoauurlZWVpZ7nJ+fL0nKzc3VunXrtHjxYjU3N2vVqlVqaGhQcnKyysrKlJiYOPjUAADTiIszOgEQ+Ax9lqsv8CxXAAAQbAx9lisAAAAGj0IHAABgchQ6AAAAk6PQAQAAmByFDgAAwOQodAAAACZHoQMA9NvRo64bBWdmSj/7mdTZaXQiANIgbiwMAAg+P/uZ9Pjjrvdvvy2NHSutWGFsJgDM0AEATsHf/tb3GIAxKHQAgH676irP8ZVXGpMDgCcOuQIA+u3WW6UxY6QdO6SsLGnOHKMTAZB4lisAAIDpccgVAADA5Ch0AAAAJkehAwAAMDkKHQAAgMlR6AAAAEyOQgcAAGByFDoAAACTo9ABAACYHIUOAADA5Ch0AAAAJkehA4Ag53BIr74qVVQYnQTAQFHoACCItbdLs2ZJc+ZIl18urVhhdCIAA0GhA4AgtnWr9NZbXePHHpOOHDEuD4CBodABQBCLjPQcjxghhYYaEgXAIFDoACCIXXyx9ItfSMOHSxER0jPPuN4DMBeL0+l0Gh3Cm+x2u6xWq1paWhQREWF0HAAwhY4OadgwyWIxOgmAgeC/wwAACgkxOgGAweCQKwAAgMlR6AAAAEyOQgcAAGByhha6BQsWaPTo0Vq4cGG3z44cOaLExETdcccdBiQDAAAwD0ML3YoVK/T000/3+NkDDzygKVOmDHEiAAAA8zG00GVlZWnUqFHdlv/jH//QRx99pDlz5hiQCgAAwFwGXOgqKio0d+5cxcbGymKxqLS0tNs6a9asUVJSksLDw5WWlqbKysp+bfuOO+5QYWHhQKMBAAAElQEXura2NqWkpKioqKjHz0tKSpSXl6eVK1dq586dmjZtmmw2m+rq6vrc7ksvvaQLLrhAF1xwwUCjAQAABJUB31jYZrPJZrP1+vnDDz+spUuXatmyZZKk1atXa+PGjVq7dm2fs2/vvPOOnn32Wa1fv16tra06duyYIiIidO+99/a4vsPhkMPhcI/tdvsAfyMAAABz8sk5dO3t7dq+fbuys7M9lmdnZ6uqqqrPny0sLFR9fb327t2rhx56SDfffHOvZe7r9a1Wq/sVHx/vld8BAADALHxS6JqamtTR0aGYmBiP5TExMTp48KB7PHv2bC1atEhlZWWKi4vTtm3bTvm7CgoK1NLS4n7V19cPOj8AAICZ+PRZrpYTnvLsdDo9lm3cuLHPn7/xxhtP+h1hYWEKCwsbUD4AAIBA4JMZuujoaIWEhHjMxklSY2Njt1k7AID3ffml9OGHUnu70UkADAWfFLrQ0FClpaWpvLzcY3l5ebkyMzN98ZUAgP+1ebOUkCBNnChdeqmr3AEIbAM+5Nra2qo9e/a4x7W1taqpqVFUVJQSEhKUn5+vnJwcpaenKyMjQ8XFxaqrq9Py5cu9EhwA0LN77pEOH3a937VLeuIJ6e67jc0EwLcGXOiqq6uVlZXlHufn50uScnNztW7dOi1evFjNzc1atWqVGhoalJycrLKyMiUmJg4+NQAEmZdechWzmBjp3/9dGju293VPOH252xhA4LE4nU6n0SG8yW63y2q1qqWlRREREUbHAYBBq6mR0tOljg7XePp0acuW3tffskWaO9c1S5eS4joEGxk5BEEBGManV7kCAAZv166uMidJO3b0vf7ll0t1ddLBg9L48dJpp/k2HwDjUegAwM9lZkojRkhHjrjGV1xx8p+JjGRWDggmFDoA8HPnny9t2iT94Q+uc+juusvoRAD8DefQAQAAmJxP7kMHAACAoUOhAwAAMDkKHQAAgMlR6ADAIK+/Lq1bJx06ZHQSAGbHVa4AYID77pNWrXK9P/tsqbpaOussYzMBMC9m6ADAAL/9bdf7/fulV14xLgsA86PQAYABTpyNY3YOwGBQ6ADAAH/8o3TRRdLo0dKdd0pXXWV0IgBmxo2FAQAATI4ZOgAAAJOj0AEAAJgchQ4AAMDkKHQAAAAmR6EDAAAwOQodAACAyVHoAMBLGhqkP/1Jevtto5MACDY8yxUAvGDfPunSS6XGRtf48celH//Y2EwAggczdADgBSUlXWVOkh57zLgsAIIPhQ4AvODMMz3HY8cakwNAcKLQAYAXLFki3XSTdPrpUnKyVFxsdCIAwYRnuQIAAJgcM3QAAAAmR6EDAAAwOQodAACAyVHoAAAATI5CBwAAYHIUOgAAAJOj0AEAAJicoYVuwYIFGj16tBYuXNiv5QAAAOjO0EK3YsUKPf300/1eDgAAgO4MLXRZWVkaNWpUv5cDwFA7fFhqbDQ6BQD0bcCFrqKiQnPnzlVsbKwsFotKS0u7rbNmzRolJSUpPDxcaWlpqqysHExWABhSf/yjNGaMFBMjLV1qdBoA6N2AC11bW5tSUlJUVFTU4+clJSXKy8vTypUrtXPnTk2bNk02m011dXUDDgsAQ6WzU/rhD6Vjx1zj3/9e2rLF2EwA0JvhA/1Bm80mm83W6+cPP/ywli5dqmXLlkmSVq9erY0bN2rt2rUqLCwc6Nd243A45HA43GO73e61bQMIXp2d0vHjnsva243JAgAn45Nz6Nrb27V9+3ZlZ2d7LM/OzlZVVZVXv6uwsFBWq9X9io+P9+r2AQSn4cOlBx7oGn/ve9LMmcblAYC++KTQNTU1qaOjQzExMR7LY2JidPDgQfd49uzZWrRokcrKyhQXF6dt27b1ubwnBQUFamlpcb/q6+t98SsBCEJ33in9/e9SdbX0yitSSIjRiQCgZwM+5NofFovFY+x0Oj2Wbdy4scef6215T8LCwhQWFjawgABwEuefb3QCADg5n8zQRUdHKyQkxGM2TpIaGxu7zdoBAABgcHxS6EJDQ5WWlqby8nKP5eXl5crMzPTFVwIAAAStAR9ybW1t1Z49e9zj2tpa1dTUKCoqSgkJCcrPz1dOTo7S09OVkZGh4uJi1dXVafny5V4JDgAAAJcBF7rq6mplZWW5x/n5+ZKk3NxcrVu3TosXL1Zzc7NWrVqlhoYGJScnq6ysTImJiYNPDQAAADeL0+l0Gh3Cm+x2u6xWq1paWhQREWF0HAAAAJ8z9FmuAAAAGDwKHQAAgMlR6AAAAEyOQgcAAGByFDoAAACT8+mjvwDA37z1lvTGG1JqqjR/vtFpAMA7KHQAgsabb0rZ2VJHh2v82GPSrbcamwkAvIFDrgCCRmlpV5mTpBdfNCwKAHgVM3QATK2zU3rtNen4cclmk047rfd1L7jAc3z++b7NBgBDhUIHwNQWL5aef971ftYsV7kLCel53R//WNq3T9q4UUpJkf7jP4YuJwD4Eo/+AmBan30mxcd7Ltu1S5o0yZg8AGAUzqEDYFpnnCGFhnaNhw2TIiMNiwMAhqHQATCtyEhp3TrX/z3jDOnxx6WEBINDAYABOOQKAABgcszQAQAAmByFDgAAwOQodAAAACZHoQPgV1pbpeuukxITpe9/X/rqK6MTAYD/o9AB8Cu/+IVUUiLV1Ul/+pP0wANGJwIA/0ehA+BX9u71HO/bZ0gMADAVCh0Av/Kv/+q6QbDkeoTX9dcbmwcAzIBnuQLwKwsWSBUV0rvvSpmZ0mWXGZ0IAPwfNxYGAAAwOQ65AgAAmByFDgAAwOQodAAAACZHoQMAADA5Ch2AIVFbK+3fb3QKAAhMFDoAPvfDH0rnnivFxUmFhUanAYDAw21LAPjUrl1SamrX2GKRvvhCsloNiwQAAYcZOgA+1dN/MgbWf0YCgPH8stA98sgjuuiiizRx4kStWLFCATaJCASV1FRp2bKu8a9+JUVGGpUGAAKT3x1y/ec//6nLLrtM77//vk477TRNnz5dDz30kDIyMvr18xxyBfzTJ59IoaFSfLzRSQAg8Pjls1yPHz+uo0ePSpKOHTumsWPHGpwIwGCNH290AgAIXF4/5FpRUaG5c+cqNjZWFotFpaWl3dZZs2aNkpKSFB4errS0NFVWVro/O/PMM3XHHXcoISFBsbGxmjVrlsbzbwIAAIBeeb3QtbW1KSUlRUVFRT1+XlJSory8PK1cuVI7d+7UtGnTZLPZVFdXJ0n64osv9Morr2jv3r3av3+/qqqqVFFR4e2YAAAAAcPrhc5ms+n+++/XNddc0+PnDz/8sJYuXaply5ZpwoQJWr16teLj47V27VpJ0htvvKHzzjtPUVFROv3003XllVfqnXfe8XZMAACAgDGkV7m2t7dr+/btys7O9lienZ2tqqoqSVJ8fLyqqqp09OhRdXR0aPPmzbrwwgt73abD4ZDdbvd4AQAABJMhLXRNTU3q6OhQTEyMx/KYmBgdPHhQknTZZZdpzpw5uvjiizVp0iSNHz9e8+bN63WbhYWFslqt7lc8l9ABAIAgY8h96CwWi8fY6XR6LHvggQf04Ycf6v3339dvfvObbut/U0FBgVpaWtyv+vp6n+UG4Mm/bnoEAMFrSAtddHS0QkJC3LNxX2tsbOw2a9dfYWFhioiI8HgB8K3aWiklxXVfuauvlv73LkMAAIMMaaELDQ1VWlqaysvLPZaXl5crMzNzKKMAGITbb5fee086flx6+WXpsceMTgQAwc3rNxZubW3Vnj173OPa2lrV1NQoKipKCQkJys/PV05OjtLT05WRkaHi4mLV1dVp+fLl3o4CwEeamz3Hn39uTA4AgIvXC111dbWysrLc4/z8fElSbm6u1q1bp8WLF6u5uVmrVq1SQ0ODkpOTVVZWpsTERG9HAeAjK1ZIb78tdXRIo0dLublGJwKA4OZ3z3IdLJ7lCgyN3buljz6SMjOls882Og0ABDcKHQAAgMkZctsSAAAAeA+FDgAAwOQodAAAACZHoQMAADA5Ch0AAIDJUegAAABMjkIHQJLU3i5t2eJ6pBcAwFwodAB09KiUlSXNmCGlpEi//rXRiQAAp4JCB0Cvvy5VVXWNf/lLKbBuOQ4AgY1CB0AjR3qOR4yQLBZjsgAATh2FDoCuuEL6P//H9X7kSOn3vzc2DwDg1PAsVwBura1SWJh02mlGJwEAnIrhRgcA4D/OOMPoBACAgeCQKwAAgMlR6AAAAEyOQgcAAGByFDoAAACTo9ABAACYHFe5AgGqs9N1P7l9+6SFC12P9AIABCbuQwcEqLw86dFHXe9PP12qrpYmTjQ0EgDARzjkCgSoDRu63n/1let5rQCAwEShAwLUt77lOb7wQmNyAAB8j3PogAD11FPSj38s1dVJ3/++ZLMZnQgA4CucQwcAAGByHHIFAAAwOQodAACAyVHoAAAATI5CBwAAYHIUOsBEDhyQ/vAH6Y03jE4CAPAn3LYEMIn6eumSS6RDh1zj+++XVq40NhMAwD8wQweYxEsvdZU5SXriCeOyAAD8i18WuuHDhys1NVWpqalatmyZ0XEAv3DWWZ7jceOMyQEA8D9+ecg1MjJSNTU1RscA/MrChVJenvT001J8vOtcOgAAJD99UkR0dLSampoG9LM8KQIAAAQbrx9yraio0Ny5cxUbGyuLxaLS0tJu66xZs0ZJSUkKDw9XWlqaKisrPT632+1KS0vT1KlTtWXLFm9HBAAACCheL3RtbW1KSUlRUVFRj5+XlJQoLy9PK1eu1M6dOzVt2jTZbDbV1dW519m7d6+2b9+u3/72t1qyZInsdru3YwIAAAQMnx5ytVgs2rBhg+bPn+9eNmXKFE2ePFlr1651L5swYYLmz5+vwsLCbtuw2Wz61a9+pfT09B6/w+FwyOFwuMd2u13x8fEccgUAAEFjSK9ybW9v1/bt25Wdne2xPDs7W1VVVZKkL774wl3QPvvsM33wwQc699xze91mYWGhrFar+xUfH++7XwAAAMAPDWmha2pqUkdHh2JiYjyWx8TE6ODBg5KkDz/8UOnp6UpJSdFVV12lRx99VFFRUb1us6CgQC0tLe5XfX29T38HwJt27JBSUqS4OOmhh4xOAwAwK0NuW2KxWDzGTqfTvSwzM1O7d+/u97bCwsIUFhbm1XzAUFm4UKqtdb2/804pM9P1AgDgVAzpDF10dLRCQkLcs3Ffa2xs7DZrBwSD/fv7HgMA0B9DWuhCQ0OVlpam8vJyj+Xl5eXKZFoCQeimm7reJyZKM2calwUAYF5eP+Ta2tqqPXv2uMe1tbWqqalRVFSUEhISlJ+fr5ycHKWnpysjI0PFxcWqq6vT8uXLvR0F8Htr10qzZknNzdKCBdKYMUYnAgCYkddvW7J582ZlZWV1W56bm6t169ZJct1Y+MEHH1RDQ4OSk5P1yCOPaPr06V75fp4UAQAAgo1fPvprMCh0AAAg2AzpOXQAAADwPgodAACAyVHoAC/7/HPp9delTz81OgkAIFhQ6AAv2rdP+va3pdmzpQkTpFdeMToRACAYUOgAL3rySenAAdf79napsNDYPACA4EChA7zojDM8x6NGGZMDABBcKHSAF916qzRjhut9QoL08MOGxgEABAmvPykCCGYjR0qbNkltbdKIEZLFYnQiAEAwoNABPjBypNEJAADBhEOuAAAAJkehAwAAMDkKHQAAgMlR6AAAAEyOiyKAk2hrk554Qjp6VFq6VIqJMToRAACeKHTASdhsUmWl6/1//Ze0a1f3GwgDAGAkDrkCfWhq6ipzkvTpp1JNjWFxAADoEYUO6IPVKp15Ztc4LExKTDQuDwAAPaHQAX047TSprEyaOlVKT5eef16Kjzc6FQAAnixOp9NpdAhvstvtslqtamlpUUREhNFxAAAAfI4ZOgAAAJOj0AEAAJgchQ4AAMDkKHQAAAAmR6EDAAAwOQodAACAyVHoAAAATI5CBwAAYHLDjQ4AGKGyUtq6Vbr0UmnmTKPTAAAwOBQ6BJ1XXpGuvlrq7HSN//u/peuuMzYTAACDwSFXBJ3167vKnCQ995xxWQAA8AYKHYLOuef2PQYAwGw45Iqgc889Un29VFEhTZki/fKXRicCAGBwLE6n02l0iG+qr69XTk6OGhsbNXz4cP385z/XokWL+v3zdrtdVqtVLS0tioiI8GFSAAAA/+B3ha6hoUGHDh1SamqqGhsbNXnyZH388ccaOXJkv36eQgcAAIKN3x1yHTdunMaNGydJGjt2rKKiovT555/3u9ABAAAEG69fFFFRUaG5c+cqNjZWFotFpaWl3dZZs2aNkpKSFB4errS0NFVWVva4rerqanV2dio+Pt7bMQEAAAKG1wtdW1ubUlJSVFRU1OPnJSUlysvL08qVK7Vz505NmzZNNptNdXV1Hus1NzdryZIlKi4u9nZEAACAgOLTc+gsFos2bNig+fPnu5dNmTJFkydP1tq1a93LJkyYoPnz56uwsFCS5HA49N3vflc333yzcnJy+vwOh8Mhh8PhHtvtdsXHx3MOHQAACBpDeh+69vZ2bd++XdnZ2R7Ls7OzVVVVJUlyOp268cYbNXPmzJOWOUkqLCyU1Wp1vzg8CwAAgs2QFrqmpiZ1dHQoJibGY3lMTIwOHjwoSdq6datKSkpUWlqq1NRUpaamavfu3b1us6CgQC0tLe5XfX29T38HAAAAf2PIVa4Wi8Vj7HQ63cumTp2qzm8+l+kkwsLCFBYW5tV8AAAAZjKkM3TR0dEKCQlxz8Z9rbGxsdusHQAAAPpnSAtdaGio0tLSVF5e7rG8vLxcmZmZQxkFAAAgYHj9kGtra6v27NnjHtfW1qqmpkZRUVFKSEhQfn6+cnJylJ6eroyMDBUXF6uurk7Lly/3dhT4md27pccflyIiXM9TjYoyOhEAAIHB64WuurpaWVlZ7nF+fr4kKTc3V+vWrdPixYvV3NysVatWqaGhQcnJySorK1NiYqK3o8CPNDRI06dLX37pGldWSm+/bWgkAAACht89y3WweJarf3r1VWnOHM9lX30lhYcbkwcAgEAypOfQIXhNnCidfnrX+KKL+i5zX3whXXONlJQk/fCH0rFjvs8IAIBZUegwJBITXbN0V18t5eS43vflrrukDRukvXul4mLp0UeHJCYAAKZkyH3oEBgaGqSlS6U9e6Rrr5Xuv7/v9S+/3PXqj717+x4DAIAuzNBhwG6+2TXT9o9/SA88ID37rPe2fcMNXe9PO81VGAEAQM+YocOAffpp3+PBuOkmKT5e2rVLmjFDSkvz3rYBAAg0zNBhwK6/vuv9iBHSvHne3f6sWdL//b/9K3OffSbdead0993SoUPezQEAgL/jtiUYlBdekD75RLrySteVq0Y4csT13V+fZ/etb0nvvec6VAsAQDCg0MH0du2SUlM9l33yiXTuuYbEAQBgyHHIFaaXkCBFRnaNY2Kks84yLA4AAEOOQgfTGz1a2rjR9SSKuXOl1193ndMHAECw4JArPDQ2Sn/5izRunPS97xmdBgAA9Ae3LYFbY6PritLPPnONf/pT1/3lAACAf+OQK9z+8peuMidJTzxhXBYAANB/FDq4nXghARcWAABgDhQ6uNlsUkGBFBXluq/bn/5kdCIAANAfXBQBAABgcszQAQAAmByFDgAAwOQodAAAACZHoTOptjYpsM5+BAAAA0WhM5mjR11Xo55xhhQXJ+3caXQiAABgNAqdyfzud9Jrr7neHzggrVhx8p85cEDavVs6fty32QAAgDEodCbT2tr3+ETPPCMlJkqTJkmzZkkOh++yAQAAY1Do/ERlpVRWdvLCdeONroImScOHu5632pc77uiamduyRXrxxUFHBQAAfma40QEg3X67tHq1631mpvTmm1JYWM/rjhsn1dRI1dXSOedI553X97ZDQvoeAwAA8+NJEQY7elQaMcLzitU33pCuuMI723/xRemGG1wzfzab9PLLrpk9AAAQOPhXu8FOO00aOdLzXLjISO9t/5prpIMHpZYWKSFBsli8t20AAOAfOIfOYCEhrgsXrFbXzNm990ppad79jshI13l3lDkAAAITh1z9hNMpdXZyjhsAADh1zND5CYuFMgcAAAaGQgcAAGByFDoAAACT88tCt2DBAo0ePVoLFy40OgoAAIDf88tCt2LFCj399NNGxxg0u93oBAAAIBj4ZaHLysrSqFGjjI4xYF98IU2Z4roVyfnnS59+anQiAAAQyE650FVUVGju3LmKjY2VxWJRaWlpt3XWrFmjpKQkhYeHKy0tTZWVld7IahoPPij99a+u93v2SAUFxuYBAACB7ZQLXVtbm1JSUlRUVNTj5yUlJcrLy9PKlSu1c+dOTZs2TTabTXV1de510tLSlJyc3O114MCBgf8mfqStzXP8zadAAAAAeNugbixssVi0YcMGzZ8/371sypQpmjx5stauXeteNmHCBM2fP1+FhYX93vbmzZtVVFSk559/vs/1HA6HHA6He2y32xUfH2/ojYU//liaOlVqanI9p/Uvf5FmzDAkCgAACAJePYeuvb1d27dvV3Z2tsfy7OxsVVVVefOr3AoLC2W1Wt2v+Ph4n3zPqbjwQumDD6TycumjjyhzAADAt7xa6JqamtTR0aGYmBiP5TExMTp48GC/tzN79mwtWrRIZWVliouL07Zt23pdt6CgQC0tLe5XfX39gPN705lnSrNmSX7QLwEAQIAb7ouNWk54CrzT6ey2rC8bN27s97phYWEKCwvr9/oAAACBxquFLjo6WiEhId1m4xobG7vN2vlCfb30m9+43h8+LBl0Ch0AAMCQ8uoh19DQUKWlpam8vNxjeXl5uTIzM735Vd20tEjf+Y700EOu8YIFPv06AAAAv3HKM3Stra3as2ePe1xbW6uamhpFRUUpISFB+fn5ysnJUXp6ujIyMlRcXKy6ujotX77cq8FPVFPjmqH72rZtUnOzNGaMT78WAADAcKdc6Kqrq5WVleUe5+fnS5Jyc3O1bt06LV68WM3NzVq1apUaGhqUnJyssrIyJSYmei91D8aPl8LDpaNHXeOzzpIiI336lQAAAH5hUPeh8zcbN0q/+IVd77xjVVVVizIyOIkOAAAEvoAqdJLrxsJWq9XQGwsDAAAMJa9eFAEAAIChR6E7BQcOSJ99ZnQKAAAATxS6frrvPunss11Pfrj7bqPTAAAAdOEcun44cMBV5r7pk0+kc8/1yuYBAAAGhRm6fujs7N8yAAAAI1Do+iEuTrrrrq7xbbdJ551nXB4AAIBv4pDrKfj0U9fMHGUOAAD4k1N+UkQw45w5AADgjzjkCgAAYHIUOgAAAJOj0AEAAJgchQ4AAMDkKHQAAAAmR6EDAAAwOQodAACAyVHoAAAATI5CBwAAYHIUOgAAAJOj0AEAAJgchQ4AAMDkKHQAAAAmN9zoAEb6n/+Rtm2Tpk51vQAAAMwoaAvdn/8s/eu/ut4PGyb9v/8nzZljbCYAAICBCNpDriUlXe87O6X1643LAgAAMBhBO0P30ktGJwAAAPAOi9PpdBodwpucTqcOHz6sUaNGyWKxGB0HAADA5wKu0AEAAASboD2HDgAAIFBQ6AAAAEyOQgcAAGByFDoAAACTo9ABAACYHIUOAADA5Ch0AAAAJkehAwAAMDkKHQAAgMlR6AAAAExuuNEB+uPr57MCAAAEm/48n94Uhe7w4cOyWq1GxwAAABhyLS0tioiI6HMdi9PpdA5RngHzlxk6u92u+Ph41dfXn/T/sfB/7M/Awb4MLOzPwMG+9I6AmaGzWCx+9Q9CRESEX+XB4LA/Awf7MrCwPwMH+9L3uCgCAADA5Ch0AAAAJkehOwVhYWG67777FBYWZnQUeAH7M3CwLwML+zNwsC+HjikuigAAAEDvmKEDAAAwOQodAACAyVHoAAAATI5CBwAAYHIUun4oLCzUJZdcolGjRmns2LGaP3++Pv74Y6NjoR8qKio0d+5cxcbGymKxqLS01P3ZsWPHdPfdd+vb3/62Ro4cqdjYWC1ZskQHDhwwLjB6dbK/Q/anuaxdu1aTJk1y33A2IyNDr776qiT2pdkVFhbKYrEoLy9PEvtzqFDo+mHLli265ZZb9M4776i8vFzHjx9Xdna22trajI6Gk2hra1NKSoqKioq6fXbkyBHt2LFDP//5z7Vjxw69+OKL+vvf/6558+YZkBQnc7K/Q/anucTFxenXv/61qqurVV1drZkzZ+rqq6/W+++/z740sW3btqm4uFiTJk1yL2N/DhEnTlljY6NTknPLli1GR8EpkOTcsGFDn+v89a9/dUpy7tu3b2hCYcD683fI/jSX0aNHO5988skeP2Nf+r/Dhw87zz//fGd5ebnz8ssvd/7kJz/pdV32p/cxQzcALS0tkqSoqCiDk8DbWlpaZLFYFBkZaXQUnER//g7Zn+bQ0dGhZ599Vm1tbcrIyOhxHfal/7vlllt05ZVXatasWSddl/3pfcONDmA2TqdT+fn5mjp1qpKTk42OAy86evSo7rnnHt1www08RNrP9efvkP3p/3bv3q2MjAwdPXpUZ5xxhjZs2KCJEyd2W4996f+effZZ7dixQ9u2bTvpuuxP36DQnaJbb71V7733nt566y2jo8CLjh07puuuu06dnZ1as2aN0XFwEif7O2R/msOFF16ompoaffnll3rhhReUm5urLVu2eJQ69qX/q6+v109+8hO9/vrrCg8P73Nd9qfv8OivU3DbbbeptLRUFRUVSkpKMjoOTpHFYtGGDRs0f/58j+XHjh3Ttddeq08//VRvvvmmxowZY0xA9MvJ/g7Zn+Y1a9YsjR8/Xk888YQk9qVZlJaWasGCBQoJCXEv6+jokMVi0bBhw+RwOBQSEsL+9DFm6PrB6XTqtttu04YNG7R582bKXAD5+n9g/vGPf2jTpk38D4wf68/fIfvT3JxOpxwOhyT2pZlcccUV2r17t8eym266Sd/61rd09913e5Q59qfvUOj64ZZbbtGf//xnvfTSSxo1apQOHjwoSbJarTr99NMNToe+tLa2as+ePe5xbW2tampqFBUVpdjYWC1cuFA7duzQK6+8oo6ODve+jYqKUmhoqFGx0YOT/R0eP36c/WkiP/3pT2Wz2RQfH6/Dhw/r2Wef1ebNm/Xaa6+xL01m1KhR3c5lHTlypMaMGaPk5GT251Ax8Apb05DU4+sPf/iD0dFwEps2bepx3+Xm5jpra2t73bebNm0yOjpOcLK/Q/anufzgBz9wJiYmOkNDQ51nnnmm84orrnC+/vrrTqeTfRkIvnnbEvbn0OAcOgAAAJPjPnQAAAAmR6EDAAAwOQodAACAyVHoAAAATI5CBwAAYHIUOgAAAJOj0AEAAJgchQ4AAMDkKHQAAAAmR6EDAAAwOQodAACAyVHoAAAATO7/A2HxaeS2TebhAAAAAElFTkSuQmCC", + "text/plain": [ + "Graphics object consisting of 1 graphics primitive" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "********************************************************************************\n", + "Power series at Vertex 0 of polygon 25\n", + "Power series: -0.039626826152550976 - 0.013104935278971774*I + (-0.0006996066004350295 - 3.943072963480528e-06*I)*z4 + (0.01301173003142985 - 0.004155187746843682*I)*z4^2 + (-0.10540893340092455 + 0.07575028371696343*I)*z4^3 + (0.36133180470501225 - 0.491915507165318*I)*z4^4 + (-0.33659659167511513 + 1.0180098074630088*I)*z4^5 + (-0.00447328804356661 + 0.8212904980398796*I)*z4^6 + (-1.349263615810134 - 4.2242108934029945*I)*z4^7 + (9.330753781503443 + 12.970762077205622*I)*z4^8 + (-26.876357846105805 - 19.688163579629183*I)*z4^9 + (24.25907545535865 + 7.876646371802032*I)*z4^10 + (-10.802502057101968 - 0.4833130727438283*I)*z4^11 + (455.8644849231911 - 138.15440067113116*I)*z4^12 + (-2969.880734581512 + 2088.8520627791663*I)*z4^13 + (10731.850907166629 - 14495.431915168903*I)*z4^14 + (-22706.623602914464 + 71236.71472273284*I)*z4^15 + (-8304.307126096342 - 297195.73780114256*I)*z4^16 + (455754.38946388743 + 1243336.936311184*I)*z4^17 + (-4803488.3327580355 - 6454779.807507232*I)*z4^18 + (47135544.27776013 + 35734776.45123968*I)*z4^19 + (-378298241.94548464 - 139886375.55011156*I)*z4^20 + (2263466417.162193 + 121540935.3503423*I)*z4^21 + (-9626276365.162226 + 2390547433.3684726*I)*z4^22 + (25037706213.72194 - 14127471415.77548*I)*z4^23 + (-3198414594.535721 - 13185747164.389809*I)*z4^24 + (-286043018931.2923 + 807036112719.1088*I)*z4^25 + (793569680697.582 - 7557591592644.157*I)*z4^26 + (5811581633267.72 + 45619822075088.99*I)*z4^27 + (-64792317416172.86 - 196355154838313.38*I)*z4^28 + (174147060509497.84 + 534363264995007.8*I)*z4^29 + (2293844845214284.0 - 313781601389311.1*I)*z4^30 + (-3.6373995733184456e+16 - 1609156237011220.5*I)*z4^31 + (2.9749499662982336e+17 - 4.683120720387627e+16*I)*z4^32 + (-1.6980415755371323e+18 + 7.631506354347342e+17*I)*z4^33 + (7.023674154614127e+18 - 6.218454574477141e+18*I)*z4^34 + (-1.921729467266083e+19 + 3.4777016745895956e+19*I)*z4^35 + (1.475846283507123e+19 - 1.433817984358538e+20*I)*z4^36 + (1.8241945144939728e+20 + 4.29011164677779e+20*I)*z4^37 + (-1.2831682679976868e+21 - 7.771499222967436e+20*I)*z4^38 + (5.343770431948028e+21 - 4.0586712716832604e+20*I)*z4^39 + (-1.6860640694734548e+22 + 1.0285463745338597e+22*I)*z4^40 + (4.255757498788444e+22 - 5.162838075933217e+22*I)*z4^41 + (-8.331802317892866e+22 + 1.80071889398865e+23*I)*z4^42 + (1.0352242896853371e+23 - 4.902829426132753e+23*I)*z4^43 + (1.5724233616103402e+22 + 1.0393327631207798e+24*I)*z4^44 + (-4.1640450514836607e+23 - 1.6285207564581654e+24*I)*z4^45 + (9.455696051518186e+23 + 1.7241346799925958e+24*I)*z4^46 + (-1.0215669559044802e+24 - 1.0575041470399436e+24*I)*z4^47 + (4.5595062975531706e+23 + 2.6333028209015294e+23*I)*z4^48 + O(z4^49)\n", + "Absolute values of the coefficients:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHVCAYAAAB4wWYZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwnUlEQVR4nO3df1xV9eHH8fcVAlwBRQYTBaOmhqKQaIaFEyscLkxbrR8b4jdt8zu/lZGtGFs/XMYeVup3I9xY29d+LrImLUczyh84XSUq37QfTr7DQQYytbhCCQj3+8dd0BX5pefec8+9r+fjcR87n3MP577pxPbe59xzjs3hcDgEAAAAyxpkdgAAAACcGQodAACAxVHoAAAALI5CBwAAYHEUOgAAAIuj0AEAAFgchQ4AAMDiKHQAAAAWR6EDAACwOAodAACAxflMoXM4HLLb7eJJZgAAwN94vNDV1tZq2rRpGjNmjMaPH6+1a9e6vP/5559rxIgRWrJkyYD2e+zYMYWHh+vYsWNGxgUAABa2b58UFSXZbFJ4uPTOOz1v29YmBQY6t/3y9eabve+/vl569llp61Zjcw+UxwtdYGCgVq1apQ8++EBvvvmm7r77bjU3N3e+v2zZMk2ePNnTsQAAgA9atUpqaHAu2+3SL37R87aDBknBwa7rBg/uefvaWikpSZo7V5o6VVqx4kzTnj6PF7qhQ4cqKSlJkhQZGamIiAgdPXpUkrR//3599NFHmjlzpqdjAQAAC6mr6ypqvQkJ6X38VQEB0lNPdZW6RYukK67oeftXXpEOHeoaP/lk33ncZcCFrry8XJmZmYqOjpbNZlNJSUm3bQoLCxUXF6eQkBAlJydraw/zkBUVFero6FBMTIwkacmSJcrPzx9oJAAA4EeWLJGio6Wvf13qqzbcf780dqxz+cILpZ//vPftb7lF+uwz56ugoPdtIyNdx1FRvW/vTgMudM3NzUpMTFRBD79lcXGxFi9erLy8PO3evVupqanKyMhQTU2Ny3ZHjhzR3LlzVVRUJEl69dVXNWrUKI0aNapfOVpaWmS3211eAADAt+3bJz3xhHPZ4ZDy8qR//avn7aOipPfec37XrapK+sY3+v6MkBDn9+36csst0sKFUmiolJDgnN0zi81xBpeF2mw2rVu3TrNnz+5cN3nyZE2YMEGrV6/uXBcfH6/Zs2d3zr61tLTommuu0e23366srCxJUm5urp577jkFBASoqalJbW1tuueee/TAAw+c8rMfeughPfzww93WNzY2Kiws7HR/JQAA4MU++KBrxu1L9fXmzo55A0O/Q9fa2qqdO3cqPT3dZX16erq2b98uyXl7kXnz5mn69OmdZU6S8vPzVVtbqwMHDujxxx/X7bff3mOZk5wFsLGxsfNVW1tr5K8CAAC80Jgx0u23d43vv58yJxlc6A4fPqz29nZFnfRPNioqSvX19ZKkbdu2qbi4WCUlJUpKSlJSUpL27Nkz4M8KDg5WWFiYywsAAFjTpk3O76x9+GHf2xYVObfbv7/v79B5k88+kxYskK66Svrd74zdd6Cxu3Oy2WwuY4fD0bnuyiuvVEdHR68/P2/ePHfEAgAAXqioSPrhD53LgwdLf/2rNGFC7z9zySXuz2W0+fOlP/7RubxxoxQbK11zjTH7NnSGbsiQIQoICOicjftSQ0NDt1k7AAAASVqzpmv5iy+kl14yLYpbVVb2Pj4Thha6oKAgJScnq6yszGV9WVmZpkyZYuRHAQAAH/Hvu5d1Gj7cnBzuNmNG13JgoJSWZty+B3zKtampSVVVVZ3j6upqVVZWKiIiQrGxscrJyVFWVpYmTpyolJQUFRUVqaamRgsXLjQuNQAA8Bn//d/S0aPS++9L117rvBWIL/rlL523TTlwQLrhBmniROP2PeDblmzevFlpp6iU2dnZWvPvOdPCwkItX75cdXV1SkhI0MqVKzV16lRDAvfEbrcrPDyc25YAAAC/c0b3ofMmFDoAALzHxx87H40VGSndfLPzQfdwH7dc5QoAAPxXfb00aZLzPyVp61apsNDcTL7O0IsiAAAA3nyzq8xJ0rPPmpfFX1DoAACAoUaM6H0M41HoAACAoVJTpccfly66SLr8ct+9r5w34aIIAAAAi2OGDgAAwOK4yhUAAPTJ4ZBeflk6dEiaM0caNszsRPgqZugAAECf7rpL+u53pTvucD7h4KTHtsNkFDoAANCnp5/uWq6vl954w7ws6I5CBwAA+hQb2/sY5qLQAQCAPr34ovPpD7Gx0i9+IU2bZnYifBW3LQEAALA4ZugAAAAsjkIHAABgcRQ6AAD81FtvSXffLf32t877zMG6uLEwAAB+aNMmKT1d6uhwjg8elB56yNRIOAPM0AEA4Ic2bOgqc5L0+uvmZcGZo9ABAOCHxo1zHSckmJMDxuCUKwAAfuh733OeZl2/XoqPl554wuxEOBPchw4AAMDiOOUKAABgcRQ6AAAAi6PQAQDgQ+rqpNpas1PA0yh0AAD4iGXLpOhoKTZWWrzY7DTwJC6KAADABxw+LEVGuj7x4YMPnFewwvcxQwcAgA9wOLo/vqu93Zws8DwKHQAAPuCCC6Sf/rRr/IMfcLNgf8IpVwAAfEh1tdTWJo0aZXYSeBJPigAAwIfExZmdAGbglCsAAIDFUegAAAAsjkIHAICXOnpU+ta3pIgI6frrpeZmsxPBW1HoAADwUnl50oYN0qefSuvWSfn5ZieCt6LQAQDgpT75xHVcV2dODng/Ch0AAF5q/nwpIMC5HBwsZWebmwfei9uWAADgpWbNkt59V9q1S0pJkcaONTsRvBU3FgYAALA4TrkCAABYHKdcAQDwILtdKimRwsKk666TbDazE8EXUOgAAPCQ5mbpiiukvXud4+xsac0aUyPBR3DKFQAAD9m2ravMSdLTT0vHj5uXB76DQgcAgIdERbmOIyKctyMBzhSFDgAAD0lMlFatki64QLroIumVV/gOHYzBbUsAAAAsjhk6AAAAi/N4oautrdW0adM0ZswYjR8/XmvXru18b/369Ro9erRGjhypp556ytPRAAAALMnjp1zr6up06NAhJSUlqaGhQRMmTNC+ffsUHBysMWPGaNOmTQoLC9OECRP0zjvvKCIiol/75ZQrAMAM9fXSf/6ndOCAdOut0r33mp0I/sjj96EbOnSohg4dKkmKjIxURESEjh49qtraWo0dO1bDhg2TJM2cOVMbNmzQLbfc4umIAAD02223Sa+/7lyurJQuuUTKzDQ1EvzQgE+5lpeXKzMzU9HR0bLZbCopKem2TWFhoeLi4hQSEqLk5GRt3br1lPuqqKhQR0eHYmJi9Mknn3SWOUkaPny4Dh48ONB4AAB41L59ruO//92cHPBvAy50zc3NSkxMVEFBwSnfLy4u1uLFi5WXl6fdu3crNTVVGRkZqqmpcdnuyJEjmjt3roqKiiRJpzrza+NabgCAl5szp2t58GBpxgzzssB/DfiUa0ZGhjIyMnp8f8WKFZo/f74WLFggSVq1apU2bNig1atXKz8/X5LU0tKiOXPmKDc3V1OmTJEkDRs2zGVG7uOPP9bkyZN7/JyWlha1tLR0ju12+0B/FQAAzthjj0njxknV1c5yl5BgdiL4I0Ovcm1tbdXOnTuVnp7usj49PV3bt2+X5JyJmzdvnqZPn66srKzObS677DLt3btXBw8e1LFjx1RaWqoZvfzfnPz8fIWHh3e+YmJijPxVAADoF5vN+UzWhx5y3jgYMIOhhe7w4cNqb29X1EnPNomKilJ9fb0kadu2bSouLlZJSYmSkpKUlJSkPXv2KDAwUE888YTS0tJ06aWX6t5779X555/f42fl5uaqsbGx81VbW2vkrwIAAGAZbrnK9eTvvjkcjs51V155pTo6Ok75c7NmzdKsWbP69RnBwcEK5gF4AAAAxha6IUOGKCAgoHM27ksNDQ3dZu0AAPBW770nrVsnxcVJWVk8bxXez9BCFxQUpOTkZJWVlWnOVy77KSsr03XXXWfkRwEA4BYffCClpEiff+4c79njvPAB8GYDLnRNTU2qqqrqHFdXV6uyslIRERGKjY1VTk6OsrKyNHHiRKWkpKioqEg1NTVauHChocEBAHCHv/ylq8xJ0iuvUOjg/QZc6CoqKpSWltY5zsnJkSRlZ2drzZo1uummm3TkyBEtXbpUdXV1SkhIUGlpqUaMGGFcagAA3GTkSNfxqFHm5AAGwuPPcnUXnuUKADDK8uXS889LF14o/frX0r+fWAl4LQodAACAxRl6HzoAAAB4HoUOAADA4ih0AAAAFkehAwD4hX/+U3r/fck3vjkOuKLQAQB83sqVzqc+JCRI3/mO1MMTKAHL4ipXAIBPa2uTvvY16cSJrnUbN0pfuaUqYHnM0AEAfJrNJg066X/tAgLMyQK4C4UOAODTAgOlX/2qq8RlZUmpqeZmAozGKVcAgF84ckRqbpZiY81OAhhvwM9yBQDAis4/3/kCfBGnXAEAACyOQgcAAGBxFDoAAACLo9ABAABYHIUOAGA5HR3SQw9J06ZJS5ZIra1mJwLMxVWuAADL+eUvpYcfdi5v2SIFBUmPPmpuJsBMzNABACznvfd6HwP+hkIHALCcb32r9zHgbzjlCgCwnO9+VzrrLGnTJmnSJOfjvAB/xqO/AAAALI5TrgAAABZHoQMAALA4Ch0AAIDFUegAAAAsjkIHAABgcRQ6AIDX8I37LgCeR6EDAHiFggLp7LOlsDDp+efNTgNYC/ehAwCY7sAB6aKLumbogoKkhgYpPNzUWIBlMEMHADDdZ5+5nm5tbZWam02LA1gOhQ4AYLpx46QZM7rGt9wiRUeblwewGp7lCgAwXUCAtH69tGGD8xmt11xjdiLAWih0AACvEBgoffvbZqcArIlTrgAAABZHoQMAALA4Ch0AAIDFUegAAAAsjkIHAABgcRQ6AAAAi6PQAQAAWByFDgDgNjt2SM8843xWKwD34cbCAAC3eO45ae5c5zNaw8OlbduksWPNTgX4JmboAABuUVjoLHOS1NgoPf+8uXkAX0ahAwC4RWRk72MAxuGUKwDALX75S6muTnr/fSkzU/rRj8xOBPguU2bo5syZo/POO0833HCDy/rq6mqlpaVpzJgxGjdunJqbm82IBwAwQGys9M47UlOT9Ic/SEFBZicCfJcphe7OO+/UM8880239vHnztHTpUn3wwQfasmWLgoODTUgHAABgLaYUurS0NIWGhrqse//993XWWWcpNTVVkhQREaHAQM4IAwAA9GXAha68vFyZmZmKjo6WzWZTSUlJt20KCwsVFxenkJAQJScna+vWrX3ud//+/TrnnHM0a9YsTZgwQY8++uhAowEAAPilARe65uZmJSYmqqCg4JTvFxcXa/HixcrLy9Pu3buVmpqqjIwM1dTU9LrftrY2bd26VU8++aT+9re/qaysTGVlZQONBwAA4HcGXOgyMjL0yCOP6Prrrz/l+ytWrND8+fO1YMECxcfHa9WqVYqJidHq1at73e/w4cM1adIkxcTEKDg4WDNnzlRlZWWP27e0tMhut7u8AAAA/JGh36FrbW3Vzp07lZ6e7rI+PT1d27dv7/VnJ02apEOHDunTTz9VR0eHysvLFR8f3+P2+fn5Cg8P73zFxMQY8jsAAABYjaGF7vDhw2pvb1dUVJTL+qioKNXX13eOZ8yYoRtvvFGlpaUaPny4duzYocDAQD366KOaOnWqxo8fr5EjR+raa6/t8bNyc3PV2NjY+aqtrTXyVwEAALAMt1xGarPZXMYOh8Nl3YYNG075cxkZGcrIyOjXZwQHB3NbEwAAABk8QzdkyBAFBAS4zMZJUkNDQ7dZOwAAABjD0EIXFBSk5OTkblenlpWVacqUKUZ+FAAAAP5twKdcm5qaVFVV1Tmurq5WZWWlIiIiFBsbq5ycHGVlZWnixIlKSUlRUVGRampqtHDhQkODAwAAwGnAha6iokJpaWmd45ycHElSdna21qxZo5tuuklHjhzR0qVLVVdXp4SEBJWWlmrEiBHGpQYAAEAnm8PhcJgdwgh2u13h4eFqbGxUWFiY2XEAwCdVVEhr1khRUdKSJdLgwWYnAiC56SpXAIDv2b9f+uY3pc8/d4537ZLWrTM3EwAnQy+KAAD4rr/9ravMSRJPZwS8B4UOANAv48ZJAQFd4wkTzMsCwBWnXAEA/XLppdJLL0m/+Y3zO3TLl5udCMCXuCgCAADA4jjlCgAAYHEUOgAAAIuj0AEAAFgcF0UAgB/r6JD+8Afp0CHphhuk2FizEwE4HczQAYAf+9GPpO9/X7rnHmnSJOmTT8xOBOB0UOgAwI89/3zXckOD9NZb5mUBcPoodADgx+LiXMcXXmhKDABniEIHAH7spZekK66QvvENaeVKKTXV7EQATgc3FgYAALA4ZugAwAd1dJidAIAnUegAwId88YV07bVSYKA0ZoxUVWV2IgCeQKEDAB/y5JPSn/8sORzShx9KixebnQiAJ1DoAMCHfPpp72MAvolCBwA+ZN48acgQ53JgIDN0gL/g0V8A4ENGjpTee096+21p1Chp7FizEwHwBG5bAgAAYHGccgUAALA4Ch0AAIDFUegAAAAsjkIHAF7O4ZA2bZLeeENqbzc7DQBvRKEDAC+XnS1Nny7NmCFddx2P9QLQHVe5AoAXO3hQGj7cdV1lpZSYaEocAF6KGToA8GJnny2ddVbX2GaT+P+sAE5GoQMAL3buudJvfysNHiwFBUkrVkhxcWanAuBtOOUKABbgcDi/OxcQYHYSAN6IGToAsACbjTIHoGcUOgAAAIuj0AEAAFgchQ4AAMDiKHQAAAAWR6EDAACwOAodAHhYe7v0yCPS7NnSqlVmpwHgCwLNDgAA/ubRR6UHHnAuv/qqFBIiLVxobiYA1sYMHQB42DvvuI7ffdecHAB8B4UOADxs6tTexwAwUJxyBQAPu/de57NZd+yQpk2T5s0zOxEAq+NZrgAAABbHKVcAAACLo9ABAABYHIUOAADA4ih0AAAAFmdKoZszZ47OO+883XDDDZ3ramtrNW3aNI0ZM0bjx4/X2rVrzYgGAABgOaZc5bpp0yY1NTXp6aef1ssvvyxJqqur06FDh5SUlKSGhgZNmDBB+/bt09lnn92vfXKVKwAA8FemzNClpaUpNDTUZd3QoUOVlJQkSYqMjFRERISOHj1qQjoAAABrGXChKy8vV2ZmpqKjo2Wz2VRSUtJtm8LCQsXFxSkkJETJycnaunXrgD6joqJCHR0diomJGWg8AAAAvzPgQtfc3KzExEQVFBSc8v3i4mItXrxYeXl52r17t1JTU5WRkaGampp+7f/IkSOaO3euioqKBhoNAEyzd6+0aJGUmyt99pnZaQD4mwE/+isjI0MZGRk9vr9ixQrNnz9fCxYskCStWrVKGzZs0OrVq5Wfn9/rvltaWjRnzhzl5uZqypQpfW7b0tLSObbb7QP4LQDAOPX1zuexfvqpc1xeLm3bZm4mAP7F0O/Qtba2aufOnUpPT3dZn56eru3bt/f6sw6HQ/PmzdP06dOVlZXV52fl5+crPDy888XpWQBm2b27q8xJ0vbt0vHj5uUB4H8MLXSHDx9We3u7oqKiXNZHRUWpvr6+czxjxgzdeOONKi0t1fDhw7Vjxw5t27ZNxcXFKikpUVJSkpKSkrRnz54ePys3N1eNjY2dr9raWiN/FQDot/h4KSSk5zEAuNuAT7n2h81mcxk7HA6XdRs2bDjlz3V0dPT7M4KDgxUcHHx6AQHAQBdeKJWWSitWSGFh0qOPmp0IgL8xtNANGTJEAQEBLrNxktTQ0NBt1g4AfElamvMFAGYw9JRrUFCQkpOTVVZW5rK+rKysz4scAAAAcHoGPEPX1NSkqqqqznF1dbUqKysVERGh2NhY5eTkKCsrSxMnTlRKSoqKiopUU1OjhQsXGhocAAAATgMudBUVFUr7ynmFnJwcSVJ2drbWrFmjm266SUeOHNHSpUtVV1enhIQElZaWasSIEcalBgAAQCdTnuXqDjzLFQAA+CtTnuUKAAAA41DoAAAALI5CBwAAYHEUOgAAAIuj0AEAAFgchQ4AAMDiKHQAAAAWR6EDAACwOAodAACAxVHoAAAALI5CBwAAYHEUOgAAAIuj0AHwG3/4g5SZKd1xh3TsmNlpAMA4gWYHAABP2LRJ+t73JIfDOW5okIqLzc0EAEZhhg6AX9i5s6vMSdKOHeZlAQCjUegA+IUrr5QCArrG06aZFgUADMcpVwB+4fLLpdJS52nWCy+UfvxjsxMBgHFsDsdXT0JYl91uV3h4uBobGxUWFmZ2HAAWV1srzZ8vVVdL3/++9OCDZicCgJ5R6ADgFK6+Wnrrra7xH/8ozZljXh4A6A3foQNgWZWVzu/GJSY6b0lipH/8w3VcXW3s/gHASBQ6AJZ17bXStm3Se+9JWVnSvn3G7fvWW7uWQ0Olb3/buH0DgNG4KAKAJX3xhXTwYNe4vV06cEAaPdqY/T/yiHPm78ABadYs4/YLAO5AoQNgSYMHO2fo1q93jmNjpcsuM/YzbrzR2P0BgLtQ6ABY1ssvS7//vWS3S3PnSuedZ3YiADAHV7kCAABYHBdFAAAAWByFDgAAwOIodAAAABZHoQPgVWpqpJISqarK7CQAYB1c5QrAa+zaJU2bJh07JoWESH/+szR9utmpAMD7MUMHwGusXu0sc5J0/Lj0q1+ZmwcArIJCB8BrnHwfOe4rBwD9Q6ED4DV+8hNp6lTJZpOSk6Vly8xOBADWwHfoAHiNc8+VtmxxPpc1IMDsNABgHczQAfA6lDkAGBgKHQAAgMVR6AAAACyOQgcAAGBxFDoAAACLo9ABcLv9+6UDB8xOAQC+i0IHwK0WLpRGjZLi4qQHHzQ7DQD4JpvD4XCYHcIIdrtd4eHhamxsVFhYmNlxAEh6/30pIcF1XUODdMEF5uQBAF/FDB0At7HZuo9PXgcAOHMUOgBuM2aMdOedXeOf/1waMsS8PADgqzjlCsDtamulwEBp6FCzkwCAb/KqGbqVK1dq7NixGjNmjO688075SNcE/F5MDGUOANzJawrdv/71LxUUFGjnzp3as2ePdu7cqbffftvsWAAAAF4v0OwAX3XixAkdP35cktTW1qbIyEiTEwEAAHg/w2boysvLlZmZqejoaNlsNpWUlHTbprCwUHFxcQoJCVFycrK2bt3a+d4FF1ygJUuWKDY2VtHR0br66qt18cUXGxUPAADAZxlW6Jqbm5WYmKiCgoJTvl9cXKzFixcrLy9Pu3fvVmpqqjIyMlRTUyNJ+vTTT7V+/XodOHBABw8e1Pbt21VeXm5UPAAAAJ/llqtcbTab1q1bp9mzZ3eumzx5siZMmKDVq1d3rouPj9fs2bOVn5+vtWvXavPmzXryySclSY899pgcDod+/OMfn/IzWlpa1NLS0jm22+2KiYnhKlcAAOB3PHJRRGtrq3bu3Kn09HSX9enp6dq+fbskKSYmRtu3b9fx48fV3t6uzZs3a/To0T3uMz8/X+Hh4Z2vmJgYt/4OAAAA3sojhe7w4cNqb29XVFSUy/qoqCjV19dLki6//HLNnDlTl156qcaPH6+LL75Ys2bN6nGfubm5amxs7HzV1ta69XcA4GS3S/PmSZddJj3yiNlpAACSh69ytZ30zB+Hw+GybtmyZVq2bFm/9hUcHKzg4GBD8wHo2513Sk8/7VzesUOKjZXmzjU3EwD4O4/M0A0ZMkQBAQGds3Ffamho6DZrB8C7ffCB6/jDD83JAQDo4pFCFxQUpOTkZJWVlbmsLysr05QpUzwRAYBBvvpNiIAAKSPDvCwAACfDTrk2NTWpqqqqc1xdXa3KykpFREQoNjZWOTk5ysrK0sSJE5WSkqKioiLV1NRo4cKFRkUA4AE//anzNOuHHzrL3NSpZicCABh225LNmzcrLS2t2/rs7GytWbNGkvPGwsuXL1ddXZ0SEhK0cuVKTTXofw3sdrvCw8O5bQkAAPA7brkPnRkodAAAwF955Dt0AAAAcB8KHQAAgMVR6AAAACyOQgcAAGBxFDoAAACLo9ABAABYHIUOgJYulb7+dSkxUfrf/zU7DQBgoLgPHeDn3npLuvrqrnF8fPfntQIAvBszdICf++ST3scAAO9HoQP83IwZ0vDhXeP5883LAgA4PYFmBwBgrshIqaJCeu01KSpKysw0OxEAYKD4Dh0AAIDFccoVAADA4ih0AAAAFkehAwAAsDgKHQAAgMVR6AAAACyOQgf4qPfek958U/riC7OTAADcjUIH+KAnnnA+l/Waa6QpU6TmZrMTAQDciUIH+KCf/7xrubJS+tOfTIsCAPAACh3gg0JDXcfcaxsAfBuFDvBBv/+9FB7uXL7tNmnmTHPzAADci2e5Aj7ommuko0ellhZp8GCz0wAA3I0ZOsBHDRpEmQMAf0GhAwAAsDgKHQAAgMVR6AAAACyOQgdYRHGxlJUl5edLJ06YnQYA4E24yhWwgNdek26+uWt89Kj02GPm5QEAeBdm6AAL2Lq19zEAwL9R6AALmDzZdXz55ebkAAB4J065Ahbwne9Iv/udtH69NHas9LOfmZ0IAOBNbA6Hw2F2CCPY7XaFh4ersbFRYTy4EgAA+BFOuQIAAFgchQ4AAMDiKHQAAAAWR6EDTLJ3rzRnjpSZKb37rtlpAABWxlWugAmOH5fS06W6Ouf4r3+V/u//pIgIc3MBAKyJGTrABPX1XWVOkj77TKquNi0OAMDiKHSACYYNk+Lju8axsdLo0eblAQBYG6dcAROcdZa0aZP0xBNSW5t0993SOeeYnQoAYFXcWBgAAMDiOOUKAABgcRQ6AAAAi6PQAQAAWByFDjDQCy84L3D405/MTgIA8CdeV+g+//xzjRgxQkuWLDE7CjAgTz4pfe970qpV0nXXSS+/bHYiAIC/8LpCt2zZMk2ePNnsGMCAlZa6jv/yF3NyAAD8j1cVuv379+ujjz7SzJkzzY4CDNi4ca7jhARzcgAA/I9hha68vFyZmZmKjo6WzWZTSUlJt20KCwsVFxenkJAQJScna+vWrS7vL1myRPn5+UZFAjzq4YelxYulK6+UfvYz6c47zU4EAPAXhhW65uZmJSYmqqCg4JTvFxcXa/HixcrLy9Pu3buVmpqqjIwM1dTUSJJeffVVjRo1SqNGjerX57W0tMhut7u8ADMFB0srV0pbt0pLl0qDvGr+GwDgy9zypAibzaZ169Zp9uzZnesmT56sCRMmaPXq1Z3r4uPjNXv2bOXn5ys3N1fPPfecAgIC1NTUpLa2Nt1zzz164IEHTvkZDz30kB5++OFu63lSBAAA8DceKXStra362te+prVr12rOnDmd2911112qrKzUli1bXH5+zZo12rt3rx5//PEeP6OlpUUtLS2dY7vdrpiYGAodAADwO4Ge+JDDhw+rvb1dUVFRLuujoqJUX19/WvsMDg5WcHCwEfEAAAAszSOF7ks2m81l7HA4uq2TpHnz5nkoEQAAgPV55GvbQ4YMUUBAQLfZuIaGhm6zdoA36eiQdu2S9u83OwkAAD3zSKELCgpScnKyysrKXNaXlZVpypQpnogADFh7u5SZKSUnS6NGScuXm50IAIBTM+yUa1NTk6qqqjrH1dXVqqysVEREhGJjY5WTk6OsrCxNnDhRKSkpKioqUk1NjRYuXGhUBMBQmze7Pv0hL8/5nNazzjItEgAAp2RYoauoqFBaWlrnOCcnR5KUnZ2tNWvW6KabbtKRI0e0dOlS1dXVKSEhQaWlpRoxYoRREQBDBQW5jgMDubccAMA7ueW2JWaw2+0KDw/ntiUw1IIF0u9+55yV++1vpexssxMBANAdhQ7oQ0ODFBIi8a8VAMBbefS2JYAVRUaanQAAgN7xjSAAAACLo9ABAABYHIUOAADA4ih0AAAAFkehAwAAsDgKHQAAgMVR6OB3Pv9cOnhQ8o07MAIAQKGDn9m4URo6VBo+XLr6aun4cbMTAQBw5ih08Ct33SXZ7c7ljRulZ581Nw8AAEag0MGvtLW5jltbzckBAICRKHTwK8uWSUFBzuXEROn73zc3DwAARrA5HL7x1XC73a7w8HA1NjYqjKeooxcHD0p1dVJCghQSYnYaAADOXKDZAQBPGzbM+QIAwFdwyhUAAMDiKHQAAAAWR6EDAACwOAodAACAxVHoAAAALI5CBwAAYHEUOgAAAIuj0AEAAFgchQ4AAMDiKHQAAAAWR6EDAACwOAod3K6pScrMlMLCpKuuko4cMTsRAAC+hUIHt3v0UWn9eunYMWnjRikvr++f+egjqaJC6uhwfz4AAKyOQge3O3So9/HJHnlEio+XJk1yzuy1t7svGwAAvoBCB7e77TYpJMS5HBgoLVjQ87atrdKDD3aNS0ul8nL35gMAwOoCzQ4A69qzRzrrLOmSS3rf7oorpN27pXfekS69VBo/vudtBw1y7rOlpWvdl2UQAACcGjN0OC3Z2c5iFh8v3X9/39tfcknXz/QmMFD69a+dpU6SFi6UUlLOPC8AAL7M5nA4HGaHMILdbld4eLgaGxsVFhZmdhyftmdP92LW0CBdcIFxn9HUJB0/Lg0ZYtw+AQDwVczQYcACTzpRP2iQFBBg7Gecc07/y9xLL0lz5kg5Oc4iCACAv+E7dBiw+Hjp3nulxx5zlrnly6WICHOybN4s3Xyz9OU8c3299MIL5mQBAMAsFDqcluXLpSVLnLN1ZpU5Sdqxo6vMSc4LLwAA8DcUOpy2yEizEzivoB00qOsGxFOnmpsHAAAzUOhgaVOmSK+9JhUXS3Fx/bviFgAAX8NVrgAAABbHVa6QJNXWOme7zj3Xeb+4EyfMTgQAAPqLQgdJ0h13SH/7m9TYKD3zjLR6tdmJAABAf1HoIMl5u4/exgAAwHtR6CBJ+sEPJJvNuRwaKt16q7l5AABA/3GVKyRJt93mfN7qRx9J06ZJF11kdiIAANBfXOUKAABgcV51ynX9+vUaPXq0Ro4cqaeeesrsOAAAAJbgNTN0J06c0JgxY7Rp0yaFhYVpwoQJeueddxTRz+dKMUMHAAD8ldfM0L377rsaO3ashg0bptDQUM2cOVMbNmwwOxYAAIDXM6zQlZeXKzMzU9HR0bLZbCopKem2TWFhoeLi4hQSEqLk5GRt3bq1871PPvlEw4YN6xwPHz5cBw8eNCqeT6ipka6/XrrySumFF8xOAwAAvIVhha65uVmJiYkqKCg45fvFxcVavHix8vLytHv3bqWmpiojI0M1NTWSpFOd+bV9eR8NSJJuuEFat07atk3KypJ27uz7Z5qapPZ292cDAADmMazQZWRk6JFHHtH1119/yvdXrFih+fPna8GCBYqPj9eqVasUExOj1f9+JMGwYcNcZuQ+/vhjDR06tMfPa2lpkd1ud3n5ur17u5Y7OqQPP+x5244OZ+kLDZUiIqSyMvfnAwAA5vDId+haW1u1c+dOpaenu6xPT0/X9u3bJUmXXXaZ9u7dq4MHD+rYsWMqLS3VjBkzetxnfn6+wsPDO18xMTFu/R3cpa1NqqqSmpv73vbaa7uWw8Kk1NSet/3Tn6TnnnMu2+3SggVnlhMAAHgvjxS6w4cPq729XVFRUS7ro6KiVP/vZ0wFBgbqiSeeUFpami699FLde++9Ov/883vcZ25urhobGztftbW1bv0d3OHIESk5WRo5UhoxQtqxo/ftn31Wevxx6cc/lrZvd/5MT04uiP0pjAAAwJo8+qSIk78T53A4XNbNmjVLs2bN6te+goODFRwcbGg+T/vVr6Q9e5zLR45IubnSm2/2vH1wsHTPPf3b93XXSUlJUmWl85FeDz54pmkBAIC38kihGzJkiAICAjpn477U0NDQbdbOn3R09D4+E+ec45zFe/ttKTJSGjvWuH0DAADv4pFTrkFBQUpOTlbZSd/MLysr05QpUzwRwSstWiSNGuVcDguTli41dv+DB0tpaZQ5AAB8nWEzdE1NTaqqquocV1dXq7KyUhEREYqNjVVOTo6ysrI0ceJEpaSkqKioSDU1NVq4cKFRESwnKsp5SnT/fmn4cOfVqAAAAANl2KO/Nm/erLS0tG7rs7OztWbNGknOGwsvX75cdXV1SkhI0MqVKzV16lQjPp5HfwEAAL/lNc9yPVMUOgAA4K+85lmuAAAAOD0UOgAAAIuj0LnBwYPSvx9RCwAA4HYUOoM9/LDzitURI6S77zY7DQAA8AdcFGGghgbnrUi+6qOPpNGjTYkDAAD8BDN0BjpVNfaNugwAALwZhc5AUVFSXl7XeNEi6ZJLzMsDAAD8A6dc3eCf/5ROnJAuvtjUGAAAwE8Y9ugvdBkxwuwEAADAn3DKFQAAwOJ8otAdPCjdeKNzeeVKc7MAAAB4mk98h+6aa6Q337RLCpfUqNdeC9O115qdCgAAwDN8YoZu/37XcVWVOTkAAADM4BOF7svTrZL0ta9J3/qWeVkAAAA8zScK3fLlUlGRc3njRu79BgAA/ItPfIdO8q770AEAAHiST8zQAQAA+DMKXR8cDqmgQJo3T3rmGbPTAAAAdMeTIvrw2GPSffc5l59+WrLZpKwsczMBAAB8FTN0fdi82XW8ZYspMQAAAHpEoevDZZe5jidNMicHAABATzjl2oef/lQaNEiqqJDS0qQf/tDsRAAAAK64bQkAAIDFccoVAADA4ih0AAAAFkehAwAAsDgKHQAAgMVR6AAAACyOQgcAAGBxFDoAAACLo9ABAABYHIUOAADA4ih0AAAAFkehAwAAsDgKHQAAgMVR6AAAACwu0OwAZjh0SHrxRSksTMrKkgL98p8CAADwFX5XZT77TLr8cunAAef49dell14yMxEAAMCZ8btTrtu3d5U5SXr5Zam11bQ4AAAAZ8zvZuhmzpQcDrNTAAAAGMfmcPhGvXE4HDp27JhCQ0Nls9nMjgMAAOAxPlPoAAAA/JXffYcOAADA11DoAAAALI5CBwAAYHEUOgAAAIuj0AEAAFgchQ4AAMDiKHQAAAAWR6EDAACwOAodAACAxVHoAAAALC7Q7AC9+fL5rAAAAP6qP8+p9+pCd+zYMYWHh5sdAwAAwDSNjY0KCwvrdRubw+FweCjPgHnLDJ3dbldMTIxqa2v7/AcK78fx9C0cT9/C8fQtHE9jWH6GzmazedW/AGFhYV6VB2eG4+lbOJ6+hePpWzie7sdFEQAAABZHoQMAALA4Cl0/BAcH68EHH1RwcLDZUWAAjqdv4Xj6Fo6nb+F4eo5XXxQBAACAvjFDBwAAYHEUOgAAAIuj0AEAAFgchQ4AAMDiKHQAAAAWR6HrRX5+viZNmqTQ0FBFRkZq9uzZ2rdvn9mx0E/l5eXKzMxUdHS0bDabSkpKOt9ra2vTfffdp3Hjxunss89WdHS05s6dq08++cS8wOhRX3+LHE9rWb16tcaPH9/59ICUlBS9/vrrkjiWviA/P182m02LFy+WxDH1FApdL7Zs2aJFixbp7bffVllZmU6cOKH09HQ1NzebHQ390NzcrMTERBUUFHR77/PPP9euXbv0s5/9TLt27dIf//hH/f3vf9esWbNMSIq+9PW3yPG0luHDh+sXv/iFKioqVFFRoenTp+u6667T+++/z7G0uB07dqioqEjjx4/vXMcx9RAH+q2hocEhybFlyxazo2CAJDnWrVvX6zbvvvuuQ5Ljn//8p2dC4bT152+R42kt5513nuOpp5465XscS2s4duyYY+TIkY6ysjLHN7/5Tcddd93V47YcU+MxQzcAjY2NkqSIiAiTk8AdGhsbZbPZdO6555odBX3oz98ix9Ma2tvb9eKLL6q5uVkpKSmn3IZjaQ2LFi3St7/9bV199dV9bssxNV6g2QGswuFwKCcnR1deeaUSEhLMjgODHT9+XPfff79uvfVWhYWFmR0HvejP3yLH0/vt2bNHKSkpOn78uM455xytW7dOY8aM6bYdx9IaXnzxRe3atUs7duzoc1uOqXtQ6Prpv/7rv/Tee+/pr3/9q9lRYLC2tjbdfPPN6ujoUGFhodlx0Ie+/hY5ntYwevRoVVZW6rPPPtMrr7yi7OxsbdmyxaXUcSytoba2VnfddZfeeOMNhYSE9Lotx9R9eJZrP9xxxx0qKSlReXm54uLizI6D02Cz2bRu3TrNnj3bZX1bW5u++93v6h//+Ic2btyo888/35yA6Je+/hY5ntZ19dVX6+KLL9ZvfvMbSRxLKykpKdGcOXMUEBDQua69vV02m02DBg1SS0uLAgICOKZuxgxdLxwOh+644w6tW7dOmzdvpsz5mC//y2X//v3atGkT/+Xixfrzt8jxtDaHw6GWlhZJHEurueqqq7Rnzx6Xdf/xH/+hSy65RPfdd59LmeOYug+FrheLFi3SCy+8oFdffVWhoaGqr6+XJIWHh2vw4MEmp0NfmpqaVFVV1Tmurq5WZWWlIiIiFB0drRtuuEG7du3S+vXr1d7e3nl8IyIiFBQUZFZsnEJff4snTpzgeFrIT37yE2VkZCgmJkbHjh3Tiy++qM2bN+svf/kLx9KCQkNDu32f9eyzz9b555+vhIQEjqmnmHiFrdeTdMrX//zP/5gdDf2wadOmUx6/7OxsR3V1dY/Hd9OmTWZHx0n6+lvkeFrLbbfd5hgxYoQjKCjIccEFFziuuuoqxxtvvOFwODiWvuKrty3hmHoG36EDAACwOO5DBwAAYHEUOgAAAIuj0AEAAFgchQ4AAMDiKHQAAAAWR6EDAACwOAodAACAxVHoAAAALI5CBwAAYHEUOgAAAIuj0AEAAFjc/wPsdUEG9Ir1rQAAAABJRU5ErkJggg==", + "text/plain": [ + "Graphics object consisting of 1 graphics primitive" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "********************************************************************************\n", + "Power series at Vertex 0 of polygon 39\n", + "Power series: 0.03962660898233672 + 0.01310507477275552*I + (0.000412471116506685 - 0.0005648182652385445*I)*z0 + (0.007973924523693663 + 0.011089976185682564*I)*z0^2 + (-0.12367004838996652 + 0.039478000696758546*I)*z0^3 + (0.00305158095072742 - 0.6105270665124775*I)*z0^4 + (1.0192463446093674 + 0.33557515392858134*I)*z0^5 + (0.4887519793469451 - 0.6552557308282259*I)*z0^6 + (2.5674041552813973 + 3.595085999071444*I)*z0^7 + (-15.169476429216354 + 4.756073912896754*I)*z0^8 + (0.6938111262189829 - 32.92521819142214*I)*z0^9 + (21.69237585542908 + 9.750936538311704*I)*z0^10 + (-8.966428229542165 - 5.5511963802875295*I)*z0^11 + (-197.130902129379 - 377.7540982295914*I)*z0^12 + (3324.8576705467135 - 681.6211729728736*I)*z0^13 + (-1758.91307621844 + 17080.724876847526*I)*z0^14 + (-66429.1776899448 - 28316.43476854908*I)*z0^15 + (186326.5977687239 - 220083.6317194285*I)*z0^16 + (657419.7790154129 + 1060631.7263945022*I)*z0^17 + (-7006386.599811987 + 1615407.7822236808*I)*z0^18 + (5383104.828793738 - 50895606.87312515*I)*z0^19 + (309705701.8983907 + 145519331.14178714*I)*z0^20 + (-1313179727.582057 + 1327717579.6962543*I)*z0^21 + (-3235771981.4067464 - 6989195194.81525*I)*z0^22 + (19104989198.359978 - 244108002.20174426*I)*z0^23 + (-6149929550.861181 - 32917053750.637466*I)*z0^24 + (645373106779.422 + 359174676184.5778*I)*z0^25 + (-4504989364726.761 + 3283221492632.7056*I)*z0^26 + (-5666920015176.531 - 29095942878063.742*I)*z0^27 + (105046746128916.25 + 34664696977493.508*I)*z0^28 + (-213906848313265.94 - 37775993310276.59*I)*z0^29 + (3624365945580488.0 + 1297716808066956.0*I)*z0^30 + (-3.063231187252973e+16 + 2.8626891404530724e+16*I)*z0^31 + (-1.222939993113258e+17 - 2.8906461966058554e+17*I)*z0^32 + (1.8509750583555062e+18 - 1.5668625788677152e+17*I)*z0^33 + (-1.9033474457771945e+18 + 8.785583921459899e+18*I)*z0^34 + (-3.114045101639151e+19 - 1.676327611710632e+19*I)*z0^35 + (7.262699045433312e+19 - 7.961928848117904e+19*I)*z0^36 + (1.4280940161248667e+20 + 1.6041886824560224e+20*I)*z0^37 + (1.4142415182053915e+20 + 2.97832948917723e+20*I)*z0^38 + (-1.8261815429041218e+21 + 2.700778510421294e+21*I)*z0^39 + (-1.1493833394487768e+22 - 1.1345466990514745e+22*I)*z0^40 + (4.786041923321699e+22 - 2.7587498252863036e+22*I)*z0^41 + (3.255360652552698e+22 + 1.4008483527924302e+23*I)*z0^42 + (-2.8923973315285458e+23 - 2.1775412991000607e+22*I)*z0^43 + (1.6394482729679184e+23 - 4.162957971826421e+23*I)*z0^44 + (4.06158707036527e+23 + 3.104626565983201e+23*I)*z0^45 + (-3.157647922085262e+23 + 2.6546938561066224e+23*I)*z0^46 + (-1.2376971873644272e+23 - 1.8370745143889886e+23*I)*z0^47 + (5.633796713864565e+22 - 3.863221304858268e+22*I)*z0^48 + O(z0^49)\n", + "Absolute values of the coefficients:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHWCAYAAAD+VRS3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0fklEQVR4nO3df1zV9d3/8ecJB6jJSURJEo2cmUpCgJlMLMxwWDpsulqluLRrtFYZX1dj3lrX1Wp02aZuI1msluu6ctGPQde6bHauTcSkH4pQ5MpyUZCChCZHcB4Uz/ePMw+eQEA4h8/5HB732+3cbuf9Ph8+58U+o9vT9/vzeb8tTqfTKQAAAJjWeUYXAAAAgL4h0AEAAJgcgQ4AAMDkCHQAAAAmR6ADAAAwOQIdAACAyRHoAAAATI5ABwAAYHIBF+icTqfsdrtYLxkAAAwUARfojh49KqvVqqNHjxpdCgAA8IGZMyWLxfU6/3zp00/Pfuwvf9l+rMUijR/f9bltNikszHXsvHnSiRNeLd1nAi7QAQCAwHXqlFRW1t5uaZEqKs5+/KRJnu3LLuv6/D/8oXR6TOi116Q//rF3dfY3Ah0AADDcY49JKSnSD37gCmlnc9550rRp7e3Bg6WpU89+/Lx50vr1rp9ZvFh65pmu63A4PNutrd2W7hcszgC72cxut8tqtaqpqUlhYWFGlwMAALqxcaP0ve+1t++8U9qw4ezHNzRIDz4offmla0Rt1izv1fLcc9KyZdLJk9IVV0ilpa5pXX/HCB0AADDUe+95tququj5+1CjpySelF17wbpiTpFtvlfbtk95+W3rzze7DXE6ONHSoNG6ctGOHd2s5F4YFutraWl1zzTWaPHmypk6dqhdffFGS66GGadOmKT4+Xpdffrl+97vfGVUiAADoB9/8pushhDPbRho3TrrySikkpOvj/vY311TxsWNSTY0rDBrFsCnXuro6HTx4UPHx8WpoaFBCQoL27t2r0NBQORwODRkyRMeOHVNsbKx27typESNG9Oi8TLkCAOAfmpqktjYpPLz7Y7dscb1iY6Xbb/d9bd5QWCjdfHN7e+hQqbnZmFoMG6EbPXq04uPjJUmjRo1SeHi4Dh8+rKCgIA0ZMkSSdPz4cbW1tbGmHAAAJvPrX7uC3IgR0o9/3P3xc+dKa9eaJ8xJrpHEiRPb23ffbVwtvQ50paWlmj9/vqKiomSxWFRcXNzhmA0bNigmJkahoaFKTEzU9u3bOz3Xrl27dOrUKUVHR0uSjhw5ori4OI0ZM0b333+/IiIielsmAADoZ0eOSPfd51piRJL+8z+lDz4wtCSfsFpd99oVFkp//auUm2tcLb0OdC0tLYqLi1NeXl6nnxcWFmrlypVavXq1KioqlJKSovT0dNXU1Hgcd+jQIS1dulQFBQXuvgsuuEDvvvuuqqurtWnTJh08eLC3ZQIAgH528mR7mDvtq8uBBAqrVfrOd6TZs42twyv30FksFhUVFSkjI8PdN336dCUkJCg/P9/dN2nSJGVkZCj3XxHW4XDouuuu0x133KElS5Z0eu4777xTs2fP1uLFizv93OFwyHHG/0vsdruio6O5hw4AAAPdf7/0+OOu99/9rrRpk7H1BDqf3EPX2tqq8vJypaWlefSnpaWp7F/LOzudTi1btkyzZ8/2CHMHDx6U3W6X5ApnpaWlmnjmBPVX5Obmymq1ul+np20BAIBx1qyR3n9f2r2bMHcmu1366CPvbynmk0DX2NiotrY2RUZGevRHRkaqvr5ekrRjxw4VFhaquLhY8fHxio+PV1VVlT7//HPNmjVLcXFxmjlzpn74wx9qahdLQOfk5Kipqcn9qq2t9cWvBAAAztGUKa7FeeGyY4drSZSJE6WkJOnwYe+de5D3TtWR5cxFZeQalTvdN3PmTJ366gT7v1RWVvb4O0JCQhTS3UIxAACgT9rapH//d1coSU52vR/k0xQReHJyXA+MSK7FlPPzpdWrvXNun1yKiIgIBQUFuUfjTmtoaOgwagcAAPzf449Ljzzier91qzRkiPSTnxhbk9l89akFb67K5pMp1+DgYCUmJspms3n022w2JScn++IrAQCAD3118uwcJtPwL48+Kp1+XnPKFNeetd7S6xG65uZm7du3z92urq5WZWWlwsPDNXbsWGVnZ2vJkiVKSkrSjBkzVFBQoJqaGmVlZXmlcAAA0H/S0lzrrZ3ZxrmZNUv67DPpwAFp/PjutxY7F71etqSkpESpqakd+jMzM7Vx40ZJroWF16xZo7q6OsXGxmrdunWa5e1ddL+Crb8AAPCNP/5ReuMN6RvfkG65xehqcCbD9nL1FQIdAAAYaAzbyxUAAADeQaADAAAwOVaQAQBggKqtlX7zG+lrX5Puu0+KiDC6IvQWgQ4AgAHo6FFp5kyppsbV/vOfpYoKKSjI2LrQO0y5AgAwAH34YXuYk6SqKtdyGjAnAh0AAAPQxRdLw4a1ty+8UBo1yrBy0EcEOgAABqCRI6XXXnMtEHz99dLrr3t3oVv0L9ahAwAAMDlG6AAAAEyOQAcAAGByBDoAAACTI9ABAACYHIEOAADA5Ah0AAAEiLo6adYsafhw6bvflRwOoytCfyHQAQAQIO67T9q+XTpyRHr+eenXvza6IvQXAh0AAAGivr7rNgIXgQ4AgABxxx2SxeJ6P3SodNttxtaD/jPI6AIAAIB33Hqr9PWvS3v2SCkp0oQJRleE/sLWXwAAACbHlCsAAIDJEegAAABMjkAHAABgcgQ6AAAAkyPQAQAAmByBDgAAwOQIdAAAACZHoAMAADA5Ah0AAIDJEegAAPBjf/2r9K1vSUuXSvv3G10N/BV7uQIA4Kf27ZOuv15yOFzt99+Xdu82tib4J0boAADwU3v2tIc5SaqslE6eNKwc+DECHQAA/ai2VkpLkyZMkH76066PTUiQwsLa2ykp0iDm1tAJwwJdbW2trrnmGk2ePFlTp07Viy++6P7s1Vdf1cSJEzVhwgQ99dRTRpUIAIDXLV8u2Wyu6dSf/Ux6+eWzHxsdLW3bJn3/+9IDD0ivvNJ/dcJcLE6n02nEF9fV1engwYOKj49XQ0ODEhIStHfvXoWEhGjy5MnaunWrwsLClJCQoLffflvh4eE9Oq/dbpfValVTU5PCzvxnDQAAfmDCBFeYO+3xx6VVq4yrB4HBsBG60aNHKz4+XpI0atQohYeH6/Dhw3rnnXc0ZcoUXXTRRRo2bJjmzZunLVu2GFUmAABe9d3vtr8fNky64QbjakHg6HWgKy0t1fz58xUVFSWLxaLi4uIOx2zYsEExMTEKDQ1VYmKitm/f3um5du3apVOnTik6OloHDhzQRRdd5P5szJgx2s9z2gAAP9bc7JpG3bOn+2Mfflh66SXXyNzOndJll/m+PgS+Xge6lpYWxcXFKS8vr9PPCwsLtXLlSq1evVoVFRVKSUlRenq6ampqPI47dOiQli5dqoKCAklSZzPAFoult2UCAOBTR45IV17petDh8sulJ5/s/me+/W3XNOvEiT4vDwNErwNdenq6HnnkEd14442dfr527VotX75cK1as0KRJk7R+/XpFR0crPz/ffYzD4dDChQuVk5Oj5ORkSdJFF13kMSL3+eefa/To0Wetw+FwyG63e7wAAOgvL70kffCB673T6XrQAehvPrmHrrW1VeXl5UpLS/PoT0tLU1lZmSTXSNyyZcs0e/ZsLVmyxH3MlVdeqffff1/79+/X0aNHtXnzZs2dO/es35Wbmyur1ep+RUdH++JXAgCgU+ef79nmeTwYwSeBrrGxUW1tbYqMjPToj4yMVH19vSRpx44dKiwsVHFxseLj4xUfH6+qqioNGjRIv/zlL5WamqorrrhCP/rRjzRixIizfldOTo6amprcr9raWl/8SgAAdGrxYunmm13vR4zo2ZQr4G0+XZ7wq/e+OZ1Od9/MmTN16tSpTn9uwYIFWrBgQY++IyQkRCEhIX0rFACAXgoKkv74R+n3v5dCQyVu+4YRfBLoIiIiFBQU5B6NO62hoaHDqB0AAIFg8GCjK8BA5pMp1+DgYCUmJspms3n022w298MPAAAA8I5eB7rm5mZVVlaqsrJSklRdXa3Kykr3siTZ2dl66qmn9Pvf/14ffPCB7rvvPtXU1CgrK8srhQMA4Ct79khXXSWNHy+tX290NUD3er31V0lJiVJTUzv0Z2ZmauPGjZJcCwuvWbNGdXV1io2N1bp16zRr1qw+Fdwdtv4CAPTV5MntS5FI0htvSN/4hnH1AN0xbC9XXyHQAQD6auhQ6dix9vZzz0m33GJcPUB3DNvLFQAAf3Xbbe3vR4+Wrr3WuFqAnvDpsiUAAJhRfr509dVSQ4O0aJHEAg3wd0y5AgAAmBxTrgAAACZHoAMAADA5Ah0AAIDJEegAAAPC44+71pJbvlyy242uBvAunnIFAAS8wkLp/vtd78vKpBMnpGefNbYmwJsYoQMABLz33++6DZgdgQ4AEPDmzpWCgtrb119vXC2ALzDlCgAIeDNnSn/9q/TnP0uXXea6jw4IJCwsDAAAYHJMuQIAAJgcgQ4AAMDkCHQAAAAmR6ADAAAwOQIdAMC0duyQbDbXQsHAQEagAwCY0j33uJYjSUuTvvlN6eRJoysCjMOyJQAA02luloYN8+wrLZVSUoypBzAaI3QAANMJDpZCQz37+Dc8BjICHQDAdIKDpY0bpSFDXFt6PfSQFBdndFWAcZhyBQCY1qlTUlub9LWvGV0JYCz2cgUAmNZ557lewEDHnwEAAIDJEegAAABMjkAHAABgcgQ6AAAAkyPQAQAAmBxPuQIA/MYbb7h2fEhKcm3pBaBnCHQAAL/w2mvSDTe41paTpD/8QVq61NiaALNgyhUA4Bdeeqk9zEnSCy8YVwtgNgQ6AIBfGD++6zaAszM00C1cuFDDhw/XokWL3H179+5VfHy8+zV48GAVFxcbVyQAoF+sWiVlZUkTJ0q33io9+qjRFQHmYeherlu3blVzc7P+8Ic/6KWXXurweXNzsy6++GJ99tlnGjp0aI/OyV6uAABgoDF0hC41NVXDhg076+f/8z//o2uvvbbHYQ4AAGAg6nWgKy0t1fz58xUVFSWLxdLptOiGDRsUExOj0NBQJSYmavv27ef0HS+88IJuuumm3pYIAAAwIPQ60LW0tCguLk55eXmdfl5YWKiVK1dq9erVqqioUEpKitLT01VTU9Oj89vtdu3YsUPz5s3rbYkAAAADQq/XoUtPT1d6evpZP1+7dq2WL1+uFStWSJLWr1+vLVu2KD8/X7m5ud2e/5VXXtHcuXMVGhra5XEOh0MOh8PdttvtPfwNAAAAAoNP7qFrbW1VeXm50r6yzHdaWprKysp6dI6eTrfm5ubKarW6X9HR0b2qGQAAwKx8EugaGxvV1tamyMhIj/7IyEjV19e723PnztXixYu1efNmjRkzRjt37pQkNTU16Z133tHcuXO7/a6cnBw1NTW5X7W1td79ZQAAAPycT7f+slgsHm2n0+nRt2XLlk5/zmq16uDBgz36jpCQEIWEhPS+SAAAAJPzyQhdRESEgoKCPEbjJKmhoaHDqB0AILB9+aXrBcB3fBLogoODlZiYKJvN5tFvs9mUnJzsi68EAPihRx6RRoxwvXrwPByAXur1lGtzc7P27dvnbldXV6uyslLh4eEaO3assrOztWTJEiUlJWnGjBkqKChQTU2NsrKyvFI4AMC/1dRIDz7Y3l69WsrMlKKijKsJCFS9DnS7du1Samqqu52dnS1JyszM1MaNG3XTTTfp0KFDevjhh1VXV6fY2Fht3rxZ48aN63vVAAC/19rq2XY6pTNWmQLgRYbu5eoL7OUKAP7j3/5N+t3vXO+zsqT8fGPrAQIVgQ4A4FPvvitZLNLUqUZXAgQuny5bAgBAXJzRFQCBzydPuQIAAKD/EOgAAABMjkAHAABgcgQ6AAAAkyPQAQAAmByBDgAAwOQIdAAAACZHoAMAADA5Ah0AAIDJEegAAOfk4EFpxw7pyy+NrgTAaQQ6AECPvfmmdOml0syZ0uTJ0scfG10RAIlABwA4B489Jtntrvf19dKvfmVsPQBcCHQAgB4LDe26DcAYBDoAQI898og0bpzr/eWXSw88YGw9AFwGGV0AAMA8JkyQ9u2TDh2SRo6UzmNYAPALBDoAwDkZNEiKjDS6CgBn4t9WAAAAJkegAwAAMDkCHQAAgMkR6AAAAEyOQAcAAGByBDoAAACTI9ABAACYHIEOAADA5Ah0AAAAJkegAwAAMDkCHQAAgMkR6AAAAEyOQAcA0P790qFDRlcBoLcIdAAwwK1YIY0ZI0VGSr/9rdHVAOgNQwPdwoULNXz4cC1atKjDZ8eOHdO4ceO0atUqAyoDgIHhzTelp592vW9rk+6+W2ptNbYmAOfO0EB3zz336Nlnn+30s0cffVTTp0/v54oAYGBpa/NsnzrlegEwF0MDXWpqqoYNG9ah/+OPP9aHH36oefPmGVAVAAwc3/iG9O1vt7d//nMpNNS4egD0Tq8DXWlpqebPn6+oqChZLBYVFxd3OGbDhg2KiYlRaGioEhMTtX379h6de9WqVcrNze1taQAwoLW2Sg8/LN12m/Tyy10fa7FIL74oVVVJn3wiPfBA/9QIwLt6HehaWloUFxenvLy8Tj8vLCzUypUrtXr1alVUVCglJUXp6emqqanp8ryvvPKKLr30Ul166aW9LQ0ABrT77pMeekh67jlp8WLp//6v6+MtFik2VoqJ6Z/6AHjfoN7+YHp6utLT08/6+dq1a7V8+XKtWLFCkrR+/Xpt2bJF+fn5XY6+vfXWW3r++ef14osvqrm5WSdOnFBYWJh++tOfdnq8w+GQw+Fwt+12ey9/IwAIDGdOhjid0htvSHPmGFcPAN/zyT10ra2tKi8vV1pamkd/WlqaysrKuvzZ3Nxc1dbW6tNPP9UvfvEL3XHHHWcNc6ePt1qt7ld0dLRXfgcAMKurruq6DSDw9HqEriuNjY1qa2tTZGSkR39kZKTq6+vd7blz52r37t1qaWnRmDFjVFRUpGnTpp3Td+Xk5Cg7O9vdttvthDoAA9qvfy2NGCF99JF0443SN79pdEUAfM0nge40i8Xi0XY6nR59W7Zs6fLnly1b1u13hISEKCQkpFf1AUAgCg2VeK4MGFh8MuUaERGhoKAgj9E4SWpoaOgwagcAAIC+8UmgCw4OVmJiomw2m0e/zWZTcnKyL74SAABgwOr1lGtzc7P27dvnbldXV6uyslLh4eEaO3assrOztWTJEiUlJWnGjBkqKChQTU2NsrKyvFI4AAAAXHod6Hbt2qXU1FR3+/SDCZmZmdq4caNuuukmHTp0SA8//LDq6uoUGxurzZs3a9y4cX2vGgAGmP/8T+mJJ6TISOmZZ1zrxgHAaRan0+k0ughvstvtslqtampqUlhYmNHlAECflZRIZ/z7WVOmSO+/b1g5APyQoXu5AgC6V1vr2e5mwx0AAxCBDgD83HXXSaNHt7czM42rBYB/8uk6dACAvrvwQmnXLqmoyHUP3be/bXRFAPwN99ABAACYHFOuAAAAJkegAwAAMDkCHQAAgMkR6AAAAEyOQAcAAGByBDoAMMD+/dKNN0pXXSU99ZTR1QAwO9ahAwAD3HKLVFrqev/229LEiVJKirE1ATAvRugAwAB79ni2P/jAmDoABAYCHQAYYMGC9vfnny+lphpXCwDzY8oVAAxQUCAlJEgHDkg33yxNmGB0RQDMjK2/AAAATI4pVwAAAJMj0AEAAJgcgQ4AAMDkCHQAAAAmR6ADAAAwOQIdAACAyRHoAAAATI5ABwBeUlcnbdokvfWW0ZUAGGjYKQIAvOCzz6Qrr5QaGlztJ56QfvADY2sCMHAwQgcAXlBY2B7mJCkvz7haAAw8BDoA8IKRI7tuA4AvEegAwAuWLpWWLZMGD5amTJGefNLoigAMJBan0+k0ughvstvtslqtampqUlhYmNHlAAAA+BwjdAAAACZHoAMAADA5Ah0AAIDJEegAAABMztBAt3DhQg0fPlyLFi3qUT8AAAA6MjTQ3XPPPXr22Wd73A8AAICODA10qampGjZsWI/7AQAA0FGvA11paanmz5+vqKgoWSwWFRcXdzhmw4YNiomJUWhoqBITE7V9+/a+1AoAAIBO9DrQtbS0KC4uTnln2bCwsLBQK1eu1OrVq1VRUaGUlBSlp6erpqam18UCAACgo0G9/cH09HSlp6ef9fO1a9dq+fLlWrFihSRp/fr12rJli/Lz85Wbm9vbr+3A4XDI4XC423a73WvnBgAAMAOf3EPX2tqq8vJypaWlefSnpaWprKzMq9+Vm5srq9XqfkVHR3v1/AAAAP7OJ4GusbFRbW1tioyM9OiPjIxUfX29uz137lwtXrxYmzdv1pgxY7Rz584u+zuTk5OjpqYm96u2ttYXvxIAAIDf6vWUa09YLBaPttPp9OjbsmVLpz93tv7OhISEKCQkpHcFAgAABACfjNBFREQoKCjIYzROkhoaGjqM2gEAAKBvfBLogoODlZiYKJvN5tFvs9mUnJzsi68EAAAYsHo95drc3Kx9+/a529XV1aqsrFR4eLjGjh2r7OxsLVmyRElJSZoxY4YKCgpUU1OjrKwsrxQOAL724YfSvfdKTU3SqlUSuxEC8FcWp9Pp7M0PlpSUKDU1tUN/ZmamNm7cKMm1sPCaNWtUV1en2NhYrVu3TrNmzepTwd2x2+2yWq1qampSWFiYT78LQGAbP1765BPX+0GDpKoq6bLLjK0JADrT60Dnrwh0ALyhtVX66vNWf/6zdMMNxtQDAF0xdC9XADDC4cPSqVNdHxMcLJ25dnpkpDR9um/rAoDeItABGDCOHJGuvFIaMUK65BJp796uj//Tn6Rf/EJ68EHprbekkSP7pUwAOGdMuQIYMB58UHrkkfZ2RoZUVGRYOQDgNYzQARgwjh3rug0AZkWgAzBg3HWXdOGFrvdDhkg//rGx9QCAt/h06y8A8CeXXCLt2SO995709a9LY8YYXREAeAeBDoDptbVJTqdrrbjuhIdL11zj85IAoF8x5QrA1J5+Who6VBo8WPrlL42uBgCMwVOuAEzryy+lUaOkkyddbYtF+sc/pJgYY+sCgP7GCB0A0zp2rD3MSa5p1+Zm4+oBAKMQ6ACY1kUXSZmZ7e0FC6TYWOPqAQCjMOUKwPRKS10jdddcI53HP1MBDEA85QrA9GbNMroCADAW/5YFAAAwOQIdAACAyRHoAAAATI5AB8Dv/O530u23S888Y3QlAGAOPBQBwK/k5Ul33+16/8wzrm29VqwwtiYA8HeM0AHwK1u3dt0GAHREoAPgV6ZN82wnJRlTBwCYCVOuAPzKj37kWiT4zTellBTp3nuNrggA/B87RQAAAJgcU64AAAAmR6ADAAAwOQIdAACAyRHoAAAATI5ABwAAYHIEOgA+19oqFRdLr70mBdZz9QDgH1iHDoBPnTghpaVJ27a52rfeKv33fxtbEwAEGkboAPhURUV7mJOk556TGhuNqwcAAhGBDoBPDR8uWSzt7dBQacgQ4+oBgEBEoAPgUxMmSOvXS0OHSuHhrulWAh0AeJdfbv21bt06PfXUU3I6nZozZ45+9atfyXLmP/G7wNZfAABgoPG7EbovvvhCeXl5Ki8vV1VVlcrLy/XWW28ZXRYAAIDf8sunXE+ePKnjx49Lkk6cOKFRo0YZXBEAAID/8voIXWlpqebPn6+oqChZLBYVFxd3OGbDhg2KiYlRaGioEhMTtX37dvdnI0eO1KpVqzR27FhFRUVpzpw5Gj9+vLfLBAAACBheD3QtLS2Ki4tTXl5ep58XFhZq5cqVWr16tSoqKpSSkqL09HTV1NRIkr788ku9+uqr+vTTT7V//36VlZWptLTU22UCAAAEDJ8+FGGxWFRUVKSMjAx33/Tp05WQkKD8/Hx336RJk5SRkaHc3Fy9+OKLKikp0RNPPCFJevzxx+V0OnX//fd3+h0Oh0MOh8Pdttvtio6O5qEIAAAwYPTrQxGtra0qLy9XWlqaR39aWprKysokSdHR0SorK9Px48fV1tamkpISTZw48aznzM3NldVqdb+io6N9+jsAAAD4m34NdI2NjWpra1NkZKRHf2RkpOrr6yVJV111lebNm6crrrhCU6dO1fjx47VgwYKznjMnJ0dNTU3uV21trU9/BwAAAH9jyFOuX11Tzul0evQ9+uijevTRR3t0rpCQEIWEhHi1PgBdO35cevBBac8e6frrpbvuMroiABjY+jXQRUREKCgoyD0ad1pDQ0OHUTsA/utHP5JOP/f02mvSiBHSzTcbWxMADGT9OuUaHBysxMRE2Ww2j36bzabk5OT+LAVAH+za5dkuLzemDgCAi9dH6Jqbm7Vv3z53u7q6WpWVlQoPD9fYsWOVnZ2tJUuWKCkpSTNmzFBBQYFqamqUlZXl7VIA+Mjs2dKZG7ikphpXCwDAB8uWlJSUKLWT/7pnZmZq48aNklwLC69Zs0Z1dXWKjY3VunXrNGvWLK98P3u5Ar536pT0m99I77/vuofujJWJAAAG8Ok6dEYg0AEAgIGmX++hAwAAgPcR6AAAAEyOQAcAAGByBDoAAACTI9ABAACYHIEOAADA5Ah0AAAAJkegAyBJKi117cf6gx9IX3xhdDUAgHPh9a2/AJjPvn3S3LnS8eOu9rvvSjt2GFsTAKDnGKEDoMrK9jAnSW+/LQXWHjIAENgIdACUkCANGdLeTk6WLBbj6gEAnBumXAHokkskm03Kz5fCw6WHHjK6IgDAubA4nYE1sWK322W1WtXU1KSwsDCjywEAAPA5plwBAABMjkAHAABgcgQ6AAAAkyPQAQAAmByBDgAAwOQIdECAcziMrgAA4GsEOiBAvfOONHq0FBoqLV4snTxpdEUAAF8h0AEB6vvfl+rrXe9feknatMnYegAAvkOgAwLU0aOebbvdmDoAAL5HoAMCVE6OdN6//sLHj5duusnYegAAvsPWX0AA27NHqq2VZsyQrFajqwEA+MogowsA4DtTprheAIDAxpQrAACAyRHoAAAATI5ABwAAYHIEOsBEmpqkzZul994zuhIAgD8h0AEm0dgoJSZK118vxcdLv/2t0RUBAPwFgQ4wiRdekP7xD9d7p1N67DFj6wEA+A8CHWASX11HjnXlAACn+WWgGzRokOLj4xUfH68VK1YYXQ7gF26+WfrudyWLRbrwQqmgwOiKAAD+wi93ioiIiFBjY2OvfpadIhDoWlul4GCjqwAA+BO/HKEDcHaEOQDAV3k90JWWlmr+/PmKioqSxWJRcXFxh2M2bNigmJgYhYaGKjExUdu3b/f43G63KzExUTNnztS2bdu8XSIAAEBA8Xqga2lpUVxcnPLy8jr9vLCwUCtXrtTq1atVUVGhlJQUpaenq6amxn3Mp59+qvLycv32t7/V0qVLZbfbvV0mAABAwPDpPXQWi0VFRUXKyMhw902fPl0JCQnKz893902aNEkZGRnKzc3tcI709HT97Gc/U1JSUqff4XA45HA43G273a7o6GjuoYNpHDsmtbRII0caXQkAwKz69R661tZWlZeXKy0tzaM/LS1NZWVlkqQvv/zSHdA+//xz/f3vf9cll1xy1nPm5ubKarW6X9HR0b77BQAve+klacQIadQo6bbbXOvLAQBwrvo10DU2NqqtrU2RkZEe/ZGRkaqvr5ckffDBB0pKSlJcXJxuuOEG/epXv1J4ePhZz5mTk6Ompib3q7a21qe/A+BN3/++dPy46/1zz0l/+Yux9QAAzGmQEV9qsVg82k6n092XnJysqqqqHp8rJCREISEhXq0P6C9n3C3QaRsAgJ7o1xG6iIgIBQUFuUfjTmtoaOgwagcMBD//uWuhYEm6+mpp3jxj6wEAmFO/Brrg4GAlJibKZrN59NtsNiUnJ/dnKYBfuOce6aOPpLfflmw21pgDAPSO16dcm5ubtW/fPne7urpalZWVCg8P19ixY5Wdna0lS5YoKSlJM2bMUEFBgWpqapSVleXtUgBT+PrXja4AAGB2Xg90u3btUmpqqrudnZ0tScrMzNTGjRt100036dChQ3r44YdVV1en2NhYbd68WePGjfN2KQAAAAOCX+7l2hfs5QoAAAYa9nIFAAAwOQId4GV/+5v0//6f9PTTLBQMAOgfhqxDBwSqkhLpuuukU6dc7f37pZ/+1NCSAAADACN0gBf95S/tYU6S/vd/jasFADBwEOgAL4qN7boNAIAvMOUKeNFtt0mffy69+qo0aZK0dq3RFQEABgKWLQEAADA5plwBAABMjkAHAABgcgQ6AAAAkyPQAQAAmByBDgAAwOQIdEA3qqqkb35TuuYa6f/+z+hqAADoiHXogC6cPOkKcwcOuNrvvCN9/LF00UXG1gUAwJkYoQO68OWX7WFOkv75T6m62rh6AADoDIEO6EJEhDR9ens7OlqaOtW4egAA6AxTrkAXLBZpyxbpN79xjc7deafEBiQAAH/D1l8AAAAmx5QrAACAyRHoAAAATI5ABwAAYHIEOgAAAJMj0AEAAJgcgQ4AAMDkCHQAAAAmR6DDgBVYKzACAAYyAh0GnCNHpNRU6Wtfk5KTpYYGoysCAKBvCHQYcB55RCopkdrapDfflB580OiKAADoGwIdBpxDh7puAwBgNgQ6DDjf/740ZIjrfUiI9IMfGFsPAAB9NcjoAoD+dtVVUlWVVF4uxcVJl15qdEUAAPQNgQ4D0iWXuF4AAAQCv5tyra2t1TXXXKPJkydr6tSpevHFF40uCQAAwK9ZnE7/Wo2rrq5OBw8eVHx8vBoaGpSQkKC9e/dq6NChPfp5u90uq9WqpqYmhYWF+bhaAAAA4/ndlOvo0aM1evRoSdKoUaMUHh6uw4cP9zjQAQAADDRen3ItLS3V/PnzFRUVJYvFouLi4g7HbNiwQTExMQoNDVViYqK2b9/e6bl27dqlU6dOKTo62ttlAgAABAyvB7qWlhbFxcUpLy+v088LCwu1cuVKrV69WhUVFUpJSVF6erpqamo8jjt06JCWLl2qgoICb5cIAAAQUHx6D53FYlFRUZEyMjLcfdOnT1dCQoLy8/PdfZMmTVJGRoZyc3MlSQ6HQ9ddd53uuOMOLVmypMvvcDgccjgc7rbdbld0dDT30AEAgAGjX59ybW1tVXl5udLS0jz609LSVFZWJklyOp1atmyZZs+e3W2Yk6Tc3FxZrVb3i+lZAAAw0PRroGtsbFRbW5siIyM9+iMjI1VfXy9J2rFjhwoLC1VcXKz4+HjFx8erqqrqrOfMyclRU1OT+1VbW+vT3wEAAMDfGPKUq8Vi8Wg7nU5338yZM3Xq1KkenyskJEQhISFerQ8AAMBM+nWELiIiQkFBQe7RuNMaGho6jNoBAACgZ/o10AUHBysxMVE2m82j32azKTk5uT9LAQAACBheD3TNzc2qrKxUZWWlJKm6ulqVlZXuZUmys7P11FNP6fe//70++OAD3XfffaqpqVFWVpa3S4Gf+fnPpfPPl0aPll5/3ehqAAAIHF5ftqSkpESpqakd+jMzM7Vx40ZJroWF16xZo7q6OsXGxmrdunWaNWuWV76frb/80+7dUmJie/uCC6TDh6Wv3E4JAAB6we/2cu0rAp1/ev11ae7c9rbFIv3zn9LZnmdpbpbuvluqqJDS0qTHHpPO69cbBAAAMA+/28sVgSklRUpIcI3USVJW1tnDnCQ98ID0rwFdvfuuFB3tCngAAKAjAh365OhRqbFRGjtWCgo6+3GDB0ulpdJrr0lhYa5Rt67s3evZ/vDDvtcKAECgYhILvbZtmzRmjHTJJdI3vuGaJu3K0KHSokXdhzlJWriw/f1550nf+lbfagUAIJBxDx16bdo0adeu9va6ddLKld47/5/+JFVWStdeK119tffOCwBAoGHKFb3W1tZ1u69uvNH16ol//lN64QXXaN5NN0nBwd6tBQAAf8aUK3otN1caMsT1fupUaflyY+o4cUKaM0datkxaulS6/nrpHHaPAwDA9JhyRZ988YVUVydNnNj1U6u+VFXlCpRnqq6WLr7YkHIAAOh3TLmiT0aOdL2MruFrX3ON1EmuJ2qHDze2JgAA+hNTrjC9Cy+U/uu/XEunxMRIhYWS1Wp0VQAA9B+mXAEAAEyOETp4KC2Vbr9dWr1aamkxuhoAANAT3EMHtz17pOuuk1pbXe2//10qKjK2JgAA0D1G6OD25pvtYU5y7QQBAAD8H4EObgkJnvuxTptmXC0AAKDnmHKFW0KCa4r16ael0aOlRx81uiIAANATPOUKAABgcky5AgAAmByBDgAAwOQIdAAAACZHoDOhY8ekt96S9u83uhIAAOAPCHQm09goXXGFNGOGNH689OqrRlcEAACMRqAzmaeflj76yPXe4ZAeeqj7n3nlFenJJ6W6Ot/WBgAAjEGgM5mQkK7bX7VqlZSRIWVlSUlJUn29z0oDAAAGIdD5gdZW1wjaL37RfeC64w5p5kzX+xEjpLVruz7+6afb3x84IG3Z0rdaAQCA/2GnCD/w7W+33wv3xBNSRYV0wQWdHzt0qFRaKh08KA0f3v0I3Zgx0pEj7e2LLvJGxQAAwJ8wQmewY8c8H2z49FPp7be7/hmLRbrwwu7DnCRt2uR6iGL0aOk//kOaM6dP5QIAAD/ECJ3BBg92ha3TDywEBUkXX+y9819+ubR7t/fOBwAA/A8jdAazWFwjdFddJU2ZIv3hD9LEiUZXBQAAzMTidDqdRhfhTXa7XVarVU1NTQoLCzO6HAAAAJ9jhA4AAMDkCHQAAAAmR6ADAAAwOb8MdAsXLtTw4cO1aNEio0sBAADwe34Z6O655x49++yzRpfRJy0t0rvvei7qCwAA4At+GehSU1M1bNgwo8votZoa1xIk8fHS+PFSebnRFQEAgEB2zoGutLRU8+fPV1RUlCwWi4qLizscs2HDBsXExCg0NFSJiYnavn27N2o1jXXrpM8+c70/fNi1QwMAAICvnHOga2lpUVxcnPLy8jr9vLCwUCtXrtTq1atVUVGhlJQUpaenq6amxn1MYmKiYmNjO7wOHDjQ+9/EjwQFdd0GAADwpj4tLGyxWFRUVKSMjAx33/Tp05WQkKD8/Hx336RJk5SRkaHc3Nwen7ukpER5eXl66aWXujzO4XDI4XC423a7XdHR0YYuLFxfL11zjbR3r2vPVZtNio01pBQAADAAePUeutbWVpWXlystLc2jPy0tTWVlZd78Krfc3FxZrVb3Kzo62iffcy4uvFB67z3pH/+QPvmEMAcAAHzLq4GusbFRbW1tioyM9OiPjIxUfX19j88zd+5cLV68WJs3b9aYMWO0c+fOsx6bk5OjpqYm96u2trbX9XtTcLB0ySXS4MFGVwIAAALdIF+c1GKxeLSdTmeHvq5s2bKlx8eGhIQoJCSkx8cDAAAEGq+O0EVERCgoKKjDaFxDQ0OHUTtfqKqS7rzT9f4cBgQBAABMzauBLjg4WImJibLZbB79NptNycnJ3vyqDr74wvUgwqZNrvaCBVLvH/cAAAAwj3Oecm1ubta+ffvc7erqalVWVio8PFxjx45Vdna2lixZoqSkJM2YMUMFBQWqqalRVlaWVwv/qr//3bXm22l790qHDkkRET79WgAAAMOd87IlJSUlSk1N7dCfmZmpjRs3SnItLLxmzRrV1dUpNjZW69at06xZs7xS8NkcPChddpl05IhdklXjxzfpo4/CdJ5f7oUBAADgPX1ah87flJdLubl2vfyyVe+/36QpU4xZhw4AAKA/BVSgk1wLC1utVkMXFgYAAOhPTEgCAACYHIHuHLz3nlRZaXQVAAAAngh0PXTXXVJcnHTFFdLy5UZXAwAA0I576HqgpkYaN86z78MPpYkTvXJ6AACAPmGErgeCg6Wv7lzGbmMAAMBfEOh64MILpdzc9lD3H/8hXXyxoSUBAAC4MeV6Do4ccW0nNny4V08LAADQJ+e89ddAdsEFRlcAAADQEVOuAAAAJkegAwAAMDkCHQAAgMkR6AAAAEyOQAcAAGByBDoAAACTI9ABAACYHIEOAADA5Ah0AAAAJkegAwAAMDkCHQAAgMkR6AAAAEyOQAcAAGByg4wuwEh//av0zjtSSoo0c6bR1QAAAPTOgA10mzZJt97qen/eedKf/yzNm2dsTQAAAL0xYKdcCwvb3586Jb3wgnG1AAAA9MWAHaF75RWjKwAAAPAOi9PpdBpdhDc5nU4dPXpUw4YNk8ViMbocAAAAnwu4QAcAADDQDNh76AAAAAIFgQ4AAMDkCHQAAAAmR6ADAAAwOQIdAACAyRHoAAAATI5ABwAAYHIEOgAAAJMj0AEAAJgcgQ4AAMDkBhldQE+c3p8VAABgoOnJ/vSmCHRHjx6V1Wo1ugwAAIB+19TUpLCwsC6PsTidTmc/1dNr/jJCZ7fbFR0drdra2m7/h4X/43oGDq5lYOF6Bg6upXcEzAidxWLxq/8jhIWF+VU96BuuZ+DgWgYWrmfg4Fr6Hg9FAAAAmByBDgAAwOQIdOcgJCREDz30kEJCQowuBV7A9QwcXMvAwvUMHFzL/mOKhyIAAABwdozQAQAAmByBDgAAwOQIdAAAACZHoAMAADA5Al0P5Obmatq0aRo2bJhGjRqljIwM7d271+iy0AOlpaWaP3++oqKiZLFYVFxc7P7sxIkTeuCBB3T55Zdr6NChioqK0tKlS3XgwAHjCsZZdfd3yPU0l/z8fE2dOtW94OyMGTP02muvSeJaml1ubq4sFotWrlwpievZXwh0PbBt2zbdddddeuutt2Sz2XTy5EmlpaWppaXF6NLQjZaWFsXFxSkvL6/DZ8eOHdPu3bv14IMPavfu3frTn/6kjz76SAsWLDCgUnSnu79Drqe5jBkzRo899ph27dqlXbt2afbs2frWt76lPXv2cC1NbOfOnSooKNDUqVPdfVzPfuLEOWtoaHBKcm7bts3oUnAOJDmLioq6POadd95xSnJ+9tln/VMUeq0nf4dcT3MZPny486mnnur0M66l/zt69KhzwoQJTpvN5rz66qud995771mP5Xp6HyN0vdDU1CRJCg8PN7gSeFtTU5MsFosuuOACo0tBN3ryd8j1NIe2tjY9//zzamlp0YwZMzo9hmvp/+666y5df/31mjNnTrfHcj29b5DRBZiN0+lUdna2Zs6cqdjYWKPLgRcdP35cP/7xj3XLLbewibSf68nfIdfT/1VVVWnGjBk6fvy4zj//fBUVFWny5MkdjuNa+r/nn39eu3fv1s6dO7s9luvpGwS6c/TDH/5Q7733nt544w2jS4EXnThxQjfffLNOnTqlDRs2GF0OutHd3yHX0xwmTpyoyspKHTlyRC+//LIyMzO1bds2j1DHtfR/tbW1uvfee/X6668rNDS0y2O5nr7D1l/n4O6771ZxcbFKS0sVExNjdDk4RxaLRUVFRcrIyPDoP3HihL7zne/ok08+0d/+9jeNGDHCmALRI939HXI9zWvOnDkaP368nnzySUlcS7MoLi7WwoULFRQU5O5ra2uTxWLReeedJ4fDoaCgIK6njzFC1wNOp1N33323ioqKVFJSQpgLIKf/A/Pxxx9r69at/AfGj/Xk75DraW5Op1MOh0MS19JMrr32WlVVVXn0fe9739Nll12mBx54wCPMcT19h0DXA3fddZc2bdqkV155RcOGDVN9fb0kyWq1avDgwQZXh640Nzdr37597nZ1dbUqKysVHh6uqKgoLVq0SLt379arr76qtrY297UNDw9XcHCwUWWjE939HZ48eZLraSI/+clPlJ6erujoaB09elTPP/+8SkpK9Je//IVraTLDhg3rcC/r0KFDNWLECMXGxnI9+4uBT9iahqROX88884zRpaEbW7du7fTaZWZmOqurq896bbdu3Wp06fiK7v4OuZ7mcvvttzvHjRvnDA4Odo4cOdJ57bXXOl9//XWn08m1DARnLlvC9ewf3EMHAABgcqxDBwAAYHIEOgAAAJMj0AEAAJgcgQ4AAMDkCHQAAAAmR6ADAAAwOQIdAACAyRHoAAAATI5ABwAAYHIEOgAAAJMj0AEAAJgcgQ4AAMDk/j9/koVBOpu2PQAAAABJRU5ErkJggg==", + "text/plain": [ + "Graphics object consisting of 1 graphics primitive" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "********************************************************************************\n", + "Power series at Vertex 1 of polygon 2\n", + "Power series: 0.03962696661020537 + 0.013105193982045071*I + (0.0004047525736737061 + 0.0005687454665849342*I)*z1 + (7.927021554439065e-05 - 0.01365983485648687*I)*z1^2 + (-0.07686570995728084 + 0.10462018730320215*I)*z1^3 + (0.5816919482019224 - 0.18549241778181425*I)*z1^4 + (-1.0183854919658548 - 0.3383356796511043*I)*z1^5 + (-0.48220315218162246 - 0.6602236987178735*I)*z1^6 + (-0.008698731911758193 + 4.418953241991311*I)*z1^7 + (9.351219585906803 - 12.86542360819231*I)*z1^8 + (-31.240753622001968 + 10.4754527785256*I)*z1^9 + (23.165922904623812 + 5.395724018187037*I)*z1^10 + (-7.813242824170581 + 5.104634282019587*I)*z1^11 + (58.023211888956986 + 417.1635491683678*I)*z1^12 + (1653.328452300989 - 2923.036226863338*I)*z1^13 + (-15418.50782251449 + 6995.142640160614*I)*z1^14 + (69230.22550871974 + 15006.46921630137*I)*z1^15 + (-182914.56459924497 - 216892.8035738013*I)*z1^16 + (42772.175650655176 + 1260204.0868065374*I)*z1^17 + (4353149.034845048 - 6199552.110563924*I)*z1^18 + (-52002725.98090961 + 18780201.08690236*I)*z1^19 + (364431705.71484905 + 94549917.37910567*I)*z1^20 + (-1396237621.5900888 - 1591756897.9830675*I)*z1^21 + (1242141415.3857143 + 9182225813.496126*I)*z1^22 + (10116718021.899105 - 24655966352.414276*I)*z1^23 + (24907068215.604767 + 18455341804.204887*I)*z1^24 + (-834782805327.9172 - 339609292722.4559*I)*z1^25 + (4703726041850.886 + 6288159962627.907*I)*z1^26 + (-3192030593769.3384 - 46932536656199.18*I)*z1^27 + (-94599915491740.36 + 179869932058281.6*I)*z1^28 + (323481376139234.2 - 303553076721753.4*I)*z1^29 + (2541070565346227.5 + 1767717428857827.2*I)*z1^30 + (-2.384666906227862e+16 - 3.7065463725709656e+16*I)*z1^31 + (4851783042316304.0 + 3.445687089580052e+17*I)*z1^32 + (1.0959464833954391e+18 - 1.715874358372165e+18*I)*z1^33 + (-8.909411499934279e+18 + 3.928811298259652e+18*I)*z1^34 + (3.76500199811273e+19 + 6.341592448740794e+18*I)*z1^35 + (-8.957608928697673e+19 - 8.042500044881913e+19*I)*z1^36 + (9.157138258582733e+19 + 2.6991206843750266e+20*I)*z1^37 + (-2.962055778021626e+19 - 4.091391229708399e+20*I)*z1^38 + (8.22492906667656e+20 + 3.2321382714193235e+20*I)*z1^39 + (-4.561271708138317e+21 - 2.1301018063739072e+21*I)*z1^40 + (9.296142022741377e+21 + 1.08599475395796e+22*I)*z1^41 + (-8.179571330533686e+21 - 1.846117959981401e+22*I)*z1^42 + (3.388830678302479e+22 - 6.063871682774122e+21*I)*z1^43 + (-1.922490627257996e+23 + 1.6599311522556275e+22*I)*z1^44 + (4.4177446036804785e+23 + 1.9498717366525785e+23*I)*z1^45 + (-3.992951194622708e+23 - 5.9052038324165746e+23*I)*z1^46 + (1.0241536704894535e+22 + 6.088760116332556e+23*I)*z1^47 + (1.2615195948062235e+23 - 1.986988396786127e+23*I)*z1^48 + O(z1^49)\n", + "Absolute values of the coefficients:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHWCAYAAAD+VRS3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0uUlEQVR4nO3df1zV9d3/8ecRA8zkKKJMEozKTCMhD2bwFQtreFFpuH7Y5TWkle1yV6uMtZXz2vad+zZabWW7SBZrG1drJemCWrGMVYrJVQpK6WoWi4ISJMg4QnlQON8/zuWhI4j8OIfP+ZzzuN9u57bzfp8Pn/Nin1jPvd+fz/ttcTqdTgEAAMC0RhldAAAAAIaHQAcAAGByBDoAAACTI9ABAACYHIEOAADA5Ah0AAAAJkegAwAAMDkCHQAAgMkFXKBzOp2y2+1ivWQAABAsAi7QHT58WFarVYcPHza6FAAAYDIxMZLF0vPasOHkxx44IE2e3HNsdvbI1XmigAt0AAAAx3V3S6tWSWecIV14ofTuu/0fP3Nm/+2v2rZN+vTTnvbmzUOvc7gIdAAAIGA9/bT02GNSR4e0b5+0cmX/xz/5pHTttdK8eVJBgZSefvJjzz3XNTJ33PTp3ql5KEYb99UAAAC+1dzcf/tEU6YMfKRt7lypsFD6r/+SoqJcAdAoFmeAPT1gt9tltVrV1tamiIgIo8sBAAAGamhwBa+DB13thx6S7rrL2Jp8gRE6AAAQsGJjpT17pFdekc46S5o/39h6Dh50hcxZs6TTT/feeRmhAwAAGAGvvCItWSJ98YXrfrvXX3c9JesNhj0U0dDQoMsuu0yzZs3S7NmztWnTJkmuZUfmzp2rpKQkXXjhhfrtb39rVIkAAMAPVVVJSUnStGmu+9fM4sc/doU5SXr/fek3v/HeuQ0boWtsbNTBgweVlJSk5uZmzZkzR/v371d4eLgcDodOP/10ffHFF0pISNCuXbs0ceLEAZ2XEToAAAJbXJxr2vK4qirJZjOunoG67DLXUifH/fzn0po13jm3YSN0U6ZMUVJSkiRp8uTJioyM1GeffaaQkBCd/r+TykeOHFFXVxe7PgAAAEmudeUOHPDs+/hjY2oZrAcfdD0NK0nJydJ//If3zj3kQFdRUaHFixcrJiZGFotFpaWlvY7ZsGGD4uPjFR4eLpvNpu3bt/d5rqqqKnV3dys2NlaS9PnnnysxMVFTp07VD37wA0Ud/+0BAEBQGzVK+uY3e9pnnSUtWGBYOYMyd65rZLG+XnrzTclq9d65hxzoOjo6lJiYqPz8/D4/Ly4u1urVq7V27Vrt2bNHaWlpyszMVH19vcdxra2tWrFihQoLC91948eP11tvvaW6ujo99dRTOnj8WWMAABD0fv9714LBGzZIO3dKEyYYXdHAhYe7nrwd5eU5Uq/cQ2exWFRSUqKsrCx337x58zRnzhwVfGWVvZkzZyorK0t5eXmSJIfDoa9//eu69dZblX2SDdC+853vaOHChbr++usHVAv30AEAgGDjk3voOjs7VV1drYyMDI/+jIwMVVZWSpKcTqduuukmLVy40CPMHTx4UHa7XZIrnFVUVGjGjBkn/S6HwyG73e7xAgAACCY+WVi4paVFXV1dio6O9uiPjo5WU1OTJGnHjh0qLi7W7Nmz3fff/fGPf1RnZ6duueUWOZ1OOZ1Offe739Xs2bNP+l15eXn66U9/6otfAwAAwBR8ulOE5as71so1Kne8b/78+eru7u7z52pqagb8HWvWrFFubq67bbfb3Q9XAAAABAOfBLqoqCiFhIS4R+OOa25u7jVqN1xhYWEKCwvz6jkBAADMxCf30IWGhspms6m8vNyjv7y8XKmpqb74SgAAgKA15BG69vZ21dbWutt1dXWqqalRZGSk4uLilJubq+zsbCUnJyslJUWFhYWqr6/XqlWrvFI4AAAIHJWV0ssvSwkJ0nXXGV2N+Qw50FVVVSk9Pd3dPn4fW05OjoqKirRs2TK1trZq3bp1amxsVEJCgsrKyjRt2rThVw0AAAJGRYW0cKHU1eVqP/SQdNddxtZkNobt5eorrEMHAIC5fO97rhB33Pz50kk2l8JJGLaXKwAAgCSdd55ne/p0Y+owMwIdAADwus2bXRvRR0S4tujqz7e/Ld1zjzR7trR8ufTwwyNTYyBhyhUAAHhVe7s0aZJ05IirPWqU9P770tlnG1tXIGOEDgAAnJLTKT3wgHTNNdIvfiGdZG8ASa5AdzzMSa5jDx3yfY3BzKc7RQAAgMDw8MOuaVFJev55KSREuvvuvo/92tekZcuk4mJX+9JLpcTEkakzWBHoAADAKe3c2X/7RE89JWVnS52d0lVXSaNJHD7FlCsAADilBQv6b59o1ChXkFu6VAoN9V1dcCEvAwCAU/qP/3CNsu3YIaWmSv/+70ZXhK/iKVcAAACTY8oVAADA5Ah0AAAEqVdekdLSXPuoVlUZXQ2GgylXAACC0MGD0jnnSB0drnZUlNTQIIWHG1sXhoYROgAAglB9fU+Yk6SWFtcL5kSgAwAgCM2a5RqhO85mk6ZMMa4eDA/LlgAAEITGjpVef136zW9c68Tddptr9weYE/fQAQAAmBxTrgAAACZHoAMAADA5Ah0AAIDJEegAAABMjkAHAABgcgQ6AAACSG2t9OKLrp0gEDwIdAAABIiyMumCC6Srr5YSEqT33jO6IowUAh0AAAHil7+UOjtd71tapN/+1th6MHIIdAAABIgT19Nnff3gQaADACBA/PKX0nnnud6np0t33WVsPRg57OUKAIAf6+qS9uyRrFZp+vT+jz33XGn/fsnhkMLCRqY++AdG6AAA8FPHjkmZmdLcudKMGdKvfjWwnyPMBR+L0+l0Gl2EN9ntdlmtVrW1tSmCmwcAACb20kuuQHdcaKj05ZfSKIZjcAL+kQAAYAQ1NUnf+IZ00UXSAw/0f2xoaO+2xeK72mBeBDoAAEbQLbdIJSVSTY10zz3S88+f/Nj0dOmmm1zvQ0Olxx4j0KFvBDoAAEbQ/v39t7/KYpH+8AepuVlqbZWWL/dtbTAvwwJdQ0ODLrvsMs2aNUuzZ8/Wpk2b3J+98MILmjFjhqZPn67HH3/cqBIBAPC6pUt73o8ZI/3Lv5z6ZyZNks44w3c1wfwMeyiisbFRBw8eVFJSkpqbmzVnzhzt379fYWFhmjVrll577TVFRERozpw5evPNNxUZGTmg8/JQBADAnzmd0hNPSHV1UlaWlJRkdEUIBIatQzdlyhRNmTJFkjR58mRFRkbqs88+U0NDgy644AKdeeaZkqQrr7xSW7Zs0b/+678aVSoAAP1yOqVPPpHGjz/1SJrFIuXkjEhZCCJDnnKtqKjQ4sWLFRMTI4vFotLS0l7HbNiwQfHx8QoPD5fNZtP27dv7PFdVVZW6u7sVGxurAwcOuMOcJE2dOlWffPLJUMsEAMCnOjtdS4vExkpf+5r0178aXRGC0ZADXUdHhxITE5Wfn9/n58XFxVq9erXWrl2rPXv2KC0tTZmZmaqvr/c4rrW1VStWrFBhYaEkqa8ZYAuP9AAA/FRxsbRli+t9R4d0++3G1oPgNOQp18zMTGV+dbXDEzz00EO65ZZbtHLlSknS+vXrtWXLFhUUFCgvL0+S5HA4tHTpUq1Zs0apqamSpDPPPNNjRO7jjz/WvHnzTvo9DodDDofD3bbb7UP9lQAAGLRjxzzbR48aUweCm0+ecu3s7FR1dbUyMjI8+jMyMlRZWSnJNRJ30003aeHChcrOznYfc/HFF2vfvn365JNPdPjwYZWVlWnRokUn/a68vDxZrVb3KzY21he/EgAAfbrhBtfWXJJ02mnS/fcbWw+Ck08CXUtLi7q6uhQdHe3RHx0draamJknSjh07VFxcrNLSUiUlJSkpKUl79+7V6NGj9atf/Urp6em66KKL9P3vf18TJ0486XetWbNGbW1t7ldDQ4MvfiUAAPo0dqz0+utSdbX0wQcSz/DBCD59yvXEe9+cTqe7b/78+eru7u7z55YsWaIlS5YM6DvCwsIUxi7EAAADhYZKc+YYXQWCmU9G6KKiohQSEuIejTuuubm516gdAAAAhscngS40NFQ2m03l5eUe/eXl5e6HHwAA8FedndIjj0j/+Z/9b80F+IshT7m2t7ertrbW3a6rq1NNTY0iIyMVFxen3NxcZWdnKzk5WSkpKSosLFR9fb1WrVrllcIBAPCVFStcy5FI0qOPSm+/7VpnDvBXQ976a+vWrUpPT+/Vn5OTo6KiIkmuhYUfeOABNTY2KiEhQQ8//LAWLFgwrIJPha2/AADDdfrp0pdf9rSffFL6t38zrh7gVAzby9VXCHQAgOGy2aTdu13vR42S3nxTSk42tiagPz65hw4AADP785+lq6+WLr5Y+sMfCHPwf4zQAQAAmBwjdAAAACZHoAMAADA5Ah0AAIDJ+XTrLwAA/EVVlVRWJp1/vnTDDUZXA3gXgQ4AEPB27pTS0lw7QEhSba30wx8aWxPgTUy5AgAC3gsv9IQ5Sdq82bhaAF8g0AEAAt6553q2zzvPmDoAX2HKFQAQ8FascE2zlpS47qF79FGjKwK8i4WFAQAATI4pVwAAAJMj0AEAAJgcgQ4AAMDkCHQAAAAmR6ADAJhWU5NUV2d0FYDxCHQAAFN6+GEpJkY6+2zp5puNrgYwFsuWAABM58svpTPOkLq7e/reeEOaN8+4mgAjMUIHAAgIgTU8AQwOgQ4AYDpjxkj33y9ZLK72N78pXXKJsTUBRmLKFQBgWh9/LH3xBXuzAuzlCgAwralTja4A8A9MuQIAAJgcgQ4AAMDkCHQAAAAmR6ADAAAwOQIdAACAyRHoAAB+4+23pYIC6c03ja4EMBeWLQEA+IVt26SMDKmzUxo1Stq0SfrGN4yuCjAHRugAAH7hj390hTnJtUdrUZGh5QCmQqADAPiFM8/svw3g5JhyBQD4hXvvlfbvl157TUpOln7+c6MrAszD0BG6pUuXasKECbruuuvcffv371dSUpL7NWbMGJWWlhpXJABgRIwZI23cKB08KL34ojRhgtEVAeZhcTqdTqO+/LXXXlN7e7v++7//W5s3b+71eXt7u8466yx99NFHGjt27IDOabfbZbVa1dbWpoiICG+XDAAA4HcMHaFLT0/XuHHjTvr5888/r8svv3zAYQ4AACAYDTnQVVRUaPHixYqJiZHFYulzWnTDhg2Kj49XeHi4bDabtm/fPqjveOaZZ7Rs2bKhlggAABAUhhzoOjo6lJiYqPz8/D4/Ly4u1urVq7V27Vrt2bNHaWlpyszMVH19/YDOb7fbtWPHDl155ZVDLREAACAoDPkp18zMTGVmZp7084ceeki33HKLVq5cKUlav369tmzZooKCAuXl5Z3y/M8995wWLVqk8PDwfo9zOBxyOBzutt1uH+BvAAAAEBh8cg9dZ2enqqurlZGR4dGfkZGhysrKAZ1joNOteXl5slqt7ldsbOyQagYAADArnwS6lpYWdXV1KTo62qM/OjpaTU1N7vaiRYt0/fXXq6ysTFOnTtWuXbskSW1tbdq5c6cWLVp0yu9as2aN2tra3K+Ghgbv/jIAAAB+zqcLC1ssFo+20+n06NuyZUufP2e1WnXw4MEBfUdYWJjCwsKGXiQAAIDJ+WSELioqSiEhIR6jcZLU3Nzca9QOABC4tm6VUlJcr4oKo6sBApdPAl1oaKhsNpvKy8s9+svLy5WamuqLrwQA+JlDh6QlS6Q33nC9Fi+W2tqMrgoITEOecm1vb1dtba27XVdXp5qaGkVGRiouLk65ubnKzs5WcnKyUlJSVFhYqPr6eq1atcorhQMA/Ftjo3T4cE/bbpeamiSr1biagEA15EBXVVWl9PR0dzs3N1eSlJOTo6KiIi1btkytra1at26dGhsblZCQoLKyMk2bNm34VQMA/N6550qzZ0tvv+1qJyVJZ59taElAwDJ0L1dfYC9XAPAfhw5JhYWSxSJ9+9vS+PFGVwQEJgIdAACAyfnkoQgAAACMHAIdAACAyRHoAAAATI5ABwAAYHIEOgAAAJMj0AEAAJgcgQ4AAMDkCHQAAAAmR6ADAAAwOQIdAACAyRHoAAAATI5ABwAYlE8+kV55Rfr0U6MrAXAcgQ4AMGDbt0szZkhXXCHNmiW9+67RFQGQCHQAgEF48EGpo8P1vqVFys83th4ALgQ6AMCAjR3bfxuAMQh0AIABu+8+6dxzXe9tNumee4ytB4DLaKMLAACYx9lnS++9J9ntktVqdDUAjmOEDgAwKBYLYQ7wNwQ6AAAAkyPQAQAAmByBDgAAwOQIdAAAACZHoAMAADA5Ah0AAIDJsQ4dAAS5zz+XnnnGtevDjTdKISFGVwRgsAh0ABDE2tul1FTp3Xdd7dJSadMmQ0sCMARMuQJAEHvzzZ4wJ0mbN7tCHgBzIdABQBCLiZFGfeXfBBMnSqefblw9AIaGQAcAQWzmTOmxx6S4OGnWLNeU6yj+zQCYjsXpdDqNLsKb7Ha7rFar2traFBERYXQ5AGCIDz6QPvxQstnYdxUIBob+/7ClS5dqwoQJuu6663p99sUXX2jatGm6++67DagMAMyrpEQ6/3zp8sulxESpsdHoigD4mqGB7o477tATTzzR52f33Xef5s2bN8IVAYD53XefdPSo6/1HH0m//72x9QDwPUMDXXp6usaNG9er//3339c//vEPXXnllQZUBQDmNnZs/20AgWfIga6iokKLFy9WTEyMLBaLSktLex2zYcMGxcfHKzw8XDabTdu3bx/Que+++27l5eUNtTQACGqPPCJNmeJ6f/nl0r//u7H1APC9IQe6jo4OJSYmKj8/v8/Pi4uLtXr1aq1du1Z79uxRWlqaMjMzVV9f3+95n3vuOZ133nk677zzhloaAAS1pCTp44+ltjbpb3+TxowxuiIAvjbknSIyMzOVmZl50s8feugh3XLLLVq5cqUkaf369dqyZYsKCgr6HX174403tHHjRm3atEnt7e06evSoIiIi9OMf/3iopQJA0Bk1SuJBfyB4+GTrr87OTlVXV+vee+/16M/IyFBlZWW/P5uXl+cOfEVFRdq3b1+/Yc7hcMjhcLjbdrt9GJUDAACYj08eimhpaVFXV5eio6M9+qOjo9XU1ORuL1q0SNdff73Kyso0depU7dq1a9DflZeXJ6vV6n7FxsYOu34AAAAz8ckI3XEWi8Wj7XQ6Pfq2bNnS78/fdNNNp/yONWvWKDc319222+2EOgAAEFR8EuiioqIUEhLiMRonSc3Nzb1G7YYrLCxMYWFhXj0nAPibqiqpqEiKjpbuvpsHHQB48kmgCw0Nlc1mU3l5uZYuXeruLy8v1zXXXOOLrwSAgPX++9Kll0pffOFq797t2g0CAI4bcqBrb29XbW2tu11XV6eamhpFRkYqLi5Oubm5ys7OVnJyslJSUlRYWKj6+nqtWrXKK4UDQLCorOwJc5JUXm5cLQD805ADXVVVldLT093t4/ex5eTkqKioSMuWLVNra6vWrVunxsZGJSQkqKysTNOmTRt+1QAQRGbPlkJCpK4uV3vOHGPrAeB/LE6n02l0Ed5kt9tltVrV1tamCBZhAhAgnn1WKiyUJk+WHnhA+trXjK4IgD8h0AEAAJicT9ahAwAAwMgh0AEAAJgcgQ4AAMDkCHQAAAAmR6ADAAAwOQIdAACAyRHoAMAABw9Ky5dLl10mPfmk0dUAMDuf7OUKAOjf8uXSq6+63ldUSGefLaWmGlsTAPNihA4ADPDWWz3vnU5p3z7jagFgfgQ6ADBAZmbP+zFjpAULjKsFgPkx5QoABvjd76TEROnAAenf/k06/3yjKwJgZuzlCgAAYHJMuQIAAJgcgQ4AAMDkCHQAAAAmR6ADAAAwOQIdAACAyRHoAAAATI5ABwAAYHIEOgAAAJNjpwgA8JL9+6UXX5TOOUe65hqjqwEQTAh0AOAF774rXXyx1N7uav/sZ9J//qexNQEIHky5AoAXPPdcT5iTpCefNK4WAMGHQAcAXnDWWf23AcCXmHIFAC+48UbprbekjRtd99A9/rjRFQEIJhan0+k0ughvstvtslqtamtrU0REhNHlAAAA+BxTrgAAACZHoAMAADA5Ah0AAIDJEegAAABMjkAHAABgcoYGuqVLl2rChAm67rrrBtQPAACA3gwNdHfccYeeeOKJAfcDAACgN0MDXXp6usaNGzfgfgAAAPQ25EBXUVGhxYsXKyYmRhaLRaWlpb2O2bBhg+Lj4xUeHi6bzabt27cPp1YAAAD0YciBrqOjQ4mJicrPz+/z8+LiYq1evVpr167Vnj17lJaWpszMTNXX1w+5WAAAAPQ25L1cMzMzlZmZedLPH3roId1yyy1auXKlJGn9+vXasmWLCgoKlJeXN9Sv7cXhcMjhcLjbdrvda+cGAAAwA5/cQ9fZ2anq6mplZGR49GdkZKiystKr35WXlyer1ep+xcbGevX8AAAA/s4nga6lpUVdXV2Kjo726I+OjlZTU5O7vWjRIl1//fUqKyvT1KlTtWvXrn77+7JmzRq1tbW5Xw0NDb74lQAAAPzWkKdcB8JisXi0nU6nR9+WLVv6/LmT9fclLCxMYWFhQysQAAAgAPhkhC4qKkohISEeo3GS1Nzc3GvUDgAAAMPjk0AXGhoqm82m8vJyj/7y8nKlpqb64isBAACC1pCnXNvb21VbW+tu19XVqaamRpGRkYqLi1Nubq6ys7OVnJyslJQUFRYWqr6+XqtWrfJK4QAwEj7+WGpvl2bMkE64iwQA/MaQA11VVZXS09Pd7dzcXElSTk6OioqKtGzZMrW2tmrdunVqbGxUQkKCysrKNG3atOFXDQBD9OWXUm2tFBcnWa39H5ufL915p9TdLS1dKm3eLI0ydH8dAOibxel0Oo0uwpvsdrusVqva2toUERFhdDkA/MiBA9KCBdI//ylNmCBt2SLNndv3sV1d0umnS52dPX1/+5t0+eUjUysADAb/XxNA0HjkEVeYk6RDh6Sf/KT/40+cYmXKFYC/ItABCBonBrL+pk9DQqRf/9r1n5J0443SV+4yAQC/wpQrgKBx8KB06aXS/v3SpEmuKdeLLur/Z5qbpY4OKT5+ZGoEgKHw6cLCAOBPoqOlt9+WPvpIiomRxo499c9Mnuz7ugBguAh0AIJKaKg0fbrRVQCAd3EPHQDTe/996d13ja4CAIxDoANgavfcI513njRrlnTrrUZXAwDG4KEIAKbV1CRNmeLZ9/e/u8IdAAQTRugAmFZISO+lSEZzZzCAIESgA2BakyZJP/95T6j7/vdd068AEGyYcgVgep9+Kh071nv6FQCCBZMTAExv0iSjKwAAYzHlCgAAYHIEOgAAAJMj0AEAAJgcgQ6A3/mf/5EeeUTaudPoSgDAHHgoAoBfKS2Vrr1W6u52rTP3l79ImZlGVwUA/o0ROgB+5U9/coU5Serqkp56yth6AMAMCHQA/EpcXP9tAEBvTLkC8Cs//anU0OC6jy4tTVq71uiKAMD/sVMEAACAyTHlCgAAYHIEOgAAAJMj0AEAAJgcgQ4AAMDkCHQAAAAmR6ADMCK6unoWDAYAeBeBDoDP/eIXUni4NG6caycIAIB3sQ4dAJ/av186//yedmio9Nln0tixxtUEAIGGEToAPtXW5tnu7JS+/NKYWgAgUBHoAPiUzSZlZPS0V66UoqKMqwcAAhF7uQLwqZAQ6cUXpVdflcLCpEsvNboiAAg8fjlC9/DDD+uCCy7QrFmzdMcddyjAbvMDgs7o0a5ROsIcAPiG3wW6Tz/9VPn5+aqurtbevXtVXV2tN954w+iyAAAA/JZfTrkeO3ZMR44ckSQdPXpUkydPNrgiAAAA/+X1EbqKigotXrxYMTExslgsKi0t7XXMhg0bFB8fr/DwcNlsNm3fvt392aRJk3T33XcrLi5OMTExuuKKK3TOOed4u0wAAICA4fVA19HRocTEROXn5/f5eXFxsVavXq21a9dqz549SktLU2Zmpurr6yVJhw4d0gsvvKAPP/xQn3zyiSorK1VRUeHtMgEAAAKGTxcWtlgsKikpUVZWlrtv3rx5mjNnjgoKCtx9M2fOVFZWlvLy8rRp0yZt3bpVjz76qCTpwQcflNPp1A9+8IM+v8PhcMjhcLjbdrtdsbGxLCwMAACCxog+FNHZ2anq6mplfHVRKkkZGRmqrKyUJMXGxqqyslJHjhxRV1eXtm7dqhkzZpz0nHl5ebJare5XbGysT38HAAAAfzOiga6lpUVdXV2Kjo726I+OjlZTU5Mk6ZJLLtGVV16piy66SLNnz9Y555yjJUuWnPSca9asUVtbm/vV0NDg098BgMtbb0nFxdLHHxtdCQDAkKdcLRaLR9vpdHr03XfffbrvvvsGdK6wsDCFhYV5tT4A/XvmGWn5cqmrSxo/XqqslGbONLoqAAheIzpCFxUVpZCQEPdo3HHNzc29Ru0A+K//+i9XmJOkzz+XnnjC0HIAIOiNaKALDQ2VzWZTeXm5R395eblSU1NHshQAwzBxYv9tAMDI8vqUa3t7u2pra93turo61dTUKDIyUnFxccrNzVV2draSk5OVkpKiwsJC1dfXa9WqVd4uBYCPrF8v1ddL+/ZJV10l3X670RUBQHDz+rIlW7duVXp6eq/+nJwcFRUVSXItLPzAAw+osbFRCQkJevjhh7VgwQKvfL/dbpfVamXZEgAAEDR8ug6dEQh0AAAg2IzoPXQAAADwPgIdAACAyRHoAAAATI5ABwAAYHIEOgAAAJMj0AEAAJgcgQ6AJNdWXjU10ocfGl0JAGCwCHQAdOyYlJkpXXSRdM450qOPGl0RAGAwCHQA9NJL0vEtlru7pR/8wNh6AACDQ6ADoNNO82yP9vouzwAAXyLQAVBGhnTjja73oaFSQYGx9QAABoe9XAG4HTggjR0rWa1GVwIAGAwmVgC4xcQYXQEAYCiYcgUAADA5Ah0AAIDJEegAAABMjkAHAABgcgQ6AAAAkyPQAQGsslJ6+mmpudnoSgAAvsSyJUCAWr9euusu1/uYGGnXLpYlAYBAxQgdEKB+/eue9wcOSJs3G1cLAMC3CHRAgIqK8mxPmmRMHQAA3yPQAQHqd7+TZsyQxoyRbr1VWrbM6IoAAL7CPXRAgLrwQukf/zC6CgDASGCEDgAAwOQIdAAAACZHoAMAADA5Ah0AAIDJ8VAEYCLvvCM9+6wUGyutWCFZLEZXBADwBwQ6wCTee0+aN09qb3e1a2qkhx82tCQAgJ9gyhUwiS1besKcxM4PAIAefhnoRo8eraSkJCUlJWnlypVGlwP4hXPP9WxPn25MHQAA/+OXU67jx49XTU2N0WUAfiUzU3rwQemJJ1z30D32mNEVAQD8hcXpdDqNLuJEUVFRamlpGdLP2u12Wa1WtbW1KSIiwsuVAQAA+B+vT7lWVFRo8eLFiomJkcViUWlpaa9jNmzYoPj4eIWHh8tms2n79u0en9vtdtlsNs2fP1/btm3zdokAAAABxeuBrqOjQ4mJicrPz+/z8+LiYq1evVpr167Vnj17lJaWpszMTNXX17uP+fDDD1VdXa3f/OY3WrFihex2u7fLBAAACBg+nXK1WCwqKSlRVlaWu2/evHmaM2eOCgoK3H0zZ85UVlaW8vLyep0jMzNTP/vZz5ScnDyg72TKFQAABJsRfcq1s7NT1dXVysjI8OjPyMhQZWWlJOnQoUNyOBySpI8//ljvvPOOzj777JOe0+FwyG63e7wAM9mxQ3r+ec8lSQAAGIwRDXQtLS3q6upSdHS0R390dLSampokSe+++66Sk5OVmJioq6++Wo888ogiIyNPes68vDxZrVb3KzY21qe/A+BNP/qRNH++dM01UmoqoQ4AMDSGLFtiOWG/IqfT6e5LTU3V3r17B3yuNWvWKDc319222+2EOpjGL3/Z837vXtfiwddea1w9AABzGtFAFxUVpZCQEPdo3HHNzc29Ru0GKiwsTGFhYd4oDxhxEyZIjY2ebQAABmtEp1xDQ0Nls9lUXl7u0V9eXq7U1NSRLAXwC08+KU2eLJ12mvS970kLFxpdEQDAjLw+Qtfe3q7a2lp3u66uTjU1NYqMjFRcXJxyc3OVnZ2t5ORkpaSkqLCwUPX19Vq1apW3SwH83sKF0sGDUne3NMovN+IDAJiB1wNdVVWV0tPT3e3j97fl5OSoqKhIy5YtU2trq9atW6fGxkYlJCSorKxM06ZN83YpgGkQ5gAAw+GXW38NB+vQAQCAYMO4AAAAgMkR6AAAAEyOQAd4UXe3dNdd0rnnSosXS59+anRFAIBgQKADvOjxx6X166V//lN64QXpjjuMrggAEAwIdIAX1dX13wYAwBcIdIAXfeMb0lc3Llm+3LhaAADBw5C9XIFANXeu9Oab0ssvS7NmSVddZXRFAIBgwDp0AAAAJseUKwAAgMkR6AAAAEyOQAcAAGByBDoAAACTI9ABA9DQINXWGl0FAAB9I9ABp5CXJ8XFSdOnSzffbHQ1AAD0xrIlQD8OH5asVumrfyVVVZLNZlxNAACciBE6YJAsFqMrAADAE4EO6Me4cdL99/eEuFtvlebMMbYmAABOxJQrMAAHDkgOhxQfb3QlAAD0xl6uwADExBhdAQAAJ8eUKwAAgMkR6AAAAEyOQAcAAGByBDoAAACTI9ABAACYHIEOAADA5Ah0AAAAJsc6dAhKb74p7dghXXyxNH++0dUAADA8BDoEnZdekq6+Wurqcm3ptWmTdO21RlcFAMDQMeWKoPP0064wJ0lOp/SnPxlbDwAAw0WgQ9CZNq3/NgAAZsOUK4LOmjXShx9KFRXSvHnSz35mdEUAAAyPxel0Oo0uwpvsdrusVqva2toUERFhdDkAAAA+53dTrg0NDbrssss0a9YszZ49W5s2bTK6JAAAAL/mdyN0jY2NOnjwoJKSktTc3Kw5c+Zo//79Gjt27IB+nhE6AAAQbPzuHropU6ZoypQpkqTJkycrMjJSn3322YADHQAAQLDx+pRrRUWFFi9erJiYGFksFpWWlvY6ZsOGDYqPj1d4eLhsNpu2b9/e57mqqqrU3d2t2NhYb5cJAAAQMLwe6Do6OpSYmKj8/Pw+Py8uLtbq1au1du1a7dmzR2lpacrMzFR9fb3Hca2trVqxYoUKCwu9XSIAAEBA8ek9dBaLRSUlJcrKynL3zZs3T3PmzFFBQYG7b+bMmcrKylJeXp4kyeFw6Otf/7puvfVWZWdn9/sdDodDDofD3bbb7YqNjeUeOgAAEDRG9CnXzs5OVVdXKyMjw6M/IyNDlZWVkiSn06mbbrpJCxcuPGWYk6S8vDxZrVb3i+lZAAAQbEY00LW0tKirq0vR0dEe/dHR0WpqapIk7dixQ8XFxSotLVVSUpKSkpK0d+/ek55zzZo1amtrc78aGhp8+jsAAAD4G0OecrVYLB5tp9Pp7ps/f766u7sHfK6wsDCFhYV5tT4AAAAzGdERuqioKIWEhLhH445rbm7uNWoHAACAgRnRQBcaGiqbzaby8nKP/vLycqWmpo5kKQAAAAHD61Ou7e3tqq2tdbfr6upUU1OjyMhIxcXFKTc3V9nZ2UpOTlZKSooKCwtVX1+vVatWebsU+Jl9+6SCAmncOOmee6QJE4yuCACAwOD1QFdVVaX09HR3Ozc3V5KUk5OjoqIiLVu2TK2trVq3bp0aGxuVkJCgsrIyTZs2zdulwI80NkoLFkiHDrnaFRXS/z7YDAAAhsnv9nIdLvZy9U9//at05ZWefV9+KYWHn/xnXnlFqqmR0tOlOXN8Wh4AAKbmd3u5IjDNnCmNGeMKcZI0a1b/Ya6oSPrWt1zvTztN+tvfXCN8AACgtxF9KALB66yzpBdflK6+Wlq+3DVi158//ann/dGj0jPP+LQ8AABMjRE6DFlrq3THHVJtrXTDDdL3vtf/8enprtdAnHhL5VlnDalEAACCAoEOQ/btb0vPPut6v3OndPbZ0tKl3jn3gw+6AmNNjfT1r0t33umd8wIAEIgIdBiyd97p3fZWoJswQSop8c65AAAIdNxDhyFbsqTn/WmnSYsWGVeL0ynt2CG98YZxNQAAYBRG6DBk998vTZ8u/fOf0jXXSMnJxtThdEo33tjz4MTNN0u/+50xtQAAYATWoYPpvfOOdMEFnn319VJsrDH1AAAw0phyhemdfrpksfS0R41yrXkHAECwINDB9M46yzX9O2qUNHq09OtfS1FRRlcFAMDIYcoVHtrapFdflaZMkS65xOhqBufIEddIXViY0ZUAADCyGKGD26FD0ty50je+IaWkSL/4hdEVDU54OGEOABCcCHRwe+456f33e9q/+pVxtQAAgIEj0MFtwoT+2wAAwD8R6OC2ZIn0ne+4Hiw480ypqMjoigAAwEDwUAR6cTo9lwEBAAD+jRE69EKYAwDAXAh0AAAAJkegAwAAMDkCHQAAgMkR6Ezm2DFpxQrXXqWzZ3uuGwcAAIITgc5kfv976Y9/dG1ztXeva5mRUzl4UHr3Xamry/f1AQCAkUegM5lPP+2/faKnn5ZiY6VZs6SMDKmz03e1AQAAYxDo/MS+fdL//M+pR9GWL5eiolzvLRbpu9/t//jcXOnoUdf7V1+Vnn12+LUCAAD/QqDzAz/9qXThhVJqqnTVVf2Huvh46a23pKeekt54Q7r11v7PfeKacqwxBwBA4GGnCIM5HNLpp0vd3T19r74qpad75/ybNknf/KZrqjUjQ3rhBem007xzbgAA4B9GG11AsAsJkUJDXQ85HDdmjPfOf/310sKF0qFD0tlnS6MYkwUAIODwr3eDjR4t/fa3rlAnSbffLl1yiXe/Y+JE6dxzCXMAAAQqplz9xJdfuqZfx483uhIAAGA2TLn6iTFjvDvVCgAAggeTcAAAACZHoAMAADA5vwx0S5cu1YQJE3TdddcZXQoAAIDf88tAd8cdd+iJJ54wuoxhY+9UAAAwEvwy0KWnp2vcuHFGlzFkdrt0+eWuBXyTkqSGBqMrAgAAgWzQga6iokKLFy9WTEyMLBaLSktLex2zYcMGxcfHKzw8XDabTdu3b/dGrabx4IOu3R6cTtc2Xffea3RFAAAgkA060HV0dCgxMVH5+fl9fl5cXKzVq1dr7dq12rNnj9LS0pSZman6+nr3MTabTQkJCb1eBw4cGPpv4kcOHeq/DQAA4E3DWljYYrGopKREWVlZ7r558+Zpzpw5KigocPfNnDlTWVlZysvLG/C5t27dqvz8fG3evLnf4xwOhxwOh7ttt9sVGxtr6MLCe/dKaWlSW5trB4jnnpP+5V8MKQUAAAQBr95D19nZqerqamVkZHj0Z2RkqLKy0ptf5ZaXlyer1ep+xcbG+uR7BuPCC6V9+6SSEtd/EuYAAIAveTXQtbS0qKurS9HR0R790dHRampqGvB5Fi1apOuvv15lZWWaOnWqdu3addJj16xZo7a2NverwU+eQJg6VcrKkqZPN7oSAAAQ6Hyy9ZfFYvFoO53OXn392bJly4CPDQsLU1hY2ICPBwAACDReHaGLiopSSEhIr9G45ubmXqN2vtDUJD3wgOv9F1/4/OsAAAD8glcDXWhoqGw2m8rLyz36y8vLlZqa6s2v6sVul1JTpfvuc7WvvdanXwcAAOA3Bj3l2t7ertraWne7rq5ONTU1ioyMVFxcnHJzc5Wdna3k5GSlpKSosLBQ9fX1WrVqlVcLP1FNjVRX19OurJRaW6WJE336tQAAAIYbdKCrqqpSenq6u52bmytJysnJUVFRkZYtW6bW1latW7dOjY2NSkhIUFlZmaZNm+a9qvtw1llSWJh0fAWTSZOk8eN9+pUAAAB+YVjr0Pmbv/xF+r//167du63atq1NCxYYsw4dAADASAqoQCe5Fha2Wq2GLiwMAAAwkrz6UAQAAABGHoFuEJqbpYMHja4CAADAE4FugP7f/5Oio6WvfU1au9boagAAAHpwD90ANDZKMTGefR98IMXHe+X0AAAAw8II3QAcOzawPgAAACMQ6AYgNlZavbqnvWqVNH26YeUAAAB4YMp1EPbvl7q7pZkzvXpaAACAYRn0ThHBbMYMoysAAADojSlXAAAAkyPQAQAAmByBDgAAwOQIdAAAACZHoAMAADA5Ah0AAIDJEegAAABMjkAHAABgcgQ6AAAAkyPQAQAAmByBDgAAwOQIdAAAACZHoAMAADC50UYXYKRXX5V27pTS0qT/83+MrgYAAGBogjbQPf20tHy56/2oUdJf/iJdeaWxNQEAAAxF0E65btzY8767W9q0ybhaAAAAhiNoR+iee87oCgAAALzD4nQ6nUYX4U1Op1OHDx/WuHHjZLFYjC4HAADA5wIu0AEAAASboL2HDgAAIFAQ6AAAAEyOQAcAAGByBDoAAACTI9ABAACYHIEOAADA5Ah0AAAAJkegAwAAMDkCHQAAgMkR6AAAAExutNEFDMTx/VkBAACCzUD2pzdFoDt8+LCsVqvRZQAAAIy4trY2RURE9HuMxel0OkeoniHzlxE6u92u2NhYNTQ0nPK/WPg/rmfg4FoGFq5n4OBaekfAjNBZLBa/+gchIiLCr+rB8HA9AwfXMrBwPQMH19L3eCgCAADA5Ah0AAAAJkegG4SwsDD95Cc/UVhYmNGlwAu4noGDaxlYuJ6Bg2s5ckzxUAQAAABOjhE6AAAAkyPQAQAAmByBDgAAwOQIdAAAACZHoBuAvLw8zZ07V+PGjdPkyZOVlZWl/fv3G10WBqCiokKLFy9WTEyMLBaLSktL3Z8dPXpU99xzjy688EKNHTtWMTExWrFihQ4cOGBcwTipU/0dcj3NpaCgQLNnz3YvOJuSkqK//vWvkriWZpeXlyeLxaLVq1dL4nqOFALdAGzbtk233Xab3njjDZWXl+vYsWPKyMhQR0eH0aXhFDo6OpSYmKj8/Pxen33xxRfavXu3fvSjH2n37t169tln9d5772nJkiUGVIpTOdXfIdfTXKZOnar7779fVVVVqqqq0sKFC3XNNdfo73//O9fSxHbt2qXCwkLNnj3b3cf1HCFODFpzc7NTknPbtm1Gl4JBkOQsKSnp95idO3c6JTk/+uijkSkKQzaQv0Oup7lMmDDB+fjjj/f5GdfS/x0+fNg5ffp0Z3l5ufPSSy913nnnnSc9luvpfYzQDUFbW5skKTIy0uBK4G1tbW2yWCwaP3680aXgFAbyd8j1NIeuri5t3LhRHR0dSklJ6fMYrqX/u+2223TVVVfpiiuuOOWxXE/vG210AWbjdDqVm5ur+fPnKyEhwehy4EVHjhzRvffeq+XLl7OJtJ8byN8h19P/7d27VykpKTpy5IjOOOMMlZSUaNasWb2O41r6v40bN2r37t3atWvXKY/levoGgW6Qvvvd7+rtt9/W66+/bnQp8KKjR4/qxhtvVHd3tzZs2GB0OTiFU/0dcj3NYcaMGaqpqdHnn3+uP//5z8rJydG2bds8Qh3X0v81NDTozjvv1Msvv6zw8PB+j+V6+g5bfw3C7bffrtLSUlVUVCg+Pt7ocjBIFotFJSUlysrK8ug/evSobrjhBn3wwQd69dVXNXHiRGMKxICc6u+Q62leV1xxhc455xw99thjkriWZlFaWqqlS5cqJCTE3dfV1SWLxaJRo0bJ4XAoJCSE6+ljjNANgNPp1O23366SkhJt3bqVMBdAjv8PzPvvv6/XXnuN/4HxYwP5O+R6mpvT6ZTD4ZDEtTSTyy+/XHv37vXo+9a3vqXzzz9f99xzj0eY43r6DoFuAG677TY99dRTeu655zRu3Dg1NTVJkqxWq8aMGWNwdehPe3u7amtr3e26ujrV1NQoMjJSMTExuu6667R792698MIL6urqcl/byMhIhYaGGlU2+nCqv8Njx45xPU3khz/8oTIzMxUbG6vDhw9r48aN2rp1q1566SWupcmMGzeu172sY8eO1cSJE5WQkMD1HCkGPmFrGpL6fP3hD38wujScwmuvvdbntcvJyXHW1dWd9Nq+9tprRpeOE5zq75DraS4333yzc9q0ac7Q0FDnpEmTnJdffrnz5ZdfdjqdXMtA8NVlS7ieI4N76AAAAEyOdegAAABMjkAHAABgcgQ6AAAAkyPQAQAAmByBDgAAwOQIdAAAACZHoAMAADA5Ah0AAIDJEegAAABMjkAHAABgcgQ6AAAAkyPQAQAAmNz/B/0ilg1sKYY3AAAAAElFTkSuQmCC", + "text/plain": [ + "Graphics object consisting of 1 graphics primitive" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "********************************************************************************\n" + ] + } + ], + "source": [ + "for v in S.vertices():\n", + " if v.angle() != 1: continue\n", + " print(f\"Power series at {v}\")\n", + " series = f.series(v)\n", + " print(f\"Power series: {series}\")\n", + " print(\"Absolute values of the coefficients:\")\n", + " list_plot([abs(c) for c in series.coefficients()], ticks=[[2 + n * 10 for n in range(20)], None], scale=\"semilogy\").show()\n", + " print(\"*\" * 80)" + ] + }, + { + "cell_type": "markdown", + "id": "e9206fb1-e7bb-4681-8ed5-b38b9ec128eb", + "metadata": {}, + "source": [ + "At the singular points, the series use coordinates on a different chart, namely after taking a 13th and 3rd root respectively:" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "3514063a-7fa2-4302-a320-3fd2b71d2cf9", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Power series at Vertex 0 of polygon 1; total angle 6π\n", + "Power series: 1.8491554953925515e-06 - 3.3605155635996198e-06*I + (6.426783547151665e-06 - 6.680071813536945e-06*I)*z2 + (2.999999199656937 - 2.1946874717571063e-06*I)*z2^2 + (7.770158528471763e-06 - 1.5758784540233184e-05*I)*z2^3 + (2.9183213096152637e-06 - 7.583734136989515e-06*I)*z2^4 + (2.153941442538074e-05 + 1.1024989568181827e-05*I)*z2^5 + (3.1213560959158908e-06 - 3.892477506333557e-06*I)*z2^6 + (1.3143696971461284e-05 + 1.5201995677887523e-06*I)*z2^7 + (-1.0376599249947807e-05 + 4.302613310577749e-06*I)*z2^8 + (-1.826940069136171e-05 + 8.488659667755522e-06*I)*z2^9 + (5.543610793635255e-07 + 1.610287123118194e-05*I)*z2^10 + (-2.82056287753828e-05 + 3.494972507731497e-05*I)*z2^11 + (-5.292681225152956 + 4.715637595640402*I)*z2^12 + (-1.8799100944140587e-06 + 1.6802346159854598e-05*I)*z2^13 + (-0.0006311116152307311 + 0.0008502559674807076*I)*z2^14 + (0.00028747248650970263 - 0.0005341816947149016*I)*z2^15 + (-0.0002269750319192932 + 0.0004406090847157835*I)*z2^16 + (7.304391926093376e-05 - 0.00036209193855853936*I)*z2^17 + (9.290609564540068e-05 - 0.0005103634015193376*I)*z2^18 + (0.0004870726043585265 - 0.004471168600968023*I)*z2^19 + (-2.1469606374987277e-06 - 0.002629108865323693*I)*z2^20 + (-5.1679818313125375e-05 - 0.002911525336053957*I)*z2^21 + (0.0002580007711471712 + 8.370047053410892e-05*I)*z2^22 + (0.0010404136026167412 + 0.0016196454523703498*I)*z2^23 + (0.00012915562769729035 - 0.0012108351456777927*I)*z2^24 + (0.015570948264655902 + 0.026996247058935375*I)*z2^25 + (-0.00017191709674912342 - 0.001393648354279001*I)*z2^26 + (8.429000996777656e-05 - 0.0007525536136629564*I)*z2^27 + (0.004723417607867483 + 0.0045814444394619*I)*z2^28 + (0.013882611545453977 + 0.010765496387116082*I)*z2^29 + (-0.20287764399357242 - 0.11678535938089117*I)*z2^30 + (0.025575265472688267 + 0.013900396908994063*I)*z2^31 + (-79.02220920955847 - 26.13434442072004*I)*z2^32 + (-0.06928572242125874 - 0.012126261329329969*I)*z2^33 + (1.0589904118462992 + 0.1163376008924791*I)*z2^34 + (-0.9339315367667916 - 0.011620023831913979*I)*z2^35 + (0.43450485513595766 - 0.0497211989648072*I)*z2^36 + (-0.48366702704530523 + 0.08605012646285151*I)*z2^37 + O(z2^38)\n", + "Absolute values of the coefficients:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHWCAYAAAD+VRS3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtFElEQVR4nO3df1Rc9Z3/8ddIBNQkGMTQIJBia2IQJZsBI2mSSqxYPI0Sjca2ItbENruoh1KNi9m2X7NabNRE92RAc6xNXeuWZjXUH9GE2iSg8QeQsP5AjVSUxASRqEwghpDJfP+YI4jkBwPD3PnceT7OmeN87ty5943nnvHl5/O59+Pwer1eAQAAwFgnWF0AAAAAhodABwAAYDgCHQAAgOEIdAAAAIYj0AEAABiOQAcAAGA4Ah0AAIDhCHQAAACGs12g83q9crvd4nnJAAAgXNgm0LlcLqWmpurss89WTEyM9u3bZ3VJAADY3v790rXXSt/5jlRQIH35pdUVhSeH3Zb+crvdiomJUUdHh8aOHWt1OQAA2NqSJdK99/a1ly6V7rrLunrClW166AAAQPA1Nx+7jeCwTaD7asg1MzPT6lIAAAgbP/6x5HD43p9wgrRggbX1hCuGXAEAwLBUV0uvvirNmCHNnGl1NeGJQAcAAGA4hlwBAAAMRw8dAACA4WzTQwcAABCuCHQAAACGs02gYw4dAAAIV8yhAwAAMJxteugAAADCFYEOAADAcAQ6AAAAw9km0HFTBAAACFfcFAEAAGA42/TQAQAAhCsCHQAAgOEIdAAAAIazTaDjpggAABCuuCkCAADAcLbpoQMAAAhXBDoAAADDEegAAAAMR6ADAAAwHIEOAADAcLYJdDy2BAAAhCseWwIAAGA42/TQAQAAhCsCHQAAgOEIdAAAAIYj0AEAABiOQAcAAGA4Ah0AAIDhCHQAAACGI9ABAAAYzjaBjpUiAABAuGKlCAAAAMPZpocOAAAgXBHoAAAADEegAwAAMByBDgAAwHAEOgAAAMMR6AAAAAxHoAMAADAcgQ4AAMBwIRno5s2bp3Hjxmn+/PlWlwIAABDyQjLQ3XLLLXrsscesLgMAAMAIIRnosrOzNWbMGKvLAAAAMELAA111dbXmzp2rhIQEORwOVVZWDtinrKxMKSkpio6OltPpVE1NTaDLAAAACBsBD3RdXV1KT0/XqlWrjvh5RUWFioqKtHTpUm3fvl2zZs1Sbm6uWlpaAl0KAABAWBgV6APm5uYqNzf3qJ+vWLFCCxcu1KJFiyRJDzzwgDZs2KDy8nKVlpb6fb7u7m51d3f3tt1ut/9FAwAAGCyoc+gOHjyo+vp65eTk9Nuek5OjrVu3DumYpaWliomJ6X0lJSUFolQAAABjBDXQtbe3y+PxKD4+vt/2+Ph4tba29rYvueQSXXXVVVq/fr0SExNVW1t71GOWlJSoo6Oj97Vz584Rqx8AACAUBXzIdTAcDke/ttfr7bdtw4YNgz5WVFSUoqKiAlYbAACAaYLaQxcXF6eIiIh+vXGS1NbWNqDXzl8ul0upqanKzMwc1nEAAABME9RAFxkZKafTqaqqqn7bq6qqNGPGjGEdu7CwUI2NjcccngUAALCjgA+5dnZ2qqmpqbfd3NyshoYGxcbGKjk5WcXFxcrPz1dGRoaysrK0evVqtbS0aPHixYEuBQAAICwEPNDV1dUpOzu7t11cXCxJKigo0Jo1a7RgwQLt3btXy5Yt0549e5SWlqb169dr4sSJwzqvy+WSy+WSx+MZ1nGAULFvn/TnP0snnij99KdSdLTVFQEAQpXD6/V6rS4ikNxut2JiYtTR0aGxY8daXQ4wJAcPSjNmSPX1vnZ2tvT3v0snhORifQAAq/GfByAEvf12X5iTpE2bpI8/tq4eAEBos02g4y5X2El8vBQZ2dcePVoaN866egAAoY0hVyBEPfmkVFIijRolPfigdPHFVlcEAAhVBDoAAADD2WbIFQAAIFzZJtAxhw4AAIQrhlwBAAAMZ5seOgAAgHBFoAMAADCcbQIdc+gAAEC4Yg4dAACA4WzTQwcAABCuCHQAAACGI9ABAAAYjkAHAABgONsEOu5yBQAA4Yq7XAEAAAxnmx46AACAcEWgAwAAMByBLgDa26Vf/EK64gppwwarqwEAAOGGOXQB8P3vS9XVvvcnniht3y6dc05QTg0AAGCfHjor73J9/fW+9z09UkND0EsAAABhjB66APjhD/uGWk86yRfoJk0KyqkBAAA0yuoC7OCvf5Xuvlv69FNp4ULCHAAACC566AAAAAxnmzl0AAAA4YpABwAAYDgCHQAAgOEIdAAAAIYj0AEAABiOQAcAAGA42wQ6K1eKAAAAsBLPoQMAADCcbXroAAAAwhWBDgAAwHAEOgAAAMMR6AAAAAxHoAMAADAcgQ4AAMBwBDoAAADDEegAAAAMR6ADAAAwXEgGumeffVaTJ0/WWWedpUceecTqcgAAAEJayC39dejQIaWmpmrTpk0aO3aspk2bptdee02xsbGD+j5LfwEAgHATcj10r7/+us455xydccYZGjNmjC699FJt2LDB6rIAAEAI6emR/uM/pNxc6b77rK7GegEPdNXV1Zo7d64SEhLkcDhUWVk5YJ+ysjKlpKQoOjpaTqdTNTU1vZ/t3r1bZ5xxRm87MTFRH3/8caDLBAAABrvzTunuu6UXXpBuu016+GGrK7JWwANdV1eX0tPTtWrVqiN+XlFRoaKiIi1dulTbt2/XrFmzlJubq5aWFknSkUaAHQ5HoMsEAAAGq6vr366vt6aOUBHwQJebm6u77rpLV1xxxRE/X7FihRYuXKhFixZpypQpeuCBB5SUlKTy8nJJ0hlnnNGvR27Xrl2aMGHCUc/X3d0tt9vd7wUAAOxtzpxjt4/nz3+WliyRNm4MXE1WCuocuoMHD6q+vl45OTn9tufk5Gjr1q2SpPPPP19vvfWWPv74Y+3bt0/r16/XJZdcctRjlpaWKiYmpveVlJQ0on8DAACw3m23SeXl0qJF0hNPSNdcM/jvrlwpXXutdO+90g9/KD3//MjVGSyjgnmy9vZ2eTwexcfH99seHx+v1tZWX0GjRun+++9Xdna2Dh8+rCVLlui000476jFLSkpUXFzc23a73YQ6AABszuGQFi8e2nefeabvvdcrPfec7+YKkwU10H3lm3PivF5vv22XXXaZLrvsskEdKyoqSlFRUQGtDwAA2FdamrRpU1/7nHOsqyVQghro4uLiFBER0dsb95W2trYBvXb+crlccrlc8ng8wzoOAACwt3vu8T32pKFByskZek9fKAnqHLrIyEg5nU5VVVX1215VVaUZM2YM69iFhYVqbGxUbW3tsI4DAADs7eSTffPvXnnF9/gTOzxMI+A9dJ2dnWpqauptNzc3q6GhQbGxsUpOTlZxcbHy8/OVkZGhrKwsrV69Wi0tLVo8zHhMDx0AAAhXAV/6a/PmzcrOzh6wvaCgQGvWrJHke7Dw8uXLtWfPHqWlpWnlypWaPXt2QM7P0l8AACDchNxarsNFoAMAAOEm5NZyBQAAgH9sE+hcLpdSU1OVmZlpdSkAAABBxZArAACA4WzTQwcAABCubBPoGHIFAADhiiFXAAAAw9mmhw4AAMAEX34Z+GMS6AAAAILgnXeklBTf0mM/+IG0f3/gjk2gAwAACIJf/lL68EPf+xdflFatCtyxbRPouCkCAAAEw+7d0ksvSR0d/n1v377+bbc7cDVxUwQAAMAgbdok/ehHvuHSxETp5Zel5OTBfffpp6X586WeHulb35JeeUX69rcDU5dteugAAABG2l139c1927VLKisb/Hcvu0xqbJReeEF6663AhTlJGhW4QwEAANhbdPSx28fz3e/6XoFGDx0AAMAg/f73UkKC731GhlRUZGk5vWzTQ+dyueRyueTxeKwuBQAA2FRamvTRR9Lnn0txcZLDYXVFPtwUAQAAYDiGXAEAAAxHoAMAADAcgQ4AAMBwBDoAAADDEegAAAAMZ5tAx1quAAAgXPHYEgAAAMPZpocOAAAgXBHoAACwiS+/lN59V+rqsroSBBuBDgAAG/joIyk1VZoyxbf4e2Oj1RUhmAh0AADYwPLl0ocf+t63tkrLlllaDoKMQAcAgA3Z65ZHHA+BDgAAG7jtNik52fc+Pl769a+trQfBNcrqAgAAwPB9+9vSO+/4hl2Tk6XRo62uCMFEoAMAwCZOPtl3YwTCj22GXFkpAgAAhCtWigAAADCcbXroAAAAwhWBDgAAwHAEOgAAAMMR6AAAAAxHoAMAADAcgQ4AAMBwBDoAAADDEegAAAAMF5KBbt68eRo3bpzmz59vdSkAAAAhLyQD3S233KLHHnvM6jIAAACMEJKBLjs7W2PGjLG6DAAAACP4Heiqq6s1d+5cJSQkyOFwqLKycsA+ZWVlSklJUXR0tJxOp2pqagJRKwAAAI7A70DX1dWl9PR0rVq16oifV1RUqKioSEuXLtX27ds1a9Ys5ebmqqWlpXcfp9OptLS0Aa/du3cP/S8BAAAIU6P8/UJubq5yc3OP+vmKFSu0cOFCLVq0SJL0wAMPaMOGDSovL1dpaakkqb6+fojlAgAA4JsCOofu4MGDqq+vV05OTr/tOTk52rp1ayBP1au7u1tut7vfCwAAIJwENNC1t7fL4/EoPj6+3/b4+Hi1trYO+jiXXHKJrrrqKq1fv16JiYmqra096r6lpaWKiYnpfSUlJQ25fgAAABP5PeQ6GA6Ho1/b6/UO2HYsGzZsGPS+JSUlKi4u7m273W5CHQAACCsBDXRxcXGKiIgY0BvX1tY2oNcuUKKiohQVFSWXyyWXyyWPxzMi5wEAAAhVAR1yjYyMlNPpVFVVVb/tVVVVmjFjRiBPNUBhYaEaGxuPOTwLAABgR3730HV2dqqpqam33dzcrIaGBsXGxio5OVnFxcXKz89XRkaGsrKytHr1arW0tGjx4sUBLRwAAAA+fge6uro6ZWdn97a/mr9WUFCgNWvWaMGCBdq7d6+WLVumPXv2KC0tTevXr9fEiRMDV/URMOQKAIB59u+Xdu2SkpOl6GirqzGXw+v1eq0uIpDcbrdiYmLU0dGhsWPHWl0OAAA4infekX7wA2n3biklRdq0SRrh/h/bCsm1XAEAgP0tW+YLc5LU3Cz9/vfW1mMy2wQ6l8ul1NRUZWZmWl0KAAAYhG+OEdprzDC4GHIFAACWeOst6aKLpLY2KSlJ2rxZOvNMq6sy04g8WBgAAOB40tKkpibpo498c+hOOcXqisxFoAMAAJYZM8YX7DA8zKEDAAAwHHPoAAAADGebHjoAAIBwRaADAAAwnG0CHXPoAABAuGIOHQAAgOFs00MHAAAQrgh0AAAAhiPQAQAAGI5ABwAAYDjbBDrucgUAAOGKu1wBAAAMZ5seOgAAgHA1yuoCAAA4ltdfl557Tpo0SfrpT62uBghNBDoAQMh6/XVp5kypp8fXbmqSfvtba2sCQhFDrgCAkPXcc31hTpLWrbOuFjv78kvp+uul73xHuvZaaf9+qyuCv+ihAwCErMmTj91GYPzud9Kf/uR7/8EHUkKCtHy5tTXBP7YJdC6XSy6XSx6Px+pSAAAB8pOfSP/8p/TUU74wV1ZmdUX21Nx87DZCH48tAQAgzD3zjJSXJx0+LDkc0tq10pVXWl0V/GGbHjoAADA0c+dKW7ZIW7dKF1wgzZ5tdUXwFz10AAAAhuMuVwAAAMMR6AAAAAxHoAMAADAcgQ4AAMBwBDoAAADD2SbQuVwupaamKjMz0+pSAAAAgorHlgAAEELKyqS//11yOqV//3cpIsLqimACHiwMAECI+OMfpcJC3/t166SeHun//T9LS4IhbDPkCgCA6V599dht4GgIdAAAhIiZM/u3Z82ypg6YhyFXAABCRH6+dOiQ9OKL0rRpUlGR1RXBFNwUAQAAYDiGXAEAAAxHoAMAADAcgQ4AAMBwBDoAAADDhVyg27lzpy688EKlpqbqvPPO09q1a60uCQAAIKSF3F2ue/bs0SeffKKpU6eqra1N06ZN03vvvadTTjllUN/nLlcAABBuQu45dBMmTNCECRMkSePHj1dsbKw+++yzQQc6AACAcOP3kGt1dbXmzp2rhIQEORwOVVZWDtinrKxMKSkpio6OltPpVE1NzZCKq6ur0+HDh5WUlDSk7wMAAIQDvwNdV1eX0tPTtWrVqiN+XlFRoaKiIi1dulTbt2/XrFmzlJubq5aWlt59nE6n0tLSBrx2797du8/evXt13XXXafXq1UP4swAAAMLHsObQORwOrVu3Tnl5eb3bpk+frmnTpqm8vLx325QpU5SXl6fS0tJBHbe7u1sXX3yxbrzxRuXn5x933+7u7t622+1WUlISc+gAAEDYCOhdrgcPHlR9fb1ycnL6bc/JydHWrVsHdQyv16vrr79ec+bMOW6Yk6TS0lLFxMT0vhieBQAA4Sagga69vV0ej0fx8fH9tsfHx6u1tXVQx3j55ZdVUVGhyspKTZ06VVOnTtWbb7551P1LSkrU0dHR+9q5c+ew/gYAAADTjMhdrg6Ho1/b6/UO2HY0M2fO1OHDhwd9rqioKEVFRflVHwAAgJ0EtIcuLi5OERERA3rj2traBvTaBZrL5VJqaqoyMzNH9DwAAAChJqCBLjIyUk6nU1VVVf22V1VVacaMGYE81QCFhYVqbGxUbW3tiJ4HAAAg1Pg95NrZ2ammpqbednNzsxoaGhQbG6vk5GQVFxcrPz9fGRkZysrK0urVq9XS0qLFixcHtPBvcrlccrlc8ng8I3oeAACAUOP3Y0s2b96s7OzsAdsLCgq0Zs0aSb4HCy9fvlx79uxRWlqaVq5cqdmzZwek4ONh6S8AABBuQm4t1+Ei0AEAQoHXKw3yfkBg2AI6hw4AgHDX1SVdeql04omS0ynt2mV1RQgHtgl03OUKAAgFK1ZIzz8veTzStm3SrbdaXRHCgW0CHXe5AgBCwd69x24DI8E2gQ4AgFCwcKH01RTuUaOkm2+2th6EhxFZKcIKPLYEABAKzj1XevNN6bXXpNRU6ZxzrK4I4YC7XAEAAAzHkCsAAIDhCHQAAACGI9ABAAAYzjaBjufQAQi2Rx+VMjJ8D5Ftbra6GgDhjJsiAGAIXntNysryLe8kSdOmSfX11tYEIHzZpocOAIJpx46+MCdJ771nXS0AQKADgCH4/velceP62nl5lpUCAPZ5sDAABFNysvTKK9ITT0jx8dLPf251RQDCmW3m0H19pYgdO3Ywhw4AAIQN2wS6r3BTBAAACDfMoQMAADAcgQ4AAMBwBDoAAADDEegAwDBffCFVVkq1tVZXAiBUEOgAwCDt7ZLTKc2bJ51/vvTAA1ZXBCAU2CbQsZYrgHCwbp30wQd97fvus64WAKHDNoGusLBQjY2NqmUMAoABVqyQJk+WLrxQamoa/Pe+vjrFkdoAwpNtAh0AmGLTJulXv/KtB7tli/TjHw/+u1deKS1cKI0aJSUmSn/4w8jVCcAcBDoACLLm5v7trw+hHo/DIT3yiNTdLe3c6ZtHBwAEOgAIsosvlk47ra99zTX+H+MEfr0BfM0oqwsAgHCTlCS9/rr05JPShAnST39qdUUATMdargAAAIaj0x4AAMBwBDoAwKB8+qm0dq1UV2d1JQC+iUAHADiujz+Wpk6Vrr7ad2dtebnVFQH4OtsEOlaKAICRU1Eh7d7te+/1suQYEGpsE+hYKQIARs7XH7NypDYAa9km0AEARs6110rXXSedeKJ01lnS6tVWVwTg63hsCQBg0Lxe32oVAEILPXQAgEEjzAGhiUAHAABgOAIdAMC2XC7pkkukoiJp/36rqwFGDmu5AgBs6a9/lW66yfd+40bpwAHpoYesrQkYKfTQAQBsafv2/u1t26ypAwgGAh0AYMR9/rn0wgvSu+8G75xz5vS/ieOii4J3biDYQm7Idd++fZozZ456enrk8Xh0yy236MYbb7S6LADAEO3eLV1wgbRzpxQRIT32mPSTn4z8eS++WHr6aenZZ6XU1L7hV8COQu45dB6PR93d3Tr55JO1f/9+paWlqba2VqcN8rHkPIcOAELL8uXS7bf3tc89V3rjDevqAewo5IZcIyIidPLJJ0uSDhw4II/HoxDLnAAAP4wZ07/N/2sDged3oKuurtbcuXOVkJAgh8OhysrKAfuUlZUpJSVF0dHRcjqdqqmp8escX3zxhdLT05WYmKglS5YoLi7O3zIBDNEf/iAlJvqWd3rxRaurgR0sXCjNnet7f8YZvkeJAAgsv+fQdXV1KT09XT/72c905ZVXDvi8oqJCRUVFKisr0/e+9z09/PDDys3NVWNjo5KTkyVJTqdT3d3dA767ceNGJSQk6NRTT9X//d//6ZNPPtEVV1yh+fPnKz4+fgh/HgB/vP++9POfS4cP+9pXXCG1t/vW7wSGKjLSN5ftwAEpOtrqagB7GtYcOofDoXXr1ikvL6932/Tp0zVt2jSVl5f3bpsyZYry8vJUWlrq9zn+9V//VXPmzNFVV101qP2ZQwcMXU2NNHt2/22ffSaNG2dNPQCAwQnoHLqDBw+qvr5eOTk5/bbn5ORo69atgzrGJ598IrfbLckXzqqrqzV58uSj7t/d3S23293vBWBoMjKk9PS+9rx5hDkAMEFAH1vS3t4uj8czYHg0Pj5era2tgzrGrl27tHDhQnm9Xnm9Xt10000677zzjrp/aWmp7rzzzmHVDcDnpJOk6mrpf//X936QHeMAAIuNyHPoHF9/kqMkr9c7YNvROJ1ONTQ0DPpcJSUlKi4u7m273W4lJSUN+vsA+hs7VrrhBqurAAD4I6CBLi4uThEREQN649ra2kbspoaoqChFRUXJ5XLJ5XLJ4/GMyHkAAABCVUDn0EVGRsrpdKqqqqrf9qqqKs2YMSOQpxqgsLBQjY2Nqq2tHdHzAAAAhBq/e+g6OzvV1NTU225ublZDQ4NiY2OVnJys4uJi5efnKyMjQ1lZWVq9erVaWlq0ePHigBYOAMBIOXxYKimR1q+X0tKk8nLp1FOtrgo4Or8DXV1dnbKzs3vbX81fKygo0Jo1a7RgwQLt3btXy5Yt0549e5SWlqb169dr4sSJgav6CBhyBQAEyurVviXLJOmtt3w3CT36qLU1AccScmu5DhfPoQMADNett0r339/X/t73pJdesq4e4HhCbi1XAACsdvnl0qivjWHNn29dLcBgjMhjS6zAkCsAIFBmzfKtnLJxo3Tuub6HbAOhjCFXAAHzySfSf/+3dMopvmfZRUVZXREAhAfb9NABsFZHh5SVJTU3+9rPPis995y1NQFAuGAOHYCAqK3tC3OS73EPnZ3W1QMA4cQ2gc7lcik1NVWZmZlWlwKEpeTk/pPIv/Ut39ArAGDkMYcOQMD85S/S3XdLo0dLq1ZJTqfVFR3fxo1SWZl02mnS734njdAqhQAwogh0AELCm29KDz0kjR0r3X57cJ7K/8470tSp0sGDvnZWlrR168ifFwACjZsiAFhu925p9mzpiy987Zqa4DzE9Y03+sKcJNXVjfw5AWAkMIcOgOW2b+8Lc5L08stSd/fInzcjQzr55L72978/8ucEgJHAkCsAy33wgXTOOdKBA752aqr09tvBOfdrr0mPPOKbQ3fHHb4hXwAwDYEOQEh48UVp5UopJkYqLfXdNQsAGBwCHQAAgOFsM4cOAAAgXHGXKwDjffih9Nhj0rhx0i9+IUVGWl0RAASXbQKdy+WSy+WSx+OxuhQAQdTWJl1wgfTJJ772P/4hrVtnbU0AEGzMoQNgtMpKad68vvYJJ0g9Pb5/AkC44CcPgNG+853+4e2bbQAIB/zsATDauef65s85ndIPfiA9/bTVFQFA8DHkCgAAYDh66AAAAAxHoAOAMNPZKR0+bHUVAALJNoHO5XIpNTVVmZmZVpcCACHp0CHfHcFjxkjjx0svv2x1RQAChTl0ABAm/vQn6frr+9rnniu98YZl5QAIINv00AEAjq2r69htAOYi0AFAmLjmGmnyZN/7iAjpN7+xth4AgWObpb8AAMcWGyvV1Umvvy4lJkqTJlldEYBAIdABQBgZPVqaM8fqKgAEGkOuAAAAhiPQAQAAGI5ABwAAYDjbBDoeLAwAAMIVDxYGAAAwnG166AAAAMIVgQ4AAMBwBDoAAADDEegAAAAMR6ADAAAwHIEOAADAcAQ6AAAAwxHoAAAADEegAwAAMFzIBrr9+/dr4sSJuvXWW60uBQAAIKSFbKC7++67NX36dKvLAAAACHkhGejef/99vfvuu7r00kutLgUAACDk+R3oqqurNXfuXCUkJMjhcKiysnLAPmVlZUpJSVF0dLScTqdqamr8Osett96q0tJSf0sDAAAIS34Huq6uLqWnp2vVqlVH/LyiokJFRUVaunSptm/frlmzZik3N1ctLS29+zidTqWlpQ147d69W3/72980adIkTZo0aeh/FQAAQBhxeL1e75C/7HBo3bp1ysvL6902ffp0TZs2TeXl5b3bpkyZory8vEH1upWUlOjxxx9XRESEOjs71dPTo1/96lf6zW9+c8T9u7u71d3d3dt2u91KSkpSR0eHxo4dO9Q/DQAAwBgBnUN38OBB1dfXKycnp9/2nJwcbd26dVDHKC0t1c6dO/Xhhx/qvvvu04033njUMPfV/jExMb2vpKSkYf0NAAAApglooGtvb5fH41F8fHy/7fHx8WptbQ3kqXqVlJSoo6Oj97Vz584ROQ8AAECoGjUSB3U4HP3aXq93wLbBuP7664+7T1RUlKKiovw+NgAAgF0EtIcuLi5OERERA3rj2traBvTaBZrL5VJqaqoyMzNH9DwAAAChJqCBLjIyUk6nU1VVVf22V1VVacaMGYE81QCFhYVqbGxUbW3tiJ4HAAAg1Pg95NrZ2ammpqbednNzsxoaGhQbG6vk5GQVFxcrPz9fGRkZysrK0urVq9XS0qLFixcHtHAAAAD4+B3o6urqlJ2d3dsuLi6WJBUUFGjNmjVasGCB9u7dq2XLlmnPnj1KS0vT+vXrNXHixMBVfQQul0sul0sej2dEzwMAABBqhvUculDkdrsVExPDc+gAAEDYCMm1XAEAADB4tgl03OUKAADCFUOuAAAAhrNNDx0AAEC4ItABAAAYzjaBjjl0AAAgXDGHDgAAwHC26aEDAAAIVwQ6AAAAw9km0DGHDqHo3Xel666TCgqk99+3uhoAgF0xhw4YIZ2d0llnSa2tvnZiorRjh3TSSdbWBQCwH9v00AGhprm5L8xJ0q5dvhcAAIFGoANGSEqKlJDQ105OlpKSrKsHAGBfo6wuALCr0aOlzZule+6RHA7pjjuk6GirqwIA2JFt5tC5XC65XC55PB7t2LGDOXQAACBs2CbQfYWbIgAAQLhhDh0AAIDhCHQAAACGI9ABAAAYjkAHAABgOAIdAACA4WwT6FjLFQAAhCseWwIAAGA42/TQAQAAhCsCXZj65z+lK6+ULr5Y2rDB6moAAMBwMOQapiZPlnbs8L2PipIaG6Uzz7S2JgAAMDT00IWhL7/sC3OS1N0tvfeedfUAAIDhIdCFoZNOkmbP7mvHxUlOp3X1AACA4RlldQGwxjPPSCtXSm639ItfSOPHW13RyDp8WNq4UTp0SPrhD6VRXPkAABthDh3CwtVXS2vX+t5fcon03HNSRIS1NQEAECgMucL2du7sC3OS767exkbr6gEAINBsE+hMXinC65UOHrS6CvsaPVo68cS+9gknSDEx1tUDAECg2SbQFRYWqrGxUbW1tVaX4pcXXpBiY6XoaOmWW6yuxp7GjZMefVQaM0Y6+WRp1SopOdnqqkbe3r1SR4fVVQAAgoE5dBYbP1769NO+9osvSnPmWFcP7GHJEunee329kQ88IN18s9UVAQBGkm166Ezk9Ur79vXf5nZbUwuObu1aKSFBmjBB+p//sbqa43v7bV+Yk3x39xYVcV0BgN0R6CzkcEglJX1tp1PKybGuHgy0d6907bXSnj1Sa6tUUCC1tVld1bF1d/dvHz7se1wLAMC+CHQW+81vpNpa31y6mhrfHC+Ejs8/73/DSk+P9Nln1tUzGP/yL9I11/S1lyzxzdMEANgXc+iAYzh8WMrN9T2UWPLNb9y4MfSfYef1Sg0NvnV6U1OtrgYAMNIIdAi65mbpwAFpyhSrKxmcnh7pqad8IemKK6TISKsrAgCgP4ZcEVR33SWdeaav1yg/3+pqBufEE6UFC3zDmIQ5AEAooocOQbNvn++Bvl+/4mprpYwM62oCAMAO6KFD0DgcvtfXhfpcNAAATBCSgW7UqFGaOnWqpk6dqkWLFlldDgJk9Gjp/vt9D7uVpMWLfXdk+qOhwderZ69+ZQAAhickh1zj4uLU3t4+pO8y5Br6Pv3U96y0xET/vldcLK1c6Xt/1VVSRcXAHj8AAMIRgQ5GaG+XTj+9/7Zt2/zv4QMAwI78HnKtrq7W3LlzlZCQIIfDocrKygH7lJWVKSUlRdHR0XI6naqpqfHrHG63W06nUzNnztSWLVv8LRE2dOKJA+fbnXSSNbUAABBq/A50XV1dSk9P16pVq474eUVFhYqKirR06VJt375ds2bNUm5urlpaWnr3cTqdSktLG/DavXu3JOnDDz9UfX29HnroIV133XVysxBl2IuJkf7rv/pC3dKl0tlnW1sTAAChYlhDrg6HQ+vWrVNeXl7vtunTp2vatGkqLy/v3TZlyhTl5eWptLTU73Pk5ubqP//zP5VxlGdbdHd3q/tri1e63W4lJSX5PeS6f7+0fLlvvc7rr5cuuMDvUhEEnZ2Sx+MLeAAAwCegd7kePHhQ9fX1yvnGCvM5OTnaunXroI7x+eef9wa0Xbt2qbGxUWeeeeZR9y8tLVVMTEzvKykpaUi1X3utdOed0sMPS9nZ0rvvDukwGGGjRxPmAAD4poAGuvb2dnk8HsXHx/fbHh8fr9bW1kEd45133lFGRobS09P1ox/9SA8++KBij7GyeElJiTo6OnpfO3fuHFLtL77Y9/7AAemVV4Z0GAAAgKAbNRIHdXzjWRJer3fAtqOZMWOG3nzzzUGfKyoqSlFRUXK5XHK5XPJ4PH7V+hWnU9q0yfc+IkJKTx/SYYLq8GHpr3+VPv/c9xiPuDirKwIAAFYIaA9dXFycIiIiBvTGtbW1Dei1C7TCwkI1NjaqtrZ2SN+vqJBuuEG69FJp7Vpp2rQAFzgCfvYz6cc/lv7t36Tp06UvvrC6IgAAYIWABrrIyEg5nU5VVVX1215VVaUZM2YE8lQBd/rp0h/+ID33nDRvntXVHN+hQ9Ljj/e1P/hA8vPpMAAAwCb8HnLt7OxUU1NTb7u5uVkNDQ2KjY1VcnKyiouLlZ+fr4yMDGVlZWn16tVqaWnR4sWLA1r4Nw13yNU0o0ZJEyZIH3/sazsc/q+8AAAA7MHvx5Zs3rxZ2dnZA7YXFBRozZo1knwPFl6+fLn27NmjtLQ0rVy5UrNnzw5IwccTTitF1NZKixb5hlpvu0266SarKwIAAFYIyaW/hiOcAh0AAIAU4Dl0VnK5XEpNTVVmZqbVpQAAAAQVPXQAAACGs00PHQAAQLgi0AEAABjONoGOOXQAACBcMYcOAADAcLbpoUPw7NkjLV4s5edL9fVWVwMAAPxeKQLIyZHeesv3/plnpHfflb71LWtrAgAgnNmmh445dMHR0dEX5r5qv/22dfUAAADm0GEI0tL6QlxMDD10AABYjSFX+G3jRunOO6WuLumXvyTMAQBgNXroAAAADGebOXRf2bbN98+ODmvrAAAACBZbBboVK6TsbN/7Cy+UPvvM0nIAAACCwjaBzuVyacmSVEm+u1w/+EBat87amgAAAILBNoGusLBQkyY1Sqrt3TZunHX1AAAABIttAp0kPfpo3x2X+fnSvHnW1gMAABAM3OUKAABgONsFOq/Xq3379mnMmDFyOBxWlwMAADDibBfoAAAAwo2t5tABAACEIwIdAACA4Qh0AAAAhiPQAQAAGI5ABwAAYDgCHQAAgOEIdAAAAIYj0AEAABiOQAcAAGA4Ah0AAIDhRlldwGB8tT4rAABAuBnM+vRGBLp9+/YpJibG6jIAAACCrqOjQ2PHjj3mPg6v1+sNUj1DZkIPndvtVlJSknbu3Hncf+nAYHFdYSRwXSHQuKZGlm166BwOhzEXyNixY42pFebgusJI4LpCoHFNWYebIgAAAAxHoAMAADAcgS5AoqKi9Nvf/lZRUVFWlwIb4brCSOC6QqBxTVnPiJsiAAAAcHT00AEAABiOQAcAAGA4Ah0AAIDhCHQAAACGI9ANU2lpqTIzMzVmzBiNHz9eeXl5eu+996wuC4aprq7W3LlzlZCQIIfDocrKyt7Penp6dPvtt+vcc8/VKaecooSEBF133XXavXu3dQUj5B3vt4nrCkNRXl6u8847r/cBwllZWXr++eclcU1ZjUA3TFu2bFFhYaFeffVVVVVV6dChQ8rJyVFXV5fVpcEgXV1dSk9P16pVqwZ8tn//fm3btk2//vWvtW3bNj311FPasWOHLrvsMgsqhSmO99vEdYWhSExM1D333KO6ujrV1dVpzpw5uvzyy/X2229zTVmMx5YE2Keffqrx48dry5Ytmj17ttXlwEAOh0Pr1q1TXl7eUfepra3V+eefr48++kjJycnBKw7GGsxvE9cVhiI2Nlb33nuvFi5cOOAzrqngMWItV5N0dHRI8l3gwEjp6OiQw+HQqaeeanUpMMRgfpu4ruAPj8ejtWvXqqurS1lZWUfch2sqeOihCyCv16vLL79cn3/+uWpqaqwuB4Y6Xg/dgQMHNHPmTJ199tl6/PHHg1scjDSY3yauKwzWm2++qaysLB04cECjR4/WE088oUsvvXTAflxTwUUPXQDddNNNeuONN/TSSy9ZXQpsqqenR9dcc40OHz6ssrIyq8uBIY7328R1BX9MnjxZDQ0N+uKLL/Tkk0+qoKBAW7ZsUWpqau8+XFPBR6ALkJtvvllPP/20qqurlZiYaHU5sKGenh5dffXVam5u1j/+8Q+NHTvW6pJggOP9NnFdwV+RkZH67ne/K0nKyMhQbW2tHnzwQT388MOSuKasQqAbJq/Xq5tvvlnr1q3T5s2blZKSYnVJsKGvfiDff/99bdq0SaeddprVJSHEDea3iesKgeD1etXd3S2Ja8pKBLphKiws1BNPPKG//e1vGjNmjFpbWyVJMTExOumkkyyuDqbo7OxUU1NTb7u5uVkNDQ2KjY1VQkKC5s+fr23btunZZ5+Vx+Ppvc5iY2MVGRlpVdkIYcf7bTp06BDXFfx2xx13KDc3V0lJSdq3b5/+8pe/aPPmzXrhhRe4pqzmxbBIOuLrj3/8o9WlwSCbNm064nVUUFDgbW5uPup1tmnTJqtLR4g63m8T1xWG4oYbbvBOnDjRGxkZ6T399NO9F110kXfjxo1er5drymrc5QoAAGA4VooAAAAwHIEOAADAcAQ6AAAAwxHoAAAADEegAwAAMByBDgAAwHAEOgAAAMMR6AAAAAxHoAMAADAcgQ4AAMBwBDoAAADDEegAAAAM9/8BMLlQdGMEjQYAAAAASUVORK5CYII=", + "text/plain": [ + "Graphics object consisting of 1 graphics primitive" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHUCAYAAACznbW8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAo6klEQVR4nO3df3wU9Z3H8fdWZE00iaCymy2BhrqnxIhSSAPRNrE2qWhRzqon0RaPHocFbFevJUWrBh9108Q2p9ekitajWI7S8wTlbEHir6CN1FCkctEiaorxx5KWxmwIsOHH3B9jNq7BsrMJ7H7N6/l4zOORmdnv7nezs7Pv/czsfF2WZVkCAACAsT6V7A4AAABgYAh0AAAAhiPQAQAAGI5ABwAAYDgCHQAAgOEIdAAAAIYj0AEAABgu5QKdZVkKh8Pi8ngAAADxSblA19XVpaysLHV1dSW7KwAAAEZIuUAHAAAAZwh0AAAAhiPQAQAAGI5ABwAAYLiUCXT19fXKy8tTQUFBsrsCAABgFJeVYtcHCYfDysrKUmdnpzIzM5PdHQAAcBgvvSQ98IA0cqRUUSFlZCS7R0PbsGR3AAAAmOWtt6TiYqn3CmO//73U0JDcPg11KXPIFQAAmKG5uS/MSdLTT0updbxv6CHQAQAAR/LzpeHD++YnTpRcruT1BxxyBQAADp1xhvTYY1JdnTRihFRdnewegR9FAAAAGI5DrgAAAIYj0AEAABiOQAcAAGC4lAl0jBQBAACQGH4UAQAAYLiUqdABAAAgMQQ6AAAAwxHoAAAADEegAwAAMJyjQHfgwAH94Ac/UG5urtLS0jRu3DjdcccdOnToUPQ2lmWpsrJSPp9PaWlpKikpUUtLy6B3HAAAADZHga66ulr33Xef6urq9Oqrr6qmpkZ33XWXfvrTn0ZvU1NTo9raWtXV1am5uVler1elpaXq6uoa9M4DAADA4WVLvvrVr8rj8ejBBx+MLvva176m9PR0/fKXv5RlWfL5fAoEAqqoqJAkRSIReTweVVdXa+7cuUd8DC5bAgAA4IyjCt3555+vp556Sq+99pok6Y9//KOef/55XXzxxZKk1tZWhUIhlZWVRdu43W4VFxerqanpsPcZiUQUDodjJgAAAMRvmJMbV1RUqLOzU2eeeaaOO+44HTx4UHfeeadmzpwpSQqFQpIkj8cT087j8WjHjh2Hvc+qqiotXrw4kb4DAABADit0v/71r7V8+XKtWLFCmzdv1rJly/TjH/9Yy5Yti7mdy+WKmbcsq9+yXosWLVJnZ2d0amtrc/gUAAAAhjZHFbrvfe97+v73v6+rr75aknT22Wdrx44dqqqq0qxZs+T1eiXZlbrs7Oxou/b29n5Vu15ut1tutzvR/gMAAAx5jip0e/bs0ac+FdvkuOOOi162JDc3V16vVw0NDdH1PT09amxsVFFR0SB0FwAAAB/lqEI3ffp03XnnnRozZozOOussvfTSS6qtrdXs2bMl2YdaA4GAgsGg/H6//H6/gsGg0tPTVV5eflSeAAAAwFDn6LIlXV1duvXWW7V69Wq1t7fL5/Np5syZuu222zR8+HBJ9vlyixcv1pIlS9TR0aHCwkLV19crPz8/rsfgsiUAAADOOAp0xwKBDgAAwBnGcgUAADAcgQ4AAMBwBDoAAADDpUygq6+vV15engoKCpLdFQAAAKPwowgAAADDpUyFDgAAAIkh0AEAABiOQAcAAGA4Ah0AAIDhCHQAAACGI9ABAAAYjkAHAABgOAIdAACA4VIm0DFSBAAAQGIYKQIAAMBwKVOhAwAAQGIIdAAAAIYj0AEAABiOQAcAAGA4Ah0AAIDhCHQAAACGI9ABAAAYjkAHAABguJQJdIwUAQAAkBhGigAAADBcylToAAAAkBgCHQAAgOEIdAAAAIYj0AEAABiOQAcAAGA4Ah0AAIDhCHQAAACGI9ABAAAYLmUCHSNFAAAAJIaRIgAAAAyXMhU6AAAAJIZABwAAYDgCHQAAgOEIdAAAAIZzFOg+85nPyOVy9Zvmz58vSbIsS5WVlfL5fEpLS1NJSYlaWlqOSscBAABgcxTompub9d5770WnhoYGSdKVV14pSaqpqVFtba3q6urU3Nwsr9er0tJSdXV1DX7PAQAAIGmAly0JBAJ6/PHHtX37dkmSz+dTIBBQRUWFJCkSicjj8ai6ulpz586N6z65bAkAAIAzCZ9D19PTo+XLl2v27NlyuVxqbW1VKBRSWVlZ9DZut1vFxcVqamr62PuJRCIKh8MxEwAAAOKXcKB79NFH9f777+u6666TJIVCIUmSx+OJuZ3H44muO5yqqiplZWVFp5ycnES7BAAAMCQlHOgefPBBTZs2TT6fL2a5y+WKmbcsq9+yD1u0aJE6OzujU1tbW6JdAgAAGJKGJdJox44devLJJ7Vq1aroMq/XK8mu1GVnZ0eXt7e396vafZjb7Zbb7U6kGwAAAFCCFbqlS5dq1KhRuuSSS6LLcnNz5fV6o798lezz7BobG1VUVDTwngIAAOCwHFfoDh06pKVLl2rWrFkaNqyvucvlUiAQUDAYlN/vl9/vVzAYVHp6usrLywe10wAAAOjjONA9+eSTeuuttzR79ux+6xYuXKi9e/dq3rx56ujoUGFhodavX6+MjIxB6SwAAAD6G9B16I4GrkMHAADgDGO5AgAAGI5ABwAAYDgCHQAAgOFSJtDV19crLy9PBQUFye4KAACAUfhRBAAAgOFSpkIHAACAxBDoAAAADEegAwAAMByBDgAAwHAEOgAAAMMR6AAAAAxHoAMAADAcgQ4AAMBwKRPoGCkCAAAgMYwUAQAAYLiUqdABAAAgMQQ6AAAAwxHoAAAADEegAwAAMByBDgAAwHAEOgAAAMMR6AAAAAxHoAMAADBcygQ6RooAAABIDCNFAAAAGC5lKnQAAABIDIEOAADAcAQ6AAAAwxHoAAAADEegAwAAMByBDgAAwHAEOgAAAMMR6AAAAAyXMoGOkSIAAAASw0gRAAAAhkuZCh0AAAASQ6ADAAAwHIEOAADAcAQ6AAAAwzkOdO+8846uvfZanXLKKUpPT9e5556rP/zhD9H1lmWpsrJSPp9PaWlpKikpUUtLy6B2GgAAAH0cBbqOjg6dd955Ov7447V27Vq98sor+slPfqKTTz45epuamhrV1taqrq5Ozc3N8nq9Ki0tVVdX12D3HQAAAHJ42ZLvf//7+t3vfqfnnnvusOsty5LP51MgEFBFRYUkKRKJyOPxqLq6WnPnzj3iY3DZEgAAAGccVejWrFmjyZMn68orr9SoUaM0ceJEPfDAA9H1ra2tCoVCKisriy5zu90qLi5WU1PTYe8zEokoHA7HTAAAAIifo0D35ptv6t5775Xf79cTTzyh66+/Xt/+9rf10EMPSZJCoZAkyePxxLTzeDzRdR9VVVWlrKys6JSTk5PI8wAAABiyHAW6Q4cO6XOf+5yCwaAmTpyouXPnas6cObr33ntjbudyuWLmLcvqt6zXokWL1NnZGZ3a2tocPgUAAIChzVGgy87OVl5eXsyy8ePH66233pIkeb1eSepXjWtvb+9XtevldruVmZkZMwEAACB+jgLdeeedp23btsUse+211zR27FhJUm5urrxerxoaGqLre3p61NjYqKKiokHoLgAAAD5qmJMb33jjjSoqKlIwGNRVV12lF198Uffff7/uv/9+Sfah1kAgoGAwKL/fL7/fr2AwqPT0dJWXlx+VJwAAADDUObpsiSQ9/vjjWrRokbZv367c3FzddNNNmjNnTnS9ZVlavHixlixZoo6ODhUWFqq+vl75+flx3T+XLQEAAHDGcaA72gh0AAAAzjCWKwAAgOEIdAAAAIYj0AEAABguZQJdfX298vLyVFBQkOyuAAAAGIUfRQAAABguZSp0AAAASAyBDgAAwHAEOgAAAMMR6AAAAAxHoAMAADAcgQ4AAMBwBDoAAADDEegAAAAMlzKBjpEiAAAAEsNIEQAAAIZLmQodAAAAEkOgAwAAMByBDgAAwHAEOgAAAMMR6AAAAAxHoAMAADAcgQ4AAMBwBDoAAADDpUygY6QIAACAxDBSBAAAgOFSpkIHAACAxBDoAAAADEegAwAAMByBDgAAwHAEOgAAAMMR6AAAAAxHoAMAADAcgQ4AAMBwKRPoGCkCAAAgMYwUAQAAYLiUqdABAAAgMQQ6AAAAwxHoAAAADEegAwAAMJyjQFdZWSmXyxUzeb3e6HrLslRZWSmfz6e0tDSVlJSopaVl0DsNAACAPo4rdGeddZbee++96LR169boupqaGtXW1qqurk7Nzc3yer0qLS1VV1fXoHYaAAAAfRwHumHDhsnr9Uan0047TZJdnbv77rt1yy236PLLL1d+fr6WLVumPXv2aMWKFYPecQAAANgcB7rt27fL5/MpNzdXV199td58801JUmtrq0KhkMrKyqK3dbvdKi4uVlNT08feXyQSUTgcjpkAAAAQP0eBrrCwUA899JCeeOIJPfDAAwqFQioqKtKuXbsUCoUkSR6PJ6aNx+OJrjucqqoqZWVlRaecnJwEngYAAMDQNaCRIrq7u/XZz35WCxcu1JQpU3Teeefp3XffVXZ2dvQ2c+bMUVtbm9atW3fY+4hEIopEItH5cDisnJwcRooAAACI04AuW3LiiSfq7LPP1vbt26O/dv1oNa69vb1f1e7D3G63MjMzYyYAAADEb0CBLhKJ6NVXX1V2drZyc3Pl9XrV0NAQXd/T06PGxkYVFRUNuKMAAAA4vGFObvzd735X06dP15gxY9Te3q4f/vCHCofDmjVrllwulwKBgILBoPx+v/x+v4LBoNLT01VeXn60+g8AADDkOQp0b7/9tmbOnKm//vWvOu200zRlyhRt3LhRY8eOlSQtXLhQe/fu1bx589TR0aHCwkKtX79eGRkZR6XzAAAAGOCPIo6GcDisrKwsfhQBAAAQJ8ZyBQAAMByBDgAAwHAEOgAAAMOlTKCrr69XXl6eCgoKkt0VAAAAo/CjCAAAAMOlTIUOAAAAiSHQAQAAGI5ABwAAYDgCHQAAgOEIdAAAAIYj0AEAABiOQAcAAGA4Ah0AAIDhUibQMVIEAABAYhgpAgAAwHApU6EDAABAYgh0AAAAhiPQAQAAGI5ABwAAYDgCHQAAgOEIdAAAAIYj0AEAABiOQAcAAGC4lAl0jBQBAACQGEaKAAAAMFzKVOgAAACQGAIdAACA4Qh0AAAAhiPQAQAAGI5ABwAAYDgCHQAAgOEIdAAAAIYj0AEAABguZQIdI0UAAAAkhpEiAAAADJcyFToAAAAkhkAHAABgOAIdAACA4Qh0AAAAhhtQoKuqqpLL5VIgEIgusyxLlZWV8vl8SktLU0lJiVpaWgbaTwAAAHyMhANdc3Oz7r//fk2YMCFmeU1NjWpra1VXV6fm5mZ5vV6Vlpaqq6trwJ0FAABAfwkFut27d+uaa67RAw88oBEjRkSXW5alu+++W7fccosuv/xy5efna9myZdqzZ49WrFgxaJ0GAABAn4QC3fz583XJJZfoy1/+cszy1tZWhUIhlZWVRZe53W4VFxerqanpsPcViUQUDodjJgAAAMRvmNMGK1eu1ObNm9Xc3NxvXSgUkiR5PJ6Y5R6PRzt27Djs/VVVVWnx4sVOuwEAAIAPOKrQtbW16Tvf+Y6WL1+uE0444WNv53K5YuYty+q3rNeiRYvU2dkZndra2px0CQAAYMhzVKH7wx/+oPb2dk2aNCm67ODBg9qwYYPq6uq0bds2SXalLjs7O3qb9vb2flW7Xm63W263O5G+AwAAQA4rdBdeeKG2bt2qLVu2RKfJkyfrmmuu0ZYtWzRu3Dh5vV41NDRE2/T09KixsVFFRUWD3nkAAAA4rNBlZGQoPz8/ZtmJJ56oU045Jbo8EAgoGAzK7/fL7/crGAwqPT1d5eXlg9drAAAARDn+UcSRLFy4UHv37tW8efPU0dGhwsJCrV+/XhkZGYP9UAAAAJDksizLSnYnPiwcDisrK0udnZ3KzMxMdncAAABSHmO5AgAAGI5ABwAAYDgCHQAAgOFSJtDV19crLy9PBQUFye4KAACAUfhRBAAAgOFSpkIHAACAxBDoAAAADEegAwAAMByBDgAAwHAEOgAAAMMR6AAAAAxHoAMAADAcgQ4AAMBwKRPoGCkCAAAgMYwUAQAAYLiUqdABAAAgMQQ6AAAAwxHoAAAADEegAwAAMByBDgAAwHAEOgAAAMMR6AAAAAxHoAMAADBcygQ6RooAAABIDCNFAAAAGC5lKnQAAABIDIEOAADAcAQ6AAAAwxHoAAAADEegAwAAMByBDgAAwHAEOgAAAMMR6AAAAAyXMoGOkSIAAAASw0gRAAAAhkuZCh0AAAASQ6ADAAAwHIEOAADAcAQ6AAAAwzkKdPfee68mTJigzMxMZWZmaurUqVq7dm10vWVZqqyslM/nU1pamkpKStTS0jLonQYAAEAfR4Fu9OjR+tGPfqRNmzZp06ZN+tKXvqTLLrssGtpqampUW1ururo6NTc3y+v1qrS0VF1dXUel8wAAABiEy5aMHDlSd911l2bPni2fz6dAIKCKigpJUiQSkcfjUXV1tebOnRvX/XHZEgAAAGcSPofu4MGDWrlypbq7uzV16lS1trYqFAqprKwsehu3263i4mI1NTV97P1EIhGFw+GYCQAAAPFzHOi2bt2qk046SW63W9dff71Wr16tvLw8hUIhSZLH44m5vcfjia47nKqqKmVlZUWnnJwcp10CAAAY0hwHujPOOENbtmzRxo0b9a1vfUuzZs3SK6+8El3vcrlibm9ZVr9lH7Zo0SJ1dnZGp7a2NqddAgAAGNKGOW0wfPhwnX766ZKkyZMnq7m5Wffcc0/0vLlQKKTs7Ozo7dvb2/tV7T7M7XbL7XY77QYAAAA+MODr0FmWpUgkotzcXHm9XjU0NETX9fT0qLGxUUVFRQN9GAAAAHwMRxW6m2++WdOmTVNOTo66urq0cuVKPfvss1q3bp1cLpcCgYCCwaD8fr/8fr+CwaDS09NVXl5+tPoPAAAw5DkKdDt37tTXv/51vffee8rKytKECRO0bt06lZaWSpIWLlyovXv3at68eero6FBhYaHWr1+vjIyMo9J5AAAADMJ16AYb16EDAABwhrFcAQAADEegAwAAMByBDgAAwHApE+jq6+uVl5engoKCZHcFAADAKPwoAgAAwHApU6EDAABAYgh0AAAAhiPQAQAAGI5ABwAAYDgCHQAAgOEIdAAAAIYj0AEAABiOQAcAAGC4lAl0jBQBAACQGEaKAAAAMFzKVOgAAACQGAIdAACA4Qh0AAAAhiPQAQAAGI5ABwAAYDgCHQAAgOEIdAAAAIYj0AEAABguZQIdI0UAAAAkhpEiAAAADJcyFToAAAAkhkAHAABgOAIdAACA4Qh0AAAAhiPQAQAAGI5ABwAAYDgCHQAAgOEIdAAAAIZLmUDHSBEAAACJYaQIAAAAw6VMhQ4AAACJIdABAAAYjkAHAABgOAIdAACA4RwFuqqqKhUUFCgjI0OjRo3SjBkztG3btpjbWJalyspK+Xw+paWlqaSkRC0tLYPaaQAAAPRxFOgaGxs1f/58bdy4UQ0NDTpw4IDKysrU3d0dvU1NTY1qa2tVV1en5uZmeb1elZaWqqura9A7DwAAgAFetuQvf/mLRo0apcbGRn3xi1+UZVny+XwKBAKqqKiQJEUiEXk8HlVXV2vu3LlHvE8uWwIAAODMgM6h6+zslCSNHDlSktTa2qpQKKSysrLobdxut4qLi9XU1HTY+4hEIgqHwzETAAAA4pdwoLMsSzfddJPOP/985efnS5JCoZAkyePxxNzW4/FE131UVVWVsrKyolNOTk6iXQIAABiSEg50CxYs0Msvv6xf/epX/da5XK6Yecuy+i3rtWjRInV2dkantra2RLsEAAAwJA1LpNENN9ygNWvWaMOGDRo9enR0udfrlWRX6rKzs6PL29vb+1Xterndbrnd7kS6AQAAADms0FmWpQULFmjVqlV6+umnlZubG7M+NzdXXq9XDQ0N0WU9PT1qbGxUUVHR4PQYAAAAMRxV6ObPn68VK1boscceU0ZGRvS8uKysLKWlpcnlcikQCCgYDMrv98vv9ysYDCo9PV3l5eVH5QkAAAAMdY4uW/Jx58EtXbpU1113nSS7ird48WItWbJEHR0dKiwsVH19ffSHE0fCZUsAAACcGdB16I4GAh0AAIAzjOUKAABgOAIdAACA4Qh0AAAAhkuZQFdfX6+8vDwVFBQkuysAAABG4UcRAAAAhkuZCh0AAAASQ6ADAAAwHIEOAADAcAQ6AAAAwxHoAAAADEegAwAAMByBDgAAwHAEOgAAAMOlTKBjpAgAAIDEMFIEAACA4VKmQgcAAIDEEOgAAAAMR6ADAAAwHIEOAADAcAQ6AAAAwxHoAAAADEegAwAAMByBDgAAwHApE+gYKQIAACAxjBQBAABguJSp0AEAACAxBDoAAADDEegAAAAMR6ADAAAwHIEOAADAcAQ6AAAAwxHoAAAADEegAwAAMFzKBDpGigAAAEgMI0UAAAAYLmUqdAAAAEgMgQ4AAMBwBDoAAADDEegAAAAM5zjQbdiwQdOnT5fP55PL5dKjjz4as96yLFVWVsrn8yktLU0lJSVqaWkZrP4CAADgIxwHuu7ubp1zzjmqq6s77PqamhrV1taqrq5Ozc3N8nq9Ki0tVVdX14A7CwAAgP4GdNkSl8ul1atXa8aMGZLs6pzP51MgEFBFRYUkKRKJyOPxqLq6WnPnzj3ifXLZEgAAAGcG9Ry61tZWhUIhlZWVRZe53W4VFxerqanpsG0ikYjC4XDMBAAAgPgNaqALhUKSJI/HE7Pc4/FE131UVVWVsrKyolNOTs5gdgkAAOAT76j8ytXlcsXMW5bVb1mvRYsWqbOzMzq1tbUdjS4BAAB8Yg0bzDvzer2S7EpddnZ2dHl7e3u/ql0vt9stt9s9mN0AAAAYUga1Qpebmyuv16uGhobosp6eHjU2NqqoqGgwHwoAAAAfcFyh2717t15//fXofGtrq7Zs2aKRI0dqzJgxCgQCCgaD8vv98vv9CgaDSk9PV3l5+aB2HAAAADbHgW7Tpk264IILovM33XSTJGnWrFn6xS9+oYULF2rv3r2aN2+eOjo6VFhYqPXr1ysjI2Pweg0AAICoAV2H7mjgOnQAAADOMJYrAACA4Qh0AAAAhiPQAQAAGC5lAl19fb3y8vJUUFCQ7K4AAAAYhR9FAAAAGG5QR4oA8PdZlrRmjdTdLV16qXTSScnuEQDgk4BABxxD110nPfSQ/ffEidLvfielpSW1SwCAT4CUOYcO+KTr7u4Lc5L00kvSCy8krz8AgE8OAh1wjJxwgpSV1TfvckmjRiWvPwCATw4CHXCMHHec9PDD0pgx0siR0t13S/n5ye4VAOCTgF+5AgAAGI4KHQAAgOEIdAAAAIZLmUDHSBEAAACJ4Rw6AAAAw6VMhQ4AAACJIdABAAAYjkAHAABgOAIdAACA4Qh0AAAAhiPQAQAAGI5ABwAAYDgCHQAAgOFSJtAxUgQAAEBiGCkCAADAcClToQMAAEBiCHQfePVVqaBA+vSnpdtuS3ZvAAAA4sch1w9MmiRt3tw3/9vfStOmHbOHBwAASBgVug+8/XbsfFtbcvoBAADgFIHuA//8z31/jxolXXJJ8voCAADgBIdcP2TNGumdd6Tp06XRo4/pQwMAACRsWLI7kEouvTTZPQAAAHCOQ64AAACGS5lAx0gRAAAAieEcOgAAAMOlTIUOAAAgHl1d0saN0s6dye5J6iDQAQAAY7z9tnT22dLUqdLpp0uNjc7ah0LSzTdLt9zyyQqE/MoVAAAY42c/k3bssP/evVu64w7pqafia7tvn1RcLL32mj2/apW0ZYvkdh+Vrh5TVOgAAIAxhg//+/N/zxtv9IU5SfrTn6Q//9nZ4x88KO3a5axNr44O6b//W3r++cTa/z0EOgAADNbTY1eehorvfEf63Ofsv71eqbo6/rajR0sjRvTNjxwp+Xzxt/+//5PGjpVOPVUqKrLP5YvXrl3S5MnSP/2T9IUvSMFg/G3jQaADAKSMgwelSCTZvTDHgw9KJ50kpafbhx4Tkaz/9+uvS01Nzh9/xAipudke2WnHDmnChPjbZmVJa9dKZWXSV74irVsnZWTE3/6737UfV5JeeEH66U/jb/vYY9Kbb/bN33NP/G3jkVKBrqtL+sY37L/nzHH+jWPJEmncODu5b9o0+P37OIcOSTfcII0ZI110kfOTLNetk8aPl844w37Bndi1yx6qbMwYae5c6cABZ+1//GMpN1eaMkV65RVnbf/4R6mgwP6f/8d/OGvb0yPNnm33e8YM6f33nbV/+GHpH/5BOuus+M+d6PXOO9KXv2x/y/q3f5OcXrjn1lvttl/8otTa6qztQHR3S1dfbf/PZs6U9uxx1v7nP7dfqwkT7B2RE2+8IZ1/vv28b7vNWdtDh6RAwO53aan07rvO2jc0SHl5kt8v/c//OGv7t7/ZI8Dk5NjbW0+Ps/Y1NdKnPy2de6700kvO2r78sjRpkv28a2qcte3psceX9vmkiy+W/vpXZ+1XrbLfH+PHS0884aztu+/a74/Ro6UFC+zXz4nKSvs5FxVJ27c7a7t6tf2Bm5YmLVzorO2ePfb7YvRo6YornFVOJOmhh6TPftY+2d7p4bDXX5cKC+1xwG+6ydk+5cAB+3PvhBOk/Hxp27b423Z1SddfL+3fbz/m7bfbhxDj9dZb9mOecIL9enV0xN92oJYssT/zzjvPrlY53Z996lP2+8PJ4dZehYX2+2LdOvszzImP9rO7O/62p54aO3/KKc4e+0iOyXXoLMtS18e8uyKRiCIfxPPbb5f+8z+7JOVJalNFRaZuvjm+x9i61f7A6ZWd7WzDHogHH7TfxL1mzJCWLYuv7fvvS2eeKe3da8+73Xaw+ugL/3H+9V+lX/+6b76qSpo3L762zz8vXXJJ3/z48fbPwON17rmxgeapp+xycjx+8pPYb5PXXRf/t5V33rFDSW94Pekk+4MjPT2+9ldeKa1f3zd/3332B0E8/vd/pWuv7ZsvKrK/7R0LP/hB7LfBG2+0Pzzj8ac/2aG9991+6qn2h5DLFV/70lLpxRf75n/1KztoxOOXv7SDQa9p06SVK+Nru3u3HUx6d5rHH2+/17Oz42u/YIH9+L0WL7bDZTxeeMH+gtZr3DhnoW7SJPt/3GvtWnt7icc998QG55kz7e00Hjt32l909u+359PT7XOG4q1ClJdLv/lNbF+uuy6+tk88IV11Vd/8pEnS00/H1/bQITuMffgD8skn4//AveMOe7/Sa948e38YjzfesPddveF1xAh72XHHxdf+ootivyQtXSpdfnl8bX/xC/sQYq8vfEF6/PH42u7aZW+XH/bMM32HI49kzhz7fK5egYD9HjkWxo2LPQ/t/vvtQ5Gp7skn7fdIJGIHyoYGZ2O/L1xobx9er/3aT5oUX7uMjAy5jrDDPiaBrvdiwQAAAHAmnsEWUqpC95vfSNdfb1foXK42PfJIpi68ML7HeP99+xBY70+Zr7jCrpw5EQ6HlZOTo7a2NkejVGzZYh+L7z1EXFNjH/6Mx8GDdpWs99vdpEn2t9zjj4+v/UMP2Yd7JbvN2rXxf6PdudOuara32/P/8i+x33CPZP58afly+2+fz674xVtCfv556bLL+qpsTr6d7dsnXXihfXKqZP8E/bHH4q82fbj6kZ5uVxDGj4+vbWur/Xidnfb8975nV86cSHQ7++1v7W+GlmU/15UrYytIf09Xl93vN96w551UkaXY6seIEfZ1n8aOja9tS4t9CK/3UEUwaG878bAs+5Dphg32/Dnn2N+Q4z3MsnJl33tx2DC7whpvlWzXLnuf8vbb9vw3vynV1sbXVrIP5//85/bf2dnSc89Jp50WX9sXX7T3C72HiJ1UkXt67PODXnopLClHU6a0ae3aTH0qzhNs7rtPqqiw/05PtysQ+fnxtW1rs/9nf/ubPe+kiizZt/33f7f/njLFfr3ifa0bGuzq4KFD9vtj+XLpq1+Nr213t1RS0vfrRydVZCn2iMOIEdKzz0qf+Ux8bXfskC64oK9adffd9uF2JzZtsl/3KVMU9+ss2e+rK6+096m955addZazx050f9bQYB9q3rPH/ixYujT+iuhQlDIVOieeeCKsiy7K0tNPd+qCC5wN/dXebpePTz7Z3vk53TgGMuxYS4v9QTN+vL0zdWLvXnvnc+iQfTjvxBOdtX/qKTvclJTYH3hOvP22fd6Kx2O/seMNRZLd35Ur7Z33174W/2GwXps32zuUiRPtsOFEOCz913/ZO/trr3V+DaHf/tY+TPuVr9iHvJ148037kEjv+X9ODWQ7e+EF6fe/t3fcU6Y4e9y//c1+vTIzE3t/PPqofc7N9On2eZdO/OlP9heVM86IP4T22rfPfq3375euucbZCcyS/eG6ZYv9/jj3XGdtd+60n/epp9qH0Jy8PyxLeuQRe7/0j//o/P2xdasdnCdMsEOSE7t3Sz//eVg33pilnTs7NWqUs+2socF+zUpLnb8/duyQ1qyxz1tM5P3R3Gy/v7/wBefnRzU32++RggL7orNOdHTY74/0dPuLU7xfqnutX29f/uKii+x9gxPvvWe/1uPGSZ//vLO2A/XnP9un+Uyc6HwblQa2P9u3zw7Tg30u2VCVcoEumWO5Mo4sjgW2MxwLbGc4FtjOUkdK/coVAAAAzhHoPsTtduv222+X+5MwBghSFtsZjgW2MxwLbGepg0OuAAAAhqNCBwAAYDgCHQAAgOEIdAAAAIZLuXPoei9CHM9F9AAAAJCCgQ4AAADOcMhVUlVVlQoKCpSRkaFRo0ZpxowZ2rZtW7K7BcNt2LBB06dPl8/nk8vl0qOPPhpdt3//flVUVOjss8/WiSeeKJ/Pp2984xt69913k9dhGOdI+y62MwyGe++9VxMmTFBmZqYyMzM1depUrV27VhLbWCoh0ElqbGzU/PnztXHjRjU0NOjAgQMqKytTd3d3srsGg3V3d+ucc85RXV1dv3V79uzR5s2bdeutt2rz5s1atWqVXnvtNV166aVJ6ClMdaR9F9sZBsPo0aP1ox/9SJs2bdKmTZv0pS99SZdddplaWlrYxlIIh1wP4y9/+YtGjRqlxsZGfdHpIIrAYbhcLq1evVoz/s7gls3Nzfr85z+vHTt2aIzTwSABxbfvYjvDYBg5cqTuuusuffOb3+y3jm0sOYYluwOpqLOzU5K9wQLHSmdnp1wul04++eRkdwWGimffxXaGgTh48KAefvhhdXd3a+rUqYe9DdtYclCh+wjLsnTZZZepo6NDzz33XLK7g0+II1Xo9u3bp/PPP19nnnmmli9ffmw7h0+EePZdbGdI1NatWzV16lTt27dPJ510klasWKGLL7643+3YxpKHCt1HLFiwQC+//LKef/75ZHcFQ8T+/ft19dVX69ChQ/rZz36W7O7AUEfad7GdYSDOOOMMbdmyRe+//74eeeQRzZo1S42NjcrLy4vehm0suQh0H3LDDTdozZo12rBhg0aPHp3s7mAI2L9/v6666iq1trbq6aefZvxiJORI+y62MwzU8OHDdfrpp0uSJk+erObmZt1zzz1asmSJJLaxVECgk32o4oYbbtDq1av17LPPKjc3N9ldwhDQuwPcvn27nnnmGZ1yyinJ7hIME8++i+0MR4NlWYpEIpLYxlIFgU7S/PnztWLFCj322GPKyMhQKBSSJGVlZSktLS3JvYOpdu/erddffz0639raqi1btmjkyJHy+Xy64oortHnzZj3++OM6ePBgdLsbOXKkhg8fnqxuwyBH2ncdOHCA7QwDdvPNN2vatGnKyclRV1eXVq5cqWeffVbr1q1jG0slFixJh52WLl2a7K7BYM8888xht6tZs2ZZra2tH7vdPfPMM8nuOgxxpH0X2xkGw+zZs62xY8daw4cPt0477TTrwgsvtNavX29ZFttYKuFXrgAAAIZjpAgAAADDEegAAAAMR6ADAAAwHIEOAADAcAQ6AAAAwxHoAAAADEegAwAAMByBDgAAwHAEOgAAAMMR6AAAAAxHoAMAADDc/wMGkf0Uf5zb7QAAAABJRU5ErkJggg==", + "text/plain": [ + "Graphics object consisting of 1 graphics primitive" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "********************************************************************************\n", + "Power series at Vertex 0 of polygon 0; total angle 26π\n", + "Power series: 1.5617486326391372e-06 + 1.3112678232118924e-06*I + (-1.8118778461561955e-06 + 9.770517458834638e-06*I)*z5 + (1.1179991091956185 + 0.36973853955408453*I)*z5^2 + (1.3496612061170355e-05 - 1.0994238097867916e-06*I)*z5^3 + (1.6235814637010928e-06 - 1.313523166631233e-06*I)*z5^4 + (1.1609244803682127e-05 + 1.1290580750515483e-05*I)*z5^5 + (5.690662981447659e-06 + 5.127537815538312e-06*I)*z5^6 + (8.060939947373239e-06 - 5.0354806635273536e-06*I)*z5^7 + (-4.828588472932882e-06 - 1.5198561077011427e-06*I)*z5^8 + (6.696342646907342e-08 + 1.2805311630024201e-06*I)*z5^9 + (2.0896156890008822e-05 + 1.8821814209409613e-05*I)*z5^10 + (-1.4452351124366788e-05 + 6.194717472138143e-06*I)*z5^11 + (13.0 - 8.881784197001252e-15*I)*z5^12 + (-7.895640453061547e-06 - 1.8813636821989426e-05*I)*z5^13 + (-9.067876439190408e-06 - 1.24329270274052e-05*I)*z5^14 + (-0.0001089701836671363 - 4.607693418051475e-06*I)*z5^15 + (-2.2466123390434675e-05 - 2.5960455541104193e-05*I)*z5^16 + (-1.9419692688471545e-05 + 8.03252930213544e-06*I)*z5^17 + (-1.654342741884257e-05 + 5.669488837360489e-06*I)*z5^18 + (-9.119472337130918e-07 - 7.606381154869552e-06*I)*z5^19 + (4.057721297211845e-06 - 0.0004033458200529712*I)*z5^20 + (-7.785799227794449e-05 - 6.190312502424416e-06*I)*z5^21 + (5.7567027978970025 + 1.9038237362589072*I)*z5^22 + (-5.640608540066924e-05 + 1.771556211351444e-05*I)*z5^23 + (2.0087296536268948e-05 - 2.2558548278470994e-05*I)*z5^24 + (-0.0003360307334270723 - 2.980132144338405e-06*I)*z5^25 + (0.00016202792682176078 + 0.00022460939168871772*I)*z5^26 + (2.7846834521984357e-05 - 1.3774828257612954e-05*I)*z5^27 + (-2.4799819288917597e-05 + 2.1036417521839998e-05*I)*z5^28 + (-5.756821009745719e-05 - 3.4778368622055526e-05*I)*z5^29 + (-6.859368697198232e-05 + 0.0001910306050821468*I)*z5^30 + (-0.00033166070221157416 + 0.00022228409294728876*I)*z5^31 + (1.5158380033280811e-05 + 2.5828510289267544e-05*I)*z5^32 + (5.758395224497921e-06 + 3.47978835853344e-05*I)*z5^33 + (4.9817114274975625e-05 - 7.63338394965692e-05*I)*z5^34 + (-0.0009983739400116517 - 3.63280832048404e-06*I)*z5^35 + (-0.00032000115415226554 - 0.0004411670939992847*I)*z5^36 + (-3.496866131798745e-05 + 0.00016951148451276488*I)*z5^37 + (-0.0002838231573973152 + 9.909666680873155e-05*I)*z5^38 + (0.0003244490512694622 + 0.00023250784488076137*I)*z5^39 + (-5.719893226048699e-06 + 0.0009344615260302918*I)*z5^40 + (-0.0005722500663857267 + 0.0005441869420465689*I)*z5^41 + (4.763045480481761 + 1.575204928923894*I)*z5^42 + (9.093190130603865e-05 + 0.00039690969153135516*I)*z5^43 + (-0.0012456422496554792 + 0.001707240097203298*I)*z5^44 + (0.0005827058013515564 - 6.636765100418758e-05*I)*z5^45 + (0.0014608723770035662 + 0.001992131238792905*I)*z5^46 + (-4.0312627215403085e-05 + 0.00013958751284502777*I)*z5^47 + (0.0006083517314749731 - 0.00018719037671740887*I)*z5^48 + (-0.002632313438212433 - 0.001951257873985809*I)*z5^49 + (-2.6170091243465855e-05 - 0.0006346027142082997*I)*z5^50 + (-0.0030594187752498543 + 0.0021424285389495114*I)*z5^51 + (4.2645677423725644e-05 - 1.6672226058762013e-05*I)*z5^52 + (0.0002688366478833537 + 0.0009583055309093752*I)*z5^53 + (0.0014190856703851927 - 0.0019282260206248236*I)*z5^54 + (0.0018134803652109757 - 1.3237184339105518e-05*I)*z5^55 + (-0.002812632496221976 - 0.003931729266206724*I)*z5^56 + (-0.00028729265458646237 + 0.0011378247276093928*I)*z5^57 + (0.0005503457182352491 - 0.00017991379728711854*I)*z5^58 + (-0.016078702256616284 - 0.011769054588132613*I)*z5^59 + (-2.387201083224366e-05 - 0.0012042958671075507*I)*z5^60 + (-0.008741445117979982 + 0.0063127810367418855*I)*z5^61 + (-18.45208461837513 - 6.102391252421816*I)*z5^62 + (-0.0014536753157728696 - 0.004989236906314342*I)*z5^63 + (-0.08080493346979688 + 0.10997748411212677*I)*z5^64 + (-0.006234571311437778 + 3.689408803886758e-05*I)*z5^65 + (0.018372853687646653 + 0.02553588788714077*I)*z5^66 + (-0.0006229763748589145 + 0.0020906021717286625*I)*z5^67 + (-0.00663339295008935 + 0.0020063518096357243*I)*z5^68 + (-0.06713979326343311 - 0.049419084389026494*I)*z5^69 + (-0.0001832828579940715 + 0.007997924775058876*I)*z5^70 + (-0.03529826986163827 + 0.025384269388810346*I)*z5^71 + (-0.0023776015693054257 - 0.0006755943404913873*I)*z5^72 + (-0.0053667758967876735 - 0.01670824070400052*I)*z5^73 + (0.026547854730681546 - 0.03573423337750509*I)*z5^74 + (-0.05920196188419478 - 0.000318302205025543*I)*z5^75 + (-0.0313398573919947 - 0.04402838465719097*I)*z5^76 + (-0.01562198419436249 + 0.0474314616416832*I)*z5^77 + (0.026146172454298153 - 0.008467290912273905*I)*z5^78 + (-0.17579183076850735 - 0.12902569317046908*I)*z5^79 + (0.0015434110666354877 - 0.2965080177845695*I)*z5^80 + (-0.06266371785323782 + 0.04478838891726244*I)*z5^81 + (-19.23199190854966 - 6.360293068190409*I)*z5^82 + (-0.02511785951337825 - 0.0788741152970174*I)*z5^83 + (-0.7541813183970225 + 1.0266113097383005*I)*z5^84 + (-0.20771136952413397 - 0.0006804290059463905*I)*z5^85 + (0.12682768228565905 + 0.1761352866106644*I)*z5^86 + (-0.002630151824326384 + 0.008508960455557038*I)*z5^87 + (-0.10201999869336002 + 0.031909217349741704*I)*z5^88 + (-0.5645078231086699 - 0.41476446553662705*I)*z5^89 + (-0.0004703289705223807 + 0.14344282137022765*I)*z5^90 + (-0.25080975553066276 + 0.17965952489928239*I)*z5^91 + (-0.02300296441015208 - 0.007172353741761304*I)*z5^92 + (-0.0659358444876765 - 0.20522606845133076*I)*z5^93 + (0.20028241978062433 - 0.2731362965356272*I)*z5^94 + (-0.7972777271112339 - 0.004945369801545684*I)*z5^95 + (-0.22473199947999223 - 0.3127495548291743*I)*z5^96 + (-0.14079988504599633 + 0.41770754791774933*I)*z5^97 + (0.10706165272261822 - 0.034804182256949937*I)*z5^98 + (-0.9544463762151889 - 0.7014820627518382*I)*z5^99 + (0.015244552105782759 - 3.0876971639881146*I)*z5^100 + (-0.31819627960116503 + 0.22714201300559098*I)*z5^101 + (74.90704628829825 + 24.772874863000286*I)*z5^102 + (-0.1158222899522518 - 0.35563797001007613*I)*z5^103 + (-3.7016929391261675 + 5.038849481686784*I)*z5^104 + (-1.7184184350857012 - 0.007176559536418193*I)*z5^105 + (0.6668018437123011 + 0.9268252065969045*I)*z5^106 + (0.004912989898812908 - 0.00980712821727657*I)*z5^107 + (-0.5111565154153541 + 0.16384030616002754*I)*z5^108 + (-2.420474104129661 - 1.7757209235286855*I)*z5^109 + (-0.006977959033911963 + 1.0346424272638997*I)*z5^110 + (-1.270228979191212 + 0.9108491370119265*I)*z5^111 + (-0.09456168722551854 - 0.02758421770797267*I)*z5^112 + (-0.26747294345973543 - 0.8321585314579373*I)*z5^113 + (0.7527198367983092 - 1.0213774590228404*I)*z5^114 + (-5.432827716910198 - 0.030910786867869584*I)*z5^115 + (-0.9836025568213252 - 1.3674063514924657*I)*z5^116 + (-0.6486526115728204 + 1.9573754786621864*I)*z5^117 + O(z5^118)\n", + "Absolute values of the coefficients:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHWCAYAAAD+VRS3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABM40lEQVR4nO3daXgUVf728bsJJCxCJCCBSILoKALRIAEhbApoEBGNjoojIipuY1wYXBAZ/zouRHFXGjRuuIujghuKUWRRZCYgGdEgi6JhFQOYhAAJJPW8OE/SNAkhS3dXdff3c1192ae6uupORocf59Q5x2VZliUAAAAErUZ2BwAAAEDDUNABAAAEOQo6AACAIEdBBwAAEOQo6AAAAIIcBR0AAECQo6ADAAAIchR0AAAAQS7kCjrLslRYWCjWSwYAAOEi5Aq6oqIiRUdHq6ioyO4oAACEnVWrpC5dpMaNpVGjpH377E4UHkKuoAMAAPa54QZpzRqprEx65x3pxRftThQeQqagc7vd6tatm3r37m13FAAAwtbOnd7tHTvsyRFuXFaIPWxWWFio6OhoFRQUqFWrVnbHAQAgrMycKY0bJ5WXS+3bS//5j5SQYHeq0EdBBwAAfConR/rlF2nAAKldO7vThIfGdgfwFbfbLbfbrbKyMrujAAAQ1nr0MC8EDj10AAAAQS5kJkUAAACEq5Ap6JjlCgAAwhVDrgAAAEEuZHroAAAAwhUFHQAAQJCjoAMAAAhyIVPQMSkCAACEKyZFAAAABLmQ6aEDAAAIVxR0AAAAQY6CDgAAIMiFTEHHpAgAABCumBQBAAAQ5EKmhw4AACBcUdABAAAEOQo6AACAIEdBBwAAEORCpqBjlisAAAhXzHIFAAAIciHTQwcAABCuKOgAAACCHAUdAABAkKOgAwAACHIUdACAkLV9u1RWZncKwP8o6ADAzzZskPLz7U4RXgoKpL59pbZtpU6dpB9/tDsR4F8UdADgR1dcISUkSO3bS88+a3ea8PHkk9J//mPeb9ok3XGHrXEAvwuZgo6FhQE4zTffSK+8Yt6XlUk33yzt22dvpnCxZ493e/due3IAgcLCwgDgJ4sWSaed5mlHRJjCIjLSvkzh4rffpP79Te9cs2bShx9KZ5xhdyrAf0Kmhw4AnGbgQOnCC817l0t6+GGKuUDp1En64Qdp4UJp7VqKOYQ+eugAwI8sS8rNlY44whQZAOAPje0OAAChzOWSune3OwWAUMeQKwAAQJCjoAMAAAhyFHRBKrSefAQAAA1BQRdk3ntPat1aatFCevxxu9MAAAAnYJZrENm71xRze/eatstlZs+deKK9uQAAgL0c2UN3/vnnq3Xr1rqwYgEnSDILklYUc5IZdt250748AADAGRxZ0N1888169dVX7Y7hODExZl/ICoMGSb162RYHAAA4hCMLusGDB6tly5Z2x3Ckl16S5s2TPvhAysqSmjSxOxEAALCbzwu6RYsWaeTIkYqLi5PL5dKcOXOqnDN9+nR17txZTZs2VXJyshYvXuzrGCHL5ZJSU6Vzz2ULIQAAYPi8oCsuLlZSUpKmTZtW7eezZs3S+PHjNXnyZK1YsUIDBw7U8OHDlZeX5+soAAAAYcHnW38NHz5cw4cPP+Tnjz/+uMaNG6err75akvTkk09q3rx5mjFjhjIyMup8v5KSEpWUlFS2CwsL6x4aAAAgiAX0GbrS0lItX75cqampXsdTU1O1ZMmSel0zIyND0dHRla/4+HhfRAUAAAgaAS3o8vPzVVZWptjYWK/jsbGx2rp1a2V72LBhuuiiizR37lx17NhR2dnZh7zmpEmTVFBQUPnasGGD3/IDAAA4kc+HXGvD5XJ5tS3L8jo2b968Wl8rKipKUVFRPssGAAAQbALaQ9e2bVtFRER49cZJ0rZt26r02tWV2+1Wt27d1Lt37wZdBwAAINgEtKCLjIxUcnKysrKyvI5nZWWpX79+Dbp2enq6cnNzaxyeBQAACEU+H3LdtWuX1q1bV9lev369cnJyFBMTo4SEBE2YMEFjxoxRr169lJKSoszMTOXl5en6669v0H3dbrfcbrfKysoa+iMAAAAEFZdlWZYvL7hgwQINHjy4yvGxY8dq5syZkszCwlOnTtWWLVuUmJioJ554QoMGDfLJ/QsLCxUdHa2CggK1atXKJ9cEAABwMp8XdHajoAMAAOHGkXu51geTIgAACB5//im984701Vd2JwkN9NAhYMrLpSeekJYvl844Q7rqKrsTAQDs8OefUp8+0po1pj15svTAA7ZGCnoUdAiYBx6Q7r7b0371VWnMGPvyAADs8dZb0qWXetpHHCEVFdmXJxSEzJArnG/x4prbAIDwcNRR3u22be3J4Wvr10sHLbUbMCFT0PEMnfOlpNTcBgCEhzPOkG6/XWrWTEpIkN54w+5EDXfFFdKxx0pHHy099VTg78+QKwKmrEx6+GHpu++koUOlv//d7kThZf58aedOadgwM7wBAPCNpUu9OykiIqRdu6SmTQOXwZa9XBGeIiKku+6yO0V4uv126dFHzfuTTpKWLKGoAwBfObhrzLKqHvO3kBlyBVC98nLv7v+VK6Uvv7QvDwCEmr59pdGjzXuXS5o61QwnB1LIFHQ8QwdUr1EjqXVr72Nt2tiTBQBCkcslvf66tHq1lJcn3XqrDRl4hg4IffPnS5ddZp6hu/VW1nsCgFBDQQcAABDkQmbIFQAAIFxR0AEAAAS5kCnomBQBAADCFc/QAQAABLmQ6aEDAAAIVxR0AACgVvbulebONbvNwFko6AAAwGHt3Suddpo0YoTUv7905512Jzo0y5Ief1y6+GLpmWfsThMYPEMHAAAO69NPpbPP9rQjIkyR19iBu8I/9ph0222ettst3XCDfXkCgR46AABwWNHR3u0jjjBFnRN9803N7VAUMgUdy5YAAOA//fpJEyeaIi46WnrjDbOHqRP17+/dHjDAnhyBxJArAACotf37TVHn1GJOMs/QPfWU9O230sCB0o032p3I/yjoAAAAglzIDLkCAACEKwo6AACAIEdBBwAAECB79ki//SaVlfn2uhR0AAAAAbBsmRQfLx1zjNS7t/Tnn767NgUdAABAAEycKG3fbt6vWCFNm+a7a1PQAQAABMC+fTW3GyJkCjoWFgYAAE52331mhw1JOv54325Hxjp0AADAdoWF0oUXSgsWSL16SbNnS7GxdqdqmCVLpE8+kU48URozxhzLz5fy8syx5s19dy8HbqkLAADCzZQpUlaWef/tt9LkydILL9ibqSGWLJFOO83srCFJv/4q3X231LateflayAy5AgCA4JWf792umDzgT599Jp16qtmn9ttvfXvtTz7xFHOS9OGHvr3+wSjoAACA7a65xjMEGRkpXX+9f++3dat0wQVSdrYp5s45x6wR5ysnnlhz29cYcgUAALbr00f6/ntTYCUlSV27+vd+mzZ5F3A7dphewvh431x/zBgzzPrBB+ZneeYZ31z3UJgUAQAAws6ePVLPntJPP5l2377SN99IjYJ07JIeOgBAWMvLk0pKzDISCB/NmkmLF5uJF02aSNddV7dibu9e8zrySL9FrJMgrUMBAGi4hx6SOnWSTjhBuvJKu9Mg0Nq2le68U7r1Vs/6cLXx3ntS69bmddVVkhPGOh1Z0H388cfq0qWLjj/+eL3ghznLmzdLL78sffWVzy8NAAgSRUXSXXd52jNnmr02YezZIz3+uPSvf5leTHhcfbXpnZNMPfHll/bmkRw45Lp//35NmDBBX331lVq1aqWePXvqggsuUExMjE+uv2GDWbBw2zbTfvhh6Y47fHJpAEAQcbnM68DeFZfLvjxOk5Ymff65eZ+ZaSYstGkT2AxFRdL//Z8pKC+7TDr//MDevzqW5SnmKvhydmx9Oa6H7r///a+6d++uo48+Wi1bttTZZ5+tefPm+ez677/vKeYk6bnnfHZpAEAQOeII85f6iiLu6qul5GR7MznFnj2eYk4yI1vZ2YHPcdVV0pNPmj+7L7zQLNZrN5dLuv9+T3vQIGnYMPvyVPB5Qbdo0SKNHDlScXFxcrlcmjNnTpVzpk+frs6dO6tp06ZKTk7W4sWLKz/bvHmzjj766Mp2x44dtWnTJp/la9++5jYAIHzcdptZvmL9eun55+1O4xzNmkkJCZ52kybScccFPsfSpZ735eUNKyotS3rnHenpp81oXUPcdpuUm2sKzC++MOvm2c3nBV1xcbGSkpI0bdq0aj+fNWuWxo8fr8mTJ2vFihUaOHCghg8frrz/P0Bf3SoqLh/2gV98sXTTTeZBxh49pBdf9NmlAQBBqEMH6Zhj7E7hPHPnSkOHmp0U3n7bnlnAAwd63kdESCkp9b/WLbdIo0aZf/bubXodG6JrV5OnSZOGXcdX/LoOncvl0uzZs5WWllZ5rE+fPurZs6dmzJhReaxr165KS0tTRkaGlixZokceeUSzZ8+WJN1yyy3q06ePLr300mrvUVJSopKSksp2YWGh4uPjWYcOAIAgt2eP9OCD5hm6Sy+Vzjqr/tdq3Vr6809P++WXpSuuaGhC5wjoM3SlpaVavny5UlNTvY6npqZqyf8fGD/11FP1ww8/aNOmTSoqKtLcuXM1rIbB6YyMDEVHR1e+4n21xDMAALBVs2bSAw9Ir77asGJO8h5ClsxyNaEkoAVdfn6+ysrKFBsb63U8NjZWW7dulSQ1btxYjz32mAYPHqxTTjlFt99+u9rUMK1m0qRJKigoqHxtaOjAOAAACDlvv22GSDt3NusPDh5cu+9ZljR9utlr9p13/JuxIWxZtuTgZ+Isy/I6du655+rcc8+t1bWioqIUFRXl03wAACC0dO1av1myDz3kWa/whRfMbhIXXujbbL4Q0B66tm3bKiIiorI3rsK2bduq9NrVldvtVrdu3dS7d+8GXQcAgGBVWmo2gb/3Xunnn+1OExrmz6+57RQBLegiIyOVnJysrKwsr+NZWVnq169fg66dnp6u3NxcZduxUA4AAA4werR0881md4e+fRs+kxNSz57ebaeuVejzIdddu3Zp3bp1le3169crJydHMTExSkhI0IQJEzRmzBj16tVLKSkpyszMVF5enq6//npfRwEAIKwcuPRrfr709ddmuS7U3/33myVTVqyQzjxTGjfO7kTV8/myJQsWLNDgap40HDt2rGbOnCnJLCw8depUbdmyRYmJiXriiSc0aNCgBt3X7XbL7XarrKxMa9asYdkSAIDtsrOlN96Q4uKk8eP9vwDtSSdJP/xg3jdqJC1fbtZcRejz6zp0digsLFR0dDQFHQDAVqtWmeG5in0+R4+WXn/dv/dct0668UZp+3Yz9DpmjH/vB+ewZZYrAAChbvFi703bfbgt+SH95S/SZ5/5/z5wnoBOivAnZrkCAJzkpJPMRu4VkpLsy4LQx5ArAAB+8sYb0ksvmWfoHntMatfO7kQIVRR0AAAAQY4hVwAAENRWrpTuvlt67jmprMzuNPaghw4AAAStNWvMbOJdu0z7uuukZ5+1N5MdQqaHDgAAhJ8vv/QUc5L34srhhIIOAAAErRNPrLkdLkKmoOMZOgAAau/ANfKC2eDBktst9eolnXeemVkcjniGDgCAMLJ3r5SWZhY6TkiQPvlESky0OxUaKmR66AAAwOE9+6xn14q8POmWW+zNA9+goAMAIIwUFtbcrqstW6QPPpBWr27YddAwFHQAAISwJ5+UWrWS2reXPvpIuvJK6eijzWeNG0t33ln/a//0kxmuTUszW5199NGhz1240PQM7t9f//vh0ELmGTq32y23262ysjKtWbOGZ+gAAGFv1Sqpe3ep4k/6Fi2kHTvMMh/Z2dKxx0rHH1//6996q/T44572kCFmGZGDXXON9MIL5v2ZZ0qffipFRNT/vqgqZHro0tPTlZubq+zsbLujAAAQMAeuwXaw7ds9xZwkFRdLu3dLMTHSsGENK+YkqXXrmtuSlJ/vKeYkKStLWr68YfdFVSFT0AEAEE5+/VXq0kVq2VI69VTT83aw3r2lPn087csuk4480ncZ/vEP0+PmcpmewEceqXpOs2ZSZKT3seho32WAQUEHAEAQmjTJbHslmeHThx+uek5UlPTVV9K//y19/LH06qu+zdCihfT551JpqfTDD1LnztWf8/LL5p9NmkgPPWQKUfgWBR0AIOhYlrRvn90pfGPlSikpSTrqKOmf/6z99w4eaj3U0GuzZtKFF0ojRpieNH9o3Ljmzy+9VCoqMosZT5zonwzhjoIOABBUPvzQDBs2a2Z6qYLd6NHS99+bZ80efFD67LPafe+226Tmzc37mBgpPd1/GX3B5WIihD9R0AEAgoZlSWPGmLXTysrM8N3SpXanapgtW7zbmzfX7nunnWZmsc6bJ+XmSt26+T4bgkfIFHTs5QoAoW///qpDiwUF9mTxlWuu8byPi5POPrv2301IkFJTpdhY3+dCcAmZdegqsJcrAIS2iROlqVPN+5QU89B/VJS9mRpq7lzTUzdihFkAGKgrCjoAQND59lvTMzd4cPAXc4AvHGZeCgAAzpOSYncCwFlC5hk6AEDo2rPH7gSAs1HQAQAca906sz1V8+ZmeLWoKPAZdu8267jFxJgJCNu3Bz6DJE2fLvXvb3Z7yM+3JwOci4IOAOBYt91mijpJWrBAeuop/9/zwQfNIr9du5odGKZOld57T9q50+xDeued/s9wsE8/NevMLVkivfGGNG5c4DPA2SjoAACOVVhYc9vXFi82uzXk50s//SRdfHHVdeEOXjcuEH74oeY2QEEHAHCs22/3zGI96ijvNdv84eBibetWaexYT4aICHt6x84803uD+xEjAp8BzhYyy5a43W653W6VlZVpzZo1LFsCACHi55+ltWulnj2ldu38e68dO6RevaT16037ppukp582OzEsWSL16GE+t8PSpWbot3Nn6brr2EYL3kKmoKvAOnQAgIbIz5c+/lhq00YaOdLuNEDtUNABAAAEOZ6hAwAACHIUdAAAAEGOrb8AAAigTz81Eyz695fOOsvuNAgVFHQA4ADffiutXi2dfrp0zDF2p4G/vP229Le/ebdHjbIvD0IHQ64AYLMXXzS9NVdeaZbF+OknuxPBX2bP9m7PmWNLDIQgCjoAsNmzz0oV6w0UFEhvvmlvHvhPly41t4H6YsgVAGwWG+vdbt/enhzwv8mTpe3bpW++kQYMkO66y+5ECBWOXIfu/PPP14IFCzR06FC9++67dfou69ABCDa//Wb2DP3pJyktzQzBNuav27BBebnUiLG7oOTI/9luvvlmvfrqq3bHAICA6NRJ+s9/zHDrK69QzCHwfv5Z6t5datLE7BO7Z4/diVBXjizoBg8erJYtW9odAwCAWvv6ayklRTr1VOmLL+xOUzcTJpj9asvLpblzpWeesTsR6qrOBd2iRYs0cuRIxcXFyeVyaU41U3SmT5+uzp07q2nTpkpOTtbixYt9kRUAAEfatUs65xxp6VIpO9sMnefn252q9nburLkN56tzQVdcXKykpCRNmzat2s9nzZql8ePHa/LkyVqxYoUGDhyo4cOHKy8vr/Kc5ORkJSYmVnlt3ry5/j8JAAA22bbNDJlXKC6WNm2yL09djR/vGepv08YsoROOysulceOk5s2lxMTgWkKoQZMiXC6XZs+erbS0tMpjffr0Uc+ePTVjxozKY127dlVaWpoyMjJqfe0FCxZo2rRph50UUVJSopKSksp2YWGh4uPjmRQBAAiYsjKpb19p2TLT7t5dWr5cioqyN1dd5Oaaxa379pU6dLA7jT1mzvQuZgcOlBYtsi1Onfj00dvS0lItX75cd955p9fx1NRULVmyxJe3qpSRkaF//etffrk2AAC1EREhffmllJlpirtrrgmuYk6SunUzr3D2xx81t53Mp5Mi8vPzVVZWptiDFlWKjY3V1q1ba32dYcOG6aKLLtLcuXPVsWNHZWdnH/LcSZMmqaCgoPK1YcOGeucHgFD166/SunV2p3CGsjL/XLdVK+m226SJE6WYGP/cA/41apTUrp2nfeON9mWpK7/McnW5XF5ty7KqHKvJvHnz9Mcff2j37t3auHGjevfufchzo6Ki1KpVK7322mvq27evhg4dWu/cABCK7r5b6txZOv54KT3d7jT2WbVK+stfzNIcaWnSAU/rAJKkhAQpJ0d64w1pyZLg+u/FpwVd27ZtFRERUaU3btu2bVV67XwtPT1dubm5NfbmAUC42bZNeuABT3v6dFPYhJqiIrNl2scfe7ZRO9hNN5n11ixL+uAD6fnnA5sRwaFDB+nSS80SNMHEpwVdZGSkkpOTlZWV5XU8KytL/fr18+WtAAD1VIcBk6BQXGy20Ro9Who5Urr22urPY2kOhLI6F3S7du1STk6OcnJyJEnr169XTk5O5bIkEyZM0AsvvKCXXnpJq1at0j/+8Q/l5eXp+uuv92nwg7ndbnXr1q3G4VkACDft2kkHzhu75RbpxBPty+MPX38tff+9p/3ii1JpadXzbrvNTF6QzH65l18emHxAINR52ZIFCxZo8ODBVY6PHTtWM2fOlGQWFp46daq2bNmixMREPfHEExo0aJBPAh8Oe7kCQFWbNkn795ttxkLNihVSz56edkyMWdS3up7IH34ww679+klHHRW4jIC/NWgdOieioAOA8PPoo9KUKWam6UsvSUOG2J0ICKyQKejcbrfcbrfKysq0Zs0aCjoAABA2Qqagq0APHQDY77vvzFBoSgqL1QKB4NOdIgAA+OAD6a9/NQv4RkVJX3xhZqEC8B+/LCxsB2a5AoAzvPCCZzeGkhLplVfM+2+/lT76SNq1y75sQKhiyBUA4FPXXuu9aO8//yk1bizde69pJyaaVfhbtrQlHhCSKOgAAD61fbt0ySXSsmXS4MHSa69JsbFmAeAK77xjhmGff15q2lS64QbpiCPsywwEO56hAwD4VJs20kEbBunII70LuqgoqX9/af160/7gA7NAcKjtYgEESsg8QwcAcK7XXjO7VjRubHaraNPGU8xJZgj2jz/sywcEu5Ap6JgUAQANs2qV9Oqr0o8/1u17d9xhNjTv21dat676cwYPln7/Xdq7V3rySbNjRdOmns9jY6XWresdHQh7PEMHANCCBdJZZ5lZqZGR0iefSGeccfjvvfuudNFFnvaAAdLixbW756efSvfdZwq7xx7z3r4LQN3wDB0AQC+8YIo5yWxs//zztSvoNm3ybm/cWPt7Dh9uXgAaLmSGXAEA9deunXc7NrZ23zv3XCkmxtO+8krfZQJQewy5AgBUUCCNGmVmmqakmGVFavtM22+/SXPnmufizj7bvzkBVC9kCjq32y23262ysjKtWbOGgg4AAISNkCnoKtBDBwAAwg3P0AFAEKnYIxUADkRBBwBB4tZbzQ4LbdtW3YkBQHhjyBUAgsCCBWZx3grt2pmFegFAoocOAILCzp3e7YICKbT+Og6gIUKmoGPrLwChLDVV6tHD07799tDbyL6sTLr6arNcSp8+3nu9AqgZQ64AECR275bmzzcb26ek2J3G955/Xrr2Wk972DDps8/sywMEE7b+AoAg0by5dM45dqfwn61ba24DOLSQGXIFAAS3UaOkI4/0tK+7zrYotnvlFTPxJS5Oeu89u9MgGDDkCgBwjN9+M8PKxx8vDRhgdxp7bNokHXOMtH+/aUdFmRnN0dG2xoLDMeQKAHCMTp2kK6+0O4W9tm/3FHOSVFJiZjVT0KEmDLkCAOAg3bpJgwZ52iNGSPHx9uVBcKCHDgBq4eOPzbNMxx0n3XGHFBlpdyKEqsaNpc8/l2bPNu/T0kJviRr4HgUdABzGwoXSued6FvLdtEmaMcPeTAhtUVHSJZfYnQLBJGSGXFlYGIC/LF7svSvDwoX2ZQGA6oRMQZeenq7c3FxlZ2fbHQVAiDn1VO92OP+9cdkysxbeuedK//uf3WkAVGDZEgCohddfl/79b/MM3f33Sy1a2J0o8P780/z8O3aYdrt2Znuu5s1tjQVAFHQAgFr6/nspKcn72Nq10l/+Yk8eAB4hM+QKAPCvv/xF6tzZ0+7SRUpIsC8PAA9muQIAaqV5c2nRIunJJ6VGjaQJE1i+BXAKhlwBAACCHEOuAAAAQY6CDgAAIMhR0AEAAAQ5xxV0GzZs0Omnn65u3brp5JNP1r///W+7IwEAADia4yZFbNmyRb///rt69Oihbdu2qWfPnlq9erVa1HIVTyZFAAAQ2kpKzD+jouzN4SSO66Hr0KGDevToIUlq166dYmJitKNiWXIAcLBt26QbbpBGj5aWLLE7DRCann7a7NTSooX02GN2p3GOOhd0ixYt0siRIxUXFyeXy6U5c+ZUOWf69Onq3LmzmjZtquTkZC1evLhe4ZYtW6by8nLFx8fX6/sAEEjnnivNmCG9+aaUmir9+qvdiYDQsnWr9I9/SGVl5nX77dLGjXancoY6F3TFxcVKSkrStGnTqv181qxZGj9+vCZPnqwVK1Zo4MCBGj58uPLy8irPSU5OVmJiYpXX5s2bK8/Zvn27Lr/8cmVmZtbjxwKAwNq/X/rPfzzt4mI2rwd8bc8eqbzc07Ys898aGvgMncvl0uzZs5WWllZ5rE+fPurZs6dmzJhReaxr165KS0tTRkZGra5bUlKiM888U9dcc43GjBlz2HNLKgbTZZ6hi4+P5xk6AAHXt6+nqGvRQvrhB+mYY2yNBIScyy+XXnvNvL/kEumtt+zN4xQ+fYautLRUy5cvV2pqqtfx1NRULanlAyWWZemKK67QkCFDDlvMSVJGRoaio6MrXwzPArDLRx9J6enmGbqsLIq5ULdihTRnjsRj3oH1yivSN99Iixebxxtg+HQv1/z8fJWVlSk2NtbreGxsrLZu3Vqra3zzzTeaNWuWTj755Mrn81577TWddNJJ1Z4/adIkTZgwobJd0UMHAIF21FHSIZ5GQYh57jnp7383Q34JCaZntn17u1OFB5dL6tfP7hTO49OCroLL5fJqW5ZV5dihDBgwQOUHDpAfRlRUlKKYtwwACKBHHzXFnCTl5UnvvCPdfLO9mRDefDrk2rZtW0VERFTpjdu2bVuVXjtfc7vd6tatm3r37u3X+wBAKJg6VTruOKl/f2n1arvTBJ8jj/Rut25tSwygkk8LusjISCUnJysrK8vreFZWlvr5uX80PT1dubm5ys7O9ut9ACDYzZ8vTZwo/fKLWS/vb3+zO1HwycyUOnWSGjUyz0xeeqndiRDu6jzkumvXLq1bt66yvX79euXk5CgmJkYJCQmaMGGCxowZo169eiklJUWZmZnKy8vT9ddf79PgB3O73XK73SorK/PrfQAg2B28Pt5vv9kSI6idcor5PZaVSRERdqcB6rFsyYIFCzR48OAqx8eOHauZM2dKMgsLT506VVu2bFFiYqKeeOIJDRo0yCeBD4etvwCEs9JS83zX+vXSRReZBY4PtmmTKUj++MO0b7rJrL4PIHg5bi/XhqKgAxDOrr1Wev558z4iQvr6a7M+3sHy8qTZs83MzIsvNjMHAQQvv8xytQNDrgBCzdq10u7d0skn177gmj/f876sTFq0qPqCLiFBuuUW3+QEYD+fToqwE5MiAISS++6TTjhB6tFDGjXKs0TG4fTq5d1OTvZ5NAAOxJArADhMcbHUsqV3EbdkiZSScvjvFhVJd91lnqG75BLpssv8lxOAc4TMkCsAhIpGjczrwCdImjSp3XdbtpSeecY/uQA4V8gMubKwMIBgsnOndKhNcZo1M7NOK5bDuOGGqkOpAHAghlwBIICKiqThw83m4h07Sp99JnXvXv25O3dKJSXsEQrg8EKmhw4AamPpUmnaNGnFCnvu/8wzppiTpI0bpVtvPfS5rVtTzAGoHZ6hAxA2Zs+WLrzQDHU2bmx6x4YODWyG3btrbgNAfYRMDx3P0AE4nFde8Ty3tn+/9Prrgc9w7bXS0Ueb91FR0qRJgc8AIPSETA9denq60tPTK5+hA4CDxcfX3A6EhARp5UopJ0c67jjTBoCGYlIEgLBRUCCNHSv997/SaadJL71kZpQCQLCjoAMAAAhyITPkCiA0fP+99NprUmysdNNN5jkzAEDNQqagc7vdcrvdKjtwaXUAQeWXX6T+/aVdu0x72TLp7bftzQQAwYAhVwCOMXOmdOWVnnbLllJhoW1xACBohMyyJQCcraxMevJJM4y6YEH153TvbvYwrZCYGIhkABD86KEDEBA33+zZNL5xY+nrr6U+faqe9+ab0nPPmWfonnjCs2YbAODQQuYZOgDONm+e5/3+/dL8+dUXdJdeal4AgNpjyBVAQPTo4d1OSrIlBgCEJHroAAREZqbUqpX088/SqFHS2WfbnQgAQkfIPEN34LIla9as4Rk6AAAQNkKmoKvApAjA/7ZskfbskY491u4k8Lc//pDy86UTTpAiIuxOA+BQeIYOQJ08/bTUsaPZWP7yy+1O41FcbGbHZmZKu3fbnSY0vPeeFB8vdesmDR4s7d1rdyIAh0IPHYBaKymRWrQwa8pVWLJESkmxL5NkZs0OHCgtXWra/fpJixbRo9RQxxwj/fabp/3KK84q4gF40EMHoEGc8FfCtWs9xZxkisyff7YvTyDl5Unvviv99JPvr+1y1dwG4BwUdAAqffSRdO21ZkHf6rZFjoqSHnnE8wf7pZfa3zsnSe3aSU2betrNm0tHHWVfnkDJyZFOOkm66CKzDMynn/r2+k884fm9nn66dPHFvr0+AN9h2RIAkqSsLOm88zw9blu3Sg8/XPW8f/zD/MG+e7d0/PGBzXgobdpI//63dPvtpv3YY1Lr1vZmCoQXXvDsdVtaKk2bJg0f7rvrp6VJGzdKO3aYCTAMYQPORUEHQJLZueHA4dP58w99rhO34zrnHPMKJwcXrf4oYtu0MS8AzsaQKwBJUnJyze1gVF5uHuovKrI7iX/ccYd0xhlSo0bmf6/qelQBhIeQmeXKwsJAwz37rPThh9KJJ0oPPig1a2Z3ovrbu1caMcL0NLZoYSYOnHWW3an8w7KYsACEu5Ap6CqwbAkASXrpJWncOE+7Sxf/zAQFACdgyBVASNq/v+Y2AIQSCjoAIenSS6Vevcz7yEjpoYfszQMA/sQsVwAh6YgjpG++kXJzpdhYqUMHuxMBgP9Q0AEIWZGRUo8edqcAAP9jyBUAACDIUdABAAAEOQo6AACAIOe4gq6oqEi9e/dWjx49dNJJJ+n555+3OxKAELdunbR0qdkPtbYKC6XLLpNOPtnsIVte7r98AHA4jltYuKysTCUlJWrevLl2796txMREZWdnq00tNxNkYWEAdfHss1J6uinIUlLMzhJNmx7+e9ddJ2VmetrPPCPdeKP/cgJATRzXQxcREaHmzZtLkvbu3auysjI5rOYEEELuusvTu/btt2brs9pYs6bmNgAEUp0LukWLFmnkyJGKi4uTy+XSnDlzqpwzffp0de7cWU2bNlVycrIWL15cp3v8+eefSkpKUseOHXXHHXeobdu2dY0JALVycG9cVFTtvvfXv3reR0RIaWk+iwQAdVbngq64uFhJSUmaNm1atZ/PmjVL48eP1+TJk7VixQoNHDhQw4cPV15eXuU5ycnJSkxMrPLavHmzJOnII4/U//73P61fv15vvvmmfv/993r+eID9/vhDuvtu6Z//lPhX2TcsS3rtNWnKFGn16oZd67nnpP8/KKCLL5ZGjqzd9268UZo9W7r3XmnhQmnIkIblAICGaNAzdC6XS7Nnz1baAX817dOnj3r27KkZM2ZUHuvatavS0tKUkZFR53v8/e9/15AhQ3TRRRfV6nyeoYOTlJaahW1XrTLtE06Q/ve/2j2jVRe7dkktWkgul2+v61Tjx0tPPWXet2olLV8u/eUv9b/enj3md3jUUT6JBwAB59Nn6EpLS7V8+XKlpqZ6HU9NTdWSJUtqdY3ff/9dhYWFkkxxtmjRInXp0uWQ55eUlKiwsNDrBTjF+vWeYk4yz1n98ovvrl9aKp1zjtSypRQXJy1b5rtrO9k773jeFxZKn3/esOs1a0YxByC4+bSgy8/PV1lZmWJjY72Ox8bGauvWrbW6xsaNGzVo0CAlJSVpwIABuvHGG3XyyScf8vyMjAxFR0dXvuLj4xv0MwC+FBcnxcR42kceKR19tO+u/9JL0iefmPdbt4bPLMuDe+OOO86eHADgFH7Zy9V10LiPZVlVjh1KcnKycnJyan2vSZMmacKECZXtwsJCijo4RsuW0mefSZMnm+e+7r9fio723fV37aq5Hapef1269lppwwbpyiulYcPsTgQA9vJpQde2bVtFRERU6Y3btm1blV47X4mKilJUVJTcbrfcbrfKysr8ch+gvnr3bviQ4KGMGSNNn26GdiMiTOEoSdu2ST//LHXr5tsC0ikSEkyhDAAwfDrkGhkZqeTkZGVlZXkdz8rKUr9+/Xx5qyrS09OVm5ur7Oxsv94HcJLYWGnFCikrS8rNlf72N2nJEjMk2a+f1L27KfYAAKGtzj10u3bt0rp16yrb69evV05OjmJiYpSQkKAJEyZozJgx6tWrl1JSUpSZmam8vDxdf/31Pg0OwIiOls44w9N+8EGpqMi837RJevpp6Ykn7MkGAAiMOhd0y5Yt0+DBgyvbFc+vjR07VjNnztSoUaO0fft23XfffdqyZYsSExM1d+5cderUyXepq8GQK2BERnq3a7tQLgAgeDluL9eGYh06hLtVq6TUVGnjRrNx/BdfsCQHAIQ6v8xyBWCfrl3NWnd//CG1by81smnH5o0bpexsMzGjhqUktXSptG+f1L+/fVkBINiFzP99ut1udevWTb1797Y7CmC7Jk3MGnh2FUg//CCddJJ0wQXmnxVr5R3s73+XUlKkQYPM3qihNV4AAIHDkCuAGn3yiZlBO2yYGcKtjVtuMZMxKqSmSvPmeZ+zbZuZpXug776TTjmlYXl95eefzfOILGsJIBiETA8dAN976imztdgdd0h9+tR+a7HWrWtuS2ayRuODHvo44oj65fS1664zS78kJJhZwwDgdCFT0DHkimDy3HNS377ShRdKW7bYnebQ3nzT837vXun992v3vdtuM0upuFymV2/q1KrnREdLM2aY4eFGjaQHHpCOP943uRvi+++lzExP++67pZ077csDALXBkCsQYF99JQ0Z4mkPGSJ9+aV9eWoyapT0zjuedmamdM01tf9+efnhn+MrLTXnNW1av4y+9v33UlKSp+1ySTt2mH14AcCpQqaHDggWq1Z5t3Nz7clRG9OmmSHXY4+Vxo+Xxo2r2/drMykjMtI5xZxkehSvu87TfuABijkAzkcPHRBgq1dLPXtKu3eb9jXXeA/xwRnWrzfF5tFH250EAA4vZNahY6cIBIsuXaRvvpFmzTIzKA/sDYJzdO5sdwIAqD166AAAAIIcz9ABYeznn6XNm+1OAQBoKAo6+MQrr5hFYuPiar+0hZOtXStdcol0/vnSf/5jdxqP5cvNjgqXXGKexasvy5LGjDFrrXXsKD35pM8iAgBswJArGmzjRvO80f79pt20qbR1q1lnLBjt3y8dd5yUl2fa0dGmwLN7g/sdO0wBVrEmWny8tG6deXC/rr79VurXz9OOiJB27XLWbFMAQO2FTA8dCwvbZ/t2TzEnmQVoCwrsy9NQf/zhKeYk87OsW2dfngo//+y9wO2GDdLvv9uXBwDgHCFT0KWnpys3N1fZ2dl2Rwk73bubzdUrnHNOcO9/GRsrJSZ62u3bS1272penQpcuZki7woknSh061O9afftKl11m3rtc0iOP0DsHAMGMIVf4REmJNHu22ZszLa3qHp0NNWWKNGeOKWKeftr/C73+/rvZrmrvXrOgrhO2pJJMT+Hjj5vtsiZO9C7w6nu95s0bfh0AgL0o6OB4b74pjR7taY8eLb3+un15AABwmpAZckXoCqatsnwtN1dasEDas8fuJAAAJ6Ogg+Odfbb3EO6559qXJZCmTTPP8g0eLPXvLxUX250IAOBUDLkiKHzzjfTJJ2ZiwNixnmO5udLppzvnGTdfatvWzCCu8Prr3kPPAABUYC9XBIX+/c2rwsyZ0lVXmQVyW7SQvv5a6tHDrnT+0aKFd0HXooV9WQAAzhYyQ64sWxJenn/eFHOSGYp86y178/jD889LFZ3Mo0eHz1AzAKDuQqaHDuHl4GU26rsem5Olppoeuj17pJYt7U4DAHAyCjoEpaeekrZtk374QRoxQkpPtzuRfzRuTDEHADg8JkUAAAAEuZB5hg4AACBcUdABklaskN57zwzjAgAQbHiGDmHv5ZelcePMrNn27aWlS6VOnexOBQBA7dFDh7D35JOeJVC2bjV7xwIAEExCpqBzu93q1q2bevfubXcUBJnWrb3bMTH25AAAoL6Y5Yqwl5srnX++9PPP0l//arbYatIksBnKyqQpU8xw78CB0sSJkssV2AwAgODFM3QIe926SatXm2FXu4qoqVOl//s/837uXKlpU2n8eHuyAACCT8gMuQINZWeP2ME71i1bZk8OAEBwoqADHGDw4JrbAADUhCFXwAFuuskMs1Y8Q3fFFXYnqpt588x2bK1bSw8/LHXsaHciAAgvTIoA0CBr1kgnnSSVlpr2KadI331nbyYACDcMuQJokB9/9BRzkpSTI5WX2xYHAMISBR2ABunVS4qO9rQHD5Ya8f8sABBQPEMHoEHi46WFC6XnnzfP0N1+u92JACD8OPYZut27d6tr16666KKL9Oijj9b6ezxDBwAAwo1jB0YefPBB9enTx+4YIWXzZmn5cqmkxO4kAADAlxxZ0K1du1Y//fSTzj77bLujhIz335c6dzbPO/XtKxUW2p0IAAD4Sp0LukWLFmnkyJGKi4uTy+XSnDlzqpwzffp0de7cWU2bNlVycrIWL15cp3vcdtttysjIqGs01OCuuzwzEXNyzH6lAAAgNNS5oCsuLlZSUpKmTZtW7eezZs3S+PHjNXnyZK1YsUIDBw7U8OHDlZeXV3lOcnKyEhMTq7w2b96sDz74QCeccIJOOOGE+v9UqOLgzeYDvfk8AADwnwZNinC5XJo9e7bS0tIqj/Xp00c9e/bUjBkzKo917dpVaWlptep1mzRpkl5//XVFRERo165d2rdvn2699Vb9X8XO5QcpKSlRyQEPhRUWFio+Pp5JEQeZP186/3wz1Dp4sGcDePheUZG0c6fZLYHlOwAAgeDTP25KS0u1fPlypaameh1PTU3VkiVLanWNjIwMbdiwQb/++qseffRRXXPNNYcs5irOj46OrnzFx8c36GcIVUOGmEkRGzZIX35JMecv8+ZJHTpInTpJZ57JBBQAQGD4tKDLz89XWVmZYmNjvY7HxsZq69atvrxVpUmTJqmgoKDytWHDBr/cJxS0aGF6jVwuu5OErvHjpeJi837+fOmNN2yNAwAIE35ZWNh1UMVgWVaVY7VxRS12KI+KilJUVJTcbrfcbrfKysrqfB/AV/bvr7kNAIA/+LSHrm3btoqIiKjSG7dt27YqvXa+lp6ertzcXGVnZ/v1Pqi9rCzp6qulBx/03uszlGVkSJGR5n2vXtKll9qbBwAQHnzaQxcZGank5GRlZWXp/PPPrzyelZWl8847z5e3gsMtXSoNHy5VdJj++qvZGirUXXih1L+/9PvvUrdunuIOAAB/qnNBt2vXLq1bt66yvX79euXk5CgmJkYJCQmaMGGCxowZo169eiklJUWZmZnKy8vT9ddf79PgB2PI1VkWL/YUc5L01Vf2ZQm0Dh3MCwCAQKnzsiULFizQ4MGDqxwfO3asZs6cKcksLDx16lRt2bJFiYmJeuKJJzRo0CCfBD4c9nJ1hvnzpaFDPe1Ro6S337Yvz4GKiqRVq8zOGUcdZXcaAAAarkHr0DkRBZ1zvPGG9NZbpnCaMkVq2dLuRFJenjRwoPlny5ZmPb4BA+xOBQBAw4RMQXfgkOuaNWso6FCtO+6QHnnE005NNWvHAQAQzEJmHXtmuQavFSukL76Q9u71/70O3vKMSQsAgFAQMgUdgtODD0o9e5pdFQYNkvbs8e/9JkyQkpLM+w4dzDIjAAAEu5AZcq3AM3TBpXlz7yLu/ffNnrP+VFYmbd1qJkTQQwcACAUh00PndrvVrVs39e7d2+4oqIMjjvBuB6IGj4iQjj6aYg4AEDrooYOt5s6V/vY3s5TI3/8uud12JwIAIPhQ0MF25eVma7CmTe1OAgBAcPLp1l9AfTRqRDGHmn39tXn16SNVs645AIS9kCno2PoLCE0ffSSlpZmeXJfLLFY9apTdqQDAWRhyBeBol18uvfaap33++WY2NADAI2RmuQIITZ07e7ePPdaeHADgZCEz5AogNE2aJG3cKC1ebJ6h+9e/7E4EAM7DkCsAAECQC5khVxYWhh3mzpUmTpTee8/uJACAcEYPXRj74APp5pvN7MFHH2XmYF2995504YWedmamdM019uUBAISvkOmhQ938+ad0ySVSXp55PmnMGLO/aahZtMgUXePGSVu2+PbaH31UcxsAgEBhUkSY2rFD2rvX0963T8rPl9q3ty/TgcrLzYLDdfH779L995ttxG6+WYqJkc46S9qzx3y+YoX03Xe+y9i9u3e7WzffXRsAgLqghy5MHXOMdOaZnvaAAdKJJ9oWx8uUKWbniFatpHffrf33zjrL7AX76qvSkCHSwoWeYk4yBd3+/fXP9eKLUs+e5j6//CJNmCDdfrt06qlSerp07731vzYAAA3BM3QOsm6dKUISE83yDP5WWir9+99SWZl08cXO2H7rhx+kk07ytJs2lQoKpMjImr9XXCwdcYT3sVdfNYVWUZFpp6RIS5bUL9d//mO+X/Ffyymn+La3DwCAhgiZIddg3/orJ8f0khUXm+2NXntNGj3av/eMjPT/Perqzz+923v3mtfhCroWLUwhuHKlabdsafb8nD9fmj5dOvJIafLk+udat85TzEnS6tX1vxYAAL5GD51D3Hab9NhjnvagQaa3Ltzs22eGgit+9uuuk559tnbf3bzZDHsWFUnjx/u2l3PjRikpyTx7KEmXXea9HRUAAHYKmR66YHfwZASnTE4ItCZNpM8/l774wvS6nXZa7b8bF2eWDvGHjh2lpUulN9+U2rVjeRIAgLPQQ+cQpaXSFVdIn35qhg5nzZI6dLA7FQAACAYUdAAAAEGOZUsAAACCHAVdiMjP915zrb5efdU8t/a3v4XmzhEAAIQiCrogZ1lmxuVRR0lt2khz5tT/Wt98Y57jW7RIevtt5y1pAgAAqkdBF+Q+/VR64w3zfs8e6dpr63+tH37wXmutYk03AADgbBR0Qe7A/Vira9fF6adLzZt72medVf9rAQCAwAmZdeiCfaeI+hoxwuww8fXXZoeJBx+s/7W6dDHDrW++adZ0u+kmc/yNN8yWWQMGmGfrAACAs7BsSQjYt09avlyKiZFOOMG3137hBe9FdF96SbrySt/eAwAANAxDrnUwZ47ZlD0lxWzWHgh//imtWmUWHj6UJk2kvn19X8xJ0rx53u3PP/f9PQAAQMNQ0NVSXp40apSUk2O2gDrnHNMz5k8LFkgJCVK3btKpp1bduL4mbrf0179KGRlSQ0ahe/SouQ0AAOwXMs/Q+VtenncvWX6+VFAgtW3rv3veeafZaF6S/vc/6bnnpIkTD/+9F16QbrzRvH//fWn/funuu+uXYeJEM9FiyRKpf3/pttvqdx0AAOA/FHS11KOHdPzx0tq1pn366f4t5iQzyaGm9qEsXerd/vbb+mdo3Fi6//76fx8AAPgfQ66SSkqk8ePNLM6775bKy6uec8QRZuHdhx+Wnn5amjvX/7keekhq2dK8T0qq/RpzAwZ4twcO9G0uAADgLMxylRlWnDrV037ySemWW/yTr64KCswWXMceayY/1NYLL0hffSX16mV+lkaU7gAAhCyGXGV2SDiQk3ZIiI42r7q6+mrzAgAAoc+R/TaNGzdWjx491KNHD10dgKpk+PCa2wAAAE7myB66I488Ujk5OQG73403mkV5ly2TBg+WRo4M2K0BAAAazJHP0LVt21b5+fn1+m447hQBAADCW52HXBctWqSRI0cqLi5OLpdLc+bMqXLO9OnT1blzZzVt2lTJyclavHhxne5RWFio5ORkDRgwQAsXLqxrRAAAgLBS54KuuLhYSUlJmjZtWrWfz5o1S+PHj9fkyZO1YsUKDRw4UMOHD1deXl7lOcnJyUpMTKzy2rx5syTp119/1fLly/Xss8/q8ssvV2FhYT1/PLPH6bnnSmlpzprsAAAA4CsNGnJ1uVyaPXu20tLSKo/16dNHPXv21IwZMyqPde3aVWlpacrIyKjzPYYPH677779fvXr1qvbzkpISlZSUVLYLCwsVHx+vgoIClZe30nHHSTt2mM9iY6VffpGaN69zjFrbu9esZbdypXT22dLNN/vvXgAAAJKPZ7mWlpZq+fLlSk1N9TqempqqJUuW1OoaO3furCzQNm7cqNzcXB177LGHPD8jI0PR0dGVr/j4+MrP8vI8xZwk/f67tGVLHX6gepg4UXr0UbOp/S23SG+84d/7AQAA+LSgy8/PV1lZmWJjY72Ox8bGauvWrbW6xqpVq9SrVy8lJSXpnHPO0VNPPaWYmJhDnj9p0iQVFBRUvjZs2FD52V/+Ih1zjOfcE06QDqj3/GL58prbAAAAvuaXZUtcB206allWlWOH0q9fP62sw8NuUVFRioqKqvaz5s2lRYukxx+XIiKkW2+VIiNrfel6GTrUbBFWYcgQ/94PAADApwVd27ZtFRERUaU3btu2bVV67XzN7XbL7XarrKzM63h8vPTEE369tZd77pHatjXP0A0fLp1zTuDuDQAAwpNPh1wjIyOVnJysrKwsr+NZWVnq16+fL29VRXp6unJzc5Wdne3X+xzsgQekU06RRo2Stm83e6bedJOUmSmdf35AowTMb79JI0ZIPXtKB8x9AQAANqlzD92uXbu0bt26yvb69euVk5OjmJgYJSQkaMKECRozZox69eqllJQUZWZmKi8vT9dff71Pgx/sUD10/vT222ZGqyTl5EiWJb3zTsBub5tLLpGWLjXvb7hB6t5dGjTI3kwAAISzOhd0y5Yt0+DBgyvbEyZMkCSNHTtWM2fO1KhRo7R9+3bdd9992rJlixITEzV37lx16tTJd6mrkZ6ervT09MqdIgJh9eqa26Hq4J9z7VoKOgAA7OTIrb8aIpBbfy1bJvXvL5WWmvb//Z/0r3/59ZaOMG6c9NJL5n10tLRihdS5s72ZAAAIZyFT0B045LpmzZqA7eWanS199JFZEuWyy/x+O0coK5NefNGs6TdqlHTiiXYnAgAgvIVMQVchkD10AAAATuDTWa4AAAAIPAo6AACAIBcyBZ3b7Va3bt3Uu3dvu6MAAAAEFM/QBYBlSbNnS4WFUlqadOSRdicCAAChJGR66Jzsqqukv/5VuvJKqV8/qajI7kQAACCUUND5WWmp9MornvaqVdLXX9uXBwAAhJ6QKeic+gxdkyZSmzbexzp0sCcLAAAITTxDFwCLF5vdFQoKpEmTpPHj7U4EAABCCQUdAABAkAuZIVcAAIBwRUEHAAAQ5EKmoHPqpAgAAAB/4xk6AACAIBcyPXQAAADhioIOAAAgyFHQAQAABDkKOgAAgCBHQQcAABDkQqagY9kSAAAQrli2BAAAIMiFTA8dAABAuKKgAwAACHIUdAAAAEGOgq4GP/wgLVwolZTYnQQAAODQQqqg275duukm837OnIZd67HHpJNOkk4/XRo0SNqzp6HpAAAA/COkZrmedZY0b16hpGi5XAX69ttW6tOnftdq2VLatcvTfvdd6a9/9UlMAAAAnwqpHrrlyz3vLUvKyan/tVq08G43b17/awEAAPhTyBR0brdbpaXdJJmFhSMjpf7963+9F1+UjjjCvL/yStP7BwAA4EQhNeS6d690332FysiI1mefFWjYsIYtLLx/v3l2rmVLHwUEAADwg5Aq6CR2igAAAOEnZIZcAQAAwhUFHQAAQJCjoAMAAAhyFHQAAABBjoLOJpYlrVkjbd5sdxIAABDsKOhsUF4ujRoldekixcdL06bZnQgAAAQzli2xwVdfSUOGeNpNmki7d0uNG9uXCQAABC966GzgclVtH3wMAACgtijobHDaaWbIVZIaNZKefFKKiLA1EgAACGIMuQIAAAS5kCvoLMtSUVGRWrZsKRfjmAAAIAyEXEEHAAAQbniGDgAAIMhR0AEAAAQ5CjoAAIAgR0EHAAAQ5CjoAAAAghwFHQAAQJCjoAMAAAhyFHQAAABBjoIOAAAgyFHQAQAABLnGdgeojYr9WQEAAMJNbfanD4qCrqioSNHR0XbHAAAACLiCggK1atWqxnNclmVZAcpTb/7ooSssLFR8fLw2bNhw2F+S05DdPsGcP5izS8Gdn+z2Ceb8ZLeP0/KHTA+dy+Xy2y+0VatWjvgfqz7Ibp9gzh/M2aXgzk92+wRzfrLbJ5jyMykCAAAgyFHQAQAABLmwLeiioqJ0zz33KCoqyu4odUZ2+wRz/mDOLgV3frLbJ5jzk90+wZg/KCZFAAAA4NDCtocOAAAgVFDQAQAABDkKOgAAgCBHQQcAABDkwqqgy8jIUO/evdWyZUu1a9dOaWlpWr16td2xDmnRokUaOXKk4uLi5HK5NGfOnMrP9u3bp4kTJ+qkk05SixYtFBcXp8svv1ybN2+2L/ABDve7dnL+GTNm6OSTT65cUDIlJUWffvqpJGfnrk5GRoZcLpfGjx8vyfn57733XrlcLq9X+/btJTk/uyRt2rRJl112mdq0aaPmzZurR48eWr58uSRn5z/mmGOq/N5dLpfS09MdnbvC/v379c9//lOdO3dWs2bNdOyxx+q+++5TeXm5JGf/7iWzveX48ePVqVMnNWvWTP369VN2drYk52Wv6c8lyezsdO+99youLk7NmjXT6aefrh9//LHy8x07duimm25Sly5d1Lx5cyUkJOjmm29WQUGB7dnff/99DRs2TG3btpXL5VJOTo7X53Zmr42wKugWLlyo9PR0LV26VFlZWdq/f79SU1NVXFxsd7RqFRcXKykpSdOmTavy2e7du/Xdd9/p7rvv1nfffaf3339fa9as0bnnnmtD0qoO97t2cv6OHTvqoYce0rJly7Rs2TINGTJE5513nn788UdH5z5Ydna2MjMzdfLJJ1ceC4b83bt315YtWypfK1eulOT87Dt37lT//v3VpEkTffrpp8rNzdVjjz2mI488UpKz82dnZ3v9zrOysiRJF110kaNzV3j44Yf17LPPatq0aVq1apWmTp2qRx55RM8884wkZ//uJenqq69WVlaWXnvtNa1cuVKpqak644wztGnTJsdlr+nPJUmaOnWqHn/8cU2bNk3Z2dlq3769zjzzzMrtOzdv3qzNmzfr0Ucf1cqVKzVz5kx99tlnGjdunO3Zi4uL1b9/fz300EPVfm5n9lqxwti2bdssSdbChQvtjnJYkqzZs2fXeM5///tfS5L122+/BSZUHdTmd+3k/K1bt7ZeeOGFaj9zYu6ioiLr+OOPt7KysqzTTjvNuuWWWw55rpPy33PPPVZSUlKtz3dS9okTJ1oDBgyo03eclP9At9xyi3XcccdZ5eXl1X7utNwjRoywrrrqKq9jF1xwgXXZZZcd8jtO+Rl2795tRUREWB9//LHX8aSkJGvy5MnVfscp2Q/+c6m8vNxq37699dBDD1Ue27t3rxUdHW09++yzh7zOO++8Y0VGRlr79u3zZ1wvNf2Zun79ekuStWLFisNex47shxJWPXQHq+gmjYmJsTmJbxQUFMjlclX2CDhJbX7XTsxfVlamt99+W8XFxUpJSan2HCfmTk9P14gRI3TGGWcc9lyn5V+7dq3i4uLUuXNnXXLJJfrll18Oea6Tsn/44Yfq1auXLrroIrVr106nnHKKnn/++Rq/46T8FUpLS/X666/rqquuOuRm4E7LPWDAAH355Zdas2aNJOl///ufvv76a5199tmH/I5Tfob9+/errKxMTZs29TrerFkzff3119V+xynZD7Z+/Xpt3bpVqamplceioqJ02mmnacmSJYf8XkFBgVq1aqXGjYNie3kvjspud0Vpl/LycmvkyJF1/hu1XXSYHro9e/ZYycnJ1ujRowMXqpZq87t2Wv7vv//eatGihRUREWFFR0dbn3zySbXnOS23ZVnWW2+9ZSUmJlp79uyxLMuqsYfOafnnzp1rvfvuu9b3339f2bsYGxtr5efnVznXadmjoqKsqKgoa9KkSdZ3331nPfvss1bTpk2tV155pdrznZa/wqxZs6yIiAhr06ZN1X7uxNzl5eXWnXfeablcLqtx48aWy+WypkyZcsjznfYzpKSkWKeddpq1adMma//+/dZrr71muVwu64QTTqhyrpOyH/zn0jfffGNJqvLvzjXXXGOlpqZWe438/HwrISHhkL2R/lLTn6m17aGzK/uhhG1Bd8MNN1idOnWyNmzYYHeUWqnpX77S0lLrvPPOs0455RSroKAgsMFq4XC/ayfmLykpsdauXWtlZ2dbd955p9W2bVvrxx9/9DrHibnz8vKsdu3aWTk5OZXHDlXQOTH/wXbt2mXFxsZajz32mNdxJ2Zv0qSJlZKS4nXspptusvr27VvlXCfmr5Cammqdc8451X7m1NxvvfWW1bFjR+utt96yvv/+e+vVV1+1YmJirJkzZ1Y514k/w7p166xBgwZZkqyIiAird+/e1ujRo62uXbt6nee07Icq6DZv3ux13tVXX20NGzasyvcLCgqsPn36WGeddZZVWlrq77heGlrQ2Zn9UMKyoLvxxhutjh07Wr/88ovdUWrtUP/ylZaWWmlpadbJJ59cbS+G3Q73u3Z6/gpDhw61rr322sq2U3PPnj278g+Fipcky+VyWREREdb+/fsty3Ju/uqcccYZ1vXXX1/Zdmr2hIQEa9y4cV7Hpk+fbsXFxXkdc2p+y7KsX3/91WrUqJE1Z86cKp85OXfHjh2tadOmeR27//77rS5dungdc/LPYFnmLzAVxdDFF19snX322ZWfOTH7wX8u/fzzz5Yk67vvvvM679xzz7Uuv/xyr2OFhYVWSkqKNXTo0MrRhEBqSEFnd/ZDCatn6CzL0o033qj3339f8+fPV+fOne2O1CD79u3TxRdfrLVr1+qLL75QmzZt7I5UqTa/ayfnP5hlWSopKZHk7NxDhw7VypUrlZOTU/nq1auXRo8erZycHEVERDg6/8FKSkq0atUqdejQQZKzf/f9+/evsgzSmjVr1KlTp8q2k/NL0ssvv6x27dppxIgRXsednnv37t1q1Mj7j7OIiIjKZUsk5/8MktSiRQt16NBBO3fu1Lx583TeeedJCo7sktS5c2e1b9++cpa0ZJ7JXLhwofr161d5rLCwUKmpqYqMjNSHH35Y5flBJ3Nydgc8xRc46enpevPNN/XBBx+oZcuW2rp1qyQpOjpazZo1szldVbt27dK6desq2+vXr1dOTo5iYmIUFxenCy+8UN99950+/vhjlZWVVf48MTExioyMtCu2pMP/rvfv3+/Y/HfddZeGDx+u+Ph4FRUV6e2339aCBQv02WefOTq3JLVs2VKJiYlex1q0aKE2bdooMTHR8flvu+02jRw5UgkJCdq2bZseeOABFRYWauzYsY7P/o9//EP9+vXTlClTdPHFF+u///2vMjMzlZmZKUmOz19eXq6XX35ZY8eO9XrA2+m5JWnkyJF68MEHlZCQoO7du2vFihV6/PHHddVVV0ly/s8wb948WZalLl26aN26dbr99tvVpUsXXXnllY7LXtOfSwkJCRo/frymTJmi448/Xscff7ymTJmi5s2b69JLL5Vk1txLTU3V7t279frrr6uwsFCFhYWSpKOOOkoRERG2Zd+xY4fy8vIq1/ir+Ata+/bt1b59e1uz14q9HYSBJana18svv2x3tGp99dVX1eYdO3ZsZZdwda+vvvrK7uiH/V07Of9VV11lderUyYqMjLSOOuooa+jQodbnn3/u+NyHcuAzdE7PP2rUKKtDhw5WkyZNrLi4OOuCCy6ofHbR6dkty7I++ugjKzEx0YqKirJOPPFEKzMzs/Izp+efN2+eJclavXq113Gn57YsMwR2yy23WAkJCVbTpk2tY4891po8ebJVUlJiWZbzf4ZZs2ZZxx57rBUZGWm1b9/eSk9Pt/7880/LspyXvaY/lyzLTFC55557rPbt21tRUVHWoEGDrJUrVx72+5Ks9evX25r95Zdfrvbze+65x/bsteGyLMs6TM0HAAAABwurZ+gAAABCEQUdAABAkKOgAwAACHIUdAAAAEGOgg4AACDIUdABAAAEOQo6AACAIEdBBwAAEOQo6AAAAIIcBR0AAECQo6ADAAAIchR0AAAAQe7/Ab0dDgZ4ynmrAAAAAElFTkSuQmCC", + "text/plain": [ + "Graphics object consisting of 1 graphics primitive" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHUCAYAAACznbW8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+lklEQVR4nO3deXhU1f3H8c8QYEgwRNkyiQQMGEVAcQGBgAYF4opQF1SwUmkVBazRWha1glqDYKW1TRShFnFBtAq4ssSqQaXUICIUkEUiRDTGJdyExcSQ8/vj/DLDkACZEJi55f16nvvAPXPnzvcuM/PJmZlzPcYYIwAAALhWg3AXAAAAgMNDoAMAAHA5Ah0AAIDLEegAAABcjkAHAADgcgQ6AAAAlyPQAQAAuByBDgAAwOUIdAAAAC5HoAMAAHC5kAJdRUWF7rvvPiUnJys6Olrt27fXgw8+qMrKSv8yxhhNmjRJiYmJio6OVt++fbV27dp6LxwAAABWSIFuypQpmj59urKysrR+/XpNnTpVjz76qP72t7/5l5k6daqmTZumrKws5eXlyefzacCAASotLa3VYxhjVFJSIi4xCwAAUDseE0JyuvzyyxUfH6+nn37a33bVVVcpJiZGzz33nIwxSkxMVEZGhsaNGydJKisrU3x8vKZMmaKRI0ce8jFKSkoUFxcnx3HUrFmzOmwSAADAsSWkHro+ffroX//6lzZu3ChJ+uyzz/Thhx/q0ksvlSTl5+ersLBQ6enp/vt4vV6lpaVp2bJlNa6zrKxMJSUlQRMAAABqr2EoC48bN06O46hjx46KiorS3r179fDDD+v666+XJBUWFkqS4uPjg+4XHx+vrVu31rjOyZMn64EHHqhL7QAAAFCIPXQvvfSSnn/+ec2ZM0crV67U7Nmz9ac//UmzZ88OWs7j8QTNG2OqtVWZMGGCHMfxTwUFBSFuAgAAwLEtpB663//+9xo/fryuu+46SdLpp5+urVu3avLkyRo+fLh8Pp8k21OXkJDgv19RUVG1XrsqXq9XXq+3rvUDAAAc80Lqodu9e7caNAi+S1RUlH/YkuTkZPl8PuXk5PhvLy8vV25urlJTU+uhXAAAEIm+/156/nnpnXfCXcmxKaQeuoEDB+rhhx9W27Zt1blzZ3366aeaNm2aRowYIcl+1JqRkaHMzEylpKQoJSVFmZmZiomJ0dChQ4/IBgAAgPD6/nupWzep6uvy990nPfRQeGs61oQ0bElpaan+8Ic/aP78+SoqKlJiYqKuv/563X///WrcuLEk+325Bx54QE899ZSKi4vVo0cPZWdnq0uXLrV6DIYtAQDAXWbPln71q8D8CSdIP/4YtnKOSSEFuqOBQAcAgLssWiRdcklgvmNHaf368NVzLOJargAA4LBcfLE0dqzUrJl0yin2u3Q4uuihAwAAcDl66AAAAFwuYgJddna2OnXqpO7du4e7FAAAAFfhI1cAAACXi5geOgAAANQNgQ4AAMDlCHQAAAAuR6ADAABwOQIdAACAyxHoAAAAXI5ABwAA4HIEOgAAAJcj0AEAALhcxAQ6Lv0FAABQN1z6CwAAwOUipocOAAAAdUOgAwAAcDkCHQAAgMsR6AAAAFyOQAcAAOByBDoAAACXI9ABAAC4HIEOAADA5SIm0HGlCAAAgLrhShEAAAAuFzE9dAAAAKgbAh0AAIDLEegAAABcjkAHAADgcgQ6AAAAlyPQAQAAuByBDgAAwOUIdAAAAC5HoAMAAHC5iAl0XPoLAACgbrj0FwAAgMtFTA8dAAAA6oZABwAA4HIEOgAAAJcj0AEAALhcSIHupJNOksfjqTaNHj1akmSM0aRJk5SYmKjo6Gj17dtXa9euPSKFAwAAwAop0OXl5embb77xTzk5OZKka665RpI0depUTZs2TVlZWcrLy5PP59OAAQNUWlpa/5UDAABA0mEOW5KRkaE333xTmzZtkiQlJiYqIyND48aNkySVlZUpPj5eU6ZM0ciRI2u1ToYtAQAACE2dv0NXXl6u559/XiNGjJDH41F+fr4KCwuVnp7uX8br9SotLU3Lli074HrKyspUUlISNAEAAKD26hzoFixYoB07duhXv/qVJKmwsFCSFB8fH7RcfHy8/7aaTJ48WXFxcf4pKSmpriUBAAAck+oc6J5++mldcsklSkxMDGr3eDxB88aYam37mjBhghzH8U8FBQV1LQkAAOCY1LAud9q6daveeecdzZs3z9/m8/kk2Z66hIQEf3tRUVG1Xrt9eb1eeb3eupQBAAAA1bGHbtasWWrdurUuu+wyf1tycrJ8Pp//l6+S/Z5dbm6uUlNTD79SAAAA1CjkHrrKykrNmjVLw4cPV8OGgbt7PB5lZGQoMzNTKSkpSklJUWZmpmJiYjR06NB6LRoAAAABIQe6d955R9u2bdOIESOq3TZ27Fjt2bNHo0aNUnFxsXr06KElS5YoNja2XooFAABAdYc1Dt2RwDh0AAAAoeFargAAAC5HoAMAAHA5Ah0AAIDLEegAAABcLmICXXZ2tjp16qTu3buHuxQAAABX4VeuAAAALhcxPXQAAACoGwIdAACAyxHoAAAAXI5ABwAA4HIEOgAAAJcj0AEAALgcgQ4AAMDlCHQAAAAuFzGBjitFAAAA1A1XigAAAHC5iOmhAwAAQN0Q6AAAAFyOQAcAAOByBDoAAACXI9ABAAC4HIEOAADA5Qh0AAAALkegAwAAcDkCHQAAgMtFTKDj0l8AAAB1w6W/AAAAXC5ieugAAABQNwQ6AAAAlyPQAQAAuByBDgAAwOUIdAAAAC5HoAMAAHA5Ah0AAIDLEegAAABcLmICHVeKAAAAqBuuFAEAAOByEdNDBwAAgLoh0AEAALgcgQ4AAMDlCHQAAAAuR6ADAABwuZAD3fbt23XDDTeoRYsWiomJ0ZlnnqlPPvnEf7sxRpMmTVJiYqKio6PVt29frV27tl6LBgAAQEBIga64uFi9e/dWo0aNtHDhQq1bt06PPfaYjj/+eP8yU6dO1bRp05SVlaW8vDz5fD4NGDBApaWl9V07AAAAFOI4dOPHj9dHH32kDz74oMbbjTFKTExURkaGxo0bJ0kqKytTfHy8pkyZopEjRx7yMRiHDgAAIDQh9dC9/vrr6tatm6655hq1bt1aZ511lmbOnOm/PT8/X4WFhUpPT/e3eb1epaWladmyZTWus6ysTCUlJUETAAAAai+kQLdlyxY9+eSTSklJ0eLFi3Xrrbfqt7/9rZ599llJUmFhoSQpPj4+6H7x8fH+2/Y3efJkxcXF+aekpKS6bAcAAMAxK6RAV1lZqbPPPluZmZk666yzNHLkSN1888168skng5bzeDxB88aYam1VJkyYIMdx/FNBQUGImwAAAHBsCynQJSQkqFOnTkFtp512mrZt2yZJ8vl8klStN66oqKhar10Vr9erZs2aBU0AAACovZACXe/evbVhw4agto0bN6pdu3aSpOTkZPl8PuXk5PhvLy8vV25urlJTU+uhXAAAAOyvYSgL33nnnUpNTVVmZqaGDBmijz/+WDNmzNCMGTMk2Y9aMzIylJmZqZSUFKWkpCgzM1MxMTEaOnToEdkAAACAY11Iw5ZI0ptvvqkJEyZo06ZNSk5O1l133aWbb77Zf7sxRg888ICeeuopFRcXq0ePHsrOzlaXLl1qtX6GLQEAAAhNyIHuSCPQAQAAhIZruQIAALgcgQ4AAMDlCHQAAAAuFzGBLjs7W506dVL37t3DXQoAAICr8KMIAAAAl4uYHjoAAADUDYEOAADA5Qh0AAAALkegAwAAcDkCHQAAgMsR6AAAAFyOQAcAAOByBDoAAACXI9ABAAC4XMQEOi79BQAAUDdc+gsAAMDlIqaHDgAAAHVDoAMAAHA5Ah0AAIDLEegAAABcjkAHAADgcgQ6AAAAlyPQAQAAuByBDgAAwOUiJtBxpQgAAIC64UoRAAAALhcxPXQAAACoGwIdAACAyxHoAAAAXI5ABwAA4HIEOgAAAJcj0AEAALgcgQ4AAMDlCHQAAAAuR6ADAABwuYgJdFz6CwAAoG649BcAAIDLRUwPHQAAAOqGQAcAAOByBDoAAACXI9ABAAC4XEiBbtKkSfJ4PEGTz+fz326M0aRJk5SYmKjo6Gj17dtXa9eurfeiAQAAEBByD13nzp31zTff+Kc1a9b4b5s6daqmTZumrKws5eXlyefzacCAASotLa3XogEAABAQcqBr2LChfD6ff2rVqpUk2zv3l7/8Rffee6+uvPJKdenSRbNnz9bu3bs1Z86cei8cAAAAVsiBbtOmTUpMTFRycrKuu+46bdmyRZKUn5+vwsJCpaen+5f1er1KS0vTsmXLDri+srIylZSUBE0AAACovZACXY8ePfTss89q8eLFmjlzpgoLC5WamqoffvhBhYWFkqT4+Pig+8THx/tvq8nkyZMVFxfnn5KSkuqwGQAAAMeuw7pSxK5du9ShQweNHTtWPXv2VO/evfX1118rISHBv8zNN9+sgoICLVq0qMZ1lJWVqayszD9fUlKipKQkrhQBAABQS4c1bEnTpk11+umna9OmTf5fu+7fG1dUVFSt125fXq9XzZo1C5oAAABQe4cV6MrKyrR+/XolJCQoOTlZPp9POTk5/tvLy8uVm5ur1NTUwy4UAAAANWsYysJ33323Bg4cqLZt26qoqEh//OMfVVJSouHDh8vj8SgjI0OZmZlKSUlRSkqKMjMzFRMTo6FDhx6p+gEAAI55IQW6r776Stdff72+//57tWrVSj179tTy5cvVrl07SdLYsWO1Z88ejRo1SsXFxerRo4eWLFmi2NjYI1I8AAAADvNHEUdCSUmJ4uLi+FEEAABALXEtVwAAAJcj0AEAALgcgQ4AAMDlCHQAAAAuFzGBLjs7W506dVL37t3DXQoAAICr8CtXAAAAl4uYHjoAAADUDYEOAADA5Qh0AAAALkegAwAAcDkCHQAAgMsR6AAAAFyOQAcAAOByBDoAAACXi5hAx5UiAAAA6oYrRQAAALhcxPTQAQAAoG4IdAAAAC5HoAMAAHA5Ah0AAIDLEegAAABcjkAHAADgcgQ6AAAAlyPQAQAAuByBDgAAwOUiJtBx6S8AAIC64dJfAAAALhcxPXQAAACoGwIdAACAyxHoAAAAXI5ABwAA4HIEOgAAAJcj0AEAALgcgQ4AAMDlCHQAAAAuFzGBjitFAAAA1A1XigAAAHC5iOmhAwAAQN0Q6AAAAFyOQAcAAOByBDoAAACXI9ABAAC43GEFusmTJ8vj8SgjI8PfZozRpEmTlJiYqOjoaPXt21dr16493DoBAABwAHUOdHl5eZoxY4bOOOOMoPapU6dq2rRpysrKUl5ennw+nwYMGKDS0tLDLhYAAADV1SnQ7dy5U8OGDdPMmTN1wgkn+NuNMfrLX/6ie++9V1deeaW6dOmi2bNna/fu3ZozZ069FQ0AAICAOgW60aNH67LLLlP//v2D2vPz81VYWKj09HR/m9frVVpampYtW1bjusrKylRSUhI0AQAAoPYahnqHuXPnauXKlcrLy6t2W2FhoSQpPj4+qD0+Pl5bt26tcX2TJ0/WAw88EGoZAAAA+H8h9dAVFBTojjvu0PPPP68mTZoccDmPxxM0b4yp1lZlwoQJchzHPxUUFIRSEgAAwDEvpB66Tz75REVFRTrnnHP8bXv37tXSpUuVlZWlDRs2SLI9dQkJCf5lioqKqvXaVfF6vfJ6vXWpHQAAAAqxh65fv35as2aNVq1a5Z+6deumYcOGadWqVWrfvr18Pp9ycnL89ykvL1dubq5SU1PrvXgAAACE2EMXGxurLl26BLU1bdpULVq08LdnZGQoMzNTKSkpSklJUWZmpmJiYjR06ND6qxoAAAB+If8o4lDGjh2rPXv2aNSoUSouLlaPHj20ZMkSxcbG1vdDAQAAQJLHGGPCXcS+SkpKFBcXJ8dx1KxZs3CXAwAAEPG4lisAAIDLEegAAABcjkAHAADgchET6LKzs9WpUyd179493KUAAAC4Cj+KAAAAcLmI6aEDAABA3RDoAAAAXI5ABwAA4HIEOgAAAJcj0AEAALgcgQ4AAMDlCHQAAAAuR6ADAABwOQIdAACAy0VMoOPSXwAAAHXDpb8AAABcLmJ66AAAAFA3BDoAAACXI9ABAAC4HIEOAADA5Qh0AAAALkegAwAAcDkCHQAAgMsR6AAAAFwuYgIdV4oAAACoG64UAQAA4HIR00MHAACAuiHQAQAAuByBDgAAwOUIdAAAAC5HoAMAAHA5Ah0AAIDLEegAAABcjkAHAADgcgQ6AAAAl4uYQMelvwAAAOqGS38BAAC4XMT00AEAAKBuCHQAAAAuR6ADAABwOQIdAACAy4UU6J588kmdccYZatasmZo1a6ZevXpp4cKF/tuNMZo0aZISExMVHR2tvn37au3atfVeNAAAAAJCCnRt2rTRI488ohUrVmjFihW68MILNWjQIH9omzp1qqZNm6asrCzl5eXJ5/NpwIABKi0tPSLFAwAAoB6GLWnevLkeffRRjRgxQomJicrIyNC4ceMkSWVlZYqPj9eUKVM0cuTIWq2PYUsAAABCU+fv0O3du1dz587Vrl271KtXL+Xn56uwsFDp6en+Zbxer9LS0rRs2bIDrqesrEwlJSVBEwAAAGov5EC3Zs0aHXfccfJ6vbr11ls1f/58derUSYWFhZKk+Pj4oOXj4+P9t9Vk8uTJiouL809JSUmhlgQAAHBMCznQnXrqqVq1apWWL1+u2267TcOHD9e6dev8t3s8nqDljTHV2vY1YcIEOY7jnwoKCkItCQAA4JjWMNQ7NG7cWCeffLIkqVu3bsrLy9Pjjz/u/95cYWGhEhIS/MsXFRVV67Xbl9frldfrDbUMAAAA/L/DHofOGKOysjIlJyfL5/MpJyfHf1t5eblyc3OVmpp6uA8DAACAAwiph+6ee+7RJZdcoqSkJJWWlmru3Ll6//33tWjRInk8HmVkZCgzM1MpKSlKSUlRZmamYmJiNHTo0CNVPwAAwDEvpED37bff6pe//KW++eYbxcXF6YwzztCiRYs0YMAASdLYsWO1Z88ejRo1SsXFxerRo4eWLFmi2NjYI1I8AAAA6mEcuvrGOHQAAACh4VquAAAALkegAwAAcDkCHQAAgMsR6AAAAFwuYgJddna2OnXqpO7du4e7FAAAAFfhV64AAAAuFzE9dAAAAKgbAh0AAIDLEegAAABcjkAHAADgcgQ6AAAAlyPQAQAAuByBDgAAwOUIdAAAAC4XMYGOK0UAAADUDVeKAAAAcLmI6aEDAABA3RDoAAAAXI5ABwAA4HIEOgAAAJcj0AEAALgcgQ4AAMDlCHQAAAAuR6ADAABwuYgJdFwpAgAAoG64UgQAAIDLRUwPHQAAAOqGQAcAAOByBDoAAACXI9ABAAC4HIEOAADA5Qh0AAAALkegAwAAcDkCHQAAgMsR6AAAAFwuYgIdl/4CAACoGy79BQAA4HIR00MHAACAuiHQAQAAuByBDgAAwOUIdAAAAC4XUqCbPHmyunfvrtjYWLVu3VqDBw/Whg0bgpYxxmjSpElKTExUdHS0+vbtq7Vr19Zr0QAA7G/XrnBXAIRPSIEuNzdXo0eP1vLly5WTk6OKigqlp6dr1z7PoqlTp2ratGnKyspSXl6efD6fBgwYoNLS0novHgCAggKpc2fpuOOkbt2k778Pd0XA0XdYw5Z89913at26tXJzc3X++efLGKPExERlZGRo3LhxkqSysjLFx8drypQpGjly5CHXybAlAIBQDB8uPftsYP7OO6Vp08JXDxAOh/UdOsdxJEnNmzeXJOXn56uwsFDp6en+Zbxer9LS0rRs2bIa11FWVqaSkpKgCQCA2tq5M3ieD4RwLKpzoDPG6K677lKfPn3UpUsXSVJhYaEkKT4+PmjZ+Ph4/237mzx5suLi4vxTUlJSXUsCAByD7rxTatrU/v/446UxY8JaDhAWdQ50Y8aM0erVq/Xiiy9Wu83j8QTNG2OqtVWZMGGCHMfxTwUFBXUtCQCOum3bpOuuky66SFq4MNzVHJv69JHWr5cWLZLWrZO6dg13RcDR17Aud7r99tv1+uuva+nSpWrTpo2/3efzSbI9dQkJCf72oqKiar12Vbxer7xeb13KAICwu/xyac0a+//335f++18pJSWsJR2TkpLsBByrQuqhM8ZozJgxmjdvnt59910lJycH3Z6cnCyfz6ecnBx/W3l5uXJzc5Wamlo/FQNAhKioCIQ5SSovtz1EAHC0hdRDN3r0aM2ZM0evvfaaYmNj/d+Li4uLU3R0tDwejzIyMpSZmamUlBSlpKQoMzNTMTExGjp06BHZAAAIl4YNpQsvlN59184ff7zUvXtYSwJwjApp2JIDfQ9u1qxZ+tWvfiXJ9uI98MADeuqpp1RcXKwePXooOzvb/8OJQ2HYEgBuUloqPfaYVFws3XyzVMuXOgCoV4c1Dt2RQKADAAAIDddyBQAAcDkCHQAAgMsR6AAAAFyOQAcAAOByERPosrOz1alTJ3XnN/8AAAAh4VeuAAAALhcxPXQAAACoGwIdAACAyxHoAAAAXI5ABwAA4HIEOgAAAJcj0AEAALgcgQ4AAMDlCHQAAAAuFzGBjitFAAAA1A1XigAAAHC5iOmhAwAAQN0Q6AAAAFyOQAcAAOByBDoAAACXI9ABAAC4HIEOAADA5Qh0AAAALkegAwAAcDkCHQAAgMtFTKDj0l8AAAB1w6W/AAAAXC5ieuiORXv3SpEVpwEAgBsR6MLknnukJk2k5s2lt94KdzUAAMDN+Mg1DP79byk1NTAfFycVF0seT/hqAgAA7kUPXRjs2BE8v3On/fgVAACgLgh0YXDBBdK55wbm77pLatgwfPUAAAB3I0aEQZMmUm6u9O679uPW3r3DXREAAHAzAl2YNGkiXXppuKsAAAD/C/jIFQAAwOUiJtBxpQgAAIC6YdgSAAAAl4uYHjoAAADUDYEOAADA5Qh0AAAALkegAwAAcDkCHQAAgMuFHOiWLl2qgQMHKjExUR6PRwsWLAi63RijSZMmKTExUdHR0erbt6/Wrl1bX/UCAABgPyEHul27dqlr167Kysqq8fapU6dq2rRpysrKUl5ennw+nwYMGKDS0tLDLhYAAADVHdY4dB6PR/Pnz9fgwYMl2d65xMREZWRkaNy4cZKksrIyxcfHa8qUKRo5cuQh18k4dAAAAKGp1+/Q5efnq7CwUOnp6f42r9ertLQ0LVu2rMb7lJWVqaSkJGgCAABA7dVroCssLJQkxcfHB7XHx8f7b9vf5MmTFRcX55+SkpLqsyQAAID/eUfkV64ejydo3hhTra3KhAkT5DiOfyooKDgSJQEAAPzPalifK/P5fJJsT11CQoK/vaioqFqvXRWv1yuv11ufZQAAABxT6rWHLjk5WT6fTzk5Of628vJy5ebmKjU1tT4fCgAAAP8v5B66nTt3avPmzf75/Px8rVq1Ss2bN1fbtm2VkZGhzMxMpaSkKCUlRZmZmYqJidHQoUPrtXAAAABYIQe6FStW6IILLvDP33XXXZKk4cOH65lnntHYsWO1Z88ejRo1SsXFxerRo4eWLFmi2NjY+qsaAAAAfoc1Dt2RwDh0AAAAoeFargAAAC5HoAMAAHA5Ah0AAIDLRUygy87OVqdOndS9e/dwlwIAAOAq/CgCAADA5SKmhw4AAAB1Q6ADAABwOQIdAACAyxHoAAAAXI5ABwAA4HIEOgAAcNRkZ0vXXy/99a9SZI2z4W4Nw10A3CsrS/rgA6lnTykjQ/J4wl0RACCSZWdLY8bY/8+dK1VW2vcPHD566FAnTzwh3X679PLL0l13SX/+c7grAgBEuo8+Cp7/8MPw1PG/iECHOuFJCQAIVc+ewfO9eoWnjv9FEfORa3Z2trKzs7V3795wl4Ja6N1bmjMneB4AgIO5/Xb7vbkPPrBh7q67wl1R/di7V3rzTamiQho4UGrc+OjXwKW/UGd8hw4AcKwzRrrySmnBAjt/wQXSkiVSw6PcZUagA1ysslLasEGKi5MSE8NdDQAcewoKpLZtg9tWrZK6dj26dfAdOsCl9u6VrrhC6tTJvpjMnBnuigDg2BMbK3m9gfmoKKl586NfB4EOcKnFi6W33rL/37tXuvNOxnQCgKPt+OOlZ5+VWra0/58+XUpKOvp1RMyPIgCEZv/vLHo8fI8RAMJhyBA7hRM9dIBLXXSR9Itf2P83bCj97W/hrQcAED700AEu1aCB9Oqr0pdf2u9wtGwZ7ooAAOFCoANczOORkpPDXQUAINz4yBUAAMDlIibQZWdnq1OnTurevXu4SwEAAHAVBhYGAABwuYjpoQMAAJHpp5+k3bvDXQUOhkAHAAAOaPp0+0v6446THnww3NUc2sqV0i23SOPGSTt2hLuao4ePXAEAQI127LBDIu3dG2jbsEE65ZSwlXRQ27ZJXbpIpaV2vm9f6b33wlrSUUMPHQAAqFFZWXCYkyL7o9cVKwJhTpKWLpUqK8NXz9FEoAMAADWKj5dGjQrMX3WV1LVr+Oo5lNNPl7zewPxZZ9lB2I8FfOQKAAAOasUKqbxc6tUr8q8Z/c47UlaWdMIJUmamlJAQ7oqODgIdAADAUfDmm9LTT0uJidIf/2hDZ33h0l8AAABH2MqV0uDBge8kbtkiLVxYf+s/Rj5ZBgAAkejbb6WLLpLatJFuu636jzCOFGOkH344cj+a+OgjG+CGDZO+/FL65JPgbfv44/p9vIgJdFz6CwCAY89vfystWSJt327HvHvqqSP/mD/8IHXrZodk6dBB2rSpfte/fbt08cXSa69Jc+ZI6elSz55S48aBZc4/v34fM2IC3ejRo7Vu3Trl5eXVavm9e6Vdu45wUQCA/xk//SRNmSLdfbe0Zk24q4lce/ZI339/9B5v27aDzx8Jjz5qPwKVbO/ZhAm1v+9PP0mPPSbde6+0cWPNy3z+ubRzZ2B+0yapbVtp8WLpV7+yj/f883WtvmYRE+hCsWSJ1Ly5HbX6pptstykAAAczbJg0frx9M+7Tx76RI9i8efb9tVUr6YYbjs776403Bv4fHS0NGSJt3iylpUknnyw98sjhP8aPP0pvvCF99pmd37Mn+PZQxta77jr7R0FmppSaKn39dfVlzjhDatEiMH/22VJcnB3oeNYse9+mTUPejINy5a9c27Sx3ZlV3nhDuvzyo1QgAMCVoqNt70qVF16Qhg4NXz31qaTEBoSoqMNbT8uW9uPIKm+/LV1yyeGtszbeeUdat07q10/q3Fnq0SP4O2aLF9uPLeuisNCub9s2O+TKjBk2LJ53nv3+XtOmdjsP9BHoK6/YHzAMHCh17Cg1ahT8Xbh//lO6+urq91u3zg6f0rSpvQxZy5Z1q7+2XNlDt/9Hrft2awIAUJPTTw/8v0ED6bTT6v8xFiyQ7rpLevnl+l93TX7+WRo0yPb+xMfbL+IfjrKy4Pl9A/CR1L+//S5d5852Pj8/+PbD6U2dOzfwMa4x9uPWlBQbuN5/335seqAwN3GidM01NpCde679KLVjx8DtUVHSqafWfN9OnaQnnrCPd6TDnOTSQDdxYuD/Z59tUzMAAAczb57tSUlLk1580V5FoD7NnSv94hfSn/8sXXutNHNm/a6/Ji+8IL3+uv3/Dz9Io0cfeNkdO6RPPz14J8jDDwcGDj7vPOnSS+ut1JAMGxb4f/Pm9gcGNVm92u7r66+3YasmcXHB88cfH1hvWpodE+5AXnwx8P+dO+04cq+9Zj8V7NXL7v99/1AIKxNhHMcxkozjOAddbs0aY95915jdu49SYQCAI6683JjKysD8li3GPP64MfPmHd06KiqM2bs3tPvccIMxtg/IToMH17zc3r3GPP20MQ88YMzatQdf5969wXUsW2bMsGHGjBplTFGRMVlZwY958snGlJUZM3y4MT6fMRdfbMx33xmzcqUxzZvbZdq0sfv1QDZuNGb5cnssDmT6dGNatzamXTtjFi+ueZnKSmPGjzemY0e7L4qKDr6t+9937lxjHnvswLXu2GFMy5aBbT/xRGP27Km+3M8/G3PttcZ4PMYkJdl9UVvp6cH795//rP19jzbXBjoAqG/7Bon69t//GjN6tDHjxhnz448HX7a0tG6P8e9/G7NggTElJQdfrqjo0DXUpLzcmK1bbWCo8v33xnzyiTE7dwbavvvOmHXr7Bvpvo+Znx+8vooKO1UZN86YBg2MiY2125GfHwghkjH33GOX+/ZbY95+25jNmw9e72efGTN//sGDxKuv2lAQG2tMdrZty8w0pmFDY2JijHnhhQPfd906Y/78Z2PeesvOT5kS/OZ/3312+6ZMsWHvxRftcqNHB5aJjTVm06bAOvcNb9nZxni9xjRpYsyMGcZ8+aUxTZsG7tujhzE//GDMqafa+agoY2bPNmbq1OA6hg835sorg9tGj7aP8fLLxkyebDtJamvDBnuc9t2Gfc+JKs88E/yY11xT+8eojU8/DV6/ZMwXXxx4+X3PxwNZvtyYp56yz1djjCkosKEuJcWY+++vl7KPmIgKdCUlxgwaZAPdkCGO2bPHmO3bjenf35i2bY25884Dv+C+954xXbrYv06qnjRz59r5zp3t7cbYtH/SScZ0725P4MpKY+66y66/Xz9jvvrKJvxf/tIm+auusnV9950xl15q20aOtCfG5s3G9Olj/0KZONGu/z//MebMM41p396YmTNt2+uv2ydcx46BJ35N7r/fruu88+xJ+fPPxtx8s33Myy+3L5w7dhjzi1/Ytl/+0tZaUGDMBRfYbfjd7+w2rV5tt/Gkk+wLjjHG/Otfdl+kpBjz0ku27YUX7D7q0sWY3FzbNmWKrePcc+1JvXevMXfcYdffv789JjUpKrJ/DSYlGXPbbfaFbONGY3r3tut78EG73LJlxpxxhjHJyfavVGPsi+4pp9h99Pbbtu2JJ+wyZ59tzIoVtu3ee20d559vX+zLy4359a/tYw4caF/ciouNGTTItg0fbsxPP9k3ob59bdvvf2/XtWqVMd262cd4/HHbtmSJMaedZvfRK6/YtmefNaZDB2NOP92YDz6wbQ8/bOs491z7or53rzFjxtj1DxhgzDff2De4666zbUOG2DfpwkL74pCUZP/Crqgw5vPPjenZ067vj3+06//wQ3tMkpON+cc/bNsrr9hj1bGjMYsWHfg8GjfOrv/88+0bwE8/GXPjjcYkJtrz6Mcf7XTFFfYv9Ztusi/GW7bY8/nEE425+267rk8+sfs/OdmYv/3Nti1aZGtISQn0msycaes/7TRjli61bQ89ZNt69rTbWFFhzC232F6Dfv2M+fpru0+GDLH1XnedMbt22fb+/W1tY8bYffvf/9pj1aaNXa8xxrz/vjGdOtlzfPZs2zZnjn3MDh0C59Gf/2zPv7PPtm8AlZV2+5KS7DmxdasxjmMfMyrKHtOvv7bPt8sus/tjxAh7rq1fb0zXrsbExdnaDvR69Nprdp+1a2f/oi8sDA4mPXva5SZMMCY+3ta2bp19rTn/fLvMSSfZxyspsW/GiYmBfbR1q31etWpl92lFhT13qtZ/2mn2tWLxYltHQoIxf/+7fczf/c4u06BB4LVh6lS7P846yz4vfv7Z9gI1bmz38eef29fGU06x901Kss/tjz4yplkz25acbJd57TUbQCRjevWy9T71lN23kjFDh9r99sQTdv2NG9vg8u9/B78xx8Ya89e/Bre1aWMft1UrO+/1Bo7z/mbPDoSOhAS7z/a3c2eg1qp9smhR8GN6vXYbJk60wa9TJ/u8WL3aBr6q5R591B6HCRPssbnrLvu8Gj8+eH3z59t69m3Lzrb77fjjjWnUyL4XfPVVcGiKiqoekCR7rEpL7SdWGzfa7br99uBlLrzQhql92+64w5hJkwLzMTG1D3VLl1avo6Y/EO67L3iZs8+u3foPJCfHPqdatrTnRmmpfX5Wrb9Dh5qDZW3985+Bfe712tdhNzkqga6ystI4jlPjVFRUZAoKCkxBQYEZMaLASOuMJCMVmHHjHHPRRY6RAtOTT9a0Dsc0axZYJirKMYsX23+r2po1c8xrrwWv65RTHDN9enDbRRc5Zty44LaRIx0zZEhw2yOPOKZ79+C2l15yTOvWwW2LFjnG6w3MN2nimC+/rL4Nc+YE369nT8c8/HBw2/XXO+bmm4Pbxo93TP/+wW0zZjimQ4fgtjfecExsbGC+YUNb2777KC7OMfPnB9/vtNMck5UV3HbppTUfy6uuCl7u0Ucdc845wW3//KdjWrQIzHs8to7GjQNt0dGOeeut4PudeKJjnn02uK1PH8c8+GBw27BhjrnppuC2++5zzAUXBLf9/e+OSU4ObnvzTcc0bRqYb9TI1tagQaDthBMcM29e8P1OP90xf/lLcNvAgY7JyAhuu/125///YAlM06Y5pmvX4LZXXrGPs+8+WrjQ1lPVFhPjmK++qn4MZs0KXldammP+8IfgtuHDHXPjjcFtEyc65rzzgtv+8Q/HJCVV30cxMYH5xo0d8/bbtsZ999ErrwTf78wzHfOnPwW3DRrkmDFjgtvuvNMxl18e3Pb4447p3Dm47dVX7flaNd+ggd1H+57PMTGOef314Pu1b++YmTOD2y680DG/+13159rQocFtDz1U/Tn/j39UPwZffhn8nG/UyDFPPx18P8kxs2cHz591lj1X921LT3fMrbcGt919t2MGDKi+j/bdH5J9rTzuuODzaP/jUlNbhw52ffu2nXeeY265Jbjt6qvtvtu3LSPD7uN92/7yl+Dnt2Sfy/ueMx6PfU7uX9tzzwW3nXuufR7tX1tNr0f7nzP33199mc2bqx+X/V/vJMe88EL1fTR+fHBbly4113HuucHLjR7tmNTU4LZ584Jfe2o6PyT7XNv3+XfOOTU/5jvvBO/zp55yTF6eYxISAvV//rljUlIOvY9qmr79Nvh1a/Dgmpd7773gOiZNqt36a5p+/DH4fV5yzPLljvn0U8eMGGHfG9eurfv6Haf6e+mIEYe3vvqcKmvx8cFRGbakaigSAAAAhOZgQ7lVOSq/co2NjZXjODVORUVFKigoUEFBgaZPL5C0TpLk8RRo3jxHDz3kSLJTTIyjf//b3q+goECSVFBQIMdx1K9fYLlOnRzl59t/q9ouvNDRpk2O4uMDbTfd5Gj5crveqrYHH3Q0b56jBg0CbbNnO3r88cB848aO3nnH0Z13BtpOOMHR6tWOfvGLQFtysq2jW7dA27nnOvrxx+rb8Nlnjo4/PrDc737nKCfHUaNGgbasLEezZgXmo6IcLVjgaNKkQFvTpo7+8x9Hw4cH2hIS7LZfcEGgrUsXW1vHjoG2/v0dbdzoqHXrQNsttzhatsxRdHSg7eGHA8dv322YNi2wjNfr6N13Hf32t8H76L//dXTFFYG2Dh1sHeecE2jr1cvRli2O2rYNtA0Z4mjlSkfNmgXaxo1ztGhR8D568klHf/97YL5hQ0dvvunoD38ItMXGOlqxwtENNziSbP0+X4E2b3Z03nmB5bp2tbWdckqg7aKLHH3+uaNWrQJtt93m6IMPHDVpEmibMsXRyy8HziOPx9GLLzp69NHAMk2aOMrNdTR6dKCtRQtH69Y5uvzyQFtKiq3jzDMDbX36OCourn4M9t9H99zjaOFCux+q2mbOdDRjRvA+WrjQ0X33Bdri4uz+vv76QFtSkj0uvXsH2s46y9GXXzo69dRA2xVX2G1o0SLQNmaM3Uf7nkd//rOjOXMCx8DjKdDLL9t9V7VMdLSjDz90NGpUoK11a0cbNji65JJAW8eOjrZudXT22YG2fv0cffGFoxNPDLTdeKOjvDxHxx0XaLv/fkfvv2+fO5I9n155xZ5LVcs0auRo8WJHDzwQaGvZ0tHatdWPQXFx8HnUo4ejH35w9MYbjtLTHV11lX2tWL8++Dz6/e8dffZZ4PnXuLGt44UX7PlT9ZyfN8/Rn/4UfD5//LE9hq1b22VuucXWte951LWro2+/tc+lqrY777T7KDExcBx++csCrV4dfPz++ld7PlS9fp5wgqOlS+0xbdnStp12mj0/Xnop8Fzo2dNRYaE9plXbMHCgfQ0cPDiw/sGDHe3Y4aioyNGrr9rX1wO9Z3z1lT3/JUft29u6anpPWL7c3u7x2HPy++9rXl9xsX2uPvusfXzHscdr3jxHb79t57dscdSmTfD5vGOHfe4mJdnX1g0bal7/d9/ZY3vZZfZ95EDbddttgWNw9tkFKiqytc2fb1/nq57v9Tlt2OBowABHJ5/saOzY+lnn/sehPqd9z90uXey5VZ/rz893dN55tv7LLy/Qt9/W/z6v6xQbG6tDibiBhRcvLtHFF8fp3XcdXXCBTaNvv20vm3HRRYHxX/YfgLi83F5Go6zMDhQZFyc5jr2GmtdrR7xu3NgOSDxvnh0F+9pr7c+zP//cDlqYkhL4iXZenh3Pp1s3O6K4JP3rX9J//ytdcIEdBVqy6/rqKzt0SnKyHWxwzhw7yOO119qxZ3btsj9t9njsT7FjYmrehi1b7E+i27a1F/SV7KjW771nH+/CC23bBx/Yi/z26WPrk6S33rIja198sR0Tp7LSjoP03XfSVVfZn2WXldl9VF5u62jWzP6Mfc4cO+DmsGF2H331lTR/vh3T6JprbN3r19srdJxySvAgk/tvQ06OtHatHRyy6qfcr75q9/sVV0gnnSRVVNifgpeU2J+aN29u99Hzz9sxfYYNs/V8+60dsPGEE+zI3FFR0hdf2G1t186OvSRJq1bZsYS6drXHRpKWLrU/zz/vPDu0jWT37Rdf2GOckmL30T/+UaKbb47Thg2OTjmlmX76yR6rn3+2dcTGSsXFtt6YGNvWqJHdRwsWSD5fYEDJdeuknBw7tlXVAJj/+Y/073/ba/j17Gnbliyx+7N//8CYS6++akcbHzTIHv+KCntcdu2y237CCfYn8y+8IDVsaOto0qTmY7B5s33OJCcHhvRZtcqeN2eeafeJJOXm2n2UlhYYvuHtt+34T5dcIrVvb/fR3Ll2H1x9tT0nqvZRRYWt47jj7Hn08st2AM2qY7Vtm/15f2KiPQcl+1x79127j6qOVU5OidLT4/TOO4769Wvm30effy4NGBAYK2zePDtA6KBB0okn2mM0d67dR9dfb5/zu3ZJL71kj9G119rzubDQ7t8WLewI9A0a2NeTt9+213CsGpT8yy/t8/700wOvM++/b4dFSEuz55dkn49bt9pjXDXcwf7HoKzM1lFZaeuIjlaNtm+3dZx4YuC154cf7CWJTj7ZHkNJWr7c1tarV+A5XzV+Vv/+9lhVqay02yjZ16NXXrHH7OqrAyPTf/aZfV2s2s7CQmnOnBL97ndx2rHDUVxcM33zjX0etW8vVV1iu6TEPmb79vZ5K9kR97/91g743rChbfvxR3vpqA4dAgPdfvWVVFpqH9Pjsd96ev99e1taWqDm2vrpp8BzoKZjUNP+OBzffWdfQ1q3li677PDXV5NFi0p0ySVxKipy1KrVwXtjIlVtLg5QV5WVdoiWnTvte+Rxx9Xr6iUd2fqPtIgLdLXdmW7e6VXYhvBze/2S+7fB7fVLbEMkcHv9EtsQCdxcvysHFgYAAECAawOd1+vVxIkT5fV6w11KnbEN4ef2+iX3b4Pb65fYhkjg9voltiESuLl+137kCgAAAMu1PXQAAACwCHQAAAAuR6ADAABwuYj7Dp0xRqWlpYqNjZXH4wl3OQAAABEv4nroPB6PmjVrdsAwN3nyZHXv3l2xsbFq3bq1Bg8erA0bNhzlKkOzdOlSDRw4UImJifJ4PFqwYIH/tp9//lnjxo3T6aefrqZNmyoxMVE33nijvv766/AVvJ9D7fNI34Ynn3xSZ5xxhpo1a6ZmzZqpV69eWrhwoaTIr/1AJk+eLI/Ho4yMDEnu2I5JkybJ4/EETT6fT5I76pek7du364YbblCLFi0UExOjM888U5988okkd2zDSSedVO0YeDwejR492hX1S1JFRYXuu+8+JScnKzo6Wu3bt9eDDz6oyspKSe44DqWlpcrIyFC7du0UHR2t1NRU5eXlSYrM+g/2HibZjphJkyYpMTFR0dHR6tu3r9auXeu//ccff9Ttt9+uU089VTExMWrbtq1++9vfynGciNmGefPm6aKLLlLLli3l8Xi0atWqoNsjYRsOJeIC3aHk5uZq9OjRWr58uXJyclRRUaH09HTt2rUr3KUd0K5du9S1a1dlZWVVu2337t1auXKl/vCHP2jlypWaN2+eNm7cqCuuuCIMldbsUPs80rehTZs2euSRR7RixQqtWLFCF154oQYNGqS1a9dGfO01ycvL04wZM3RG1eVKFPnHoErnzp31zTff+Kc1a9ZIckf9xcXF6t27txo1aqSFCxdq3bp1euyxx3T88cdLcsc25OXlBe3/nJwcSdI111zjivolacqUKZo+fbqysrK0fv16TZ06VY8++qj+9re/SXLHcfjNb36jnJwcPffcc1qzZo3S09PVv39/bd++PSLrP9h7mCRNnTpV06ZNU1ZWlvLy8uTz+TRgwACVlpZKkr7++mt9/fXX+tOf/qQ1a9bomWee0aJFi/TrX/86YrZh165d6t27tx555JEab4+EbTgk43JFRUVGksnNzQ13KbUiycyfP/+gy3z88cdGktm6devRKSpEtdnnkb4NJ5xwgvn73/9e422RXHtpaalJSUkxOTk5Ji0tzdxxxx0HXDbStmPixImma9eutV4+0uofN26c6dOnT0j3ibRt2N8dd9xhOnToYCorK2u8PRLrv+yyy8yIESOC2q688kpzww03HPA+kbQdu3fvNlFRUebNN98Mau/atau59957a7xPJNW//3tYZWWl8fl85pFHHvG3/fTTTyYuLs5Mnz79gOt5+eWXTePGjc3PP/98JMut0cHeh/Pz840k8+mnnx5yPeHchpq4roduf1Xdnc2rLiz4P8BxHHk8Hv9f/pGmNvs8Urdh7969mjt3rnbt2qVevXrVuEyk1i5Jo0eP1mWXXab+/fsfctlI3I5NmzYpMTFRycnJuu6667Rly5YDLhtp9b/++uvq1q2brrnmGrVu3VpnnXWWZs6cedD7RNo27Ku8vFzPP/+8RowYccCvuERi/X369NG//vUvbdy4UZL02Wef6cMPP9SlVRfDrUEkbUdFRYX27t2rJvteiFZSdHS0PvzwwxrvE0n17y8/P1+FhYVKr7qAtezgvGlpaVq2bNkB71c11mzDqgsAu1DEbUO4E+XhqKysNAMHDgz5r+Zw0iF66Pbs2WPOOeccM2zYsKNXVAhqs88jcRtWr15tmjZtaqKiokxcXJx56623alwuEmuv8uKLL5ouXbqYPXv2GGPMQXvoInE73n77bfPKK6+Y1atX+3sY4+Pjzffff19t2Uis3+v1Gq/XayZMmGBWrlxppk+fbpo0aWJmz55d4/KRuA37eumll0xUVJTZvn17jbdHav2VlZVm/PjxxuPxmIYNGxqPx2MyMzMPuHwkbkevXr1MWlqa2b59u6moqDDPPfec8Xg85pRTTqm2bKTVv/972EcffWQkVTuPbr75ZpOenl7jOr7//nvTtm3bA/ZIHmkHex+ubQ9duLehJq4OdKNGjTLt2rUzBQUF4S6l1g52IpWXl5tBgwaZs846yziOc3QLq6VD7fNI3YaysjKzadMmk5eXZ8aPH29atmxp1q5dG7RMpNZujDHbtm0zrVu3NqtWrfK3HSjQRfJ27Gvnzp0mPj7ePPbYY0HtkVp/o0aNTK9evYLabr/9dtOzZ89qy0bqNuwrPT3dXH755TXeFsn1v/jii6ZNmzbmxRdfNKtXrzbPPvusad68uXnmmWeqLRup27F582Zz/vnnG0kmKirKdO/e3QwbNsycdtppQctFYv0HCnRff/110HK/+c1vzEUXXVTt/o7jmB49epiLL77YlJeXH+lya3S4gS4StqEmrg10Y8aMMW3atDFbtmwJdykhOdCJVF5ebgYPHmzOOOOMGnssIsGh9rkbtqFKv379zC233OKfj/Ta58+f73/xr5okGY/HY6KiokxFRYUxJvK3Y3/9+/c3t956q38+kutv27at+fWvfx3U9sQTT5jExMSgtkjehipffvmladCggVmwYEG12yK9/jZt2pisrKygtoceesiceuqpQW2Rvh3G2D9qqoLQkCFDzKWXXuq/LVLr3/897IsvvjCSzMqVK4OWu+KKK8yNN94Y1FZSUmJ69epl+vXr5/+kIRwOJ9BFyjbUxHXfoTPGaMyYMZo3b57effddJScnh7ukw/bzzz9ryJAh2rRpk9555x21aNEi3CUFqc0+j/Rt2J8xRmVlZZLcUXu/fv20Zs0arVq1yj9169ZNw4YN06pVqxQVFeWK7dhXWVmZ1q9fr4SEBEmRfxx69+5dbYikjRs3ql27dv75SN+GKrNmzVLr1q112WWXBbW7of7du3erQYPgt66oqCj/sCWSO7ZDkpo2baqEhAQVFxdr8eLFGjRokCT31C9JycnJ8vl8/l9MS/b7mbm5uUpNTfW3lZSUKD09XY0bN9brr79e7TuEbhDp2xAh3+SrvdGjR2vOnDl67bXXFBsbq8LCQklSXFycoqOjw1xdzXbu3KnNmzf75/Pz87Vq1So1b95ciYmJuvrqq7Vy5Uq9+eab2rt3r3+bmjdvrsaNG4erbL9D7fOKioqI3oZ77rlHl1xyiZKSklRaWqq5c+fq/fff16JFiyK+9iqxsbHq0qVLUFvTpk3VokULdenSxRXbcffdd2vgwIFq27atioqK9Mc//lElJSUaPny4K+q/8847lZqaqszMTA0ZMkQff/yxZsyYoRkzZkiSK7ZBkiorKzVr1iwNHz486Mvcbql/4MCBevjhh9W2bVt17txZn376qaZNm6YRI0ZIcsd2LF68WMYYnXrqqdq8ebN+//vf69RTT9VNN90UkfUf7D2sbdu2ysjIUGZmplJSUpSSkqLMzEzFxMRo6NChkuy4e+np6dq9e7eef/55lZSUqKSkRJLUqlUrRUVFhX0bfvzxR23bts0/3l/VH28+n08+ny8ituGQwttBGDpJNU6zZs0Kd2kH9N5779VY8/Dhw/3duzVN7733XrhLN8Ycep9H+jaMGDHCtGvXzjRu3Ni0atXK9OvXzyxZssQYE/m1H8y+36Fzw3Zce+21JiEhwTRq1MgkJiaaK6+80v89RjfUb4wxb7zxhunSpYvxer2mY8eOZsaMGf7b3LINixcvNpLMhg0bgtrdUn9JSYm54447TNu2bU2TJk1M+/btzb333mvKysqMMe7Yjpdeesm0b9/eNG7c2Ph8PjN69GizY8cOY0xk1n+w9zBj7A9VJk6caHw+n/F6veb88883a9asOeT9JZn8/PyI2IZZs2bVePvEiRMjZhsOJeIu/QUAAIDQuO47dAAAAAhGoAMAAHA5Ah0AAIDLEegAAABcjkAHAADgcgQ6AAAAlyPQAQAAuByBDgAAwOUIdAAAAC5HoAMAAHA5Ah0AAIDLEegAAABc7v8ANVrVYzoY0HoAAAAASUVORK5CYII=", + "text/plain": [ + "Graphics object consisting of 1 graphics primitive" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "********************************************************************************\n" + ] + } + ], + "source": [ + "for v in S.vertices():\n", + " if v.angle() == 1: continue\n", + " print(f\"Power series at {v}; total angle {2*v.angle()}π\")\n", + " series = f.series(v)\n", + " print(f\"Power series: {series}\")\n", + " print(\"Absolute values of the coefficients:\")\n", + " list_plot([abs(c) for c in series.coefficients()], ticks=[[2 + n * 10 for n in range(20)], None], scale=\"semilogy\").show()\n", + " list_plot([abs(c) for c in series.coefficients()], ticks=[[2 + n * 10 for n in range(20)], None]).show()\n", + " print(\"*\" * 80)" + ] + }, + { + "cell_type": "markdown", + "id": "5e1247c5-7d14-44ef-ab31-29449407bcd9", + "metadata": {}, + "source": [ + "## Measuring the quality of these differentials\n", + "\n", + "We compute how closely these differentials track the prescribed cohomology that we were trying to solve for (very closely):" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "56a82af4-c9bc-48c8-ab0e-209ff7f53b0d", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [], + "source": [ + "# This does not work in the setup of this notebook. The correct is shown instead.\n", + "# _ = f.error(kind=\"cohomology\", verbose=True)" + ] + }, + { + "cell_type": "markdown", + "id": "3206107d-a73f-47e2-8327-8109ac3ec65f", + "metadata": {}, + "source": [ + "```\n", + "Integrating along cycle gives 0.33098486319992904 whereas the cocycle gave 0.330984859362568, i.e., an absolute error of 3.837360762481978e-09 and a relative error of 1.1593765255221076e-08.\n", + "Integrating along cycle gives 0.02984488314591953 whereas the cocycle gave 0.0298448861506505, i.e., an absolute error of 3.0047309293457225e-09 and a relative error of 1.0067825067847463e-07.\n", + "Integrating along cycle gives 0.999999986832941 whereas the cocycle gave 1.00000000000000, i.e., an absolute error of 1.316705899867543e-08 and a relative error of 1.316705899867543e-08.\n", + "Integrating along cycle gives 0.33098485971714564 whereas the cocycle gave 0.330984859362568, i.e., an absolute error of 3.5457742297850814e-10 and a relative error of 1.071279887730744e-09.\n", + "Integrating along cycle gives -0.4091197854215009 whereas the cocycle gave -0.409119785695342, i.e., an absolute error of 2.7384111644934706e-10 and a relative error of 6.693421487399474e-10.\n", + "Integrating along cycle gives 0.37492059415730333 whereas the cocycle gave 0.374920589337810, i.e., an absolute error of 4.8194937485313005e-09 and a relative error of 1.285470546454534e-08.\n", + "Integrating along cycle gives -0.6136796590818123 whereas the cocycle gave -0.613679678543013, i.e., an absolute error of 1.9461200650994215e-08 and a relative error of 3.1712310724055e-08.\n", + "Integrating along cycle gives -0.2712950885725277 whereas the cocycle gave -0.271295087061267, i.e., an absolute error of 1.5112603390932122e-09 and a relative error of 5.570540754952631e-09.\n", + "Integrating along cycle gives -0.7585497953711476 whereas the cocycle gave -0.758549799089383, i.e., an absolute error of 3.718235497274236e-09 and a relative error of 4.901768482092895e-09.\n", + "Integrating along cycle gives 0.46880955732332147 whereas the cocycle gave 0.468809557996643, i.e., an absolute error of 6.73321343125366e-10 and a relative error of 1.4362363813627445e-09.\n", + "Integrating along cycle gives 0.46880955732330515 whereas the cocycle gave 0.468809557996643, i.e., an absolute error of 6.733376634038279e-10 and a relative error of 1.4362711935336647e-09.\n", + "Integrating along cycle gives -0.07378060862277225 whereas the cocycle gave -0.0737806161258918, i.e., an absolute error of 7.50311958397365e-09 and a relative error of 1.0169499765590301e-07.\n", + "Integrating along cycle gives -0.487254709427468 whereas the cocycle gave -0.487254712028116, i.e., an absolute error of 2.6006478082152285e-09 and a relative error of 5.3373476828791845e-09.\n", + "Integrating along cycle gives 0.3195851237086348 whereas the cocycle gave 0.319585127243391, i.e., an absolute error of 3.5347559323994915e-09 and a relative error of 1.1060451914295373e-08.\n", + "Integrating along cycle gives 0.12642496736241948 whereas the cocycle gave 0.126424966514897, i.e., an absolute error of 8.475223023385325e-10 and a relative error of 6.70375738037997e-09.\n", + "Integrating along cycle gives -0.5355447481272093 whereas the cocycle gave -0.535544752210239, i.e., an absolute error of 4.083029914170311e-09 and a relative error of 7.624068571896737e-09.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "02c67973-cfd5-43c7-b29a-39718c326749", + "metadata": {}, + "source": [ + "The above power series describe the differential close to the vertices of the surface. We use a cell decomposition to cut our surface into pieces such that each power series is used for computations in the cell that contains it. The cell decomposition used looks like this (the green segments are the cell boundaries, the arrow heads have no meaning here.):" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "d687368f-7d19-4867-aefa-7906935dde6f", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAGZCAYAAAAErnwzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUZdeH79m+m0oqBBJqAqGLVAGRDioCioCChW5HBCyIIijwggUbRUGkSQdpIiIgTRGx0CUBkpCE9F627873x36gSEvZBsx9Xe/lSzL7nLObnZnfnOcUQRRFEQkJCQkJCQkJiVsemacdkJCQkJCQkJCQcA6SsJOQkJCQkJCQuE2QhJ2EhISEhISExG2CJOwkJCQkJCQkJG4TJGEnISEhISEhIXGbIAk7CQkJCQkJCYnbBEnYSUhISEhISEjcJkjCTkJCQkJCQkLiNkESdhISEhISEhIStwmSsJOQkJCQkJCQuE2QhJ2EhISEhISExG2CJOwkJCQkJCQkJG4TJGEnISEhISEhIXGbIAk7CQkJCQkJCYnbBEnYSUjcAqxcCYWFnvZCQkJCQsLbkYSdhIQX8/ff8MADIkOGwIsvetobCQkJCQlvRxJ2EhJeyIULMGyYSOPGIkePWmnSRM+ePSImk6c9k5CQkJDwZiRhJyHhRWRmwtixEBMjsnWrjVdfTWfr1njeffciaWmwdKmnPZSQkJCQ8GYEURRFTzshIXGnU1AAH3wAH38sIpPZefrpHIYOzUWns18+ZsKESM6c8efsWQGl0nO+SkhISEh4L3dsxO7kSahZEw4c8LQnEncyej3MmgV16oh8+KGdQYNy+P77eEaPzr5C1AGMGZPFhQsCy5Z5yFkJCQkJCa/njhV2e/ZAcjI8+KDIhg2e9kbiTsNshnnzoG5dkcmTRXr0yGP79njGjcskIMB2zddER5vo3r2Q994TsVjc7LCEhISExC3BHSvsiorA399GmzZFDBgAo0eL6PWe9kridsdmg+XLoX59kRdeEGnVqoAtW+KZPDmd0FDrTV8/Zkw2SUkCK1e6wVkJCQkJiVuOOzbHbsAAkeRkPV99lciGDVWYNasatWoJrFkj0LSpp72TuN0QRdiyBd58U+TUKYEuXYp44YVMoqPLX+Y6dmwUFy74ceaMgELhAmclJCQkJG5Z7tiI3dGjIvXrGxAEGDAgn9Wrz2O3m2jdWmTuXMeNWELCGezZA23bivTrB76+er755jyffJJcIVEHjly78+cFVq92rp8SEhISErc+d6SwKymBhASBmBjj5Z/VrWti5crzPPxwHi+8AH37iuTmetBJiVue336Dbt1EunYFg8HIwoWJLFqUSNOmhkqt27ChkU6dinn3XRHbtdPxJCQkJCTuUO5IYXfiBIiiQP36xit+rlaLTJqUzqefXuDAATvNmons3esZHyVuXU6dgocfFmnTBpKSzHz88QW++eY8bduWOs3GM89kER8vsHat05aUkJCQkLgNuCOF3bFjIJeL1K177a2wzp2LWb/+LBERerp0EXnrLbDePK9d4g4nMRGGPm2gSROR336zMGNGKhs2nKVr12IEwbm2Gjc20LFjMdOmidjtNz9eQkJCQuLO4I4VdnXqmFGrr59IFx5uZeHCRF54IYuZM0U6dhRJSnKfjxK3DhkZ8MILjkrXDblTqPJWNDOWbeDBB/ORy11nd8yYLM6cEaR2PRISEhISl7kjq2LbthUJCSnkf/9LLdPxR49qee21KEpLFSxcKPDooy52UOKWID8fZs+GTz4RUSrtDBuWzcODUum+qz2iKFLbrzZNg5oyvP5wIn0jXeLDmDG1KCz04fhxAdkd+ZgmISEhIfFv7rhbgd3umDrx3/y6G9G8uYF1687Spk0RAwfCyJEipc5Ll5K4xSgthRkzoHZtkU8+sTN0aDbffx/HyJE5BPlpaBbUDItoIb4onh8u/sC+jH0u8+WZZ7I4dUpg0yaXmZCQkJCQuIW444Td+fNQWnp14cTN8Pe388EHKUydepGVK0Xuvlvk2DEXOSnhlZhM8NlnjmkR77wj8sADeWzfHsdLL2Xh7/9Polv36t0REJALcpoHN2dovaEu8+muu/S0aVPC1Kmi1KJHQkJCQuLOE3aXxFhMTPlbTggCPPywo+cdOHreffaZ1PPudsdmg6VLHTl0L78s0rZtAVu3xvPGG+mEhFzdb+T+qPsJVAXyetPXKTQXsuLsCpf698wzWRw/LrBli0vNSEhISEjcAtxxOXZvvQULFlj56aczlVrHZBKYMyecb74J4cEHRb7+WiAkxElOSngFogjffuuYFnHmjED37oU8/3zWdaup/01qSSo1fGtgt9t5/KfH6V+rP4PqDnKZr8OH18Zq1fHHH4LTK3AlJCQkJG4d7sCInWPiRGVRq0Vefz2Dzz67wM8/22naVGTPHic4KOFxRBF+/BFatRJ55BEICipl9epzfPRRSplEHUAN3xoAyGQyVnRewfrE9Xyb9K3LfB4zJou//hLYvt1lJiQkJCQkbgHuOGH3119cMXGistx3n6PnXWRkKd26ibz5JlgsTltews38+it06SLSowdYrQYWL07kiy+SaNSo4t8ZhUzBN12+YfnZ5WxPcY3yat26lBYt9LzzjpRrJyEhIXEnc0cJu7w8SE0tf+HEzQgLs/Lll0m89FIms2Y5et4lJjrVhISLOXECHnpIpF07SEsz8dlnF1i+PIFWrZxT/qySqVjZeSVf/v0lP1780Slr/htBgDFjMvn9d4EffnD68hISEhIStwh3lLA7ftzxX2cLOwC5HEaOzGHp0gRSUy00by6yZo3TzUg4mfPnYehQkWbNRI4ds/C//6Wwbt057rvP+dMiNAoNK7us5LNTn7E/fT8n804ycv/ISq254twKlp9dTq4xl3btSmneXIraSUhISNzJKDztgDs5dgxUKpFatcqWJ1URmjUzsG7dOaZNi2Dw4EB++EHks88EfHxcZlKiAqSlwbRpIl99BUFBNiZPzqR//3yUStfa1Sl0rLxvJf1/7I/ZbkYQBDINmYRrwyu03sm8k3yX8h1L4pcQrAmGR0M4umEou3aNpnt3JzsvISEhIeH13FERu2PHoF49EwoXy1k/PzuzZ6cybVoqq1eLtGgh8tdfrrUpUTZyc+G116BePZE1a+yMHZvBd9/FMXCg60XdJU4VnMKOnTxzHrmm3KuKKuIK4hi8ZzDXK1g3Wo3sT9/P+8fe50TeCQCyjFn8XfA36cIJoqqESFE7CQkJiTuUOypid/Socypiy4IgQP/+BTRvrufVV6No21bN7NkCL72E1I7CA5SUwMcfw/vvi1itIk8+mcNTT+Xg52e/6Wudzf70/egUOpSCEotoYWfqTp6JfQZRFPk6/mtWnluJ2W4mtSSVPHMeP2f+zIm8E2QbswGQC3Jq+tbkruC7eL3Z67z222soZAp6R/bm1Wav8nNAAM8/L/DTT9Cli9vfnoSEhISEB7lj+thZLODrK/LKK+kMGZLnVttms6Pn3YoVIdx/v8iSJQKhoW514Y7FaIQvvoDp00UKC2HgwFxGjswmOPjqxsLuxGq38nPmzyyPX86RnCN80vYT5pyaQ1JxEnYcYjNCG0F0QDTNgptxT/g9xAbEIvvPQFiL3cL9O+5nSospdKjaAXC0axk8uC4hIRr27ZOeIiQkJCTuJO4YYXfyJDRpAosXJ9Cqld4jPuzf78vkyZGo1TJWrBDo2tUjbtwRWK2wbBlMmSKSlgb9+uXzzDPZVKvmfb1o9qTu4cOTHyIiYrabKTYXo7fpebzu47zR/I2bvl4URYT/hIH37PFj7Nia7N0LnTq5yHEJCQkJCa/jjsmx+2eUmPMrYsvKvfeWsGHDWWrVKqV7d5HXX5d63jkbkwleegnq1BEZMQIaNSpi06azTJ2a5pWiLlOfyeu/v06UbxTbe21nZ++dfNHxC/rX7E+AMqBMa/xX1AF07lxM/fpGpk27I57bJCQkJCT+nzsmx+7YMYiIsBAQ4P6cqn8TGmrliy+S+PrrED78MJw9e2D1aoE6dTzq1m1DYSF89pkICHz5ZRLt2pVQWuqdzy/ZhmxGHxyNwWbALjq+lzJBRvPg5jQPbl6ptQXBMUN23LgoDh6EDh2c4LCEhISEhNfjnXc8F3D0qEhMjHsKJ26GTAYjRuSwbFkCSeIuGvX5kVWrPO3V7UFYmKPitVOnItq1K0Gj0TB8eF0+/LAa4Mg/84bkgxxDDqMOjiKhOAGAEkuJ02106VJEdLQUtZOQkJC4k7hjhN2xY65pTFwR9FY9q86tYmrmA+Q82Iu2dSJ5/HEYNkykxPn39zuO5s0FjEbHV9tgMDJ6dAbduhWgVqs5ejSIvn2jycnxbLA625RNiDoEnVyHgECBpcDpNmQyxwzZH38U+PVXpy8vISEhIeGF3BHCLiMDsrKcP0qsIsw8OpOHf3yYmcdmElcYR8PAWD6dYeW991JZu1bkrrtE/vzT017e2jRoIJCYqAEcW5JduxbTrJkBk8mETldKhw7FRETI0el0TJtWg3Xrqrjdx9jAWBbdu4iquqpMv3s6NX1rYrE7Pwewe/ci6tY1MXWqFLWTkJCQuBO4I4TdpcIJbxB2/Wr1wy7aEXHcaDtHdEYQoG/fAtasOYdKZaRtW5E5c8Du2XTAW5bYWMjKUlBcfPXXu359E6++moHZbKK0VI9SacPHR4ZOpyM52YeZM6tRWCh3i58pJSn4Kf3oU6sP89rPQylzfodkmQxGj85ixw6BI0ecvryEhISEhJdxxwg7Hx87NWqYPe0KkbpIBEGgqrYqVVRVeKjmQ5d/V6uWmeXLE3jssVxeeQUeeEAkK8uDzt6iNGjg+G9iovqGxwkCvPFGOvffn4ter+fCBYEjR3wJClKjUqnYtCmQo0e1LvNzcdxi+tXs57L1L9GzZyG1a0tROwkJCYk7gTtG2EVHG5F5+N0arUaG7h3KpGaTWHHfClqGtqSartoVx6hUIhMnZjB/fhJHjtho2lTkxx895PAtSv36jv/eTNj9l44dS9i48Sw2mx6TycyqVSEcPhyEWq0mL0/Ovn1+WCzOa/h7NO8o/Wr1c9p610Muh1GjsvjuO0Ha5peQkJC4zbkjhN3Ro3aPV8Ta7Xae2PsEw+sPp1NEJ8J14XzU9qPrHt+hQwnr15+jTp1SevRwzDc1ez7geEvg4wNRUSIJCeUTdv9GEGD16nMMG5aGyWTi0KEAxo6NwmJx5O6dPavGYCi/yCuxlFBoLiTLkIVGrkEhc08RR+/ehdSsaZYqZCUkJCRuc257YWc0QlycZwsn7HY7T+17ir41+16x9XozQkKsLFiQxCuvZPDRRyLt24ucP+9CR28jGjQof8TuvwiCI4IK8MADeWzfHo9OZ0Amk/Pyy7X4+OMagGNkXElJ2U6lnzN/5sEfHmTwnsGEqEPIM7lnvJ1C4Yjabd4sXM45lZCQkJC4/bjthd3p02CzeVbYPfvLs7QNa8vQ6KHlfq1MBsOG5bB8eQJZWRaaNxf55hsXOHmb0bDhP5WxziIiwlG1arfbmD8/kaFDM5HL5Rw+HEynTg0ut1Cx3WAMbbR/NHbRTrYxm70Ze+n/Y3/0VveMuLv//gIiI828+64UtZOQkJC4Xbnthd3RoyAIItHRnhF2Ew5PoKZvTZ5v9Hyl1mnc2MDatee4775Chg6FJ58UKS52kpO3IQ0aQEqK0qk5cf8mKspMZKQZm81G/foFTJ6cRliYHZ1Ox6hRdZk/P/Sar4v0jUSrcBRkVNNV47N2n6FT6Fzi439RKmHkyGw2bBA4ccItJiUkJCQk3MxtL+yOHYOaNS3odO6PUkz7cxpyQc6k5pOcsp6Pj52ZM1OZMSOVjRsdPe9+/90pS992xMY6IrXJySqX2woLs9K/fwF2u53SUj09e+bTvLkBrVbL338HMnx4bXJyHC1UlDIlZpsZP6Ufs1rNomlwU5f792/69MknIsLCe+9JUTsJCQmJ25HbXtgdPSoSHe3+wolPTn5CpiGTWa1nOX3tPn0KWLv2HFqtkXvuEfnwQ6nn3X+51PKkMgUUFUEQYNCgPNq1K8FgMGA2mwgOthIRoUKn0/HZZ+EYzHZmt57NXSF3udU3uBS1y2LdOkeagoSEhITE7cVtLexEEY4fd39j4q/jvuav3L+Y236uy2xERZlZtiyBIUNymDABevUSychwmblbjtBQCAoSK11AUVmaNTPw/vspmM0GSkv1nE3PoZq9GT3q9CA9Xc2iRSHXbKTsSvr1K6BqVasUtZOQkJC4DbmthV1KChQUCDRo4D5htzFxIztSd7C442KX21IqRcaPz2TBgiT++stGs2YiP/zgcrO3BILg6Gfn7ojdjdBbSznV/j5sfkno9XpOn1axfHkIfn5a5HJHnzx3+KtUiowYkc3q1XDmjMvNSUhISEi4kdta2LlrlNjEwxMpNBey6+Iulp9bzvLOy5G5sRty+/YlrFt3lujoEnr1gokTpZ534KiMTUryDmGnt+oZdWAUWcYsAlQBgGOG7e7dZ4BSrFYbH35Yja1bQ1EoHOPQTp3SILooqNa/fz5hYVZmzJCidhISEhK3E7e1sDt6FAICbISHO3+4+iUSixL5JfMXBu0exPvH3uebzt+gkrk+Yf+/hITYmDfvAhMmpPPJJyLt2omcPet2N7yKS73sPJ1/eEnUnch3lKKWWksv/07x//2JBQHWrz/LsGFpWK1WDhwI4rHH6lJQ4GjZkpWlcOr7UKlEhg3L5ptvuOO/JxISEhK3E7e1sDt2TCQmxojgmo4XAGy6sIkiSxEX9ReRy+TkGHNcZ+wmyGTw1FO5LF9+ntxcC3fdJbJsmcfc8TixsaDXy8jKUnrUjwJTAX5KPwKUAciQUWIpocRSctVxKpWIv79DvXXvnsM33yRQpYoRlUrFM8/UYdas6oCjT96NeuWVlQED8gkJsUlROwkJCYnbiNta2B09KlK//j8VsaklqaSVplVorS1JW3jjyBtkG7Kv+PmhzEMACAhY7VbWJKypuMNOolEjI2vWnKNr1wKeegqGDhUpKvK0V+4nNtbxX0/n2UX4RLCgwwIidBFMbTGV+oH1b9qUWKmEJk0c312Tycybb6by8MO5KJVK/vgjmK5dG5CdXblxZGq1yNNPZ7N8OSQkVGopCQkJCQkv4bYVdiUlkJAgEBNjJN+Uz+u/vc7jPz3OjtQdFVovw5DBtuRtPPbTY4z9ZSwJRQlcLLlIXGEcDQIa8GqzV9nUYxMTm0508jupGD4+dqZPv8jMmSls3izSvLnIb7952iv3UrOmQ7wkJrp/a/y/mO1mrKKVfrX7Ma/9PMK0YWV+rSDA3XfrqV/fiMViITy8mCFDcqlWTUCn0zFxYk2WLg2ukF8DBuRRpYqN6dOlqJ2EhITE7YB7JpB7gBMnQAz6mw3aZ/jwh+MUWgoB2Ju2l2xjNiabCYPNgMlmwmQzYbabMdvMjhuw3XrVepdmemYaMsk0ZLI3fS8R2gg+bfspnap3cut7Kw8PPlhIs2YGXnstkvbtNUyfLjBhgmPb9nZHLoeYGNHjETuA9QnraRna0ilr1axpZtSobKxWsFgs1K5tIDLSMfXi5Ek5CxYE8Prr6QQF3Xy/Vqt1RO0+/rgqb70FtWo5xUUJCQkJCQ9x2wq7Y8eAentIt8Vhspsu/1whU1DHrw4+Sh90ch06hQ4fpQ8+Csf/fJW+aOQahP8k5m1I3MA7f75DiDqEu4Lv4vVmrzP4p8GsTFjp1cIOIDLSzNKlCXz+eRivvRbKjz+KLFsmUK2apz1zPbGxzp8ZWxG2Jm/l47YfO31dQYDnnssCQK+HnBwfsrOVhIerkcvtLFrkQ61aJjp0uDqn7xKPPprHV1+FMXOmjC++cGFCqoSEhISEy7lthd3RoxCdN4qND9xHSkkKH5/8mKO5R6njX4dH6zxa7vXCteG0CG7BO3e/Q22/2thFO3bRzu/Zv7MnbQ9dIro4/004EaVSZNy4TNq0KWHy5EiaNZOzdKlA796e9sy1xMYK7Nnj2Yid1W7FYDMQrgt3ua3WrUtp3ToRi8XR8ubAgaqYTGq6dbOSkmLl4EFfevUqRKv9Z+tVpxN56qls5s4N5803ISrK5W5KSEhISLiI23ZD7uhRkZgYR/J5pG8kH7b9kHXd1vFEvScqtF6Hqh1Yet9SavvVBuBE3gn0Fj1m0cz7x98nS5/lNN9dyT33lLJu3VkaNCjh/vvhlVfAZLr5625VGjSAnBwFhYWe+6pvubCFZkHN3G5XEOCLL5IYNiwNo9HIX3/58t57ESgUOgCOHtVenmH72GN5+PrameX8CXgSEhISEm7kthR2djucPHl1Y+IgdRA1/Wo6xcampE0Y7A7hmGXIYvzh8U5Z1x0EB9v4/PMLvPpqOp9/LtK2rUh8vKe9cg2XKmM9OVrs26RvGVl/pMfsX8qn7NGjgJ9+OoNSWQoITJoUxaJFEQiCgEwm0r9/HosWiVy86DFXJSQkJCQqyW0p7M6fh9JSwaUTJ+zY6VS1E8HqYL7s+CXzO8x3mS1XIJPBE0/ksmLFefLyLDRuLDJiBC6bdOApYmJAEDw3M9Zut1NsLSbSN9Ij9v/LpT55ILJixTmGDUsH4Jdfglm8OAS53M5jj4HBcP01JCQkJCS8l9tS2F0aJXZpK9YVTL17Kp+3/5x6/vUIVAbiq/R1mS1XkJWl4OJFJY0bm3nllTwsFli8WGSx60fcuhWtFmrW9Jyw++HiDzQIaOAR2zcjKMhGeLgVURRp2TKPTz9NpkYNKwcOiNSuLTJnjqMgQ0JCQkLi1uG2FXahoVZCQpzQnv8mNAtqxr6MfS634wwu5VPJZDJGjarDV19VxW6306FDLi+/nEfHjsWMGnX7ibvYWMFjLU/WJKzx6DZsWYmL06JSKXn//WSeeqqQ1q0LePVVh8D74AMoLb35GhISEhISnuc2FXaiS6N1/6Z9eHv+yvnLLbYqgvX/W/Lt2hVIt24NKC3VYbfb+d//khk71pFMpVaLPP98Pp9/nsyjj+YxcuTtJe5iYwWSkjzT8qTAXEC9gHoesV0etm4NZuVKP+rUMfH66xnMmHGRrVvjuffefCZNEqlVS+R//4PiYk97KiEhISFxI25LYffXXxAT47r8un/TPLg56YZ0t9gqLyNH1ubLL6uj0Wi4++5i/ve/FORyh+CNjTUSEODIt9q8uQrnz9uQyeDNN9NvO3EXGwspKUpMJvf2aNubtpc6fnXcarO8WCyg0Wh4++0UPvwwGUGA7GyRDRvCqFrVwpQpaWzbFk/XrnlMmeIQeNOnQ2Ghpz2XkJCQkLgWt52wy8uD1FTXFk78G5kXjXD47TcfBg2qh1zug1qtpnfvAlq0KMBoNFKlio1evYrQaK6sjiguljFzZjX++MMH4LYUdw0agN0ukJzs3tFi35z/hhH1R7jVZnk4elTLQw/V5+xZEYVCvPzdSEtTMn16KGfPOqKcEREWJk9O57vv4ujZM49p0xwCb9o0KCjw4BuQkJCQkLgK71ElTuL4ccd/3SXsAOSC/KZD3V3Fp5+GsX17MDqdjurVBerXN5CVZcRkMvHII/m0bXvj5Cg/Pzu//ppIz57/hGBuN3F3qeWJu/Psso3ZNKrSyK02y0NMjMC99xYRGmq+4ucNGxo5ePAcsbFXnkNVq1qZNCmd77+P48EHc5kxw06tWiJTpjgeqCQkJCQkPM9tJ+yOHQOVSqRWLfd13a3jX4dfMn9xi63ERBWffBKOQqFCp9ORl6cmNxf0ej3Vq5cwbdpFgoPLXjQiigJgQK2+MpJ3O4m74GAICXFPZaxNdHz2v2b+Sg1dDZfbqwhHj2oxGnX4+Bh44430q6K4ggA6nQmFQnnN9jdhYVZeey2DHTvi6dcvl9mzHQLvzTchJ8dNb0JCQkJC4prclsIuOtqIwo3D0lqHtOZQ1iGXrf/LLz6cOKFFpVJRXOzLtm2BpKaK6PV63nknhSeeyK3Qunl5crp0qc8ff+iu+fvbSdw1aOCeiN3sY7Ppt7Mfk3+fTOdqnRG9rDGgxSLw+utRfPJJwA19S09X0q1bHf7889rfDYCQECsTJmSwY0ccAwbk8PHHDoH3+uuQne0K7yUkJCQkbsZtJ+wco8Tctw0L0KlaJ84UnHHaemazwJEjjpw3tVrN559XY/PmIMxmM40b5/HDD3FUrWqptB27HR5+uJjata8f3bxdxJ27KmPr+tXlfPF5Mo2ZfHDyAwbuHuhym+XBz0/NggVJjB2bccPjwsMt9OxZTJUq1puuGRxs45VXMtmxI47HH89m7lyHwJs4ETIzneW5hISEhERZuK2EncUCp05B/frubZsfpAnCZKvc1q9eL5Cb6+gzd+BAEMOH1yYzU43JZGLevETefNPRmkQm+2dEVGUJDbXz0ktpBAXdeOv2dhB3sbGObWy7/ebHVoZGQY1QyxyRQX+lP+/c/Y5rDZaRI0d8mDYtktJSE7Vqma7afv0vMhmMG5dG/fpljzhWqWLjpZey2LEjjieeyGbBAju1a4uMGwfp3lk4LiEhIXHbcVsJu7g4R7TLnRE7i91CXEEc+aZ8Jvw6gRH7R5R5++3f7TceeyyaRYsikMvltGuXx6ZNZwkPd4jFwEAbgpM7dRQWytiyJZSSkrItfKuLuwYNwGiUkZ6udKmdKN8oRESC1EF80PoDrymeKC3VkJEhw1KOQK/FAj/+GEhiYvmqiQMCbLzwQhY//HCGYcOyWLzYRu3aIi+9BKmp5XRcQkJCQqJc3FbC7p9RYu4Tdgv+XsBT+54iy5jFDxd/wGwzI5RBhe3d60+nTrFYLD7IZDLeeOMijz+eic1mQ6cTqVvXtcUfx47pePvtUEpLy/4VuJXF3aXKWGcWUOSZ8njwhwd5+dDLfJ/yPUXmIvyUfthFO5+2+5QmwU2cZquiZGQo0Gg0dO6cx9y5F24aqfs3MhlMmRLM/v1+FbLt72/n2Wez2bEjjtGjs1i+3EbduiLPPQfJyRVaUkJCQkLiJtx2wi4iwnK58a47eDb2WWr71b787xYhLa577CuvRLJ0aTW0Wi2NGhl4/vlMTCYDdrudtm1LiYw0X/e1zqZTp1L27TtDWNjNc6j+za0q7qKiQKsVnVpAUUVVBQGB3Wm7efW3V+m0rRP3bL6HSJ9IAlWBTrNTUVJTlTz0UAybNqkRRbHcUV+5HLZsiWfEiMp1I/bzszN6tEPgPftsJqtX26hXT2T0aJGkpEotLSEhISHxH24rYeconHBvfp1CpuCjNh8RoglBISjoW7Pvv/zR8sILNVEotGi1Who2NFKtWikGg4HQUAtPPJGLr6/7ROgl7HZQqdT4+1dslu6tKO5kMoiJqXzELlOfybL4ZTx78FkG7B5ApuGf6oA6fnXY1H0T1Xyq0XdnX5786Um2XNiCxV75QpeKULeunMmT07jvvqIKrxEQYEelck5uoo+PnZEjc9ixI44XX8xkwwYb0dEiI0aIJCRUfv1bjf37ITHR015ISEjcbtxWwu7YMfc2Jr5ENZ9qvNbkNQB+3tKSffv80Wq1BASosFohPd2CwWBg5MhsevSo+E3WWfzwQwC9e0eh11c8ce9WFHcNGwpXCDur3crMozMpNF87IqW36tlyYQsTD0/k0V2PMmDXACYcnkCuKZcXGr3Ahm4b6FWjFzqFjt41erO662rCdGGMazQOuUzOX3l/8c6f79Dr+15k6G9chepMjhzx4bffgjCbTTz0UEG5tl+vxdNPhzNvXpiTvAOdzs6wYTl8/30cL7+cwZYtNmJiRIYNEzl71mlmvJqUFOjRQ6RBA5EPPgC9Z/qbS0hI3Ia4sduba8nIgKws940S+8eukt27/XjiiQfYkb6DQ8v9KCnW06lTEbVrG1iwwPuGakZFmejZsxCdrnI3/EviDmDkyCBAYPhwJzjoIho0gB9+cLQ8yTPl8dIvL3G64DTtwtrRoWoHDmUd4qe0nzidfxqraEUuyGkY2JA+UX24J/weFLKrT5e+tfoSHRDNE9FPXP5Z/cD6VPepTmJxIojwRPQTVNVVddv73LAhhJISaNUqzylFNx07FhIVVb4t+7Kg04k89VQugwblsWFDFRYvDmPJ4W95ouUA3nxToH59p5v0ClJSoFMnkcBAC3ffbeSNN/z44AN44w2BMWNA4/quPBISErcxguhtHVQryA8/QK9e8N138URFuTZXLT5ejUIB0dFWDh0K5MUXw9m8+SzjTg8gz5THxm4b8VH6uNSHyqDRaDAanSeA7XaYPr0a69YFsWiR94q7detg4ECYt3Ul756eQLrBIUoDlAFU01Wjpl9NOoZ3pGtEV3xVvpWy9ezBZ4krjCNcG87dIXczoekEZ7yFG2K1gq+vhpISM1arWOlI3b/R6XToXRxWWhW3ng9PzKHKFzlkZioYPBgmTxZo2NClZt3KJVFnNlv49NMLlJbqCAoqYdGiMLZuDSQ8HN58U2DECFC7dwKehITEbcJtsxV77Jgjh6dGDeeLOlH8Z2qBQqHg9ddrsnx5GDabjRYtctm372+qVrVQ378+afo0HtvzmFMbFjuTU6c07N3re81RURXlVtmWbdAAaLqUl/4YRo7xn9lX0QHRrOu2jg/afEDfWn0rLeoAhtYbysxWM1nVZRUn80+y/OzySq95I44e1dK/fwznz9tRKOxOFXUAf/yh4uefK/+5XI9MfSbz4z9FqbSzaespJk9OY98+K40biwwaJHLihMtMu41/i7qvvkokO1vJk09WRyaDd9+9yObNZ2nRopAXXhCJjhZZuJBytaeRkJCQgNtM2EVHG53WvNdu53IO2s6dQfTrV4/CQh1Wq5VPPkli0iRHQy6Fgss3URuOYoTEkkSe/+V51iesd44zTmT79kDefz/Q6X3xbgVxFx0NspNPMpkEtvfazuvNXqd9eHsMNucX3LSv2p42YW0AWNxxMZsvbOaHlB+cbucS9erJaNOmhOBg1yiBr7/2ZcWKEJesbRNtjD88nnxzPkabkd/zf2bgwHy2bYtnypQ0fv7ZQtOm8Mgj4uWWRrca/xV11atbuOuuUnbtSiEiwvE3q1nTzMyZqWzadI5GjQoZPRpiYkSWLHFEYyUkJCTKwm2zFduokZ0mTfKZPLniLe5FkcuCZ/DgerRrZ2TChExyc22cPq2lZcvSG86gfePIG2xL3oaAQIPABoyqP4ruNbpX2B9XoFarycpyXUsYb9+WrVtXpEOHXCZOdF8xAzgKMQbtHsSUFlNoGdrSaeseP64lNlZApTK4dC5tUZGMsDANRqPzt2NnHZvF6vOrsYoO9dK9enc+avvR5d9bLLBtWyCLFoWRnKzioYdEpkwRaHH9zkJexbVE3SVulBYRH69m/vxwdu3yp149kXfeERg82NGGRkJCQuJ63BYRO6MR4uIqN3Hi4EFfeveuD/igVCoZNiyLrl1zsVgs+Ps7+szdSNQBKAQFjas05q7guxhUZ5DXiTq7HeRyuUv7/Hl75K5hQ+c2KS4rOoWOJZ2W8NYfb5FQ5JzeHmazwPjxUXzyib9LRR04mg2D3SUj2frV7Mezsc/iq/CleXBz0vVXPpwpldC/fwGbN8czfXoqx45ZuPtuePBBkd9+c74/zuRGog5g6VJfVq0KuuZrY2JMzJmTzNq156hRo5ihQ6FxY5G1a3H5aDwJCYlbl9siYvfHH9CyJaxYcZ5mzcq+rfbuu9Vo3NjKkCGlnD8vsmqVP8OH5xAYWLH+bha7BaVMSZG5iCf3PsmmHpsqtI6rmDIlAlGUMW2a6+c6eWvkbuJEWL3awvffx3nE/oXiCzzz8zMsv285IZrKbW1qNBpOn4aIiJvPfnUGixaF8PPPfnz9tWuarw3YNYD13W6evmCzwY4dAXz5ZRgJCWp69nREs9q2dYlbFeZmog7ggw+qAgITJtx8p+HkSS1z54Zx8KAfjRuLTJsm0K8fTk+rkJCQuLW5LSJ2x46BIIhER984YnfmjIapUyNQqTTodDq0WhBFK3q9nmrVDLzySmaFRR2AUuaYQ+qv8ifKN8qlOVUVoUMHE61albjFlrdG7mJj4eJFBUajZ+6GNf1q8r9W/+PpfU+jt1ZsW/PIER9mzIhErzdRp47RLaIOoFEjAz17GpxaeHOJc4XnqKKuUqZj5XJ44IFCNm48y/vvJ3P+vJl27aB7d5Gff3a+bxWhLKIOYMKEDN58M69MazZubGD+/AssX34eX99SHn4YWrQQ2bYNl/xNJCQkbk1uG2FXs6blmn3Zvv8+gCNHdGg0Gux2LSdO6EhNdYi5CRPSefjhfJf4NKXFFL4484VL1q4offsa6NOnwG32vFHcNWgAoihw4YLnekk0C27Gy41fZuhPQ7Hay58VX1SkJSVF5vaKyXbtShk2rNAlEaKDmQdpXKVxuV4jl0OvXkVs2HCWjz5KJiXFRIcO0LWryL59zvexrJRV1F1CEOTYyvE82by5gYULk1i8OAGFQk+fPtC6tciOHZLAk5CQuE2E3dGjItHRji3YwkIZP/7ojyAIaDQaVq0K5cABf4xGIw0b5rN+/blyz0etCMGaYEI1oRzMOOhyW2Vh924/Tpxw/5/b28RdbKzjv4mJKo/60a16Nx6t8yjD9g0rc35cVpYCjUZDt265zJt3AbXa/Xfx8+dtbNkS6PR1j+YepV1Yuwq9ViaD7t2LWLv2HB9/fIH0dBP33Qf33iuyZ497xU55RV1KioqmTWvx11+6cttq1UrP4sWJLFyYiNVqoHdvaN9eZPduSeBJSNzJ3PLCThThzz+henUzgiBw7FgQ48dHkp6uwGg0snDheV55xb0VkJeY0mIKn5z8xCO2/40owty5Vdm0yTNNk71J3FWpAmFhIgkJnm/v/1jdx2gZ2pKXDr10+Wdm27X7MKakqHjwwRi2bVMhiqLH8qoOH9YxY0YEpaXOvXRcLL1Ii5DKlbnKZNC1azFr1pzjs88ukJ9vpGtX6NBB5JtvXF9wUF5RB1C1qoWXX84r07HXQhCgbdtSli1LYP78JEpKjHTrBvfdJ7J/f4WWlJCQuMW55Ysndu2C7t0dF8gff4zDZBIoLpYTEuIdjZ+G7RvGS41e4q6Quzzqh0qlIy/PiK+v58rpvKWgolMnEZ2ukPffd30RSVl488ibqOQqmlRpwsK4hWzvuR3hP8pNrdawapWW+++v/OzXymA0Cmi1WkTRuW1Pylo4UR5EEQ4c8GX+/HBOntTSrRv8+KNTTVymIqLuEkqlEouT9tVFEfbt82Pu3HDOnNHQtavIu+8KtKtYMFRCQuIW5JaP2H36qYhGYycmxoQogloteo2oA3jrrreYfXy2R32w20EULR4VdeA9kbuGDQUSEz0fsbvE9FbT+S37N2YenUmxudgxY/b/OXLEhz/+qILZbOLhh/M9KurgUjNug1OjXza7DQHnhyAFAe69t4T77itCLheZMsXpJoDKiTqAv/+WceCAn1N8EQS47z5H1HLOnGSSk03ccw/07i1y5IhTTEhISHg5t7SwO3IEtm4VmDw5jU8/TcLHR0dGhtKr8kvq+NdBLsg5k++ZEWN2O/TvH83atd4xu9YbxF2DBpCUpCpXwrormXF0BnnGPIx2I4WWQrYlb7v8u7VrQ1m61M/lferKw2+/aenevQEFBc7plHs09yjVdNWcstZ/KSyUs3RpCM89J9Chg/PXr6yoA9i6NZAZM5z7/mUy6NatiPXrz/H++8nEx5tp3Rr69BE5etSppiQkJLyMW1rYTZokUreuiQcfLEAuh4wMI4MG1WPZsmBPu3YFbzR/g+nHpqO36t0+ZsxiEejfv7RSzZudjafFXWwsmEwy0tKU7jV8HdqGtqVBYANCNaEA7Enbg9Xq6FM3fXoys2eneNjDK6ld20S/fsWVHnOVWJzIkewj7E3fS7OgZs5x7j8sXhyC3S7jzTedv7YzRB3AyJHZ/PCDa/7GMpmjcnjjxrPMmJHCiRMW7rrLMZ7t5EmXmJSQkPAwt2yO3U8/QZcu8PHHF+jatfjyz3fu9Oe+++yoVO7p11YWisxF9PmhD2q5GptoY/cDu91qX6VSYTZfOynfk1zKuVu7wZcvvpAxeoR7hFZyMtSsCXPnJnHvvd7zPck2ZPPF31+wPnEjVTcc5esPFVSr5n1/NwCZTIa9kvux25K3MeWPKYiIhGvCCdYEM6/9PPxV/k7xMTtbwf33xzB+vIz33nPKkpdxlqi7hE6nQ693/ri2/2K1OsazffFFGBcvKhk4EN55R6BBA5eblpCQcBO3ZMROFOGNN0SaNDHQpUvxFb/r0aMIlaoEg8GHjz4Kx2LxbFv2s4VneWjnQ+SZ80g3pKNTlL+tQUURRdiwIYS0NO+bP2QX7cQV/o2h5whUr0cyZmy+2yJ3NWqAj4/okdFiNyJUG8rkFpPZ0ulX8vp05624YRzJOoLF7uaGdWWguBi2bg2jqKjil5AuEV0I1gRjsVtI1acSoglxmqgD+OKLULRagQkTnLYk4HxRZ7XCc8+FsX+/r5M8vD4KBfTrV8CWLfG8/XYa+/dbadRI5IknRM6dc7l5CQkJN3BLCrutW+HwYYEXX8y4btuHY8dgx45AMjNvMuDVxUQHRPN0zNOEacIAh6BxF6mpSmbMCCc+3nsETIGpgOcOPke/H/vx1L6n2JqymR512jDwAbnbtmVlMoiJgYQE7/lcAE6c0GK1aqkZqub1tmM4nPsLYw6Ood/OfgzfN5yzhWc97eJliotlvPVWKMePV/xBRafQUU3ryC2r51+PGa1mOMs9UlKUbNgQxGuvCQQGOm1Zp4s64P9nUIuIovseQpVKGDAgn23b4nnjjXR27rTRoIHIsGEiia6ZGCchIeEmbrmtWLsdmjYV8fHRs2hR4g37eZlMAgEBakpKzJhM4OPjucjVibwTjDs0jgJzAb/3//3yz/VWPT9n/kzLkJZlHqlUHiwWLYJg+P+bh+exiTae//l5fs50zH4KUYewrts6glQhbm2FMnQonD6tZ9myBNcaKiMmk8ADD9Tn/vsLeOWVDKx2K/139iepNAmA2MBYlnRa4taI780oKlLg71+5RLtPT37K4rjFrOyykoZVGjrJM5g0qTpHjgRy/ryAzkkfmStEnbdgMgmsWxfEV1+FUlAgZ9gwmDxZICrK055JSEiUFy+53ZedVavg1CmBFSuuH627hFotYjQamT49kqQkBYsX31gIupImQU3Y0H0DfXf2Zf359ZwtPsvp/NNkGjIpsZSwpusapwo7UQS5XIFSaXDams5ALsi5t+q9/J7zOyabidp+tQnRhACOggqAkSODANeKuwYN4Lvv1IiidwxRDwhQM39+EpGRJgAUMgXNQ5qTVJqERq6hQUADrxJ1AP7+VjQaDXq9EVkZYv97Lu7h6/ivqaqrSmxgLE2CmuCn8KNZUDOnirqzZ9Vs2xbI55/fOqJOFKGoSE1AgMmp65YVtVpk6NBcHnkkjzVrgli8OIylS2WMGiXwxhtQvbpH3JKQkKgAt9RWrMUCb70l0rlzEc2alV2wDBiQzYgRBcjl7n27icWJLDi9gPG/jmf4vuH0+r4XKrmKtUlrWX1+NUfzjpJuSMcm2vgj+w+KzEVOs33+vJquXetx/rx3bTd+fupzvkv+jl29d1HTtyYD6wy8/Dt3VsvGxkJBgZz8fOe07KgoR474MHt2DQwGE9HRxiv61I2qP4pgdTAbum3AYDMw7tA4D3p6NXq9jN69o9i5s2x5cTGBMSSXJrMjdQdzTs5hxP4RfHvhW84WnWXMgTH8nv27U1IVPv88nJo1YeTISi8FuCdSt2ZNEJ0716t0pXFl0WpFnn46lx074nj22UxWrLBRt67Iyy9DhmcG+EhISJSTWypi99VXkJQEH36YWa7XNWpkBIzI5UpWrQqiU6cCqlZ1/RU0XZ/OsrPLKLY6Cjz8lH6s7LySEE0I+9P3M/PYTFJLUwnXhXM8/zhrEtdcTpSv4VODViGt6Fa9G+G68BvaSS5JJlAVeEXiuUZjp1evYiIjvaeq8u3f3ybXlMvy+5Yjk8lY13UdGvmVjYIviTtwbeTu0szYhAQ1QUGur0a8Hrm5OhIS5JjNoP6PBo/yi2J7r+3oFDreb/M+s47NYti+YXzV8StkZQmRuRidzk737oVXfMdEUWTy75PpW7MvrcNaA2C329mVvovV51ZTaikFQC1T079WfyY1n8TMozNZlbCKP3L+IMIngrp+dZnWchp+yvI37T1+XMuePf4sWwYqJ4wDdtf2a4cOxURFybymB6dOZ2fkyBwGD85j+fJg5p2exxexL/PiqCpMnAihoZ72UEJC4nrcMjl2ej3UrSvSsmUhM2dWbBRUUZGMRx+NZsSIXAYOzHGyh1djt9t56MeHuFByAYAhdYfwevPXL/8+U5/JuF/HUcOnBrPbzL7idb/n/M7+jP0czztOqdVxMwxRh3B3yN10iehCvYB6l49/5ddXOFt4luktp9M0uCkAcrkcm5d04LXb7bx46EWC1cFMazmtjK9x7fgxsxl0OpE330zj0Ufznbt4GcjJUVCjhgKTyYTdXvbZr0vjl7IteRvL7luGVqF1rZNlRKPRYDQaEUWRSUcmsfPiTjqGd6RzRGc2JG2gyFJEjH8MI+uPZEPSBr5N+paHaz/M680c50KWIYuBuweSa8pFhoz24e35rP1nyIXyR1NHjqxFSYkPx44JyCsZjHV3Tp27Wp6UB1EUHXmQ8YsZlZ7ON9+EIIoCY8cKjB8PQUGe9lBCQuK/3DLC7v33HQ2Jt2w5W6koVHGxjCpVZAiCQHGx1WUjmhKKEnjl11e4J/wefs36FYvdwtqua6+6GVvsFkotpQSqA2+65pn8M+xJ28OfuX9SYC4AwFfpS0pJClnGLEI1oQypO4Te/mM4fboKHTvmoFZ79s9rtVt5at9TtAtrxwuNXijXa10t7mJi7LRpk8drr7l3j+nCBRUDB9Zj1qxU7ruv/Nvv21O2M//0fJZ1WkYVjfMLbsqDKMLhwyH4+BaxtPQldl3chU20oZQpub/G/YxoMILafrUvH59SksKmpE282PjFK9YZ+tNQTuSdQCVX8X7r97kv4r5y+/Lrrz6MGlWbb7+Ffv0q9748USjx44/BBAYaaNXKO8Sd2Wbmtd9eY2/6XjQKDb/0+YXCQgVLloSwcmUwCoXAuHEC48bh1MpjCQmJynFLCLvCQqhTR6R79zwmT053ypq//ebHG29UZ8mSBKdvV35y8hN2p+3mgzYfEBMQw/Hc41wovUCfqD5OtQNwofgCQ/cOvSz0BAR8CMe471leftbEBcNZLpZeJN+cT6uQVkxsNtHpPlyPEnMJT+x7gsfqPnZFLl15cKW469tXJC+vhPnzLzhv0TKgVmtYsUJHnz4Vn/36W9ZvTPlzCgvaL6CmX00ne3h9tiVvY+GZhYRpwwjThNEgsAELvw7A0ngRerXjc7RjRyvXMq/9PFqGtizTuovjFrM3fS9z2s7h6X1PM7bxWLpV71Zmv0QRhgypi1ar4ddfhUoVxHiq+vXxx+ty112lTJzo+WS2YksxI/aPIK4gDjt2wjRhfNfru8upE7m5cr7+OpTVq4PQagXGjxd46SXwd14bQgkJiQpyS+TYffgh6PUio0dnO23NmBg9/frlU6uW4LSZoRdLLzL20FiaVGnCpm6bLudBNQ1uenmL1NnIBBmiKFLHrw41fGrQo3oP2oa3ZV71xXx0ejV2HMnoSkHJCw3LFzGrDFmGLIbtG8bEphMrFH25hCtz7mJjBVas0Nz8QCdx5IgOlUpF8+aFPPpo5Ua8tQ5rzSftPmHMwTHMaj2LZsGuGcn1X1qFtuKDYx+QUOxoE7M1eSstu93D3C5rKDWWklicyIm8E5zKP0W+uexb3E/FPMVTMU8hF+Ss6bqGx/Y8htVupVdkrzK9fs8eP06c0LJ7d+WqnD3Z0mTZsvOoVDIqOdDDKahkKtqGtiXbkE2uKRcREYPVcFnYBQfbmDAhg6eeyuGrr0J4991g5syBV18VeOEF8PGO0dQSTsZbugjcDrjys/T6iF1WliNaN3BgDq+8Ur6iibIgk8lISPAhK8tO69alFV7nq7iv2Ji0kZktZ7pMxF0LvVXPxdKL1POvhyAI2O3g6+vI1dmfvp93/niHbFM2KpmKSJ9IWoS0YFSDUS4bug4QXxjP2F/GMqv1LKd9Fq6I3C1ZAsOGweHDp9DpXH8ajBtXC7vdziefJDttzUsCenzT8XSJ6OK0df9LkbmIJfFL2J+xnwslFzDajAQoAxjZYCRPxzyNTqejpERfprYnZcFoNfL4T4/zdMzTPFTzoRsea7PBI49EU6uWil27Kn6l9IY+dWq1GpPJMy1PrkW/nf14uNbDbEjawFf3fnW5NdF/ychQsGhRKBs3BhEYCK+/LvDMMzit3YyE57FY4L77RFq2tDNkiFfLBtL0iUToat/8QA9y4IDAqlUyvvtOIPzG9ZHlxuuF3csvw1df2dixI56AANcUA0yaVIPUVDVLl54vt4LONebywi8vEOkTyYxWM1DIPBsEXbYsmB9/rMLSpeeQyeDnzJ95+/e3aRDYgE/afcLGpI1svrCZUmspjas0ZmT9kdTyq+U0+5e2CL/s8CWRvpFOWxecL+4OH4a2bWHt2nPExlYugnYjbDbw8dFQWGhGFEWn53XqrXqG/DSEwXUGM6juIKetm2vMZXHcYg5lHUIuyOlavStPRj/JgtML2JC0gWdin+GJ6CcAeOutSBQKG1OmpDnNvtlu5vE9jzOoziAerfPodY/bsiWQN9+sweHD0Lp1xWx5g6g7dUrDtGmRzJ2bSEiIh/ue4DiXF8YtZGHHhWV+zcWLShYuDGXTpiqEhsKkSQKjRoHGfYFxCRfxxhswa5Z7J6RUDBHG1oZPEgFv9xV+/x3uvtu5a3q1sEtOhuhokdGjsxgzxnnbsP/FbBYwGORUraqkuLjsUxrWJqxlSfwSJjefzD1V73GZf+XhyBFfTp7UMGzYP1W/h7MOo5QpaRHS4vLP7HY721K2sT5xPUXmImICHFWLMYEx5bJnsVsYsGsAn9/zOSfyT7g8qd+Z4q6w0JH0/b//pfDAA4VO8/Hf/Pmnjnffrc6CBUmEh7tOLFwqUmkT2oYR9UcwdO9Q5refT1Vd1XKtk65PZ1HcIv7M+RO1TE2vyF4MrjMYjeKfO3OWIYtDmYfoW6vv5Z9t3hyIj4+Mbt3ynPaewPG+hvw0hIeiHmJI9BBKLCVkGjKp618XAItFoE+faFq2VLJpU8Uu4t4g6sAhir7+uhojR6a5pR3TzXh8z+O81+o96vjVKfdrU1JULFgQyrZtgVSr5phiMXy4c1rQSLifXbugRw+RIUNy6dTJgr9/xXe3XM3hoh+Yc/FFXoj4kA4Bzs9rdwaHD/vw0UfVWLgQHn/c+ZFtrxZ2w4eLbN5s4/vv49HpXJ94UlIiY9SougwdmnXVjd5itzBo9yDm3jMXP6UfLxx6AR+FD3PazUEl856rVUVaJtjtdnal7WJ1wmryjHnU8qvF8JjhV2yjiqLI7OOzeaXJKyhlyss/35y0mXf+fAd/pT9BmiBWdV51hQhwBc4Ud9WqifTtm80LL2Q5z8F/kZ/vy8cfB/DGG2kuq8C+hN1u5/lfnud0/mnyzHkMrjOYN+968/LvRVHk01Of8nTM0wSoAi7//ELxBRbFLeJE/gl0ch0P1XyIR2o/csXfuSy4ql2H1W7lyb1P0qlaJ0eFplzD152+BmDVqiBmzqzGiRMCjRqVf21vEXWXuNQ6xtOklKQw8fBEVnddXal1kpJUzJ8fxvffBxAVBW+9JfDkk45ZtRK3BtnZjjGetWqV8sUXScjlAqIow2azVbqlkLMRRZHBewZzuuA0DQIbsLbLWgQvSwq022HAgHpERakrlTpyI7y2eCIuDpYuhYkTs90i6sDRlLNlyyKaXiMt7Iu/v+B80XlGHxyNxW5hfNPxdK/e3S1+lRVHcr6aZs3Kd3OVyWT0qNGDHjV6AHAg4wCfn/6cLGMWEdoIno55Go1Cw8akjZwtPMu89vNQyR1idmPSRqyilTxzHuHa8MvFGq7EmQUVsbGOJsXO5uRJLQ0bQlBQKVOnljh9/Wvy/9eIPLMjanYk+wh20X65wOat399iR+oOgjXBtA5tzVdxXxFXGIe/0p+Haz3M1BZTK9X4+MQJGRcu+NGlS7Ez3s1lFDIFCzsspMv2Luhteqppq1FkLkJhDeDLL8N44gluC1EHkJ0tUlCgJDLSs77MODqj3O2JrkWtWmZmzUpl9Ohs5s0LY+TIAKZPF5kyRWDIELxmhrXEtRFFeOopEbPZxowZqchkUFoqMHRoXYYNy6JPnwJPu3gFu9N2k1icCEBScRLbU7bzQNQDHvbqSnbu9OfsWQ1Ll7rOhufb11+Ht94SCQ+3MnCgc7d2boRMBuPHZxIZWYhKpWPXLkftfqG5kO9SvsOOnQslF+hTs4/XiTqAdeuCmTev8v0GOlbtyJcdv2RT900Mqz+MpWeXMubAGPRWPYezDzPm4BhMNhMZ+gxO5Z8CIEAVQKm1lIMZByttvyw4a/xYbKxAUpJzI4wGg8CLL9bk00/9cWdA/GzhWS7qLxKidiS4JxQnsDd9r6Nx8O+T+D71e0x2E5+c/IT/Hf0fXSK6sLHrRpbdt4x+tfpVeprFhg2+zJ1bvq3fsjL8wHD0NscDS7ohnW+TvmXlymAKC+W88075n3q9UdQBvPVWGO++69nBrHqrnnR9Oh2qdnDamnXrmvjwwxTWrz9LnTrFPP00NGwosnIlTutKIOF8Pv0Uvv9e4N13UwkNdaQH6HR2evXKJybGO86Zf7MkfglV1FVQCAqC1cEsP7fc0y5dgc0G8+eH06uXSLt2rrPjlVuxf/7pSCacNi2V/v0LPOLDrl3+TJwYyYYNZ5mR+iSHsw8DoJVr0cg1bO259YrtLG9Ao9GSmWkiIMC5UTNRFBmwawDxRfGXf+ar8CVCF0GOKYdHaz/KA1EPUMu3ltvD3pXdlv38cxg/XuTw4VNOix5oNBqOHROoWdPo8u3Xa5Ghz+CH1B9Yl7iOInMRWrmWNMM/RQ3VdNX4ttu3+Cid25OipERGUJAGs9n527G/Z//O2oS1xBfGk1SShL8iANusLJ54Qs7nn5dvLW8VdQBnz6rRahXUqOG5HKapf06lrl9dhkYPdZmN06c1zJsXzr59fsTGikydKvDIIzitqlqi8vz1F7RtKzJoUC6vvnp1b0VvnJRyiUd3Pcq6bus87cZVbN0awKRJkfz2G7Rq5To7Xins7nsolWOyRcx5oS7+Wh+0ci06hY4AVYBbq05PxZvZaZ3LloQtdKjagbuC7yI6IJpIn8gyTYpwJ3Y7+PhoMRgMTl87z5THmANjCNGGUNOnJs2CmxGsDnZs7fXe4fEchsqIu127oHt3+O67eKKiKteo+sgRHw4eDGTcuDTAO06rvjv7Mrr+aHyUPhzNPcr54vNkGjKZ1HwSzYObO92eSqXCaDS77AYtiiJ/F/zNszumUbpyCYm/tKRaOTr3pKRAu4dOodfEs+qdhl4l6i6h1brmPC4Ll8Ygbum+xS3ziI8f1zJvXhg//+xHkyYi06YJ9O0r9UrzNCUl0KKFiEJhYsWK86hUV1/Pzp/XsHhxKO+8k4pS6R3Xu0t4o7CzWqFfvxiaNlWyZYtrv+Bel+Gwfz/s21qd6tPWM+znU2jkGrRyLXbsTG85nU7VOrnMdlppGluTt3Is7xiZ+kzOF52nXXg7huWd4dxvMvpPvei1F5yxY6OoW9fEyy87/4YQpA666iTJMeaQYcjg45MfM67JOKfbLA+VybmLjXX8NyFBXWlhl5mp48wZJWazd1T/fZ/yPYnFiVTRVOGe8Hsq1Si6rKxe7cPy5TXZuPGsS84VQRAIszXFMOc448bKyi3qOnUSES21KRrVnGdPRjLEOIS+tfpebrzraQoLZSxYEETv3tnUrOnciThlYem5pbQLa+cWUQfQtKmBBQsu8OefOubNC6d/fx/uukvk3XcF7r9fEnie4qWXRC5eFFmzJvmaog7Abhc5e1ZDZqaCGjW87wHJ29i6NZALF1R8+63rbXlV4FsU4Y03RBo2NLK5z3Ki/aMx2ozkm/MJVgdzb9V7XWo/vjCepWeXciDjAPFF8YRoQpjTbg5VqhiIiir7oHZP0LWriaZN3RcW/yntJ+zYWZ+4np/SfnKb3etR0Zy7iAjw8xNJTKx4AUVurhyNRkOfPjnMn5903QuhO0koTuCj4x8hIvJ9yvdusxsTY6Rv31IsFtedLAsXhqJSCbz6atlf8+/t18WLUmgX1pbEkkRmHp3Jwz8+zJQ/prjM3/KgUMD69X5cvOiZJ4NNSZs88qDWooWeRYsSWbw4EUEw8OCDjm3AnTsd9wUJ97F6NXz9tcAbb6RRq9b1Hy6io02sWXOW2t7dB9grsFjgiy/CePhhkbvucr09rxJ227fDL78IvPRSJmqFkhmtZhCqCcVP6YeAwPD9w8nUO3/6xCXui7iPun51L/+7R40eaOQa+vQpYOTINLRaLUePajGZvE/hPf54sdOrEW/E3vS9ABRZiph1bBappalus309KiLuBAHq1694ZWxioooHHqjPzp1KRFH0ihwhvVXPhF8nkGF05MWcLzrvNtuNGxsYPTrHZeL24kUl69YF8eqrAlXK2CrxWjl1D0Y9iAwZNmzorXrahLVxib/lxcfHzv79Cdxzj5sqqf/F3rS9RPpEolN4blxEq1alLFmSwJdfJmIyGejZEzp2FPnJ88+OdwSJiTBmjEjv3gX07Vtw0+MFAdLTtfz6qzRD7kZs2lSFtDQlU6e6Rzt4wW3Igd0OkyaJtGxZevmi1iCwAQ9GPkiToCZs6rGJ0Q1G88zPz/Dab69htDq315PVbuWZg88QrAmmTUgbwrXhPNvw2SuOycw08dxztVi+PNiptivL998H8Pff7istE0WR80Xn8VX4opKpqKKuwp/Zf7rN/o2oiLiLjRUqHLFr0EDGuHEZtG7t/hvx9YgvjEer0OKn8EMn15FamkqxxX2iPy3NzsaNwS6JtMyfH0aVKjB2bNmOv16hxL3V7iVUG0qIOgQZMu4Nd+1uQHkwm92/BQsw/+/5TGo+ySO2/40gQLt2pSxfnsC8eUkUFhrp0gU6dxY56J6i+zsSiwUee0zE39/CW2+llXmHas4cP+bMqSZFVq+D2SywcGEYAwdC48busek1OXZr18Lx4wLLlmVe8YV6ucnLWOyOi3G78HZ82/1bVp1fxSO7HuGByAd4JvaZSueDpOvTGXNwDANrD2Ro9FBKLCXsurgLP6XfFcf5+9v56qtEGjYUAcGtrSyuh8UCs2ZVY9iwbJ56yn0zJofXH07z4Oa8/tvrrOqyym12y0J5c+5iY2HzZnW5hjIfOaJDp1PRuHEhgwZ5vqHsv2ke3JxvOn/DY3se463mb/F34d9u/a6eOaNh+vSqtGlT5NTihPPn1WzdGsjHHwtlGjJ/o+pXP6UfTao04ZnYZ8jQZzB031DWdV1X7qbMruDrr0PYvTuAFStcH2kVRRFBEDhbeBalTEmET4TLbZYVQYCOHUvo0KGEvXv9mDs3nI4dNXTr5sjBa9vW0x7eXrzzDvzxByxdmoKfX9k7K0yYkEGVKs7vBXq7sGFDFTIzFRVqy1RRvELYWSwwebLIvfeWcNddV+aJyQQZavmVX5rH6j7GwNoDmXV8Fg/9+BDPN3ye3pG9K2R7d9puPjj+AR+0+YBGVRxdTn2VvvSr1e+ax8fGGhFFSE31Zfr0EGbMSKFKFc81YlIq4cCBZIqL3VdFJwgCA+sMBBx/H6vd6vEZuf+lPOKuQQMoKpKTm6so84zOpUvDUShsfPxxgXMcdgEWu4WGQQ1pGNTQrXbbtCnh118TUCqdm1D9+efhREbC6NE3P7YsLU3mtJsDQP3A+uQYc3hq71OsuG+F2woHrkfDhgY0GvecT+N+HUehuZBiSzGvN33dLTbLiyBA587FdOpUzO7d/sybF067dmp693ZU0bZs6WkPb3327IGZM0VeeimTpk3Ldy9x3P/06PVqBMGMVuv5gIe3YDQKLFoUxuOPO+4z7sIrtmKXLIHz5x25dWVFLpMzqfkkVnZeyXfJ3/HorkcvN8sFMNvMJBUnXfW6+afnczjL0ZNu1rFZLDqziHVd1l0WdWWltNSC1SpD7uGZKnY7iKIRnc4zJ1OUb9Tlz9PbKOu27KXK2LJsx9rtjj51779/gf/9L8WJ3joXvVWPTPDM6a1UglJpQBCcd26cPKll1y5/pk4VUN/kz1SRPnWP1HmEDuEdeP6X553kccVp06aUESOK3GLLJtr4Ped34gvjmXViFjtSdrjFbkWQyaB79yI2bDjL7NkpnDljplUraN1aZMkST3t365KTA0OHirRpU8rw4Tk3f8E1MBgEeveuw+rV3pWm5GnWrQsiN1fO22+7Ny/f48LOYICpUx3JmvXrl39Ly1/lz+ftP2dWm1lM/2s6I/aPINuQzeenPufZn5+l1PJPo0+9Vc+25G288+c7DN49mFJLKau6rMJX5Vtuu/Xrm1i4MIHgYJGSEhVpae7fwjEYBHr2rM+ePZ5LXO1YtSO703Z7zP7NKIu4q1sXFArxpgUUf/yhY9CgaFJSbGi1do80Hy4re9P3Uj+gvsfsnz2rplu3aKeNa/v003AaNBAZepOeuZVpPvxco+cI04bx1u9vVdLbyiGK8NdfardcUy7thoiIFJmLvKbty42QyaB370LWrj3L4ME5HD0K77/vaa9uTUQRnn5axGi0M316aoWLv7RakUmTLvLww55rrO1t6PUCX30VyhNPQHS0e217XNjNnw8ZGfD885Ubwl7Hrw4ru6zk6ZinGbZ/GKsTVpNamspbf/xzkf4q7itSSlNILU2l0FzIWy0qfwG3WCxMm1aVceNquj151GIReOSREurWdV9u3X/pHtGd0/mnPWa/LNxM3CmVDnGXmHjjFhM1a8po0ECPn1/Ztms9yf70/XSO6Owx+1FRZnr1KkGlqvwUlN9+8+HQIV+mTxduOHTcGRMlpt49lXxTPp+e/LQSHleeYcOqsn27cyfbHM05So7xyoiMVq4FoJ5/PRZ0WOCWXofO4vBhP9atC8ZmK9v2vMTVfP45fPedwHvvpRAWVrnrWs+eRVStKrWnucSaNY6Rh+6O1oGHhV1REcyYIdK/f77TmnF2rNqRhlUaYrA58gT2p+9nR8oOLHYLG5M2Iv7/RIAcUw5zTsxxis0JE9J47700VCr3Ru38/e08/3wGkZGeqaID8FX5YhG9vznlzcRdw4aQkHDtaMWpUxpAS2hoKe++e9GrI3WXOF903qmzPsuLWi0yfnwqUVGVyz8VRUe07u67Rfr3v/5xzhwT9mm7TzmSfYQ159dUeI3KIAiwalUiQ4bkOnXdeX/PY9DuQTy972k2JW3CbDOTXJJMuCac5fctp7bfrdGQ7MwZDWq1mq5dDXz0UTJ2u1RIURGOHYMJE0SGDs3h3nudU9V/6BA8/ng9ios9HjPyKKWlMr7+OpRhw/BInz+PfvoffQTFxTBmTOWidf/GZDPxd/7f1PGrQ6QuErkg57XfXuOZA89QbC6mXVg7xjQYw8KOCxnbuIw9E25CWJiV6Gg9Foud6dNrcPKk1inr3gizWeDbb0PJy/O8yFAICvRW75wZ+G9uJO4aNBBISrp621CvF3juuVp8/rm/V1RBlxUREZXMs+MvTCaBnTuDycio+APP3r1+HDumY+ZM4boVy86e/SqTyfi609esSVjDnrQ9lVqrotSsacTX95/Ls120M+/0PP7I+aNc69jtdlJKUth5cSf5pnyyjFn8kfMHb/3xFq03tSbfmM97d7+Hr7L86SieYP9+Xx59tB7Hj4PVaqWwUI4giG5rI3G7UFoKgwaJ1KljYtw45/WGjYiwULOmBb3+zhZ2q1YFUVoqY/Jkz/S89VgpY04OfPihyGOP5VK1qvO2ttRyNVt7br38b1F05I4M2jOIQ30PubSdQWmpyLlzSnJztYBrq1T//lvD1KlhNG5cRECA57ZiwdFvcPfF3fSp2cejfpSF61XLxsZCeroSvV6GTvfP9mFQkJr58y9Qp453tTS5ETnGnKsqyT2BzQaTJoUyaZKFfv0Kyv16ux0++yyc++4T6dbt2hdIZ4u6SyhkClZ0XsGjux8lRB1C0+CmTln3emQbsgnRhFyeu3z0qJaNG0OZOjWZ+MI4pvwxhbjCOADuDrkbALPdzLnCc8QXxpNYnEhKaQqZ+kzM9isj+H4qP6rrqlNF7ejoLEdOdEA077Z8l7/z/2bMz2PoFdmLV5u+SrDGO5PfCwvlBAVBt25WFixIon59xzUvLk5DvXoiPj7e1zTemxk7ViQ5WWT16uuPDKsIYWFW/ve/C6hUKjzUjtHjFBfLWLIklFGjBKKiPOODx4TdzJkAIiNGZLvUjiAI+Kn8yDRk8vKhl/n8ns9dNrTex8fR504uF1CrNZw9ayMy0jXblM2aGTh48Cw+Pp4/ezpX68z2lO23hLCDa4u7Jk0cv0tMVNGokZEjR3w4fDiQF15I+/++hbcOO1N30jyouafdQKcT+fHHOKpUEbFXINVu+/YAzp7VsGzZtfsLukrUXUKn0PH1vV/z1N6n+KLjF0T5uu4qPfLASEREqmqr0rFqRwKLHiQ+r5gn94zkTPEpjDbHg8WKcysuj/CTCTKC1EHU8KlBTd+a3BN+D/UD6xOoCrymjZ/SfuLvgr8ZVGcQzzZ8Frkgp6q2KrOOz2J7ynaO5h6lbVhbJjad6FURvCNHdLz4Yi2WL08kOtpA+/b//C4+Xkvz5pKoKw9r18JXXwlMm3aROnVcc/84fNiHpCQd/fsXuGR9b2bFimCMRhlvvOE5Hzwi7FJTYe5ch6hzRw+4CyUXkAtyfsn8hVnHZ/F6M9f1a5LJHFHC7dtVTJgQyfr1Z51+8ogiqNVqfH09G6m7RPuq7Zl7eq6n3SgX/xV3n3/uuDkkJKhp1MhIaqoPx48rMZtB5dkdzXLzS+YvjGowytNuABAQYEOt1qLXG8o1a9ligXnzwunTR6Rt26tf6GpRd4kwbRif3fMZYw6O4Zv7vmFd4jpERJ6Jfcapdqqoq/BHzh8kFidyKOsQcuFDhjwzhEPpRfgp/bCLdsx2M02DmrKgw4IK2Wgd2pq1XdZSzafa5Z8FqgMJ04SRWJJImj6No7lHyTfle4Wws9lALoe2beHZZzOpVevKqLkoOiJ2/fpJwq6sJCXB6NEivXoVViiKXlZ++klFXJwP/foVePWMdWdTWChj+fIQnn1WoHp1z/nhEWE3daqITmfnySedmxx8PX7N+hWT3SGCtlzYQoQ2gidjnnSpzY4di3nvvVQaNpRjdPIu3uHDPrz7bg2WLj1f5oa6rkQpU2Kn8tWP7ubf4u6FF4IIDHRscT/6qImHH86mb1/vmP1aXjIMGTSp0sTTbgCO7dQBA6rTq1ceQ4bklfl1335bhdRUJd995zlRd4l6AfWY2mIqD/7wIHbRTnRAdKWEXbYhmx9Sf+CXzF/INGYiIGCwOlI3ZMhoHtycT9p9Qrh/VUpKTMgUVg5mHGT1+dXYxIo/CPsoffBRXt0aKUAdgK/RF5toY377+V4xfeLvvzVMnBjFV19dJDy8lKeeujqHNyNDSVGRnGbNPODgLYjV6hgZ5utbvpFhFeGFF7Lw81NjcnPsYfLvk0krTSO5JJnh+4YTrg1nZuuZbrO/bFkIVquM115zm8lr4nZhd/YsfP01jBuXhY+Pe8TAoUxHbp0oitT1q+uWRH+lUuT++wsxGuG334K5cMHOo4/mO2Xt4GAr3bsXExzseVF3Ca1cS5YhizBtmKddKReXxJ1eL2fbtgCWLw+hVi0LAwcab0lRdwlPT0+4hEwGnTsXEhNT9iu80SjwxRfhPP44l7fIL+FuUQeOJr5rEtZgsBmwilYy9BnorXp0Ch3gaIb+2m+v0TKkJUOih1zxWr1Vz560PRzIOEBCUQIiIlq5lrtC7uKZ2GdoXKUxMpmMuII4hu0fRo/qPXirxVvIBTmDB0cQE2PgzTfT6VStE52qdXLJ+7sr+C4ervUw4Zpwxv06jjVdPVMN/G9iYuTcfXcpcvn1vzdnzjiq2CVhVzamToUjR2DJkhT8/V1771WpREwmIykp/vj4lBIU5J7pTBHaCLZd2IYNR+PtEfVHuMUuQH6+nG++CeGFFwSqVnWb2WvidmH39tsioaFWBg8u+9N7ZelWvRuP1H6Er+K+YurdU91e1n/ggILUVB0DBuQ75SmpUSOR6Oi0yi/kRFqEtGBn6k6GRt+kg6wHSU9XkpOjoEkTw/835qzDwIFFPPqonv79DWzb5ugbZjSq0el0/PGHirfeCmHu3CTCw62cPatGLoc6dbxjC/xaJBQlEKBybv+zyjJ8eDZarRZDGeuJVq0KJi9PztSpV54snhB1ACWWEkosJYRqQkk3pJNhzOBAxgF61uhJhj6DsYfGcqbgDGa7mVp+tdiTvodTeaewilbkgpwGgQ24v8b9tK/a/rqj9+r612V269lXtKgZMiSHkBDX3xBfafLK5f+/K20Xs4/N5tVmr7rc7n+5eFHJ//4XwezZOWi1pUydeuNmt3FxGoKCRKpXv4P2+irI3r0wfbrIiy9m0by5e8ZPGo0CgwdXZ8iQXJ57znmdL27EiAYj2JG6g8SSRKJ8oxjdwH0NDpcsCQEEJk50m8nr4lZhd/QorF4tMGVKFmq1+xLSH6r5EAApJSmsS1jn9ovWK69kYrWCj4+O1FQTVarYKizwzp9Xk5bmxz335NywWau76RbRjQV/L/C4sNPrZVgsAgEBNhITVXz6aThvvZVNRASsWBHKL79o2b79AhaLhWbNSgkKMqDX62nSRM/ffxuwWu2UlprQ60XkchtNmugJDhZRq9V88UU1iorkLFt2EavVxksvVWXw4Dxaty6ltFSG1eqw60l2pO6gTWgbj/pwLX79VYPVKnD33TeOlhcXy1i8OJQRIxxNoy/hKVEHEKAK4IuOX1BgKmD5ueWsTVjLh8c/pNBUyMenPqbYUgzA4ezDqOVqOlbtyLhG48o10UYhU1zVd7BHjyK3Vxe+3eJtHtn1CH/l/MVdIXe5zzDg66ukoEBOWpr1ir/99YiP19Cs2bULayT+IScHhgwRadlSz/Dhri1W/DcajciXXybSpAkVKp6qCGq5ml41ejH/zHy6V++OVuH61mMAublyVq0KZtw4gdBQt5i8IW7dr3nzTZGaNc306+ecLcny0r9Wf37P/t3tdgXBMd0gM9PIo49Gs2JFxVsK7NnjzzvvBHvdxayOXx0SixP58PiHzD4226W2RPGfC8Xvv+tYtMjRJkKlUjFgQDRLllRDq9Xi46OgpEROQYEdo9HIU0+l8+WXCZhMJux2O6+8kkm7dqVYrfD449GsWaPm8GE5ffvWJzdXTkyMiSlT0lAobJhMJt56K4W3307GaDRSVGTDZJIhlyvQarXs2xdChw6x2O0aBEFg48Yq7Nzpf5W/rmJZ/DLe/fNdfkz90aONia/H558HsHZt0E2PW7o0BKNRdkW3dk+Kun8TqA7kxUYvsv/B/QSoAlh5biU+Ch9CNaHIkBGoDOS9lu/Rv1b/Co0p/C8FBY70AL3evSf7vHvm8ebvb2K0ur7FT2mpjDlzwgEfAgL0LFuWUOZJOvHxWpo187ILoZchijB8uIheb2fmzBS3BwMaNTKiVIoYje77O41oMAK1TO3WaN3ixaEoFALjx7vN5A1xW8Tu559h+3aB99/PQOGhJis+Sh+soufy0vz87Lz0Ugbdu1c8qvPccwUMHJjnVflf4w6N40T+CTINmSw5u4T7qt3n1PUPH/ZBLnc8cWZkqHnkkTrMn59J27ZGLlzwY+dOP0aMyMFsNvP226mEh1swGMyEhcHChUmX17neyBybTaBfv1IaNzZQtaqFBx8svuYFMCDAdjkip9PZmTv3AuCYd3z33RY++cSATGZEFOHXX/0IDbXTr5+V3FwZnTpF8dlnqbRpU0R8vJoLF9R061bkNIFeZClibeJaAF785UWC1EGs67bOOYs7gQ8+SCE8XHXDQqLcXDnLl4fw4osCEf+fv+8tou7frDy3kvjCeP7o/wcKmYISSwm/ZP7CztSdlFpKL+feVZa0NCXjx4ezenUxjRq5r49iuC6cMQ3G8MIvL7Do3kUutZWXp2HLlip07lxE8+Zlj77p9TKSk5VSft1NmDcPtm4V+PTTVMLDPXPvO3BAwSuv1GH9+nNUrer883d78naSS5MpMBWQZ87jaM5RonRRPLTzIZoHNSdIE0QVVRWq+1R3SUuu7GwFa9YE8dprAkE3f3Z1C4Lohnb6ogj33iuSk2NizZpzHhUlzx18jhH1R3B36N2ecwKw2Xz48ksdo0Zll1noiqJjO1ev964pDwlFCTzz8zOk6x0Vpu+1fI++NfuW+fU2m2NbJTzcQlCQjZ9+8mPhwjDWr7+IQiHjySerEhBg4/33UzCZ7CxZEkqvXgVO6xGoUCiw2WxXTJbQaDQYnVTOXFgoY9OmKvTsWUREhI0vvwxn9eoAfvklGVEUeeGFUJo1K2Xo0FyMRoG4OA0NGhjLla5wrvAcT+97mkJLIVVUVXjn7nfoEtHFKf47C632xm1PZs2qypYtwSQkCAQHe6eoW5uwlo9OfITZZmZzj81E+ka6zJbVCqBDofDM+f7izy/SJqyN09Mr7Hb47rtAHn7YhM3mSHso75i+o0e1PPFEXf76C5o3d6p7tw3Hj0Pr1iIPP5zHpEnpHvOjtFTGN9+EMXhwlkuKNp7Y+wRHc49e/ndVbVV29NrB/TvuJ83wTy56kypNWNllpdPtz5xZje3bg0hMFAgMdPryFcItEuuHH+DgQYEXX8zweKTpgagH2Ji00bNOAIcPC6xZE0xaWtmbpM2ZE86YMd5XdVrHvw4vN34ZtUyNTq7j3qr3XnWMKEJenvzygOg1a4JYtCgUlUqFQqFj0KC6/PxzMCqViuBgGw0b6iksNKHX6/nwwyT+978L2O12lEoYNSrbaaJu27YAliwJxW6/8saydasPixaFOMVGQICdp57KpWpVC3a7nZEj09m0KR69Xo/BYCAqykh4uBWVSkVSUgBDh9YlLc0flUrF1q2BfPrpP3/zf3+G/6auf110Ch0yZPSv1d/rRB3AjBkBvPzytZv8pqcrWbs2mIkTvVfUbUjcwNzTcym1lmIRLZwrOudSewoFaLWee99z2s1h1flVXCi+4NR1z51TM2VKdfbulWO32ys0ezkuTotCIRIb61TXbhv0esfIsJo1TYwfn+FRX3x87IwenUF4uGum4Txe53HkgmOLJUwTxqKOi5DL5Hx171eEa8IBHFXmdQc73XZGhoL164MYP957RB24QdjZ7fDGGyJ33aWnY0fnDBquDD1r9ORM4RlPu8E995SwfXs89evLsVopUw5Cq1Ym2rYtcoN35ef+yPvpXr07NtFGFXUVRBGWLg3m6FEtMpmMn38OolOnWPR6P7RaLYWFKnJz5ZjNZkRRz+rV5+nSxbGd2rSpnsmT09FqHRd8Hx+7y3IKL17U8vffsqvWT0yUkZjoc00R5Qx8ff95cn3xxSy6dy/EbDZTp04ha9eeo3r1IsxmM4WFcnJzVWg0GrRaHQ89FMOSJVWRyWSkpChZuDCUoiIZgiAgIlLbrzYvN37ZNU5XkqZNS+nS5dpR0PnzwwgIgLFjvVPUARzLO0aAMgCB/x/79a8ogatYtMifjz4Kd7mda6GQKZjTdg4vHXoJuxOSRE+d0qBQKGncWGTbtnjat6/4/cAR1RZRe35ynlfy8ssiSUkis2enuLVQ8UZs2KDj44+d913ONeYyfP9wvjn/DV0juqIUlPSv1Z+afjUBqOFbg4F1BqKSqehUrRPrEtcxbN8wsgzOq9BduDAUX1/HdcubcHm224YNcPSowJIlGV6R8K+QKRBFEbvd7vFeXzqdHYPBwOzZkSQmyvnyy6QbfkY9e5q9ahu2sFDGoUO+dOxYgo+Pncg/vkLJQHQ6R47Rxo3BKJUCzZsbiI0t5MMPrQhCKQaDndGjryy5b9jQM7NYx40rorT06s901Khs1Gr3zztUqURiY//5LIYOdTTxNhodD0nvvZdKzZqO4o/kZB+WLg1h+HA9Op0ImU2JOv8xQg9HHuD33wdw1116l+S1VISuXYvR6Wz89yucmKhi8+ZAPvpIoKDAO0UdwLS7p7Hn4h6WnVtGqCbULfN4FQoRtdpz16mYwBh6R/bm9SOvM7tNxYuizp9X89hjdfnkkxQ6dy66nENZUeLjNTRv7kWJxl7E+vWwcKHAlClpZS5EcQf5+SKFhWpEsXKVzFa7lRlHZ/B7zu9MaDKBe6vdS6mllEniJJ5r+NwVx45sMJLTBaeZdvc0/FX+/JLxC6MOjKJZUDPebvH2ddsPlYWLF5V8+20Q774r4OdX8ffjClyaY2e1OnquhYeXMG+ec8P5leG1316je/XudKvezdOuAI58kZwcHd2753G9P8fBg76EhsqoX9+9EbuiIhnp6Srq13eIjcmTq9O4sZlhw0qIi1PzwAM1WLs2hYYNi/j5Zx0vpjVjz0PfE6AKqPQJ7EqMRoEDB6rQpUvedSvFRBH++iuIatWKqVbNewTGv7n0GVvtVtp+25HJ6j/p38eM0aimZct6zJmTSZ8+JezerWHx4gDmzr2AWi2SkKDC39/mlj5p/yY5WcOpU2p69y68/LPx4yM5fdqfPXsEevb0TlF3iVEHRvFy45dpVKWR22w6M9+zojzx0xM8GfMk3at3L9fr8vLkhIQ42gXt3SujVavSSqfj2O3Qrl1Dpk6VMWFC5da63bhwAZo3F2nduogPPkjxuuuvUqnEYqn4eb0hYQNfxX9F35p9GRM7psLrLDqziI1JG3kq+ikG1R1UoTWmTIngwIEqJCYK+Fw90MWjuPSRZ9kyiI8XePHFTFeaKTftw9vz2anPGL5vOF/8/YWn3aF5cwPduuWiVCrZsqUKOTlXK42vvgpj+XLXPBbY7Y4qM+D/G8NGkJioQa1Ws3FjOMOG1Uat1qBUKgkNteLjY8ZgMBARUcDBg38TG1uIKIoENfwDi1DCW7+/BXivqAP4+WdfJk6sRlqa8rrHmEwC48aFsWVLoPscKyeXPuPPT3+OiRKsDb9BFEXUaiOHD5+mffscDAYDcrmZ8HALPj5yNBoNU6dG8fHHNVCr1RgMct58szrnzjkiUAaD8P+J+85n925f3n+/2uX1T5/WsHNnAGPHer+oA8g2ZrtV1AGUlCgwGDx7Ms1vP5+PTnxEvrHsraouXFBx//312bfPD4PBQJs2lRd1ACkpKvR6mVQR+x8cbZtEdDorb7990Suvv2azhYMHg7lwoXwDuE/mneSRXY9wMPMg67utr5SoA0ckb2O3jRzJOcLDPz7Msdxj5Xp9SoqKzZur8Prr3ifqwIVbsUYjTJki0rNn0RVbS55EFEX6/diPPGMeBZYCEooTeDDqQU+7dZncXCuffBJGUZGCoUOvbCS5cmUG2dnO+RzPn1ezb58fw4fnoFAoGDYsivBwGx99lI3NJnLihI7c3AJMJj29e2fTrl0eRqMJQYCxY/8R6QoFVzTk/Tr+a0REjmQf4ae0n+gc0dkp/rqCXr2MNGgQf0MBodGIrFp1njp1FE6f9+tMkkuS2Za8DYAtyVsYUGcA4Njqv0SbNqW0aePo2We1Wnn33WTsdjCZzOTnK0lK0iAIanQ6OUuXBvL11/4cPHgOq9XKhg1VqFXLdNPmwmVh0KA8Ro7UY/v/r81nn4VTp47I3LlgsXi3qPst6zeq69w72TsvT06nTrWYMyeZbt08l1/rq/JlcvPJPPvzs6zuuppfMn+hhk8NonyvLoaxWh3XhgYNFIwdm0GLFsVO9SUuTholdi2mvSvyizCbj9+9F39/X8D7lJ3FIjB1agiPPipj9OibN0vON+bz2pHXKLYU81Gbjy7nzzkDjULDB20+IKUkhdePvI5WrmVW61kEa27eZ3bBglBCQ+GZio+Mdikui9gtWADp6fD8894TrRMEgfFNxl/eVw9UBtIqtJWHvfoHPz8769ad4+mnC1AoFFgsjhPTsTtrK1epeHy8mj/+cOS6GY0CDz4Yw549Ieh0OpKT/VmyJAS9Xo7VamXYsCwGDMhCr9cjlxtYv/4cLVs6buLh4Vbq1zfd9OnPardyuuA0ACXWEj4++fHlwebeRk6OAoVCUSYBERFhwWazkpPjoeaLN0EURd78/U0yDY7zLLU0tUzJwVFRZmrVciQQRkRY+Oab89StW4Rer6d9+1wmTUrDarUiCAJr1wbzxx+B///dCaBHj/qXo3txcRr++qvsfdscYtOEKDqaSx886EdJifeLOoAl8UsYFjPMrTarVLExZ04azZp5Pre2fdX2xATG8OiuR5lweALbU7ZfdUx6upL+/aM5fjwAg0HPY4/lOX0m+JkzGqpWFQnzvgYBHmPfPpj+HtTr8CvjUtrTa0cvhv40lBd+foH96fs97d5lVCqR1avPMXbs1YUzO1N3Xp7jbrfbmXl0Jk/ue5LBdQezqssqp4q6fxPpG8k3nb/hiXpP8PS+p3n3r3cvFwsZbUZ+SP3hiuMTE1Vs2xbIpEkCOue0rHQ6LhF2xcUwY4ZI37751K7t5uzzm3BvtXsZEzsGpaBELsip4VPD0y5dQVCQDavVwpEjWh56KJqUFCVPPFGHhQuv7GQvipCRoSQ317Fte+KEluHDa2OxaNHpdKxYUZWPP45AqVSi0Yj07FlAeHgJer2eTp2y2b//DDqdI2xyzz0llZ4f+FfuX+gtekLVoUToIqjuU50MvWfL7K+FXi/j4Yfr8cUXZT8jf/pJTY8e9UlKKt/2gTsosZYQpAoiNjAWX4UvSpnymjfc8lCvnokePRzRIVEUWbPmHCNHpv2/8NfzwAMFhIVZUCqVrFkTxuzZ1dHpdKjVasaOjeLHHx0TN0pLZSQnqy5H5y6xa5eOnj3r8/771VCpRBQK7xd1AOmGdFqGtnSrTUGAHj0KCA31XGP1S1wsvUh8QTxnCs9QbCnm7/y/rzomKkrBPfeUUqWK6x7qHBMnXLb8LUdurmNkWIsWetYMfodIn0jS9GkcyzvG6YLTVFFX8bSLVxAcbMNqtZKS8k8aTFJxEtOPTueD4x+w5cIW+uzsg6/Cl83dN7utdVOniE5s7bmVUE0ofXb24dukb/n45MdM/2v6Fa2NFiwIo1o1GDXKLW5VCJcIu48/hsJCeOYZ982lKw+D6w6md2RvjHYjgjcmIgCRkXo6dSqhWjUZbdqYiI01smePHwsWhCKXy9FqNQwcWI8tW8LRaDT4+kJQkJX8fAt6vZ6XX07lyy/PX05UffHFrMvd611RDNwqtBW7H9jNa81fo3Voa+a1n0dt/9rON1RJNBo7772Xc1m4lIVWrUqZMiXTK4WHn9KPT+75hMF1BtOnZh9+6P0DT8c87XQ7l74z1atbGDs2E39/OxaLhTfeSOHTTxP/vyefCV9fGzqdI+H/zz+DeOCBGAwGHxQKBRs2VGHt2irUqWOiYUMTp09r8fOzsnix94u6Y7nHCNN4JkR0/LiaDRsqPobQWfyW/RsFloLL/841Oiq28/PlvPhiFKmpAVgsBt54I43ISNc90DsqYr3zuu1uRBFGjBApLXWMDFMp5AyvPxyVoEJAQC7IqetfhsG7bmbfPjUPPBBDfLwau2hn0pFJ5Jny2Ji0ka0XtrKu2zpebPyiRzpXPBP7DOu6reOHlB9Yc34N+eZ8Jh+ZjE20ce6cmu+/D2DyZAGNxu2ulRmn7y8VFcH774vcf78Buz2IixedbcE5PFttIb62WVy86JkeUTfCaoUTJxQUFGjo0KEuRqNAv35FnD2r5dQpDTabDZvNxiefXKBGDTNGo5XatR1jmy4RFOSZYfQNAxuyJmGNR2yXBa1Wzb335pTrNWq1SN++Oeh03jf14xIJxQnU8q3ldrtKpXg5miSTwfTpjhPeaISmTc0sXGjAx8eR25eQoMZiUTBggImffvIBRF55JcPrRR3A4vjFTp/AUFZ+/13HmjUhPPxwrkcT4vvX6k/PGj359NSnbE/ezt+Fjoidv78Ck0lOZqaFGi7eACkslJOeLo0Su8SCBbB5s8DHH6dStarjPOxfqz8rz63EX+XPoNqDeGTXI0xtMZXWYa097O0/tGpVwocfOtqxfHLyE07mnwTAJtqQy+ROG8tXUXQKHXKZ/PII0tMFp/ng+AdkLfucqCgYPtyj7t0Ul7Q7WbgQRrtv/u4dwcSJ6Tz5ZK6n3bgpdrudQXsGedWc0kt8+WUoubka3ngj5eYHX4MVK0I5c0bFe+9539PKy4deZmi9oW7fKqwIcXFqnnyyNrVqmZk//yI1ashZsMCfhAQZ77yTdvMFPEC/H/uxqfsmj9i22cDPz7seKnJKiui/bRgT7x5H35iO123T5GyOHPFh+PDanDoFDRu6xaTXcuIEtGol0q9fHpMnXzky7ETuCSJ8IgjWBJNrzOW5n5+jcVBj3rrrLQ95C3/l/IXFbkGj0KCVa1HIFPya8yvv//U+YdowQjWhKGVK1HI1n97zKUrZ9TsWuBqbaOOlX17CYDVgsVvIMeWQXpqJbeU6Fr3alxEjPOZamXBJRviQIXC3Z0ex3hIYjXDoEOzeLXLgAJSUCFStaqF16xLati2hTh0TWq2GggITLVrcGlsPnm76fCPCw0Wg4uWtAQFmatRQeWV/vkxDJg0CGnjajTJx111yfv75DL6+GoxGE3o9+PmpqFZNjU6nw2i0M2FCCMOH59CggefLkeML4glSe2669/X6LHoSlT0Yn+V/8a6yGh2jtrktjysuToNaLRIT42UnoJvR6+Gxx0SiokxMmHB1LnOT4CaX/3+wJpg1Xdcw69gsBuwawLz28wjTuj+tYM7JORzLPYZSpsQm2rCLdlobxnPvH1l8PCfV7f7cCLkgZ277uVf87KWxkZwXbDz5pIecKgcuEXY6HbRo4YqVb31KSmD7dli/XmT7digtFahXz8zQoYV061ZITMw/Fagmk0BAABiNRqxWWLQogtatC2jRwnue3G8lBg0qqVSj1z59ClEoSrHZBLdFKMqK1W7FV+V78wM9SFqakiVLwhk7Ng2FQuDIER1RUWYCAuz0718AOG5YaWlK0tNVaLVqNBrYuVNBfr6Cvn0LPOL3orhFPFb3MY/YBkce1RNPVKVnz3wefrjsfeRc4cf33wfQrZuFoCAz69fH0fF7PY//9DgLOy50SyFaXJyGxo0d7VTuZF55ReTcOZHVq1PKPGv3tWav8Uf2Hzy972mejX2WPjX7uNjLK3ko6iGO5x3HZDehlWuZ0HQCwYkjSG1ux253Te63szh1SsNPewJYuhSUngsklhkv/ihvHwoKYPly6NdPJDRUZNAgOHnSxPDhWWzeHM+3357l+eezrmorMnp0baZNC7z8799+U3P+vBd2Q/Ry8vPlfPFFNXJyKp/QbTBYWbcunDNnvDhz1ktJTNRw5IgWqxUKCuQ8/ngEf/119fc5IsLC8uUJ1KxZiNFo5MgRP3buDEKr1QIC334bSF6e+8JYZ4vO0rVaV7fZ+y+CAA0bGggN9WwuYl6enPfei2DzZjVWq5USMRetXEtqaSqjD4zm74Krq2SdTVyc9o4vnNi4Eb74QuDVV9OpV698I8PuDr2bjd02sunCJl765SWsdtdXW3+f8j0Ddg1gW8o2avnWQikoeSDqAQbWGUjXrsUMH57p1aIOYN68cKKjRR5/3NOelI07/LnHdeTkwObNjsjc7t2OxozNmhl4/vlCunYtIjLy5hfpJ58sxs/PEZ1TKGDhwkR0OjUm7xn/d02UMiVF5iL8Vf6edgVwtIJZtSqAgQMrP/xZEGD5cj8GDrR4xTbhrUS3blbatj2LXA7+/na2b79A1ao3b147fnw6VisYDI6O79OmVWfRonSCg/NJSlKiUokuG/mWWJyIn9LP4ykGY8emIwgCnggUnz6toX59GxERMr799izh4Q4xkGPMuZxcfrH0Ii/+/CI7eu+o1PzNG2GxOJqrP/usS5a/JUhOdlTBdutWzKOPVix6q1Fo+Orer1gWv4z+P/bnw7YfEhMQ41Q/rXYrX/79Jd+nfk90QDQLOiwgRBPCtgvbWJOw5opcP6PRzqpV1WjatKDSbbdcwfHjWvbv9+Obb26dSPEt4uatQXo6fPstbNggsm+fY1TX3XfrGT/eIeYuVS2VlQcfLMFg+OeLLpeDyWRi48aqgMmj2zI3IlwbzpmCM15ThdWjh5U2beJQqyt/V1QoYO3ac1Spor1qmL2nuNRM01s5ckTHoUNVePbZi5e3MQQBoqJKyixULl1QIyPN7N17Bh8fGyDw5ZfVOHtWxfr157Hb7WRkKKla1Xkib9GZRQyoPcBp61UUg0EgLc2XunWdO8XhZhQWyhk2rA7PP5/Fk0/mEP6vJgIZ+gzkgpwgdRB3B9/N9FbTXSbqAJKS1JjNwh1bEWu1OvrVabVW3nmn8iPDnox5ko7VOjL20Fj6RPZhVGzlG7MVmAuYdWwWJ/NO0jmiMxu6b0Al+6f/54M1H+T+qPuRCf88KMnlIjt26FAqzV4p7ObODSc2VmTQoFsnUuzlAVDvJznZ0bevQweR6tVFXnpJRK8vZdKkNPbsiePrrxMZMiSv3KJu5cpg/vrr2ne9U6cEkpO9tOU1jk7eZwvPetoNAI4d02I2i04RdZdQq0WMRtM1txE9QXJpMgGqAE+7cV1SU3WcPKm8artlzx5fZs+OKPd6AQE2FApH8+Q33khhxoxk7HY7+fk+dO9en717HZ+F2Vz5CNepglM8GOn5sYN79/rTr19Niorcc8nOzZVjs0G1amq++CKRxx67ukVQ8+DmrOy8ks09NpNcmoxWoXWpT5dGiTVt6lIzXsv06fDLLzBzZsoVoxwrQ22/2mzqtom4ojie3Pvk5ckPx3KPkVScVOZ1zhWeY+T+kQzbN4yWwS3Z2nMrrzR55QpRd4l/izpw5NYtW3aeESO8T9T9+aeOX37xZepUwSuLmK6HFLGrAOfOwYYNjm3W338XUKlE2rYtYerUQjp3LiYwsHInndkssGxZCAqF/ZrbfW++mY5SKUcUZV4ZrantV5vT+ac97QbFxTJGjarNc89l8vTTzt2/3rdPy3PP1WL9+nPUr+/ZLdm4gjgidOUXSO5AEAQGDSqib9+cq4RdcbGclBR1paqMfX3tl/OMdDo9c+Ykc/fdJajVaj76KIy//1awcGFiudbMM+Xx2J7HqOdfD9EuIgqeL5Rp166EjRsvotW6/nwvLpbxyCPRjB6dx+OPZ9G8+bWPC9GGEKINARzpFxdLL1Ldx3WzdOPjNURFiQQG3jqRE2dx4ABMmybyzDNZTpnZ/G9kMhkftPmAH1J/YMCuAYxvMp45J+dQTVeNhR0XXnHshsQNpJamMrbxWAD2pe1j7um5KOVKxjUeV+F2SwoFlJYaOXjQjw4dir2m68DcueE0aSLyyCNe4lAZcUkfu9uR06f/EXPHjwtoNHbaty+mW7ciOnUqxs/PuRdctVpLSYkRpfL6f54DB4L56y85L71U+dwxZ3I6/zSfn/qceR3medoVkpL8CA4udfrfx26HEyd8aN5c7/EK2Xmn5qGSqxjZYKRH/fgv69ZVwW5XM2jQ9UfLubLp82+/+ZCZqWDAACMGg4JHHolg0qSLtGp1Y3t20c6DPzxISmkKSkFJiCaEOW3n0CiokUv8LCtarfaK1AxnY7E4brA+PjrWrlVxzz3FZW50/n3K9/yU9hOz28x2mX9jxtQiJMSHzZtvrZtsZcnLg2bNRMLD9SxalOjSPK88Qx7377yfUmspgapA5rWfR5MgR+uU47nHGffrODRyDf1r9Wdr8lZq+NRgUvNJThH0v/7qw6hRtVmz5hwNG3o+f/m333wYMaI2334L/fp52pvyIUXsroMowrFj/4i5M2cEfHzs3HtvEU89VUSHDsXodK65oZvNMgThxqIO4OJFkZQUHVardyV11guoR67Js82UHa1iNNSq5ZqcJJkMmjUrRavVkZ9vcOpWb3lJLk2mV41eHrN/PbKytBQU3PhzEUXH38oVn1/r1qUAmEyQl2ejefNSoqIcYvKbb3QkJ8sZOzbzqtfJBBl+Sj/AEXFsHtychlU83w13xQoffHyU9OpV9nF4ZaW0VMbTT9dm2LAi7r8/mwcfLJ/Y7h3Zm3mnXfsgFxenoVu3O0vUiSKMGiVSXGxn8eJUl1/nNyVvwiY6xHyBuYCZR2eysstKcgw5vP7b62QZHUGEvel7WdVllVMnRLRpU8rGjeeJiTF5pEjo34iiI1p3110iffveet85L5IDnkcU4bff/hFziYkC/v427ruviOeeK+Kee0pcfgMvKpLRo0cDZs5MoXPnG4uSQYPyGDw4H5VKhdnsutmM5UUlU2EXPbtFPHt2VbKz1Xz6aZJL7cyY4c+xY+EsXpzose2DdH06sYGxnjF+HeRyOS++mIHNduPvQdeuNejdu4Dnn3dt1DkkxMqUKY6pFno9FBdr0esV6HQ6TCYrM2cGMWBAHnXqOM6jS/linSM687/W//OKmdKHD2sIC1O4RNgFB6vo0qWUOnUq/iAUGxjL9pTt3B95vxM9c5CToyA3V3HHFU58+SVs3CgwZ85Fl1V+/5tqump0rNqRXGMumYZMTuaf5NMTn7Li/AoMtn+ixUWWIrRy5+ZUCgJERxvQanVkZhqdvstSHg4d8uHPP3Vs2+Z9zejLwh0v7Gw2R0Lqhg2OatbUVIGgICudOxfx2mtFtG5detPImTORyWDcuDwaNbr5lovjCyfy559qvvkmjPfeS72lEjxdyf33m8jIcH3Z6j33FBMb61kRq7fqCdd5z8zjjz4Kp3lzG1265Nz0ovj885lERbm/f8+l8Xx6PVy8qGTPHn/69TOhVgscOiQnPb+YGP8YZreefVWyt6eYPTsVpVKJxUn3d6NR4O23q/PoowZatcrl2Wevv2VeFl5u/DLjD493ibC7VDhxJwm7U6fg5ZdFBg7Mo1s354v5a9E7sje9I3tf/ne2IZth+4YxpsEYquqqUmQuoshShMlmwmK3oJJfXRxRWd57z5/Dh6uxevV5j4iqS9G61q1F7r//FlR13KHCzmqFvXsdYu7bb0Uyoz4j7MJzdOlSSPfuRbRoUeqxrU0/P5HBgzPLlbdlMNjIzlZTUiJ3WrVURbGJNvKMeRhsBnak7CDDkMFT0U+5PeLRrl2JW6KYrVuXIgh6BMH9hSzfJn6LXCZHb9WTrk8nRBPi0fmK4Di3cnK05OQUlun43r0LnSpWKkL16ha+/z4ecGzbbv4ulKKgKH54aQ7Y4OBBX+6+uxSt1vPpyAqFAouTPiydTo5MJqeoyDnnSYRPBBa7hQJzAYGqQKeseYm4OA2+viK1a9+aN9ryYjDAoEEiNWqYmTixcoK7MiSXJJNSmkLfWn0J0YS4xWa3boW0auX6xsnX48ABX44f1/HDD7dmtA7uoOIJkwl273aIuc2bRXJzBapXt9C1ayGr60YyoekEHqs3yKM+lpbKWLs2nIceyiI4uHwCTRRBp3NtcnVZeO+v99iRuoMicxEiInX96rKpxya32U9JUfH55xFMnJhCSIh7RK7ZLPDxxzVo3z6f9u1L3GITYPSB0RzKOoSAQKAqkJp+NVl+33K32b8WarUao9ERgSvLRTEnR86hQ8H06JHt0TzFSxzIOMDrv71OsCqULb02cfGihl696rFgQRrt2+eRna1Ap7Pj4+P+KG18vJoxY2rz5ZeJREdXLMpps8HXX4dw331WYmKKnP4w8s3Zb0goSXD6sPnXXqtBfn4Av/xyi95py8lzz4ksXiyyatX5Cv+tK4vFbmHw7sHEF8UzLGYYrzR5xW22BUFAEAS3PyyLIjz2WF0CAjQcPCjcssLOO/YYXITBAJs2wdChImFhIg88ALt3m+nXL4fVq8/x/fdxPPPyWeQygXl/f86F4gse9ffsWTVffFEFg6H8fxZBgLg4kRdeqEVhoef+rGMbjyVQFYiI4ybds0ZPt9rPyFCQlibH19d9FwSlUiQlRSA/373Rsqejn0Yr1yIiopQpeafFO261/2+sVpg4MZLDh9UIQtmfdC9eVPHmm6GkpDh/S6c8pJem88zBZ3j18KsUWYroGdkdgOrVjWzbFk/LlvnI5XLmz4/gqafqXn6dXu++K394uIXBg4sqlXskijL27g3k8GHXRJgfq/sYh7MOM/fUXIbtG+a0dc+evXNGiW3aBPPnC0ycmOExUQfw4YkPOVd0DoBDmYfcWv1vNou8/XYku3a5d3rRTz/5ceqUlvfeu3VFHdyGW7ElJfDdd458ue3bobRUIDraxJAhRXTrVkh09JXzWPen78doM2KwGXjl8Ct80/kbNHLPzAFt3tzAwYNxKBQVizQpFDaKi+UUFioICPBMMYWf0o9nYp/hrd/fQqfQuX14+r33irRqdd6tNgUBPvss+f9bd7jPbtvwtoRrw0kqSaJnjZ7U9a978xe5iNJSGSUlSuzlnD3ZqJGBEycSEUXPzsl74dALnCs8hx2H2KnjX+fy72rWdJxLNpuNESPSycxUIpPJKCnRcu+9Nfnoo2TuvbekUv34ykJAgJ2XXsrFZCr/VuzevX40aGAnMtLM11+fd0necFxBHB+d/Ih0fToLziygQUADp6xrMgkkJKjuiPy6lBQYPlykS5diBg7M85gfGfoMtidvRy7IsYt2kkuTOZV/isZBjd1iX6kEi8WGzea+pHG73TETtlMnkc6db2FVx20SsSsogOXLoV8/kZAQkcGD4dQpIyNGZLFlSzwbN57jueeyiIkxXXXh3ZG643J0KaEogal/THX/G4D/b1miqbCoA8fw9CVLztOggWf1+oNRD1LDpwY+Ch8C1YFus7t1awAZGZ7bzsvNNbFhQzDu2j2QCTKq+1THV+HLuCbj3GP0OlStqmbevARatCifslUoQKHw7HB7gNVdVtMkqAlqmRqtXEukT+Q1j6te3UKLFnrsdjs2m4FXXsmgaVMTWq2WL7+MYPz4a7/OWZw755imUh4sFoEPPohgzRpfLBaLy4rBlHJHk2Kz/crK4spy7pwam024bqPk2wWbzTEyTK22Mm1a5UeGVYZwbThru67l8XqP0yG8A0PqDnF7p4Pp01Pp3999D3y7dvkTF6fh3XdvbVEHt7Cwy8mBRYugVy/HNuuTT8KFCwZefDGD77+PY82a84walc3/sXfegVFUXxt+Zns2vYeQQgkJVbo0AekdRKnSBBSpKhYQRBBEREEFBESaIEV6lSK9g3TpgRAIAdJ7sn13vj/2RxSlpOxuAh/PP0qyc+/dzezMO+ee857SpZ8cudKb9dTzq4enwpMf6//Ip9U+ddA7eJiDB11p0KA0aWmFe0IRBIiN1TN8eGmio5U2Wl3+GVhuIJ5KT44mHOVw3GF+v/M7K6JWcDT+qF3my8iQMHVqIH/8Yd+2Rk/i6lUlX30VwPXr9on4Xk69zLIby9gcs5kDcQc4mXASZ4kzrwa8ikwoGjGfkSFl8ODSXL5sKfCNaP58d77+uoRtF5ZPMgwZpBnSWPHqCkJdQimhfvp6XF0tvPlmKh4eRrRaLWXKZFO9ugYnJyckEjXvvFOKCxdsez4uWuTNV1/lzQw2OlpJerocNzcVS5bc5L33/uvZZ0vKuJZhUcNFuQ3l/91O6lLqJfbe2/vEMUwWE1nGhy1Xrl9XIQgilR0TLCoypkyBo0dhyhTbtQwrKIIgEKAOwGgx0qJkC96r/B4veTu+l1tCgp6lS30x2bmWwmy2RuuaNxdp2NC+czmCZ2orNi4ONm60brMeOGD9Wc2aGj76KINmzTLz3Y8VYH7D+QB029ONWj61UMmKZhs2LEzPwIHJeHoW/gutVlswGkWys2WA/Z94tCYty6OWcyn1EmmGNKKzotGYNHQI7sCQI0NyI6IAg8sPpkFAA5uvwd3dwq5d0SgURefnV6OGhl27IvH3FzHb4bqcrE9m5qWZ6C3/K05AoLpXdaKzoqmzuQ5hbmF4Kj0p516OnmV6OsQCJTtbitksoFYX/Gne2dmMp2fRVvOOPD6Sz6t9ToRnBGubry3QGC1aWC0ptFprrqdKZcHbW4aTkxNbtiiIi5Pl2qwUlGHDEnFxeXo+oskEw4aVolGjLMaMuY+PYwoa8Vf780ujX+i8uzMJWmt1/977e/nl+i/EZMVQ06cmzUo2e+zxkRmRDDs6jA4hHRheaThKqZLISBVhYSLOzs9+JOVxHD0KX3whMmhQ0lM7oziSuzl36RDSocjmv3NHzpw5vtSqlUWlSvbrRvHHH+7cvKlk+XK7TeFQin1V7J07sGEDrF0rcvw4SKVWi4nmzTNo2jQz39Wjj2P0ydG0CmpF08CmNhkvvyiVSvR624owe7cgeoDerOeNPW8Qk20tPpEKUr6s8SUdSnVg5qWZ/HrjVwwWAwqJgjn151DXv65N509OluHnp8RiybHpuAVFqVRz+7bR5oaiMVkxdN/XnRyT9X02LdGUGfVmEJ0VzZv73kRjtt4Q/J38WfHqCocIO1u1BHPUufooNt7eyN57e5ndYLbd5pg714/bt52YPTsJnU7PokWetG6dUaBz5EmfeWamBJkMfHxUnD1rISREb7cOOU8iXZ9On319uKu9i1k05z7c+an8qOVbC2eZM2qZGhe5Cy4yF1zlrrgqXInXxDPtwjTMoplQl1DeLPsmu6Z8SulSLqxZ83wKu7Q0qFZNxNtby+LF0cWqi1D3vd1Z2nhpkQU8wNpT2tNTwGSnsJ3JBJ07l6NCBQXbtz8f51ix3IqNioJvvoHatUVCQ2H0aBG5PJtJk+5x4MA1fv75Nl27ptlM1AHU96vPkfgjNhsvP1y86MS6dR42j/Kkp+v49NNS7N/vatuB/4VSqqR76e5I/nc6RbhH0D60PQDvVXqPBv4NEBBo4N+A+ZHzeX3362y+vdlm83/1VQn69i0+Br3jxrkzeHApm+XaHU84Ts99Pfn01Kd0COmAVJBSybMS0+pMQxAEyrqVpbZvbcAaxavpXdPuoi4qSsm775bhzp3CR0hFEVJSZGRlOf5ypDFpWHBtAdPrTLfrPEOHJvLNNzFoNBru3JHw88++JCa6IpPJiIxUcuVK3m6cGo2EMWN8HplnZzZD375lmTUrEI1GQ/nyuiIRdQazgf6H+uMkd2J+w/lUcK+AUmJNC6nsWZl2we2o4VODIOcgJEhI0iVxKe0Se+7tYUfsDkyiCRGR29m3+ebCN5yN6E6Vl4p1/KHAPGgZlp5uYerU2GIl6sDaN7koRR2Aq6sZUHDrln0q53fs8OD2bSWTJj0fog6K0VbslStWj7m1a0UuXhRQqSy88koW33yTSaNGWXa3r2gS2IRV0avsOsfjOHnSmS1b3Gjf3rY5MAqFiFRqQmJH01qLxcLY02O5m3OXtyPeZsXNFQyuMDjXkFgQBKbVmUbfA335rPpn+Dv5k6ZLY+qFqSyMXEjTwKYMqzTsP/k4+WHMmAxiY4vO0PLf9OyZSo8eOiSF0CkWi4VV0atYc2sN/k7+TK09lVDXUIwWI+dTzvNjvR8fcn0fXXU0F1IvUMe3DnqLngEHBzC7wWyb9nL8JwaDDLncjItL4Z9GDAaBevVCGD/+Pm+8kWaD1eWdkSdGMrTiUIfcvB7kIAYFGTl06BpSqYjJBMuXBxIVpWTdutsYjUYiI1WUK/fo80elsnDjhpysrL9zcc1mq0BwdXXio48SKFu26LwsEzQJvH/8faIyo2gf3J7avrVZ1WwVW+9sZf61+YS6htKoRKPHHr/9znYup12mtGtp2oW0o4m6Hx0nVKX6Vge+CQeycCGsXy/w3Xf3CAws+iKi4soXX7hz9Kgrv/9+3abdlYxGmDfPj44dRWrVen6EXZFtxYoinD//d1/WyEgBFxcLDRtm0qJFJg0aZDn8abPLni6sa77OoXOCdRs2K8uAQmGnajW5HJPJhMUi2rTSKjY7lhHHRtC8ZHOGVxqOKIqsvLmSN8u+madOEyaLiZ+u/MSue7uI8IhgTNUxeKu887UGUQS5XGa3MH1hsHYJMOXrM9eZdMy4NIMjCUeo4V2DUS+NwkXhkqdj10SvoVNoJ5RSJb/f+Z25V+YyqeYkavnWKuA7eDSiCE5OKnQ62+W8HD/uQVhYNr6+jvs7Hoo7xOLri1nSeInD5nwURiMkJckJDDSSmKimWbMyzJhxj2bN0sjOluDkZHnoZiaVSjH/L7xvscC775aienUjQ4feK6J3YOVE4gkmnZ1EbE4sAK2DWjOtzrTc3xstRvRmPS7yx5/PURlR3Mi8QaugVkgECfv3u/Lee6HcuQPB9i04djhXrkCtWiLt2qXl9jEubnTd07XAOae2JDZWDqgJDs5bR5u8snGjB+PHB3H+/PPVrs6hETtRhJMn/xZzt24JuLubadw4k+HDM6lXL7tI3ecFrE7XksKEWvKJXi/g5CS1m6gDMBiMzJgRhKurjrffTrbJmL/d/I3lN5Yzrc40KnpWBKzRuV5hvfI8hkwiY0TlEYyoPIKtMVsZdGQQbnI3Rr80mvKeT/fA+usvJ776Kogff7yFf/HZiQWsFhNDhoTQsmUqnTunP/X1CZoEJp+fzJ3sO3QI6cCWFlvyfR52K9Mt9//bh7Snrl9dhhwZQg2fGoypNia/b+GR7N3ryrZtPkyZchuVDYNc9eqlIwgCjnrMNFlMTP1rKiubrnTMhE9ALic3WuPtrWHx4mgqVdIhl8uZOzeAc+eU/Pab1SjWur1vxmSSIpOZUakUtGqVQ2ho0Sfc38+5j1L6dyW+wfzwNr1cIn9qy7sw9zDC3MNy/x0ZqcLLSyQo6PmJpgDodNaWYYGBBkaNiivq5TwSg8Xg8FaQjyM42AhkIJPJ0euNNonaGY0C8+b506WLSNWqxeN92gq7CztRhD17YNEiOHRIJC5OwMvLRNOmmXz6aSa1a2cjL9qCuFwC1YGcST5Dbb/aDptz2rQA7t5VMW/eLbvNIQigUunx8Cj8t8FgMTD86HDkEjmbWm6yWW/SDqEd6BDagQspF/jqr6/QmXS8Xf7t3M4V/Q/2p394/4e2cZRKkYoVtfj4FL9onVwuEhGRQ4kSDyuV21m3ef/4+6xvvh6ZRMZfKX8x/cJ0dGYd71Z4l+Ylm9tsDT4qH9Y2X8tX576i656uzHtlXr4jov/GyUmOi4vB5g9gkZFKDh3y5J137NsX893D71LFqwq3s27To0wPm/c0LSxSKblVkUajhfbtk6hVS45cLkenU9CiRTBVq2ayb58H48al0q1bAl26JBXxqq28Xvp1gpyDmHxustXDzgb3yuvXVVSt+uz27HwcH38scv06rFx5p1j0IH4U0RnReCsLd72wJUYj9O8fQvPmafTqVXjz5o0bPYiLk/HFF8/ZyYUDtmJFEby8RNLTBZo2zaB371Rq1Mix6T65rVhxYwVx2jg+fuljh8155ow7SUkirVtn2n0uiUSCRCLJ9/bgAy6kXODTU58yMHwgb5R5w/YL/AeJmkS+Ov8Vt7JvUdenLtvvbsdF7sL8hvMJcQkBbFeRaU/+We2Zbcymz4E+xGTH0D64PZfSLuGh9ODTlz4l3CPcrus4mXiSL85+wYhKI2gT3Cbfx4siSKUSpFKpzZrQ/5M//nDju+9KsGnTjUJZpzyNrnu6ciPjBnKpnGWvLqO8h226IziCtDQpixb5sGKFNyaTBJlMpF+/ZEaMSCg219Oe+3ryVa2vKO1aGq1ZW+gcz/btw+ncWcEPP9hogcWALVugUycYO/Y+PXsWXXeJp7H59mYupF2wed/fwrBwoQ81ahioUaNw90u9XqB9+3CaNJGxcuULYVcgZs7U88EHSlauvEmVKkXbpP5JJGgS+OTkJ/z66q8Om9PR4mT1aj/On1cwZcrdfIm7Hy7+wOH4w8xpMCdP5q22QmfS8dru17inseYPlXUty8qmK1n0U2natMkiLKx4C7v4eDnLl/syfMQ9hp4YyKnkUwC4yd3Y2mIrXk5eDluLxqRh2NFheCg8+K7Od/na6v3pJ1+yslR88kmsXaInogjOzvb9LoiiSLud7YjVWHPA3ORuLGm8hHLu5ew2py1ITpaxbZs7gwblACKrVjmRnOzEL794kJUlRam00KdPMsOGJRZpVWV0ZjSfnf6M35r+ZpPxcnIk1KtXgcWLBd56yyZDFjn37sFLL4lUrZrFzJl3inUk8oeLP+Cr8qV3ud5FvZSHsIU10sqVXnzzTQmuXBGIiLDRwooRDkkmq13bqh2dnOTcuaNEqy2eZ7O/2h+NyXFCYft2dw4dcuw+tIeHjqAgMc9WHOmGdHru60maPo11zdY5VNQBZJuyc33bBASis6Jpsa0lO45ouHOnmIQpnoBGI7B9j0DnP17ndPLpXEsYg8XAjawbDl2LWqbml8a/UMWrCp12dyI6MzrPx5YsKcHLS2u3G5EgYJem9P8k25RNsj4ZCRLKu5dnRr0ZxVrUPfg47t51Y948P27csKDX66lSRcumTW4sXRrNqFH3UShEFi70o169isya5Wd3l/7HMeX8FD6q8pHNxrtxQ4koCs9NUrvZDL17i8jlRd8yLC/E5sQS5hb29Bc6mKgoE198EYRGU7APUKcTWLTIj969eS5FHTi4eEKjMTJ8eCmaNMlg9Gj75tIUFMEWiSF5ZMsWL4KDddSqZdtKnyfRqlUmrVplolKp0Gp1/7m4nEs+R3Wf6gDsubeH7y5+x9hqY2kYUDR9ViRI+KjKR7gp3HCRueAkcyJdn873quaMzYojbH8YKqkKuUROk8AmDxUQFAVH44+yPGo5JtGEwWTgVvYtZMPlDKs2ktLOpdGYNOSYcsg0ZOKn8iuSNQ6IGMCrJV7l/ePv83qp1+kf0R+wbrVX9KyITPL3ZUEUQaGQ06lTIvYO7n/wgS9eXkZGjSr8tWH86fHczr5NDZ8atA9uT1m3slxMvYjerGdYxWEMLD8QqVB8Hwxmz/YjNlbNDz/cp2rVVHbvTs+1fHJ1NdOmTTZubmb69Emld+9Uli3z4qef/FmwwI9ly3zo0yeZoUMdF8FL0aWQqk+1aQV2ZKQTMplIxYrFXAHlkXffhQMHYPHiu3h4FG3LsLyQoE3IUxFbUXDmjJrYWCUREfmvzF+zxouUFCmff/58nFePwiFbsceO6WjQQMXq1VEYDALlywuoVMVzC+3dw+8ysvJIh5zQarWa9HStXStiH8eBAx4sWeLJ/Pm3c+c/k3SGEcdHMLXWVLbd3cb9nPv81OCnPNttOILr15X4+SlQuiTS7o92JOmsieOuMlem1J7Cq4GvFun6YrNjeevgWyTqEgFwljmzruk6/JQRXLlioVq14pOKYLFY+OjPj0gzpDGm6hgGHRnEwIiB9C3XF7CKutGjg6la1UCvXvbtMwqwZo0nHh4iLVumF3qsOZfnMO/aPADkghwRkUB1IF1KdaF/+f6FHt8eXLmiws/PTEiInK1blcTHC7z5ZuojIzuP2o4SRfj1V2/mzfMjO1uKSmXdoh0yJNHuBWojj4+kZVDLAuVvPo5JkwK5etWDixeLpY9+vjhyBBo2FKlUSc+vv96jf/9APvnkPtWqaUlMlKHRSAgNNRSrKF5xsTp5FKIISqUCgyF/BukajUDbthF07Chl8eJi9GHbGId/Y6pV06JSadBqnZk3z9dm7vy2oqZPTfbF7bP7PHq9tUVKUYg6gIAAHWXLmh7atplxeQZZxizeP/E+fio/ljVZVqxEHcCMGQGMHOmDk8yJybUm51Y1Gi3Fw9wzx5iD3mxtDacQFLxT/h2CXIP49ls3xowJLlbnu0Qi4Yd6P9ClVBd67utJqj6V9bfW536Wogjh4Wb8/BwjRrt1S6NDh4fn0pg0JGufbtGTbkhn4+2NjD45mq57urLtzrbc6LuTzIm3I97m69pf88PlHxh7cux/Gs0XNXq9hEGDSrN+vRcajYZmzayVf4+60et0AteuKdDpHv6lIEC/fikcPXqVDz+MQyoVWbDAj/r1rVu0RqN9bmQak4abWTdtKurAWhFbrdqzL+oAZs8WUShEGjTIIDPTSKlSOtzdRZRKJVu3+tG3b1mcnFTIZDJ+/NGPP/5wA6ztrgq65fg8IwiQmirn+HHnfB23apU3GRlSxo9/vj/TIvvWnDghYe1abxISionXyf9oGtiUcynn7DqHKEKXLuWYN8/NrvM8ifLldXz+eSw+Pk5YLHAk/ghX0q4AYBJNXEm/Yvett4Iwe3YyEydaCynq+9fnFf9X8FR4sqDhAlbcXEGvfb2IzY51+LoyDZkMPjKYL85+wbyG8wh2DqaSVyUGhA8AYPDgJNauvV+obhT24nTyacyidWsoOiuaRZGLsFhArVbx9tv3c5vb2xu9XuDcOTXZ2dYPKTI9kp77ejLryqyHXpeiS2FN9Bo+PP4hXfd0pcueLgw5MoRLaZdoF9yOFU1XsK7FOrxV3oS6hPJj/R8ZVmkYFTwr4Cp3ZWvsVnrs7cGCqwswWYrOKuf6dSXvvx8COKNWCyxeHM3AgU+PjEZHK2nfPpjoaOUjfy+RQP/+KRw7dpWRI/8p8Crw449+GAy2val9d/E7Xi/1uk3HtFjgxg3Vc5Ffd/48rF4t8OmncYwalY2Pj4mvvrpH6dI69Ho9r7+ewE8/3UKn02Eymbh9W0lamgonJyfu3PGgTp1KXL/uiiAInDjhzObNHnZdb/e93em+tzsx2TEMOzqMFVEr7DpfQZkzx5WJE4Py3IozJ0fCkiW+DBgApUrZdWlFjsO3YitW/HtPXKMR8PFxIjtbgyAUD68ijUlDlz1daBvcFrNo5v3K79t8DrMZdu70p1SpDCpVsp17f0G4dEnN5xP8udvbF7NooqRzSTyUHvgqffmy1pc4y/P3RGQvRBF0OinOzuJDSfYak4Ztd7bRtUxXwJonNvHcREq5lGJyrf/5adkRi8XCdxe/42D8QUZUGpHru7fr7i4qe1Ym0DnwodcLggKdzlikRtz/5oszX3A76zbphnTua+5jsBgI/z2SQW8qad483WHriI2V07ZtBPPm3eZeicXMvzafBG0Cwc7BlHUrS5zGauSqkqqo4lWFxgGNqeVb66GcwH8y9fxUBlcYjIfSI/dnnXd3JirTavbro/Lhx3o/Utmrst3f2wMsFkhMlFGypEhiojMffODDlCl3CQ7O+5aSRiNw7547JUtm5Kk7j9kMixf7sHChLxrN31u0776bVOjz0GKx0HF3xwIZaj+JmBgF7duHs2sXtGhhs2GLhLZtRa5cMbJp03WcnJyIjzfkuc95WpqUQ4dcadEiE7XawsyZJTh7Vs3atdbvQuvWJXnzzRS6dEklJUXKpUtq6tTJRqUq+N91/OnxbIzZCICT1In3Kr1X7CpjAdLTpahUyjyndc2f78vPP/sRFSU8d11M/k2RCjuwXug+/bQUYWE5DBpUtEabI46N4Eraldz8qMYlGjO7/my7zKVUKtHr9XYZO68YLUY2XdvHzNO/0qtKa7pXbIeX0nH2G/lh3z5XvvgiiLVrb+Dv//Qoy9rotfxy/Rc6h3bmnQrv2GVNO2J3MOfKHJoFNuP9Su8/9cZmNELXruG0a5fGO+8UD1PZf5NtzGb7rd3M+3M7QX4KBlTpSrh7OCXUJWzuQq81adGb9QiCYN02FSXsunKDhfFjua+5h4j10uSucGdW3VlU865WaPHQZ38frqVfQ0RkY4uNBLs49go/eXJJzp51ZsOGG0DBL70FsXwwmf4WeFqtBKVSzBV4BRUC867OI8uQxSdVPynQ8Y/jjz/c+PjjEBISwK9oaoxsgjW3DqZNu0Pr1pm8914oJhPMnRtT4DEtFmtU1mKBhQt9efnlbGrWNLBnjwfvvVeCU6du4+FhYtYsdzQa+OADaxQ4KkpJcPDTzcVvZd6i94HeZBozqe5dnaWNlxabDhSPQhRVaLWGJ/pfZmVJaN06gr59pfz4owMXV0QUubADWLTIhwoVoH5927S7KijRmdG8e+Rd4rXxCAh8Xftr2oW0s/k8v/ziR5Mm6ZQqlb/ET1uQbcxmS8wW9t3fx53sO8Rp4+hdtjcT608kK0tTbIxO/01SkoKdO93o0yfv54jJYmLyucmcTTnLqJdG8UrAKzZZy/WM63x++nN8VD58U/ubfOUhbtzoQY0aZkJDi1eO1wPMZnB1VROVFEX7P9pjFI14KjxRy9TU8avDxJoTbTbXxDMT2Xt/L3KJHK1ZS44xhxo+NXg34l3OJJ/hdMppErQJZBoy2dRyEz4qn0LPOensJMq4lkEiSDiZdJIZ9WYU/o08AZMJNmzwpEoVEzVrmjl3zoxOJ6Fq1YLnLSYlydi40Y/OnRML1FvXaBRYtMiHxYt90WqFXIE3aFBSvrsgdPijA+tbrEchUeR7HU9i1iw/tmzxJT6++AqKpyGK0KiRSHKyntWro5BI4Nw5NS4uCsqVS7fLfAkJMgICrOfEr796o9NJGD48A51ORtWqZfj220Q6dUrn9GkZO3e68cEHCSgUIjqd8JC4b7uzLUm6JNY3X59rCF8cMZmgc+dwWrRI5733Eh/7urlz/fjlF19u3hQIDHzsy54bitDO8m8GDrTerNVqNefOmYmIKJpIVhm3MgyuMJgp56eglCofal9lK1JSpCxZ4k2pUtoiEXax2bHMuzqPNEMaAH4qP0ZUHkFUlJGhQ8OZODG2UDcdexEaKsuXqANrL9ovan5Bsi6ZUX+OYt7VeXzz8jeUdC5ZoDVkG7L59NSnJOoSmVxzcoG6RXTunI5KpUJXtDvwjyQhQcbbb5fhyy9jqVYtkNdKvcbaW2tJM6QhFaT0C+9n0/mGVhzKrnu7SNNZz8X6fvXpblzBn6tdeP/9uoA1qnw2+WyhOxg8YHyN8bn/vz12O0fjj9IgoIFNxv4nRqO1B6xKpWDtWh9yctKoUCHZJr5ZaWlS1qxx49VXUwok7ORykcGDkxgwIJkFC3xYssSXhQt9WbbMh969rQLvSVu8m25vQmvSIpPIqOhZ0eaiDv5uJfYss3MnHDkiMGdOfG5ubfXqGtRqsIcPtyCQK+oA+vZNAcBgALPZwLJlNwkKMmAwmImPV3HmjAuurulIpRLeeacEAQFGvvrqLjqdiDw9ggreQcVa1AHIZDBiRDxVqz4+WpeRIWXZMh+GDPn/IeqgCIsnHsXOnRK6dg0jMtKG3cXzyRul3+Bln5cRRRFXuavNx/f2NnPkSDQNGxZNxKaCZwXeKvdWrlFuhEcEapkaX18jNWrk4FP4oIhNMZvhgw9COXCg4Keqj8qHxY0XM7LySIYfG87ok6MxWKyievPtzfxx94//HHM9/TqzL1u34S0WCzMuzaD7/u60Dm7NmmZrCtUC7MoVkSFDSpORUay+fqhUUKuWhtBQ62fzQeUPCHYOxknihEW0sO+ebarFLRYLy24so/+h/rk5nGXdyvJ93e9JSZETFfV3XqRcIqeOXx2bCbt/8mO9H/nq/Fe554KtuHDBiRYtypOS4orJZGDFiij697fdbkR4uJ6jR2MIDy/cA7BCITJsWBKHD1/NTYNZtMiXRo0qMGOGPzk5jz4/zySf4dsL3/L1X1/jp/Kzi6n79etOVK/+7EbrLBYYO1akenUNDRtmP/S7P/6QsWCBr0PXI5dbHSl8fKy5fS1bZrJ6dRR6vQ6NRkOfPgl06JCCxWIhMVHJrUshdPUYh1qtZv16P/r2LZM71unTau7eLT5Fjy1bZhIa+vgHnKVLvbFYBEaPduCiiphidWd55ZVsZs+OoVq1ov1Cf1/3e7yV3my6tYnDcYfZf38/f9z9gyPxRwo9ttksw2zWF1nrn4P3D7L+9nrGVB2Dm9yNXmV7AdYv/vjx9yhTxoLJZA3rFweys6WIogSlsvCGnjV9a7KxxUZe8nyJ13a9xoJrC1gYuZAfL/9IhuFvk2iTxcTnZz5nw+0NrLq5ik67O2EwG9jaYivtQ9oXeh1ubiZMJoHU1GIRMAesWxoBAXImTLiLp6f1s3ZTuNEksAm1fGuxr+0+rqRfod+Bfg/dyHXmvIceLRYLiyIX0XF3R6Iyo1jTbA1LGy3FQ+HB17W/xlnuTNeuaSxaZH/PPABPlSf9yvXj4xOF7w2dlCTj2DEXVCoVlStDx45piKI18l1UlkZ5RaUSGTEikUOHrvL220mIojU9plGj8vzwg39ulfIDlFIlJtGE0WJkRdQKxp0eZ9P1ZGRIiYuTP9MRu3Xr4Px5gfffj/9PUWB0tJxz51yKzTUWoFGjbF5+2drhR+p5C6HGUvyCE9FoNAQG5tCgQRaCIKBUKhk3LpjNm/3+VwiiZtiwEGJjrVHb5GQZGRmOz+e5dEmkb9+yJCc/fE1NS5OyYoUPw4cL+Ps7fFlFRrHIsXv0Md6Anvr1s5/6WltyIfUCgw4Por5vffbF7cPM34Kimlc1ljVZVuCxY2MVdOkSxvz5t4pku3NrzFYWRi5kxasrcFG4cDLxJLV8ayER/r5wazQC77xTlq5dk3nttXSHr/HfSKVSLBaLza1XDBYDb+x+g9vZtwFoUqIJs+pbbTW+v/A9v0b9ilk0465w5/dWv+f65dkS65Zs0e/Jnj/vxLhxwcybd4ugoIf9AE0WEyIicon1Cf2P2D+YcXkGX1T/Al8nXwYeHsimFptwV7jnHmMRLfx641f6leuHIAhYLBYWRC5g652t1PGrwydVPkEl+zsqn6ZPw1PpmftvJyc1mZla5HLH3Pn67O/DoAqDCtVd5fvvg9i1y5lt2yLtnqd686aS0aND+OabO5Qta/u0lZwcCfPn+7B8uQ8Gg4BCIfLmmym8804Sbm7WKvAl15fgInWhZXBLxtcYb9MuHqdOOTNgQGkuX4aKFW02rMMwmaBiRZGAgOxHFkk4oi9yQdGb9fQ50Ier6VfpXqY746r/V7Snp0uxWMDLy0xUlJIffvBnypREAgIEvvjCh5MnVfz++x2MRiMzZvhQv342tWppMJut28X2sHzKyJAwYUIIH3xw/6EUp++/92ftWh9u3RKK3W6UPSlWEbsHiCKsXu3M9u2Oq9CMy4lj2NFhDDo8CK1Zy9DKQ5lRbwZucqvXnAQJnUI6FWoOtdrMkCFplCvn+Jv58hvL+fXGr6xuujo32f9lv5cfEnXWNYrUq5dJxYpF/zh57JgLFy6428VPL0Wb8pBJ7cG4g6y6uYqLqRdZcXNFrq+b2WLmcuplm88PcOOGnO3b3Z/+QjtTogQ0aJBFQMB/TZ5lElmuqANoFdyK5a8uZ/rF6fQ70I9kXTLfX/z+oWNmXJzBvKvzOBx3mNmXZ9Nxd0fS9GlsaLGBz6t//pCoAx4SdQBNmgSxZInjrsKz6s/i6/NfozPr+Pnqz1xKvfTUY8xmGDeuJDt3+qJQKBgwII41a244pPjI2dlCnTpanJ3t43bt7Gxh5MhEDhy4Rr9+yYgiLFniQ5Mm5Zk+3Z/UHA1SQcqHL33IxJoTbd6aLTJShVIpEl7wbIciZelSuHFDYMSIR0eeBQH0ej1JScUnYg8giiKjT47mWvo1gNz//hsPDzNeXtbrY1iYnjlz7uDurkOr1dKzZwLjxt1Dr9djNFo4etSVpCRn1Go1p097U7duRVJTrf6Lx465cOyYbQzw3d0tzJhxm/Ll/76fJSdLWbXKm/ff//8l6qCYFE/8G0GAb7+NRSaz2oJotXq7Grvey7lHj309SDekA9aCgpLqkoS5hfFaqddYdXMVYW5hbL+3nVW3VvF+5fcL9HTv6yvy1ltxNl7905lzeQ7HE4/zW9PfHuv59U+GD09EJpNhNkswGCx2b0f0ONav98JkgpkzU20+tlE00rlUZ9L0aWQaM4nXxPPz1Z+RICHEJYRQl1Dc5G54KD1wkdun+8bGjU7s3+9Oq1YZRVKNLIrW6EJIiIUxY/J+XnqrvAl3D+dahvXCfyT+CMm6ZHxUPhyNP8qm25vIMeUw8s+R9ArrxaYWm/J03j1g8OBEypZ13MOPp9KTTiGdaLatGVqTFhHxsd52N28qKVNGj6urGrUajEYDBoMBDw+HLZeAACPjx6eg1dq324qrq4WPP07gnXeSmDfPj1WrvFm61AchS0593zk0b9IIsH3P02vXVFSqRJGlqxQGnQ4mTBBp1SqTChUefw4vX+7OzJkBHDx4tdh4Wv6V+hfnU84jE2QYRSNJuiS0Jm2+vEBDQgyEhFgjZlIprF59E7AWiwQGGhk+HDw8rBZHGzZ4YzZLaN7cgsEg0r59EB9+GEejRtkkJsqIi5NTubI2X9fGS5cUnDvnRNeuaSxe7ItcLvDhh/n6GJ4Liu1W7ANu31YxcmQw06bdISzMftWyJxJO8N7x99CatZRxLcPmlpsB67bSgEMDGFZhGLX9ahOniWPi2YkkahN5p/w7eW6jEx8vY/9+Xzp0SMht5u0IppybQkx2DD81+ClfHmCiCB9/XAp/f51NmrIXBJVKTVKSDldXx3xe3/71LaeTTrOm+RqHzKfRCDg7KxDFoqkC37DBkzVrfFi8+OYTPaD+TYouhd4HemOymEjTp6G36KniWYXv63xP5z2dyTZZ0yecpc7MqDeDuv518702mUyGyZT/is+C8NvN31gUuYgErTXC0iaoDd/W+fY/r7t0SU3PnmVYujSGGjWKzq5GrxdIT3fBwyPboaIgLU3KTz/5smadB2ajFLkcune3btE+iODYgm7dwqhXT8WiRTYb0mHMmAEffyyyceMNSpd+fFFOXJycW7fcqV07ucgenB+FwWyg/8H+hLuHczfnLhNqTiDIOchu8+n1Vrud7GwJc+f60bFjOlWqmFm50oupU324eDEaMPPdd574+Rnp3j011+Tb39/0n/zFhQt9+OMPT2bOvEXHjuGMGSNhwgS7Lb/YUiy3Yv+Jl5eBypW1+Pvbt6AiWZ9MZc/KtApqhUr691aRRJCwpPESavvVBqCEugTzXpnHgoYL+OPuH3Ta1Yl10ev+M57W9HAO3ZUrTsya5WHX9/BvPj35KSn6FH5u+HO+jV0FAerXz+DVVx3fg9VoFLh71wmdTuMwUWcRLey5t4c7OXcc1kdUrRYRRT05Oc6kpTk+ZFetmpnGjdPzJerAGrHb0XoHm1tuZumrS/m4ysdkGjLpd7Af7gp36vrWpZ5fPSp5VXrsds6TSE6WsmWLJ0YHnXpVPKvgp/LL/d6n6v+OEJ8+rWbBAj/UajUvvaTnxx9jeOmlovUgvHlTSfPmody8+eiWYvbC09PM2LHx7N19g27drDfY5cu9adasPFOnBpCcXPhz2Gi0vr9nsXAiKwu++kqkU6e0J4o6gBIljDRqlF6sRB2AQqpAZ9ExvsZ4FjRaYFdRB+Q+mLi4WBg1Kp7y5XUYjUbat09k7dooDAYtBoMBjUbAaJSiUqlITXWjRYvynD7tiVQq5c8/nfnlF+tea9++KaxbF8Pixb6o1QIffGDX5Rdbin3E7gFSqZSsLBmZmZZH5gIVhkxDJt33dWd98/WoZWpyjDl5bqWVbchm8vnJXE67zBul36BvWF/itfG8uf9NfmvyGyWcSwDWhus6neiwCrnhR4fjq/JlQs3CPa4IgoBcLic72+iwtW/Y4MnkyYHs2hWJj49jojZbYrYw4ewETBYTb5Z9kzHVxjhkXpMJ2rSJoEWLDIdFRo1GAYVCgkQC5rw2WnwKgw4PwmA2sOTVJYUe69QpNQMGlGHr1usO83oURZFNtzcx6/IsNGYNB1udxNlZwvr1Pqxb58wvv9xyWDHH08jJkRAV5U5YWIbd8uzyQlKSjDlz/Ni40RNRtG69demSyqBBSQXy1wO4cUPJ66+X4+BBaGR7G1G78uWXMHmyyLZt1/N0j7p1S8HKlX6MGnWv2JxbAG/seYP1zdcX9TIei0Yj4dQpZ6pVy8Hd3cKyZT788Yc7GzZY00kaNw7m7l0Zw4cL/y+6TDyKZ0bYAYwcGUpioozly2/atK9svwP96Bfej6aBTQs8hs6k49sL33Iy6SRSQUp0VjQVPSqy7NVlCBYlLi4q9Hr7V8JaLBYGHB5AVa+qjKwy0iZjzpxZgsuXlcybd9shTewtFgVHjyr+4/9kt/lEC932diMyIxKAYOdgVjdbbRcfw0dx6pQzVaqIee55WFimTg3g/n0nZs68ZZPv0bX0a/Te3xt/J3+2td5W6PGMRgGpVI1EklP4xeUTnUlPo4XDaM4Evh4SgskkIpEUjz7W/6QgLcXsRXy8VeBt2WIVeBKJVeC9805Sntr//ZPff3dnzJhg0tJwaN5iYUlJgTJlRDp2TGH06Lw9oEVGqvjkkxBmz76dm5dW1FxPv860i9NY0HBBUS+lQERGqujduwxKpcCFCwIhxdtf2W4U+63Yf/LRR/eZPDkemcx221arbq7CTeFWKFEHoJKpGF9jPIsa/p2rcyX9CmNPj2XDBk+aNAnBaLTeHXRmHYfiDtnE2NMsmjGYrRcFg8VAz/09aRzQ2GaiDqBOnUxee03jkJub2QzOzlKHiTqAuzl3ERAIcQ7BS+mFs8yZs8lnHTZ/7do5uLmZsFHw7Km0amWkSZM0m/w9jRYj406PQ2/Rk23KJl5T+KijXC6iUjkuBUCvF1i/3hOLRYGXmydjAlew3bcjHx7/kDRjcrETdcnJUhYs8LDJ1qctCAgw8eWX99m+/Tov9Z2NuelI1qzxolWrCCZNCiQuLu/7jdevqwgJEZ8pUQcwdSqYzWK+ekCHh+vYti262Ig6gD/u/kFdv/znxBYHIiNVvP12aSpWFLh16/+vqINnTNgFBRkpXToHi0XKTz/5k5VVuOUn65L59cavfFf3OxutEOZenYuAgIfCA5VUxe67u9nh0YeW/fayOGoe/Q/2p/Ouzow9PRajpfA3r1U3V9HnQB/S9Gl039udbmW60T+ivw3eyd/UrZtD27aJqNVOaLX2u8tptQKdO5fj998dWw4X4hLC2uZrGVZpGM0Cm7G2+Voal2js0DWcPy+hXbsI7t2zX9KNVisglyuoXj2Fzp3TbTLml2e/5EbGDcCam7Ym2jaFJ/PmufHdd/Z1FH2wV5GSouarrwI5flyBRqOhc0ctYe5l2XVvFz329uCTPz8hLsfx1eyPIyVFzrx5HqSkFJ8ELaPFyC+JE7hQ+n3e7+VH69bpWCywfr0nbdqEM2FCYJ7O7WvXnKhWzf7rtSX37sHs2SK9eyfnq4hEEMBsNpGd7YSD6oSeyunk07QKalXUy8g3D0RdmTIS9uwR8PR8+jHPM8+UsHtATAysXu3JpUuFazM04tgIvqjxhU17HY6oNIKVTVeysslKNrfYzM7WO+n1Unu2u73FnCtzOJ18mruauyDCueRz6Ex525pO1CY+0s9te+x2rqRfoeX2lgwuP5g3Sr9hs/fyb5Yvd6JLl3KPbTVUWMxmgWbNtIVulfQsUqqUnsaNs5FK7ZMZYbHAiBGhTJ1qW0OnWr61aBvcFrVUTSXPSlxIvWCTcZVKC2q1/R4itm1z5913y6BSOREYmMOuXddo0ODvKHEFjwoAJOgSOBR/iPnX5tttLfklIkLHmTO3iYgoenNrsJq699jbgzXRaxAQqBkazLff3mPz5hs0b56B2QybNnnStm04n38eSGzs4wWetUdsMQuRPoVJk0RUKgv9+uW/bVx0tIIGDcpw9mzecrrtTbYp2+4FE7bmhaj7L8+gU5DVK2f79ut4eSnQ6aw3rfzmfi28tpAQlxBe9nvZpmvzUfngo/r75nnihDOSnJfY064FK6JW8Mv1X0jQJuCh9GDH3R3MvToXi2hBQCBQHUhNn5q8Gvjqf5ovf3jiQ9QyNdPrTMdNYTVNvp9zn9jsWMC6Dft77O+0CGrxH9NhW/Hyy9nk5ChQqeyTsO3lJeP99+/aZezijlotMmbMvf/lTtn+8V0igW7dcvDwsG0eX8fQjrQNbkvUvihWNV1ls3F79Ur932dhsyFJTpah1QqUKyclKEigdGkt6ek6VCpye2g+oJ5fPTbFbEIukVPPr16hi5CeV4wWI5/8+QnxmnhERJxlzrmFZ6VLG/juu7tERSXx449+7NvnztatnmzZ4kn79ukMGpSU25cYrH+flBTZM1URGxUFixfD++8nFqiCv3RpA1OmxBcLkW6xFF0hTkF5IeoezTMp7ADUags6nY5lywI4dUrBDz/cybORYWx2LJtiNrGlxRb7LhI4fNiVK1ecaNYsiV5hvXjZ92VGnxxNRc+KTK41Ofd1JouJc8nnOJJwhC/OfEGmMRMAJ6kTFT0rkqBNIF4bT+/9vZlYcyLVfaoz8/JM0gxpOEmdCFQHIkGCxqSxm6FucLCBvn3jUavVJCfr8m2T8STWr/dEpZLTrl2izcZ8FjlwQMHZsy4MGZL3XJ2nodFI8PZW0rKl7cb8J5fTLuPvZPtt0/R0KSaTxCaVn6IIQ4aUpmxZA1OnxlC1qo6qVdMf+/rqPtUJcApgep3pfHb6M66nXyfco3i0Qrh1S8H48SWZNOnOU2017I1cImdLyy1029uNZF0ygiD8p+goLEzPzJmxREYm8uOP/hw86Ma2bR5s3epBu3ZWgVe6tIHISKvdzLO0FTthgoiXl5kePQpmoi4I0K5dCnK5HKPRQUm2j+Fk0klCnJ+dxLQXou7xPLPC7gGlSmVjMLjlK2I38sRIptaemm9vt4IwfnwGGRl/t5Yp516OFU1W/KdwQiaRUduvdq5f3gOStElsu7ONNH0aALeyb/HWwbeo6F6RmJwY2ga1pW94Xyp6VERwUJb33r0Co0eHs3y57RJ/b9xwxmQy066dTYZ7Zrl5U8qFC66YTEk2cd7PyZHQtWsYb72VTLdu9qmiPJtylnB324qenBwJdeuWYsqUu3TokF6gMZKTpcycGcBHH2Xg52fgyy9jCQzM2/laQl2CP9r8gUSQMKf+HIYcHcKG5hv+0w6tKFAqRcqVMxSbjgXp+nQEQWBTi018e+Hbx/ZVjojQM3v2HS5fVjF7tj9Hjriyc6cH27Z50Lp1Br6+RlxcREqXfja2Yi9cgN9+g3HjElCpCv630GgElizxo3HjFCpVKrrI3d77e3nF/5Uimz8/vBB1T+aZF3YNG2bTsGE2arWa8+fNhIU9uf3Y9xe/p6pX1ce2DLIlBoOAWi38x//NSeaU5zYtvk6+hLmHARDiHEKgOpBGAY04knCE131f5+OqH9t83U+jalUtvXqlUaKE7Z4wv/giGY2m6LcjipoePVLp1y/LZua8Tk4W+vTJoEED+5nqXku/RtugtjYd09nZwpw59yhfPv/V0enp0v/1s1Rx+bKaGzfS8fAwUL58/sZ5kNIQ6hrK4AqDGXx0MEsaL8n3emxNYKCRr79OsntLsbwy6uQoxlYdi6+TL9PqTHvq6ytV0vHTTzFcuODE7Nl+HD/uyp497hiN4O9vnybx9uCzz0SCg4107pxWqHFUKpG9e9WULp1dpMLuUtolRlQaUWTz55UXou7pPCNfoadz65aBN98sy8aN//0rb7+znbicOKIyojgUd4jPqn3mkDV98kkwH37oVehxQlxCmN1gNptabmJBowX0DOvJ5bTL7I/bb4NV5h+12sK77ybg5qYgO7twp1BmpoQ///REq9U9Mxd0eyKRgNFoJCrKgzt3ClfUk50twcVFTc+eCZQsaT8RcCf7DtV9qtt83EaN0vD3z9/Dw6pV3nTqFI7BIEciyWH9+hvUrl14P7yOoR0JcApg5qWZhR6rsBiNkJgodVhnjidxPOE4EkFSoFzll17SMn9+DEuXRlOtmgYQMBph27a/K5aLK8eOwe+/CwwdmlDo7hESCaxbd4OOHR3jY/k4DBZDbv52ceWFqMsbz82t1N/fxMyZd+je/b8VlStvrqTfwX68ffhtvqvznUO2YAG6dcumRYuMQo8T4hJCXb+6yCXWK8ivN34l05hJsj6Zq+lXCz1+Qbl61Uzr1hEcO1bwiq4//nBn2LASpKYWD0+u4oDZDCNG+LFyZcEfCu7cUdC6dQS7d9v/XDdZTHa5IURGqliyxO+przt2zIUTJ1xRq9W8+mo2o0bdRyKxqh5bZidMqTWFw/GHOZFwwnaDFoAbN1TUr1+KGzeKflt46l9T+eblbwo1Ro0aGhYvvsXixbcoVUpL+/ZQt67Irl3FU+CJIowZIxIerqNNm8Jf38F6nlosCjIyiuaWrDFpkArF+xr8QtTlnedG2AE0aJCNyaQhLs6dVav+vilqTVritHFkGDL4+q+vSdMVLnSeV1q00NG4sW23wLQmLRtvb0RERGPSMOvSLJuOnx9CQgwMGJBM9eoFr+Ls1UvDunVReHsXbeJwcUIqhfnzbzNhQmaBxyhZ0syAASlUr+747g224vp1Jb/+6ole/1919qCATyKRsGqVL1u2uKPRaAgI0NOuXYZN8hP/jUQiYcErC5h4dmJuzmtREBxsYMGCOIKDi7ZwYnHkYl7yegk/p6eL77xQu3YOS5ZE8/PPt9DptLRqBQ0biuwvmo2Jx7J7Nxw6JDBiRILNdhlEEVq1Ksnixb62GTCfHIg7QIR7RJHMnRdeiLr88VwJuwds3y5n7VofdDoBk8WU29RbKVVisBjIMdv/Zrd+vScnT9o+Cfj3O7+TY8pBJVHhpfDictplknX590+yBRIJDBiQhLu7SGamhPxWy6elSZFIBIf1A32WCA42YDYbSE/Pv0LJyJDg4qJgwIBE1Gr7hjwMFvv97dq3z+D48Tv/KRJITJTRuXM5Ll/2QhRFpkyJ4auvHGOT46ny5PPqnzPo8KAis4dwdbXQpImmQPYatkJn0rH+1nom1LCtDYwgQP36OSxfHs3cubfJyNDRtCk0aSJy5IhNpyoQD6J11appbPrQLggwenQcXboU/GGuIFxKvcTFlIvsv7+fJoFNHDp3Xnkh6vLPcynsBgxIZtmyKLy8nIjNukeKPoVSrqX4staX/Prqr3Y3YBRF+O03H44dK5yB8qPoWqYr+9rto7ZvbWbXn82O1jvwVnrbfJ78kJZmokuXcFasyPs60tKktGkTwdq1Sjuu7Nnm3Dk5zZqFc/ly3rfcjh1zoXXr8ly+bN8IqM6sI14Tz8WUiwQ4BdhlDuv2lFW86PUCJ044I5fLCQlR8PLL2cjlOYiiiIuLxaFtv+oH1Ke+f30+P/O54yb9B6mpUpYtcyvS9IXxZ8bTp1wfZBL71N8JgrUwbuXKm8yaFUNcnJ6GDaFlS5ETRbgTvmEDnD0r8N57CTY/5xo3ziIiwrEVwdtjt9P/cH/23NvD/Kvz+fTkp480wi8qXoi6gvFcCjtBsCb4JybqeGv+FipJm7Ox+UZalGzhsPm3bbvHW2/ZL5L2INHVWe7sMJuTx+HsbGHQoATat897xwgXFzNjxybxyiuO6wn7rFGxopZPPkmkdOm8Z8nXqmVi8OAEu/ubxWTF0GVPF947/h6X0i7x1sG3iEyPtPk8Q4f6M3OmH1u3+jB0aCkSEy3odBo++yyuSDuUjKwykrs5d/n9zu8OnzshQc6UKT4kJBRNS7HY7FiiMqPoUbaH3ecSBGjSJIs1a6L4/vs73LploF49aNtW5MwZu0//ECaTtRK2fv1smxTkPIrffnNm0yYPu4z9KNoFt0MmyDCJJq5nXEctUxf5/eQBL0RdwXkuhR1Ybzz9jr+OIXAPX720yG5Plo/CYBAwGPT/sTmx6RwWg92MiAtCly5peHtrMJnkaDRPP61cXVV07JiEp+eL3LrHIZVCjx7J+Pg8PappsUBGhgxnZzP9+qXYPYIV7h6Ov5N/bhFPhiGDUNfQAo2VkSHJrfDcu9eVOXP8kEqlKJVKjh5Vs3u3J8HBOWzYcKNYnS8/v/Izc6/MJTY7FlEUuZx62SHzVqig4+rVaCpUKBprjDGnxjC++niHzimRQIsWmaxff4Nvv43l2jUDtWpBp04if/3lmDUsXw6RkQLvvRdvtznOnZNz7Zrtd3oeR3nP8ngqrIqpincVPqvuGMeIp/FC1BWO507YXU69zLuH36X3gd5cz4xkZL1elC2biVyuIirK/tt+RqNA8+YRbNjg+vQXFwKD2YCzrHj0F3yA2WxhwIAQvvnmyVtzs2b5MXPmi29qXlm9WsXo0U9OH1i+3Js33ggjLc0xwkcQhNx+ql4KL76o8QUq6eO3jP9ZALF8uTf797sikUiIinLjlVcqEhPjgZOTE8nJTkRGOmE2m9Hr9Xz99T3KltVSrpys2OViqmQqvq/zPYOPDGbY0WG8d/y9YrWNZQ8OxR1CKVVSzadakcwvkUCbNhls3HiDKVPucv68kWrVoGtXkct21NV6vbXLRIsWGXb1mpsw4T6TJqXbbfx/IxWkSAUpbnI3ZtWbVSwqY1+IusLzXAm7TEMmw44N41jiMdIN6bjKXannVw9RFJk/34W+fcvYvZzcbIb330+nalX7ehJZREuxcMH/J4IAAwYk8vbbT96mcHOTolIVr5t0cUatNuLpKTzRt6xzZz3Dh8fj4uK4hPqeYT0REGgT0oaq3lVzi2cyMiQsXOjD/ftyBEHg11/9ad06ArVajVqt5vhxNyIjnbBYLAQGZjFt2h18fLLQarV0757IrFkxuXPs3etBjx4peHllIpE4MX58ySc2kXc0cqkcjVnD4YTDGC1G7mnu2X3OmBgFffuWICamcD6HBWH6xel8+/K3Dp/330il0KFDOps3X2fSpLscP26kShWRN98UibR9RgDz58Od6v3x6DzmP12DbIkggMlkITnZPgJr8rnJDDkyhCnnp/D7nd+JTI/ERe7C6JdG465wt8uc+eGFqLMNz3zniX/ipnBjTdM1dNjVAa1Zi5fSK7dQokePFCpV0uPnJ0evt19ujkol0r17MiaT7Ru5Pwu8+qq1UkwmU5KYaMLL678RpHffTbXr3+B5o1mzLFq0yEEUhf9EhHJyJMjlUtzccnjtNcdFi6KjFVw4+QreLt58XOVj3nuvFD4+FqZOTcZgkLBokS9VqhgIDMykTp10vLx05ORoEASYM+dW7jhqtUjr1o+uBDQaBdLSZBiN1mhfTIyZCxfUGAwqoOjdeUVRZMSxEbnWJ2mGNM4ln7N7cZZUau1PKpU65u8dmR5JuHs4P1/7mVo+tfBWFW2x1j+RyaBz53Tat89g40YPFizwY/VqGb17w+efC4SFFX6O7GyYPFmkQbOurEvswL6dayjjVoZmgc3oENLB5h6O48Z5cemSE2vW3LTpuADOMmeOJByBBPjt5m9IkNDArwGTzk3idPJpXi/9OlW8qhRJ5O6FqLMdz1XEDuCXG7/QomQL2gS3wV3hnpsI6uQk8vLLWRiNRtat8yU62vbbsiYTLF4cwF0HOC+IFO8tn88+8+W990IfMhiNi5Pz228BZGYWr2jdnew7NN/enOkXprMzdicttrdg993dRb2shzCZLOza5cv58w+3ops6tQT9+4dgsdj+fDh/3okTJ6zb/dnZElq3DufwYW/UajU3bngw44cS+Kj8kElktG2bStOmqWg0GhSKbI4du0qdOlbBFhGhp337jHzn/cnlIkuWxNOokbXAJjjYwIYNNyhbNguVSs2SJd55yue0F4IgsLnlZj6s/CFhblYFsT12e+7vdWYdG29vpP/B/jaN8gQFGZkxI5GgIMeI26FHh9Jnfx/W31rP2GpjHTJnfpHLRbp1S2PbtuuMHh3Hzp1mypcXGThQ5Pbtwo09cyakp8P4t8Io51aOFH0Kp5JOMevyLHbG7rTF8h+iS5dUPv/ctj6JOpOOpdeXcjjucK5o81Z6M6PeDOY2nEuQSxAbYzYy6PAgOu3qxIcnPrTp/E/jhaizLc+VsNt3fx/nU84zufZkvnn5G+a9Mu8/r9FqRVaudOfQIQ+bzx8To2TBAi9SUp6rQGiB6NYtmdGj0x66mZ8+7cyCBR6YTMWj6uoBIS4hBDgFkKRLIsuUhZPMicYlGhf1sh5CEGDRIlcOH344OjBsWDbvvlsw6wWLBY4dc87d2jx2zJn27cMB65bpqlX+/PKLPzKZDGdnC23bpuPnl4NGo6FZs0RW797B9YxrHLh/gNatMx+qcLZF8YbRKPzHG/GBIeyFC2bmzfPn2rWizTOVS+T0De/LuubreL/S+1xOu8ysi7Pos78Pr+16jYlnJxKniXti/mF+MZshK0vA7IB0SlEUkUlk/JX2F1mGLMaeGmvXrcjColCIvPlmKtu2RfLRR/Fs3mwmPFxk8GCR2Nj8j5eaCtOmiXTtmkJgoJG6/nUBEBCo71efbmW72fgdQMWKOmrXLvxnrDFp+Pnqz3Tb041eB3qRoE1gfqP5RLhH4Ofkx6Sak3K96wZFDEImyNCataTp03jF/5VCz59XXog62/PcCLs4TRzTL0xnYcOFuT9zlf+3gEGpFFm+PJq3305BJpPl21T3SZQtq+fYsSgqVrR/tZpA8RJH/6ZSJR1VqqTh5KQmIcEqdLt10/P775E4OxedserjGFpxKCqJ9ebbPrg9Cqnj85eehCDA4sXRjB5t3epOTpYilaoICMjIjWg9ipwcCSdPOuduZy5e7MMXXwShUqlwdlbz4YehHDjgjVwux8/PRKNGmWRk6NBoNHz++R1++ikak8mEIMB77yUSEWE9t2Uy+DVqKRYsfH/xe7vc7Fes8KJOnZBHtpUKD9fzxx/XqF1bg1Kp4tAhF5t+l/ODKIpcTbvK4XhrNORsylkup1/mnuYeZtFMsi6Z7nu7M+jwIL469xVrotdwOe0yJkve0jU23trI3CtzsYjWNxgZqaJ69TJERv4tFnVmHZmGwpnbPmoMjUmD3mxNmxAFkWR9cp7XXZSoVCJ9+qSwfXskI0YksGaNhbAwkREjIC4u7+N8+y0YjSJvv50EQO+w3rgr3OlVthe3sm7Zze7m2DEpM2fm3x8y05DJrEuz6LKnC/0O9ENv1rOw0ULWN1/PqKqj8FH50CGkA5NqTKJRiUa5x7UIakGQcxDOUuuDkr3TCR7wQtTZh+citGSymHj3yLtMqzMNZ/nTn+DVagsmk4WTJ92ZPt2Xn3++VWgbBYsFJBIFguCYbcbivhX7gDlznFm2LIRp0+5Qt67J7p0QCkp9//r4OvmSpk/jrfC3ino5j0StFtFqtVy6pGbKlBKULq3nq6/ukp4uJTlZRliY9QY8dmxJGjbU0rmzhosX1QwcGMiOHXcoXVqLj48JvV6PTmcVaJs2XcfHx4TRCGFhMGrU31YOTxLgoihyPuU8ALeybzHhzASm1Zlm0/dbr142fn7iY6N/7u4WzGa4cEHOsGGlWLDgFnXrOq6FWrYxmx8v/8iZ5DPcyb6D1qxl9Euj6V2uN7ezbjP21FiuZVyjkmclfmn0C9FZ0VxKu8T1jOscuH+AZF3yQ99jd4U7IS4hhLuHU9GjIuU9y6OQKDiScIQDcQc4mnCUr2t/TcmSpZg1K56SJQ3ozDoWXlvI1jtbeS30NYZUHFLg93Mu+RyfnvqUZoHNeL/y+7gr3MkyZpGuT8dX5cug8oPoXqZ7sfE5ywtqtUj//sl065bKypXeLF3qw8KFEoYMERg9Gvz9H39sXBzMmiXSu3cyPj7W+0MJdQmm1p7KKwGvoDPpeHP/mxjNRjqX7mzTdd+/L+PkSRf0eiG384rRYmT7ne10KtXpodcm65JZHLmYE4knkAkympVsxq+v/opa9mjblN7lev/nZ3KJnBo+NVBIFAytMJS+B/sypOIQ2ga3ten7+icvRJ39cIiwM1j0IDdxQ3OeA1f2cTH1IrE5scyqN4sybmUKNKZFtCARrAHH4ceG0610Nyp5VsrXGP7+WipX1uFiAzu48+fVjBgRym+/3SQkpHjlkBUVOTkSGjfOICVFTv/+pfnoozheeSUHV1cz/v4mdDqB6GglpUrpUatFkpJkpKVJc41nb95U4uxsISDAiF4vcPOmktBQA87O1qqxlBR5bgTp1i0FSqVIYKARo9HaKD042ICrq4XUVCkJCfJc36+YGAVSqUhQkBGz2XqBKVnSQOfQzhyNO0lUpBsVKugQBIiNtUbugoMNiCJcvaoiMNCIh4eZjAwJ9+4piIjQIZXC3btyzGaB0FDr3//qVRX+/ka8vMxkZUmIjVVQrpwOuRzu35ej1wu5RsKRkSq8vY34+JjJyZEQE6OgbFk9SqVIfLycnBwJZcvquXhRRc+eZfDyMjJ4cBJKpZJff/Vl505n9u+/g9lsRqkUEUUzOp2OsDA9W7ZkExBgwGiEjh3TH/obBQQULPryV8pfxObEIkGCi9yFk0knuZtz16ZP+hEReiIinl5kU6mSjnXrblCliogoyrl5U3DId9AiWjiVdIobmTcA8Ff50zG0IwClXEuxvMlyfrryE8n6ZCQSCWHuYYS5Pzqb32KxEJMTw6XUS0RmRHIk/giJukREUeRO9h0MFgMXUi/QZU8XXvZ9mZF1RjL10kJOJZ0iQZcAwN3su5xMPFng9xOZHkmqPpW1t9ay//5+KnlWooZ3DVzkLqxuuhpfp6LpY2oLnJ0tvPNOEj16pLB8uTcLFvgyd67ASy8J7N0Lro9wp5o8GRQKy3+M5l8JsG5TqmQqVjVbRa99vdBb9DY1bG7XLoOuXQ1otX+LumFHh3E94zrNSjYjy5jFwsiFnE0+i1KipG1wW1Y2WVkop4QJNSbk3lPXNltLnwN9SNQm2uVB94Wosy+C6ADjpZW7ztNrTzNwToP/PaEGqYPY2mprgY2D3zn0DuU9yuMscyYyI5If6v1Q4PUpFApu3QIPD1OBtwnv35ezY4cX/fvbrjH0k+i6pytrm6+1/0T54MoVFVeuONGlSxpyuZymTcvQtm0OW7a4kJgopWvXNP7804VWrbL46KNkIiOVdOpUirVrY6hSRcePP3qzbp07Bw9GA9CxYyleflnDuHGJxMTIadWqDEuX3qFOHS2LFnkyf743f/4ZBUD37iGUK6dn8uQEEhOlNGoUxrx5d3n11RxWrPBg6lRfLl603oD79w/C09PM99/HkZ0toVatcsyYcY9ydf9i6M5JxHxxgkuXIpHJYMiQkgD89NM9TCaoXDmCKVPieP31THbudOGDD0py+vQNXFwsfPhhCdLSpPzyi7V6pkqVcnz6aRK9eqVz4IAzgwcHcehQFH5+ZsaN8+fGDSWrV98BoE6dMAYNSmHgwDT+/NOJfv1C+OOPaEJDjUye7MfJk2q2bLnNkSNOvP12MADLlt2kWjUd9+7J0WoluRE7RxCdGc2F1Av8lfIXrgpXPqj8Qe5NwVbs3u1FeHh2rlDOCxcvqunduzSLFt2iVi3754KdSz7HwEMDMYpGqntX59dXf7X5HD339eRS2iXc5G64yF3wlvujzqzKFelGtOYcTKJVnJdxLUNZt7IFnidFl8LZlLMASJCglqkp5VIKN4Ub816Z90xF6p7ExYtOzJzpx59/uqJUity6JVCixMOviY6GiAiR4cMTGDjwyR2ETBYTvff3pm1IW/qW62uzdQqCQHKyDFePHIYeG8rJxJOIiPiqfCmhLkHHkI68UfoNu5nvWywW3j78NhEeEYyuOtpm474QdfbHIcLu2DEdDRpKqflNay5oDmMUjThJnQh2Caa8e3leL/U6NX1rPvJYURRJ0afgo/J56Oev7XqNO9l3kEvk7GmzB1dlwQ2BzWZ4/fVwqlXLYeLEgvlQyeVyjE8yGrMxRSXs9HqBrCwJPj5mkpJkjBoVzOjRKdSoYWLxYncWLXJj9+7rgMjx487s2ePGmjVeVKmiYd68RBITTcU2YnfXfJGe+99kROD3vF23WbGM2LVqFU5cnJwPPkiif/9Eh/ZIfRQH7x9k+93tfPPyNzYd12KBl1+uyEcfxdOzZ2q+jtu1y41OnYwYjXqys62pF/YgJiuGwUcGM7P+TCacmUCjgEaF2gp9HL329SLMPYy+YX0p616WK1dUdO8exurVUWh8jzDr8iyuZ1ynb7m+DK04tMDzHE84zohjIyjjVoYBEQNoVbIVd7Pv0m5XO6p4VmFanWkEOgfa8J05litXVMyd68/Bg66ULy8yaZJA587WfNF/07evyM6dZrZti8TJ6em3SIvFQp+DfWhSoglvl38bsN678iOGp1+YjkqqoopXFcLcwrh8LJyPvhBwG1WdTFN67utq+9RmcePFeR63sHx44kMkgoTpdaYXeqwXos4xOE7YNVCxatUNNhnGs+XOFt4s+ybDKg5j973dbLuzjfua+8gEGTV9a9K1TFfKuFq3aK+lXWPQkUF8XftrGgQ0ACBRm0jXPV1JNVgv+EHOQaxquqpQBosXLzpRurQEF5f85+jcvKnkwgUP2rZNzM2HsDeOEnZ37ijYv9+Vvn1TkMtlDBgQgru7hdmzE9BoTHzySQD9+ydRqZIOo9F6kXxwLTt50pm33y6FKArMmXObRo2yMZmcmDbNgxEjEhxqppsX5l2dx5wrc/BV+fJ9ne+LzF3/cezZ48rIkaG0bZvON9/cRa1WExurx9u76NpspehS+OD4ByxrsszmY0ulanJytKhUBftORUY68/bbIcybd8vm3QLiNHEMODiAH+v/SJh7GEaL9aFOLrG/ebIogkLhhMGgzf2unU46jVKqpIpXlQKPG6+J50LqBVqUbJErSDIMGbTd2ZZMYyYlnErQrUw3BkYMfKaid5GRSubO9WffPjfCwkQmThTo3t1qcvwoLl2Cl14SGTs2jh498vNQYWHA4QHU9qlNy6CWDD82nC0tt6CU5s1a6+1Db/Nn0p9IkCCVSDFbzFSXdyY80AmzYOCe9h5ZxixSdalsa73N5hHyJzH1/FRuZN5gwSsLkBRwS+qFqHMcDi2eEASBz6p/RinXUjQKaIRMIqNNcBvaBLcBrBVYm25vYvLZyaQb0nGSOiGRSEgzpDHu9DiGVBxCtzLdOJ14mlRDKiqJijJuZehbri9u8sKZRFapogXAYFCzaJEz77yT9MgnuUdx7pyauXM96dAhoVBryAu99/fGYDZwK/sWvfb1ItwjnAk1JhRqTKMR0tJk+PmZMJth2LBQevTIpm1bLffuqfnpJz86dszE09PI0KFxODmJaLXWHLTp0//2EJD/456WliZlzJhgQkMhKcmSm9R+86bIwYNudOmSTrly2kKt29b8lWptOpmkS2LM6TH8/MrPhLiEFPGq/mbKlECkUpEJE6xR5R07pHzySQRr10bla7vSlnirvNGZ7VMFrlSC2VzwB6WgIC09e6ZQtaoEk8kqiGyhR1J0KQw8NJDpdafn5sw5QtA9QBCsD1D/3CCo5Vur0OMGqAMIUD9ciekid8FZ5kymMZMEbQIbb2+kQ2gH/J2eUHVQTLh5U8ncuX7s2uVO6dIiS5ZAr17CU6/r48aJlCxp5I038uclJ5FIWNxwMX0O9GHFzRVoTVp239tN+5D2ua/JNmaz9PpShlUa9tCxJxNP5hpdW7DgInXhi9pf0DK4ZbFoU/dptU9ZFLmIHvt68Ourv+Y7l++FqHMsRWJ30iusF8Euwf/5uVqm5s2wN1nceDEbWmzgh3o/kKCxiqVkfTJTzk9h8OHBzLs2D1+lLzPqzWBV01W0C2lnsyfIM2cEVq3y4e7dvNtd9OyZzY4dkXkWgoXhJa+XuJpxFb1Zz43MG9Txq5PvMZKTpSxb5k1mpgSpVMo33wQzfHhpnJycUKnklChhRCbTo9FoqF07mWPHruDpab2LVKumzd3+fByiCOPHl8RslqJUQuPGmSgU1otTRISOrVuvU6mSGVGUkJ5e9L0JHxCviUcmyJBL5HgqPLmSdqWol5TL5s3uJCXJee211NzK4jp1svnkkwRCQ4suYmcv9u93Zdgwv0JZmDg7Wxg6NBGTSUNCggs9eoRx61bhbGwyDZn0PdCXL2t+me9iLVsRG6tg0KCA3DQBeyIVpIiI+Kn88FR4sqnlpmIv6m7fVjB6dBCdO4dx7ZobCxZAZKRAv36P3nb9J3/+CZs3Cwwdmohcnn9BdVdzl3RDOlnGLEyiiU23N+X+LsuYxcBDA1l7ay3p+nQO3j/IO4ff4bVdr7H0xlLer/w+gepA/FR+fFnrS1oEtSAuznp9Lg7XyYERA+kb3peue7uSpsu76H0h6hxPsbY78VR6YrAY8FP54a5wx0nmRI4pB5PFxKYWm3BT2raVC0C9ejns2BGJj4+K7GwDgvDkp3yDQcDJSY5S6Zj8usEVBrPv/j7uae5R1q0srUq2euTrzGZISpITEGBd1+efl6R8eSNvv52FwaBg5kx/atbU4eaWQ9euibRrJ0WrtUbQJky4nztOQcTqb795ceCAG/PmweDBMGRIxkO/l8tFDAYDP/5Ygr17XVi3LqpAF1FbU8+vHh9U/oAfLv7AyqYri3o5uYgiTJ9eArncwpgxf9uRqFRW41SVSsWdOwJ+fsXfXyw/yGQWmxUiGQx6goP1BAfLgIJFNzUmDb3292JstbGPzQl+HulcqjM9y/Zk/Onx7IjdkVv5W9yIjZUzb54fv//uQYkSMGeOwMCBoMiH/v3sM5GwMANt26YXaA1X0q7gInfBV+VLki6Ji2kXyTZmYxbNvH3oba5lXAPgtd2vUd27OiMqjuAl75dyj99wewOdQzvTONBqkC6Twf79atq0UeDhUfQ7HO1D2uOn8qPXgV78/MrPuQEak8X0yCKOF6KuaHBojt3q1fkz7zVajJxIPEFlz8p4Kv8+I1rtaEW2MZupL0+lYUBDeywZUYSJE0Px8NDxwQeP32KdPduPI0fc+O23KIclso89NZbf7/zOokaLqO1bGwCNRmDrVk/q188iNNTM0qV+zJnjxfnzt7FYTHz/vSchIXo6dkzHYrEmmdsjwhgZqeLNN8vy7rsCgYEwaZKFgwevPjIBOTZWTmSkC23aZDu08ORp9Nnfh2/rfEsJdYmnv9gBrFzpxddfB9K7dzKjR8f/5/c3byrp1q0sM2bcoWHDx5sV24see3uwuPHix/pmFRSJRILFDq7DWq0LkyZ58NFHcbn+ZE/DYDHQfW93hlYcSouSLWy+pvzi5OSU+yDmKDQmDV33dGVry60FzrOyB/fvy5k/35fNmz3x8YExYwQGDQJVPp0/9u6F5s1h5swYmjbNKtSaErWJbLy9kaU3llLZozJnUs5gsPz9QFHTpyZLGi/J01iCIEEUi1c+8vWM67x/7H2+fflbTief5mDcQZa8uuSh17wQdUVHsRZ2j2P40eEcjD+Iu9ydhgENmVBzgk1b9jxgxQov/P2lNG+e9NjXXLzoSlSUlM6d020+/78RRYiPlyO4x/LG7jfoGXsDvV7GuHFp6PUSatQI5euv42jRIo27d+XExip4+eWcxyYJ2xqNRqBnzzCcnRWcPCnwyisiXl6ZfP/9k3v5yGQy1q71oHLlLMqVc5xlx+NYeG0hGpOG9yq/V9RLwWKBBg0qYDQKHD9+5aE8xgeIImzY4Mkbb2gB+3c9+TfvH3ufvuX62jSKlZkpw9XVZJeHpYsXnfjiiyAWLozF0/Pxn9fG2xup6VOTQHUgPff1pE+5PsUiWvWo4glHMevSLDQmDZ9W+9SxEz+C+HgZCxf6smGDFx4eMHq0wJAhoC7A84UoQp06Inq9luXLo232uZpFM+13tGd0tdEkaBO4lHaJeG08GYYMVjddnecUIpPJGZNJU+BCInuQoEmg+77u6C16nKRO/Nb0t9xt+heirmgpPo9d+eBBZCDDmMHe+3v55i/bWi08oFevVJo3T0KtVnP9+qMrm+rUMdtN1IkibNzoweXLKgRB4NAhL1q2jMDZUpbK3pXx9jbj5WVAq9ViseRw/PgVWrSw5j4EBRmpV89xog7g229LEBenYPVqgfh4a75iixZPb3Ok1ZpZudKD/fuLx7f/jVJvcDzxeFEvA4DFi73JzpbSr1/yI0UdWFMF3ngjDbncTFKSHJODd2RLuZbiavpVm47ZoUMY8+fbxxC3ShUta9fewMtLDzizcKFPbsu1f7IiagWDjwym656uvFH6jWIh6sBqo1O+fFmuXrX9w+zTGF5xOEcTjpKuT3f43A9ISpIxdWoA7dpFsHu3F19+KRAdLfDRRwUTdQCbN8OpUwLvvVewvsuP46tzXxGni6Ouf126l+3Ol7W+ZEHDBaxptibPoi49XUqdOqHs2WP71KPCcDv7NgIC2cZsknRJLI60WrC8EHVFzzMp7JzlzkgFKQqJguEVhzO++ni7znfoELzxRjnOn3d66Of79rmyZ0/eStkfhyhaL1QGg/VLvmaNJ6NGheT28lywwJ9Tp9wRRZGXXspgzpzbHEzcxJ+Jf9Kxyx369//bPPNxN35H8Mcfbqxf78WsWQIVKsCGDdaG3I0aPX1LQy4XWbo0mnffTUShUKDRFO1p6anyzO2PWZSYTDB/vh9OTtYigKeRmmrmjTfCWL7c2wGr+5tw93CiMqNsNp4owpQpSXl6KCgoEonVZ+zYMYElS3yJj384Eetezj2StEnE5sSSqEsslI2IrQkMNPLNN4kEBjo+fUEikfBB5Q8YdXKUw+dOSZEybVoAbdqEs22bN59/LnDrlrU1WGG6B5nNMHasSN262dSpY7uWdEfij7A9djsW0cKhuEMFHsfDw8yXX9636dpswZ+Jf+Kl9MJTYVVuO2J3cPWa4oWoKwY8k8KuhncNBkUMYv4r89l9b7fdPZVq1tQwe3YMdes+/PM//vBg48an96b9N3v3unLsmPW4mBhXmjYtT1SUB0qlEk9PC76+BnQ6ayP2zZsjeesta46fp6eZRo2yWRWzFLNo5vuL3xf6vdmC+/flTJxYkq5dRQYOtP5s3TqR+vWz8tzJQ622IIoWzp2T0rp1BJcvOz4a8U+8Vd5cS7tWpGuYPdsPrVbKu+8m5iny6upqYdy4e7z5pmO3Y6t4VSE258nb7flBEKBFCy1lythfXNevb61oL13ajESi5MABq9H5xtsbc30y9WY9n/z5SbGwnQDrjf6NN7Lw8CiaaugHLa0uplx0yHzp6VJ++MGfNm0i2LjRm9GjJdy6JTBuHLjZIIi1ciVcvWqN1tmKNH0aX//1NTmmHEREtt7ZWqjx2rZN/1/hT/Hhvcrvsb7FelY2XcnwCsMxmMz0+XndC1FXDHgmhV2H0A4MrTSUmr41kUqk/Jn4p13nEwRo3DgLnU7LuXNe7N9vvfj/+GMKkyc/ulNFRoaUnBzrx3vggCv9+5dGqVShVqtZs8aXPXusZ33Jkln88MMdSpbMRK/X06JFBp988neC/L+jcBdTL3I76zYAh+MP59rBFBUmE4weHYyXl4T58wUEAe7fh+PH87YN+2/KltXRvXsKVaoU7anZqmQr1t4uupZter3AsmU+uLiYH4rKPo2WLTNRqbTk5CjJyHDMZxikDiLTYLvo2s2bStaudXXYlrKrqwWTycTOnUo++CCEmBgFy6OW4yJzoVFAI36o9wNbW20tNqa8GRkStm93dtjf91FMrT2Viecm2nWOjAwJP/7oR+vWEaxe7cMHH1gF3cSJ4OFhmzkMBhg/XqRZs8xcL1NbsOfentxdJZVExfWM64V6MLBYYM4cL06cyH8gwd4EOQfxqvR95N+nEpE1+IWoKwY8k8Lun3xT+xum/jXVYfOtXq1myxYf9HoBi8WS22ni5Elndu2yPj4ajQoaNizPwYM+qFQqPD1FQkL0pKdbveFmz45m/HhrP1G5HJo3z8TdPW9P3zMuzSDDaLUPidPGMencJDu8y7wzb54fFy86sXKlkHux3bgRZDKRxo3zf7NXqUSGDUtEFLUkJbnmfqaOpn1Iey6kXCiSuQG++84fg0HC8OH57z1sMll4660Qpk1zTFWvrSskz5xR8+WX3g7NDwWrKF6/PopDpkU0DWzK4kpHmNNgDg0DGiIVit5H7AH37il4770A7t2zv4/d4wh1DSXYOZj10ettPnZ2toSffvKlTZsIli3zZcgQq6CbMgW8bZxlsGABxMTA8OG2fUDuWqYrW1puIdQllKWvLmVQ+UGYxYJHWCUSOHJESXR04VJ/7ME/c+oO7PB6IeqKAcUrtlsA/NX+lHMrx5qba+hWtpvd5/vyy3vcvaugQYMKyGQi+/bF4OMDu3d7c/u2jFatspDLDcyYcYdKlbTodCaqVoWqVf+2oShMLlzHkI60KNmCX67/wrhq4/BT+9ngXRWMU6ecmT/fl0mTBOrX//vna9eK1KmTjbt7wUv0RVFkxQo1Bw6406RJlsN97lQyFWbRjMVicbi1Q06OhLVrvXB3N+WrT+oDJBL45JP7hIfbf92rb67mcPxhYrJj6LqnKyIi65qvK9SY3bql0bVrlsMrPi2ihY3ZX7H85nKmqG7R690gtmy5TlBQ8bHiAavJ97lz0QiC4yug/8lXtb+i656udCrVySaN6DUaCStXerF0qS9arYTBgwU+/RQCAp5+bEHIyYEvvxTp0CGdsDD7bPtLBAkVPStS0bNiocdavPgWKpUSfdGn/+byolCiePLMCzuAiTUn0mVPF7qU7mLXm3BGhpRFi3z47TdvjEYBqVQkM9OIWm1k1Kg7yOXWxG+g0D5Ij6NTqU4ArL+1noYl7OPhlxfS06WMGRNEw4YwZszfP09KgsOH4fPPC7819957CfTrl4y7uxMZGRqHFoeIooivypcvzn7B7ezbfFbtMyI8Ihwy99dfB2AySfjww/sFNuh9+eUHidZOxMWZKFHCPuLEaDHyZ9Kf6Mw6rmVco3NoZ5uMKwiOLe2Ny4lj1MlR/JX6F74qX1q0yMDJyUJ4uByNxkh2tqTY9DaWSvlfW7+iXYdapqZDaAemnJ/C+BoFL2DTagVWr/Zi8WI/srMlvPOOwNixULKkDRf7L0QRPv0UUlJgyJCnFyYVhGxDtk1bzQkCWCxS0tOlRZZf+U9eiLriyzO/FQvgJHOiTXAbpl2YZpfxNRoJP//sS+vW4axZ48NHH0lYtkxAo5HmtvUpyopURyOKMGFCSYxGGStWCA9tmW3aZP1v06aFF3YSibVgJCNDy6BBZVm61DHVnney7tB2Z1v+Sv2LjTEbic2JxUfl45C5U1OlbN3qibe3ySY2Op984suHH4Zgr7z/XmG9qOxZGQAXmQv9yvUr9JgffhjKxo0ehR4nr5xLPkevA704n3oeERFPpSdyOTRpkoVGo+HgQS/atQsnPr54fMnv3pXzwQd+3L1b9OsZXGEwp5NOk6JLyfexer3A8uXetG0bwcyZAXTpIiEqSmDOHPuIOosFjh2Djz6CUqVEZs+2pozYKyJ7NOEoYW5hNh2zZ88Apk2zUwgzH7wQdcWb50LYAQytMJQjCUfINtjOed9gEFixwou2bcOZP9+PAQOk3LwpMHky9OwJVauKzJtXdFuhRcXq1V7s2+fG4sUCQUEP/27dOpGaNTV4ednuiVImE3nllQzq1nVMxCTENYTqPtXRmaxbXR4KD7xVjhGVkyeXwGIRGDXqvk22IgcPTmDq1CS7bWsKgsCUWlNwljrjqnClrHvZQo8ZEGDGzc1xEYmKnhXpFNoJpcSav/TvfLrKlTN4661kSpe2CqmiLo41mwVSU6WYzcWjmOPjlz5m1MlRiKLI/vv7MVmeHG01GARWrfKibdsIpk8PoH17KZGRAvPnC4SE2HZtZjMcOAAjRkBQkEiDBvDrrybq1Utl6tREZs26jVKpJDnZhe+/9ycry3a3xJPJJ6nhU8Nm4wEMGZLAwIH2swHKCy9EXfHnuRF2EomEIRWHMObUmKe/+CmYTFZj4A4dwvn22xJ06CDl+nWBmTPB/3/9rwUBJkwQOHnSmTNnbNtKqThz/bqSadNKMHSoSKdOD/8uLQ327YMWLTIefXABEQQYODCZiIg0VCo1v//uXqjm8Hnhy1pf8rLfywB4KbzsO9n/iI+XsWePO/7+Rtq0sc3Fu2xZPaGhmSiVarslXpdwLkHDEg0p4VQCi2jhTvYdtsRsYeypsayKWpXv8b74IpVmzeyTyvAolFIlbYLaUMatDK+Xev0/+WLe3tbKZK1Ww8WLnrz5ZlmSk4uumCI01MCvv8YRGlqwnre2plGJRqTp0+i8uzOfn/6cVP2j80KNRli3zpMOHcKZMqUELVtKuXpV4JdfBMqUsd16jEb44w8YNAhKlBBp0gTWrzfSrFkKS5ZEs2fPNdq2zWD1ajfCw/Xo9XouXhTYt88dZ2frd+SBr2hhiEyPpFFAo0KP80/q1cuhcuWi24Z9IeqeDZ6LHLsHtA1uyy+Rv3A76zalXEvl+3hRhN273Zgzx5/oaCVduohMmmQ13H0UnTpB5crWqN2CBbcLtfZnAa1WYNSoEMLDYfr0/174tm4Fk0mgWTP7PVGeOCEyblwQJUsaqV5dY7d5pIKUWfVn0WxbMxRSx1QfTpxYElEUGDvWNtG6f/LDDy6sWuXFzp2RqNW2DTnpzDoy9ZkkaZOosbEGMkGG3mLN8M6vsW92tgSNRoqTEw4tnphwdgKTa04m3CP8ia+Ty7WEh+spUUKO0Vj0eU5FjdFi5JM/PyFBm0CmMRM3uRvZxmz8nP7eyTCZYOtWD+bP9+PuXQXdu4tMmPD462pB0Olg925Yv15k82ZITxcIDjbQvn0GLVpkUrnyw+3XlEoLpUoZcnPVmjTJolGjLCQSMBhUtGlTijFj7tO8ecGvZTqzzi6R/q1blcTHq+jVK/+FVYXhhah7dnhuInYPGF99PJ+d/ixfx4giHD3qQs+eZfnooxDCwhScPg1r1z754iORWKN2J064/KcrhSOwR4P0JzFtWgnu37e2DHN6xNtdu1akWjUNfn72S3yvVk3L1q3XqV/fKk7s+RFIBSk9yvQgUZvI5tubOZV0istpl4nOjLapbxtATIyCI0dcCAoy0KSJ7aNVvXqlMGvWfZxtaIOVokvhy7Nf0mpHK04ln2Jb6220CWqDBesfRSpI2XVvFztidzz2XI3XxGO0/J3jtGePG3XqhKLXO07VHYs/hlqmfqqoAyhfXsfEiXcxGnXExrozblzJXL9KR3H1qooKFcoUSUuxfyMTZAQ7B+f26tYYNWSbrOkwZjNs3epOp07hjB8fxMsvy7lwAVatso2oy8mB9euhZ08RX1+Rjh3hyBED3bolsXZtFNu2XefDDxOoUuW/PXUrVdLx1Vf3HsoPfvD/JpOBrl1TqFnThEql4vx5p2KTXwlw+bKcCxcK0WqjALwQdc8Wz1XEDqCKdxWUUiUH7h/gVNIpQl1D6Vbm8TYo5887MWtWAKdOOVO3rsiBA9C4cd5vKq+/DpUqifz8sx8//RRjg3eQNxQSBRqTBheFY77gu3e7sXatFz//DBUfUbmflWV9Yh4xwrbbsI8iONiIVmtk82Y/du1SMWNGrE3sUEwWE6turuJU0ikSdYlEZ0VjspgYVmEYn5/5HAClRIlUIqVtcNtCVQL+m/HjSwIC48bds0ukyt3dTLVqmSiVTvz1l0hEROGsMqZfmM6OuztI1ForCl/2eRlBEPj65a/xu+jH+tvrKakuychKI1kVvYoF1xYgFaTU9KlJr7BeBLsEAzD+zHhMFhOzG8xGLVNTv3428+ffc2iz8+kXp/NTg5/yfdytW2ZiY1UolVLAcQ9Z/v5Gxo5Nxt+/6G1YBEHgo5c+okNIBz47/RnXMq6Rqk1j5043fvrJuvPRvr3Ipk1QvXrhT+zMTPj9d2tkbscO6y5C+fJ6+vWzRubKls2bF0hUlJqSJbWPfEBVqy0MHpwEWCOB06eXJSDAzPTpt/O8zgRNQm5Pc1szYkQizs5qNPbbsHiIF6Lu2eO5E3YW0UJ93/p8+OeHmCwmOoV2eqSwi4xU8uOPARw86EqVKiJbt0K7dkK+b6oSCXz+uUCPHq5cvOhkU/fyR3E59TJHE46SqEvky3NfopAqGF11NC5y+wm8uDg5X3xRkjfeEHnnnUd/QNu2WavcCrN1kV98fXOIiJDbtCJ5Y8xGrmdcB0CChHHVx9G1TFdicmLYcHsDOosOd6k7H1T+wGZzXr2q4uxZZ0qX1tOggX37QW7aJOfTT4PZsuUGISEFz9HqVqYbh+MPk4hV2FX1rpr7u5FVRuKj8iFZl8xL3i/xkvdLAGhMGjbd3sS40+PIMmbhofDgZtZNUvWpDDw0kHmvzMPPz52AgAy751A+YPPtzYS6hOKv9s/3sY0aZdOwYTZSqYTUVBc2b1bSp09KgS1q8oqXl5k+fTLRaovPVnC4Rzi/NV1Fl81D+OzXc2SuHEarViKrVkHt2oUTdKmpsGWLdUdgzx5r/luVKjoGD86gefPMfJ/HRqNAt26l+eSTuDz5RP788y2ysyUoFApOnnRm0yYnRo+Ow8npvw8fl1MvM/b0WAQE5BI5B+MOUtu3tk1FniCAwWAkOVmGj499bYFeiLpnE0F0QAPEY8d0NGigYvXqKCpWtK+p5qSzk9h6Zys6s3WeFiVb8H3dv3uq3rmjYPZsP3budKd0aZg8WaB7dwp1MTabrVE7f/9s5syxb9Ru3719fHrqU7Rmq4AMcwtjffP1SAT73E1MJhg4sAyJiU5cuPD4L3bXriLXrun47bebdlnHk1AqlZw6JSU0VFcoU2SAE/EnGHxsMGbRTJhrGGubr0UmkWEwG+ixrwc3M28S4R6B1qzlvcrv0aJki0Kvv3v3sly54sTixdHUrm3fx3CTCU6dcqVhQy2mQvTsslgsvLH3DWSCjDs5d1j4ykKqeOcvn25LzBbGnxmf68jvJnejs+EXmpSuRs2aGgxmA3GaOO5r7lPevTyeKtveVSwWCx13d2RVk1WFjnxv3OjBvHn+rF17Azc3+6rSrCwJly97UqlSGq6uRe+tJ4pw8KArc+f6c/Wqilfa3OObcSUfMi3PLwkJVuukdeusuyhmM1SvrqV5c6uYK4wvo9kMt2974O6enW9htGuXG1u2eLFwYQI6nZbUVOlDDgA6s47Xdr3GPY211aS7wp1lry6jtGvpAq/3Ufz0ky9r13qzZ881uz1IvBB1zy7PXcRuTLUxyAQZf9z9g1RDaq5lRUKCjHnz/Ni40RN/f5g3T6B/f9v4z0ml1qhd796uXL6solIl+4nXpiWbUv5Gec6lnENAoENIB7uJOoD58/04f96Jgwcf/8XWaGD7dnjnHftvwz6K7GwDo0aF06RJJqNHxxV4nDXRa/j1xq9MqjmJb/76hrYhbXMrJBVSBZNqTuKTk5+woukKckw5jDk5hgXXFjCpxiTKe5Yv0Jxnzzpx5YoT4eFau4s6AJkM6tXLQipVcv68nEqV/pt/lBdGnhhJ66DWvFP+HRZHLi7Q+z+Xcg4XmQvuSnc85B6YRBPrbi/gN8sJ5HeNqKVqDBYDZtHMmmZr8MS2d5aFkQup41fHJukMnTun07JlJh4eUrKyFJw5I6NBA9tZL/2T2FgF77xTgtWrc+z+oPwkHuQmz53rz8WLTjRs+CCVpWAmdPfuwYYN1sjc0aPWyFTt2jl8+mkmTZtm4utrm+iUVAqVK+vRavM/XsuWmbRsmYlOB7GxznTqVIo5c25Tr5410q6SqiihLsE9zT2cpE4MCB9gc1EH0KpVBrVqWexmvfNC1D3bPHcRuwf8lfIX7x1/D4koo13kZVat8sLFRWDMGIGhQ3lkbkVhMJuhQgWRoKAsZs26Y9vB/8XltMv0O9APN7kbO9rsQCm1j43FmTNqBgwozYQJAuOfkE62caM11/D3368XmQXDrVsKQkIEFAoTZnP+tqgsFgujT40mTZ/G3FfmopAo2HV3F41LNP7PZ2uymB6yw7iRcYPxZ8bjKnfl69pf56sKThThtdfCiI5WsXz5TapWdVwrgchIFV26hDFnzm0aNcqfAPn56s9cTrvMrPqzCrWG21m3kUlklFSXRPifunRycuJS3CUGHB5AqsG6Teaj9GFzy824KWzXN9hkMdFxV0e2tNxik3ZY/+SXX3xYuNCXHTsi7RK9MxpBp3NBpcouEmN0UYQ//3Rmzhx/zp9XU7euyOTJAk2b5r+S+dYtawHEunUif/4pIJeL1K2bTfPmmTRpkomnp+23m3//3R2DQc7rrycXahydTmDLFg+6ds1BrZaycaOccuX0HDLP4/uL3/OK/yvMbTA399y2NQqFAoPB9tfbF6Lu2ee5q4p9QJiqOq/HnibtUn3Wr/dm9GgJ0dECH31ke1EH1qfAceME9u93s3u1WiXPSviofAh1DbWbqMvIkDJmTDANGsBnTykyXrdOJDxcV6S+WqVLG5BK9cTFKRg4sHSeXfnTDel029eNEOcQFjZaiEJitTZpGdTykZ/tv0VAOfdy/Nb0N94s+yb9D/Xn89OfY7Dk7XM4fNiF6GgVlStrHCrqwNpvdMGCW7Rokb+oxeH4w+y6t4sZdWcUeg2lXEsR5Bz00I1PEATKepRlfsP5lFRbIz9hbmEMODSAbnu6sezGsqca4OaFr//6mtdCX7O5qAN4661kVq68ib+/EqNRSkyMbe1y5HLw8zMXiag7fdr6sPfOO6WRyZzYsQOOHRNo1izvoi4yEqZMgRo1RMqUgXHjLDg7ZzFlyl0OHLjK3LkxvP56ml1EHcDVq06cOVP466ZKJdKtWxqCYCA7W8u8ef7s3OlD++D2yAQZ0+pMs5uoA7hwQcK335a0adTuhah7PnjuInZ6vbXv4MKFfmg0EoYOFRgzBnx97TotYM1fiogQKV06ixkzbBe1O5pwlK0xW1FKlThJnTCYDfyV8heiIOKt8kYmyNCataTr03kr/C1eK/VaoeYTRfjwwxDOnHHlr78EgoMf/1q9Hvz8RHr3TmTIkKRCzWsL4uLkTJxYkq++SsDb+79iKS4njqkXpjKj7gzOJJ/h8zOf83m1z6kfUIiEoH/wS+QvrL21ljdKv8HAiIG5Pz+fcp5q3tVy/y2K0Lp1OPfvK1i1Ksqu2/dPQiqVcumSkjJltCiVT74U3Mu5x9uH32Z109U2jZ494OhRF2bPLsH8+TdxdbVwMeUiw48PZ1OLTXgqPUnTpTHv2jxOJp3ERe5C33J985XjmKxLps+BPgwMH8iS60vY0nKLXXtLA8yf78+yZVb/QGdn20Tv7t+Xs3BhCd5+O47AQMdUxp4/78ScOf6cOOFC1aoiX34p0L593sScKMKlS7BunfUh8Ip5A4qsCjSpUpLmzTNo1CgbtdpxuYJKpRK9Pm/Vs/nBYBAwmQSu6k4xb/9R3I9P45tvYh+yVLElJ0448+23JZk//yY+PoUXwS9E3fPDc5NjZzLB5s2ezJvnR1KSjLfesnrMPUmU2BqZzBq1GzDAjchIJRERtrl4uMvdORx/mEyjteJUgoSBEQPxVHjyw6UfMIrWi7uv0pdXAl4p9Hxr13qyZ48bGzbw1M9vzx7IzHRsNeyTKFHCyLx5t5FKpeh0SmJiICzs77/DjMszOBx3mLcOvEWmKZPlry63qYlo/4j+9CrXi6/OfUXHXR35oPIHqGVqPjrxEd/X/Z46fnUA2LnTjfv3FdSokVNkog4gNVWkf/9SvPtuIv37P35rymAx8O6Rd/muznd2EXVgtWSpXFmHi4v1Jl/Fuwo7Wu/IrSj0VHkyppq1s0x0ZjRzrsxh9uXZBKoDGVJhSG717QPiNfGopCo8lB4A5BhzyDJk8eW5LymhLsGp5FO5fw970bt3Ii+9lI2vr4qsLA1arST3/RUUvV7gxg2FQ7z+Ll50Yu5cP44ccaVSJZH16+G114SnJuyLIpw58/c2a1SUgKurmcaNszDW+YEcxW2mtdlh14jWo7BYQCKxj9JSKEQuZp5m4KGB9FDORBVkwtVVjUajJSpK8dB1yBbUqZPDtm0x6PUvRN0LHuaZj9hZLNZKpdmzA4iJUdCtm7VbRESETafJM0YjlCsnUr58JtOnx9pkzAP3DzDq5Ci0Zi0yQUaPsj0YXXU0AJtjNjP9r+mkG9NxkjoR7h7OOxHv0DiwcYHmiopS0qNHWfr3F/jpp6dfdAcMgAMH9GzefMOhnQLywjfflGDfPjd+//06crlImj6Nbnu7Ea+NRy7I+fblb2ke1Nxu86fqUvn05KecSz2HzqyjjGsZfmv6GwrUtGgRQXKynHXrbtjsAaCgnD/vRO3aAkbjw8Ub0ZnR+Dn54SJ3od+BfrwW+hqdS3e261rkcjlGY/6iUCcTT7IgcgGJ2kQqe1ZmaMWhlHQuycjjI4nNiWVxo8W4Kdy4nnGdvgf6kmPKQUAg2DmYjS02OqyzyLJl/vz2mzvr1994pFVGfnByckKrtd/2/dWrKubO9ePAATciIqzX1C5dnuweYLHAiRPWyNz69SJ37gh4eppp0sRayVq3bg5yuUj3vd25ln6NkVVG8lb4W3Z7D4/i8GEXxo0LZv36Gza3ClkSuYTF1xeTZkhjQcMF1PWrC8CJE+68804w69ZFFdo/8lGkpSnx8NAX+Pr7QtQ9fzyzETtRtH5Jf/wxgGvXVLRuLbJxo21MMAuDXA6ffSbw7rtuREUpC/WUtiZ6DSujVhLkHMRn1T7jq/NfUc27Gp+89EnuazqFdiJJm8TCyIVMrDGRcu7lmHFpBt9d+o6qXlX5oPIHj4xIiaL4n6dlnU5g1KhgwsIEvv/+6Z+j0QibN4u88UZGsRN1AMOGJdChQwYuLgr0ej3f/vUt8dp4wJrLNfn8ZBqVaGS3G7uXyovmJZtzJuUMANFZ0Yw9OZYG95aQnCynbt2sIhd1YO3mYTIJ3LvnjEymx9/fesObdnEa8Zp4wlzDKOtW1u6i7tYtBV5eZtzd83fcy34v87Lfy1gsFn6P/Z1P/vwEjUlDki6JTGMmg44MYlHDRRjMBjQmDc4yZ5oFNmN8jfEOE3UATZum4uxsxMtLhUajRRQLZ7NkD65fV/LTT/7s2eNG2bIiy5ZBz57CY7cTTSY4fNgamduwQSQuTsDX10TTphl8/nkmtWrlIPvHXSbLmEWaPg0LFpbdWEYdvzpU8LBhb7GnEBRkoE+fdLy8bCvqPjrxEUcTjpJjslbHak1/i+5atTKYM8dMhQpGVCo1M2c606BBlk2CHOfPO9G3bxnWro0q0LXkhah7Pnkmhd3Zs2pmzgzg7Fk1DRqIHDoEDRsWH2XRrx9Mngzz5/vy7bd383WsyWLipys/8ce9P6jqVZXlry7HReGCKIocTzzO59U//4+9ydvl38ZL6UWzks2QSWTMqj8Li8XC+tvrGXJkCIIg0KNsDzqFdEIikbDtzjbW3VrHwkYLkQp/X7GnTw8gNlbJqVOPbhn2bw4ehNTU4rMN+29cXCxUrKhBrxcYNfsuu0vsppJHJWr61qShf0Mqe1W2+439SMIRyriWwSSayDRksj9uP4dO/QhM5dNP4+06d34wmUSGDAmkWjUNkyZZPbiStElEZUYRkx3D9DrT7b6GkSNDqVs3q8Cfi0QioWNoRzqGdmTbnW2MPTUWsFaRv777dQaGD0QiSJhaeyqvBr5qw5XnjZIljbz+eipaLezY4cf69Wrmzo15am7jv4mMVDFwYCkWLbplswhQdLSSuXP9+OMPd0qVEvnlF+jdW3hIlD3AaIR9+6xibuNGkeRkgRIljDRrZu3+ULWq5rFC8MD9AyRoEwBI1CXywfEP2Nl6p8O2ZEuXNjBoUILNDbAbBTTiVtYtojKjEBHRmP6OfstkVjNriwWSk7Vs21aSoCCBSpX0GI3iIz/jvFKpko6vv06gZMn851q+EHXPL8+UsLt6VcWPP/pz+LArVauKbN8OrVvnv1uEvVEo+J+tijuDBydSpszTqyQ1Jg3f/PUNZ5LP0CywGZtabHqoYk8Qj3CEjgAAftZJREFUBKa+PPWxx79e+vWH/i2RSOhapitdy3QlUZvIzEsz+eX6L5R1LUucJo7IjEg+Pfkp3778LYIgsHevK6tXe/PTT1C5ct7e57p11ptVhQpFlyP2KG5k3GD//f3cyLxBmj6Ni6kXEVzK8IXyBp2aOdZr79+WIEuXejH9hIZGjbLy3P7IEUil8N13dwgLs55zafo0knTWYhijxcj4M+MJcw0jxDXEbmuYOTMBicQ259LmmM2528hKiZJkfTKLry/muzrfFYmo+zc+PjlUrSrF1VWeb8sKb28jgwen4+1d+MKJmBgF8+b5sX27O4GBMH8+vPWW8J+KW50Odu2ybrFu2QLp6QIhIQY6dLCKucqV8+aHeDvrNjV8anAr6xbvlH+HxiUaOzTP7uBBDyIisgkIsK2y61SqE3vu76FRQCOOJR57rLeoWi2yYcON/0VrpcyYEUh8PAVO25HLRdq1S0YqlZIfl6cXou755pnIsbt9W8GcOX7s3OlBWJjVM6lr1+K3jfFP9HooW1akWrUMpk79O2p3J/sOm29vZkTlEQAkahOZfG4yMdkxdCvdjZ5le9q1Um9d9Dq+Ov8VJtGETJDRpXQXBpb4gi5dwmjaVML69XkTymYzBAaKtGmTwscfF5/IE8D6W+v55q9vcrtzeCo82d5qBy4KZ9RqNVeumChVyvHWLBqNhCZNItBqJWzZcqNI1pAXsrNdWHFxLbPvj6KEUwnq+NVheKXh+Dvlv+1WflCr1Whs1AAz05CJk8wJueRvhbLw2kLmXp3LqiarCPcIt8k8hUUQBP7804u9exV8/HFcni1MCptjFxsrZ/58P7Zu9cDf35o+MnAgKP/hApKTAzt2WMXc779DdrZA2bJ6mjXLoGXLTMLDdQV+qP72r28JcQmhR9keBX4P+UWvF6hTpyLjxt2nS5c0m46tMWnoua8nm1tuztdx+/e7kpEh5803daSm6rl4UUWtWjn5+lwzMqT88ksJOndOzJPl1AtR9/xTrCN28fFy5s3zZdMmTwICYMEC69NkYULXjkKptEbt3nvPGrUrVcqa3zPyxEgyDZk08G/Aj1d+JMuYxbsV3rVJa6q8cC3jGibRlOvXtiZ6DduPpeHisp2FC/Me/Tx6FBITBZo3L5puE0+ic2hn5lyZg9asRSpI6RPWBxeFMwDHjon061eOX365RY0aDuqi/T+WLPFGo5HQokVmsRV1AGM+c+N45WW0eaktX9ScYLdm5v/k1i0Fu3d70rOnziZtsh5VuVtCXQKjxciQo0MYUWlEoW2BbIEoity7ZyY5WYlCIUEUn/7ec3Ik/PWXirAwfb4tVOLi5Pz8sy+bN3vi7Q3ffSfw7rug+p/1ZkYG/P67Vczt3AlarUCFCnreessamStTxjZR5vr+9dl4e6NDhZ1SKXL6dAx6ve2/99/89Q1dS3fN93FNmmQB1u49O3d6MXFiCXbvvoGPT96vD0qlhd271dSsqXiqsHsh6v5/UCwjdqmpUhYu9GX1am/c3GDsWIEhQ/6++Dwr6HRQpoxI7drpTJ58l2FHh3E44TAA3kpvfqj7A9V9qjt0TYfjD5NpyKSkc0m8ld5sXB7BwqUu7P/dl8aN8/6Y+P77sHq1kV27IotV5PRK2hVGnxxNs8Bm7Lq3C5VUxZpma3K3tUXRWkX92msmtFrHCbuMDCnNmkVgMAhs23aD4ODiI+xOJJ7gZOJJrmdc557mHtGZt/i62hzalm3gsDUcPuzCF18EsXVrJGq1fS5J626tY+LZiYC1h2eLki2YUGOCXebKL6IIMpmUq1dduHRJQufOaY99yLpyRUX37mH52gFJSJCxYIEvGzZ44e4Oo0dbO/Co1ZCSAlu2WG1J9uyx+rFVqWLty9qiRaZdzlWDxUCvfb1Y23ytzcd+EvaoJjZZTLy2+zW2tCicL6IoWotXKlQwolCo+OgjL3r0SKFKlaevVxRBKpVgeULy4AtR9/+HYhX7ys6WsHSpD8uW+SCRCHz2mcDIkeDqWtQrKxgqlfUC+tFHHsQ1eZ3TGUdyf+cscybCw/GeLA0DGub+/7lzahb9VJrxnws0zoc7isVifaJv1iyz2Ig6i8XC1399zdmUs8xtMJdgl2CqeFVBKpH+K1cRWrXKRKuFK1c8OXhQxuDBSXbP0/z5Zx/0eoF2/9feeYc3Vbd/+D4ZTZOOdNNSSmlZBQRBQFBk7ylblrKRIaIiyqsCAoIC4gZcbBRkI4hiy0ZEhoDMlk2B7t2m2ef3R36gKKMjCzj3db3Xe0mS7/O0TXI+55kds91K1AF8dOIjzmSfufXfzcOa06FiI6xWL44cse3rdDSNG+ezb98lDAbH3Wfe7FQUEAhVh1I3qK7DbBUXQQCLxcL27R7s26elc+esu6ZlK1Y0EBd3BT+/+0fP0tMVLFwYxOrVgXh5wdSpAmPH2tKsy5fb9rLu2mX7TNepU8irr9pGk4SGOnbwsYfMAxGHxxRuY+nSQHQ6JaNG2VfYfXnmS1qUbVHqEhpBgKpVDVitcO2akStXPPDw8EQmM5CdDT4+1rt+TwkCWK1q8vML7zgnURJ1jxZuIez0eoFVqwJYuDAEvV7GSy8JvPkmBAW52rPSM2IETPvmT85f19GlehdERAxWA0aLkfTCdIcWo9+LnBwZEydG8NRT8M47xXvtwYNw/br7pGEv5V3itQOv8XTI06xrte7Wv7cMb3nP1/35p4wjR3wxm9NRKh13kUlLU7ByZSAyGbz8cqrD7JSU9+q+R58dfTCJJsLUYUx+wrYY+PPPvdm40Z+ff47H09PxF+Hizq8rLnKZnGp+1ajlXwu9RU+n8p0caq8kjBqVxqBB6Xh7q7h4UUZamm0czT9RqUQqVDBTWHj3v0lmppzFi4NYtSoQlcp2k9yrF8TGQocOIvv22WqU69cv4H//y6Vly1y7z3W7HwLCf3YvOxKrVcBksv+Gi23XtrGu9br7P7EYBAWZWb78IoIAoigwcWIUfn5GZs6885QFkwlatCjP0KGpDBqUcdtjkqh79HCpsDOZYMMGf776qgwZGXKGDoXJkwXCw13plX1Rq+HtIXV5880DjNycQLlyzlkBdC9EEaZODUenU/D998WvWVy3DgIDzU6vUbsTn5/8nLgbccxpMIcq2uIVxA8YkEGfPhn4+mq4etWAv7/FIet/vvgiBItFoGvXLKetgCoq265t45OTnzCoyiC+v/A9Dcs0JMjTdkc1fHgqPXvmoNEIWK2OFXYvvRRJ1aqFjB3rOOHbr2I/+lXsB0CnbZ2cKiqKg1otYjAYWLy4LIcPe7NuXcJt78vkZCXLlwfy/PMp/4msZWfLWbo0iO+/D0QuFxg2TCA4GLZuFZkyRUCpFGnYMJ+pU3No1izPYftYi0KEdwQHUw/abZ3f/Rg5Ms/uq8RWX1xNzYCat2qW7cnN6JwoigwcmIJMZmswunjRysmTHrRo8XfGRKmEKVOu/2dCgSTqHk1c8q1mtcLPP2uZP78MiYlK+va1pQgqVXKFN45n5EiYNQu+/TaYd9+94Wp3WLfOn9hYLWvXQvliBgxF0VaL07x5LnK5Lb21P3U/1/KvMbDKQMc4fAeSdcmM3T+Wan7V2NBqQ4nTIAoF5OQUMmRIZZo2zWH8+BS7+pmYqGTDRi2CwsTo0TbRYhWt6C16lDLlbV2bzsRqtfLGoTdILUxlXat1aBQaFIKC/pX733qORiOi0egRBDU7dypuFXo7giZNCgkKctwmhX/Trlw7Pj/1Oa/WfNVpNovLxIk3SEtT4uOj4do1I0YjhIaaKSiQ8ccfarp3//s9n5srY/nyIFasCMJsFnjySYGsLJEvvrAV1zdqlM/MmTk0bZqHr6/z9rLei7qBddmfut8pwk6vF7BYFMjl9hV235//nhXNVtj1zDvRoIGtHEKng23bgli8OIgmTXR4ePwdZW3VKvf/O8ttpR6SqHt0cWrzxKpV50lPV/L552WIj/ekY0eRmTMFatW6/xkPOnPmwNtvi2zZkuDSqM2FC7aVYS+8IPDVV8UvLDt6FJ54fhXV+y9A7pVFhiGD1MJUngh6goVNFjrA4/+yJGEJay+tZUa9GTwe+Lhdzty504datSAw0L7i5fXXI9i2vwD1y3WxqrIIUAUgCAI6s443ar1B58jOdrVXFK7kXWHs72PpFNGJEdVG3Pf5W7ZomTy5HJs3J5RoEGpRcPSKrH9jtprpFtuNTa03OXS8kL2YPDmCv/7yZP36c8hkf/++8vNlrFgRyJIlQej1Mvz8ICNDQKOx0rhxHq1b59C4cT4ajXuIuX9yveA6bx9+myVNlzjc1vbtPrzySiQ7d561W8p5943d/HDxB+Y/M98u5xWH9HQ5QUEWLBYvBg8uw5tv3qBGDT2rV4fi76+jfHmjJOoeYZwasZsypRzx8Z40aSKyaBE8/bSbTRZ2IKNGwezZsGhREO+8k+QSHwwG28qwqCiBjz8u2e9+3Trw0lcmTThLWtbfabMbBTdYlrCM5mWbE+EdYS+X0Zl1PL/reZY0XYLZYual318iTB32nwHOpeVmNEoU1Xz6qS8jRqSWujvz3DkV27b5olD48n2T9bx4tCtJhba/fZg6jHYR7Urtd3FZfm45P1z8gY8aflTk1HXHjjnUqKEnKkqgmLN0i0Ruroxz5zyJjNTj4eGcgnqFTEH94PqsuLCCFyq/4BSbpeG1125w7ZoH3t4a0tML0elkfPxxKBs2BGAwCICAt7eVp5+2NT88/XS+U+oiS0O4Vzj5pnyn2KpVq5CPPkoiMNB+dYRfnP7iPwPInUVQkC2FnpJiRKs1ExmpRKEws2OHitBQGdOmaSVR9wjjcGFnMsH48bb6A0FQsW0btG7tftsiHI23N4wfLzBlSgDDhqURGurcQmWAuXNDuXLFtjJMU4LRZKJo66Jr9Vg00zvG8enJT9l4ZSPZhmz6VOxDhiGDSUcm3fqy9lf5UyewDi3CWhDjH3PPs7de3Uq7iHb/mdg+96+5JOQkMGTXEAosBbxd+20ahTpuDMeZMyKbNvnTtm0u1aqVLoL08cdlEATo0yeDSmV9+ELzBS/vf/nWvtrntj9H34p96RVd/PlXxUVv1jNm/xi8FF7FFsWCAFFRBqxWJb/8oqV16xy71iIePerFSy+FExub59TPxeu1XqfPjj4PhLDz87Pg51dIWpqMNm2qkpsrBwRUKivt2uXQpUs2DRsWOLQJ6EEmONhMmzaZ2Cs/dSLjBGqFmjBNmH0OLCFly5r4/POrABiNcOKEmv37valRA0nUPcI4JRU7eDAsWQKHD0Nd95kw4HTy8qBCBZG2bTN56y3nRu127vTh5ZcjmTcPRo8u2RmnTtnWjX3xxRWaNrVFuPan7Oedw++wvtV6/FR+tz3/fM55dtzYwZGMI2TobZ1aGoWGWgG1aBLahHpB9ZDJZOjMOtr93I6KvhX5uOHHt85J1iUzYOcAUvQpyAU579Z9l66RXUv4Gyg6hYUCfn4eGI0m8vK44/iA+3H8uJoBAyri4SHy669nCQy03WH/eOVH5p6Yy49tfkRAYNbxWfyV+RdNw5ry8mMvO6QI+0jaESYdmcTIaiPpEtmlxOecPu1J374V+fLLyzz1lP1GoBQWCty44UNUlPPH57z6+6u0LteaDhEdnGu4GJw65cmZM2r69StAEBTUrl0enU5OrVp6evTIoHv3bFe7WGxEUSRVn8qIvSOoFVCLJF0SsxvMJkAV4BB7330XQv36OVSpUroau9cPvE5F34rsS9nHpNqT7nvD6kxEETp2rEJiogdr10KPHq72SMJVOEXY6XRw9izExFCiSNHDxHvvwfTpIj//HE9IiHOiEykpCnr2rEyTJjI2bix5tHTaNJgzx8ru3WduS5mZrKYiNwEk6ZLYcX0HB9MOckN3AxERo8XIlfwrWLFS3qs80+pNo25QXZ7b/hyns08D4Cn3xFvpza/tf3Vaw8GXX4YRG+vFqlUXih0JGTgwiqNHNQwalM5rr93ekHEt/xrlvMvd+m+r1crX8V+zNXErFX0q8lbttwhWB9vlZ5h9fDYH0w4yv9F8QtQhpT7v6lUPqlaV270eTqlUOnzcyZ3I1GcybO8w1rde73Tbd8NshgMHvKlSRU+5cjIWLgxk7VpvNmyw1dclJys5f17Njh3eNGlionnzdJzwNW5Xfr32K9OOTiPHaBuZFOUdxcY2G++6Y7U0GAwCbdrEMH58El26ZJfqrBd2vcCxjGMoZAp6VOjBSzVeQuuhtY+jJeTaNSWCIKNSJRmJiUbatq3K7Nkyxo1zqVsSLsQpwk7ib3JybFG7Tp0yePNNx+9YtVhg+PAobtzQcPy4QGBgyc+qVUukXLkcZs++8yylkvLhXx+y9NzSW/8tQ0aMbwzJ+mSahDWhVkAtqmirUN67PP4q5+UWLl704NQpH7p1y8FsLroI//13L0aMiEKlshIXF4+fX9FHSmxL3Ma38d+iVqiZUHMCNQNrFvm1ifmJt+obM/QZjNo3iscCHrs1l85eyGQy4uJ8qV8/1y7rv5YtCyQoyEKHDtmld64EjNg7gmFVh/FkyJMusQ+2rs2rVz2oUsWA2exJw4bRvPFGKr17p2M02saU3Lwhk8lu3zCgUqmYP9+POnXy3GIEUVEQRZHRv41mX4ptaPszoc+woNGCUp9rES1czbtKlG/Ubf+uVmvIz9fdKiFIK0zDT+VX7JvEwbsHczj9MGDbQT2pziRal3POOsg7IYrQr18lwsONfPihLSXbs2clmjf3ZEHpf50SDyju3w72kKHVwiuvCKxZE0B6uuN7VxYuDObwYQ3ffVc6UXf+PJw4IdCmTa79nPt/LuZdpIJ3BZ4p8wxT6kxhV6dd1AqshUKm4H+1/0ev6F48Hvi4U0UdQHS0kc6dbSnkX34J4MqV+6dJRRE++igUmUxk4MD0Yok6gLYRbVnTag0TH5/I3JNz6RnXk58Tf/7H+SJfnPoCs/V2oakz6xi0exDfnf+ObYnbGLBrAK/Xet3uog5sXZdvvx3Gli1+djnv7FkN58/bPwVdVN6p8w4fnfjI6XZ1Ohl6vU2tffVVWUaOjEIQ5CgUen788Ry9eqUD4OEh3hZl/+abEM6dU9367/x8I3v2aLhw4cFZ0SMIAnMazKGCdwUA2oa3BWzdyoviF/HWobdKdG6OMYcXdr/AoN2DOJBy4B+RTBG5HE5lnmLUvlH0iOtBYn7iPc+a/ud03j/2Pjrz32L55nmR3pF8/vTnLhN1Op2M7Gw5Xl4aZs68ypQpf99sR0XpOX1aitc8ykgROxeQlWWL2nXrlsHrrzsuanfsmJpBg6J56y2BadNKd9asWTB1qi0Nq1bb9y2Ta8zFW+l9Wxpmw6UNTP5zMpV8KzG3wVyifaPtarM4mEwCvXtXpEWLAsaOvXdt5M2xChqNlV9/PYtWW7qIVro+nZnHZnIu5xzty7WndmBtXvvjNVqWbcmM+jNuPW/28dksP78clUxFtE80S5otQaNwXN3D9etKKlVS2mXfrqenJ3p90XaeOooBOwcwuc5kqvgVb8h1cbFYQC6HvDwZLVvGMG1aOh06pHPtmhy9XiA6+t5tx/n5Mp59tgoTJ96gdeu/b7LMZtu5Xl4a1q/3oHbtAoevBbMHJzJPMGDnAPZ02sPu5N0sSVjCpbxL1AyoybJmy+76OpPVRIGpgDxTHjqzjnxTPjqLjkx9JrOOzyLPnIdSpkSr1OKb1gyLUYMh4leyjdnoLXq8Fd5MeWIK0T7RaD20aD20eCpuX0b+4t4X2Z+6nwreFeheoTsvVHmBFj+1wEvhxYrmKxxWD3g/RBEGD44mKMjKhx9e/s/j8+eHsG5dMCkpj1iHosQtJGHnIiZPttWr/fJL/K3CenuSmyujV6/KREYq2LOn+Nsl/k39+iL+/rl89NG973LtxZqLa5h21KZGQ9WhjKk+hq4VujrF9p3IzZWh1QoolXLy8013HMthscCzz1bm6lUPRo1KZdSoNLvZN1qNzDs1j+/Of4fBasBL4cWoaqMYWGUgucZcesT1uNVtW01bje9afOeUWsSjR/3x8ysgKqpkc1BE0SZGdDrXphD/yviLj05+5NCZakuWBPHrr35s2HAdg8HApk2+1K9ffAGm0WgoKNDdsVbWYBDo2rUy3brlMWKEa8YqFQez1Uyf7X24pruGzqy7tT/WU+55K5p3J2SCDA+ZB0q5EpVMhUpu+59SUPLr9V8ptBSiEBQEeQZRQ98fk1FBgu9S0vXpmEUzKrmKBsENbg0L11v0mK1mBGy/VBGRq/lX0Vn+fl+qZCoiNBGsab3GJRtLRNF2k6nVerJ/vxx/fyMVKvz3c/fLL75MmFCejAwIcI32lHAx7rdP5xHhlVfg448Fli4N+k9xfWkRRZg2LZyCAgUrV5Ze1F25AocPC8yaZf807N0wWv/+wpILck5nn6YrXZ1m/9/4+loRRTh50oPRo6P47LMrVK9+e5Tpp5/8uHJFhbe3lQEDMu5yUsnwkHnQrUI3Nl7ZiMFgoMBcwKcnP8VX6cuaS2tILkwmUBWIn4cfSrmSi7kXqepX1a4+/BuzGaZODaJhQ08mTiyZiDh+XM24cZEsW3aByEgHDMkrIrUCa1FgKiBJl2S3ERa5uTLGjy/PqFG5NGpUSM2ahSgUIgUFhchk0LlzdonOFUXxrg1QKpXIqlXn0WisaDQa9u8XiYnRu91Mu3M551icsJhfr/3KY/6Psa39NhacWcC+5H0k5idSybcSK1usLPa5oiiyJ3kPEd4RDI8ZTtvwtqjVavR6PaLYn23Xt/H1ma9J06fxYYMPUSvUdz1r0K5BHM04SoR3BA1DGjK6+mg6/tKRxfGLGV5teGl+/BIxYUIE3t4y3n33CnXq3P15N2+yzp6Fp52zrU3CzZCEnYsICICxYwU+/TSQwYPT7bqzccMGf7Zt07J6NURGlv689ettdT5NmjhupdS/sVgtlFGXwd/Dn6dCnuK1Wq85zfa9KFfOQLt2OVStevuV1WQS+OyzEGQykaFDU+3SVPBvzmafpZJvJVQyFXKZHJ1Jx6KERWiVWhY3WUxVv6r4KJ1XZ6VQwNdfX6JcOWWJBxcHBZkZODCb4GDXpw1fqv4S0/+cTp+KfTiYdpDXa71e7DO2b/fh2DFv3nknG09P289nsRgoLCykbl2oW7d0Y2K++CKEq1c9mT376l2fczP9n5FRyMsvx9CnTyajR9v35rGknMs5x8SDE0nRp5BjzEEpUzL5icloPbRMfHwi+sf0LEtYxrHMYyU6XxAEpjwxhWZlmyEX5OTkyLh0yZPy5fUoFALtyrWjVdlWbE3ciqfc855nhWnCeCb0GQZUHnDruVoPLQvOLMBgNfBSjZdK5GNxEUXw8FDSrl0BHh73/6BFRhoQBJGzZwVJ2D2iSKlYF5Kebqu169s3nXHj7PPFe/GibWVY//4C33xjnxqLRo1ElMp8vvjiil3OKwq5xlwUMgUeMg+6xnblx9Y/utXqJ0EQyMry4q+/oEmTfFauDGDmzDB8fa3ExsY7bYXTxIMTOZh2kB0ddzjF3t24csWP5GTTrZ2WxUGlUtl9OXtxsYpWtlzdwtQ/pyJHTmW/ynzX/Lv7vk6nE/jhh0CaN8+nenUZP/zgTWysJ598ctUhM/l+/VVLaqqiyBHh8+dVlCtnwc9PwaVLFkJDTS4dDm+ymnjl91fYm7wXEZHKvpVZ12odgoOcupmW3LPnjF1unrv+2pULeRfwVnjTtlxbpjwxxWG+A3z+eQhyuZLRo68X63Xt21elTx8lc+Y4yDEJt8Z9rpSPIEFBMGaMwMqVgeTklH6U/82VYZGRAp9+ap8vm6Qk+P13aN06xy7nFRVfD1/bYnqZgieDn2TZ+bsXUrsCURRZuNCLWbPCyc2VsWBBCIIAw4enOnUvZ0JOApmGTH5J/MVpNu/EJ5/4snhx8efknTih5uxZ138N/XjlR94/9j5Gq5FCayFK4e71iVeueLB9uw9yuRxfXzUrVgRx6pQKnU5H586pfPaZY0QdQKdOhcVK81eqZMDT00xGhpG+fSuyaJF95iOWFKVMSYxfDIGegahkKqJ8ohwqjJo2zWPNmit2EXU36/HAVipyMO0gl/IulfrcuyGTyQgIkKFWF/+mJypKz9mzUszmUcX136iPOOPHgygKLF9eilkk/8/HH5fh8mUVq1aVbGXYndiwwdZt16yZ8+rr/s0btd5g3aV1LrN/N8aNS2HatEQmTqxAVpYcPz8Lzz2X6TT7l3IvkVaYhkW0MO/0PApM9tsGUVzeffca8+cXL6oAtjV3CxaU/r1fWrpW6MrrtV6njLrMfx4TRYiP9yQ7W45CoSA2Noj33y+LyWTBbNaxbdtZOnZ0/I2P0Shw4oTm1oiU4uDlZWXy5Os891wBSqXy//fLOp/l55ZzMO0gce3i6Fy+M72jezvUnlotUq2affbR5pnyKLQUUjewLmXVZdnSdotDuvV/+knLhg3ByGQy+vdPZvDg9GKfERVl4PRpu7sm8YAgCTsXExICo0YJfPddEDk5Jf9z7Nrlw3ffBfHhhwKPP24//9atE3nyyYJSj+0oDZ4KT2r412DtxbUu8+EmoggJCSrmzQuhV6/KDBoUzf79tgLsESPS7D4K5l4sTlhMtikbgMv5l3nnyDtOs/1vtForMpmRrCxftm4t+iT+BQuSmDDB8YO6i0KPqB7Me3oe/h7+JBYkkppqK0EuLPSgT5+KxMYGYDabee65ZH76KeFWVK60zUlF5cIFFT17liM+/t61YXejRYs8vL115ORY6dWrMhs2+NnXwfvw45Uf+fHKjyxtshS5XM6UulNoENLAoTY/+KAchw/fvUGiOPgqfdnaditLmi3BQ+HhsBups2d9OXrUo1hD0f9NdLSBy5fBxVOEJFyEJOzcgNdfB7NZ4PvvSxa5SE1VMHlyOTp1Ehkzxn5+paXBrl3QqpVz07B34p3a77D8/HKX2BZF277OTz4pQ+fOVejRozLffx9MgwYebNgAvXpBSIiFnj2dF60D25T9xmUa46v0ZWz1sfSJ7uNU+3fi++89mT+/DEZj0SJCAQECwcHOWa13P6xWqOhdlc1tNmPODeaFFyqiVHqg0RhZvvwiXbvaIic+PlZUKuenuSpWNLBxYyJVq5buaq1SWejUKYtGjSzIZDKcUWW968YuFsUv4rsW3zmtVtZgEDh92hZptQeCIOCl9ALg2fLPMu/0PLucC7bvl337tKhUKl55JZGpU4sf/f4nUVEGrFaBc+fs5KDEA4Uk7NyA0FB48UWBFSuCyMsr3p/EYoH//S8CtVrG4sUl3wN7JzZtsv1/ixauS8PexNvDmwreFZxWS2a12gY8z5kT+v+FyJXYsCGIli09+OknSE0VWLFCoGpVWL0ahg1LdfpIiRn1ZzD/mfmU1ZRlRLURDo9+FIURI1JZteoiGs39L6bXryt5440Qbtxwzu7fe5GbK6NVqxj27QsmyDuIAF85VV4ZhsFg60J87LHCYu8LtjceHiLVqhWW+n0ml9uiyyEheVgsckaPjmLvXm87eflfDqcd5sMTH7Ki2Qo8ZM7bMKJSiaxde4OWLe3fzd+vUj9+T/3dbud9/30Zli71R683IJdT6u/x6GhbXd7Zs3ZwTuKBQxJ2bsIbb4DBICt21G7x4iAOHdKwYoVAUJB9fVq7VqRuXZ1DBiiXhMlPTObrs1877HyzGQ4e9GLGjDBat47h+ecrsm1bIJ07K4mNheRkgYULoUMHUP3/RqepU0XKlDHTo0eWw/y6HwqZgjyj80bR3AulEry9zeTmKvnuu4B7RoPy8uRcuqREJnONYFq92p+XXopCo9EQGChnwIB0IiJyMZlMeGtk7NV9z4Yr7lPb+d13AaxbZ5+04k10Ogve3ibCwhyTT07ITmDykcksbboUbw/Hicc7YTJx205de6KQKQhVh3I47XCJz8jIkHPmjBqNRsNbbyUyf/4Vu92Y+/lZCAiwcOaMfc6TeLCQhJ2bULYsDB8usHx5EAUFRfuzHD+u5osvyvDWWwLNm9vXn+xs2LHDPdKwNwn0DCREHcLe5L12O9Nkgt9+8+bdd8vSsmUMQ4dGsXdvAH37KtizB65fF1iwAFq1somWf3LihC1aN3x46h03UTiLMuoynM1xr1vzvXuVfPllGVJS7h6Ni4nRs3r1NUJDnZOKzcuT8dZb4Zw+rUWj0RAebqVSJR35+TpMJhNDhqRTsaIt0mHFilk08/mpz9l4eaNT/LsfZ896cfFiyerr7oaXl5U5c65RqVI2Hh6ezJpVloQE1f1fWAQS8xMZ9/s4vm78NYGezm+QeffdcIYODXXY+eMeG8f80/NL/PpZs8rx7rvhFBTo8PKy2j0iHBWll4TdI4o0oNiNePNN+PprGStXBjBs2L07ofLyZLz5ZgT168OUKfb3ZfNm29Ddli1dn4b9J1OemMLL+1+mcWhjjmccp7p/9WKvzjIYBPbv9yYuzpddu3zJzZUTFSUydKhAjx5Qv75QpHEVU6eKhIeb6NrVddE6gHJe5TiXc476wfVd6sc/ads2l4YNCwgJUXC3EXVmM1gsjo0GHzzoxcmTakaPzsfTU0ZamgcZGRZ0Oh2NGkGjRne+cck12t73GYYM5vw1h8q+lakRUMOhvt6POXPSHLpTNznZxMGDGpo10wOlmyuYrk9nxN4RfPr0p5TzKmcfB4tJly655NunIfaOVPevTqYxE6PVWOQUs8kkkJGhIDpayYQJ1xGEu28RKS1RUQbOnNEA0s7YRw0pYudGlCsHQ4cKLFsWjE539z+NbWVYWfLylKxcKfwnkmQP1q4VqV1bR5ky7lHYfpNQdShm0cyzvz7LmP1jyDEWLaKo0wn8+qsvb7xRjqZNq/Hyy5HEx/vx8styjh6FCxcEZs+GBg0okqg7dgzWrRMYMSLVIb//4hDlE8Xl/MuudeIOaLUWCgqsfPttyB2bKV57rTzjxtk3omIwCGzerOXGDQ88PT25eNGXnTt90en06PU6vvnmEo0b3/tqn2PMIduYTTlNOUI8Q1jwzAKq+1e3q5/FRRRxeNNBQICF1avP06BBJhqNhh9+CChR40G+MZ+BuwYys/5MqmirOMDTotG0qckh9XX/pHlYc749+22Rnz91ajgvv1yB/HwdwcFmgoIcd2MTFWUgIcFWLyzxaCEJOzdj4kTIz5fxww933968caMfv/zix9dfC1SoYH8f8vJg2zb3SsOC7YLbI64H1/KvcTHvIh4yD+TC3S88+fkyfvpJyyuvRNC0aTXGjy/P9eta3nxTxqlTcPaswPTpULt28YuVJ08WiYw0lnjfpz2p4luF6wWl66JzFBcuyFm0KJDTp/+bQuzdO4cuXUof7czKkvPnnxoEQcDTU82MGeEcPOiNXq+nd+8kli+/WKyBwRqFhsVNFrO13VZ8PHyoFVDLoUN0i8Lu3T7UqxdJZqZ9Ojzvhvz/j79yxcgXX5ThwIGij64B0Jv19N/Vnzcff5M6QfdYaOpgUlMV/PyzD4WFjv27DY8ZTuz1WMA2wPhui5wKCwVUKhXDh2cyZUqiwwZY/5PoaAOFhQJX7759TuIhRRJ2bkb58jBoECxZEnTHL6VLlzx4//2yDBki8txzjvFh61Zb5MPd0rC+Sl/alWuHt9JWhG22mpEJt7+Fc3LkbNjgx5gxkTRtWo2JEyPIyfFl6lQZ587B8eMCkyZB9VIEYA4dgs2bBV58McVpM8zuRWVtZdL1xR9i6gyqVtWzbVs8Tz/93/dyy5Z6mjQpWa4sPV1BQYEMQRBYsSKU8ePLY7WCKOr49dezdO1qGz1TkguoUqakkrYSgiAQ4hnCXxl/lchHexIZaWDQoCy77pS+F8HBZjZvTqBduyw0Gg2//+7F3caqbby8kZ+u/oTZambArgEMjxlOk7AmTvHzbvz5p4aXXy6D2exYYadRaFDKlIz9bSxtfm7DtYJr/3nORx+VYfToaAoLDURG6qhRwznD5aKibOl0qc7u0UMSdm7IW28J5ObKWb369qid0SjwxhvliYgQ+Owzx31hrVsnUr16IeXKuX4x+z8RBIER1UbwYcMPCVOHkWvKRSEoSE+Xs3q1PyNGVKBp0ximTAnHYvFm1iyBK1fg0CGBN96ASpXs48fkySLR0QY6dHCPiKanwhOr6L75Fh8fK/n5hSxdWob0dJsSLiiQ8csvPsVapXfzRicvT0Hr1lXZuTMIURTp2zeFNWvOIwi2aImvr/1+FwMqDWBRwiK7nVdSoqKMDBuW6tQ9r35+FkDkwgUTY8ZU4Kef/O/4vE1XNjH7+Gw6betE9wrd6VS+k/OcvAvt2uVy4MA5fHwc97lILUylz/Y+JOYnsit5F6Io4qfyu/W4KIJCoaB1az3du6c7JUr3T8LCTHh6WqWRJ48gkrBzQypUgOefhyVLgm9bH/Txx2W4eFHFDz8IeHk5xnZhoS1i5+zdsMWhblBdPq+5DoXVm+Fj/WnRIoaZM8uiVnvx2WcC168L7Nsn8MortgioPfn9d/jlF4FRo1Jupa0k7k9Ojozly/344w/bG/fCBRUvvxxKUtK9CxRvZra+/DKEfv0qo1ar8fEx88knV2nc2LYzNSjITFCQY2pBm4Q1cYv6xf37fbhyxTVvuLAwEytXXqBbtzxUKhWJiX//zfQWPUm6JDKNmWToM8gzucfYHQAvr9I1gNyPIM8gKvpWxIpNPCplSrwVtmzCqlUBvPVWJBaLlZo1c+jc2fnfpzKZ7YZAitg9ekjCzk15+22BrCw5a9faonZ79nizYkUQc+YI1K7tOLvbtkFBgUCrVu6VhgW4dk3JkiWBDBgQTc8OT2H5JIFgfz+++UYgOVlg+3aB0aMhLMxxPkyaJFK5sp42bdzv9+PO+Ptb+PHHc/TqZYsC16xZyOHDl6hY8c5pqZwcGb16VeLgwUA8PT155pk8hg1LoaCgELAtd9dqnZOWDPAIICE7wSm27oQowhtvlGPbtuLVu9mTqlX1WK1mLlyw0rVrZX75xReAfcn7uKG7AYBSrmTL1S1FbmhyFKIIo0dHsWuXj0PtyAQZM+rPoE90H5SCEqPViCAICIJAeLiM4GA9ZrNrI+kVKug5c8a1g7UlnI8bVAhJ3ImKFWHAAFi8OJjmzXN5550IOnQQGTvWsbmYtWtFKlc2UKGC0aF2isqlSx7ExmqJi9Ny5ownnp4ibdvC+PHQuXMIfn7O82XPHti+XeDjj1Odnla5H4IgFGvsgivQaKwUFOj48ccQKlbMo25d822jULZs0XLokA9z5mTi4WGhXr18vLx06PV6HnvMtv3BFTxX8TkWJixk1pOzXGJfEGDXrkQKCnQusf9PwsNNzJhxjfbtjchkcmYdm4NarqZxWGMGVR5EDf8aLm80MRoFAgOtqNXOEVWv1nwVjULDV6e/YcGCMF5+OZ3GjdNp3Ngp5u9JVJSB1atd7YWEs5GEnRvz9tsCy5bJGTmyAp6eMpYsse/KsH9jMNjm1/Xv77polChCQoKKuDibmDt/XoWXl0jHjvDuu9Chg4C3cwfY3/Jr0iSRmBiDW6xY+zeBqkAu5lwkxj/G1a7cE7MZVq3yQaXS8MQThZjN8OyzBdSsaUWlUiCKIvn5OmQyePPNZFe7C0Drsq358syXLvXB19eKQuH6OkpBsNWviSLM2v8NmX+2Ym6zt2nWwD1uBMG2Smzu3DR0OucJ4Rervcje02nE3viJYbonXD4C6SbR0QbS0wXS07H7ZiIJ90USdm5M5cpQpw78+acHW7cKBAc71t727ZCbKzh9zIkowunTnrcic1eueKDVinTuDHPmQNu2Amr7blIqNjt3wp49Ap9/nuJ20TqAsl5lic+JdzthZ7H8PUJjyxYtZrPA4sWXeeaZqsTHqylTxkytWoVUrJhP69Y6Wrd2rb93QiaT4aP04UreFSJ9Ip1uf/t2H377zZ9Jk646tXnibvyV+Rczjs7gbPZZhvpf45mnDAiCCavVccN2i0NamgJ/f6tTOtavXPHg+HEvevcu5M1mXelPP17+oxFv136bct6uGcz8T/65M/aZZ1zsjITTcMNLlMQ/+eQTgREjBNq0cbytdeugQgUjlSs7tugYbEMzjx7VMHt2KO3bV6VPn0ps3BhEq1YebN0KqakCy5cLdO2Ky0WdKMI774g89lghTZu6T3H4P4nyjuJi3kWX+mC1ws8/a7lwwbaSas8ePxo0qI7V6oVGo+Gvv3z5809vdDpbuqywUEaFCga3/Z3+kx4VevBtfNEH0dqTwkIZeXmlXwxfWi7mXmTY3mGM3jea09mnifaN5uWXMlAo8snPVzFgQEVOnnTxhxWYMyeUoUPLOsXWr78GsnBhELm5BmoEVMdf5c++lH0M3D2Q8QfGk17o2jFEkZFGZDJRaqB4xJAidm5O48Y4pVbDbIZNm0S6dctx2AXEbIY///QiNtaXHTu0pKYqCA0V6dbNtsqraVPBLebC/Ztff4XffxeYPz/F5RfXf2Oymth5Yydnss9wMO0gp7NP06V8FzpHdnaIPZ1O4OxZNY89VoiHh8i33wZx4YKGTz5JAwRmzCjLqFEZVKqURnR0Aa++mkxhYSEymZW33rKlxtats43NWLJEYOhQHyZMiGDOnES778q0J53Ld2bJuSWusd05l06dXN+lfib7DJfzLpNjsvkSqv57a0hhoZmQEBMREa7/AI8enUlOjuPeS/n5Ms6cUdO0qcjgwUn06yf7/13RMspqypJpyCRVn8qZ7DOk6FMIUrsuB+rhIRIRYeLsWfetvZWwP67/FEq4Bbt3Q0aG/dOwJpPAH394ERdnE3NZWXLKlRPp21egZ0946inBrceG3IzW1a5dyDPPOHDxZAkxW83MPj6bFH0KAAXmAl6u8XKpzrRaITNTfmvd0ezZodSsWUjXrnrOnFEzcGA5tmxJpFIlHeHhJkSxkMJCW2PDr7/Go9FYEUUoV85E//6Z/zk/Ls6XZ56xNQf5+wt07+7+4k4mk6GRa0jSJRGmcWDb9R0wGDzw8HB8FP1+dCzfkQxDBvNOzUNv0RPlE3XrsaAgMx9/fHPFgYZJkwIYOTKF8HDnz8KMibE6dKfuokVl2LhRy9at8Xh6clvto9ZDi1quRkRkZr2Z1PB37X5huNkZq0TaGfvoIKViJQBYu9bW8Va9eum/EA0GgZ07fXj77XCaNYth1KgKHD3qz/Dhcv74A65eFfjkE1vNhzuLOoCffoLDhwVGj3a/aB2AWqHmzdpv4qOwjXYI14TzmP9jRXrtzRlxWVlyFiwIJilJiVwu58svy9K3b2U0Gg2enp5kZyvJz5dhMBiIisphw4ZzlC2bg8lkon37HIYPT7t1pkZz7wL/3FwZf/zhTa9etl9mx46wfr3A3r02cWcyueEv+f/pEtnF6enYggIZdetW5uefXTfq5CYZ+gxWXVhFbIdYno18lqZhTe/4vMuXzZw4ocZq/e8aOUdz5YoHCxYEkJdn30ub1QpXr3qgVqsZPjyFpUsv4On535uQp0OeZkTMCFY1X8WkI5MwW12/azs62iCNPHnEEMS7LbeTeGSwWCA8XKRt2wwmTChZJ6JOJ7Bvnw+xsb7s3etLQYGMmBiRnj1tkblatVxfI1RcRBGeeEJEodCxaNElt/Z/zG9j2JO8h8GVB/Nardf+8/i1a0r++ktza1vG2LEVCA83M21aJunpMtq3L8dHH12jbt18Ll5UkZSkpFEj+0coN2/24623ynHtGoSH//3vP/0E3buLNG6c57aRO7PVTK/tvdjQeoPTbBYWCvz2WxCPPZZNaKhrN8H0iuvFhFoTeDLkyfs+12q1DchVqTQsWKChT58MNBrH/0137/Zh0qRybNt2FrXafvYWLAjhhx8C2Lo1vsg/x+L4xfyV+RcfP/Wx3fwoCRs2+DFlSjgFBa5vQpNwDlLEToL9+yElRSj2tom8PBlbtmh55ZUImjatxvjx5UlK0jJxoozTp+HMGYHp0+Hxxx88UQewcSMcO+a+0bp/8l6995Ahp6lqKGCrAxo8OIrDh/3QaDQcPx7A22+Xw2r1QBAE2rTJ4umns9HpdGg0+ezefZa6dW1CLjra4BBRBxAb60uDBuJtog4ejMidQqZAJVM5dS+vWi3SuXO+y0Xd+8fep3Zg7SKJOvh7R++xY1a+/jqECxcctCrnXzRtmsf+/eftJuoKCmR4eHgwYEAuH3yQWCxxOrjqYLKN2Wy5usUuvpSUqCgDoiiQ4LoZ2xJORhJ2EqxbByEhtrET9yM7W86GDX6MHh1Js2bV+N//IsjN9WXqVBnnz9uE0DvvQLVqTnDcgVittp2wDRvmU7++6wfD3sRoFNDpbKLn9GlPJk4sh8UiJ0wbRnBqN776uCaenp5otTLCwozI5UZ0Oh0tWqTy+++nkcmMiKJI5845NGni3JrBggIZv/3mQ8+edxZtD4K4axfRjm/PfsvupN3svLHT4fYOHvRixw7npzT/yeG0wxxJP8Lbdd4u9murVdPz669nefxxHSqVJ7t2+eDIHJEgCJjN9hHBK1cG0Lt3ZbKyzPj46GnYsKDYZ8xrNI95p+c59Wbg30RF2eozpc7YRwdJ2D3iWK22bRMtW+bcdT5berqc1av9GT68As2axTBlSjii6M3s2QJXr8LBgwJvvGHblvGwsHYtnDwpMHp0qkv9OHDAi/XrbV2kcrmSJk2qsXlzGTQaDYKgIinJg6wswVYsHn4AZZ/n0Ov1WCxmZs68Tp06NlGqVot3rAlyJnv3emM02jqg74Y7i7udN3ZyIOUAqy+t5rUDr7EveZ/DbW7a5MfCha6rr9OZdUw+MpkFjRaU+AxfXytWq5U//hAYOzaSo0cdE70TRejYsTJbtpTu9yWKIJfLad3aRL9+afetG70XGoWG6XWnM2rfqFL5VBq0WitBQWbOnnWZCxJORhJ2jziHDsH16wKtW9++TSE5WcF33wUweHAULVrEMHNmWby8vPj8c4EbNwT27hUYNw4iIlzkuAOxWGDKFJFGjfJuCSNHcvCgF/Hxttlvp0+radEihpQUXzQaDYcO+bF5sz+CIGCxmJg69RoNGmSi0+moVi2HpUsvEhRkK9CWK6wcyNrhFMFREmJjtdSpIxIVde/nuau423x1MwfTD2KymjBajdQKrOVwm7NmpTBv3hWH27kbL/32EqOrjyZYXfrp6LVrF7Ju3TkaNjShVCq5csW+IzhMJoFu3fJvRahKQlycL0OHVsRohKCgPPr3zyx1GUa94Ho8EfQEM4/NLN1BpSAqyiBF7B4hJGH3iLNuHQQEmHniiQISE5UsXhxE//4Vad06hrlzwwgO1vDttwLJyQJxcQKjRkFo6P3PfZBZtQrOnhUYM8Y+0TqzGS5eVKHT2T5umzdree218qhUKjQaDe+/H86mTcEoFArKlDHSvXsmoEOn0/HSS9dZvPgiN3uc2rbNveMe33R9OgarAaPVyHtH3yOpIMkuvtsLvd7WXHO3NOy/cUdx92GDD2kW1gwZMpQyJTFax2/5UCgUqFSuibQuTViKj4cPncp3stuZVaoYMBqN/P67ki5dKnP8uP2q+T08RMaOzaZGjZJ39kdHyyhfvhCj0b7r2/5X+38cTT/KobRDdj23qERF6aXO2EcISdg9wogirFwpEhZmpG/fSnToUJX588sQHe3J8uW27Q9btwoMGfLo7Bk0m+Hdd0WaNs2jZs3iLZ2/WfsGsGxZIBs2+KFUKsnO9uHZZytz6pQ/KpUKHx8RrdaMXm9Ap9PxzTcXGD/+GmazmcBACy+9lEqZMrYoXFGjBTtv7CTDkAHAdd11Rv42sli+O5rffvNGp5PdMw37b9xN3MkEGR82+JDGoY2xWq2U9y5/6zGdWcfe5L0UmIpfh3U3EhM96NOnHJcuOX+47KW8S6y9tJa5DeY65Pw6dXTMnp1Igwa2GYE3b3pKQ3y8ivj44p9z4oSaadPKoVB4EB2dzbvv3rBrR+1NFjyzgMlHJqMzO79mNzraQEKCLRsh8fAjCbtHmO+/h2vXBC5cUFOrlorVqyEtTWDDBoEBA8DPz9UeOp8VK+D8eYExY1Lu+TyDQWDlygAuXrRddDdtCuKZZ6rj4aFBrVZz5Yqaa9dUmEwmAgLyWLToEtWqZWEwGGjWLJcpU27cEm1BQZZSz/M7mXWSx/wfw1fpy4SaE/ji6S9Kd6CdiY3VUr26SNWqxXudO4q7T5/+lBB1COsvrmfK4SkM2DmAbrHd+N/B/6G32G8wrm0MkQkfH+deja1WK+P2j+Ojhh+hkDlmhr1cbos+6/WFnDihoW3bqsTHl65JZMGCEKZNK/4dqMGgJiHBg4wMx/6egzyDGFtjLC/99pJD7dyJqCgjBoPA5ctONy3hAqQ5do8whYXw/vswfjxoXT//1OWYTFClikjFinl88slVsrPl/PmnhmbN8pDJYNasMHJzlXz8cTomEzzxRAWmTEmmQ4dMrlzx4K+/1LRrl+vSGWwzjs6gml81ukd1d5kP/8ZoFGjatBqvvSZj6tSSneEuc+4u5V5i5rGZJOQkEKAK4GLeRazY0nZapZaPGn5EvaB6yO7WiVRMVCoVBoNzt068duA1qvtVZ1jMMKfYy8uTsWJFIOPGFWA06hDFko1H0utVZGRYi7TtIjVVwc8/+zFyZAGFhYUltlkSXv39VWoF1GJw1cHOMQgkJytp3boqW7bYbpYkHm6kiN0jjFoN06ZJog5som7IELh8WaBevUI8PT1JSPBj3LhIMjK8kMvl1Kypo27dPHQ6HSaTjv37T9Ohg21lVmSkkc6dc1w+WLdl2ZbsTd7rUh/+zYEDXuTny+jZs+RnuDJyZ7Ka+P789/Tb0Y8BuwZwIO0AfSv1ZUObDcyoN4MwtW3FWIAqgO8ufEfvHb3pGdeTwbsHM//UfM7nnC+SnX+n6JKSlOTkOHdzwbbEbWToM5wm6gB8fKyMGpWG0ajjxg0f+vSpxNWrxU8/+/vLirzC7OhRLUuXBpGYaKtXdeacyrkN5rL+8nou5l50ms0yZUxoNFapgeIRQRJ2Eo80ZjMsWwYxMSIrVtj2PpYpY0Cv11OzZiY7dpwlKKgAi8VChw45dO+edeu17rgO7cngJ0ksSHS1G7cRF6elUiWRx4q26eyuuErc6cw6vjv/HSeyTpBrysXfw5+ukV0B6BTZiQXPLCDKJ4rGYY359KlPWdtqLWtbrWXqE1NRypR8cPwDesb1pEdcD8b8NoYV51b8Z67ZjYIbdPilA7tv7L71b6+/Xp733nN8p9LOGztJKkgiQ5/BJyc/YcEzJR9tUlpMJgORkQYiIoqXAj571pM33wwhO/vuH0qjUWDXLh80Gg1t22aweXPCrX3IzkQmk/Fxw48Z9/s4rFYrJzNP8lfGXw61KQi2zlhp5MmjgZSKlXgksVhg9Wpbo0RCgkDLlrnUqaMnLExPdLSM/fvlvPBChqvdLBE943qyttVaV7sB2IRzixbVePFFOe+/b58zXZGWvZ5/nc6xnTFZTcRoY1jTas1tj+vMOkxWE1qPu4e/rVYrJ7JOEHs9lmMZxyi0FCJDRrRvNBqFhrWX1hKgCqBbhW6MqzGOCxe0WK0GqlQxoLfo2XxlM1fzrzK+1ni7/mwDdw0kpTAFq2hlWt1pNCzT0K7nl5T8fB9mzNAyYUISAQH3FmAHD3rx2WdhLF584a7vh40bA3jvvVC2bk0gJMT1O1wXnl3Ij1d+JNeUy1NlnmJmffuOQ3nr0Fu0KNuCZmHNUMgUTJxYjsxMLfv3u77DXMKxOKYyVkLCTbFaYf1621aJM2cEmjbNZ/r0FKpX1+Pp6Yler2fRoiB27fKjb99Ml6dWS4KXwovrBdcJ9wq//5MdzOHDXmRlyYvVDXs/bkbuune3Re4cLe6MViNj9o9hdv3ZrLq4iiDP/xboaxSa+54jk8l4PPBxHg98/Laz9yfvZ9bxWQBkGjJZFL+IzVc2s6DZApJykvh8/1ou5F7gRsEN6gfXt98P9v/km/K5rruOUlCy/vJ66gTVQSVX2d1OcTl/3sz5854olUrg3sLuyScLWLXqMmbz7e8DUbSNGqpRQ6Bbtxxq1853C1GXacjkt5TfuJR/CRGRlMJ7N2uVhPiceLZd20a4Vzg1/GqgqjycM983RxR93H5FokTpkCJ2Eo8EogibNtkE3YkTAo0a5TFmTOqtkSZZWXIuXvSjRo1MPD1FjEYBPz816emFTllebk8+P/k5GqWGoVWHutoVpk8P48CBAC5fFux+MXFG5M5qtdJ/V396RfWie1R3zFYzBosBL6V9tyf03t6bq/lXCfIMIkgVhNIUiDmtCifU32Cw/t084aPwIcY/hjB1GJHekVTUViRGa/vv+zVsHEo7xPSj05nz5Byq+tnakwvNhbT7pR2ZhkxUMhXlvcszt+FconzuM0XaSdxsarBYvFi8WM3Agekolf99nl4vx9Pzv+Jv82Y/3n03nC1bEggLc+2+3X+yN3kvHxz/gGv517BipaJPRTa22Xjr8T1Je3jv2Hv80OIH/FX+9zzLarVyOf8y8TnxXMi9QGJBIkm6JM5mn6XQYvt+ExDwxJfCb7aR8mcDQkIc+dNJuBopYifxUCOKsHUrTJokcvSoQIMGOpYtS/nPRokjR7x49dUwdu7MxtPTgoeHSHq6nn79KtOrVzr9+2e66CcoPm0j2vLhXx+6XNhZLLBjh5bnn7e/qAPnRO5G7x9N07Cmt7qMFTKFQ0aA9I7uTXW/6sT4xSATZGzb5svMr8ryW9wwFp77ig2XN5BcmEy3yG70qdTn1kV8x/UdfHfuO/JMebedp5KrKKMuQ3nv8kT5RBGjjSE+O55LeZcY+dtIWpVtxYRaE0jITiDLkEWUdxSDqwzm2QrPIhPcp/T65vvmt98Eli0LpmPHPMLCbu8StligSZOqvP56Er1722pg8/JkBATI6dJFj1Z7xa1EHUDj0MY0CG7AwviFrLu0jst5lzFYbCn3yUcmczjtMBbRwtW8qyTmJ5KQk8ClvEtc010jtTAVs/XvqKOAgJ/Kj7KaskR6R9KpfCditDFMPjKZfSn7iPSOZETVEdSw9KLr9cqcPYsk7B5ypIidxEOJKEJsrE3QHTwoULduAWPGpFK//p0HyFoskJ7uRUhIwW0iZNmyQNq2NVGmTO4dX+eu9IjrwbpW61zqw5EjGgYNiua33+Dppx1nx1GRu7cPvY1KrmLyE5Ptcl5xkcsVWCy2C/iNghuM/2M8fSv2pUtkl/u+NsuQRXx2POdyz3E5/zLXC65zOus0Wca/m3+UgpIK3hWI8Ythev3pyAU37Ab6B/n5Mvz8ZFgscnbu9KBZM5uYNZkEdu8OolKlHCpUMLJjhw9TppRjzZoLhIb+d0uLu1FoLmT43uEYrUYSchKwiH9HHiM0EVT0rUi4dzhR3lFU9q1MjH9MkVL/M4/NJF2fzrtPvIuvhy8mk0D9+tWZN0/gxRcd+ANJuBxJ2Ek8dOzcaRN0v/0m8PjjOsaMSaFhw4L7Ro1kMhlW651XCcnlGrZuVdC27YMh8HrE9WBty7UILiymmTUrlO3bA7l2TcBOY93uir3F3acnP+V87nk+f/pzO3lYPARBwN5fzWP3j2VP0h7KepUl2iea3lG9+ebsN5TRlGFuQ8dsmHAEP/2kZdKkcmzenHBrvIlaraagoBC5XMBk0rBsmZoXXkhH8QDkpMxWM91iu9G4TGOq+Vdjw+UNXC24SkphCi9Vf4kXq9lPhXXuXIWuXT34+GO7HSnhhrhPzF1CopTs2wctWoi0aAE5OXrmz7/M8uUXeeqp+4u62bPLsnWr910f37xZyVtvlePatTsU+LghIZ4hnMo65TL7ogjbt2vp3t3xog7sOwpl1YVVHE47zKcNP7Wjh8Xjuecqsm7dvWurisvjAY/z5uNvsq7VOuY1mkfTsk0p712e2OuxvH7gdUxW90pX3o2OHXNYu/Yc0dEyZDIFGzZo+eYbH3r3rkxengqFooAhQx4MUZdjzGHIniFczr9MzYCadI7szKKmi1jTcg0jY0ZSzqucXe1FRek5fVqK5TzsPABvfQmJe3PggK0pIjZWoGpVA599lkKzZnnFquvKzFSi0909FdWhQw41axZSpYoSnc79L4BPl3ma2OuxPBZQyuFxJeTkSTVJSUq7dsPeD3vU3MVdj2P1xdWsbrnabtsjiovVCs2b64iMtO/GiTsNHbZgQURk2/VtJO1K4rOnPyPQM9Cudh1BdLQRgwE2bfJn8uSyBAVZeOKJPMxm9/9s3iQhO4EJBydwMc82qDjfnH/rMX+VP2NqjLG7zagoA7GxPnY/V8K9kCJ2Eg8sR45Ahw4iTz0Fly4Z+eijq6xefZ7mzYsn6gA++yzttuHDdyIiwkhBgY4FC8L55pvgUnjueNqWa8uf6X+6zH5srC9BQSKNGzvXbmkid8fSj/HJyU9Y0XyFw3akFgWZDF59NZt69Ry/LF5v/nu37TXdNZafX+5wm/YgPV3Bjz/60bVrIQ0aFJKermD/fl/WrvVHp3swLmufnfqMTMPfTVm5JseXeURHG0hMFCi4c6mxxEPCg/EJkJD4B8ePw7PPitSrB/HxRubMucq6dedo3Tq3RGk/o1HAUsQB9DbBaMTLy72D3SHqkFujDpyNKNq2TXTrJrgkHVYScXcl7wr/O/w/ljRdUqTCdEdy44aS+HjnpPz1Vj0RXhH4Kn1Z8PQCXnnsFafYLS179gQwZ04YOTlGJkywzYDr0EHOggVlaNeuKosXB1FY6N7D2r5o9AUjY0YSoAogUBVInjHv/i8qJVFRtihwfLzDTUm4EEnYSTwwnDoFvXqJ1K4Nx46ZmDnzGuvXn6Ndu5IJupusWeNP3bqR3KVv4j+MGpVGv35JaDQaLl4s/k5LZyEgYLaayTXm3tZp52ji4z1JTPRwahr23xRF3G24vIFCcyEZ+gxG/jaSeU/Pu+PwYWezenUAQ4c6fpUYwPia41nTcg2T60zm2/hvnWKzpHz9dTDffBOGSqWic+c0fvopHl/fvz+0b74J584J9Ool47PPytChQ1WWLw9Er3dfgffj1R/5vvn3rG21lh5Rjv/A3BR20mqxhxtJ2Em4PfHx0K+fSM2aIr//bmLatGts2pRA587ZdtnX2rBhAW+9lVJscXjihIXu3SuzY4d71awk6ZL49OSnpOnT6LStEx23dSStMM1p9mNjffHzE2ne3Gkm78i9xJ3JamLe6XkM2j2IF3a9wPS604n2jXaht38zeHAa8+ZddoqtKtoqeCm9aBvRlvN55zFa3Ws8SG6uDKNRQKVSoVTaxr8YDAaUSvE2UXeT8uXhq68EEhIEOneWM3duKB07VmXlygCMRvcSeOdzzqOQKQj3CifIM4gI7wiH2/TxsRISYubMGYebknAhkrCTcFvOn4eBA0WqVxfZtcvMpEk32Lz5HN26Zds1xVepkpFOnYo/gLhiRQMffphI+/bOXyR+L3QmHRsvbyTDkMF13XVCPEMI1TgnAgS2btguXcDDDYKZdxN3x9KPkW3I5nT2aQwWA+Ea169fu0lQkJzKle3bOFEU2pdrz+cnXTPe5U7k58vo2LEqGzeGYDAYGDw4iZEji3aDEhUFixYJnDkj0LatnA8+CKNTpyqsWeNfqo5pe/LB8Q949bFXnW43KkrP2bNSZ+zDjCTsJNyOy5dh6FCRmBiRX36xMHFiElu2JNCrV5ZD1kZt2hRIYmLJappatcrFYNBx+bIfy5a5RzdhRW1FXnnsFXyVvgBO3Rl74YKKCxdU9OjhHhdPuLO4+/Hqj7dWdeWacplwcIKLvbRhMsHkyaHEx3s63fbwmOHsStrldLv/RKeTsXatP0qlB8HBKt588wbNm2eU+LzKlWHZMoGTJwWaNlUwfXpZOneuzIYNfphduDI225hNpiGTesH1nG67QgWDNPLkIUcSdhJuQ2IivPiiSOXKIps2WRg/Ppmffoqnb99MPDwc80VUUCBjypQynDhRuoL5nTsV/PKLv9uke56t8Cxty7UFoGV4S6fZjY31xdtbpE0bp5ksEv8Wd79e+xUvhReNyjTi44Yfs6zZMle7CEB2toJTpzxd0tmpkCmoGVCTtRfXOt32TRISfJg5sywnTwoUFhbSqVMOwcGlV2DVqsHKlQJ//SXQsKGSyZPL0bVrFTZv1ha5ccqezDo2i/6V+jvfMLbO2PPnBZcKWwnHIm2ekHA5N27A++/D11+LeHlZGTw4jeeey0Cjcc5bU6nUUFBQWGrxaDAI+PurycwsxNPT9R8ri2ih8Y+NWd9qPYHqQK4VXON8znmOZx6ne4XuDqkp69mzEnXqqFi50j0E7r/56Sfo+uJxfHuMZ12/aQR5+brapf+gVqspLHRNR3OuMZeBuweyofUGp9n86Sctf/7pw8yZGRQW2kaXBAUVXXXEx3vRs2cUR47AE08U7TXHjtlmX27eLBAdbWDUqBTatCldE1ZRublpYnPbzY43dgcOHPBi+PAoEhJsEU2Jhw8pYifhMlJS4LXXoGJFkeXLLYwcmcrPP8czeHC600QdgEIh2iUiqFKJpKcX0r9/Zb77LsAOnpWctMI0FpxegFqhpteOXjy58Ume2/4cr/3xGhuvbEStUNvdZmKiB/Hxnm6Vhv03HTvCxq8eJ//LWN57+zG3qbe6idXKXdfaOQNfD1+CPIM4lHbIoXaMRoG8PBlKpRIPDw+MRpG8PJuYLY6oKym1a8OPPwocOgRVqngwYUJ5evasRFycb5G740vK12e/pllYM8cauQdSZ+zDjyTsJJxOerptNEF0tMg331gZMsQm6IYPT8PLy7kXtWXLApk0yX4iTKMR6dIlg+bNnZ/fSdIlMfHgRHpv70332O58dfYrOkR0YEvbLUR4Rdyaa2e0GNmfvB+z1b4X0NhYX9Rqkfbt7Xqs3bHn+jF7M2lSOKNHl3GpD/97/H98cvITh50vivD88xWZPz8ck8lE69ZpTJ9+3SUzD+vVg59/Fti/HyIjVbz6anmee64Su3b54Khc1s+JPzP2sbGOObwIhISY8fa2Sp2xDzGSsJNwGpmZ8M47EBUlMm+elQED0vjll7OMGpWGj49rohReXla8ve27hmjgwAzKls1BqdQQF+e8VJ+nzJPT2ac5k32GbFM2YeowRlUfhdZDy4rmK6juVx2AduHtOJl1kt7be9N3R19WnFthlzEXcXFa2rUDL69SH+Vw3FXctW+fR/v22S71Ido3GrPVzLX8a3Y702yGzZv9MBiUeHlpePHFFHr2TLXb+aXlqacgNlZg924ICVExdmwk/fpVZO9eb7sKvJ8Tf6ayb2U8ZK5rGRcEW9ROEnYPL5Kwk3A4OTkwdapN0H30kZXevdP5+ed4xo5NRat1XdoJoE+ffF5+2TEXmM2bFbz5ZgRXrzrnS9zf059OEZ1QCLbQR4xfzK0tCr4evnzb5FuqaKswNGYoU+pOYX3r9Xz61KckFiTSZ3sfntv+HAvjF6IzF3+VVVKSkhMn1G6dhv037ijuWrUy0qaN41dL3Y8x1cfw/vH37XZeRoaKd98NZ+9eNTqdjhYt8qhY0fkjXe5Hkyawa5fA9u3g4+PJ6NEVeOGFaH7/3csuAm9h/ELeqvNW6Q8qJVFRes6ccX0dsIRjkISdhMPIy4Pp71kpXz2Z99+30rVrBlu3xvPqqyn4+7t+9pvZDKmpKoelXNq1y2X9+nPExDgnxzT/9Hx2Ju1kSdMl+Hv4M6TKkNse91H6sK7VOiJ9Im/9W4g6hP/V/h/rW6/ny0ZfkmvM5YVdL9ArrhfzTs0j35j/bzPoLXpuFNy47d/i4nzx8BDp1MkxP5ujcCdxl5srIy7Om4IC138tNwlrwrWCayUS+Tc5dEjDq6+WR6XSEBpq5Oef42nVyvWi9X4IArRoAb/9JvDLL6BUqhkxIoohQ6I4dKjk3fMnMk7grfR2i+0mUVEGzp7FYd99Eq7F9d8gEg8dBQUwe7YtQjd9hgnT4Cf4YdMhJkxIJijI9YLuJpcvq2jSpAJ//um43aCRkUZ0Oh0LF5blm2+CHWbn3SPvciLzBN81+47HAx9nZYuVPB74eLHO8Pf059War7K21VoWN1mMgMDgPYPpEdeDj058RJY+C4BNlzcxYNcAzuWcu/XauDgtrVqBVmvXH8spuIu4O3VKzahRoWRkuMce4h4VejD3r7nFeo0oQk6OHJlMhr+/isJCgeRkA6IoEhLyYM3XEARo2xb++ENg82YwmzUMGRLN8OEVOHas+M1HH574kDdqveEAT4tPVJSBnByBlBRXeyLhCCRhJ2E3Cgvh449tTRHvvCPSsmUmWzdfxqrKZOTxriRkJ7jaxdsICzPxzTdJxMToHW7LaDShVNp/sbvVauWl317CbDWz4JkFyP5/XkO4VziCUHKB4u3hzegao1nTag3Lmy1H66Fl5G8j6R7bna/Pfk2aPo2x+8dyNvss6ekKjh5V07On61OZJcUdxF3DhgXs33+J8HD3WOs1oNIADqYdJE2Xxqzjs8gz3X9J/dtvl+ONNyIRRZFKlbL48ssrbhGdLw2CAJ06wZ9/CqxfD/n5Xjz/fEVGjozkxIl7C7zzOeeZd2oeifmJFJgLqO5f3Ule35ubnbFSnd3DiSTsJEqNwQBffGETdBMmiDzzTBabNycwaVISoaEm/FX+JBcmM2b/GH5J/MXV7t7Cy8tK06b5TunEHTUqjUGDbqDRaLhyxT41d2armRd2v0BlbWXeq/+eXc68ExqFhqFVh/JDyx9Y1HQRBovtonBdd52Buwcyf/vvyGTQpYvDXHAKrhZ3ggD+/ga77D+2B+fzzmOwGHg29lm2XN1y6+/+T0QRfvvNmxs3VGg0Gnr2zGbYsGQexvGoggDdusHx4wKrV0NGhjf9+lXkpZciOXPmzptC0vRpfH32a3rE9cBH4UNSQZKTvb4zERFGFApRGnnykCIJO4kSYzTCV1/Z5tCNGyfy5JPZbN58jqlTbxAebus0tYgWBGwXyOTCZGYem/mf+ixXsWWLlthY53annTxppmvXymzf7lOqc3RmHb2396ZT+U6Me2ycnby7P/uS9yEiUt6rPDX8ahCqDuWn/C94qnUyge6xUa1UuFLczZkTyg8/lO59YS8y9BkM2zOMpMIk8sx5qOSqW404/8RolPHOO+XYvFmLTqfjiSfyqV+/5HV5DwIyGfTqBSdPCqxYAdeve9O7dyVeeaU88fGq256rVqhRCAoKLYUczjjMoD2DsIqubRgDUCqhfHmjFLF7SJGEnUSxMZlg0SKoUkVk1CiRWrVy2LjxHDNmXCci4vY0kt6sp9BSSKg6lDBNGJvbbqasV1kXeX47v/7qx65dzr2QRkcbmTUrkfbtS56eSi1MpVdcL8ZUH0Ofin3s6N39aRzamI2tN7Kl7RZWtVzFkvpbMHx+mAFdw5zqhyNxlbgzmRSYze6Rzg70DGRJ0yVU9KkI2GYfesptUanLlz146aVITCZv1GpYufICI0a4z+gSZyGXQ//+cOaMwJIlcPGiDz17Vub11yO4cMEm8NQKNaIgIiBQO6A2P7T4AZngHpddqTP24cU93mESDwQWCyxbBjExIkOHQtWquaxff57Zs68RFXXnuiAPuQcTak1ga7utaOQa5LhJngn4+usUJk1yfvSwTZtcjEYdiYlaVqwoXpjrfM55Bu4ayMz6M526A/YmWg8twergW/V7O3faJvV37ep0VxyKK8Td9OkZPPdcpsPtFJVo32iWN19OTf+a5Jpyycu1NXUEB6vIy5Nz9aoJq9VKaKiJUpRzPvAoFDBwIMTHC3zzDZw+7Uu3bpWYOLEcGUm+mK1m2pVrx6Kmi/BT+bna3VtER0uz7B5WJGEncV8sFli5EqpXFxk4ECpUyGPt2vPMnZtIpUr3nkWllCnpEtkFpUxJ7+jezDkxx0le3x+ZTObSC1JcnJIffwzAYCiaEwdTDzJ2/1i+fObLYne8Ooq4OF+eeQbKuHZZgkNwprjT6wWMRvf7OvZR+rC8+XK0xsr0GuaB1SrHyyuPpUsvuuUcOleiVMKwYXDunMC8eQLHjml58XUPgnKbM7bsxyhl9m+eKg1RUUauXxfIu39PjMQDhvt9k0i4DVYrrF0Ljz8u0q8fhIbms2rVeT799CpVqxa/k7RPdB+OpB9x6S7Mmxw44EWHDuFkZrougjh4cDpLl57H3199R3GXZ8pjxN4RGC1Gfk78mWlHp7Gi+Yrb5tC5ktxcGQcOeD/Q3bD3w1ni7ueftdSqVaHIIt8ZnD3ryalTnvh4+fDe45+R0ac2ifmXXO2W26NSwahRcP68wEevPo3wXSxdulTh3XfLcuOG+4i76Gjbd3h8vIsdkbA7krCT+A+iCJs2QZ06Ir16gVZbwIoVF5g37wo1apR8NIhMJqNRmUYsSlhkR29Lhp+fhXr1CtFqXTuKQa0WycwsZODASixffntaduX5lfyR+gc943ry7dlvWd1yNYGe7tOhsHu3DyaTQPfurvbEsThD3NWrV8D77yehUrlPzdPMmeVYtiwEnU7H0zEhIDMxYFd/vjzzpVs0ALg7np7w6jglly7K+OADgT17/OnUqQrvvRdGSorrZxVWqGArn5HSsQ8fkrCTuIUowtatUK+eSNeu4OmpY8mSi3z11WUef7zQLjZeeewVNl/dbJezSkNMjJ63305yi9ESnp4i7dpl0qzZ7QNct9/YjhUrl/IvUcm3Emp58YeiOpK4OC0NGoiUK+dqTxyPo8VdRISJdu1cW1+XnS3njTfKkZjoi1KpZM6cy8yYcRUAuSAn2DOYbFM2X5/5mud3PU+yLtml/j4oaDQwfjxcvCgwbZpAbGwAHTpU5YMPQklPd53A8/Ky1UdKI08ePiRhJ4EoQmwsPPWUSMeOIIqFLFx4iYULL1G3rn1HF6gVasp7lWf7je12Pbe4nD2rIT3dpS7cxqBBGURE5ODhoWH7dh9OZZ0iIcc20FklU3Eo/RB/Zf7lYi//RqeT8dtvD3ca9t84Utxt2BDE+fOq+z/RAeTl2S4DQUEq0tI8uHbNgslkokwZM4p/6A61wnZjIQgCvh6+blcz5u54e8PEiXDpksA77whs2RJI+/ZV+PDDUJeVhFSoYJA6Yx9CJGH3iLNzJzRuLNKmDRQWFvLVV5dYuvQiTz5Z4DCbb9d5my9Pf+mw84vCyJHlWbUqwKU+3ImfflLw2uvlGLv3NbyUXnQp34UvGn3Btvbb3KZhAmDPHm8MBhk9erjaE+fiCHFnNsPs2cEcPeq41XZ3Iy7OlzZtqpKT44nZrGPx4os89dSdP/sWq4UYbQx+Hn7MqT/HrcoCHiR8fWHSJLh8WeCNN2SsXx9I+/ZV+eSTMmRnO1fgSZ2xDyeC+DCOCJe4L/v2weTJIjt3CtSoUcjo0Sk0bpzvtC7RATsHMLnOZKr4VXGOwX9x44YvcrmOMmXca3/l2eyzvLTnVV6pO4ZO4Z1c7c5def31CFJSfDl69NGJ2P2Tn36C7t1FGjfOY86cRJTK0n2NenpqyMvT4YCtc/8hKUlJYqIHTZtaycgQ2bBBQ48eWXh63vtniM+Op7K2Mr9c+4WtV7fyRaMvHO9sEYiP96JnzyiOHIEnnnC1N8UnIwPmzoXPPhMRBJH+/dN54YV0fH0dX8e4alUAs2aFodMJTnnvSTgHKWL3iPHHH9CmjUjjxnDjhoFPP73CypUXaNLEeaIOYHzN8Xzw1wfOM/gvKlUyu42oyzfls/DsQp7b/hx9d/RFTx6dwjuxdGlZvvkm2NXu/Qe93haxepTSsP/G3pE7QRCddmH96qswZs8ui05XiEajp3//zPuKOoCqflWRCTI6RHQgtTDV7XY/P6gEBsLMmbYavJEjZSxbFky7dlX58stg8vMde4mOjjZgNgtcvOhQMxJORhJ2jwhHjkDHjiING8LFi0bmzr3K6tXnadEizyWz3OoE1SHbkE2WPsvptn//3YsPP/TDXWLV434fx2enPuN09mnMopnmZZsDoNOZAOeuPCsK+/d7o9M9emnYf2MvcbdyZQDjxoXY2bu/MZlg1qxQ9u8PQKVSMXbsdZYuvVCqz/179d/jncPv2M9JCUJCYM4cm8AbMkTOt9+G0L59Vb79NgidzjGX6qgo2yxCKR37cCEJu4ec48fh2WdF6tWD06dt66zWrTtHmza5yFz813+h8gsuidpdu+bBoUOebjMtf16jeUR4RQDgKfekc/nOAIwalcbw4dfRaDQkJrqPwIuN1VK9ukhMjKs9cT32EHf+/mZCQ0s+RuhuFBTYPuA+Pp6kpHiSnCxiMBgIDLTg5VW6NF8VbRWC1cFsTdxqD1cl/kFoKHzyCVy4INCvn5z588vQrl1VliwJpLDQvl9aQUFmfHwsUmfsQ4Yk7B5STp2CXr1EateGo0dNzJhxjQ0bztGhQ45bjPgA6FqhK6ezTmO2Ojcl2qtXFosXu0/uYeeNnagUKlqXbY2P0oc6QXVue/zMGTNdu1YmNtbXRR7+jckksHv3o52G/TelFXcdOxbwyispdvUpPt6Tli1jOHdOi16v56OPLtO9u32j47Pqz2LeqXluMXD8YSQ8HObNsw067tFDxqefhtKhQ1VWrAi02yBrQZAaKB5GJGH3kBEfD/36idSsKbJ/v5mpU6+zaVMCXbpk3za6wF1oUbYFC04v4GreVWKvxTrFpkLhPlXCB1MPMv/0fJY3W87chnOZ23Duf8ZIREYamTEjkfbtXV8TeOCAF3l58kc+DftvSirurFZITNRgMpXeh9xcGXv2eKNSqXjsMRg+PJXg4PzSH3wXvD28aRXeig9PfOgwGxJQvjx8841AfLxAp05y5syxCbxVqwIwGksv8KSRJw8fkrB7CLBaISEBBg4UqV5dZOdOM++8c4MtWxLo3j3LbbudRFGkQXADlp1bxgu7X2DVxVUOt2kwCNSvX4nt230cbut+nM85z5QjU1jadCkahQZBEKgTWOeOz23XLhezWUdSkpbvvnPdmJa4OF8qVhSpWdNlLrgtJRF3yclK2raN5PffvUttf+PGECZOjCAz04TJpGfo0HT8/By7WWVcjXHsSd5DtjHboXYkIDoaFi8WOHNGoHVrOTNnhtG5cxXWrvUv1Y1BdLSBs2dxm5pjidIjCbuHgPbtoWpVkZ9+svDmm0ls2ZJA795ZpR7B4Gg+O/UZr/3xGnqrngxDBp5yT4fbtFgExo7NplIl1y4wTy1MZez+sXz5zJcEeBZdqP36q4L164PsXmtTFMxm2LlTS8+egtvUJ7obxRV3AQFmvvvuBrVrl2wQ+PLlgaxZE4ynpyc9e6ayadO5UtfPFQeZTMa4x8Yx8eBEp9l81KlSBVasEDh1SuCZZxRMnRpOly5V2LjRD3MJgvpRUQby8gRu3LC/rxKuQRJ2DwHNmoGPD1itAuXKGd1q3+S9GF19NE3Dmt5alaUQHJ8r1misDBuWQ2Sk0eG27obOrGPw7sF88OQHRPpEFuu1AwdmsHz5OQID1XZJwxSHI0e8yMqS07OnU80+cBRH3Hl6ijz5pK5YM8v0egGLBZRKJampam7ckKHX69ForAQHOz9d3zq8NdmGbE5nnXa67UeZatXghx8E/voLnnxSyaRJ5ejatQpbtmixFCNQGx1tu8mVGigeHiRh9xDwv//ZOqieekrGmDEVmDUr1OkX/ZKglCmZ9eQsRsSMQCEo0Fv+7gy8kneFqUemMvnwZLvaPH3ak6NHXVdsaLaaGbBzAK/Veq3EmyQ0GpGsrEIGDarIsmXOm/4fG+tL+fIides6zeQDS1HF3datWjZtKvoO4JwcOR06VGXHjmBMJhOvvXaNcePs23hREmbWn8mUI1Nc7cYjSc2asG6dwJ9/Qs2aSv73vwh69KjML7/4UpS+lvBwIx4eotRA8RAhCbuHhOBg2LJF4LPPYPXqQPr3r8ilS+4zIuNeDIsZxsTHJ5JUkMRbh96iR1wPnt/1PGsvryXdUPKFriar6TaxCLBkSRAffOCaVUhWq5XBuwfTO7o3Lcu2LNVZKpVIq1bZNG7s2Bqqm1itsGOHlh49pDRsUSmKuDtwwJs9e+69SsxkEti+3QelUkloqAeDB6cRE5MN4DZ/i2jfaMK9wtlweYOrXXlkqVMHNm8W+OMPqFTJgwkTytOrl62e+F71cwqFrUFLitg9PEgrxR5Cjh2D554TSUwU+d//btC1a7bbXADuRJ4pjxf3vogcOYm6RLIMWVix3WpqlVrCNGGo5CrKqMsQ4RVBtG80VbVVifaNvuci8q1Xt/LxyY95q/Zbt4b+WixKMjNFl6SsXvrtJapoq/DyYy/b9VyVSsMvv8hp3jzPruf+kz//1DBwYDT79kGjRg4z81Byr/VjKpUKg+He9Z579/oxZkw4GzeeIzradSUE90Nn1tErrhffN/+euSfnMqb6GMqoyzjc7oO+UsxR/PYbTJkisn27QLVqesaMSaFJkzsPpH/ttQgsFl+2b3fjC4VEkZGE3UNKQQG8/LLIokUC7dplM3nyDXx83GvelM6sY97peWy7to3UwlSWNllKneA6bL6yma/OfsWV/Cu88tgrDK06lCx9FvE58ZzLPcfl/MtcL7hOpiGTf759ZYKMYM9gwr3CifKJ4q+Mv9icuBlfpS91g+oyvd50yviWQa+3RfEy9BnsStrFmewzvFPHsVP0pxyZgtlqZkb9GXY/e/t2H8aPL8/69Y678M+aFUpcXCDXrwsuH2z9IHI3cadWqyksLPzP8+PifImP1zBhQi4FBTouX/YgKsp9RR2ARbQwYs8ITmefxmg1srDJQmoH1na4XUnY3Zvdu+Gdd0T27ROoWdO2F7xRo9tXSH7+eQibNwdz44Yk7B4G3HCymYQ98PKChQsF2raFESO09OqlYdasRB5//L8XEVdwJe8KQ/cMJUVvqw8KVAVSxa8KAJ0jO9OsbDPeOvQWtQJqAeDv6U9Dz4Y0LNPwrmfqzXrO5ZwjISeBS/mXOJh2EIBcUy47k3bSdHNTgtO6I4QfQK4UMVgMpOvTecz/Mbv/fMm6ZNQKNVoPLfNPzSelMIUvn/nS7nYAWrbMY+3a8zz2mAKdzv4Xf1G0pWG7d5dEXUm5mZbt3t2Wlp0zJ5FTpzx5++3yfP31RcLDTVgsYDYLaDQysrI0XLyoJD9fh0yG24s6gN5xvbmUfwmT1TZ7I8/kuAiyRNFp2hT27BHYsQPeeceTUaMqULu2jjFjUmjQoABBsHXGJiUJ5OSAVutqjyVKi/Q1/ZDTuzccOyYQEaFk4MBovvkmuFgdU46ivHd5BlQagEqmAsBf5Y+X0uvW4z5KHz5/+nPqB9cv8pmeCk9qBtakR3QPXq/1OhV8KuCt8KaqtiqDKg/i6+q7iDjyLVFeVUktTCVNn4aIyJX8K8w6PosjaUfsNkX/oxMfMXD3QBaeWci+lH3Mf3q+Xc69G5UqGdDpdKxcGca33wbZ9exTp9TcuKGUumFLyb9r7jQaC61bFxAYaMZqheefr8iSJWWxWq307JnM3LmJD5SQntNgDlW1VZFjW22Toc+49Zgoiuy4sYOfr/5cKhvZhmw+P/U5OnPJxsM8qggCtGwJ+/cL/PwzKBRqhg+PYsiQKA4f1tzqjI2Pd7GjEnZBitg9AlSoAHv3CkydCjNmhHDggDczZyZSpozrNhkIgkCYJoyKvhWxiBaHzLDrVL4TY2uMpVZALYT/zzs0WZ6KXv8xO27sYPbx2VzXXWdUtVEoZUqWnlvK+8ffB8BX6Uv94Pq0K9eOKN+ou9pI0iWht+iJ8rn9OZfyLnEh9wJfnPmC5c2WI3PSFTo724woqux65q+/+hIUJNK4sZSmKS3/jNyZzdCzZy4KhYC3t5revTOpWFGPKIpuXRN7N6J9o1nRfAXzT81nYcJCTmWe4tnIZ9mZtJOvz3zNpbxLNA1rSvvy7UtsI8uYxffnv2db4jaal23OqOqjAK/7vk7ChiBAu3bQtq3Ali0waZKGwYOjqV/ftqHkzBl48kkXOylRaqQau0eMnTthwACRwkIr06dfo2lT16RLMvQZDNg1gHWt1qEQFFzMu0iMn2O3yut0Mry9BaxWW8gyMT+R0b+N5stnviTcK/y2517Ou8y2a9v4I+0Pcow5AISpw2hUphFtyrUh0NPWWfvxiY/ZfHUzr9d6nQ4RHQBIKUyhR2wPcky21/l7+LO65WpCNaEO/fluIorg5aXh3DkT4eGl21UlitCpUxXatPHgm2/s5KAEP/0EnTuLiCK89FIqL76Y5mqX7Mr+5P3MODaDlMIUjFYjIrbLjNZDS4RXRInPNVgMXMi7gFW0RdYVgoJKnrU5+85ujhzQSDV2xcRqhY0bYfJkkVOnBBo0gAMHXO2VRGmRhN0jSHo6DBkisnmzQL9+Gbz2WrLThxr33t6b12u+zpMhzrs9HDgwmvLlDUyffr3Yr7VarRzPPE7s9ViOZx7HYDEgIJCmTyPDkIGvwpeOkR2Z+PhEvjj1Bd/Ef0OYOoyqflUZVGUQTwQ+cStq6AwSE5V061aZ9967Rrt2uSU+Jz7ek549K/Hzz7Y7fQn7MW0aLF4scvmyQP36BYwZk0Ldug9+ijHXmEufHX0I8wzjuYrPsTBhIZfzLqOz6Ggd3pr36r1X4rOv5F1h2N5h5JnyiPCKoGlYU5rJxzG0b12peaIUWK0wdizUqAGjR7vaG4nSIgm7RxRRhPnzYfx4kQoVDMyenXirzsLRzDo2C7No5u06bzvF3k3++MMfDw8DderY5+JptBrp9EsnkgqTbv2br9IXlVxF+3LtGV199G11g85m61YtnTubsFhK/vN+8UUIq1YFk5oq4PFgjEV8oBBF2LwZJk0S+esvgaeeymfMmBS3aXIqLr8k/sJnJz8jUZfIxFoT6V+5P6Iosid5DwvOLKCyb2Wm15te4vOv5F1hyJ4hdCrfiRervYhGoZG6YiUk/oUk7B5x/vrLNvPu8mWRiROT6N49y6H1PUfSjvD+8fdZ22qt44zcBY1Gg05nv4hIjjGHTts6EewZTFlNWVqGt+TJoCfps6MPW9tvxUfpYzdbpSElxZft2xX065dZ7Nd27VqZRo08WLr0ASz6eoCwWmHDBltK7PRpgcaN8xgzJoUaNfT3f7GbMHb/WI6kHSHPbCvvmNtgLm3Ktbn1uCiKmKwmPOQlv0O40xmSsJOQuJ0HqOdKwhHUqgVHjgg8/7zAu++G8/rrEeTmOuZtUWguZNKRScxv5NgO0TuRmKhk3TpvDAb7CRQvhRerW65mfev1fNHoC7pV6EawOph8cz4Ddw0k35RvN1ulYds2JatXB6HTFe9nv3hRxYULKnr0kESdo5HJoEcPOHFCYOVKSEnxpk+fSowbV56zZ+3fWOQI2pZri5/KDwC5IMdf5X/b44IglErU2esMCYmHHUnYSaDRwNdfC6xZAwcP+tKrV2WOHSv6/sqi8tL+lxhVbRQh6hC7n30/jh3T8NZbwXaNRipkCsI0Ybf927WCayhkCs7lnmP43uEUmArsZ7CEvPBCBt9/f56gIPU9F9L/m9hYX7y9Rdq0uf9zJeyDTAZ9+sDp0wLLlsHlyz706lWJ116L4Px5+3Y725tO5Tvhq/Slc0RntB5avJXernZJQuKRRBJ2Erfo2dM2865CBQWDBkXz1Vf2m3m3LGEZ3gpvOkd2ts+BxaRz5xwOHTqHh4djKw/ic+Jv7ac9mXWSwXsGO9ReUdForGRnFzJ0aEWWLi3arty4OC0dO4LngxEweqiQy+H55yE+XmDhQkhI8KV790q88UY5Ll50z4hV7PVY/FR+zHxyJptab6Kyb2VXuyQh8UgiCTuJ24iMhN27Bd5+W2D+/BCGD48iObl04w4v5V1izaU1zG04105eFh9BEFAoHD+9/6/Mv/Dz8EMtV9Mtshuzn5ztcJtFxcNDpGnTbBo1ur9aT0xUcvasp5SGdTEKBQwZAgkJAl9+KXDihJZu3Srz1lvhXL3qPgLParXy2cnP+ODJDwDwU/mhkEljUiUkXIEk7CT+g0IBU6fCjh0CN25o6NWrMjt2lKwRwGq1Mm7/OOY2nOvSL/qxYyPZutXxu3K6V+jOqhareK3ma3jIPajgU8HhNovD0KHpVKqUjaenhj177p4qi4vTolaLtC/5LFkJO+LhASNGwPnzAp99JnDokB9dulRm8uRwrl9Xuto9Pj/9Oc+EPoOfh5+rXZGQeOSRhJ3EXWnaFI4fF2jSRMa4cZHMmBGGXl+8CM4bh96gS2QXqmirOMjL+yOKEBJixdvb8bvUKmsrE+4VTs+onvyZ/qfD7ZWUrVvljB0bede6rbg4Le3agbdUJuVWqFQwZgxcvCjw4YcCv/3mR6dOVZg2rSzJya4RePnGfH699isTak5wiX0JCYnbkYSdxD0JDISNGwXmzYMNGwLo378iFy4UrYh7W+I20grTGBYzzMFe3htBgJkz02nSxHldqgqZAg+Zx237Mt2JFi3yWLPmPLVqyf/zWHKykr/+UktpWDdGrYZXXrEJvJkzBXbs8KdjxyrMnBlGaqpzI+MTD01kVPVRTlubJyEhcW+kT6LEfREE2zTyQ4cE5HIVffpUZM0af+40AfH3lN/pu6Mv57PP8+mpT1nwzALnO/wvsrLkZGQ4X6S0i2jHovhFTrdbVKpUMaDT6Vi3LpRvvw269e9xcb4olSKdOrnQOYki4eUFEybApUsCU6YI/PJLAB06VGH27FDS0/8r2u1NQk4CKYUpdCovvVkkJNwFSdhJFJmaNeHwYYEXXhCYNi2c8eMjyMm5/S10IPUAJ7NO0ntnbzpHdEaj0LjI27/5/vtAOnQo+X7KktInug8HUt1/8WJqqoX8fM9bQj0uzpdWrUDr+JJECTvh4wNvvWUTeP/7n4xNmwLp0KEqH31Uhqwsxwm8dw6/w4x6Mxx2voSERPGRhJ1EsdBo4KuvBNatg0OHbDPv/vzzb/F2LvccACarieUXlvPlmS9d5eotunbNYvbsRKfb9VR4IhNk5BpLvqvVGYwalca4cdfw8tJw6pQnf/6poWdPKQ37IKLVwpQpcPmywGuvyVizJoj27avy2Wch5OTYV+BtTdxKsGcwVfxcVz8rISHxXyRhJ1Eiune3NVZERysYPDiKBQtsM+9uFNwAIEwdRsuyLekT3cfFnkJkpEj9+q4ZFNwyvCVLE5a6xHZxEAQ4dMhKv37RADz7rIsdkigV/v7w3nu2CN6YMTK++y6Ydu2qMH9+CHl5pf/at1qtzDs1j1n1Z9nBWwkJCXsi7YqVKBVms+0CMn26SJ26uRztGEiTsMZMrjOZYHWwq93DYoFvvy1LmzbpREU5fo7dv9GZdbyw6wWX7MYtCikpCuLifNm+XcuRIxqsVihTBpKTpYjdw0RKCsyaBQsWiHh4WBk4MJ3+/TPw8rKW6Lw5x+egkCl4teardva0+Ei7YiUkbkeK2EmUCoUC3n0Xdu0SuKa7gee6H+lauMQtRB1ARoaCH37wJSnJNaMgbtYY6sw6l9i/E9evK1m6NJDnn4+mVasY5s4NIzBQw9dfC6SlCSQlSaLuYaNMGfjoI7hwQWDgQDlffRVC+/ZVWbSo+DuEc4257E7ezbga4xzkrYSERGmQInYSdiMzE4YNE9mwQeC55zJ4/fVkPD1d//bSaDQUFOjsuie2OHx68lPUcjUjqo1wjQPApUsexMVpiYvz5fRpNSqVSLt20KOHQOfO4OfnMtckXEBiIsyYIbJoEfj6WhgyJI3evTPv+Xl95fdXaB3ems1XNtMtqhtty7V1osd3R4rYSUjcjiTsJOyKKMJXX8Grr4qUK2dk9uyrVK5scKlPKpUKg8F1PmQbsxmxdwSrW652mk1RhHPnVLfE3Llznnh5iXToAD17CnToIA0floDLl21lFEuXQmCghaFDU+nZM+uOO5V7xPbgasFVBASWN1tOVb+qznf4DkjCTkLidqRUrIRdEQQYOdI2806l8qBv34qsXn3nmXfOYNasUN54w7VpYT8PP8xWMwaLY8WlKMKpU5588kkZOneuQo8elfn++2AaNFCxYQOkpQmsXi3Qu7ck6iRsVKgACxcKxMcLtGsnZ9asMDp2rMLq1f6YTLeHuE1WE3qLnkJLIUP2DOFM1hnXOC0hIXFPJGEn4RAee8wm7oYMEZg+PZxXXy1v93ELRfPDQK1arumI/ScNQhrww8Uf7H6u1QrHjqmZMyeU9u2r0qdPJTZuDKJlSw+2boXUVIHlywW6drVtK5CQuBMVK8LSpQKnTws0b67gvffK0rlzZTZs8MNkAlEUyTZmAxDtE82sJ2dRzb+aa52WkJC4I1IqVsLhbNgAQ4eKqFRm3n8/kXr1nNdI4Oo07E3S9emM3T+WlS1Wlvossxn+/NOL2FhfduzQkpqqIDRUpFs3gR49bDt+Fc7dKiXxkHHqFLz7rsjatQLlyxsZNOwy71mr0Tq8NdPqTXOLweM3kVKxEhK3I339Szicbt2gXj2B/v0VDB0axYsvpjFiRKrDxYdOJyMhQUNkpBGVyrX3L0GeQegtevKMeexN3kvjsMb4KH2K/HqTCQ4e9CY21pedO33JzFRQrpxI374CPXvCU08JyJ0fEJV4SKlRA9asETh+HCZPVjJtQTa+T06kpWYknrIcV7snISFxD6SInYTTsFhg5kxbJKB27UI++CCRsDCTw+wdOqRhyJBoNm06R3S066J2BouBzVc2M//MfExWE6IosrHNRoI8g+79OoPA/v3exMX5smuXL7m5cqKiRHr1skXm6tfHZZ2+Eo8WR47A5MkiW7cKVKpkYNSoFFq1ykXmBsU8UsROQuJ2JGEn4XT27YO+fUVyc628++51Wrd2zMotg0Hg2jVfypfPQemaMXYAXMu/xvO7nifdkA5Aee/ybGmzBeEOqkynE9i3z4e4OF/27PGloEBGTIxIz542Mff445KYk3AdBw7YBF5srEDVqnpGj06hefM8l74nJWEnIXE7krCTcAlZWTB8uMi6dQK9emUyYUISarX934pKpRKTyXFRwaJyJvsMr/7+Ktd116nhV4NVLVfdeiwvT8bu3TYx99tvPuj1MmrV+jsyV02qUZdwM/buhUmTRHbvFqhRo5DRo1No3DjfJQJPEnYSErcjCTsJlyGK8O23MG6cSNmytpl3VarYL2W6aFEw4eEG2rZ1TESwuJzKOsXg3YMJ9wpncf0f2bnTh7g4LQcOeGM0CtSv/3dkrmJFV3srIXF/du6Ed94R2b9f4PHHdYwencJTTxU4VeBJwk5C4nbcoEJC4lFFEGD4cDh8WECt9qBv30qsWhVgt5l3Z85oSEz0sM9hdqCMpRbtjR+TdEVLs2YxTJkSjsXizezZAlevwsGDAm+8IYk6iQeH5s1h3z6BbdtApVLz4otRDB4cxaFDXq52TULikUWK2Em4BYWF8PrrIvPnC7RokcvUqdfx87OU6ky1Wk1hYaGdPCwZyckKtm/3JS5Oy5EjGmQyeKrNDfp1DqdbNwgNdal7EhJ2QxTh559tKdo//xRo0KCAMWNSqFPHseONpIidhMTtSMJOwq3YtAmGDBFRKm0z7+rXL9lFwWoFb28NOp3zZubd5No1JXFxNjF3/LgGpVKkZUvo1UugSxcIunczrITEA40owo8/2gTeiRMCTz+dz5gxKdSq5ZibLEnYSUjcjpSKlXArnn0Wjh8XiImxzbz74osQzObin7N1q5Z69SIpLHROsc/Fix58/XUwvXtXon37qsybF0pUlJrly23bH37+WWDIEEnUSTz8CILtc3zsmMCaNZCV5UX//hUZMyaSU6c8Xe2ehMRDjxSxk3BLLBZ4/33bzLuaNQuZNSuRsmWL3t2akKDijz/8eP75FIf4J4o2G3FxWuLitJw/r8LLS6RjR+jZU6B9e2kfq4QE2D7Lq1fDlCki587ZSi1Gj06halX7NEpJETsJiduRhJ2EW7N/P/TrJ5KZaWXKlOsu7XAVRTh1Sk1srC/bt2u5csUDrVakSxfo0UOgTRtpH6uExN0wm+H77203a5cuCbRpk8OoUalUqlQ6gScJOwmJ25GEnYTbk50NI0aIrFkj0KNHJm+8kYRGc++37d69WipV0pV6s4XVCsePa27tZb1+XUlgoEjXrrZVXi1agIf7NN5KSLg9JhMsWwbTp4tcvQrt2+cwcmQqUVHGEp0nCTsJiduRhJ3EA4EowsKF8PLLImFhRmbPTqRqVf0dn2uxQP36NZgwIYm+fTOLbctshiNHvP5/L6uW1FQFoaEi3bvbZsw1aYLD99xKSDzsGI2waBG8955IUhJ06pTNyJFpREQUT+BJwk5C4nYkYSfxQHHmDDz3nEh8PIwfbxNudxqGajZ7o9fr8Pa2Fulck0ngjz+8iIuzReaysuRERIj06GGLzD31FG6xF1NC4mFDr4dvvoGZM0XS0qBr1yxGjEgrck2tJOwkJG5HEnYSDxx6PbzxBnz+OTRrlsu0adfx97995p1Gc/9RJ3q9wP793sTF+bJ7ty+5uXIqVvx7+0O9etJeVgkJZ1FYCF9+CR98IJKVBd26ZTJ8eBqhofdui5eEnYTE7UjCTuKBZfNmGDxYRC638P77iTz5ZAEAW7ZoOXXKhzffvPaf1+h0MvbutYm5vXt9KSiQUa2aTcz17Ak1a0piTkLClRQUwLx5MHu2SF4e9OyZybBhaQQH31ngScJOQuJ2pOSSxANL5862mXc1asgZNqwCn30WgskEBoOMgoK/71fy8mRs3qxl3LjyNGkSw+uvlycpScv//ifjzBk4fVpg2jSoVUsSdRISrsbLyxaRv3RJYPJkga1bA2jfvgpz5oSSkSF3tXsSEm6PFLGTeOCxWGDWLJg82Tbzbs6cG3h6mti504fYWC0HDnhjMgk8+eTfadboaFd7LSEhURSys+GTT+Djj0VMJpG+fTMYNCj9VvmFFLGTkLgdSdhJPDT8/jv06SNy/bqti1YUoVEj2yqvbt0gIsLVHkpISJSUzEyYOxc+/VQERPr3T+eFF9JJTlZLwk5C4h9Iwk7ioSI7G+rWhb594aWXIDTU1R5JSEjYk7Q0mDMHvvhCRKGw0r59LqtX+0vCTkLi/5GEnYSEhITEA0dysq0EY948EZNJkISdhMT/IzVPSEhISEg8cISGwscfw+bNUseThMQ/kSJ2EhISEhIPLDodnD0LMTGg0bjaGwkJ1yMJOwkJCQkJCQmJhwQpFSshISEhISEh8ZAgCTsJCQkJCQkJiYcESdhJSEhISEhISDwkSMJOQkJCQkJCQuIhQRJ2EhISEhISEhIPCZKwk5CQkJCQkJB4SJCEnYSEhISEhITEQ4Ik7CQkJCQkJCQkHhIkYSchISEhISEh8ZAgCTsJCQkJCQkJiYcESdhJSEhISEhISDwkSMJOQkJCQkJCQuIhQRJ2EhISEhISEhIPCZKwk5CQkJCQkJB4SPg/Ks2qrsVl6qMAAAAASUVORK5CYII=", + "text/plain": [ + "Graphics object consisting of 360 graphics primitives" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Ω._cells.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "4a16c1fb-b357-4984-8b64-d67213c0634d", + "metadata": {}, + "source": [ + "Two different power series \"meet\" at each of the green segment. We can compute their difference in L2 norm by integrating along the green segments. If we do this along all green segments we get a measure for how well the power series fit together, or rather a measure for the quality of the differential computed. In this example, we get for the *square* of the L2 norm:" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "51c94926-59b5-4e43-92e1-1054456f3819", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L2 norm of differential is 1.267333372785876e-07.\n" + ] + } + ], + "source": [ + "_ = f.error(kind=\"L2\", verbose=True)" + ] + }, + { + "cell_type": "markdown", + "id": "38965d56-56ed-46f5-802b-608fd767a817", + "metadata": {}, + "source": [ + "## Roots of the differentials" + ] + }, + { + "cell_type": "markdown", + "id": "50884b97-7a48-4fbb-b3b1-92b90d3258a1", + "metadata": {}, + "source": [ + "We can also compute where the roots of the differential are. They are all very close to the singularities so plotting them is not helpful.\n", + "\n", + "Since these roots are only approximations, we don't expect to see multiple roots. However, to detect their multiplicity, we can try to see how these roots cluster if we assume a certain numerical error in their positions:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e068d7e8-2199-416a-b90d-ebc7bb0c51fc", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distance of roots to vertices:\n" + ] + } + ], + "source": [ + "print(\"Distance of roots to vertices:\")\n", + "roots = f.roots()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a10f5b17-edb2-4481-bff9-09dfae653b06", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Clustering of roots:\n", + "Identifying roots contained in a 0.0 ball, there are 13 roots of orders (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 1.38e-10 ball, there are 12 roots of orders (2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.00315 ball, there are 11 roots of orders (3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 10 roots of orders (4, 2, 1, 1, 1, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 9 roots of orders (5, 2, 1, 1, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 8 roots of orders (6, 2, 1, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 7 roots of orders (7, 2, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 6 roots of orders (8, 2, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 5 roots of orders (9, 2, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 4 roots of orders (10, 2, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 3 roots of orders (11, 2, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 2 roots of orders (12, 2)\n", + "Identifying roots contained in a 0.66 ball, there are 1 roots of orders (14,)\n" + ] + } + ], + "source": [ + "print(\"Clustering of roots:\")\n", + "S.cluster_points(tuple(roots))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "5ca7f71d-1b15-40a6-9fdc-d7553e947b51", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Clustering of roots:\n", + "Identifying roots contained in a 0.0 ball, there are 13 roots of orders (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 1.38e-10 ball, there are 12 roots of orders (2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.00315 ball, there are 11 roots of orders (3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 10 roots of orders (4, 2, 1, 1, 1, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 9 roots of orders (5, 2, 1, 1, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 8 roots of orders (6, 2, 1, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 7 roots of orders (7, 2, 1, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 6 roots of orders (8, 2, 1, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 5 roots of orders (9, 2, 1, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 4 roots of orders (10, 2, 1, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 3 roots of orders (11, 2, 1)\n", + "Identifying roots contained in a 0.0063 ball, there are 2 roots of orders (12, 2)\n", + "Identifying roots contained in a 0.66 ball, there are 1 roots of orders (14,)\n" + ] + } + ], + "source": [ + "print(\"Clustering of roots:\")\n", + "S.cluster_points(tuple(roots))" + ] + }, + { + "cell_type": "markdown", + "id": "a34f4e45-863a-41df-b161-5002cf29a46e", + "metadata": {}, + "source": [ + "## Implementation Details\n", + "\n", + "This is probably only of interest to Julian and Vincent.\n", + "\n", + "The differential was produced with 527d7e08d482f5b162af09cc161f2aa505a4d3b0 using this code snippet:\n", + "\n", + "```python\n", + "from flatsurf import similarity_surfaces, Polygon\n", + "S = similarity_surfaces.billiard(Polygon(angles=[3, 4, 13])).minimal_cover(\"translation\")\n", + "S = S.erase_marked_points().codomain().delaunay_triangulation()\n", + "S = S.relabel().codomain()\n", + "\n", + "from flatsurf import HarmonicDifferentials, ApproximateWeightedVoronoiCellDecomposition\n", + "S = S.insert_marked_points(*[S(label, S.polygon(label).centroid()) for label in (2, 18, 26, 31)]).codomain()\n", + "S = S.delaunay_triangulation()\n", + "S = S.relabel().codomain()\n", + "V = ApproximateWeightedVoronoiCellDecomposition(S)\n", + "\n", + "Omega = HarmonicDifferentials(S, error=1e-6, cell_decomposition=V)\n", + "from flatsurf import GL2ROrbitClosure\n", + "O = GL2ROrbitClosure(S)\n", + "for d in O.decompositions(4, 20):\n", + " O.update_tangent_space_from_flow_decomposition(d)\n", + " if O.dimension() == 7: break\n", + "\n", + "F = O._lift_to_simplicial_cohomology(O.lift(O.tangent_space_basis()[-1]))\n", + "F = F.parent()({k: v / max(F._values.values()) for (k, v) in F._values.items()})\n", + "f = Omega(F, check=False)\n", + "```\n", + "\n", + "The following is a binary representation of the differential (on the above commit it can be loaded with `loads`.)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e3ab785f-4477-4c87-a8a3-dc7e23391c66", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [], + "source": [ + "import flatsurf\n", + "\n", + "pickle = b'x\\x9c\\xa4}\\x05\\\\T]\\xf3?\\xd2,-v\\xb7\\xd8\\x02\\x06\\xfa\\xa8\\xa0\\xa2W]E\\xc5\\x0e\\\\\\x89\\x05v\\xa5\\xee\\x01\\xec\\x8e\\xc5\\xee|\\xec\\xae\\xc7\\xee\\xc4\\xee\\xee\\xee\\xee\\xee\\xf8\\xdd\\xf3\\xbd\\xc5\\xbd\\xcb\\xee\\xab\\xff\\xff\\xe7\\xfd\\xbc0s\\xbe3sf\\xe6\\xcc\\xcc=wA\\x9e\\x81\\xb6Q)\\x11\\xb1\\xfa\\x8a)\\xa9$-*5\\x8d\\xe8+F\\xf7J\\x8cH0D\\xe9\\xa2\\xe2#RR4J\\x8e\\xb5\\xf1m_\\xd5\\xc6\\xc6\\xa6Q\\x04IHJ4D\\x85\\x18bb\\xf4D\\x9f\\x98j\\x88\\x88o\\x95\\x1c\\x11\\xa5\\xd7\\xf50\\xa4\\xc6\\xe9\\xa2\"R\\xf5\\xb1I\\xa4WE}\\xbc>\\x81Cym6[TL|DjJ\\x1a\\x89\\xa9\\x18\\xabOJ\\xd0\\xa7r\\x12q\\x82%]t&S)\\x9a\\xac6\\xd0\\xb0\\xb6Q:]d\\x9a!>\\xd5\\x90\\xa8\\xd3ib\\xf5\\xa9\\x11\\xa9\\xa9D\\xc3\\xda\\xa9CHK4\\xb0iz\\x1d\\xd1\\'\\x13}\\n\\xa7\\x1c\\x91jHJ\\xd4\\xa4%\\x12}tZ\\x94^\\xc3\\xda\\xf3\\n\\x82\\x9b\\x06}J\\xc5\\xee\\xfa\\xa8\\xd4$\\xa2K\\xa11\\xa4h\\xda\\x82k\\xc53\\xac\\x03/M\\x0c\\x89\\xb1)\\x15\\x89>\"^\\x97\\x90\\x1cC4:]\\x14\\xc7\\xa4\\xeau\\xba0n\\xad\\xa1A\\x1f\\x1f\\xad\\xeb\\xae\\')\\xdcV\\x955\\xac\\xa3\\xb6\\xea\\x88\\xf6\\xf6\\\\\\xaa\\xc2BCBY\\xa7t\\xd69\\x8cu\\x19\\xc6j\\xfa\\xb1\\xae\\xe9\\xac[\\x18\\xeb\\xde\\xde\\x9d\\x03\\x95\\xf9\\xf10\\xb1\\x9ea\\xac\\x97\\x89\\xf5\\x0e\\r\\rMe\\xb3\\x87\\xb1>e\\x06\\xb19\\xe2\\xb8\\xa4\\x97\\xfe\\xf3\\xa4\\xb39\\xff\\xff\\xd2\\x0c\\x93\\x1a6W\\x9c]\\x9c}\\x9cC\\x9cy\\xae\\xc4\\x8d4M\\x92\\x0c\\x89\\xf5E\\x86\\xcd\\xcd\\x0b&\\x18R\\xa28\\x91\\xf8x\\r\\xfd\\xa2\\xe3\\xb6\\x8fK\\x8a\\xd6\\xb0y\\xe2\\xd4\\xff37\\x9c\\x10\\x11\\x9b\\x10\\x91\\xa2\\x8bH\\x8c\\xd6EDG\\x1bR\\r\\xdd\\xf5:~M\\xd3\\x0c\\xdf\\xea&F\\xd7\\x15\\x00~A\\xc3\\xe6-\\xd3\\x8f\\xcd\\x97\\xce\\xe6\\x0fc\\x0b\\xb4w\\xe5\\x92\\xc4\\xe7\"\\xa2\\xa7!)\\x81-\\xd8\\xde\\x8d[\\t1p\\x85a\\x88L\\xa3Zl\\xa1t\\xb6p\\x18[$\\xae`{\\x1f\\x0e\\x12\\x8d\\xd5MII\\x8a2D@\\xa2h:[,\\x8c-\\xae\\x92\\xa8\\x9f\\x94\\x90\\x90\\x96\\xcaK\\x94HgK\\x86\\xb1\\xa58\\t\\x8fL\\x12m\\x12\\r\\xa9\\x11\\xf1l\\xe9t\\xd67\\x8c-\\xc3\\x81\\xd4\\x9b\\xcc\\x86\\xcb\\xa6\\xb3\\xe5\\xc2\\xd8\\xf2\\x1c\\xe2\\x99I\\xadq\"\\xad\\x19=[!\\x9d\\xad\\x18\\xc6V\\xe2PG\\x0e\\x15\\x8cUNg\\xfd\\xc2X\\x7fn\\xd1\\x19\\x81t7\\xd0\\xeab\\x03\\xd2\\xd9*alUa\\x8f\\xcc\\xaeUKg\\xab\\x87\\xb1\\x81Yf7E\\x9f\\x9aB\\x8bD\\xd3\\x8a#4l\\r.q5\\xd3\\xd9\\x7f\\xc2\\xd8Z\\x82\\xfd\\xc6\\x891\\x06n_=[;\\x9d\\xad\\x13\\xc6\\x06e}F\\\\9qe$4J3pb\\xa3\\x04\\xc7\\xd5\\x1a\\xc6\\xd6\\xed\\xc7\\xd6Kg\\xeb\\x87\\xb1!\\x82Y\\xce\\xbf\\xe4x=g\\xb6A:\\xdb0\\x8ce\\xd2\\xd9F\\xc3\\xd8\\xc6\\xfd\\xd8&\\xe9\\xac6\\x8cm:\\x8cm\\xd6\\x8f\\rMg\\x9b\\x87\\xb1-p^\\xc9\\x11Dn\\x89\\x96&6,\\x8cmeb[\\x87\\x86\\xc6\\xe5Je\\xdb\\x84\\xb1m\\xb9\\x9eh\\xd7\\x8fm\\xef\\x0b\\xeb:Z\\xe7\\xdc\\xf6l\\x07\\xda&\\x15\\xb9\\x95f\\\\2\"\\xe3\\xf5\\xcd9w\\x13S\\xf5\\xd1\\xad\\x0c\\t\\x86\\xf8\\x08bH\\xed\\xd5\\x8a\\x97TuK\\xc7,\\xbaE\\xb0\\xa9\\xf9_\\xa64l\\'tIn\\xa9\\xa4\\xcdme\\xca]\\\\D|\\x8c.\\x95D$\\xa6\\xc4c\"\\x89\\xbe\\xd3>\\x8c\\x8fi-\\x03\\xad\\xc4u\\xb63wJ\\xe1\\xe9l\\x970V\\'\\xa4\\xb3ER\\n\\n\\x87\\xed\\x9a\\xceF\\x84\\xb1\\x91\\xdc\\xb2\\x86[n\\x88\\xa3k\\xdd+Y\\xcfF\\xa5\\xb3\\xd1a\\xac^(\\xb4v\\\\\\xb4Ii\\xa9\\xf5\\x92\\xd2\\x12\\xa3#\\xb8xc\\xd2\\xd9\\xd806.S\\x1bZ\\xf59*)Q/\\xfbY\\x9f\\xe3d\\xe7\\x0c\\x9cs\\xc6t\\xb6[\\x18\\x1bo\\xeeEB:\\x9b\\x18\\xc6&\\t^\\x8b)d\\x93\\xd3Y6\\x8c%\\x16\\x9cKIgS\\xc3\\xd84\\x0euA\\xe5$&r\\x93\\x98\\xd3\\xea\\x9e\\xce\\xf6\\x08c{\\x9a\\xd8^\\xc3\\xd8\\xde\\xfd\\xd8>\\xe9l\\xdf0\\xb6_\\x1cW\\x1d\\xfd\\xc3\\xd8\\x01&v W\\x1d\\x9dR\\xd9Aa\\xec`\\xae:\\x86\\xf4c\\x87\\n\\xd5\\x11\\x1b\\x9fF\\xc76;\\xac\\x1fk\\xf2\\xd5\\xda\\x84\\xb3\\xe9\\xbe\\xdal\\xdal&v\\xb8\\xd6\\x96~\\x1b\\xa1\\xb5\\xa3\\xdfF\\xea\\xb5\\xd9\\xc2\\xd9Q\\xbeZ{\\xad\\x8d\\x89\\x1d\\xad\\xb5\\xa1\\xdf\\xc6h\\x1d\\xb4\\xb6&v\\xac^k\\x1b\\xce\\x8e\\xf3\\xd5:R\\xc9\\xf1\\x1c\\xc6}\\x9b\\xa0u\\xa2\\xd8D\\xbd\\xd6.\\x9c\\x9d\\xe4\\xabu\\xa6\\x8b\\x939\\x8c[\\x9c\\xa2u\\xa1\\xeaS\\xf5Z\\xfbpv\\x1a\\xdd\\x8f\\xe3\\xa6k5Td\\x86\\xd6\\x95\\x8a\\xfc\\xab\\xd7:\\x84\\xb33}\\xb5n\\x14\\x9b\\xa5u\\xa7\\xd8lN\\x92\\xc3\\xe6\\xe8\\xb5\\x8e\\xe1\\xec\\\\_\\xce\\n\\xb78\\x8f\\xf3\\x93\\x13\\x99\\xaf\\xf5\\xa0\\xdf\\x16\\xe8\\xb5N\\xe1\\xecB_\\xad\\'\\xc5\\x16i\\xbd\\xe8\\xb7\\xc5\\x9c\\x08\\xa7\\xb7D\\xafu\\x0eg\\x97\\xfaj\\xbd\\xe9\\xe22.0Na\\xb96;\\xfd\\xb6B\\xafu\\tgW\\xfar\\x8b\\x9c\\xe4\\x7f\\\\(\\xdc\\xe2*\\xad\\x0f\\xfd\\xb6Z\\xaf\\xd5\\x84\\xb3k|\\xb59(\\xb7\\x96K\\x01\\xa7\\xbeN\\x9b\\x93~[\\xaf\\xd7\\xba\\x86\\xb3\\x1b|\\xb5\\xb9(\\xb7Q\\x9b\\x9b~\\xdb\\xc4\\x89pV6\\xeb\\xb5n\\xe1\\xec\\x16_.K\\x9c\\xdeVm\\x1e\\x8am\\xd3\\xe6\\xa5\\xd8v\\xbd\\xd6=\\x9c\\xdd\\xe1\\xab\\xcdG\\xb9\\x9d\\x9c\\x08\\x87\\xed\\xd2\\xe6\\xa7\\x92\\xbb\\xf5Z\\x8fp6\\x83\\xe6\\x93\\xc3\\xf6p\\x1bq\\xdf\\xf6j\\x0bP\\x91}z\\xadg8\\xbb\\xdfW[\\x90.\\x1e\\xe0\\x92\\xcc)\\x1c\\xe4Ls\\xdc!\\xbd\\xd6+\\x9c=L}\\xe1\\xb8#\\x1c\\xc6)\\x1c\\xd5\\x16\\xa2\"\\xc7\\xf4Z\\xefp\\xf6\\xb8/\\xe7 \\xc7\\x9d\\xe0\\x8e\\x83\\xfbv\\x92\\xb3\\xc2\\x89\\x9c\\xd2k\\xb3\\x87\\xb3\\xa7\\xe9\\x19qzg8\\x07\\xb9\\xc5\\xb3\\xda\\xc2\\xf4\\xdb9\\xbd\\xd6\\'\\x9c=Os\\xcda\\x17\\xb4E\\xa8\\xdeE\\xcek\\x0e\\xbb\\xa4\\xd7\\xe6\\x08g/\\xfbr\\x07\\xc7-^\\xd1\\x16\\xa5\\x8bW\\xb5\\xc5(wM\\xaf\\xcd\\x19\\xce^\\xf7\\xd5\\x16\\xa7\\xdc\\rN\\x84S\\xbf\\xc9\\x9d\\x11\\'rK\\xaf\\xcd\\x15\\xce\\xde\\xf6\\xd5\\x96\\xa0\\xdc\\x1d\\xee\\xc09\\x91\\xbb\\xdcQq\\xdf\\xee\\xe9\\xb5\\xb9\\xc3\\xd9\\xfb\\xf4\\x8c8\\xee\\x01\\x87q\"\\x0f\\xb5%)\\xf7H\\xaf\\xcd\\x13\\xce>\\xa669cO\\xb8\\xd2\\xe0\\xb0\\xa7\\xdcIs\\xdc3\\xbd6o8\\xfb\\xdcW[\\x8aJ\\xbe\\xe0\\x0e\\x95\\xc3^r\"\\x1c\\xf6J\\xaf\\xcd\\x17\\xce\\xbe\\xf6\\xe5\\xacp\\xdc\\x1b\\xeeP\\xb9oo\\xb9\\x92\\xe2$\\xdf\\xe9\\xb5\\xf9\\xc3\\xd9\\xf7\\xbe\\x1c\\xc7-~\\xe0\\x9c\\xe7\\xf4>jKS\\xee\\x93^[ \\x9c\\xfdL\\xfd\\xe4\\xb8/\\x9c\\xf3\\xdc\\xb7\\xaf\\\\^8\\xbdozm\\xc1p\\xf6\\xbb/\\xa7\\xc0-\\xfe\\xe0\\xdc\\xe5\\xbe\\xfd\\xe4|\\xe1\\xb0_zm\\xa1p\\xf6\\xb7/\\x17\\x91\\xad\\x89\\xd8d\\xb3\\xb1\\xe1\\xd2\\xc6Q\\xd9(U\\x94R\\xb6\\x1c\\xa5\\xd7\\x16\\x0e\\'v\\x1c\\xe1\\xcb\\x9d,\\xb7fO\\xd1\\xec\\x94r\\xa0Ti\\xce\\x11\\xe2\\x08\\xb9\"\\xe1\\xc4\\tr>t\\xcd\\x99\\xa2\\xa5\\xa8\\x9c\\x0b\\xa5\\n\\xd15\\r\\xe4\\x8a\\x86\\x13W\\xc8\\x95\\xe6\\xbc n\\x14\\xcdAQw^\\x8e\\xd3\\xf0\\x80\\\\\\xb1p\\xe2\\t\\xb9\\x1ct\\xcd\\x8b\\xa2\\xf9\\xa9\\x9c7\\xa5\\nR\\xdd\\xec\\x90+\\x1eN| \\x97\\x93\\xae\\xe5\\xe0\\xf7\\xe5\\xe4rR*\\x0f]\\xcb\\x05\\xb9\\x12\\xe1$7\\xe4JR4\\x0fEsQ4/\\xa5\\nP*\\x1f\\xe4J\\x86\\x93\\xfc\\x90\\xcbM\\xf7-@\\xd1\\x12\\x14-H\\xa9|\\x94*\\x04\\xb9R\\xe1\\xa40\\xe4\\xf2\\xd2\\xb5\"\\x14-N-\\x17\\xe53\\xc9Q\\xc5 W:\\x9c\\x14\\x87\\\\Q*W\\x82\\xa2\\x85\\xa9\\xe5\\x92|D\\x1cU\\x8a\\xca\\xa5\\xf1\\xd7\\x9eD}\\xcfT]|D\\xa4>\\x9e\\x94\\xe6\\x963_Y\\r\\xdc\\xe0\\x8d\\xd5\\x13MBD7\\xbdNd\\x88/\\'\\xd5\\x9e\\xfb\\xbfMeR\\x86\\xfb6\\x8c\\x94\\xe5\\xbe\\x86\\x91rt\\x99^At$))5\\x85\\x94\\xa7\\xbbqh\\x05\\xbaN\\x87\\xb2.9)\\xbeWlRb\\n\\xa9\\xc8-\\xf5#\\x95\\xe0\\xa3\\r}\\xfa\\x16\\xe2\\xe0\\x06iQ\\xf1\\x86h}Db\\x0b^L\\xf9\\xb4%\\x95\\xa9o\\xe6\\x0f\\x1c\\xc1\\xa6F\\xad\\xad!~\\x9c\\x02\\xf7\\x8c\\xfd\\x83\\'\\x95^\\xd4\\x95<43\\x97\\xa2!\\xfeRr\\xe4\\xd7\\x05\\xeeq\\x96J\\xaf\\xb0\\xb1\\xfaD=\\xbd\\xdc\\x08\\xbc.-1\\xd9\\x10\\xd5-^\\xaf!\\x014HKj\\xf1II\\xdd\\xd2\\x92\\xb9GMR$\\xf7\\x92B\\xaa\\xd0L\\xd5\\xe0R\\x91\\xe9\\x08\\x12\\xd3\\x12\"\\xf5D\\x17C_\\x12\\x94L(\\x18\\xc5\\xdb\\x83?\\xa9\\x8a\\x03\\xa9\\x86\\x03\\xa9N\\x0f\\x80\\x8e \\x12(;!\\xbc\\x8b\\xe0\\xb2\\xc0\\xbd\\x8f\\xc0\\x94&L`aLCjp\\xe2e\\xc2HMU5\\xd0\\xe4$&%p\\x17\\xfdL\\xa4N6\\x15\\xcfU\\x88\\xa6\\x85E\\x84\\xfc\\xa3\\xf6\\xc2\\x82A\\x0e\\xd3q\\x97\\x07>]ID#&S\\'\\xdb\\x0e\\xe3d4\\xa4\\x165h\\xac)\\x96cOR\\x1b\\xd1\\xd7\\xe1\\xbe\\x86\\x8eH%A\\xc8B0\\xf75\\x9c\\xd4\\xb5\\x94\\x01\\xbe\\xb6%\\x8e\\xd4\\x13\\xadU%\\xf5a-\\x04V\\x1ap_\\x8d\\x143\\xf2%\\xdf\\x10\\xab\\x8c\\xb8\\xda\\xde\\x96\\xd3\\xa8P\\x954\\x02\\xd8\\x18`\\x13\\x95\\x8a\\x16\\xabM%\\x15\\xba\\x89\\x1fi\\x06,\\x14Xs\\xda\\x95#8\\xcf[\\x80m)\\x1a\\x8e\\xaaL\\xc2 \\xd6\\x8a\\x964\\xd7.E\\xe8k@|\\xac>\\x92D\\x18\\xa2\\xe4wHe\\xc3\\xb4V\\x1d\\x1f\\xcbFF\\x10\\x8d\\xb9\\x9a\\x86\\xb4\\xe1;\\x85\\xdeF\\x03\\xe3\\x82L\\xa4-6k\\x87&\\xa5n\\xa6\\x93\\x0ep\\xa8#\\x95ki\"\\x9d\\xc0u\\xe6\\xbe\\x9aH8Mv\\xa8\\x91\\x9aH%]\\x00\\xe8\\xf8\\xf2\\xe9\\xfa\\xbf\\xf7\\xd7\\x90\\x88\\xac\\x85B\\x1b\\xf4L\\xd5\\'\\xd2\\x92n\\xc0\\xbf\\xe7jH\\xa4us\\x0c\\xed\\xc0\\x08Z.$\\x8a\\xa6\\x18}g\\xa4-`\\x0c\\x94\\xca\\xc4\\x88\\x124\\xaa\\xea\\xa6\\x17\\x89F\\xc0z\\xa1nb\\x10E,\\xea&\\x0e\\xa28E\\xfe\\xa4\\x0c\\x00\\x8d\\xaa\\xb3\\xed\\x86\\xd5xe9D\\x91\\x04\\x80\\x89\\x00\\x93T*\\xc9Xe\\x15\\xe5`$\\x04X\\n\\xb0T\\x95F\\x1aV\\xbb+7\\t$=\\x00\\xf6\\x04\\xd8K\\xa5\\xd2\\x1b\\xab}\\xa4U>\\x86\\xbeX\\xed\\'V[\\x7f\\xb0\\x03D\\'\"\\xc8@H\\r\\xa2\\xe90\\x0eDRBS\\xc9`\\x94\\xc3\\x10*\\xe5@k2N\\x1f\\xd5\\x8d\\x0c\\xe5\\xd8\\x11\\\\\\xa3\\x0e\\x83\\t\\x93\\x85\\xc3\\x0c\\xe3\\x9e\\x07\\x1a\\x92n\\xfd\\x00\\xe5\\xe6\\xe6^g\\xa2\\xba\\xd1\\x07\\xcdp\\xf9\\xc8\\xf8\\xd3\\x18\\xa1>\\x8d\\x91\\xd8w\\x94*\\xea\\xd1X\\x1d\\xa3>\\x8d\\xb1\\x00\\xc7\\x01\\x1c\\xafR\\x99\\x80\\xd5\\x89\\xd2*\\x7f\\x0e\\x93\\xb0:Y%;\\x05\\xabS\\xd5\\xe70\\r\\xe0t\\x803T*\\xffbu\\xa6\\xea\\x1cfau\\xb6x\\x0es\\xc0\\xce\\x054\\x0f\\xf4|U\\xca\\xc4\\x8f\\x90\\x0c\\xaa\\x8f\\x90\\x1as\\x8ff\\xd2]\\xe8g\\xa1c\\xc4g\\x82\\x9f\\x86,\\xf8\\x7f1#\\x7f\"E\\x16r\\xfa\\xda\\x81#Ld\\x11\\xbcZl\\xc1\\x9c\\xfa\\x83-\\xfe\\x01\\x95\\xc9\\xce\\x12:?\\x1c9K\\xe2\\xc7[m\\xc8R\\x8c\\x97e\\xb0\\xbb\\x9c&\\x93\\xde\\x04\\xfc*v\\xaf\\x96\\\\\\xc5\\x10\\x9b\\x98\\x16\\x98\\x90\\xc2V\\x8dK\\xac\\x12\\x18`\\xac\\x1ee0&D%\\x05W&+\\xa8;E\\xd2\\xc9Jh\\xfdG\\xf3if9\\x84\\xac\\x82\\xe5\\xd5\\x90Y\\xf3\\xbf-\\xd7\\xa0\\x96\\xd7\\n\\x96\\xd7Ak=,l\\x00\\xbd\\x91\"\\xd9\\xd2\\xc9&p\\x9b\\xb3\\xd1\\xd1\\xb7\\x05\\xf4VU6,>\\xb0u\\xc2Gv\\x9aL\\x0fn\\xf1\\xac\"\"S\\x92\\xe2\\xd3R\\xb9\\xfb\\xc26\\x1a\\x8e)\\xabYe\\xe4\\x9fn\\xdb\\x85)\\xb5\\x03\\xbb\\xefD_\\xec\\x92\\xfa\\x82/F\\x7f\\xb2\\x1b\\xb2\\x19\\x90\\xd9\\xa3*\\xc6\\xbdX\\xdd\\xa7*\\xc6\\xfdX= \\x16\\xe3A\\xb0\\x87\\x10\\xe8a\\xd0G@\\x1f\\x05}\\x0c*\\xc7A\\x9f\\xc0\\xfaIi0\\xe8\\xfaT\\xeeGN\\x89c\\xe34\\xc6\\xc6\\x19\\xba\\x0f\\x1d\\x16\\xc3\\xb9aq\\x16j\\xe7`\\xe2<\\xe0\\x0b\\xc8\\xf4E\\xac_\\xa2G\\xc9\\x7f\\x96\\xd5\\xca@?\\xff!\\x97\\x81^\\x01zUF\\xb9w\\xfc\\xee\\xfa\\x9e\\xe4\\x1a\\xd0\\xeb@od\\xe3\\x1fP7\\xc1\\xdd\\x82c\\xb7\\xb3\\xe1\\x01Eo\\x83\\xa9\\xe4\\x0e\\x80\\xbb\\xdc\\xd72\\x83\\xc8=\\xec}\\x9f\\xe6\\x0ei\\xd3u\\'\\x0f\\xa4\\xc3LH\\x8aN\\x8b\\xe7\\xee\\x861D\\xaf\\xd7\\xf1\\x8ct\\x80\\xb824\\xe4\\x80fX\\x17\\x0fQ\\xbc\\x04FsO.\\xbd\\xae;\\xd7x\\x0fq.\\xfc\\xa3\\x08\\x97;|\\xd2!)\\x92G\\xc8\\xc1c8\\xf5$\\x9b\\xf4\\xa8\\xa2\\xa9\\xd1\\xda\\xd2\\xec=\\x85\\x8b\\xcf\\xe0\\xfbs\\x88\\xbd\\xc0\\x81\\xbf\\x84\\x1cj\\xe5\\x9c\\\\+|1\\xbc\\xe2\\xbe\\xd2\\x13|\\r\\xf97H\\xc2[\\xd0\\xef\\xa8h\\xd6J\\xef\\x05\\xa5\\x0f\\x10\\xfc\\x08\\xa5O\\xa0?\\xd3\\x8a\\xe0\\xbcI%_\\xc0\\x7f\\xa5\\xaa|`\\xbc/\\xdf\\xac\\xf8\\xf2]*L#\\xffP\\xf9\\x01\\x1b?\\xc5\\xdako\\xc7%$\\xa6\\x92?\\xf9\\x05\\xf47P\\x1b[\\xc5d\\r \\xd9l)hkKA;%\\xe8O\\xec\\x01:\\x00t\\xb4\\x15\\xaa\\xd7\\t\\xac\\xb3-\\r\\xc3\\x05\\xb4\\xc6\\xd6b\\xec\\xae\\xb6R\\xf7Pw\\xaar\\xee\\xb8\\xc1\\xa8;4=\\xa4\\x1d\\xb9\\xff\\xdb\\x04\\x10O`^\\xc0\\xbc%\\x8c\\xce\\x9d\\n~\\x9cjv\\xc0>\\x80s(\\x9d\\xf5#9\\x01\\xe6\\x02\\x98[t6\\x0f\\xd8\\xbcp6\\x1f\\xe8\\xfc\\xb6b\\xce\\x0b\\x80/h\\xab\\xcay![\\xcb9/,\\x85c\\xe4o\\xb0E`\\xa3\\xa8m\\xe6\\x9c\\'W\\xaaF\\x8a\\xc1\\x99\\xe2@K(\\x03\\xa9R)\\x80\\x94\\x04\\\\\\npi%\\\\\\x9d\\xd3\\xf6\\x05\\\\\\x06pY1\\x94r`\\xcb#\\x94\\n\\xa0+Z\\xce{%\\xd9Q~0U\\x86\\x86\\x9f\\xc2Q\\x7f\\xce\\x13\\x7fl\\x15\\x00\\xb4\\x8a\\x02\\xf5\\xe3\\x1c\\xa9\\n\\xb4\\x1a\\xd0\\xea\\xea\\xf3\\x08 \\x81\\x80k\\x00\\xae)\\xfa\\xf9\\x0f\\xd8Z\\xf0\\xb36\\xe8:R\\xca\\x83\\xc0\\x07\\xdb\\xd2\\xb1R\\x97\\xfb\\xda>7\\x9d\\r\\xdc\\x84N\\xe5\\xee%\\xa9:\\xc5\\x0f^H=[zu6b\\xf0x\\x98H}\\xe8\\x86\\xd0E\\x0fzQ/\\xff?\\xdfk\\x95?\\xe8\"\\rl\\xff\\xea-\\xb7E\\x12\\xde\\xac\\x1a\\xd2\\xb0C\\x10\\rcK\\xc7\\x1d7:\\x1a\\xc1\\x95\\xc64\\x80\\x9c4\\x00i\\x1f\\xf9\\xcdJG\\x9a\\xd8J\\xf3\\x8e\\xfe\\xf0%Fxk\\x15\\xdf\\xb8\\x9a\\xf1?\\x82!Zj\\xa5\\xb4%+1$)A\\x95\\x96\\xa6\\xd4!:_\\x8dw1\\x9e\\x9b\\xc1\\x99P[\\xf1\\x93\\x00\\xe9%\\xa59\\x15\\xbc!>;t\\x91\\x11)z\\xd2\\xc2V\\xa8\\x16\\xfe\\xd3\\x84\\xc4\\x88\\x04}\\niI\\xe3\\xc2\\'\\xbf:\\xe1mP\\xb8W\\x900[\\xfah\\xc6h\\xd5\\xe9\\xb9\\'kt4\\xf7\\x1c&\\xad \\x9f\\xc3\\x82\\xcf\\xa45\\xdd\\x03\\xfe@$\\x8a>KH\\xaa\\xf03\\'lI\\xda\\xc0B\\xde\\xcc\\x16\\xe8g\\xd4\\xbad.@\\x1d\\xff\\xa3\\x06\\xd2\\x96\\x93\\x19\\xc1\\x9b\\xa0\\x18}}\\x8dJ\\xd2\\x93(\\xbd.\\x9e\\xfe\\xec\\xa8\\x9d-\\xad\\xf3\\xf6\\xd26\\xa2\\x0cWG\\xf4C|\\xc8t\\x80LG\\xe9\\x9cd;\\xbcK\\x10\\xea\\x04\\xa1\\xce\\xdc\\xd7\\xb4Hm6\\xa3\\xf0\\x00\\x0b\\xb7\\xa5O\\x87.h\\xa3\\x07\\xea\\xb1\\xac\\xb32\"\\xba\\xda\\xf2\\xd3>\\x02\\xc7\\x12\\x89\\xc2\\x89\\x02\\x1dm\\xb9]\\xf5\\x82R\\x0c\\x04c\\xa1\\x14\\x07\\xda \\xf5\\x8e\\x11|7\\xf5\\xb8\\x8a\\xb7\\xe2K\\x82z\\\\%\\xc2F\\x92b\\xeaV!\\xc9hc\\x16\\x18Qvy\\x007uS\\x00\\xa7\\x02NSO\\xdd\\xee\\x00{\\x00\\xec)\\x8e\\x80^`{#\\x8c>\\xa0\\xfbZ\\x8e\\xbd\\x9fzT\\xf5\\x87\\xc6\\x00\\xc50\\xa2~\\x0c\\xc4V\\x83\\x80\\x0e\\x16QAg\\x08V\\x87\\x9a?2\\x86A\\xc9\\x048]\\xf4o8\\xd8\\x11\\xf0o$\\xe8QR\\x9aG\\x83\\x1f\\xa3N\\xf3X+i\\x1e\\'E ~V1\\x1e\\xbbN\\x80\\xa9\\x89\\xea\\xf9\\xeeO&\\x01\\x9e\\x0cx\\x8aY\\x9cS\\x81N\\x03:]\\x8a\\x93\\xbfI\\xce\\xc0\\xea\\xbfb 3\\xc1\\xceB \\xb3A\\xcf\\xb1\\x9c\\xe8\\xb9\\xb2\\x9b\\xf0\\x84>\\x8c\\xe7a\\xaf\\xf9P]`~\\xf4\\x0b\\x01/\\x02\\xbcX\\xf5t\\xf0\\'K\\x80.\\x05\\xba\\xcc\\x0c]\\x0et\\x05\\xd0\\x95\\xa2\\xc3\\xff\\x81]\\x05\\x87W\\x83^#e~-\\xf8ux8\\xac\\x879q\\xf4\\xc6y\\x18\\xe9\\xb05\\xd2\\x91j\\xa4\\x03\\xd3\\x88!H{T\\x18\\x82\\x1b\\xa0\\xbb\\x91.Hc\\xcf(\\r;#&\\x9c\\x91\\x9ffF\\x8c/#\\xa6\\x14\\x140\\x8c\\x8c\\x187F~\\xaal\\xa2\\xcb\\xfc\\xf0\\xd8LI~Dl\\xe1G\\x84\\xad8\"\\xb6bDl\\xcbzDl\\xb7R/;\\x84n\\xdf\\t\\xa7w!\\x19\\xbbAgX>\\xbd=\\x82\\xd2^\\x08\\xee\\x83\\xd2~\\xd0\\x07\\xa4\\x0c\\x1e\\x04\\x7fH]\\xbb\\x87\\xad\\xf8rD=\"\\x8e\\xc2\\xc61\\xc5q\\xd2\\x1b\\xcdq\\x1c\\xe7\\t\\xa0\\'\\x95\\x95Bo4\\xa7\\x00\\x9f\\x06|F]\\xf1\\xd5\\xc8Y\\xc0\\xe7\\x00\\x9f\\x17\\x8b\\xe1\\x02\\xd8\\x8b\\x08\\xe5\\x12\\xe8\\xcb\\x96\\xe3\\xbfb\\xd6dWa\\xf3\\x1a\\x14\\xaf+\\xb7\\x8c\\xe5<\\xba\\x01\\xf8&\\xe0[\\x8ap\\xa8C\\xb7\\x81\\xde\\x01zW\\x81V\\xe5t\\xef\\x01\\xbd\\x0f\\xf4\\x81\\xe8\\xeeC\\xb0\\x8f\\xe0\\xeec\\xd0O\\xa4\\xcc?\\x05\\xffL\\x9d\\xf9\\xe7V2\\xffB\\xce<\\x7f\\x7f\\x7f\\t\\x1b\\xaf\\x14\\xce\\xd0\\xfb\\xfbk8\\xf3\\x06\\xe8[\\t\\xb5\\xe5\\xef\\xef\\xef\\x00\\xbe\\x07\\xf8A\\t\\xfa\\x93\\x8f\\x00?\\x01\\xfc,\\x86\\xf1\\x05\\xecW\\x84\\xf1\\r\\xf4w\\xcbY\\xff\\x91\\xc5\\xcc\\xf8\\t\\xab\\xbf\\xa0\\xfa[\\xed\\x8f\\x8d\\x1d\\x05\\xb3\\xd9Q\\xd0\\xd6N=\\x13\\xec\\x80\\xda\\x03u\\x10Qa\\xb49b\\xd5\\xc9Np\\xd3\\x19\\xac\\x8b\\x1duS\\x03\\xda\\xd5N\\xcc\\xb6\\x1bxw;\\xda\\xf9\\x1ev\\x7f0)\\xb6\\xca\\x93\\xc2\\x13\\xba^v\\x7f9)\\xa0`>)\\xbc\\xed\\xa4I\\x91\\xddN\\x9a\\x14>v\\x98\\x14v\\xe2\\xa4\\xc8aG\\'EN\\xbb,\\'E.;\\xcb5\\x92\\xdb\\x8eo\\xfa\\x0e\\xbc\\x01\\x93\\xc2\\xf8\\'\\x93\\x82\\xb6\\xaa0)\\xbaA7\\xfeo\\'E|\\xd6\\x93\"A\\x9e\\x14\\x89\\xf2\\xa4H\\xe2\\'\\x85\\xbd8)\\x921)\\xd8\\xac\\'\\x05\\xb1R1)B\\xd3\\xa7\\xc2\\xe94$\\xa3;\\xe8\\x1e\\x96O\\xaf\\xa7\\xa0\\xd4\\x0b\\x82\\xbd\\xa1\\xd4\\x07t_)\\x83\\xfd\\xc0\\xf7WW\\xef\\x00+\\xbe\\x0c4\\x9b\\x14\\x83pn\\x83aj\\x88\\xb2\\x05\\xab\\x90\\xa1\\x00\\x87\\x014\\x99\\xcd\\x84t\\xa0\\xc3\\x81\\x8eP\\xcd\\x91\\x91X\\x1d%\\x16\\xc2h\\xb0c\\x10\\xc6X\\xd0\\xe3,\\xc7>^\\xddb\\x13\\xa01QY\\xb0\\xd4\\x83I\\xf0`2\\xe0)\\x92\\x07\\xbc\\xd2T\\xacNSu\\x96?\\x99\\x0e\\x9d\\x19@\\xff\\x15\\xfd\\x9b\\tv\\x16\\xfc\\x9b\\rz\\x8e\\x94\\xe6\\xb9\\xe0\\xe7\\xa9\\xd3<\\xdfJ\\x9a\\x17\\xa8\\xd2\\x1cA\\x16b\\xd7E0\\xb5X\\x99\\xe6@\\xb2\\x04\\xe0R\\x80\\xcb\\xa40\\xf8O\\xdc\\x96cu\\x85j\\xc6\\xad\\xc4\\xea\\x7f\\xa2\\xfb\\xab\\xc0\\xae\\x86\\xfbk@\\xaf\\xb5\\x9c\\xdeuBi\\xad\\x87\\xe0\\x06(m\\x04\\xbdI\\x8ay3\\xf8-h\\xce\\xad\\x7f\\xd2\\x9c\\xc9rsn\\x83\\xee\\xf6\\xbfm\\xce\\xedY7\\xe7\\x0e\\xb99w\\xca\\xcd\\xb9\\x8boN\\x07\\xb19w\\xa393\\xb2n\\xce=VNj\\xaf\\x90\\x8c}pz?\\x92q\\x00\\xf4A\\xcb\\x19<$(\\x1d\\x86\\xe0\\x11(\\x1d\\x05}L\\xca\\xe0q\\xf0\\'\\xd4Us\\xd2\\x8a/\\xa7\\xe4\\xaa\\xb1\\x13.\\x98\\xa7q\\xdag`\\xeb\\xacT6\\xf4\\x19X\\x9d\\x9c\\x03v\\x1e\\xd8\\x05eI\\xf9\\x93\\x8b\\x00/\\x01\\xbc\\xac\\x06\\xaf\\x00\\xbc\\n\\xf0\\x9aXC\\xd7\\xc1\\xde@07A\\xdf\\xb2\\x9c\\x81\\xdbr\\x8b\\xf2\\xef&w\\xa0qW*S~\\xf5\\x1eV\\xef+\\xf7\\xf7#\\x0f\\xb0\\xffC\\x80\\x8f\\xcc\\xbb\\xfa1\\xe0\\'\\x80\\x9f\\x8a\\xee=\\x03\\xfb\\x1c\\xee\\xbd\\x00\\xfdR\\xca\\xf5+\\xf0\\xaf\\xd5\\xb9~c%\\xd7o\\xd5\\x01\\xbc\\x83\\x8d\\xf7\\x8aqA?\\x10\\xf8\\x00g>\\x02\\xfdd\\xee\\xebg\\xc0_\\x00\\x7fU\\xc7\\xf9\\r\\xe0w\\x80?\\xc4@~\\x82\\xfd\\x85@~\\x83\\xb6\\xb1\\xb7\\x98\\xe7l\\xf6f\\x1f\\xd2\\xdb\\xdaS\\xa3v\\xf6T\\xd3\\xde^=\\x93\\x1d\\x80:\\x02u\\xb2\\xb7Q^:\\xfc\\x893`\\x17\\xc0\\x1as\\xd8\\x15\\xb0\\x1b`w{\\xc1a\\x0f\\xb0\\x9e\\xf6\\xd4a/\\xd0\\xde\\xf6b\\xe6\\xb3\\x83\\xf7\\xb1\\xa7}\\x9f\\xc3\\xfe\\x0f\\xe6\\xc4nyN\\xe4\\x84n.\\xfb\\xbf\\x9c\\x13P0\\x9f\\x13\\xb9\\xed\\xa59\\x91\\xc7^\\x9a\\x13y\\xed1\\'\\x1c\\xc59\\x91\\xcf\\x9e\\xce\\x89\\xfc\\xf6Y\\xce\\x89\\x02\\xf6\\x96\\xeb\\xa5\\xa0\\xbd\\xaa^\\n\\xc1\\xfb\\xc2b\\x0e\\xc5\\x1f:`\\xb5\\xa8\\xbd\\xaa\\x10\\x8a!\\xaf\\xc5\\x01\\x96\\xb07+\\xa2\\x92\\x80K\\x01.-\\xa6\\xdd\\x17l\\x19\\xa4\\xbd,\\xe8r\\x96\\xeb\\xa4\\xbc\\\\\\'\\xd2e\\xaf\\x02\\xacV\\x84j%\\xa5G\\xd5Ie\\x80~\\x00\\xfd\\xa5 \\xf8\\x87K\\x00V\\xab\\xa8V\\xabb\\xb5\\x9a\\xe8^u\\xb0\\x81p\\xaf\\x06\\xe8\\x9aRU\\xfc\\x03\\xbe\\x96\\xbd*\\xbf\\xb5\\xad\\xe4\\xb7\\x8e:\\xbfA\\xb0\\x11\\xac(p\\xfaaG]8^\\x0fh}e*\\xe9\\x87\\x1d!\\x80\\x1b\\x00n\\xa8\\x84\\xe9g\\x0b\\x0c\\xe0F\\x80\\x1b\\x8b\\xa14\\x01\\xabE(MA7\\xb3\\x9c\\xe9P{\\xe5\\xa3\\xbd*i\\x0e\\x9b-\\xa0\\xd8R\\xb9%\\xfd\\xb0#\\x0cp+\\xc0\\xad\\x15\\xe1P\\x87\\xda\\x00m\\x0b\\xb4\\x9d\\x02\\xa5\\x97\\xea\\xf6@;\\x00\\xed(\\xba\\xdb\\tlg\\xb8\\x1b\\x0e\\xba\\x8b\\x94y\\x1d\\xf8\\xae\\xea\\xccGX\\xc9|\\xa4=\\xff0\\x8b\\x82j4\\xcc\\xeaA\\xc7X\\xceB\\xac\\xa0\\x14\\x07A\\x03\\x94\\x8c\\xa0\\xbbI\\xbe\\xc4\\x83O\\xc0lH\\xfc\\x93\\xd9@\\x9bS\\x98\\rI\\xd0M\\xfe\\xdb\\xd9\\x90\\x9c\\xf5l`\\xe5\\xd9@\\xe4\\xd9\\x90\\xc2\\xcf\\x06\\'q6\\xa4b6\\xa4e=\\x1b\\xba[\\xc9`\\x0f!\\x19=\\xe1t/$\\xa37\\xe8>\\x963\\xd8WP\\xea\\x07\\xc1\\xfeP\\x1a\\x00z\\xa0\\x94\\xc1A\\xe0\\x07\\xabOs\\x88\\x15_\\x86\\x9a\\x95\\xe70\\xd4\\x90\\t\\xa6\\xd2\\x95c\\xa0\\n\\x19\\x0ep\\x04\\xc0\\x91\\x8a\\xf2\\xa3si\\x14\\xd0\\xd1@\\xc7H\\xe3\\x80\\xbf\\xe0\\x8f\\xc5\\xea8\\xb1(\\xc7\\x83\\x9d\\x800&\\x82\\x9ed9\\xf6\\xc9r\\xb3\\x0b\\xbf[\\x04\\x8d\\xa9f\\x0eL\\x83\\x03\\xd3\\x81\\xce\\x90\\x1c\\x10~\\xb9\\x08\\xab3\\x95\\rG\\x1fb\\xb3\\xa04\\x1b\\xf0\\x1c\\xd1\\xbf\\xb9`\\xe7\\xc1\\xbf\\xf9\\xa0\\x17Hi^\\x08~\\x91:\\xcd\\x8b\\xad\\xa4y\\x89*\\xcd\\x11d)v]\\x06S\\xcb\\x95N\\xd1a\\xbc\\x02\\xf0J\\xc0\\xffI\\x91\\xf0W\\xfcUX]-\\xad\\xf2\\xf3v\\rV\\xd7\\x8a\\x01\\xac\\x03\\xbb\\x1e\\x01l\\x00\\xbd\\xd1r\\x827\\xc9\\xee\\x89\\xd7\\x86\\xcdp`\\x0b4\\xb7\\xaa\\x1c\\xd8\\x86\\xd5\\xed\\xe6\\xa9\\xdc\\x01\\xa5\\x9d\\x80w)k\\xc7\\x8f\\xec\\x06\\x98\\x01p\\x8f\\xe8\\xe6^\\xb0\\xfb\\xe0\\xe6~\\xd0\\x07\\xa4<\\x1f\\x04\\x7f\\x08\\x03\\xe1\\xf0\\x9f\\x0c\\x84Ty \\x1c\\x81\\xee\\xd1\\xbf\\x1d\\x08G\\xb3\\x1e\\x08\\xc7\\xe4\\x81p\\\\\\x1e\\x08\\'\\xf8\\x81\\xe0,\\x0e\\x84\\x93\\x18\\x08\\xa7\\xb2\\x1e\\x08\\xa7\\xadT\\xc7\\x19\\xa1\\xb7\\xcf\\xc2\\xe9sH\\xc6y\\xd0\\x17,\\x9f\\xd9EA\\xe9\\x12\\x04/C\\xe9\\n\\xe8\\xabR\\x06\\xaf\\x81\\xbf\\xae\\xae\\xd4\\x1bV|\\xb9)\\x97\\x82\\xbd\\xf81\\xf1-\\x9c\\xdcm\\x18\\xbb\\xa33?A\\xc9\\x1f\\x82\\x01P\\xaa\\x02\\xba\\xaa\\x94\\xc1j\\xe0\\xab;\\xa8|\\t\\xb4\\xe2K\\r\\x07\\xd5\\xb3\\xb9&l\\xfc\\xa3\\xc0\\xfb\\x01\\x1f0\\x87\\x0f\\x02>\\x04\\xf8\\xb0\\xe8\\xf0\\x11\\xb0G\\xe1\\xf01\\xd0\\xc7\\xa5\\xcc\\x9f\\x00\\x7f\\x123\\xe2\\xd4\\x9f\\xcc\\x88^\\xf2\\x8c8\\r\\xdd3\\x7f;#\\xced=#\\xce\\xca3\\xe2\\x9c<#\\xce\\xf33\\xc2U\\x9c\\x11\\x170#.f=#.Y\\xa9\\x97\\xcb\\x0e\\xe6\\x0f\\xa8+\\xc8\\xd6U\\x84qMY\\xc4\\xd5\\xc9u\\x807\\x00\\xdeTu\\xe0-\\xac\\xdeV\\xad\\xde\\xc1\\xea]1\\xed\\xf7\\xc0\\xdeG\\xda\\x1f\\x80~h\\xb9N\\x1eI\\xee\\tw\\xbe\\xc7\\xd0x\"m\\xc1\\xaf>\\xc5\\xea3u\\xc3=\\x87\\xaf/\\x00\\xbeTV\\x05\\xad\\xa9W\\x80_\\x03~#\\xba\\xf7\\x16\\xec;\\xb8\\xf7\\x1e\\xf4\\x07\\xa9*>\\x82\\xff\\xa4\\xee\\xc7\\xcfV\\xf2\\xfbE\\x95_z\\'\\xf9\\x8a}\\xbf\\xc1\\xd8w\\xa5[\\xf4!\\xfe\\x03\\xf0O\\xc0\\xbf\\xa4@\\xf9{\\xceo\\xac\\xda8fn\\x0f\\xfak\\xd8\\xd9\\x1cqsw\\xc4\\xcd\\xddQ\\x08\\xc5\\x1e\\xac\\x83#\\r\\xc5\\x11\\xb4\\x93\\xa3\\xc5L;;\\xaa:2\\x80\\xb8\\xc0\\xa8\\x06\\x9a\\xae\\x8a-)\\xea\\x06\\xd4\\x1d\\xa8\\x87\\xa3\\x8d\\xfaf\\xe5\\t\\xd8\\x0b\\xb0\\xb7\\x1a\\xf6\\'\\xd9\\x01\\xfb\\x00\\xce!:\\x9c\\x13l.8\\x9c\\x1bt\\x1eG1\\xf7y\\xc1\\xe7sT\\xe5>\\xbf\\xa3\\xe5\\xdc\\x17P\\x87\\xe4O\\nb\\xdbB\\xb0UX\\xf4J\\x98gE\\xb0Z\\xd4QUD\\xc5\\xa0R\\x1c`\\t\\xd1\\xd3\\x92`K\\xc1\\xd3\\xd2\\xa0}-\\xa7\\xb6\\x8c\\xa3\\xaa\\x88\\xcbB\\xa3\\x9c\\xa3\\xb2\\x88\\xcbc\\xb5\\x82z\\xff\\x8a\\xd8\\xbf\\x12\\xc0\\xca\\x8efE\\xec\\x07\\xd8\\x1fp\\x80\\xe8^\\x15\\xb0U\\xe1^5\\xd0\\xd5\\xa5D\\x06\\x82\\xaf\\xe1HGUM\\xc7?\\x18m\\x17\\xe4\\xd1\\xf6\\x0ftk9\\xfe\\xe5h\\x83\\x82\\xf9h\\xab\\xed(\\x8d\\xb6:\\x8e\\xd2h\\x0br\\xc4hs\\x13G[\\xb0#\\x1dmu\\x1d\\xb3\\x1cm\\xf5\\xac\\x1c\\x7f}u\\xdaC\\xe0}\\x03)\\x87\\xdc\\xffm\\xaa\\x91\\x86H \\x03\\xac\\x91:\\xf9\\x8d\\x016\\x01\\xa8U\\x82\\xfe\\xa4)\\xc0f\\x00C\\xc5\\xd47\\x07\\xdb\\x02\\xa9o\\t:\\xccre\\xb4r\\xe4/[\\xad!\\xd8\\x06JmA\\xb7\\x93\\xce\\xab=\\xf8\\x0e\\xea\\xc2\\xefh%\\xf2N\\x8e\\xea\\xa1\\xe3O:\\xc3\\xd9p\\x18\\xeb\\xa2\\x0eS\\x07\\xb0+\\xc0\\x08U[Db5J\\x8c/\\x1a\\xac\\x1e\\xae\\xc6\\x80\\x8e\\xb5\\x1c_\\x9c\\xec\\x88p\\x1b1`\\'#\\x14\\xbb)\\xdd\\xa8J\\xe2\\x01&\\x00LT\\xb9\\x91\\x84\\xd5d\\xc5\\x18\\xa2\\xf5\\xcfB\\x87\\x00M\\x11\\x9dL\\x05\\x9b\\x06\\'\\xbb\\x83\\xee!\\xe5\\xb3\\'\\xf8^\\xea|\\xf6\\xb6\\x92\\xcf>\\xeaAR\\x8d\\xf4\\xc5\\xb6\\xfd`\\xab\\xbf\\xd9l\\x1c\\x00t \\xd0AR \\xfc\\x08\\x1f\\x8c\\xd5!\\xcaN\\xa63|(\\x94\\x86\\x016\\x89\\x91\\xa4\\x83\\x1d\\x8eHF\\x80\\x1ei9\\xdd\\xa3\\xcc\\xce=\\x80\\x8c\\x86\\xd51P\\x1d\\xab\\xdc\\x94\\xc2\\xe3\\x00\\x8f\\x07\\x84\\xb4\\x1f\\xf4\\x01\\xcby8\\xe8\\xa8\\x9a\\xdb\\x87\\xa0qX\\xe1(}u9\\x82\\xad\\x8e\\x02=\\xa6\\xf4\\x84\\xc6q\\x1c\\xf0\\t\\xc0\\'\\xd5\\x13\\xef\\x14\\xc0\\xd3\\x00\\xcf\\x88n\\x9e\\x05{\\x0en\\x9e\\x07}A\\xca\\xfcE\\xf0\\x97\\xd4\\x99\\xbfl%\\xf3W\\xd4\\x81\\\\\\x85\\x8dk\\xd2@\\xe0W\\xafc\\xf5\\x86\\xda\\xc3\\x9b\\xf0\\xf0\\x16\\xc0\\xdb\\xe6\\xd1\\xdd\\x01|\\x17\\xf0=1\\x80\\xfb`\\x1f \\x80\\x87\\xa0\\x1fY\\xce\\xf3cea\\xd0\\x9b\\xff\\x13\\x18}\\n\\xcdg\\x92\\x9b\\xfc\\xef\\xf0<\\xc7\\xea\\x0b\\xa5\\x9b\\xfe\\xe4%T^\\x01|\\xad\\x06\\xdf\\x00|\\x0b\\xf0\\x9d\\xe8\\xe4{\\xb0\\x1f\\xe0\\xe4G\\xd0\\x9f\\xa4,\\x7f\\x06\\xff\\x05\\x13\\xe2\\xeb\\x9fL\\x88E\\xf2\\x84\\xf8\\x06\\xdd\\xef\\x7f;!\\xbeg=!~\\xc8\\x13\\xe2\\xa7\\'\\xbaw\\x1e\\xec\\x05\\xb8w\\x11\\xf4%)\\xbf\\x97\\xc1_Q\\xe7\\xf7\\xaa\\x95\\xfc^S\\xe5\\x97>\\xb8\\xafc\\xdf\\x1b0vS\\xe9\\x16}\"\\xde\\x02|\\x1b\\xf0\\x1d\\xc5\\x14\\xa2\\x03\\xe5.\\xd0{@\\xefKi\\xe0\\xafQ\\x0f\\xb0\\xfaP\\x0c\\xe5\\x11\\xd8\\xc7\\x08\\xe5\\t\\xe8\\xa7\\x963\\xfdLvT|\\xdf{\\x8e\\xad^@\\xf3\\xa5\\xc2\\x11\\xea\\xe6+\\xa0\\xaf\\x81\\xbe1\\x1f|o\\x01\\xbf\\x03\\xfc^}0\\x1f\\x00~\\x04\\xf8It\\xf73\\xd8/p\\xf7+\\xe8oR\\xe6\\xbf\\x83\\xff\\x81\\xd9\\xf0\\xf3Of\\xc3ry6\\xfc\\x82\\xee\\xef\\xbf\\x9d\\r\\xbf\\xb3\\x9e\\r6\\xce\\xd2l\\xc8\\xe6,\\xcd\\x06[g\\xcc\\x06oq6\\xd89\\xd3\\xd9`\\xef\\x9c\\xe5lpp\\xb6\\\\/\\x8e\\xce|\\x9b;9S\\xa7\\x9d\\x9d\\xf1\\xe7n@k\\x9c-\\x9e\\x9d\\xab\\xa0\\xe4\\x06Aw(y\\x80\\xf6t\\x163\\xe8\\x05\\xde\\xdbY\\xe5Kv+\\xbe\\xf88\\x9b\\xcf\\x86\\x1c\\xce\\xf4\\xe4r\\xc2X.g\\xd5l\\xc8\\r0\\x0f\\xc0\\xbc\"(L\\x81|X\\xcd\\xafZ-\\x80\\xd5\\x82\\xceB\\t\\x14\\x02[\\x18\\x01\\x14\\x01]\\xd4r\\xd4\\xc5d\\xf7\\x84W\\x8c\\xe2\\xd8\\xbf\\x04\\x14K*\\x9d\\xabJJ\\x01,\\r\\xd0Wr\\x83o\\x9c2X-+\\xa9\\x88\\x8f\\xfcr\\xd0)\\x0f\\xb4\\x82\\xe8dE\\xb0\\x95\\xe0de\\xd0~R\\x96\\xfd\\xc1\\x07\\xa8\\xb3\\\\\\xc5J\\x96\\xab\\x9a\\x85Q\\r\\xbbV\\x87\\xa9@\\xc9\\'i>\\xd4\\x00\\\\\\x13\\xf0?f.\\xd7\\x02Z\\x1bh\\x1dU\\x98AX\\r\\x16\\x03\\xa9\\x0b\\xb6\\x1e\\x02\\xa9\\x0f:\\xc4r\\xb6\\x1b8\\x9b\\x0f\\xb2\\x86\\xd8\\x8b\\x81j#\\xa5\\xa3\\xb8\\xbb\\x03n\\x02X\\xabp\\x94\\x0e\\x88\\xa6@\\x9b\\x01\\r5C\\x9b\\x03m\\x01\\xb4\\xa5\\xe8p\\x18\\xd8Vp\\xb85\\xe86R\\xe6\\xdb\\x82o\\xe7L;\\xbe\\xbd\\xf3\\x1fL\\x08\\xda\\xa2\\xc2\\x84\\xe8\\x00\\xdd\\x8e\\xce\\x7f9!\\xa0`>!:\\xc9\\x13\\xa2\\xb3\\xbd\\x18A)\\x16\\x82qP2\\x806J\\x19\\xec\\x06>^]\\xbb\\tV|It6{h$\\xe1\\xe0\\x92a\\x8b5\\xabN\\x024\\x05h\\xaa\\xb2b\\xe8\\xa9\\xa7\\x01\\xee\\x0e\\xb8\\x879\\xdc\\x13p/\\xc0\\xbd\\xc5\\xa2\\xe8\\x03\\xb6/B\\xea\\x07\\xba\\xbf\\xe5<\\x0c\\x90\\x1c\\x16n\\x0e\\x03\\xa11H\\xe1(m\\xb2\\xc1\\xd8j\\x08\\xd0\\xa1\\xe6\\xa5=\\x0c\\xb0\\tp\\xbar\\xd2\\xf8\\x91\\xe1\\x00G\\x00\\x1c)\\xba9\\n\\xech\\xb89\\x06\\xf4X)\\xf3\\xe3\\xc0\\x8fWg~\\x82\\x95\\xccO\\x94\\x03\\xe1\\xdf@&\\xc1\\xc6dsW\\xa7\\xc0\\x9b\\xa9\\x80\\xa7I\\x03\\x81W\\x9a\\x8e\\xd5\\x19f\\xdd\\xf7/tf\\x02\\x9d%F0\\x1b\\xec\\x1cD0\\x17\\xf4<\\xcb\\x89\\x9eo6\\xd5\\x16\\xc0\\xe6B(.R\\xa6\\xac\\nY\\x0cp\\t\\xc0\\xa5fU\\xb3\\x0c\\xe8r\\xa0+T3m%V\\xff\\x13\\x9d\\\\\\x05v5\\x9c\\\\\\x03z\\xad\\x94\\xe6u\\xe0\\xd7cDl\\xf8\\x93\\x11\\xd1E\\x1e\\x11\\x1b\\xa1\\xbb\\xe9oG\\xc4\\xa6\\xacG\\xc4fyDl\\x91G\\xc4V~D\\xf8\\x88#b\\x1bF\\xc4\\xf6\\xacG\\xc4\\x0e+\\xc5\\xb1S\\xe8\\xf6]pz7\\x92\\x91\\x01z\\x8f\\xe5\\x13\\xdb+(\\xed\\x83\\xe0~(\\x1d\\x00}P\\xca\\xe0!\\xf0\\x87\\xd5\\x85z\\xc4\\x8a/G\\x05\\xb3\\xc7\\xa0z\\x1cfO\\x80>i\\xd9\\x97S\\xaa\\xea\\x89 \\xa7Q\\x02g\\xa0xVY=\\x81\\xe4\\x1c\\xc0\\xf3\\x00/H\\xf5\\xc1\\xff\\xce\\xd5E\\xac^\\x92V\\xf9{\\xc7e\\xac^\\x11\\xab\\xe6*\\xd8kp\\xee:\\xe8\\x1bR\\xcc7\\xc1\\xdfR\\xc7|\\xdbJ\\xccw\\xd4\\xcdy\\x176\\xee\\x997\\xe7}x\\xfe\\x00\\xf0CUs>\\xc2\\xeac\\xb3\\xe6|\\x02\\x9d\\xa7@\\x9f\\x89\\x11<\\x07\\xfb\\x02\\x11\\xbc\\x04\\xfd\\xcarz_\\x9b5\\xe7\\x1b\\xd8|\\x0b\\xc5w\\xea\\xe6|\\x0f\\xf0\\x03\\xc0\\x8ff\\xcd\\xf9\\t\\xe8g\\xa0_T\\xcd\\xf9\\x15\\xab\\xdfD\\'\\xbf\\x83\\xfd\\x01\\'\\x7f\\x82\\xfe%\\xa5\\xf97x\\x1b\\x17\\xdal\\xd9\\\\\\xfe\\xa09\\xb7\\xc9\\xcdi\\xebBu\\xed\\\\\\xfe\\xb29\\xa1`\\xde\\x9c\\xf6.Rs:\\xb8H\\xcd\\xe9\\xe8\\x82\\xe6\\xcc!6\\xa7\\x93\\x0bmNg\\x97,\\x9b\\xd3\\xc5\\xc5rqh\\\\\\xf8\\x86p\\x85\\xd3n.4\\x19\\xee\\xa0=\\\\,\\x9e\\x98\\xa7\\xa0\\xe4\\x05Ao(e\\x07\\xed\\xe3\"f0\\x07\\xf8\\x9c.*_rY\\xf1%\\xb7\\x8b\\xea\\x93\\xa3<\\xb0\\x91\\xd7%\\xf3!\\xd3k\\x7f>\\x17\\x8a\\xe6\\x07Z\\xc0EQ\\x1f\\x01\\xa4 \\xc0B\\x00\\x0b+A\\x7fR\\x04`Q\\x80\\xc5\\\\\\x84B(\\x0e\\xb6\\x04\\xc2(\\t\\xba\\x94\\xe5\\xd8KKN\\xca7O_X-\\x03\\xd5\\xb2j\\x7f\\xca\\x01,\\x0f\\xb0\\x82\"\\x14\\xda>\\x15\\x81V\\x02ZYD\\x85z\\xf5\\xc3\\xaa\\xbf\\xe8f\\x00\\xd8*p\\xb3*\\xe8jR\\xb6\\xab\\x83\\x0fTg\\xbb\\x86\\x95l\\xd7\\x94\\x03\\xe1\\xff\\xc5g\\x00\\xf9\\x07\\xce\\xd4\\x82\\xad\\xda\\x92\\xab4L\\xbf\\x80J\\xd5H\\x1d\\xc0A\\x80\\x83\\x15p\\x85@N\\xbb.\\xe0z\\x80\\xeb+a\\xda\\x99!\\x80\\x1b\\x00n(\\xc6\\xc4\\x80m\\x84\\x98\\x1a\\x83nb9\\xf5Z\\xb3\\xd4\\x07\\x90\\xa6\\xb0\\xda\\x0c\\xaa\\xa1\\xcaM\\xe9?Rm\\x0e\\xb8\\x05\\xe0\\x96f\\xc9\\x0f\\x03\\xda\\nhk\\x15\\x1a@\\xda\\x00m\\x0b\\xb4\\x9d\\xe8p{\\xb0\\x1d\\xe0pG\\xd0\\x9d\\xa4C\\xe8\\x0c>\\x1cC\\xa3\\xcb\\x9f\\x0c\\r\\xda\\xb5\\xc2\\xd0\\xd0A\\xb7\\xeb\\xdf\\x0e\\x8d\\xaeY\\x0f\\x8d\\x08yhD\\xcaC#\\x8a\\x1f\\x1a9\\xc5\\xa1\\x11\\x8d\\xa1\\xa1\\xcfzh\\xc4X)\\x9dX\\xa1\\xff\\xe3\\xe0\\xb4\\x01\\xc90\\x82\\xeef\\xf9\\xf4\\xe2\\x05\\xa5\\x04\\x08&B)\\tt\\xb2\\x94A\\x16\\xb5#\\x82\\xd2Q\\x08\\x1e\\x83\\xd2q\\xd0\\'\\xa4\\x0c\\x9e\\x04\\x7fJ]\\xbb\\xa7\\xad\\xf8r\\xc6\\xac\\x18\\xaa\\x91\\xb38\\xcfs0v^Y\\x0c\\xf4\\xd9r\\x01\\xf0E\\xc0\\x97\\xa4\\xe3\\xe6\\xaf\\xc3\\x97\\xb1zEQ\"\\xf4\\xf7\\xdf\\xaeB\\xe7\\x1a\\xd0\\xebb1\\xdc\\x00{\\x13\\xa1\\xdc\\x02}\\xdbr\\xfcw\\xd4M\\x16@\\xee\\xc2\\xe8=h\\xdeWlI\\xd1\\x07@\\x1f\\x02}\\xa4n\\xb2\\x00\\xf2\\x18\\xf0\\x13\\xc0O\\xcd{\\xf0\\x19\\xe0\\xe7\\x80_\\x88\\x0e\\xbf\\x04\\xfb\\n\\x0e\\xbf\\x06\\xfdF\\xca\\xfd[\\xf0\\xef\\xd4\\xb9\\x7fo%\\xf7\\x1fT\\xb9\\xa7C\\xfa#\\xf6\\xfd\\x04c\\x9f\\x95\\xbd_\\x9d|\\x01\\xf8\\x15\\xe07)\\xf3\\xfc\\xcb\\xd2w\\xac\\xfeP\\xad\\xfe\\xc4\\xea/1\\x80\\xdf`m44\\x80l\\x1aJ\\xdbj,f\\xdcN\\xa3\\xfa\\x18\\xc6\\x1e\\x1a\\x0e\\x1aq\\x0b~\\xd5\\x11\\xabN\\x1a\\x1b\\xe5\\x9cr\\xd6P\\xd0\\x05\\xa0Fc\\xa3\\xbe\\xf6\\xb8\\x02v\\x03\\xec\\xae\\x11\\xff\\xd0\\x0bXO\\xb8\\xe7\\x05\\xda[#\\xfd\\xa1\\x17\\xf0>\\x1a\\xfc\\xa1\\x17\\xcd\\x1fL\\x87=\\xf2t\\xc8\\t\\xdd\\\\\\x9a\\xbf\\x9c\\x0eP\\xc8\\xe2\\x0f\\xbdh\\xa4\\xe9\\x90G#M\\x87\\xbc\\x1aL\\x87\\xdc\\xd2\\x1fz\\xd1\\xe0\\x0f\\xbdh\\xb2\\x9c\\x0e\\x054\\x96\\xab\\xa2\\xa0F\\xfdP,\\x84\\\\\\x15F\\x10E\\x94y\\xaeF\\x8a\\x02,\\x06\\xb0\\xb8t4\\xfc\\xf0-\\x81\\xd5\\x92\\x1aeM\\x94\\xc2ji1\\xe9\\xbe`\\xcb \\xe9eA\\x97\\xb3\\\\\\x13\\xe55\\xc2?\\x14\\x85`E(U\\x02]Y:)?\\xf0\\xfe\\x1aU\\xcc\\x01Vb\\xae\\xa21{\\x82VE\\\\\\xd5`\\xab\\xba*\\xae@\\xac\\xd6P\\x97\\\\M\\xa8\\xfc\\x03\\xb0\\x96\\x18^m\\xb0u\\xe0i\\x10\\xe8`\\xcb\\xe1\\xd5U\\x97|=h\\xd4W\\x95|\\x08V\\x1b\\xa8\\xf7o\\x88\\xfd\\x19\\x80\\x8d\\xccK\\xbe1\\xe0&\\x80\\xb5\\xa2{M\\xc16\\x83{\\xa1\\xa0\\x9bK\\x89l\\x01\\xbe\\xa5:\\x91aV\\x12\\xd9Jc>\\xce[c\\xdf60\\xd6V\\xe9\\x16\\x9d\\x93\\xed\\x00\\xb7\\x07\\xdcA\\n\\x94\\x1f\\xe7\\x1d\\xb1\\xdaIR\\x12\\xc7yg\\xe8\\x84\\x03\\xed\"\\x86\\xa2\\x03\\xdb\\x15\\xa1D\\x80\\x8e\\xb4\\x9c\\xe9(\\xf5\\x89\\x07\\x90h\\x18\\xd5C3F\\xb1%Ec\\x81\\xc6\\x015(\\xa3\\xa0\\xe3\\xdc\\x08\\xb8\\x1b\\xe0x5\\xecO\\x12\\x00\\'\\x02N\\x12\\x1dN\\x06\\xcb\\xc2a\\x02:E\\xca}*\\xf84\\x8c\\x9b\\xee\\x7f2nh\\xbf\\x0b\\xe3\\xa6\\x07t{\\xfe\\xed\\xb8\\xe9\\x99\\xf5\\xb8\\xe9%\\x8f\\x9b\\xde\\xf2\\xb8\\xe9\\xc3\\x8f\\x9b<\\xe2\\xb8\\xe9\\x8bq\\xd3/\\xebq\\xd3\\xdfJ\\xc5\\x0c\\x10:z \\x9c\\x1e\\x84d\\x0c\\x06=\\xc4\\xf2\\xe9\\r\\x15\\x94\\x86A\\xd0\\x04\\xa5t\\xd0\\xc3\\xa5\\x0c\\x8e\\x00?R]\\xbd\\xa3\\xac\\xf82ZU\\xbd\\xdd\\xb8\\x83\\x1d\\x83\\x93\\x1b\\x0bc\\xe3\\x94\\x07K\\xff\\xb8\\xd1x\\xc0\\x13\\x00OT\\r\\xbaIX\\x9d\\xac(%\\xfa\\xf6;\\x05:S\\x81N\\x13\\x8ba:\\xd8\\x19\\x08\\xe5_\\xd03-\\xc7?KY\\xbd\\x11\\x9c\\xd1\\xd90:\\x07\\x9as\\x15[Rt\\x1e\\xd0\\xf9@\\x17(\\xa3\\xa0\\xfd\\xb4\\x10\\xf0\"\\xc0\\x8b\\xd5ce\\t\\xc0\\xa5\\x00\\x97\\x89\\xee.\\x07\\xbb\\x02\\xee\\xae\\x04\\xfd\\x9f\\x94\\xf9U\\xe0W\\xab3\\xbf\\xc6J\\xe6\\xd7j\\x94\\x0f\\x9d\\x08\\xb2\\x0e\\xbb\\xae\\x87\\xa9\\rJ\\x97\\x02\\xc9F\\x80\\x9b\\x00n\\x96\\xb2\\xce\\x7f\\x96\\xbb\\x05\\xab[Ug\\xb1\\r\\xab\\xdbE\\xf7w\\x80\\xdd\\t\\xf7w\\x81\\xdem9\\xdb\\x19B\\xb5\\xed\\x81\\xe0^(\\xed\\x03\\xbd_\\x8a\\xf9\\x00\\xf8\\x83\\xe8\\xd7C\\x7f\\xd2\\xaf}\\xe5~=\\x0c\\xdd#\\x7f\\xdb\\xafG\\xb2\\xee\\xd7\\xa3r\\xbf\\x1e\\x93\\xfb\\xf58\\xdf\\xafy\\xc5~=\\x81~=\\x99u\\xbf\\x9e\\xb2rR\\xa7\\xcd&|\\x009\\x83\\xe38\\x8b0\\xce)\\xab\\x8b\\xd6\\xfby\\xc0\\x17\\x00_T\\x94&\\x1d\\x8d\\x97\\x80^\\x06zE\\x85r\\x17w\\xa0\\xd7\\x80^\\x17O\\xef\\x06\\xd8\\x9b8\\x88[\\xa0o[>\\xbd;\\xca^\\xa1\\x1f\\xa8\\xdd\\x85\\xd1{\\xd0\\xbc\\xaf\\xf0\\x17\\x1f\\xa8=\\x00\\xfc\\x10\\xf0#e8\\xf4\\x03\\xb5\\xc7\\x80\\x9f\\x00~\\xaa\\x84\\xe9c\\xf6\\x19\\xe0\\xe7\\x80_\\x88\\x1e\\xbf\\x04\\xfb\\n\\x1e\\xbf\\x06\\xfdF*\\x9d\\xb7\\xe0\\xdf\\xa9\\xdb\\xe5\\xbd\\x95C\\xf8 T\\xe4G\\xa8~\\x82\\xd9\\xcf\\xa0\\xbfXN\\xc4WA\\xe9\\x1b\\x04\\xbfC\\xe9\\x07\\xe8\\x9f\\x92/\\xbf\\xc0\\xffV\\xfbb\\xe3j\\xd9\\x97l\\xaefw\\'[W\\x9a\\x02;Wj\\xcb\\xdeU\\xd9\\x9e\\x0eXut\\xb5Q?\"\\x9d\\xa0\\xe4\\x0c\\xd8E\\x82\\x85\\x19\\xa4\\x01\\xe8\\n\\xd0\\xcdU\\xfc\\x0b/`=\\\\\\xf1\\x17^@{\\xb9Z\\x8c\\xde[rS\\xf8\\x14;;4|\\\\3W\\x1c~y\\x05[\\xe5\\x04\\x9aK\\xe9G\\x00\\xc9\\r0\\x0f\\xc0\\xbcJ\\xd0\\x9f\\xe4\\x03\\x98\\x1f`\\x01\\xd1\\xc9\\x82`\\x0b\\xc1\\xc9\\xc2\\xa0\\x8b\\xb8J\\x7f\\xdf\\x05|1W\\xfc}\\x17\\xd7?\\x18\\x1a\\'\\xe4\\xa1Q\\x02\\xba%]\\xffrh@!\\x8b\\xbf\\xef\\xe2*\\r\\x8d\\xd2\\xae\\xd2\\xd0\\xf0u\\xc5\\xd0\\xc8\\'\\xfd}\\x17W\\xfc}\\x17\\xd7,\\x87F9+5R\\xdeU\\xb8\\xb6\\xc3\\xe9\\x8aHF%\\xd0\\x95-\\x9f\\x98\\x9f\\xa0\\xe4\\x0f\\xc1\\x00(U\\x01]U\\xca`5\\xf0\\xd5]U\\xbe\\x04Z\\xf1\\xa5\\x86y\\xbd\\xd6\\xc4\\xc1\\xfd\\x03[\\xb5T\\xf5Z\\x1b\\xabu\\xcc\\xeb5\\x08J\\xc1\\x80\\xeb\\xaa\\xeb\\xb5\\x1e\\xc0\\xfa\\x00C\\xc4Rh\\x00\\xb6!\\x02a@7\\xb2\\x1c}cu\\xbd6\\x81\\x86\\xd6\\xac^\\x9bb\\xabf@C\\xd5\\xf5\\xda\\x1c`\\x0b\\x80-\\xd5\\xf5\\x1a\\x06\\xb0\\x15\\xc0\\xd6\\xa2\\x93m\\xc0\\xb6\\x85\\x93\\xed@\\xb7\\x97\\xb2\\xdd\\x01|Gu\\xb6;Y\\xc9vg\\xf3l\\x87c\\xdb.\\xb0\\xa5S\\x84C\\xc7gW\\xa0\\x11@#\\xcd\\xb3\\x1e\\x058\\x1a\\xb0\\xde\\x1c\\x8e\\x01\\x1c\\x0b8N\\x0c\\xc9\\x00\\xd6\\x88\\x90\\xba\\x81\\x8e\\xb7\\x9c\\xf7\\x049\\xef\\xc2\\x7f\\x97\\x08\\x1aI\\nG\\xe9g\\x92\\xc9\\xd8\\x8a\\x05J\\x94\\x9e\\xe0\\xbfL\\x048\\x15p\\x9a\\xba<\\xba\\x03\\xec\\x01\\xb0\\xa7\\xe8f/\\xb0\\xbd\\xe1f\\x1f\\xd0}\\xa5\\xcc\\xf7\\x03\\xdf\\x1f\\x93b\\xc0\\x9fL\\n\\xda\\xaa\\xc2\\xa4\\x18\\x08\\xddA\\x7f;)\\x06e=)\\x06\\xcb\\x93b\\x88<)\\x86\\xf2\\x93\"\\xbf8)\\x86aR\\x98\\xb2\\x9e\\x14\\xe9V\\xeae\\xb8\\xd0\\xf4#\\xe0\\xf4H$c\\x14\\xe8\\xd1\\x96\\xcfl\\x8c\\xa04\\x16\\x82\\xe3\\xa04\\x1e\\xf4\\x04)\\x83\\x13\\xc1OR\\xd7\\xeed+\\xbeLQ\\x97\\xc2T\\xd8\\x98&M\\x08~u:Vg\\xa8\\xcf\\xf8_\\x9c\\xf1L\\x80\\xb3\\xcc\\xebc6\\xe09\\x80\\xe7\\x8a%0\\x0f\\xec|\\x04\\xb0\\x00\\xf4B\\xcbQ/R\\xb6\\x16\\x9d\\x05\\x8bat\\t4\\x97Jn\\xf2?bY\\x86\\xd5\\xe5\\xea!\\xb0\\x02*+\\x01\\xfe\\xa7\\x06W\\x01\\\\\\rp\\x8d\\xe8\\xe4Z\\xb0\\xeb\\xe0\\xe4z\\xd0\\x1b\\xa4,o\\x04\\xbfI\\x9d\\xe5\\xcdV\\xb2\\xbcE\\x19\\x06}[\\xd9\\x8am\\xb7\\xc1\\xd6vE\\xe3Qt\\x07\\xd0\\x9d@w)\\x13K\\xdfev\\x03\\xce\\x00\\xbcG}({\\x01\\xee\\x03\\xb8_\\x0c\\xe8\\x00\\xd8\\x83\\x08\\xe8\\x10\\xe8\\xc3\\x96\\xb3~\\xc4\\xdc\\xdd\\xa30z\\x0c\\x9a\\xc7\\x15\\xee\\xd2\\xeb\\xe2\\t\\xa0\\'\\x81\\x9eR\\xfbs\\x1a\\xe0\\x19\\x80g\\xcdc9\\x07\\xf8<\\xe0\\x0b\\xa2\\xbb\\x17\\xc1^\\x82\\xbb\\x97A_\\x91\\xf2\\x7f\\x15\\xfc5\\xcc\\x89\\xeb\\x7f2\\'\\x86\\xc9s\\xe2\\x06to\\xfe\\xed\\x9c\\xb8\\x99\\xf5\\x9c\\xb8%\\xcf\\x89\\xdb\\xf2\\x9c\\xb8\\xc3\\xcf\\x89\\x02\\xe2\\x9c\\xb8\\x8b9q/\\xeb9q\\xdfJ\\xd5<\\x10Z\\xfe!\\x9c~\\x84d<\\x06\\xfd\\xc4\\xf2\\xd9=\\x15\\x94\\x9eA\\xf09\\x94^\\x80~)e\\xf0\\x15\\xf8\\xd7\\xea\\n~c\\xc5\\x97\\xb7\\xaef\\xcf\\xb8w8\\xb8\\xf7\\xb0\\xf5AjD\\xfeF\\xf1\\x11\\xab\\x9f\\x94\\xa7M\\x1f^\\x9f\\xa1\\xf4\\x05\\xf0Wu\\xa5|\\x03\\xf8\\x1d\\xe0\\x0f\\xb1\\x14~\\x82\\xfd\\x85@~\\x83\\xb6q\\xb3\\x18}67\\xf5;\\xb6\\xad\\x1b\\xee\\xe9n\\xb8\\xa7\\xbb)\\xfc\\xa1\\xd3\\xc4\\x01\\xb0#`\\'7e\\x10\\xceXu\\x91V\\xf9\\xb7l\\rV]\\xdd\\x04\\xf7\\xdc\\xc0\\xba\\xbb\\xe1W\\xcdA{\\xbaI\\xbfj\\x0e\\xde\\xdbM\\x95\\xe7\\xecn\\x96\\xf3\\xec#\\x05 |<\\x98\\x036rJ\\x9e\\x8bw\\x88\\\\p<7\\xd0<\\x92\\x8b\\xbcN^\\xac\\xe6s3\\xcb~~(\\x15\\x00\\\\P\\x8c\\xa0\\x10\\xd8\\xc2\\x88\\xa0\\x08\\xe8\\xa2\\x96\\x13\\\\L\\x95\\xe0\\xaa\\xa48l\\x96\\x80bI7\\xc5\\x89V!\\xa5\\x00\\x96\\x06\\xe8k\\x16C\\x19\\xa0e\\x81\\x96\\x93b\\xe0?\\x7f.\\x8f\\xd5\\n\\xa2\\x93\\x15\\xc1V\\x82\\x93\\x95A\\xfbIi\\xf6\\x07\\x1f\\xe0F\\x1b\\xbc\\x8a\\xdb\\x1f\\x0c\\x84\\xbb\\xf2@\\xa8\\n\\xddjn\\x7f9\\x10\\xa0`>\\x10\\xaa\\xbbI\\x03!\\xd0M\\x1a\\x085\\xdc0\\x10\\n\\x8a\\x03\\xa1\\xa6\\x1b\\x1d\\x08\\xff\\xb8e9\\x10jY)\\x8e\\xdan|o\\xd7\\x81\\xd3AHF0\\xe8\\xba\\x96O\\xac\\x9e\\xa0T\\x1f\\x82!Pj\\x00\\xba\\xa1\\x94A\\x06|#u\\xa16\\xb6\\xe2K\\x13\\xb9P\\xf9\\xbb\\xbb\\x166\\x9a*\\x0e\\x99vX3\\x1cr(\\xd0\\xe6\\xca\\xfa\\x08 -\\x00\\xb6\\x04\\x18\\xa6\\x04\\xfdI+\\x80\\xad\\x01\\xb6\\x11\\x0b\\xa1-\\xd8v\\x08\\xa3=\\xe8\\x0e\\x96c\\xef\\xe8f6\\xb5:\\xc1hgh\\x86\\xab\\x1a\\xbe\\x0bVu\\xe6}\\xd3\\x15J\\x11\\x80#\\x95n\\xfa\\x91(\\x80\\xd1\\x00\\xf5\\xa2\\x9b1`c\\xe1f\\x1ch\\x83\\x94m#\\xf8n\\xeal\\xc7[\\xc9v\\x82\\x9cm\\xe1\\xc6\\x0e\\x1bIR\\x00\\xfc?\\x1dM\\xc6*\\xab\\x0c\\x00\\xbfn\\x0e\\x1fS\\x00\\xa7\\xaa\\x03H\\x03\\xd8\\x1d`\\x0f1\\x80\\x9e`{!\\x80\\xde\\xa0\\xfbX\\xces_\\xf5\\xd4\\xea\\x07\\x8d\\xfef\\x1d?\\x00[\\r\\x04:H5\\xb5\\x06cu\\x88y\\xf6\\x87Bi\\x18`\\x93\\xe8_:\\xd8\\xe1\\xf0o\\x04\\xe8\\x91R\\x82G\\x81\\x1f\\x8d\\x810\\xe6O\\x06\\x02\\xedHa \\x8c\\x85\\xee\\xb8\\xbf\\x1d\\x08\\xe3\\xb2\\x1e\\x08\\xe3\\xe5\\x810A\\x1e\\x08\\x13\\xf9\\x81PH\\x1c\\x08\\x930\\x10&g=\\x10\\xa6X)\\x8b\\xa9BoO\\x83\\xd3\\xd3\\x91\\x8c\\x19\\xa0\\xff\\xb5|X3\\x05\\xa5Y\\x10\\x9c\\r\\xa59\\xa0\\xe7J\\x19\\x9c\\x07~\\xbe\\xbaD\\x17X\\xf1e\\xa1\\xdck\\xd2\\xaf\\xbc,\\xc2\\xc9-\\x86\\xb1%\\xca\\x83\\xa5\\xaf\\x97K\\x01/\\x03\\xbc\\\\Q+\\xf4\\xd8W\\x00]\\t\\xf4?\\xa9V\\xf8\\xa7\\xc3*\\xac\\xae\\x16\\x8ba\\r\\xd8\\xb5\\x08e\\x1d\\xe8\\xf5\\x96\\xe3\\xdf`>\\x146b\\xabM\\xd0\\xdc\\xacp\\x84\\xba\\xb9\\x05\\xe8V\\xa0\\xdb\\xcc\\xcbs;\\xe0\\x1d\\x80w\\xaa{k\\x17\\xc0\\xdd\\x003Dw\\xf7\\x80\\xdd\\x0bw\\xf7\\x81\\xde/e\\xfe\\x00\\xf8\\x83\\xea\\xcc\\x1f\\xb2\\x92\\xf9\\xc3n\\xeag\\xf2\\x11\\xecz\\x14\\xa6\\x8e)]\\xaaJ\\x8e\\x03<\\x01\\xf0\\xa4*\\xaf\\xa7\\xb0z\\xda\\xaco\\xcf@\\xe7,\\xd0sb\\x18\\xe7\\xc1^@\\x18\\x17A_\\xb2\\x9c\\xf5\\xcb\\xca\\xac\\xe3\\xef$\\xc2\\xe8Uh^\\x93\\x1c\\xe1\\xdf\\xe4\\xaec\\xf5\\x86\\xd2w\\x7fr\\x13*\\xb7\\x00\\xdeV\\x83w\\x00\\xde\\x05xOt\\xf2>\\xd8\\x07p\\xf2!\\xe8GR\\xae\\x1f\\x83\\x7f\\x829\\xf1\\xf4O\\xe6\\xc4$yN<\\x83\\xee\\xf3\\xbf\\x9d\\x13\\xcf\\xb3\\x9e\\x13/\\xe49\\xf1R\\x9e\\x13\\xaf\\xf89QX\\x9c\\x13\\xaf1\\'\\xded=\\'\\xdeZ\\xa9\\x90wB\\xcb\\xbf\\x87\\xd3\\x1f\\x90\\x8c\\x8f\\xa0?Y>\\xb1\\xcf\\x82\\xd2\\x17\\x08~\\x85\\xd27\\xd0\\xdf\\xa5\\x0c\\xfe\\x00\\xffS]\\xad\\xbf\\xac\\xf8\\xf2\\xdbM\\xf5\\xac\\xb0q\\xa76\\xb2\\xb9\\xabk\\xce\\xd6\\x1d7w\\xa0\\xf6\"*\\xe88`\\xd5Q\\xd2\\x91?a\\x87\\x923`\\x17w\\xa1\\x064`]\\xddi\\x04n\\xa0\\xdd\\xdd-\\x86\\xed\\xe1\\xae\\xee&O\\xd8\\xf4\\x82\\xa2\\xb7\\xb4\\xa5p\\xc3\\xcd\\x0e\\xd0\\x07`\\x0e\\xb3\\x18r\\x02\\xcd\\x054\\xb7\\x14\\x03\\xdfky\\xb0\\x9aWt2\\x1f\\xd8\\xfcp\\xb2\\x00\\xe8\\x82\\xeeb\\x9a\\x0b\\x81/\\xec\\xaeJs\\x11w\\xcbi.\\xea\\xce\\x9f^1\\xa8\\x16\\x87\\xd9\\x12\\xa0KZ\\x8e\\xbd\\x94*\\xf6\\x08R\\x1a\\x01\\xf8B\\xb1\\x8c2\\xf6@R\\x16`9\\x80\\xe5\\xa5\\xe8\\xf8\\xbbT\\x05\\xacV\\x94V\\xf9\\x97\\xa7JX\\xad,\\xc6\\xec\\x07\\xd6\\x1f\\xce\\x05\\x80\\xae\"\\xc5\\\\\\x15|5w\\xdal\\xd5\\xdd\\xff\\xa09_\\xcb\\xcd\\x19\\x08\\xdd\\x1a\\xee\\x7f\\xd9\\x9cP0o\\xce\\x9a\\xeeRs\\xfe\\xe3.5g-w4g\\x11\\xb19k\\xbb\\xd3\\xe6\\xac\\xe3\\x9ees\\x06Y9\\xa9`\\xe1\\xa4\\xea\\xc2\\xe9zHF}\\xd0!\\x96O\\xaa\\x81\\xa0\\xd4\\x10\\x82\\x0c\\x94\\x1a\\x81n,e\\xb0\\tx\\xad\\xbaj\\x9aZ\\xf1\\xa5\\x99\\xbb\\xaa9Ca\\xa3\\xb9Ya\\xb7\\xc0\\xd1\\xb7\\x04\\x1a\\xa6j\\xceVXmm\\xde\\x9cm\\xa0\\xd4\\x16p;\\xb1\\x06\\xda\\x83\\xed\\x80\\x08:\\x82\\xeed9\\xec\\xcef\\xcd\\x19\\x0e\\x9b]\\xa0\\xa8S7gW\\x80\\x11\\x00#\\xcdb\\x88\\x02\\x1a\\rT\\xafj\\xce\\x18\\xac\\xc6\\x8aN\\xc6\\x815\\xc0I#\\xe8nR\\x9a\\xe3\\xc1\\'\\xa8\\xd3\\x9ch%\\xcdIr\\x18\\xd2])\\x19\\xde\\xb00F\\x94\\xb9\\xc3g\\xed\\x80S\\x01\\xa7)B\\xa1\\x99\\xed\\x0e\\xb4\\x07\\xd0\\x9efh/\\xa0\\xbd\\x81\\xf6\\x11C\\xea\\x0b\\xb6\\x1fB\\xea\\x0fz\\x80\\xe5\\xbc\\x0f\\x94\\xeb\\x82\\x7f\\xff\\x18\\x04\\x8d\\xc1\\x8a\\xad\\xe8]i\\x08\\xb6\\x1a\\nt\\x98y\\x14&\\xc0\\xe9\\x80\\x87+O\\xcb\\x8f\\x8c\\x008\\x12\\xe0(\\xd1\\xcd\\xd1`\\xc7\\xc0\\xcd\\xb1\\xa0\\xc7I\\x99\\x1f\\x0f~\\x02F\\xc4\\xc4?\\x19\\x11\\xb4G\\x85\\x111\\t\\xba\\x93\\xffvDL\\xcezDL\\x91G\\xc4TyDL\\xe3GDQqDL\\xc7\\x88\\x98\\x91\\xf5\\x88\\xf8\\xd7J\\xbd\\xcc\\x14\\xba}\\x16\\x9c\\x9e\\x8dd\\xcc\\x01=\\xd7\\xf2\\x99\\xcd\\x13\\x94\\xe6Cp\\x01\\x94\\x16\\x82^$ep1\\xf8%\\xea\\xda]j\\xc5\\x97er\\xed\\x8a\\x1f\\x0e/\\xc7\\xc1\\xad\\x80\\xad\\x95\\x8a\\x92\\xa0\\xe8\\x7f@W\\x01]\\xad,\\t\\xfa\\xf9\\xef\\x1a\\xc0k\\x01\\xafS\\x97\\xc4z\\x80\\x1b\\x00n\\x14Kb\\x13\\xd8\\xcd\\x08h\\x0b\\xe8\\xad\\x96\\xb3\\xb0M\\xd5j\\xf4\\xf7\\x9d\\xb6\\xc3\\xea\\x0e\\xa8\\xeeTzD\\x7f\\xdfi\\x17\\xe0\\xdd\\x803\\xa4\\xb9 \\xfce\\x17\\xac\\xeeU\\x04I\\x7f\\xffc\\x1ft\\xf6\\x03= :z\\x10\\xec!8z\\x18\\xf4\\x11)\\xf3G\\xc1\\x1fSg\\xfe\\xb8\\x95\\xcc\\x9fP7\\xe1I\\xd88%\\xb9\\xc8\\xaf\\x9e\\xc6\\xea\\x19u*\\xcf\\xc2\\xc3s\\x00\\xcf\\x9bw\\xe6\\x05\\xc0\\x17\\x01_\\x12\\x03\\xb8\\x0c\\xf6\\n\\x02\\xb8\\n\\xfa\\x9a\\xe5L_We\\x9a^\\xf1o\\xc0\\xeaM\\xa8\\xdeRzT\\x9d\\xdc\\x06x\\x07\\xe0]U\\x9e\\xefa\\xf5\\xbej\\xf5\\x01V\\x1f\\x8a\\xee=\\x02\\xfb\\x18\\xee=\\x01\\xfdT\\xca\\xef3\\xf0\\xcf1\\x1b^\\xfc\\xc9l\\x98.\\xcf\\x86\\x97\\xd0}\\xf5\\xb7\\xb3\\xe1U\\xd6\\xb3\\xe1\\xb5<\\x1b\\xde\\xc8\\xb3\\xe1-?\\x1b\\x8a\\x89\\xb3\\xe1\\x1df\\xc3\\xfb\\xacg\\xc3\\x07+U\\xf1Qh\\xf3Op\\xfa3\\x92\\xf1\\x05\\xf4W\\xcbg\\xf5MP\\xfa\\x0e\\xc1\\x1fP\\xfa\\t\\xfa\\x97\\x94\\xc1\\xdf\\xe0m\\xb3v\\x82R{\\x08v\\x80RG\\xd0\\x9d\\xa4\\x0cv\\x06\\x1f\\xae\\xae\\xd7.V|\\xd1y\\x98?7\\xba\\xe2\\xe4\"`,Ry\\xac\\xd5I\\x14\\xc0h\\x80z\\xa9P\\xf8\\'D\\x0cVcU\\xabqX5\\x88%`\\x04\\xdb\\r\\x01\\xc4\\x83N\\xb0\\x1cu\\xa2\\x87\\xea\\xa9\\x9b\\x04\\x8ddi\\x0b~\\x95\\xc5*Q\\x97`\\n|M\\x05\\x98f>\\xc0\\xba\\x03\\xee\\x01\\xb8\\xa7\\xe8^/\\xb0\\xbd\\xe1^\\x1f\\xd0}\\xa5\\xfc\\xf6\\x03\\xdf_\\x9d\\xdf\\x01V\\xf2;P\\x95_z\\x03\\x1a\\x84}\\x07\\xc3\\xd8\\x10\\xa5[\\xf4\\x064\\x14\\xf00\\xc0&U.\\xd3\\xb1:\\\\1M\\xe8X\\x1c\\x01\\x9d\\x91@G\\x89\\xa1\\x8c\\x06;\\x06\\xa1\\x8c\\x05=\\xcer\\xa6\\xc7+g\\x02\\xbd;N\\x80\\xd1\\x89\\xd0\\x9c\\xa4\\xd8\\x92\\xa2\\x93\\x81N\\x01:U\\x19\\x05\\xbdYN\\x03<\\x1d\\xf0\\x0c\\xf5\\xc1\\xfc\\x0bp&\\xc0Y\\xa2\\xbb\\xb3\\xc1\\xce\\x81\\xbbsA\\xcf\\x932?\\x1f\\xfc\\x02\\xcc\\x86\\x85\\x7f2\\x1bhs\\x8a\\x7f\\x95\\x11\\xba\\x8b\\xffv6,\\xcez6,\\x91g\\xc3Ry6,\\xe3gC\\t\\xe9\\xaf2b6\\xac\\xc8z6\\xac\\xb4R/\\xff\\tm\\xbe\\nN\\xafF2\\xd6\\x80^k\\xf9\\xec\\xd6\\tJ\\xeb!\\xb8\\x01J\\x1bAo\\x922\\xb8\\x19\\xfc\\x16u\\xedn\\xb5\\xe2\\xcb6\\x0f\\xd5c\\x82\\xbb\\xbc\\xe3\\xe0v\\xc0\\xd6N\\xb3*\\xdc\\x05t7\\xd0\\x0ceI\\xd0\\xc7\\xc5\\x1e\\xc0{\\x01\\xefS\\xc3\\x01d?\\xe0\\x03\\x80\\x0f\\x8aEq\\x08\\xeca\\x84t\\x04\\xf4Q\\xcby8\\xa6j6z\\x05:\\x0e\\xab\\'\\xa0zR\\xda\\xd4\\x01\\x9b\\xd2;\\xd0)\\xe0\\xa7\\x81\\x9fQDD\\xaf@g\\x81\\x9e\\x03z^\\x81\\xe2\\xda\\x0e\\xf4\"\\xd0K\\xa2\\xc7\\x97\\xc1^\\x81\\xc7WA_\\x93\\x0e\\xe1:\\xf8\\x1b\\xeaC\\xb8i\\xe5\\x10n\\xa9\\x0f\\xc1\\x9f\\xdc\\xc6\\xb6w`\\xeb\\xae4 \\xf8g\\xf5=\\xac\\xde7O\\xfe\\x03(=\\x04\\xfcH\\xdd\\x8f\\x8f\\x01>\\x01\\xf8T\\x0c\\xe4\\x19\\xd8\\xe7\\x08\\xe4\\x05\\xe8\\x97\\x96S\\xffJvS\\xf8\\xf0\\xf25l\\xbe\\x81\\xe2[\\xa5?\\xf4!\\xf3\\x0e\\xf0{\\xc0\\x1fTA|\\xc4\\xea\\'\\xd5\\xec\\xfb\\x8c\\xd5/\\xa2{_\\xc1~\\x83{\\xdfA\\xff\\x90\\xf2\\xfc\\x13\\xfc/\\x8c\\x8b\\xdf\\x7f2.\\x96\\xcb\\xe3\\xc2\\xc6\\x93\\xeaf\\xf3\\xfc\\xcbq\\x01\\x05\\xf3qa\\xeb)\\x8d\\x0b;Oi\\\\\\xd8{b\\\\\\x94\\x14\\xc7\\x85\\x83\\'\\x1d\\x17\\x8e\\x9eY\\x8e\\x0b\\'O\\xcb\\xd5\\xe1\\xeci\\xfeY\\x96\\x8b\\'\\xae\\xed\\x08\\xc3\\xd5Su\\xb3t\\x03\\xe8\\x0e\\xd0C\\x02\\xc5\\xfb\\xb3\\'P/\\xa0\\xde\"*|(\\x97\\x1d\\xab>\\x9eB\\xfas\\x80\\xcd\\xe9I\\xd3\\x9f\\x0btnO\\x8b\\xd5\\x91\\xc7S]\\x1dy\\xb1S>(\\xe6\\xf74\\xab\\x8e\\x02\\x80\\x0b\\x02.\\xe4\\xa9\\xac\\x8e\\xc2X-\\xe2\\xa9\\xac\\x8e\\xa2X-&\\xbaW\\x1cl\\t\\xb8W\\x12t)O\\xb1:J\\x83\\xf7\\xf5T\\xe5\\xb9\\x8c\\x95<\\x97\\xf54\\x1b\\x85\\xe5\\xe0by\\xd8\\xaa\\xa0\\xc8$\\x1d\\x85\\x15\\x81V\\x02ZY\\x19\\x1fM\\xb4\\x1f`\\x7f\\xc0\\x01j8\\x80T\\x01\\\\\\x15p51\\xa4\\xea`\\x03\\x11R\\r\\xd05-g\\xfc\\x1fO\\xf3QX\\x0bVkC\\xb5\\x8e\\xb4\\xa9<\\n\\x83\\x80\\x07\\x03\\xaf\\xab\\x88\\x88\\x8e\\xc2z@\\xeb\\x03\\rQ\\xa0t\\x146\\x00\\xda\\x10(#z\\xdc\\x08lcx\\xdc\\x04\\xb4V:\\x84\\xa6\\xe0\\x9b\\xa9\\x0f!\\xd4\\xca!4\\xf7\\xe4\\x1fs-\\xa0\\xda\\x12f\\xc3@\\xb7\\xb2\\x9c\\x88\\xd6\\x82R\\x1b\\x08\\xb6\\x85R;\\xd0\\xed%_:\\x80\\xef\\xe8I\\xdb\\xbf\\x93\\xe7\\x1f\\x8c\\x0b\\xda\\xaf\\xc2\\xb8\\xe8\\x0c\\xdd\\xf0\\xbf\\x1d\\x17\\xe1Y\\x8f\\x8b.\\xf2\\xb8\\xd0\\xc9\\xe3\\xa2+?.J\\x89\\xe3\"\\x02\\xe3\"2\\xebq\\x11e%\\x83\\xd1B2\\xf4p:\\x06\\xc9\\x88\\x05\\x1dg9\\x83\\x06A\\xc9\\x08\\xc1nP\\x8a\\x07\\x9d e0\\x11|\\x92\\xfa4\\x93\\xad\\xf8\\xc2\\x9a\\x8d\\xae\\x00BPE)0\\x96\\xaal\\x0b\\xdaTi\\x80\\xbb\\x03\\xeea6\\xbcz\\x02\\xed\\x05\\xb4\\xb7\\n\\r }\\x80\\xf6\\x05\\xdaO,\\xd0\\xfe`\\x07 \\xa4\\x81\\xa0\\x07Y\\xce\\xc3`\\xe5\\x0c\\xa0\\x1d5\\x04F\\x87Bs\\x98\\xc2_4\\x94\\tp:\\xe0\\xe1\\xcaphG\\x8d\\x00<\\x12\\xf0(%L[j4\\xe01\\x80\\xc7\\x8a\\x1e\\x8f\\x03;\\x1e\\x1eO\\x00=Q:\\x84I\\xe0\\'\\xab\\x0fa\\x8a\\x95C\\x98jv\\x08\\xfed\\x1a\\xf6\\x9d\\x0ec3$\\xb7\\x84\\xe7\\xc7\\xbf\\x00g\\x02\\x9cev\\x04\\xb3\\x81\\xce\\x01:WD\\x85\\xe7\\xc7<\\xac\\xce\\x17\\x03Y\\x00v!\\x02Y\\x04z\\xb1\\xe5\\xd4/\\x91\\xdc\\x14>UY\\n\\x8de\\n\\x07\\xe8sc9\\x1cX\\x01t\\xa5\\xda\\xf7\\xff\\x00\\xae\\x02\\xb8Z\\t\\xfa\\x935\\x00\\xd7\\x02\\\\\\':\\xb9\\x1e\\xec\\x068\\xb9\\x11\\xf4&)\\xdb\\x9b\\xc1o\\xc1\\xd0\\xd8\\xfa\\'C#B\\x1e\\x1a\\xdb\\xa0\\xbb\\xfdo\\x87\\xc6\\xf6\\xac\\x87\\xc6\\x0eyh\\xec\\x94\\x87\\xc6.~h\\x94\\x16\\x87\\xc6n\\x0c\\x8d\\x8c\\xac\\x87\\xc6\\x1e+5\\xb2WY\\xf7\\xf4\\xddo\\x1f\\x92\\xb5\\x1fQ\\x1cP\\x1c\\x02E\\x0f\\x02=\\x04\\xf4\\xb0\\xb2\\xae\\xe9\\x9b\\xe1\\x11\\xc0G\\x01\\x1fS\\x1e\\x83\\x1f9\\x0e\\xf0\\x04\\xc0\\x93\\xe21\\x9c\\x02{\\x1a\\xc7p\\x06\\xf4Y\\xcb\\xb5rNU\\xd2\\xf4\\x8d\\xfb<\\xac^\\x80\\xeaE\\xa5G\\xf4\\x8d\\xfb\\x12\\xe0\\xcb\\x80\\xafHe\\xcb\\xdf+\\xaeb\\xf5\\x9a\"H:\\x8b\\xaeC\\xe7\\x06\\xd0\\x9b\\xa2\\xa3\\xb7\\xc0\\xde\\x86\\xa3w@\\xdf\\x95\\xea\\xe5\\x1e\\xf8\\xfb\\xea\\xee|`%\\xf3\\x0f\\x85\\xc9\\xfb\\x08\\xaa\\x8fa\\xf6\\t\\xe8\\xa7\\x96\\xe3\\x7f&(=\\x87\\xe0\\x0b(\\xbd\\x04\\xfdJ\\xf2\\xe55\\xf87j_\\xdeZ\\xf1\\xe5\\x9d`\\xf6=T?\\xc0\\xecG\\xd0\\x9f,\\xfb\\xf2Y>\\x0b\\xe1\\xde\\xf7\\x05i\\xfb\\n\\xc5o\\xca\\xc3\\x0f$\\xdf\\x01\\xfe\\x00\\xf8S:\\x07\\xfe\\xd6\\xf7\\x0b\\xab\\xbfU\\xa7c\\xe3\\x85\\xcb\\xba\\x97\\x90\\x7f[\\xb0v^\\xd49{\\xd0\\x0e^b\\xcc\\x8e\\xe0\\x9d\\xbch\\xff9{\\xfdA\\xbf\\xee\\x96\\xfb\\xd5\\x05\\xba\\x1a\\xaf\\xbf\\xecW(\\x98\\xf7\\xab\\xab\\x97\\xd4\\xafn^R\\xbf\\xba{\\xd1~M\\xa3\\x7f5\\xdaF\\x97\\x90\\x96\\x1a\\x11\\x19\\xaf\\'\\x1e^TM\\xe9X\\xdc\\x90\\xb8\\xc1\\xe9\\xc4\\x13.yq_\\xe9\\x7fc\\xd1&>\"R\\x1f\\x9fB\\xbc9>*%\"V_1\\xc1\\x90\\x12U1*\"*N\\x1f\\x93\\x96\\x18\\xa5\\xa9O\\xa9\\xe8f\\xfa\\xd4\\xb8\\xa4\\xe8\\x16\\x86\\xa8n\\xf1z\\r\\xc9\\xeeE\\x8d\\x19\\xbd\\x91.\\x1f\\xd8\\xcbA\\xedQ\\x0f\\x92\\x93\\xe2{\\xc5&%\\xa6\\x90\\x9c\\xd4CA2\\'$sA27\\x95,L}\\xc5&:\\x9d..\\x82$$%\\x1a\\xa2t\\xd1\\x86\\x98\\x18=\\xd1\\'\\xa6\\x1a\"8\\x97\\xf2Xr)4)1\\x99zbH\\x8c\\r1D\\xa5jH^N\\xb2L\\x18\\xc9G-\\xe7\\xa6\\x96-X\\xcc\\x9f\\xc9\\xa5\\xfcp\\xa9\\x00\\\\*(\\x9ej\\x9c]\\\\\\xbf8\\x0f\\x13)\\x84\\xe5\\xc2T\\xd2#\\xce\\xc6\\xb7}-\\xceh3>\\xb3\\xcd\\x89\\x813\\xa7\\x8fneH0\\xc4G\\x10Cj\\xafVi$&\"J\\xaf\\xebaH\\x8d\\xe3bJ\\xd5\\xc7&\\x91^\\x15\\xf5\\xf1\\xfa\\x04NP\\x17\\x15\\x1f\\x91\\x92B\\x8a\\xd0Xb\\xe2#RS8\\xe1\\x8a\\xb1\\xfa\\xa4\\x04}*\\'\\x94\"\\xa8&E\\x1a\\xf5Q\\xa9)\\x1a\\xc1T\\x8b$C\"\\x17VQ\\xeaVa\\xf8Y\\x8c\\xfb\\x1a\\x1a\\x1a\\xca\\xbd\\x9e\\xc0\\xb3\\x124\\xd2\\x92\\x99r(\\xeeF\"\\xa2\\ri)\\xba\\xa4\\x18]TRbw=\\x89\\xd5\\'F\\xe9IIjHHR)\\xaa\\xca\\x15\\xa8\\x8d>-*\\xde\\x10\\xad\\x8fH\\xd4%\\xc7G$\\xeaI\\xe9L\\xc9)\\x8dM}\\xb1W\\x19\\xaa\\xe0\\x91i\\xaf\\x88\\xc4\\xd8x}\\n)\\x9b\\xc9h9\\xb1\\x9a\\x04\\xac|&[\\xe5a\\xab\\x02lU\\xa4r>\\x99\\xcf>*).)!)>)\\xb6\\x17\\xa9\\x94\\xc9`e*\\xe8\\nAY\\xc0/\\x93U?X\\xf5\\x87\\xd5\\x00*\\xec\\xad\\xa8(Q\\xa5J&\\x9bU\\xa9\\x98\\x0b\\xcaC\\x84\\xabe\\xb2X\\r\\x16\\xab\\xc3b\\xa0\\xd8\\xb0q\\xfd\\xfe\\xa0[\\xbd\\xb2\\xee\\xd6\\x1ar\\xb7\\xd6\\x94\\xbb\\xf5\\x1ft+\\x92\\xa5\\xd3\\x13\\x92DH-\\n.\\xe16\\x88si\\xefE\\xefC\\x15\\xfd\\xe2\\x12\\x13\\xbb\\xf9\\xb3i$ 0\\xb8B\\x15R\\x9b[\\xd5\\x16I\\'u\\xe0[\\x90\\x98k]\\x94>\\x9e+\\xea\\xe0\\xacK\\xab{\\x12IJL2h\\xea&\\'\\x93\\xa4\\x9e\\x86\\x04\\xae.\\xdb\\xe9\\r\\xb1q\\\\\\xe9\\xb6\\xe5\\xa1\\xfa\\x9cz\\x88>*)!9)\\xc5\\x90jHJ\\xd4E\\xeb\\xe3#\\xd2\\x12#ziH]/<\\xfa\\xeby\\xd1G\\x7f}\\xee\\xabo\\\\\\x87\\xb8!\\xf4\\xbf\\xfad\\x13E\\xcb\\x9f\\xa4\\x90\\x101wF*e\\x0cA\\xfa\\x1a\\xc0\\xc5\\x86\\xd4\\xc5\\\\\\x99\\x0e\\x84z\\xaa\\x8b\\xe0\\x9a\\x01\\xba\\x84\\xc9t*\\x8d\\xc4\\xf2R\\xc94V\\x9ao\\x0c\\xf3M`^KU\\x8ad>\\xef\\x94\\xe4xC\\xaaN\\x18=\\xd4\\x08W\\xfa\\xa9\\xfa\\x9e\\xa4i\\xa6\\x8d\\x9aQ\\xadA\\xe1\\xa1\\x14\\xa5\\xb1\\x14\\x18K\\x85\\xb14\\x9aE\\x13\\xe9\\xce}\\x8b\\x14S\\xd6CHYO1eF\\x9a\\x1d#\\x9f\\x86^H\\x83\\x8d1\\xd8\\x16\\xff\\n\\x84\\xc6\\xe7h\\xecj\\x8f\\x9fKQ\\xc6\\xd6\\xf8\\x0cH_\\xca\\xd8\\x19\\rv\\x94\\xe9G\\x19\\x17c\\'\\xfc\\x17\\xe0\\xfb\\xf3i\\x18\\x80\\xfd\\x07\\x8a\\xd1\\xf1\\xfe\\xf5\\x90\\x83\\x1d\\x04|0]\\xc8\\x1c\\xda\\x101\\x82L\\n|@C\\xa10\\x8c\\x0f\\xc8\\x949\\xa0t!\\xa0\\xe1Y\\x054\\x02\\x01y\\x18[\\xe3\\xbf\\xad3\\x92z\\xeac\\xb4\\xc1!\\x8f\\xa2\\x8c\\x97\\xf1\\x07\\x90\\xd1\\x94q2.B\\xa8c(\\xe3ml\\x87\\xbf\\xd6=\\x962\\x05\\x8c\\x01\\xf8m\\xe8q\\x94)d<\\x08f\\xa0M\\x99\\x03\\xda,\\x04\\xb4%\\xab\\x80\\xb6\" 7\\xe3l\\xb8\\xbd\\x8dz\\x9a\\xd7\\xf8\\x0e\\x9en\\xa7Lq\\xe3\\x02\\x84\\xba\\x832y\\x8c\\xab\\x81\\xec\\xa4L)\\xe3d\\xc4\\xbd\\x8b\\x0fh7\\xf6\\xcfP\\x06\\xb4Y\\x0eh\\x0f\\xf0\\xbd\\xea\\x80\\xf6)\\x03\\xda,\\x07\\xb4\\x1f\\n\\x07\\xf8\\x80\\x0ef\\x0e\\xe8\\x90\\x10\\xd0\\xe1\\xac\\x02:\\x82\\x80\\x9c\\x8d\\xbfPeG\\xbd0\\xe6l\\x10\\xc31\\xbe\\x80\\xd7\\xa3\\x80\\x8f{a\\x1anB\\xc9\\x9d\\xe0\\xc5\\x1aA\\xec$_\\xa6\\'P\\xb3\\xa7\\xf8\\x16\\xf2F1\\x9e\\xe6u&A\\xe7\\x8c\\x17\\x86\\x8a;\\xc4\\xceza\\xea:\\xc1\\xf3s|C\\x1e\\x82\\x07\\xe7\\xf9\\x94\\xfeF\\xe2.\\xf0\\xbd\\x91\\x80\\xde\\xb8H\\x197c/d\\xfe\\x12\\xdf\\x0e\\xeb\\xd0\\x0e\\x97y\\x03\\x83a\\xe0\\n\\xdf\\x0e\\x8d\\xe0\\xc1U\\x9e\\xe9\\x06\\xe6\\x1a\\xdf\\x9d\\x0b\\xd0\\x9d\\xd7\\xf9\\xf9p\\x0b\\xc1\\xdd\\xe0\\xe7\\xc3\\x15 7\\xf9Z<\\xc5\\xffYU/\\x0c\\xbc\\xeah\\xfc\\xdb|\\xdf~\\x81\\x07w\\xf8x\\x0e\\xc1\\x83\\xbb\\xfcq\\x8f\\x84\\xd7\\xf7\\xf8B\\x08Gv\\xee\\xf3:\\xeb\\xa1\\xf3\\x80\\xf7z\\x0ct\\x1e\\xf2\\xe9\\x1d\\x0f\\x0f\\x1e\\xf1I|\\x8d\\xec<\\xf6\\xc20N@y\\xe1\\xa9Q\\x0c\\x1e|\\xa6\\x8c\\x87\\xd1\\x1d\\xe9\\xfdB\\x99\\x12\\xc6-\\xc8\\xceW\\xde\\xda\\x14X\\xfb\\xe6\\x85\\x19Y\\x0c\\x06\\xbe\\xf3\\x06\\x1a\\xc0\\xc0\\x0f>\\xbd\\x07\\xe1\\xceO\\xbe\\x9b\\xb6 \\x9e_\\xbc\\xa3-\\x81\\xfc\\xe6\\x8fq\\x0b\\xf6\\xb1\\xf1\\x86X\\x12\\xc4\\xb2y\\xa3\\x90& 8[odg\\x0bL\\xdby#\\xb8\\x9c\\xf0\\xc0\\xde\\x1b9\\xf8\\x89\\xec8xc\\xc8vDp\\x8e\\xde\\xc8\\xdb\\x13 N\\xde\\x08\\xe1\\x17Bp\\xf6\\xc6\\x13$\\x00It\\xf1F\\xed\\xf8\\xc0\\x1d\\rel\\x8c_\\xb3Q\\xc6\\xd5\\x1bW\\x8b%\\xf0\\xc0\\x8dG\\n\\xa2\\x0e\\xdc\\xbdq>\\xbep\\xd4\\xc3\\x1b5j@\\x08\\x9e\\xbc\\xces\\xe8x\\xf1\\xeeT\\x87;\\xde\\xde\\xc8he\\x88e\\xf7F\\xbd\\xf5\\x87;>\\xdeh\\xc0\\xd7\\x10\\xcb\\xc1\\xfb\\xe6\\r\\xdfrz\\xe3\\x19\\xb6\\x1c\\xe9\\xcd\\xe5\\x8df\\xea\\x80\\xda\\xc9\\xcd#\\xe9@\\xf2xc>\\xe5\\xf5\\xa6\\xe3$\\x9f\\xb7b>\\x1d\\x92\\xe7S~\\xe0\\x05\\xbcU\\xf3\\xa9\\xa0\\xb7b>\\x1d\\x92\\xe7S!(\\x14\\xf6\\xc6|*\\xc2}\\x8b\\xd4\\xb7/\\x9d\\xf9\\x8aI\\xb8\\xd7\\nz\\x87\\xb3\\xf0vZ\\xd4[\\xde\\xa5\\x98\\xb7\\xf8\\xe1\\xc0\\xffP*\\xee-\\xbe\\xb9\\xb53R\\xdaDJ\\xc0\\x8d\\x92\\xde\\xe2M\\xba\\xa9?UH1\\xa4\\xa4r\\n\\xbd@\\xa7\\x92\\x08\\xee\\xc5:\\x85\\x94\\xca\\xa4\\\\\\n\\xca\\xa5\\xa1\\xecK\\x95\\xcbd\\xe9\\xba!1k?\\xcadr\\xbe,U/\\xaap\\xde\\x92Z\\xb9L\\x1e\\x94\\x83\\x07\\xe5\\xe1A\\x05o\\xf1\\x93\\x08\\xaf8\\x8f8\\x1f\\xfe\\x1d\\xd4\\x1d\\xef\\xa0\\xa1\\x96\\x7f\\x19M\\xfc\\x0c*\\xae]\\\\\\xdbtR\\x11\\x96*yg\\xf9RZ\\xd9[z)\\xf5\\xf3\\x96^J\\xfd\\xe9\\xe1E\\xf6#\\x01\\xdcw_\\xbc\\xe5q\\xf7{b\\xe0n\\xddU\\xbc\\xe9\\x1b`U\\xba\\x8e\\xab)\\xff\\x81\\x0c1$\\xc6\\xa6TLN\\xea\\xa1\\'\\x82 \\xde@4-\\xe8J\\xabL\\x0b\\xa4\\x1a\\xd5\\x8c\\xb3\\xb7\\xa8F\\x972\\xab\\x85q\\xbc.\\x89\\xcb\\x93.\\xc6\\xa0\\x8f\\x8f\\xd6\\x90\\xea\\xde\\xcaM\\xe9\\xfbj\\xbc\\xbe\\xa7.:)-2^\\xaf\\xa9\\xcf\\xb3!\\xe0\\x1a\\xf2*\\x81\\xde8\\x8e\\x1a\\xde\\xc2\\x07\\x84\\xbd+\\x93\\x9a\\x18\\x06\\xe9\\xe4\\x1f\\x84S\\x0ba\\xd2w\\xe8\\x94\\xe4\\x08\\xc2yR\\x9b[\\x18\\x81w6\\x035\\x97\\xc0\\xbfup\\xeflu8 4-\\x9d\\x04!\\xa7\\xc1\\xde\\xea\\x04\\xc4\\xf7JLJ0D\\xc4g\"\\xc5\\xcfb4\\t\\x11\\xdd\\xf4:\\xee\\xb8\\xb9\\xb8\\xa2t2\\xce\\xbd\\\\\\xd3\\xc4\\xd7\\xc2\\xa7\\x9d\\xd4G#un\\x18\\xa9G\\xb7\\xa2\\xbf\\xe9\\x88\\xadB\\xbc\\xf1\\xef\\x85\\xa8\\xa3\\x7f\\x1a}\\x03a_\\xd2\\x90\\xd3b\\x82\\x1e&/\\xeejC\\x89\\x1b\\x15^\\xcd\\xb3\\xa1%\\xc6\\xc0r#\\xba%/\\xf2\\x8fs\\xc1\\x0f[GLe2\\xea\\rv\\xf9\\x99\\xef\\xdem\\x13i\\x0c\\x91&\\xb2\\xc8\\xc0\\xd6\\x0b\\x9ccz\\xcde\\x82L\\x9b\\xdb\\xc5\\x05\\xb5\\xb9d\"Z\\x884\\x95D22\\x96].\\xd8:*\\x9d\\tZT-\\xed\\xfe\\xa9[\\x19&\\xd2\\x0c\"\\xa1\\xb2\\x95\\xb8\\xdf\\xf3\\xdd\\x9aM9\\xcfd\\xdc\\x1f\\x91\\xec\\xf1\\xfbTn\\xee\\xb5\\x1a\"-d\\x917\\xa1\\x17\\xeb6Y\\xf0\\x9a\\t\\xba\\xd8\\xdb\\xab\\xea\\xad\\xa6\\xe3L\\xa4%D\\xc2d\\x91\\xdb\\xcc\\xe6\\x88\\xa3\\xf3\\xf22\\x19\\x0f>_\\xbbyr\\xdc\\x15\\x13i\\x05\\x91\\xd6\\x92H\\xb0\\xfdH\\xd7\\xca\\x93#ML\\xb0\\xdb\\xbe\\x9dd\\xdf\\xd8l&\\xd2\\x06\"m%\\x91=\\x15\\xdb\\x1e\\x9c\\xdd\\xf2\\xda*&\\xd8\\xc71\\xb0\\xb6\\xde&\\xccD\\xdaA\\xa4\\xbd\\xbc\\xd1\\xa3\\x80\\r\\xd1\\xb9\\x0e0\\xcc\\x9e\\xe0\\xee\\t\\xa3\\xb7>\\xad\\xcf\\xbd=C\\xa4\\xa3\\xbcQ\\xd5uA\\xa3\\x98\\x99\\xf3\\x99\\xe0\\xe2\\x03{\\xef\\xb5\\xbd\\\\\\xdaD:A\\xa4\\xb3\\xbcQ\\xd1W\\xa7W7\\x9f_\\x8e\\xd9\\x93\\xabJ\\xfc\\xb9\\x17\\xce\\xdbL$\\x1c\"]d\\x91\\xb8E\\x95;,\\x9f\\x92\\x9f\\xd9\\xd3c\\x96\\xd7\\xd1\\xd0\\xa2\\xde&\\xa2\\x83HWy\\xa3\\xe5_\\xb7\\x14\\x99\\xee\\xb2\\x97\\xd93\\xac\\xe9\\x972#\\nV3\\x91\\x08\\x88D\\xcaVf\\xf6Y\\xf23e\\xff9&\\xf8\\xcc\\xea\\x8a\\xd1\\x117\\x92M$\\n\"\\xd1\\xb2\\xc8\\x9b\\xea\\xe7.\\x9f5tf\\xf6\\\\_\\x9a\\xff|P\\xf7\\'&\\xa2\\x87H\\x8c$R\\xd7q\\xf7\\xc6#5?\\xffb\\xf6jn\\xcev\\xdf\\xf7,\\x81{\\x83\\x86H\\x9c,R\\xc2+\\xf7\\xd8\\xeb\\xf970u+W\\xca\\xbd\\xed\\xc3\\xcf\\x1e\\xdc\\xab4D\\x8c\\x92\\xc8\\xde\\x8e\\xdb\\xcb/\\x89jy\\x96\\xa9\\x1b\\xb8\\xa4\\xd2\\x91\\xa0\\xd3K\\xb9wj\\x88\\xc4\\xcbVZ\\x0f\\x7fSU\\xf3\\xe1\\x01\\xb3wx\\xc8\\xe5\\xcd?\\xcahL$\\x01\"\\x89\\xb2\\xc8\\xfa\\xb4\\x1d\\x0f\\x1f\\xfex\\xcd\\xd4\\x9d\\xdf\\xfe\\xe1\\xa1F\\xd3[q/\\xd6\\x10I\\x967:?!\\xd2\\xe7apT\\xac)\\xf7\\x9a\\x0e\\x91\\xc1\\x92H\\xfd2{V?e/\\x8fg\\xeagg\\xbd>\\xa6\\xce\\xa9l\"C 2T\\x12\\xd9\\xdf\\xa9\\xca\\xf7\\xc0\\xf7O[0\\xf5;$\\xd8D5\\xad\\xeab\"\\xc3 b\\x92E\\xfa\\x94\\x9e\\xf9\\xd4\\xef\\xcc\\x12f\\xffx\\xd7k\\x1f\\xcf\\xd8.7\\x91t\\x88\\x0c\\x977\\xda\\xb6\\xe6\\x87m\\x8d\\xa8\\xa6\\xcc\\xfeA\\xfa&\\x13\\xabT=f\"# 2R\\xb6\\xb2\\xdd\\xe8f|\\xb8\\xbe\\x0bS\\xffV\\x9f\\xb2\\x83\\xce\\xefq\\xe5^\\xe9!2Z\\x16\\xf9n;aCx\\xee\\xbe\\xcc\\xfe\\x979\\xa2\\xae\\xd9\\xfe,\\xcf\\xbd\\xdbCd\\xac$\\x12\\xe29\\xa0z\\xa0_\\xb6u\\xcc\\x01\\xef\\xfa\\xfbJ\\x14m_\\x80{\\xc9\\x87\\xc8xY\\xa4\\xd0\\xe7!\\xcb\\x86\\xb9tgB\\x8aF\\x0f\\x9d\\xddc\\xfd<\\xeem\\x1f\"\\x133\\x89\\xac\\x98\\xe3S\\xac\\xc5\\x0c&\\xa4r\\xc9\\xfa~\\xee\\x97\\xdfr\\xaf\\xfd\\x10\\x99,\\x89\\x1ch\\x9fq\\xd9%\\xe9\\xf8.&$\\xb2Y\\xbe\\xe9\\xb5\\xfa\\xed\\xe0\\xde\\xff!2U\\x16\\x19\\xd2s\\xe9\\x95o\\x87\\x138\"\\xb0\\xf9-\\xdf|\\xb5Ld\\x1aD\\xa6\\xcb\\x1b-j\\xe0\\xd2\\xb7l\\x9f\\'\\xcc\\x81i]r\\x1e\\x9d7\\xbd\\x9b\\x89\\xcc\\x80\\xc8\\xbf\\xb2\\xc8\\xcc\\x89o\\xca\\x1fk\\xe0\\xc4\\x84\\xecZa7\\xa7_\\x15\\xeef5\\x13\"\\xb3\\xe4\\x8dN\\xcd\\xbd~\\xaeZ\\x97\\x16\\xcc\\x81\\x89\\xec\\xb1:]_q\\xb5;\\x1b\"sd+{;\\xed\\xd8\\x1f\\xbc\\xb7\\x01s\\xe0\\x92\\xcb\\x8dJ!?.\\x9a\\xc8\\\\\\x88\\xcc\\x93E.\\x0e\\xec\\x9dk|\\xd9!L\\xc8\\x99\\xa41[6\\xcfob\"\\xf3!\\xb2@\\xde\\xe8\\xcc\\x16\\x83\\x7f\\t\\x87(&\\xe4D\\xfeq\\x8f\\x0e?~l\"\\x0b!\\xb2H\\x16\\xd9^u\\xc2\\x83C[\\xbb0\\x07\\xf6\\xa7\\xc4\\x0c9\\xfd\\xd6`\"\\x8b!\\xb2D\\xdeh\\xe9\\x8d\\xf2\\x1b\\xbf\\r\\xbe\\xc2\\x1c\\x98\\xd7yH\\xf3\\xde\\x0f\\xaf\\x99\\xc8R\\x88,\\xe3\\xbe\\xeaMd9\\x98\\x15T\\xdeW\\xfc\\xc9\\x9e_\\x1cY\\xe9M\\x9f\\x8d\\xff\\x01\\\\\\xe5M/\\xd7\\xa9d5\\xb85\\xde\\xe2\\x87K\\xc2\\x1d\\xc3H\\xaf\\nF\\xf9\\xa9\\xefG\\xd6z\\xf3O\\xfdu\\xde\\xf4\\xa9\\xbf\\x9e\\x8a\\x19\\xf1\\xa87\\x8a\\xcf\\xf5\\r0\\xb5\\x91*\\xaa\\x9f\\xcak\\xb1\\xf3&o\\xfe\\xa9\\xbc\\x19\\x82[\\xbc\\xf1Q\\x01\\x0c\\x89O\\xd9%E\\x84\\xa7\\xec\\xeb\"x\\xcan\\x83\\xe4v)\\xf0\\xa0\\x9a\\xa6\\xb9\\xdeE\"\\x93\\x98\\xa0z\\x0b\\xbeO\\xbd\\xb3h\\xb4\\x89\\xec\\x80\\xc8NY$\\xc7\\xe1\\x1d\\xaf\\x9e\\x9c\\xfb\\xc1d\\x8c\\xfa\\xba\\xe6\\xf7\\xd9e\\xd1&\\xb2\\x0b\"\\xbb%\\x91\\x8c\\r\\xabz\\xceIi\\xbc\\x82\\t\\xda~$\\xaa\\xf7\\xe7\\xafZ\\x13\\xc9\\x80\\xc8\\x1e\\xd9\\xca\\xbd\\xd9\\x81\\x89;>91\\x19\\x87wW\\xafh\\xb7n\\xab\\x89\\xec\\x85\\xc8>\\xd9\\xca\\x1bm\\xe8\\x94\\xe7\\tIL\\xc6\\xc5\\xa5M\\xd6\\x1d\\xfb\\xb2\\xd0D\\xf6C\\xe4\\x80,r\\xeb\\x86qV\\x99>\\x87\\x98\\x8c\\x87E\\xc6\\xa4\\xd4\\xf5\\x9fd\"\\x07!rH\\x16\\x19tf\\x91\\xf3\\\\\\x1f\\x07&\\xd8{\\x95m\\x8e\\xe2s\\xa7\\x9b\\xc8a\\x88\\x1c\\x91D\\x82\\x8bm8\\xef\\xbe\\xb9K,\\xb3\\xa7\\xcc\\x8e<\\'g\\xed\\x9em\"G!rL\\x12\\xd9\\x13T{\\x81\\xd3\\xd0\\x07\\x1d\\x99\\xe0\\x12\\xef\\x13G\\xbd,4\\xcbD\\x8eC\\xe4\\x84l\\xa5z\\xd9^/\\x0c\\xf6\\xc1Lp\\xce)\\x81\\xabZv\\x1bk\"\\'!rJ\\xb6R8x\\xdf\\xf6\\\\>\\xc7\\x98\\xe0\\x1c\\xddJ\\x06\\x9d\\xacW\\xc8DNC\\xe4\\x8cl\\xa5\\x99\\xed\\x97\\x99I_\\x13\\x98\\xe0\\xde\\xd9g?\\xdc1\\x95\\xbb7\\x9c\\x85\\xc89Yd\\xc6\\xc5\\x16mN\\x9c\\xa8\\xc0\\xecYr)\\xfb\\xe8V\\xe7\\xb83:\\x0f\\x91\\x0b\\xf2F\\xa7\\n\\xd6\\xb5i\\x9d\\xed\\x03\\x13\\xbc\\xa3U\\x89\\xa1^G^\\x9b\\xc8E\\x88\\\\\\x92\\xad\\xbcyt\\x7f\\xe6\\x1ag{&\\xf8d\\xf3Z\\x9e\\xcc\\x9c\\t&r\\x19\"W$\\x91\\xbd\\x8e\\xads\\x0cm:\\x93{\\xf8iz=J\\xd8\\x9a\\xf7\\x81\\x89\\\\\\x85\\xc85\\xd9\\xca\\x83{\\xc3\\xe6\\xbc*\\x9c\\xcc\\xd4\\r\\xa8\\xf9_\\xae\\xc0\\x0fN&r\\x1d\"7$\\x91\\xba-f\\x16\\xaeW\\xf3\\xd16fo\\xbb%\\xc1N>\\xbd7\\x99\\xc8M\\x88\\xdc\\x927\\x1a~\\xfcg\\xa5+\\x8f\\x8b3u\\xd9\\xa7\\xb6\\x13\\xa2\\xdes\\x93\\xea6D\\xee\\xc8V6m=\\xdaa\\x8bM\\x07\\xa6\\xee\\xd4\\x91\\xb7\\xd2\\x86VaL\\xe4.D\\xee\\xc9V.\\x9c\\xaa\\xd1L\\x7f\\xc0\\x9e\\xd9{yk\\xf6<\\xfd\\x9fM6\\x91\\xfb\\x10y [978z\\xdb\\x955\\xa3\\x98z\\xd9\\xf2%\\x94_\\xf9\\x85\\xbb\\xc3<\\x84\\xc8#I\\xa4\\x9e\\xed\\x15\\xc7W\\x95\\xfc\\xba0\\xfbr}J\\xdeWwY\\xa0\\x89<\\x86\\xc8\\x13Y$\\xb7\\x7f\\xe8\\x89[\\xdd\\x1aqO\\xe4\\xcayV\\xae={\\xcaD\\x9eB\\xe4\\x99$\\xb2/N;\\xfb\\xf2\\xf2\\x9f\\x1d\\x99}\\xad\\x0eL\\\\\\xf8bv\\x05\\x13y\\x0e\\x91\\x17\\xb2\\x95\\t\\x05\\xd6\\xacz\\xfe\\x9c\\xf3e\\xea\\x9d\\xd02W<\\xe7\\x9b\\xc8K\\x88\\xbc\\x92\\xad\\xa4\\xd7\\x98s\"w\\x93M\\xcc\\xbe\\x83\\xedVL\\x1d\\xb8p\\x9a\\x89\\xbc\\x86\\xc8\\x1bY\\xe4\\xe2\\xe0\\xe4\\xa9\\x1fbs3\\xf5\\x1e\\x90\\xc7\\xf1\\xbf.\\x06\\x98\\xc8[\\x88\\xbc\\x937z\\x17\\xd5\\xd0\\xb9^\\xff\\xe2\\xcc\\xbe\\xb7u\\x99\\xd6\\xaf\\x87M5\\x91\\xf7\\x10\\xf9 \\x89\\xd4/\\xe6Q\\xb1\\xf2\\xf1\\xdc\\xb1L\\xfd\\xbc\\x85\\x9e\\x97\\\\Ti\\x8c\\x89|\\x84\\xc8\\'Id\\x7f\\x9b\\x8a\\xf9\\xce/(\\xde\\x83\\xd9\\xdf5\\xed\\xda\\x97\\xab\\xc7\\xcb\\x99\\xc8g\\x88|\\x91\\xad\\xf8\\xd5Zy`\\xffV/\\xa6\\xfe\\xa4\"\\xb3\\x97\\xfb\\xce\\x9bk\"_!\\xf2M\\x16Y\\xdd\\xad\\x9c\\x86\\tj\\xcd\\xec\\xdfr\\xc6va\\xe3\\xaf1&\\xf2\\x1d\"?\\xe4\\x8dn=-\\xb9\\xd0t\\xb9\\x06S\\xffx\\xbd/\\xe9kJ\\xc7\\x9a\\xc8O\\x88\\xfc\\x92DBlZ\\xfd|9V;\\x87\\xa9\\x7f\\xc9\\xa6G\\xc5\\'\\xbae&\\xf2\\x1b\"6\\xd9\\xa5!\\xef\\x13\\xdf\\xf3\\x18\\xd9\\xb1\\x96{\\xca&\\xf7\\xf9\\xed\\xc7\\xfe0\\x91l\\xd9\\xa9\\x88\\xad$\\x12\\xe2s\\xfd\\x9f\\xd9\\x15_\\reB*\\xd4\\x1f?\\xbd\\xeb\\xc0\\x91&b\\x07\\x11{Id\\xff\\xd7u9\\x0f^\\\\9\\x919P\\xad\\xc2;\\xdf\\xf9\\xcc!\\x13q\\x80\\x88\\xa3l\\xa5\\xa1\\xb6\\xf2\\xa3\\xc4\\\\>L\\x88\\xdf\\xb0\\xfe\\x95Z5\\x8e2\\x11\\'\\x888\\xcb\\xbe$>\\x195\\xba\\xef\\x9e\\xf7\\xcc\\x81\\xce\\xb7\\x1a\\xa6\\x1e\\x99\\xc4\\xdd>\\\\ \\xa2\\x91\\xad\\x0c\\x18P\\xa8\\xe2\\xd1c\\x13\\x98\\x90\\xc1\\xfa=\\x111\\xb5\\xb8\\xf9\\xe2\\n\\x117\\xd9J\\x9f\\xcd\\x8b\\xd7\\xd4\\t\\xed\\xc8\\x1c\\x18\\xd7\\xb0\\xde\\x8a\\xd6>\\\\\\xed\\xbaC\\xc4C\\xb62kc\\xc7\\x17\\xb5n^d\\x0e\\xa4\\x8e\\x9a\\xf0\\xf3{|g\\x13\\xf1\\x84\\x88\\x97l\\xe5@\\xc7\\xe7W\\x93?\\x8ddBF\\x17:y\\xe4\\xd2\\xeeo&\\xe2\\r\\x91\\xec\\xb2\\x95\\xcbQe<\\xb2_\\xec\\xca\\x84\\x1cX\\\\\\xbc\\xf9\\x88\\x82\\xf1&\\xe2\\x03\\x91\\x1c\\xb2\\x95\\x8b\\xc5\\xd3j\\xf9\\xaf\\x0ec\\x0e\\xdc\\xae\\xefZ\\xe2\\xe8I\\xaeIrB$\\x97leP\\x87\\xb1?\\xda?\\x9b\\xc9\\x84\\xdc)\\xf8x\\xf0\\xe3b\\xfdL$7D\\xf2\\xc8\"\\xdb7o.\\xe2\\xfe\\xa8\\x12s\\xe0\\xa0\\xcb\\xee\\xb2W\\xbcj\\x98H^\\x88\\xe4\\xcb\\x8e\\xa7l~0\\x05\\xb2\\xab\\x9e\\xb2\\x05\\xb3\\xe3\\x1f8\\x02,\\x9c\\x9d\\x7f\\xca\\x16\\x01W\\x94\\x8a\\xa6[y\\xca\\xfa\\x93b\\xd9\\xf9\\xa7l\\xf1\\xec\\xf4)[\"\\xbb\\xf9S\\xb6$L\\x95\\xca\\x9e\\xc5S\\xb6\\x18v.\\x9d\\x9d\\x7f\\xca\\xfaB\\xb0Lv\\xfc\\xe6tv\\xe9)[g\\xf8\\xd9%x\\x97\\xdd=uLXW{d\"u!RO\\x12\\xc9\\xb8\\xf3z\\xff\\x86y\\xd3V3A\\xb7*\\xe6\\xdd\\xdfj&7c\\xeaC$D\\xb62\\xe2\\x9f\\xb08\\xe7\\xdb,Sgg\\xe51\\x03bKs]\\xd0\\x00\"\\re+^\\xa3Z\\x0e\\xc8\\x18{\\x92\\t\\xca\\xd5\\xf8\\xcb\\xfc\\xa2\\x0f\\xfcM\\x84\\x81H#\\xd9\\xdd_%\\x0e\\xdf\\x1b\\x9et\\x8c\\xc9p\\xcb\\xb6\\xa2UF(7\\x86\\x1aC\\xa4\\x89\\xbc\\xd1\\xe7\\x13gF>4\\xdcd\\x82\\x9c\\xf2\\xeem<._;\\x13\\xd1B\\xa4\\xa9l\\xe5\\xd6B\\xa7O\\xe7rme2l\\xbf?K0\\x86z\\x9aH3\\x88\\x84\\xca\"\\xf7\\xfb\\\\_z\\xf5\\xcc\\x0c&C\\xb3\\xf7\\xbb\\xb6_3_\\x13i\\x0e\\x91\\x16rI\\xb9\\x8c\\xe8\\xbam\\xc9D=\\x93Q\\xbbY\\xd7&K\\xd6r\\xb3\\xb7%D\\xc2d_F\\x9fy4\\xba\\xc3\\xc5[L\\x86_\\xcd\\xa7\\xcbN\\xaf\\xaab\"\\xad \\xd2Z\\x16\\xb9\\xb8*\\x87S\\xac\\xe3\\t&# \\xc7\\xf6Y\\xa5\\xcfs\\xf5\\xd2\\x06\"me_\\xbe\\xbb/=1\\xeeK{\\xa6\\xce\\xdd1\\x0b\\x06\\xbd\\x9c_\\xc9D\\xdaA\\xa4\\xbd\\xecK\\xfe\\x86y>\\x0e\\x8e\\xc9\\xc5\\x04\\x95\\xac9\\xef\\xea\\x98\\xdc\\xfbM\\xa4\\x03D:\\xcaV\\x9e\\xe7\\xfc\\x99X\\xd3\\xab\\x03\\x93Qx\\xd7\\xa17\\'4\\x8dM\\xa4\\x13D:\\xcbV:\\x0c~y\\xe9\\xf4\\xf3KLPL\\xc1a\\xdf\\xdaw^d\"\\xe1\\x10\\xe9\"\\xbb\\xfb\\xce\\xf1\\xa6\\xd6\\xe1\\x84#\\x93Q,$\\xf4\\\\\\x81\\x8d&\\x13\\xd1A\\xa4\\xab\\xbc\\xd1\\xddU\\x8d}\\xe2\\xa2\\xec\\x99\\x0c\\x9f\\xed\\xcd\\xea\\x0f\\xd8\\xcaM\\xf0\\x08\\x88D\\xca\\x1b\\xd5\\xf90\\xd9\\x18\\xf2|\\x12G8F\\xc5\\xb6\\xbc\\xc5\\xbd\\x1cFA$Z\\x16i\\xbb\\xfb\\x98W\\xca\\xaf\\x8eLP\\xcb\\x85]u\\x06w.\"=Db\\xe4z\\x99|\\xa8\\xc59\\xe3\\xbax&#\\xfd\\xd9\\xb3q\\x1d\\xe7s\\x17\\xb7X\\x88\\xc4\\xc9V\\xa2\\xdf\\x0f\\x9bU\\xac|\\x0e\\xce\\xdc\\xa1\\xa0=\\'7x\\x99\\x88\\x01\"FIdO\\xe1\\x99\\xb7O\\xe6\\xcc\\xf5\\x88\\xd9c\\xff\\xa4E\\xcb\\xdcC\\xb8\\xdbj7\\x88\\xc4\\xcb\\x1b\\xf5\\x8d(\\x96\\x92m\\xe9\\x12&\\xa3\\xd5\\xad\\xc2\\xfaVCr\\x9aH\\x02D\\x12\\xe5\\x8dv\\x14\\x08\\xc85\\xfe\\xc2`&(\\xfd|\\xf2\\x95\\xc7>a&\\x92\\x04\\x91d\\xd9\\xca\\x96\\'\\xb3\\x0bl\\xae\\xc0]\\xf4[\\xb9\\x1c\\x1b\\xfba\\xfe\\x02\\x13a!Bd+K\\x82Jt\\x1e\\x13_\\x94\\xc9H\\r_\\xdc`\\xac37\\xebR \\x92*[Y\\xb6\\x7fX\\xad\\xe5\\xf3\\x1f3A\\x83\\xe6\\x0e\\n\\xaah\\x93\\xdfD\\xd2 \\xd2\\x9d\\x1f\\xf2=\\xc0\\xf4T\\x0e\\xf9j\\xa4\\x17Fmo\\x80}\\x84!\\xdf\\x17\\\\?*\\xba\\xc4\\xca\\x90\\x0f \\xfd\\x85!?\\x00C~`\\x16C~\\x10L\\r\\xcej\\xc8\\xf7\\xc7\\xceC\\x84!?\\x14\\x82\\xc30\\xe4M\\xf2\\x90\\x0f\\xba\\xf78\\x96\\x7f\\x95\\xba6p`0\\x86|:$\\x87\\xcb\\xb9i\\xf8\\xbee\\xaa\\xa1]k\\xa6\\xce\\xb1\\x9f\\x97\\xaa\\x1c;[\\xcaDF@d\\xa4,2r\\xf9\\xb8.\\xcd>\\\\g2X\\x9b\\x836\\xe7\\xf3\\xb74\\x91Q\\x10\\x19-\\x8bl\\xffeW\\xe2\\xe7\\xb5\\x02\\xdc;U\\xf4\\xbb\\xbd\\'\\x98\\xe7&2\\x06\"ce\\x91\\xcb\\xc5\\xfbV)\\xc1\\xe4a2n\\x0f\\xf8f\\xec8\\x975\\x91q\\x10\\x19/\\x8b\\\\\\x9cV\\xa5V\\xc3\\x8a\\xc5\\xb9w\\xaa\\xb0\\xd6yc\\x99\\x9f&2\\x01\"\\x13\\xe5sb\\xa3\\xeb\\xdc\\x98r}\\n\\x13\\xf4\\xf4c\\xb3\\x03\\to\\xa7\\x98\\xc8$\\x88L\\x96\\xad|\\x8c]\\xb7\\xc3=\\x9ea\\x82\\xbd\\x0e~\\x98V\\xc8c\\x97\\x89L\\x81\\xc8TI$\\xb8\\x18\\xf9\\xb8\\'r^\\x17&\\xb8\\xcc\\xea\\xf6\\xb9\\x03\\xb5\\xdc%e\\x1aD\\xa6\\xcb\"5\\x8b\\x0f[=\\xc7q\\x0e\\x13\\x1cPe\\xd9B\\xe61w\\xd7\\x9c\\x01\\x91\\x7fe\\x91*\\xed2\\x1a\\x0f\\xafV\\x85\\t\\xce\\xf7cE\\x87\\xa0N\\xdc\\xc5`&Df\\xc9]P\\x9c\\xb9\\xdd7-\\xefd&c\\xcf\\xc3\\xa9\\xc3[\\xb5\\xe0\\xde\\xb6fCd\\x8el%\\xad\\xd8\\xabB\\x93&\\xda1{:\\x91\\xd1\\x1d\\xdf\\x8d\\xa8c\"s!2O\\x16Y\\xb0\\xa5\\x93/s+\\x0f\\xb3gf\\xd1\\xdd\\x9d\\xc2\\x8bq\\xef\\x8f\\xf3!\\xb2@\\x16\\xd9\\xdb&\\xb7ip\\xdf9\\xcc\\x9e\\xc3\\x19>i\\xfb\\xbb\\xd63\\x91\\x85\\x10Y$\\x8b\\x9c\\x7f\\xb33_\\xa7\\xa2\\t\\xcc\\x9e\\x97W\\xca\\x99\\xe6?\\xe6\\xeeT\\x8b!\\xb2D\\x16\\xd9\\xfe]\\x9fzq\\xf1\\x19f\\xafW\\xf7\\xb1\\x95\\x7f\\xa5n0\\x91\\xa5\\x10Y&\\x89\\xec\\xf59p\\xabW\\xf6\\xcb\\x93\\x99\\xbd\\xfe\\x1d\\x92J\\xbc\\xcc\\xff\\xd2D\\x96Cd\\x85,\\x12\\x9a\\xef\\xca\\xb8\\xdc/Fs\\xafR\\xff\\xe6\\xb8V,a\\xb5\\x89\\xac\\x84\\xc8\\x7f\\xb2\\xc8\\xe0U\\xdf_\\xefkz\\x8d\\xd9\\xdb\\xef\\xc6\\xa1v\\xd1\\xc3\\xb9\\x97\\xe6U\\x10Y-\\x8b\\xac\\xdb\\x91/u\\xde\\x9e\\t\\xcc\\xde\\xe9\\xeb\\xbe\\x9e\\x1esv\\xa0\\x89\\xac\\x81\\xc8ZY\\xe4\\xf2\\xda\\xbdn+z\\xc62u{\\xeftn\\xd2\\xe8\\xeaU\\x13Y\\x07\\x91\\xf5\\xb2\\xc8\\xfb\\xf6\\t_\\xc9\\xa1\\xe7L\\xdd\\xbbSJ\\r\\x9a\\xd5\\xe1\\xa4\\x89l\\x80\\xc8FY\\xe4\\xc2\\xe9\\x8c\\xf3\\x81\\xbf\\xf70\\xf5l^\\x96\\x9a\\xba5\\x86{&m\\x82\\xc8fI\\xa4^\\xf5\\xce_]\\xb2\\r\\x19\\xce\\xec\\xf3u\\xcf\\xf5\\xd8f4\\xf7\\xa2\\xba\\x05\"[e\\x91\\xc8\\x05SM\\x0b{\\x7fa\\xf6u\\xcbY\\xaf\\xe7\\x9a\\x02\\xdcSv\\x1bD\\xb6\\xcb\"\\xddO\\xef\\x19X\\xaf\\xc68f\\xdf\\xf4\\xe9\\'z\\x0c\\xaew\\xd7Dv@d\\xa7$\\xb2o\\xfc\\xfc\\xa7\\x8bN\\x9d\\tf\\xf6mK\\x1f\\xda\\xa8Q\\x93\\x03&\\xb2\\x0b\"\\xbbe\\x91\\x8c\\xf7\\xddj\\xd7\\xdc\\xf1\\x84\\xd9\\xb7!\\xa9\\xe1\\x9b\\x94\\xcb\\xdc\\xd5\"\\x03\"{\\xe4\\x8d\\xde}\\x9du\\xb1P)w\\xa6\\xbe\\xed\\xf1R\\x93\\x98\\x7fw\\xfe_\\'\\xe7\\x01\\x16e\\xce\\xedq\\x05+\\xa2\\xa2\\xcc\\xa0\\xa2\\x88]\\xb1 ],;\\x032\\x10\\xb0 \\x88\\xbd!e\\xe8E\\x03\\xe8*\\xa2b\\t\\x16\\x14\\x1b\\xa2b\\x17\\x1b\\xf6\\xdeg\\xe8v\\xb0\\x80\\x05EA@Ql\\x88\\xbd\\xde\\xe4\\xbc\\x03\\x01\\x96g\\xef\\xde\\xfb\\xed\\xf3\\xb0\\'\\xc9/\\xe7\\xfd\\x9f\\xd4\\xf7\\x9d\\xfd\\x12\\x82\\x93\\x01I\\xa9Dl\\xfaw\\x0c6\\x9b\\xff\\xce\\x1c\\xd9\\x98\\x9a\\xdd\\rt\\\\J\\xd7\\xdeT@\\xd28\\x12p9\\xf5\\xd3\\xef\\xf3>\\xc8\\xc6ip;\\xe2~u\\x06\\xc1\\xe9\\x80dp$6\\xdbf\\xd8\\x8c\\xd6\\x8d\\xe9\\xd7\\xd6\\xed\\x98\\xb6{\\x8bl\\t\\xbe\\x0c\\xc8\\x15\\x8e\\x9ci\\xb4\\xe3\\xa2\\xf9\\x86^(u\\x9f\\x9a\\xdb\\x87\\x01\\x85w\\t\\xbe\\n\\xc85\\x8ed\\xf6\\x16\\xfbts\\x1a\\x8aR\\xef\\xda9\\xfa_J\\xdeH\\xf0u@np\\xe4\\xbc\\xfa\\xd6\\xbeCf\\x1eF\\xa9e\\x9a\\x8ag\\x9e\\xc3\\xe8>p\\x13\\x90\\xccJ$\\xad\\xee\\xbc\\xa0\\x1d\\x01cgPd\\xcc:\\xf1\\x91\\x04:I\\xb2\\x00\\xb9\\xc5\\x91NYI#\\xbf\\x0e0A\\xb2\\xeeO=37\\xed\\xcc&\\xf86 w8\\xa2S\\xb0q\\xd3\\xde\\xa1\\xa1H6\\xc6P\\xb2\\'\\xd2\\x90\\xbe\\xc3\\xdc\\x05$\\xbb\\x12\\x91\\xb9N\\\\\\x8d\\xbb\\x99\\xcfC\\xb2\\xb0\\xdf\\xe7\\xfd\\xe77\\x9bIp\\x0e \\xf78\\x12\\xb5\\xfb\\xb6l\\xbe\\xfc\\'\\x92\\xad\\xf0\\x9b\\xda\\xbf\\xdf\\xe5\\xee\\x04\\xdf\\x07\\xe4\\x01Gv\\x85\\xedh=8\\x8d~\\xe1\\xc4\\xfb:\\xa89\\xe7\\xd3\\xd7\\xbf\\x87\\x80\\xe4r\\xe4\\xe4\\xf3\\x1f-\\xfd\\xae\\xf6@\\xb2\\x9d\\x91\\xbacB\\xff\\x94\\x10\\xfc\\x08\\x90\\xc7\\x1c\\xb94l\\xdd\\xae\\x1f^r$K\\xdc;pA\\xa6\\xb3\\x11\\xc1y\\x80<\\xe1\\xc8\\xb9\\x0f\\x97\\x9d^\\x9d\\x19\\x8dd\\xc9:\\xf7\\xc3\\xa7/\\x9eE\\xf0S@\\xf2\\xab<(\\xeb\\xee\\xbd\\xe7N\\x9b\\x90,\\xa7c\\xbdu\\x93\\x06\\x9e\"\\xb8\\x00\\x90g\\x1cI\\xd1\\xba\\x9ay!\\xec\\x0f\\xfdN2{\\x1f\\x93f\\xaf \\xb8\\x10\\x90\"\\x8e\\\\\\xf3^:\\xeef\\xecQ$\\xcb\\x8do\\x95\\xa8\\x98\\xf9\\x81\\xe0b@\\x9esD\\xd1\\xeeK=}\\xdc\\x81j9\\xdch\\xcf\\xd4\\xa6t\\x81\\x7f\\x01H\\x89\\xb0\\xcb\\xbe\\x84\\xc4\\xab\\xea\\xbb\\xac\\x0f.\\x85\\xbd\\xee5\\x14\\xbeQ\\xed\\xb2o!\\xf5\\x8e\\xa1\\xa7\\xffe\\x975\\xc3\\xefU\\xbbl\\x19\\xec\\xb2\\x1fj\\xd9e\\xcb\\xc1\\xd5\\xc7\\xdav\\xd9\\xf7\\xf0\\xe4O\\xaa]\\xf63\\x80_`\\x97\\xfdZm\\x97\\xf5\\xcaW\\xed\\xb2\\x91\\xf9\\xb0\\xcb~\\x03\\xf2;\\xdf\\xb6\\xec^\\x9f\\xbb\\xd8\\xa0q[\\xa4\\xb8\\xb5\\xf4~B\\x82\\xae)\\xc1?\\x00\\xf9Ye\\x97\\xdd]t\\x7f\\x83S8\\xdd\\xe2\\xea7\\xba\\xcb\\x86/\\xef\\xf3\\xea9}\\x8f\\xa9\\xab\\r?(T\"\\xca\\x9ce7\\x82\\x86u\\xceD\\xd2\\xf7\\x0ei{\\xf2\\xbfM&X\\x1d\\x90z\\x1c\\xc1#c\\xf5\\x12\\x8e\\x84#\\xe9+{u\\xb5\\x13m\\xec\\x08\\xae\\x0fH\\x03\\x8e|Z\\x1f;\\xfd\\x9b\\xdc\\t%i\\x15\\xc7-\\x9b0\\x84\\xee\\x8f\\r\\x01iT\\x89Xu\\xda?.\\xc6\\xb6\\xd7=\\xba\\xcb\\x965<\\xdf6\\xae#\\xc1\\x8d\\x01\\xd1\\xa8D\\x92\\x06\\xe4\\x8f\\xfb\\x99\\xbfU\\x0b%\\x99\\x1e\\xed\\x15Q/\\x93n~M\\x00\\xd1\\xe4^,\\x07\\x8fL{\\xfa\\xd9\\x14Y\\xe9G\\x1eY\\xdf\\xa5/\\x9d\\x05M\\x01i\\xc6\\xbdt\\xddT\\x10}2$\\x1a)\\x9f\\xbc\\xdd\\xf8q\\xc8\\xbc\\x9e\\x047\\x07D\\x8b{\\x99\\x13\\x91\\xfd\\xb6K\\xcc#\\x94\\xe4&{\\xff\\xf0\\x90>}\\x07o\\x01HK\\xeee\\xafi\\xca\\xbb\\x84\\xed\\xba\\xc8j\\xbb\\xf3I\\xeb5\\xb1\\xf45G\\x1b\\x10\\x11\\xf7\\x92\\xf6\\xe9\\xf5+\\x928\\x1c%\\xdd\\x18q\\xc6\\xfe\\x8f\\xc6r\\x82\\xc5\\x80\\xe8p/\\xf7z\\xef}\\xd9\\xce$\\x1bY\\x95y\\x0e\\r\\x8e\\xd4=Ip+@Zs$\\xc9\\xb2\\xfb\\x88\\x92\\xc0t\\x94\\xdc\\xb2\\xf3\\xe1\\xf2\\x05]\\x96\\x12\\xdc\\x06\\x10\\xddJ\\xc4\\xba\\xedm\\x83\\x95Y\\xdb\\x9a!k\\x93\\xafW\\xde\\x1d\\xd7\\xa1{u[@\\xdaU\"\\xc9#G\\x96\\x88\\x87\\x96LB\\xc9\\xe3\\xb6\\xcd-?lr\\x8b`=@\\xdas/d\\xd6\\xc3\\x14\\xcb\\\\Gd\\x1d\\xa9\\xd1=usg\\xdaG\\xfa\\x80t\\xe0^NG\\xbbF~hb\\x8f\\x92\\xb7\\x1f\\xfc=\\xa2\\xcd>\\xfa\\x0e\\xd3\\x11\\x90N\\xdcK~\\x9e\\xa5EW\\xa3#\\xc8z\\xf3w[=\\xaf\\xa4N\\x04w\\x06\\xa4K%\\x92R\\xf7m\\xcfU\\xbe\\xc3\\xfe\\xa2\\xbblV|D\\xafkQ\\x04w\\x05\\xa4[%2\\xb8\\x95s\\xe8\\x88\\xf5\\x852\\x94\\xa2\\xe14\\xff\\xa1\\xc2\\x8c~mu\\x07\\xa4\\x07\\xd7\\xf2\";\"\\xdf\\xb9\\xcbv\\x94\\xd2(&\\xd4\\xae\\xb0\\xfd(\\x82\\r\\x00\\xe9\\xc9\\x1f\\xe4\\xb4\\xc7u\\xf1\\xc1;\\xa7\\xd0`\\xef9\\x85\\xfd_\\x16\\x86\\x13\\xdc\\x0b\\x90\\xde\\xfcA\\xde\\xadW6\\xd9kB\\xbd\\xc4\\xcf])\\xbd\\xa0\\xb5\\x83\\xe0>\\x80\\x18r$\\xb6KX\\xe3&\\x99\\x05hp\\x9a\\xe2\\xc1\\xeef>\\xf3\\x08\\xee\\x0b\\x88\\x11\\x7f\\xd0\\xcd\\x19\\xb7\\x97\\x18\\xcc\\x08B)\\xcfG\\x1e)\\xe9 \\xefM\\xb01 &\\xdcK\\xe1\\x8dq\\xa7\\xd2\\xbd\\x07\\xa2\\xc1\\xbf\\xa7\\xaa9\\x84\\x96\\xd2\\xc5\\xcc\\x14\\x10\\xb3J\\xc4\\xa6\\xc3\\xb0\\xd9\\x8a1\\xa1\\x1bPJ\\xd9=\\xfd\\x95fG\\xe8\\x92h\\x0e\\x88E%\\x92:\\xb5\\xbbd\\xd3\\xfd-\\xdfP\\xaa\\xce\\x13\\xed\\xa8u\\ttg\\xeb\\x07\\x88%\\xf7\\xb2j\\xe1\\xbe\\xb9&\\x8esQ\\xaa\\xe7\\x8dV\\x0b\\xcf\\xd9\\x9e&\\xb8? \\x03\\xb8\\x973\\xab\\xf6\\xde\\xfaq\\xd1\\x06\\xd9\\xec6\\\\P\\xea\\xe8UL\\xf0@@\\x06q/\\x0f\\xa6\\xd8\\xc5\\xaf\\xfcB\\xbd\\xe4\\xacm\\xfd\\xd4\\xee\\x05\\xed\\xe9\\xbf\\x00\\x91p/\\xef\\x0f\\xb4>\\xff[\\xe9\\x80l~\\xf7\\xd4\\x8cZ\\xf7\\xae1\\xc1R@\\xac\\xb8\\x97\\x97\\x9bZ~\\xed\\xeem\\x86\\xd2\\xf4[9\\x944\\xb2c\\xbfZ\\x002\\xb8\\x12\\x91u\\xbe\\xdc\\xc3\\xa0o\\xf13$\\xebg}.\\xc7n\\x1b\\xed\\x00\\x1b@d\\x95H\\x9a\\xb3\\xc7\\xb3\\xc9\\x8eQ\\xf7Q\\x9a\\xadV\\xcc:\\xef\\xf2W\\x04\\xdb\\x02b\\xc7\\xbd`\\xdd\\x1f\\x9e\\x9fb\\xb6\\xa14\\x8b:K\\x8f]\\x89\\x9eB0\\x02\\xc4\\x9e{\\x89^\\xd5\\xb9\\xdb\\xce<7$\\x8b\\x0c\\x88\\xcf{3<\\x8b`\\x07@\\x86p/;\\x1b\\xb4\\xf9\\x15\\xb7\\xfa\\x15J\\xdb\\x9d\\x17\\x13\\xa8\\x1dJ\\xdf\\x84\\x86\\x022\\x8c{9\\x96p\\xe8\\xc1\\xae\\xc0_H\\x96\\xaa\\xf5\\xe8\\xa2\\xb35}\\x13\\x1a\\x0e\\x88#\\xf7r\\xaa\\xf4\\xf3\\xf0\\xb0\\xe5\\'Q\\xda\\xc3\\x8fk\\xf6\\xf7\\xd1\\xa5\\xc3{\\x04 N\\x1cY\\xb6k\\xd8\\xd6\\\\\\x87\\tHV\\xba\\xe0Z\\xd9\\xf2\\x03J\\x82\\x9d\\x01\\x19\\xc9\\x1ft\\xaf\\xc9\\xe8\\xb1cN:\\xa0\\xb4O+\\x12\\xe2\\xbe?\\xa5\\x0fr\\x01d\\x14\\xf7\\xf2\\xb2a\\xe0\\xb5,\\x0f\\x03$\\xfb|{C\\xc8#\\x9bD\\x82G\\x032\\x86{)\\xd5\\xf01\\xb4>\\x14M\\x8d_ol[\\xce\\x1cA\\xf0X@\\xc6q/\\x0f:\\xdb/\\xbe\\xa1\\xef\\x8fd\\xd7\\x0b\\xd6\\x15n>|\\x84\\xe0\\xf1\\x80L\\xd0\\x86]v\"$&i\\xd7\\xd8e\\'k\\xb3\\xbdn\\n\\x14\\xbaj\\x0b\\xbb\\xecTH\\xb914\\xe3_vYs\\xec\\xae-\\xec\\xb2\\x1e\\xdal\\x97\\xf5\\xd4\\xfe\\xe7.+\\x07W^\\xda\\xb5\\xec\\xb2\\xee\\xf0doma\\x97\\xf5\\x01\\xd0W\\x9b\\xed\\xb2~\\xda\\xfc\\x07\\xcbE\\x9f;\\xb0\\xff\\xcf\\r\\x92Dn\\x0c\\x17~\\xb0\\xf4\\x072\\xa02p\\xc5\\x12\\xe7U\\xf1\\xbbN\\x95!\\xc9QO\\xefd\\xbf\\xd2\\x89\\x04\\x07\\x02\\x12\\xc4\\xf7\\xc7\\x8b[K\\xad[\\xbb\\xe9 \\xe9\\xce\\xb7\\x83\\x0e\\xb4r\\xa1\\xdf\\x8f\\xc1\\x80L\\xabD$\\xa7\\x13\\x92\\x8cb\\xf4\\xdb!E\\xc4B\\xc3;u\\xff\\xd05f: \\x98#\\x8b\\xaf\\xc5NT\\xeaZ!E\\xe4\\x8e\\x81&F\\xfe\\xaf\\t\\x0e\\x01$\\x94#\\'fw\\xfc\\xa2\\xadu\\x00I\\x8e\\x97\\xc9\\xc2\\xddFh\\x11\\x1c\\x06\\xc8\\x0c\\x8e\\xecj-i\\xd0(u=\\x92\\xec0[\\x1c1}\\x10}\\xef\\x9d\\t\\xc8\\xdf\\x1c9\\xa09t\\xda5\\x8f>H\\xb1\\xbdxz\\xc9\\xbc}!\\x04\\xcf\\x02d6\\x0fz\\xbb\\xe9\\xb9\\x9c\\xb8T7\\xa4X\\xe4\\xd5w\\x8dz\\xce#\\x82\\xc3\\x01\\x99\\xc3\\xbd\\x0cJ9Y\\xf8k\\xf2}\\xdat}\\x9f\\xea\\x07\\x0e\\x1aDp\\x04 s9\\x92\\x1c\\xe5\\xe7z|o*\\x92(\\xd7\\x96L\\xdcV\\xf4\\x82\\xe0y\\x80\\xcc\\xe7\\x0f:+\\x1d\\x94\\xb5e\\xa4\\r\\x92$\\\\\\xb5\\xbc\\xfc\\x97\\xfc1\\xc1\\x91\\x80,\\xe0\\xfbc\\x07\\x8ft\\x83\\xc9\\xf1\\x0e\\xc8J\\xc7\"of\\xb7\\x87\\r\\t^\\x08\\xc8\"\\xee%q\\xee\\xf0\\xe3Q\\x03\\x9e#\\x85r\\x95\\\\\\xb2#\\xee\\x1c\\xc1\\x8b\\x01!\\x1c9\\x1c(\\xd5+\\xb1\\x1e\\x80\\x14\\'\\x1f=\\xbf\\x12-\\xafOp\\x14 K8\\xf2\\xf3/\\x12\\xe9\\x0f\\xb8\\x87\\xa4W\\xa6\\x84\\xe8\\x0e\\xd8A\\xbf\\x88\\xe3\\x00\\xd9\\xc0\\xbd\\xdc\\xdf\\xb7\\xf2\\xc0\\xa4\\xa4d$\\xb9t6c\\xef\\xa8\\xb7\\x1b\\x08\\xde\\x08\\xc8&\\xae%\\xe9\\xe1\\xe9\\xccA\\xf3\\xeci\\x03\\xbd\\xf6u\\\\\\x95t\\x85\\xe0x@6W\"\\xca\\xba[;d~\\x9c\\xd4\\x01)\\xd6\\xfe\\xb9\\xfb}\\nv!x\\x0b [\\xb9\\x97\\xf7\\xbf\\xbc\\x83\\x87gY#\\xc9\\x97\\x15#~\\xc6\\x8d\\\\@\\xf06@\\xb6s\\xe4\\xf2\\xa4\\xe6\\xaf\\xde\\xb8\\xd8!\\xc5\\x99v\\x12\\xf7a\\xaf\\xf3\\x08\\xde\\x01\\xc8N.7\\xed\\xe6\\xd9\\xf0{\\x97\\x02\\xe9\\xf0\\xdb\\xbd\\xd4~S3\\x1d\\x82w\\x01\\x92\\xc0\\x91\\x07]\\xc7\\x94\\xbct\\x9e\\x82\\x147{olT<+\\x94\\xe0\\xdd\\x80\\xec\\xe1\\xc8\\xe3t\\xa3\\x97-\\xaf\\xafE\\x92\\x8f\\r\\xdf\\x8f\\x9c\\x1dD\\xb5\\xec\\x05d_\\x95\\x88\\x00\\xc8\\xc1*\\x13vd\\xc0\\xfc\\xb1\\x93\\x9e!\\xc9M\\xa3\\xab\\x05\\xebW\\xea\\x11|\\x08\\x90\\xc3\\x1c\\xc9.n\\xe9\\xabf\\x18J\\xfbS\\xad\\xcbp\\xc3\\xf9\\x81\\x04\\x1f\\x01\\xe4(\\xd7\\xa2\\xdb\\xeb\\xdb\\x94\\xc9##\\x90b\\x83\\x9b\\xde\\xef\\xcf\\xf5\\xe8\\xf2|\\x0c\\x90\\xe3\\x1c\\xa9\\x93\\xf1#\\xee\\xe5\\xcb\\x02\\xa4l\\xd8Q\\x12w\\xa6\\xa7=\\xc1\\'\\x009\\xc9\\x83\\xbe9z\\xc6\\x9c\\xc8\\x16-\\x90\\xa4,cHS\\xcb\\x03\\xf4\\xa5\\xe0\\x14 \\xa79\\xf2+\\xe5\\xf6\\xb3\\xbc\\xc9\\x8f\\x90\\xa4\\xe8\\x8aE\\xbf\\x8cct\\xda\\x9f\\x01\\xe4,\\x1fRu\\xd5\\x0e\\x87\\xc4\\x15mE\\x92\\xafn\\xa3\\x15\\x9ek\\x10\\xc1\\xe7\\x009\\xcf\\xbd\\xec2\\x1e\\x7fgQlS$m=O\\xebP\\xd0\\x8aI\\x04_\\x00\\xe4\"\\x97\\xdb\\xac\\xcef\\xeb\\xf5\\xf9jH\\xaa\\x19\\xf5\\xb1\\xb5\\xab\\x06\\xfd\"\\xbe\\x04\\x88\\x82?\\xe8IxFKS\\x8foH\\x9af\\xb0#\\xf1tkC\\x82\\x95\\x80$\\xf1\\xa6+l\\xf1di\\xc3\\xb8\\x02$\\xad\\x975\\xd0\\xe9V\\xbd\\xd9\\x04\\'\\x03\\x92\\xc2\\x1f\\xd4\\xc1\\xe5\\xf0\\xf2\\x05\\xce\\x06H\\xdamj\\xb4\\xf6\\xdeO\\xf4\\x1b?\\x15\\x904\\xfe\\xa0f\\xd1e\\x85.\\x07\\x95H\\xf1\\xe8^\\xef6\\x8b\\xd2\\xe8\\x12\\x94\\x0eH\\x06G:w}z[#\\xaf\\x07\\x92\\xf6l\\x17~\\xd22\\xe5<\\xc1\\x97\\x01\\xb9\\xc2\\x83\\xbeU\\xb2\\xb4yO\\xc9\\x0f$yc\\xa7\\xd9K\\xa7\\xd0\\x9b\\xe0\\xab\\x80\\\\\\xe3^\\x9a\\x17\\xf7\\xd8\\xd9\\xb0\\x89\\x0bR\\x94o\\xcf\\x9d5\\xb4o2\\xc1\\xd7\\x01\\xb9\\xc1\\xe5\\x1a[\\rQw\\xd9\\xe8\\x8e\\x94\\x06kG\\'I]>\\x12|\\x13\\x90L\\xfe\\xa0\\xf4\\xf2\\x1f?\\x0c\\x1e\\xeb\"\\xa5\\xd6N\\xa5\\x81S)\\xfd\\xa2\\xc8\\x02\\xe4\\x16\\xf7b\\xa6\\x99;1\\xb5\\xc7\\x13$\\xed-\\xba\\xa1\\xdbT\\xed\\x0f\\xc1\\xb7\\x01\\xb9\\xc3\\x9b\\xeeva\\x93\\xd0\\x88+jt\\xb9\\xfa\\x9a\\x98` \\xf6%\\xf8. \\xd9\\x1c\\xf9i\\x145ua\\x9b\\xf3H\\xdaF_4\\xf9Pj$\\xc19\\x80\\xdc\\xe3\\x11u\\xda\\xb8\\x7f\\x84\\xc8\\xdf\\x87\\xca\\xb5k\\xba\\xac\\xe3\\x9e\\x18\\x82\\xef\\x03\\xf2\\x80#\\xdd\\xd3\\x1b\\xa6\\xef\\xdb\\xd8\\x03)N\\x9b\\xbbdM\\x94R\\xe4! \\xb9\\\\\\xaeI\\xd0\\xad\\xb0\\x80\\xaf\\'\\x91\\xb2\\x7f\\xda\\xb8\\xc7\\xcboM\\'\\xf8\\x11 \\x8fy\\xd0\\xbf\\xf5?\\xea<\\xe9\\xfb\\x1eI\\xf5\\xeef\\xfd\\x19\\x9fG\\'I\\x1e O\\xf8\\x834s\\xb7D\\x98\\x84}F\\x8a\\x0fy\\xc4\\xd4\\xbd-\\xdd\\x1b\\x9f\\x02\\x92\\xcf\\x1f4al\\xf1\\x02\\xd9\\xccaH\\xe9b?l\\x8b\\x11\\xb9Kp\\x01 \\xcf\\xaa\\xac/\\rf\\x1d\\xdcS\\xa6\\x89\\x94\\xfa\\xab\\x8b\\x96\\'^lOp! E\\xdc\\xcb\\xb0\\x84GM\\x965\\tBR\\xd9\\x91\\xe5\\xde\\x07o\\xe7\\x10\\\\\\x0c\\xc8s\\x8e\\xfcZ\\xfc\\xcd\\xf1\\x89\\x93\\x05R\\x16F\\x89LO~\\xb4%\\xf8\\x05 %\\x1c\\xe9\\xdc\\xf4\\xdc\\xfae\\xde;\\x90\\xd2j\\xbc\\xdd\\xcc\\xcd\\xd3\\xe8[\\xfcK@^qd~td\\x98\\xc3d%\\x92\\x92\\xc5?3\\x9b\\xe4\\xbd\\'\\xb8\\x14\\x90\\xd7\\x1c\\x91\\x05\\xbe\\xfb\\xbd\\xd23\\x1dI2?\\x94\\xbd_kA\\xc7\\xcb\\x1b@\\xde\\xf2v\\x99\\xa2\\xdb\\xa9\\xcb\\xb6/R$\\xf5,\\xb5Yv\\xe6\\xa7\\x07\\xc1\\xef\\x00y\\xcf\\xbdh\\x8d:gc\\\\0\\x0bI{y\\x15\\xc7\\xb9\\x9e\\xa6\\xdf\\x02e\\x80|\\xe0\\x88\\xed\\xc5\\xb9C\\xd4\\xca\\xd7\\xd1\\x190\\xccTt\\xa7=\\xdd>\\xcb\\x01\\xf9\\xc8\\x91\\xf0\\xf9\\xedu\\xf5=\\xcb\\x912\\xf4\\xaf/\\xd3\\xff\\xec\\xa6o\\xab\\x9f\\x00\\xf9\\xcc[\\xb7\\xbc\\xdfg\\xf3}\\xd17\\x91t\\x88yW\\x99\\xef\\xfew\\x04\\x7f\\x01\\xe4+\\xf7\\x12\\xf0*6\\xe8\\x95\\xc7\\x0c*\\xf7\\xfa\\xcc\\xd8\\xb2\\x17t\\x95\\xfa\\x06\\xc8w\\x8e\\xf45(1\\x19=\\xb7;R\\xb68u\\xef/\\x0b\\x19\\xdd\\xed\\x7f\\x00\\xf2\\x93#\\xd6\\xb1\\xdf\\xc7\\xb7\\xfd\\xd1\\x05)\\'\\xba\\x96\\x1d\\x19\\x9bG[\\xf7\\x17 \\xbfy\\xbb\\xc8\\x95\\x11m\\xda\\x85\\x1eG\\xca@;\\xf5&\\xb9\\xa3\\xe8\\x8b\\xd2\\x1f@\\xea\\x88*\\xbd\\xfc-\\xcdX%ioLW\\xd7\\xa3\\x86\\x9aa\\x16\\x8e\\x04\\xd7\\x15\\xc1O#\\x1c\\xf1=8\\xfd\\x8a\\xb1\\xced\\xa4\\xc4\\x8dN\\x95/\\x9a\\xaeN\\xb0: \\xf582~\\xc3\\xe8\\xcbi\\xcdg#iH`\\xf4\\xa6\\xf0\\x12\\t\\xc1\\xf5\\x01i \\xe2Z\\xfc\\xa5ee\"7\\xa4\\x1c\\xaa\\xc8\\xcf?za\\x16\\xc1\\r\\x01i\\xc4\\xbd\\xac\\xa9\\x83\\xean3=\\x84\\x94\\xcb\\x02\\xf6/S\\x1b8\\x80\\xe0\\xc6\\x80hp/]\\x06d\\xab\\xdd\\xffK\\x0b)\\xb7N\\xba\\xbc-\\xb9\\xcf5\\x82\\x9b\\x00\\xa2\\xc9\\xbd\\xccJL\\x9b\\xd2\\xbe\\xb87\\x92\\xe2q\\xde\\x06\\r,n\\x10\\xdc\\x14\\x90f\\x1c\\xf9\\x9d\\x1e\\xb00cO>R\\x16M\\x98\\xd0I\\xed\\x02]\\x0e\\x9b\\x03\\xa2\\xc5\\x11\\xcf\\xb5\\x1bn\\xcd\\x9bB{z~w\\xbb\\xd0\\x98c\\x83\\tn\\x01HK\\x8e\\x9cp\\xdc\\xe4\\x90Q<\\x15I\\xcf\\xa3?_u\\'\\xf9\\x13\\xac\\r\\x88\\x88#\\xb1\\xb6\\r\\xbdw\\xf7\\xa73\\xa0\\xc5=\\xfb\\x8e\\xab2\\xc7\\x11,\\x06D\\x87G\\xb4\\xf4[\\xc0\\x18\\xbd\\xd5EH\\xba\\xa61z.kD_NZ\\x01\\xd2\\x9a{1\\x1e\\xb4?~r\\xc6\\x16$\\x1dZ\\x903\\xae\\xd9\\xaf5\\x04\\xb7\\x01D\\x97#\\x8b\\x8a\\xaeJ\\xc6\\x0e\\xbc\\x88\\xa4~\\x9d\\x1f6\\xcf;H_\\xb7\\xda\\x02\\xd2\\x8e#\\x07_\\xe8\\xbd;s\\xc2\\x04)w\\x0f\\xf2\\x8a\\xafk\\xf0\\x89`=@\\xdas\\xa4\\xd1\\xbe=\\x8d\\xd7:\\xee@\\xd2\\x15S\\x97|r\\xd4\\x9cG\\xb0> \\x1d8\\xb2\\xf1\\xf0\\xdd\\xcbj\\xd2\\x10*W\\x9e\\xb8\\x7f\\xd9/\\x0b\\x82;\\x02\\xd2\\x89#\\xee\\x0fZJ\\xa3\\x86.CJ4?~PA\\x17\\xda\\xd3\\x9d\\x01\\xe9\\xc2\\x91\\xf0\\xbaO\\x1fvr(\\xa2\\r\\xa4\\x9e\\x9f\\xfd\\xf2OG\\x82\\xbb\\x02\\xd2\\x8d\\xb7\\xcb\\xba\\x05\\xf6\\xab{\\xf5l\\x80\\x94\\xf1_u\\xf7yL3%\\xb8; =\\xb8\\x97\\x93\\xbe\\x1aZSc\\xde\\xd2\\xf5\\xc5l\\xb6\\xa8\\xfe\\x15\\xfaec\\x00HO\\x8e\\xc4\\xa9[\\x94Z\\xed\\xfa\\x85\\x94\\xdb\\xd5m\\'\\x7fq\\xf8Np/@zs$:\\xe7k\\x0b\\x89v!\\x92\\xeev\\xffV\\xbe\\xb8\\xa5\\x82\\xe0>\\x80\\x18r-\\x8b\\xdf\\xe8\\xf59\\xf4a7\\x9d\\xb9\\x0b\\xbe8\\xc6nzIp_@\\x8c\\xb8\\x97\\xb3\\xc1\\xcd\\x87\\x1b\\x9co\\x84\\x94\\xc7>\\r\\x8c\\xbfk\\xbc\\x9f`c@L\\xb8\\x97q\\xdf\\x1b:/\\x8c\\x18\\x83\\x94wS\\x9e5\\x0b\\x97g\\x13l\\n\\x88\\x19\\xf7\\xb2}\\xc8\\xfee\\xa5#\\xb4\\x904n\\xb0\\xa7\\xe4\\xf3\\xb46\\x04\\x9b\\x03bQ\\x89X\\xe9}\\x0e\\xb73E\\x1b\\x90\\x95\\xfa\\xed9\\xba\\xea\\xeb\\x0b\\x08\\xee\\x07\\x88%\\xf7\\x12u6 \\xec\\xf7\\xc2\\xf7H\\xb9\\xd3\\xdc_M\\xf4a \\xc1\\xfd\\x01\\x19\\xc0\\x91\\xfbGs\\xa3sva$\\xcd\\xd7\\xbf\\xeb\\x92\\xb8!\\x9e\\xe0\\x81\\x80\\x0c\\xe2H\\xfa\\xef\\x97\\x8f\\xbf\\xb7\\x98C\\xbbqQ\\xa7\\x80g7\\xf4\\t\\xfe\\x0b\\x10\\t\\x8f\\xe8X\\x8b\\xf2G=\\xfd$Hz\\xe6\\xbc\\xc6\\x81.\\xa56\\x04K\\x01\\xb1\\xe2\\x88U\\x1b\\xa7\\xe8&\\xde\\xf4%\\xdf\\xa9\\x85\\x8f\\xab\\xb2\\x84\\xbe\\x9cX\\x032\\x98?(\\xb1W\\xf6\\xde)Qt\\x1e\\xad\\xca\\xf8v\\xf8\\xe8\\x12\\xda\\xd36\\x80\\xc88\\x92\\xf9\\xc3\\xe7\\xfe\\x0b\\xadvH\\x99q\\xfe\\xf0\\xc1\\x03\\xd2\\x16\\x04\\xdb\\x02b\\xc7\\x11\\xbb\\xbc\\xa5C\\xae\\xbf\\xaaKg\\xe3\\x9c\\x1d\\x1fn\\x9d\\xb4#\\x18\\x01b\\xcf\\x91\\xa4\\xc1\\x0e\\xc3L\\xdf\\x8f\\xa1r\\x9d\\xc7\\xdaF\\x06;\\x11\\xec\\x00\\xc8\\x10\\x8e,\\x9c\\x9c\\x1cn;x)Rzm\\xc8\\xf6\\xf5M\\xa4cw( \\xc38\\x12\\xef\\x91\\xb0\\xb4\\xf0\\xf2#\\xa4<5|\\xe7\\xd8\\xf46\\xb4\\xa7\\x87\\x03\\xe2\\xc8\\x83>a\\xdb`\\x94\\xf9\\xa5!Hy\\xbe\\xeb\\x89\\x06c<\\x87\\x13<\\x02\\x10\\'\\xee\\xa5\\xc0}\\xcd\\x8av\\xeb2\\xe9\\xea:r\\xc6\\xc0\\xact\\xba\\xbe8\\x032\\x92#\\xe7\\x0c;[\\xbb\\x91\\x00\\xa4L\\x9e\\x7ff}\\x9d\\xc6tQu\\x01d\\x14G\\x8e\\xc6\\xab\\xcds\\xee\\x11\\x8b\\xa4W\\x9b\\xbe\\x89\\x19\\xbb\\x93\\xbe\\x91\\x8d\\x06d\\x8c\\x08~\\xd4\\x18\\x0b\\x89q\\xa2\\xaa?j\\x98\\x06\\xe2\\xf1\"\\xf6\\xd3\\xc2\\x04(\\x9c(\\x12~\\xd4\\x98\\x04\\xa9\\xc9\\xf4\\xaf\\xea\\x82\\x1f,\\x0f\\xf1\\xf5\\x0c\\x93\\xe3)\\xa2\\xeag\\x91\\xb0\\xdc-\\xa0\\xe2X\\xd0Hj\\xd78\\x13\\xe4*b\\xefU\\xbbs\\xed;\\xadu<\\xb6\\x18O\\x05\\xb7n\"\\xd5\\xa5=\\xae\\x1e\\xc1\\x1e\\xb3<\\x02\\xe4\\xd8\\x9d\\xe6\\xb0\\x0bo\\xcci\\xa6\\x0b;\\x0b\\xe5\\xeb\\xe1\\xeb\\x16`Sy\\x07\\x0b\\xc2\\xc1a\\xd3\\xfe\\xf5\\xa6\\x1b\\x0fQ\\xad\\xd7\\x91\\xf0k\\\\4j\\xf3k\\xc3\\xeaj`O\\xf6x-\\x82\\xe5\"\\xd5u7^\\xa0\\xd3[\\x04\\xc7\\x9d}T\\xe2\\xba\\xffwq\\xd8\\xf7\\xff%\\x07V\\xf1\\x04\\x9a\\x11\\x82\\x8fW\\xceg\\x16\\x99\\xdfq\\x08\\xff\\x04\\xb8<\\xc92*\\xef\\xaf\\x12\\xca\\x85+\\xacNA\\xf9iQ\\xe5\\xb5]>t4\\xba\\xaaN\\x8e\\xe23\\xd5]\\x9e\\x01\\x97g\\xa1\\xca9^Eum\\x93\\x8f[\\x10\\x8d\\xf3<\\x03Ug\\x9c/\\x88T\\xb7O\\xa9\\xca.Vww\\x11\\xdc]\\x02w\\n\\x86j\\n(\\x15 L.\\xac\\xac^A\\t\\x15\\x92\\xa0BrE{\\x86\\x08\\x83\\x82.\\x15)\\xd5\\xe9\\x14\\xa0S\\x81N\\xabX\\x07\\xfd6\\xc1\\xf8\\xf5\\xdbR\\xb9\\xc2\\xd5\\xf3c\\x13\\xd7o?\\xf4@:\\x8c\\x89\\x0c\\x96Q1\\xec/\\x83\\x83+,\\x0bn\\xf7b\\xe0\\x7fX\\x0eA\\xc2n\\x98dW\\xc1\\xc3\\xb5\\xda\\x97\\xc3\\xeb|9\\xbc\\xc1\\x97\\xc3\\x9b\\xaa\\xe50STq\\xf8X\\xe8\\x19\\x9cU94U\\xeb\\x8f!L!w\\xb7\\x10_6N=\\xe5\\x7f\\xcb=+\\x0f\\x15\\xbb\\x86\\tw\\xdf\\xc9+s\\xf0-X\\xa4T\\x0bTp\\xa0\\xbbo\\x90[\\xa8\\xa1\\x17\\x96\\xcbUM\\xceN\\tC&]\\xb8\\xdc\\x02\\xech\\x81\\xb0\\xbei\\xe0\\xdb\\x15\\xadTQ=D\\x1e\\x1ab(\\xac6\\xae\\xf2\\xca\\x85\\xc9\\x95\\xdd\\xb1d\\x07\\xb9|\\xb5ra\\xf7.\\xdd\\x11\\xc1\\xa5)C\\xeb\\x12|W\\xc4\\xae\\x04aV6\\xb3\\x9a1+\\x87Y-\\x86\\xb2[=\\x98\\xd5\\x8eY\\xf7\\x99U\\x9f\\x95>`V#\\x96\\xf7\\x90Y\\x8d\\x87\\xaa\\x11\\x9c\\xcb\\xac:\\xccz\\xc4,\\rV\\xfa\\x98Yj,/\\x8fYuY\\xde\\x13f5eyO\\x99\\xd5\\x9cY\\xf9\\xccj\\xc0\\xac\\x02f5d\\xcfx\\xc6\\xac\\x96\\xcc*d\\x96\\x98\\xd5-b\\x96\\x88\\xe5\\x153\\xab\\x1e\\xab\\xf1\\x9cY\\xea\\xac\\xf4\\x05\\xb3\\xba0\\xabDP\\xca.\\xe7\\x10\\xe2\\xa0\\xdc+!\\x0ej\\x95\\n\\xea\\xa9\\xf5\\x9aY\\xda\\xccz\\xc3\\xac\\xf6\\xccz+\\xa8\\xa7\\xd6;!\"\\xfa\\xb4\\xf7\\xccj\\xc2\\xac2f\\xb5a\\x9e?\\x08\\x11Q\\xae\\x9cYZ,\\xef#\\xb3:3\\xee\\x93\\x10\\x07\\xbbu\\x83Yz\\xcc\\xfa\\xc2,MV\\xe3+\\xb3tX\\xde7f\\xb5by\\xdf\\x858\\xa8\\xf5C\\xe8\\x05j\\xfd\\x14\\xa2\\xa4\\xfe~\\t}D\\xf3~3\\xab\\x03\\xcb\\xfb#\\xe8c\\xf7j\\x88A\\x1f\\xbbTC\\x0c\\x11\\xd1R51DD-uf\\xe9\\xb3\\xba\\xf5\\xc4\\xd0\\x1f\\xec\"\\r1\\xf4\\x02\\xbbE\\x83Y\\xad\\x99\\xd5\\x90Y\\x1d\\x99\\xd5H\\x0c\\x11\\xd1\\x1a\\x8d\\xc5\\xd0G\\xec\\xe6\\x0cf\\xe92\\xab\\x89\\x18z\\x86\\x96j\\x8a\\xa1\\xdf\\xd8\\x85\\x19b\\xe8\\x19\\x9a\\xd7L\\xcc\\xd6\\xf6\\xe6b\\xb8U^\\xcc&p\\x0b1\\x9bw-\\xc5l\\xdei\\x8b\\xe1\\x0e\\x0c\\xc8\\x17\\x8b\\xd9tb\\xbb[\\xe5\\x9e\\xa3#\\x16\\xf6X?6\\xc3\\xe9&\\xca\\x96\\x94\\xb1tJ\\rf3\\n\\xb7\\x02G\\xad\\xc1Q\\x1b1\\x00\\xf4\\x9d\\xbd\\x8e0\\xbee\\xbetN\\x85\\xd0\\x95\\xd9-\\x00\\xeb\\x02\\xd8\\x16\\xc0vb\\xd5\\xb27\\r\\xcb\\xbd|\\xff\\xc6z,M_\\xed\\xea\\x0c\\xc6\\xed\\xc5\\xaa\\x9b\\xbc\\x82\\xdc\\x02\\xe9\\x8a\\xa5/\\x16\\xfe\\x13b\\x07\\xa8\\xd7\\x114vb\\x1a\\xfd\\xd8\\x0c\\xa9\\xfaR\\xd8\\x19\\x88.\\xf4\\xaf\\x1fk4\\xfe)\\xd0\\xc7\\x18w\\x85\\xc8\\xbb\\x01\\xd1]\\x0c7k\\xf4\\x80\\x84\\x81\\xb8\\xda\\xb2\\xbf\\x95/\\xfb=\\xa1\\xbc\\x97\\x00\\xf7\\x16\\xb3k\\x82\\xaa\\\\*\\xe8f\\xe8\\x1b\\x1a\\x18\\x1c\\xe6\\'\\x0fs\\xf37\\xb2\\xa2O\\xe8\\xc3\\xda\\xbaC\\x146\\x84j}\\x99[\\xd5&o$V\\xadu\\x11\\xd8\\x18\\x84\\xb3\\x05\\xca\\x8f\\xad2~B8&\\x90\\x9b]#\\x1cSpd\\xc6*7\\x13W/2\\x87\"\\x0bAZ?HXV\\x8f\\xc3H\\\\\\x19G\\x7f(\\x1f \\xc0\\x03k\\xc6\\x11f\\xe8\\x13\\xe6o\\xe1\\x15\\xdc\\xdf\\xcd\\xc4\\x92\\xc6a\\x82\\x07\\xa9\\xe2\\xf8\\x0b\\xaaI\\xaa\\xc4!\\xe5qX\\xd5\\x1a\\x875\\xe4\\xe6\\xd4\\x88c08\\xb2a\\x955kv\\x8b\\x0c\\xba\\xc5\\x16\\x08;A!\\x82\\x84}\\xf5p\\xa4<\\x1c\\x07(\\x1f\"\\xc0C\\xab\\x86\\xd3\\x1c\\xeez4\\xe2\\xff\\xb32\\xc2\\xc3T\\xd1\\x0c\\x87Z\\x8eU\\xa2\\x19\\xc1\\xa3q\\xaa5\\x1ag\\x06\\xdc\\xab\\x11\\xccH\\xf0\\xe3B\\xff\\x86\\x10<\\n\\x12\\xa3\\xabK\\x1d\\xc1\\xa5\\x8e\\x81\\xf2\\xb1\\x82\\xd4q\\xff2\\x82|a\\x04\\x8dWi\\x9d\\x00\\xd5&V\\xd1:\\x89k\\x9d\\\\\\xab\\xd6)\\x0c\\xb8_C\\xab+\\xf8\\x99*hu\\x83\\x84{u\\xad\\x93\\xb8V\\x0f(\\xf7\\x14\\xb4\\xca\\xabje\\x93\\xb9\\x8f\\xa7\\xa1I\\x98\\xb1\\x85Qh\\x80\\xa5i\\x08\\x88\\xf5R\\x89\\xf5\\x86z>U\\xc4\\xfar\\xb1~\\xb5\\x8a\\xf5\\x87\\xdc\\x075\\xd4\\x06\\x80\\xa3\\xc0Z\\x87I\\x10\\x0c\\x93` \\xa6\\t\\x12\\xa7C\\x02W\\x8f\\xc7\\x97\\xc7\\x13\\x02\\xe5\\xa1\\x02\\x1cV\\xb3\\xed\\xdd\\rg\\x84z\\xd07\\x01O\\x9f\\x00o\\x08g\\x86*\\x9c\\x99P\\xed\\xef*\\xe1\\xcc\\xe2\\xe1\\xcc\\xae5\\x9cp\\xc8}X#\\x9c9\\xe0(\\xa2Z8\\xaa\\xa2\\xb9P4O\\x906\\x1f\\x12\\x91\\xd5\\xe3\\x98\\xc5\\xe3X\\x00\\xe5\\x0b\\x05x\\xd1?\\xfa\\xc5\\xcf\\xd0\\xdf\\xd3x\\x9a\\xb1\\x87W\\x88y0\\x04\\xb2X\\x15\\x08\\x81zQU\\x02Y\\xc2\\x03YZk \\xcb\\x18\\x90[#\\x8e\\xe5\\xe0\\'Z\\x18D+ \\xb1\\xb2\\xba\\xd8%\\\\l\\x0c\\x94\\xaf\\x12\\xc4\\xae\\xfe\\x87XK\\xc3\\x80i\\xd3\\xbc}\\xfc\\xc2\\xdc\\x03\\x85V_\\xa3\\x12\\xbb\\x16\\xea\\xad\\xab\"6\\x96\\x8b]_\\xab\\xd88\\xc8}TC\\xed\\x06p\\xb4\\x91UnZ\\xa3\\xd57AQ\\xbc\\xa0m3$\\xb6T\\x0f$\\x96\\x07\\xb2\\x15\\xca\\xb7\\t\\xf0\\xf6\\x7f\\x04\\x12lh\\x19ln\\xea\\x8f\\xa7\\x85\\xfa\\t\\x8b\\xff\\x0eU ;\\xa1\\xde\\xae*\\x81$\\xf0@v\\xd7\\x1a\\xc8\\x1e\\x06<\\xae\\x11\\xc7^\\xf0\\xb3Oh\\xf5\\xfd\\x90H\\xac.6\\x81\\x8b=\\x00\\xe5\\x07\\x05\\xb1\\x87j\\x0eu/C#\\xe30\\xb9g\\xa8\\xf9\\xf4 a\\xe6\\x1eVi=\\x02\\xd5\\x8eV\\xd1z\\x8ck=^\\xab\\xd6\\x13\\x0c\\xc8\\xab\\xa1\\xf5$\\xf89%h=\\r\\x893\\xd5\\xb5\\x1e\\xe3Z\\xcfB\\xf99A\\xeb\\xf9\\xffU\\xeb\\x05\\x95\\xd6\\x8bP\\xedR\\x15\\xad\\n\\xaeUY\\xab\\xd6$\\xc8}RCl28J\\xa9mZ\\xa6BQ\\x9a -\\x1d\\x12\\x19\\xd5\\xe3P\\xf08.C\\xf9\\x15\\x01\\xbe\\xfa\\x8f\\x01bb\\xe8\\xee\\xe3\\xef\\x1b\\xe0\\x16\\x18\\x12`\\xe4\\xcd\\x02\\xb9\\xa6\\n\\xe4:\\xd4\\xbbQ%\\x90\\x9b<\\x90\\xccZ\\x03\\xc9b\\xc0\\xd3\\x1aq\\xdc\\x02?\\xb7\\x85F\\xbf\\x03\\x89\\xbb\\xd5\\xc5\\xde\\xe4b\\xb3\\xa1 1962\u001b[0m return cache[k]\n\u001b[1;32m 1963\u001b[0m except TypeError: # k is not hashable\n", + "\u001b[0;31mKeyError\u001b[0m: (((-2, 6, 7),), ())", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/misc/cachefunc.pyx:1962\u001b[0m, in \u001b[0;36msage.misc.cachefunc.CachedMethodCaller.__call__ (build/cythonized/sage/misc/cachefunc.c:13400)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1961\u001b[0m try:\n\u001b[0;32m-> 1962\u001b[0m return cache[k]\n\u001b[1;32m 1963\u001b[0m except TypeError: # k is not hashable\n", + "\u001b[0;31mKeyError\u001b[0m: (((-1, 4, 5), 1), ())", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[222], line 42\u001b[0m\n\u001b[1;32m 39\u001b[0m T \u001b[38;5;241m=\u001b[39m deformed\u001b[38;5;241m.\u001b[39mdelaunay_triangulation()\u001b[38;5;241m.\u001b[39mcodomain()\n\u001b[1;32m 41\u001b[0m \u001b[38;5;66;03m# Make sure the surface is not too terribly squeezed initially.\u001b[39;00m\n\u001b[0;32m---> 42\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mmax\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mT\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpolygon\u001b[49m\u001b[43m(\u001b[49m\u001b[43medge\u001b[49m\u001b[43m[\u001b[49m\u001b[43mInteger\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43medge\u001b[49m\u001b[43m(\u001b[49m\u001b[43medge\u001b[49m\u001b[43m[\u001b[49m\u001b[43mInteger\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[43m[\u001b[49m\u001b[43mInteger\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mabs\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43medge\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mT\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43medges\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 43\u001b[0m y \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mmax\u001b[39m(T\u001b[38;5;241m.\u001b[39mpolygon(edge[Integer(\u001b[38;5;241m0\u001b[39m)])\u001b[38;5;241m.\u001b[39medge(edge[Integer(\u001b[38;5;241m1\u001b[39m)])[Integer(\u001b[38;5;241m1\u001b[39m)]\u001b[38;5;241m.\u001b[39mabs() \u001b[38;5;28;01mfor\u001b[39;00m edge \u001b[38;5;129;01min\u001b[39;00m T\u001b[38;5;241m.\u001b[39medges())\n\u001b[1;32m 45\u001b[0m T \u001b[38;5;241m=\u001b[39m MutableOrientedSimilaritySurface\u001b[38;5;241m.\u001b[39mfrom_surface(T)\n", + "Cell \u001b[0;32mIn[222], line 42\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 39\u001b[0m T \u001b[38;5;241m=\u001b[39m deformed\u001b[38;5;241m.\u001b[39mdelaunay_triangulation()\u001b[38;5;241m.\u001b[39mcodomain()\n\u001b[1;32m 41\u001b[0m \u001b[38;5;66;03m# Make sure the surface is not too terribly squeezed initially.\u001b[39;00m\n\u001b[0;32m---> 42\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mmax\u001b[39m(T\u001b[38;5;241m.\u001b[39mpolygon(edge[Integer(\u001b[38;5;241m0\u001b[39m)])\u001b[38;5;241m.\u001b[39medge(edge[Integer(\u001b[38;5;241m1\u001b[39m)])[Integer(\u001b[38;5;241m0\u001b[39m)]\u001b[38;5;241m.\u001b[39mabs() \u001b[38;5;28;01mfor\u001b[39;00m edge \u001b[38;5;129;01min\u001b[39;00m T\u001b[38;5;241m.\u001b[39medges())\n\u001b[1;32m 43\u001b[0m y \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mmax\u001b[39m(T\u001b[38;5;241m.\u001b[39mpolygon(edge[Integer(\u001b[38;5;241m0\u001b[39m)])\u001b[38;5;241m.\u001b[39medge(edge[Integer(\u001b[38;5;241m1\u001b[39m)])[Integer(\u001b[38;5;241m1\u001b[39m)]\u001b[38;5;241m.\u001b[39mabs() \u001b[38;5;28;01mfor\u001b[39;00m edge \u001b[38;5;129;01min\u001b[39;00m T\u001b[38;5;241m.\u001b[39medges())\n\u001b[1;32m 45\u001b[0m T \u001b[38;5;241m=\u001b[39m MutableOrientedSimilaritySurface\u001b[38;5;241m.\u001b[39mfrom_surface(T)\n", + "File \u001b[0;32m~/proj/eskin/sage-flatsurf/flatsurf/geometry/surface.py:3171\u001b[0m, in \u001b[0;36mEdges.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 3170\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__iter__\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m-> 3171\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m label, polygon \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_surface\u001b[38;5;241m.\u001b[39mlabels(), \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_surface\u001b[38;5;241m.\u001b[39mpolygons()):\n\u001b[1;32m 3172\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m edge \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(polygon\u001b[38;5;241m.\u001b[39mvertices())):\n\u001b[1;32m 3173\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m (label, edge)\n", + "File \u001b[0;32m~/proj/eskin/sage-flatsurf/flatsurf/geometry/surface.py:3102\u001b[0m, in \u001b[0;36mPolygons.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 3083\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 3084\u001b[0m \u001b[38;5;124;03mIterate over the polygons in the same order as ``labels()`` does.\u001b[39;00m\n\u001b[1;32m 3085\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 3099\u001b[0m \n\u001b[1;32m 3100\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 3101\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m label \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_surface\u001b[38;5;241m.\u001b[39mlabels():\n\u001b[0;32m-> 3102\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_surface\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpolygon\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlabel\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/misc/cachefunc.pyx:1967\u001b[0m, in \u001b[0;36msage.misc.cachefunc.CachedMethodCaller.__call__ (build/cythonized/sage/misc/cachefunc.c:13536)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1965\u001b[0m return cache[k]\n\u001b[1;32m 1966\u001b[0m except KeyError:\n\u001b[0;32m-> 1967\u001b[0m w = self._instance_call(*args, **kwds)\n\u001b[1;32m 1968\u001b[0m cache[k] = w\n\u001b[1;32m 1969\u001b[0m return w\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/misc/cachefunc.pyx:1842\u001b[0m, in \u001b[0;36msage.misc.cachefunc.CachedMethodCaller._instance_call (build/cythonized/sage/misc/cachefunc.c:12985)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1840\u001b[0m True\n\u001b[1;32m 1841\u001b[0m \"\"\"\n\u001b[0;32m-> 1842\u001b[0m return self.f(self._instance, *args, **kwds)\n\u001b[1;32m 1843\u001b[0m \n\u001b[1;32m 1844\u001b[0m cdef fix_args_kwds(self, tuple args, dict kwds) noexcept:\n", + "File \u001b[0;32m~/proj/eskin/sage-flatsurf/flatsurf/geometry/lazy.py:1105\u001b[0m, in \u001b[0;36mLazyDelaunayTriangulatedSurface.polygon\u001b[0;34m(self, label)\u001b[0m\n\u001b[1;32m 1102\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mno polygon with this label\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1104\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m label \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_certified_labels:\n\u001b[0;32m-> 1105\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m certified_label \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_walk():\n\u001b[1;32m 1106\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m label \u001b[38;5;241m==\u001b[39m certified_label:\n\u001b[1;32m 1107\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m label \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_certified_labels\n", + "File \u001b[0;32m~/proj/eskin/sage-flatsurf/flatsurf/geometry/lazy.py:1129\u001b[0m, in \u001b[0;36mLazyDelaunayTriangulatedSurface._walk\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1126\u001b[0m visited\u001b[38;5;241m.\u001b[39madd(label)\n\u001b[1;32m 1128\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m edge \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m3\u001b[39m):\n\u001b[0;32m-> 1129\u001b[0m \u001b[38;5;28mnext\u001b[39m\u001b[38;5;241m.\u001b[39mappend(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopposite_edge\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlabel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43medge\u001b[49m\u001b[43m)\u001b[49m)\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/misc/cachefunc.pyx:1967\u001b[0m, in \u001b[0;36msage.misc.cachefunc.CachedMethodCaller.__call__ (build/cythonized/sage/misc/cachefunc.c:13536)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1965\u001b[0m return cache[k]\n\u001b[1;32m 1966\u001b[0m except KeyError:\n\u001b[0;32m-> 1967\u001b[0m w = self._instance_call(*args, **kwds)\n\u001b[1;32m 1968\u001b[0m cache[k] = w\n\u001b[1;32m 1969\u001b[0m return w\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/misc/cachefunc.pyx:1842\u001b[0m, in \u001b[0;36msage.misc.cachefunc.CachedMethodCaller._instance_call (build/cythonized/sage/misc/cachefunc.c:12985)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1840\u001b[0m True\n\u001b[1;32m 1841\u001b[0m \"\"\"\n\u001b[0;32m-> 1842\u001b[0m return self.f(self._instance, *args, **kwds)\n\u001b[1;32m 1843\u001b[0m \n\u001b[1;32m 1844\u001b[0m cdef fix_args_kwds(self, tuple args, dict kwds) noexcept:\n", + "File \u001b[0;32m~/proj/eskin/sage-flatsurf/flatsurf/geometry/lazy.py:1151\u001b[0m, in \u001b[0;36mLazyDelaunayTriangulatedSurface.opposite_edge\u001b[0;34m(self, label, edge)\u001b[0m\n\u001b[1;32m 1149\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m 1150\u001b[0m cross_label, cross_edge \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_surface\u001b[38;5;241m.\u001b[39mopposite_edge(label, edge)\n\u001b[0;32m-> 1151\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_certify_or_improve\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcross_label\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m 1152\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n\u001b[1;32m 1154\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_surface\u001b[38;5;241m.\u001b[39mopposite_edge(label, edge)\n", + "File \u001b[0;32m~/proj/eskin/sage-flatsurf/flatsurf/geometry/lazy.py:1224\u001b[0m, in \u001b[0;36mLazyDelaunayTriangulatedSurface._certify_or_improve\u001b[0;34m(self, label)\u001b[0m\n\u001b[1;32m 1221\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[1;32m 1223\u001b[0m \u001b[38;5;66;03m# If we reach here then we know that no flip was needed.\u001b[39;00m\n\u001b[0;32m-> 1224\u001b[0m ccc \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_surface\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43medge_transformation\u001b[49m\u001b[43m(\u001b[49m\u001b[43mll\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mee\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mcc\u001b[49m\n\u001b[1;32m 1226\u001b[0m \u001b[38;5;66;03m# Check if the disk passes through the next edge in the chain.\u001b[39;00m\n\u001b[1;32m 1227\u001b[0m lp \u001b[38;5;241m=\u001b[39m ccc\u001b[38;5;241m.\u001b[39mline_segment_position(\n\u001b[1;32m 1228\u001b[0m ppp\u001b[38;5;241m.\u001b[39mvertex((eee \u001b[38;5;241m+\u001b[39m step) \u001b[38;5;241m%\u001b[39m \u001b[38;5;241m3\u001b[39m), ppp\u001b[38;5;241m.\u001b[39mvertex((eee \u001b[38;5;241m+\u001b[39m step \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m) \u001b[38;5;241m%\u001b[39m \u001b[38;5;241m3\u001b[39m)\n\u001b[1;32m 1229\u001b[0m )\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/structure/element.pyx:1527\u001b[0m, in \u001b[0;36msage.structure.element.Element.__mul__ (build/cythonized/sage/structure/element.c:20273)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1525\u001b[0m if not err:\n\u001b[1;32m 1526\u001b[0m return (right)._mul_long(value)\n\u001b[0;32m-> 1527\u001b[0m return coercion_model.bin_op(left, right, mul)\n\u001b[1;32m 1528\u001b[0m except TypeError:\n\u001b[1;32m 1529\u001b[0m return NotImplemented\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/structure/coerce.pyx:1228\u001b[0m, in \u001b[0;36msage.structure.coerce.CoercionModel.bin_op (build/cythonized/sage/structure/coerce.c:15900)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1226\u001b[0m # Now coerce to a common parent and do the operation there\n\u001b[1;32m 1227\u001b[0m try:\n\u001b[0;32m-> 1228\u001b[0m xy = self.canonical_coercion(x, y)\n\u001b[1;32m 1229\u001b[0m except TypeError:\n\u001b[1;32m 1230\u001b[0m self._record_exception()\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/structure/coerce.pyx:1422\u001b[0m, in \u001b[0;36msage.structure.coerce.CoercionModel.canonical_coercion (build/cythonized/sage/structure/coerce.c:18984)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1420\u001b[0m self._record_exception()\n\u001b[1;32m 1421\u001b[0m \n\u001b[0;32m-> 1422\u001b[0m raise TypeError(\"no common canonical parent for objects with parents: '%s' and '%s'\"%(xp, yp))\n\u001b[1;32m 1423\u001b[0m \n\u001b[1;32m 1424\u001b[0m cpdef coercion_maps(self, R, S) noexcept:\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/structure/sage_object.pyx:221\u001b[0m, in \u001b[0;36msage.structure.sage_object.SageObject.__repr__ (build/cythonized/sage/structure/sage_object.c:4326)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 219\u001b[0m except AttributeError:\n\u001b[1;32m 220\u001b[0m return super().__repr__()\n\u001b[0;32m--> 221\u001b[0m return reprfunc()\n\u001b[1;32m 222\u001b[0m \n\u001b[1;32m 223\u001b[0m def _ascii_art_(self):\n", + "File \u001b[0;32m~/proj/eskin/sage-flatsurf/flatsurf/geometry/similarity.py:553\u001b[0m, in \u001b[0;36mSimilarityGroup._repr_\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 545\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_repr_\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 546\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 547\u001b[0m \u001b[38;5;124;03m TESTS::\u001b[39;00m\n\u001b[1;32m 548\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 551\u001b[0m \u001b[38;5;124;03m Similarity group over Rational Field\u001b[39;00m\n\u001b[1;32m 552\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 553\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mSimilarity group over \u001b[39;49m\u001b[38;5;132;43;01m{}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ring\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/structure/sage_object.pyx:221\u001b[0m, in \u001b[0;36msage.structure.sage_object.SageObject.__repr__ (build/cythonized/sage/structure/sage_object.c:4326)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 219\u001b[0m except AttributeError:\n\u001b[1;32m 220\u001b[0m return super().__repr__()\n\u001b[0;32m--> 221\u001b[0m return reprfunc()\n\u001b[1;32m 222\u001b[0m \n\u001b[1;32m 223\u001b[0m def _ascii_art_(self):\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/rings/number_field/number_field.py:3471\u001b[0m, in \u001b[0;36mNumberField_generic._repr_\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 3456\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_repr_\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 3457\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 3458\u001b[0m \u001b[38;5;124;03m Return string representation of this number field.\u001b[39;00m\n\u001b[1;32m 3459\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 3469\u001b[0m \n\u001b[1;32m 3470\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 3471\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mNumber Field in \u001b[39;49m\u001b[38;5;132;43;01m{}\u001b[39;49;00m\u001b[38;5;124;43m with defining polynomial \u001b[39;49m\u001b[38;5;132;43;01m{}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvariable_name\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpolynomial\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3472\u001b[0m gen \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgen_embedding()\n\u001b[1;32m 3473\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m gen \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/structure/sage_object.pyx:221\u001b[0m, in \u001b[0;36msage.structure.sage_object.SageObject.__repr__ (build/cythonized/sage/structure/sage_object.c:4326)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 219\u001b[0m except AttributeError:\n\u001b[1;32m 220\u001b[0m return super().__repr__()\n\u001b[0;32m--> 221\u001b[0m return reprfunc()\n\u001b[1;32m 222\u001b[0m \n\u001b[1;32m 223\u001b[0m def _ascii_art_(self):\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/rings/polynomial/polynomial_element.pyx:2763\u001b[0m, in \u001b[0;36msage.rings.polynomial.polynomial_element.Polynomial._repr_ (build/cythonized/sage/rings/polynomial/polynomial_element.c:39548)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2761\u001b[0m NotImplementedError: object does not support renaming: x^3 + 2/3*x^2 - 5/3\n\u001b[1;32m 2762\u001b[0m \"\"\"\n\u001b[0;32m-> 2763\u001b[0m return self._repr()\n\u001b[1;32m 2764\u001b[0m \n\u001b[1;32m 2765\u001b[0m def _latex_(self, name=None):\n", + "File \u001b[0;32m~/proj/umamba/envs/sage-flatsurf-build/lib/python3.10/site-packages/sage/rings/polynomial/polynomial_element.pyx:2727\u001b[0m, in \u001b[0;36msage.rings.polynomial.polynomial_element.Polynomial._repr (build/cythonized/sage/rings/polynomial/polynomial_element.c:38899)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2725\u001b[0m if n != m-1:\n\u001b[1;32m 2726\u001b[0m sbuf.write(\" + \")\n\u001b[0;32m-> 2727\u001b[0m x = y = repr(x)\n\u001b[1;32m 2728\u001b[0m if y.find(\"-\") == 0:\n\u001b[1;32m 2729\u001b[0m y = y[1:]\n", + "File \u001b[0;32msrc/cysignals/signals.pyx:310\u001b[0m, in \u001b[0;36mcysignals.signals.python_check_interrupt\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "best = (S, oo)\n", + "bounds = []\n", + "\n", + "while True:\n", + " T = S\n", + " \n", + " from flatsurf import GL2ROrbitClosure\n", + " from flatsurf.geometry.pyflatsurf.surface import Surface_pyflatsurf\n", + " \n", + " O = GL2ROrbitClosure(T)\n", + " \n", + " for decomposition in O.decompositions(64):\n", + " O.update_tangent_space_from_flow_decomposition(decomposition)\n", + " if O.dimension() > 3: break\n", + " \n", + " tangent = (\n", + " O.lift(O.tangent_space_basis()[2]),\n", + " O.lift(O.tangent_space_basis()[3]),\n", + " )\n", + " while True:\n", + " upper_bound = (QQ.random_element().abs(), QQ.random_element().abs())\n", + " if upper_bound == (0, 0):\n", + " continue\n", + " twist = ZZ.random_element().abs() + 3\n", + " if twist == 0:\n", + " continue\n", + " bound = (upper_bound[0], upper_bound[1], twist)\n", + " if bound not in bounds:\n", + " bounds.append(bound)\n", + " break\n", + "\n", + " deformation = [O.V2(x / upper_bound[0] + y / upper_bound[1], x / (2*upper_bound[0]) + y / (3*upper_bound[1])).vector for (x, y) in zip(*tangent)]\n", + " deformed = Surface_pyflatsurf((T.pyflatsurf()._flat_triangulation + deformation).codomain())\n", + " \n", + " from flatsurf import MutableOrientedSimilaritySurface\n", + " deformed = MutableOrientedSimilaritySurface.from_surface(deformed)\n", + " deformed.set_immutable()\n", + " \n", + " T = deformed.delaunay_triangulation().codomain()\n", + "\n", + " # Make sure the surface is not too terribly squeezed initially.\n", + " x = max(T.polygon(edge[0]).edge(edge[1])[0].abs() for edge in T.edges())\n", + " y = max(T.polygon(edge[0]).edge(edge[1])[1].abs() for edge in T.edges())\n", + "\n", + " T = MutableOrientedSimilaritySurface.from_surface(T)\n", + " T.set_immutable()\n", + " T = T.apply_matrix(matrix([[1, twist**3], [0, 1]]) * matrix([[1/x, 0], [0, 1/y]]), in_place=False).codomain().delaunay_triangulation().codomain()\n", + " \n", + " print(f\"Attempt {len(bounds) - 1} with {upper_bound} and {twist}: \", end=\"\")\n", + "\n", + " iterations = 8\n", + " iteration = 0\n", + "\n", + " while iteration < iterations:\n", + " iteration += 1\n", + " T = MutableOrientedSimilaritySurface.from_surface(T)\n", + " T.set_immutable()\n", + " # T = T.apply_matrix(matrix([[3, 7], [2, 5]])).codomain().delaunay_triangulation().codomain()\n", + " T = T.apply_matrix(matrix([[1, twist], [0, 1]])).codomain().delaunay_triangulation().codomain()\n", + " edges = [e.change_ring(RDF).norm() for P in T.polygons() for e in P.edges()]\n", + " rel = max(edges) / min(edges)\n", + " if rel < best[1]:\n", + " best = (T, rel)\n", + " print(rel, end=\"\")\n", + " T.plot(polygon_labels=False, edge_labels=False).show()\n", + " iterations += 16\n", + " else:\n", + " print(f\"{rel.n(digits=2)} \", end=\"\")\n", + "\n", + " if rel < 4:\n", + " iterations += 4\n", + " if rel < 3:\n", + " iterations += 32\n", + " if rel < 2:\n", + " iterations += 128\n", + "\n", + " from sage.all import log\n", + " iterations = min(iterations, round(log(2**64, base=twist)))\n", + " print(f\"{iteration}/{iterations} \", end=\"\")\n", + " print(\"\")" + ] + }, + { + "cell_type": "code", + "execution_count": 223, + "id": "b734c554-f889-4ebe-aa48-d8acf61d1fc1", + "metadata": {}, + "outputs": [], + "source": [ + "best[0].save(\"3413-186-model\")" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "9ba34b6f-5107-4353-b095-4af36ba6fd83", + "metadata": {}, + "outputs": [], + "source": [ + "import jurigged; _ = jurigged.watch()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "5a2abfc4-83d6-4e50-9758-37639b05502b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/__init__.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/version.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/__init__.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/homology.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/cohomology.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/harmonic_differentials.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/polygon.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/subfield.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/__init__.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/topological_surfaces.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/surface_category.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/polygonal_surfaces.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/euclidean_polygonal_surfaces.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/similarity_surfaces.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/cone_surfaces.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/dilation_surfaces.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/half_translation_surfaces.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/translation_surfaces.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/polygons.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/euclidean_polygons.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/euclidean.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/geometry.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/hyperbolic_polygons.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/categories/euclidean_polygons_with_angles.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/similarity_surface_generators.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/surface.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/surface_objects.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/similarity.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/surface_legacy.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/origami.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/saddle_connection.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/gl2r_orbit_closure.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/hyperbolic.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/voronoi.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/lazy.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/morphism.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/graphical/__init__.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/graphical/surface.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/graphical/polygon.py\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAHWCAYAAACWvCk7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgqklEQVR4nOyddZwU9RvH37O9e93BFa2CiAoGKvoTDEIkRFFQJAwaQQVFDEBRBFRUQEBJC0mRULEwUAHBQvKA47ju2N6d3x/jEQJX28e8X697cTE787A785lnnu8TgiiKIjIyMjIyDRqFrw2QkZGRkfE8stjLyMjIXADIYi8jIyNzASCLvYyMjMwFgCz2MjIyMhcAstjLyMjIXADIYi8jIyNzASCLvYyMjMwFgCz2MjIyMhcAstjLyMjIXADIYi8jIyNzASCLvYyMjMwFgCz2MjIyMhcAstjLyMjIXADIYi8jIyNzASCLvYyMjMwFgCz2MjJuwOmEfftAHgUk46/IYi8j4wZ++AEuvhieftrXlsjInBtZ7GVk3EBQkPTv3LkiWVm+tUVG5lzIYi8j4wZyc6V/VSoHgwaJcjhHxu+QxV5Gxg1kZ4MgiEyZkskXXwi8/bavLZKRORNZ7GVk3EBODkREOLnxxgr69SvkiSdE9u3ztVUyMqeQxV5Gxg1kZ0N0tB2AceNySEiw0r+/iNXqY8NkZP5FFnsZGTeQkwPR0TYA9HqR6dOP88cfMGWKjw2TkfkXWexlZNxAVpZ4UuwBWrUy8+ijeUyfLvLTTz40TEbmX2Sxl5FxAzk54skwThVDhuTTpo2JAQNEyst9ZJiMzL/IYi8j4yKiCDk5wllir1LBSy9lkpcnMnasnIsp41tksZeRcZHycjCZBGJibGf9LTnZypNPZvPeewLr1nnfNhmZKmSxl5Fxkexs6d+oKPs5/96rVzH/+18ZDz0kkpPjRcNkZE5DFnsZGRepEvD/hnGqEAR47rkTiKKDwYPl6loZ3yCLvYyMi1R59jEx5xZ7gKgoB1OmZLJ5s8A773jJMBmZ05DFXkbGRXJyQKdzEhTkrHa7jh0r6Nu3iPHjRQ4c8JJxMjL/Iou9jIyLZGdLXr0g1Lzt449nEx1to39/EdvZ67kyMh5DFnsZGReRqmfPH8I5HYNBqq7dvRtefNHDhsnInIYs9jIyLpKdfWb1bE20aWPi4YfzmTZN5JdfPGiYjMxpyGIvI+Mi2dniedMuz8dDD+VxySVm+vcXqajwkGEyMqchi72MjIvk5AjVZuKcC7UaXnrpOFlZIuPGybmYMp5HFnsZGRew2aCg4OxWCbUhLc3K449ns3ChwGefecA4GZnTkMVeRsYF8vKkf+sSsz+dvn2L6dixnCFDxJP7kpHxBLLYy8i4QFVBVX08e5Cqa1944QQ2m5OhQ+XqWhnPIYu9jIwLVLVKqGvM/nSio+08/3wmGzYIvPuumwyTkfkPstjLyLhA1aDxiIj6iz3AzTeX07t3EWPHihw65CbjZGROQxZ7GRkXyMmR+t6oVK7v68knc4iMtHH//SJ21+4dMjJnIYu9jIwLnD5o3FWCgpy89NJxfv0VXn7ZLbuUkTmJG/wRGRnvI4pQUAAZGXD8uPRvRgZs2iRNiPrjD+/YIY0jdF+Tm7ZtTQwZks8LL8Rw++0C7dq5bdcyFziy2Mv4JSbTmSJeJerHjolkZIgcPy5gNp/qPKbROElIsJOZqcbphKIigchIz9uZlQXx8e6NuQwblsdPP4XQv7+O3bsFDAa37l7mAkUQRTnZS8a7OJ1SrPu/XnlGhsixY9LvCgrObCEZG2snPt5GXJyVhATbv19W4uOl7yMiHAD8/HMUw4bF89prAqNGef7/kpbmpHPnQsaOzXXrftPTNdx9dzMGDxaYO7cW7TRlZGpAFnsZt1NWdrZXXiXmGRkiJ04I2GynBCwoyElCgo34+FPifepfK3FxdjSamk9TpVKJw+HgscdSyM0N4fffhVq1Ha4vogh6vchjj2XTv3+R2/f/wQeRTJ+eyKZN0KWL23cvc4Ehh3Fk6oTNJoUuTg+tnPLKpfBKaekphVUqReLiTnnlN99sO+mZx8dLXnpIiNNlUf755yCWL4/j5ZeP0rt3EcOHh7JrFx6NeZeWgsUi1LkJWm25994itm0LYfDgYP78UyA62iOHkblAkMVe5iSiCEVF1Xvl2dkCTucpZQ4Lc5wU7tatbdxyy5meeXS0zS1piTUhCAIhITaCg5106FBBfLyNRYvUHhX72owjdAVBgClTTtCnT3MeeUTBqlWefVKRadjIYZwLCLMZMjPP9spPX/Q0Gk9f9BSJj7f9+3UqxHLKM7dhMFQ/is9bGAwGjEbjyZ/feiuWDz+MIStLICjIM8f85hu4+Wb47LMDpKZaPXMQ4MsvQxk3LoXFi+HBBz12GJkGjiz2DZTVq2H6dEhJEU+Kel7emW5hVJT9rFj56V55ZKQdRQBUYmzcGMaVV9qIjz8l9pmZarp0acmSJTBwoGeO++GHcN998Msvez1+05s0qRHffBPO778LNG7s0UPJNFDkME4DZfdu2LULiostXH65kauuOtMrj4uzodUG/n3eahV47bUE7ruvgMGDT4l9UpKNa66pYNGiIAYO9EzsIzsbDAanV55uJk7MZufOYO6/X8V33wkolR4/pEwDQxb7Bsq0aVBQILJsmYY33sggLc1zYQZfotGIfPnlUcxmy1l/6927mCefDGb/fmjZ0v3HzsnxXLz+v4SESNW1gwY15tVXYeJErxxWpgERAA/pMvVl1iyBRo0Enn46GZv7ijz9BrNZwGbTIQhm9Pqzn1JuvrmMsDAH773nmeNnZ+OxTJxzceWVRgYNKuDZZ0V27/baYWUaCLLYN2CCguD99wX27tWxcGGsr81xO2vXRtCpU2OMxnOfxlqtSPfuxSxdKnrkZlfXQePuYOTIPJo2tXDffSImk1cPLRPgyGLfwLnqKpg8WWDBghj++EPva3Pcyi23GHniiaxqY+a9ehWTmyuwcaP7jy+JvXfbU6rVItOnHyc9XQ7lyNQNWewvACZNgiuvhKefTj6vFxyIpKQouOOO0mq3adnSwqWXmli0yP2L0bm5AjEx3o+PNWtmYezYHObMgS+/9PrhZQKUhnPly5wXlQpWrBDIz1czc2a8r81xC5MmJbF5c+1SUnr2LGLzZjhxwn3Ht1qhsNBz1bM10b9/IddcU8GDD4oUub9Tg0wDRBb7C4TmzWH2bIFPPonku+9CfG2OS5jNAlarqtbzWrt2LUWrFVm61H025P7b98xb2Tj/RaGAqVMzqahwMmyYPLtWpmZksb+AePhh6NZN5LnnGlFYGLiJ2no9zJ59nJtuKq/V9sHBTm65pZRFi0ScbkqJd3XQuDuIj7czefIJVq4UeP99n5khEyDIYn8BIQjw7rsCCoWSF15oFJDeYHa2mt9+i8Rud9TpdX36FHPkiMB337nHjqpB497Oxvkvt99eRrduJYwYIbWHlpE5H7LYX2DExcGiRQLffBPKmjURvjanzmzcGMaYMTFYLHWrir38ciONG1vctlCbnQ0KhXiyj74vefrpLIKC7AwcKOLwvTkyfoos9hcgPXrAkCEiM2YkcPy4xtfm1IkRIyr46KPD6HR1E21BgJ49i1m9GoqLXbejatC4P7QtCA11Mm1aJtu2wWuv+doaGX9FFvsLlNdeE4iLE3j66STsvgs71wmjUYEgQGJi/UInPXqU4HDABx+4bos7B427g6uuquSBBwqZNEn02vxdmcBCFvsLlJAQqbr2jz/0vPtujK/NqRGrVaBHj+YsXVr/gazR0XY6dixn4ULXQzk5OSJRUf7Vg2L06FzS0qTqWrPZ19bI+Buy2F/AXHstPP20wPz5sfz9t87X5lSLIMDo0SVcfXWFS/vp06eI338X+O031+zJyvJd2uX50GhEXnrpOAcPSoV0MjKnI/ezv8Cx2eDaa0WKiqx8/PGhczYU8weq5su6it0Ot912EX36qJg7t/77SUkRuf32fEaPznPZJnezZEkUs2Yl8NFHcM010oB3h+PUl6s/u2MfNe3Tbocff4SHHoInnvD1O9owkFscX+Co1VI45/LLNcyeHc+kSdm+NuksfvkliO3bIxg+/EStBo9Xh0oFd95ZxAcfxDBzpoChHlEhUZSKqvwpZn863bqV8NZbcfTr570Hd0EQUSqlYi+Four78//u1Pan/j19O6NR4NAhnVsW02UkZLGXoWVLePVVgZEjo7jxxnKuv961UIm7ycnR8PffKtRq9zx19OpVzMKFsaxeDfffX/fXFxdLawj+KvahoUoaN7Zw1VVW2rYtJSTEcZbg1k6Aq7Y983XnEml3z8YdMyYFlUrLtGny0F13IYdxZADJW+3SReS33xysXn3QL/LHqzAYDFRWGt0qKEOHNkarNfDdd3Xf6d690KoVLFuWzuWXG2t+gRcQRVi5MpLu3a0EB1ciiiIPPdSYiAgbM2Zk+tq8OnHsmIY77mjOggUCQ4f62pqGg7xAKwNIntnixQJOp5IpU/ynuvbnn4MoK7O73XPs1auIbdsEDh6s+2v9oVXCfyktVfLOO7Fs3qymyn8bNCiPRx6pXUsJf2L58ihiYmDAAF9b0rCQxV7mJAkJsGCBwNatoaxfH+5rcygvVzByZCoffuj+xm2dO9d/ilVVqwR/SL08ckSD2awiLk7F2rUHueuuU0HuDh0qad06sMZRlpQoWb8+ghEjBHT+nSAWcMhiL3MGvXvDgw+KvPJKIpmZap/aEhLiZNOmY/Tq5f5VOq1WpGvXEpYsEetcVJadLTVXMxh8+/hjsQgMHdqEefNisFgshIWdHXr78UeBqVP950mtJj7+OBIQGD7c15Y0PGSxlzmLN94QiIoSmDQp2We9Vux20Gi0xMZWEhzsplaV/6F372JycgQ2barb63JyfBvCsdmk9yciQs/MmRk88kjuebetrFSQnq6josL/L3WLReCjj6J48EGB6GhfW9Pw8P8zQMbrhIbC8uUCu3frWbzYN1fdxx9H0qtXikcHpV90kZlWreo+xUpqleCbEI7TCcOHp/H220kYjUYuv9xY7VjGG26oYMWKDEJCPHPDdCcbN4ZTWKjkscd8bUnDRBZ7mXNyww0wYYLA3Llx/POP94OnbdpY6dq1CLWHI0m9ehWzadOpRdfakJPj/UHjVWi1arp1q+CGG2o/nspms5GREYLJ5L9pjKIIy5ZFc8cd0KKFr61pmMhiL3NeXnhBSjF86qlkzGbvCsXVVzsZOLDQ48fp0qUEtbpuU6yysrw/aHzFiihWrozHbrfTs2cBV1xR+5TP3FwV3bqlsnVrqActdI0ffgjm8GEtjz/uvzekQEcWe5nzotFI1bWZmRpefz3OK8cURXjttXh++807K4qhoaemWNV2ETM31/sFVYWFerKyROpTFhMXZ2fx4iN06eK/aZhLl8bQrp3I9df72pKGiyz2MtVyySXwyisC778fzU8/BXn8eKWlSrZtCyUnx3vF3b17F3P4sMC2bTVvazZDcbF3xD49XcMPP4Si1WoZPTqTsWPPvxBbE+3aVRIa6p+5jPv26fjllyCeeEJwez2FzClksZepkVGjoFMnkcmTkykt9ey0jogIJ+vWHaZjR+95oVdeaSQ11VqrhdqqQePeEPvly+OZOzcGk8niFhF86aUI5s/3v3bWS5dGk5Ii0ru3ry1p2MhiL1MjCgUsXSpgsymZOjXRYznbeXkqioqCEUWpl4u3EASponbVKigpqX7bU9Wznlmgtdng6FENBoOBJ544zqJFR9z2XgQFWQkP9y/XOSdHxZYtYTz2mIBK7tTlUWSxl6kVjRrB/PkCn38exmefhXnkGEuWRNOnTyOfTM66884SbDb48MPqtzs1aNwzRr75ZjwPPdSEkhITBoNYbVplXXnooXwGD/avJncffBBFUBAMGeJrSxo+stjL1Jq774YBA0ReeimRrCz350SOH1/KG28c84mHFx1t58Yba55ilZ0NSqX7B43bbKBWqxkypIQZMzJcbuV8PrKzbXz1lX9k5VRWKli1KpJHHhEIcX9HDJn/IIu9TJ14802B8HAFzzyThNONdTqiCEFBIpdeanLfTutIr17F7N4tsHv3+beRqmfdG2basCGMe+5pQWmpk7Aws0c7aX7+eTATJyZRXu77S3/NmghMJgWjRvnakgsD33/iMgFFeLhUXbtzp4Fly6Lcsk+rVaBPn+Zs3uzbXjzXX19ObKydd989/zaeqJ696iq48cZS1GrP96bo3r2E77476vOKWrsd3n8/mn79ICnJp6ZcMMhiL1NnbroJxo8XePPNePbv17q8P7NZ4LrrTKSmWlw3zgVUKujRo5j33xcxnecBw12DxtPTNTz7bBKCoCUurpQxY3I9Xi0M/LsOYEShUPm0OdrWraGcOKFm/Hj/WjBuyMhiL1Mvpk2TJlw99VQyFotrF2xEhMD48Zk0aeL7dry9ehVTUiKwZs25/56d7Z5B4xaLgb17deTkeL/TXG6uittua8qOHZ6vmzgXUmuEGDp1Emnb1icmXJDIYi9TL7Raqbr22DEtc+bUv7r2t98MbNgQ5db4vyukpFhp377yvDn32dkiUVH1E3ubDdauDUevN3DxxSWsXHmIuDjvpx7Fxtq57bYyn3Xu3LXLwJ9/6mWv3svIYi9Tby69FF56SWDZsmh++aV+XuLPPwezfHmIX1VO9upVxLffChw+fObvnU7IyxPq7dn//nswU6c2YudO6c7mzVqC0xEEGDs2m0su8c2bvmxZNBdfLHL77T45/AWLLPYyLvHYY/C//4lMnpxEWVndT6fHH69gyZJ0vxL7W24pIyTk7ClWRUVgs9W9VcLx42rUajXXXmth48YDtGpldqO19eerr4LYti3Yq8c8ckTDt9+G8PjjcmsEbyOLvYxLVFXXGo0qXnwxsU6vPXpUg9VqQ6v1rzFKOp00xWrx4jOnWJ0qqKr9Au2BA1p69GjBN9/osNlsJCT4fpRhFStXBvHll+FePeby5dHExkL//l49rAyy2Mu4geRkmDtXYNOmcDZvrl11bX6+il69mrN6tW8WCWuiT59isrMFtmw59bu6DBqvmvB12WVKXnopk2uu8b+Ok6+8cpxZs2rfF99VioqUfPppOCNHCmhdT+KSqSOy2Mu4hXvvhXvuEZk2LZGcnJpzCKOj7cyfn0WnTmVesK7uXHyxmYsvNvPuu6eeOmrbKiE/X0Xfvs3YtSsck8lIly6lftn3RacTsdlslJR4trldFR9/HIlCITBsmFcOJ/MfZLGXcQuCAPPmCYSEKJg8uVGN2TU6nZarry722HxZd9CrVxEbNpwS+exsCAlxoNNVH3ZKTFRx5ZUmIiI8VwnrLt5/P5hu3Vp4fDhN1XzZQYMEotxTiydTR2Sxl3EbERFS/P7nn4N5//3zX9EffhjJE0/E+7SopzZ07VqCSiWybJn0c07O+XPsbTaYPTuOjIxwbDYzkyad8Iu6gZq4/voKpkwpQOlh537DhnCKi+X5sr5EFnsZt9KpE4wdC6+/Hs/Bg+cOzEZGQnS02e+zMcLCnHTuXHZyilV2NufNsRdFJbt2hbBnj3dtdJXERBudOxeg1Xruw3A6pYXZnj2hWTOPHUamBgSxPnPOZGSqwWyGK68UcTgsfPDB4bM6OBoMBoxG/w9xAOzYEcTgwY3Ztg0mTxYxGEqZMSPz5N9/+81ASopIQoIdk8nml7H5miguVvLOO4ncd18uKSnufxrZti2YESPS+OEHuO46t+9eppbInr2M29HppOra9HQtb70Ve/L3oggffhjF8eP+k35YE+3aVZKSIk2xys4+c9C4zQaTJyezcGE4NltgCj2AXu9kxw4dmZkaj+x/yZIYrrpKpEMHj+xeppYE6Okp4++0bQtTpwo89VQ0HTuW066dkexsNW+8EUejRhY6dgwMwa+aYrVgQRxqtVRQVVmpwOmEuDgd77yTTlxcYPxfzodOJ7Jq1UG0Wg1WNzv2e/fq2LEjiJUr8fuwXUNHDuPIeAyHA266SSQ93c6qVQcJDRWprFSh09l81iqgPuTlqejcuSWiKPDii5msXh1JQoKDl18+5mvT3IrNFkxOjoXkZPfdvCZMSGLv3jAOHpTHDvqaALrkZAINpVLqfV9ermLKlEQUCgMGg38JvShyMivIZuOMDp6lpUpMJoHYWDvt2knj/BITBUaOzOfhh7N9Ya5HGTw4lpkzE9y2v+xsNZ9/Ls+X9Rf86LKTaSiIIuTnw65dsHs33HGHwJYt4bRtm3qy//1PPwUxaVKjk6+ZOzeWpUuldE2jUeDRR1PZudOAIAj88EMIDz7YGFFUoFAomDkzgVdfTUClUgEqevZsznffRaBWq/nxx3Buu60lNpsWrVbLtGnJjB+fhlYr/XzddRezbl0sOp2On3+Ook2b1lRUBKHX63nppRSGDm2KXq/HYDDQtWsLVq+Ox2AwEBkp2fnCC1G0a1ceEGmVdeWpp7KYNs19FbXvvx9FSAgMHuy2Xcq4gHy/lakzRiMcPy59ZWSc/iWSkSFy/LhwRpGORuNEoRAQRRGTSY1SacdiUZGXp0b4N5BrtQpoNNL3CgUYDE5UKhFRFNHrHTRqZMXhcCIIkJQkDTmx2+04ndChQzmRkWZsNhuxsSa6dy/G6bRisYhce20JZrMCi0V6zfDhuVx8sRGz2UxqqoPnnnOiVBoxmUR69synokKJ6d/JJdOnHyc11cqOHQq++CIYhUKkdWsjBoMeiwXGjInmoYfyueQS/2hs5iqXXGJGp9NhdsN/p6JCwerVkYwcKRDs3V5rMudBjtnLnIHTKRUPnS7ikqiLHDsmfV9QcOZKW2ysnfh4G/HxVuLjpWZfCQmnvg8LczB9ejI33VTM9ddX+Oh/Vn+0Wh1r1ujo3LkMrVaq+M3KUvP000lMm1ZEs2YWvv1Wid0uBOT/73S2bQvmo4+iefvtoy4tqC5dGsUbb8Rz9KhAYt3648l4CFnsLzDKyk4X8FNfx46JHD8ucuKEgM126ioPCnKSmGgjLu50IT8l7HFx9rPy6M9FIOXWV3H4sBazWcell5bj/Lf/g1arw2Qyn7Xu8MwzyRQXq1m4MBOLxcrevTouucT/C8f+y2+/GVi7NoYJE47Xu5WFzQbdurXklltULF0aYG9AA0YW+waEzQZZWefzyqXwSmnpqYtPqRSJizvllUsifkrMExJshIQ4XRas/HwVwcEa9PrAEvunnkohI0PNihWHEQRpnN+AAc2YNu04V19deca2oghGo4KgICf794dw112pLF2awRVXlGGzCajVgXOZqVQq7Pb6T7HatCmMCROS+f13aNPGjYbJuIQs9gGCKErDM87nlWdkSOEXp/OUMoeHO0hIONsrl0IsdqKjvVMING1aAjt3BrNu3UHPH8xNKJVKbDYlRUUOoqOlfsWiCHPnJtClS2G1C7QOB+zaFcSVV1ZiMGh57LEElEo7L76Yed7X+BN2O+zYEUmrViWEhtbNuxdF6NevKYmJOr78Uvbq/QlZ7P0EsxkyM8/2yiUhl7xyo/H0RU/xX4/8bK+86nuDwT86SmZmaigoUNK2rcnXptSIxSIwbVoiI0eWEBdXec5tlEolDkftB4V/9VUIINC9u42sLCVPPRXFpElZbs1ndyf5+SpuuaUlL76YSbdupXV6bVV7iS1b4LbbPGSgTL2Qs3G8zCefwMaNUofIqvBKRoZAfv6ZXlB0tP2kV96+vY0ePc6Ml0dGOvwqX706mjYVSEryf6EHqU/Mvn0GsrOLiDvHHHWjUcFPP0XSrl0R4eG1E/xOnaTBJSYT5OTosNkUJCZq0OmUrF6tJTbWTvv2576x+IKYGDsbNhwkLc1BHe5pACxdGk2rViK33ip79f6G7Nl7mXbtYNcukYQEG40bW09mrZzulcfF+d+ovvpSUKBi1ao4+vTJrfegbm8gimC3C4SF6amoMJ73Rpqfr+Lmmy9izpxj/O9/rk+feuihxlx0kZ2nnsqlpMTO4cNaWrc2+cXCrsFgqPa9+C/p6RruvLMFixfDgw961DSZeiCLvZeprIRu3UT++MPJ++8fJjm54RXnnM4ff+gZOzaVFSsOk5jon2ELgEWLotm+PYz58w+jrmHQVmmphrAw93xuoijVGGi1Il98EcX48Ql89dUhYmPNGI0CBoPvLs+nn04hJMTGU0/Vrlr4+ecT+fHHCI4elccO+iMBEghoOAQFwZo1ApGRCkaNSqW8vGF/BG3amPjxxyN+LfQA113noGPHkhqFHiAszIq6NhvWAkHg5FNcp06FfPDBYWJjzWi1WgYNasacOfFuOU59aNeunKuvrt1NrbBQyYYNEYwaJQu9v9KwlcZPiYyEjRsFCgo0PPFEMi5kuQUENpv/Cn16uhadTs/FFxczcGBhrV6TkaGhT580Dh1yr6oplXDppdLahtlsYdCgXG66qQy9Xs/vv0cwfHgqZWXeu2R79y6me/farbV8/HEUKhU8+mj9jzdrFjRqBOX+N5u9QSCLvY9o2RJWrZJG+M2c6TvvzdPcf38T3n030tdmnJPCQiX33tuUJUsMdXpdbKyNFi0sHo2rCwLcfnsZbdoYMZlMmM1WgoKcxMXp0Ol0LFkSxe+/6z1nwL/884+DDz6ofmis2SzNlx08WDjZQ6guiCLMmAFPPCGSkyPix75BQCNn4/iQzp3hzTcFhg+PpkkTC3ffXexrk9xO165GGjf2z0ychAQls2cf58or69biQKcTmTr1ON5c7rr66kquvroSk0kqnlu/PpmwMBXt2zvIyHBSUKCmVSv3L+z+8YeehQtj6NHj/MPhP/00nJISBWPH1n3/paUwaJDI2rUCbdqYKCvTERnpB6vTDRB5gdYPGDlSZP58mDfvKNde6z8peO7AH9sk5OWp2L07hK5dy+qUL386VqvAX3+F06pViU8yp0RRKt5SqWDRongWL47g++8PoVDYKC1VEBbmnhoLm01Aq9XgdFrO+XenE+68szlXXqlh1aq6ifRff0GvXiI5OU5efDGTr74KJS8vnO3bZbH3BHIYxw94/XWBm2+Gxx9P4cgRz4yG8wUZGRr27PG//8+GDRHMnBlLeXn9RfrIEQ0DBzZiz566hYDchSBwsvr5wQdzWLYsHYXChiDo6dq1JR9/7J7QmVot4nRasFg051xb2rYthKNHtYwfXzeB/uADuPpqEYXCwkcfHebmm8spLFSRmCgLvaeQxd4PUKlg5UqBhAQFo0alUVqq9LVJbmHVqghGjz5HZZIPEQSBYcPK+PDDQy5VGLdoYeHTT49y1VW+fxJTqaBpU8nztlrNPPNMFtddV4Fer2f9+lhGj07B6YKjn5OjpmPHZvz4Y8hZf1u6NJprrhG59tra7ctqhdGjoX9/uPnmUpYvP0xqqpTxU1CgJr7hLl/5HFns/YTwcClDp7xczfjxyQ1ikWr48DwWLjziazMAKdzw3HOJ/PZbOFar5WS/m/oiCNC4cQUqlX/dmNVqkS5dSklKsmIymQgONpGWZiU42IBGo+XVV+M5cKBuWURxcTbGjcs9q2//33/r2LkziMcfr503npkJN94oMn++yNNPZ/HSS5ln1BEUFKhIcN+gLJn/IIu9H9G0qZSD/9tvQbz0UiKBvpoSGqr2m6Ixi0WgsFBLUZH78lzT0zU88kgqBQX+Jfin06lTOePG5WA0GsnKcrBtWwhGYxBqtZr9+7X8/beuxn0IAtxzTyEpKWfmcyxdGk3jxiI9e9ZsxzffwBVXiBw9amfx4nTuvbfojMVkux2KipSyZ+9BZLH3M268EebNE1i1KpL3368+5c2fKS1VMn58Iunpvq+wMZkEoqL0vPnmkZN9atxBaKgDUYSyssBIaouOtvPppwe57LIibDYbH3wQy5QpySiV0s0qL6/6/8eKFSF8+mk4IA1v+eKLMMaNE1BWc6+rSqvs3FmkSZNKPv74EJdddnZ2VlGRClEUZM/eg8hi74cMGQLjx8Orr8bz/feBOdOttFRJTo4SQfDt48nmzWH06tWC48fdnxcfHe1gwYJjNGly7kwVf0QQOPk+TJ58nNdfP4rD4aCwMJjOnVvy/fdSXP5cT5V79qg5fFjK7V+xIorQUBg06PzHKi2FPn1EJkyAQYMKmD//KJGR5w6f5edLNxrZs/cccuqln+JwwJ13inz3ncjy5Ydp1ixwBKUKaZ6pb+ezFhcH8/HHeh55JN8jRVCiCEePBpOWVuEXzcvqi9ks8NVXodx8cwWRkRqmT4+kpETk+eezTm4jihAUZCA318ytt17E6NEKXnzx3Pv7b1rlzTdX/0S1bVswI0akceIE8hhDDyF79n6KUgkffiiQliYwalQqRUX+Gxc+F0aj4NM2CYcOaXE69URGVvLoo54ReoBffw2iR480Dh70fbjKFXQ6kW7dStHrHZhMJpo0qeSiiywYDAZsNj3PPtuIzEw1ZrOVd96JwWoVGDny3Ps6V1plTeTnqxEEkZgYN//HZE4ii70fExICn30mYLWqeeyxVKzWwHEdhw5twgsvxPrk2DYbjBqVyvTpER6vcm3b1sjSpSdIS/OPhWh30aNHCf36FWI0GklPF9mzx0BIiI5FiyJZujSaO+/krPh6dWmVNVFQoCIqilo1opOpH3IYJwD46Sf43/9EunQpYerUEwERLvjpp0gMBpNPplOpVCr27tUQG2up9YARVxAEwautE3yBtBCt5MEHG3PokJZlywTuv//U30+cgLvuEtm1C558Mpt77imq03k6bVoCe/dG8Mcfsv/pKeR3NgDo0AHefVdg/foIliyJ9rU5taJzZ7PXhb6yUsGSJTE4nQItWhi9IvQAhw5pePbZFCyWALgL15PsbDUPPNCEkhItP/xwptD/N62yX7+6CT1AYaGK+PiG+/75A7LYBwgDBsDTT8Nrr8XxzTdnVzL6EwcPalm/Ptilqs36sHNnEO++G82xY949rtMJBw5oyctrmDGI/ft13H9/U5xODT/+KHDdddLvT0+rbNz4/GmVtaGgQC23SvAwchgngHA6oW9fkS1bRJYtS6dlS99mupyPpUujeO+9GL79dp9XQ046nY68PCuhod4ftK7RaLBaG1bcHuCXX4IYOzaF5s0VbN4snJzLe3q3yiFD8hk5Mvdkr5760KVLS/r3V/Pyy+6xW+ZsZM8+gFAoYNkygRYtpAydggL/LOYZOLCQzz8/4DWhnz07jlWr4jGbzT4RegCr1UpZmf81fXOFzZvDGDYsjWuvVfDdd6eE/q+/oF07kS+/dPLGG8cYO9Y1oRdFKChQygVVHkYW+wAjKAg2bBAQRRVjxvhnnFitVqPTeUd0RREUCjUWi2+96m++CeH665v77Q24rixdGsWTTybTr5+UERbyb+SwPmmVNVFRocBsVsgFVR5GFvsAJCkJPv1U4MABPZMnN/KrHjomk8Ddd6eya5fnW/+WlysICjIwdmwm/fsXefx41dG2rZHZs/Nc6qTpDzidUuX2zJkJTJwIS5cKaDSupVXWRNUNUvbsPYss9gFK+/bShbh5czgLFvhPJYrRqKB5cxthYZ7NhNmzR8/tt7dk1y7/ENeICAe33VYU0GJvtQpMnJjE8uVRvPkmTJ8utVY4ceJUt8pJk87uVukqBQXSwrbs2XuWhvHMeYFy992wbx8891wcjRtbuPXWMl+bRFSUg1deycNk8mx7h8suE3nwwQKaNfOfReqDB5Vs3hzL8OHZAVELcTrl5QrGjk3h99+D+OQTgT59pN9/8w306yeiUNhZvDij3tk21SF79t5B9uwDnMmTpYtx0qSkWrWr9TSZmWqKiz3n3R4/riYvT49SaeWhh/L9quIyL0/NunVhNXaP9Dfy8lQMGtSEAweC+PJLSejdmVZZE/n5KgwGkeDA7PkXMMiplw0Ak0l6zD52zMEHHxwiLs59PdvrypAhaYSFOZg9+7hH9j9sWBpWq8C77/rHUJTTcTpBr9dhsfjP00ZNpKdrGTYsDUFQ8fnnAq1auT+tsiZmz47ju++iOHxY9j09iSz2DYTsbGjfXiQ83Mzixeno9b75WI8fD8FkstKihfvDOAqFgpISLeXldho18s9RXoIgYLWKfvXEcT727NEzcmQaSUkKtmwRSEqqe7dKd/D0040oLAznxx8DLPYVYMi30gZCQoKUInfkiI5nnknyevVqFS1bOtwu9DYbvPlmLGazltBQk98KPcDmzSHceOPFmM3+LVxffRXC0KGNadNGwQ8/SELvibTK2lBQoCYhwb/fr4aALPYNiLZt4f33Bb78MpS33/Z+x8l9+3TMmRPudqHLyNCyenUkf/3l/4LQqpWJMWOKcTr919aVKyMYNy6FHj0EvvhCwGDwXFplbZDE3muHu2CRxb6B0bMnTJ8usGBBLBs3hnn12EePali9OgSNxn0hJFGESy9VsmnTfq64wui2/XqK5GQb99/vnymYoghz5sQydWojRo4U+OgjgcJCz6ZV1oaCApWcdukFAittQKZWPPkk7N0r8uyzSTRqZPVa98nbby+jW7dKHG5KsV+xIor09CCeeSYDg+drtNzG4cMiO3ZE0bt3oa9NOYnNBlOmNGLdughmzIDHH4dvv/V8WmVt7CoullsleAPZs2+ACAIsWCDQrh2MHZtKVpZ3VguVSiUOdyk9EBurJDTUgiLAztI//zQwY0Yc5eX+YbjRqGDMmFQ++yyc5csloX/1Ve+kVdZEYaE8e9ZbyNk4DZj8fClDR6ezsGxZukdDC3Y73HrrRUycmOVycVdRkZJGjTSYTL4RIFexWgX0eh0Oh+/tLyxUMnJkGkeP6lizRuCqq7ybVlkTf/+to1+/Zvz2G1x+ue/suBDwD9dDxiPExEgZOllZWiZOTHJbeOVcWK0C999fRpMmrmXiZGWp6d69BevWBW4HSWnNwvftjo8f1zBwYFPy83Vs2yaQkODebpXuID9fbpXgLWSxb+C0bg0ffSTw3XchvPFGnMeOYzCIDB9eTLNmrol9SgqMHZvH9dd7J+3PU2zYEEzv3s19lgL79986BgxogkajZvt2gX/+8U1aZU0UFKhQKERifTOu+IJCFvsLgK5dYdYsgcWLY1i3Ltwjx9i7V8c//yjr/friYiV//BEMiNx9dyFBQf6XzVIXUlMtdO5s9EkL6h9+CGbw4CY0b67k228FXnvNd2mVNZGfryI6GpT1P3VkaomcjXOBMGYM/P23yJQpjUhOtnLlle5NY5w7NxaHQ2DevIp6vX7Rohi2bg1jw4YDaAI3gnOSVq3MXHllIWazd5fE1q8P5/nnG3HbbfD66wJ9+khDwCdNqvsQcG9QWKiSM3G8hLxAewFhs8Gtt4r8/ruT998/RHKy+ypRrVYNRUUi8fH126cg6DhyxElamv94na5SUKDmn3+03HBD/W6AdUEUpRvmnDlxDB0qcs89Av37S2mVM2f6Jq2yNowZk4JGE8LmzX52F2qAyGGcCwi1GlavFoiMVDBqVJpbUwPDwpR1FvqqIp/c3FBE0dyghB5g8+ZQxo9PwWr1rJA5HPDiiwnMmRPH889Ds2YCt93m+7TK2iB59rLQewNZ7C8wIiNh40aBggINTz6ZjN0NDTL37dPx+OOxlJTULfBaVqbkm2/C2bWrYV7sd95ZzA8/ZLi1ovi/mM0C48en8MknkcyZA7//LjJxIgwaVMD8+UeJjPTsEBlXKShQy5k4XkKO2V+AtGwJn3wi0KVLMLNmxTNhQo5L+ysvV5CRoarToqrTCQkJWj7++KBHxdCXhIY60WisWD30wFJaqmTUqFT27dMzZ47A669L3SrfeMM73SpdRRQhP18pi72XkD37C5RbboE5cwRWrIhm5coIl/bVvr2R998/hlpdO9HeujWUIUOakp9vbrBCX8W6dXrGjk11+36zs9UMHNiEjAw9EycKPPmk/6VV1kRZmQKrVSEv0HoJWewvYIYPhxEjRKZPT+SXX4LqvR+jUYm9DvGg5GSBpk2N6PWBnV5ZG4KDHcTEON0SLqti/34tAwY0xW7X0KWLwHPPSWmVK1b4V1plTRQWygVV3kTOxrnAsduha1eRX391smLF4TovkooidOhwMSNG5DFgQPWNv3JyVCQnK7HbrVxIp51er3db64dffw1izJgUUlMVaLXw55/w5JP+mVZZE7/+GsSQIY05eBCaNfO1NQ0f2bO/wFGpYOVKgfh4BaNGpVJaWrdTQsoEKaBDh+pDB2azwAMPNOWNN8IvKKEHKC628c8/rs8H3rIllGHD0mjZUkFuLmRl2Vm8OJ1+/QJP6EEqqALZs/cWstjLEB4u9dApK9Pw+OMp2OqQQalSQffulTRpUv0TQVCQgmeeyaVvX/9p++st3nknikcfTXOpdcLy5VE88UQKrVrBb79B06b+n1ZZEwUFKoKD5UHj3kIWexlAeoxes0Zg584gXn45gdo63zt2GPjii/N7rSaTwNatoSiVSjp2LCEmxnfD0H3FPfcU8cknWfXyvp1OmDkznhkzEmjeXGT3boHBgwMjrbImCgpUxMVdWE95vkQWe5mT3HgjzJ8vsHJlFB98EFmr12zaFM6iReefiLV5czhPP53E8eMNfzH2fMTH20hJsdZZ7G02gYkTk1i2LIroaJHsbP/pVukO5Nmz3qUBnDIy7mTIEPjnH5gxI4HUVCvXX199qf/UqXlUVJzfw7zvPjPt2x8iLu7C8+hPZ/16LX/8Ec4TT9SupqGiQsFjj6Wwc2cQajVERlp47bUMUlICJ9umJgoKVCQny2LvLWTPXuYsXnkFunSBJ55I5vBhbbXbqtVqdLqzH8UXLYpm164ozGYTyckNR6DqS0WFgsJCba3CY3l5KgYObMJvvwVhtwvcequUVtmQhB6k1Es5x957yGIvcxZKJXz4oUBqqpShU1x87jYIBw5o6du3EZmZZ449dDjgjz9C2L1b9tqq6NOnmDlz8msM5aSna+jfvylHj2pxOjk5BFyvb3ix7fx8edC4N5HFXuachIRIGTpms5px41Kw2c5WKYUCUlJshIefCuPY7RASYuC1144wZEiBN032e8xmGzk5558HvGePnv79m5GfryIszM6SJYGbVlkTVqtASYncKsGbyGIvc17S0mDdOoE//jAwZUriWSGIZs0svPJKFsHB0uLrnj16evVqwYEDdpRKGqRIucKUKdEMG3bu1glffx3CoEFNqKgQaNu2klWrAjutsiaqBo3LYRzvIYu9TLV06ADvviuwbl0ES5dGnfG3I0c0lJaeWnhNSxO4+uoKYmLc1ye/IXH33UW89NLZTzvLl0cyZkwKdrvAwIEFLFoU+GmVNVFQIBdUeRs5G0emRgYMkDJ0pk+PJy3Nyk03SdWyQ4Y0oVevIu65p4iwMAVRURaeeSbLx9b6Ly1aWNDrFVR1ThBFmDo1gU8+iUKtdjJjRgadOwdGEzNXqaqelT177yH3xpGpFU4n9O0r8vnnIkuXHqZFCwvp6eFoNJVMmpRMVJSD11475msz/Z5vvw0jM1PFPfcU8vDDaezcGUx0tI0lS44EVBMzV1m5MoIXX0zEahXk+bNeQhZ7mVpTWQnXXy+Sl2fn/fcPkZKixWQycfhwEGCjSROLr030e95+O5a//zZw+LCGrCwNbdtWsmDB0QaZbVMd8+bFsGZNLNnZ8sKOt5Bj9jK1JigINmwQcDpVDB7cmEcfjUGl0tKkSUWdhF4UpfTMKjfDYhEwmU5d9IWFypM/m0wCmZlqHP+GsHNzVRw/fiqjZe9e3cmQQGmpgh07grBYpNceOqTlt98MJ7fdti2Y9HSpbqCoSMmnn4ZTViZdAnv26Nm06VQl8Jo1EezaJb22oEDJ/Pkx5OVJx/n55yAWLYo+ue2770bz5ZehJ21/7rlEjhyRpqZ/910Izz+feHLbjAwV27cHkZWl5t57C1m27MgFJ/QA+fnyhCpvI8fsGziiKA0aNxqlL5Pp1Pd1/1nEaISICPjnHy1Hjmh5910jQ4c62bgxhFdeiWbbtqMIAowdG49KJTJrVh4WC1xxRRNeeimPnj0r+eyzYMaOjeOPP9LR60WefDKO8nIFS5ZkIwgCbds25vnnC7jvvnJ++snAI4/E88svR4mOdjJ3bgxHj6r55BNpbWDIkDRGjSpm6NBSdu/WMXhwIt9+m0FEhJ3Vq6P47TcdGzacQBRFnn8+if79y2jVqpi8PC2TJiWxaVMGcXE2vv8+kq1bg+jdW7ppffhhNJ06VdChgwOTSc3KlVF07mwmKcnCkSMGtm0LZdiwUgD+/jsIhUKBUlmJ06ni4EE9ZrMKhcKO0ag4mXkCUoaS3Q533FGBICj4+usQOnW6MOL0p1NQoCIxsebtZNyHHMbxEaIIZrOr4iv9XFkpnhTjU38XMJmkvzsctXtUVihEDAYRrdaJXi+i0znR6Zxotc6T3+t00u83bAjHahWYMuUEvXqVsHevjm+/DWXYsDwEAb74IhSlUqRTp3IcDvj440iuuaaCJk2sHD+uZufOILp3L0Gtht27DdjtAu3bVwKSN9ysmZlGjWwUFSk5cEDHlVcaUatFMjI0WCwCzZtLonzggJboaDuRkQ5MJoG8PDWJiVbUamkSkt0unMxsKS9XoNGIaLUiTqf0vqhUoldSRJ1OqKxUEBOjYfVqPc2bVzJ/fhy3326mW7cSCgqcaDTOC8bLv+++prRvr+fdd31tyYWDLPZ1ZN8+mDMHrryyZjGurDxdfCVBNpuFk9uJYu1URq2WBLZKgLVaEb3+vyJ8Soir+16vF0++7tT+pO/rInx790ZQXm7hpptETCYToijn1VfHnDmxbNsWxocfHkKtFlEqlTgcp9IrX3klme3bdaxde/CCeB9vu60lgwapmTbN15ZcOMhhnDpQNdXpyBHpaqwSySrxPdsTFomJqUl8JfGu+l6nO1OMtVqnX3Y4bNfOgtFoxGSCNWvi2LZNw8yZx/3SVn/g7rstNG6ch1otUlCg4ptvoujePe+kJ9+/fw4dOmgxGPSUlYksXBhK//6FhIU1vHx7UZTCOHLM3rvIl2YtEUV4+GGRY8cgJsbKnDn5tG5d7GuzfMLKlRFERUGnTkYAoqMradpUJafQnYMdOwxcey3Ex5dyxx3S7/LzVbz8cjRt2pTSsqUZgKQkG0lJNkwm2LMniA8+iOLee41ABXY7DeomWlamxGoV5Bx7LyNn49SSZ5+FxYsFpk07wddfH+DSS0tQqzWUlFx4CrdrVwi//XaqG2bHjhWMGnUCg0HP3r26k9kwFzrFxUpGjkxjyRL9Gb9v0cLM7t2HTwr9f2nfvpKtW/cREVGBSqWlX7/mrFwZ4Q2TvYI8jtA3yGJfC+bOhWnTYOzYHG67TVoYFEWRWbOiePDBJudsEtaQefPNAh5//Oy+7IWFFh59tDHvvhvjA6v8j4QENUuXHqFfvzNHMUp9g6pvKVHVNtpotNKtWzGXXWZDr9ezf7+WAweqbzvt78itEnyDLPY1sGYNjBwpMmBAAT16lHDllU3Ztk0amnnHHYWMHl2EWn3hrHFbrQKieO6FXIPByVtvHWX48AsvlfB0jh3TsHRpHBaLlYsuMp0zBPPxx6EMH55W4740GpFBgwpo2bICk8nE0qVxPPtsChC4Dobs2fsGWeyrYds2uO8+kVtvLeOJJ3IwGJy89loul1wiNTdp3NjKzTcXotfr+esvfQ17axi88EIiDz0Ue96/t2ljAkwUFAQzeXKjM4qlLhR+/TWUtWtDqahmyFdcnI2LLrLVetZvFS+8kMGsWUdRKhXk5YXy8MNp1bZN9kcKC1WEhIgEBfnakgsLWezPw59/Qo8eIpddVslLL2WiUEBQkJPu3cuJjj4zQ+LXX+Hee5vyyy8N/+y9884K7ryzqMbtjh1zsm+fgfLyC2dNQxRBoVBw332lfPjhIYKCzj9394YbKpg4sbjOaZZqNTRqZMPhcJCXZ0OphEaNNCgUCo4c0dT55uELCgrUxMcHgKENDDnP/hxkZECHDiLBwRYWL04nJES6aL/6KoSwMJF27c522X7+OYibbnJiNjfcHuQABoMBo9FYq22dTjAYdBQX2xBFJwZDwz3VbDaBMWNS6N27gs6dC2t+AVBcHExFhdUtYxsrK5V07tySRx/NZ+DAfJf350kmTEiivDyMbdsuvKc+XyJ79v+hqAhuu01EFO3Mm3f0pNCDVEK/YUPoOV93zTWVWCxm9uwJ5+hRjbfM9Sp79uj54ovah6sUCjCbzUyYkMyTT6Z40DJ/QCQx0UlY2LkzbM7FyJGxzJ17/pBYXTAYHLz55lG6dSvCYDCwdWsE69aFu2Xf7qawUE1ioiz03qYBZe+6jskE3buL5OY6Wbr0CDEx9jP+vmJFNmVl52/4ZbeLTJsWTZs2Jp599oSnzfU6W7aE8ccfQVx/fe081yoGD85FpdIgCNLibkOjoEBJSoqWZ545XqfXPf/8CaKja96uNggCtGsnPXEZjUZ27gyltFRL376VWK02LBbhnIPhfUFBgYprrvG1FRcechjnX+x26N1bZOtWkUWLjvy70HgmtQlh5OeriI1VIIoNrze5RqOhpMSOwXD+WHT1r9eyaFEIvXsXnRxlGOisWxfOzJkJrFt3kOhoe80v+A96vR6TyTOhv6pirF9/jeSJJ2L5+OPDxMf7forY9ddfzFNPKZkwwdeWXFjIYRykhbXhw0U2bYKZMzPOKfTffBPCPfck1FgwFBNjRxStZGaGMm9eTEAsmNUWlUpVb6EHSE93snBhDDt2BLvRKt/SvbudceNy6iX0FRUKpk6NZt8+nQcsO1V1m5RUzv33F5CWpkKr1fLZZ2EUF/tm4dxiESgtlQeN+wJZ7IEpU2DhQoHnnjtBx47nzpcLDnbQtKkFrbZ26r1zp4KvvgqnsrJhvMWrV0fQr18CThcc8qQkG599tp/bb7cgCAL2uuuj37B7twGjMRiVqoLevevXNkOnc7J9u+5kn3xPkZhoY+jQAsxmE7m5dqZNa8QPP0R69JjnQx407jsu+DDOggXwyCMwenQuDz3k3iwGq1UgPFxf6+wVf2b79iB++y2YESNy3bK/jRujWb48jPfeO+LS04IvsNuhV68WXHVVBZMnuzZzV6FQ4HTlDloPSkqUBAU5CQ7WMGtWNBaLnfHj3fO51sTvv+sZMKApv/8Obdp45ZAy/9Iw3M56sn49DBsm0q9fIUOHVi/06enBde75otGIZGZaefTRxhw6FNgl7jfeaHOb0AM0a1bBddeZArKwRq9Xs3DhMcaPz3Z5X06nE6fTu3kS4eEO1GoRi8VCRISJ+Hjx37UDgYMHPXueVrVKkD1773PBiv2PP0K/fiKdOpUxcWJ2tcUtFRUK7rwzjS++CDv/RudBq3UiCCIOR+AmPuXnq9izJ8itYZeWLc2MGpWFWq3ir78MPosh14XCQiUzZiRiNkN8vMUtdQNffx1Cu3YtqajwzaXYv38R/fvnYTKZ2LQpinvuaUZRkefO1YICNUqlSFSUxw4hcx4uSLHfuxfuuEOkdWsj06dn1tiaV6t1smbNCa67ru49X4KCnMybd5RLL7UhikJANk378stQBgxIxG53v+1Go5UJE5J4++04t+/b3aSn6/n222Dy8ty3z4svNvPsswV+MbCkR48CFiw4QkyMiE5n4IUXEtm7172LxwUFKmJjpRoMGe9ywcXsT5yAa64R0estLFmSTmho7eKl7kiRmzgxFY3GzpQpgZWD73BAZqaO1NTaFwzVhWPHNDRqJKDR2Lwev64NTqckTlqtlooKq9sb3+l0Osxmz7y39SU/X8WIEak8/3wRrVuXUlwMoaFOl29Kzz+fyJEj4ezaJau9t7mg3vGSEqk61uGQqmNrK/Tr14ezcqXB5eN37FhC167nL8ryVwwGrceEHiA11YpKZSEvT8vIkakn47r+gCjCM880Yu7cRlgsFo90ON29W8G334a4fb+uEBNj5+OPD3PJJcWIosgzz6QxYUKyy/stLFSRkOAHjzEXIBeM2JvNUmOzzEwn8+cfJS6u9gHoP/80sGuX6wtXXbuWcs01BRgMBrKyAqNT4f79WoYPTzzZltaTVFY6KC9XYrf7T/xeEOCyyxw0blxNC0sXWb8+1C/DWFVevCiKPPBADn36SK0YcnN1rFkTga0e9VmFhWpZ7H2E/7hQHsThgAEDRH79VWTRoqM0aVI373rq1EIsFvd55B9+qOWll9L49NMDdbrp+AKzWYHZLHhlFmpqqpUlS9LRaNRUVqooK6NexUruIitLTbNmau655+xBLe5k1Kg8IiJKsfpx0XX79lWtGGDbtgjefjuOO+6oBKx1Gjafny/PnvUVDd6zF0UYPVpk7Vp49dXjtG1bt7i7KILSzcNVb7mlhBdeyCYpyf89nMsuMzF//hE0Gu8s7QgC2Gw2pk5NYNiwNJeKuFxh504D3bq14OefPf//DgpyolL5/7lQRd++xXz66QHUait2u4E772zB9u0159A6nVVhHC8YKXMWDV7sp0+HuXMFJk/O4n//q3s2zbZtIVxzTQpFRe4TfINB5PbbparLnTuD/HZmq90OWVnBOJ3eX8N/5JEcnnkmD43GNw+fHTqIvPDCCVq39k7L6tGjYwJqzmzVeldZmYX27cu5+GIBrVbL33/rzptGW1qqxGYTZM/eRzRosV+8GCZNguHDc7nrrvqVtCcnW+nXr5SICPeHMfLynIwYkcrKlb4pXa+Jf/7Rc9ttafz5p/encCUl2bjssjJAYNGiOK+tcezfr+Pw4VBsNjM9epR4LUUwNtZCaKjnQ2XuJjLSweTJ2YSHV2CxWJgyJYmXX04657ZyQZVvabCplxs3wp13ivTuXczkyVkupYx5sjXvvn06LrtMgcXify0VjEaBP/+M4IorilD7aD25pETJffc1ZfjwArp3r3lClquMHp1GZaXAokVHvJ77rlarsdVn1dOPKClRYjQqaNxYwa+/Gli7Vs+ECdno9SI//RTEI480Jj0dGjf2taUXHg1S7H/5Bf73P5Frry1n9uyMGoumquPHH8No1qzS4wup6enhHDvmqFeoyZP4Qw96k0kgJET6ECsqHB7ry65USkJVWekkMtK7XrbTCbm5oYSHl6PXN4xL8vPPQ/n000jefTcXs9nEihWRvPJKIkYj6N38sCiK0nvodEoJGVVf//35XL+rzzae2u/5fvfDDzBoEDz+eP3fowYn9vv3w3XXiaSkmFiw4IhLwmCzCVx11SU89VQWd99dvzBQbZk8uRFZWToWLTrsF9WUNpvAjBlJ3HNPHs2a+UdtwFdfRTBjRizvv3/YrVk6RqPA9OmJjBtXTESEb56w0tM13HlnCxYuPMI111T6xAZPcuKEgdtvb4xCAVdfXSViIg6HgMMhnkcEhTN+J4rnF0Wn0w8umv8gCCJKpVSQp1BUfS/++zMolf/93bm3yc9XUVCgYtgwmDu3/vY0qNTLrCypaCo83Mqbbx5z2QNUq0V+/vkYVqvnBWDSpCwUCgUajX88yuflqdi1S8+dd/rPss6ll5bTq5eWuDhJBNxFYaGav/4ykJVVSISP1kjT0qwsXnyCiy9umDOMDx+WzqP4eDuxsRUoleJJMasSujN/PlP8lMrTxfPcP59PNE8/liBQp33W/hhnv8YdTtv770fy8suJvPYajB3r2r4ajGdfWgodO4rk5tpZsSLdbRN5PDlJ6Fzk5el5440onnnmhM8f57VarVvrC9yFUqnkzz8N6PUWGjeuf3J6lacYEqKnosLkUrjPHfii3bG30GoNfPKJmrfeiuexx3Lo0qXU1yb5PVu2hPLkk8k8/rjAjBmu789/3DYXsFigVy+Ro0el6lh3Cf1HH0Uya1bdO126QlGRyP79ep+3DDCZlFj9tMrHbnfw8ssxvP22a2kdc+fG8thjTais9L3QA+zerWXOnIaTqmI2Czz1VBKHD4dhsRjp0aOUe+4prnNR44XIr78GMWlSMv37w8svu2efAS/2Tic88IDIjz/CnDnH3BpftlgUlHt5vfSii8ysXHmQli3VPhtpaLUK3HhjS9at8+6NrrYIArz++jGmTctCra7/+3TttQ6uucZ76ZU1kZ2tZtu2us9N8FdEUaCgQENW1qmY25AhebRuHXgppt5k/34dY8akcuON8O67gtvOz4AO44iiFMd66y2R2bMz6NTJvcqs0Wh85t2azQLjxjWmW7dCunXz7iOv2SzwzTcxtG5dTHKy79cPqqOwUMu4cY145pkTNG9euxt9erqWSy5RYDb7X3y8NkPt/Z2sLDUqlYKkJBGLxXpG7NpiEfjhh2guuaSEhAT/Prd8wYkTah54oClJSUq+/VYgxI398fzEp6kfr74Kc+ZIi5vuFnqbTcBs9l0oRasVSUkxkpjo/Y9IpxPp2bPU74UeQKm0ExbmIDS0dp9Vdraavn2b8vHH/jk5zOFw+KxFhDsQRZg4MYWpUxOwWq1nLVI6nfDkkzH88ksAjijzMMXFSoYNSyM4WMmmTe4Veghgz37ZMhg4EB55JI+RI904TeJfduwIYvDgxnz22QFSU30Xu1YoFCgUSoqLHYSEeEcFVq2KpHVrIxdd5F891qtDqVRit6s4ckSkSZPzf15arZbPP9fSoUO51/r91IWnn07CYhGYNeu4r02pM6IIWq2GQ4cUGAz286bHlpYqCQ93+rx+w58wGgUeeqgxOTl6fvpJoGlT9x8jID37LVtgyBCR3r2LGDHC/UIP0LixmVdeyaVRI98uUjqdTubMiWLQoCb1ailbV+x2eOedGHbtcr1/vzdxOBzMnh3JI480PmfMOztbzTffRGC327nppjK/FHqATp1K6d7dc+2UPcXnn4cydmxjjEY7KSnmausgwsIcaLX++WTlC+x2eOKJFA4f1rNpk2eEHgIwz37HDrjrLpHrrqtwuQ1CdURHO7jjjiK35nPXl1tuKaZxY7tXWhaoVPDDD8cpK/O/eHZNPPRQLp07lxEaqjkrZXTVqii2bAmlQ4cS/FlnOnUq/zdu72tL6kZcnIrwcEutvPXCQiUjRyYzblwW7ds3vAKyuiCKMGVKI376KZiNGwWuvNJzxwqoMM7Bg1J1bGKiiYULj3g0D33dukhatDByySX+E8owGAzs2eOgRQvPpa5VPYr7a9plbRAEBfPnx9GhQwmXXmpCEASUSjU5OU6f9sevDQ4H7NwZRUJCOSkp/v0ZOJ2wdWsod95px2Sq/d3J6YSXXkqiV68CWrXyn+vLF7z5ZiwLFsSyfDkMGODZYwVMGCcnB269VSQ42Mpbbx3zqNCLIsydG8OOHf61iPTLLyJ9+jTn1189Z9ejj6bx1lv+mXJZW8xmkR9/1PPLLyEMH57C33+HYrdb/V7oQUorfeyxWLZuDfW1KTWyc2cQTzyRzI4ddbsWFQp45plM2rTx/wQAT/LRR5EsWBDLq696XughQDz78nKpOjYry8Hy5YdJTPT8SaLXGygrM/qs2+O5EEWpv/6tt9qwWDzjEX34YRyNGlXSsWPgxY1P5/hxNb16NcdiEejevYTnn89Cq/X7Ux2Q2jdERtr8okfSubDbQa0W0Ol07N3rqFcVs80m8PffETRuXEJYWACnH9WTrVtDGTcumbFjBWbNck9rhZrwe8/eapWqYw8dcjJ37hGvCD1Ib74/CT1INt14YzlWq4W//grl+HH3GzhkSHnACv2334Ywb14cBoOBJk0UNG1qJjgYtmwJp3fv5mzbFuxrE2tFVJQNjcbPTr5/KStTcO+9Tfnyy0hMJlO921WUlCi5//5Etm8PjM/EnezcaWDChGTuuQdmzvSO0IOfi73TCYMHi3z/PcyZk0HLlt4ps162LIoRI2K8cqz6YLeLPPtsLO++694h1bt3G9i/369PiTNwOuGXX4LIzVWh0+nIzzfw119aKiqM2GwWmje30KoV/PmnQPPmakaMSGP06BQyM/1TSKs4cEDL4MHJFBb6QQ+H/xARoaBDBxNpaa45BDExdjZsOMytt5a5ybLA4MABLaNHp3LDDbBkifuqY2uDX1/ZEybABx/ASy8d9+qqfXy8jSZN/DcdQqmEuXOP8cIL+W7d7+zZ8bz1Vrhb9+kJSkul09bh0DBmTCpffhmB2WzmrrtyefvtjJMXUEGBisREuOgi+PJLgZUr4cCBEHr2bM68eTF+25YgONhJcLCI0eg/l+fu3Qb++isUEHnssSy3tCVJSzOh02lcNy5AyM5WM3x4Gk2aKFizRvB6Vpjfxuxnz4bx42HixCz69/f8hKLTCaSJQbm5oWzcqGHw4AKX9yUIBvLz/Xsh84MPonnnnRi2bUtHFC0cP64mKenc8e2+fZvxv//pzugBXlEB06bB7Nki8fE2Jk7M8suwlb91HB0xojEajYPXXstw2z5zctRMnZrM+PEnGnxztNJSJQMHNsHh0LB9u2/m8PqP63AaH34oCf3QofleF3qrVeDgQQM2m396ff9l2zYl69dHUlHh+kep1+N3Qu90wtNPN+Lzz6PR6/Vcd10ZEyZkYbVK4pCcfP6FzPx81VnzToODpS6Cf/wh0KKFFNoZNSrFI+sfrlBZafXa3N3q7VBgMBh4+eVjvPyye6t6w8PtCIKIyRQY11p9MZsFRo5MpbRUw+ef+27gut+J/datMHCgSI8exYwenev14x84oOOOO5I5cMCPK29Oo2/fYj766CAxMa7Zu2hRNC++GO4eo1wkK0vN0qVRqFRqgoMN6PXgcNgwmUykplrp2rW0xsVzux2KipTnvbCqQjuffAIHD4bQs2cL5s2LwWz2D+F5++1YBg5s4lMb3n8/knvuaU5+vpmQEKfbs5l0OpG33jpC69YN16u32+HJJ5M5cEDPxo0CLVr4zha/Evvdu6XMm2uuqeD550/4JPWsWTMzK1dm+s0ovtqg14tkZ9sYOzaNo0frFwM1GECn813oqqxMQU6OGoVCwYkTobzzTiyZmSJGo5HJk0/QtWvdOn8WFakQReEsz/50BAHuugv27xcYN05g4cJYevVqznffubkDVT3o2bOY11/P81mba4Dbb7dz7735GAyeS40URTh2LASr1T9usu5EFOHFFxPZti2EVasErrrKt/b4jdinp0OXLiKNG5uZOTPDZ2mPOp1ImzaVAZOTXYVC4aSsTEFlZf3euCFDKhk2zL0LvjVxupA99FAT5sxJxOl0csUVhXzzzT7i4+sfUqoa/lKbR+agIJg+XcraufhiNSNHpjJyZKpPQzupqVbat7d43eExGhXMmROLQmEgKqqM/v2LPGrDwYNaunVLYffuwOrFVBvmz49h1apI3n1XoEsXX1vjJ2KflyfNjtXpbLz11lEMBt8J7eLF0WzdqvPZ8etLaKiTd99N5/LLbYii9PhYW3JyVF6fjPXXX3puv70lZWUhKJVKJk06wdixJwAp28jVm23V/6c6z/6/tGwJn38usHo1HD4cTM+eLZg7N9ZnoZ2VK4P4+mvvPmUcO6ZjzZpI/vrLO4VOzZtbWLw4k8su89/st/rwyScRzJ0bx0svSd15/QGfi31FBXTrJlJa6mD+/CNERvq289iOHSEcPhwY8fr/IghgtVp57rlUpk+vvcq9914Md9/t+XF4n30WxiefRGEwGGjRAjp2LMNoNONwOGjTxkRsrPsWhwsK1AiCSGxs3V4nCNC7N+zbJ/D44wKLFsXQq1dzvv3W+6Gdzz/X89tv3mnZkZ+vQqlUcdlldjZv3u+1nlCCAO3alRAU5HMpchtffx3CtGmJjBghMnGir605hU9TL202uOMOkR9/FHnvvXQuvtj3TZEawqSgdevCiYxU07Fj7cIyxcUaMjOVXHqpeztdOhywfXswV15ZSUSElhdfjKakRGTq1BNuPc65WLAghg8/jCU/3zWv/MABGDlS5MsvBTp2LGfixGySk73ToMxbTenKyxX06NGCQYOKeOABz7QMr47MTDULFiQyZkwmUVF+0GbWBXbvNvDQQ2nccYfARx8JfjHbuAqf3U5FEYYOFfn6a3jttWN+IfT+WXFQd3r2LKFjx3z0ej35+TWHZxo1UrlV6KuKgfLzgxg2LI2ffw7FbDYzblymV4ReOraK+HjXP9AWLU6Fdo4cCaZnz+a89VasV9IFBQFUKpXHz8uYGA0TJuRwxx2Fnj3QedDpRPbt05Cf7/tUU1c4fFjLqFGpXH21wPLl/iX04EOxf/ppWLZM4MUXM7nmGv/oab1sWRS33JLUYET/44+19OjRnNzc8wv+9u1BvPRSpNv69s+eHc+QIU3RarXEx1eyfv1BbrpJyqTx5mJjYaGKhAT3HPD00M4TTwgsXiyFdr7+OsSj50ppqZKOHZPZts0zIaR168L57LNYLBYLt99eQkSEb7zq6Gg7q1enB9RktP+Sk6Ni2LA0kpMVrF8voPPDZT+fiP2cOVJhy5NPZtOli3eHaVfHZZcZ6dev0G+7DdaVTp3KmDgxl8TE82+Tm6vm77/V9fZCysoUjB+fzF9/haPX67n55lIGD87FbJZSV5s08X5GCUgxe3eJfRUGg1R9+9dfAq1aqRkzJpURI1LJyPBMyX9oqIM77ywjIcEzYZx//gllzx6lX4wHdDgclJXpA9LRKi1VMHx4Gmq1ii1bBMLDfW3RufF6zH7lSujXT+TBBwsYN877RVPVoVQqcfjDaCo3o9Fo2LlTxcUXm1Crz/y4VSoV9rqk7gBHj2rYs8fA3XcbUShUPPRQDP36FXLddf7TdqBr1xbcd5+Gl1/2zP5FEdatg7FjRXJy4MEH8xk6NN/tcxYEQXCrGDsccPSolksvVVJebkSh8O4T1/nYvdvAAw80Yc2agzRvHjg1LhaLwCOPpHHkiIEffhC4+GJfW3R+vOrZf/MN3H+/SLdupYwd619Cb7fDV1+FU1LiZ4E2N5Cb6+Chh9L46KPIM35vNgs4HLXzSktKlJSUKFEqlezYEcmcOfGUl9swm428+eYxvxJ6UayK2XvuGIIAvXrBP/8IPPmkwJIlMfTs2YKvvnJvaKeoSMG2bRFu2+fixdEMHNiE3FwzSqV/CD3AxRebmDkzh/j4wOhJBdKNc+LEZPbuNfDZZ/4t9OBFsf/9d+jZU6Rdu0qmTDnh1daetSEjQ8uoUQkcPOiHwTYXiYhwsHDhEYYMOXMRduvWUK64Io3y8nN/GFUCY7dDjx4t+PjjOBwOB3fckcvnn+/328KzykoFZrOiTjn29cVggKlTpdBOmzYqxo51b2jnt98MjBjRqFYL7TUhCAKDBlUya1YGISH+NTBEpxO57bYCQkP985z6L6II06cn8PXXIXz8scC11/raoprxiuQePSpVxyYnm5k9O+OsUII/0KSJhV9+OdbgijuqaNPGhNVq5PjxMH78URoYccUVRp5/PvecF/62bcH07t0cpdKARqPg5ZczuOsu6WlMpxP98jOsokoYvdlwqnlz2LRJYN06yMgIplev5rz5putZO9deW8H27cdcqkHIzlYzbFgaRUU6lEoTV1/tHwkR/yUzU83rryf6bevp01m4MIaPP47inXcE7rjD19bUDo+LfUGBVB2rVkvVsUFB/uVRnE54uAWNxn9FzB3Mnx/CggVxiCKkpnJGut1HH0Xy3XdhGAwGGjcWueaacoqKzDidTjp0qAyYHOi6tEpwJ4IAd94Je/cKTJggsHSp66Edg0EkKsq1BVqNRoXZrKCszL8/v8pKBRs2hJCZ6d897teuDefNN+OYMgWGDvW1NbXHowu0lZVw880ihw45WLEi3WvFKPXh9dfjiI+30a+fd1sqexujUUChUGI0qli/PoJGjSq59dZy9HodDz8cT7NmlYwa5f3CGneyeXMYTz6ZTGkphPpwbvehQzB6tMjmzQLXXVfOU09lk5pa92tg1apIMjLUdU5o2LNHT+vWTrRae0AkHoiilExgs/mvTnz3XQhjxqQwdCjMmyf4zZpHbfBYQxS7He6+W+Svv0Tee++oXws9gN2uwmbzr17u7sBmg/x8NdnZ0ldOjvT1/fch//ZLj2LVqsO0bGnitdeO+N1aSn0oKFCh14uEhPj2SmzWDDZuFNiwAUaPlsJiAwdKWTt16f9ktYLVWreCI6NRwejRadx7byHDhgXGzVsQwGaz4nCoUCr971r8/Xc9jz+eTPfu8PbbgSX04CHPXhRhyBCR5cvhrbf8K1PjfOj1ekwm97YL8DSiKBXe/FfIpe81ZGdryM9X4nSeOisjI0U0GsjJEVAqRXr1KuO559w7lMLXzJ4dx7ffRpGe7j93LpNJqi155RWRqCg7TzyRTadOZbUWjLq08RBFCAoysHu3kyZNLH69vvJftm8PYvToVDZv3k90tP88jaSnaxg4sCmtWin48ksBvd7XFtUdj4j95MlS8clLL2Vyxx0l7t692zEaBYKCDIiify1cWSwCubmnvPJTgq45Keom0ylB02hEkpJEUlMFUlIEkpMhJeXUV2IiTJok8vbbAsOG5TFyZAUmk4mwMC2rVwchCPY69433RyZNakR+fjg//eR/rtfhw1JoZ9MmgQ4dKnjqqSzS0mp+6lUogigpMREaWv2a1+zZcdjtGp58MjBv4IWFSrZujeH22/MJC/MPsc/LU3H//U2JiFDx/fcCERG+tqh+uD2MM2+eJPTjxuUEhNADbNgQwYwZ8fz8816v9dF3OqUBG6eL+Olinp2tprDwzI8nNlY8KdxXXSWcIeTJyRAbK6BQnFvgzGYYMEBk7Vp47rkT3HVXMQcPhmKxaLnkEjO//hqFRqOkW7cyv6iodIWCAjWJif4n9ABNm54K7YwaFfRvaKeAhx7Kqza007lzEt27FzN6dPUhmaZNobLSv5yWuhAV5eC++/L9Zo2hvFyqjhUEFZs3B67Qg5s9+zVr4K67RPr3L+TJJ3MCJqZ1/Lia/fuD6dy52G37NBoVJwX8XF55To76jOk8BoNIcrJISorwr2fOGZ55UhL17rdRXAw9eojs3Cny6qvHuemmcgCGDEkjLMzB7NmSF2i3g06n4uuvw/n5ZxXjxuWg8m6be7fQp09zbrlFy1tv+dqS6jGZ4JVX4OWXRSIjpdBO587nDu18/30ISUkWGjc++ymgvFzBr78G0b27PeBCkeciO1vNt99G0K9fnk81xGoVePTRNA4elKpjW7XynS3uwG2X8vffw333idx2WylPPBE4Qg+QmuogObn2Qm+3S95jdV55aempSlyFQiQhQRLyxo0FbryRs7zyyEgBwQNv2vHjUuprTo6ThQuP0rbtKTF46aVMYmJOhYFUKrDb7eTmOiguDkKvV2OzScNQAunzLCg4e9C4P6LXw/PPw/33C4wZo2LcuBSuvVYK7fxX1G+4oRytVovlHJ0E1q6NZOHCGNq1209YmHds9yRHj2p47bVoOnYsplEj31TUOp3w1FNJ/PmngS+/DHyhBzd59n/9BTfcINKyZSVz5x4LqFx1UYT334+jY8diUlKsiKLkKZ1a5Dwl6rm5kleem6vC4TilfmFhkldeFSv/r1eemIhPxiz++adUzAY25s07ek6v8HwL06IICoXAn39GMGtWGK+9lkF4uH88WleHzQZXXNGaRYtgyBBfW1M3PvsMRo0SOXECHniggIcfPhXaKS5W8tlnsXTpkk90tJSpYrUKGAxKRFHg+HFITAycVgPVYbeDWq1DFH3TBVMU4eWXE/joo0hWrxbo2dMnZrgdlz37f/6BW24RiYqy8MwzWRQVSSefwwFO56l/nc5z/QwOh3Dy5/Nt63BQ732e+pnTjnPq3/x8JV99FcaaNcGIoiTylZWne7vSomdKisAllwjcfvvZXnloqAD4l+v73Xdw550iCQkW5s49SkzM2alslZUKJk6M4+6787jiijMzPQQBRFHEZjOTkBBEXJwGi8WEzeabG1dtKSqq+zhCf6F7d+jUSWDGDHj55Wg2bgzniSeyueWWMmw2gbffjuCii8qIjrZz4ICWkSPTmDMnk4suqqy2s2mgoVLxr9ALgPcdx/fei+aDD6KYN48GI/TgotiLIrRvD5WVAqDjjjtauMms2iEIIkqlNLNUoeDk91U/n/rd+bezWqVYeEqKjlathDNEPCUF4uIElEr/EvKa+OQTaTH2iisqee21DIKDz53BYTA4KSsTqp2xevnlRi6/3IjFAsePhzJ4cAJvv32UFi38szOhr6pn3YVeD889dyq0M358CtdcI4V2du48hN0uPZ21aKGgc+cyEhMDP0Z/LrZtC+allxqxfv0Br/ZgWr8+nNdfj+fZZ+HRR712WK/gchjnzTclAU1KOlNEzyfANW1Tl9cFUhzZW8yZI7Xd7dq1lKlTT7g1xzo3V8XixTFMmlSK02mirEzwu4Za330XwsiRqWRlBaZ3/182bpRCO5mZcP/9BURH2+jWzU5UVHnAZ01Vx9GjGjZtiqF//2zCwrxzjn3/fTCjRqXy4IOwcGHgFU3VhE9n0Mq4D6cTJk6EV1+FQYPyGTs2t1bVsFJhlp7w8Lp5iEVFOu64ozEvvHCCzp3L6mm1+1m1KoIpUxKxWoWAzCQ6F2YzzJgBL7wg4nTCNddUsHDhMV+b5XHUailBwBv8+aeeIUMa06mTwNq1DefcOR3/KTGUqTdWKzzwgMjMmSITJ2YxblzthB7g669DuOGGphQW1q2Pf0iIhUcfzaNjRztqtZrMTLVfTBkqKFARE0ODulh1Onj2Wfj0U2ltKC3NgcFgoKBAy/z5MZSVNczLOCfHyddfh3v8OMeOaRgxIo02bQQ+/rhhCj3IYh/wlJVB164in3wCM2Ycp3//ujVyu/xyI3Pn5qDX1+1RWa0Wuf/+QjQaI+Xldh54oCnz5sXWaR+eoKDAPYPG/ZFu3eCKK0RycxUYjUb27lXz4YdRBAXpEQSBPXv0FBc3nOE727cH89hjjTw6UKigQMWjj6YRE6Ng40YBg8Fjh/I5chgngMnOllIr09OdvPHGMdq3r18vfo1Gg9XqWqO6n38OomlTOykpCv7800lsrK3G0n5PMHZsMipVKFu2NLCA67/MmyfF8L/8cj8xMXbs9qqnGIHbbmtB586VPPFEJlarlKXm7jGJ3kTq0GpAp/NMRXBFhYLBg5tQUqJl+3aB1FSPHMZvkD37AGX/frj2WpGcHDtLlqTXW+gBfvhBzdq14S7Zc801lcTEWDAaTUyenMwLLyS7tL/64olB4/7EvfeCRiNljcDp4SqRDz44xMCBOSgUCr77Loabb76I0tLAvcQNBpGgIM/k2ttsAo89lsKJE1q2bGn4Qg+y2AckP/8M110nolJZWbEi3eU0yJ9+Cmbt2ii32CYI8PrrRxk7NhuDwcDhwzr27fPeqMfCQnXApl3WhvBwuOsuWLcu8qw1kqgoB7GxdpxOJ61aFfP44zlERSkwGAyMHJl28gYRSHz1lYEhQ5q4dT3I6ZSa5f32WxDr1wu0aeO+ffszstgHGJ9+Kg2ESUszsnTpYbcMaB49OpdVq7LdYJ1EXJyd5GQrRqORJUuimTw52SuLt6IIeXnKBpFyWR1DhggcO6Zh587zB5gTE2306VOM3W6ntNRIcrKZ+HipVfJffwXxzjsxZ/Rm8lfCw+2kpdnP6O7qKrNmxbNlSxgrVgjcdJPbduv3yGIfQCxYAL16iVx/fRnvvHPUbfnHnhxY8uyzmbzxxlH0eh25uXrWrw/H6aFQfnm5AqtV0aA9e4COHaFpU5E1ayJrtb1aDRMm5HD11SUYjUb279ewdWs4oaE6BEFg27Zgjy6CukLbtiZefDEPg8E9J83SpVEsWxbNG28I9O3rll0GDLLYBwCiKFVVPvII3H13Ea++etztVYUPPhjHokXRbt0nSEKTmGjDbDbz5ZcG3norHovFM8JSUCD1cWjonr0gwNChAl9+GVqvtMs+fYr5+OODmM0mKisVjBuXwtat0mdfVqaotqLaFxQVWfnjD9fTZD77LIyZMxN46ikYNcoNhgUYstj7OXY7DB0qMmUKjB2bw9NPZ6P0gFZedVUZLVp4tvHUgAGFrFp1kOBgsFiCmTUrzq054oHeKqEuDBwIdrvApk3h9Xp91dOcweDg88/3c/vt+SgUCj78MIEePVqcfPryh1y9VasiGDQozaWb0E8/BTF5chIDB4q8+KIbjQsgZLH3YyorpWZmy5ZJ7YiHDCnwWAn3gw8W0rmz5+cEh4U5cDgc/PabyJYt4YDWbfuuEvuG7tmD9H/s2hXWrnV9mkZUlIPgYCdOp5OuXfOZODELjUaFUmmgT5/mfP99sBssrj/du5ewadOJej/N7t2rY9y4VDp3bphtEGqLLPZ+Sn4+/O9/It9+K/LWW8c8PvXLahXYtSvYa9WY115byaZNBwgNNaFQBPHEE8mkp7sm/Pn5KoKCRIJ9q01e46GHBPbu1fPPP+7LdkpOtnLzzeXY7XaKiiy0b19BWpqIwWDgq6/Cee8994f6aiIy0kFSkrFeIn38uIbhw9O4+GKBVasEv+7Y6mlksfdD0tOhQweR9HQH772X7pWB7YWFKu67L5Fdu4I8fqwqqpq0HTtmIyNDQ1CQa6JVWNhwq2fPRZcuEB8vsmaNZ2blhYU5eOqpbJKTKzEajRw+rGbv3mD0ej0gsGFDuNfy+Ldu1fHss0l1ek1hoZJhw9KIiFCyaZNAkPdObb9EFns/47ffJKG32WwsX36YVq28M8AhPt7GZ58d44Ybyr1yvNNJTrby0UeHiYsrRaXSMmJEY775JqTO+8nPVxMff+E8o6tUMGiQFLf3xqLqww/n8+qrRzGZTBw9quGZZxpx+LA0Gis/X+VRG+x2KCtTY7PV7hhGo4KRI9OwWNR88YVATIzHTAsYZLH3I774Am68USQ21syyZYdJTvbe5CFBgNTUctRq34hl1SN6aamNkBAbCQkqBEEq+a8tBQUqvx007ikGD4ayMiVbt4Z65XhVn1NamoWvvtrHZZcVo1AomDkziUceaXJyO3cv7HbqVM477+TUqmW3zQbjxiVz7JiOTZsEGjd2ry2Biiz2fsLy5dCtm8gVV1SwaFE6kZHeHwH4669BPP20dwqgzkdQkJOXX87koouKEQQFjz3WmHfeqZ1b1tCrZ89Fs2aSg7B2be1y7t1JdLQDpRKcTifDhmUxZkw2KpWKkpIQbr21JX//7d7KaaPRQmZm9UF3KU25Eb/+GszatQKXX+5WEwIaWex9jCjCK6/AAw9Ajx7FvPHGsZNzR72N1SpQVKTCZPIP79hud9C+fRmXXmpHo9FgNArVFmQFyqBxdzN0qMCvvwZx/LjGZzakpVm54gojdrsds9nMzTeX0by5tLC7fHkMK1e6vq7w9tvRDBjQtNpz4PXX49iwIYJlywQ6dXL5kA0KueulD3E4YMwYkbffFnj00TyGD8/zeVqYwWDAaKx/UzVP8txzqRQUwNtvnz24w2YTuOKKVrz3Hgwa5APjfIjJBAkJInffnc/o0Xm+NucsXnklnuBgBY8/XkxhoZWNG0Pp2rWUoKC6VcVmZGioqAjioouKz1n1vWJFFK+8ksBrr8HYse6xvSHRQNv0+z9mszQndu1aePbZE/TtW+xrkwCw2eyUlyv8btwgwB135FNWpkGv11NYaMZmUxAWJoW7CgsvnIKq/6LXQ//+AqtWRTJ8eJ7fDd+YMCEHkG5Ke/YE89JLiXTubCcoqJxjxzTEx9tqlUOfkmJFp1NgPkfOwpYtocyYEc8TT8hCfz7kMI4PKC6GW24R2bhR5PXXM/xG6AFGjYpjwgTftCeuiXbtjNx8cwkmk4klSxLo27fZyWZe+fkXTkHVuRgyBPLyVPz4Y92zmLxJhw4VfPvtPiIiylEqlTz+eCpTp0rnm9NJjX2Tvv5axTvvnDkk55dfgpg0KZn+/eHllz1leeAji72XOX4crr9e5K+/nCxceIT//c/7qY7Vce+9hTz8cKmvzaiRu+/OY+LELMLD9Tgc0pQmuDA9e4ArroC2bT2Xc+9Oqp7GHA4Hr7xyjEGDclGr1fz+exS33daS3NzzP5ocPaphx47gk0kE+/bpGDs2lRtvhHffFTza1C/QkWP2XuTPP6XJUqJoZ/78IzRu7Pn2BPXBn+P252L9+kgmT05AFMFkEtB5r32+X/H229Ia0Nat+4mOtvvanDpz5IiGDRvCefzxUlQqJc8+G06bNpV07Xqm81F1fp44oeb++5uSnKzk228FQvz7ocbnyPdBL/Hdd3DDDSIhIRZWrDjst0LvcMAnn4R4deCIq1xySQUajUhEhH807vIV990ndRn99NNwX5tSLxo3tjJ6dB5Wq4WKCiOlpQqcTg0Gg4Hjx7WsWhWBxSJgs9k4cULNo4+mERIiVcfKQl8zsth7gU8+gVtvFbn44koWL04nJsZ/vS6FAmbPjuCXXwKjtjwvT8XIkY1p1kzg8GEBvd7XFvmOiAjo0wfWrj17ilWgoVDA9OmZdO+ej9FoZOdOA3PmxKPX63jyyWi6d29ORYWGL74QiIvztbWBgRzG8TBz5sDYsSJdupQybdqJWlUA+hqbTUCjAX8/NcrKFAwa1ITKSi0//yyQVLfWKQ2Sb7+F//0PlixJ58orAycUVxuMRgGDQWTkyFS++y6EH36A667ztVWBg+zZewinE558EsaMgQcfLGD69MyAEHqQGpRpNL4r0KkNVqvA2LGp5Odr+eILWeiruPFGaNIkMBZq68r27cEcORLClVeaCA0VZaGvI7LYewCrFR54QGTmTJEJE7IZNy43oLIE9u3T0a1bKllZ/tkP1umEp59O4s8/DWzYIHDJJb62yH+ommL1xRdhlJcH0ElXAw4HLFgQz6pVQeTmKmjUKDAcJ3+i4ZwNfkJZGXTtKvLJJzBjxnEGDCj0tUl1JjraRvv2Jr+M+0rtJRL48stQPvxQkL27czBwoPTks3lzmK9NcZnCQiV5eWqCg/UsWJDO44/nUFCgJiHBP1p6BBKy2LuR7Gzo2FHk11+dzJ9/lNtvL/O1SfUiOtrBc8/l0qiR97pu1pb33ovmgw+imDtXoGdPX1vjnyQmSr3ufdEczZ2IIjz2WBrTpjXCZDIRFuZAEKRqaVns644s9m5i/3649lqRnBw7S5ak0759pa9Ncon8fAd79/pXasv69eG8/nr8yeHrMufnoYcE/vpLz/79gZNCW4UogsUiYDDomTw5i2eeyTzj7wUFF153U3cgi70b+PlnuO46EZXKyooV6bRoYfG1SS7zwQeRPPJImt+Ecr7/PpjnnmvE0KEizz3na2v8n65dIS4uMBdqX3wxgQkT0jAaTTRvbiI29sxU5Qu1u6mryGLvIp9+CjffLJKaamLp0nTi4/0v9FEf+vQpZvXqE742A4A//9QzfnwKXbvCvHkX7sDouqBWw4MPCmzcGI7FEjhvmFKppHNnC7fdVnTOz9loFKioUMiefT2Qxb6eSNkB0KuXyHXXlbNgwZGTPT8aArGxdlJTbT4X1mPHNIwYkUbbtgIffST4XUdHf2bwYCgtVfLVV96ZYuUKX30VwuuvN0IQBK65poguXc7dn6mwUMoQkz37uiOLfT155BHp69JLjcycmVGrFq2BxoIFIaxdG+6z4xcUqHj00TTi4hR89pmAweAzUwKSFi2kFh1r1/p/KKey0kBGhgKTqfrq8qruprJnX3dksa8njRqBUinSrZsRg0FLZaWCgoKG5XYePqwiK8s3xVUVFQqGD0/D6VTz+ecCkYGdWOIzhg4V+PnnYI4f97+aiYICJZs2haPX6+nRI5dZs46jrsHMqmtMFvu6I4t9PSkrg9RUK/fem4vFYmH16lh69GiO0dhw3tLnn89i3Djvtzu22QQeeyyFrCwtW7YIpKR43YQGw113QWioyLp1/ufdb9oUxcyZ8eTnSwkNtQkZ5uerTja9k6kbDUeZvEx2Nme0ke3ZM4+XXz5OeLgKjUbPzJnxNQ5HDgyU2GzeC9w7nTBpUiN++y2I9esFLr3Ua4dukBgMcN99AuvXR+DwgyUlUYT0dC16vZ4HHijgk08OEhxc+6lohYUq4uJqd2OQORNZ7OtJdrZIVNSpzJvQUCcdO1ZgtVo5eNDBli1hWCxSkDmQsiFOp7xcwWWXpfHVV97rHztrVjxbtoTx/vsCN97otcM2aIYOhdxcNT/+GOxrU1i7NoK7727K0aM2wElUVN3uQPn5anlxtp7IYl9PcnLE87YqTk21smXLfpo2LUWlUjFqVBNmzgy8IGNIiJMnn8znkkvOMfTTAyxdGsWyZdHMmSNw111eOeQFwRVXQJs2ImvW+G7hw2aT0ir79DEze3YGcXH1a/Mt59jXH1ns60lOjlDtNKCqFEGbzc6ddxZwww2V/w5h0PDjj8F+U6xUE3fdlU9qqudrBz77LIyZMxN4+mkYOdLjh7ugqGqO9t13IRQUKL1+/N9+M9CjR0uysjSIoomOHSvqva/CQrkvTn2Rxb4eGI1QViYQHV2zCAoCdOtWytVXl2M0Gtm4MZxnn03C4fD+RVcfcnJUrF4dU+MgaFf46adgJk9O4sEHRaZN89xxLmT69welEjZs8P7KZuvWCjp2LCMoyPXK8oIClZyJU09ksa8HOTnSv/WZ8/nII3m8//4h1GonVmsw993XlL17/bd/SXq6jmnTYsjN9cxi899/6xg3LoVbboEFC+TqWE8RGQm9e0sxc288VRYUKHn66SQsliA0mgqeeiq7Tgux58LhkLpgymGc+iGLfT2oEvv6jBcUBIiPtyOKIvn5FmJjbaSlqVCpVBw6pPW7xdz27SvYsyedhAT3h3KOH5eqYy+5ROCTT4Qac6xlXGPoUIEjR7Ts2eP56jSnU8M//+g5fNh9KUDFxSqcTkH27OuJLPb1IDtb+rc+nv3pNGpk4/XXMzAYKrBa7YwencbMmY3cYKH7UKtBqXT/zNzCQiWPPppGZKQ0MDooMEbeBjQ33QRpaSKrV3smlCOK0tqLIBiIj7ewevVBty7uVxVUyZ59/ZDFvh7k5Eij+9zZC0ehgLlzj/DAA7no9Xp27Ahn3rwY7H4wm/zdd0OZNMl9c/+MRgUjRqRhtUrVsdHRbtu1TDUoFKemWFVUuP/Sz8pS8/zzjdi8WYXT6XT7dDa5VYJryGJfD6oKqtwdX05Ls5KcbMNkMnHggII9e0IwGLQAPh0xFxVlJznZPTe2qurYjAwdmzcLNG7slt3K1JIHH5TqPtw5xUoaX6mkaVMln3560GNDe6o8+7g4j+y+wSOLfT3IyXE9hFMT/fsXMX9+OlarhaNHQ7j55ov44w/fDBPp1q3ULW0TRBGeey6RHTuCWLdOoG1b122TqRuNGsHtt7tvilVpqZK+fZvx/vuRmM1mEhM9l6ZbUKAmKkpE45t2TQGPLPb14L/Vs56i6skhMrKSkSNzuewyB3q9no0bwzhyxLtnfFaWgtxc1xq9vf56HBs2RLB8ucDNN7vJMJk6M3SowJ9/6jlwQFvvfTgc0s07IUHLCy+c4M47PT9ruaBARVxcgBSo+CGy2NeD7Oz6ZeLUl9BQJwMHFiKKVsrLTcybF8fWrVKg21vFWffem8jSpfUPrq9YEcV778Xw+utwzz3us0um7nTvDrGx9W99bLUKPPxwGp9+GovRaKRz5zKX0yprQ36+PHvWFWSxrwf/bYLmTVQqWLPmIP37Z6NSqfjoowRGj07xaNETwKuvHmfIkKJ6vXbLllBmzIjnySdhzBg3GyZTZ9RqGDhQ4LPPIrBa6y6eQUEqrrjCQmJi/Sth64NcPesastjXEYcD8vOpVfWsp9BoRAwGEbvdTlxcBa1bWwgONiCKAr/+GuQRb791axONGtX9dPnllyAmTUpmwACYPt39dsnUj8GDoaREyddf167JnShKc4m3b4/C4XAwYkQ27dsbPWzlmch9cVxDFvs6UlAADkf1fXG8yc03l/Pww7kYjUZ+/jmYIUMac+CA+4tmCgqUTJ8eXae2zfv26Rg7NpWbboJ33xXcnoonU38uugiuu05k9eraL9Tu2BHGzp1KnJ5+jDwPcqsE15AvvzriSqsET3PNNeV88MFhLr7YjMFgYPr0RLZtc09bW7Va5Msvg8jJqZ3YnzihZvjwNC66SGD1ark61h+pmmJ14sT5P5yjRzXs3x+EXq/j1VePMGpUnhctPIXRqMBoVMievQvIYl9HqqpnvblAW1sEAS691ITT6aSkxMSJE2psNj0qlYrSUqVLrRjCwpx8+WU67drV/OheXCxVx4aEKNm4USDY923UZc5B374QElL9FKsZMxoxe3YsZrPZp8Pe5YIq12lYQ1O9QJVnHxXlf2J/OhqNyFtvHQPAboe33krm99+1fPzxoXoXg9lsNpxOBQrF+R/jjUaBkSNTMRo1/PSTQGxs/Y4l43mCguDeewXWrYvg0UfzUP7biNVul+L5KSlapk7NRKv1/YgruVWC68iefR3JyYHwcAcaTWDl+/bvn8vIkTkYDHosFh0LFsTUuSp33bpwOnZsed7xdjYbPP54CunpejZtEmja1A2Gy3iUoUMhJ0fN9u2nHr+mTm3EyJFNqKgwEhVl80paZU3Inr3ryGJfR3yZdukKaWlWOnaswGQysWuXiqVLo3E6pdbKtZ1NeumlJh57rBi7/exHA1GEKVMasX17MGvWCFx5pTutl/EU7dpB69Yia9ZIrY/VajUPPljK+PEn/GpBvbBQhU4nEua+Lg8XHH70cQYGUqsE36VduoMOHSrYunUfYWFGlEotd9/dnLVrw2t8XdOmFgYMKEWrPfup5s03Y1m3LoIlSwRuucUDRst4BEGAhx4S+OqrUAYPboLV6qBx4wqvp1XWRH6+mrg4UZ534AKy2NeRrCzR7+P1tUGvlwS7stLKrbeWcOmlUiuG/ft11bZi2L1bxS+/nNmP+MMPI1m4MJaZM6WJSDKBxaWXgtMpUF4OdrvvQzbnQkq7lJXeFWSxryPSoPHA9uxPR6cTeeSRfJo1K8dkMrFoUSyTJ6ecd/v33gvjnXdOrbp+8UUo06cnMG4cjB/vDYtl3M2774rExdlYvDiPvXt902yvJgoKVCQm+tqKwEYW+zpS06DxQOfFF4/z8svHUKlUZGeHMWJEysnFMYBJk7JYtkzKP92xw8BTTyXTrx+8+qqvLJZxhcxM+PhjGDiwgFdeCeP555M83nqjPhQWqmXP3kXk1Ms6UFEBFRUNW+w1GpGkJBt2O+TmWrHbFcTHa3A6HRw7piY52YpGo2DvXi1jxqRyww2wZIlcHRuozJkDer2T3r2LsVgElEoNSqWA6K0Oe7VEaoLmaysCG1ns64A/V896grZtTbzzzlEcDigvV9G3bzNGj87lq6/COXBAQ9OmCtasEeT+4gFKWRm8847IXXcVERTk/Hc0pAlRDGLXLpErr/SPRVq7HYqKlHLapYvI/lgdcGXQeKATHGzntdeO0bKlmR07dJSXK3jxRYHQUF9bJlNf3n0XjEa4774ze9HPmRPE+PEpmEz+ETYpLlYhioLs2buILPZ1oKpVgjcGl/gbggAdOlTSvLnUZjkkxEG3bjB0qEhBga+tk6krdju8/rpIly4lxMef6bwMHVrA8uXHCAryD7GXC6rcgyz2dSAnBzQaJ6GhfriC5UEsFoF582IQxSDCwir588/DfP75fiZNyuKTT5y0aCEyf37ti7NkfM/q1ZCRITBw4NkTpgwGJ8nJJhQKLTt2uL+Dal2RWyW4B1ns64A0ocpxwRV25OZq+fDDaH79VfpZo1EQFCTSr18RGzYc4KabShg2DNq3F/nlF9/aKlMzogivvipyzTUVtGxpPu9277+vZ9iwNAoKlF607mwKCtQIgij3WXIRWezrQE6O/zdAcyd79uhRKDQ0bepgy5b9XH11JRkZGh56KI7jx6W2uJGRDqZMOcHy5Ycxmy1ccw0MGSKSn+9j42XOy/ffw65dAg88UH38rXfvIt5//6jPUx4LClRERSG3yXYRWezrQHa2GPCtEmpLXp6KwYOb8MknwdhsNgwGKXRV1RdHrT4zNa9tWxMffniIZ57JYvVqJy1bisydK4d2/JGZM0WaNrVw/fXVjxVUq6FlSyNKpYpdu3wXzsnPVxEf71+poIGILPZ1QGqC1rDFvrJSgShCWpqG995Lp1evM+fONmliYcGCnLMW9QCUSrjnniI+/fQA//tfMSNGSKGdn3/2lvUyNbF/P2zYIDBwYH6tw5Fbtqh58MEmHDqk9axx56GwUB407g5ksa8DgdrxsrZUViro27cZn3wSi9FopG1b01nFUiaTgM1W/QJ1ZKSDF17IYsWKw1gsZq69FgYPlkM7/sBrr0nncLdupbV+zU03lbN8+WEuucQ33nVBgTxo3B3IYl9LHA5p/mxDFvuoKA33319Ehw7F593mzTfj6N79/L1zTueyy0x88MFhJk8+wZo1UtaOHNrxHfn5sHSpyL33FtZpHoMgSGE6gN9/N3hkoH11yLNn3YMs9rUkL0/qDNjQCqrsdpgyJZFvv43BbDZz770FJCWdP1TVrVsJjz2WU+v9K5Vw993FbNhwgE6dihk5UqRdO5Ht291hvUxdmDcPQOTuu4tq2vSc7N6tYMCAJmzfHlTzxm5CFOVWCe5CFvta0lBbJajVCpxOFaWltVuLaN3awo03ltf5OBERDp5/Pov330/HbjfToQMMGiSS55v51RccJhO89ZbInXcWEx5ev0erVq3MLF6czk03ee8aqKxUYDYrZM/eDchiX0tOiX3DWKD96adg/vgjFJVKyfPPZ3DnnSW1et0XX0Rw8GD9F+ouvdTEihVSaGfdOilr5+235dCOp1mxQgpDPvDA2UVUdaFdOyNOp4N9+wxe+cyqqmdlz951ZLGvJadaJQS+KokiLFkSy8qVIdhsdbt5TZkSx/ffh7h0/KrQzqefSqGdUaNErrxS5KefXNqtzHlwOmHWLJGbby4nJcXq8v4yMwXuu68xn34a7rpxNVBVPSt79q4ji30tycmRQhH/zS8PJEpLFWRkaAgKMjBr1lFeeOFEnffxyy9HGTDANe+witNDOw6Hmeuuk0M7nmDTJti/X2DgQPc0MYqPt/HOO0e55x6LW/ZXHYWFsmfvLmSxryUNIe1y8uRknnkmmcpKIyEhTpT1qIJXqYQ6ZXLUhqrQzrPPSqGdFi1E3nxTWjyWcZ2ZM0XatDHStq37Wha3b1+J3W7h2DE9ZrPn0iLz89Xo9SIhrj1MyiCLfa0J5EHjZrOATqfjySdzeemljHr39tm/X8vQoXHk5bl/DIJSCX37Slk7t9xSzJgxUmjnxx/dfqgLil274LvvJK/e3T2dysuhf/80li6Ndu+OT0NKu5QHjbsDWexrSVZWYLZKePPNWB55pCkVFWaSkszVplXWhNMpIAig1XoulBUe7uC557L44IN0RNHM9dfDgw+K5OZ67JANmlmzRJKSrHTqVOb2fQcFOXnttWMMG+a5ISfyoHH3IYt9LcnJEQMujKNQKOjc2UqPHoWo3OCMX3yxmXfeySYszPOL1K1bS6Gd5547wfr1UtbOnDlyaKcuZGTAypUwYEBBvUJ2taF9eyNOZyWFhXpKS91/kIICNYmJsti7A1nsa4EoBtag8e3bg5gyJRmFQsnFF5fQp8/5K2LrgtEoYLV6r5e/QgF33SWFdm69tZixY0WuuELkhx+8ZkJAM2eO5H336lXi0ePY7fDAA8nMmRPn9n0XFKjlTBw3IYt9LaiokIQuUKpnHQ4dOTkKysrca++MGQn065fs1n3WhvBwB88+m8WHHx4GzNxwAwwcKId2qqO0FBYsEOnbt+hkx1JPoVLBtGmZTJjg/lBRQYFcPesuZLGvBVU59v7s2ZeWKlizJgKDwcD11xfy9tvHMBjcG1vv06eYESN8p7CtWplZseIwzz9/gg0bpKwdObRzbhYtArP57PmynuLyy41oNBVYLHq3LeDbbPKgcXcii30tqKqe9efZs9u2RTB7djwZGVLRjCeyF9q2tXLdddX3QPc0CoV009mw4QC33150MrTz/fc+NcuvsNlOzZeNjfXunfCRRxKYOrWRW/ZVVCQXVLkTWexrQZVn749hnEOHtOh0Ou68s4T16w949Oljw4Zw0tN909P8v4SFOZg8OZsPPzyMIJjo2BEeeEA8eWO+kFm1SqpyrWkSlSd44okspk6tX6O1/yLPnnUvstjXgpwc0GqdBAf716Dxr74KoU+fZvz9t4jT6fBoKwenE559No4dO7zX8bA2tGplZvnydF544QSffSZl7bz++oUb2qmaL3vttRW0bOn5Ctf/0qqVmfDwchQKA1lZrs0RLCiQXi979u5BFvta4G+Dxm02AYVCQZcudt54I4OmTT1/USsU8OefR+nd2z2ZPe5EoYDevaXQTpcuRYwbJ3L55SLbtvnaMu/z3Xewe7f7WiPUlyeeiGLcuBSXet/n56vkQeNuRBb7WuBP1bP79uno1q0Fhw7psVpN3HRT3dsN1xel8uzZs/5EWJiDZ56RQjsKhYkbb4T77xdPhuEuBGbOFGne3EyHDr5dW3n44TxmzHCtaregQEV0NG6pEZGRxb5W+FP17EUXKbj55jIiI81ePe7vv+sZOjTOI4Uz7qYqtDNlSiYbN0qhnddekxYuGzL//AMbN0qxel8/hTZtaiElpRSt1sCJE/UL50hpl/7rXAQastjXgpwckago3wWBS0sVPP10I0pKQgAjEydm13sARX0RRSlcotP517rF+VAooFevEjZs2E+3bkU8/njDD+3Mni0SE2Ona9faz5f1NNOnhzJ4cBOs1rrffeRWCe5FFvtakJPj24IqhULNoUN6Dh/2XS/9tm1NzJuX5dG+OJ4gLMzJpEnZfPTRYdRqKbQzYEDDC+3k5cHy5XDffQVu70rqCvfdV8grr+TWy6bCQrlVgjuRxb4G7HbfDRrfsiUUq9VAeLidjz46xJVXeq7hVE1UViq82irB3Vx8sZmlS6XQzubNjgYX2pk7FxQKkb59/WsBPT7eRtu2Jej1dc/OkVsluBdZ7GsgLw9EUSAmxruqUFysZOrURqxdq8PhcKDw8Sf1/POJDBninmIZX1EV2vn00wNnhHa2bg3ssYgmE7z9tkjPnsVeaVJXHxYt0nHXXc0oKandmo80aFwp59i7EXmduwZOjSP0jmefk6MmOtpJYqKG1asPER/vH67n/fcXY/bumrDHqArtdO9ewoQJydxyi4a2bWH3bl9bVj+WLYOiIrj/fu+0RqgP3buXkJgoEhHhrFU6Znm5AotFHjTuTmTPvgaqKjK9EbM3mwX692/K/PmxmEwmvxF6gCuvtHLVVZW+NsNl7HZODky//HKBigolgiCyZw8sXOhb2+pD1XzZTp3KSE52fb6spwgLc/K//xWj1+vJyanZx5Rnz7ofWexrIDsbBEEkMtJzYu90Sl8RETpeeOEEAwb43xDWVavCOXZM42sz6o3z3+WG996LZ+DAJjgcKpxOI19+uY+vvjpOjx5FDB8u8s03vrWzrnz2GRw86JvWCPXh009VdO/eguPHqz+Xqqpn5TCO+5DFvgZyciAy0uGxwg6nE8aMSWHJkkRMJhPXX1/u9bTKmjCbBZ57LpY//tD72pQ6Y7NB//5N+PTTODQaDT16FPDee0dQKqWbt14vkpRk4fnns2jXrpI+fUQOHvSx0XVg5kyRtm2NtG1r8rUpteKGG8p57rkcUlOrP8dlz979yGJfA54eNK7RqLj6agvNm7u/F7i70OlE/vnnCLff7j/529Xx9986pk1LQKvVERqq58Yby2nUqByr1Up8vJ2LLjq1+PDyywmsX69FrYaZMzMIC7PSvbtISYnv7K8tO3fC99/7vjVCXdBqRe64owiNRk1+/vk9qPx8FUFB8qBxdyKLfQ14qlXCunXhbNkSgyiKDBiQyw03+La8vSakVgm+tuL87N+v5cABLRqNBpvNwB9/BJGVZcNkMvHww/m0b3922qooQkmJBrNZugzCwpy89dYxcnOd9O0r+n0ztVmzRFJSrPzvf/7rKJyPn38WuP32lvz++7mfFgsLVcTF+U+9QENAFvsayMryTPXsn3+GsmuXCkcA5Pz9/HMQQ4bEYTL5V4FLRYV0+ioUCiZPTmHFilisViuXXVbEypWHauwCKggwZ04+PXuWnPxdaqqVWbMy+PZbGDPGf8Xm2DH45BPo399z82U9yaWXmpg4MZs2bc59bUmtEvzrfAt0ZLGvAXcOGs/KUrN7dzB6vZ6nn85g0qTAKONUKKQGaDqd/4jfL78E0bHjxRQVhSCKIrNnH2Xy5ONA7Qe35OaqMJvP/myvvrqSp57KYu5cgbffdqfV7uONNyA42EnPnv5VRFVblEro27cInU5BYeHZd6v8fLUs9m5GFvtqqBo07q60y7feSuCVV+IxGk0B5Y1ddVUlb72V5fPmWvPnx7BwYTwGg4HLLrMwfnw2anUloiiSlGSrc5hp/PgUJk6MOeff7r67mAEDChgzRuSLL9xgvBspKYGFC0XuvrvQ7aMnvc2hQyJdu7bk66/PDM4XFqrlTBw3IxdVVUNZmZSJ4krM3umUFpvS0tRMnHgCp9MzIwM9SXm5AoPB7vUbVFmZgvXrI7jrrlKiojRoNErsdgdGoxGdDvr3d20i0uTJRTgc568UGz8+h2PHtNx9dzA//yxw0UUuHc5tLFwIVivce697JkL5kqQkK+PHZ3PDDWdeY1ITNB8Z1UCRPftqcMeg8ddfj2Pw4KaUlpoJDXX4XVplbZgwIZmxY5O8ciybTTiZg+1wBPHGG3H8/rsWo9HI4ME5PPxwvtuOdfnlVi655Pxir1LBK68cJzraSrduIoV+UKBqs8Ebb4h07Vril2My64ogSE9RBoOD0lIVTqd0DhQXy60S3I0s9tVQVT1bH7F3OkGlUvHAAxVMnHjCrzoR1pVHHili0CDPpfeJIidL6KdNS2Ls2DQUCiUREeV8990+rrnG/ZW7GzaEsWaNrsbtQkKcvPnmUYqLnfTpI2L1cZHqypVw4kTgFFHVloICBz17NuOTTyIpLJRz7D2BLPbVUN9B4198EcrgwU0xmyE6utLv0ypron17C1dc4ZmOm0VFSu66qxl79kSh0Wh44IE8XnnlGE6n9AQUFOSZTpu7dwfz44+1KxJLTrbx2mvH+OknGDZMdGnUnitUzZe97rpymjf3/nxZTxIW5mTkyFy6dbPIg8Y9hCz21ZCTA3q9E4OhboLTooWCZs2MAZFWWRMOB3z0UQSZme5Lst+xI4h582LQ6/UkJKhp164SrbYSq9VK06YWmjXzvJBNn17ElCknar39lVcaefbZE7z3nsDrr3vOrur45hv4/feG59VX0adPMWFhZk6ckHoXyZ69e5HFvhpyciSvvjYLqllZambNSkCt1pGWVsIzz2QH3KCPc1FaqmTKlGgOHKg55HE+RFGqas3JUaPVasnKCuann0IoKzNhsZh56qnsamPn7sZmExAEoc4L5T17ljBoUD7jx4ts3OgZ26pj5kyRli3NXHtt4Dek+y9Op7Qou3OnlhdeiAdEYs6dKCVTT+RsnGrIzq59a+MTJ4L46qsQ+vcvaFAeSWSkg337jlBZWfcwjtEoYDCIOJ0qHnmkMQ88UMzDD+fQo0cud97pAWNryezZcezbZ2Dx4vQ6v3bs2FyOHdPSr18I27cLtG7tAQPPwd69sHmzwIsv+n6+bH0wGhVkZ6vJyVGTna0+7XsNubnS96ePLhQEMaDSkwMBQRR9FYH0f265RUQQypg9+/g5/+50wnffhdClix2LxYzVKhUfNTQMBgNGY93E/tNPw3n11QS+//4oYCI9XUtKisVjDeXqwm+/hZCVpaB79/r1+jEaFTzwQBPMZi2//ioQG+tmA8/BkCEin33mYMuW/X53jknT3E6JeNWXJOIasrPVZwyqVyhEEhJEUlIEUlMFUlIgORlSUk59hYbiF+dKQ0IW+2po3dpJmzbFPP30uStdf/opiEcfTeOjjw57NQzhTb79NoTVq6N5440j1U7LEkWYMSOe1q3t9O1r5NAhBz/8YKBHjxK/qrwF0Ov1mEyudYnMzlZz331Nad5cyTffCGi1bjLuHOTmQkqKyPDhuQwZ4t14vShK9Q45OZozvHLJM5d+l5enwuE45ZWHh4skJ0tiLn2dEvHkZEhM9O8+Sw0V+d5ZDbm5566eLSxUEhcn8L//2Vmz5pBXFhR9hVotEhp67rGIhYVKvvgijP79S9HptNhsKiorLRiNRhIT4e67/e992btXR15eMDfeaHIpHJKQYOP1148xeHATHnpIZOnSuq8B1Ja33waVSuSuu9xfRGWzCeTkqE564OfyyisrT334arVIo0aSkLduLdC165leeXIyhIYKQADGmho4smd/HqxW0GphypRMevUqOfn7/fu13H9/U9566zhXXVXuOwO9yP/bu/fopss7juPvX9JbUtpSUgoFWm6OMqcT3IaKm1M4ekBUKur0iDhwOBVUEEXA29xwQhVEBghT5FQHg6lHPWpxwwtjInLp5qbz1qn0gk2gNG0obXpLnv3xo9wLLST95Um+r3N60h+mySPIxyff3/d5nri4OFoObAHZ2Gjg89nJzGzhk0/SueWWLF5++Wv694/cU5IOt2xZJuvXd6WwsDgkr1dYmMbs2dnMmwezZ4fkJY9QX2/O6keNqmL2bE+HflYps7W1tTZ+ZL3cvN67145Sh4I5I0ORk3P8WXlODvTogeXnIYtTIzP7Nuw5cFhU64IqpczVfuecY+eeezycc47evfPt5fPZcDgCJBw4WGjKlP507apYtKiUs86q5v33faSmhqcXPhymTfOGdP/3MWN87NyZyJw5meTmwtVXh+ylAXjhBaiuhptuOnb5rt9vHAzww2fmh2blcTQ2HkrmpKRD5ZWf/OTYWnmfPuB0yqw8WsnMvg07dsCwYfDSS1+TmdnMjBl9eeCBKnJz9TjA42jNzdDQYB7i7PcbNDTYDnwd/v2R136/werVLlpaYMOG78jK8rNjRxxduwbo10+PmfzRQlGvP1owCDNnZrN5cyqbNxsMHRqa1/X54Ac/ULhcfi691IfbnXDErLy6+tBNT8NQ9OzZGtzHzshzcsDl0m9fJhE6MrNvw+EHjbtcdnr2bCEQCG0NWimzZtre8D36e7/fDO/Dvzevbfj9hz/foKWlfX/LDUPhcIDTaS6o8vsNXK4WPv88SEZGM0OGRM4h6B21YUMqL76YycqV34T0prHNBo89totJkwZw5ZVJ7NhhhGT158qV5tYI333nZOdOB9nZir59DS66yDiiRp6TA717Gwc/fQlxPBL2bSgpAVB8910X9u/3M3HiHhoabHz0UXK7w7d1Jn34c8yZdetzjCPqpSdisymSk8HhMM9NdTo58GXgdEJmpnHw11rD+lSuExPNG41vvgl5eYrrr69i8OAGZszIobCwmB499N18y+VqYciQ+rB0BzkcisWLS7nxxjMYO9bOpk0GjtM8sve228xVpFdcAWlpUl4Rp0fKOG346U/hww9P/ryEBHUggMHpVAfC0wze5GQzjE8nfFuv4+M77yP4Rx/ByJHmHiwLFpQRCBhs25bMZZcFQl4C6Uzx8fE0N4f3k8lnnyUxceIAxo41WLs2fB06QnSUhH0b3ngDNm+GkSPbDmOHI/oWfnz5JVx4oaJ//3r++MeSY7Z8KCzMxOn0c8klenUi+Xx2ysvTyM31hr3He8OGVO69N4dHH4Xf/Ca87yVEe0nYi4MqKuCCCxQJCU0UFHxDWtqRXTZKmTcie/RQzJy5y6JRnprWFslNm76gW7fwb1D37LPdWbKkB+vWwfXXh/3thDgpCXsBmEfd/exnir17W/jTn76hZ8/j1+ZbWswbksnJDvbsaSQlRY+2y0AAysoc9O/fOWUopWDOnD68914amzYZDBvWKW8rRJtkeYSgocG8GVteHmTFipI2gx7MspXNBp99FmD06Fy2bEnuxJGeuqSk+E4LejDvr/z2t9+Rm+tn7FjFLr0+CIkoJGEf4wIBmDBBsXWrYsmSUgYObF97aU5OExMnVnL++ZH/wbCiIp4pU/ocPO6wsyQmKp5+uhSbrYUrr1TURd/OxEIjEvYxTCmYNk3x6qvmWatDh7Z/Z8u4OJg8eS82Wz379qXw7rupYRzp6amtNVtdU1M7/zCZjIwAf/hDCcXFigkTFEE9ql4iCknYx7D8fFi2zODBBysYOfLUu2sKChw89VQWjY2R2WeYm9vIypWlpKVZc3JYbm4j+fnlvP46PPywJUMQQm7QxqqCApg0Ce64Yw9Tpuw5rdcKBsHrjSMnJ4G6uvqI6i1XCioqkunVq87ycRUUuFi4MIsXX4QJE6wdi4g9MrOPQW+/DZMnK665xssdd5xe0IN5wzYjo4WaGj933jmA117revqDDJHy8gRGjerP5s1drB4Kv/xlFXl51UyerNiyxerRiFgjYR9jtm+Ha69VXHRRLQ89VBHS2W5cnCInp54BAyLnP6vMzGZWrarg3HM7fqxiqBkGPPJIBT/8YT15eerAlhxCdA4p48SQ4mJzdWyfPn6efXYnDkf4/ugdDidbttChm77hYrPZCEbQndHqajvjxw8kNTWejz4ySEmxekQiFkTOFEyElccDl12mSEtrYunS0rAGPcD69XZuvnkA//tfGM/rOwnzqMTe/Pe/kbUdZHp6gCVLSiktVdxwgyJgzX1jEWMk7GPAvn0wapTC7w+wfHlJp3SlXHxxLQUF33LOOfaTPzlMamrsbNuWTE1N5G1gNHBgI08+WcZf/wqzZlk9GhELpIwT5RobYcwYxfbtQQoKvmXQoM4/F3bDhkx27w4wYcKxpy2FWzgOKwmlNWu6MX9+L1auhF/9yurRiGgWeVMeETLBIEycqPjgA1ixotSSoAdzJ82ammSUqurU9ke/38AwGjrvDU/BjTd6+fbbRG6/vRsDBxpcfLHVIxLRSmb2UUopmDEDFi9WLFxYzqWX7rN0LEpBly5OysqaDp7rG07BIIwYMZjJkyuPe35rJGluhilT+lFcnMy2bQZnnGH1iEQ0kpp9lFq4EJ5+Gh54wG1p0IPZcmizQUlJE1dd9T3eeKNr2N8zEIDZs72cf37kHwwfHw8LFpSRmtrEFVcoamqsHpGIRjKzj0KrV5srNG+9dQ933336i6ZC6dVX0xk7tgm7Pfy7giUlJdHQENllnMOVlCRw000DGTbMxvr1RtQdjCOsJTP7KLNhA0yapLj66mruuiuygh5g3Lhq7PY69u9PYc2aboRrqvHmm10pKoqgfRvaoV+/JhYuLGPjRpg+XeZgIrQk7KNIURGMG6cYPnw/jzzyneV7wZzI3/4WR0FBJj5f6FszlYLnn+/OBx9Yv0VCR513Xh1z5lSwbJnBM89YPRoRTaSMEyW+/hqGD1dkZfl57rmdOJ2R/8e6b5+Nnj2T8PnqiYsL7YHqDoeTmhr/MWfo6iI/vydr17p4+22DSy+1ejQiGkjYR4Hdu82gDwabePHFb0lP12dJZjAI99zTn4ED60J6f0G3ev3RWlrgrrv68umnXdi61WDwYKtHJHQnZRzN1dbC5ZcramsDrFhRolXQg9mlM2yYjwsvDN2477svm3nz0kL2elaIi4MnnignI8Ps0KmK7O5RoQEJe401NcE11yiKixXLl5fQu3ez1UM6JePHe/nRj6pwOJxs2pRy2jdtL7igke9/P3JXzbZXSkqQJUtK8HqDXHutoqnJ6hEJnUnYayoYhFtuUWzaBIsXl5Kbq2/JotW2bYo77+xLUdHpHWI+YcJ+Ro2ydm1BqGRnN7NoUSkffghTp6qwdS+J6Cc1e03dfz8sWKB44onyqAk2gK++SmToUDv19ae2NfJnnyWRkpJATk70/J4AvP56Vx5+uA+LFsH06VaPRuhIZvYaWrQInnwSZs1yR1XQg3lea319PRs3duf3v8/q8AHdy5b14PHH08MzOAvl5dUwaVIl996rWL/e6tEIHckaPc2sW2fueXPLLZWMH++1ejhhU1PTTGOjs8Nli+XL9+B263nv4mSmTdtNSUkiN9yQwpYtBmedZfWIhE6kjKOR996D0aMVo0fX8Nhjkb1oKhSUguRkJ1991UyvXs3Y27H+yul0nnIJSAf19TZuvnkADQ2J7Nhh0L271SMSupAyjiY+/hiuvloxbNh+Hn00+oMezEVWlZUN3HTTGTz//MlTbd26bjz8cLdOGJl1nM4gS5aUUlcXIC9P0WjNrtVCQxL2Gti505zR9+3bwFNPlRMfb/WIOk9ycpC5c8uZNOnks/X4eEV8fPi3T7ZaVlYzTz9dSlER/PrX0qEj2kfKOBGustJcHdvc3MwLL3yDy6XXoqlQqq/vwnPPJTN16u7j7gip+6rZjiosTGP27Gzmz5ejDcXJycw+gtXVmUcKVlcHWL58Z0wHPcA//wmFhV2prDz2o83evfbj/no0GzPGx2237WHOHMXrr1s9GhHpZGYfoZqbYexYxT/+oVi16lvOPDN2Zqwn0tBgkJ6eRG1tI0oFD5a0nnkmk7VrXWza9AW2GJrCBIMwc2Y2mzen8uGHBkOGWD0iEakk7COQUubq2DVrYOnSEoYPD/9BH7qZNasvECA/fxcANTXx7NwZz9Ch0duJA2a4V1XFkZwcwOlU7N1r58svk1i6tCdudxLvvSeBL44vhuZA+njoISgoMJg7d5cEfRsuv9zLuHF+jANtSVlZcZYE/eFTpb174/B6zf7QhgaDrVuTqakxr4uLE3n11UOLvdat68b69eZmbfv22Zg+PZtPP3VgGAbvvNOV6647g/j4eBITE7n77n48+GBfHA4HkMyIEYPZujUDp9NJUZGLO+7oz5AhTXi9BtOmddq/utCMhH2EWboUHn8c7rvPzZgxPquHE7F+/vNazjuviqSkJFas6M7cuS78/kP9qMHgoSD2+ezs2nWonl9U5GTnzgQAvF47a9Z0o6rKDOUPPujCM89kHnzuY49l8fLL6dhsNioqkrjqqu9RXJxCQkICL7zQkxEjBuNwOHA4HNx1V39WrOiN0+mkoaELt97an6+/7orT6eTjj9N58smeJCUlkZiYyH/+04XiYid2u534eBuNjTYCAVBKkZHRxI9/vJ+mpmYaGxsZO7aK0aOr8Pv9KFXHsmUlnH12NfX19Zx5ZjVDhtSxdm0qc+bA++93wm++0JKUcSLIK6/Addcpbr65iunTPQSDxoEAMB9br4NBg2DwxNfmz0EgYP6z1seT/8yJrw/9XOtrHn1tPrb13icey9E/c+TrHDlm8/uGBhslJWaQP/BAJRMn+vj3v5P4xS+yWb++jEGDmsnPd/Huu07efdcs+VxySTajR9cxc2YVxcUJ5OX15s9/3sXZZzewenUa77zThVWryggGg8yb14NBgxoZN66a6mo7zz/fneuv95Kd3cQXXyTx1VdJ5OXVAPDJJw66dAkwYEATLS3g8cTTvXsLiYlme2So10Z88omDe+/NIRCIY906gxEjQvv6IrpI2EeI1qCHyFwtZbcr7HYOftlsR35vXivsduPgcw9/jnltHHHd+py4uCMfzdc49n3a+rW33gKvt4UFC8o5//w6vF47f/97KiNH7iMtLUB5eQI+n52zzjK3Pa6sjMPpDJKc3MGNdyKEUvDSS93Iz8/i3HPhlVcM+vSxelQi0knYR4g9e2DqVBgxAhISTh5w7QnBUD0n0lfrXnyxwun08cQTu6weStj5/QZz5/bizTfTmTpV8dRTBgkJVo9K6EA2QosQmZnw8stWj0JPbrfivPOif+VsWVkCM2bkUF6eyOrVMH58hP9fWEQUuUErtLd7t0H37tEd9hs3pnDDDQMJBBLZutVg/HirRyR0I2EvtOb3g89nkJERnWEfCMDixT24++6+jBhho6jI4OyzrR6V0JGUcYTWPB7zMSMj+vaw93rtzJqVzfbtyeTnw8yZRsTfPxGRS8JeaM3tNh+jbWZ/eFvlO+9IW6U4fVLGEVprndlHS81eKfjLX7oxceIA+vaN41//kqAXoSEze6E1t9vcxz41Vf8dQaWtUoSThL3QmscDLleL9jtdlpUlcM89OezaJW2VIjw0/ysiYp3brX8Jp7WtMhiUtkoRPhL2Qmsej8Ll0rMTR9oqRWeSsBdaq6jQsxPH67Vz++39WLUqg/x8eO01g7Q0q0clopnU7IXWPB602ypB2iqFFWRmL7QVDJobyHXvrkcZR9oqhZVkZi+0tXevude9yxX5M3tpqxRWk7AX2tJlQZW0VYpIIGUcoS0dtkqQtkoRKSTshbYObYIWeWEvbZUi0kgZR2jL7Ya0tAAJCZF12JrsVikikYS90JbHE3n1emmrFJFKyjhCW243EbN6VilYt07aKkXkkpm90JbbrSKiXu/3G/zud715662u0lYpIpaEvdCW260YMMDasJe2SqELKeMIbe3ebVh6HKG0VQqdSNgLLdXVQW2tNQeNS1ul0JGUcYSWrOqxP7ytcv58uP9+aasUepCwF1pqXT3bma2X0lYpdCZlHKGlzpzZS1uliAYysxda8nggISH8B41LW6WIFhL2QktutzmrD2e9XNoqRTSRMo7QkscT3hKOtFWKaCNhL7TkdofnoHFpqxTRSsJeaMntDv1xhIcfAj5/vhwCLqKL1OyFltxuGD48dGUcaasU0U5m9kI7gQBUVoamZi9tlSJWyMxeaKeyEoLB098qQdoqRSyRsBfaCcVB49JWKWKNlHGEdk73oHFpqxSxSMJeaKd1Zu9ydSzspa1SxDIp4wjtuN2Qnh4gPr79B43LbpUi1knYC+10dPWstFUKIWUcoaH2HjQubZVCHCIze6Gd9hw0Lm2VQhxJwl5ox+NRDBrU9sxe2iqFOJaUcYR2PB6jzU4caasU4vgk7IVW9u+HujrjmAVV0lYpxIlJGUdo5XgLqqStUoiTk7AXWjl09qxZs5e2SiHaR8o4QiutM3uXq0XaKoXoAJnZC614PJCYGGTevF4UFkpbpRDtJWEvtPL55+b2xhs3pklbpRAdYCil2r/BiBAWGzQIyssV27dLt40QHSFhL7Ti80FtLfTpY/VIhNCLhL0QQsQA6cYRQogYIGEvhBAxQMJeCCFigIS9EELEAAl7IYSIARL2QggRAyTshRAiBkjYCyFEDJCwF0KIGCBhL4QQMUDCXgghYoCEvRBCxAAJeyGEiAES9kIIEQMk7IUQIgZI2AshRAz4P9VF3YVdOvJIAAAAAElFTkSuQmCC", + "text/plain": [ + "Graphics object consisting of 97 graphics primitives" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T = load(\"3413-186-model.sobj\")\n", + "T = T.relabel().codomain()\n", + "T.plot(polygon_labels=False, edge_labels=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c93629c5-8758-43f6-bfdb-018f1cdb7b41", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/circle.py\n" + ] + } + ], + "source": [ + "from flatsurf import HarmonicDifferentials, ApproximateWeightedVoronoiCellDecomposition\n", + "\n", + "S = T\n", + "S = S.insert_marked_points(*[S(label, S.polygon(label).centroid()) for label in (1, 21, 30)]).codomain().relabel().codomain().delaunay_triangulation().codomain()\n", + "S = S.insert_marked_points(*[S(label, S.polygon(label).centroid()) for label in (23,)]).codomain().relabel().codomain().delaunay_triangulation().codomain()\n", + "# S = S.insert_marked_points(*[S(label, S.polygon(label).centroid()) for label in (8,)]).codomain().relabel().codomain().delaunay_triangulation().codomain()\n", + "V = ApproximateWeightedVoronoiCellDecomposition(S)\n", + "Omega = HarmonicDifferentials(S, error=1e-6, cell_decomposition=V, check=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "e1775eb9-5f3c-440a-baf8-0c7249814a04", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/pyflatsurf/surface.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/pyflatsurf_conversion.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/features.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/pyflatsurf/morphism.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/pyflatsurf/surface_point.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/cone.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/ray.py\n" + ] + }, + { + "data": { + "text/plain": [ + "[0.7209091695651454,\n", + " 0.7519465252471788,\n", + " 0.8274565828494759,\n", + " 0.7519465252471788,\n", + " 0.8841048354386081,\n", + " 0.8274565828494759]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[Omega._relative_radius_of_convergence(v) for v in V.cells()]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "8144d67d-d6c6-4169-83f3-155b3651691a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEwUAABLMCAYAAAB83Ua0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAJ17AACdewE8n3fEAAEAAElEQVR4nOzcaZScZZn44buqeq1ulvSKqIijI66jOI6j4n/SCZvsgqgoAooiI+6Cog6uOKPiuOICLnEX5SCouGGABHfHBZBBwRWCQHoNmO5OJ91V9f+Q48yogPDmSd5+376uTyH0fdd9cvqcpz79Kq1WqxUAAAAAAAAAAAAAAAAAAAAAAABAbqp5HwAAAAAAAAAAAAAAAAAAAAAAAABLnSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHImCgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAACAnImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGeiYAAAAAAAAAAAAAAAAAAAAAAAAJAzUTAAAAAAAAAAAAAAAAAAAAAAAADImSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHImCgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAACAnImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGeiYAAAAAAAAAAAAAAAAAAAAAAAAJAzUTAAAAAAAAAAAAAAAAAAAAAAAADImSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHImCgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAACAnImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGeiYAAAAAAAAAAAAAAAAAAAAAAAAJAzUTAAAAAAAAAAAAAAAAAAAAAAAADImSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHImCgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAACAnImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGdteR8AAAAAAAAAAAAAAERs2rQprr/++rv983vttVd0d3dvx4sAAAAAAAAAgB1JFAwAAAAAAAAAAAAAFoHrr78+9t5777v981deeWU86lGP2n4HAQAAAAAAAAA7VDXvAwAAAAAAAAAAAAAAAAAAAAAAAGCpEwUDAAAAAAAAAAAAAAAAAAAAAACAnImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGeiYAAAAAAAAAAAAAAAAAAAAAAAAJAzUTAAAAAAAAAAAAAAAAAAAAAAAADImSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHImCgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAACAnImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDO2vI+AAAAAAAAAAAAAACKZNWqVbFq1arke6enp5PvBAAAAAAAAACKQxQMAAAAAAAAAAAAAO6BdevWxfe+9728zwAAAAAAAAAASqaa9wEAAAAAAAAAAAAAAAAAAAAAAACw1ImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAOSsLe8DAAAAAAAAAAAAAKBI9thjj9hnn32S752eno6rr746+V4AAAAAAAAAoBgqrVarlfcRAAAAAAAAAAAAALDUXXXVVbH33nvf7Z+/8sor41GPetT2OwgAAAAAAAAA2KGqeR8AAAAAAAAAAAAAAAAAAAAAAAAAS50oGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGeiYAAAAAAAAAAAAAAAAAAAAAAAAJAzUTAAAAAAAAAAAAAAAAAAAAAAAADImSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHImCgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAACAnImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgALAEbN68OZrNZt5nAAAAAAAAAAAAAAAAAAAAAAB3QhQMAJaAjRs3xk033SQMBgAAAAAAAAAAAAAAAAAAAACLlCgYACwBCwsLsXHjxli3bp0wGAAAAAAAAAAAAAAAAAAAAAAsQqJgALAENBqNiIiYnp4WBgMAAAAAAAAAAAAAAAAAAACARUgUDACWgIWFhf/58/T0dNx4443CYAAAAAAAAAAAAAAAAAAAAACwiIiCAcAS0Gg0/uy/Z2ZmhMEAAAAAAAAAAAAAAAAAAAAAYBERBQOAJWBhYeGv/u4Pf5iL446bjo0bhcEAAAAAAAAAAAAAAAAAAAAAIG9teR8AAGx/jUbjz/77tttqcdJJe8b113fHr3+9KVav7ohddqnldB0AAAAAAAAAAAAAAAAAAAAAIAoGACU3P9+K887bOXbdtRHLli1Ee3sr3vzme8evf90VERE//nF37LvvXFx6acSuuwqDAQAAAAAAAAAAAAAAAAAAAEAeRMEAoOTGxxtx5pn3vsuf+elPu2LPPRtxxBHNuM99qjE4GDEwEHHEERE77bSDDgUAAAAAAAAAAAAAAAAAAACAJUwUDABKbv36RtydJ//222vxqU/9+d/dfLMoGAAAAAAAAAAAAAAAAAAAAADsCNW8DwAAtq/R0Wbm2f7+hIcAAAAAAAAAAAAAAAAAAAAAAHdKFAwASm7dumxRsJ12akVnZ+JjAAAAAAAAAAAAAAAAAAAAAIA7JAoGACU2PR3xtrd1ZZqdm2vF6OhC4osAAAAAAAAAAAAAAAAAAAAAgDsiCgYAJTUzE3HIIRE33FDLND8/X42RkUasXy8MBgAAAAAAAAAAAAAAAAAAAADbmygYAJTQ7GzEoYdGfPvb27bnuus6Y2SkEbfeKgwGAAAAAAAAAAAAAAAAAAAAANuTKBgAlNAPfhDxne+k2XX99Z2xfHkjbr5ZGAwAAAAAAAAAAAAAAAAAAAAAthdRMAAooX33jTjvvIhaLc2+X/96axjsppvm0ywEAAAAAAAAAAAAAAAAAAAAAP6MKBgAlNRTnxpx/vkREa0k+377284YGWnFunXCYAAAAAAAAAAAAAAAAAAAAACQmigYAJTYUUdF7LJLI9m+3/2uI5Yvb8UNNwiDAQAAAAAAAAAAAAAAAAAAAEBKomAAUGLNZitmZ9M+9zfc0BEjI634/e+FwQAAAAAAAAAAAAAAAAAAAAAgFVEwACix229vxvx8+uf+xhu3hsF++9styXcDAAAAAAAAAAAAAAAAAAAAwFIkCgYAJbZ+/cJ2271uXUeMjET8+tfCYAAAAAAAAAAAAAAAAAAAAACwrUTBAKDExsZa23X/H/7QESMjlbj+emEwAAAAAAAAAAAAAAAAAAAAANgWomAAUGKjo83t/hm33NIeK1dW4rrrhMEAAAAAAAAAAAAAAAAAAAAAICtRMAAosfHx1g75nFtuaY8VKyrxi19s3iGfBwAAAAAAAAAAAAAAAAAAAABlIwoGACU2NrZjomAREevXt8fKldW49totO+wzAQAAAAAAAAAAAAAAAAAAAKAsRMEAoMQmJ3fs542OtseKFZW45hphMAAAAAAAAAAAAAAAAAAAAAC4J0TBAKDExscrOXxme6xcWY2rrtq8wz8bAAAAAAAAAAAAAAAAAAAAAIpKFAwASmxycsdHwSIiJibaYv/9a/GznwmDAQAAAAAAAAAAAAAAAAAAAMDdIQoGACU2OZnfU/+nMNhPfiIMBgAAAAAAAAAAAAAAAAAAAAB/iygYAJTY1FS2p76rq5no89vigANq8aMfzSXZBwAAAAAAAAAAAAAAAAAAAABlJQoGACU2NVXLNHfqqdOx886NJDds2NAWBx7YFj/8oTAYAAAAAAAAAAAAAAAAAAAAANwZUTAAKKm5uWZMT2eLgu2zT3t885vzscsuC0luuf32tjjwwPb4/veFwQAAAAAAAAAAAAAAAAAAAADgjoiCAUBJjY42Ms8OD1fj8Y/viksuWYhdd00TBvvjH2tx0EHt8d3vCoMBAAAAAAAAAAAAAAAAAAAAwF8SBQOAktq2KFgtIiL++Z+7YvXqRvT1pQuDHXxwe3z728JgAAAAAAAAAAAAAAAAAAAAAPB/iYIBQEmNjbUyzw4N1f7nz495TGesXt2I/v40YbCNG2txyCHtsXatMBgAAAAAAAAAAAAAAAAAAAAA/IkoGACU1OhoM9Pczjs3or298md/9+hHbw2DDQykCYNNT9fi0EPb4/LLhcEAAAAAAAAAAAAAAAAAAAAAIEIUDABKa2Ii21xfX+MO/37vvTvjssuaMTg4vw1X/a+ZmVocdlh7rF69Kck+AAAAAAAAAAAAAAAAAAAAACgyUTAAKKmxsVamuf7+5p3+v3/4h464/PJWDA2lCYPNztbiiCM645JLhMEAAAAAAAAAAAAAAAAAAAAAWNpEwQCgpCYmKpnm+vruPAoWEfHwh28Ngw0PpwmDbdpUjSOP7IxvfEMYDAAAAAAAAAAAAAAAAAAAAIClSxQMAEpqcjLb3MBA62/+zMMe1hGXX96Me90rXRjsqKM646tfFQYDAAAAAAAAAAAAAAAAAAAAYGkSBQOAkpqczPbM350oWETEQx/aGWvWtGL33dOEwebmqnH00Z3x5S/PJtkHAAAAAAAAAAAAAAAAAAAAAEUiCgYAJTU1le2ZHxy8+z+7114dsWZNK+597y2ZPusvbd5cjac9rSsuvFAYDAAAAAAAAAAAAAAAAAAAAIClRRQMAEpqcrKWaW5wsHKPfv5BD+qItWsj7nvfNGGwLVuqccwxXXHBBcJgAAAAAAAAAAAAAAAAAAAAACwdomAAUEKNRituu23HRMEiIh74wI5YsyZijz3ShMHm56vxzGd2xfnnC4MBAAAAAAAAAAAAAAAAAAAAsDSIggFACU1NNaLRuOdxr4iI4eFsXw8e8ICOuOKKSuy5Z7ow2LHHdsV55wmDAQAAAAAAAAAAAAAAAAAAAFB+omAAUEKjo83Ms1mjYBERe+7ZHmvXVuL+908TBltYqMbxx3fHZz8rDAYAAAAAAAAAAAAAAAAAAABAuYmCAUAJrV/fyDy7225t2/TZ97vf1jDY3/1dqjBYJZ797O741KdmkuwDAAAAAAAAAAAAAAAAAAAAgMVIFAwASmh8vJVprqurGTvttO1fD/bYoz2+/e1qPPCBm7d5V8TWMNiJJ9bjE5+YTbIPAAAAAAAAAAAAAAAAAAAAABYbUTAAKKGxsWxRsL6+RrIb7n3vtrjiilrstVeaMFijUYnnPa87PvrRmST7AAAAAAAAAAAAAAAAAAAAAGAxEQUDgBKamMgWBVu2LF0ULCJi993bYu3aWjz4wenCYCefXI9zzxUGAwAAAAAAAAAAAAAAAAAAAKBcRMEAoITGx7PN9fdni4ndld122xoGe8hD0oTBms1KvOAF9fjQh4TBAAAAAAAAAAAAAAAAAAAAACgPUTAAKKGJiUqmuf7+ZuJLthoe3hoGe9jD5pLsa7Uq8cIX1uP97xcGAwAAAAAAAAAAAAAAAAAAAKAcRMEAoIQmJ7NFwQYGWokv+V9DQ22xdm17POIR6cJgL3lJPd73vukk+wAAAAAAAAAAAAAAAAAAAAAgT6JgAFBCk5PZnviBgcSH/NX+WqxZ0x6PfGS6MNhLX9ob7373TJJ9AAAAAAAAAAAAAAAAAAAAAJAXUTAAKKHJyVqmucHBSuJL/lp/fy0uv7w9HvWoNGGwiIhXvKIn3vGO6WT7AAAAAAAAAAAAAAAAAAAAAGBHEwUDgBLasCHbEz80tP2jYBERfX1bw2CPfnS6MNirXtUbb3/7TLJ9AAAAAAAAAAAAAAAAAAAAALAjiYIBQMnMzDRj06ZaptkdFQWLiFi2rBaXXdYej3nMpmQ7X/3qnvj3f59Otg8AAAAAAAAAAAAAAAAAAAAAdhRRMAAomfXrFzLPDg9ni4llteuutbj00o547GPThcHOOKM3zjxTGAwAAAAAAAAAAAAAAAAAAACAYhEFA4CSGR1tZp4dHt7xXw122aUWl17aGY9/fLow2Otf3xtveIMwGAAAAAAAAAAAAAAAAAAAAADFIQoGACWTNQpWrbZiYKCW+Jq7Z6edqvGtb3XGE56QLgz25jf3xuteJwwGAAAAAAAAAAAAAAAAAAAAQDGIggFAyYyPtzLN7bprI2q1SuJr7r7e3q1hsCc+MV0Y7C1v6Y3XvEYYDAAAAAAAAAAAAAAAAAAAAIDFTxQMAEpmbCxbFKyvr5H4knuup6ca3/xmZyxfPpts59ve1hunny4MBgAAAAAAAAAAAAAAAAAAAMDiJgoGACUzOZltrq+vmfaQjHp6qvH1r3fFihXpwmBnndUbp546Hc1mtmAaAAAAAAAAAAAAAAAAAAAAAGxvomAAUDLj45VMc/39iyeYVa9X42tf64r99ksXBnvXu3rj1FNnhMEAAAAAAAAAAAAAAAAAAAAAWJREwQCgZCYmskXBBgYWVyyru7saF1/cFfvvny4M9p739MZLXyoMBgAAAAAAAAAAAAAAAAAAAMDiIwoGACUzNVWOKFhERFdXNb7yla448MB0YbD3v783XvxiYTAAAAAAAAAAAAAAAAAAAAAAFhdRMAAomcnJWqa5wcFsMbHtbWsYrDsOPjhdGOyDH+yNU04RBgMAAAAAAAAAAAAAAAAAAABg8RAFA4CSmZrK9rwPDCQ+JKGOjkpcdFF3HHroTLKd557bGyefPCsMBgAAAAAAAAAAAAAAAAAAAMCiIAoGACWysNCK22+vZZodHl7cXws6Oipx4YX1OOKIdGGwj360J573vBlhMAAAAAAAAAAAAAAAAAAAAAByt7jrHwDAPTI+3ohWq5Jpdmgo29yO1N5eiQsuqMeRR6YLg338473xnOfMRqMhDAYAAAAAAAAAAAAAAAAAAABAfkTBAKBERkcbmWeHh2sJL9l+2toqcf759Tj66HRhsE99qidOOEEYDAAAAAAAAAAAAAAAAAAAAID8iIIBQImMjjYzzxYlChaxNQx23nn1eNrT0oXBPvvZnjjuOGEwAAAAAAAAAAAAAAAAAAAAAPIhCgYAJZI1ClavN6JeL9bXgra2Snzuc/V4xjPShcHOO68nnvnM2VhYEAYDAAAAAAAAAAAAAAAAAAAAYMcqVv0DALhLExPZ5vr6GmkP2UFqtUp8+tP1eNaz0oXBzj+/J57xDGEwAAAAAAAAAAAAAAAAAAAAAHYsUTAAKJGxsWwhq/7+ZuJLdpxarRKf+EQ9TjghXRjsggt64mlPEwYDAAAAAAAAAAAAAAAAAAAAYMcRBQOAEpmYqGSa6+srbhQsYmsYbNWqepx44nSynRdd1BNHHz0b8/PCYAAAAAAAAAAAAAAAAAAAAABsf6JgAFAik5PZ5vr7ix++qlYr8ZGP9MRJJ6ULg335yz1x1FGzsWVL8f99AAAAAAAAAAAAAAAAAAAAAFjcRMEAoEQmJrI97YODiQ/JSbVaiXPO6YmTT04XBvvqV3viyU/eJAwGAAAAAAAAAAAAAAAAAAAAwHYlCgYAJTI1Vck0199fnuBVtVqJD36wJ174wnRhsG98ox6HH74p5uaayXYCAAAAAAAAAAAAAAAAAAAAwP8lCgYAJTI1Vcs0NzSULSa2WFWrlXjf+3rixS9OFwa75JJ6HH74nDAYAAAAAAAAAAAAAAAAAAAAANuFKBgAlESz2cocBRscLFcULGJrGOw97+mJl788XRhs9ep6HHroXGzaJAwGAAAAAAAAAAAAAAAAAAAAQFqiYABQEhs3NmPLlmxP+/BwOb8SVKuV+M//7IlTT00XBrvssnoccshczM4KgwEAAAAAAAAAAAAAAAAAAACQTjkLIACwBK1f38g8OzxcSXjJ4rI1DNYbp5+eLgy2Zk09Dj54LmZmhMEAAAAAAAAAAAAAAAAAAAAASEMUDABKYnQ0e6BqeLgt4SWL09ve1huveU26MNgVV9TjSU/aHNPTwmAAAAAAAAAAAAAAAAAAAAAAbDtRMAAoibGxbHGqtrZmLFu2NL4S/Md/9MYZZ6QLg333u91xwAHCYAAAAAAAAAAAAAAAAAAAAABsu6VRAAGAJWBsrJVpbtmyRlSrlcTXLF5nntkbb3zjTLJ9P/hBd+y//+bYuFEYDAAAAAAAAAAAAAAAAAAAAIDsRMEAoCQmJrLN9fUtvZjVG97QE2eeOZ1s3w9/2B377bc5br+9kWwnAAAAAAAAAAAAAAAAAAAAAEuLKBgAlMT4eCvT3FKMgkVEnHFGb7zlLenCYP/1X92x335b4rbbhMEAAAAAAAAAAAAAAAAAAAAAuOdEwQCgJMbHK5nm+vuXZhQsIuLf/q033v72dGGwn/ykO/bdd0ts2CAMBgAAAAAAAAAAAAAAAAAAAMA9IwoGACUxOZktCjYwkPiQgnnVq3rjHe9IFwb72c+6Y+XK+ZiaEgYDAAAAAAAAAAAAAAAAAAAA4O4TBQOAkpiczPasDw62El9SPKed1hvvetdMsn1XXdUVK1fOx+SkMBgAAAAAAAAAAAAAAAAAAAAAd48oGACUxIYN2Z71gYHEhxTUy1/eE+9973RUKmkiaVdf3RUrVszHxIQwGAAAAAAAAAAAAAAAAAAAAAB/mygYAJTE1FQt09zQkK8Df/KSl/TG2WfPJguDXXNNV4yMzMfY2EKSfQAAAAAAAAAAAAAAAAAAAACUlwoIAJTAli2t+OMfs0bBKomvKbYXvrAnPvCBdGGwa6/tipGRRoyOCoMBAAAAAAAAAAAAAAAAAAAAcOdEwQCgBLYlODU05OvAX3rBC3rinHNmo1pNEwb75S87Y2SkEbfeKgwGAAAAAAAAAAAAAAAAAAAAwB1TAQGAEhgdbWaeHR72deCOPP/5PfHhD89GrZYmDHbddVvDYLfcIgwGAAAAAAAAAAAAAAAAAAAAwF9TAQGAEti2KFhbwkvK5bnP7YmPfSxdGOxXv+qM5csbcfPNwmAAAAAAAAAAAAAAAAAAAAAA/DlRMAAogfHxbNGqnXduREdHJfE15XLCCT2xatVstLWlCYP95jed8S//0ox16+aT7AMAAAAAAAAAAAAAAAAAAACgHETBAKAExsaameb6+hqJLymn44/viU98YlOyMNjvftcRy5e34sYbhcEAAAAAAAAAAAAAAAAAAAAA2EoUDABKYHw829yyZdliYkvRscfW49Of3hRtbWn+zW64oSNGRlpxww3CYAAAAAAAAAAAAAAAAAAAAACIggFAKUxMVDLN9feLgt0TxxxTj89+di7a29OFwZYvb8Vvf7slyT4AAAAAAAAAAAAAAAAAAAAAiksUDABKYGIi21x/fyvtIUvA055Wj899bi46OtKEwdat64gVKyJ+8xthMAAAAAAAAAAAAAAAAAAAAIClTBQMAEpgcjLbkz44KAqWxdFH1+Pzn08XBrvppo4YGYn41a+EwQAAAAAAAAAAAAAAAAAAAACWKlEwACiBqamsUbBK4kuWjiOPrMcFF2yOzs40YbCbb+6IFSsqcd11wmAAAAAAAAAAAAAAAAAAAAAAS5EoGACUwORkLdPcwEDiQ5aYww7rji9+cXN0daUJg91yS3usXFmJX/xic5J9AAAAAAAAAAAAAAAAAAAAABSHKBgAFFyz2YrbbssWBRsaqiS+Zuk55JDuuPDCzdHdnSYMduut7bFyZTWuvXZLkn0AAAAAAAAAAAAAAAAAAAAAFIMoGAAU3IYNzVhYyBb3Gh72VSCFgw7qjosuShcGGx1tj5UrK3HNNcJgAAAAAAAAAAAAAAAAAAAAAEuFEggAFNzo6ELm2aEhXwVSOfDA7vjylzdHvd5Ism9srD1WrqzGz38uDAYAAAAAAAAAAAAAAAAAAACwFCiBAEDBjY62Ms/utlst4SXsv393XHzxfPT0pAmDTUy0xb77VuPKKzcn2QcAAAAAAAAAAAAAAAAAAADA4iUKBgAFNzrazDTX0dGMnXbyVSC1lSu74qtfnY/e3nRhsP33r8VPfyoMBgAAAAAAAAAAAAAAAAAAAFBmSiAAUHDj49miYH19jahWK4mvISJiZKQrvva1+dhppzRhsMnJrWGwH/9YGAwAAAAAAAAAAAAAAAAAAACgrETBAKDgxsayzfX1pQlWccf+5V+64utfn4+dd07z77xhQ1sccEAtfvjDuST7AAAAAAAAAAAAAAAAAAAAAFhcRMEAoODGx7PN9fW10h7CX3niE7viG99IFwa77ba2eNKT2uL73xcGAwAAAAAAAAAAAAAAAAAAACgbUTAAKLjJyUqmuYGBZuJLuCNPeEJXXHLJfOy660KSfbff3hYHHdQe3/ueMBgAAAAAAAAAAAAAAAAAAABAmYiCAUDBZY+CJT6EO/W4x3XFt77ViGXL0oTB/vjHWhx0UHt85zvCYAAAAAAAAAAAAAAAAAAAAABlIQoGAAU3NZXtOe/vbyW+hLvyT//UGatXN6KvL00YbOPGWhx8cHusXSsMBgAAAAAAAAAAAAAAAAAAAFAGomAAUHCTk9me86GhSuJL+Fv+8R8749JLG9HfnyYMNj1di0MPbY/LLxcGAwAAAAAAAAAAAAAAAAAAACg6UTAAKLipqVqmuYGBxIdwt+y9d2dcdlkjBgbShMFmZmpx2GHtsXr1piT7AAAAAAAAAAAAAAAAAAAAAMiHKBgAFNjsbDNmZ7NFwYaHfQ3IyyMf2RmXX96MwcH5JPtmZ2txxBGdccklwmAAAAAAAAAAAAAAAAAAAAAARaUGAgAFNjrayDwrCpavRzyiI9asacXwcJow2KZN1TjyyM74xjeEwQAAAAAAAAAAAAAAAAAAAACKSA0EAAps/fptiYLVEl5CFg97WEdcfnkzdtstXRjsqKM642tfEwYDAAAAAAAAAAAAAAAAAAAAKBpRMAAosPHxVqa5SqUVg4OiYIvBQx/aGWvWtGL33dOEwebmqvGUp3TGxRcLgwEAAAAAAAAAAAAAAAAAAAAUiSgYABTY6Ggz09yuuzaira2S+BqyevCDO5KGwTZvrsZTn9oZF100m2QfAAAAAAAAAAAAAAAAAAAAANufKBgAFNj4eCvT3LJl2WJibD8PelBHrF3bivvcZ0uSfZs3V+OYY7rii18UBgMAAAAAAAAAAAAAAAAAAAAoAlEwACiwiYlsc/39jbSHkMTf/31HrF0bscceacJgW7ZU4xnP6IrzzxcGAwAAAAAAAAAAAAAAAAAAAFjsRMEAoMDGxyuZ5vr6WokvIZUHPKAj1q6txJ57pgmDzc9X49hju+LznxcGAwAAAAAAAAAAAAAAAAAAAFjM2vI+AADIbnIyWxRsYEAUbDG7//3bY+3a+RgZ2RI33NCxzfsWFqpx3HFd0WzOxjOfWU9wIQAAAAAAAADA0rZq1apYtWpV8r3T09PJdwIAAAAAAAAAxSEKBgAFljUKNjgoCrbY3e9+7XHFFfOxYsWW+N3v0oTBTjihOxYWZuL443sSXAgAAAAAAAAAsHStW7cuvve97+V9BgAAAAAAAABQMtW8DwAAspuayvaU9/cnPoTtYo892mPt2ko88IGbk+xbWKjEiSfW45OfnEmyDwAAAAAAAAAAAAAAAAAAAIB0RMEAoMCmpmqZ5oaGKokvYXu5733b44oravGgB6UJgzUalXjuc+vxsY8JgwEAAAAAAAAAAAAAAAAAAAAsJqJgAFBQjUYrbrtNFGwp2H33tli7thZ77ZUuDPb859fjwx8WBgMAAAAAAAAAAAAAAAAAAABYLETBAKCgJiYa0Wxmi3sNDfkKUDT3utfWMNhDHpImDNZsVuIFL6jHOecIgwEAAAAAAAAAAAAAAAAAAAAsBoogAFBQo6PNzLPDw74CFNFuu20Ngz30oXNJ9jWblTjllHp84APCYAAAAAAAAAAAAAAAAAAAAAB5UwQBgIJav76ReXa33doSXsKONDTUFldc0R4Pf3iaMFirVYkXv7geZ58tDAYAAAAAAAAAAAAAAAAAAACQJ0UQACiosbFmprnu7mb09OiCFtnAQC3Wro1YuXIufv7zrm3e12pV4iUv6YlGYyZe9rKebT8QAAAAAAAAAKDk9thjj9hnn32S752eno6rr746+V4AAAAAAAAAoBhEwQCgoMbHs8319S1EREfSW9jx+vtrsWbN1jDY1VdvexgsIuLlL98aBjv1VGEwAAAAAAAAAIC7cuKJJ8aJJ56YfO9VV10Ve++9d/K9AAAAAAAAAEAxVPM+AADIZny8lWmur6+Z+BLy0tdXizVr2uPRj96UbOdpp/XEWWdNJ9sHAAAAAAAAAAAAAAAAAAAAwN0jCgYABTUxkW2uv18UrEyWLavFZZd1xGMeky4MdvrpvfHWt84k2wcAAAAAAAAAAAAAAAAAAADA3yYKBgAFNTFRyTTX399KfAl523XXWlx6aUc89rHpwmCvfW1PvOUt08n2AQAAAAAAAAAAAAAAAAAAAHDXRMEAoKAmJ7M94wMDomBltMsutbj00s543OPShcFe97reeNObZpLtAwAAAAAAAAAAAAAAAAAAAODOiYIBQEFNTlYyzQ0OJj6ERWOnnaqxenVnPP7x6cJgb3xjT7zuddPJ9gEAAAAAAAAAAAAAAAAAAABwx0TBAKCgpqZqmeYGBrLFxCiG3t5qfOtbnbHPPunCYG95S2+89rXCYAAAAAAAAAAAAAAAAAAAAADbkygYABRQq9WKDRuyRcGGhkTByq63txqXXNIZ/+//pQuDvfWtvfHqVwuDAQAAAAAAAAAAAAAAAAAAAGwvomAAUEDT062Ym8v2jA8Pe/6Xgp6eanzzm50xMjKbbOfb394bp502Hc1mK9lOAAAAAAAAAAAAAAAAAAAAALZSBQGAAlq/fiHz7NCQ53+pqNer8fWvd8W++6YLg73znb1x2mkzwmAAAAAAAAAAAAAAAAAAAAAAiamCAEABjY42M8/utlst4SUsdt3d1bj44q7Yb790YbB3v7s3XvYyYTAAAAAAAAAAAAAAAAAAAACAlETBAKCAskbBarVWLFvm+V9q/hQGO/DAdGGws8/ujZe8RBgMAAAAAAAAAAAAAAAAAAAAIBVVEAAooPHxbCGmZcsaUatVEl9DEXR1VeMrX+mOgw5KFwb7wAd645RThMEAAAAAAAAAAAAAAAAAAAAAUhAFA4ACyhoF6+trJL6EIunoqMSXvtQdhxwyk2znuef2xr/+qzAYAAAAAAAAAAAAAAAAAAAAwLYSBQOAAhobyzbX19dMewiF09FRiYsuqsfhh6cLg33kI71x0knCYAAAAAAAAAAAAAAAAAAAAADbQhQMAApocrKSaa6/XxSMiPb2SlxwQT2OPDJdGGzVqt448cTZaDSEwQAAAAAAAAAAAAAAAAAAAACyEAUDgAKamMgWBRsYSHwIhdXeXonzz6/H0UenC4N98pM98exnC4MBAAAAAAAAAAAAAAAAAAAAZCEKBgAFNDWV7Qnv7xdr4n+1tVXivPPq8dSnpguDfeYzPXHcccJgAAAAAAAAAAAAAAAAAAAAAPeUKBgAFNDkZLYnfGiokvgSiu5PYbBjjkkXBjvvvJ449lhhMAAAAAAAAAAAAAAAAAAAAIB7QhQMAApoaqqWaW5gIPEhlEKtVonPfKYexx6bLgz2hS/0xDHHzMbCgjAYAAAAAAAAAAAAAAAAAAAAwN0hCgYABTM/34o//jFbFGx42NPPHavVKvHJT9bj+OPThcEuuKAnnv50YTAAAAAAAAAAAAAAAAAAAACAu0MZBAAKZmyskXlWFIy7UqtV4uMfr8ezn50uDHbhhT3x1KfOxvy8MBgAAAAAAAAAAAAAAAAAAADAXVEGAYCCWb8+exRsaMjTz12rVivxsY/V43nPSxcG+9KXeuIpT9kkDAYAAAAAAAAAAAAAAAAAAABwF5RBAKBgxsaamWeHh2sJL6GsqtVKnHtuPU4+eTrZzosvrseTn7wptmwRBgMAAAAAAAAAAAAAAAAAAAC4I6JgAFAwWaNgO+3UiK4uTz93T7VaiQ9+sCdOOSVdGOzrX6/HEUdsirm57GE7AAAAAAAAAAAAAAAAAAAAgLJSBgGAghkba2WaW7askfgSyq5arcTZZ/fEi16ULgz2zW/W4/DD54TBAAAAAAAAAAAAAAAAAAAAAP6CKBgAFMzERLa5vj4RJu65arUS731vT7zsZenCYKtX1+Oww+Zi0ya/kwAAAAAAAAAAAAAAAAAAAAB/IgoGAAUzPp5trr9fgIlsqtVKvPOdPfGKV6QLg116aT0OPXQuZmf9XgIAAAAAAAAAAAAAAAAAAABEiIIBQOFMTlYyzfX3txJfwlKyNQzWG698Zbow2OWX1+Pgg4XBAAAAAAAAAAAAAAAAAAAAACJEwQCgcCYmsj3fg4OiYGy7s87qjdNPTxcGu+KKehx44OaYmREGAwAAAAAAAAAAAAAAAAAAAJY2UTAAKJipqWzPd39/4kNYst72tt4444x0YbDvfrc7Djhgc0xPC4MBAAAAAAAAAAAAAAAAAAAAS5coGAAUTNYo2NBQJfElLGVnntkbr399ujDY97+/NQy2caMwGAAAAAAAAAAAAAAAAAAAALA0iYIBQIE0m62YmqplmhUFI7U3vak33vzmdGGwH/ygO/bff3Pcfnsj2U4AAAAAAAAAAAAAAAAAAACAohAFA4ACuf32ZiwsZHu+h4Y8+6T3utf1xplnpguD/ehH3bH//lvittuEwQAAAAAAAAAAAAAAAAAAAIClRR0EAArk1lsXMs8OD3v22T7OOKM33vrWmWT7fvzj7thvv/nYsEEYDAAAAAAAAAAAAAAAAAAAAFg61EEAoEDGxlqZZ4eHawkvgT/36lf3xFlnTSfb99OfdsW++87H1JQwGAAAAAAAAAAAAAAAAAAAALA0iIIBQIGMjTUzzbW3N2OXXTz7bF+vfGVvvPOdM8n2XXllV6xcOR+Tk8JgAAAAAAAAAAAAAAAAAAAAQPmpgwBAgYyNtTLN9fU1olqtJL4G/torXtET73nPTFQq2X5X/9LVV3fFihXzMTEhDAYAAAAAAAAAAAAAAAAAAACUmygYABTI+Hi20NKyZc3El8Cde+lLe+J975tNFga75pquGBmZj7GxhST7AAAAAAAAAAAAAAAAAAAAABYjUTAAKJCJiWxz/f2iYOxYL3pRT7z//enCYNde2xUjI40YHRUGAwAAAAAAAAAAAAAAAAAAAMpJFAwACmR8vJJpThSMPJxySk986EOzUa2mCYP98pedMTLSiPXrhcEAAAAAAAAAAAAAAAAAAACA8hEFA4ACmZrKFgUbGEgTZYJ76uSTe+Kcc9KFwa67bmsY7JZbhMEAAAAAAAAAAAAAAAAAAACAchEFA4ACmZjI9nQPDiY+BO6Bk07qiY9+dFPUamnCYNdf3xnLlzfi5puFwQAAAAAAAAAAAAAAAAAAAIDyEAUDgAKZmsr2dPf3Jz4E7qHnPKceq1bNRltbmjDYb36zNQx2003zSfYBAAAAAAAAAAAAAAAAAAAA5E0UDAAKZMOGWqa54eFK4kvgnjv++J74+MfThcF++9vOWL68FTfeKAwGAAAAAAAAAAAAAAAAAAAAFJ8oGAAUxKZNzZiezhYFGxry5LM4POtZPfGpT22KtrZmkn2//31HjIy04oYbhMEAAAAAAAAAAAAAAAAAAACAYlMIAYCCGBtrZJ4VBWMxecYz6vGZz8xFe3uaMNgNN2wNg/3+98JgAAAAAAAAAAAAAAAAAAAAQHEphABAQaxfnz0KtttutYSXwLZ7+tPr8bnPpQuD3XhjRyxf3orf/GZLkn0AAAAAAAAAAAAAAAAAAAAAO5ooGAAUxNhYK/Ps4KAoGIvP0UfX4/Ofn4uOjjRhsJtu6oiRkYhf/UoYDAAAAAAAAAAAAAAAAAAAACgeUTAAKIixsWzhpF12WYj29kriayCNo46qxxe+MBednWnCYDff3BErVlTi+uuFwQAAAAAAAAAAAAAAAAAAAIBiEQUDgIIYH88219eXJrYE28uTn1yPCy7YHF1daX5Xb7mlPVasqMQvfrE5yT4AAAAAAAAAAAAAAAAAAACAHUEUDAAKYmyslWlOFIwiOPTQ7vjiFzdHd3ea39dbb22PffetCoMBAAAAAAAAAAAAAAAAAAAAhSEKBgAFMTlZyTTX3y8KRjEcfHB3XHhhujDY+vXtsWJFNf77v7ck2QcAAAAAAAAAAAAAAAAAAACwPYmCAUBBTExki4INDLQSXwLbz5Oe1B1f+tLmqNcbSfaNjbXHypWV+PnPhcEAAAAAAAAAAAAAAAAAAACAxU0UDAAKYnIyWxSsv18UjGI54IDu+PKXt0RPT5ow2Ph4e+y7bzWuumpzkn0AAAAAAAAAAAAAAAAAAAAA24MoGAAUxNRUtmd7aCjxIbAD7Ldfd1x88XyyMNjERFvst18tfvYzYTAAAAAAgP/P3n2HV1Wl7R+/T68qSSCANYpdQEOwgKhYYTAWFBQbCoq9NyzIwIAKFhwbKoKojKKDBUWaoqAoMAoBBAsqBkSRkgJyetnn9wc/5x0VBTb7nJwk3891vZdjzlnreUaBPe9ea90LAAAAAAAAAAAAAAAAAAAAQH4iFAwAgHqipsZhalzTpjaLOwFy4/jjvZo8OamddrImGKy6enMw2Pz5BIMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID8QygYAAD1QDqd0YYN5kLBiosJBUP9ddxxXk2ZktTOO1sTDFZb69TJJzv0n//ELJkPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAKoSCAQBQD1RXp5VOmwv3at6cxz3qt06dvJo61bpgsA0bnOrSxam5cwkGAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+YOUEAAA6oF16wzTY4uLedyj/uvY0atp05LaZZeUJfNt3OhU164uffIJwWAAAAAAAAAAAADID5lMpq5bAAAAAAAAAAAAAAAAAADUMVJCAACoB9asSZse27Kl08JOgLrToYNX06en1KSJNcFgv/ziULduLs2eTTAYAAAAAAAAAAAA6t6qVau0cePG7RqTyWSUSlmzfgYAAAAAAAAAAAAAAAAAqHuEggEAUA+sW2fuRmifz1AwyOMeDceRR3r13ntpFRZaFwx26qkuffghwWAAAAAAAAAAAACoW7FYTKtWrdKqVau2GvSVyWS0ceNGLV++fLuDxAAAAAAAAAAAAAAAAAAA+YuUEAAA6oH1682FghUUpC3uBKh77dt79N57aRUVWRMMtmmTQ+XlLs2cSTAYAAAAAAAAAAAA6k46vXl9d+PGjfruu+/0/fehP3wnk8low4YN+u6777Rq1SrFYjE5HI5ctwoAAAAAAAAAAAAAAAAAyBJCwQAAqAfMhoIVFhIKhoapXTuPZsxIq2lTa4LBQqHNwWAzZkQtmQ8AAAAAAAAAAADYHplM5r+hYJK0erVUWurV+eeHVVubVjKZ0TPPhHXiiWGtXPmj4vH4f7/rdDrromUAAAAAAAAAAAAAAAAAQBYQCgYAQD2wfr25cYWF5sLEgPrgsMM8+uADQ82aJS2ZLxJx6PTTPXr3XYLBAAAAAAAAAAAAkFv/GwiWyUh///tu+uUXp8aPD2iffTLaffeUrrwyoJkzg5o+fZffjHU4HLluFwAAAAAAAAAAAAAAAACQJYSCAQBQD1RX20yNKyoyLO4EyC9t2rj1wQcZFRdbEwwWjdp15pkeTZtGMBgAAAAAAAAAAAByJ5VK/fc/v/lmgT7+eKf//v2GDU6tW+f679+PGtVMxv8sBTudzpz0CAAAAAAAAAAAAAAAAADIPkLBAACoB6qqzIWCNWuWsbgTIP+0bu3WzJmGWrSwLhjsrLM8mjKFYDAAAAAAAAAAAADkxq+hYJWVbt17b8u//O7y5V7NmLHzf//e4XBktTcAAAAAAAAAAAAAAAAAQO4QCgYAQD1QU2PukV1UZHEjQJ46+GCP3n/fUMuW1gWDnX22R++8QzAYAAAAAAAAAAAAsu+XX1J64YUinX32vkoktr4+PHRoS0WjNtntdtntbAEDAAAAAAAAAAAAAAAAgIaCHWEAANQD1dXmbnYuLrZZ3AmQvw4+2KOZMzPadVdrgsFiMbt69PBo4sSIJfMBAAAAAAAAAAAAv7dxY1oDB4bUpk1QDz3UUsnktm3nqq116fTT99NXX/my3CEAAAAAAAAAAAAAAAAAIJcIBQMAoB6orTUXCtasGaFgaFwOOMCtmTMz2m23hCXzxeN2nXuuV2+8QTAYAAAAAAAAAAAArFNTk9add4ZUUpLRkCFB1dQ4t3uONWvcOvfcEt1yS0ixmJGFLgEAAAAAAAAAAAAAAAAAuUYoGAAAeS4UMhSNmntkFxcTCobGZ//93Zo1S9pjD2uCwRIJu3r18mrCBILBAAAAAAAAAAAAsGOqqtK69daQ9t5bGjYsqA0btj8M7H+l0zaNGBFUWVlC8+fHLeoSAAAAAAAAAAAAAAAAAFBXCAUDACDPrVmTMj22RQuHhZ0A9ce++24OBttrL2uCwZJJu84/36tXXyUYDAAAAAAAAAAAANtvzZqUbrwxpJIS6eGHg/rlF2vXcr/80qsOHVy6556QksmMpXMDAAAAAAAAAAAAAAAAAHKHUDAAAPLc2rWG6bHFxTzq0Xjts49bs2bZVFJiTTBYKmXXhRd6NX48wWAAAAAAAAAAAADYNj/9lNI114S0zz52PfpoUOFw9i52SqXsGjo0qMMPj2vJEmvWyAAAAAAAAAAAAAAAAAAAuUVSCAAAeW7dOnOhYA5HRk2bZm9DOVAflJS49OGHNu29t3XBYL17+zRuXNiS+QAAAAAAAAAAANAwrVyZ1OWXh7TvvnaNHBlUNJq7bVqLF3t1+OFO3XtvSOl0Jmd1AQAAAAAAAAAAAAAAAAA7jlAwAADy3Lp15jZpN2mSlsNhs7gboP7Zc8/NwWCtWsUtmS+VsqlPH79efJFgMAAAAAAAAAAAAPzW8uUJ9ekT1v77O/Tss0HFYnWzPSset2vAgKCOPjqmZcusuUAHAAAAAAAAAAAAAAAAAJB9hIIBAJDn1q83FwpWUJC2uBOg/tpjD5c+/NCh/fazJhgsnbapb1+/xo6NWDIfAAAAAAAAAAAA6rdlyxK64IKwDjzQqeefDyiRyI9tWf/5j0+lpU6NGBGWYZhbewYAAAAAAAAAAAAAAAAA5E5+7D4DAAB/qqrK3LiiIsPaRoB6brfdnJo1y6EDDrAuGOyyy3x69tmwJfMBAAAAAAAAAACg/vnii4TOOSesQw5x6eWXA0ql8m87VjRq1y23BNS5c0zff5+o63YAAAAAAAAAAAAAAAAAAH8h/3ahAQCA31i/3mZqXGEhtzwDv7frrpuDwQ480JpgMMOw6cor/XrmGYLBAAAAAAAAAAAAGpNFi+I666yw2rZ1acKEgNJpc+u6uTR7tk+HHebQU0+FZRisJwMAAAAAAAAAAAAAAABAPiIUDACAPFddbW7zeNOmbOIGtqRFi83BYAcfHLNkPsOw6aqr/Bo5kmAwAAAAAAAAAACAhm7+/LhOOy2sdu3cevPNgAwj/8PA/temTQ5dfXVAXbpEtWpVsq7bAQAAAAAAAAAAAAAAAAD8DqFgAADkOULBAOs1b+7UzJlOtW5tTTBYJmPTtdf69fjjBIMBAAAAAAAAAAA0RHPnxtS1a0SHH+7RO+8ElMnUrzCw35sxw6+2bW164QXWtwAAAAAAAAAAAAAAAAAgnxAKBgBAnquudpga16xZ/d6EDmRbcbFTM2e61LatdcFg118f0KOPcnACAAAAAAAAAACgofjoo5hOOimijh29mj7dn/P6Ho+Rtbk3bHDqkksCOv30sNauTWWtDgAAAAAAAAAAAAAAAABg2xEKBgBAnqutNfe4btbM4kaABqhpU4c++MClQw+1JhhMkm68MaARIwgGAwAAAAAAAAAAqM9mzIjquOOiOu44r95/P/dhYM2aJXX77T9r9uyv9OyzlWrZMpG1WpMmBdS6tfTqq5Gs1QAAAAAAAAAAAAAAAAAAbBtCwQAAyGOpVEYbNzpMjW3enMc8sC2KijYHgx12mHXBYLfcEtCDD4Ysmw8AAAAAAAAAAADZl8lkNG1aRB07RnXyyT599JEv5z00b57UXXet1tSp3+iii6rl82V01FFhvfHGdzrrrJqs1a2qcqpXL7/OOSesmpp01uoAAAAAAAAAAAAAAAAAAP4aaSEAAOSx9evTymRspsY2a2ZuHNAYFRZuDgZr1866YLDbbw9q2LCwZfMBAAAAAAAAAAAgOwwjo7ffjurII2P629/8mjs392Fgu+2W0MCBP2nKlG903nk18ngyv/k8GDQ0ePBqPfnkCjVrlsxaHxMmBHTIIYYmToxkrQYAAAAAAAAAAAAAAAAA4M8RCgYAQB5bs8b8DcwtWjgs7ARo+AoKHHr/fZcOPzxq2Zx33hnQ0KEhy+YDAAAAAAAAAACAdQwjo9dei6isLK4zzvDps89yHwa2114JDRnykyZN+kY9e9bK7c785fePPTakN9/8Tt26bchaT2vWuNS9u1+9e4e0caP5NWsAAAAAAAAAAAAAAAAAwPYjFAwAgDy2dq1hemzz5oSCAdurSROH3nvPrSOPtC4Y7J57gvrHP8KWzQcAAAAAAAAAAIAdYxgZjR8f0aGHxtWzp1+LFnlz3sM++yT09NNhffutS927b5DLte1jd9klreHDf9Sjj/6kgoJU1nocNy6oNm3Smj7durUzAAAAAAAAAAAAAAAAAMBfIxQMAIA8tm6duVCwQCAtn4/HPGDGLrs49N57HnXoYN3hhr//PaCBA0OWzQcAAAAAAAAAAIDtl05n9OKLYR1ySELnn+/X0qW5DwPbf/+4nnsuomXLXLriioBcLpsymYypuc48M62lS6UuXSIWd/l/Vq1y629/8+qKK0IKh81fagUAAAAAAAAAAAAAAAAA2DakhQAAkMfWrzc3rrAwbW0jQCOz0052vfuuR0cfbV0w2JAhQQ0YQDAYAAAAAAAAAABArqVSGY0eHdaBByZ08cUBff21J+c9HHRQXC++GNaXX7rVp49fTqdth+d0uVzadVenpkzx6Zlnwtp55+ysE2cyNo0aFVSbNil9+GEsKzUAAAAAAAAAAAAAAAAAAJsRCgYAQB5bv97cjdCFhdzQDOyoYNCu6dM9OuYY64LB7r03qDvuIBgMAAAAAAAAAAAgF5LJjJ56Kqz99kuqX7+Avvsu92FgbdvG9MorES1d6tZFFwXkcPw2DCydNh/k5XK5JEl2u02XXx7Q4sWGOneO7FC/f6Wy0q0TTvDo+utDikZZkwYAAAAAAAAAAAAAAACAbCAUDACAPFZVZe526KIiNmADVggE7Jo2zaPjjrPu8MTw4UHdfjvBYAAAAAAAAAAAANkSixl67LGQWrVK6uqrA1qxwp3zHtq1i+mNNyJauNCjc8/1y27f8tpvIpEwXePXULBflZS49P77Pv3zn2H5/ebDxv6KYdj0+ONBlZYmNW9eLCs1AAAAAAAAAAAAAAAAAKAxIxQMAIA8VlVlblxRUcbaRoBGzO+3a8oUr44/3rpgsAcfDOrmm0MyDH6vAgAAAAAAAAAAWCUaNfTQQyG1apXWDTcEtWpV7sPAjjwyqnfeieqzzzzq3v3Pw8B+FY/HTdfyeDx/+JndbtMNNwS0cGFaHTpETc+9NcuWeXTMMR7dcUdIiQRrXgAAAAAAAAAAAAAAAABgFULBAADIY9XV5h7VTZta3AjQyPn9dk2e7NVJJ1kXDPbII0HdfHOYYDAAAAAAAAAAAIAdFA4buv/+sPbeO63bbgtq9WpXzns4+uiopk2Lat48n0491bfVMLBfJZNJ0zXd7j8PPdt/f7dmz/bq/vvD8noN0zX+Sipl0/DhQbVvH9fChebDzQAAAAAAAAAAAAAAAAAA/4dQMAAA8pj5UDBChgCr+Xx2TZrk1SmnWBcM9uijQd1wA8FgAAAAAAAAAAAAZmzaZOgf/wirpMTQXXcFtHZt7sPAOneO6IMPYvr4Y5+6dPFt9/gdCQWz2/96PdnhsOmOOwKaPz+l0tKY6Tpbs2SJV0cd5dKgQSGlUqx7AQAAAAAAAEBjkkwmFQqF6roNAAAAAAAaFELBAADIYzU15h7VzZpt263TALaP12vX22971bWrdcFgTzwR1LXXRggGAwAAAAAAAAAA2EYbNqR1zz0h7bWXob//PaCqKmfOezjppIhmz45p5ky/jj/ea3qeVCplYVdbdsghbn36qUcDB4bkchlZqZFI2DV4cFBHHRXXl1/Gs1IDAAAAAAAAAJBfpk+P6j//WaGfflrNmQgAAAAAACxEKBgAAHnKMDKqrXWYGltcTCgYkC0ej11vveXTqaeGLZvzqacCuuqqMItgAAAAAAAAAAAAf6G6Oq077gippCSjoUODqq3NfRhYt24RzZsX03vv+dWpk/kwsF+ZDQWz27dv25fTadPgwUHNm5dU69YxUzW3xYIFXrVv79IDD4SUTrP2BQAAAAAAAAANkWFkNHhwWKee6lWfPnvo7LN317/+Zd3l6wAAAAAANHaEggEAkKd++cVQImHuUd28OY94IJvcbpvefNOv006zbtFq1KigrrgiQjAYAAAAAAAAAADA76xbl9LNN4e0997S8OFBbdyY2zAwmy2jM84Ia8GCuCZP9uvII3c8DOxX6XTa1LjtDQX7Vbt2Hi1Y4NHtt4fkdGZnXSoatat//6COOSamb79NZKUGAAAAAAAAAKBu1Nam1a1bVIMGBZRO2/Tdd1598YVfw4c7OA8BAAAAAIBFSAwBACBPrV1rbvO3JBUX2yzsBMCWuFw2vf66T2eeGbZsztGjA7r0UoLBAAAAAAAAAAAAJOnnn1O67rqQ9t7bpkceCWrTJkdO6zscGfXoEdbixUlNnBhQu3Yey2vkOhRM2nwBzvDhQX30UVz77x83Pc/WzJ3rU2mpQ489FmL9CwAAAAAAAAAagDlz4tpvv4ymT/f/4bMvv/TqrbeiddAVAAAAAAANjy2TybDjCgCAPPTRRzEdd5y5G6arq9MqLMzthnigsUqlMjr33IjeeCNg2ZwXXRTW2LF+ORwE/AEAAAAAAAAAgMZn1aqk7r03rhdf9Csazf2dh05nRj16RHTPPU4dfLD1QWD/6+STf1FlpVsFBWkVFKT+//+l//vXJk1SKiz8v793uzdv9fL5fGrVqtUO149GDd1+e0QjRwZkGNlbmzr++IjGjnVpr71cWasBAA3FokWLVFpaus3fX7hwoQ477LDsNQQAAAAAABq9jRulSy9N6PXXXZL+/F1y27YxLV5s7iwUAAAAAAD4P866bgAAAGzZ2rWGqXFOp6EmTXK/MR5orJxOm1591a/zzw9rwgRrgsHGjQsonQ7rxRcJBgMAAAAAAAAAAI3HihVJDR2a0L/+5VM8Hsx5fZfLUK9eUQ0Y4NL++1t3IcxfWbHCreXLt/2AVCCQVpMmad1++0Zdf/2O1/f57Hr88aDOPjumPn3sWrHCveOTbsHMmX61bZvWQw+FdemlftntrIEBAAAAAAAAQL5bt0566KGM/vlPKZnc+vvjzz/3avLkmE49lWAwAAAAAAB2BIkhAADkqfXrM6bGFRSk2UAN5JjTadP48X6de27YsjlffjmgCy+MKJ0292cBAAAAAAAAAABAffHttwldfHFY++/v0JgxAcXjud3S5PEY6ts3pGXL0nrxxYD23z87wVhbUlOzfXc6hsMO/fSTW5LD0j46d/ZqyRKn+vULWTrv//rlF4cuvzyg8vKofv45lbU6AAAAAAAAAIAds3KldN110p57ZvTggzYlk9t+TunSS53KcAwCAAAAAIAdQigYAAB5av16c+OKigxrGwGwTRwOm156ya/zz7cuGOyVVwI677yIUilWxAAAAAAAAAAAQMPz9dcJnX9+WAcf7NKLLwaUTOZ2K5PXa+iKK0L65pu0xowJau+9XTmtn0oZ2rjRXLhXcbH1/6yCQbtGjQpq6tSodt89Yfn8v5o61a/WraVx46xbVwMAAAAAAAAAWGfECOmJJ6R4fNvDwH61dq1Tt93GxRAAAAAAAOwIQsEAAMhT69ebCwEqKCAUDKgrDodNL77o10UXWXeAYcKEgHr1IhgMAAAAAAAAAAA0HEuXJtSzZ1itW7s0fnxAqdT2HyraEX5/WtdeG9Ly5YaefjqoPffMbRjYr9avTyqdNvffvUULc2Fi26JrV5+WLHHowguzF9pVU+NU794BnXVWWOvXczgMAAAAAAAAAPKFYWTkcEQkmT/DMGKEQ598Yl1PAAAAAAA0NoSCAQCQp6qqzG3+btqU4CCgLjkcNj3/vF8XX2zdIYnXXw+oZ8+Ikkl+fwMAAAAAAAAAgPpr4cK4uncP69BDXXrttYDpQCyzgsG0broppO+/z+jxx4PadVdnTuv/3s8/J02Pbd48e6FgktSkiUPjxgX0xhsRNW9uvs+tefPNgFq3zuj11yNZqwEAAAAAAAAA2Da1tWmVl0f1yCN+Sebf4WcyNp11VkZr11rXGwAAAAAAjQmhYAAA5KnqarOhYIbFnQDYXna7Tc8951ffviHL5pw4MaAePQgGAwAAAAAAAAAA9c+nn8ZUXh5WWZlbEycGZBi5DQPbeee0br89pBUrpBEjgmrevG7DwH61Zk3a9NjddnNb2Mmf697dry++sKtHD+suxPm9detc6tHDr/PPD6u21vw/EwAAAAAAAACAeRUVcZWVpTV1qt+S+dats6lXLymVsmQ6AAAAAAAaFULBAADIU9XV5h7TTZta3AgAU+x2m559NqB+/awLBnv77YC6d48okSAYDAAAAAAAAAAA5L85c2Lq0iWiI4/0avLkgDKZ3IaBFRSkdPfdm8PAhg8PqqjIkdP6W7N2rbkLn3w+QzvvnLtgs6IihyZMCOjllyMqKsre6a3x4wNq3drQ5MnRrNUAAAAAAAAAAPzR2LERderkUmWltRdSzJolPfWUpVMCAAAAANAoEAoGAECeqqkx95hu1sziRgCYZrfb9PTTAV15pXXBYJMnB3TmmVGCwQAAAAAAAAAAQN768MOYTjwxoqOP9urdd/05r9+0aUqDB4e1YoVNQ4cGVVCQX2Fgv1q/3tx6T5Mm2Qvm+ivnnefX0qVSeXk4azVWr3apvNynSy8NadMmc6FpAAAAAAAAAIBtk0hk1K9fWH37+hWNWn/cuHXrhK64wvJpAQAAAABo8AgFAwAgT9XUmNuY3qwZj3cgn9jtNj35ZEDXXmtdMNjUqX6ddlpUsRgHIQAAAAAAAAAAQP54772ojjkmqs6dvfrgg9yHgRUXJzV0aEiVlXYNHBjQzjvnZxjYr6qqbKbGFRSkLe5k27Vo4dSkSQE991xEu+ySvXCy554Lqk2blN5/P5q1GgAAAAAAAADQmK1cmVTHjnGNHh3IWo3ly53asKFuLroAAAAAAKA+IzUEAIA8lEhktGmTuQ3qxcXmNo4DyB673aZHHw3o+uutCwZ7912/TjstpmiUYDAAAAAAAAAAAFB3DCOjKVOi6tAhqlNO8enjj30576Fly6QeeCCkykqH7r47qGCwfmyJMhsKVlhYd6Fgv+rTx68lSzI66aRI1mqsXOnWySd7dc01IUUirIkBAAAAAAAAgFWmTYuqfXubFizwZrVONGrXww/HsloDAAAAAICGqH7sgAMAoJFZs8b8LRjNm/N4B/KR3W7TI48EdNNN1gWDzZjhV3k5wWAAAAAAAAAAACD3DCOjiRMjOuKIuE491ad583IfBrb77gn9859hff+9Q7fdFpTfX7/WSmtq6m8omCTtsYdL06f79OSTYQWD2ekpk7Fp5MigDj00qU8+4eAYAAAAAAAAAOwIw8ho8OCwysu9qqpy5qTmM894tXFjfrzXBgAAAACgvqhfO+EAAGgk1q41H/BTXMzjHchXdrtNI0YEddtt1gWDffCBX926xbgdHQAAAAAAAAAA5IRhZDRhQkTt2sXVvbtfCxZ4c95DSUlCTz4Z1vLlLt1wQ0Beb/1cI62udpgaV1SUsbgT8+x2m66+OqBFi9Lq1CmatTrffefRccd5dMstIcVirIsBAAAAAAAAwPaqrU2rvDyqQYMCSqfNXVphxsaNTj3+ePbeHwMAAAAA0BDVzx1xAAA0cOvWmd/E3Lx5bm7qAGDeAw8E1b+/dcFgs2b51bVrXOEwByAAAAAAAAAAAEB2pNMZvfRSRG3bxnXOOX4tXpz7MLBWreIaNSqsb7916eqrA3K7c3doKRtqa82FghUW5t+aUKtWbn34oVcPPRSWz5ed/tLpzRfwtGuX1Pz58azUAAAAAAAAAICGqKIirrKytKZO9ddJ/See8Cgazb932wAAAAAA5CtSQwAAyEPr1pm72XnnndNyu81tHAeQW8OGBWW3h3T//UFL5ps926cuXaKaNs2jYJDsXwAAAAAAAAAAYI1UKqN//SuqYcMcWrasbg4LHXBAXHfemdKFF/rlcHjqpIdsuPXWn/Xzzy5t2OBUba1DtbV//OvGjQ5lMr8NP2vWrI4a3gq73aZbbgno1FMT6t07rc8+82WlzldfedShg6H+/UP6+98DcrnqdzgcAAAAAAAAAGTT2LERXXONV9Fo3Z0zWLvWpVGjwrrhhkCd9QAAAAAAQH1CKBgAAHlo/Xpzt18UFqYlEQoG1Bf33ReU0xnSkCHWBIN98olPp5wS1fTpHu20E8FgAAAAAAAAAADAvFQqo7FjIxo+3Knly+smDOyQQ2K66y5D557ra1BhYL9q3z6y1e+k09LGjb8NCjv66OyEbVnlwAPdmjs3o/vvD2noUL/icevXrVIpu+69N6h33olp3Di72rRxW14DAAAAAAAAAOqzRCKja66JaPTo/AjieuQRl665JiOnk4seAAAAAADYGpICAADIQ+vWmRtXWGguTAxA3fnHP4IaPDhs2Xxz5/p0yilxbdrEnwcAAAAAAAAAAGD7JRIZPflkWPvtl9Tllwe0fHnuw7gOPTSmf/87os8/9+j88/1yOBreAaFUKrVN33M4Nl8O1apVXO3bR3Tyyb+oVav83/LlcNg0YEBQn36a0qGHxrJWZ/Firw4/3KmhQ0NKpzNZqwMAAAAAAAAA9cnKlUl17BjPm0AwSVq50q1x46J13QYAAAAAAPVC/u8QAwCgEaqqMrepnVAwoH4aODCgIUNCls03b55PJ54Y18aNacvmBAAAAAAAAAAADVssZuif/wyrVaukrr02oBUr3DnvoawspjffjKiiwqOePf2y2xteGNiv4vG46bFud+7/3ZjVtq1bn33m0V13heV0Zmc9Ox636557gurYMaavv05kpQYAAAAAAAAA1BfTpkXVvr1NCxZ4LZ97r70SatJk2y692JIHHnDIMLjgAQAAAACArSEUDACAPFRdbW5c06a8GAfqqwEDgrrvvrBl8332mU8nnpjUhg0EgwEAAAAAAAAAgD8XiRh68MGQ9tknrZtuCujHH3MfONWhQ1STJ0f16acenXlmww4D+1UymTQ9tj6FgkmSy2XTvfcGNGdOUgcdZD4MbWs+/dSndu2cGjEizKEyAAAAAAAAAI2OYWQ0eHBY5eVeVVU5LZ+/S5eIFi506PrrY6bn+Pprj958M2phVwAAAAAANEyEggEAkIeqq809ogkFA+q3O+8MaPjwkGXzLVjg1QknJFVbSzAYAAAAAAAAAAD4rVDI0L33hrT33mndfntQP//synkPxxwT1bvvRjVnjk/duvkaRRjYrxKJhOmxLlfu/11Z4fDDPaqocOmmm0JyOLKzth2N2nXLLQF17hzT8uXm/xkDAAAAAAAAQH1SW5tWeXlUgwYFlE5b+67dbs9o4MCQpkzxqaDAoZtu8mnnnc2fURg2rPGsBQAAAAAAYBahYAAA5CGzoWDNmvFiHKjvbr89qIceCls238KFXh1/fFI1NQSDAQAAAAAAAAAAaePGtAYPDqukxNCAAUGtW5f7gKkTToho1qyYPvrIp5NP9uW8fj5IpVKmx9rt9XfLl9dr14gRQc2cGVerVvGs1Zk926fSUoeeeiosw+ByLQAAAAAAAAANV0VFXGVlaU2d6rd87qKilCZNimnw4OB/L/Zo0sShSy+Nmp5z/nyf3n3X/HgAAAAAABqD+rtDDACABqymxmFqXLNmFjcCoE7ccktAjzxiXTDY4sWbg8GqqwkGAwAAAAAAAACgsaqtTWvAgJBKSjIaNCig6mpnzns45ZSIPv44pvff9+u447w5r59PksmkqXE2W8O4KOqYY7z6/HOXrroqLJstO6FdmzY5dPXVAXXpEtWqVeb+eQMAAAAAAABAPhs7NqJOnVyqrHRbPndpaUzz52fUrdsfL/e4/XavfD7D9Nz3389lDgAAAAAA/BVCwQAAyDOGkdGGDeZCwYqLG8YGcADSjTcG9NhjIcsOQXz+uVedOye1bp35W+cBAAAAAAAAAED9U12dVv/+IZWUSPfeG9SGDbkNA7PZMjr11LA+/TSu6dP9Ovroxh0G9qt02txlLg0lFEyS/H67Ro4M6N13Y9pzz0TW6syY4VfbtjY9/3wkazUAAAAAAAAAIJcSiYz69Qurb1+/olHrjwn37RvWnDlulZS4tvh5ixZOXXih+Xeus2b5NW9ezPR4AAAAAAAaOkLBAADIM7W1hlIpcxu5i4t5tAMNyXXXBfXEExHLgsGWLvXq+ONTWruWYDAAAAAAAAAAABq6tWtTuvnmzWFgDzwQ1C+/mLuYyCy7PaMzzwxrwYKE3nknoMMP9+S0fr5Lpcyt19jtDW9N+KSTfFq61Kk+fUJZq7Fhg1N9+vh1+ulh1soAAAAAAAAA1GsrVybVsWNco0cHLJ/b5zM0alRYY8YE5PX+9fvoO+/0yOk0TNe67z5zl2cAAAAAANAYNLxdYgAA1HNr1ph/qd28OY92oKG5+uqARo6MyG63Jhjsyy+96tw5rTVrOOwAAAAAAAAAAEBDtHp1StddF9I++9j0yCNBhUK5DQNzODLq0SOsxYuTevPNgEpLCQPbEsMwd1DK4cjtv89c2Wknu557LqhJk6Ladddk1upMmhRQ69bSK69EslYDAAAAAAAAALJl2rSo2re3acECr+Vzl5QkNHt2Uv36bVvY2N57u9SjR9R0vcmT/frii4Tp8QAAAAAANGQkhwAAkGfWrjV/S0bz5g1zAzjQ2F15ZUBPP21dMNjXX3vUuXNaP/9MMBgAAAAAAAAAAA3FDz8kdeWVIbVqZdcTTwQVieR27dDpzOi888JaujSpCRMCat3andP69Q2hYFtWXu7T0qV29eoVzlqNqiqnzjvPr549w6quNn9pFwAAAAAAAADkimFkNHhwWOXlXlVVOS2fv0uXiCoqHCor276LPu6+2yWbzdw5B8Ow6d57s3dJBAAAAAAA9RmhYAAA5Jl168xt/vZ4DO20E492oKHq1y+gUaMicjisCQZbtsyj445L66efCAYDAAAAAAAAAKA+q6xMqm/fkPbbz6FnngkqFsvtmqHLZah377C+/DKpl18O6MADCQPbFmZDwZxO6w975ZuCAofGjw/o3/+OqFmz7B0Ie+21gFq3NjRxYiRrNQAAAAAAAABgR9XWplVeHtWgQQGl0zZL57bbMxo4MKQpU3wqKNj+Sylat3arWzfz71gnTPCpspJgMAAAAAAAfo/kEAAA8ozZULDCwrTsdmtf7gPIL5deGtCYMdYFg3377eZgsFWrWEQDAAAAAAAAAKC++eabhC66KKwDDnBo7NigEoncbgPyeAxddllY33yT1gsvBLTffoSB5UJjCAX7Vc+efi1datOZZ4azVmPNGpe6d/erd++QNm5MZ60OAAAAAAAAAJhRURFXWVlaU6f6LZ+7qCilSZNiGjw4uEPnke6+e/vDxH6VStk1bFjc9HgAAAAAABoqQsEAAMgz69ebG1dQwAZloDG4+OKAnnsuIqfTmmCw5cs96tw5ox9+IBgMAAAAAAAAAID64Msv4+rVK6xDDnHpX/8KKJnM7fYfn8/QVVeF9e23aT37bEAlJa6c1m8IDMPcRVGS5HI1rn/excVOvflmQC+8EFZBQSprdcaNC6p167SmT49mrQYAAAAAAAAAbI+xYyPq1MmlykrrL+UoLY1p/vyMunXz7fBcHTp4ddxxEdPjx43za+3a7L3/BQAAAACgPiIUDACAPGM2FKyoyJqAIAD5r3fvgF54ISqn0/yBkf/1/fduHXdcRitWEAwGAAAAAAAAAEC+WrIkoR49wmrb1q1XXw0olbLltL7fn9Z114W0fLmhkSMD2mOPxhVOZaVEImF6bGMLBftV794BLV0qdeli/mDZ1vz4o1t/+5tXV1wRUjhszTocAAAAAAAAAGyvRCKjfv3C6tvXr2jU+iPAffuGNWeO29JLP+66y/yaRTRq1wMPxCzrBQAAAACAhoBQMAAA8kx1tbkX4U2bsikZaEzOP9+vf/0rZlkw2IoVbnXunFFlJcFgAAAAAAAAAADkk4qKuM44I6xDD3Xp9dcDSqdzGwa2005p3XxzSJWVGT32WFAtWzpzWr8h2pFQMLfbbWEn9cuuuzo1ZYpPzzwT1s47p7NSI5OxadSooNq0SenDDzmEBgAAAAAAACC3Vq5MqmPHuEaPDlg+t89naNSosMaMCcjrtfZo8Smn+FRWZv6d6ujRPm3YkJ33vgAAAAAA1EeEggEAkGfMhoIVFVncCIC8d+65fr38ckwulzXBYCtXbg4GW77c/EEUAAAAAAAAAABgjXnzYurWLaKyMo/efjugTCa3YWC77JJS//4hVVZKDz8cVHExYWBWIRTMPLvdpssvD2jxYkOdO0eyVqey0q0TTvDo+utDika5oAsAAAAAAABA9k2bFlX79jYtWOC1fO6SkoRmz06qXz/rw8Z+1b+/+Xepv/zi0KOPclEDAAAAAAC/IhQMAIA8U11t7vHctGnG4k4A1Ac9e/o1fnxMbrc1hxF++MGtzp2lb78lGAwAAAAAAAAAgLrw8ccxnXxyRB06eDV1qj/n9QsLUxowIKQVK2waNiyooiJHznto6JLJpOmxTifhbJJUUuLS++/79OijIfn96azUMAybHn88qNLSpObN4zAaAAAAAAAAgOwwjIwGDw6rvNyrqirr3wF36RJRRYVDZWUey+f+X2ef7dOBB8ZNj3/ySTeXNAAAAAAA8P8RCgYAQJ4xGwrWrFlubwYHkD/OPtuvV16JyePZxgWwnVdJp18mXXaUdPJtkjv0m49//NGtzp1tWraMYDAAAAAAAAAAAHJl5syYjj8+omOO8WrGjNyHgTVtmtI//hHSihV2DRkSVJMmhIFlSyqVqusWGgS73abrrw9q4cK0OnSIZq3OsmUeHXOMR3fcEVIiwWVdAAAAAAAAAKxTW5tWeXlUgwYFlE5bey7Ibs9o4MCQpkzxqaAg++/87Xabbr3V/Pvv9etdevrp7L3rBQAAAACgPiEUDACAPFNba+5Fe7NmFjcCoF7p3t2vCRPiWw8G86+X+hwrtRsj7f4f6eiHpHO7/+Frq1e7dMIJNn39NcFgAAAAAAAAAABk0/TpUXXqFNUJJ3g1a1buw8CaN0/q/vvDWrHCrnvuCWqnndhOlG1mQ8FsNi6K2pL993dr9myvhg0Ly+vdxkt0tlMqZdPw4UG1bx/XwoXxrNQAAAAAAAAA0LhUVMRVVpbW1KnWrw0UFaU0aVJMgwcHZbfn7t3yxRf7tdde5s8gPPKIS8kklzMAAAAAAMAuPgAA8kgkYigSMRcK1rw5j3WgsTvtNJ9efz3+14cdTrxLKljx25+1miHt8sMfvrp6tUvHH2/Tl19ysAEAAAAAAAAAACsZRkbvvBPVUUdF1bWrT5984st5D7vumtRDD4VVWenQHXcEFAiw3pgr6XTa1Di7nX9Hf8bhsKl//4Dmz0+ptDSWtTpLlnh11FEu/f3vIaVSHEwDAAAAAAAAYM7YsRF16uRSZaXb8rlLS2OaPz+jbt1yv/bgdNp0441J0+NXrXLrhRciFnYEAAAAAED9xE4xAADyyJo15m6ElqTiYh7rAKRTT/XpzTdj8vm2EAy226dSuzFbHmjbcpDYmjUunXCCXV98Yf62HgAAAAAAAAAAsJlhZPTGGxEdfnhMp53m03/+k/sDOXvskdCjj4a0fLlDt9wSkM/HOmOumQ0FczjMXTDVmBxyiFuffurRwIEhuVx/cZHODkgk7PrHP4I68sg4l+sAAAAAAAAA2C6JREb9+oXVt69f0aj17+f79g1rzhy3Skpcls+9ra64wqfiYvPBYA895JRhcCkDAAAAAKBxY1cfAAB5ZO1a85uSW7RgAziAzbp29WvixPhvg8FshtTtGsm2hcWx1WXShpI/nW/tWpeOP96mJUsIBgMAAAAAAAAAwAzDyOjVVyMqLY3r7LP9qqjIfRhYSUlCI0eGtXy5S9dfH5TXy7ahujJ3rkfz5gW0bJlX69Y5lUzatmkcoWDbxum0afDgoObNS6p161jW6lRUeNW+vUvDh4eVTnNADQAAAAAAAMBfW7kyqY4d4xo9OmD53D6foVGjwhozJlDn7/99Pruuvdb8hQrLlnn02mtRCzsCAAAAAKD+sWUyGXYkAQCQJyZOjKh7d/92j7PbM4rHN29uBoBfzZgR1RlnuBWJOKSyZ6TTrtzyF5+bLf3QaavzNW2a0nvvpXXYYR6LOwUAAAAAAAAAoGFKpzN6+eWI7r/fqa++qpv36/vuG9cdd6R08cV+1hPzxIEHRrVs2W+D4YLBtAoKUioo2PzXJk3SKizc/PdNmqRUWJhWWZldRx21Rx11XT8lEhndc09YI0YElEpl79d/hw5RvfCCQ/vt585aDQCNx6JFi1RaWrrN31+4cKEOO+yw7DUEAAAAAAB22LRpUV10kUtVVU7L5y4pSei11zIqK8ufff4bN6a1114Zbdxo7r9vaWlM8+d7ZLezrgEAAAAAaJysf4MAAABMW7/eXFbnLruk5XTyWAfwWyed5NOkSTH97aa3lCj/k0CwxRduUyCYJFVVOXXSSdK778bVrl3+LBgCAAAAAAAAAJBvUqmMxo2Latgwh775JlAnPRx4YFx33pnSBRf45XDwXj+f1Nb+cW03FHIoFHJo1ao/H/fggzU66qgsNtYAud02DR8e1JlnxnTJJTZ98012fi/MnetTaWla990X0rXXBjioBgAAAAAAAECSZBgZDRkS0ZAhfqXT1r837NIlovHjPSoocFg+947YZReHLr88pAcfDJoav3ChV+++G1XXrr6tfxkAAAAAgAbIXtcNAACA/7NunblQsMLCtMWdAGgINsU36c3YbUqcdba0pfXD+E7Sew9s15zV1U6dfLJD8+fHrWkSAAAAAAAAAIAGJJnM6JlnwjrggIT69vVnLYDor7RuHdPLL0e0dKlbvXsH5HAQTpRP0mlDtbXmDmcVF/Pv0qwOHbxatMila68NyW43ty6/NeGwQzfcENRJJ0W1cmUyKzUAAAAAAAAA1B+1tWmVl0c1aFDA8kAwuz2jgQNDmjLFl3eBYL+69VavfD7D9Pj777ewGQAAAAAA6hlCwQAAyCNVVebGFRaaf0kOoGGa/M1kHTLyED3x2RN//qVZg6RQy+2eu6bGqVNOceg//4mZbxAAAAAAAAAAgAYkkcjoiSfC2nffpK68MqDvv899GNhhh8X02msRLV7s0Xnn+QkDy1MbN6aVTJrbstW8eX4e7KovfD67Hn88qPffj6ukJJG1OjNn+tW2rV3PPhuWYWQngAwAAAAAAABAfquoiKusLK2pU/2Wz11UlNKkSTENHhyU3Z6/awHFxU717h0xPf6jj3z65BPOLAAAAAAAGidCwQAAyCNVVeZexhcVsZEYwGbrwut0/uvnq3x8uVb9surPv5iR9J/rTNeprXWqSxen5s1jkQ0AAAAAAAAA0HhFo4ZGjAhrn32Suu66gH74wZ3zHg4/PKq3345qwQKPzj7bn9cHgCCtXp00PbZ5c7Z6WaFzZ6+WLHGqX79Q1mr88otDl18e0KmnRrV6dSprdQAAAAAAAADkn7FjI+rUyaXKSuvXDEpLY5o/P6Nu3XyWz50Nd9zhkctlmB5/333mxwIAAAAAUJ+xUwwAgDxiNhSsaVNCwYDGLpPJ6MXFL+qgJw/S+KXjtz4gUiQZrh2quXGjU126uDRnDsFgAAAAAAAAAIDGJRIxNHx4WPvsk9YttwT000+5DwPr0CGqqVOj+vRTn047zUcYWD3x88/mQ8F22y33v84aqmDQrlGjgpo6Nardd09krc60aX61aSONGxfOWg0AAAAAAAAA+SGRyKhfv7D69vUrGrX+6G7fvmHNmeNWScmOnQPIpZISl3r2jJoeP3WqT0uWZO8dLgAAAAAA+YpQMAAA8khNDaFgALZfZW2lur7UVRdPvFg10ZptGuPYtI8ltX/5xaG//c2ljz8mGAwAAAAAAAAA0PCFQoaGDg2ppCStO+4IaM2a3B+8OfbYqN57L6o5c3zq2tWX8/rYMevWmVvbdToNFRY6Le4GXbv6tGSJQxdemL3Qrpoap3r3Duiss8Javz6VtToAAAAAAAAA6s7KlUl17BjX6NEBy+f2+QyNGhXWmDEBeb3170jw3Xc7Zbebezeeydg0dKj5yzYAAAAAAKiv6t8bAAAAGrDqanOP5qZNLW4EQL2QNtJ6ZO4jav1Ua727/N3tGntkm0IVFFhz6OCXXxzq1s2ljz4iGAwAAAAAAAAA0DBt3JjWwIEhlZQYuueeoNavz30Y2IknRvThhzF9+KFPJ51EGFh9tXatYWpcQUFaDgdbvbKhSROHxo0L6I03ImrePHuHy958M6BDDsnotdciWasBAAAAAAAAIPemTYuqfXubFizwWj53SUlCs2cn1a+f9WFjuXLwwR6Vl5t/L/rGG359913Cwo4AAAAAAMh/7BQDACCP1NQ4TI1r1sxmcScA8t3naz9XhzEddPO7NyuS3P4Fsn1aNtN776VVWGhNMNimTQ6deqpLs2YRDAYAAAAAAAAAaDhqatK6886QSkoyGjIkqOpqZ8576No1ojlzYpoxw69jj7X+QBFyq7ra3NpuQUHa4k7we927+/XFF3b16BHOWo31613q2dOv888Pq7aWf6cAAAAAAABAfWYYGQ0eHFZ5uVdVVdavH3TpElFFhUNlZR7L5861u+4yd15KklIpm4YNy96FDgAAAAAA5CNCwQAAyBOpVEYbN5p7yV1cTCgY0FjEUjEN+GCAykaV6bPVn5mep9BbqLIyj2bMSKtpU2uCwUIhh8rLXfrgA4LBAAAAAAAAAAD1W1VVWrfeGtLee0vDhgW1YUNuw8BstoxOOy2izz6La+pUvzp0IAysoaiqMjeOULDcKCpyaMKEgF5+OaKiImvW0LZk/PiAWrc2NHlyNGs1AAAAAAAAAGRPbW1a5eVRDRoUUDpt7Zkeuz2jgQNDmjLFp4IC82Fa+eTII7064YTtvwz9Vy+95NPPP2fvnS0AAAAAAPmGUDAAAPJEVVVahmFuIaB5cx7pQGPw0cqPdOjTh+re2fcqZezYglaRv0iSVFrq0fvvG5YFg4XDDp12mkvvvccBBgAAAAAAAABA/bNmTUo33hhSSYn08MNB/fJLbg/b2O0Zde8eVkVFQm+/7Vf79p6c1kf2VVebW9stKiIULJfOO8+vpUul8vJw1mqsXu1SeblPffuGtGmTkbU6AAAAAAAAAKxVURFXWVlaU6f6LZ+7qCilSZNiGjw4KLvd2rCxunbnneb/+8Ridj34IJeXAwAAAAAaDxJEAADIE2vWmN/EXVzMIx1oyDbGNurKd67Ucc8fp2+qv7FkziJf0X//c9u2bn3wgaHi4qQlc0ciDp1xhkfTpxMMBgAAAAAAAACoH376KaVrrglpn33sevTRoMLh3IaBORwZnXNOWJ9/ntQbbwR02GGEgTVUNTXm1nYLCwmNyrUWLZyaNCmg556LaJddrLlgZ0vGjg2qTZuU3n+ftTUAAAAAAAAg340dG1GnTi5VVrotn7u0NKb58zPq1s1n+dz54KSTfDriCPPvQUeP9qm2lgs0AAAAAACNAwkiAADkiXXrzG/ibtnSaWEnAPLJxK8n6uCRB+uZBc9YOm+Rv+g3f9+mjVsffJBR8+bWBINFo3Z17+7R1KkcXgAAAAAAAAAA5K+VK5O6/PKQ9t3XrpEjg4pGc7uVxuk0dMEFYX3xRVKvvhrQIYdYf4gI+aWmxlzgXFFRxuJOsK369PFryZKMTjopkrUaK1e6dfLJXl1zTUiRCAFwAAAAAAAAQL5JJDLq1y+svn39WVlL6Ns3rDlz3CopcVk+dz7p39/8u+5Nmxx65BHOJwAAAAAAGgdCwQAAyBNr15rb2Ov3p+X380gHGpo1oTXqOaGnur/aXas3rbZ8/kJf4R9+dsghbn3wgaGWLa0LBjvrLI/eeYeFNwAAAAAAAABAflm+PKE+fcLaf3+Hnn02qFgst+ttbrehSy4J6+uvU/rXvwI64ADCwBoLv9/QLruktntc06aEgtWlPfZwafp0n558MqxgMJ2VGpmMTSNHBnXooUl9/HEsKzUAAAAAAAAAbL+VK5Pq2DGu0aMDls/t8xkaNSqsMWMC8nob/tmgM8/06eCDzb//fOopr8JhLlYAAAAAADR8zrpuAAAAbFZVZW5cQUFakrnbpAHkn0wmo+cWPqdb37tVG2IbslanyFe0xZ8ffLBHH3yQ0IknJrV69Y7fMhSL2dWjh0evvhrRGWf4d3g+AAAAAAAAAAB2xLJlCQ0ZktSrr/qUSuU+iMvrNXTRRRHdfbdHe+1l/eEh5L9Ro1ZIklIpacMGhzZscKq21qmams3/uabGodpapzZscKimxqna2s0/b9nSVreNQ3a7TVdfHVCXLgldcklCH3/sy0qd777zqHPnjK6/PqT77vM3ioOAAAAAAAAAQL6aNi2qiy5yqarKa/ncJSUJvfZaRmVljWe9wG636fbb07rkEnPjq6qcGjkypNtuC1raFwAAAAAA+caWyWS4RhIAgDxw550hDRu2/S+l27aNafFi6xcXAOTedzXf6fJJl2vmiplZr1V5Q6VKmpT86efffJPQCSdIP/1kzYEot9vQ+PExnXUWwWAAAAAAAAAAgNz78su4Bg9O6fXX/Uqncx+u5PMZ6tMnorvu8mq33bjDr7EyDENffvmlqbHNmzdXs2bNLO4IZhlGRo88EtE99/gUjWYvtOugg+J68UWpfXtP1moAyD+LFi1SaWnpNn9/4cKFOuyww7LXEAAAAAAAjZBhZDRkSERDhmRnXaFLl4jGj/eooMBh+dz5LpXKaL/9klqxwtxZhd12S6iy0iWXi8s0AAAAAAANF9cIAgCQJ6qqzL2MLiw0LO4EQK6ljJQe+OQBtXmqTU4CwSSpyFf0l5/vv79bM2dKu++esKReImFXr15evfZaxJL5AAAAAAAAAADYFosWxXXWWWG1aePWv/8dyHkgWCCQ1g03hPT994aefDJIIFgjF4/HTY91u625yAXWsNttuuWWgCoqUjriiGjW6nz1lUcdOrg0YEBIySR3fwIAAAAAAAC5UFubVnl5VIMGWb+uYLdnNHBgSFOm+BplIJgkOZ023Xxz0vT4n35y67nnOJcAAAAAAGjYCAUDACBPVFebG9e0KRt/gfqs4ucKHfHsEeo/o79iqVhOajrtTgXdwa1+b7/93Jo1S9pzT2uCwZJJu84/36t//5sFOAAAAAAAAABAdi1YENfpp4fVrp1bb74ZkGHkNgxs553TuuWWkFaskP75z6BatCAMDFIiYX7NhVCw/HTggW7NmePVkCEheTzZudArlbLr3nuDOvzwuJYssWbdDgAAAAAAAMCWVVTEVVaW1tSpfsvnLipKadKkmAYPDspuz+26Rb7p18+nFi3MB4M9/LBT6TTnqQAAAAAADRehYAAA5ImqKnOP5aIiXmID9VEkGdHt792uI549QgvXLMxp7SJfkWy2bVtEbNXKrQ8/tKmkxLpgsAsu8Gr8eILBAAAAAAAAAADWmzs3pq5dI2rf3qNJkwLKZHJ7qGaXXVK6446QKiulhx4KqmlTR07rI7/tSCiYx+OxsBNYyeGwacCAoD79NKVDD83eJUCLF3t1+OFODR0a4rAbAAAAAAAAkAVjx0bUqZNLlZXWX9JQWhrT/PkZdevms3zu+sjrteuaa+Kmx3/7rUf//nfUwo4AAAAAAMgvhIIBAJAnqqvNHUho1sziRgBk3QeVH6jtU2314JwHlc6kc16/yF+0Xd8vKXFp1iyb9t7bmmCwVMqu3r19euklgsEAAAAAAAAAANb46KOYTjopoo4dvZo+3Z/z+oWFKQ0cGNLKlTbdf39QhYWEgeGPUqmU6bF2O9u88l3btm599plHd98dktNpZKVGPG7XPfcE1bFjTF9/bc3aHQAAAAAAANDYJRIZ9esXVt++fkWj1r+L7ds3rDlz3CopcVk+d312ww1+NWli/r358OF2GQYXKAAAAAAAGiZ2iwEAkCdqa80dDCAUDKg/aqO1uvStS3Xiiydqee3yOuujyLd9oWCStNdem4PB9tnHqmAwmy65xKcXXwxbMh8AAAAAAAAAoHGaMSOq446L6rjjvHr//dyHgTVtmtKQISGtXGnX4MFB7bILYWD4c8lksq5bQJa5XDYNHRrUnDlJHXRQPGt1Pv3Up3btnHr44TCH3gAAAAAAAIAdsHJlUh07xjV6dMDyuX0+Q6NGhTVmTEBeL0d5f2+nney64oqY6fGLF3s1bZr58QAAAAAA5DPeJAAAkAcMI6OaGnMHBIqLeZwD+S6TyWjCFxN00JMH6blFz9V1Oyr0FZoat+eeLn30kV377mvNAYZUyqa+ff16/vmIJfMBAAAAAAAAABqPadOi6tgxqpNP9umjj3w5r9+iRVLDhoW1YoVdAwYEFQyyZoetS6VSpsbZ7fz6qm8OP9yjigqXbropJIcjO6Fd0ahdt94aUOfOUS1fbs3FPgAAAAAAAEBjMm1aVO3b27RggdfyuUtKEpo9O6l+/awPG2tIbr3VJ78/bXr8ffdZ2AwAAAAAAHmEHWMAAOSBcDijeNzcY5lQMCC//fTLT+r+aned89o5WhteW9ftSJKKfEWmx+62m1MffujQ/vtbEwyWTtt02WU+jR4dtmQ+AAAAAAAAAEDDZRgZTZoU1RFHRPW3v/k0d27uw8B23TWpESPC+v57h/r3DygQYK0O2y6dNnewiVCw+snrtWvEiKBmzYqrVStr1ta2ZPZsv0pLHRo5MizDyE4AGQAAAAAAANCQGEZGgweHVV7uVVWV0/L5u3SJqKLCobIyj+VzNzRNmzp0ySVR0+M/+cSn2bNjFnYEAAAAAEB+YMcYAAB54Oefzd0ILUnNm/M4B/KRkTH09PyndfDIg/XWsrfqup3fKPKbDwWTpF13dWrWLIcOPNC6YLArrvDrmWcIBgMAAAAAAAAA/JFhZPTaaxGVlcV1+uk+ffZZ7sPA9twzoccfD6uy0qmbbgrI52ONDtuPULDGqVMnrz7/3KWrrgrLZstOaNemTQ5dc01AXbpEtWpVMis1AAAAAAAAgIagtjat8vKoBg0KKJ22WTq33Z7RwIEhTZniU0GBw9K5G7L+/T1yuw3T4++91/xYAAAAAADyFTvGAADIA2vXmn8B3bw5CwVAvllWtUydn++sqyZfpV/iv9R1O39Q5NuxUDBJatnSqZkzHTroIGuCwQzDpquu8uuppwgGAwAAAAAAAABsZhgZjR8f0aGHxtWzp1+LFnlz3sM++yT09NNhffedS9deG5Dbbe0BITQuhmFuXdjhYE24vvP77Ro5MqB3341pzz0TWaszY4ZfbdrY9PzzkazVAAAAAAAAAOqrioq4ysrSmjrVb/ncRUUpTZoU0+DBQdntrCVsjz33dOncc6Omx0+f7teiRdacawAAAAAAIF8467oBAAAgrVtnbvO305lRYSEZn0C+SKQTevCTB/WPj/6hRDp7m/l3VKGv0JJ5WrRwatYs6YQTYvriix0/iJXJ2HTNNX6l02Fde21gxxsEAAAAAAAAANRL6XRGL70U0f33O/X119YfzNkW++0X1513pnXRRT45ne466QENTyaTMTXO6WSLV0Nx0kk+LV1q6IYbQho7NpiVGhs3OtWnj1Ovvx7Ws8961KIFv36AbHnuuef03HPPWT5vKBSyfE4AAAAAABq7sWMjuuYar6JR68/glJbG9MYbDpWU+Cyfu7G46y6XXnopI8MwF6h2770pTZjgsbgrAAAAAADqDjt+AADIA+vWmdv83aRJWnY7j3MgHyxYvUB93uqjJeuW1HUrW1XkL7JsruJip2bNsumEE2JassSaYLDrr/fLMEK6/vrsHIQAAAAAAAAAAOSnVCqj55+P6IEHnPr227q5POKgg+K6886Uzj/fL4fD3MET4M8QCgZJ2mknu557LqizzorqiiucWr3alZU677wTUOvWKT3xRES9etVNwCLQ0P3www/65JNP6roNAAAAAADwFxKJjK65JqLRo7Oz7tC3b1hPPumT12t92FhjcuCBbp1xRlhvvmnu39PEiX59+21C++3HRS8AAAAAgIaBNw0AAOSBqipzm78LC9MWdwLAjPmr5+u454+rF4FgklTksy4UTJKaNnVo5kyXDj00Zsl8mYxNN9wQ1COPhC2ZDwAAAAAAAACQ35LJjJ56Kqz99kuqX7+Avv029ze5t20b0yuvRLR0qVsXXRQgEAyWMwzD9FiXKzuhUahb5eU+LV1qV69e2VsTq6526rzz/OrZM6zqavYXAAAAAAAAoHFZuTKpjh3jWQkE8/kMjRoV1pgxAQLBLHL33eYvyEilbLr//oSF3QAAAAAAULd42wAAQB5Yt87cuKIi8xvHAVjnoTkPKZysPwFWRX5rQ8EkqajIoQ8+cOmww6wJBpOkm28O6MEHQ5bNBwAAAAAAAADIL7GYocceC6lVq6SuvjqgFStyf3t7aWlMr78e0cKFHp17rl92O2FgyI5UKmV6rNNp/iAU8ltBgUPjxwf0739H1KxZMmt1XnstoNatDU2cGMlaDQAAAAAAACCfTJsWVfv2Ni1Y4LV87pKShGbP3nzRCaxTVubRSSeZf4f58st+/fST+XfxAAAAAADkE0LBAADIA1VV5g4XEAoG5IfVm1bXdQvbpdBXmJ15CzcHg7VrZ10w2O23BzV8eP0JXAMAAAAAAAAAbF00aujhh8Nq1SqtG24IatWq3IeBHXlkVJMmRTV/vkdnnUUYGLIvHo+bHuvxeCzsBPmoZ0+/li61qXv37K2LrVnjUvfufvXuHdLGjems1QEAAAAAAADqkmFkNHhwWOXlXlVVWX/hQpcuEVVUOFRWxnvbbLj7bvNHnuNxu4YPt+4sAwAAAAAAdYlQMAAA8kB1tdlQMIsbAWDKafufVtctbJciX/b+8CgocOj9911q3z5q2Zx33BHQvfeGLJsPAAAAAAAAAFA3wmFDw4aFtffead16a0CrV7ty3sPRR0c1bVpU8+b5VF7uIwwMOZNMJk2PdbtzH5yH3CsuduqNNwJ64YWwCgpSWaszblxQrVunNW2adet5AAAAAAAAQD6orU2rvDyqQYMCSqetff9vt2c0cGBIU6b4VFDgsHRu/J/Onb066ijz7y7HjvWppoZLEQAAAAAA9R+hYAAA5IHqanOP5KZNMxZ3AsCMWzreomsPv7au29gmAVdAHmd2byVq0sShGTPcOuII6w4SDBgQ1JAhBIMBAAAAAAAAQH20aZOhIUNCKikxdOedAa1dm/swsM6dI/rgg5g+/tinLl18Oa8PJBIJ02MdDg6YNSa9ewe0dKnUtWskazV+/NGtbt28uvzykMJhI2t1AAAAAAAAgFypqIirrCytqVP9ls9dVJTSpEkxDR4c5LKRHLjzTvNjQyGHRozgQgQAAAAAQP1HKBgAAHmgpsbcI7lZMxYTgHxgt9n1eLfHNbvPbLVt3rau2/lLRf6inNTZZReHZszwqEMH6xbUBg4M6u9/JxgMAAAAAAAAAOqLDRvSuueekPbay9DAgUFVVTlz3sNJJ0U0e3ZMM2f6dfzx3pzXB36VSqVMj7Xb2eLV2Oy6q1OTJ/v0zDNh7bxzOis1Mhmbnn02qDZtUvrww1hWagAAAAAAAAC5MHZsRJ06uVRZ6bZ87tLSmObPz6hbNy4cyZXycq9atzb/zvKpp7wKhbgMAQAAAABQv+V+tyUAAPiDmhpzNzsXFxMKBuSTTnt20oLLF+iZ+c9owMwB2hDbUNct/UGhrzBntXbaya533/WoS5eo5syxZhH0H/8IyjBCGjIkaMl8AAAAAAAAAADr1dSk9cADUT39tFcbN9bN+9y//S2igQPtOuoof53UB37PbCiYzcaacGNlt9t0+eUBnXJKUn36xDVrVnb+PKusdOuEEzK65pqQhg/3y+cjhA7YVnvuuaeOPvpoy+cNhUJavHix5fMCAAAAANDQJBIZXXNNRKNHB7Iyf9++YT35pE9eL+/Mcslut+m229K6+GJz42tqnHryybD698/OrwsAAAAAAHLBlslkMnXdBAAAjVkikZHHY24j9zvvRHXqqdw2AuSjdeF1uuv9uzRm4Zi6buU3Ttz7RM3oPSOnNcNhQ127xvXxx9b9eXXHHSHdfz/BYAAAAAAAAACQT9atS2nYsJhGj/Zp0yZzl+LsCJsto9NOi2jgQKfKyjw5rw/8le+++06xWGy7xzkcDh100EFZ6Aj1iWFk9MQTYd11l0/hcPb+fD3ggLjGjs2oQwdv1moA2LpFixaptLR0m7+/cOFCHXbYYdlrCAAAAACAPLRyZVJnn53WggXWv8vy+Qw9+mhU/foRKlVX0umM9t8/qe+/d5sav+uuSVVWOuV2c/EGAAAAAKB+IqIcAIA6tm6duRuhJam4mEc5kK+KA8Uaffpozbt0ntrv2r6u2/mvIn9RzmsGAnZNm+bRscdGLZtz2LCg+vcPWTYfAAAAAAAAAMC8n39O6brrQtp7b5seeSSY80AwhyOjs88Oa9GipN56K0AgGPJSOp02Nc5uZ00Ykt1u0/XXB7VwYVodOli35vZ7y5Z5dOyxHt1xR0iJBHeNAgAAAAAAID9NmxZV+/a2rASClZQkNHt2kkCwOuZw2HTzzUnT41evdmnMmIiFHQEAAAAAkFvsGgMAoI6tXWuYHtu8OY9yIN8dufuRmnfpPI0qH6UiX+4DuX6vrnoIBOyaOtWj44+3bmHtgQeCuuWWkAyDAwkAAAAAAAAAUBdWrUrqyitDatXKrieeCCoSyW0YmNOZ0bnnhvX55wm99lpAbduauy0eyAXDMLcu7HDk9vcV8tt++7k1e7ZXw4aF5fWa32vwV1Ipm4YPD6qsLK6KinhWagAAAAAAAABmGEZGgweHVV7uVVWV0/L5u3SJqKLCweUjeeKyy/xq2dJ8MNjDDzuVTnPWAAAAAABQP5EkAgBAHduRULAWLaxfxABgPYfdoX5l/fTNdd/oqvZXySZbnfVS6Cuss9p+v12TJ3t14onWBYONGBHULbeECQYDAAAAAAAAgBxasSKpyy4La7/9HHrmmaCi0dxuP3E6DV14YVhffJHUK68EdPDBHM5B/hswoIWuu25PDRy4mx55pLmef75Ib73VRB99FNSSJT79+KNLkYhdmd8teRAKht9zOGzq3z+g+fNTatculrU6S5d6ddRRLv397yGlUqzFAQAAAAAAoG7V1qZVXh7VoEEBpdPW7se32zMaODCkKVN8KijgnWy+8Hhsuv76hOnxy5d79MorUQs7AgAAAAAgd2yZzO+3kgEAgFx64YWwLrkksN3jdtoprV9+YbEBqI8qfq7QtVOu1dwf5+a89ohTRuimDjflvO7/ikYNnXFGTO+957dszmuvDenRRwOy2+sucA0AAAAAAAAAGrrvvktoyJCkxo/3KZnM/T10brehCy+MaMAAj/be25Xz+sCO2H33hH76yb3V77ndhgoK0iosTKlJk7Suuy6i884rzkGHqI9SqYyGDAnr/vv9Wf1zuV27mF580a5DDtn6r2EAO27RokUqLS3d5u8vXLhQhx12WPYaAgAAAACgjlVUxNWjh02Vlda/nyoqSunFF5Pq1s1n+dzYcaGQob32MlRT4zQ1vk2bmBYt8nDOAAAAAABQ7+R+hyYAAPiNdevM5XMWFqYt7gRArrRr2U4f9/1Yz5/xvIoDuT3EUeQvymm9LfH57Hr7ba+6dIlYNucTTwR13XVhGQaZxwAAAAAAAABgta+/Tuj888M66CCnXnwxkPNAMK/X0BVXhPTtt2mNGRMkEAz1Um3ttl34lEjYtXatS1995dPcuUFFIvx6x59zOm0aPDioefOSat06lrU6FRVetW/v1PDhYaXTrMcBAAAAAAAgd8aOjahTJ1dWAsFKS2OaPz9DIFgeCwbtuuIK8+8+lyzxavLk7L07BQAAAAAgWwgFAwCgjq1fb25cQYFhbSMAcspus+viwy7WN9d+oxuOvEH2HP1P8yJf3YeCSZLXa9fbb/vUrZt1wWAjRwZ19dUEgwEAAAAAAACAVZYuTahnz7Bat3Zp/PiAUqncbjPx+Qxde21Iy5cbevrpoPbck3Ak1E+hUEqRyLaFgv1ecTHbu7B17dp5tGCBR/37h+R0ZmetLBaz6447AjrmmJi+/TaRlRoAAAAAAADArxKJjPr1C6tvX7+iUevfk/btG9acOW6VlLD2kO9uucWnQCBtevz991vYDAAAAAAAOcKuMQAA6lhVlblxTZsSCgY0BLt4d9FDpzwkj9OTk3qFvsKc1NkWbrdNb77pU3l52LI5n3kmqCuuiBAMBgAAAAAAAAA7YOHCuLp3D+vQQ1167bWA0mlbTusHg2nddFNIlZWGHn88qF13dea0PmC11auTpse2aGEuTAyNj9tt07BhQX30UVz77x/PWp25c30qLXXo0Ue5rAcAAAAAAADZsXJlUh07xjV6dMDyuX0+Q6NGhTVmTEBeL8dr64OiIof69ImaHj93rk8ffhizsCMAAAAAALKPtxYAANSxqipzj+OiIjbXAg3FZW9fpmjK/CLV9ijyF+WkzrZyu2164w2/zjjDumCw0aMDuuwyDiEAAAAAAAAAwPb67LO4ysvDKitza+LEgAwjt2FgO++c1u23h7RihTRiRFDNmxMGhoZhzZqU6bEtW/L7ANunQwevFi1y6brrQrLbs7NeFg47dOONAZ14YlQrV5oPvQMAAAAAAAB+b9q0qNq3t2nBAq/lc5eUJDR7dlL9+lkfNobsuuMOrzwew/T4e+81PxYAAAAAgLpAKBgAAHWsutrcYYqmTQm7ARqC72u/14uLX8xZvSJffoWCSZLLZdOECX51725dMNjYsUH16RNROs2flQAAAAAAAACwNXPmxNSlS0RHHOHR5MkBZTK5DQNr0iSlu+/eHAY2fHhQRUWOnNYHsm3NmrSpcTZbRs2buy3uBo2Bz2fXY48F9f77cZWUJLJWZ9Ysv9q2tWvUKC7sAQAAAAAAwI4xjIwGDw6rvNyrqirrL0vo0iWiigqHyso8ls+N7NttN6d69TJ/Eft77/lVURG3sCMAAAAAALKLUDAAAOpYTY25x3GzZrk9jAEgO8585UxltOUN8q+f87pO2ucky2rZZFMTbxPL5rOSy2XTv//tV48e1gWDvfhiQBdfTDAYAAAAAAAAAPyZDz+M6cQTIzr6aK/efdef8/pFRSkNGhTWihU2DR0aVEEBYWBomNatM7dW0aRJWi4X27tgXufOXi1Z4lS/fiHZbNlZM/vlF4euuCKgbt2iWr06lZUaAAAAAAAAaNhqa9MqL49q0KCA0mlrz8rY7RkNHBjSlCk+1iHqubvucsnhMP+ec+hQ3l8CAAAAAOoPdo0BAFDHqqvNPY6bNrW4EQA59+rSV7Vk3ZItfla+X7nOOugsvXvhu3r9nNe15y577nC9Jt4mctjzdyHT6bRp/Hi/zjnHumCwl14K6KKLCAYDAAAAAAAAgP/13ntRHXNMVJ07e/XBB7kPAysuTmro0JBWrLDr738PaJdd8vfdNWCF9evNh4IBOyoYtGvUqKCmTIlp990TWaszfbpfrVtL48ZZt9YHAAAAAACAhq+iIq6ysrSmTrV+vaKoKKVJk2IaPDgou93asDHk3v77u3XmmRHT499+269ly7L3jhQAAAAAACsRCgYAQB0yjIxqa80dciguZkECqM8Mw1C/Sf22+Jnb4darPV6VJNlsNp110Fn66pqvNOCYAXI73KZrFvmLTI/NFafTppdf9uu886w7LDB+fEDnnx9RKkUwGAAAAAAAAIDGyzAymjIlqg4dojrlFJ8+/tiX8x5atkzqgQdCqqx06O67gwoG2baCxqGqytzabmFhyuJO0Jh17erTkiUOXXhh9kK7amud6t07oO7dw1q3jl+/AAAAAAAA+Gtjx0bUqZNLlZXm98j/mdLSmObPz6hbt9yvhyB77rrLaXpsOm3TffclLewGAAAAAIDsYXclAAB1aMMGQ6mUucdx8+Y8xoH67OopV2tTYtMWPxt6/FD53b+96cjv8mvICUP0xdVfqNt+3UzVLPLlfyiYJDkcNo0b57f0QMK//x3QeecRDAYAAAAAAACg8TGMjCZOjOiII+I69VSf5s3L/eGX3XdP6JFHwvr+e4duuy0ov591LjQu1dVmQ8EMiztBY9ekiUPjxgX0xhsRNW+evcNvEycG1Lp1Rq+9FslaDQAAAAAAANRfiURG/fqF1bevX9Go9WsGffuGNWeOWyUlLsvnRt1q186jU04x/97xlVd8WrWKYDAAAAAAQP5jlyUAAHVozRrzN+MWF/MYB+qrH3/5Uc9WPLvFz3bfeXfddvRtfzp238J9Nfn8yZp03iTtU7DPdtUt8tePUDBpczDY88/71bu3dcFgr70W0DnnEAwGAAAAAAAAoHEwjIwmTIioXbu4unf3a8ECb857KClJ6Iknwlq+3KUbbwzI62V9C41TTY3D1LjCwrTFnQCbde/u1xdf2NWjh3Vrcb+3fr1LPXv6dd55YdXW8msZAAAAAAAAm61cmVTHjnGNHh2wfG6fz9CoUWGNGcOaREN2993m/90mEnY98EDcwm4AAAAAAMgO3mwAAFCH1q0zH0zTooW5jeMA6t4Zr5whI7Plm90n9JywTXOU71+uL67+Qv/o/A95ndt2kKvQV7jNPeYDh8OmsWP96tMnZNmcb74ZUI8eESWTBIMBAAAAAAAAaJjS6Yxefjmitm3jOuccvxYvzn0YWKtWcY0aFdY337h0zTUBud22nPcA5JOaGnNbtIqKWM9A9hQVOTRhQkDjx0fUtKn5C8225pVXAmrd2tA770SzVgMAAAAAAAD1w7RpUbVvb8vKRSYlJQnNnp1Uv37Wh40hvxx7rFcdO5p/3zh2rE/V1VxkAAAAAADIb4SCAQBQh9au3XIo0Na43YZ23pnHOFAfvfX1W6r4uWKLn52yzyk6avejtnkur9Ore467R19d85W6H9h9q98v8hVt89z5wm63afTogC67zLpbyt96K6CzzoookeAgDQAAAAAAAICGI5XK6PnnIzrkkIQuuMCvL77IfRjYAQfENXZsRF9/7Va/fgG5XISBAZJUU+M0NY5QMORCr15+LVkilZdbtx73e6tXu3TaaT717RvSpk3m9kkAAAAAAACg/jKMjAYPDqu83KuqKnPvS/9Kly4RVVQ4VFbmsXxu5Kc77zQ/Nhx26KGHuMQAAAAAAJDfSBMBAKAOrV9vbhN3QUFadjuHKID6xjAMXfLWJVv8zGV3aULPCabmLWlSojfOfUPTLpim/Yv2/9Pv/dVn+cxut+mZZ/y64oqQZXO+805AZ54ZJRgMAAAAAAAAQL2XSmX07LNhHXhgQn36+LVsWe4PvBx8cEwvvRTRF1+4dcklfjmdrGMB/6tv3/W6+uq16tWrWl27btCRR4a0334xNWuWlNP552sVxcX8XkJutGjh1KRJAT33XES77JLKWp2xY4Nq0yalGTM4cAcAAAAAANBY1NamVV4e1aBBAaXT1r7ztNszGjgwpClTfCoocFg6N/Jbt25etW0bMz3+mWe8CoW4wAAAAAAAkL+sj1UHAADbbN06c2E0hYW8eAbqo5vfvVkbYhu2+NmAYwdoZ+/OOzR/l327aMlVS/TI3Ec05KMhCif/7zbvAm+BzjrorB2avy7Z7TaNHBmQwxHSyJFBS+acOtWv00+PaOJEr7xe8pIBAAAAAAAA1C+JREbPPhvRQw+5tGJFoE56OPTQmO6+29DZZ/u40Ab4E4Zh6MwzN/zp55mMtGmTXRs2OFVT41BtrVMbNjhUU+NUu3au3DUKSOrTx6+TTkqqb9+IZszwZ6XGypVunXJKRlddFdKDD/rl97NOBwAAAAAA0FBVVMTVo4dNlZXWv2sqKkrpxReT6tbNmr3lqF/sdpv69zd0wQXmxtfWOvX442HdeWfdrLEBAAAAALA1tkwmYy6NBAAA7LCrrw7rqae2/wXy0UdH9fHHvix0BCBb1oTWaPcRuyudSf/hsxbBFvr5lp8trffjLz/qoTkPadaKWWpV2Er/6PwPHVJ8iKU16oJhZHTjjWE9/rh1i7cnnxzR228TDAYAAAAAAACgfojFDD39dFQPP+zSjz+666SHsrKYBgwwdPrphIEBWxOLxfTdd9+ZGrv77rurSZMm1jYEbAPDyOjppyPq39+rUMiRtTr77hvX2LEZderkzVoNoD5atGiRSktLt/n7Cxcu1GGHHZa9hgAAAAAAMGHs2IiuucaraNT6PdqlpTG98YZDJSVcrNCYpdMZHXhgQt995zE1vmXLpL7/3sE5AgAAAABAXuL/WwUAoA5VVZkb17SpYW0jALKu+yvdtxgIJkmvnv2q5fV233l3/bPrP7XoykV6/ZzXG0QgmLT5Rp9//jOgm24KWTbne+/5VV4eUzTKn60AAAAAAAAA8lckYujBB0PaZ5+0bropUCeBYEcdFdXkyVF9+qlHZ57pJxAM2AaJRML0WJeLA22oG3a7TVdfHdCiRWl16hTNWp3vvvOoc2ePbr45pFiMtToAAAAAAICGIJHIqF+/sPr29WclEKxv37DmzHETCAY5HDbdckvK9Piff3Zp9Ojsvf8EAAAAAGBHEAoGAEAdqq42d1CiaVOLGwGQVdO+m6Z5P83b4mfH7XWcji05Nscd1W92u00PPRTQLbdYFwz2/vt+nXpqTJEIhw0AAAAAAAAA5JdQyNC994a0995p3X57UD//nPtDLp06RTV9elRz5/rUrZuPMDBgOySTSdNjPR6PhZ0A269VK7c+/NCrhx8Oy+fLzjpaOm3TI48E1a5dUvPnx7NSAwAAAAAAALmxcmVSHTvGNXp0wPK5fT5Do0aFNWZMQF4vx2KxWd++fu26q/n38CNGuJRKZSzsCAAAAAAAa/D2AwCAOlRdbe5R3LQpL5yB+sIwDF34xoVb/Mxpd+qNc97IcUcNw+ZgsKBuv926YLCZM/3q1i2mcJhgMAAAAAAAAAB1b+PGtAYPDqukxNCAAUGtW5f7MLATToho5syYZs/26ZRTfDmvDzQEiUTC9Fin02lhJ4A5drtNN98cUEVFSkccETU3Sdtx0o0l0p07S6dfKnlr//CVr77yqEMHlwYMCCmZZE8EAAAAAABAfTNtWlTt29u0YIHX8rlLShKaPTupfv2sDxtD/eZ223TDDeYvG6isdOvllyMWdgQAAAAAgDUIBQMAoA7V1Jh7FDdrxu3rQH1x1wd3qTpavcXPbut4mwr9hTnuqGEZPjyoO+6wLhjsww/96to1rlCIYDAAAAAAAAAAdaO2Nq0BA0Lae++MBg0KqLo696FAp5wS0ccfx/T++3517mz94R2gMUmlUnXdAmCJAw90a84cr4YMCcnj2Y61tI4PSWf1lpqslDybpHbPSV1u3uJXUym77r03qMMPj+vzz80H6gEAAAAAACB3DCOjwYPDKi/3qqrK+jWNLl0iqqhwqKzMY/ncaBiuucavoiLz7+IfeMAhw+CiAgAAAABAfiEUDACAOlRT4zA1rlkzixsBkBXVkWo9NOehLX7W1N9UQ48fmuOOGqb77w9qwADrgsE+/tinU04hGAwAAAAAAABAblVXp9W/f0glJdK99wZVW5vbMDCbLaNTTw3r00/jmj7dr6OPJgwMsILZUDCbjYuikH8cDpsGDAjqs89SOvTQ2NYHHPqidMptf/z5gW/95bDFi7064ginhg4NKZ3mMB4AAAAAAEC+qq1Nq7w8qkGDAkqnrX2nabdnNHBgSFOm+FRQYO7sDRqHQMCuq67ahveVf+KLL7x6++2ohR0BAAAAALDjCAUDAKCORKOGwmFzCxPFxTzCgfrgrFfPUjqT3uJnL5/1sux2fi9bZciQoAYOtC4YbO5cn04+Oa5NmwgGAwAAAAAAAJBda9emdPPNm8PAHnggqF9+ye3BFrs9ozPPDGvBgoTeeSegww/35LQ+0NCl01teK9oa1pGQz9q0ceuzzzy6++6QnM4/WU/bb4p0Rt8tf5YIbrVGPG7XPfcE1bFjTF9/ndiBbgEAAAAAAJANFRVxlZWlNXWq3/K5i4pSmjQppsGDg7LbuUABW3fTTT7ttJO59/GSNGwYv84AAAAAAPmF3WMAANSRtWvNv2xu3pxHOJDvZlbO1Ec/fLTFzzrs3kEntzo5xx01fIMHBzVkiHXBYPPm+XTSSXFt3Gj+z2sAAAAAAAAA+DOrV6d03XUh7bOPTY88ElQo9CdhYDv/KO32H8lfZWl9hyOjHj3CWrw4qTffDKi0lDAwIBsIBUND5XLZNHRoUHPmJHXQQfHfflgyQzq3u2T/k1//H929zXU+/dSndu2cevjhsAwjswMdAwAAAAAAwCpjx0bUqZNLlZVuy+cuLY1p/vyMunXzWT43Gq7CQof69o2aHv+f//j0wQcxCzsCAAAAAGDHsHsMAIA6smbNjoSC5faGeADb77zXz9vizx02hyaeOzG3zTQiAwYENXSodcFgn37q00knJbRhA8FgAAAAAAAAAKzxww9JXXllSK1a2fXEE0FFIn+x7tPxQen6VlK/o6Tr95UOen2H6zudGZ13XlhLlyY1YUJArVtbf2AHwP8xDMPUOIeDNWHUD4cf7lFFhUs33rRJ9t0/k87vJl18suRMbHnA/MulBZdvV41o1K5bbw2oc+eoli//k3kBAAAAAACQdYlERv36hdW3r1/RqPVHU/v2DWvOHLdKSlyWz42G7/bbvfJ4zL2Tl6T77jM/FgAAAAAAqxEKBgBAHVm/3twNtjZbRsXFbAAH8tmgWYO0Nrx2i59df+T1Kg4W57ijxuXuu4MaNixs2Xzz5/t04okJ1dYSDAYAAAAAAADAvMrKpC69NKT99nPomWeCisW2smWj2RfSSXf8X6iKd6N02uWSZ6Op+i6Xod69w/ryy6RefjmgAw8kDAzIBbOhYE6n0+JOgOyoidbo2cVPaub+x8i47Ahp/6mS7U++/FV3afJI/fkX/trs2X4ddphDTz4ZlmGY23MBAAAAAAAAc1auTKpjx7hGjw5YPrfPZ2jUqLDGjAnI6+XIK8zZdVenLrggYnr8++/7NX9+3MKOAAAAAAAwjzckAADUkbVrzW3+3mWXtJxOcxtkAWTfxthG3Tf7vi1+VuAt0EMnP5Tjjhqn/v0DeuCBkGXzVVT4dMIJSdXUEAwGAAAAAAAAYPt8801CF10U1gEHOPTcc0ElEtu4VaP4C8n+u/Ukf43U6r3tqu/xGLr00rC++SatF14IaL/9CAMDcimTMRdc5HBwURTyl5Ex9EHlBzr/9fO168O76vpp12vx2sV/PWjFsdLrL0uZHfu1HQo5dO21AXXpEtWqVckdmgsAAAAAAADbZtq0qNq3t2nBAq/lc5eUJDR7dlL9+lkfNobG58473XI6zV8ocO+9KQu7AQAAAADAPELBAACoI1VV5sYVFJgLEwOQGz3+3UNJY8ubz58/83nZ7fxP8Fy57bagRowIWzbfokVenXBCUtXVBIMBAAAAAAAA2Lovv4yrV6+wDjnEpX/9K6BkcjvfD8d33vLP9/hkm4b7fIauvDKsb79Na/TogEpKXNtXH8AOMxsIJkkuF79nkX9+/OVHDf1oqPZ9bF+d+OKJGr90vOLp+NYHJr3SK29JKesOjc6Y4VebNjaNHRuxbE4AAAAAAAD8lmFkNHhwWOXlXlVVOS2fv0uXiCoqHCor81g+Nxqnffd1q3t38+8M337bry+/3IZ3ngAAAAAAZBmJBAAA1JF168xtAC8qIowGyFdzV83VjMoZW/ysrGWZTj/g9Bx3hJtuCuif/wzLZjN/6OZ/LV7s1fHHJ1VVxZ/FAAAAAAAAALZsyZKEevQIq21bt159NaBUymZuoh+PkjJbGLvnx385zO9P69prQ1q+3NBTTwW0xx4ECwF1JZ02v57gdrst7AQwL5lO6s2v3tSpL5+qvf65l+6ZeY8qN1Ru3yQzhkmxJpb3tnGjU337+nXaaWGtWZOyfH4AAAAAAIDGrLY2rfLyqAYNCiidNrnW8Sfs9owGDgxpyhSfCgocls4NDBjgMn1+wDBsuv9+3jUCAAAAAOoeoWAAANSRqipziyJFRdYE2wCwXs8JPbf4c7vNrom9Jua2GfzXDTcE9NhjEcuCwZYs8apz56TWrWOxDwAAAAAAAMD/qaiI64wzwjr0UJdef92CAzKxJtK61n/8ecuFkiv8hx/vtFNaN90UUmVlRo8/HlTLls4dqw9gh8XjcdNjXS4C/VC3llUt0+3v3a7dH9ldZ/37LE35doqMjLHd89hl1/g7ztGuuyaz0OVm77wTUOvW0iuvRLJWAwAAAAAAoDGpqIirrCytqVP9ls9dVJTSpEkxDR4clN1ubdgYIElt27rVpUvU9PhXX/Vp5crsvc8EAAAAAGBbEAoGAEAdqa4mFAxoSIZ/PFw/bfppi59dXna5dt959xx3hP917bUBPfmkdcFgX3zhVefOaa1dSzAYAAAAAAAA0NjNmxdTt24RlZV59PbbAWUyFh5g+aHTH39mT0u7zf3v3+68c1r9+4dUWSmNGBFUcTFhYEC+SCQSpsd6PB4LOwG2TTgR1vOLntcxY4/RgU8eqAfnPKh14XU7NGeHPTqo15kttXSpXb16/THU0irV1U6dd55fPXuGVV2dzlodAAAAAACAhm7s2Ig6dXKpstJt+dylpTHNn59Rt24+y+cG/tfdd5s/Op1M2jV8uPn3+wAAAAAAWIFQMAAA6ojZULBmzQgFA/JNKBHSwFkDt/jZzp6d9eTfnsxxR9iSq64K6OmnI7Lbrflz9KuvPDruuLR+/plgMAAAAAAAAKAx+vjjmE4+OaIOHbyaOtWfnSI/HL3ln3e7XgUFKQ0YENLKldKwYUEVFTmy0wMA05LJpOmxTicBf8iNTCajz376TFdMukItH26pPm/10cc/fGzZ/F337SpJKihwaPz4gCZMiKhZM/O/N7bmtdcCOuQQQxMnRrJWAwAAAAAAoCFKJDLq1y+svn39ikatP3bat29Yc+a4VVLisnxu4Pc6dfKqU6eo6fEvvODVunWcEwAAAAAA1B1CwQAAqCPV1eYew02bWtwIgB3W67VeSqS3fBPMs6c9K7ud/9mdLy6/PKBnnrEuGGzZMo86d05r9WoW/AAAAAAAAIDGYubMmI4/PqJjjvFqxowshYH96ufSLf+8+CsNn/qyhgwJqkkTwsCAfLUjoWCsLyHbqiPVeuw/j+nQpw/VEaOP0KiKUdqU2GR5nV9DwX7Vo4dfS5fa1L172PJav1q71qXu3f266KKwNmxIZ60OAAAAAABAQ7FyZVIdO8Y1enTA8rl9PkPPPhvWmDEBeb2890Tu3HWX+bGRiEMPPxyzrhkAAAAAALYTb1EAAKgjtbXmDmg0a2azuBMAO2LB6gWa/O3kLX7WtritzjnknBx3hK257LKAxoyJyuGwJhjsm288Ou64tH76iWAwAAAAAAAAoCGbPj2qTp2iOuEEr2bNynIY2K92Wv2nH1333uWa9+O83PQBwJRUytzagc3GmjCyw8gYmvH9DJ33+nnadcSuumHaDVqybknW6jX1N1W7lu3+8PPiYqfeeCOgF14Iq6Age2ts//pXQG3apDVtWjRrNQAAAAAAAOq7adOiat/epgULvJbPXVKS0OzZSV12mfVhY8DWdOni1WGHmQ/2euYZrzZu5NIBAAAAAEDdIBQMAIA6kE5ntGGDuVCw4mI2gAP5pMeEHlv8uU02vX3e2znuBtvqkkv8eu65iJxOa4LBvvvOo2OPNfTDD0lL5gMAAAAAAACQHwwjo3feieqoo6Lq2tWnTz7x5baBvWb/6UfxdFxnvnKmfvzlxxw2BGB7EAqGfLFq4yoN+XCIWj3WSiePO1mvLH1FiXQi63VPaXWK7LY/36LYu3dAS5dKXbtGstbDjz+69be/+XT55SGFw0bW6gAAAAAAANQ3hpHR4MFhlZd7VVXltHz+Ll0iqqhwqKzMY/ncwLaw223q39/8O8GNG516/HEuHAAAAAAA1A1CwQAAqAPV1Wml0+Y2chcX8/gG8sVj8x7Tig0rtvjZxYddrL2a7JXbhrBdevcO6Pnno5YFg33/vVvHHZfRypUEgwEAAAAAAAD1nWFk9MYbER1+eFynnebTf/6T4zAwSXvskdB+J836y++sDa/VGa+coUgye2EqAMxLp9OmxtntrAljxyXSCb3+5evq9lI3lTxaooGzBv7p2ma2dG3Vdavf2XVXpyZP9umZZ8LaeWdzv2e2xbPPBtW6dUqzZsWyVgMAAAAAAKC+qK1Nq7w8qkGDAqbPtvwZuz2jgQNDmjLFp4ICh6VzA9urZ0+f9t8/bnr8E094FI1y2QAAAAAAIPfYQQYAQB1Yu9b8C+HmzXl8A/kglorp9hm3b/GzgCugZ097NscdwYwLLvBr3LionE5rFupWrHCrc+eMVqwgGAwAAAAAAACojwwjo1dfjai0NK6zz/arosKb8x5KShIaOTKsr77JaJU+3er3K36u0CUTL1EmY80FCACsYxjm1h8cDg7Kwbyv1n+lW9+9VbuP2F09JvTQ1O+mysjUzaG1U1qdsk3fs9ttuvzygD7/3FDnztkLulyxwq0TT/To+utDHOQDAAAAAACNVkVFXGVlaU2d6rd87qKilCZNimnw4KDsdmvDxgAzHA6bbrklZXr82rUuPfssl/MAAAAAAHKPVBEAAOrAmjXmb7dt0cJpYScAzLrwjQsVT2/5xpiRp46U087v1fqiVy+/XnopJpfLumCw447LaPnyhCXzAQAAAAAAAMi+dDqjcePCatMmrl69/Pr889yHge27b1zPPhvWt9+6dNVVAX2+vkKxVGybxk74coKGfDQkyx0C2F7ffefU6tUuRSLbd/iNUDBsr1AipLELx+ro547WwSMP1sNzH9b6yPo67am0RamaB5tv15i99nLp/fd9evTRkAIB8/sq/oph2PT440GVliY1d+62PWcBAAAAAAAairFjI+rUyaXKSrflc5eWxjR/fkbduvksnxvYEX36+LX77ub39j/yiFupFJfzAAAAAAByi6QCAADqwPr15l4G+3yGgkEyPYG6tnTtUr3+1etb/OzApgeq96G9c9wRdtQ55/hlt0d0wQVeJRI7/ufsDz+4dfzxCX3wQUL77mv9ojkAAAAAAAAAa6RSGY0bF9WwYQ59802gTno48MC47rwzpQsu8Mvh8Pz35x+t/Gi75vn7rL/r4GYHq8fBPaxuEYBJ1167h1au3Pz72us1VFCQUpMmaRUWbv5rQUFKhYVpNWmS+s3PDjjAVcedoz7IZDL69KdPNWbhGI1fOl6hRKiuW/qNrvt2NTXObrfp+uuD+tvfErr44oTmzs3OIdJlyzw69tiMbr45pCFDAnK7ty+8DwAAAAAAoD5JJDK65pqIRo/OzlpI375hPfmkT14v512Qf1wum268MalbbzW3r3/FCrf+9a+ILrnEb3FnAAAAAAD8OULBAACoA+vWmQsFKyhIS2KRBKhr3f/dfYs/t8mmt3q9leNuYJUePfxyOCLq1cuaYLBVq9zq3HlzMNj++xMMBgAAAAAAgP/H3n2GR1Xtbx+/p2ZKKCH0okFEEVBKsIBYUKSJKIoVUakqNsSCIiKIHpEjx3LsgFjBjopSxCMCggUI3U5VekgCZEqmPi949Bz/hJKdPTMp3891eUn2nrXWT4SZZK+17oWyJByO65VX/JowwaENG1KzgL9ly6BGjozpiivcfwsD+9OiLYtK3Od1M65Tk4wmalOvjRklAiil/HzbX78OBq3avt2p7duP3O6FF/J14okJLAzlWq4/V2+uflNTVkzR2l1rU13OIXVt0rVU7Zs2dWrRorieeMKnMWPcCgbNXysRiVg0YUK6Zs0K6rXXLGrb9uDPYwAAAAAAgPJu8+awLrssquXLzQ8Ec7tjeuaZgAYNSs3BK8DRuvlmt8aPjyg319iW6scft+m66+KyWjlcAAAAAACQHKSKAACQAkZDwWrUiJpcCYCSmrR8kn7L+63Ye1e1vEonZJ6Q5Ipgpt69PXrvvSKlpcVM6W/rVqc6dbLop59CpvQHAAAAAAAAoHRCobiefdanpk3DuukmrzZsSH6gf6tWQb33nl+rVqXp6qs9stkO3jwQjUX19ZavS9x3IBJQr7d7aUfhDjNKBVAKRUUx7dtnbHNR7dpsKsLfxeIxfb7+c135/pVq8K8GunPunWU6EKyKs4raN2pf6n5sNotGjPBq2bKI2rYNmlBZ8daudemMMxx66KFCRSLG1nMAAAAAAACURXPmBNSunUXLl7tM7zsrK6RFi8IEgqFc8HisGjrU+DPGn35K04wZARMrAgAAAADg8AgFAwAgBfbsMdYuM9OckBoAxoQiId0x545i77ntbr168avJLQgJ0auXW++/XySXy5z33G3bHDrvPIt++KHIlP4AAAAAAAAAlFwgENOTT/p03HFh3XabV5s3Jz8M7NRTA/r444ByctLUp4/nsCeJr921VnuL9hoa5499f6j3O70VjCQuPAXAke3YYfzAkDp1bCZWgvJu6dalav5cc3V9s6veXfeuQtGyfxjN+cedL6fNvM/aFi2c+u67NI0Z45PDkZh1E+GwVQ8/nK7TTy/SunVl//cYAAAAAADgcGKxuMaO9alnT5dyc40dXnA4Xbv6lZNjU3Z2mul9A4ly551uVa0aNdz+8cc50AMAAAAAkDyEggEAkAK7dxt7EFyzJifSAqnU/+P+CkSKP93lqW5PyWlP/iYyJEbPnm598EGR3G5zNhVs3+7QeedZ2UAAAAAAAAAAJJnfH9Pjj/t03HFRDR/u1datyX+O2759QLNnB/T992716uU+bBjYnxZuXliqMb/941sNmTlE8ThzS0CqbNsWNty2Xj3zN+mhfCoMFarrm131856fU11KiXRt0tX0Pu12ix56yKtvvw2rZcvEBV/m5LjUrp1djz/uUzTK5ygAAAAAACh/8vOj6tkzoDFjvIpGzQ0xslrjGj26ULNmuZWRweEGKF+qV7dp4MDi94McjaVL3Zo3z3h7AAAAAABKglAwAABSIC/P2MRKZiYLToFU+XXPr5q+dnqx946vcbyGZA9JckVItB493Joxw7xgsJ07HTrvPIvWrCEYDAAAAAAAAEi0wsKYHnmkUFlZUd13n1c7djiSXsPZZwc0b15AS5a41a2bu0RtF21ZVOrx31j9hv655J+l7geAMTt2RA23rV+fg2hwwPyN85UfzE91GSWWiFCwP7Vtm6bly9M0YkSh7PbErKEIBq267z6vzjorqF9+YW4PAAAAAACUHzk5RcrOjmr2bI/pfWdmRjRzZlBjx6Yf1QEoQFl0772uUu0PeOwx9nUBAAAAAJKDUDAAAFJgzx5jH8G1aplcCICjdvHbFyuu4idwZlwxI8nVIFm6dnXr44+L5PEY37jzv3btcui886xatarIlP4AAAAAAAAA/N3evVE99FChsrJievDBdO3enfwwsPPP92vBgqAWLHCrc+eShYFJUjwe18LNC02p5b4v7tPMn2ea0heAktm929jGoCpVonK5bCZXg/Iq05OZ6hJK7MTME9U4o3FCx3A6LRo/Pl0LFxbpxBMTN+/2zTdutWlj09NP+xSLsdkPAAAAAACUbVOn+tWxo0MbN5p/6ECbNkEtWxZXjx4ln/cAypK6de3q2zdguP38+R59+23QxIoAAAAAACgeoWAAAKRAXp6xRdw1a3KaCpAKb6x6Qz/m/ljsvd7NeqtlnZZJrgjJdMEFbs2cGZbXa04wWG6uXZ0727RiBcFgAAAAAAAAgFny8qK6//5CZWXF9fDD6dqzx570Grp29Wvx4qC++MKjs892Ge7nt7zftNO305Sa4orrmg+v0dpda03pD8DR27XLWIBQRkbE5EpQnrVv2F7dju+W6jJKpGuTrkkbq317l1ascOi22wpltSYmtMvvt2nYMK/OPz+gzZvDCRkDAAAAAACgNEKhuAYP9mnAAI8CAfO3iw4Y4NOSJU5lZSX/IBYgEe67zyG7PWa4/T/+YbwtAAAAAABHi1AwAABSID/fWChY7dqEggHJFolFNPSzocXeS7Oladpl05JcEVLhvPNc+vTTsNLTzQsGu+ACm5YvJxgMAAAAAAAAKI3c3KjuvrtQjRtL48enq6AguWFgFktcPXv6tXRpkebM8ahDB+NhYH9atGWRCZX9V2GoUBdNv0i7fbtN7RfA4e3ZY2xuNyPDnLkIVAwWi0Xv9HlHnbI6pbqUo5bsEDO326pnnknXl18WKSsrlLBxvvrKo1NOserll32KxRITQAYAAAAAAFBSmzeH1aFDkSZP9pret9sd06RJPk2Z4pXLxTZUVBxNmjh12WUBw+0/+8ytdesS9ywSAAAAAACJUDAAAJKusDBm+PQVQsGA5Bsyc4gKw4XF3pvQeYJc9tJv8EL5cO65Ln32WVhVqpizGWfPngPBYEuXEgwGAAAAAAAAlNSOHRENG1aorCxp4sR07dtn7EAWo6zWuHr39iknJ6SZMz1q1y7NtL4Xbl5oWl9/2lSwSX3e66NQlA0KQLLk5hqb261Rg1Aw/F3VtKqa3Xe2+jTvk+pSjijNlqZzss5JydjnnOPSmjV2DR5cKIslMaFd+/bZdOONXvXoEdC2bZGEjAEAAAAAAHC05swJqF07i5YvN389e1ZWSIsWhTVokPlhY0BZMGqUw/BzxFjMokcfDZtcEQAAAAAAf0coGAAASbZ9u/GFoXXqJHdDC1DZbcrfpFdXvlrsvWOrHavbz7g9uQUh5c4+26VZs8KqWtWcDTn5+XZ16WLTt98GTekPAAAAAAAAqOi2bo3ollsKddxxVj39dLp8vuTOndhscV1+uU+rV4f14YdetW5tXhjYnxZtWWR6n9KBsLFbPrtF8XhiglIA/F1enrFlWTVqxEyuBBVBmj1Nb1/2toa2G5rqUg7r7GPPlsfhSdn46elWvfxyumbPDqphw8QFYc6d61HLltLrr/sSNgYAAAAAAMChxGJxjR3rU8+eLuXm2k3vv2tXv3JybMrONn8OBCgrWrZ0qkcPv+H2773n1qZNBIMBAAAAABKHUDAAAJJs1y7ji7jr1OGjG0imS965RHEVvznqwys/THI1KCs6dnRp9mzzgsEKCuzq1s2uJUsIBgMAAAAAAAAOZfPmsIYMKdTxx1v1/PPpCgSSO2dit8d0zTU+rV0b1rvvetWihTMh42zdt1Ub8jckpG9Jmrxisv79/b8T1j+A/zIaCpaZSSgYimez2vRsj2f18LkPp7qUQ+p2fLdUlyBJ6trVrbVrberXrzBhY+Tn23X99V717u3Trl3GD4cDAAAAAAAoifz8qHr2DGjMGK+iUYupfVutcY0eXahZs9zKyOBAe1R8Dzxg/M95JGLVY48VmVgNAAAAAAB/R7IIAABJtnOnsUXcNltcmZlMrADJ8t6697Rq56pi713Y9EK1rdc2yRWhLOnQwaW5c8OqXt2cBf5799rVvbtDixcTDAYAAAAAAAD8r/XrQ+rf36cTTrBp0qR0BYPJXebgcMR0ww0+/fhjRG+95VWzZokJA/vToi2LEtq/JN059059vv7zhI8DVHZ5eXZD7WrWNLkQVCgWi0UPnvOgXur5kqyWsrf0r6yEgklStWo2vf56umbM8Ktu3XDCxvnoI69atozr/ff9CRsDAAAAAABAknJyipSdHdXs2R7T+87MjGjmzKDGjk2X1Wpu2BhQVrVv79I55xh/rvfGGx7t3MmBAQAAAACAxCh7K4MAAKjgdu+OG2pXvXpUNhuTK0AyxGIxDZo5qNh7TptTb/d5O8kVoSw64wyX5s6NKCPDnIm8ffts6t7doUWLCAYDAAAAAAAAfv45pGuv9alZM7tefdWrUCi5yxvS0mIaPLhQv/4a1dSpXh1/fGLDwP60cPPChI8Ri8d0xXtX6OfcnxM+FlCZ7dtn7H0rM9PYfDIqlyHZQ/T+5e8rzZaW6lL+0rBqQ51U86RUl3GQSy7xaO1aq/r08SVsjN27Hbr8co+uusqn/PxowsYBAAAAAACV19SpfnXs6NDGjebPV7RpE9SyZXH16OE2vW+grLv/fuP7tAIBq/75T9b+AwAAAAASw9iRlAAAwDCjoWA1akTFRzeQHLfNvk37ivYVe+/hcx9WujM9yRWhrDrtNJfmzStSly5SXl7p36P377epRw/p00+DOucclwkVAgAAAAAAAOXLDz8UaezYiD74wKNoNDlBXP/L7Y6pf3+/Ro50qUGD5D8LXrRlUVLG2Vu0V73e7qVvB36rDHdGUsYEKpNYLKa5c3/R/v1W5efbVVBgU16eXfn5duXn2/7PNZsKCuzKy7MpELCpdm0OisLR6X1Sb33e73P1mt5Le4v2procdWvSTRZL2fzzm5lp03vvefX2237ddptTubmJWXvxzjteLVoU1ksvhdSzJ5toAQAAAABA6YVCcd1yi1+TJ3sT0v+AAT4995xbLldyD2cByooLLnApOzuo5cuNrd2fNMmtUaOiql7dZnJlAAAAAIDKjmQRAACSbNcuY+1q1IiZWwiAYv2x7w+9uPzFYu81qNJAIzqOSHJFKOuys9P+Cgbbs6f0P2IVFtp04YXSJ58Edd55BIMBAAAAAACgcli9OqQxY8L6+GOPYrG0pI/v9UY1aFBA993nUt26qTkYYo9/j9buWpu08X7Z84uufP9Kzeo7S3Yry0cAM0UiEVmtUrVqMVWrFjrqdsGgRQ0b1ktgZahozj72bC3sv1Bd3+yqHYU7UlpLt+O7pXT8o3HVVR6de25EQ4b4NHNmYjbSbtvm0EUXOXTDDT4984xbVaqwoRYAAAAAABizeXNYl10W1fLl5j/HcLtjeuaZgAYNSswzEqC8sFotGjEipiuuMNZ+3z6bnnnGp9Gj+bsEAAAAADAXK04AAEiyPXuMnYybmRk3uRIAxen9dm/F4sWH8L13+XtJrgblRdu2afrii6hq1oyY0p/PZ9NFFzk0b17AlP4AAAAAAACAsmr58iL16uVX69YOzZjhVSxmbB7FqKpVo7rrrkJt3Cg99VS66tZNXTjW4t8XJ33MeRvm6a65dyV9XKCiKyoqMtTO5YorPd1pcjWo6E6pc4qWDFiipjWapqwGm8Wm8487P2Xjl0TdunZ98olXr7ziV7Vq5sztFefVV71q2TKiL75gvg8AAAAAAJTcnDkBtWtn0fLl5h8wnJUV0qJFYQLBgP/vssvcatbM2HN9SXr2WacCgeL3oAAAAAAAYBShYAAAJFlurrHNLDVrEgoGJNrMn2dq2fZlxd7r3Liz2jdqn+SKUJ60bp2mL7+MqVatsCn9+f02XXxxmubOZaMAAAAAAAAAKp5vvgmqe3e/2rVL08yZHsXjyQ0Dq1YtovvuOxAG9sQT6apVy5bU8YuzcPPClIz7zPfP6OXlL6dkbKCiCoeNzxU4nYSCoeQaZzTW4gGL1a5+u5SMf0bDM1TdVT0lYxvVv79Ha9bE1bmzP2FjbNniVJcuLg0d6pPfz6ZAAAAAAABwZLFYXGPH+tSzp0u5ueYfZNK1q185OTZlZ6eZ3jdQXlmtFt19t/EDBHbvdujFF1nzDwAAAAAwF6FgAAAkWV6esU0tmZmEggGJFIvFdP1H1xd7z2F16P0r3k9yRSiPTj7Zqfnz46pTx5xgsEDAqt690zR7NpOEAAAAAAAAqBgWLgyqc2e/OnRwac4cT9LHr1EjogcfLNSmTRY99li6atRIfRjYnxZtWZSysW+ZdYsWbFqQsvGBiqY0oWB2u/kb/VA51PLW0vzr56tLky5JH7vb8d2SPqYZGjVyaO5ct557zqf09GhCxojHLXrhBa9OOSWsRYuCCRkDAAAAAABUDPn5UfXsGdCYMV5Fo+YepmK1xjV6dKFmzXIrI6PszI0AZcV113l0zDEhw+2fesqhcJh9XwAAAAAA8xAKBgBAku3ZY2wCpXZtcyd1APzdPfPuUX4wv9h7I88aqWquakmuCOVVixZOffllTHXrmhcMdumlafrsM4LBAAAAAAAAUH59+WVQ55wT0DnnuPSf/yQ/DKxmzYjGjSvUpk1WPfxwuqpXL1sbXgpDhVq+bXnKxo/EIrrs3cu0IX9DymoAKpLShIJZrSzngnHpznTNvHqmrjn5mqSO27VJ16SOZyar1aKhQ71auTKqjh0TNx+3fn2aOnVK0/DhhQoGYwkbBwAAAAAAlE85OUXKzo5q9mzz51AyMyOaOTOosWPTZbWyLwUojsNh0Z13Gn+2v2WLU6+95jexIgAAAABAZccqMgAAkiwvz9jHb61aJhcC4C87C3fq6e+eLvZeHW8djTl3THILQrnXvHma5s+Pq359c4LBgkGrLrssTTNnEgwGAAAAAACA8mXOnIA6dAjo/PNdWrjQnfTx69YNa/x4nzZtsmrUqHRVqVI2l0l8+8e3isajKa1hT2CPek3vpX1F+1JaB1ARRCIRQ+0sFjbkofScNqdGnTVKVktyPvNqemoqu352UsZKpCZNnFqwwKWJE31yuxMT2hWNWvTkk+lq2zaspUuLEjIGAAAAAAAof6ZO9atjR4c2bnSa3nebNkEtWxZXjx7Jn6MBypsbb3Srdm3j6/+feMKuWCxuYkUAAAAAgMqsbK52BQCgggqH49q3z9jJ87Vr87ENJMql71x6yM1W0y+bnuRqUFE0a+Y0NRisqMiqyy9P04wZnCAEAAAAAACAsi0Wi2vmzIBOOy2g7t3d+uab5G80qV8/rIkTfdqwwaYRI7zyesv2PMvCzQtTXYIkad3uder7YV9FY6kNKAPKu2jU2N8hQsFghl2Fu3TqpFMViycm2Or/6tKkS9ICyBLNarVo+HCvcnIiOu20xB3W8+OPaerQwaFRowoVDrNJEAAAAACAyioUimvwYJ8GDPAoEDD/+cqAAT4tWeJUVpbD9L6BisjttuqWW0KG2//8c5ref59DwAEAAAAA5qgYq3EAACgndu+OKh43tpC7dm0WgAOJ8Pn6z7XkjyXF3jv7mLPVqXGnJFeEiuSEE5z66qu4GjY0Pjn4v4qKrLrqKpc++IBgMAAAAAAAAJQ9sVhcH3zgV3Z2kXr1cmvp0uSHgR1zTEjPPOPTxo12DR/uldtdPpZFLNqyKNUl/OXTXz7VyP+MTHUZQLlmNBTMZjN2wBTwJ3/Ir5YvtJQv7EvamF2bdE3aWMnSrJlTS5a4NG5codLSEhOuFolY9eij6Tr11CKtXm3OXCIAAAAAACg/Nm8Oq0OHIk2e7DW9b7c7pkmTfJoyxSuXq3zMkwBlxR13uFS1qvHDcx5/3KpYjIMAAAAAAAClx1MdAACSaMcO4w+G69RhAThgtlgspr4f9i32ns1i0wdXfpDkilARNW3q1Pz5UqNG5izmD4Wsuvpql959l2AwAAAAAAAAlA2xWFzTp/vVunWR+vTxaOVKV9JraNw4pBdf9Om33xy67TavnM7yc9hKUaRI3/7xbarL+JsJSybo9VWvp7oMoNwyGgpmtbKUC8ZFYhGd/MLJ2u3fndRxuzTpktTxksVms2jUqHQtXRpRq1bBhI2zapVLp51m1yOPFCoaZbMgAAAAAACVwZw5AbVrZ9Hy5ebPp2RlhbRoUViDBpkfNgZUBtWq2TR4cMBw+5wcl+bNS9zzRAAAAABA5cFKMgAAkmjXLuMnyBIKBpjvwfkPKtefW+y9uzvcrZqemkmuCBXV8cc7tWCBRccea04wWDhsVd++Lr39NsFgAAAAAAAASJ1oNK7XX/epRYuQrrnGozVrkh8G1rRpkV55xa9ffnHoxhu9cjjKTxjYn5ZvX65gpOxtDhg8c7C++f2bVJcBlEuxmLF5YbvdbnIlqEw6TOmgDQUbDnn/obMfUoYrw9Qx29Rto7rpdU3ts6w5+WSnli5N06hRhbLbja/5OJyiIqsefDBdHToE9dNP5swnAgAAAACAsicWi2vsWJ969nQpN9f8Z4Fdu/qVk2NTdnaa6X0Dlck997jkdht/FviPf5hYDAAAAACg0iIUDACAJDIaCpaeHpXbzcc2YKY8f54mLJlQ7L1Md6b+cR4zMTBX48YOffWVRVlZ5izkj0Ss6tfPpWnTCAYDAAAAAABAckUicU2e7NNJJ4V0/fVe/fRT8jeXNGtWpNdf9+nHH53q398ju738hYH9aeHmhakuoVihaEiXvHOJtuzdkupSgHInHo8bakcoGIy6aNpFWrpt6SHvP3HBExrTaYy+HvC1GlZtaNq4XZt0Na2vsszhsGjcuHQtWRLWSScVJWyc7793q21buyZO9CkWM/Y+AgAAAAAAyqb8/Kh69gxozBivolFz5zSs1rhGjy7UrFluZWRwGD1QWnXq2HXddcbX6C9c6NaSJWXvQCAAAAAAQPlCuggAAEm0e7exdhkZUXMLAaBL371UkVik2HtvXvqmrFa+VYb5srIcWrDAouOOM2ezQCRi1fXXu/X66z5T+gMAAAAAAAAOJxyO64UXfDrhhLAGD/bq11+THwZ28slBvf22X+vWOdWvn1c2W/kNA/vToi2LUl3CIe3y7dLFb18sX4hnkEAyEAoGI26aeZM+/fXTQ94fdvow3dXhLklS81rNtWTAEp1U8yRTxu52fDdT+ikvTj01TTk5Dg0fXiibLTGhXYGAVXff7dU55wS1fr05hw0BAAAAAIDUyskpUnZ2VLNne0zvOzMzopkzgxo7Nl1Wa/mfMwHKivvuS5PdHjPc/tFHjbcFAAAAAEAiFAwAgKTavdvYotAaNXgYDJhpwaYFWrB5QbH3zmhwRqVbvI7kOuYYh776yqrjjzcrGMyiAQM8eu01NuUBAAAAAAAgMYLBmJ55plBNmoQ1dKhXGzc6k15DmzZBffCBXytXpunKKz0VZmNLNBbV11u+TnUZh7Vyx0pd/9H1isWZrwKORiRS/KE0R8PhcJhYCSqDhxc8rJdyXjrk/T7N++jJbk/+7Vqjao309YCv1b5h+1KNXcVZRe0bla6P8sjlsmrixHR99VWRmjQxZ76vOF9/7Vbr1jY995xPsVhiAsgAAAAAAEDiTZ3qV8eOjoTMrbRpE9SyZXH16OE2vW+gssvKcuiKKwKG28+e7daaNYT+AwAAAACMIxQMAIAk2r3bWLuaNdlkAZjpqg+uKva61WLVjKtmJLkaVEaNGjm0YIFNTZuas1EgGrVo4ECPpkwhGAwAAAAAAADmCQRimjjRpyZNorrjjnT9/nvyw8BOPz2gmTMDWrYsTZdeWnHCwP60Ztca7Sval+oyjuiDHz/Q2K/GproMoFwIhYxv8nE6k/8+i/JrSs4UPfTVQ4e837FRR713+XvF3qvhrqEvrvtCFza90PD45zU+T05b5f0z27GjS6tXOzR0aKEslsSEdhUW2nTrrV517RrQ77+HEzIGAAAAAABIjFAorsGDfRowwKNAwPwtnAMG+LRkiVNZWRw0ACTKAw/YZbUae/YXj1v06KM80wMAAAAAGEcoGAAASbRnj7GNKjVqcOorYJZxC8ZpR+GOYu/deuqtqpteN8kVobKqX9+uBQtsOvFE84LBhgzx6OWXCQYDAAAAAABA6fh8MY0f71PjxlHdfbdX27Ylf0NJhw4BzZ4d0LffutWzp7vChYH9aeHmhaku4ag9vPBhzfiRgzWAIyEUDMkw69dZGjxz8CHvn5h5ohbcsOCwfXgcHs24coaub3W9oRq6Hd/NULuKxOOx6rnn0vX550Ede6zxv/tH8sUXHp18skVTp/oTNgYAAAAAADDP5s1hdehQpMmTvab37XbHNGmST1OmeOVysTUUSKTmzdPUs6fxZ3IffODR+vWJe24IAAAAAKjYePIDAEAS5eYa++itVYtQMMAM+4L7NG7huGLvVXdV15Ndn0xyRajs6tWz66uvbGrWzJxgsFjMoptv9ujFFwkGAwAAAAAAQMnt3x/TuHGFysqK6f77vdq5M/lhYOee69eXXwa1eLFb3bq5kz5+si3asijVJZTIiC9GKBqLproMoEwLh8OG2xIKhqOxdNtS9ZreS3EVv46gbnpdrbxppazWI69PcNgcmnrxVI04c0SJ6+japGuJ21RUnTu7tWaNXf37FyZsjL177RowwKOLLvJpx45IwsYBAAAAAAClM2dOQO3aWbR8ucv0vrOyQlq0KKxBg8wPGwNQvJEjbYbbRiIWjR9vfM4AAAAAAFC5EQoGAEAS7dlj7KM3M9PkQoBK6or3rlA4VvykyqsXv3pUC+MBs9WteyAYrHnzoCn9xWIWDR3q0XPPEQwGAAAAAACAo1NQENWDDx4IAxs9Ol25ufak19C5s18LFwY1f75HnTqZv1GmLIrH41q4eWGqyyiRX/N+PeRzdgAHlCYUjLkqHMnG/I0665WzFI0XH9BYNa2q1t28Ti770X+WWiwWje88Xv/q8q+jbnNC5glqnNH4qF9fGVSpYtUrr6Tr008Dql8/cZ+Vn37qVcuW0vTp/oSNAQAAAAAASi4Wi2vsWJ969nQlZJ6la1e/cnJsys5OM71vAId2+ukudepk/Fncm2+6tX07If8AAAAAgJJjJRkAAEmUn2/so7d2bYvJlQCVz7d/fKu5G+YWe69t3ba6uNnFSa4I+K86deyaP9+uli3NCQaLxy267TaP/v3vxJ1GDgAAAAAAgPIvLy+q++4rVFZWXI88kq68vOSHgXXv7tc33wQ1b55HZ51VOcLA/vRr3q/a5duV6jJKpGmNpiUKmgEqo0iEzT1IjDx/nlq/2FpF0aJi77tsLq2+abVqeGoY6v/O9nfqzd5vym498vcD3Zp0MzRGZXDhhW6tXWvVVVcl7gCfPXvsuuYajy6/3Kc9e4oPiAMAAAAAAMmTnx9Vz54BjRnjVTRq7t4PqzWu0aMLNWuWWxkZNlP7BnB0Ro40/vc6GLTqn/80Z48AAAAAAKByIRQMAIAkicXiysszNglDKBhQepe/d3mx160Wqz666qPkFgMUo3Ztu776yqFTTjEvGOz229P11FOJ23AAAAAAAACA8mnXrojuuqtQWVnS44+na+/e5IaBWSxx9erl07JlRZo1y6MzzqicIVMLNy9MdQklUi+9nl695NVUlwGUeUZDwaxWlnHh0IKRoFq80EL7QvuKvW+z2LR44GIdW/3YUo3T95S++uyaz+R1eA/7um7HEwp2OBkZNk2f7tV77/lVq1Y4YeO8/75XLVrENGOGP2FjAAAAAACAw8vJKVJ2dlSzZ3tM7zszM6KZM4MaOzZdVit7SoBU6dzZrVNPDRhuP2WKW/n5hPsDAAAAAEqG1WQAACTJvn0xhcPGPnpr1+YjGyiNfy7+p/7Y90ex9wa3GaxG1RoluSKgeJmZNs2f71CrVuadBnTnnV498UShaf0BAAAAAACg/Nq+PaLbby/UccdZ9K9/pWv//uSeKG+1xnXZZT6tXBnWxx97lZ2dltTxy5pFWxaluoTDslqsaluvrW477Ta9fdnb+u3239ShUYdUlwWUedGosY09hILhUGKxmFq92Eo7CncUe98ii2ZePVNt67U1ZbwuTbroy+u/VE1PzWLvp9nSdE7WOaaMVdH16ePR2rUW9e6duEN8du506NJLPerXz6eCAjYWAgAAAACQTFOn+tWxo0MbNzpN77tNm6CWLYurRw+36X0DKLn77osbbrtvn01PPmk8VAwAAAAAUDmxmgwAgCTZscP44svatTnVBTDKF/Jp1PxRxd6r4qyi5y98PskVAYdXo8aBYLA2bcwLBrvnnnRNmEAwGAAAAAAAQGX1++9h3XRToZo0serf/06Xz5fcMDC7Pa4rr/RpzZqQ3n/fq1NOMX9zTHm0cPPCVJfwN+nOdF1w3AUac84Yzes3TwUjCrR8yHI90/0ZXdnySnkcnlSXCJQLhILBbGe/erZ+2fPLIe9P6TVF3Zt2N3XM0xqcpsUDFuvYascedK9P8z58JpRA7dp2ffihV6+/7lONGpGEjfPmm16dfHJUc+awuRAAAAAAgEQLheIaPNinAQM8CgTMf643YIBPS5Y4lZXlML1vAMZccolbzZsbX9//wgsu+f0xEysCAAAAAFR09lQXAABAZbFzp/GHt3Xr8pENGBEIBNT18a4KrQxJBTrwz35J4QP/eNO8OunVk5Senq4qVaqoSpUqysjI0AknnKCTTjpJzZo1U9OmTeV0skENyZWRYdOXX0qdOwe1fLnLlD5HjEhXNOrT/fd7TekPAAAAAAAAZd+mTWE98khIb77pVlFRetLHt9tjuuqqgB580KETTuC51P/6fe/v2lSwKaU1NKjSQB2P6agzG52pjsd01Ml1TpbdypwUUFqxmLF5YZstuYGNKB/6vNtHi39ffMj7j3R6RP3b9E/I2CdknqAlA5eo74d99dWmryRJbeq20eOdH0/IeBVdv35enX9+RAMH+jVnTmJC1f74w6nu3aVBg3x68km30tMJGwQAAAAAwGybN4d12WVRLV9u/ryH2x3TM88ENGgQcypAWWO1WnTPPTH1N/g4NjfXruefL9Tddyd/zhYAAAAAUD5Z4vF4PNVFAABQGbz3nl9XXFHyhZ12e0xFRRZZrZYEVAVULOFwWF988YVmzZqlb775RqtWrVIkUrrTltPS0nTWWWepW7du6tatm1q0aGFStcCRFRRE1aVLSEuXuk3rc9y4Qo0axWQiAAAAAABARfbbbyGNGxfW9OluhcPJD4NwOmPq29evBx5wqkkTDl0ozrQ109T3w75JG88ii06uc/JfAWBnNjpTx1Q7RhYL80+A2QYN2q1QyKIaNSLKyIiqevWIatT477+rVInKWsxbc5UqVXTssccmv2CUWXfMvkPPfP/MIe/flH2TXuj5QsLriMfjWrNrjcLRsFrXbS2blQC70ojF4po82a977nFp377E/V5mZYU0dWpM555rzgFESK6VK1eqTZs2R/36FStWqHXr1okrCAAAAAAgSZozJ6B+/RzKzTX/gI2srJDefz+u7Ow00/sGYI5IJK6mTcPatMnY/GfDhiFt2OCQw8H8HAAAAADgyAgFAwAgSZ57zqdbby35iS21a4e1c6cjARUh1YLBoFauXKnly5dr2bJlWrZsmX788UdFo9ES9zV16lTdcMMN5hdZTnz11VeaOnWqPvnkExUUFCR0rOOPP15Dhw5V//79Vb169YSOBUjS3r1Rde0a0nffmRcMNmaMTw89xCliAAAAAAAAFc1PP4X08MNhvfeeW5FI8sPAXK6YrrvOrwceSNMxxzC3cTg3f3qzXlz+YlLG+uzqz3TmMWeqmqtaUsYDKrvMzIjy8g69KdBmi6tatahq1IioevWoMjIiysiIaNCgiC64oE4SK0VZNmHxBI34YsQh7/c6oZc+vvrjJFYEs23eHFb//mHNn1/yw+WOltUa19ChPk2Y4JHbnfzvDWEcoWAAAAAAULbEYnGNG+fXuHEeRaPmh/l07erX9OlpysggjB0o6555plB33GH8gO6XXvJpyBDW8QMAAAAAjsz8WHoAAFCsXbuM5XDWqBEzuRKkQlFRkVavXq1ly5b9FQK2bt06RSKRVJdWbkUiEb377ruaOHGicnJykjbub7/9puHDh+vBBx9Uv379NHLkSDVq1Chp46PyqVbNpnnz0tS1a0DffGNOMNiYMV5FIoUaN874hCQAAAAAAADKjrVrQxo7NqwZMzyKRo2dTF0abndMAwb4NXKkS/Xr88zpaCzcstDU/uqm11V+IF9F0aKD7lksFgLBgCSJRGIqKDj8xr1o1KK8PPtBwWG9excksDKUJ2+uevOwgWCn1T+NQLAK4NhjHfriC7uefbZQI0e65fOZv+k3FrPo2WfT9fnnRZo6Na4OHVymjwEAAAAAQEWXnx9V375Fmj3b/BAfqzWuUaMOHPRrtZofNgbAfEOGePTYY2Ht2GHsgKQnnrBr4MC4bDb+zgMAAAAADo/j3wAASJI9e4y1IxSs/AmHw8rJydHLL7+sIUOGKDs7W1WqVNFpp52moUOHasqUKVq1ahWBYKXwn//8R61atVLfvn2TGgj2v3w+n1588UU1a9ZMjz76qIqKDt5oBZilShWrPv88TWeeGTCtz0ceSdfIkYWm9QcAAAAAAIDkW7GiSL17+9SqlUPvv+9NyOn0h5OeHtWwYYXasCGmZ59NV/36nEt2NALhgH7Y/UOp+mheq7kGtx2s1y55Tb/d9pu2Dd+m8xufX+xr31n3TqnGAnD0du0KKxYz9l5ct675gUAof+atn6frPrrukPebZDTRNwO/SWJFSCSr1aLbb0/XihVRtW9v3jzg//XLL2k655w0jRhRqFDI2IF2AAAAAABURjk5RcrOjmr2bI/pfWdmRjRzZlBjx6YTCAaUIy6XVbfcYnzvyK+/pum99xL3LBAAAAAAUHGwIhcAgCTZvdvYRE3NmoSClWWRSETr1q3TsmXL/vpn9erVCoVCqS6tQtqxY4duueUWffjhh6ku5S9+v1+jRo3S1KlTNWnSJHXq1CnVJaGCSk+3au7cNHXvHtCiRW5T+nzssXTFYoUaPz7dlP4AAAAAAACQHEuXFmns2IhmzfIoHk9L+vhVq0Z1440B3XuvWzVr8mwp0dJsaTqtwWk6s9GZOvOYM9WhUQfVcNc46HUXN7tYs36bddD1Jb8vSUaZACTt2BGWZOx9uU4dQsEqu9U7V6vHtB6Kq/jQplqeWlp902pZrZwDWtE0berUokVxPfGET2PGuBUMmv//OBKxaMKEdM2aFdRrr1nUtm3yv4cEAAAAAKA8mTrVr1tucSkQMP/n9DZtgvrwQ5uyssxZDwwgue64w6OJEyMqKDC2PXv8eKuuuCJOICAAAAAA4LAIBQMAIEny8ow9rM3M5JTWsiIajeqHH37Q8uXL/woAW7VqlYLBYKpLqxQ+//xz9evXT7t27Up1KcVav369LrjgAv3jH//Qvffem+pyUEF5vVbNmZOmCy/066uvzDl17PHH0xWJFGrCBC8TiwAAAAAAAGXckiVBjR0b0+efe2Q0dKY0qleP6JZbgrrrLrcyMggDM8rtcKtP8z56/4f3i71f01PzQABYozPV8ZiOaluvrdLsR/7/fVWLq3TjpzcedH1TwabSlgzgKG3fHjXctkEDp4mVoLzZsneLTp98uiKxSLH3053pWnvzWnmc5swPoeyx2SwaMcKrnj1Duu66mHJyXAkZZ+1al844I6b77y/Ugw96ZbczPwgAAAAAwP8KheK65Ra/Jk/2JqT/gQN9evZZt1wugt+B8qpKFatuvNGvxx83Nl+6apVLc+YE1KMHwYAAAAAAgEMjFAwAgCTJzTU2aVOrlsmFwLA33nhD/fv3T3UZldLo0aP1yCOPKB4v2yF50WhUI0aM0Pfff6+pU6eqSpUqqS4JFZDHY9WsWS717OnXl1+as/Fj4sR0xWKFeuIJgsEAAAAAAADKogULgnr44Zhpz4NKKjMzottuK9KwYS5Vq0YYmBle6vmSMt2Z+mLDF0qzp+n0Bqer4zEddWajM3VC5gmyWEr+nK6qq6qqplXVvqJ9f7sejoW1btc6tajdwqzyARzCzp0xQ+3c7piqVmUZV2VVECxQqxdbKRgp/jAqp82pnCE5qp1eO8mVIRVatHDqu+/ievRRn/7xD7dCIfM3CIfDVj38cLo+/TSo11+3qkULQgkBAAAAAJCkzZvDuuyyqJYvNz8QzO2O6ZlnAho0KDFhYwCS6+673fr3v6Py+22G2j/2mNSjh8lFAQAAAAAqFCLlAQBIkrw8Yx+7NWuaXAhQjkSjUQ0cOFDjxo0r84Fg/+uDDz5Q165dtX///lSXggrK7bbq009d6tzZb1qfTz6ZrmHDfIrFys/fNQAAAAAAgIpu3ryAzj47oHPPdaUkEKxWrbAeeaRQmzZZ9dBDXlWrZmxROw5Ww11DL/Z8Ub/d/pvWDV2nVy5+RQPaDNCJNU80FAj2p+Y1mxd7/Y3VbxjuE8DR273b2DP2jIyIyZWgvAhFQmr5fEsVBAuKvW+z2LTg+gVqmtk0uYUhpex2ix56yKtvvw2rZcviw+LMkJPjUrt2do0f71M0yhwhAAAAAKBymzMnoHbtLFq+3GV631lZIS1aFCYQDKhAata06YYbAobbf/21W19/nbhnfwAAAACA8o9QMAAAkiQ/39hGmdq1jW/8AMqzUCikK664Qq+88kqqSzHkm2++Uffu3VVYWJjqUlBBud1WzZzpUpcu5gWD/fvf6br9doLBAAAAAAAAUikWi2vWrIDatw+oSxe3Fi1yJ72GevXCmjChUJs22fTAA+lKT2dpQXlxQZMLir3+xYYvklwJUDnt3m2sXfXqUXMLQbkQi8XU9uW22rp/a7H3LbLogys+0BmNzkhyZSgr2rRJ0/LlaRoxolB2e2Lm74JBq+6/36uzzgrql19CCRkDAAAAAICyLBaLa+xYn3r2dCk31256/127+pWTY1N2dprpfQNIrREj0uR0xgy3f/RR420BAAAAABUfK3cBAEiCYDCm/fuNhoLxcY3KJx6Pq3///vrwww9TXUqpLF68WBdeeKGCQU5wQWK4XFbNnOlW9+7mBYM991y6hg4lGAwAAAAAACDZYrG4PvrIr9NPD+rCC9369tvkh4E1bBjSk0/6tGGDTffcky6PhzmK8ub6VtcXe/3nPT8nuRKgcsrLM/a+WaMGoWCVUec3Omvd7nWHvP/ChS/o4mYXJ7EilEVOp0Xjx6dr4cIinXhiUcLG+eYbt9q0senpp5knBAAAAABUHvn5UfXsGdCYMV5Fo+Ye5m61xjV6dKFmzXIrI8PYXhIAZdsxxzh0xRUBw+3nznVr5crEPfMDAAAAAJRvrOAFACAJdu40voibUDBURiNHjtS0adNM66969eq66KKL9MQTT+izzz7Tzz//rNzcXAWDQYVCIeXl5WnDhg2aN2+ennvuOV199dWqV6+eKWMvXLhQt9xyiyl9AcVxOi366CO3LrzQZ1qfL72UrptuYsE/AAAAAABAMsRicb33nl9t2xapd2+Pli1LfhjYsceG9OyzPq1f79CwYV65XMxNlFdNajRRmi3toOuFoULl+fNSUBFQuezZY2zjYGYmoWCVTd8P+mr+pvmHvD/qrFG6sd2NSawIZV379i6tWOHQ7bcXympNzBye32/TsGFenX9+QJs2hRMyBgAAAAAAZUVOTpGys6OaPdtjet+ZmRHNnBnU2LHpslrNDRsDULY88IDD8PO6eNyiRx+NmFwRAAAAAKCiYCUvAABJsGtXzHDbunU5FQaVy+uvv67x48eb01kTaeLkidq5c6c++eQT3XXXXerRo4dOOOEEZWZmKi0tTQ6HQxkZGWrcuLE6d+6soUOHatq0adq6dau+/PJLXXvttbLZSvf38JVXXtHkyZPN+W8CiuF0WjRjhke9epkXDDZpUroGDyYYDAAAAAAAIFGi0bimTfPrlFOKdMUVHq1a5Up6DccdF9JLL/n0668O3XKLV04nG1MqgsbVGxd7/a01byW5EqDyycszNqdUowbP4iuTe+fdq2lrD31AUv/W/TXuvHFJrAjlhdtt1dNPp+vLL4vUuHEoYeN89ZVHrVpZ9dJLzBUCAAAAACqmqVP96tjRoY0bnab33aZNUMuWxdWjR/IPgQGQfM2aOdWrl99w+48+8ujXXxP3rA8AAAAAUH4RCgYAQBLs3Gk8FKx2bULBUHls2LBBt956a+k7aihpgHTJI5do+MDhcjpLPmFrsVjUqVMnvfHGG/rxxx916aWXlqqk2267TTk5OaXqAzgch8Oi99/36JJLzAsGe+WVdA0Y4Fc0ymJ/AAAAAAAAs0Sjcb32mk8tWoTUt69H69YlPwzsxBOLNHWqXz//7NCQIV45HISBVSRnHXNWsdc//eXTJFcCVD5GQ8EyM43PJ6N8efrbp/XPJf885P2uTbrqlYtfSWJFKI/OOcelNWvsGjKkUBZLYubx9u2z6aabvOrRI6Bt2yIJGQMAAAAAgGQLheIaPNinAQM8CgTM31Y5cKBPS5Y4lZXlML1vAGXXAw/YDbeNRCx67DFCwQAAAAAAByMUDACAJNi929gizKpVo2zEqUScTqcyMzNTXUbKRKNR9evXT/v37zfeiVVSZ0kDpLTGaZp22aFP2C6Jpk2b6oMPPtDbb7+t6tWrG+ojGAzquuuuUyTCgmkkjsNh0XvveXTZZeYFg732mlc33EAwGAAAAAAAQGlFInFNmuTTiSeGdMMNXv38c1rSa2jePKg33/Rr3TqnbrjBI7udOYiK6KqTryr2+oodK5JcCVD55OcbCwWrVcvkQlAmvbvuXQ2bO+yQ91vXba1Z18xKXkEo17xeq156KV2zZwfVsGHiNg3OnetRy5bS66+bN/8IAAAAAEAqbN4cVocORZo82Wt63253TJMm+TR5slcuF9s1gcqmXbs0de7sN9x+2jQPwfwAAAAAgIPwlAkAgCTYtctYkEqNGlGTK0FZ4XA41KZNGw0ePFgvvviili1bpv379+vWW29NdWkp8/zzz2vJkiXGO0iT1FdSR0lWaXzn8XI73CZVd8CVV16pJUuW6LjjjjPUft26dXrqqadMrQn4v+x2i95+26PLLzdvYf6bb3rVrx/BYAAAAAAAAEaEQnE9/7xPTZuGNWSIV+vXJz8MrFWroN55x681a9LUt69HNhthYBXZuceeK6vl4OUguf5cRWJsKAAS6cIL96pnzwKdeeZ+NW8eUL16IbndsSO2q1WL9+WKbuGmhbr6g6sPef/Yasdq6eClslpZzoeS6drVrbVrberXL3GhXfn5dl1/vVe9e/u0axffSwAAAAAAyp85cwJq186i5ctdpvedlRXSokVhDRpkftgYgPJj5Ejjz3aLiqx6/PGgidUAAAAAACoCe6oLAACgMjAeCnbkBeIo+xwOh1q0aKF27dopOztb7dq10ymnnCKn05nq0sqMvXv36uGHHzbegVPS9ZLqH/jymGrHaNgZw0yo7GAnnXSSvv76a3Xs2FEbNmwocfuxY8fqqquuUsOGDRNQHXCA3W7R9Oke2Ww+vf22OYsMpk/3Khbz6a232DQKAAAAAABwNILBmF58MaCJEx3644/UbATJzg7qgQdiuvhit6xWnulUFlarVfXS62nr/q1/ux5XXJ/+8qkuaXZJagoDKrhIJKI77thZ7L1AwKKCArvy8mzKz7crP//AvwsKbMrLs6tZM4KgKrIfdv+gzm90Vixe/Px/DXcNrR26VnYrS/lgTLVqNr3+uleXXurXzTc7tGOHIyHjfPSRV4sXh/Xcc35dfrknIWMAAAAAAGCmWCyuceP8GjfOo2jU/HmSrl39mj49TRkZNtP7BlC+dOrk0hlnBPTtt8YOtn/lFbceeiiqGjV4PwEAAAAAHMBKIgAAkmDPHmMTSJmZiQsFi0cjivh3KRrhNImjFfbtOuJr7Ha7mjdrqjatWqptm5PVplVLndKymdLS0v72upjvDwWLOag3Esg3XFswv+QBVRaLXQ5vTVkdqV2w++ijjyo3N9dYY6ukq/VXIJgkvX/F+2aUdUj16tXTF198oTPOOEO7dh35z8X/Kiws1F133aV33nknQdUBB9hsFr355oFgsLfeMmfT6TvveBWN+jR9ukd2O5tIAQAAAAAAiuP3x/Tcc349+WSatm9PTRjYGWcE9OCDUrduLsLAKql29dtp689bD7r+/g/vEwoGJEhRUdEh77ndcbndYdWrFy72/rHHHpuospBi2/Zt06mTTlU4Vvz/e4/DozU3rVG6Mz3JlaEiuuQSj846K6qbbvLp/fcT833o7t0OXXGFQ1de6dMLL7jY9AwAAAAAKLPy86Pq27dIs2eb/zOy1RrXqFE+PfSQl3kYAH8ZMSKu3r2NtS0stOnJJws1bhzPigEAAAAABxAKBgDAUdi+f7sWbl6ogmCBanlrqaanpmp5aqmWt5YyXBmyWQ+/yNFo1lHNmnFjDQ+hqGCLCvYHtC9gUVEoZGrflcHO/L//ntntdh133HFq3ry5WrRooebNm+vEE088KADs99yoJP9RjZG3v/jF4EdT229bj26Mg+2T3W5Tutuu6u6YvDWPl+UIf6bNlJ+fr2effdZ4B50lNf7vl92P765T659a6rqOpHHjxnrjjTfUvXt3xWIlC/B77733NHr0aLVo0SJB1QEH2GwWvfbagWCw1183Z1HD++97FYv59M47BIMBAAAAAAD8L58vpqee8uuZZ9K0a1dqFmt37HggDKxLF2MnUKPiuPjEi/Xxzx8fdP2b379JQTVA5RAOG5vnkySn02liJSgrCkOFOvnFk+UPFz+P67A69P2g71W/av1i7wNGZGba9N57Xr39tl+33eZUbm5iloi+845XixaF9dJLIfXsyfeeAAAAAICyJSenSH36WLRxo/kHZ2dmRvT662H16EFwD4C/69XLrZYtg1q71mWo/QsvuHTffTF5vVaTKwMAAAAAlEeEggEAcASLtyzWRdMvUn4wv9j7VotVNdw1VMvz/8PCvLVU033g339e22CpKtVtKPlrSv5aUuToHvBmZpoTChYL7deOHduVt48gsNKoWbOmLr744r9CwE488US5XMYe1pc1kUhUBfujKtgvefZvUINMh9KqZyVl7ClTpigQCBhrfJykDv/90mF16N3L3zWlrqPRpUsXDRs2TP/6179K1C4ej+uxxx7Tm2++maDKgP+y2SyaOtUjq9WnV181Jxjsww+9uvxyn9591yOHg2AwAAAAAABQue3dG9VTTwX17LNpys1NzQaQTp38Gj3aqnPPJZABB1zZ4koN+GTAQde37NuSgmqAyiFUikOZHA6HiZWgLIjEImr5fEvlBfKKvW+1WPVFvy/UojaHCCExrrrKo3PPjWjIEL9mzjR/A7Qkbdvm0EUXOXTDDT4984xbVaqwWREAAAAAkHpTp/p1yy0uBQLm/5zapk1QH35oU1YW8zEADma1WnTPPVFdf72x9nv22PXcc4W6915CBwEAAAAAkiUej5uTNgIAQAV15itnasnvS8ztNOSVfLUOBIT5axbz6wPhYXcM8uihe45VdVd1WSzGQldCe7do046AQqU4mRrJ8/zzz+uFF14ocbtx48bpkksuMa0Oi8WiBjWsql7vJNP6LE4sFtPxxx+vjRs3lryxTdLNkmr+99I/zvuH7j/rfrPKOyqFhYU68cQTtW3bthK1s9ls+vXXX9W4ceMEVQb8XSwW15Ahfk2ZYk4wmCRddJFfH3zgJhgMAAAAAABUSvn5UU2cGNDzz7uUn5+a87guuMCvhx6y6swzK8YBFjBXxuMZKggWHHR9xZAVal2vddLrASq6rVu3Kj+/+IOmjqRly5YmV4NUisViyp6UrZU7Vh7yNe/0eUdXtLgieUWhUnv1Vb/uvNOpgoLEfc96zDEhTZkSVefObIo2w8qVK9WmTZujfv2KFSvUunXrxBUEAAAAAOVAKBTXLbf4NXmyeetk/9fAgT49+6xbLheh2AAOLRqNq2nTsDZudBpqX79+WBs32uV0sj4fAAAAACq71KxMBgCgHFm3a535nTp9B/7J2HTYlz0dl56eINmtdmW6M1XLW0u1PLVU01NTtTy1VMv731/X9NT8636mJ1NOm1Ph/du1cUdAYQLBUELxeFx/7InKav1JVes0S9g4X331lbFAMEnK1t8CwepXqZ/0QDBJSk9P18MPP6xBgwaVqF00GtU///lPPf/88wmqDPg7q9Wil1/2yGYr1Msvm3N60MyZHl1yiV8zZriZeAQAAAAAAJXGnj1RTZgQ0IsvurVvX/JPabZY4urePaCHHrLptNM8SR8f5UeLWi20+PfFB11/Y80bhIIBCRCJRAy1M3o4FMquC6ddeNhAsKe6PkUgGJLqhhs8Ov/8sAYM8OuLLxLz/eOWLU516RLXjTf6NHGiWx4PG6QBAAAAAMmzeXNYl10W1fLl5geCud0xPfNMQIMGJSZsDEDFYrNZdNddYd16q7FQsG3bHJoyxaebb+Y9BwAAAAAqO0LBAAA4jHg8rkjM2OJtM0ViEe307dRO386jer3D6lDXJhfovhb3q5qtemKLQ4X2e25UxznWy12jSUL6nzFjhrGGVkkd/n7p3T7vlroeo/r166eHHnpIW7duLVG7t956S//617/kcrkSVBnwd1arRS+84JXN5tMLL5gzUThrlkcXX+zXjBkuTj8DAAAAAAAV2s6dET3+eFCTJrlVWJj8MDCrNa5evfwaPdquNm0IA8ORdTu+W7GhYF9u/DIF1QAVH6FgkKQBHw/QnPVzDnn/ng736I4z7khiRcABjRo5NHeuXS++6NN997m0f7/N9DHicYtefNGrefOKNHVqXGedxTw4AAAAACDx5swJqF8/h3Jzzf85NCsrpPffjys7m3AeAEdv4EC3Hn00rO3bHYbaT5xo15AhcdlszB8AAAAAQGXGjm0AAA5jy94t8oV9qS6jxMKxsD79dZaGfHVjqktBORePx/VHblSx0P4jvvb1Va/r0ncu1ZCZQ/T1lq+Pqv9PPvnEWGHNJFX/75fnZZ2nM48501hfJnA6nbr55ptL3G7fvn366KOPzC8IOAyr1aJnn/Xo1lsLTetzzhyPevUKKhiMmdYnAAAAAABAWbFtW0S33Vao446z6Mkn01VYaH6AwuHYbHH16ePTypVhzZjhVZs2aUkdH+XXda2uK/b6L3t+SXIlQOUQjUYNtbNaWb5VUYz+crSmrpx6yPvXtLxGEy6YkMSKgL+zWi0aOtSrFSui6tgxkLBx1q9PU6dOaRo+vJD5QwAAAABAwsRicY0d61PPni7l5tpN779rV79ycmzKzmZeBkDJuFxW3X57yHD79evT9PbbiXt+BwAAAAAoH1hVBgDAYdT01Ex1CaXyQ8EP2uHfkeoyUM4VhULavv3wf47+ufifuv6j6zXjpxmalDNJZ009S9d8cI227tt6yDarV6/Wli1bjBV1yn9/abfa9cGVHxjrx0R9+/Y1dJL766+/noBqgMOzWi16+mmvhg0zLxhs3jyPLrooqECAhf0AAAAAAKBi2LIlrJtuKlSTJlY9+2y6/P7khoHZ7XFddZVPa9aE9d57Xp18sjOp46P8O6baMXLZXQdd94f92lW4KwUVARVbLGbs+bjNltzPFyTGS8te0rhF4w55v1NWJ7112VtJrAg4tCZNnFqwwKWJE31yuxMztxeNHgjUbdMmrKVLixIyBgAAAACg8srPj6pnz4DGjPEqGi35+u3DsVrjGj26ULNmuZWRwbM7AMbceqtbNWpEDLefMMGqWCxuYkUAAAAAgPKGUDAAAA7D6/TqguMuSHUZhllllcfuSXUZqADy9xdp7/Yfi70Xj8f1zPfPHHR9+trpavZcM/1z8T8Vih58ysm3335rrBinpKb//fL+jveruqu6sb5MlJWVpdNOO63E7T7//HPt2EF4H5LParVo4kSvhg83Lxjsiy886tkzKL+fYDAAAAAAAFB+bdwY1sCBhWra1KaXXkpXMJjcaXWHI6brrvPphx/Cmj7dq5NOIgwMxjXJaFLs9TfWvJHkSoCKj1Cwyuvjnz7WzZ/dfMj7LWq10Bf9vkhiRcCRWa0WDR/uVU5ORKedFkjYOD/9lKYOHRwaObJQ4TCbGAEAAAAApZeTU6Ts7KhmzzZ/n0RmZkQzZwY1dmy6rFZzw8YAVC7p6VYNGRI03H71apdmzTLeHgAAAABQ/hEKBgDAEdyYfWOqSzDMbXerqrNqqstABbE1P67Q3t8Pur63aK/+2PdHsW0KQ4W694t7dcoLp2je+nl/u/f9998bKyRL0v/fG1HbW1sPd3rYWD8JcP7555e4TTQa1UcffWR+McBROBAMlq577jEvGOzLLz3q0YNgMAAAAAAAUP78+mtI113n04kn2vTKK+kKhZI7nZ6WFtPAgT79/HNUr73mVdOmhIGh9M4+9uxir8/6ZVaSKwEqPqOhYHa73eRKkEzf/fGdLnv3MsVVfNhRgyoNlDMkR1Yry/RQNjVr5tSSJS6NG1eotLTEzO9FIlY99li6Tj21SKtXH3ygGAAAAAAAR2vqVL86dnRo40bz51DatAlq2bK4evRwm943gMrp7rvd8nqjhtv/4x8mFgMAAAAAKHdYbQQAwBH0OrGX6qbXTXUZhsXjnLQKc8RiMf2+O6h49O+LdPf49xyx7c97flaXN7uoz7t9tLlgsyRp6dKlxgrJ+u8vp1823VgfCXLeeecZajd37lyTKwFKZsKEdI0YYV4w2IIFHnXtWiSfj2AwAAAAAABQ9v3wQ5Guusqn5s0deuMNr8Lh5E6ju90x3XhjoX79NarJk71q3NiR1PFRsfU9uW+x11ftXJXkSgAcCqFg5deve37V2a+erWi8+E1d1V3VtXboWjntBH2ibLPZLBo1Kl1Ll0bUqlUwYeOsWuXSaafZ9cgjhYpGWcsCAAAAADh6oVBcgwf7NGCAR4GA+fM4Awf6tGSJU1lZzNEAME9mpk39+wcMt//mG7cWLEjc8zoAAAAAQNlGKBgAAEfgsDk0oPWAVJdhyDn1zpHFYkl1GahAAsEi7dy26W/X8gJ5R93+gx8/0EnPnaRxC8bp559/NlZEvQP/6tioo85rbCyEK1HatGljqN2XX36pSCRicjVAyYwfn64HHjAvGOzrr93q0qVIhYUEgwEAAAAAgLJpzZqQ+vTx6ZRTnHrnHa8ikeQ+T/d4orr11kKtXx/Tiy+mq1EjNprAfO0btpfVcvDSkD2BPQpFQsW0AGBELGb8WbjDwft/ebSrcJfavtxWoWjx76Uuu0urblql6q7qyS0MKIWTT3Zq6dI0jRpVKLs9MXN8RUVWPfhgutq3D+rHH/leBAAAAABwZJs3h9WhQ5EmT/aa3rfbHdOkST5NnuyVy8U2SwDmGzEiTWlpxp+1Pfooa/EBAAAAoLLiaRUAAEdhcPZgWVS+wrWcVqduaX5LqstABZS7N6TCnT/99fWewJ4StQ9EAho9c7SKioqMFVBbsllsmnHVDGPtE6hGjRqqX79+idvt27dP33zzTQIqAkrmkUfS9eCD5gWDLVlyIBhs/34mIwEAAAAAQNmRk1OkSy7xqVUrhz74wKtoNLnP/6tUierOOwu1YUNc//53uurVsyd1fFQuVqtVDao0KPbeRz9/lNxigAosFDIebEMoWPnjD/nV8oWWKgwVP6dit9r17cBvdUy1Y5JcGVB6DodF48ala8mSsE46yeCc/lFYutSt7Gy7Jk70KRaLJ2wcAAAAAED5NmdOQO3aWbR8ucv0vrOyQlq0KKxBg8wPGwOAPzVs6NBVVwUMt583z6OcnMQ9pwMAAAAAlF2EggEAcBSyqmep2/HdUl1GiQw4cYCOSWeRMRLjj/y4Ivt3SpL2+EsWCiZJ2mtwYJckrzS8/XDV9NQ02EliNW3a1FC7uXPnmlwJYMzDD6dr7Fifaf19841bF1xQpL17o6b1CQAAAAAAYMS33wbVo4df2dlp+vhjr+Lx5IaBVa0a1YgRhdq4UfrXv9JVpw5hYEiO0xqcVuz1D374IMmVABVXaULBnE6niZUg0WKxmE558RTt9u8u9r5FFs3uO1ut6rZKcmWAuU49NU05OQ4NH14omy0xoV2BgFV33+3VOecEtX698fdRAAAAAEDFE4vFNXasTz17upSba/58SteufuXk2JSdnWZ63wDwf40c6SjVM7Z//CNiYjUAAAAAgPKCUDAAAI7Sjdk3prqEo9bA00ADTxyY6jJQgUUiUf2xe7/isaj2BJIYClZFquGuofHnjzfYQeLVq1fPULvFixebXAlg3OjRXo0bV/zp9kZ8951bF1wQUkEBwWAAAAAAACD5vv46qAsu8Kt9e5dmz/YkffyMjIhGjSrUpk3S+PHpysy0Jb0GVG69T+pd7PXvtn6X5EqAiotQsMqj/ZT2Wp+//pD3X7/kdXU+rnMSKwISx+WyauLEdH31VZGOP74oYeN8/bVbrVvb9NxzPsViiQkgAwAAAACUH/n5UfXsGdCYMV5Fo+Ye8GK1xjV6dKFmzXIrI4P5GgDJccIJTl1yid9w+48+8ujnnwnVBwAAAIDKhlAwAACO0oUnXKgGVRqkuoyjMrL1SLlsrlSXgQqu0B/Unm2/Ki+QV/LGRtcLp0tv9n5TVmvZ/Ta2fv36htqtWLFC8TgLnFF2jBqVrsce85nW39KlbnXuHFZ+PsFgAAAAAAAgOebPD6pTJ7/OOsulL75IfhhYzZoRjR3r0+bNVo0bl87mEqTMZSddVuz1P/b9keRKgIorHA4bbmu3202sBIl08fSL9f227w95//HOj+vaVtcmsSIgOTp2dGnVKoeGDi2UxZKYOe3CQptuvdWrrl0D+v134++pAAAAAIDyLSenSNnZ0YQc8pKZGdHMmUGNHZsuq9XcsDEAOJKRI43PBUSjFj32GM/MAAAAAKCyKbtpCgAAlDF2q10D2wxMdRlH1KleJ51d7+xUl4FKYkdBRDvzDn0S9iEZnI/IqJah7k27G2ucJOnp6Yba7d27V+vXG/i9BBLovvu8mjCh0LT+li936fzzw8rLIxgMAAAAAAAkzty5AXXsGNB557n01VfJDwOrXTusf/zDp02brBo92qsqVZiWR2q57C7VcNc46Ho0HtV3f3yXgoqAiicSiaS6BCTY0M+G6pNfPjnk/dtPu133nnlvEisCksvjseq559L1+edBHXtsKGHjfPGFRyefbNHUqf6EjQEAAAAAKJumTvWrY0eHNm50mt53mzZBLVsWV48ebtP7BoCj0bZtmrp0Mf7Ma/p0N2H6AAAAAFDJsPoYAIASGNR2kKyWsvvx6bK5NKLViFSXgUrm9735JW9kcC7i7CZlP/DO5XIZbrt8+XITKwHMcc896Zo40WdafytWuHTeeWHt2UMwGAAAAAAAME8sFtdnnwV0xhkBdevm1uLFyd/UUb9+WP/8p08bN9p0//1eeb1ldz4Blc/JtU8u9vpba95KciVAxWQ0FMxisZhcCRLh0YWP6oVlLxzy/mUnXaanuz+dxIqA1Onc2a01a+waMMC8g4X+r7177RowwKOePX3asYPQRQAAAACo6EKhuAYP9mnAAI8CAfPnVgYO9GnJEqeyshym9w0AJfHAA8bf40IhqyZMKDKxGgAAAABAWccqZAAASqBRtUa6sOmFqS7jkAY3G6wG3gapLgOVTH7QQCiYwSygat5qxhomUVpamuG2hIKhrBo+3KsnnzQvGGzVKpc6dQorN5dgMAAAAAAAUDqxWFwffujXqacWqWdPt777LvlhYI0ahfTUUz6tX2/T3Xd75fEwDY+yp0fTHsVe/2rTV8ktBKigjIaCWa18ZpR1U1dM1aj5ow55v0PDDnr/iveTWBGQelWqWDVlSro+/TSg+vUNngh2FD77zKuWLaXp0/0JGwMAAAAAkFqbN4fVoUORJk/2mt632x3TpEk+TZ7slcvFczgAqXf22S61bx8w3H7qVDcHcwMAAABAJcITLQAASujG7BtTXUKxstKzdEPTG1JdBiqhglBByRsZ/C50977dxhomUVGR8dNX1q5da2IlgLmGDfPqmWd8sljipvS3Zo1L554b1q5dnO4NAAAAAABKLhaL6513/GrTpkiXXeZRTo4r6TVkZYX0/PM+rV/v0B13sKEEZdu1J19b7PXf8n5LciVAxRSLxQy1s9lsJlcCLtKCsAABAABJREFUM83+dbYGfjLwkPdPqHGCFvVflMSKgLLlwgvdWrvWqquvNu9wof9rzx67rrnGo8sv97HhEQAAAAAqmDlzAmrXzqLly82f48nKCmnRorAGDTI/bAwASmPkSONtfT6bnnjCeKgYAAAAAKB8sae6AAAAyptux3fTMdWO0Za9W1Jdyt/c3/p+OW3OVJeBSmhvaG/JGzmMjTX7p9kaPne4HjrnIVVzVTPWSYIFg0HDbTds2GBiJYD5brvNK5vNp1tv9Sget5S6v3XrXDr33CLNny/VqcOPpwAAAAAA4Mii0bimTfNr/HibfvjBk5Iajj++SCNGRHTDDR7Z7TyXR/lQv2p9ue1uBSJ/3ygQiAS0dd9WNajaIEWVARVDNGosqIZQsLJr+bblumj6RYqr+MNS6qbX1aqbV8lqJRQUB8TjcW3atEk//PCDfvjhB/3000/avXu39u/f/9c/FotFVatWVZUqVVSlShXVqVNHJ510kpo3b67mzZurYcOGqf7PKLGMDJumTfPq0kv9GjrUod27DS4GOIL33/dq0aKwXnihSL17p+bnAAAAAACAOWKxuMaN82vcOI+i0dKvRf2/unb1a/r0NGVk8OwNQNnTo4dLp5wS1OrVxgIRX3rJpQceiCk9nWfTAAAAAFDRsesaAIASslltGtx2sB6c/2CqS/lLlwZd1KFOh1SXgUrKUCiY0e9Ci6Qnv31S09ZM04QLJujaU66V1VK2JjMKCwsNt920aZPi8bgsFvMnuAGzDB16IBhs6FCPYrHS/1n98ce0v4LB6tblR1QAAAAAAFC8SCSuN94IaPx4m375JTWnujdrVqT774+ob1+PbLa0lNQAlEbTzKZavXP1QddfX/267u94fwoqAiqOwkKL3G6ppFM8hIKVTZsLNuvMV85UNF582FvVtKpad/M6uezGNm2h4tizZ4/mzJmjWbNmac6cOcrLyytVf/Xr11f37t114YUXqnPnzqpSpYpJlSZenz4enX12RDfd5NOMGYn5fn3nTocuvdShvn19evZZl6pX5z0UAAAAAMqb/Pyo+vYt0uzZ5v/saLXGNWqUTw895JXVylpsAGWT1WrRiBEx9e1rrH1+vl3//rdP99+fmjlzAAAAAEDyWOLxePHHGQIAgEPatn+bjnnymEMuAk4mt82tT7p8orqeuqb0Z7FYdEx1nxyWiCn9oWQemThFj/7rlRK3e/lfI9XvygsP+5rffTVVVBQyWlqxwrGw2s5oW/KGqyV9aGDAWpJu+e+XHRp10HM9nlPruq0NdJYY11xzjaZPn264/e+//14uT4BG5TNpkk833WROMJgknXhikebPt6lePYLBAAAAAADAf4XDcb3yil8TJji0YYMzJTW0aBHUAw/EdMUVbtlsbCJB+XXH7Dv0zPfPHHT97GPO1oL+C1JQEVBx1KkTVl6eXdWqRZSREVWNGhFVrx5VRsaBrzMyIsVci6pWrWrMC5Uxef48NX6msfYV7Sv2vsPq0ANVH9CmlZu0bNky/fjjj4pGS75uYOrUqbrhhhtKWS1S5T//+Y+eeuopzZo1S7FYLCFjOJ1OXX755Ro2bJjatWuXkDES5Y03fBo2LE15eYmb92vQIKRJk6Lq3t2dsDFSaeXKlWrTps1Rv37FihVq3bp14goCAAAAABPk5BSpTx+LNm40f74nMzOi118Pq0ePivlzIoCKJRqNq1mzkH77zdhBVPXqhbVhg00ul9XkygAAAAAAZQm7rQEAMKB+lfrqdWIvzfhpRqpL0dDmQ00LBJOkOlVjquK2SeJE1VSw2439vjscDrlch58QaKTdWh+qLjMzYfeG9hpraPRA48K/f7nk9yXKfjlbN2XfpHHnjVMNdw2DHZtn+/btpWq/YcMGNn+gXBg82Cu73a/Bg92KRku/Gfbnn9N0zjlFmj9fatCAH1UBAAAAAKjsQqG4Xn7ZryeecGjz5tScctyqVVCjRsV06aVuTpRHhXDtKdcWGwq2ZteaFFQDVBzRaEz5+TZFIhbt2ePQnj2Oo2775pv56ts3gcWhRIKRoFq+0PKQgWCKSeGXwhqzfUxS60LZEI/HNW3aND3++ONasybxn52hUEhvvfWW3nrrLZ155pl64IEH1L1794SPa4Z+/bw6//yIBg70a84cT0LG2LrVqR49pEGDfHrySbfS09kACQAAAABl2dSpft1yi0uBgPk/v7VpE9SHH9qUlUUgGIDywWazaPjwiIYONRYKtn27Q1Om+HTLLamZRwcAAAAAJAcrIQAAMOjG7BtTXYKOr3q8+h5v3irxKp40ZbqLTOsPZYvL5VK9qmFT+9wXOsSC+COpanDAgCT/3y/F4jE9v+x5nfjsiZqcM1mxeGJOYj5av/76a6nab9y40aRKgMTr39+jKVP8stnMCRv89dc0nXNOVL//bu57FQAAAAAAKD8CgZiefNKn444L67bbvNq82fzT4o+kXbuAPv44oJycNPXp4yEQDBXGqQ1Olc1y8OEk+cF8BSPBFFQEVAwFBRGFw8aWYNWsydKtsiAcDmvZsmXKGp+l7YWHOAAoLmmapNKdD4Ryas2aNTr77LN17bXXJiUQ7P9avHixevTooUsuuURbtmxJ+vhG1K9v12efufXyyz5VrRpN2DiTJ3t18skRffUV38sAAAAAQFkUCsU1eLBPAwZ4EhIINnCgT0uWOJWVdfRB/QBQFgwc6FH9+sbXzE+c6FAkYs4afgAAAABA2cTKMgAADLqgyQVqXL1xSmsY2XqkHFZzJrDsdrsaeHJlYXNThZbhjqhqurHTRIpTECow1tBoKJgk7Sr+cq4/V4NnDtYZk8/Q91u/L8UAxhUUFGjr1q2l6mPnzp0mVQMkx/XXezV1ql92uzmTiuvXp+mcc+LavJlgMAAAAAAAKhO/P6YJEwp13HFRDR/u1datyQ8Da98+oFmzAvr+e7d69XITBoYKqWHVhsVe/+CHD5JcCVBxbNtm/Hl23boHB/UhsSKRiFatWqUpU6bo5ptv1qmnnqr09HSd+vyp2hk9xDxdXNLHkn5LZqUoCyKRiEaMGKG2bdvq66+/TnU5+vjjj3XSSSfpySefTHUpR8VqtWjwYK9Wr46pUyf/kRsYtGmTU+efn6bbbitUIJDaQ8QAAAAAAP+1eXNYHToUafJkr+l9u90xTZrk0+TJXrlcbI8EUP44nRbdcUeR4fYbNzo1bVrinrkBAAAAAFKPp14AABhktVg1JHtIysa/sNGFOrXWqab117DKXtmdyd9kheSyWC1q4M6Vw2E3pT/DoWAOSVUMDrrj8LeXbluqMyafocGfDNZu326DgxizYsWKUvexZ88eEyoBkqtfP69eey0gu92cRfYbNzp17rlxbdpEMBgAAAAAABVdYWFMjzxSqKysqEaMSNeOHck/yf3sswOaNy+gJUvc6t7dLQtZYKjAzmh4RrHXP/zxwyRXAlQcO3ZEDLetX5/52USKRqNas2aNXn31Vd16660644wzVKVKFbVu3VqDBg3Siy++qGXLlil0cUg69hCdxCXNl7QyeXWjbNi9e7c6d+6sCRMmKBIx/vfcbH6/X8OHD9fVV18tv798bPo79liHvvjCraefLpTXG03IGLGYRc8+m67WrcNasiSYkDEAAAAAAEdvzpyA2rWzaPlyl+l9Z2WFtGhRWIMGmR82BgDJdMstHmVmGn/2OGGCTbGYOQd7AwAAAADKHkLBAAAohf6t+8tuNSdcqSTS7em6+5S7TeuvVlWb0t3J/+9AatgcTjVKzzelr72hvcYb1zXYbuORXxJXXJNXTNYJz56g575/TtFYYhYW/1/z588vdR+EgqG8uuYaj958MyiHw5xgsE2bDgSDbdgQMqU/AAAAAABQtuzdG9VDDxUqKyumBx9M1+7dyQ8DO/98vxYsCGrBArc6d3YnfXwgFfo071Ps9e+3fZ/kSoCKY+dOY8/F7faYatRgjjaR3njjDZ1yyinq37+/nnvuOX333XcKBv9PWFBXSc0P08kySQsTWCTKpJUrV6pdu3ZasGBBqks5pLfffltnnnmmNm/enOpSjorVatHtt6drxYqo2rcPJGycX35J0znnpOneewsVCrEhEgAAAACSLRaLa+xYn3r2dCk31/xnX127+pWTY1N2dprpfQNAsnm9Vt18s/GA+3XrXPrkk8Q9awMAAAAApBahYAAAlEKd9Drq3ax30se9tcWtqumqaUpfHleaarv3mdIXyg+P26k61Syl7qdUoWD1DbbbJOkoM74KggW6dfatajepnTYVbDI44NH7z3/+U+o+CAVDeXbllR5Nm2ZeMNjmzU6de670228EgwEAAAAAUFHk50c1cmShsrLievjhdO3Zk/wwlK5d/Vq8OKgvvvDo7LPNP6EeKMt6ndCr2Ovb9m9TLGbOcz2gstm1y1joTEZGVDYbS7dSqr2kMyQdatr0J0mfJa8clA3Lly/Xueeeqy1btqS6lCNauXKlzj777HJR65+aNnVq0SKXHn+8UG53Yr73iEQs+uc/09W2bZFycooSMgYAAAAA4GD5+VH17BnQmDFeRaOlX6f+v6zWuEaPLtSsWW5lZNhM7RsAUunOO91KTz/KDTLFePxxc99vAQAAAABlByvLAAAopRuzb0zqeM2qNdOVx11pSl9Wq1UNvbtlsXECdWVU0+2X11O6U5IKQgXGG9cz2K5I0vqSNVm5Y6XOe+08haNhg4Me2R9//KFvvvmm1P0QCobyrk8fj95+Oyin05xF/L//fiAY7JdfCAYDAAAAAKA8y82N6u67C5WVJT32WLoKCpL7XNpiiatnT5++/75Ic+Z41KEDYWConJx2p2p6Dj54JhaPafHvi1NQEVD+5eYaa5eRYXyTD0xwsqQuOnQg2FZJbyevHJQNa9euVdeuXbV3bykOx0qyLVu26Pzzz9f27dtTXcpRs9ksuvfedC1dGlHbtsGEjbNunUtnnOHQ6NGFikSMBTgCAAAAAI5OTk6RsrOjmj3bY3rfmZkRzZwZ1Nix6bJaCb8BULHUqGHTwIEBw+2//dat+fMT94wNAAAAAJA6hIIBAFBKnRp3UtMaTZM23gNtHpDdas5mqQZVA3KmlS4UCuWXxWpVQ/du2WzGT0sqKCowXsCxMv7d6JqSN9lYsFHfbf3O4IBH9tZbbykeL/1CYkLBUBFceqlH77wTVFqaOcFgW7c61amTRT//TDAYAAAAAADlzY4dEQ0bdiAMbOLEdO3bl9zT263WuHr39iknJ6SZM7069VSeiQOt6rQq9vq0tdOSXAlQMezZY2wjYo0aEZMrwVHLktRbhw4Ey5M0OWnVoIz47bff1Llz53I5X/tn7Xl5eakupURatHDqu+/SNGaMz7QDh/6vcNiqcePSddppRVq7lrlGAAAAAEiEqVP96tjRoY0bnab33aZNUMuWxdWjh9v0vgGgrLj3Xlep1t3/4x+JebYGAAAAAEgtQsEAACglq8WqIdlDkjJW76zeap3Z2pS+Mqo4Vc38g3hQzjjS0tSw6n7D7feGSnFCsltSI4Ntf5C0r+TNqruqGxzw8CKRiF544QVT+goEjJ/yApQll1zi0XvvFcnlMmeScds2hzp1suiHH4pM6Q8AAAAAACTW1q0R3XJLoY47zqqnn06Xz5fcMDCbLa7LL/dp9eqwPvzQq9atCQMD/tSjaY9iry/ctDDJlQAVw549xpZf1ajBJp2UqCWpnw69as4n6XlJpT8LCOVIMBhUnz59tHPnTlP6O+WUUzR8+HBNmzZNa9eu1bZt2xQIBOT3+7V161atXr1ab775poYNG6bmzZubMuYPP/yg66+/3pSDrJLJbrfooYe8+vbbsE4+OZiwcVascOnUU+0aP96naLR8/R4BAAAAQFkVCsU1eLBPAwZ4FAiYv0Vx4ECflixxKivLYXrfAFCW1K9vV9++fsPtv/jCo2XLWGMPAAAAABUNoWAAAJjghtY3yGkz/2Sb/1XVUVXDWg4zpa+0NKfqufMNt98dyNfWwl2m1ILUq+K2KbOq3VDbglBB6QY/wWC7qKRvStbkguMuUPNa5iyo/r+mTZumzZs3m9JXKMTpxKg4LrrIrfffNy8YbPt2h84/30owGAAAAAAAZdjmzWENGVKo44+36vnn0xOyCeRw7PaYrrnGp7Vrw3r3Xa9atEjss3ugPLr25GuLvb4+f32SKwEqhrw8QsHKjSqShkg6VFZpSNJzkiJJqwhlxO23365Vq1aVqg+Hw6Gbb75ZK1as0KpVqzRx4kRdffXVatGiherVqyeXyyW326369evr5JNPVt++ffXkk09q3bp1WrZsmQYPHiy73di8/Z8+/fRTPfHEE6XqI1XatEnTsmVpGjGiUHZ7YkK7gkGr7r/fq7POCuqXX5iXBwAAAIDS2Lw5rA4dijR5stf0vt3umCZN8mnyZK9cLrY+Aqgc7r/fWarnYo8+yoNtAAAAAKhoeDIGAIAJanpq6rKTLkvoGHe0vEM10mqUuh+LxaJG3lxZS7iYNBQN642fPlPr6deo9uQL1HBqD/WcOUyBSOJOakXy1HHvk8uVVuJ2e0N7SzdwaTK6lko6ymy7/q3768MrP5TVYv63v36/X6NHjzatP0LBUNFceKFbM2YUye02Z3PTjh0Odepk1dq1/F0BAAAAAKAsWb8+pP79fTrhBJsmTUpXMJjcqWiHI6brr/fpxx8jeustr5o1IwwMOJTa6bXldRy8UasoWqTNBeYcgAFUJnl5h0qYOrzMzMSE3uAQnJKGSnIc4n5E0ouS/EmrCGXE22+/rUmTJpWqjwsvvFDr1q3T888/r9atW5e4fXZ2tl5++WWtWbNG3bp1K1UtI0eO1DfflPCErTLC6bRo/Ph0LVxYpBNPTNwhQd9841abNjY9/bRPsRjvxQAAAABQUnPmBNSunUXLl7tM7zsrK6RFi8IaNMj8sDEAKMuOP96pSy4x/oD6k088+ukn1tcDAAAAQEVCKBgAACa5qd1NCeu7RUYLXdbYnNCxelUjJQp/KijarwnLX1Pj13rpunkPaVXuL3/d+2zT1xr97Uum1IXUstpsauTZLau1ZN8eljoULENSE4NtI5JmHf4lx2Ucp3n95umVi19RujPd4ECH98gjj2jzZvM2SREKhoqoWze3PvrIvGCwXbscOu88i1av5u8LAAAAAACp9vPPIV17rU/Nmtn16qtehULJnYJOS4tp0CCffvklqldf9er44wkDA47GCZknFHv9tVWvJbkSoPzLzzcWClazJkE0SWOVdIsk9yHuxyS9KimvZN06nU5lZmaWpjKkWG5uroYOHWq4vd1u14QJE/Tpp5+qadOmpa6nWbNmmjVrlv7xj3/IZjP23hKJRNS/f3+Fw+FS15Mq7du7tGKFQ7ffXiirNTHvlX6/TcOGeXX++QFt2lR+f68AAAAAIJlisbjGjvWpZ0+XcnNLdkD50eja1a+cHJuys0t+0DUAVAQPPGCXxWLseVgsZtGjj/KcCwAAAAAqEkLBAAAwyVnHnKWTap5ker8WWfRgmwdlsxhb8Pm/qnrTlOE+uoe8m/Zt07CFE9Vo6oUaseTf2ubbXezrFmxdXuq6Kpt4vGwu8E9zpal+leBRvz4ej6sgVFD6gduVou2vkr4/+LLVYtXd7e/WmpvXqPNxnUsxwOEtWLBAEyZMMLVPQsFQUXXp4tYnnxTJ642a0t/u3Q6df75VK1cm7pRwAAAAAABwaD/8UKQrr/SpRQuH3nrLq0gkuVPPbndMN9/s02+/xTRpkldZWY6kjg+Ud+c3Pr/Y63PXz01yJUD5l59vbANk7doWkyvBId0oqdoh7sUlvSvpj8N34XA41KZNGw0ePFgvvviili1bpv379+vWW281t1Yk1ciRI5Wfn2+obVpammbOnKl77rnH1JosFovuv/9+ffTRR3I4jH2P+/PPP+upp54yta5kc7utevrpdH35ZZEaN07cHPpXX3nUqpVVL73kUyxWNtdyAAAAAEBZkJ8fVc+eAY0Z41U0au5zLas1rtGjCzVrllsZGaXfMwEA5VXr1mnq2jVguP0777i1ZQvBYAAAAABQUZgfyw8AQCVlsVg0JHuI7px7p6n9Xt74crXIaFHqfhwOuxp4cmWxOg/7uqU71+mJnDf1/vr/KBaPHbHfoigPjI9WLB7TA988r9d++lRpNqcuPa6T7m/XXzXd1VNd2l+qe+MqjKapoPDIITuBaEChmAmLb0+UlCHJ2Fpraa6kupKOOfBlqzqtNKXXFGXXzy59bYfx+++/6+qrr1Y0ak7A0Z8IBUNF1rmzWzNnBnXRRZLPV/qFG7m5dnXuLH3+eZHatuVkOAAAAAAAkmH16pDGjAnr4489isWS//O41xvVwIFB3XdfmurV8yZ9fKCi6Neqn5745omDrq/btS4F1QDlVzQa1Xvv/aaCApvy8uwqKLArL8+m/Hz7/1w78HVenk379v13qVatWoSCJcV1kuoc4l5c0ixJP/39ssPhUIsWLdSuXTtlZ2erXbt2OuWUU+R0Hn6uHeXL8uXLNWXKFENt7Xa73n33XXXr1s3kqv6rZ8+eevvtt3XllVcqEomUuP24ceN07bXXql69egmoLnnOOcelNWtiGj68UJMmeRWPm//euW+fTTfd5NWMGX698opT9euzrBYAAAAA/ldOTpH69LFo40aP6X1nZkb0xhthde+ebnrfAFAePfCAVXPmGGsbDls1fnxAzz/PgVoAAAAAUBGwegEAABNd1+o63ffFfSqKHjlQ6WhkODN0e8vbTemrUXqBbI7iFynH4jF9unGRnljxphZtW1Gifj0OlxnlVQqPLZuq8ctf/evrf618S1N++Fj3t7tBt7e6Sm572fi9rOfOlT9UQ6HQ4QPf9oX2mTOgVdJ5kj4w2D4qaZrkGODQw1c/rLva3yWHLbGTGLt27VLnzp21ffv2hI4DVESdOrn02WdB9ewpFRaWPhhsz57/BoO1a0cwGAAAAAAAibJ8eZHGjo3q00/diseTH4hRpUpUgwcHNGKES7VrEwYGlNYpdU6R3WpXJPb3kJG9RXvlC/nkdfL3DDgaoVBIDRqE1aDB0R2kFIlIBQU2FRTYdeqptRNcHSbtniQdd4ibcUmLJPsKu1q0avFX+Fd2drZatWqltDTmHCq622+/XbHYkQ9KK86TTz6pXr16mVzRwS699FL985//1J13lvxwuv379+u+++7Ta6+9loDKksvrteqll9J16aUBDRpk0x9/JObnkblzPWrZMqKnnvLpuuv4XggAAAAAJGnqVL9uucWlQMBqet9t2wb1wQc2ZWW5Te8bAMqrjh1d6tgxoK+/Nvbe+NprLj38cFQ1a5Z+nT4AAAAAILXMfyIHAEAlVsNdQ1e0uMK0/u48+U5Vc1YrdT+1q1nkcR8ckhSIBPXimvd10pt9dPFnd5U4EEySvHYm4Y7Wu79+cdC1vaFC3bfkWZ34xmV686dZisfjKajs72wOpxp582SxHP6E3YJQgXmDtpRUtxTtg5J3ulfto+0THgj222+/6ayzztIvv/ySkP7ZYIDK4JxzXJo1K6yqVaOm9Jefb9cFF9j03XdBU/oDAAAAAAD/9c03QXXv7le7dmmaOdOjePzwzw3NVq1aRPfdV6hNm6SJE9NVuzbnXgFmOabaMcVef2fdO0muBCi/QqFQiV5vt0s1a0Z1/PFFysxkTiiR7v/ifi3xLznk/dNdp+vbf3yr/fv3a+XKlZoyZYpuvvlmnXbaaczXVQJffvmlliw59J+Pw+ndu7duvfVWkys6tGHDhumiiy4y1Patt97Sxo0bTa4odbp2dWvtWpv69fMlbIz8fLuuv96rSy7xadeuyJEbAAAAAEAFFQrFNXiwTwMGeBISCDZwoE+LFzuVlZXYdd8AUB7df7/xtn6/TU88ETCvGAAAAABAyhAKBgCAyW5qd5Mp/bTObK2Lj7241P14PWmq5f77gshd/jw99O1LOmZqT9381Xj9UrDFcP8eBwuij9Yfvl2HvPd74U71mzdaL6+bkcSKDs3tdqpO1cOfimxqKJhFUrfSdVGQX6AuXbroqaeeMnyi85HMmDFDZ5xxRsICwSTJ5XIlrG+gLDnrLHODwQoK7Ora1a5vviEYDAAAAAAAMyxcGFTnzn516ODSnDmepI9fo0ZEDz5YqE2bLHrssXTVqMFJxoDZ2jdsX+z1j3/+OMmVAOVXSUPB/pfT6TSxEvyvf3/3b41fPP6Q9y847gJ9e9+3Ov3005mbq6QmTJhgqF3NmjU1efJkk6s5sldeeUUZGRklbheNRjVx4sQEVJQ61arZ9PrrXs2Y4VfduuGEjfPxx161bBnXe+/5EzYGAAAAAJRVmzeH1aFDkSZP9pret9sd06RJPk2e7JXLxbZGAChOt24utW5tfE38Sy+5tH9/YvbUAAAAAACSh6dnAACYrH3D9mpZu2Wp+rDKqlGtR8lqKd1Htc1mU0P3blmsBzZL/ZS3SUO+fFTHvNpTDy+dpNxgQan6lySPnUXSR8sfPvJD+R2+PUmo5CgUFipz7nRV8Rx6M4KpoWCSlCXpjNJ1EQqFdOedd+rss8/W999/b0ZVkqT169frqquu0qWXXqo9exL7/4iNB6hMzjzTpTlzwqpWzZxTtvfutatbN4cWLyYYDAAAAAAAo778MqhzzgnonHNc+s9/kh8GVrNmROPGFWrTJqsefjhd1asTBgYkyhUtrij2+rKty5JcCVB+RSLGn29brSzbSoQPfvhAt8+5/ZD3W9VppTl95ySxIpQ1q1ev1ty5cw21ffjhh1WjRg2TKzqymjVrasyYMYbaTp06Vbm5ueYWVAZccolHa9dadfnlviO/2KDdux264gqPrrrKp7w8cw46AgAAAICybs6cgNq1s2j5cvPXM2dlhbRoUViDBpkfNgYAFYnVatGIEcZDvQoK7Hr6acLuAQAAAKC8Y3UZAAAms1gsujH7xlL1cXWTq3Vi9RNLXUvDKoWyO51asHW5Lpp5p056q48mrZuhoqjxE6v/L0LBjk4sHlMwWpTqMo7s11+lRx+VunWT5dHH1OD+a2W324t96b7QPvPHP19SzdJ3s3jxYp1++unq0aOHPvroI4XDJT8hOB6Pa+HChbr++uvVrFkzvfPOOyVq7/F4Dvl7dziEgqGyad/epblzI6pe3ZxgsH37bOrRw6FFiwgGAwAAAACgJObMCahDh4DOP9+lhQvdSR+/Tp2wxo/3adMmq0aNSleVKkxlA4nWo2kPWWQ56PoO3w7FYpweDhwNI3NQSJyvt3ytK94vPvBQkhpVbaRlQ5YRyFbJPfHEE4batWjRQkOGDDG5mqM3dOhQNWvWrMTt/H6/nn/++QRUlHqZmTa9+65X06f7VbOmOXONxXnnHa9atozp008DCRsDAAAAAFItFotr7FifevZ0KTe35Oufj6RrV79ycmzKzk4zvW8AqIguv9ytE04wvgfp2WfTFAgw3wcAAAAA5RkrnAAASIBrWvaVwsY2TdVMq6lbWtxS6hqqpsf16R+f69R3r9O5H96oTzctKnWfxfE6kr85rDwKRMp4INjvv0s33yxddbX04QwpcCBMx/79UjVc/kmxTQpCBebX4ZB0pSSTcrFmz56t3r17q06dOurdu7eefPJJzZkzR7/99pvy8/MVCoUUiUS0d+9ebd68WfPnz9dLL72kfv36qVGjRjrnnHP0+uuvGzrl/dlnn1U0WvLTggkFQ2V0+ukuzZsXVY0a5gWDXXihQwsWEAwGAAAAAMDhxGJxzZwZ0GmnBdS9u1vffJP8573164c1caJPGzfaNGKEV14vU9hAstitdtXy1Droeiwe0/xN81NQEVD+GJlDkkQoVQL8uPtHnffaeYrFi9/kVMNdQ2tvXiu71fxNrSg/9u/fr/fff99Q2/vvv182m83kio6e3W7XiBEjDLV99dVXzS2mjLnqKo/WrpUuusifsDG2b3fooovc6t/fp/372UwJAAAAoGLJz4+qZ8+AxozxKho9+CCJ0rBa4xo9ulCzZrmVkZG6n6sBoLyx2Sy66y7ja+t37nRo0qTEPS8DAAAAACQeK8wAAEgAW7iqtOZqQ23vOuUuVXFUMTx2YbhQ0za8pbM+6KJr5o7S8l0/Gu7raHjsBBgdDV+4jJ4YG4tJ06ZJV10lfb+02JekjxqhWraDg3UKigoSU1MtHQgGM/E71fz8fH300UcaPny4unfvrqZNm6pGjRpKS0uTw+FQ9erVlZWVpfPOO0833XST3nzzTW3dutXweDfddJN69OiheDxe4rZVq1Y1PC5QnrVrl6Z586LKzDQnGGz/fpt69nRo/nyCwQAAAAAA+L9isbg++MCv7Owi9erl1tKlyQ8DO+aYkJ55xqeNG+0aPtwrt5upayAV2tRrU+z16WunJ7kSoHwyckCMRCiY2XYU7tCpk05VOBYu9r7H4dGam9aoqot5uMruww8/VCBQ8rn7Bg0a6IorrkhARSVzzTXXqG7duiVut3HjRi1evDgBFZUdderY9cknHk2d6lf16ubMNxbn1Ve9atkyonnzyugaEAAAAAAooZycImVnRzV7tsf0vjMzI/r006DGjk2X1Wpu2BgAVAb9+3vUsGHIcPsnn3QqEin5nhYAAAAAQNnACjMAABJgx46otPzGErc7tdapurDRhcbG9O/QxNUTdcGsC/TYivHaUrjDUD8lRSjY0fFHymAozfbt0uAh0sR/ScGiw760dp+z5XE5/3Ztb2hv4mprLOkSlcvvVs8++2w99dRTys3NNdS+Xr16JlcElB9t2x4IBqtZ05yF+oWFB4LBvviCRfkAAAAAAEgHwsDeftuv1q2L1KePRytXJv/5buPGIb3wgk+//ebQbbd55XSyCQRIpZ4n9Cz2+tdbvk5yJUD5RChY6hWGCtXy+ZbyhX3F3ndYHfp+0PeqX7V+kitDWfTWW28ZanfrrbfK4XCYXE3JOZ1ODR061FBbo//t5c0NN3i0enVcnTv7EzbGli1Ode3q0s03++T3xxI2DgAAAAAk2tSpfnXs6NDGjc4jv7iE2rYNatmyuLp3T/7BNABQUTgcFg0bVvxhGEdj0yan3nyTdfQAAAAAUF6xwgwAgATYtSsmbT1V2t76qNvYLDY90PoBWSwl2wD1Y8GPuu/7+9R9Tne9+uurKowUlrDa0vE4CAU7GmUuFGzDBql/f2nlyqN6ucUfUMNnhv9tg0JBqCAxtf1/2V2z9a9J/1JaWlpCxzHTmWeeqc8++0xpaWnavXu3oT6MnOwMVCRt2qTpP/+JqVYt4xOY/8vvt6lXrzR9/jkTmgAAAACAyisajev1131q0SKkq6/2aM2a5D/Xbdq0SFOm+PXLLw7ddJNXDgdhYEBZ0PfkvsVe31iwMcmVAOVTLGYsDMZms5lcSeUUiUV08gsna09gT7H3rRarPu/3uVrUbpHkylAW7dixQ19++WWJ21ksFl177bUJqMiYfv36GWr37rvvKhw2Z/6trGvUyKG5c916/nmfqlQxFt54JPG4RS++6NUpp4S1aFEZWw8CAAAAAEcQCsU1eLBPAwZ4FAiYv7Vw4ECfFi92Kisr9QHbAFDe3Xyzu1QHbk+YYFMsFjexIgAAAABAshAKBgBAAuzcGZNkkZbfeNRtrmt6nZpUbXJUr43FY1q4faEGLRykK/5zhT77/TNF4sYf8paG187pPUfDF05sGE1usODoX7xhgzR4iLQ7t0RjOGd+pga/L/vr672hvSVqf7RcNpfuaXWPFvR5W3cOuFOffvqpqlWrlpCxzNShQwfNnj1b6enpkg4sKjeiXr16ZpYFlEunnOLUl1/GVbu2ORsTAgGrLrnEqTlzEnciOAAAAAAAZVEkEtfkyT6ddFJI11/v1U8/JT+Av1mzIr32mk8//ujUgAEe2e2EgQFlSYY7Q+nO9IOuh6Ih/bbntxRUBJQv8bixjTR2u93kSiqfWCym0yedrk0Fmw75mmmXTtO5WecmrSaUbR9//LGi0ZIHRJ155plq2LBhAioyJisrS2eccUaJ2+3Zs0cLFy5MQEVlk9Vq0c03e7VyZVRnnZW4OcL169PUqVOahg8vVDBoLCgSAAAAAJJp8+awOnQo0uTJXtP7drtjmjTJp8mTvXK52LIIAGbweKwaOtR4KP2PP6ZpxgwO1wYAAACA8ognbAAAJMDu3f9/8ffqvvLYPUd8fW13bd100k1HfF1RtEgfbvxQl867VLcsuUXf7f6utKWWmsfhSnUJ5YI/ktiTYe9b8qzu+fpp5Qf3Hf6F27ZJQ4dKBQWGxql20/XK+P//yxMRCta+dnt92PlDXXf8ddq+J65YOKDOnTtrxYoVateunenjmWXAgAH6z3/+oypVqvx1bcOGDYb6qlu3rlllAeVay5YHgsHq1DErGMymSy91adYsJjUBAAAAABVfOBzXCy/4dMIJYQ0e7NWvvyY/DOzkk4OaPt2vdeucuu46r2w2wsCAsqpZZrNir7++6vUkVwKUP4SCpc5F0y9Szo6cQ97/V5d/6cqWVyaxIpR18+bNM9TuqquuMrmS0rv66qsNtTP6e1CeHXecU1995dbEiT653YkJ7YpGLXryyXS1aRPW0qVFCRkDAAAAAMwwZ05A7dpZtHy5+ev/s7JCWrQorEGDzA8bA4DK7s473apateQHHvzp8ceZqwcAAACA8ohQMAAAEmD37gP/fuv5berRqMcRX3/vKfceNjysoKhAL/34krrM7qKHch7S+v3rzSq11Dx2QsGOhj+c2FCwaCyqJ1a8oSavX6InV7ylomjo4BfFYtKoUdLu3FKNVe/a85XmdKogVFCqfv5XVUdVPdLuEb3U8SU1Sm8kSQoWFWnn9j8kSY0bN9bixYt1zz33lKlNEmlpaXrppZc0ZcoUuVx//7uwceNGQ33Wq1fPjNKACqFFC6e+/DKmevXMCgaz6rLL0vTppwSDAQAAAAAqpmAwpmeeKVSTJmENHerVxo3OpNfQpk1Q77/v18qVabrqKo+sVhYYA2XdBU0uKPb65xs+T3IlQPkSixkPl3E4HCZWUvkM+mSQZv0265D3h7cfrjvb35nEilDWxWIxzZ8/31DbCy+80ORqSq9HjyOvQylOZQwFkySr1aLhw73KyYnotNMSN0/4009p6tDBofvvL1Q4bCw0EgAAAAASIRaLa+xYn3r2dCk31/x12F27+pWTY1N2dvIPqQGAyqB6dZsGDjT+XGvpUrfmzWP9PAAAAACUN4SCAQCQALt3x1W/nl/ZHeO6vPHlh31t+9rt1aVBl2LvbSncokdWPKILZl+gZ394VnlFeYkot1QIBTs6/khiQ8H+lF+0T8O/flInvXm53vnl87+fTv7WNGnV6lKPYd25Sw3eeVz7QvtK3ZckdW/YXR93+VgXH3uxLJa/bxDcs69I/t2/SJKcTqcmTJigVatWqXPnzqaMXRrdunXT6tWrNWTIkGLvGw0FO+GEE0pTFlDhNG+epvnz46pf35xgsGDQqj590vTRR35T+gMAAAAAoCwIBGKaONGnJk2iuuOOdP3+e/LDwE47LaCZMwNatixNl11GGBhQnvQ7pV+x13/c/WOSKwHKl0gkYrgtoWDGjZk/RlNWTDnk/atbXq2JXSYmsSKUB8uXL1deXsnXWzRp0kRZWVnmF1RKxx9/vKG6VqxYodzc0h0iVp41a+bUkiUujRtXqLQ048GOhxOJWDV+fLratSvS6tXFHOYGAAAAAEmWnx9Vz54BjRnjVTT6f+ZunPuldi9IF94stX5VspcsMMZqjWv06ELNmuVWRobNvKIBAAe5916X3G7jz7Qee4wQewAAAAAobwgFAwAgAXJzLfr8sy0KhyNqntFctVy1in2d1WLVyNYj/xaEFI/HtSJ3hYZ9M0w95/bUOxveUTCanEApI7wOd6pLKBd84eSeqrFx31ZdNXekznjvBi3aukLatEl64XnT+i968xXFVLpFsnXcdfRsh2c14fQJqumqecjXbd9nUfx/Tlpv3ry55s2bp9mzZ+v8888vVQ1GnHjiifrwww81e/bswwZ4rV+/vsR9u1wuNWnSpDTlARXSiSc6NX9+XA0amLNwvqjIqiuvdOnDDwkGAwAAAACUbz5fTOPH+9S4cVR33+3Vtm3JDxjp0CGg2bMD+u47t3r2dBMGBpRDJ9U6SQ7rwe8f+0L7tDe4NwUVAeVDUVGR4bZOZ/IDPCuCl5e/rLELxx7y/jnHnqNpl01LYkUoL/7zn/8YalcWDqs6FCNz5fF43PDvRUVhs1k0alS6li6NqFWrxK3FWb3apdNOs2vcuEJFImy4BID/x959hzdV/WEAf3MzmtEWOmjLKJS9QQoICLKRoSJLRBFko4ATUH8OEHGLuAAXgsoSmaIsAQEZAkLZGwQKFOigpW12cvP7I7SAbWlze5N0vJ/n6dP03pxzv9TaNPec8x4iIiLyj7g4K5o2dWLtWn3Ok0ob8MTDwENjgOZfA72GAs/VBGJnA0L+YfhhYQ78/rsFU6YEcmyIiMgHoqJUGDhQ+rqkzZv12LWr6K5NIyIiIiIiopwYCkZEROQFKpiguG1X0UhdZK7PaxzaGDFBMQAAp8uJPy79gSe3PInBWwdjU8ImuFD0JwbqVVp/l1AsmBz+uXm+59pRtF0+Er3mD8fJAPl2oU0JkN5WAQUGVBuAlV1Wol35dvk+32y2IjPxVI7j3bp1w8aNG3Hw4EE8/fTTiIzM/f8zuXTu3Bm///47jh8/jt69e9/1uWlpaTh//rzH16hTpw6USu6URZSbWrU02LIFiI6W53eZzSZgwAAtlixhMBgREREREREVPxkZIqZOzURMjIj//c+Aa9d8HwbWrp0JmzZZsGOHDt26cfMIouIupmxMrscXHV7k20KIihG73S65bUBAIQbbSqlVJ1fh6d+fzvN83fC6+HPwnz6siIqTnTt3SmrXvn17eQuRUYcOHSS1+/vvv2WupHhq2FCDf/4JwBtvZEKlKtyGaHmxWgVMmhSI++6z4Phx+eZrEBERERERFcTcuSa0aaPGuXN5hNNH7wBitt55LPgy0HMkMKYBUG8pkMdahthYC/budaF7d44PERH50quvqgt1L+u997xzH4yIiIiIiIi8Q+XvAoiIiEqiJ/olQRRv3SzVq3LZXQfAdct1jN0+Fv9m/Iur5qtwuPLfVaeoYShYwfgrFCzLr2Vu4PdewKhTwFsHgIhCliM1FKxaUDW8FfsWmoQ38ahdhk2JoDzONWrUCF999RVmzpyJbdu24ddff8WOHTtw4MAB2GzSJ9aq1Wrcf//9eOihh/Dwww+jRo0aBW574MABSdesX7++pHZEpUWNGhps3mxDx442xMfnMVHFA3a7gCee0EIUTXjssdxfq4mIiIiIiIiKkrQ0Jz75xIxZs7S4fj3QLzV07mzCpEkC7r+f76WJSpLWlVvj9PXTOY7/duo3PN087xAeotKsMONQ3CTGM7sv7UafxX3y3FSrQlAFHBh9AILA/TEpd/v375fUrlmzZjJXIp+mTZtKaif1e1ESqdUKTJ0aiEcesWLwYOD4ce8ENv7zjw5Nm4p4+20jXnpJD0FQeOU6REREREREAGC1ujBunAmzZxvu/sSgK3mfCz8J9H8UsGuBxHrAtSaAUwM4AtCovoCu3fRYEK+F5rIGAaoAaJQaBChvfr7t67udu/1rtaCGQsH3SkRE+aleXYO+fY1YvDif3/F5WL1ah2PHrKhXjxuXEBERERERFQcMBSMiIvKCWvWUMDtvhYLZnLlPCL9gvIALxgu+Kssr9GqGghWEv0PBAMApAF/VAeZVB149DLx4FNA7pfXlaSiYSqHCiDojMLL2SGiUngf5GC25T/C/nSAIaNeuHdq1awcAsFqt2L9/P06cOIELFy7g/PnzuHz5MjIzM2EymWAymeByuRAUFISgoCCUKVMGVatWRf369dGgQQM0atQIgYHSFlZKDQVr0KCBpHZEpUn16hps3WpHhw42nD9f+GAwh0PAk0+6g8Eef5yLmYmIiIiIiKhoun7diY8+MuPrr7W4ccM/YWDdurnDwFq14vtnopKof73++OHADzmOx12N830xRMWE3W6X3JaLHAvu7PWzaPdDOzhduQ9slgkog6NjjkKjKvyYAZVMSUlJuHTpksftgoODUb16dS9UJI9atWohKCgIGRkZHrU7cOAAXC4Xfw/dplmzAMTFiXj99Ux8/rkBTqf83xuzWcDEiQasXGnGDz8oUaMGf2cREREREZH8Llywo08fJ+LiChAWc/YBwGYANMa8n6O2ABXj3B83HQJwaGfha/2v/ILDbv/6jnNC7s/RqrRoXqE5WlduDZXA5ZNEVHK8/roav/zigsvl+T0sUVTg3XcdWLCAoWBERERERETFAe9qEREReYGgUQLmW5PAU22pfqzGuxovfBwBSjU0SjUClGoEKDXQKgOgVwVAr9ZBr9IiUK1DkFqPII0BwRoDymgMKBsQhJCAYIQEBCNUVwbh2jIIDQgusZO1jXb/h4JlyVQDb8QCX9UGpu4HBp8FlPlnbt3Bk1CwRqGN8FbsW6hZpqZnF7mNVcJO6wEBAWjZsiVatmwp+bpS7d27V1K72NhYmSshKpliYtTYssUdDHbunDzBYIMH6+BwGDFokLSdk4iIiIiIiIi8ITHRgQ8/tOC773TIyPB9GJhC4cLDD5swaZIKTZsyDIyoJOtavSsUUMCFOwcMrmVegyiKEATBT5URFV1Op7TddxjEU3DJpmQ0+aYJrE5rrue1Ki0OPn0QZbVlfVsYFSv79++X1K5JkyZF+v9XQRBwzz33YNu2bR61S09Px7///lukA8/8QasV8Mkngejd24KhQxU4c8Y7CyN37NChSRMnPvjAiGee0UMQiu7PGBERERERFS/r1pkxaJAayckF3PDbFA78tBHo3xcITvBucQVgdVphdVqRYfMs/Do/PWv3xJJHl0ja1JqIqChq2FCDHj2MWL1a2pz3X37R4d137YiJUctcGREREREREcmNoWBEREQys9lypisFqYP8UIlvGB1mGB1mWftUQAFBoYCgEKBSKKESlFALqtuCxwKgU7k/9CotDCodAtXuj6CboWNlAoJQNiDwZvBYEEK1ZRB280Ot9P3Na5Oj6ISCZblsAIa1AT6tB3y8F+jqwXju8sr5P0en1OH5Bs9jQPUBUCqU0gsthrZs2eJxG7VajdatW8tfDFEJVaWKGlu32tGhgxVnzxZ+Ur7DocDQoXq4XEYMHsxgMCIiIiIiIvKvK1cceP99C+bM0cFo9H0YmCC40KuXCZMnq9GoEd8nE5UGgiAgMjASVzOv3nHcBRfWn12P7jW7+6kyoqLL4XBIaseQvYIx2UyoP6t+ngtBVYIKfw/7G1XKVvFxZVTcxMXFSWrXuHFjmSuRX+PGjT0OBQPc3xOGguWuTRstDh4U8fLLmZg1ywCXS/7QrsxMJcaNM2DFChPmzFGjcmUuwCQiIiIiIulE0YWpU02YOlUPp9PD9zCXWgJfngbunQG0eR/QpXmlRn9adXIVVp9ajd51e/u7FCIi2bz+uhKrV0tr63AI+OADE77+mvekiIiIiIiIijqGghEREcns2jUH/rOJOp6q+RQm7pnon4KKIRdccLpccLpE2OEApG2yfVd3BI8JSqgUtwePaaBVaqBVBUCfFTym1sGg0iFIo0ewxoAgtQFlAgJRNiAIIdpghAYEISQgGOV0IQjVBkMl3Plnlsle9ELBshwOBbo9AHS57A4Ha5x69+dblMD6ind/TpvINpgUOwnl9eXlK7SYOHnyJC5fvuxxu+bNm8Ng4AJLIk9ER6uxdasDHTpYcfp04YPBnE4Fhg3Tw+k0YehQvQwVEhEREREREXnm4kU73nvPhh9/1MFs9n0YmErlQt++JkyapEK9erxXRVTaNC3fFKtP51xBsPjoYoaCEeXC6ZQ2iMlQsPyJoojG3zRGojEx1/MKKLDmiTW4p/w9vi2MiqVjx45JalejRg2ZK5Gf1BqPHj2KRx99VOZqSg69XsCMGYHo1cuMESOUuHBB45XrbNqkR6NGDkyf7h6bVMifP0ZERERERCVcaqoTAwdasXZtIcZ07Hpgx8vAvpFA64+B1h8Bghcm7/vRkcQjDAUjohKlVSst2rUzYetWafPdf/pJjylTHIiM5PJyIiIiIiKioozv2oiIiGR27ZqIQI0TuG0ud7fobki3p+O7E9/hhu0G1IIaCihgFa2wOItuWFRJdkfwmChtF+/8ZAWPKRUCnC7RK9eQ04aKQJMKwOCzwDtxQCVT7s+bVh8w57EpSKAqEG/GvonulbpDIeOMVa228GE/vvLnn39Kate+fXt5CyEqJSpWVGHLFqBjRytOnpQnGGzECB0cDiNGjuTiZyIiIiIiIvKN8+ftePddG+bN08Fq9f37UZVKxIABZrz5phq1avH9MFFp1bN2z1xDwXZc3OGHaoiKPlGUNv6nVCplrqTkaT2nNc5cP5Pn+R96/YAu1bv4sCIqzs6dOyepXUkOBTt//ry8hZRQnTvrcPiwiBdeyMScOd4Jbb5xQ4Xhw1VYvtyI2bMDEBXFKb1ERERERFQwcXFW9OunwLlzMm2AagkBNr0H7B0JjGsAqPOYSF4MtazU0t8lEBHJ7n//U2DrVmltzWYBH39swrRpvt+ojIiIiIiIiAqOW08SERHJLDFRxNY/c4Yh9a/WHxt6bMCeXnuwo+cObO+5Hf/0+gcH+xzE1ge3YnCNwdAqtX6omLzFHTwmwiY6ikUoGAC4FMCPNYAafYBXY4H0/4R/XTAA7zXKvW05bTms6bYGPaJ7yBoIBgCBAS5Z+/Om1atzLpgqCIaCEUlXoYIKW7YoUaeOVZb+RFGBp5/W45tvjLL0R0RERERERJSXM2dseOopI2rVUmL2bAOsVt8O32o0IoYOzcSJEw7Mm2dArVoan16fiIqWAfUH5Hr8QtoFH1dCVDwwFMw7ev/cG7su78rz/Pud3sfgxoN9WBEVd1JDwWrWrClzJfKTGgom9XtSGgUFCfj++0D8/rsZFSrYvXad1asNaNAAWLiw5Cy6JyIiIiIi75k714Q2bdQ4d07+cZ3Y6uWx8dHd0ChLxphRk6gm6FStk7/LICKSXZcuWsTGWiS3/+47HdLSnDJWRERERERERHJjKBgREZHMEhNdeGVyDFSqgu3eKSgEhGpDMbHxRKzrtg4Dqg2ASlF8dv5UQN7wJyoarCrgw0ZAmScAw5NA5X5A3V5Aw0cAcy4/nsHqYPz2wG8ICQjxSj3BxSQvLzU1FX/88YfH7QwGA9q0aeOFiohKj6godzBY3bryBYM984wes2YxGIyIiIiIiIjkd+KEDU88YUTduir89JMBdrtvh221WhGjRmXi1Ckn5swJRPXqJWNhBxEVTrA2GMEBwTmO20U7jiYe9UNFREXbTz+FYtGiUKxbF4w9eww4dSoAyckq2PPJjCnoOHJp9OyaZ7Hy5Mo8z49rPg6vtnnVdwVRsWez2XDlyhWP2wmCgJiYGPkLklnVqlUlbdjFUDDPPfigDkeOCHj8ce+NHaakqDBwoB79+hm5IJOIiIiIiHJltbowcqQRw4bpYTbLP7Y0fLgRO3Zo0KlxA3zZ/UvZ+/eH9zu9D0HB5ZNEVPIIggKvvipt8xIASE9X4osvpIeKERERERERkfdxlhkREZHMEhNF3EjXIO2qC4HhnrUN04bh9SavY2CNgfjsyGfYlLDJO0XKpEaZaJwevAIA4BAduG5JR5I5FanWdFy3ZiDNko5UawZuWDORYTci3WZEhs0Eo8MMo90Mk8MCk8MKi8MKi9MGq9MGm9MOu+iAw+WEQ3RCdIkQXS644PLzv7aUUgAmFWAKvPvTXrvnNRjUBq+UEGTQQl9O2g7HvrZixQrY81vpkYtHHnkEOp3OCxURlS6RkSps2QJ07GjB0aOFTxN0uRQYN04Pp9OIZ5/1zu84IiIiIiIiKl2OHLFhyhQ7VqzQw+n0fRCXTidi2DATXntNiwoV8rnpR0SlUr3weth1eVeO4/MOzcMHnT/wQ0VERdeXX0bAbFbmei4oyInQUAfKlnUiJMSBkBD359BQB/r3FxAd7eNii4H3t72PGf/MyPN87zq98WWPkrEYlXznwoULEEXPF8aFh4cXiwA/jUaD0NBQpKSkeNTu8uXLsNls0GgYDuyJkBAlFi40oG9fE555Ro2kJLVXrrNsmQGbN0tf0ElERERERCXThQt29OnjRFyc/HMZdToRX3xhxogRt/oeGTsSa06vwa8nf5X9er7SPqY9Hqj+gL/LICLymr59dahTx4oTJwIktZ85U4OJE0XodAxPJCIiIiIiKoqK/swVIiKiYiY52f25Q7eaOHz4X1isNo/7iAmKwWetPkNcchw+OfwJDl0/JHOV8tCrbgWuqAQVIvShiNCHeu16NocN163pSLHccAePWdKRak1HmjUTN6wZuGEzIsNmRKbdjEy7CUaHBSaHBWaHFWaHFVanFVan/VbwmOiEw8XgscJqGt4UPaJ7eKVvhUKBqLLF50/WBQsWSGo3YMAAmSshKr0iIlTYskWBjh0tOHxYnmCw554zQBSNeP55BoMRERERERGRNPv3W/H22w6sWqWHKPp+4X1goBMjRpjxyitaREUxDIyI8talepdcQ8E2/Vu0N7Ih8rWMDAfM5rzHsDIylMjIUOLChZzn2rW74cXKiqcfD/yI1/58Lc/zrSq1wvLHlvuwIiopzp8/L6ldVFSUvIV4UVRUlMehYKIoIj4+HjVqFI/NuYqavn31uP9+B55+2ogVK7wzfnj9uncCx4iIiIiIqHhat86MQYPUSE4u/JzI/4qJsWHpUheaNr3z/Y1CocDsnrOx+6vduJp5Vfbr+sL7nd6HQqHwdxlERF4jCApMmODAiBHSQsESE9X45hsjXniBc+SJiIiIiIiKouKTsEBERFRMJCW5B44sVhV++FaNx4fY4XJJC5uKDY/F/Pbz8cflP/DZkc9wyXhJzlILzaDW+fR6GpUGUapwRBnCvXaNrOCxZMsNXDe7w8fSbBlItWbghjUT6TeDxzLsJmTazTA5LDDZzTA5rLA4rbA6bbkGj9lFh9dq9ren6z7ttQHTyLJKBITEeKVvuR09ehR//vmnx+3Kli2Lrl27eqEiotIrPFyJzZuBTp0sOHhQnkkwL7xggNNpxEsvcdCTiIiIiIiICu6ff6yYMsWBNWv0cLmkTcQtjOBgJ0aPNuPll3UID2cYGBHl76nGT2HqX1NzHD+RcsIP1RAVXQkJNkiddhUVpZS3mGJu/Zn1GPrr0DzP1wytie1Dt/uwIipJrl27JqldZGSkzJV4T1RUFI4ePepxu8TERIaCFUJEhArLl6swf74Rzz8fgOvXORWXiIiIiIjkJ4ouTJ1qwtSpejid8s/V7trVhEWLAhASkvv9qnB9OH7s9SO6zi9+85x71emFlpVa+rsMIiKvGzxYj7fftiE+XtrmZJ9+qsbYsS6o1QxRJCIiIiIiKmo4E4GIiEhmKSm3boS+O60qevc6gYAy0gOhFAoFulbqig7lO2Dxv4vxzYlvcMNWNHaP1qvk323I37wVPBY990FcypQ24bioy7BneKXfQL0WYeWreqVvb/jss88ktevTpw80GmkDMESUt7AwJf780x0MduCAPK9X48cb4HRmYuJELqImIiIiIiKiu9u504IpU0T88YcegO/DwMqWdWDMGCsmTNAiJITvY4mo4KqHVkeAMgBWp/WO45m2TFw3XUeoPtRPlREVLVevOiW3LV+e07WyxF2Jw4MLH4QLuW+yFWGIwKFnDkEQBB9XRiXF9evXJbWLioqSuRLvKV++vKR2Ur83dKcnnzSgUycHhg0zYd06vb/LISIiIiKiEiQ11YmBA61Yu1b+jUwFwYU33jBi8mQDBOHuITAPVH8AL7Z8EZ/u+lT2OrxFUAh4t+O7/i6DiMgn1GoFXnjBjpdekrYmJT5eg59+MmL4cG6cTUREREREVNRwxhQREZHMkpPvHBhr1qYWDLrCh5FolBoMqjkIa7quwdBaQ6ER/B8ipFf7fjFbcWW0m/1dgudcQKANaJwCNL4OVDDm/rS45DjZL61SKVEpIggKoXjslH7t2jUsWLBAUtvRo0fLXA0RZQkNVeLPP9WIjbXI1ufLLwfigw/y+IVIREREREREpd7WrRZ06mRC69bam4FgvhUW5sDkyUacP6/Au+8a8tzZnYjobqqWzX3DjgVHpN0HJyqJrl2TFgomCC5ERvp/nLcouJB2Aa3ntIbTlfv3MkgThKNjjkJbAjeqIt9JSUmR1C4sLEzmSrwnNFRaYKfU7w3lVL68CqtX6/Dtt0YEB0sPjSQiIiIiIsoSF2dF06ZOrF0r/1hTWJgDv/9uwZQpgfkGgmV5r9N7aBTZSPZavOWpxk+hXrl6/i6DiMhnnn5ah3Ll7JLbT5umgijmvnkHERERERER+Q+3niQiIpLZ9ev/zdwU8MSAMPww/xrsdkeh+w/WBOOlhi9hQLUB+OLoF1h9cXWh+5RKzwnYBWZyyBdI421lrcDTJ4FxJ4CKplvHrzz3NCqmf5Njp+79yftlr6FSqABVYKTs/XrLpEmTYDZ7HvzWpk0b3HvvvV6oiIiyhIQosWkT0KWLGXv36mTp83//M8DhyMQbbwTK0h8REREREREVfxs2mDF1KrBtmzzvPT1Vrpwdzz1nxQsv6BEYyB18iahw7q9yP06knMhx/PeTv+PZe5/1Q0VERU9iorTFMWXLOqFScbpWmiUNjb9uDEseY6gBygDsH70f4fpwH1dGJc3169cltQsKCpK5Eu+RWqvU701xdfXqVVy9etWr12jeHFi0CJg8uQL27o3w6rWIiIiIiKjkmjvXhLFjtTCb/7smofBiYy1YtkyJmBjPxrO0Ki0W9lmIZt81y/N+TlERoAzAW+3f8ncZREQ+pdMJGDfOjMmT1ZLanzgRgGXLTHj0Ud9vfEZERERERER54ywzIiIimeUMBQN27Q3BlrVJaN1ZvutUMFTAB/d+gEE1B2H64enYk7RHvs4LyKD2zwK34sYpOmF12vxdRr5iMoAXjwHDTgOB/8mvc1ariowHX0CN1ZtwOv30HeeOph1Fhj0DQWp5JkaHl9EgMKKWLH35wrFjx/D9999LajthwgSZqyGi3JQtq8TGjRo88IAZe/bI89r15puBEEUjJk3iQmsiIiIiIqLSShRdWLfOgnfeAf7+2z/3SqOi7HjxRSvGjdNDr2d4NRHJY0CDAfgu7rscx/dflX+TEKLiKilJaiiYA6V9upbNYUO9mfVww3oj1/NKhRLbhm5D9dDqPq6MSqKUlBRJ7YKDg2WuxHuk1ir1e1Ncff3115gyZYoPrzgMwKcAiubPktPphFKp9HcZRERERER0G6vVhXHjTJg92ztzEocPN2LGDB20WmlhY/Uj6mNal2kYt3aczJXJa2zzsahcprK/yyAi8rnnn9fik0+cSE+Xds/ngw8E9O3rgiAoZK6MiIiIiIiIpJJ/2wAiIqJSTBRdSE3N/Qbq0y/WgsopbdeFu6kfUh+z75+NmffNRPUg306M1qu0Pr1ecWV2WP1dwl3dmwT8shk4vRx47njOQDAAuPLN77DZ7IjSReXax/hd42WpRacNQGSFGFn68gWXy4Vx48bB6XR63LZmzZp4+OGHvVAVEeWmTBklNm4MQKtWZtn6nDzZgEmTMmXrj4iIiIiIiIoHUXRh5UoTWrSw4MEHdX4JBKtY0Ybp0434918lXn45EHo9h32JSD7tq7SHoMj5eyXZlAyHmMsgAlEplJwsbVFMaKjnY0oliSiKaPxNY1zJvJLreQUUWPnYSjSv2NzHlVFJlZqaKqldUJA8G2L5gtRar1+/LnMldKc5ABoC2OSTq9ntBQ+rTEtLQ1JSkherISIiIiIiT124YMd991m9Egim04n47jsjZs82SA4EyzKm+Rj0qNlDpsrkF6QJwv/u/5+/yyAi8osyZZQYOVL6PPm4OC02bLDIWBEREREREREVFmeHExERySgtTYTDkffLa5MW1aHXBsh+XYVCgbbl22Jp56WYHDsZYQFhsl8jNwwFKxijQ74AGrkoXMAj8cC2NcCu1cCjFwBVHnNE035YgjSLCACwirkHnP2d+DdWnl9ZqJoEQUB0OR0USk2h+vGl6dOnY/PmzZLavvzyyxAE/jlO5EtBQQL++CMArVvL93t56tRAvP46g8GIiIiIiIhKA1F0YckSE2JjrejdW4+9e30fBlalig0zZhjx779qvPiiATod7y8RkfwEQUD5wPI5jrvgwu+nfvdDRURFT0oKQ8Gk6PBjB5xIPpHn+W8e+gYP1X7IhxVRSWcymSS1Cw4OlrkS75Faq9lc9OYxlDzxALoAGAvA6NUrDRhgQ1xc/hvWZWZm4vLly/zvT0RERERUhKxbZ0azZgrExck/Lz8mxoZt2+wYMUKesDGFQoE5PecgwhAhS39ym3jfRITrw/1dBhGR30ycqIVOJ0pu//77BQ+eJyIiIiIiIu/jLHEiIiIZXb16993RLVYVXn4xEEql0ivXVwkq9KvaD2u6rcEzdZ/xemgXQ8EKxmQvOrtlaB3AMyeAEyuAlX8CbRKBuy1ZsA54DAnl6mV/bXPa8nzu2/vfxv7k/ZJrq6jMgKZMJcntfe3gwYN4/fXXJbVt1KgRhg4dKnNFRFQQgYEC1q8PwP33yzfR/b33AvHqqwwGIyIiIiIiKqmcThcWLjShUSMr+vfX4+BB398XrVbNhm++MeL0aTXGjjVAo5EWREJEVFDNKjTL9fjSY0t9XAlR0XT9urTx3pAQ6YtxirsBSwfgr/i/8jw/ud1kjGw60ocVUWlgt9sltQsIkH+zN2+RWqvNlvfYP8nJBWAWgMYAtnvtKv/+G4CWLdWYNCkTDkfuizfNZjPi4+PhcrlgsVjgcnGRJxERERGRP4miC1OmGPHQQ1okJ6tk779rVxPi4pRo2lTe97iRgZGY+8hcWfuUQ4QhAi+2etHfZRAR+VVkpAqDB0vbKAEAtm7VY+fOorP+iYiIiIiIqLRjKBgREZGMrl3Lf8Lcst/L4/Qh7y7Y0qv0GFNvDFZ3XYthdXpCUHjnJd+g1nml35LG5PD/TfEIM/B2HHBxCTBrF1ArPf82YtlgXBz2NkTRvThBdIn4N+PfPJ9vF+14YdcLSDAmeFxfiFaBMrXu9bidv1y+fBkPP/wwrNb8d9rNzaeffuq1cEAiyp/BIGDdugC0ayd90PO/PvwwEC+/zGAwIiIiIiKiksTpdOHHH42oX9+GgQP1OHrU92FgtWpZMXeuCSdPqjFqlAFqNcPAiMg3etfpnevxvy/+7eNKiIqm69eljb+Gh5fOAJbxf4zH4qOL8zw/MnYk3mr/lu8KolJDavCVSiX/YmxvkVqr1MA0kuosgHYAJgDwzhwSu13A1KmBuPdeK44cufNn32q14vz589nzP5xOJ38GiIiIiIj8KDXViYceMuOttwxwOuUd+xEEFyZNysSaNTqEhHhnrnKPmj0wrvk4r/Qt1Ztt30SgJtDfZRAR+d2rrwZApZK+Qcl77zllrIaIiIiIiIgKg6FgREREMkpMLNiN00cG1IFO7f2dZcO14Xg19mMc6D8fD8a0kb1/vcr3i+CKI3+GgtUJicF30Y/hwlLgzUNAuAcZVtd+3gqL9dZE0TPpZ5Buv3ua2HXrdTz393MwOQoetBOg0aD8hg2AongsaLxx4wa6d++OixcvSmrfq1cvdOzYUeaqiMhTer2ANWu06NBBvmCwjz8OxEsvZUIUS+eiLiIiIiIiopLC4XDhu++MqF3bhiFDDDh50vv3cv+rbl0r5s834dgxDYYM0UOlKh73zoio5Hi03qO5Ho9Pj/dxJURFU2qqtAWVYWGl7/7x9L+nY/rf0/M836NGD3z78Lc+rIhKk9IQCqZWqyW1k/q9ocIQAXwCIBbAP167yv79WjRvrsL77xvhdLrgcDhw4cIFOJ13Lug0m81eq4GIiIiIiPIWF2dF06ZOrF2rl73vsDAHfv/dgilTAiEI3h1b+qjLR6hXrp5Xr1FQMWVjMKrpKH+XQURUJMTEqNG/v/T7PmvW6HMEzhMREREREZF/MBSMiIhIRomJBZ/E3fr+StAGeH8xmdVqQ6iuKX5/+DP82ftrxJarI1vfejVDwQrCaPf9RMoOlZrh94c+w9GBv2BEz/HQVqjkUfuM6TOQYr9zovO+5H0Fanvyxkm89s9rEF35h+QpFApEz/8SwmODParPXxISEtCuXTscPnxYUnu9Xo9p06bJXBURSaXXC1i9WovOneULBvv000C89JKRwWBERERERETFkM3mwqxZRtSsaceoUQacPev7MLBGjSxYvNiEI0c0GDhQD6WSYWBE5B96jR5ltWVzHHeIDhy4csDn9RAVNamp0gKDIiJK12v7osOLMP6P8Xmeb1q+KX57/DcfVkSljd1ul9SuOIWCSa2VoWD+dBzAfQDeACDtZzQ/FouA114zoHVrC7Ztu5jrf2+GghERERER+d7cuSa0aaPGuXMa2fuOjbVg714XunfXyd53bnRqHRb2WQiNUv5/i6emdphaJOogIioqXn9dBUGQNpfd5VLgnXe8c8+KiIiIiIiIPMNQMCIiIhl5Egp2LUmHWZ+qIQjefzlOzbDhhskdFPXPYz9h/gNTUTkoqtD96lUMBSsIk8Pik+soFUo8Uasb9j02H3/2/hoPVm0DQSEAggD8738F7sferi0u1emY43hcclyB+9iUsAkzj83M93lR6ZegLVcLCA3NPiaK+YeJ+cPhw4fRsmVLHDx4UHIf06dPR/Xq1WWsiogKS6cT8NtvWnTpIl8w2OefB+L55xkMRkREREREVFxYLCI+/9yI6tXtGDvWgPPnfb9oIDbWguXLTdi/PwD9++u9vns7EVFBNCjXINfj8w7P83ElREWL0ykiNtaIxo1NqFzZiqAgZ4HblitXel7jt5zfgidXPJnn+ZiyMdg1YpdPxsup9JIafMVQMPI+B4B3ATQHcMhrV9m9W4eHHqqMpUtD4Lo5dOlyAZcuqbFlC8cyiYiIiIh8xWp1YeRII4YN08Nslv9eyPDhRuzYoUFMjFr2vu+mcVRjfNDpA59e87/qhNXB4w0e92sNRERFTb16AXjwQemB8MuW6XD2LO8fEhERERER+Vvxmb1CRERUDKSkeDaJ+9OvYtCv73EER3qpoNtcTtdBp0yDJiAAA2t3R9/qHfHlocV49585uGHLlNSnQeWbnYSKO1+EgnWt0grfPvV63mFvLVoAffsAy5bftR+XSolLb34Hp/nOG/gulwv7kvd5VNO3J75F9eDq6BHdI9fzwTo1Qse+C2zZesfxrl27olWrVhg7diwiI33wP0c+RFHEp59+ijfeeAMWi/T/lo888ghGjx4tY2VEJBetVsCqVVr06mXC+vV6WfqcMSMQDkcmZs40cCE3ERERERFREWUyiZg504TPPgtAQoLBLzW0bGnGG28A3btr+f6RiIqcrjW6YvvF7TmO/3nuTz9UQ1R02O02fPbZxf8cA9LSVEhNVSI19fbPKly/rsw+V6VK6QjAOnLtCLrM6wLRlftmQGG6MBx+5jBUAqeuUdGkUBSfv82lBuu5XAyEKhoOwh0MNgnAqwCUsl/BZFJiypSK+P77coiIsOPs2QDcuKFCUJAT/fu7+F6UiIiIiMjLLlywo08fJ+Li5B+L0ulEfPGFGSNG+GecCwCeb/k81p5Ziw3/bvDL9U+mnES/X/rhx14/Ilgb7JcaiIiKotdfF/Dbb9LaOhwCPvjAju++8/2GakRERERERHQLZ1YRERHJKCnJ8zatO9fFubOnkWmyyl/QbURRxCVjOVRVXYdCqYJWFYCJsYMxrG5PvLP3e8w8tAR20eFRn3q11kvVlixGu/dDwQbUfCDvQLAszz8P7NwJXLma51OSl2+F0ZxzR49LxktIsnj+Az5p7yRUNlRGg9AGdxxXq1SoMGwQFHMWAf+ZUJ2UlISpU6fiww8/xCOPPILhw4ejS5cuftklfNeuXZgwYQJ27NhRqH4qVKiA77//XqaqiMgb3MFgOvTubcKaNfIEg339dSBEMRNffcVgMCIiIiIioqLEaBTx+edmfP65BomJgX6poU0bM958E3jgAW68QERF1+DGg/Hm5jdzHD+VcsoP1RAVHTZbzrE0tRooV86BcuUcAPIe961WrZoXKysaLqVfwr2z74Ujj7Fng9qAI2OOIFDjn7/DqHRRq9WS2jkcns2d8Ce73S6pnUbDBX1Fhw3AGwBWAfgRQB2vXOXSJQ0uXbr13z0jQ4kTJ6yoVy/AK9cjIiIiIiJg3TozBg1SIzlZ/jn3MTE2LF3qQtOm/gsEAwBBIeCHXj+g0VeNkGJO8fn1XXBh5cmVCP0oFEPvGYqZPWZCoyq573mTk5Nx5swZnDlzBpcuXcKlS5dw+fJlJCcnIy0tDampqcjMzITNZsu+jxkQEACtVgutVosyZcogMjISUVFRiIqKQq1atVCvXj3Uq1cP5cqV8/O/rmi7dOkSjh49ipMnTyIhIQFXrlzB1atXkZ6eDovFAovFApvNBpVKlf391uv1iIyMRPny5REVFYVq1aqhfv36qFmzpuT7VkQF1aKFFh06mLB5s7R58QsW6DB1qgNRUVyCTkRERERE5C98R0ZERCSj69elBX58/10QBg0VYbNJm6xZUCaLFYmaYEQGmrKPhenK4tP7x2Nco8fwv50zsOTMxgL3p1cxFKwgTA7vh4IViMEATJ0KjBkD5PKzZvrfG7imKJNr073JeyVd0ipa8dzfz2FRx0WI1EVmH6+08ReohjwDVK+eZ1ubzYYlS5ZgyZIlqFixIvr27Yt+/fqhdevWXg8I2759O95//32sWbOm0H1pNBosWLAAYWFhMlRGRN6k0SiwcqUOffua8Ntv8gSDffttIETRiG++0TMYjIiIiIiIyM8yMkR8+qkZX34ZgORk/yyQ6NDBhEmTBLRvzzAwIir6KpepDK1KC8t/xjlMdhOuZV5DZGBkHi2JSjapATxAyQ/hSbeko9FXjWB2mHM9rxbU2DtqL6IC89nsiEgmDAXLGxeeFkV7ADQB8C6A9j654q5dDoaCERERERF5gSi6MHWqCVOn6uF0yj9vsGtXExYtCkBIiFL2vqWoEFQBs3vORu/Fvf1Wg9PlxOz9szHv0DyMbzUeUztM9cuG1HIxGo3Yv38/Dh48iMOHD+PQoUM4fvw40tLSPO7LZDLBZHKvH0lISMDx48dzfV6FChXQrl07tG3bFh07dkStWrUK808o1hwOB/bs2YMtW7Zg8+bN+Oeff3Djxg3Z+ler1ahfvz7atm2L9u3bo127dggNDZWtf6Isr72mwObN0tqazQI++siE6dO5wQcREREREZG/KFwul8vfRRAREZUU99xjwcGDngdlvfJKJiZPuIp/r1nhi5fmmBAjAnW5Z4PuunoYE7Z/hh1XDubbz6HHf0bD8Bpyl1fk/bDwNwx9doq/y/CZqVOnYl+lfVh5YaXkPuqH1McP7X6AVqlFhJiJiPXbgIkTc33uPffcg4MH8/75CwsLQ6dOndClSxe0bt0aderUgUJRuAFzl8uFw4cPY+XKlZg3bx7OnDlTqP6yKBQKzJs3DwMHDpSlPyLyDbvdhf79TVi5Ur4F4kOGGPH99wwGIyIiIiIi8ofUVCc++cSMWbO0SE31z55JXbq4w8DatOFGC0RUvDSY1QBHk47mOD7tgWkY32q8Hyoi8r8rV64gJSVFUtsGDRrIXE3R4RAdqPZ5NVxMv5jreUEh4K8hf6F15dY+rsy73nrrLUyZ4vnY8dy5czFkyBD5C6I7NG3aFHFxcR63W7VqFR5++GEvVCS/X3/9Fb169fK4Xd++fbF06VL5Cyqirl69iqtXr/q7jAJbvPgMPvjgUQ9a7Adwj8fX6dzZiA0b/BOaTURERERUUqWmOjFwoBVr18qzMentBMGFN94wYvJkQ5Gcizj6t9H4Nu5bf5cBAAjUBOK9ju/h2RbP+ruUAjl58iS2bduGXbt2Yc+ePTh27BicTqdfa2rQoAH69++PAQMGoGbNmn6txRdcLhe2bduGRYsWYcmSJZLvAUuhUqnQqVMnDBgwAL1790aZMrlv9E4kxb33mvHPP9I2LQsOduL8eRSZEEoiIiIiIqLSxj+z3omIiEqolBRpu8lERCigC6+BSOsJXE31/o6zlzLKoIYyFapcdqJuGdUQ2/rOxsp/t+CVnV/idFp8nv1E6EO8WSYVIXHJnk+Uvt3R1KOYtG8SZtz/Kcr9+hcw8WXJfaWkpOCXX37BL7/8AgAIDg5G06ZNUbduXdSuXRvVqlVDVFQUoqKiEBwcjICAAKjValgsFhiNRmRmZiIhIQFnz57F2bNnsX//fmzfvh2pqamF+jfm5r333mMgGFExpFYrsGSJHv37G7FihTyT4H/4wQCn04i5c/VQKoveZBwiIiIiIqKiShRFybt4p6Q48dFHZnz9tQ7p6b7fvVahcKF7dzMmT1bi3nvlX/hBROQL7aq0yzUUbM2pNQwFo1LL4fD+eG5xI4oiYr+JzTMQDAB+6fdLiQsEo6JPrVZLalec/j+XWqsml/kiJVnWHILi5IMPvH+NjRsN6NXLiG+/DUBEBKcTExEREREVVlycFf36KXDunPzjQmFhDsybZ0f37r4f8yqo6V2nY8uFLTiVcsrfpSDTlonn1j2HqX9NxZfdv8RjDR7zd0l3OHnyJDZu3IjNmzdj27ZtSExM9HdJORw5cgRHjhzB5MmT0a1bN7z44ovo0qWLv8uSncViwbx58zBt2jScOuWfn12Hw4H169dj/fr1ePbZZzFs2DC8+OKLiImJ8Us9VLK88ooL/fpJa5uersRnn2ViypSi+9pDRERERERUknEUn4iISEapqdJ2PwgPd38OK18TmdZzyDRZZKwqJ4fDgcumcFRW3YAil12CFAoFelfvgIdi7se3R5fjrd3fItmSdsdzWkY1RKQ+zKt1UtGQYc9AvDPvcLiCWntxLRZsCcabE36Woapb0tPTsXnzZmzevFnWfgtrzJgxePXVV/1dBhFJpFIp8Msvejz+uBFLl8oTDDZvnjsY7KefGAxGRERERERUEHa7HZcuXUKVKlU8Cga7ds2BDz+04LvvdMjM9E8YWM+eJkyapEJsLMPAiKh4e6LhE5i1d1aO4wevHfRDNURFg9QAHoWi5N4X7ragGw4nHs7z/Jfdv0Tfen19WBGRm9TgK5vNJnMl3iO11tIWCkZ5+/VXA3bscGDmTBP69+d7WCIiIiIiqebONWHsWC3MZmmb3dxNbKwFy5YpEROjk71vORk0BizssxAtv28Jh+i9wO0B9QfABReWHFsC0SXe9blJpiQMWDYAr2x8BXMemYOOVTt6ra6CGDZsGDZu3IiLF/MO1y9qXC4X1q5di7Vr16JJkyb45JNP0KFDB3+XVWiiKOL777/Hm2++iWvXrvm7nGyZmZn44osvMHPmTDz11FN47733EBkZ6e+yqBjr3VuHunWtOH48QFL7WbO0eOUVEXq9/K9vREREREREdHd8J0ZERCQTs1mE0SgtFCwy0v2SrBCUqBQRBJVKWj+eyDBZkWK++01dtVKFsY364+xTK/Fas6EobwiHAgrcX6EJlnb/0Os1UtFwPvO8bH1NSliMFcdXyNZfUTVhwgTMmDHD32UQUSGpVAosWqRH//5G2fpcuNCAJ580wel0ydYnERERERFRSWU0GmE0GnHhwgWI4t0n9ANAQoIDzz6biWrVFPj000BkZnr/PuvtlEoX+vUz4uBBO1auNCA2VtqkWiKioqRVpVYQFDmnlqSYU2BzFJ/AFCI5OZ1OSe08CTktTp5a8RQ2/Lshz/Ovtn4V4+4d58OKiG7RarWS2mVkZMhcifdIrVXq94ZKpuRkFd55B7h8+Yq/SyEiIiIiKnasVhdGjjRi2DC9VwLBhg83YscODWJi1LL37Q1NKzTFOx3e8Vr/akGN9zq9h5/7/YwrL11B52qdC9Tuwo0L6PRTJzSc1RCHrh3yWn35mTt3brEKBPuv/fv3o2PHjnjkkUcQH1/4Tcf9Zffu3WjevDlGjRpVpALBbud0OjFnzhzUqlUL06dPL9B4OVFuBEGBl1+WNq4BuO8bffWVWcaKiIiIiIiIqKBK5mwzIiIiP7h6VfpN0oiIWy/JqsBIVAr1zUv0tXQBZnP+CzaCNYF4t9VYXB66FhlP/4W/+n6HioERPqiQioLzGedl7W/QikE4ePWgrH0WFQqFAtOmTcPHH39cond7JypNVCoFFi7U4/HH5QsG+/lnAx5/3ASHg8FgREREREREd2M0GrM/nz9/Ps8Ajvh4O55+OhPVqwuYMSMQJpNvw8BUKhcGDDDi8GE7liwxoGFDjU+vT0TkTYIgoGJQxVzPrTy50rfFEBURDAW75fVNr+OnQz/leX5Qo0F4v/P7PqyI6E4hISGS2qWnp8tcifdIrVXq94ZKpoAAEe++exllywb7uxQiIiIiomLlwgU77rvPitmzDbL3rdOJ+O47I2bPNkCrLV73lSbcNwHtY9p7pe9nmj2DqiFVAQARgRHYMGgDTo07hWblmxWo/ZGkI2j8dWO0ntMa8TeKb6iVv61atQqNGjXC/Pnz/V2KR0RRxPvvv482bdogLi7O3+UUSHp6OsaPH48uXbogISHB3+VQMfXkkzrExEjf7Oezz9Sw2znvnYiIiIiIyNeK111BIiKiIuzaNemhYFFRdy5SC4yojfAy3l845nK5cNEYCqfDXqDnKxQKGNQ6L1dFRc2FzAuy9me0G9Hz555INCbK2q+/BQQE4KeffsL48eP9XQoRyUypVGDePD2efFK+YLAlSwwYMIDBYERERERERHeTFQoGACaTCRcuXLgjhOPcOTuGD89EzZpKfPNNICwW3w59qtUiBg0y4tgxOxYtMqBuXYaBEVHJdG/Fe3M9vuzYMh9XQlQ0iKIoqZ1S6dvgUm+bsWcG3tv+Xp7nO1XthJ965x0YRuQLoaGhktqVhlAwqd8bKpmeffYa2rWLhMEgf5ABEREREVFJtW6dGc2aKRAXp5W975gYG7Zts2PEiOL5N7pSUOKnXj+hrLasrP0a1Aa83vb1HMdrhtXEP6P+we4Ru1ErrFaB+tp5cSdiPovBwwsfRqo5VdY6S4sbN25g0KBBeOqpp2CzSQ8b8pWMjAz06NEDr732GhwOh7/L8diff/6Jxo0bY+fOnf4uhfJwLOkYnl/7PMasHoNv932Lk8kn4XIVjXniKpUCL74o/f/TS5c0mDvXJGNFREREREREVBAMBSMiIpJJYqK0m7UKhQvlyuWcAB5ZIQY6bUBhy8qXzWbHFVOY169Dxdc10zXZ+4y/EY8+i/vA6rDK3rc/1KtXD7t378aTTz7p71KIyEuUSgV+/FGPp56SLxhs2TID+vc3ceckIiIiIiKiXNhsthyTx7OCwU6etGDwYCNq11ZizpxA2Gy+HfIMCBAxbJgRJ0868dNPBtSsyTAwIirZetftnevx3Zd3+7gSoqJBaiiYSqWSuRL/WXZsGZ5b+1ye5xtGNMQfT/7hw4qIchcWJm0uREZGhsyVeI/UWqV+b6jkCQx04uWXAxAcHOzvUoiIiIiIigVRdGHKFCMeekiL5GT57/d07WpCXJwSTZt6fx2BN0WXica3D30ra5/jW41HhCEiz/P3VrwXJ8edxOonVqNiUMV8+3PBhd9P/45yH5fDUyuegsVhkbPcUuOnn35C165dkZaW5u9S8pSYmIj27dtj/fr1/i6lUJKTk9G5c2f89ttv/i6F/mP3pd1o9FUjfLHnC3y19yuM/n006sysgwrTK2DA0gH46p+vcCzpmF9DwkaN0iMy0i65/SefqOB0cs47ERERERGRLzEUjIiISCaJidImf5cp44RKpchxXKHUILqcDoLg/ZfrtEwr0ow5ayDyph0Xd+CZ1c8Umd1PpHrmmWewd+9eNG7c2N+lEJGXCYICc+boMWxYpmx9rlhhQL9+DAYjIiIiIiL6L6MxZyjzxYsaTJxYFg0aBGDePAPsdt8Odep0IkaPzsTp0058/70BVauqfXp9IiJ/6Vu3b67HL6Vf8nElREWD1LGtkhIKtiN+B/ov7Q8Xcv8+RAdHY+/IvT4Z5ybKT2hoqKR2qampMlfiPVJrlfq9oZLH6QRCQ0P8XQYRERERUbGQmurEQw+Z8dZbBjid8s69FwQXJk3KxJo1OoSE5NxwvDh6tP6jGHLPEFn6CteHY/x94wv03B41e+DSS5cwt+dchGjzf7/jdDnx06GfUOaDMpi4YaLkTQFKsy1btqBt27ZF8p5KSkoK2rZti7i4OH+XIguz2YzevXtj1apV/i6FbvPutnfhdDlzHL+aeRWLjy7GmDVjUH9WfUR9EoVHlzyKGXtm4EjiEYgu3/2+0WoFjBtnldz+1KkALFlilrEiIiIiIiIiyg9nXxEREckkKUlau9DQvG/iaspUQsUQ34R1JWRoYbVIv8FLJMXcA3Px6a5P/V2GJA0aNMD69esxa9Ys6HQ6f5dDRD4iCAp8950BI0fKFwy2apUBvXubYLMxGIyIiIiIiEoPh8OFGzecSEhw4PRpGw4csGLHDgv++MOMlStNWLzYitWry2DZshB8+WUE+vevhgcfrInly0PhcPh2gwO93olx4zJx5oyIr78ORHQ0w8CIqHTRqrQI1eUMDnG6nNh9abcfKiLyn8IsCCwJoWAnk0+i448d81yoFKINwZFnjkCj0vi4MqLchYWFSWp39epVmSvxHqm1Sv3eUMljNitx7Jjd32UQERERERV5cXFWNG3qxNq1etn7Dgtz4PffLZgyJRCCULI2+v6i2xeoFlKt0P28fv/rCA4I9qjNkCZDkPJyCj7o9AH0qvz/u9mcNkzbOQ3BHwTjk52fSC211Dp8+DAeeughmEwmf5eSzWKxoGfPnjh58qS/S5GV0+nE448/jt27OUZTVKRZ0gr0vERjIpYeW4pn1z6Lhl81RMTHEeizuA++2P0FDl496PWQsOee06FsWYfk9h9+KEAUOd+diIiIiIjIV4r/bDMiIqIiIilJ2o3N0NCcu0Hcrkz5usi0nUZqhncDu0RRxEVTOVRTp0JQlozdhah4mLhhIuqE10GPmj0AAOXKlfNzRXdXqVIlTJkyBUOGDOEO50SllCAo8PXXBghCJr75JlCWPlevNqBXLxNWrtRBoylZk3qIiIiIiKh4sdlcMBpFZGaKMBpdMBpdMJlc2Y+NRhfMZsBkws3HCpjNLphMgMmkgNmMmx8KmM0KmEwKWK2K7K8tFgEWiwI2mwDgbvch5V9Q4anAQCdGjjTjlVe0iIyU5/0fEVFx1TCiIbZe2Jrj+ILDC9CiUgs/VETkH07n3cd270ajKd5BWYmZiWj6bVPYRFuu53UqHQ49cwjBWs8WZxJ5k9Sx59IQClbUx+XJt/7+246GDYv36xQRERERkTfNnWvC2LFamM3yzxuOjbVg2TIlYmJK5gbFQQFBWNBnAdrMaQOnS9q9tcplKuPpZk9LaqtQKPBKm1cw/r7xeHnDy5ixZwbs4t2DkY12IyZsmID3t7+Pz7p+hicbPynp2qXRzp07MXjwYCxdutTfpQAARo0ahZ07d8raZ5UqVdChQwc0btwY9evXR4UKFRAVFQWdTgetVgu73Q6LxYLk5GQkJCTg1KlTOHToELZt24YDBw7A5ZInUMlkMqFnz544fPgwIiIiZOmTpKsZWhPb4rd53C7FnIIVJ1ZgxYkVANwbb7St0hbtqrRDu5h2aBzZGEpBvvVdwcFKjB6diQ8/lDb/4cABLdavN6N795L5mkVERERERFTUMBSMiIhIJsnJ0gI8wsLyv6lfvnx5mKwJsNpyn2AtF4vFimuaYJQPNHr1OkS3E10iHl/2OP4e/jfqlauHDRs2YNeuXVi0aBGWL1+OS5cu+btEAED9+vUxevRojBgxAjodBzGISjtBUGDWLANUqkzMnCnPwvC1a/V4+GETfv1VC62WoYNERERERHSLKLpgtboDuTIzRZhMIoxG3BHa5Q7ucod1mc3ux+5QLmSHeLmDuQCL5VZI1+1BXRaLAIdDAXdYV+ndOCA42IlnnjFj4kQdwsIYBkZEBAA9avbINRRsy/ktvi+GyI9shRivVavVMlbiWyabCfW/qg+jPfdxZJWgwp4Re1ApuJKPKyO6uypVqkhqd+3aNZkr8R6poWCVK1eWuRIqzvbtk2dBMhERERFRSWOxiHj2WTNmzzZ4pf/hw42YMUNX4ucLtqzUEpPbTcakLZMktZ/Sfgq0Km2halAJKkzvOh3vdHgHo38fjYVHFkJ0iXdtk2JOwaCVg/Dan6/hu4e/Q9caXQtVgxwiIyNRv359VKtWDTExMahSpQqioqIQHh6O8PBwBAYGIiAgAAEBARBFEVarFRaLBUlJSUhKSsKFCxdw6tQpHDlyBLt370ZCQoLsNS5btgzffvstRo0aJXvfnli6dCnmzZsnS1+RkZEYOnQoBg8ejLp16971uVnf/zJlyqB69eq4//77s88lJSXh559/xuzZs3Ho0KFC15WYmIhRo0Zh5cqVhe6LCue+6Psw58CcQveTaknFryd/xa8nfwUAlAkog/ur3O8OCavSDk3KN4FKKNyS8PHjtfjySydMJmlzQt57D+jevVAlEBERERERUQEpXHLFixMREZVyPXqYsHat3uN2AwcaMX9+/gOFlutncfaKRbadQe4mqowLaoV3A8iKswW//Iax46f4uwzfeQRAE+9fpnpIdewesRth+rA7ju/btw+//fYb1q1bh7179xZqB3ZP6fV69OvXD6NGjULr1q19dl0iKj5E0YUXXjDiyy/lWyTeubMJq1ZpodOV7Ik+REREREQlgdPpuhnAJd4M6wIyM0WYzbcHdiE7tMtkUsBkcmWHdJlM7pCuWwFduBnSpYDZLGR/tloVEEVpmxJQwYWEODB2rAUvvaRDSEjpDUUjIspNQnoCKn5aMcdxnUoH0+smP1RE5B/Xr1+XvFCuVq1a0Gg0MlfkfQ7RgVpf1sK5tHO5nhcgYMPgDehYtaOPKysa3nrrLUyZ4vnY8dy5czFkyBD5C6I7GI1GBAZ6PoajUqlgtVohCEV7rMbpdCIgIMDjMfTIyEjJYWLkGwcOHECTJp5M1NgP4B7J12ve3Iw9e7g5GhERERHR7S5csKNPHyfi4goXRpUbnU7EF1+YMWKEd8LGiiKH6ED7H9pjx8UdHrWrV64eDj19CEpB3rG7ZFMyBq8YjHVn1sGFgq3PqBteF/N6z0PTCk0lX1ehKPiYb40aNdC8eXM0a9YMzZo1Q4MGDRAaGir52rk5c+YMVq1ahV9++QW7d++WrV+9Xo9Dhw6hevXqsvXpiZSUFNSuXRspKSmF6qdMmTJ46623MHr0aNk3Ff/tt9/wyiuv4Pjx44Xua8GCBXjiiSdkqIqkOpZ0DPVn1ff6dYI0QWhTuY07JCymHZqWbwq10vMNScaMMeKrr6S/Bm3bZkGbNvK/PhIREREREdGdGApGREQkkxYtpE2Qe/75THz2WcEmoaYknMCV6w6Pr0Ekxaxjs/DV8a98es0OMR2w/sn1eQ5MpKenY+vWrdi+fTt27dqFffv2wWjMfUdyKQRBwD333IMuXbqgc+fOaNOmDbRaDlYQ0d2JogsTJhjx6afyBYN17GjC778zGIyIiIiISCqHwx3UZTS6boZ1ubJDuoxGV3ZolzuYKyu0yx3I5f6M7JAukykrpEuRHdjl/hBgsfBv9pIgPNyBZ5+14sUXdQgK4n9TIqK86N/Vw+ww5zh+6cVLqBicMzCMqCRKTExEYmKipLb16tUr8gFDuWn2bTPsu7Ivz/ML+yzE4w0f92FFRQtDwYq+iIgIJCUledzu/PnzqFKlihcqks+///4raXFty5Yt8ffff3uhIpKLr0PBdDoR6ekKqFQMJCciIiIiAoB168wYNEiN5GSV7H3HxNiwdKkLTZsGyN53UXc+7Twaf90Y6db0ArdZ+dhKPFLnEa/VdC71HJ5Y9gR2Xd5V4DYtKrbAor6LUDWkqsfXu1soWIMGDdC+fXu0a9cObdu2RUREhMf9F8bBgwfx4YcfYvHixRBFsdD99evXD0uWLJGhMs9NnDgR06ZNK1Qf3bp1w5w5c1C+fHmZqsrJZrPh7bffxnvvvYfCLPGtWrUqTpw4USw3pSgpRJeIsI/CkGZJ8+l1DWoDWldujXZV2qF9THs0q9AMGmX+Pwfx8XbUqKGE3S5tzKJbNxPWrtVLaktEREREREQFJ//dSSIiolLq+nVpN0PDwwv+3NCoWjBa/0W60SLpWkSeiEuO8/k1N5/fjOfXPY9ZD87K9XxwcDAefvhhPPzwwwAAURRx7tw5HDlyBCdPnsSFCxcQHx+Pa9euITk5GampqbBYLLDZbBAEAQaDAUFBQQgMDERQUBAqVaqEWrVqoXbt2qhduzbq1auHsmXL+vBfTEQlgSAo8MknBiiVmZg2TZ5gsD//1KNHDxNWr9ZCry9+i8SIiIiIiPJis7lDurICu7I+bg/tygrlcod3KWAyubLDuW6FdGUFeN0K6XIHdgkwmxU3Jy7Ku1s0lTwREXa88IINzz2ng8FQenZiJyKSqmZYTRy6dijH8Z8O/YT/tfmfHyoi8j273S65bXEMBHto4UN3DQSb1mVaqQ4Eo+KhatWqkkLBzpw5U+RDwc6cOSOpXdWqni9appLNbBZw5IgV99xT+kIJiIiIiIhuJ4ouTJ1qwtSpejid8ofmdu1qwqJFAQgJKZ3jmDFlYzCrxyw8ueLJAj2/VaVW6Fm7p1drqhpSFX+P+BtxV+IwaPkgHEs+lm+b3Zd3o/oX1dG1elfM6zMP4XoPFoTcpmzZsujSpQu6deuGbt26oUKFCpL6kUvjxo2xcOFCvPLKKxg+fDj27cv7vmBBLF26FLt27ULLli1lqrBgrly5gpkzZxaqj5deegkff/yx1+/pajQavPPOO2jRogUee+wxmM05N2YpiHPnzmH27NkYM2aMzBVSQQkKAS0rtcS6M+t8el2j3Yg/zv6BP87+AQDQqXS4L/o+tI9pj3ZV2uHeivciQJXzfk/lymo89pgR8+dLmyexfr0Ohw7Z0KgRg+iIiIiIiIi8iaFgREREMrl+XdrgXEREwQcMFYKACpGhMMcnwu5wSLoeUUHYRTsOXj/ol2t/tfcrNIhogDHN8x+UEgQB1atXl7T7MRGRnBQKBT7+OBBKZSY+/FCeYLAtW/To1s2MtWsDYDAUv8ViRERERFR8iKILVqs7kMsd2HVnSJc7nMsFoxEwmbI+ssK7FNkhXmazIvtzVkhXVlCXO7hLgMOhgDusq3ROdKeioUIFO154wYqxY/XQ6xkGRkRUUO2rtM81FGzd6XUMBaNSwyFxjFahkH8RqbeN+m0UVp9enef5F1u+iPH3jfdhRUTSVK1aFXv27PG43enTp9GpUycvVCQfhoKRnHbtcjAUjIiIiIhKtdRUJwYOtGLtWvnHjgTBhTfeMGLyZAMEofjdJ5LTwEYDsebMGiw8vDDf537Q+QOf3VeLLR+Lo2OPYsPZDRi+ajgupl+86/NdcGHd2XWInBaJAfUH4LuHv4Neo8/3OpUqVULPnj3Rq1cvtG/fHmq1Wq5/gmwaN26M3bt349VXX8W0adMK1de0adOwdOlSmSormK+++kpyuBYATJw4ER999JGMFeXv4Ycfxm+//YYHH3wQVqtVUh8zZsxgKJif3VfpPp+Hgv2X2WHGpnObsOncJgCAVqVFq0qt0K5KO7SLaYeWlVpCq9ICAF57TYWFC10QRc9/z7pcCrzzjh2//MJQMCIiIiIiIm9iKBgREZEMnE4X0tKkLWQsV86zG6gqfSgqhSbjXKKkyxEVyLHUY7A4LX67/nNrn0PtsNroVK1oT7ImIvqvDz4IhCBk4v335QkG27ZNh65dzVi3LgCBgQwGIyIiIiptnM6sMC4RmZkiTCYgM1OE2YzssK5bAV3u0C53KFdWcJfitrCu/wZ2CdmfrVYFRDHr702GdVHJVamSDRMm2DF6tA5arTzv24iISpMnGz2JL/Z8keP44cTDfqiGyD9KSyjYlC1T8F3cd3mef6z+Y5jedboPKyKSrm7dupLaSQ3c8qWzZ89KalenTh2ZKyG5SX29KYx9+3x+SSIiIiKiIiMuzop+/RQ4dy7/UCdPhYU5MG+eHd27c2wqy8weM7Ejfgcu3LiQ53O61+iOtlXa+rAqty7VuyD+xXgsOLQAz697HinmlLs+X3SJWHhkIZYcW4Ixzcdg2gPToBLyXq558eLdw8aKCqVSiY8//hhVq1bF2LFjJfezatUqXLt2DZGRkTJWlzeXy4Uff/xRcvuePXviww8/lLGiguvUqRO+/vprDB06VFL748eP4++//0arVq1krowK6r7o+/xdQg4WhwWbz2/G5vObga1AgDIALSq1QLsq7dA+pj16PNIQv68ol7Oh2gRU+AeI/hvQpgFJdYFDgwDXrbnsK1boceaMDTVqMBiMiIiIiIjIWxgKRkREJIPkZCdEUdrLamSk5wEfhohaiLCdRGKaXdI1ifKzL9m/sz2dLiceXfIodo/YjZphNf1aCxGRp957LxBKZSbeeUeeSTw7dujwwANmrF8fgKAgBoMRERERFQUOhzuoy2h03QzrcmWHdBmNruzQLncwV1ZolzuQy/0Z2SFdJlNWSJciO7DL/SHAYhEAKADw70CiwoiJsWHiRDtGjNBDo+GEVCIiqZpXbA6lQgmny3nH8VRLKiwOS/bO4kQlmdPpzP9JuRCE4vM3/ey42Xhr61t5nr+/8v34ud/PviuIqJCaNGkiqd2RI0dkrkR+hw9LC+aU+j0h3xBF0eNF4iqViMLmiO3fz6B4IiIiIiqd5s41YexYLcxm+e/fxMZasGyZEjExOtn7Ls7KastiXu95aP9je4guMdfnvNfpPd8W9R8DGw3EwEYD8cnOTzB5y2QY7ca7Pt8u2vH57s/x3b7v8EbbN/BK61eK1T3BvIwZMwapqal44403JLW32+2YP38+xo8fL3Nludu6dSvi4+MltQ0LC8OcOXP8usHDkCFDsGbNGixZskRS+59//pmhYH50b8V7ISiEPH+vFQVWpxV/XfgLf134C1P/mgrVPWog5F4gpQZgNwAKJ1BhHxB1AFD+52ZT7d+AX5Zmf+lwKPD++zZ8/z3nYBAREREREXkLQ8GIiIhkcO2a9Ju2ERHSBnvKla8Oo/UcjGar5GsT5SUuOc7fJSDVkoqeP/fEruG7UEZbxt/lEBF5ZOrUQKhURrz1lkGW/v7+W4cuXcz44w8NgoM5IZ+IiIgoLzabO6QrK7Ar6+P20K6sUK7bH2eFc90K6coK8LoV0uUO7BJgNitgtwsA+HcZUVFXrZoFEyZYMXJkMFQqTkQlIpJDdHA0zt84n+P4smPLMLDRQN8XRORjoihtXFipLB7vH34/+TtG/TYqz/N1wupgy1NbfFcQkQykBmDt2+ffjbQKIi7O83F9rVaLunXreqEakoMoijhz5ozHIZRvvpmAadMaIyND+uvNsWMaOBwuqFT+W/xMRERERORLFouIZ581Y/Zseeb4/dfw4UbMmKGDVlv8g6G84f4q9+O1Nq/hnW3v5Dj3eIPHcU/UPb4vKhfj7xuPF1u+iP9t+h8+2/0ZbE7bXZ9vcpjw2p+v4aOdH+GTBz7BsCbDfFSp97z22mvYtm0b1q9fL6n9+vXrfRYKtmHDBslt33nnHYSFhclYjTSff/45fvvtN1gsFo/bbtq0yQsVUUEFBQShYURDHLx20N+lFJjDZQcq73B/5KfeMqB8HHAlNvvQggV6TJ3qQIUKXKZORERERETkDXy3RUREJINr16TtCA0A5ctLezlWKFWoFGHAmUsOyTtSE+VGdImIS/F/KBgAnEg+gQHLBuD3x3+HUigeiyWIiLJMnmyAUpmJN98MlKW/3bt16NzZjA0bNChThr8TiYiIqPgQRResVncglzuw686QLqPRBbPZBaMRNx8rYDJlBXYpbgvuUmR/zgrpygrqcgd3CXA4FHCHdfHvJaLSrFYtM0aNSkKXLukQBMBqrQqVyjsLOoiISpsWlVrkGgq2/PhyhoJRqVCSQ8H+ufwPei3uBRdcuZ4vH1ge+5/eD0HgQlYqXqKjoxEeHo7k5GSP2iUnJ+PixYuIjo72UmWFc/78eaSkpHjcrlGjRsXid1JpdeHCBdhsd19gnpt69Sz48cd/8fTTMUhMVEu6ttks4NAhK2JjAyS1JyIiIiIqTi5csKNPHyfi4uQfP9LpRHzxhRkjRnBsKj+T2k3C5vObsePirTCaMF0Y3uv0nh+rykkQBHzY5UNM6TAFz6x+BvMOzoPTdff1G2mWNAxfNRxvbn4T3z70LR6s9aCPqpWfQqHArFmzULduXUnvWbdt2waLxQKtVuuF6u60efNmSe2ioqIwdOhQmauRpnz58hg+fDhmzpzpcdujR4/i2rVriIyM9EJlVBCtKrUqVqFgHgu4cceXVquAjz4y4bPP5JkrT0RERERERHdiKBgREZEMEhNznxidH51OhMEgfdK0OqgCKoakI96zuatEd3U6/TQy7Bn+LiPbujPr8PKGl/FJ10/8XQoRkcfeeCMQgpCJ11+XZ7Dzn3906NTJgo0bgbJluWCDiIiICsfpdIdxuYO6RJhMQGam+/PtoV3uUC53aJfZjOyQLpNJkf3ZHdKVFdyVFdJ167HLlXX/g3/DEJH3VK1qwfPPX0OHDhm4Pavi3LlzqFq1KgwGLr4gIiqsfvX6YfHRxTmO70nY44dqiHxPaiiYSlW0p2idvX4W98+9P8/FjMEBwTg65ii0Ku8v3CPyhiZNmmDDhg0et9u3b1+RDQXbt2+fpHaxsbEyV0JyuXjxIoxGo+T2NWtasWDBvxg+PAbx8dKCvXbtcjAUjIiIiIhKvHXrzBg0SI3kZPnvc8TE2LB0qQtNm3JMqiDUSjX+GPQHXtnwCrZc2IJaYbXwxv1vIKZsjL9Ly5VWpcXcR+bi066fYvCKwfj91O95BuxnSchIwEOLHkKt0Fr4qfdPaFGphY+qlVe1atUwdOhQfPPNNx63tVgs2L9/P1q1auWFym5xOp3Yu3evpLaDBg1CQEDReT88YsQISaFgAHDgwAF07dpV5oqooO6Lvg9f7/va32V4R0Z54GqTHIfnzNFh0iQnQkM5J4yIiIiIiEhuRXvGGRERUTEhNRQsJMQJoHA7KQdH1UGY7RRS0j3fdYUoN/uSpE0e9qbpu6ajfkR9DGsyzN+lEBF57LXXAqFSZeKVV+QJBtu3T4uOHS3YtAkICeEAKhERUUnkcLhgNIowGrMCu1w5QrpMpqzPtx6bzYrsY1khXe7grqyArlufrVYBFosAQIHC3psgIioqpk69jMaNzbmeYzAYEZE8etbqmevxhIwEiKIIQeDfllSy9ehRE0olEBLiQNmyToSGOhAS4kTZsg6EhjoREuK4+eF+rNO5x5HVarWfK89bsikZTb5pAqvTmut5rVKLQ08fQoguxMeVEcmnZcuWkkLBtm7dil69eslfkAy2bNkiqd29994rbyEki6tXr+LGjRuF7icqyo6FC8+hW7eayMz0fBxx3z5p85+IiIiIiIoDUXRh6lQTpk7Vw+lUyN5/164mLFoUwDl9HtKr9fiyx5f+LsMjZbVlserxVYi/EY+BywZi+8Xt+bY5df0UWn7fEk3LN8WivotQM6ymDyqV16hRoySFggHAyZMnvR4Kdv78edjtdklt+/btK3M1hXPPPfegZs2aOH36tMdtT58+zVAwP2oV7d2fc7+50gRYPROwlM1xKiNDiU8/zcTUqfLMkyciIiIiIqJbGApGREQkg6QkaZPiwsKcAAo/ATyyfDSM1ouwWBkMRoUXlxLn7xJy9fTvT6NWWC20qdzG36UQEXns5ZcDoVQaMWGCPIvP9+/XokMHC/78E9xZiYiIyIdsNndIV2ameEdI1+2hXTmDupAd2HUrpMsd2mUy3RnWZbEIMJsVsNsFAHyNJyLylNV69yAaBoMRERWeRqVBuD4cyabkO46LLhE7L+2U5R6+y+VCmiUNWpUWOrWu0P0RycVqFXHxYgAA4Pz5gAK10WpFhIQ4MHeuEeXLe7M6aSwOCxrMaoAMW0au55UKJXYM34EqZavIfm2Hw4EzZ87g2LFjOH78OM6dO4eEhAQkJCQgKSkJZrMZZrMZNpsNAQEB0Ol00Gq1CAoKQvny5VGhQgVUqFABNWrUQKNGjdCwYUMEBnLREeWuU6dOmDp1qsftNm7c6IVq5CG1ts6dO8tcCRVWSkoKkpOT839iATVtGoNGjWzYudPzv6P27+eUYiIiIiIqmVJTnRg40Iq1a+UfIxIEF954w4jJkw0QBPnDxqjoqlymMrYN24bD1w5j4PKBOJx4ON82+67sQ60ZtdCpaics6LMAkYGRPqhUHrGxsYiOjsbFixc9bnvy5EkvVHQnKQFaAKDX69G0aVOZqym8tm3bSg4FI/+pHlId5fTlkGRK8ncp0okAEhsDF1sBF+8DLrUCrleHe+PJ3H31lRavvirCYODmQURERERERHLiCD4REZEMpM7NCwsTZbm+oNYhOlyDs1ccEEV5+qTSyeVyYV/yPn+XkSu7aEefxX2wZ+QexJSN8Xc5REQeGz/eAEEw4qWX5JlYdPDgrWCwsDCGhhARUeklii5Yre5ArsxM8Y6ArqwPs9kFoxE3HytuC+xSZAd3ZYV2ZQV0ub++FdRltQpwOBRwh3XxtZeIqChp1iwTbdpkomLF/DdNOHfuHKpUqYKgoCAfVEZEVDI1jmyMTec25Ti+4PACSaFgVocVcVfisD1+O3Zc3IGdF3ciyZQEtaDGhPsm4N2O70Kh4GI68r+EBCsAzwJWLBYBV65oEBho9U5RhSCKIhp91QjXjNdyPa+AAqufWI3Y8rGyXO/ixYvYvn07du/ejd27d2P//v2wWgv2fckKCMuS2yJChUKB6tWro0OHDujSpQs6duyIsLAwWWont99++w379hV+LHnIkCGIiYkpfEEeaNWqFQwGA4xGo0ftjhw5gmvXriEysmgt0E1ISMCJEyc8blenTh1ER0d7oSKSKj09HVeuXJGtv6pVq0Kr1aJJk0zs3Ol5++PHNbDbXVCr+bcXEREREZUccXFW9OunwLlzetn7DgtzYN48O7p3Z1B5adYwsiEOPXMIW85vwdBfh+J82vl822w6twkVpldA37p9MeeROQjUFI+foQ4dOuCnn37yuJ2c733zkpCQIKldo0aNoFIVvSW2TZs2xffff+9xu5SUFC9UQwWlUChwX/R9+PXkr/4uxWMKCHD9PQ7YMhWwBnvUNiVFhZkzM/Hyy8XjdxkREREREVFxUfTuWBARERVDycnSJsOFhblkqyEgJAblzcdx+bpsXVIpdNF4EckW+XaglVuSKQk9F/XEzuE7i83gJxHR7V580QClMhMvvGCAy1X4yfSHDmnRvr0Fmza5EBHBt/hERFS0OJ3uMC53UJcIkwnZoV1mM7IDu9yhXO7QLrMZ2SFdJpMi+7M7pCsruEuAxZJ1zP3Y5craZZBhXURE3qJQuKDVuqDTif/57IJOh5uf3Y/1ehf0etw8DhgMgF6vuPlYkf2h0wGBgQL0euCrr4z45JMQSbWNHZuIZs1MBX7+hQsXGAxGRFQID9Z8MNdQsL/O/1Wg9tfN17Hz4k7siN+BHRd3YM/lPbA6cwYD2UU73t/+PhpHNsZjDR4rdN1EhXX1qkNy2/Lli9792/vn3o/T10/nef77nt+ja42ukvtPT0/Hxo0bsXHjRmzatAmnTp2S3FdBuFwunDlzBmfOnMF3330HQRDQoUMHDB48GH369EFgIMcWC+Pff//FgAEDYDIV/O/uvLRv397noWAajQZt27bF2rVrPW67bt06PPXUU16oSjop/w4A6NKli8yVUGGYTCbEx8fL1l+lSpVgMLg3J2reXNo4pMUi4OBBK5o1C5CtLiIiIiIif5o714SxY7Uwm4X8n+yh2FgLli1TIibGsxB5Krnax7THuefP4Zejv2DcmnFIMiXd9fmiS8SSY0uw4sQKjIodhc+7fw6VUPTuI2a5knEFf5kKNg7wX5mZmTJXI981qlWrJnMl8pBaly++13R3rSq1KnahYFXKVMHy/ivR78d6OGfVSOrj888D8MILLmg0DJsnIiIiIiKSS9G9U0RERFSMpKRIGygMD5cvFAwAykbVRqbtX9zItMjaL5Ue+5ILv7Oztx1OPIwnlz+J5Y8th6CQf5CeiMjbnnsuEEqlEc8+q5clGOzIES06dLDgzz+ByEi+zSciovw5HC4Yje5wrqyQLpPJdUdIl8mU9fnWY7NZkX0sK6TLHdyVFdB167PVKsBiEQAoAPDvdiIib1IqbwV0abXibeFcWSFe7sCuWyFd7scGA6DVZoV0uUO79HrFbaFdgF4vIDBQgMGgQECAAoIgwFu/1/fvzxkGUxBarYhGjcwet2MwGBGRdE82ehIv/fFSjuP/pv6b45jL5cK/qf9ix8Ud2B6/HTsu7sCxpGMeXe/Pc38yFIyKhKtXnZLbVqxYtMJV+i7ui52XduZ5/p0O72Bok6Ee93v58mWsWrUKv/76KzZv3gybzVaYMgtFFEVs2rQJmzZtwpgxYzB06FBMnDgRlStX9ltNxZXL5cLw4cNlCQTzpy5dukgK01q8eHGRCwX7+eefJbVjKFjRYbPZcO7cOdn6Cw0NRdmyZbO/btFCLbmvXbscDAUjIiIiomLPYhHx7LNmzJ5t8Er/w4cbMWOGDlot50NQTv3r90f/+v3x5e4v8fqfryPDlnHX5ztEB2btnYU5B+bgf63/hzfavnFzXLbocIpOPLToIZzHeUntMzLu/j2Qg9FolNQuIiJC5krkERkZKamd1O8Dyee+6Pv8XYJH2lVphyWPLkE5QzmMH2/EuHHSQsESEtSYM8eIp5/2zmsvERERERFRacTVwkRERDJISZEW6BEeLm8dCkFAhahwmC9cg81ul7dzKhWKQygYAPx68le8+eebeLfTu/4uhYhIkrFjDVAqjRg7Vg9RLHww2LFjWrRvb8XmzUBUFN/qExEVVzabO6QrM1O8I6Tr9tCunEFdyA7suhXS5Q7tMpnuDOuyWASYzQrY7QIApb//uUREJZ5GkzOoKyDABb3edVtwlzuoS693B3VptbgZ2KXIDvG6FdJ1Z2iXO6xLuLnLavH+vW63i/jnH72ktvfcY4JGI23zBQaDEZEvORwOnDlzBseOHcPx48dx7tw5JCQkICEhAUlJSTCbzTCbzbDZbAgICIBOp4NWq0VQUBDKly+PChUqoEKFCqhRowYaNWqEhg0bIjAw0C//lnKGcjCoDTDa71xYYnFacCblDFItqdkBYNvjt+Oa8VqhrqdT6wrVHnAHb5w6dSr7+3/q1CmkpaUhIyMDGRkZyMzMREBAAIKCgrI/KleujHr16mV/hISEFLoOKt4SE6X9zREU5ERAQNH5e+25tc9h+YnleZ5/ptkzeL3t6wXuLykpCUuWLMHChQuxc+dOuFzybowlB6PRiBkzZuCbb77BoEGD8Pbbb6NixYr+LqvY+Prrr7FlyxZ/l1FoPXv2xEsv5Qy1zM+GDRuQkpKCsLAwL1TlucTERGzevNnjdgaDAR07dvRCReSprL8L5fx9GRoaesfXtWqpERzsRHq6568/+4rHtBEiIiIiojxduGBHnz5OxMXJH0qi04n44gszRoxg4Anl79kWz2Js87GYvGUyPt75MazOu2+SZHFYMHnrZHyy6xN83PljjGo2ykeV5m/+ofmIuxIHSMsK8sk9Q6dT2qYOer20cWpvMxik/Z5RKovOvejSqlmFZlAJKjhEh79LydczzZ7B590+h1rpDpgfPlyHd9+148oVaYHz06apMHKkC0pl4efGExEREREREUPBiIiIZJGaKu3Gebly8t/oVGrLolJYEv69KnvXVAoUl1AwAHhv+3voUr0L2se093cpRESSPP20Oxjs6aflCQY7cSIgOxisfHm+3ScikosoumCxuEO5MjPFHCFdt4K63I/NZsVtgV2K7OCurNAu9+fbw7rcQV1WqwCHIyvUhZOziIi8SasVs4O6AgJuD+i6PajLlR3KlfXYYFDcDPC6Fdp1e0iX+0PI/qxSZe3ezN/r+dmxw4iMDGnBXPfeW7idji9cuIDKlSsjODi4UP0QEf3XxYsXsX37duzevRu7d+/G/v37YbXefcFPlqyAsCwnT57M8RyFQoHq1aujQ4cO6NKlCzp27OjTsJJaYbWw/+r+HMfrzqor+yIHqTuqnz17FqtXr8aaNWuwdetWWCyWQtXRoEED9OjRAz169EDr1q2hUvEeXGmTlCRt4VpIiANF5W/CD7Z/gC/3fJnn+UdqP4JZD87Ktx+r1Ypff/0Vc+fOxcaNG+FwFP3FTQBgt9sxZ84cLFmyBG+99Raee+45/r+cj/j4eLzyyiv+LkMW1atXR4sWLbB7926P2jkcDixevBhjxozxUmWe+fnnnyUtcu3du7fkxaQkH1EUcebMGYii6NXrCIICDRvasGOH5+Gq+/cXjdcsIiIiIiIp1q0zY9AgNZKTtbL3HRNjw9KlLjRtyvdWVHCCIGBqx6l4s+2bGLd2HObsnwOn6+7v69Ot6Ri9ejQmb52Mr3p8hV51e/mm2DxYHVZM2jLJ/YXEW2k6XeE3//DWNRSKohleJDVIraiGnJUmNqcNlYIq4fyN8/4uJU8qQYUZ3WdgdLPRdxzXagU8+6wZr70mLRTs7NkALF5swhNP8OeQiIiIiIhIDpzVREREJIPr16VNiIuI8M4Agj68JqIsJ3A1rXhMvqai4Zr5Gi4ZL/m7DI/M+mcWQ8GIqFgbOdIAQTBi9Gg9nM7C/11w8mQA2rVzB4NVrMi3/ERUsjmdLpjN7qCuzEwRZjOyQ7tuD+lyP3Z/bTYj++uskC6TKSucK+uYAIslK7TL/djlYqgLEZG3CYLrZliXC1qtCzqdO7TL/TgrmMsFrRbQ6103A7kArRYwGG6Fc+l0yA7ocod3CdDrgcBAAYGBAnQ6BQRBACDkWxP5zvnzJpQvH4ArVzzfWrp588xCXz8+Ph7R0dEoU6ZMofsiotIrPT0dGzduxMaNG7Fp0yacOnXKq9dzuVw4c+YMzpw5g++++w6CIKBDhw4YPHgw+vTpg8DAQK9cM/5GPLbHb4foyj3Iwhu7nt9f+f4CP9dms2HRokX4/PPPsX9/ztCywjhy5AiOHDmCjz76CKGhoRg5ciTGjRuHSpUqyXodKrqSk6Xdww0N9Ty8xxt+OvgT/rfpf3meb1GxBVYOWHnXPg4fPozvv/8e8+fPR0pKiswV+k5GRgbGjx+P+fPnY/HixahZs6a/SyqyRo4ciYyMDH+XIZsnn3zS41AwAPjyyy/xzDPP+H2RqCiK+PLLvIP97mbgwIEyV0OeEkURZ8+e9VmQYpMmTuzY4Xm7Eyc0sNlc0GiK5qJoIiIiIqLciKILU6eaMHWqPPPw/qtrVxMWLQpASAjnjZA0GpUG3z78LaZ1mYahvw7FihMr4MLdQ5+uZl5F7196o3pIdfzQ6we0qdzGR9Xe6eu9XyP+Rrz7C5u0PkJCQuQrKA9SN4EyGgu3CZW3mEwmSe3KlSsncyWUn/1X9mPh4YXYfH4zTqacRKat8HMYvClcH45l/ZehbZW2uZ5/9lkdPv7YgdRUafPQP/xQwIABLggC7y0REREREREVFlcIExERFVJmpgiLRdoiwnLlvHeTM6xCTRjt55BhLNyu51R6xCXH+bsEj+W16IiIqDgZPtwAlcqI4cPlmZB0+nRWMJgL0dHSdmoiIioMh8Md1GUyubJDutzhXLdCuozG2wO6XDAaAYtFcUdgl8VyK7DL/XVWUJcCFosAq1UAoABDXYoSF1D/F6DSLuBGFWDv04BD/t13ici3VKpbYV06XdbnWx9abVZgF24L7boV1OUO6boV2pX12WBwB3a5PxQICFBAEDiJvrRq0eI61q9PwqVLavzzTyB27zbgn38MSEq6+3sanc6J+vXNstRw8eJFAGAwGBF55PLly1i1ahV+/fVXbN68GTabxNUwMhBFEZs2bcKmTZswZswYDB06FBMnTkTlypUl9+kQHTh07RB2xO/A9ovbsSN+By5nXJax6vzVCK2B8kHl832eyWTC9OnTMWPGDFy7ds3rdV2/fh0ffvghPvnkE/Tt2xeTJk1CvXr1vH5d8i+poWAhIXeGgrlcLmw+vxnn086jVaVWqFuurhzl3dWGsxswZOWQPM9XD6mOncN25ttPhw4dinUY2H/t378fzZo1w+zZs/Hoo4/6u5wiZ86cOfjjjz/8XYasHnvsMbz44osehzKdOHECa9aswYMPPuilygpm1apVOHPmjMftIiIi0LlzZy9URJ54//3raN5cRIUKvrle8+bSXresVgH791vQogXv7RIRERFR8ZCa6sTAgVasXWuQvW9BcOGNN4yYPNnAcBOSRbA2GMseW4aE9AQMXD4QWy5sybfN2dSzuH/u/bgn6h4s6L0A9SJ8dy863ZqOd7a9c+uAxPys6OhoeQq6C6kbeCQmJspciTyuXr0qqZ0vvtelmclmwrLjy7Dq5CrsSdiDy+mX4XQVjY1BCqJxZGP8OuBXVClbJc/nBAYKGD3ahA8+kLYB0aFDWqxZY8ZDD+mklklEREREREQ3MRSMiIiokK5ccQDQSGobFeW9hY4KQYnoipE4F38VZovVa9ehkmNf8j5/l+Cx4U2G+7sEIiJZPPWUAQqFOxjM4Sj85KGzZwPQvr0NmzfbUbkyg8GIyM1mc4d0ZQV2ZYV1/TewKyuoyx3OdSuky/3Y/fn2oK6sx1arALNZAbtdAMBQl1Kp+/NAiy9vfd1gEfD9TsDFnwcib9Bo3AFdWq14W0DXnYFdOh2g07nDutyhXYBWi5vhXLj5kRXSdWdoV2CgO7BLo1GAv9fJm0RRhNPphEIBREfbER2dij59UuFyAefPa/DPPwbs2ROIf/4x4Pr1O4c2mzY1QS3jW56LFy/C5XKhbNmy8nVKRCVOUlISlixZgoULF2Lnzp1wuVz+LikHo9GIGTNm4JtvvsGgQYPw9ttvo2LFivm2y7BmYNelXdhxcQd2XNyBXZd2+X038xbhDZF06QTsohJiHvuErP9jI956+11cuuzbwDIAcDgcWLx4MZYvX44Rw4bghefGQq/X+7yO0kAhAGpBhEYQEVi2HFT6cJ/XkJoqLZg8NPTWD6/L5cKgFYOw4PACAICgEPBK61fwTsd3ICi8E3x+4MoB9FjYAy7k/vsqQh+BQ08fgiCUzuD19PR09O/fH1OmTMGkSZP8XU6RkZCQgPHjx/u7DNmVK1cOPXr0wKpVqzxu+/777/s9FOzDDz+U1G7gwIFQqThV1J+mTbuON94IR7lyZfDVV+dRu7b35/G0bCn9DfOePQ60aCFjMUREREREXhIXZ0W/fgqcOyf/PbmwMAfmzbOje3dpoShEd1MhuAI2D9mMY4nHMHDFQBy4eiDfNgeuHkD9r+qjXZV2WNBnASoG53/fv7Cm/z0dyabkWwck7hdQs2ZNeQq6i6pVq0pq9++//8pciTzOnTsnqV2dOnVkrqR0O5l8EvMPzcemc5twLOkYblhv+LskyR6t9yjmPjIXBk3+IZoTJujw5ZdOGI3S5gu9/z7w0EOSmhIREREREdFtONODiIiokK5dy2MFQgF4MxQMAARNEKpUsOPi1RQYTQwGo7srTqFgDSMa4o22b6B7ze7+LoWISDaDBxugVJowZIhOlmCwf//VoF27rGAwJURR5IIPoiJIFF2wWNyhXJmZIoxG92ezGbcFdiE7tMtsVtwW2KXIDu7KCu36b1iXxSJkB3a5f7cowWAX8orAq0DzmXceq7QHqP8LcORx/9RE5CdarZgd1OUO7cotqCsrpMsFrdYdzuUO5HJBp1Nkh3bdHtKVFdTl/lqASpW1YJ+/16l4S0tLy/W4QgFUrWpD1ao29O/vDgk7cyYAe/YY8M8/7o82beyoVKkSLl26JFs9WX0xGIyIbme1WvHrr79i7ty52LhxIxwOh79LKhC73Y45c+ZgyZIleOutt/Dcc8/dcX/oUvol7Ih3B4Btj9+Og9cOQnRJH/fyhjpBsbiW5gCQ83uekpKCSZMm4a+//vJ9Yf9ht9vx1TffYeWq3/HWW2/hvvvu83dJJZoi9RqC9GkoFwTowmt41DYryE+h8PwebEqKtL+9w8Ju/X/1x9k/sgPBAEB0iXh/+/u4nHEZsx+eDbVS3k0e4m/Eo9WcVnCIuf/eCtQE4ujYo9BrGGY3efJkpKWlYfr06f4upUh45pln8vxbvbh76aWXJIWC7dixA0uXLkW/fv28UFX+Fi1ahF27dnncTqVS4fnnn/dCRVRQ8+al4tVXQwAASUlqDBlSDV98EY/mzY1evW6NGmqULetAWprn44N79xZ+rJKIiIiIyNvmzjVh7FgtzGb5g85jYy1YtkyJmBid7H0T3a5eRD3sH70f2+O3Y8jKITibejbfNlsvbEX0p9HoVacXfnjkBwRrg71SW6IxEZ/8/cmdBy9K66tp06aFLygftWrVgl6vh8lk8qjdoUOH4HA4itz82r1790pq54vvdUllc9jw26nfsOLECuy6tAvxN+JhF+3+LksWUztMxev3v17gsZGwMCWGDs3EjBnSgjF37tThr78saNtWK6k9ERERERERuRWtuxVERETFUGKitMURSqULISHe321ZpQ9FTEwZXL96GtfSRIh5baNOpdoN2w2cST/j7zJypVFq0KxCM7SObo02ldvgvuj7EO6H3d+JiHxh4EA9lEoTBg3SwuEo/N8J589r0L69DevWmaDRJCImJgaC4P2/P4hKAqfTBbPZHdCVFdKVFdp1e0iX+7H7a7MZ2V9nhXSZTFnhXFnHBFgsWaFd7scuF0NdqARQGwEhl/ebtVcxFIyKBEFwZQd1BQS4oNOJ2SFdWm1WSFdWYJc7rMsd2qW4ee5WUNftj2+FdLkDu3Q6xc2/t/g3F1FBpaenF+h5CgVQs6YVNWtaMXDgdYgiEB5eITu8S85gsN9+u47oaCXatw+SrU8iKp4OHz6M77//HvPnz0dKSoq/y5EsIyMD48ePx/z58/Hk209in20fdsTvwIUbF/xdWr6ahue+eOXo0aN44YUXcPXqVR9XdHdXrlzBmDFj8MILL2DIkCH+LqfEcrlcSDdakG4EyplPoVz5KhBUAXdtk2pOxajfR2HD2Q0w2U0I14ejnKGc+7O+HMrpy+U8dvNxuD4cKkGF69el3bsJv21Ya8mxJbk+56eDPyHZlIxf+v0Cg8Yg6Tr/lWZJQ6OvGsHisOR6XqPUIG5UHMfdbvPpp59CoVDgk08+yf/JJdjChQslhWYVVIcOHQAAc+fO9cvvynbt2uHee+/Fnj17PG47ceJEPPTQQ9BqfbuYzWw245VXXpHUtn///qhSpYrMFVFBrV9/A6NGlYHTeWvBZWamEqNHV8H7719C164Fe08shSAo0LChHdu2eT5N+MABjlcQERERUdFlsYh49lkzZs+W5x7Kfw0fbsSMGTpotRzzJd9pU7kNzjx3BiuOr8CYNWNwNfPu975dcGHFiRVYdXIVhjUZhhndZ0Cj0sha07t/vYtMW+atA2YAlz3vJzQ0FHXr1pWtrrwIgoBmzZp5vJGIyWTCvn370KJFCy9VJo2UDVGio6NRtWpVL1RTMl24cQELDi3A+jPrcSTpCK6br/u7JNkFagIxr/c89KrTy+O2L78cgG+/FWGzSXs9fPddEW3bSmpKRERERERENzEUjIiIqJASE12S2oWEOKFU+ualWCEoEVahDkLCjUhPiccNixo2uwi7w8GQMIJarcax5MP+LiNbqC4UraNbuz8qt0azCs2gVXGHECIqPQYM0EMQTHjySS3s9sJPLLpwQYMHHgDmzLFDo0lAxYoVC7zTE1FR5HC4g7pMJld2SJc7nOtWSJfReHtAlwtGI2CxKG4L7Mr6WnEzqEtxW1CXAhaLAKtVAKAAQ12ICii9EmDTA5r/7LZZ/Q9A4QRcXERGuVOpRGi1Lmi1t4K63I+zPpD9OSuoS6sFDAZ3OJc7pOtWUJc7rEsBgwEwGITs0K6AAAUEgT+HREWRpzs1ZxEEICqqLADIGgx24IAOTz9dBUolsHz5DXTuXKbQfRJR8dWhQ4diHQb2X/v378f+fvuBngDq+7ua/EVoI1DJUCnH8dWrV+Ott96CxZJ70JG/OZ1OfPLJJzh+/DimTJni8+CY0ibphg1Wx0VEV64ChVKd5/MGrRiE1adXZ399JfMKrmReKfB1ymrLIuPBcCA9AjCFA6ZygLHcrcem8Jtf33xsM8B9bwkID3ePJ7tcLqw7sy7Pa6w5vQadfuqE1U+sRpg+rMC15cbmsKH+rPq4Yb2R63mlQom/hvyFmmE1C3Wdkmj69OmoUaMGnnnmGX+X4heJiYl47rnn/F2G17388svo16+fx+3Onz+PCRMmYMaMGV6oKm8vvPACLl68KKntyy+/LHM1VFD79hnx2GMGWCw5xxnsdgETJ0YjOfkKBg703oLT2Fgntm3zvN2JExpYLCJDEIiIiIioyLlwwY4+fZyIi5M/EEynE/HFF2aMGOGdsDGiguhdtzd61+2Nb/Z+g5c3vox0693DpJ0uJ76L+w4/HfwJE+6bgLfbvy3LxrHn087jq71f3XnwIAAJS0+6du3qs81su3btKilMa+nSpUUqFOzAgQM4c8bzDd+7d+/uhWpKBlEUsf7seiw9thQ7L+7EubRzsDqtXrlWgDIAVcpWQZmAMvgn4R+vXKMgqpatilWPr0KDiAaS2kdHq/H440b8+KO018U//tAjLs6K2Ni7b+pCREREREREeWMoGBERUSElJUkPBfP1S7GgMaBs+booe/NrlygCkFY/lRQKKAQBsy/M9lsFNUJroHV0a7Sp3Aato1ujdnhtCApOLCWi0q1/fz2UShOeeEIreYel2128qMGQIVUxZ845BAQko1y5cjJUSXQnm80d0pX1YTYjO7ArK7QrK5Qr6/Gt4C4FLBbcDOnCHUFdWY+tVgFms+JmWB5DXYiKHGcAcK4jUPv3O4/rrwMV9gKXi87EOSoYjUbMDurKCum6M6wrK6jLHdqVFc7lPnYrrOtWSNftH0L2Z42G7/+ISjOn0yl50wKlUnnH5PGyZctCoVBIXigPAIcO6fD00zEwmdx/b/buHYhly27ggQcYDEZEJYgVwBIASQDa+7eU/MSGx+YIt1+6dCnefvttuFxFf3xrzZo1SEtLw5dffgmNRuPvckq0dKMFCZfOo0J0dShyWVxmtBnvCASTIs2SBpRNA8oWcCGWXZsdEDbXEYK9y6MgQMDljMt3bbb78m60mdsG659cj8plKkuqVRRF3PPNPUjISMj1vAIKLH9sOVpU8v97dYVCgRo1aqB58+aoVasWYmJiEBMTg0qVKsFgMCAwMBB6vR42mw1msxmJiYm4ePEiTp48iX379mH79u04ffq07HU9++yzqF27Njp27Ch730Xd2LFjS1QgZl569+6NunXr4vjx4x63nTlzJjp27Ig+ffp4obKcfvnlF3z77beS2j744INo3LixzBVRQZw9a0bPnmrcuJH3vCCXS4EPPqiApCQ1nn/+Gryxp0+zZtLuvdlsAvbvt6BVK4abEhEREVHRsW6dGYMGqZGcLP/fqTExNixd6kLTpgwEo6JhdLPRGBk7Eu/89Q7e3/E+LI67b5JhdVrx7rZ38cXuL/Bep/cw7t5xhbr+5C2TYRfttw44APwtra8BAwYUqhZPPPLII3j99dc9bjd//ny88847CAiQN7zorwt/4dNdn8JsN+PReo9iWJNhBdrU97vvvpN0vSeeeEJSu5LoWuY1LDy8EGvPrMXBqweRZEqCy0trp0K1oagfUR9dqnXBk42eRNWQqgCA3Zd2o+X3Lb1yzfx0rNoRv/T7pdAbkLz2mhrz57vgdEq7cfXeew4sXcpQMCIiIiIiIqkYCkZERFRISUnS2oWFSVvsJqfcJsVT6fRXvOc74kihgALNKzZHm+g2aF25NVpHt0ZkYKRPrk1EVNz07avHzz+b8PjjWlithX/NvnxZg6FDq+L778/hvvsCEBwcfNfnWywWmEwmhIaGFvra5D+i6ILF4g7rMpnc4Vzux8j+2mRCdmiX2ay4eRywWBS3BXe5Q7uyArqyArssFuHmY+HmoL8SDOwiKsXOdMsZCgYANdYzFExGOp2IgADxtpAuEVotsoO69HoXtFrcDOVyB3fpdFnhXK6bgV2K7MCurHAuvR4IDBQQGChAp1NApcr6+4O/14nIe9LS0iS31ev1OY6VKeMO75ISDHbkiA6jR8fAaLz1ey8zU4k+fQKxbFk6una9+3soIqJiZwsAC4Bufq7jLpqGN73j699//x1Tp04tFoFgWXbu3IkJEyZg+vTpUKk4RcebUjOs0F09idAKdXOc06l0EBQCRJcPx2fVFqDMRaDMRRw2AYcPF7zpieQTqD2jNvrV7YdRTUfh/ir3e3TpTj91wvHkvIOOvn7wa/Ss3dOjPuWiUCgQGxuLrl27olOnTmjatGn233B3o9VqodVqERISgtq1a6Nz587Z506fPo2ff/4Zs2fPRnx8vCx1Op1ODB06FIcPH873XnpJsnz5cixdurTAzw8ICIDVavViRd4jCAI+/fRTdOsm7YVwyJAhiI6ORvPmzWWu7E5///03hg8fLqmtWq3GtGnTZK6ICiIpyYYePRRISChYKOj335dDUpIKb711GWq1vLW0bCn97489e5xo1UrGYoiIiIiIJBJFF6ZONWHqVL3kUJK76drVhEWLAhASwrFxKloEQcCk9pPwWtvX8Py65/Htvm/hEB13bZNhy8Cza5/F21vfxsweM/Fo/Uc9vu6RxCOYd3DenQd3ALjhcVeoUKECHnzwQc8bSlS/fn00a9YMe/fu9ajd1atXMWfOHDzzzDOy1CG6RLy99W1M2Tol+9j6s+uRZknD+PvG37VtQkIC5syZ4/E1a9asibZt23rcriQQRRHb47dj8dHF2Ba/DWeun4HZYfbKtdSCGtFlotGiYgv0rtMbj9R+BBpV7veAmpRvggBlAKxO395DffbeZ/HJA59ArSz8jaZatTR45BEjli+XFpq5cqUep07ZUKsWN88hIiIiIiKSgjMOiYiICik5WdrgYlEIBSMCgExbJuKuxPnkWhGGCOwesdsn1yIiKgl699ZjyRIzHn00QJZgsIQEDYYNq4o5c86jXTs1dDpdjueYzWYkJSUhPT0d4eHhhb4m5c7pdMFsdgd0ZYV0GY1ijpAud3iX+2uLBdlfZ4V0mUy3h3QBZrMAi0WRHdRlsSjgcgkAGAZLRD5wJo9FlC0+A7ZO8mkpviYILmi1WUFd4s2wrqwP3PFYr8fN8C7cDOdyQadT3AztygrvUmSHdGV9nRXWJQj8vU5EJUd6errktnmFR5QpUwYKhcKjQIijR7UYNSoGmZk5F3sYjUr06WPAkiU30KNH/oEVRETFyi4ACgBd/V1I7mLDY7Mf//nnn3jzzTchisVvfG3z5s147bXX8OGHH0KhkH/RIt1yJVWEXvcvtCHV7jh+JOmIbwPBZGBxWDD/8HzMPzwf3zz0DUY1HVWgdk8sewJbLmzJ8/ybbd/EqGYF60suKpUKnTp1wuOPP44ePXqgXLlysvZfs2ZNvPnmm3j99dcxb948TJkyBefOnSt0v/Hx8XjppZcwe/ZsGaos+q5fv44xY8YU+PmdOnWCw+HA1q1bvViVd3Xt2hW9evXCypUrPW6bkZGBrl274s8//8Q999wje20AsG/fPnTv3h2ZmZmS2r/wwguoU6eOzFVRfoxGBx580I5TpzxbKLlqVQhSUlSYPv0i9Hr5XrOqVVMjNNSB69c9nyrs4fppIiIiIiKvSE11YuBAK9aulRZGcjeC4MIbbxgxebIBgsD7dlR0qQQVZvaYiQ87f4jhvw7H0uNL873fmWRKQv+l/RGzIQZze81F+5j2Bb7ea5tegwu3bc4RD0DiLaDHRj4GpdK3gXvjxo3DkCFDPG735ptvon///ggLCyvU9TNtmRi8YjBWnFiR49yHOz7Ei61ehKDIe97P888/D4vF4vF1X3311VIzBpFmScPPh3/G76d/x/4r+3HVeNVrYwDBAcGoG14Xnap2whMNn0D9iPoFbqtRatCsQjPsuLjDK7X9l1pQ46sHv8LwWGmbDOTl9ddVWL5cWlunU4H33rPjhx8YCkZERERERCQFQ8GIiIgKKSVFaiiYzIUQSbTr0q58dw0qqJiyMWgd3Rr3Rd+HsWvG5jifaEyEKIo3F7ETEVFBPPywDsuWmdGvXwAslsL//rxyRYMhQ6rixx/j0bFjZahvbjluNpuRmJiIjIyM7OdqtdpCX6+4cTjcQV1Goys7pCvrIyukKyu4y2wGTCYXjEZ3UJfFosg+nhXUdSuwS3FHWJc75E0BhroQUYmSWh0wlwV0aXce16cC7ScDW6bk1sqrVCp3UFdAgAs6nZgdznUrtAvQ613Qat2f3YFduC2wCzAYkB3alfXhPi5kh3ZpNAoIAncNJiLylNksfXfe4ODgu56rUqUKLly4kG8/x4+7A8EyMvL+PW4yKdGvXyAWL07Dww+XlVIuEVHR9TeAUADN/V3InYLVwagRXAMAcP78efzvf/+Dw1H4sQxBENC8eXPExsaiQYMGqFKlCoKCghAUFASbzYb09HQkJyfj+PHjOHLkCP766y+kpKQU+rpr165F3bp1MXTo0EL3RXlzuVy4mOxAdYMRgubWQlGVULynR7284WWMjB2Z74KuiX9MxKIji/I8P7zJcLzd4W25y8tTs2bNMHToUDz66KOyB4HlRhAEPPXUU3jssccwadIkTJ8+HU6ns1B9zpkzB2PHjkWTJk1kqrLoeu6553Dt2rUCPVen0+Gbb77B8OHyLi7zh+nTp2PdunWSFlqmpqaibdu2mDt3Lvr27StrXYsXL8aIESMkB4KVL18eb775pqw1Uf4cDhH9+pnwzz95v1+9mx07gjB8eAxmzsz/vWxBCYICDRvasHWr56+FBw/yficRERER+VdcnBX9+ilw7pxe9r7DwhyYN8+O7t0DZe+byFsCNYFY/OhiXM28ikHLB2HjuY35tjl/4zw6/NgBDSMaYkGfBWgY2fCuz98RvwO/nfrt1oFrABYBkJK3FAz8FvwbptqmwqCRP9gvLwMHDpS0cUBKSgqGDRuGlStXSg7XOpd6Do/8/AgOJx7O9XySKQknkk+gXrl6uZ7/4YcfsHTpUo+vW7NmTQwePNjjdsXFvoR9WHhkIbac24JTKaeQaZd2zyw/SoUSFYIqoFmFZnik9iPoW68vAjWFe51oVamVT0LBIgwRWN5/OVpXbi1737GxAejSxYQNG6S9Hi9apMPUqXZER6tlroyIiIiIiKjkK96z3oiIiIqAlBRpQQ7h4a78n0TkA/E34iW1UyqUuCfqHrSObo3WlVujdXRrVAyumH1+6l9TcTXz6h1tXHBh/dn16F6ze6FqJiIqbR58UIfly83o2zcAZnPhQ6SuXVNj8ODKWLAgAS1bhiE5OTnXhSUBAQGFvpZcbDZ3WFfWh9mMXAO73B+3h3YBJpMCFov78+2BXVkhXVlBXRaLAna7AICLHIiIJHPkESjZ/m0guS5wZAAAQKMRbwZzidkhXVlBXe6QLld2OJf7GLIDuwwGRfa5WyFdtwK7AgOFm18L0GgYvkhEVFQ5HA6IorTdelUqVb6h80FBQfkGg508qcXIkTFIT89/yNRsVuKxx4KwaFEaHnmkrKclExEBABQKBWrUqIHmzZujVq1aiImJQUxMDCpVqgSDwYDAwEDo9XrYbLbsAPeLFy/i5MmT2LdvH7Zv347Tp0/LX9gaAGEAqsnftVSx4bEQFAKsVismTJgAk8lUqP7Kli2Lp556Cg8//DAiIyNzfY5arYbBYED58uXRsGFD9O/fHw6HAzt37sT8+fPx999/F6qGL774Ak2aNME999xTqH7o7qxWG65eTUCFyjWzj9UMrYmowKgc41bFxQ3rDXy992s80/yZPJ/z2a7PMO3vaXme71a9G2b3nO2N8u6g1Wrx2GOPYcyYMbj33nu9fr28avjoo4/QrVs39O/fv1DBfi6XC7GxsTJWd8vQoUO9FhQ4d+5cDBkypMDPX716NRYsWFDg50+ZMgXVq1eXUFnRU7VqVbzzzjuYMGGCpPYZGRno168fxo0bh7fffhshISGFqiclJQVvvPEGvv7660L1M2vWLAQFBRWqD/KM0yli2LB0rFtXtlD9HDmix6BB1fDOO//KUxiA2FgRW7d63u74cQ3MZhE6He+xEhEREZHvzZ1rwtixWlnmyv1XbKwFy5YpEROjk71vIl+ICozChsEbcDrlNB5f9jj2XdmXb5vDiYfR6OtGaBPdBgv6LkDlMpVzPMflcuHVTa/eOnAWwBIAnmepu3UHzmScwUvrX8I3D38jsRPPqVQqfPTRR3j00Uc9brtq1Sq88sor+Oijjzxuu/ncZjy65FGkmO9+P3LnxZ25hoJt2rQJTz/9tMfXBdz3glSqkrFM2GQzYcmxJVh1chX2JuzF5YzLcLoKt/lDXgLVgagVVgvtY9pjQMMBaF5B/h107ou+z71BjxfFlo/FysdWIrpMtNeu8frrAjZskNbWZhPw0UcmfPklQ8GIiIiIiIg8VTLe7RMREfmR1FCwiAhpu4cQya1CUIUCPS9QE4hWlVqhTeU2aB3dGi0qtbjrziexUbFYc2ZNjuO/HP2FoWBERBJ0767DihVm9O4tTzBYYqIaTzxRAd9/fw5Vq9pyfU5+oWCi6ILF4g7rMpnc4Vzux8j+2mRCdmiX2ay4eRywWBS3BXe5Q7uyArqyArssFiE7sMvpVMAd1sXALiIib9LpRGi14m0hXSJ0OtwR2KXT4WYo163gLr1eAb3ehTdvuJCeR76Luv9gLFkUggfrPACVKuu1jL/XiYhKq9TUVMlt9fqC7UB7t2CwkycDMGJEDG7cKPhwqdmsxOOPB2PBgjT07l22wO2IqPRSKBSIjY1F165d0alTJzRt2hRlypTJt51Wq4VWq0VISAhq166Nzp07Z587ffo0fv75Z8yePRvx8dI2/cjBBeBXAM8AyCPn19eahjcFAHzwwQc4efKk5H4EQcCTTz6J0aNHIzg42OP2KpUKbdu2Rdu2bbF9+3Z8+OGHOH/+vKRaHA4HJk6ciKVLlxbo54Cku55uheHqcZSJqgsAUCvVGN5kON7d9q6fK5NuzJr/s3ff4VFU+xvA363Z3fRGKKmELtKrclWkFwUpoggo7YIoomK9VkRBxQYXK82fCOIVVFRAKVJUmhCKSA0pQEJIr9vL748YBFP37Gx2k7yf58mTZHbOmW8C2d2ZOec9s5BvzMczfZ6BTHb9feYvT3yJx356rNK2nRt3xqbxm9xaX1hYGB555BE89NBDCAkJceuxaur222/HgQMH0LdvX1y8eNHT5XitgoICzJgxo8b7d+nSBY8//rgbK6p9jz/+OHbt2oUffvhBuI+lS5di7dq1ePbZZzF58mSEhoY61T4zMxMrV67EG2+8gfz8fOE6AGDOnDkYOXKkS32Q8156KR+rV0vz/Ne+vQlt2zaRpC8A6NZN7L6i1SpHQoIRN9/sJW8QiYiIiKhBMBrtmD3bgOXLfd3S/9SpJVi6VAuNhuG3VPe1DG2JQ/8+hAOXDmDSt5NwNudstW1+vfgrYt+LxfBWw/HZXZ8hSBN09bHN5zbj1wu/AmYAPwM4gNL7ByI6ACi9PItPEj7BkJZDMLLNSMHOnDdmzBgMHToUmzeXn8tQnUWLFsFms2HRokXVLlQFlIapffD7B5jz45wahVftu7gP07pMu27b999/j3HjxsFkMjld74wZM667j1TXnMo6hc//+Bw/J/2MU9mnUGAqcMtx5DI5Inwj0KVJFwxrOQz33njvdf//3aV3VG+39n9P+3uw4s4V0KlqNoZC1K23atC7twH79okFaq5apcXLL9sQGsqxgkRERERERM6QORwO0cszREREBCAoyOrUxLEyy5eXYOpU99ywJHKGw+HAnevuxA9nrx/kHBkQeTUArE90H9zY6EYo5DW/CP/xoY8xc1P51WpahrTE2dnV33QkIqKKbdtmwMiRauj10twY9fW1YcyYPPj62mAwyGE0ln6YTHJYLKprQrrw1+PXh3Y5HAw6JSJyN7ncAY3GDq322s+lIV2lAV1/f63T4a/wrr+Duko/y6DTAb6+Mvj6yqDVAn5+8qvf+/rKodXKIJeLP69bbBb4LfSD2VZx2CQA+Kp8seuBXejWtJvwcYiIqH5ISkqCXq8XahsVFeVUmEpRUdF1wWDnzvlg6tQ45OWJrZ+k0djx+eeFGD06SKg9EdUdYWFhyMmpekX3f1IqlejXrx/uvfdeDB06FOHh4W6pzW63Y/Xq1Zg3bx6Sk5Ol6bQzgBHSdOWqNX3XQH9Wj+nTpwv3ERwcjNdffx033XSTZHXp9Xq88MIL2Lp1q3AfI0eOxPz58yWriSoml8vRIjIQ6oBmAIDU/FTELY6DQ3gWm3d4pMcjeHfwu5DLSiej7UrZhX6f9YPdUXFCd0xgDBIfSYRSLs26kf98XoyMjMTjjz+OGTNm1Di4tbYlJSWha9euLgct1SWrVq3CAw88UKN9p02bhhUrVtRoX6VSiYMHD6Jz584AgNtuuw27d+8WLdOpOt0tNzcXnTp1kiRATqVSYejQoRgwYAC6deuGG2+8sdzfR0lJCY4fP45Dhw7hp59+wk8//QSr1erysbt3745ff/0VarXa5b6o5tLS0rB/vx6zZsUiM1PlUl+9ehVj+3YNzp07cfVvrSaOHDmCTp06VfhYcrIFzZuL1fXOOyV47DGObSIiIiKi2pGaasGoUTYkJEgfTKvV2rFkiQHTpvH9LdVfP5z5ATM2zUB6UXqN9lfIFJjYYSI+HP4h1Ao1bnzvRpzcehL4FUCxC4U0AjANwDWXJ0K1oTj+4PEaL2YuhczMTHTs2BEZGRlC7QcPHoxVq1ahcePGle5jtpnx8OaHsSxhWY37bRPWBqceOlXa3mzG/Pnz8dprr0Fkim+XLl3w22+/QaOpG4HeZqsZG89sxDenv8GBtAO4WHARFrvFLcfSKrWID47HLTG3YNwN49Anuk+NQt7cofni5kjOl+he3l9kkGFBvwV4+uanyy0k4i4//GDAHXeIhYIBwLPPFmPBAj8JKyIiIiIiIqr/GApGRETkAovFAbVa7ALq998bMHy4+AVRIinZHXZ8e/pbpOSnoLFfY/SJ7oPowGiX+iw0FiLwjfKTM1VyFcwvVB4SQERE1fv5ZyPuvFOFkhKumERE5ElK5d9BXX+HdDmuCe0CdLq/g7tKA7sAX19Aqy0L6cLV0K6ygK7S7fKroV1qtWthXbXlWMYxdPq4U7X7henC8NuU39AqtJX7iyIiIq918uRJ2O0Vh1dUp127dk4P2C0pKUFycjLOn/fBlClxyM11LRjDx8eOzz4rxN13B7nUDxF5N2dCwbp164bJkydj7NixbgsCq4jRaMSLL76Id955BzZb9SvQV2sGgCaud+MKrUKL3UN3496778X58+eF+mjSpAlWrVqFZs2aSVxdqcWLF2P58uVCbWUyGT7//HN06NBB4qron3RaH8TFxkKmKA1CGbpmKLYkbvFwVa67p/09+HTEp0jMTUTnjztXOmkqVBuKlEdT4KeWbpJN2fNio0aN8Nxzz2HmzJl1InzohRdewKuvvurpMmpNTcO2tm3bhoEDB9a436eeegpvvPHG1e/rUygYABw4cAC33367cHhxVTQaDYKCguBwOJCfnw+TyST5MRo3box9+/YhNjZW8r6pcpmZmcjMzAQApKerMHNmDJKTxSbitmljwC+/KBAWpsbRo0clCwWz2x1o1MiGnBznz4PHjy/BmjUMTSAiIiIi9/vxRwMmTlQhO1uaYPNrxcaasX69A127+kjeN5E3WnVkFR7f+jjyjfnV72wBlKlKNLnUBBf3XgRcHeIfAGAqgArWdxrQfAB+nPDj1QUPasO+ffswcOBAFBeLpZwFBQXhpZdewowZM6DVXj/3J7MkE6P/Nxq/XvjV6X5znsrB3h178dRTT+HUqVNCtbVv3x47d+5EWFiYUPvakJqfitXHV2Pr+a34M+tP5Bpy3XIcGWQI14WjQ0QHDGk5BONvHI/GfpWHudW2CV9PwJo/1kjWn7/aH2tHr8XwVsMl67Mm7HYHOnc24fhxsWtfwcFWXLhQOiaSiIiIiIiIakb6q6VEREQNSGamDaIvp+Hh3j+hmxoOuUyOUW1HSdpngCYAAT4BKDQVXrfdYrfgZNZJtAtvJ+nxiIgakttv1+CHH4y44w6guJjBYERE/+TjY4ePjwNarf1qQFdZaFdpSJcDGg3+CukqDev6O7BL9tf3ZeFcZUFdpZ/Lgrp8feVQqcoGqPC5GAASLifUaL9sfTYGfT4Iv035rVZXACUiIu9htVqFA8GUSqXQCr6+vr6IjY3DhAkylwPBAMBkkuOll3zwr39lokmTRi73R0R1k0ajwbhx4zBr1iz06NHDYzW8+eabGDx4MO6+++4ah5hV6mcA90lSmrAOIR3w1bqvhAPBGjVqhBUrVrgtEAwA5syZA5PJhNWrVzvd1uFwYOHChVi7dm2trd7eUOkNJmSmJyEiqjUAYGa3mfUiFGzdiXVIK0zDofRDlQaC6VQ6/PHgH5IGggFAQEAAZs+ejblz58LPT9q+3Sk+Pt7TJXid4uJiTJ8+vcb7x8fH4+WXX3ZfQV6gZ8+e2LhxI4YPHy55aJfRaERGRoakfV4rNDQU27dvZyBYLcvNzb0aCAYATZta8NlnyXj44RgcO6Zzqq9mzczYvBkIC5M+aFEul6FDBzN27nT+XPjYMV77JiIiIiL3stsdmD9fj/nzdbDZpL9WNmiQHl984YPgYL63pYZjcufJuL/j/Xhz75uYt2MejCYjYAKgB1AEIBdADoA0ABmA1WbFRVx0/cBBACahwkAwANiWtA2L9y/GY70fc/1YNdS7d298//33GDp0KAwGg9Pt8/Pz8dhjj+H111/HlClTMHHiRLRt2xZHLh/BiHUjcLHQyd9bCYATQLfO3ZB8Jtnpesq0bdsWO3bs8KpAMJvdhp/O/4T1J9dj78W9SMlPgckmfTA+APgofBAbFIubom7C2HZjMTB+IBRy732e7x3ZW7JQsBYhLfDdPd+hbXhbSfpzhlwuw1NP2TFhglj7vDwlli4twTPPMICeiIiIiIiophgKRkRE5IIrV8RDwRo39t6LzkRSaRvWFgfSDpTbvvrYaizsv9ADFRER1R+33abBpk1GDB8OFBXxfQUR1Q1arR0aTWlQ19+hXbga3FUa2IWrn0u/Lg3muvbrsu/LQrpKt8v/+loGhYJhXZ5wJONIjfdNyU/BkDVDsPuB3QjSBLmvKCIi8kq5ueIrAPv6ig8Q9fPzxbp1egwYYMalS65NtI6JMeH991ORk2OFXO5ARESES/0RUd0SFhaGRx55BA899BBCQkI8XQ4A4Pbbb8eBAwfQt29fXLzowuSdcyidCOS+PK1qtfNph48++kiorUqlwpIlSxAVFSVxVeU99dRTuHTpEnbu3Ol02xMnTuDbb7/FXXfd5YbK6FpZBRb4+pyBX6PWGNpyKJr5N0NaUZqny3LZLxd+qfQxlVyFQ9MPoYl/E8mPe+TIEQQGVjKrj+qUp59+GqmpqTXe/5NPPoFWq3VjRd6hf//+WL9+PUaNGgWLpeLQPW8TGBiIrVu34oYbbvB0KQ1KUVER0tPTy20PCrJh2bJkPPVUFHbtCqhRX8HBVnz3nRlxce4LW+zc2Q6Btyw4c0YNg8EOrdb5cG4iIiIiourk5dlw330mbNkifTiIXO7A88+X4KWXfCGXM5if6r5Dhw6he/funi6jcs0A3APAv+rdntnxDG6Pux0dG3esjaoAALfddhu+/fZb3HnnncJB8FeuXMHChQuxcOFChDcLR26jXNgibEA4Sn9mPwAqlE4tsgGw4u8QthwAVwBcAHC5tL9kiAeCdevWDd999x0aNfLswlUZxRlYc3wNtiRuwfErx5Gtz4YDDrccK0Qbgvbh7TEwfiAmdJiAmKAYtxzHXW6KukmSfgbGD8S60esQrA2WpD8R99yjxUsvmXD+vI9Q+yVL1Hj0UTs0Gl5rIiIiIiIiqgmGghEREbngyhW7cNuICE5Op/pvYPOBFYaCbU/ajoVgKBgRkatuuUWDzZuNGDYMKCzkewsiEiOXO/4K63JcDewqC+kqC+zS6RzQaEpDubRaB3x9Aa1WBp3OAZ3u+pAuX1/Z1ZCusu/9/OTQaGSQy+UAOKCjvnImFAwAjl85jhHrRuCnCT9Bo9S4qSoiIvJGRUVFwm2DgoJcOnabNjps367HwIEOXLggNlA1OtqEFSuS0aiRFQCQlZUFh8OBxo0bu1QbEXm/yMhIPP7445gxYwZ0Op2nyyknPj4eu3btQp8+fXD58mXxjhLg0VCw7F3Zwq8Vc+fOrdVQlPnz52Ps2LFCv+8VK1ZgxIgRf50rkztdynWghW8WlL7hmNZlGubtnufpktxGLpPj5/t/Rtvwtm7pn4Fg9cOePXvw4Ycf1nj/KVOm4Pbbb3djRd5l+PDh+Pbbb3HvvfeisLDQ0+VUqVmzZvj222/RpUsXT5fSoBgMhipD9bRaB9599wJefbUpNmyoOkBWq7Xjyy9L0KWLe59fu3cXe79htcpx+LARffrw+i0RERERSSshwYQxY2RITpb+OmtoqBWrV1swZIj7gneJ6C8yAD0ADECNZqmabWaM/3o8Dk0/BK2q9gLoBw4ciF27dmH8+PFIThYP5AKArLSs0sVVaplcLscTTzyBV199FSqVqlaPbbfbsefCHnz555f4NfVXnM87D4PV4JZjqeQqRAdGo2eznhjVdhTuaHUH1ErXFvzytBsjboSvyhcllhLhPh7v9TjeGPAGlHLPTgdXKGSYO9eKWbPExlpcvqzCihUleOgh6QNBiYiIiIiI6iOGghEREbkgK0ssFMzPzwaNhsEdVP9N6jgJ83+ZX2776ZzTHqiGiKh+6tNHg82bDRg6VIXCQp7mE9UnSqX9r3Au+zUhXY5rQrsAna40uKvsc2kwF6DTya77ujSo6+/ALj8/+dXQLrVaBrmc5yfkGrvDjqMZR51utyd1D8ZvGI+vxn4FBf8fEhE1GEajUbitr6/rg0Nbt9Zhxw4DBgwwISXFucGqkZFmrFiRjIgI63Xbs7OzAYDBYET1VKNGjfDcc89h5syZUKu9e+JB8+bN8c033+DWW28VXvEeJwAMRumq9rVMYVFgzw97hNr27NkT9913n8QVVS0wMBDz58/HtGnTnG6bmpqK7du3Y+DAgW6ojK5ltVqRllmA6JhQTOsyDfP3zIfdIb74kzf7csyX6BPdx9NlkBczGAyYOnUqHA5HjfaPiIjAW2+95eaqvM/QoUNx4MABjBw5EmfOnPF0ORW66aabsGHDBp6D1DKz2YykpKRq91MqgZdeSkd4uBUffdSown0UCgdWrCjEgAFBEldZXu/e4m/s9u+3og9fWoiIiIhIQqtW6fHQQxoYDNKH5XfpYsSGDQrExtZe2BBRg9UIwHAA0c41O5l1Eg9/Ox1v3/wctDodfIJi3FFdOb169cLRo0fx4IMPYu3atbVyTKlER0dj1apVtRbcn6vPxbo/12HT2U04knEEV0quuO2aeqBPINqFt0O/uH4Yf+N4ty144UlKuRI9mvXAzpSdTrdVK9T4ZPgnuL/T/W6oTMzUqTq8+qoF6eli15vefluFGTMcUCplEldGRERERERU/3C2MBERkQuuXKnZQNl/CgmxAeBkZ6r/WoS2gFqhhtlmvm57sbkYufpchOiqXhWXiIiqZrfbkZ6ejsDAfKxYocH06bHIz+epPpG7+fjYodHYr4Z0Xfu5NJzr74AurdYBna40nEurLQ3kKv2+LLRLdvVDp5P9FdYlg6+vHCpV2eBHnjuQ90vMTUSxuVio7Tenv8GsTbPw0fCPIJNxsA8RUX1nNptrHEDwTyqVCnK5NBNEWrTQYscOA/r1q3kwWLNmZqxcmYzGja0VPp6dnQ2Hw4EmTZpIUiMReV5AQABmz56NuXPnws/Pz9Pl1FjPnj3x2muv4YknnhDrwATgHIB2UlZVMxGnI5Cen+50O4VCgaeeesoNFVWvZ8+e6NevH3bs2OF021WrVjEUrJYUlRiRe/ksIpu1wbCWw/D92e89XZLkHu7+MMa0G+PpMsjLPffcc0hMTKzx/v/9738RHBzsxoq8V5s2bXDgwAFMnToVGzZs8HQ5V8lkMsyaNQvvvPOO14eV1jc2mw2JiYk1PqeVyYCHHspEeLgFr73WFHb79dc+Fy3Kw7331s6YiZgYFcLCrMjOdv4+4uHDvGZLRERERNIwGu2YPduA5ctdXwCmIlOnlmDpUi00GunDxojoGqEA/gWgAwDBP7eVJ9ega9BNuKXJLfDLTUSYrxW+4a0gk+hecGUCAgKwZs0a3HHHHXj++edx/vx5tx7PVdHR0XjmmWcwdepUt14H+j3td6w9sRa7U3bjbM5ZlFhK3HIchUyBZgHN0L1pd4xoPQKj246GTq1zy7G8Te/I3k6HgjX2a4xvxn2DXpG93FSVGLVahjlzTHj6abFQsORkNdauLcGkSe55P0BERERERFSfcKYwERGRC7KzxdoFB9fPlaeJKtI8qDlO55wut33tibV4uMfDHqiIiKjus9lsSE9PR0FBwdVtbdoYsXx5MqZPj0NeHk/3qeGRyUpDuTQa+9WArtKv8VdI199hXTpdaVCXViuDVuv4K5AL14V0lYZ3lYZ06XT4K6xLDp1OBoVCDuERTUT11JHLR1xq/0nCJ2js1xjz+s6TqCIiIvJW+fn5wm11OmkHBDdvrsXPPxvQv78RSUmaKvdt2rQ0EKxJE0uV++Xk5AAAg8GI6okjR44gMDDQ02UIefTRR7FmzRocOSL4Xj0ZtR8KZgcK9xQKNR09ejRatWolcUE1N3fuXOzZswcWS9WvE/904sQJHDp0CN26dXNTZXStjHwbdJpEzOw2s16Ggn2S8Alui70No9uN9nQp5KX279+PxYsX13j/O++8E2PHjnVjRd4vMDAQ69evx6ZNm/DII48gKSnJo/V07twZH374IXr27OnROhoiu92OxMRE2O3Oj/e5++48hIZa8dRTUTCbS+8tPPVUHh57rHYXUevY0YwdO5y/h3jsGO87EhEREZHrUlMtGDXKhoQE6QNAtFo7liwxYNo0hosQuY0cQAsAXQG0AiBBfvQLh1/Ahv4bAIShWA/4lpxH0xAVfIJiXe+8Gvfccw/Gjh2LNWvW4LXXXsPZs2fdfkxndO7cGQ8++CAeeOABqFRiwUuVKTYX46s/v8L3Z7/HofRDSC9Kh81hk/QYZfzUfmgd2hq3xd6Ge9vfi65Nu7rlOHXBTVE3ObV/96bd8c24b9AsoJmbKnLNQw/p8OabVuTkiF03WrRIgQkTHJDLGUZPRERERERUFd6tJyIicoFoKFhYGEPBqOHoE92nwlCwH878wFAwIiInWa1WpKeno7Cw4smRrVubsGJFMqZNi0NuLk/5yTvI5Q5otaVBXT4+9usCujSa0sAunc7xV3gX/grpKg3kKn3s+pCusq9Lw7pKv/fzk0OjkUEuZ1gXkaccyXAtFAwAXtnzCiL8IjCr+ywJKiIiIm9V2flMTQQHB0tYSam4OC1+/tmI/v2NSEysOBiscWMzVqxIRtOmNQt6YTAYUf1RVwPBAEChUGDevHm48847xTpIkbScGh+zOKvY6WYKhQJTp06Vvh4nREVFYciQIfjuu++cbvvtt98yFKyWOBwOXMyxoX9Ub0QHRuNCwQVPlyQps82MsV+NxQfDPsDMbjM9XQ55GZPJhClTptQ40CggIAAffPCBm6uqO4YNG4Z+/fph0aJFWLJkCbJFB4sIio6OxlNPPYWZM2dCoVDU6rGpVFJSktPhn9fq168Iy5al4OGHYzByZBEWLKj995mdOzuwY4fz7c6dU0Ovt0On4/0XIiIiIhLz448GTJyoQnZ21Qu0iIiNNWP9ege6dmUgGJHkZADaoDQErDUAaddvQq4pFy8efhHv3/Q+ZDIZSvQmJBrMCCs6g/DGUZCrJD7gPygUCkyaNAn33Xcfvv/+e3z11VfYtGnTdYv11ha5XI6bb74Zd911F0aNGoWYmBjJ+j6ReQJr/liDn5N+xumc0yg0id+vr4pcJkdjv8bo0rgL7mh9B8bdMA6Bmrp7n01qvSJ71XjfCR0m4JPhn0Cr0rqxItf4+srx4IN6vPqqn1D7Eyc0+P57PUaMcO/fORERERERUV3HGcJEREQuyM4WW5UgNNQhcSVE3uue9vdg+ZHl5bZLERpARNRQWK1WpKWloaioqNp9W7Y0YeXKZEyaFIfCQp72U+VUKjs0Ggc0Gvs1IV2Oa0K7cPWzTueATgdoNLga2FUa0vV3UFdpWNffgV1+fnL4+sqhVssgk3GSElF9l3A5QZJ+Ht78MMJ14Rh7w1hJ+iMiIu9jMpmE2+p07hkQGhOjwY4dpcFg585dPyElIsKClStTEBnp3OTvnJwcOBwONG3aVMpSiYiccscdd6BNmzY4fbr8wh3VygJgBCD9PL3KHRdr1r9/f694vp00aZJQKNiOHTvw/PPPQ6OpzV92w2U2W5CZmY3pXabjhZ0veLocyTngwIObHkRGcQZeuvUlyGRi97Op/pk3bx5OnTpV4/1ff/11NGvWzI0V1T0ajQYvvPACnnzySaxevRqLFy/Gn3/+6dZj9u7dG48++ihGjx7NMDAPSk1NhdFodLmfLl30+OabFNxySxwUitoP2OreXew1wWqV4dAhE265he9ViIiIiMg5drsD8+frMX++Djab9NcoBg3S44svfBAczPMlIrdwADgPwILS+wVtAQRJe4hfMn7BuqR1uDf+3tJDOhzIKrCgwHARTYMAv0atpT1gBRQKBUaOHImRI0fCYrFg9ZrVmD13NvS5ercf+1pGoxHZ2dlIS0tDdHS00LVdk9WEb898i29PfYsDaQdwsfAirHarG6oFdCod4oPjcUvMLbin/T24KfKmvxZ1pYqE6kLROrQ1zuScqXQfuUyON/q/gbm959aJa/uPPabFe+/ZUFws9jr8+usyjBghcVFERERERET1DGcHExERuSA7W+yidVgYQ8Go4egb2xdymRx2x/WrTmfps2C1W6GU8y0pEVFlLBYL0tPTaxQGdq34eBMmTMjBBx9EuKkycicfH/vVoK7S0K5rg7oc1wR14WpwV1lQV9n20oCu6wO7Sj/kVz+rVGXvZTkwjohc43A4JAv9dcCBCd9MQKguFLfH3S5Jn0RE5D3MZjMcDrFroyqVyq2DiKOjNfj5ZyP69zfgzJnSFXcbNbJg5cpkREWZhfrMzc2Fw+FgmAIRedSkSZPwn//8R6xxLoDaytqyAPLTcthhr37ff5g4caIbCnJe69at0bNnTxw4cMCpdsXFxdi1axcGDx7spsron/KLTBjd9F94WaaAzWHzdDluMW/3PGQUZ+D9oe9DIef1vwceeAAPPPDAdd//3//9n9P9zJ49G0uWLJGwstqRkJCARYsW1Xj/Pn36YObMmW6rZ+fOnbjtttvc1r+7aTQaTJ8+HdOnT0dCQgI2bdqEzZs34+DBg7DbnX8du5ZKpUKfPn0wbNgwDBs2DG3atJGoahIlcp+uMnK5HLfeGgOl0jMTZHv1Ugm3PXDAiltukbAYIiIiIqr38vJsuO8+E7Zs8ZW8b7ncgeefL8FLL/lCLvf+0BSiOs0MIPGvj58ARALoBuAGAOKnmdd5+/jb6B7eHS0CWvx9WLMFKZlAoP4cmoQGQOnv3rGwZ8+exbp16/DVhq9w4o8TpYFotchut+P333/H77//jgULFiAmJgbjx4/HzJkzER0dXWm7pLwkfH78c2w7vw1/Zv2JPGOeW+qTQYZw33B0iuiEIS2HYHz78Wjk18gtx6rPboq6qdJQsECfQKwbsw6DW9Sde0UhIQpMmVKMJUv8hNrv36/Fzp1G9O3LIHoiIiIiIqLKMIGBiIjIBbm5oqFgEhdC5MXkcjka+zVGelH6ddsdcGDz2c24s82dHqqMiMh7mc1mpKWloaSkRLiP3Fye8ktJJisL6Po7rEurtUOjwdWgLp3OAY0G0OkcfwVyARrNtQFdf4d0lQV3+frKodMBfn5y+PnJodXK/lodniumEVHdkVaUhmx9tmT9mW1mjFw3Ersf2I3OTTpL1i8REXne9u1F2LMnFN27F6NlSxOcyfjy9ZV+0sg/RUZq8PPPJvTvb0B2thIrViQjOlosEKxMXl4eHA4HIiMjJaqSiMg5w4cPFw4FCygJQCEKJa6oEmcBu9H5IJWYmBj06d3DDQWJGTPqLqdDwQDgp59+xNhRXA4dAOwASvQmtx/HYQ7HHc0H4NvzP7r9WJ7y8eGPkaXPwppRa6BRclLNtYKDg4Xa6fV6iStxP4vFgsmTJ8NqtdZofx8fHyxbtgwyGSdV10SXLl3QpUsXvPDCC8jNzcWRI0dw8uRJnDx5EqdPn0Z2djaKioqufshkMvj7+1/9iIiIQNu2bdGuXTu0a9cOnTt3hr+/v6d/LPpLVlYWcnNzJelLJpOhRYsWUCo9d/8uOlqFRo0syMx0ftb24cN8TiAiIiKimktIMGHMGBmSk3WS9x0aasXq1RYMGSIWQEJELrr018dWADcD6AGXw8FMdhOePvg0vuj7BdQK9XWPFRSbUKTPQePAPAQ3aQmZhAsgWCwWbNiwAYsXL8b+/fsl61cKqampWLhwId58802MGjUKL730Elq3bY0t57Zgw6kN2HdxH1IKUmC2uXYvuzI+Ch/EBcfh5qibMbbdWAxoPsCtC3g1FAPjB2LV0VXltrcObY2N92xE67DWHqjKNU8/rcHHH9thMon9/1iwwI6+fSUuioiIiIiIqB7hDGEiIiIXiIaCNWrEwXLUsHRr0g3fFX1Xbvv/Tv6PoWBERNfIzDSjqCgNBoN4GFiZc+caxiQvheLaoC77X2Fdf3+UhXRptWUhXQ74+paGc5UGeV0f0qXTya6GdJWFdvn6yqDRyP4a1MCBDURE/5RwOUHyPovMRRi8ZjD2TtmL+JB4yfsnIiLP+N//FPi//2sCAAgKsqJ79xJ0716CHj1K0Ly5CVXlDogGNziraVMf7NhhQkJCCmJipBlEnZ+fDwAMBiMij2jfvj1CQkKEAi3GR47HSsVKt00quc4psWYTRvdDTFAtBZfVwPS7e+H5F9UwmZz7ne3Zswfh6kzodA3jml510hT+yCty7/87u92OETF31+tQMAD4+tTXGPz5YGy8ZyMCNYGeLsdriAbO+vj4SFyJ+y1YsADHjx+v8f7PPfcc2rRp48aK6q+QkBD069cP/fr183QpJIH8/HxcuXJFsv6aN28OtVpd/Y5u1qGDBdu3Oz9b++hRDjUmIiIioppZtUqPhx7SwGCQfoxVly5GbNigQGysVvK+ichJegDbAOwDMBhAe9e6O1twFov/XIwnOzxZ7jG73Y70PDvyDEloGiKH1sVxRHa7HatXr8ZLL72E1NRUl/pyN5vNhq+++gpfrf8K6AhgAAA3rKUVqg1F+0btMSh+EO7rcB+iA6OlPwhhbLuxeHvf2ziUfujqtsEtBuOL0V8gSBPkucJc0LSpEuPHF2PVKrGwzu3bdTh82ISuXevetXciIiIiIqLawDv1REREgux2B/LyxFYaCQ9nKBg1LCPbjMR3Z8uHgu27tM8D1RAReZ/0dBNee02Pzz4LwKuvyuHqfBGHAzh71rMTCFWq0qAuHx/7NQFd1wZ2lYZ1lYV26XS4GtxVFsxV9nVpOJfsamiXr68Mfn5y+PnJoVbLAEi3+hsRETnvyOUjbuk3syQTAz8fiN+m/IbGfo3dcgwiIqpde/f+fZ6Sn6/Etm2B2LatNJwiNNSCHj3+DgmLjjZfFxImGtwgokkTHwwYEINz587B4XBI0md+fj4cDgeioqIk6Y+IqKZkMhnatWuHX3/91em2wfJgfDz8Y0zeONkNlV3DASBJrOm9owdJWoqrAgP8MLT/zfhm006n2pnNFuzZl4DB/W5yU2V1SxNNLvSmEJjM7g0G6xLUFTH+UUgtuujW43ja7tTduPXTW7Hlvi1o4t/E0+V4Bb1eL9TOz09sYpOnnDhxAgsWLKjx/u3bt8czzzzjxoqI6obi4mJcunRJsv5iYmKg1XpHaEGXLnZs3+58u8RENUpK7PD15eI5RERERFQxo9GO2bMNWL7cPfdzpk4twdKlWmg0fE9K5FWKAawH8AeAEQB04l19du4z3BxxM26KqPg6ucFowvl0ILT4LBpFNIbCJ8DpYxw+fBjTpk3D0aNHxQv1BAeAowDOAhgC4EbxrlRyFaIDo9E7sjdGtR2F4a2GQ6VwPkCcnKeQK/Dr5F/x8eGPkZSXhP7N+2Noy6GQy+r2a9uzz6qxerUDVqvYPLnXXrPi668ZCkZERERERFQRhoIREREJKiiww2IRC6CIiKjbF22JnDXuhnGY8t2UctsvFFzwQDVERN7jwgUjXnvNgM8/D4BeHwwA+PjjRrj99qLrJr8768oVJYqK3BGU5cAdd+Rj+HArwsN9rwvpKgvqKv1eDpWq7P0OA7uIiOq7IxnuCQUDgKS8JAxZMwS7H9iNAIHBfERE5D0uXjTi3LnKw4tzclTYsiUIW7YEAQAaNSoNCevRoxh9+5pqqcq/qdVqtGzZUtJgsIKCAgBgMBgR1br4+HihULDi4mI80OkB/Jn5J97a95YbKvtLBgCBfJ6YqCa4oU285OW4augA50PBAGDbrgMMBfuLXKVClF82zucFSvY6XOFxZHKMjBmFxScWu+0Y3uLYlWO4aeVN2DphK1qGtvR0OR6Xn58v1M7f31/aQtzIZrNh8uTJMNcwXE8ul2P58uVQqTgBkBo2o9GIlJQUyfpr2rSpVz13dO8uNl7JZpPh999NuO02zy5KRERERETeKTXVglGjbEhIkD4QTKu1Y8kSA6ZNq73FY4hIwBkAHwO4G0Az8W6eP/Q8vu7/NYJ8girdJ6fQjEJ9OpoEpSOgcZsa9Wu32/HSSy9h4cKFsNls4gVWRvXXhxKAHYAFgBmlYV5S0gPYACAFpeFgNZgZHKQJQruwdujXvB/uu/E+tA5rLXFR5AwfpQ8e6fmIp8uQVMuWaowcWYL168Veqzdu1OH0aTPatFFLXBkREREREVHdx1AwIiIiQRkZNoiGXISHu5DyQVQH6dQ6BPoEosBUcN12q92KYxnH0LFxRw9VRkTkGUlJBrz6qglffBEAo/H6wfOnTmmxZ48/br21SLj/s2elH5Cv09mwaNFF3HJLMQAgNjYWfn5+kh+HiIjqnoTLCW7t/2jGUYxcNxJb7tsCHyVXBSQiqqt+/NEAoObnKpmZKvzwQxB++CEIS5fmoU8f99VWmbJgsMTERNjtdkn6LCgogMPhQHR0tCT9ERHVRHBwsFA7vb40qev1/q/jZPZJbD63Wcqy/pYk1qz/rT2krUMiA27rKdRu264DEldSt2k0PmgcYMPlAvcutjQyZiTe//N9WB1Wtx7HG6Tkp+DmlTdj832b0a1pN0+X41Hp6elC7epSuOuiRYtw6NChGu//8MMPo2dPsecvovrCYrHg/PnzkvUXHh6OkJAQyfqTQu/e4pMrDxyw4bbbpKuFiIiIiOqHH380YOJEFbKzpR+vFhtrxvr1DnTtykAwom7dujm9gILFYoHRaITRaMSVzCu4a8VdSExOBLJQ+nEJQgt2VKoAwKcA7gEguJ5HljELLye8jHd7vQtZFSvrWqxWXMgG/A2JaBKqhTqg8iSynJwcjBs3Djt27BAr6lpyANF/fTQBEAYgAEBFw5nsAIpQ+nu5/NfH+b+2ueowSv8Nx+O6W/BKuRLN/Juhe7PuGNl6JEa1HQWtSivBAYmq9txzSmzY4IDD4fxcObtdhgULLPjsM4aCERERERER/ZN7R84RERHVY5mZ4pPAmjRhLic1PO0bta9w++rjq2u5EiIizzl7Vo+JE/PRtq0PVq0KgtFY8Wn5Rx+Fw8nxG9c5d07aQVZNm5rx+edJVwPBACA1NRVms1nS4xARUd2To8/BxcKLbj/OzpSdmPDNBNjsblitk4iIasWuXeILJQwZIv1EkppSq9Vo0aIF5HLpbqsWFhbiwoULkvVHRFQdX1+xSXM+PqWzWBRyBb4Y/QXahbeTsqy/1aFQsEvFV/D0b0vQ7cuJ6PzFeHxy4uty+8RENUF8XKTTff9xMhEZV7KlKLPeCNGa4e/r3nDoME0Y+jXr59ZjeJMsfRZu+/Q2bDu/zdOleNSRI0eE2rVs2VLiStzjzJkzmDdvXo33j46OxmuvvebGioi8n91uR2JiotMTrCsTGBiIiIgISfqSUrNmSjRubBFqe/iwxMUQERERUZ1mtzswb14Jhg/XIDtb+nHxgwfrkZCgQNeuXDiMSJRKpYK/vz/Cw8Pxp+NPJAYmAp0ADEBpmNRTAGb99X1TiQ5qAbAWQKJ4FzvSd+DrlPLX3itSVGLEuYv5yL50Gg5b+fGsaWlpuOWWW1wPBIsEMBKlv7MHANwOoC2AcFQcCAaUztoNRGmAWM+/2s8F8G8A3atoV1MXAPlncnTy74Qnb3oSR/59BJYXLEh5NAVfjf0K93W4j4FgVGs6dfLBoEEG4fbr1mlx4YLYNSsiIiIiIqL6jKFgREREgq5cEQsFU6nsCAzkSzA1PAPjB1a4/efkn2u5EiKi2nfypB733JOP9u01+PzzIJjNVb8XOHFCh717/YSPd/asdBPmO3Uqwdq159Gypem67Q6HA+fPn4fdLh6USkREdd+RDLFJtCLWn1yPR7Y8ItnEPCIiql3794udp8TGmtC8uWcHK7srGCw1NVWy/oiIqqLX64Xa+fn9fX0qwCcA393zHUK0IVKVVcoB4JJY09tu7ippKVU5mnUGE7e+gLj/uxNvJnyGw5mncDT7LGbsXIDPT28ut3/fPt2EjrP/0AlXS61XZHIZmmmzoFS6d8GlsXFj3dq/tymxlGDY2mH44o8vPF2KR1y6dAmZmZlCbetCKJjdbseUKVNgNBpr3Oajjz667jmfqKGx2ex44YUsFBdLc8/L19cXUVFRkvTlDh06iE2wPHaMCyASERERUam8PBuGDzfg5Zd9YbOJLwpTEbncgRdfLMamTVoEBysk7ZuoobLYLHh+5/MVP9gIwM0oDaqaBaAzAFf/9GwA/gcgTbyLN469gZSilBrt63A4kJFvxfmkFOizz13dfvnyZdxyyy04efKkeCHRAKYAmIbSQDUphuY2BTAMwOMAbgWgFu/Knm6Hdr0W8/rMQ6cmnSQojkjcc8+Jj6ewWOR44w1T9TsSERERERE1MEwkISIiEpSVJTYJOTjYBrlc2hugRHXB/R3vr3D72ZyztVwJEVHtOXq0GGPGFKBjRy2+/DIIFkvNT8M/+igcopkn585JEwp2xx15WLEiBaGhtgoft9lsOH/+vCTHIiKiuunI5doLBQOADw59gFf3vFqrxyQiItclJxuQlCR2ntK7t/hqslJSq9Vo2bKlpMFgRUVFOHuWwWBE5H75+flC7fz9/a/7Pj4kHuvHrodSLmEgRB4AgTH+zZo0QuOIMOnqqIDD4cCWlN/Q/5tZ6LzuPnx+Zgus9vLXyb44+1O5bV07thE65pE/zgi1q8+Uah9E+eW79Rg9wnsgxi/GrcfwNha7BeO/Ho/F+xd7upRa9+OPPwq1i4mJQXh4uMTVSG/JkiXYu3dvjfcfP348hgwZ4saKiLzfrFkFWLAgAtOmxSEvz7WZzz4+PoiJ8e7XlM6dxcLPEhPVkgWnEREREVHdlZBgQteuNmzZopO879BQK374wYh58/w41p5IQiuOrEBibmL1OzYCMALAwwDaunhQM4AvAYitWQKDzYCnDz4Ni73mwdZGkxlJGSakXTiHvCupGDJkCJKSksQKUAO4A6WBYNFiXVTLB0BfAA8BiBPvZt++fZg0aZJERRGJ69NHgz59xMd3fPqpFtnZFY9XJyIiIiIiaqgYCkZERCQoM1MspSMkhAPkqGGKCYqBRlF+8meJpQSZxWKrcRMReauioiKcOXMGr79uwoYNgbBanR+kdPSoLw4e9HW6ncUiQ3KyC0uH/WXOnAy89loa1Oqq3/OYTCZcuHDB5eMREVHdlJCRUOvHfHHXi/j40Me1flwiIhL344/iAz9vvVUwLdkNVCoVWrVqJVkwWEGBAiNGNMIzz+RK0h8RUWXS09OF2kVFRZXb1jeuL5YOWepqSX+7LNasS8fW0tXwDyabGStPbkT7teMw9Ps52HHpYJX7p5dkldvWtaPYjKkjf5wWaleXbLuwH5O3z8PDu97ArkuHatTGV6dCowD3DXGSyWQYEzfGbf17s0d/ehRbz2/1dBm1asOGDULt+vbtK3El0ktKSsJzzz1X4/1DQ0Px3nvvua8gojrgpZdy8cknwQCA48d1mDSpOdLSVEJ9KZVKxMfHSxom7Q49eojVZ7fLcOCAQJorEREREdUbq1bp0aePSpKxaf/UpYsRhw45MGSIVvK+iRoyvUWPebvnOdcoGMA4AHcDcGV92kIA34g3P5l/Eh+c/MDpdnmFJtwz6d84duyY2IFDAMwA0FWsudMCAUwCfPs7P164zPr167F0qYT3bogEPfuseFu9XoG33vKOReOIiIiIiIi8hXePPiAiIvJi2dli7UJDGQpGDVfz4OYVbv/8j89ruRIiIvcoKCjAmTNnkJqaCovFgqlTs6FUir/2f/RRI6fbmEw+6NevCM2bGyGXOz95Xqu14733UjFtWjZkNcwyKywsRFZW+cmPRERU/x25fMQjx521eRa+PvW1R45NRETO27VL/Jakt03+UCqVkgSDFRTIMX16LE6f1uKNN0Lw1FN5ElVIRFTekSNi79tbtmxZ4fYZ3Wbg4c4zXSnpb6KhYB3aSHP8a+QY8vHa7ysQ8+kdmLpjPk7mJtWona+q/GtVhxtaQqVSOl3DkeNnnW5Tl6xP3I5BG2fj01Pf4/0/vkLfb2Zi6HeP4EROYrVtw3XF0Gl93FbbiJgRUMnFQmDquiUHlni6hFqTlZWFn3/+WajtbbfdJm0xEnM4HJg6dSr0en2N27z77rsIDw93Y1VE3u2jj/Iwf37wddtSUnwwcWJznDnj3KxnuVyOFi1aeH0gGAD07i0e4HDwIMc8ERERETVERqMd06eXYMoUHQwG6d/zTp1agt9+UyM2tmFemyFyp8X7FyOjOEOscTsAMwGEuVDAOQB/iDdfcWYFfs/63ak269atw9atggshNAYwDUCoWHNRX4z+AsXbirFs2TLIajpw9x+eeOIJnDt3TuLKiJwzeLAGHTsahdt//LEGRUW8/kRERERERFTG+0cgEBEReansbLGL7QwFo4bs1thbK9y+6eymWq6EiEha+fn5OH36NC5evAiLxXJ1e5MmFowYkS/c76FDvjh0SFejfX19fdGqVStER+vw1lsXsXFjIg4ePIn//S8Rr756Cfffn43evYsRFmaptI+wMAv+7/+S0K9fkdO1XrlyBUVFzrcjIqK6q9hcjLM5npmwbnfYMX7DeOxO2e2R4xMRkXP27xcL9mrRwojoaFeWn3aPsmAwhUIh1L6wUI4ZM2Jx6tTfv5dFi4Ixdy6DwYhIepcuXUJmZqZQ28pCwZCfj/n2rujVqJcLlf1FMBSs4w2tXD/2XxLzL+KhXW8g6tNheH7/h7iiz3GqfUWhYD4+arRuEeN0LZfSryAru/6+Hrx7dC0cuH4hgy2pe9Hxi/GYtmM+0osrX3hAJlcgSpcl/PpbnWCfYAxoNsAtfXs7i73ya8b1zQcffACz2ex0O5VKhWHDhrmhIul89NFH2LVrV433HzhwICZOnOi+goi83Ndf5+ORRwLhcJQf+5OVpcIDD8Th4EHfGvUlk8nQokULKJXOB4J6QpMmSjRtKvbcn5AgcTFERERE5PVSUy24+WYzli+v2ftjZ2i1dixbVoLly32h0XB6G5HUcg25eOO3N1zrJAjAFABNXOjjJwDOX5IDADjgwH9+/w8KzAU12j8jIwPvvvuu2MFCAUwEULMhu5Lan7YfADBt2jS88847Qn2YTCY89NBDUpZF5DS5XIZnnhGfM5efr8TixTVf+IKIiIiIiKi+41VTIiIiQTk5YqFgYWGO6nciqqfG3zi+wu3Hrxyv5UqIiKSRm5uLU6dO4dKlS7BarRXuM3VqFhQK8df/jz9uVOXjfn5+aNWqFeLi4qBWq2EwGK4+5uPjQNu2RowYkY8nnsjAJ5+kYOfOM9i9+xSWL0/GU09dxl135SEw0AqVyo7//e882rYVX6EpNTUVJpNJuD0REdUtxzKOlZvMXZtMNhPuXHcnjmUc81gNRERUvXPnDLhwwUeobe/e4ucn7qZUKtGyZUung0mKiuSYOTMWf/5ZfjT5O+8E49FH628QDBF5xo8//ijULiYmBuHh4eUfyMuD9YkHkdHmZrzV8y3E+DkffHUtmeAiPC2aR7l0XADYe/kYRm16Eq1Wj8IHf3wFg1XsupZOWXGAZYs4sRr/PH1eqF1dcCKn4p/N7rBjxcmNaLn6Lry0/2MUmyue8KHy8UEzv2K31Tc2bqzb+vZm0zpP83QJtcJkMuGDDz4Qajt48GCEhYVJXJF0Lly4gKeffrrG+/v6+uLjjz92Y0VE3u2XX4owaZI/LJbKh88WFyswc2YMfvwxoNr+yu7R1SU33igWCnb0aN0IPiMiIiIiafz4owHdusmQkCD9Ai6xsWb88osF06ZJHzZGRKXe+PUNFJhqFqZVJR2A+1AaECaiGMDv4ofPMGTgmYPPwOGofozSokWLoNcLBAqpAIwD4KGnpH2X9l39+tFHHxUO89+2bZvwfSEiqYwdq0XLluJjyd9/3wdGo3iwGBERERERUX3CUDAiIiJB2dliL6NePFaYyO1uirwJcln5v51sQzbMVsElgIiIPKAsDCw9PR02m63KfaOiLBg+PF/4WPv3++HoUW257f7+/mjTpg1iY2Ovm2hgNlf/fBoSYkPPniWYODEHr7yShh07zuC3304hPLziYDNnnD9/HnY7b8YSETUERzKOeLoEFJoKMXjNYCTnJXu6FCIiqsTmzYbqd6rEbbd59wILzgaDFReXBoL98Ufly0svXhyM2bPzYLPxvIqIpLFhwwahdn379i2/saQEjjuG49Kz82C12hCoDsSS3kvgr/IXK84GOAqdf66XAYh3iN1TsNlt2JC4A72/moyb10/FN0k7XQ47rjQUTDC4LOXCZVfK8Wp6a9WBn3qrEa/8vgwtVt+Fj09sgNVe/nplgK8cIf4qt9TXNawrmvs3d0vf3igqIApfjP4CY29oGGFoS5cuRWZmplBb0Ul4tWX69OkoKiqq8f7z589HbGys+woi8mInT+oxapQGJSXVn8dZLHI89VQU1qwJqXSfqKgo6HSVn+N5q65dxd7/JCWpUVBQ9b1RIiIiIqr77HYH5s0rwfDhGmRnSx8MO3iwHgkJCnTtKraoDBFVz+6wY1nCMuk69ENpaJboTNS9AFwYnvrrlV8xec9k6K2VB36dOXMG27ZtEzvAAABVr9/rVgmXE2Cw/H1f/cMPP0RMjNiiLPPnz5eqLCIhCoUMTzwh/gefkaHCsmUC4X5ERERERET1EEPBiIiIBOXlMRSMyFlyuRzN/JtV+NjGMxtruRoiIudlZ2fj5MmTNQoDu9b06VmQy8UnF3788d+jDQICAtCmTRvExMRAqSw/6MqZusr4+DgQGCjNRDq73Y7ExEQGgxERNQBHLns+FAwAMoozMPDzgcgsEZvYS0RE7rVnT80Cs/5JJnNgyBDvn1hd02CwkhI5HnwwBsePV/8zLV0ajNmzCxgMRkQuy8rKws8//yzU9rbbbiu/8eGHkbN4AYoNfwdyNQ9ojkU9FkEuMvwkHxDJ42qqAHTP/QcwVh0wda1isx7/PbYOrVaPwpgtT2N/xh/OH7gSlYaCxUUK9Zd8Id2VcryWxWaF1V6za5dX9DmYuXMhOqy9F98n74HDcf1/lMbaPGh81JW0FieTyTA2rn4HZKnkKoxpNwY/3vcjkuck457293i6pFqRlZUlPBkuJiYGd911l8QVSWflypXYunVrjffv3r07HnnkETdWROS9Ll0yYtgwBbKza35PzOGQ4fXXm+K99yLwj5cjNGnSBIGBgRJXWTu6d5cJtbPbZTh4kAu+EREREdVneXk2DB9uwMsv+8JmE3vfWBm53IEXXyzGpk1aBAeL3T8ioprJLMlEnjFP2k6bALhFsG0JgDOuHf5w9mEM2jwIaxLXwGz7+9zU4XAgvSQdz7z9TLlryTUSAaCba7W5ymq34vDlw1e/9/X1xaJFi4T62rt3Lw4ePChVaURCJk/WITJS/BrSO++oYbV69yJyREREREREtYGhYERERIJyc8VuRkZESHuDlKiu6d60e4XbN5zaUMuVEBHVjN1uR1ZWFk6ePImMjAyhsKuYGDMGDy4QriEpyQdAENq0aYPo6OgKw8AAwGQyCR9Dp9MhKipKuP21zGYzLl68KElfRETkvY5keEcoGAAk5iZi6JqhKDIVeboUIiL6h3HjsjB79hX07FkMH5+an0+1bm1EkyZ1Y4V4pVKJVq1aVXquptfLMWtWDI4e9a1xnx9+GIxZsxgMRkSu+eCDD2A2Oz/gXqVSYdiwYddv3LwZhpZhuKIpv/rNzY1vxpMdnnS+wHznmwBAcyWAi5eApUur3fdySTb+s/d9RH86HI/seQtJhWliB62Cr0pb4fb4WMFQsFTpa/QGemvNQ9zKnMpLxp0/PI6+38zAoSsnr26XK1WI8s2GTCb9fdc7Yu6Aj7xuvAdxRrvwdnh74NtIezwNX439CoNaDIJC3nAm3z7//PMoKBC7Rv/0009X+j7P09LT0zF37twa769UKrF8+fJqA22J6qOCAiuGDbMjJUXsOX7FinA8/3wzWCyl34eFhSE0NFTCCmtX797i4ZoHDzq/QBERERER1Q0JCSZ07WrDli3SL9oSGmrFDz8YMW+eH+RyjqUncrfGfo3RKrSV9B3fBMBPsO1R1w+fb8nH68dex4AtA/Dwbw/jsf2Pof/m/hi0YRASDyaKdXo7vGKG7d6Le6/7fuzYsejcubNQXytWrJCiJCJhKpUMjzwiHgqWkqLGmjV6CSsiIiIiIiKqm7zgkgUREVHdYzTaUVwsNlA2PJwvv9SwjWo7qsLt+y/tr+VKiIiqZrfbkZmZidOnT+PKlStCYWDX+ve/syCTObdqUWSkGW++mYvERAXat4+sduJRUZF4EIqvry8CAwMRHh4u3Mc/a8nMzJSkLyIi8j5mmxknMk94uozrHL58GKP+N+q61UCJiMizSkpK0K6dEf/+dxaWL0/Bb7+dwsqVSXjwwUx07VoClary86zevcVDjz1BoVBUGAym18swa1YMEhJqHghW5pNPgjFzZiGDwYhIiMlkwgcffCDUdvDgwQgLuyb8Kz8ftrfm4+LoaXA4Kr6+dV+L+zA6drRTx1EVqoTqa1J2i27dOuBIxWHFJ3ISMXn7PMR8OhwLD69CnqlQ6Fg1oVNqKtzeOEIsKCT5Qror5XitEotBuO3utAR0/98kjP/pOaQUlv5+fDQ+aBpokaq8qwLVgRgUOUjyfj3BV+WLqZ2nYt/UfTjx4Ak83vtxhPtKc/23Ltm5cyeWLVsm1LZJkyaYMmWKxBVJ58EHH0R+fn6N93/qqafQoUMH9xVE5KVMJjvuvNOI48ddCzb47rtgzJ4dA1/fQDRu3Fii6jwjIkKJZs3ErqMePswAByIiIqL6aNUqPfr0USE5WTxAtjJduhhx6JADQ4ZUHK5PRO7xxZClaKprIm2napQGg4lIBiDRJd1cUy52Z+zG9rTtyDRmAn8AEMmwDgHQUpqaXLXv0r5y2x577DGhvr766ivYbAz1Js966CEdwsKswu3feEMJu925cfdERERERET1jXcuY0hEROTlrlyxQTRbMyKCoWDUsI1uNxoTvplQbvulwkseqIaIqLyyMLCcnJxKJzmKiI83YcCAQmzdGljtvrGxJjz6aAkefDAIanVIjY+h14uviuTv7w8AiIiIgNFodClgrExmZiZ8fHwQGFj9z0xERHXLn5l/wmKXfvK1q7Ynbcf9396PNaPWQC7j+TcRkafl5eVd972PjwPdu+vRvbses2YBBoMMR4/q8Pvvvjh40A9//qmF1Vo6ufi22+re4E65XI5WrVrh7NmzsFqtMBhkmD07BocPOx8IVmb58iDYbPlYtiwACgVf24io5pYuXSoc2D5x4sTrvnc8+QTSP1kJs7HycwCZTIbnOj+H5OJkJGQn1Og4jYyNkIY0p+trXBYK5gAwbx7w1VeASgWHw4HtFw/g7SNr8NOF8pNn3EWn8qm4zkZhFW6vTnJq/QwF01uNLvfxxdmfsCHxZ8zuOA7PdZuCII0/iv18UVAsbZjo2OZj8d2F7yTtszb1juyNqZ2n4u4b7oa/j7+ny/GowsJCTJ48Wfha/4IFC+DjU/HfuKetXbsW331X8/+nrVq1wgsvvODGioi8k91ux4QJRdizR5p7VV27WhEXFyVJX57WoYMVaWnOBz4cOyYW7EpERERE3slotGP2bAOWLxe/l1GVqVNLsHSpFhoN73EQ1Ra71YScjBT4GJtiy+AfkViYiAJzASx2C8w2MyyOvz7bLTDbSz+XfZjt5uses9qtV/cp+1xyewmO7DgCh83Ja25WAKkAWrjhhz4j2K4DRKcFSW7vxb1wOByQyf4O4x4zZgxmzpzp9NjgvLw8HDhwADfdJJrgRuQ6nU6OBx/UY/58P6H2p0754Ntv9Rg1yrWgfyIiIiIiorqMoWBEREQCrlyxC7dtfHWmAlHDpFFqEKwJRp7x+kmhNocNBy8dRI/IHh6qjIgaOrvdjitXriA3N1fSMLBr/fvfmVWGgsXHGzF3rh7TpgVBpap5GFgZo1F8Yp1S+fclgqioKCQmJsJsFlsh/FoXL16Ej48PNBqNy30REZH3OJJxxNMlVGrdiXUI14Vj8eDF1w2UIyKi2ldSUlLl41qtA717l6B37xIAmdDr5UhI0OHgQV8MGVI3w4XLgsH++CMRjzzSFAcPig1wvdaqVUFQKPLw8ceBkMu9ZFQ6EXm1rKwszJ8/X6htTEwM7rrrrr83XL6M/PHDUWCsfkV5lVyFd3u9i/E/j0eavvqwr0BLoFAoWMS1t9ouXoJ5+09YFwu8fWQNjuecc7o/V+mUFV/3Cg0JhEqlhMXi3CroWTl51e9UB0kRCgYAZrsFbx/5HCtPfofnu0/BzLYjoVc1hsUiXXB1x5COaBHQArneQEMAAQAASURBVImFiZL16W5hujBM6jAJU7tMRbvwdp4ux2vMmTMHqampQm179eqF+++/X+KKpJGZmYlHHnmkxvvLZDIsW7aM1+mpQUpJSUHPnkps3OgPi8W186m7787HO+/UzXPVinTtaseWLc63S05WIT/fhqAgjn8iIiIiqutSUy0YNcqGhATpA8G0WjuWLDFg2jT3hI0RUcVKMs8ivQAwmUqvl8plcrQKbCX5cWZ+PxO//fab0+0m6Sbh/hETUKgvqTKYzGK3wGg1YtflXTicfRgGm6HyTs0ALgj+IG0F27lBZkkmkvKSEB8Sf3WbVqvF4MGD8fXXXzvd388//8xQMPK4xx7TYvFiGwoLxa4jvfGGDKNGSVwUERERERFRHcJR40RERAIyM8VDwcLDOSiOqENEhwq3r/ljTS1XQkQEWCx2fPhhLjZuTEJOTo7bAsEAoHVrE26/vbDc9latjPjkkzycPq3Ggw+GQKUSO10Xnfh2bSAYUDqJPT4+XrLJ5klJSbBanZv8SERE3i3hcoKnS6jSfw/+F6//+rqnyyAiatDsdrvT5yg6nR19+hRj7txMhIer3VSZ+8nlcrRt2wJhYeLXka+lVtvRvXsBzp8/D7tdmj6JqH57/vnnUVBQINT26aefvu5akWnfFlyOqPmEoRCfECy5aQl0yupX7daYxcJpytbfyVcDb7QH4k6+ivu3v+yRQDAA8FVpK9wuk8kQER7qdH9mswXFxXpXy/I6UoWClckzFWLur++h/Zf34cCV/0l6XVcmk+Hu5ndL1p+7yCDDoPhB+GrsV0h7PA1vD3qbgWDXWL16NT799FOhtnK5HEuXLvXasPGHHnoIOTk5Nd5/+vTpuOWWW9xYEZF3unDhAvR6PQYPLsRHH6XCz6/6kNPK9O1bhNWrA6BQ1J8ht927i41fcjhkOHDA9YWFiIiIiMizfvzRgG7dZEhIkD5AOjbWjF9+sTAQjKgWWfXZSEs9h+RMM0wm95+z9eghtgh4Xmoybo8OQf/oJugU0REdQzuie3h33BRxE25tciv6N+uPoVFDMSJmBMbFj8OHfT7Eb3f+hv90+g+C1EEVd3oZgMgpvw5AhNCP4Tb7Lu0rt61v375CfR06dMjVcohcFhyswNSpVYT6VePgQS22bxdvT0REREREVNfVnxEKREREtejKFbGJV4GBVqhU3jlwmKg2DW4xuMLtu1J21W4hRNSgmc12LFmSi9atzZg1KwTvvx9eK8edMSPz6tft2hmwalUe/vxTjenTg6FUip+m2+124YlvPj4+5bYpFAo0b95cuJ5r2e12JCUlcfI6EVE9ciTjiKdLqNZ/fv4PViSs8HQZREQNVklJiXBbjUb6CSi1Ta2W4+uv/XDnnWKhPGVUKjsWL76Am24qhslkYjAYEVVr586dWLZsmVDbJk2aYMqUKVe/txuKcfHGPk4/77QKbIXXu78OGSq/JyaHHA6D2LUsqy/waA8gcizwTDcgXe3ZMHqdsvLXrZDgAKE+c/Jce/3wRiUW90zaSC5Mw/07X8T9e8bjUJZ0k5yGRw+HRuGd70liAmMw77Z5SHk0BT9O+BFj2o2BWlF3A1Xd4fjx45gxY4Zw+zlz5qBr164SViSdr7/+GuvXr6/x/k2bNsWbb77pxoqIvNPly5dRWPj3Qj09epTg00+TEB7u/AI7nTrp8e23WqjV9Wu4be/e4q8dv/8uHrBGRERERJ5ltzswb14Jhg/XIDtbWX0DJw0erEdCggJdu5Yfj0ZE0nPY7chLP4VzqVnIKzLV2nE7duwo1O58ShoAwE+nRIugPIQHyKsN5lfJVbg3/l483O7hCh9XZIiFXiNSrJk77b24t9y2nj17CvV17NgxV8shksSTT2qg0YiPcVi40H2LfRMREREREXm7+jVKgYiIqJZkZYm1Cw7mZC0iAJjUYVKF28/lnqvlSoioITKZ7Hj77Vy0aGHBnDkhSE4undi1Y0cgzp51/2Ckdu2MmDo1C2vW5OP4cR888IBrYWBl9Hq9cFutVlvhdo1Gg+joaOF+r2U2m3HhwgVJ+iIiIs+y2W04llE3Bo79+4d/Y9PZTZ4ug4ioQcrPzxdu6+/vL10hHqRSybF+vT/uukss2EWptOO99y6gT5/iq9tMJhMSExMZDEZEFSosLMTkyZOFg+MXLFhwXXj8lYyLMJrMQn31bdoXc9rPqfRxX5UvigqKhPqeeSuwuB1QohJqLrmqQsH8/XRCfebWw1AwvdXo1v6PZJ/A5D2T8cjeR5BclOxyf/4qfwyJGiJBZdJQK9S4+4a7sXXCViTNScKLt76I6EBprt3WNwUFBRg9ejQMBrEgunbt2mHBggUSVyWN3NxczJo1y6k2S5cuRWBgoJsqIvJO2dnZyMnJKbe9dWsTPv88CbGxNZ8kHRdnwqZNCgQESB+W4Gnh4QpERYm91zt8mAsiEhEREdVFeXk2DB9uwMsv+8Jmk/Y9nVzuwIsvFmPTJi2CgwUDeojIKca8ZCQnn0darg02W+2GN4uOK72YduXq13KlChF+BrQILoCvrvqxu6fyT1W4/RbVLUK1oHbWEXbKvkv7ym1r166dUF8XL16s9f8XRBVp0kSJCRPEF475+WcdDhxw7z0mIiIiIiIib8VQMCIiIgFZWWKTKUJDOVGLCACaBjSFVlk+gMZgNSC9MN0DFRFRQ1BSYsXChbmIj7fiiSdCcPFi+UEEn3zSyK01yOVyRERE4JNPQjF+fBAUCulOy4uLi6vfqRK+vr6VPhYQEIBGjVz/vdjtwMKFOnz6aZ7LfRERkWedyz2HEkuJp8uoEbvDjlmbZ8Fkrb3VUImIqJQrwcXBwcESVuJZKpUcX37pj1GjnAt3USrteOedi7jllvLnemazmcFgRFShOXPmIDU1Vahtr169cP/991/9vvDKaeSUuDZZZEqrKbip0U0VPiaXyVFQIBZ85ag8g8sjqgoFC/Cv/LpbVXJy62EomKV2JmzsvLwTd227C68eeRXZxmyX+hobN1aiqsS1b9Qe7w56F2mPp+HLMV9iQPwAyGUc7lUZm82G8ePHIzExUai9SqXC6tWrodF42RPNXx555BFcuXKl+h3/MmrUKNx1111urIjI+xQUFCAjI6PSx5s2tWD16iR06FD9OWujRhZs2mRD06buX1TIUzp0sAi1O3bMS9JZiYiIiKjGEhJM6NrVhi1bxELsqxIaasUPPxgxb54f5HIGyBK5m91cgisXz+J8uh56g2fGw4SHh0Olcv7csKi4BHr99deKfTQ+iA0oQGSQGQpF5aGCv2b8Wm6bSq6CNd/qdB0A0CamDYLV3nVf+viV4ygyXb+giq+vL0JDQ53uy2az4fLly1KVRuSSZ55RQakUH9+wYAED7oiIiIiIqGHiKDEiIiIB2dliNywZCkb0txYhLSrcvvr46lquhIjqu+JiK155JRfx8Q785z8hSEtTV7rv1q0BSEqSfmC/XC5H48aN0a5dO4SHh0Mul/503GAQX0WpqlAwAGjUqBECAgKE+zcYZHjiiSh88kkjzJoVgF9+Kaq+ERERea0jl494ugSnXCi4gAsFFzxdBhFRg2K322GxiE0slsvlQgPIvVlZMNjYsTULeFEqHXjrrYvo27fycyez2Yxz584xGIyIrlq9ejU+/fRTobZyuRxLly6FTFZ6/8tSlI60XLEFcq4lk8mwuPdiyFD+vprZZkZhYaFYx16Wy+GrKr8IShl/P7FQsNx8wd+NF9Nba28Vd5vDhi+TvsSwn4bh41Mfw2AVu3baPrg92ga1lbi66vmp/TC9y3Tsn7ofx2cex6O9HkWYLqzW66iLHn30UWzevFm4/csvv4wuXbpIWJF0Nm3ahDVr1tR4/8DAQCxdutSNFRF5n5KSEly8eLHa/YKCbFi+PBm33lr5662/vw3ffGNE27bSByZ4ky5dxN7zJSerkZfHyZhEREREdcXKlSXo00eF5OTKx82J6tLFiEOHHBgypPJrZEQkHX3WWZxLvoSsAjMcDtev47tCpxM7Z9Ybyl8rlsllCNI50CokH8H+5Z+rjmYfxRVj+bD8eP945ObkCtUxo/sM7B6+G98O+BbPdXoOgyIHIdTH+fAtKdkddvye/nu57Y0bNxbqLzdX7HdDJLX4eDVGjxYf5/7DDzqcPMlFQYmIiIiIqOFhKBgREZGAnByxdqGhnr3xQuRN+sb2rXD7lsQttVwJEdVXhYVWvPBCLpo3d+Cll0Jw5Ur1k8odDhk++SRcshoUCgWaNGmCdu3aISzMvZO2TCaxm50ymaxGIWWRkZHw8XF+xuWVK0o88EBzbNsWCAAwGBS4+24fJCeL39wlIiLPOpJRt0LBtEotQnWeHbRHRNTQFBcXC7fVaDQSVuI9lEo51q71x7335le5n0LhwJtvXkS/ftWHKVssFgaDEREA4Pjx45gxY4Zw+zlz5qBr164AAIfNikuZJbDZpAl50Cg1uK3JbeW2G6wG4etZ3hYKplNW/toV4C8WCmYw1L+JDSWW2r8eqLfqsfTkUgz/aTi+SfkGNodz/69lMhnGxI1xU3Xl3dysN1beuRKX517GJ3d8gp6RPa+G9VH1lixZ4lII1uDBg/Hss89KWJF0CgoKnH6eX7RoEZo0aeKmioi8j8lkQkpKSo3312odeO+9Cxg1qvzkWJXKjtWri3DTTf4SVuidevRQCLfdv98sYSVERERE5A5Gox3Tp5dg6lRfGAzSTx+bOrUEv/2mRmxs/Vrshchb5aafQnKmRXhxJqmJ3tc1Giu//q1QqdHMvwjNg4vg41MaDlZoLsTsfbMr3N/hcMBoFFuQwsfHBzKZDPEB8bgn/h681fMt7By2ExsHbMQLnV/AkKghCNdIN564pvZe3Ftum2gAmyuLDRNJ7bnnVJDJxObU2e0yvPaaVeKKiIiIiIiIvB9DwYiIiATk5Ii9hIaFMRSMqMyEDhMq3P7HlT9quRIiqm8sFgs++igTcXHAq6+GICvLuUFHW7YEIjXVtVURFQoFmjZtirZt2yI0tHZCSKxWsZudKlXNfj9yuRzx8fE1ChAr8+efGowfH4+TJ69fCTIjQ42RIx0oKuINWiKiuqguhYLJIMPCfgsRog3xdClERA1Kfn6+cFt///o76VqplGP16gCMH59f4eMKhQNvvHERAwYU1rhPBoMRUUFBAUaPHi08saNdu3ZYsGDB1e+zLp9HicSBVD0b9Sy/0ZXMMfHsCrfQqSqf+OSjFpsQafaSSV1S0lvFJmZJIdOYiRcPv4ix28fit4zfnGo7LGoYdEqxCVc1EV4CPPEbcHIp8CumYHLnyfBT+7ntePXVpk2b8Pjjjwu3j4mJwZo1a7w2hG3u3LlIS0ur8f633norpk2b5saKiLyL1WrF+fPn4XA4NyZHqQRefjkdM2ZkXt0mkznw/vsFGDEiSOIqvVOvXuL3RH//neehRERERN4sNdWCm282Y/lysdD6qmi1dixbVoLly32h0XBaGlFtyEk7jfRcm9Pnvu5kNouFRatrcN1cp1WjRVABwvyteOrgU8g351e4n9VhFV6ARK0uf04sk8nQPKA57m5+N97s8SZ2DN2BHwb+gJe7vIzh0cMRoY0QOpYz9l3aV26baACb6L8RkTvceKMaQ4aIB9V99ZUWKSn17/4ZERERERFRVXj1lYiISIBoKFijRhIXQlSHdW/WHQpZ+Zk7ucZcGD04MYSI6i6z2Yzk5GScOXMGfn5FyM1VCvVjt8uwbJnY6l5KpRKRkZFo27YtQkJqL3xENBAMcG6wgFwuR4sWLWq079atAXjggebIzKx4AMfx4zrce68eNhsnDBAR1SUOhwMJlxM8XUa12oa1xaM9H8WRGUcwp9ccT5dDRNTg6PV64bbBwcESVuJ9FAo5PvssABMn5l+3XS534PXXL2LQoJoHgpVhMBhRw2Wz2TB+/HgkJiYKtVepVFi9evXV60MlWWeRmS/9YPrOoZ3Lb3QlFMzLRrrolJVfX1Mqxa5RWiz1L0zfk6FgZc4VnsPM32bi37/8G6fzT9eoja/KF0Ojhkpah9wODDkHbPgSuPQOsGgb0DYbwMqVkh6nofj9998xbtw42GxiTyw+Pj5Yv359rV7Td8a2bduwYsWKGu+v0WiwbNkyrw04I5Ka3W5HYmKi8PmQTAY8/HAmnn8+HXK5Ay+/nIfp0+v3eem1wsIUiI4WmyB8+LDExRARERGRZH780YBu3WRISBALkalKbKwZv/xiwbRp0oeNEVHFDDmJyMh35aK6e4guVuKr01a/EwCZQo43jy7Cb1cqX+gh35wPhUJsJZGaBGbJZDLE+MdgdNxoLOy+ENuGbMPmQZvxStdXcGf0nWjm21To2FXZd3Ef7I7rr3OI/q612pr9rolqy3PPid/ks1jkeP11aRc2IiIiIiIi8nZiow+JiIgauLw8sRsHYWEceEt0rciASKQWpJbbvuHUBtx3430eqIiI6iKTyYS0tLTrJp136mRAz57FOHDAT6jPH34IwsyZmYiMrNkkSJVKhcaNGyMwMFDoeK4qLi4WbqvT6ZzaX61WIyYmBqmp5Z+/AcDhAD75JBxLl1a/ItqmTQF46qk8vP12w5lcQURU110svIhcQ66nyyjHX+2P/s37Y3CLwRgUPwgxQTGeLomIqMGy2+3CwcVyuVw4PKUuUSjkWLUqAApFPj79NAhyuQMLFlzC4MHOB4KVsVgsOHv2LFq1agW53MvScojIbR599FFs3rxZuP3LL7+MLl26AABshjxcynVPuGDLgJaQQQYHHH9vrEehYPdvewnBPgHwU2nhr/aFv0qHAB9fBKr9ca7wglCfZkv9W+ncG0LByuzL3Ie7d9yNO2LuwOx2s9FY17jK/e9ufjfWJ693+bixecDUI8ADR4HIil72Dx8GzGZArXb5WA3FqVOnMHToUJSUlAj38cEHH6Bbt24SViWd4uJiTJ8+3ak2L774Ilq2bOmmioi8S1kgmCuL55QZNy4XffrYMGhQlASV1S0dO1px4YLzrz3Hj1e8MBAREREReY7d7sD8+XrMn6+DzSb9mPXBg/VYu9YHwcFi4+iJyHkOux2Xcu1wOBzV71yLbFYLjEbnr/nKZDLodDULLFzx57d49+jaKvfJMeUgUC02btdkcj5cSCaTIcovClF+Ubgr9i4AgF6WhVOWC9iduhu7U3cjKS9JqJ4yecY8nMk+g7bhba9uE12Uy9nxwUTudtNNGtxyiwF79ogF1n32mQ7z5lkREVH/x5UQEREREREBDAUjIiJyms3mEA4Fa9SIoWBE1+oV2avCULBvTn3DUDAiqpbRaERaWlqlK2DNnJkpHApms8mwfHk4Xn45vcr9VCoVmjRpgoCAAKHjSMWVUDB/f3+hNhEREbhy5cp1200mGV58sRk2bw6qcV/vvBOM1q3z8O9/MxiMiKguOHL5iKdLuKpLky4YHD8Yg1sMRq/IXlApOAmNiMgbFBUVCbfVaKRfsd5bKRRyLF8eAKUyD82bl2DYsAKX+7RarQwGI2pAlixZgqVLlwq3Hzx4MJ599tmr36ddyYHF4nqgRkV+ufLL9YFgAOBK/piXPcXtSa/iPOmiWJ+v7F2Gj/2+hlbpA63CBzqVBr4qLfxUutLQMbUvAtS+CFT7IcjHH8E+AQjWBCBUE4hQn0AEa/yhkHvX5MwSi/eEggGAAw58l/odfrr4Eya2nIgprafAX1XxtdK2QW3RPrg9TuSdcPo4aisw6hQwLQHomwLIq5q7ZzYDf/wBdO3q9HEaotTUVAwcOBDZ2dnCfbzyyiuYMmWKhFVJ6+mnn650gY6KdOzYEU8++aQbKyLyLqmpqTCbzZL0pVarMWBAM0n6qmu6dnXg+++db5eSokZurg0hId71noOIiIioocrLs+G++0zYssVX8r7lcgeef74EL73kC7mcY+GJapM+JxEmkzTnvlJQKBSI8DMh6ewfQu39/XSQyap/Hvk1/Sge3PV6jfq0KsXubeTk5Ai1+yc/WQQmtuuG+zvdDwC4WHCxNCAspTQk7FzuOaf7TC9Kvy4ULCMjQ6g2hoKRN/rPf4A9e8TaGgxyvPWWHosWic0PICIiIiIiqmsYCkZEROSk3Fw7bDbRUDAvm6VA5GGj2o7Cl39+WW77wbSDHqiGiOqK6sLAynTrpkfXriU4fFhsoNPGjUGYMSMLTZpYyj2mVqvRpEkToUAtdxBZca2Mj4+PULvw8HAYjUYUFJROXM/OVmLOnGgcP+78III5cwLRokUhbr/ds+FqRERUvYTLCR47dpguDIPiB2Fwi8EY0HwAIvwiPFYLERFVLj8/X7itpwOXa5tCIcfHHwciOTkX1Zzi1lhZMFjLli2hUHBiNlF9tWnTJjz++OPC7WNiYrBmzZqrE2+KM8+gsLj8NTApGG1GvHnszfIP2FzotC7dbhOsNU9fhLw88aDNMjLIIJfJoJApoJSXfqjkSvgoVFDL1dAo1dcFj/mpdPBVaa8JHvNDoNoXwT4BCPLxR4gmACGaQIRpAhHsE+BUCKXe6l2hYGVMdhOWn1mODckbMLPtTIxtPhYqefnQ6bFxY50KBbvxSmkQ2H3HgVBnXucPHWIoWA1kZGSgf//+uHTpknAfc+bMwQsvvCBhVdLas2cPPvzwwxrvr1AosHz5ciiVHA5IDcPFixdRUlIiSV8KhQItWrRosOHK3buL/9z795sxdKhWwmqIiIiISERCggljxsiQnCx9+EtoqBWrV1swZAjDN4g8IbfEe4L4gvzVaOyTA6Vaje9PJwv1ERdTfSB3SmE6Rm1+EhZ7zcK+TEqTUC1paWlC7f7JbrejIPsSgpuWhnhFBUZhQocJmNBhAoDSgK+ygLBdKbtwJudMlf3JIENkQOTV74uLi5GbmytUW0hIiFA7IncaMECDLl2MSEgQWzTuk0+0eP55GwIDOR6CiIiIiIjqP44CIiIictKVKzYAYhcPIyIa5gBCosqMbD2ywu1pRWmw2+0NdtAtEVXMYDAgLS3NqQCsmTMzMX16nNDxrFY5Vq4Mw3PPXb66Ta1Wo1mzZvD1lX5FRVeIroLu6gTxqKgomEwmHDsGPPxwNDIy1EL9GI1y3HuvFr/9ZkCLFpw4QETkzY5kHKm1YylkCvSO6n01CKxLky6Qy3iOQETk7aoLcK5KUFCQdIXUEXK5HHFxcUhJSYFer5ekz2uDwRgKQVT//P777xg3bhxsNrFULR8fH6xfv/7qRBCH3YaMAve9z155ZiXS9NJMrLnKe+ZAVc/DtTrggM3hgM1hh9nunuC30uAxORQy+dXgMbVcBbVCCR+FGj6K0uCxC0UZbjm+VPLMeVh4bCHWnl+LR9s/in5N+10NzgOAwVGD8erRV2Gp5vfYMiAeCxv9G6Neflrsnz/Bc2HcdUVOTg4GDBiAxMRE4T4eeOABvPvuuxJWJS2DwYCpU6fC4XDUuM2cOXPQrVs3N1ZF5D0yMjKuLlrjKplMhpYtWzbosQm9eond3wOAAwdsGDpUwmKIiIiIyGkrV5bg4Ye1MBikf0/bpYsRGzYoEBvL8VxEnqI32T1dAnzUajTxzYWfVgWg9Bxy12+HhfpqERdZ5ePFZj3u/OFxZBnyatxnia9YaHhysliwWUX0FiWCK3msqX9T3Hvjvbj3xnsBABnFGdiTuge7UnZhd+punMw6ed3+c3vPReuw1le///PPP4VqCg4ObnCLclHdIJfL8PTTdowbJ9a+sFCBJUuK8cILDCwlIiIiIqL6j6PAiYiInHTliviNlSZN+NJLdC21Uo1QbShyDDnXbbc77Nh7aS/6RPfxUGVE5E1KSkqQnp4Ok8n51bx69ixBx456HDsmtgri118HY/r0LERFKdC0aVOvCwMrY7eLvT9Rq8UH+Zdp3rw5Hn64WDgQrExmpgojRlixb58VAQF8z0RE5K1qKxTslphbsPGejQjSBNXK8YiISBp2ux1Wa81WbP4nuVzeYAOs5HI5YmNjJQ0Gs9lsOHfuHIPBiOqZU6dOYejQoSgpEZvgAgAffPDBdaExhtwkGAWuu9XE7vTd+PDUhxU+dm8K8IVox3aIrt9T+8Sy2+rOz4ey4DEbbA6b24LHalNqcSoe2/8YOod2xtwb56JjaEcAgE6pQ6AqENmm7ErbPtz2YTzXfQr0u4+J58FJOBGtPiooKMDAgQNx4sQJ4T7GjBmD5cuXXxf65m2ee+45p0LP4uLiMH/+fDdWROQ9cnJykJ1d+XOxs+Lj4xv8OVNIiAKxsWakpDh/ry8hwXufS4mIiIjqO6PRjtmzDVi+3D3j2aZOLcHSpVpoNA03QJfI0xw2KywWz11zlclkCA8AwjR5kCtUV7fb7XZs23VAqM8WcVGVPmZ32DFh6wv4I8e5xQCKfYuFajl+/LhQu4qYbTU/P27s1xh333A37r7hbgBAZkkmfkn9BTmGHNwQfgNujr75uv33798vVFNsbKxQO6LaMGaMFq1bm3DmjI9Q+6VLffDEE3ZotXyfQkRERERE9RvPeoiIiJyUmSkWuqHR2OHnx5deon/qGNGxwu1r/1hby5UQkbcpKSnB2bNnkZycLBQIBgAyGTBzZqZQW43GjvHjC9GiRQxatmzptYFgRqNRuK1Go3H5+HK5HJ9/rkF8vHgdZU6e1GLsWD2sVs+vbkdEROVllWThUuElSftUyiuecHc+9zwDwYiI6qDCwkLhtlptw15lXi6Xo3nz5pKee5YFg4kGtRGRd0lNTcXAgQNdCsF45ZVXMGXKlOu2FRulvw5jsVuw7PQyPLzv4QofjywBXj/qwgHq0qUj0Vp5S9HjjuQcwYRdE9BrYy889NtDeCXhFRRZiirdf0KLCfh323/DIvOFMjdX/MCZYtezG4Li4mIMGTIECQkJwn0MGTIEa9euhULhvcl7+/fvx+LFi51q89FHH0GnE1schaguKSwsxOXLlyXrLy4uTpJ7ZfVBx45ik8yPH1dVvxMRERERSS411YKbbza7JRBMq7Vj2bISLF/uy0AwIg+z6j13rdBP54MWwQVo5GuEXHH92J7tuw8i7bJYbV06tqn0sRf3f4SNybud7zRIqBTk5uY6FcxfFYtVdIUQoJFvI4xuNxr/7vrvcoFgALBz506hfps3by5cE5G7yeUyPPGE+DiGzEwVPv7YIGFFRERERERE3qlhL3FGREQkIDPTIdQuJMQGjuAnKm9Yq2H4OeXnctt3pwrc1COieqGoqAiXL1+G2WyWpL+bby7GDTfo8eefNZsQo9XaMGFCIZ57TouYmCBJanCnM2dK8McfWrRsaYKvr3OzDP38/CSpISxMjY0b9fjXv6zIy3PtUkN8vBEpKdlo0YIDEoiIvM2RjCOS9NMqtBUGxw/G4BaD0b1pd4S/FV5un7SiNBgsBmhVDTsghoiorikoKBBuGxAQIGEldVdcXBySk5NRUlIiSX9lwWAtW7aEUslbw0R1VUZGBvr3749Ll8RDeufMmYMXXnih3Ha9Wdp7VydyT+ClhJdwtuBspfu8/TsQLD4/xqtCwZr6hmN+rweRbypCoakYBZYSFJlLUGzWo9hqwDHdWVyCwOQo780ranBKrCXYk7Gnyn36NumLJzs8CZlMBoPZAT9Xgr30evG29ZjBYMDw4cOxb98+4T769u2LDRs2QKXy3gAbk8mEKVOmwG6v+RPdpEmTMHDgQDdWReQd9Ho9Lly4IFl/kZGRXrsgkCd06QJs3Oh8uwsX1MjOtiEsjG9eiIiIiGrLjz8aMHGiCtnZ0gfcxsaasX69A1278r0ykTdwOGr/YrhSqUATXwMCtEbI5D4V7vPhyvXC/d92c9cKt6898yNeO7RSrNPGwuVg+/btaNGihXgHZcSmGFWruLgYP/30k1Dbbt26SVwNkbTuv1+H+fPNuHBBLdT+3XdVeOghB1QqmcSVEREREREReQ+O/CYiInJSVpbYFfvgYBsA7x1gTOQpE26cgLlb55bbnpSX5IFqiMiTylb3tljEVqKujEwGzJyZhdmzY6rcz9fXhvvvL8Szz2oRGRksaQ3utH69DK++Gg8AaNbMjFatjGjVyoiWLUs/R0eboahkHL5UoWAAcMMNOqxeXYCRI/1htTo/mVSttuPVV9MwZEgBjEYgPT0dTZs2law+IiJy3YnME0Lt/NR+6BfXD4NbDMag+EGIC4677vGmfk2RXpxert2qo6swq/ssoWMSEZFn6F0IsQgKCpKukDrOHcFgZ8+eRatWrRgMRlQH5eTkYMCAAS6tVv/AAw/g3XffrfAxu0QTVfRWPd4/+T4+P/c57FWkdmmtwNgUwOTKwbwoFCxCF4Ip7e6s9PHZv76Jpfif0/2+fsvDGHLXTcgxFSLPWIQ8UyEKzMUoMBWh0KK/LnisxGKA3mqEwWqC0WqCyWaGyW6B2WaFxW6F1W6FzWGHzWGH3QOTyBqCt3q+Bbms9Jqo3e6A6soV8c6sVomqqj9MJhNGjBiB3bvFFxTq3bs3vvvuO2i13h0+Pm/ePJw6darG+4eHh+Odd95xY0VE3sFsNiM5OVmy/iIiIngO+g89eogHxe7fb8bw4d79/EpERERUH9jtDsyfr8f8+TrYbNKHXwwerMfatT4IDmbgK1FDFeKvQoQmFwqVGkDFzzO/J/yJbzfvEuq/bas4NAoPKbf9YMYJTNnxilCfAIAwQKGTw6Z3/vr3pk2bMGPGDMhk3hkq9OWXX8JoNAq17dWrl8TVEElLpZLh0UctePxxsVCwCxfU+OyzEkydyjBTIiIiIiKqvzjqm4iIyEnZ2WLtQkPdtPwHUR3XyK8RdCod9JbrJ40arUak5qciJqjqEB8iqvvy8wuQkXEZVjdOdrr11iK0aWPA6dPlB6T7+9swZUoBnn3WDxERdScMrMyff/49ECstTY20NDV27gy4us3Hx474eNPVkLCywLCwMDsUlaWFCRo2LBBvvpmLxx8vP3CjKqGhFixZcgEdOhiubsvNzYVGo0FIiHN9ERGR+yjlNb+c3KlxJwyKH4TBLQbjpqiboFZUPninb1xfrPljTbnta/9Yy1AwIqI6xG63w2azCbVVKBSSn5/UdXFxcUhJSUFxcbEk/dlsdrz8chaefDIcgYG8RUxUVxQUFGDgwIE4cUIsoBcAxowZg+XLl7t1QsveK3vxSsIrSNOnVbtvnyulU4l8XClH7OXGLXyVVQdgmAUXQIjwC0WH8FZCbWtCbzYi11yAHEMBck2FyDUWIt9UhHxTEQrNxSg0l6DIokeRWY+SCoLHjDYzzFeDxyyw2m0NOnjsn+e8qrTq/xYq5eA95WuZzWaMHj0a27ZtE+6jS5cu2LJli6SLZLhDQkICFi1a5FSbxYsXIzQ01E0VEXmH4mIr3nknG3fd5YAUb2dCQ0MRHh7uekf1TM+eashkDjgczv+SDxywYfhwNxRFRERERFfl5dlw330mbNkifeiFXO7A88+X4KWXfCGXe2coDhG5l8ZHjaa6HOi0agCVj++x2Wx45Nm3hI8zuF/vctvSijMxcvMTMNnMwv1CBtia2gGBtVVSUlLwyy+/4JZbbhE/vps4HI5KF3ypjkKhQPfu3SWuiEh6M2dqsXChBVlZKqH2b72lxOTJDr6HISIiIiKieosjvomIiJyUnS12sTA0tOENgCeqqdahrXEk40i57Z8d+wwv3PqCByoiotqwZ08R5s8HIiPNmDvXfYFgACCTATNmZOGxx6KvbgsKsmLq1EI8/bQfwitYfayuOHOm6hWSTCY5Tp7U4uTJ6ycojh2bj//9T/p6HnssBKdP5+GTT2oWsNa6tQFLl15A48blJ0imp6fDx8cHvr5cxYmIyBsMbTkUT29/GkZr+RUoQ7QhGBg/EIPjB2Ng/EA08W9S434f7PZghaFgFZ0jEBGR98rPzxduq9VWHajSUMXGxiI1NRVFRUUu9eNwAG+80Rhr1oRh69YSbNsGBoMR1QHFxcUYMmQIEhIShPsYMmQI1q5dW2XwosKFQfL5pnws+mMRvkv9rsZtOueWfpbJABUAocgsEwAvyfbRqTRVPl5UrK/y8cpoNGKroteUTq2BTq1BpF+E246hNxuRYypAjjEfuaZCjN70FPLNrr2meatMQyYaaRsBABRyOXwuXhTvLChImqLqAavVirvvvhubNm0S7qN9+/bYunUrAgMDJaxMehaLBZMnT3Zq8ZShQ4fi3nvvdWNVRJ5nsdgxapQB27Y1xbFjGrzwQjqULpzK+Pv7o0mTml+3bEiCgxWIjTUjOdn59yBHjnDSJREREZE7JSSYMGaMDMnJOsn7Dg21YvVqC4YM8ZKLbURUq+RyORr5WxGqyYOsisX+ysx/azn2H/pD+HiTxg277nuD1YiRm57A5ZJs4T6viodQKBgALF26FH369IFcLne9DgmtXr0af/75p1DbW2+9leNuqU7QauV4+GEDXnpJLBTs9GkfbNigx9ix0r9PIiIiIiIi8gbedbWCiIioDhANBQsL46rORJXpG9e3wu0/nf+plishotqwbVsB+vYtwq23+mP7dn98+WUocnMrn5goldtvL0SLFkaEhFjxzDO5SEpy4K23QhAe7t4Jdu5kNtuRmOgj1DYuzn3vTd5/PxD9+lU/wa9v30J89llyhYFgZVJSUmA2u7AKHBERSaZFSAt8O+5bdIzoiAjfCPSO7I15t83DgWkHkPlEJr4Y/QXu73S/U4FgAHBz9M1QVzC4UG/R42TWSanKJyIiN8vOLhRuGxAQIGEl9UtMTAz8/f2F2zscwKJFpYFgAPD7777o18+E3FyeZxF5M4PBgOHDh2Pfvn3CffTt2xcbNmyASlX1IHqdyvmwfofDgS0Xt2DEthFOBYIBQKjp76+DBUesLNkD3JAn1lZqOmXVoWCFRSVC/QYH1f3XRp1agyj/CHQKb43bI7vDjvq7gNKEXROQVJgEANCqAXVqqnhn4eESVVW32Ww2jB8/Hhs3bhTuo1WrVti+fTtCQ0MlrMw9FixYgOPHj9d4fz8/P3z44YdurIjI82w2Ox54oBDbtpWeD339dQgefTQaBoPYmB2tVouYmBgpS6x3OnUSimvFsWNikzaJiIiIqHorV5agTx+VUHhrdbp0MeLQIQeGDOHCLUQNUYCvD1oG5yHM1wKZovoE7nVf/4RXFi0XPl7H9q3Q6cbWV793OByYsv0VHMqUaFxQOwCCmdWnTp3C+vXrpalDIvn5+XjmmWeE248dO1bCaojc65FHNAgIsAm3f+MNTpEnIiIiIqL6i2c8RERETsrNFXv5DAuTuBCiemTijRMr3H4i80QtV0JE7rR5cwH+9a9iDBwYiF27/p7QbDDI8dln7n+hlMuBjz/OQXIysHBhCIKD6/4A9T/+MMBsFntv0qGD+1btVirl+OorDVq3NlS6z5QpWXjvvQvQ6aqeDOhwOJCUlAS7vf5OGiQiqksGtRiEozOPIuOJDOyduhcv3voiejTrAYXctYDP9uHtK9z+/sH3XeqXiIhqz9SpYRg5sgVee60Jtm0LQH5+zV8bgoKC3FdYPRATEyMUnOZwAO+8E4HVq68/5z582Bf9+1uRk8NgMCJvZDKZMGLECOzevVu4j969e+O7776DVlv9hD4/TfWTfa6Voc/A7L2z8dTBp5BrynW6tmtDwUIETyNuzACOfgcs+w1oohfrQyruCgULqQehYP+ktxo9XYJT2ga1xevdX8eBEQew9869+OCmDyrd97L+MibtnoRjOcegsBdBYaj8umi1OnQQb1tP2Gw2TJw4EV999ZVwH3FxcdixYwciIiIkrMw9Tpw4gQULFjjVZsGCBYiOjnZTRUTe4emn87F2bdB123bvDsC0aXFOnW8CgEqlQlxcnITV1U9duogtKHTpkhpXrjgfNEtERERElTMa7Zg+vQRTp/rCYJB+2tfUqSX47Tc1YmPr/vg5Im+XlpaGOXPmICsry9OlXNU00IrowEKofKq+vl3m6+9/xqRZL8HhEF+Idsb9o677fsGhlVh3bqtwf+UEAn6x4iGHb731FpKSkqSrx0VTpkzB5cuXhdoqFArcddddEldE5D5BQQpMny5+X+XwYQ22bnXhvgwREREREZEXYygYERGRk3JyxGYoNGrkvuANorquU5NOUMrLTzwqMBVAb/bwjB4icondbsfGjfno1asEw4YF4tdf/Src74svQpwewO+MgIAAtGnTBrff3gwBAc5NdPRmhw6JT+Du1k36FSSvFRyswrffOhAaev2q4kqlHa++egmPPXYF8hpelbBarUhOTnZDlURE5C1Gtxtd4fYtiVtquRIiIhJhMNhw+LAO589rsG5dKB5/PBr/+ldbjB4djzfeaIydO/1RWFjxCYBCoYC8picHDVh0dLRTwWAOB/DeexH49NPwCh8/ckSH/v2tyM5mMBiRNzGbzRg9ejS2bdsm3EeXLl2wZcsW+PlVfB3unzQhzaHT+lS7n91hxxfnv8CIbSOwO0M8sCzkmlCwUMGn/yIHoHQA084B5+wjMK/nDPiqxCf7uKK64xYVi4WChYYECrXzVhabFVa7+CrvtemWxrdgxb9W4Mvbv8Sw6GHQKXXwV/njs3OfVdmuwFyACbsmYND39+PbNkBB9X9WFWvgoWB2ux2TJ0/GF198IdxHZGQkduzYgcjISAkrc5+VK1fCbK75e7JevXrhoYcecmNFRJ731lu5ePvtkAofO35ch4kTmyM9vWbhBQqFAi1btuR5Zw306CF+r3b/fp5bEhEREUklNdWCm282Y/lyX8n71mrtWLasBMuX+0Kj4XtkotpgsViwZMkSxMfH45VXXkF+fr6nS4JGXvMFHN5c8n8YM/lpWCziYdDRkY0xdcKIq99/c34nnt//oXB/ldF3EF+YwmAw4LHHHvOKf5958+bhm2++EW5/11131YnFEoiu9eSTGmi14otHL1ggHlpIRERERETkzXgVl4iIyEl5eWKD4MLDGQpGVJXogIpXs/7fyf/VciVEJAWbzY6vvspHjx4GjBwZhAMHqh6kpNcr8PnnoZLXERgYiDZt2iA6OhpKZf0JAyvzxx9i7fz9bWjRomarvLmiTRsd1qzRQ60uvVEbHGzFihUpGDEi3+m+DAYDLl26JHGFRETkLWZ2nVnh9pT8FFjt4gMLiYioduzcWVzhSvVnz2rx+edheOSRGPzrX20xblw83n47Anv2+KGkpHR/nU5X2+XWWdHR0QgMrD4kxuEA/vvfRli5suJAsDJHj+rQr58VWVmcvE3kDaxWK+6++25s2rRJuI/27dtj69atNXquKCOTy9G4mt3PF57H/bvvx4KjC6C3uraQh3+vW69+HSI4YiWvbE5A0ybwnTMXL/aYjsSJ32BG+1FQyNy38EBFdMqqr7Hl5RcJ9RsSXL9CwUqs3r1Cu0quwujY0dg4YCPev/l99GjUAzLZ3/d2f8v4Dfuz9teorz/y/8Rd9wChTwN9pgDzbwEONANsNb1V3KOHwE9QPzgcDkybNg2rV68W7qNx48b4+eefERcXJ2Fl7mW313yik0qlwvLlyxluRPXa6tV5eOaZ4Cr3SUnxwYQJzXHmTNUJjDKZDC1atODfTA317KmGTCY2gfL338UnbRIRERHR33780YBu3WRISJB+XFdsrBm//GLBtGnSh40RUfWKiorw0ksvISoqCo888giSkpI8XVKVLlzKwIBRs/D0vP/C4XAtbOfFJ6dBrS4N9z6WdRYTt70oRYnl2G90ICRM/Np6UlISZsyYgYKCAgmrcs4777yDl19+2aU+nnzySWmKIapFERFKTJwofg9y924d9u0TDwYkIiIiIiLyVhztQERE5ISSEnuFk9tqolEjhoIRVaV3VO8Kt39zWnylGyKqfTabHWvX5qNrVyPuvjsIhw/XfBDRmjWhKCyU5jQ1KCgI7dq1Q1RUVL0MAytz6pTYz9aqlREKRe1cEhg0KBDvvluAFi2MWLv2PLp0Eb9pm5+fj5ycHAmrIyIibxGiC0GYLqzcdgcc+PLPLz1QEREROWP79uon/9rtMpw8qcWnn4bjoYdicfPNbXHffc1hMgW5v8B6JCoqqtqwn/ffb4RlyxrVqL/jx3W4/XYrMjMZDEbkSTabDePHj8fGjRuF+2jVqhW2b9+O0FDng/d1YS0R7F8+VMNsM+PDkx9izPYxOJpzVLi2a1nGPAl7UAAAIFQwvyvDBkAG4MUXgb/CJRv7huGjvv/BH+PX4Y64f0lSa01UFwp2JSvX6T4VCgUCA/xES/JKeot3TsQIUgdhRpsZ2DpkK17u+jKaBzQvt4/ZZsbCYwud7tsmB36LBl68Heg1HQh/Crh7LLC8C3ChspdypRJo3drpY9UHDocDM2bMwKpVq4T7CA8Px44dO9CyZUsJK/MuFosF7du3h0wm84qP3bt3C/0cffv2FT4m1W8//VSAf/87ELYaJClmZanwwAPN8fvvld+LjI+Ph0qlkrLEei0wUIHmzcXODRMSOBSZiIiIyBV2uwPz5pVg+HANsrOlH+s2eLAeCQkKdO1adbAuEblfcXEx/vvf/6Jly5YYNGgQ1qxZA73etcU4pJRfUITnXn0f7W4ai+27D7rcX6cbW+H+e4YDADL1ubhz0+MosbhpEQkl0PkO166vnjx5EhMmTMDFixclKqpm7HY7HnvsMcydO9elfm677Tb0aMALT1Dd9uyzPlAqxYPnX3vNJmE1RERERERE3oF34omIiJxw+bJVuG1ERO2uTE5U14xtN7bC7YfSD9VyJUQkwm63IyMjAx99dBH33ReEY8d0TvdRXKzA2rXOT1osI5PJEBwcjHbt2iEyMrJBrPpd3QrolWnd2iJxJVWbNSsY33+fjshI1497+fJlFBcXS1AVERF5m39FVzxx//+O/l8tV0JERM767Te1021sNhlSUtRo3tzfDRXVb1FRUQgKCqrwsQ8/DMfHH9csEKzMiRM69O1rw+XLJgmqIyJn2Ww2TJw4EV999ZVwH3FxcdixYwciIiKE+2jSpDF81H8/nx/NOYq7d9yND059AKtD/P7YP2llvshctxMAEC54+S7DBuDee4Hu3cs91jYkDt8Nfxe7Rn2Mbo3auVBpzehUlV+fyy8ogtHo/HNrWGhQvQu+0Vu9KxQsxi8Gz3d6HluHbMXDNzyMME35kOoyq86uQmpxqsvHzNMCX90ATL8TiHkMaPsQMGcwsLklUFKWVxMfD9Szf/uacDgcmDVrFpYtWybcR3BwMLZt24Z27dz/d09E7nH4cAnGjfOF0VjzNwjFxQrMmBGDn34KKPdYTEwMNJqqwzupvE6dxN73HTvG8DUiIiIiUXl5NgwfbsDLL/vWKCDXGXK5Ay++WIxNm7QIDuY4diJvYrfbsXXrVkyYMAERERG49957sXr1amRlZXmknj9Pn8fsp99EbKc7sODdVSgpcT24y8dHjdUfvgKlUgmTzYzRm5/ChaIMCaqtnLmbBXExzVzqIyUlBePGjcO3334rTVHVSExMxL/+9S+89957LvWjUCjw7rvvSlMUkQfExqowdqz4c8/mzTqcOMHF0IiIiIiIqH6p/zOkiYiIJJSZKb7qQEQEX3aJqjKs1TDIUH5AQ0ZxBux28b89InIvu92Oy5cv49SpU8jOzsbNNxchJkZ8EvHq1aEoLnbuNVMmkyE0NBRt27ZFs2bNGkQYGADk5JiRlub8xHsAaN++9p9XW7WKhVIpzUqWqampMJt545aIqL6Z3mV6hdsPpB2o5UqIiMgZxcVWHD2qFWrbo4cBSmXDOIeTWmRkZLlgsI8/DscHH4gFAp08qUW/fnakpzMYjKg22e12TJ48GV988YVwH5GRkdixYwciIyNdqkWu9kdkmAJ6qx4Ljy7EpF2TcL7ovEt9ViRQHYhsixpFby1BjOCloiuNGgOPPVblPrc264oDd3+KtYNeRWxAU7ED1YCvsvLXwIwrOUJ9xkQ2Fi3Ha3lLKFiX0C54r9d72DhwI8bFj4O2in8/ALhUcgmfnPrELbWcDgeW9AKG3QeEPA3cfj/wxp2hOHL5COyOhnVfbPbs2fjoo4+E2wcGBmLr1q3o2LGjhFURUW06f96AO+9UoaDA+TcHFoscTz4ZhTVrQq5ui4yMhL8/A6hFdOki1i49XYWMDOmCZImIiIgaioQEE7p2tWHLFucX4KxOaKgVP/xgxLx5fpDLG14IOVFdUlxcjHXr1mHSpEmIiIhA9+7d8dhjj+F/6zciLS3NLccsKTFg16+H8OwrS3HDTXej/c3jsHT5/1BQKN2Cra88MwPt27aAw+HAgzsX4tfLRyXruzK/557Euwurvn9QE0VFRXjhhRcwefJkHDt2TILKysvLy8MzzzyDDh06YO/evS7399BDD6FTp06uF0bkQc89p4Jc7hBq63DI8NprtbtoNhERERERkbtJMxuXiIiogbhyRWwAtlzuQFgYV1giqopSrkS4LhyZ+szrttsdduxM3Yl+cf08VBkRVcRutyMjIwN5eXlwOP6++aZUAtOmZeGFF8QmIRYWKrFuXQimTcuudl+ZTIaQkBBEREQ0mCCwax06ZAQgFgrWpUvtXw6Qy+Vo0aIFzpw5c93/GREOhwPnz59H69atG+S/PRFRfTUofhAUMgVsDtt12wtNhbhQcAHRgdEeqoyIiKqyfXsxzOYgobZ9+nBApisiIyMhk8mQl5eH5cvDsHSpWCBYmVOntLj9dgO2bzciMlIjUZVEVBmHw4Fp06Zh9erVwn00btwYP//8M+Li4iSpaWfOGfx7+zSklVyWpL9/0il1UMlVAIBL7fojqlNb4OdTTveT0TgSqME1IblMjntbDcao+Nux9Nj/8OqhFcg3FTl9vKroVJU/X2ZkVn+NsyJxMe4LMfOUEov4yu6ukkOO/s364/5W96NDSAen2r5x7A2YHe5fnMCsBHbGATuxF8980gWNfBthQPMBGBg/EAPjB6KxX/0Liivz6KOP4v333xdu7+fnhy1btqBbt24SVkVEtSkry4yhQ2VITxe75wWUTvh7/fWmyMtTYv58WbkAZaq5Hj3E77vt22fGXXdxSDIRERFRTa1cWYKHH9bCYJB+7FOXLkZs2KBAbKzYoi5E5DkOhwOHDh3CoUOHrm4LDAxEbGzs1Y+IiAiEhIQgNDQUQUFB0Gg0UKvVUKvVkMvlsFgssFgsMBqNyM/PR15eHrKysnDhwgVcuHABqUmn8efpJNhstioqcc24uwbgydmTAADvHV2LVae+d9uxrmW0mRDeIRj3jh6ELzb85HJ/hw4dwoQJE9ClSxeMGTMGffv2hZ+fn3B/DocDBw8exMqVK7FmzRqUlJS4XCMAxMfHY/78+ZL0ReRJN9ygxrBhenz/vVhg6vr1WixYYEFcnEriyoiIiIiIiDyDd+CJiIickJUlFmARFGSDQsGXXaLqdGrcCVuTtpbb/uUfXzIUjMhL2O12XL58GXl5eZXuM2xYPj76qBHS0sQG73/2WRjGj8+BTlfx665MJkNoaCgaNWrUoAOhEhLEV9vu1s0zk7uVSiWaN2+O8+fPu9yXzWZDUlISWrRoIUFlRETkDeRyOVqFtsKp7PKhAO8ffB9vDHjDA1UREVF1fv5ZPPR34EAOxHRVs2bNkJiown//Gy5Jf2fOaLF06WW8/HIwNBoGgxG5i8PhwIwZM7Bq1SrhPsLDw7Fjxw60bNnS5XqySrIw58c5+OLEFy73VZUgddDVr202GzRPvgX8PMzpfpIupDu1v49CjbldJmByuzvw2u8rsfT4/2C2SxNMqVNW/lyZlJom1GdcdDPRcryW3mqs9WNqFVqMih2FCS0nINLX+UUsdqXvwq7Lu6QvrAYySzKx5o81WPPHGgBAh4gOGNh8IAa1GIQ+0X2gqeL/XV0yd+5cLF68WLi9TqfDDz/8gN69e0tYFRHVJr3eimHDLDh71leS/m64QYnw8BBJ+mqoevb0gVzugN0uc7rtwYN23HWXG4oiIiIiqmeMRjtmzzZg+XJp3gf/09SpJVi6VAuNpuGOqyOqbwoKCnDs2DEcO3bM06XUyK03d8H/vT8PMpkMP6buxRO/iV8DFLEn7Qg+eec5HP/zHP48nSRJnwkJCUhISIBSqUTXrl3RuXNntG3bFnFxcYiIiIA6MLBcG5vNhsuXLyMlJQVHjhzB77//jm3btiEjI0OSmsrodDp8/fXXCAgIkLRfIk/5z3/k+F4wR9BqlWPhQj0++YRjUYiIiIiIqH5gOgkREZETMjPFJriFhNjAl12i6t3R+o4KQ8F+ufCLB6ohomvZbDakp6ejoKCg2n1VKmDatCzMmyc2eS0vT4mvvgrB/ffnXLddLpcjLCwMYWFhDToMrMyJE2K/g2bNzAgNFV9t3VVarRaRkZG4dOmSy30ZjUZcvHgRUVFRElRGRETeYETrERWGgn139juGghEReam9e8XOL0JCrOjRwz0TXhqaW29thP/+Nw+zZwcJTdy+1v33Z+O++3Jw/nwu4uPjGQxG5AYOhwOzZs3CsmXLhPsIDg7Gtm3b0K5dO5dr+fz453jsp8eQY8ipvoGLAtXXT4oJDhULNLxwKQNmswVqtXMD+kM0gXj7X4/hoQ5j8Z997+PLc9uEjn+tqkLBEpPErn/FxTQVLcdr1WYoWGNdGMY1vw9j48aW+z9XUwarAa8fe13iysQdv3Icx68cx1v73oJGqcGtMbdiUPwgDIwfiHbh7SCTufb67wlPPfUU3nnnHeH2Go0GGzduxK233iphVURUm+x2O1JTE9GxYyh+/931c8PnnsvF7NkMBHOVv78c8fEmnDvn43TbI0d4/5aIiIioOqmpFowaZUNCgvT3R7RaO5YsMWDaNN57ISLP6dHlBny7+m34+KhxOjcF4358FnaHvVZr2JOegGe6PYBvV7+NHgPuR15+oWR9W61WHDhwAAcOHLhuu06ng6+vLzQaDaxWKwwGA4qKimCz2SQ7dkVkMhmWL1+ODh06uPU4RLWpVy8N+vbVY+dOnVD7zz/X4ZVXrGjcmHP4iIiIiIio7uNdeCIiIidkZ4u1Cw2t3RsZRHXV+PbjK9yelC/NKj1E5Dyr1YoLFy7g1KlTNQoEKzNiRD4aNzYLH3fVqjAYjaUTmeRyOSIiItCmTRs0atSIgWB/8fW1olkz53/HrVub3FCNc4KCghAaGipJXwUFBcjKypKkLyIi8ryHejxU4fZzOedgt/PcmojI2xQWWnHsmFaobY8eeigUPL+TyqxZwfjgg3woFGILWwDAhAnZmDs3AzJZaVDQ+fPnYTAYJKySiABg9uzZ+Oijj4TbBwYGYuvWrejYsaNLdaTkp2DwmsGY9O2kWgkEA8qHgmm1WqFrRHa7HUkpacJ1NA+MxLrBC3Fg7Kf4V9POwv0AgK+q8tfBxOSLQn3GRdfDUDCL+0PBbgxtgeW3PYctQ7ZhWutpwoFgALDizAqk6cX/j7mT0WrET+d/wuNbH0f7D9sj6t0oTNk4BetOrEO2XvBmdi37z3/+g0WLFgm3V6vV2LBhA/r37y9hVURUm/6fvfsOj6La3wD+7mzfTa+kQQqh1wQUe1cQLKDYAEUpomL3WrkqYvfqtYEiRRRFQRFFEPSKl0sRpYRek5BCSEivm+2zvz/4oWI2JDs72d0k7+d5eK6emXPmexGyszPnvEcUReTm5sLpdODBB0vx5JPFUCikf5e5665qvPBCmHwFdnIDBzok9duzx7PAViIiIqLOZu1aM4YMUSArS/7NOJKTbdi40c5AMCLyq5FXno//fjcXYaHBqLLU4ppVD6POZvJ5HZtLdsMpOtE9NQn/WT4b4WEhbX7NxsZGlJeX49ixYygpKUFNTY1PAsHmzp2LW2+9tU2vQ+QPTz0lfTMUs1nA66/7brMaIiIiIiKitsSZ9kRERB6oqJD2YDEiQvrkRaLOJMIQgSBNUJN2m9OG3KpcP1RE1HmdCgM7dOgQ6uo83yVLrXZh0iTpC5AqK9XYuDEEXbp0QZ8+fRAdHc0wsL8QRREPPHACa9cewZYtB7B4cS7++c/juPnmSmRkmBAc3Pxkgt69pU3kl1tcXByMRnkmopWWlqK+vl6WsYiIyL8SQxIRqm26cNvpcmJNzho/VERERGfy448NcDikfVc7//zA+G7Skdx9dzg+/LAGKpXnz6PHjavA44+fDAQ7xeVy4ejRowwGI5LRQw89hNmzZ0vuHxQUhDVr1mDIkCGSx3CKTrz929voO6cvfsr9SfI4UoRpwpq0paamShpLauDWX53VpR/+N+YjfDvyX+gZ1k3SGAZV84s4c/OLJI3Zq0eypH6BzORou8+SK7sOw4/XvY9dN32OixPugAre7fxeUF+ABYcXyFRd2ztefxwf7/oYty6/FTFvxGDovKGY8csMbCjYAJtT+sYdbeWf//wnXnnlFcn9VSoVli5diquvvlrGqojI1woLC2G1/rmJzbhxVXjjjWNQqz3fFGDkyDrMnRvK94gyysyU1q+kRI3iYn7XJyIiIvo7UXRh5kwTRo3SoaLCu+cW7gwf3oisLCUyM7Wyj01E1FrTJt6Abxf/CwaDDnanAzeteQo5td4/x5eizmbCnspsAEDmoN5Yt2IOIiOkbyIRiARBwNy5czFlyhR/l0LUJq64Qo+hQ6W/W1qwQI+amrYN5iMiIiIiIvIFzoQgIiLygNRQsKgohoIRtVavyF5u2z/Z/YmPKyHqnBwOBwoKCiSHgf3V6NHViImxe9zvggsasHZtHR5+OAlRUVFe1dBR/XVBdlCQiEGDzLjppmrMmFGCTz7Jw+bNB/HTT4cxe3Y+HnzwBEaMqEH37haoVC707+/Hwv+mW7duUKvl2TW8oKDgtAUkRETUfp2dcLbb9nlZ83xcCRERteSXX6Q/9xw+nItT2sLkyeGYO9ezYLBbbqnEE0+cHgh2isvlQm5uLhobG2WskqhzevTRR/HOO+9I7m8wGLBq1Sqcc845ksfYU7oH5yw4Bw//+DAa7b7/ex2qabroplcv9+8EWrLvoDwbiSgUClyXejH23rYUcy5+EjH6CI/6NxcK5nQ6cfBInsf1REWGISmhi8f9Al2jXd4d2dWCCnf0GoXdt36BH697H1d2HYYySzDMFu+eD7pcLryy+xU4XO0z0MQFF7YXb8dLG1/CRYsuQuTrkbjuy+swe+ts5FTlwOXy7zvr559/Hi+++KLk/kqlEp9//jmuv/56+YoiIp87fvw4GhoamrRfdVUd5s4tQFBQ6xfrDRvWgGXLDFCpOA1WTmefrZTcd8uWwAukJCIiIvKn6monRo0y4/nnjXA6pc1Bb44guPDssw1YvVqP8HDp93BERN6ICA/F8kWv44M3n4JKdTL48JFNb2Fd0Va/1rXh+M4//nnwgF74/adPMLBfDz9WJJ/w8HCsXr2agWDU4T3xhPR3GnV1Svz739z8jIiIiIiI2j/OhiAiIvJAZSVDwYja2uWpl7tt/0/uf3xcCVHnYrPZkJ+fj0OHDqG+vl6WMbVaF+68s6LV5196aT3WravDhg1BuOqqEFlq6KhMJtMZjysUQFycHRde2IDJkyvw+utFWLEiB7//fgA33CD/jpNSCYKAtLQ02XZvz83NhdPp+S7yREQUWCYOmui2fVPhJt8WQkRELdqyRVqwV3S0HYMG6WWuhk65665wzJ9fA5Wq5e9HN91UiaefLnEbCPZXR48eZTAYkRcef/xxvPXWW5L763Q6fPfdd7jooosk9bc4LJjxywxkfpSJbcXbJNfhrTBNWJO23r17Sxprx+6DXlZzOrVShXv634ic21dgxtBJ0Kta9xlnULsPBTtwOA9ms+cBVYP79/S4T3vQ6JAnFCxMG4wnMyci/47vseiK5zEgKh0A0NDoQEWd9zu+/1z8MzaXbvZ6nEDRYGvAysMrMX3NdKS/l460d9MwbdU0rDi4ArWWWp/W8tJLL2HmzJmS+wuCgEWLFuGmm26SsSoi8rWysjJUV1c3e3zoUBMWLTqK6OiWNx3q1cuM77/XwGAInPdeHcXQoRoIgrR5Ttu28T0dERER0SlZWVZkZjqxZo1B9rEjIx1YtcqCmTODIAjyho0REbXWqKsuwJ4NX2DMNZf+0fbh3q/x/p5lfqzqpI3FO0/797SURGxZuxC33zzSTxXJIyMjA9u3b8fw4cP9XQpRmxs9Wo/evaVvBjNnjg6NjXxWRURERERE7RtDwYiIiDxQVSVtJ6XoaL5wJWqt8QPGu20/UHHAx5UQdQ42mw15eXk4cuSI2125vXXDDVWIjDzzxP2rrqrDhg11WLcuGJdeyjCw1pC6EFujcSEiwihzNd5RqVRITU31ehyXC1i4MBwTJtQxGIyIqJ0b23csBEXTR9eV5kpUNVb5oSIiInLHbLbBapX23PPss81QKvmasi3dcUc4Fi6shVrd/PejG26owjPPtBwIdsrRo0dbDKkmoqaefvppvPHGG5L7azQaLF++HJdf7n5DjZZsLNiIQR8OwksbX4JDdEiuQw6hmtAmbVJDwbL2HPK2HLeCNUbMGnYPsieswF19roUCZ/4hGaJx/6xtxy5poWUMBXMvJSQB71z4GI5NXI1Xzp2O+KDoP445bFYUNXj/XLnR0YjXdr/m9TiBLK8mD3N3zMWYZWMQ+Xokzlt4Hl743wvYX7a/Ta/72muvYcaMGZL7KxQKzJs3D+PHu3+HSETtQ1VVFcrKylo8r2dPKz777CiSk5tf8JeQYMMPPwBRURo5S6T/FxQkID3dJqlvVha/6xMREREBwMKFJpx/vhp5efLfs2ZkWLB9uwsjRnDzFaL2QKvVwmgMrDmb3hrYrwd+/mYOvl/ybyTEx/zRvr5oO+7fIP19iJw2FO+Ey3V64LVer8Mnc2bii08+QGJiop8qk8ZoNOKNN97A77//Lst8W6L2QBAUePxx6RvCVFSo8MEHZhkrIiIiIiIi8j2+gSciIvJAVZW0j87o6JbPIaKT+sb0hVpQN2mvs9ahzlLnh4qIOqaSEitWrDiOI0eOtOmCXr3ehYkTK5q0KxQujBxZhy1b6rF2bQguuIBhYJ6wWqXtfKRQKCAIgfcoQKfTISkpSXJ/u12B555LwJtvxuGLL8Lw4os18hVHREQ+pxJUSA5Ldnvsg+0f+LYYIiJqVn19Db76Khfr1x/EG28U4qabKs+4aPuvLrjAv6E0ncWECeH45JM6aDRNg8HGjKnCs88Ww9OviHl5eQwGI/LAP//5T7zyyiuS+6tUKixduhRXX321x31rLbW4Z9U9uHDRhThceVhyDXIK04Q1aUtJSYFOp/N4rKP5x1Fd03bvDBKCYrDgsmex+9YvMLzruW7PSQtNRIIxxu2xHbulhYJlDOwlqV+gM9mlhYKdHdsPy4a/iiMTluOBgbcgSGM47bhLFFHUGA2HQ/qikFM+PPghSs2lXo/TXjhdTvx67Fc8t/459P+gP55Z90ybXOfNN9/Ek08+6dUYc+bMwV133SVTRUTkD/X19SguLm71+fHxdnz66VEMGNB0k5zwcAdWrrQhJYUBCG1pwABp39v37Gk614OIiIioM7FYREyZYsKkSUaYzfLP0Zo0yYTNmzVITuZ9F1F7ERcXh/Lycnz11VcYO3YsDAZDy50C1NDBfbDkoxeR9d/PcNlFZ5127GhtEW5Y8wQcovfPauVQbq7G4eoCt8cuu+QCfPvtt7jvvvsQGtp0M5NAolKpcPvtt+PAgQN47LHHoFKp/F0SkU+NH69HcrK08HoAePttNex2V8snEhERERERBajAWwlMREQUoBwOF2prlZL6xsTwI5fIE80FAHy5/0vfFkLUAR07ZsE991QjPV2Fe+6Jgc2maPNr3nRTNcLCTk4cVypduO66WmzfbsKqVSEYNiy4za/fETkc0ibiB/KEgNDQUERFRXncr7paiSlTkrFiRfgfbS+8EI4vvqiRsToiIvK1Ed1HuG3/+uDXPq6EiIiaU19fDwCIjHRi+PA6/POfJfj++2ysW3cIr7xyDGPGVCEx0f3kzKuu0viy1E7t1lvD8OmnddBq/wwGu+66ajz3nOeBYKcwGIyodZ5//nm8+OKLkvsrlUp8/vnnuP766z3uu/LwSvSd0xcf7vhQ8vXbQqim6eIapVKJPn36SBpvw69Z3pbUov5R3bHmunfx03XvY2BUjz/aDSod5l7yNBQK989X12/eIel6Z2X0ldQv0DU6Wh8KpoAC16dejE03zMeWsR9jbPrlUAnun2tWNurQ0ChtA4W/yq3LxadHPvV6nPbKBRde3vQyth3fJuu477zzDh577DGvx5g2bZpMFQWmt99+Gy6Xq13+uuiiiyT9f/7vf/8r+ZrU/pjNZhQUuF+Eeybh4U7Mm5eHCy/8MwRUrxexdKkJGRlBcpZIbgwZIu3vW2mpGseO2WWuhoiIiKh9KCiw47zzbJg/3yj72Hq9iHnzTJg/3widjnPSidobvV6PG2+8EcuWLUNFRQW+//57TJs2zauNVH3FYNDhljFXYvOaBdj686e49YbhTTamrbM14JpVj6DKUuunKt3bWLyz2WNarRbTpk3DTz/9hMceewyxsbE+rKxlBoMB99xzD7Kzs/HJJ5+ga9eu/i6JyC9UKgUeflh6KFhRkQaLFjXdeICIiIiIiKi9CNzVwERERAGmvNwJl0vaR2dMTNsHrhB1JOcmnYvsquwm7SsPr8TUzKl+qIio/cvLM+OllyxYsiQUZrMOAGAyKfHdd2EYO7a6Ta9tMIiYNKkcBQUGzJihxMCBgb2zVqBzOp2SF77odDqZq5FXly5dYLVa/wgXaElurhbTp3dDUdHpgQKiqMCUKcFITW3A2WdzYQgRUXs0feh0zN42u0n7gfIDfqiGiIjcsVjch3vExDgwalQtRo06Oem7pESNrVuN2LrViG3bjHC5gH792u8O2O3RzTeHQamswfjxIbjyylrMnHlcciDYKXl5eUhOTkZQEL9zEbnz0ksvYebMmZL7C4KARYsW4aabbvKo34mGE3hgzQP46sBXkq/dlsK0YW7bhw0bhqwszwO+fv7fVlx39cXeFdVKV3Qdhqyks7C74gjy60pwQfxgROnD3J5bWlaJfQdzPb5GWkoiUroleFlpYLI5Ww4H0au0mNj7Gjw86Dakh7W8wMlstqG0XgfAu5Agl8uFl3a9BCecXo3TERyqOIShCUNlGWvOnDl46KGHvBrjjTfewAMPPCBLPUTkHzabDUePHpXc32Bw4Z13CvHCCwlYuTIMCxbU4YorwuQrkJp19tnSpxb/9psdSUlqGashIiIiCnxr15oxYYIaFRXyz81KTrbh669dyMyUP2yMiHxPr9dj1KhRGDVqFADg4MGD+OWXX/DLL7/gf//7HyorK/1cIRASbMTwy87FjddehpFXnA+DofmfbU7Ridt+nIEDVdK//7eVDcVZmNJv9BnPMRgMuOOOOzBhwgT8/vvvWL16NdatW4eGhgYfVfknpVKJSy65BBMmTMCYMWP4Hpbo/02dasDLL9tRWirtedO//qXCXXe5oFRyXR8REREREbU/DAUjIiJqpRMnnJD60dmli1LeYog6uJv73oxPdn/SpH1HyQ4/VEPUvuXkmDFrlhVLl4bAatU3Ob5gQTSuv74a6jacl63RaDBzZgiMRk5MkoM3kw0MhsBfeJ+UlIScnBzYbGfe2WnTpiD84x9JaGhwf59lMilxww0a/PabBYmJgR2GRkRETfWK7gWj2giT3XRau81pw6bCTTi/6/l+qoyIiICTC7tbG1YcF2fHddfV4LrrauByASaTFkplehtXSH93441hiIqqQnh4MZQyPa7Oz89Ht27dEBwcLM+ARB3Ea6+9hhkzZkjur1AoMG/ePIwfP77VfVwuFz7e9TEe/elR1FhqJF+7rYWq3W8WcM4552DOnDkej/fz/7Z6W5JHBIWAwdG9MDi61xnPk1rXFRedLalfe9A3MrXZYzH6CEwfcBPu6X9js0Frf+d02HHMFAGXq+WwsZasKVqDbeXbvB6nI+gf21+WcebNm4fp06d7NcaLL76Ixx57TJZ6iMg/nE4ncnJyJG90c4pKBcyceRxTptgwYkSsTNVRS4YM0UCpdMHp9Hyx5PbtIsaObYOiiIiIiAKQKLowa1YjZs0ySLp3asnw4Y1YskSL8HDOQyfqqHr37o3evXvjvvvug8vlQnZ2NrZu3YqtW7cia/tv2HfgCGpra9vs+gqFAkkJsRgyqDcuOGcwLhg2GIP694CylS8Un94yG6vzN7VZfd7YULyz1ecKgoBzzjkH55xzDp577jns2bMHW7duxe+//44DBw7AbDbLXp9SqUSvXr1w8cUX47LLLsMll1yCsLAw2a9D1N7pdAKmT2/EP/8pbbHDkSNafP11I26+OfDn0BMREREREf0dQ8GIiIhaqaxMlNw3NpYvY4k8cVXaVVBAAdffdncvbSiFKIoQBMFPlRG1HwcPNuLFF2346qsQ2O1Nw8BOOX5cg1WrwjB6dI3sNWi1WiQkJLSLIKr2xJtQsPawUFsQBKSlpeHw4cMQxab3Xy4XsGRJBF5/PQ6ieObJdMePa3D99SZs2OCEwcD7MSKi9iYjLgMbCzc2af9g2wcMBSMi8rOqqipJ/RQKIDGx+e+o1LYuvjgCFRUiTpw4IduYBQUFDAYj+os333wTTz75pFdjzJkzB3fddVerz8+tysXUVVPxS94vXl3XF8K0YW7b+/Xrh6CgII+fex3KzkfBsRJ0S4qToTr5rF33q6R+V1zccUPBbu81Eh/uXY7DNQV/tPUOT8Gjg8dhXM8R0Km0Ho1X3BgJm83qdV0N9ga8sfsNr8fpCKZmTMWgLoO8Hufjjz/G3Xff7VUI0LPPPotnnnnG61qIyH9EUUROTo7b9zxSBAcHMRDMx4xGAenpVhw65NlnNABkZXE+BxEREXUO1dVOjBtnxZo18m+UKQguzJhhwnPPGSEI8oeNEVFgUigU6NGjB3r06IHx48fDVleEI4U1KC8vx9GjR3H8+HGUlJSgpKQEFRUVqK2tRU1NDerr62Gz2WC32+F0OqFUKqHRaP74ZTAYEBERgcjISERERKBHUgh6du+K3j1S0LN7NxiN0t7ffnpwFV7P+lTm3wX5FNafQEFdCbqFePYOQa1WIzMzE5mZmbjnnnvgcrlQVFSE7OxsHD16FCdOnEBFRQXKy8tRVVUFs9n8x++/zWaDUqmETqeDVquFXq9HREQE4uLiEBcXh/j4ePTo0QP9+/dH7969odNxw1ui1rj/fj3efNOBmhppy+FffVXA2LEu3lcREREREVG7w1AwIiKiViotlTZZ0Wh0Qq9nCAWRJwRBQGxQLE40nL5A0QUXfsz9ESPSR/ipMqLAt3evCbNmObBiRQgcjtaFcc2fH41rrqmBSqZviDqdDgkJCdDrudC7LVgsFsl928sEAqVSidTUVOTk5JzWbrcDr70Wh6VLI1s91o4dRkyYUItly4KhVHIRAhFRezKu/zi3oWD/zf+vH6ohIqK/8iasODw8XMZKyFNRUVFQKBQoKSmRbUwGgxGd9M477+Cxxx7zeoxp06a1+vwtx7bgisVXwGQ3eXVdXxAgIFjt/ueESqXCkCFDsH79eo/HXbriJzz+wB1eVicfi8WK79Zs8LifUqnEJRcMaYOKAkOELhSbb1yAL7N/QoW5BufEDcDlSWdBUHj+vK7apEBtg/eBYAAw+8BsVFgrZBmrPRvRfQTev/p9r8f57LPPMHnyZK8CwZ588knMnDnT61qIyL+OHj0Ku90uy1harRZdu3aVZSzyzMCBDkmhYLt3q9ugGiIiIqLAkpVlxY03KpCXJ/9mmZGRDixebMeIEUGyj01E7VN0dDSio6NlGy81vAEGvXff3baU7MGUX16SqaK2s7F4p8ehYH+nUCiQlJSEpKQkXHrppW7P0ajV6NGzp1fXIaLmhYYqMXVqA15/Xdr90a5dOvz4oxkjRnBtAxERERERtS9cDUtERNRK5eXS+oWHO+UthKiTyOiS4bZ92f5lPq6EqH3IzW3A6NG1GDzYgK++CoXD0fqdbAoLtVizJtTrGvR6Pbp3747u3bszEKwN2Ww2Sf0EoX09AtDpdKct8qitFXDPPckeBYKd8s03oZgxo0bG6oiIyBfuGOR+YX9JQwlMtsAPPSAi6sisVulBHEajUcZKSIrIyEjExXk3+f3vCgoKUFdXJ+uYRO3JnDlz8NBDD3k1xhtvvIEHHnjAoz53fHtHuwgEA4AQTcgZA6AuueQSSeN+8c2PUktqE6t/2oT6Bs//m1xwziCEh4W0QUWBI1IfhvsG3ITnzp6KK7sOkxQIZrVYUVIvz8YHh2sPY0nOElnGas+Gxg/FV2O/glrp3SLAL7/8EhMnToQoSttoCwAefvhhvPLKK17VQUT+V1BQ4NUGN3+lUqmQlpbW7t5xdRSZmdJCHsvL1SgokCcUjoiIiCgQLVxowvnnq5GXp5F97IwMC7ZvdzGwgogC2rH6Exj9wz9gEwP/u9+G4p3+LoGIZPLoozoYDNLX5/H1AxERERERtUecLUFERNRK5eXSJrtFRkqf+EzUmV3b81q37ZuPbfZxJUSBra6uDocPH0ZZWSHWrQuC09n6MLC/mjcvGk6J78kMBgPS09ORlpYGnU6eBVnUPKfE/1AajfwT0dpaSEgIYmJiUFCgwfjxafj9d+k7YL72Wjg++aRaxuqIiKit6VQ6JAQnuD22IGuBj6shIqJTrFYrXC5pz0rb4/eSjioyMhLx8fGyjllYWIja2lpZxyRqD+bNm4fp06d7NcaLL76Ixx57zKM+9dZ6ZFdle3VdXwrVnHlTgiuuuELS58SuvUdw4NBRqWXJ7vOv10rqN37sCJkr6XhEpwPHTFFehU79MZZLxEs7X4KIzv0eNz0iHatvWw2jxrvQ1m+++QYTJkyQ/OwaAKZPn4633nrLqzqIyP+Ki4tRX18vy1iCIKB79+4MBPOjs89WSe7722+BvzCciIiIyFMWi4gpU0yYNMkIs1n++9RJk0zYvFmD5GTvgruJiNqS1WnDdasfRWljpb9LaZUNx7P8XQIRySQmRoXbbzdL7r9xox6bN8uzmQEREREREZGvcMYEERFRK1VUSAtZYSgYkTS39rvVbXt+Tb5vCyEKUDU1NTh06BAKCwtht9sRHCxi3DjpL9nz8nT4z39CPOpjNBrRo0cPpKamQqvVSr42tZ7VapXct70GtsXExGD37ijk53v3Z8zlUuCee0KwcWOdTJUREZEvXJ56udv2L/d/6eNKiIjolKqqKsl9g4KkB/2S/CIiImQPBjt27BiDwahT+fjjj3H33XdLDksEgGeffRbPPPOMx/2CtcHoGdlT8nV9raVQsODgYFx00UWSxn7noy8k9ZNbfmExVq7d4HE/rVaDG665rA0q6lhKzaGwWG2yjLWyYCV2Vu6UZaz2qktQF/w4/kdEG6O9GmflypW45ZZb4HA4JI8xZcoUvPvuu17VQUT+V15e7tX3xb9SKBTo3r07VCrpoVTkvSFDNFCppN3nbtvGuVJERETUsRQU2HHeeTbMn+9dsLY7er2IefNMmD/fCJ2OS7yIKLB9enA1dpYf9ncZrXa4pgBljfI8ryAi/3vySS3UaunPnV56ic+siIiIiIiofeETYyIiolaqlJizEhEhfSEIUWcWogtBiLZpQJFdtONA+QE/VEQUGE6FgRUVFTVZZDN+fCWMRqfksefOjYHYinddQUFB6NGjB1JSUqDRaCRfjzznze7q7Xnx/RNPhOG222q8HsdsVuKmm3QoLJS+UxQREfnWfUPvc9u+68Qu3xZCRER/aGhokNw3PDxcxkpIDm0VDFZcXCPrmESB6LPPPsPkyZO9CgR78sknMXPmTMn9P7n+E7fP0QNRmCasxXNGjhwpaezFy35ARWWNpL5yevvDL+B0ev58duQV5yEsNLgNKuo46htFVNZJD536q1pbLd7a+5YsY7VXwZpg/HDbD0gJT/FqnLVr12Ls2LGw2+2Sx5g4cSLmzp0LhULaBl1EFBhqampQWloq23ipqal8BxkADAYBPXpI27Bo505OTSYiIqKOY+1aM4YMUSArS/4NGZOTbdi40Y7Jk+UPGyMiagu/l+7zdwke21jcuTeIIOpIunVT4+abpc8BX7tWjz175NmAhoiIiIiIyBf45p2IiKiVKiqkfWxGe7e5MlGn1juqt9v2xXsW+7gSIv+rqqrCwYMH3YaBnRIa6sStt0rf0SonR4f//rf5xWfBwcHo2bMnkpOTORHfTxobGyX3bc+hYEqlgIULQ3DOOdLDB065/PI6VFcfbfbvERERBZahCUOhVWqbtJsdZuwt3euHioiIyGaTPkFSr9fLWAnJJSIiAomJibKNt359MAYNMmLjRunB1kSB7ssvv8TEiRMhtiZhvxkPP/wwXnnlFa/qODvxbOy7Zx9u6nuTV+P4QmtCwS688EJJAZJmsxVvf7hEQlXyKa+oxoLPvpPU945bRslcTcdit1pRVC/fs8339r+Halu1bOO1N2pBjRU3r8DguMFejbNu3TqMHj3aq3vDcePGYcGCBQwEI2rnGhoaUFRUJNt43bp143fHADJwoLQNqfbs0UAUuYkiERERtW+i6MLMmSaMGqVDRYVK9vGHD29EVpYSmZlN34cTEQWqXuHJ/i7BYxsYCkbUoTz1lAqCIO25k8ulwIsvSt/ohIiIiIiIyNcYCkZERNRKlZXSPjYjIznJjUiqK9OudNv+c+7PPq6EyH8qKytx4MABFBcXw+lsedL17bdXQK+XNjkbAObOjYHrbx9dwcHB6NWrF7p16wa1Wi15bPKexWKR3Felkn9ymi9ptQJWrNAgOVnajuQqlQv//OdxPPHECSiVLuTm5nq1cJeIiHynX0w/t+3vb33fx5UQEZHFYoHr718aW4nh0oEtLCxMlmCwDRuC8PDDSSgvV2PUKD3+9z8Gg1HH880332DChAmtelbXnOnTp+Ott96SpZ6k0CQsvXEpfp7wc7MbbQSCEE1Ii+eo1WrceuutksZ/64PPUVh0QlJfOcx4eQ4aTJ4H+vdI64pRV13QBhV1DC7RiSJztFd/3/5qf/V+LD26VJax2qtPR3+Ky1Iv82qMDRs24Nprr/XqefVNN92ETz75BILAqWtE7VlhoQWffloh23jx8fEIDm5+AyPyvSFDpPWrqFChsJAb9BAREVH7VV3txKhRZjz/vBFOp7xh1oLgwrPPNmD1aj3Cw5Wyjk1E1NbuH3gzLoj3bsMBX9vIUDCiDqVPHy2uvVb6JtsrVhiQkyN9wxMiIiIiIiJf4swqIiKiVqqulvaxGRPDnY2JpLpj4B1u2w9VHvJxJUS+JYoiysvLceDAAZSUlHgUXBQe7sTNN1dJvvbBg3ps2HBysn1ISMgfYWDtPVCqo7Dbpe1O1FH++8XGavDNN3aEhHi2iCAkxIEPP8zHTTdV/9Fmt9tRUFAgd4lERNQGbup7k9v2H3N/9HElRERUXV3d8knN4MLuwOdtMNjGjUF46KGucDhOPkuvq1PhmmsM+OWXOrlKJPK7lStX4pZbboHDIT3gYMqUKXj33XdlrOqky1Ivw+5pu/GvK/6FIE2Q7ON7K0wT1qrzbr31Vuj1eo/HN5uteGKm/L+vrbF73xHMX/ydpL6PTZ/AUKQzKDcbYWqUtknA34kuES/tfEmWsdqrf1/1b9zS7xavxvjtt98wcuRINDZKX3AzevRofP7551AqufCZqD2rrrZjxAgX7r+/G5YtC/d6vOjoaERERMhQGcnprLOk/6zeskXae00iIiIif8vKsiIz04k1awyyjx0Z6cCqVRbMnBkEQeD8ciJqf7RKDf435iP8eN37eGzwBJzTZQDUQmDPT91VfgS11gZ/l0FEMnrmGek/dxwOBV55haFgRERERETUPnBmIRERUSuIogtVVdImujEUjEi6tIg0aJSaJu0NtgZUNUoPPSIKVKIooqysDIcOHUJpaalHYWB/dccdFdBqpfVNSLBBpzOgd+/e6Nq1a4cJk+oIRFGEy+WS1Fer1cpcjf8MHhyERYsaoFK17vciOdmKzz8/irPPNjU5ZjKZUFJSIneJREQks6mZU922F9YWwu7kwjIiIl+qr6+X3Dc83PtF4tT2wsLCkJSU5HG/zZtPBoLZ7ae/fq6vV+L66434z39q5SqRyG/Wrl2LsWPHSg5tB4CJEydi7ty5UCja5t2RWqnGo+c+iiPTj2D8gPFtcg2pWhsKFhYWhuuvv17SNb785id8vfJnSX2lslisuOO+5yU9y+0SG4nbbx7ZBlV1DI1mO8pqpT0PdWd53nLsrd4r23jtzT/O/QceGvaQV2Ps2LEDw4cPR0OD9AV0o0aNwtKlS/nugaids1pFXHutFQcO6CGKCsyalYD334+BxNdYCA0NRWxsrLxFkiwyMzVQqaS9d962TVo/IiIiIn9auNCE889XIy+v6bxVb2VkWLB9uwsjRngeiE9EFEgUCgWu7DoMb5z/IH4duxC1d6/HhjHz8Mo50zEq+QKEa0P8XeJpXHBhc8kuf5dBRDIaMkSLyy6TvnnJkiUGlJRI3wSKiIiIiIjIVxgKRkRE1Ap1dSJsNmkfmzEx/Lgl8kZqWKrb9s/3fe7jSojajiiKKC0txcGDB1FWViY5DOyUqCgnxo71LDivWzcr3nqrCrm5KkyaFA2lUvquz9Q2TKamoVatpdd3rMlko0eHYdas6hbPO/vsBnz2WS6Sk5vf0amyshI1NTUyVkdERHIL04UhxhDTpN0FF5bsXeKHioiIOi+bTdpuqQqFAjqdTuZqqK2EhoZ6FAy2ZYsRDz7Ytdln6PX1SowZE4Qff2QwGLVf69atw+jRoyX/HASAcePGYcGCBW0WCPZXccFxWDx6MTZM3IABsQPa/HqtEaoNbfW5d9xxB9RqtaTrTH7wReQVHJfUV4qHn3kLu/cdkdT30XvHQ6uVf4FpR+C023CsIUy28aqt1Xh739uyjdfejB8wHq9e/qrX47z33nuorfXu83zVqlXQaDRQKBTt9tf69eu9/r0kas+cThE331yPTZuCTmufOzcGzz8fD4eHa+mMRqOkYGLyDb1eQM+e0u6Bd+7kfCkiIiJqPywWEVOmmDBpkhFms/z3MZMmmbB5swbJydKeeRERBTK9SocLEgbjySET8f01/0bFlJ+xf9wyfHTJM7ij1yikhSb6u0RsLN7l7xKISGbPPCP9ns1iEfD66xYZqyEiIiIiImobfOtORETUCqWlTsl9Y2PbfnEHUUd2ftfz3bavPrzax5UQyU8URZw4cQIHDx5EeXk5XFK3z3bjzjsroNG0HC6WmmrB++9X48gRNR5+OAJaLb8mBipvQsGCgoJaPqmdefLJCEycWNPs8ZtuqsQHH+QjNLTlvwdFRUVobJS+YxQREbW9C7td6Lb9092f+rgSIqLOy5t7Zo2GgSftTWhoKLp27drieb//bsT993eD1Xrm5wkNDUrccEMQ1q6tk6tEIp/ZsGEDrr32Wlgs0ieG33TTTfjkk08gCL599nZBtwuwY+oOvDfiPY9CudpCqLr1109ISMDtt98u6Tq1dQ245raHUVlVI6m/J9776Et8uGi5pL7dU5Nw/5SbZa6oY3CJLhxvjILdLt8O7W/vext19s75GXRl2pVYcO0CCAo++yciedx7by2++8795/o330TgoYe6wmxu3TwZrVaLbt26yVketYFBg6TNmdq7VwNRlO/9NxEREVFbKSiw47zzbJg/3yj72Hq9iHnzTJg/3widjt/NiahzEBQC+kSkYkq/0Vh0xfPIuf1blNy1FstHvI5HBo3D2bH9oBJ8u3HxhuIsn16PiNreJZfocPbZZsn9FyzQo7pa+lpBIiIiIiIiX1D5uwAiIqL2oLS05TCJ5nTpwo9bIm/c0u8WzN85v0n7zhM7/VANkTxEUURpaSmqqqpkDQL7q5gYB0aPrsbSpZFuj6enW/DYY2bcdVcoVCpdm9RA8jKbpb+4NBgMMlYSOD76KAS5uQ3YuPHP0DNBcOHxx0tw221VUHiQzZqXl4eePXtCpeK9GxFRIJqaORVfH/y6Sfu24m1+qIaIqHOqrq6W3LcjBhV3BiEhIejWrRsKCgrcHt+2zYDp01sOBDvFZFLihhuMWLasFiNH+jeciKi1fvvtN4wcOdKrYMTRo0fj888/h1Lp2wUup6gEFaafNR039b0JT/38FBbuWuiXOsK0YR6dP3XqVKxatQqlpaUeX2v/oaO48LoH8NniTxESEuJx/9b4culS/POfb0ru/8STM1BkigKk7wPQYblcLlisVtnG21W5C9/kfyPbeO1JZlwmvh77NTRKBrQSkTyee64KH30UccZz/ve/EEyenILZswsQFtb8ojqVSoW0tDSfh6aS54YMAT7/3PN+lZUq5OXZkJbGzyEiIiIKXGvXmjFhghoVFfLPn0tOtuHrr13IzJQ/bIyIqL3pYozCmO6XYkz3SwEAjXYLtpXtx+R1s5BTW9Tm199WegBmhwV6zpcm6lCefNKF0aOl9a2vV+KttxowaxbnsxARERERUeDijAoiIqJWKCuTFgqmUokIC+PHLZE3Lkm+xO3u5eWN5XCI8u0ST+QLdruI2bOrMXp0HSoqKtssEOyUSZMqoFKd/hnWu7cZCxdW48ABDaZODYdKxc+p9sIqcSGcQqHosAsq1GoB33yjQVqaBQAQFOTE7NkFGDfOs0Aw4ORiw5ycHIii9DBYIiJqO5elXAaV0DS4sd5Wj7zqPD9URETU+ZhM0lNLIiLOvGicAldwcDC6devWpH3HDgPuuy8ZFotn3zcbG5UYOzYIK1fWyFQhUdvZsWMHhg8fjoaGBsljjBo1CkuXLg2IEPIYYwwWXLcAv036DZlxmT6/fpgmzKPzDQYDHn30UcnXO3DgAMbccCP27N0Hs8Uq268GUyNefuVV/POfz0p+vnvRRRdh2DnnylpXR/plsdok/3f/O6fLiZd2viTbeO1JalgqVt+2GsHaYH+XQkQdxIcfVmPWrPBWnbtnjwETJqSiuFjt9rggCOjevXuHfX/V0Zx1lvRw299/55wOIiIiCkyi6MLMmSaMGqVDRYX8z+6GD29EVpYSmZla2ccmIuoIDGodLkrIRK3V/TvoeGOUrNeziw78fmKfrGMSkf9de60efftaJPf/4AMdTCbOGyciIiIiosDFWRVEREStUFYmbVJ/eLgTguBhIgURnUYQBHQJ6tKk3QUXfjjygx8qIvKc1Sri3/+uQnq6HdOnh2PlyjD89lvb7wAYF2fHddfVAAD692/E4sXV2LtXizvvZBhYe3TkiBI2m+f3FWq1+wUXHUVUlAbffuvEgAGN+Oyzozj/fOkLdR0OB/Lz8+UrjoiIZCMIAnpF9nJ77P1t7/u4GiKizslmkxbQoVAooNVy0Ut79vdgsJ07Dbjnnm4wm6U9WzCblbjllhB8+22NTBUStY333nsPtbW1Xo2xatUqaDQaKBSKgPk1LGkYdty9A3gerfslUwZvqCbU4z4jRozARRddJPma+fn5GDduHL744gs4HN4HUuTm5mLy5MlYuHCh5ECw4OBgPPXUU17XQq2zNHcpDtUe8ncZflFlroILbbsxCRF1Ht98U4MHHgiFy9X691T5+VqMH5+Kw4dP/z6oUCjQvXv3gAhNpdbJyNBArZa2OHLbNi6qJCIiosBTXe3EqFFmPP+8EU6nvHO8BcGFZ59twOrVeoSHSw9XJSLqDByiAxWW6ibtgkKBYxN/QPFda/HViFfx0KBbMTSmD5QK736ubi3d71V/Igo8gqDA4487JfevrFRhzpxGGSsiIiIiIiKSF1eBExERtUJ5ubR+ERGc3EYkh6HxQ922LzuwzMeVEHnGbHbitdeqkJbmwCOPRKCg4M9J7x9+GOOTGqZNq8TSpTXYuVOH8ePDoVTya2B7VF/vwOjR3XH22X0wenR3PP54IubPj8L//heMkhI1zrQGUafT+a5QP+nXz4h168xIS7N6PVZjYyOKi4tlqIqIiOR2fa/r3bavOrLKt4UQEXVCJpP7HZpbg4FgHcOpYLA9e/SYNq0bzGbvJt2bzQJuvTUEP/zQdKI/EXU8akENvVIvqe9LL72ELl2abhzSWmazGS+//DLGjBmDtWvXSgq5PHr0KGbOnIkbbrgB27dvl1wLAMyaNQsJCQlejUGtU2GpwHv73/N3GX5TY61B2rtp2F/GhW5E5J2NG+tx++3BsNs9f8dYXq7GxImp2Lbtz82SUlJSoNFo5CyR2phOJ6BXL2lB4VlZDMIgIiKiwJKVZUVmphNr1hhkHzsy0oFVqyyYOTOIG0oTEbXC93kb3W5rEGeIgiAIiDNG4cbul+PfFzyKrTd/itq71+OX0R9i1rBpGN71XIRoPNuc2eni2h6ijui22wxISZH27AoA3nlHA5uNm6wQEREREVFg4nZrRERErVBRIe0BH0PBiORxXc/r8N3h75q0byna4odqiFrW0ODA22/XYfbsIJw4EeH2nKwsI7ZtM2Do0LbZXUYQBERHR6NPn0gIAoPA2rvt2xshiiEQRSAnR4ecHB3WrPnzeHCwE+npFqSnW9CjhwXp6Vakp1sQFCTCYJB/ElsgioqKhMViRk1NjddjVVVVQafTISLC/d9fIiLyj/vOug8vbnyxSXtuVS5EUeQ9DxFRG6qulh7cFBQUJGMl5E/BwcHo319AaKgTjY3eL+xOT7cgPLwEZWV2xMT4JjydiPwjTBMGhULaQsjQ0FC88cYbuPPOO+FwOCTXkJeXh3/84x8IDg7GlVdeiYyMDPTr1w9du3aFSnX61Jnq6mocPHgQ+/btwy+//IL9++UJVRo/fjwuu+wyWcailr219y00OBr8XYZfNdobMWjuIPw4/kdcmnKpv8shonbowIFGjBmjg8kk/f6/oUGJu+/uhtdfL8Jdd4V1mvdWHc2gQU7s3et5v7171RBFF0MxiIiIKCAsXGjC9Ol6mM3yv1fOyLBg+XIlkpOlBeMTEXVGX+esc9s+NLav23ajWo9LEofgksQhAACn6MT+qqPYXLL7j1/5de43hFUJSoxJu0SewokooKhUCjzyiB333y9tI4LjxzVYuNCEadM8CxokIiIiIiLyBYaCERERtUJ5ubTJaVFR3C2ASA43970Zd628q0l7YW2hH6ohal5dnQNvvlmHDz8MRllZy2FCc+fGYOjQfFlrUCqViImJQWRkpKzjkn9lZZ15wWN9vRJZWUZkZZ3+QjI+3oZ9+zrP/UhiYiKsVivMZrPXYxUXF0Or1cJo5EteIqJA0SWoC8J0Yaix1JzW7nQ5sfLISlzf63q/1EVE1BmYTCbJfRm227H072/Ezz834sorT06Olapv30Z8+GE+goNFlJWVAQCDwYg6sGhDmFf9Bw0ahH/84x945ZVXvK6lvr4ey5cvx/Lly/9oMxgMCAoKgs1mQ0NDg1fhY83JzMzEI488Ivu45N728u34vvB7f5cREByiA5d/ejk+vf5TjB843t/lEFE7UlRkwciRSlRUqL0eSxCA9PRQhISEyFAZ+UNmJrB4sef9qqtVyM21IT1d+vdHIiIiIm9ZLCLuv9+M+fPbZg7QpEkmvP++HjodN7EiIvLElhN73LZfn3pRq/orBSUGRKVjQFQ67ul/IwDgeENZk5CwLoZIvHru/egZnixX6UQUYCZP1uPll+0oKZH2LPPNN1WYMsUFpZLB9kREREREFFj41JmIiKgVKiulPdiLjOw8IRxEbcmgMSBMF9ak3SE6sPvEbt8XRPQ31dV2PPNMNVJSgBdeiEBZWeteKP3+exB27pRnN2ylUon4+Hj07t2bgWAd0L590r6+O50KhIdrZa4msKWkpEClkicDPT8/H3a7XZaxiIhIHucknuO2fUHWAh9XQkTUeTidIubPD0FWlgF2u2fPSRUKBTQaLvztaPr0MeA//3EgIcEmqX/v3mbMnZuPkBDxj7aysrI/wsGIqOOJDo5HdKh3gSK33XYbpk+fLlNFp2tsbERZWRlqamraJBCsX79+mD17NtRq70NVqGV20Y6Xdr3k7zJ87sJuFzZ7zAUXJnw7Aa9uetWHFRFRe+ZwOFBSkif5nv+vBMGFDz6oxciRoTJURv5y9tlKyX1/+43v2oiIiMh/CgrsOO88W5sEgun1IubNM2H+fCMDwYiIJDhWX+q2fWzaFZLHTAiKwU3pV+CdCx/D9psXo2LKOuwbtwyjUi6QPCYRBT6dTsD06VbJ/XNytFi61PsNqYmIiIiIiOTGJ89EREStUFkp7SMzOpqhYERy6Rvd12374j0StqMlkonNZsP+/QVITwdefjkcVVWeBxHNnRvtVQ0qlQqJiYno3bs3IiIivBqLAtehQ9JCrnr0kP6Cs70SBAFpaWlQKLzfrcnlciE3NxeiKLZ8MhER+cRdg+9y2/5r0a8+roSIqPPYu7cR//pXHO64IxXnndcbU6cmY/78KOzZo0dLuSk6nc43RZLP9e5twLp1DiQlefa9s1cvM+bNy0doaNPvWWVlZSgtdT/5n4jatwh9BGLiU2HQexdef/fdd2Py5MkyVeUbPXr0wIcffgijUf6Fp+TekpwlyKnL8XcZPvXwsIex/o71ePuqt8943lPrnsK9q+/1TVFE1G6Joojs7Gzo9U68914Brr222qvxZs2qxp13hstUHflLRoYWGo2092XbtnHuFBEREfnH2rVmDBmiQFaW/O8qkpNt2LjRjsmT+cyHiEiKXeWH4XA5m7SHaYNh0PAdMxF57oEHDAgPl775z+uvCxBFPsciIiIiIqLAwlAwIiKiVqiqkhoKJnMhRJ3YlWlXum3/Je8XH1dCdDIMLC8vD0eOHIHLVY9zzjFJHmvz5mDs3av3uJ9KpUJSUhJ69eqFsLAwydenwCeKIo4ckTbJoXfvzrnztlqtRnJysixjORwO5OXlyTIWERF5b0yvMRAUTb+jV5mrUNZQ5oeKiIg6vh9/tP3xz2azgC1bgvDOO10wblwazj+/N+69txsWLYrE/v06OP82bzs4ONjH1ZIv9expwLp1Irp1a10wWM+epwLBmk7wP6W8vBwnTpyQq0QiksGMC2cgPjjeqzEi9ZFQKNVIjNZDELybpvLggw/ivvvukyUQvq1lZGRg3rx5CA0N9XcpnUapuRSzD8z2dxk+dUu/W/CvK/8FhUKBB4c9iK/Hfu32e/MpH2z/ANcsucaHFRJReyKKInJycuD8/y93ajXw4ovHMWlSuaTx7r+/Gk8/zU2NOgKNRoHevW0tn+jGrl2cpkxERES+JYouzJxpwqhROlRUSNuI8UyGD29EVpYSmZneBeATEXVmiw/94La9X0Sajyshoo4iKEjA3XdbJPffvVuHNWuk9yciIiIiImoL8j/hJiIi6oCqq5WS+kVHc2IbkVzuGHgHnlv/XJP2I5VH/FANdVZWqxXHjx9HY2Pjae1TppRh9epQuFzSFqJ99FE03nuvsFXnqtVqxMXFISQkRNK1qP0pLLSiqsrz4DgA6N9f5mLaEaPRiPj4eBQXF3s9ltlsRlFRERITE2WojIiIvCEIAlLDU5FTldPk2Jztc/D8xc/7vigiog5u48bmXyeaTEps3BiMjRtPhn8FBzuRmWnCWWeZcPbZDejRI8xHVZK/pKfrsW6dGZdfbkV+fvMLoNLTLZg3Lx9hYc0Hgp1SUVEBAOjSpYtsdRKRdJelXobHz3kcszbMwr9/+zccouc7bEcaIgEAmpBEJEQcxLEK72qaNm0aevTogaeffhomk/QNG9rS2LFj8dRTT0GtVvu7lE7lX3v+BbPT7O8yfOaylMuw6LpFp4WA3dDnBmy6cxMu/uRi2Jzuw1tWZa9C5txM/D7ld6gETh0j6SZOnIiLL77Y435ybepB8svPz4fNdvrPDoUCeOihUkRH2/Haa3Gtfh86dmwt/v1vBmN2JIMGObF7t+f99uzRQBRdEITAD3UlIiKi9q+62olx46xYs8Yo+9iC4MKMGSY895yR9zZERF767/Htbtuv6jbMx5UQUUfy2GN6vPeeEyaTtDWAL78MjBwpc1FERERERERe4MwuIiKiFthsLtTVSXsgGBPDl75EcukW1g06pQ4W5+m7b5jsJpQ1lCEmKMZPlVFnYLFYcPz4cZjN7hcTpabaMHx4LdasCZM0/vr1ITh4UIfevZvfXUatViM+Ph7BwcGSrkHt17ZtVgDSQsEyMjr31/6IiAhYLBZUVVV5PVZNTQ30ej0iIyNlqIyIiLxxdfer8e7Wd5u0rzi4gqFgREQyczpF/PZb67+P1NcrsX59CNavD8HAgY0YM0bThtVRoEhL+zMYLC+vaTBY9+4WzJ+fh/DwlgPBTqmoqIDL5UJcXJycpRKRRMHaYLx+xeu4a/BduH/N/fj56M8e9Y/U//k8JbRLb5is2aiqt3pV06WXXoolS5bgscceQ3Z2tldjyclgMODxxx/HDTfc4O9SOp1t5duwtmitv8vwmUFdBuGbm7+BVtX0s/ecpHOw7559yPgoAw22Brf9s05kofu73bFn2h6E6Fq3CcmiRYuwaNEib8qmDmbixIn+LoFkVFhY2GRjpL8aN64KkZEOPP10Iuz2M2+Qd8kl9fjss2AoldxIryPJzAQ++cTzfrW1KmRn29CzJ58REBERUdvKyrLixhsVyMszyD52ZKQDixfbMWJEkOxjExF1RoerC9y2395rlI8rIaKOJDJSiTvvbMD770u7Z/v1Vz02bLDgwgt1MldGRERERH8niiKcTic3XCRqAWddEBERteDECc93PD8lJoYftURySo1Iddv+2d7PfFwJdRZmsxk5OTnIyclpNhDslClTyr261kcfRbtt12g0SE5ORs+ePRkI1knt2SNK6qdSuTB4sPyT3Nqb+Ph4GAzy/D6UlJSgpsb9IjoiIvKd6WdNd9t+sOKgjyshIur4du40o7JS2gv3c87xLuyF2pfUVD1++cWFtDTL39otmDcvDxERrQ8EO6WyshIlJSVylUhEMugV1Qs/jf8JX4/9GkkhSa3uF6GPOO3fu8TFQ6v1PhQiNTUVy5Ytw2OPPQaj0ej1eN664oorsHLlSgaC+cl3Bd/5uwSfSQlLwZpxaxCibT7MKz0yHXkP5qFLUJdmzymoLUDyO8koqitqizKJqB0pKSlBXV1di+cNH16HDz8sQFBQ8/f3gwY14ttv9dBoOF+moxk2TPpmRL//bpexEiIiIqKmFi404fzz1cjLkz+INCPDgu3bXRgxQtqmjkREgcYm+je0uayxCo2Oppso65QadA1u/nmmHFyiCJvIBedEHdnjj2uh0Uibew8AL70kvS8RERFRZ3XgAJCXBzS3/PbECQdWrTLjhRdMGDPGhDlzinHgwAFUVFT4tlCidogzL4iIiFpQVib9gV5sLD9qieR0UbeL3LavPrLax5VQR9fY2Ijs7Gzk5ubCYmn64tmd9HQrrriiVvI1f/45FEeOaP/4d61Wi5SUFPTo0QNBQdxhsDPbt08pqV9KihV6vbS+HU1ycjJUKukLFU5Zvjwcw4YpUV5uk6EqIiKSKj0yHUGapvdHdtGO/+b91w8VERF1XGvXSg/2uuwyhYyVUHuQnKzDL78A6emW//93KxYsyEdUlOeBYKdUVlaiuLhYrhKJSAYKhQI39LkBB+87iBkXzIBG2fLioUhD5Gn/LmiMSIpUQ6Hw/rNCpVLhjjvuwMqVK3H99df7ZffI/v37Y+7cuXjrrbcQGxvr8+vTSQX1Bf4uwSeiDFFYO37tGcO+/npu3oN56BXZq9lzqi3V6PFeD+wp3SNnmUTUjlRUVKCysrLV5591lgmLFh1FdHTTkKeUFCtWr1YiJMT7dzIUeAYN0kCrlTaHats2l8zVEBEREZ1ksYiYMsWESZOMMJvln7M9aZIJmzdrkJzMABki6jiKajU4Xh8Mh80/mzx9dniN2/bU0MQ2va7FYkVebRiq6zn/k6gjS0pS45ZbzrwZ/Jn89JMBO3dyEzwiIiIiT9xyC5CaChgMQHCwC3FxTiQmOtGliwNGoxNxcSpcc40ezz1nxIoVRqxbp4MoQpa1fkQdHZNKiIiIWlBa6k0oGG9IieR0W//b3LZzoQLJxWQy4ciRIzh69CisVs9f5kydWu7V9RcujIZOp0NqairS09NhNBq9Go86hsOHpe3K1rMnJy6cIggCunfvLnmhqdMJvP56Fzz/fAIOH9ZjzBgbbDbuBEVE5E+ZcZlu2+fumOvjSoiIOrZNm6Q931SpRFx5JQOuO6OuXXVYtw644opaLFiQh6goh9djVlVV4fjx4zJUR0RyMmqMmHXpLOy/dz+uTr/6jOfGB8c3adNFpCAuXL4pKzExMZg1axZ++uknTJs2DREREbKN7Y5KpcKVV16JxYsXY8mSJTj33HPb9HrUMpPD5O8S2pxBbcDq21ajR2SPVvfRqXTYf+/+ZjfeAQCzw4zMjzLxY86PcpRJRO1IbW0tTpw44XG/nj2t+Oyzo0hO/vN9akyMHatXOxEfrz1DT2rP1GoFeveW9v5x505uZERERETyKyiw47zzbJg/X/45dnq9iHnzTJg/3widjsuuiKjjqa63Ibs6HNUmBVyib4Ocf8jf5Lb9ooSMNrme6HDgRIMBOVUhaDQz6IeoM3j6aTWUSuk/215+2ft5DkREREQdndks4tdfLXjvPROys/9cY9fQoMCJE0ocP65EaakKjY1N3xN+800EMjP74rvv9L4smahd4tNpIiKiFpSXS3sQGBLihEbj/Q7nRPSncxPPhaBoegtbYa6AzcHwG5Kuvr4eR44cQV5eHmw26X+WevWy4OKL6zzup9eLmDSpGu+9p0X37t1hMBgk10Adi80mIjdX2uKJvn35QvKvVCoVUlNTPe7X0CDg/vu7YfHiqD/aNm0KwtSpnv9dJyIi+YwfMN5t+/r89b4thIioA3M4RGzdKu376cCBZoSEcMOEziopSYfvv9chNtYp25jV1dUMBiOfW7RoEVwuV4f4de2Sa4Hn4fbXF3u+OGPfiy+++Iy/T90jumP1baux8paVSAlLaXI8ITih2VDf8C49ERKkk/zfyJ2oqCjcd999+PnnnzF37lyMHz8e3bp1k2Xs4OBgXHHFFXjhhRfwn//8B2+++SYGDRoky9jkvTJLmb9LaFNKhRJfj/0aZyWc5XFfQRCwfuJ63NbP/eY7AOAQHRjx+Qh8vPNjb8okonbEZDLh2LFjkvvHx9uxePFRDBjQiOBgJ1assKB3b77j7OgGD5b2/nHvXg1EHy8yJyIioo5t7VozhgxRICtL3mdLAJCcbMPGjXZMnswNPYmoY3M6nTheq0F+bSisFt+FZe2uyHbbfluPq2S/Vr3ZiezqMFTUyffekogCX8+eGlx7baPk/itWGHDkCNcnEREREZ1SVubA6tVmzJrVgBtvNKFXLytCQhQ47zwdHnjACIvF89gih0OBiAjGHRG1hLPxiYiIWlBWJrZ8khsREU4A3OmSSE6CICAhOAHH6ppOTv7u8HcY23esH6qi9qy+vh7FxcWw2+2yjTltWhnWrw9p1bkGgxMTJtThmWf0SEoKl60G6jh2726EzRYkqe+AAXww9nd6vR6JiYkoKipq1flFRWrcf3835OQ0nUD4ySdh6NmzCk89FSF3mURE1Aq3D7gdU7+fChdOX0hWaipFg60BQRppn59ERPSnrVtNqK4OltT33HNtALhYpjPTak8Gn+fk5MDlkmfhd3V1NVwuFxITE2UZj6iz2FWyCyuPrHR7rF90P9zS/xZZrnNNz2twRdoVeH3z65i9bTbKTGXoHtEdX4/9GkrB/fsyhSAgITYSZmsp7HZ5A+7VajXOPfdcnHvuuXjiiSdQXFyMw4cPIzc3F3l5eSgoKEBdXR1MJhMaGxthNpuh0WhgMBhgNBphNBoRGxuLtLS0P3716NEDKhWn2QSq9JB0bK/Y7u8y2syCaxdgRPoIr8b4/IbP0TW0K17d/Krb4y64cNfKu3Cs7hievehZr65FRIHNarUiPz/f63HCwpyYPz8P9fXxOPdcvuvsDDIzFfhYQn5kXZ0Shw9b0bu3tM2QiIiIiE4RRRdmzWrErFkGOJ3yb9w8fHgjlizRIjyc87+JqPMwma3IsYQiKliBaF09hDZ8Dm5z2FBhqWnSLigEnNtloGzXsVstKLHEoM5kBSDfHHEiaj9mzFBhxQppfZ1OBV55xY6PP9bIWxQRERFRgBNFF7Kz7di+3YGsLBF79gg4cECN4mI12iKaKCGBax+JWsLZikRERC0oL5f20jgiQlqYGBGd2dD4oW5DwZYfXM5QMGq12tpanDhxQtYwsFP69rXg/PPrsWlT8wung4OduOOOOjz9tAFxcZwgT80rLLQiMlKLykq1x32HDuWkenfCwsJgNptRWVl5xvN27jTgwQe7orq6+Ucnzz4bjp49azBmTJjMVRIRUUs0Kg0SQxLdfjf4aMdHeOScR/xQFRFRx/LTT9LDWS69VP6FONT+aLVapKenIzs7W7ZgsJqaGrhcLiQlJckyHlFnMGbZGLftCijw7S3fynotnUqHZy96FjMunIGKxgrEGGNa7KPUhyMpohxHS2UtpYn4+HjEx8fjkksuadsLkd88M/gZ3LVhIqqttf4uRXavXPYK7hh0hzxjXf4KkkKTMP2H6U2Ctk95bv1zOFZ7DPOunSfLNYkosDgcDuTm5sp2j56YGMH3nZ3IsGHSpxz//rsTvXvLWAwRERF1OtXVTowbZ8WaNfJvSiIILsyYYcJzzxkhCHzHQUSdj8vlQnmdC7XmMMQZaxFsaJtwxJV5G9y2xxujIQjeLwZ3OR2otOhRVq+HKFq9Ho+I2q+MDC2uuKIR//mPQVL/L77Q48UXHUhI4BJ8IiIi6pgsFhG7dtmwY4cTO3cCe/cKOHhQg/p6DQDfhKMmJvJei6gl/FtCRETUgooKaf0YCkbUNsb0GYNvDn3TpP23ot/8UA21N/v21UKlKoHDIX1hc2vcfXeZ21CwkBAHJk+uxxNPGBETw8nx1LLBg2uxfn0JKiuVyM7W4cgR3R//m5urhdXqfhJEcLATqakMBWtOXFwcLBYLTCaT2+MrV4bh+efjYbefeZKJw6HAnXcGITm5ARkZQW1RKhERncGVaVdiwc4FTdqX7V/GUDAiIhls2iTtNaJGI+Lyy3l/TCdpNBrZg8Fqa0+GvTAYjKhls7fORl5Nnttj4weMR1pEWptcV1AIrQoEO8UQ3QPxtkMorm7b57bUsQ1L6oNjjxzHmpw1OFp9FBWNFShvLEe5qfy0f6631fu7VI/cf9b9eOK8J2Qd896h9yIhOAE3LLsBTpfT7Tnzd87Hsbpj+OG2H2RZjEdEgUEUReTk5EAU5ZnPEhISgri4OFnGovZhwAANdDoRFovnnw3btomYOFH+moiIiKhzyMqy4sYbFcjLkxbqcCaRkQ4sXmzHiBF8t0FEgUWh8P1zOZvdjoIaA0IdWnTRlkOtlXce6vLcX9y2nxXb1+uxG802FDdGwmK1AfDxWh7mSRIFpGeeEfCf/0jra7UKePXVRrz3Hu8RiYiIqP2rqHBi27aTAWC7dyuwb58KOTlqOBw6v9WkULgQG9s2gdREHYnCJdfsayIiog7qmmtMWLXK812lbrnFhC++kH83KqLOzuKwQP+Svkm7UqGE41kuGCL3fvmlDi+9pMD//heEb7/NRnKyrc2vOWVKMn777eRLoPBwB6ZOrcM//hGEyEjfJKVTx3Do0KFmQ+ycTqCwUNMkLKyoSIPMTBO2b+d9yJmIoojs7GzY7fa/tAHvvhuLBQuiPRorOdmK335TIDaWf7+JiHwpqyQLmR9lNmnXqXQwP2P2Q0VERB2H3S4iMtKF+nrPX7iffbYJv/3G7yN0OpvNJmswGHAygKBr166yjUfU0VgcFoS/Fg6Lw9LkmFFtRM2TNVAJgbWPXFnRYZTV2Fs+kehvwoO1iE9Kg6IV4VVWhxUVjRVNQsO2HyzCp1/XAYYKwFh+8n8N//+/gn82gxrbZyy+uOELKIW2mQS57fg2XPDxBbA6rc2eMyB2ALZN3gaNis8+idq7U4FgNps870kNBgNSU1NlGYua2rVrFwYPHtzq83fu3IlBgwa1XUF/kZlpQVaW5wsEzjnHjF9/bTrXg4iIiKglCxeaMH26Dmaz/N+PMzIsWL5cieRktexjExF5y+W0Yf/BI367viAIiA12IEJvgUKmZ5Qpi65Ffn1xk/bFV7yA8b2uljSm025DqSUCVfX+e79gNGiRkprut+sTUfPOPdeMLVukPZMKCnIiPx+IjGRYBREREbUPouhCbq4d27c7sHOniN27Bezfr8Lx44E350OjEWG1cpM6opYE1gxPIiKiAFRZKe2mMiqKuZtEbUGn0iFCH4Eqc9Vp7U6XE9uOb8PQhKF+qowC0Y8/1uGllwRs3BjyR9u8edF46aXjbX7tu+8uQ3a2FvfcU4/HHgtBaGhEm1+TOp7mAsEAQKkEUlJsSEmx4cor6/5oN5kENDbqAaT4oML2SxAEpKWl4fDhw3C5XGhsFPDUU4n45ZeQljv/TX6+Ftdf34D161XQavlAkojIVzLiMqBT6ZqEHFgcFmSVZCEjLsNPlRERtX+//mpCfX2wpL7nnWcDwFAwOp1Go0F6ejpycnIgivIEq9TV1aGwsJDBYETNuH3F7W4DwQDg/avfD7hAMACIjk+HRnkYJTWA0+n0dznUDigUCsSGKhEZn9qqQDAA0Kq0SAhJQEJIwmntywpq8OnqMDcXEQFdzcmAsL+HhRlPtl11fTkqzH8GjTXaGz36/zEwdiB2l+4+re3i5Ivx6ehP2ywQDACGJgzFwfsOYtDcQaiz1rk9Z0/pHqS9l4a99+xFmC6szWohorZXUFAgWyCYRqNBcnKyLGNR+zNokBNZWZ7327dPA1F0QRAU8hdFREREHZLFIuL++82YP79t3jlMmmTC++/rodNxrg8RBSaFUgO1WgW73T+bZouiiJJaATXWcMTrK6DXe7+I/FhDqdv2G7tf6vFYLtGFOrOAElMYHA7/bjiiYV4QUcB66ing2mul9W1oUOLNNxvw8stB8hZFREREJAObzYXdu23Yvt2BXbtc2LNHiQMHNKir0wAIvBCwvxNFvjMkao3Am+VJREQUYKqqpL3sjY7mDSlRW+kf0x//K/hfk/bP9nzGUDACAKxcWYNXX1Vhy5am4T6rV4dh2rQyJCW17QvgSy9VoaBAAaORYWAkjdSFGUajiPh4ft1vDZVKhbS0NGzaVID77++KQ4ek707+229BmDixBp99FgKlkpMFiYh8ZUDMAGwt3tqkffbW2Vhw3QI/VERE1DEYjTV48sl6bNtmxLZtRtTVtf47xmWX8X6Y3NNoNOjevbuswWCHD5uxdGkF/vGPKFnGI+ooDpQfwNcHvnZ7rGdkT0wcNNG3BbWSQhAQFtcbQUGlKK+uRW2jEw4Hw8GoKUEQEBqkRlSIFtowecIhy8qa2fDJJQDmiJO/Kns2ORwR4cDa5affKzXaG08GhJnKUd5Y/sc/nwoNO9UmKAScn3Q+Zlw4A//69V94c8ubsIt2jOs/Dm9e+SZ0Kp0s/9/OJCU8BXkP5KHfB/1Q0lDi9pyiuiKkvJOC3dN2o2sowziJ2qNjx47BZDLJMpZSqUT37t0htDKMkTqeIUOAhQs971dfr8ShQ1b06aOVvygiIiLqcAoK7BgzxomsLPkDwfR6Ee++a8bkydzghIgCn17rv1CwU8wWK3ItwYh0qhCjq4FSpZY0zvbSA3C6mj7zD9eGePws1GqxosQSjYZGKwD/v0fQq/xfAxG5N3KkDgMGWLBnj7R3LnPn6vD00yKCgvg8lIiIiPynqsqJbdtsyMoSsWsXsG+fEtnZGtjtWgDt892bw6FAeTkQHe3vSogCG1cJExERtaCyUtq2HbwRJWo7w7sPdxsKtj5/ve+LoYDhdIr47rs6vPqqGtu2hZ3hPAUWLIjG888Xt0kdoaGhiIuLg0rFr1vknYaGBsl9jUZOWmstnU4HvT4ehYXe74Lw5Zdh6NWrCs89xzBAIiJfubnfzW5DwX4++rMfqiEi6jiMxgaMG+fEuHFVEEXgyBEdtm41YutWI3bsMKKhwf0zU71exCWXcIdUap5Go0F6ejqys7O9DgY7cUKFu+5KQVGRBnV1VZg1i9/FiE4Z/eVouNA04EgBBVbcvMIPFXlGFRyLuOBYdHHa0ViVB5vdCZtTgOjihjydmaBwQa0UoVEqYIjoCkFtkHX8ZkPBWhAe7sDfp18Z1AZ0De3qUYDWPy/6J5658BkICt8vKokwRCD/wXxkfJSB/eX73Z5TY6lBz/d7YvNdm5ERl+HjConIGydOnEBtba0sYykUCqSnpzMQrJMbNkz6e/AtWxwMBSMiIqIWrV1rxoQJalRUyB+WnZxsw9dfu5CZyblVRNQ+ROgdqJM+lVRWlXUO1DaGIS6oASE6QCF49sz+88Nr3Lb3i0xr9Rii04EKSxDK63RwuaweXb+tCIKA0Mgu/i6DiJohCAr84x9OTJggrX9VlQrvv2/Ck0/y/pGIiIjanii6kJdnx/btDuzcKWL3bgH796tw7JgGgN7f5clu927g8sv9XQVRYOMqdSIiojMQRRdqaqSGgnFhAlFbuX3A7Xhq3VNN2rOrsv1QDfmb0yniq6/q8NprGuzaFdaqPt99F46pU8sRH2+XrY7Q0FDEx8dDqZT2uUH0d97s2B4UxEX4njjvvGB88EE1Jk4Mg8vLxaUvvBCOjIxqXHNNuEzVERHRmUzNnIpHf3q0SfuxumOwOWzQqLwPfSQi6mxEUYTT+edOxoIA9OplQa9eFtx+eyUcDuDQIf0fIWFZWQaYzSe/C2dkNEKv5/cROjO1Wo0ePXrgyJEjkoPBSktVmDTpZCAYALz4YgQcjiq88gqDwYgW7lyII1VH3B4b22csekf39nFF0imUahije4BT7MkXKiulPRcMD3e2fFIr+SMQ7BSNSoM90/bgys+uxLq8dW7PsTgsOGveWVh560pcnX61jyskIikqKytRUVEh23hpaWncGInQv78Ger0Is9nzz63t212YNKkNiiIiIqIOQRRdmDWrEbNmGeB0yj8He/jwRixZokV4OOf3EVH7YYxOh6Y2BzabfPOdveFwOHCsRodgoxZxunJotK0Pfv7v8R1u20d0O7dV/U2NDhQ3hsNqs7X6mr4QGqSGUhfm7zKI6AxuvdWA55+3IjdXWlj9e+9p8PDDIrRabpZARERE8rHZXNi71/b/AWAu7NmjxIEDatTWagB0jjUQu3YxFIyoJfwWQkREdAbV1SIcDmkvlmNj+TFL1FbiQ+KhVzVNtjY7zCiuK/ZDReQPTqeIxYurMWiQBbfeGoZduwyt7utwKLBwYZQsdYSHh6NPnz5ISkpiIBjJymKxSO6r0XSOh39yuv32cDz1VI3X44waVYOEhGLU1dV5XxQREbUoSBOEWGNsk3YXXFi8Z7EfKiIiav9qamrOeFylAvr1M+Ouuyrw4YcF2Lz5IBYvzsUDD5TillsafVMktXsqlQo9evSAIHj+HL28XIXJk1NQWHj6hN1XX43AE09Uy1UiUbtkc9hw/5r73R7Tq/RYPJr3yETNkRoKFhEhXyiYvwmCgJ9v/xm3D7i92XOcLidGLRmFeTvm+bAyIpJi69YGbNxYJdt4KSkp0Ol0so1H7ZdKpUDfvlZJfXft4vt0IiIicq+62olRo8x4/nmj7IFgguDCs882YPVqPQPBiKjdUQhKJIYH3mb19SYrsqtCUW7SwuVs3SZA2TWFbtsn9DrzBgQOmw1F9cHIqzEGXCCYWq1Cl2h55qMTUdtRKhV49FGH5P7FxWosWGCWsSIiIiLqbKqrnfjPf8x47TUTbr3VhP79LQgOdmHIEC2mTTNi7twgbNmiR21t59qgaedOf1dAFPiYVkJERHQGJ05In8TNUDCittU9orvbdi787/hEUURJSQkOHjyIt9/WYN++1oeB/dU334SjtFTagxKFQoGIiAj06dMHCQkJkhawErXEbpe2sxt3aJfuhRdCMWZMraS+CoULDz98Ai++eBwajQuFhYVeBbsREVHrXZx8sdt2fjcgIpLG04BbtRoYNMiMKVPKcdtt/D5CrSclGKyiQoW77kpBfr77HXxffz0cjz0mX/ABUXszaeUkNNrdBzS+eeWb0KgYJE/UnMpKaYuCIyJat+CtPflk9Cf454X/bPa4Cy5MXTUVz/73WR9WRUSeyM4249prtbj99lRkZUl7l/pXiYmJMBqNMlRGHcWgQdI+//bu1cDpdMlcDREREbV3WVlWZGY6sWaN9/eufxcZ6cCqVRbMnBkEQQi8UB0iotYwRPdAbJja32U04XK5UFoL5NSEwmQ+c1jXCVMFGh1N51PqlFokBjXdDBAAXKKIKpMS2dVhqKkPrDCwUxIjBCj14f4ug4haYdIkA+Ljpc3NB4A331TzuRYRERG1SBRdyM+346uvGvHUUw0YObIR3brZEBGhxJVX6vHkk0Z8+aUR+/bpYLNxPequXf6ugCjw8ScFERHRGZSVSZ/EHRvL3aSI2tIlyZe4bV+Ts8bHlZCviKKI4uJiHDx4EJWVlQBcuPvucsnj2e0CPv7Ys92ZFAoFIiMj0bt3b8THxzMMjNqMKIoQRWn3IRoNF3dKpVQK+OyzIAwZYvKon17vxL//XYi77qqA4i/zB48ePQqnU3rILBERtc60IdPctu8o2eHjSoiIOgazWfrupmFhYfIVQp3CqWAwpbLl5+kVFUpMmpTcbCDYKW++GYGHH66Wq0SidiOnMgef7/3c7bHU8FTcM/QeH1dE1L5UV0t73h8Z2TEXgLxwyQv4aNRHUKD5BdOzNszCnd/e6cOqiKg1SkttuPpqBUpL1aivV2Lq1GSsWxcsebzY2Fh+16MmhgyR1s9kUuLgQemLL4mIiKjjWbjQhPPPVyEvT/75ThkZFmzf7sKIEXrZxyYi8rWo+HR0CQvMDZqsVhvyqoNxvD4YDpvV7TmLD//gtr17aKLbdovFirzaMBTXqgJyDqZSqURyjBrG6B7+LoWIWkmjUeDBB93/jGqNo0c1WLLE/eZMRERE1DnZ7S7s3GnFRx+ZcO+9Jpx/vhlRUU6kpKhx000GvPpqEH74wYDCQq7zc2fKFDvefdffVRAFPq5gJyIiOoPSUmlhHFqtiOBgfswStaXxA8a7bd9butfHlVBbE0URx48fx4EDB1BVVQWX688FNuec04ABA6S/XPn66whUVLT8klyhUCAqKgq9e/dGXFwcw8CozXmzCF+v50Q2b+j1SqxYoURiYut2luvSxYZPP83DZZfVNzkmiiJyc3MlB7wREVHrXJx8MdRC0x1RG2wNyKnM8UNFRETtl9PplDypWqlU8vsySaJSqZCenn7GYLDKSiWmTEnB0aO6Vo359tvhePDBajid/D5Gncf1S6+HC+7DiVbcvMLH1RC1P1VV0hbURUd3zFAwAJiSOQWrblsFpaL5z+hFuxfh8k8v5zNQogDR0ODAyJF25OT8ed9stQp45JGuWLYs3OPxIiMjER0dLWeJ1EEMG9b0eWxrbdnCUDAiIiICLBYRU6aYMGmSEWaz/JswT5pkwubNGiQnS79vISIKJApBQFRiL3SLVkGlCszN66vrbciuDke1SQGXePpz0zX5v7rtc1FCxmn/LjocONFgQE5VCBrN0sN72pJep0VafBCCYnr6uxQi8tB99xkQGemQ3P/115UQxY77XoiIiIiaV1vrxC+/WPDGGw0YN86EgQMtCA52ISNDi7vvNuKDD4zYvFmP6urADHMORI884sJll/m7CqLAx5n5REREZ1BWJu1hXXi4E4LQ/K7JROS9oQlD3S5CqLJUweKw+KEikpsoiigqKsKBAwdQXV3t9hyFArj77jLJ17BaBSxaFNXscYVCgZiYGPTu3RtdunTh4mbymYaGBsl9g4KCZKykc0pM1GH5chuCgs4chjBgQCO++OIoevVq/nPHZrPh2LFjcpdIRER/0zuqt9v297e97+NKiIjat5qaGsl9DQaDfIVQp3OmYLDq6pOBYH8NNmiNd98Nx4MP1jIYjDqFz/d+jv3l+90eu67ndRgQO8DHFRG1P9XV0hbSRUd37HfCV6dfja1TtkKnav5zeF3eOvT/sD9sjtZttEBEbcNuFzFmjBk7dhibHBNFBWbNSsDs2TFwtXIaTHBwMOLi4mSukjqKvn3VMBikhYrv2MGFk0RERJ1dQYEd551nw/z5Te9dvaXXi5g3z4T5843Q6TjXj4g6nuDYXkjv1gURIVp/l+KW0+nE8VoN8mtDYbX8Geq1pzLb7fnjeo7445/rzU5kV4ehok7a9822JggC4sJVSE1JgSY0yd/lEJEERqOAadOkrzXat0+HVau4VomIiKgjE0UXCgvtWL68Ec8804BRo0xISbEhPFzAZZfp8PjjQViyxIg9e3SwWvnsyRuJiQxQI2oN/qQhIiI6g/JyaRPRIiIC80UEUUeTGJLotn35weU+roTk5HA4cOzYMRw4cKBVi5EvuKABvXubJV9v2bIIVFWdvthHEATExsaid+/eiImJYRgY+ZzZLP3PtNEo/4S5zuiss4Iwb149BMH9/eCIETVYsCAPUVEt7xhVX1+PEydOyF0iERH9xeheo922rz6y2seVEBG1b3V1dZL7hoaGylgJdUYqlQo9evSASvXnZI+aGiUmT05GdrZngWCnzJ4djunTGQxGHZtDdGDaqmluj2mVWiwZs8THFRG1P3a7iNpahoI1JyMuA4fuO4RQbfP3ewfKDyDl3RRUm91v8kJEbcvpFDFxYh3+85/gM5734YcxmDkzHo4WXm3o9Xp069ZNxgqpo1GpFOjXT1oY5M6d0j5ziYiIqGNYu9aMIUMUyMqS9sz3TJKTbdi40Y7Jkzl3iog6NqU+HPFd05HaRQudVuPvctwyma3IqQ5FaYMeFksjKi21Tc5RKgScEzcAdqsFhbUhKKg2wG63+6HaloUG6ZCeFI7IhF5QKLlwnag9e+QRfYubRp/Jq6/KWAwRERH5lcPhwq5dVsyfb8L06Q248EIzYmKc6NZNjRtvNODll4OwerUR+fkauFwdf25IaygULqSmWnHttSbMmNGA++6rlzROUJATQUFcr0vUGvybQkREdAYVFdJu1CMjuaslkS8MSxzmtn3FwRU+roTk4HA4UFhYiEOHDqG2tunL3+YoFMDdd5dJvq7ZLODTT6MAnAwD69KlC/r06YPo6GiGgZHfWK3Wlk9yQ6FQ8M+tjG65JQzPPtt0Edt995XitdeKoNO1/p6voqLCo59tRETkmXuH3uu2/WjNUYgiQ0CIiFrLm4DikJAQGSuhzkqpVCI9PR0qlQq1tUpMmZKMI0f0Xo354YfhuPdeBoNRx3XPqnvQYGtwe+zly16GQWPwcUVE7U9ZmQ0qlbT3u126dI5gk25h3VDwUAESg91v2AMAxfXFSH4nGXnVeT6sjIgA4IknarBkSVirzl2+PAIPP9wVZrP7+TBqtRopKSkyVkcd1aBB0hZP7tungdPJeVVERESdjSi6MHOmCaNG6VBRIX+YyvDhjcjKUiIzUyv72EREgcoQlY601BR0CVcF5LxRl8uF8joRH+7b7vZ4vDEaFSY1sqvDUWeSNme2ranVanSLViEpuTvUwXH+LoeIZBARocSdd0qfG7Nlix7r11tkrIiIiIh8ob5exPr1Frz5pgkTJpgwaJAFwcEuDB6sxZQpRsyeHYSNG/WorGQI8Ck6nYiBAy2YMKEBb75pwvr1FtTWupCbq8V33xkxa1YQYmOlZTBERUkPaSXqbPhTiYiI6AwqKqT1i4zk4iIiX7ih9w1Yun9pk/atx7f6oRqSyuFw4Pjx46ivl5YMDgCXXFKPHj3MkheJFhVp0aVLHKKiIiXXQCQnR0tbtDdDrVbLXAnNmBGGw4dr8MUXYdDpRLz4YhGuuqpO0ljHjh2DVquFTif/bqdERJ1dTFAMIvQRqDJXndYuukR8c+gb3NjnRj9VRkTUfjgcDslBiipVYE40p/ZJqVSiR48euPfeKhw65F0g2ClffBGCceMKcf75XflnlTqUgtoCLNi5wO2xpJAkPHLOIz6uiKh9Cg62YceOHDQ2CqiqUqKmRoXqaiWqq0/+b1WVqklbdbUK9fVKxMV1nqlXobpQHH3wKIZ8NAR7yva4PafOWofes3tjw50bcFbCWT6ukKhz+te/qvDmmxEe9Vm/PgRTpqTg/fcLEBb254TrUyG9vGem1hgyRIGPPvK8X2OjEvv32zBggEb+ooiIiCggVVc7MW6cFWvWGGUfWxBcmDHDhOeeM0IQpC1CJCJqzxRKNaISeiEk5DhOVJhRZwq8oJo1hWvdtvcNH4QTtQKAwFt7o1AoEBWiRnRsAgSN/J9fRORfTz6pw0cfibBapT0HfeklERdfLG9NREREJJ/jxx3YutWGrCwRu3cL2LdPhfx8NVwuruVqTmSkA3372jFggBODBikwdKgaffqooVKd+ffsxAlp14uNZSgYUWt1nplpREREElRWSk2plbkQInLrup7XuW0/Xn8coih6NVnZKTqxt2wvfj32KyobK9E3pi9G9xoNhYITR+Rit9tx/PhxNDQ0eD2WIABTp5bjsce6etTv4ovr8fTTIq64ItTrGojk4nA44HJJ2x1bq+Vul3JTKgV8/HEIGhpqMG5cBfr29W7SzNGjR9GjRw+oVHwkQ0Qkt3MTz8Wq7FVN2hfuXMhQMCKiVqipqZHcV6+XJ7iJ6BRBEPDOOxEoKKjD2rUhXo0VFOTERx/lIyLCjKNHjyI1NZUhB9RhXP/l9XDB/XOk5Tct93E1RO2XzWaDQgEYjSKMRhFJSfZW9bPbFejWrWcbVxdY1Eo1dt69EyOXjMTaXPeL+axOK85dcC6+ufkbXNvzWh9XSNS5LF5cjSefDJfUd/duA26/PQUffliA+Hg7FAoFunfvzntlarVhw6RvVrRli52hYERERJ1EVpYVN96oQF6eQfaxIyMdWLzYjhEjgmQfm4iovdEEJ6BrMFBXegglNYDdLm1j2rawt3qv2/ZL4i71cSWtY9BrER+hgi48xd+lEFEbiY9X4bbbGvDxx9LuI3/+2YAdO6zIzOS8fSIiIn9yOFw4eNCO7dsdyMoSsXevgP37NaioUIExOu4pFC5062ZHv352DBzoQkaGgKFD1UhMVEGh8Pz37MQJaWutY2KkrZsk6oz404yIiOgMKiulTXaMjOQNKZEvaFQaROojUWmuPK1ddIn4tehXnN/1/FaPZbKZ8Pvx37GpcBM2H9uMLce2oN5Wf9o5EwZMwKejP5Wl9s7MZrPh+PHjMJlMso57xRV1SE214OjRllPbL7+8HjNmABddFCxrDURy8CYoz2CQfwIdAVqtgK+/NuDIEe930RNFEbm5uUhPT+fCGiIimd01+C63oWBbirb4oRoiovanrq5Oct+wsDD5CiH6f1qtgO++C8Lo0XX44QdpwWBGoxNz5+ajXz8zAMBisSA3NxdpaWn8Tkbt3vIDy7HrxC63x4anDcfQhKG+LYioHbPbWxcC9ndqtQtqdeebeiUIAtaMX4PJKydjwc4Fbs9xupy4/svr8f7V7+Peoff6uEKizuHHH2sxdWoonE7pm1rl5ekwYUIqPvggH1dfnQS1WnrIE3U+ffqoYTQ6YTIpPe67YwfnVREREXUGCxeaMH26Dmaz5/cLLcnIsGD5ciWSk7lpCRHRX4XE9kJQeD3KSktQUWvzdzkAgDJzmdv2SwMsFEypVKJLKBDWJQ0Kvkck6vCeekqDxYtdcDikPV996SUHvvmGoWBERES+0tAgIivLhh07nNi1C9i7V4lDh9QwmzUAuBGNO1qtiF69bOjXz4mBA10YMkSFjAw1QkPl+z0rLZX23alLF1GW6xN1Bp1vZhoREZEHqqqk3ZDGxEifdElEnhnYZSB+yfulSfuSvUvOGApWXF+MzYWbsfnYyV87S3bC6XKe8VqL9yzGo+c8ioFdBnpdd2dks9lQVFSExsbGNhlfEICpU8vx5JNJbo8rFC6MGFGPZ55R4NxzGQZGgcubwLzgYP7ZbisajQbdunVDQUGB12PZ7XYUFBQgJYU7yRERyem6ntdBUAgQXae/JKqx1KCkvgRxwXF+qoyIqH2wWKSH4PK7CLUVjUbAihVBuPHGOnz/vWfBYAaDEx9+mI8BA8yntVutVgaDUbsniiImrZzk9phaUGPZ2GU+roiofXM4HP4uoV2af+18dA3tiufWP+f2uAsu3PfDfThWewyvXP6Kj6sj6th27DDh5puNsFi8v591OBRIS4uDTtfyxktEf6VUKtCvnw2//+55EMfOnfIHgxAREVHgsFhE3H+/GfPnG9tk/EmTTHj/fT10Oj7fJSJyR9AEo0tSMMKMuSiuFtFotvqtlj2Ve9zOzw9Vh0KnCpxnEWHBWnSJDofKEOXvUojIR9LTNbj+ehO+/lraPevKlQYcOmRDr14MISEiIpJbcbEDW7fakJUlYs8eBfbtUyEvTwNRDJzvEIEmPNyBvn3tGDDAiUGDFBgyRIV+/TRQq9v296ysTNrzudhYmQsh6sAYCkZERHQGVVXSJqFFR8tcCBE1a2T6SLehYBsKNvzxz6JLxIHyA9hcuBmbjm3C5sLNyKvJk3S9UlOp5Fo7q6IiC157zYxbbilBaGjbpngPH16LDz6IQUHBn7uuCIILo0bVYcYMJYYO9WzxKJE/eLMQnws22lZwcDBiY2NRWur9Z4HJZEJJSQni4hhQQ0QkF0EQ0D2iO45UHmlybPa22Xjx0hf9UBURUfvgcDggitK+s6tUKgYrUZvSaAQsXx6EsWNr8d13oa3qo9c78cEHBRg0yOz2uNVqRU5ODrp3784/v9QuPbj2QdRaa90ee/7i5xGsZVgjkSekhoIpFNwo6tmLnkVSSBImrZwEF1xuz3l186sorC3E5zd87uPqiDoms9mMsrIihIYmo7bWu+mfBoMTy5ebMXAg7x1ImsGDRfz+u+f99u/XwOFwQaXiZykREVFHU1Bgx5gxTmRlyR8IpteLePddMyZPbpuwMSKijkYXkYaUMCeqTxxBaa0LTmfbzuF2Z/Wx1W7b00PTfVyJe1qNBvHhgDE6MOohIt965hkVli93weXy/BmV06nAyy/b8emnDAUjIiKSyul04dAhO7Zvt2PnThf27BGwf78aZWVqMAaned262dC3rwMDB4rIyBAwdKgaSUkqCILvf8/Ky6VlMMTH8x0hUWvxpyEREVEzGhtFNDZKuyGNieEiIiJfGd9/PB796dEm7dmV2Xh548vYfGwzfj32K2osNbJcLyUsRZZxOoOCAgtefNGCzz8PhtmsgyjacM895W16TaUSmDKlHDNmJEKpdOG6606GgQ0e3LoFo0SBwGazSerHRcy+ER0dDYvFgtpa9wtvPVFZWQm9Xo+wsDDvCyMiIgDAqB6j8NaWt5q0f3foO4aCERGdQXV1teS+BoNBxkqI3FOrBXz1VTBuuaUW33xz5uc8er2IOXMKkJHReMbzbDYbg8GoXSquK8ac7XPcHosLisPTFzzt44qI2j+n0ympHz8/Trpz8J1ICE7AyC9GwiG6D1hbsm8JiuqL8N/b/8vfNyIv2Gw2HD16FElJLnz66VHcd1837N8v7TuZSuXCokX1uPjiMHmLpE5lyBBp/cxmJfbutWLwYG3LJxMREVG7sXatGRMmqFFRIf+mhsnJNixf7kJGBgPBiIg8oRCUiIjvjZCQUpyoqENNg9Wn199Wvs1t+/mx5/u0jr9TKBSICVUhsks3CCp+NyXqrAYN0uKqqxqxdq20Z6xLl+rx4ot2dO2qlrkyIiKijsdkErFzpw07djixaxewZ48Shw6p0dioAcCQTXc0GhE9e9rQr58Tgwa5kJGhxJAhGoSFBcbvmcUioqZGWlxRXBxDwYhai6FgREREzSgtdQKQNiE5NpYTmYl8JSYoBnqVHmaH+bR2m2jDM788I+u1ugR1QfeI7rKO2RHl5prx4otWfPllCCyWPyf4LF4chQkTKhEU1LY7TV19dQ0KCgx48EEd+vZlGBi1P1IXoGk0/n+g11kkJSXBarXCYrF4PVZRURG0Wi30er0MlRER0f1D73cbCnao8hBcLhcUCr5AIiJyp76+XnJfhtySr6jVApYuDcatt9bi66/dP/PR6UTMnl2AIUPOHAh2CoPBqD0avXQ0RJf7Z6zLxi7zcTVEHQNDwbx3ZfcrsWPqDgybP6zJO7tTNhRsQN85fbFz2k7oVPIvECfq6BwOB3JycuByuQAAkZFOLFyYj0ceScLmzcEej/fvf9dg7NhwucukTmbYMOkLHn//3cFQMCIiog5CFF2YNasRs2YZ4HTK/z52+PBGLFmiRXi4tI2eiYgIUAXFIjEoFmFlh1FcA9hsdp9ct9BU6Lb9mm7X+OT67gQZdYiP0EITmuS3GogocDzzjIC1a6X1tdkEvPZaI2bPZigYERHRX5044cC2bXZkZYnYvRvYt0+Fo0c1cDo5T6A5oaEO9O1rR//+TgwerMCQISoMGKCBWh24v2fHjzsgNZwsMZHP+Yhai6FgREREzThxwglA2oO5Ll14Q0rUVlwuFw5XHsamwk3YfGwzNhdubnZxgdwu6HoBQwTO4PDhRsyaZcNXX4XAZmsablNfr8QXX0RiypTyNqtBq9UiJSUeH33EHQGpfbJape/CptMF7oO+jig1NRWHDx+WvGDwr44ePYqePXtCpeJjGiIibyWHJyNYE4x62+nhNg7RgXVH1+HytMv9VBkRUWDzJvA2KChIxkqIzkylEvDFF8FQKmuwdGnYace0WhHvv1+AoUNNHo1ps9mQnZ2N9PR0hrtQwPsh+wdsLd7q9tglyZfg/K7n+7gioo5B6jM+pZLvhP9qQOwAHLn/CAZ8MADVlmq35xyqPISUd1Kw9569iDJE+bhCovZLFEXk5ORAFE8PBjUYRLz3XgGeey4B33/f+oCvp5+uxvTpDAQj7/XqpUZwsBP19Z5/Jm7f3gYFERERkc9VVzsxbpwVa9bIP19PEFyYMcOE554zQhA4b5OISA5BMT3RPdyMitJClNc6/ggfbwtl5jJYnU3nxGqVWsToY9rsus1RqVSIC3UhJDYVCr4TJKL/d/75Opx3nhmbN0vb3HnRIj1mznQiKorvjIiIqPNxOl04fNiG7dsd2LXLhT17BOzfr8aJE2owxqZ5SUk29OvnwIABIjIyBAwZokJyshqC0L5+z44fd7+pZWskJPDeiai12tdPBiIiIh8qL5f2gkOhcPFhHpGMrA4rthdvx+Zjm7GpcBN+PfYrKs2Vfqnlwm4X+uW6gW7//pNhYMuXh8DhMJzx3E8/jcS4cZUwGKR/6XdHp9MhISEBer20lzFEgaKurk5yXy7E9y1BEJCWlobs7GyvJ8a4XC7k5OSgR48eXIBORCSDofFD8Uv+L03a5+6Yy1AwIiI37HZ7k4XlraVWq3kPSz6nUgn47LMQKJU1WLIkDMDJQLD33ivA2Wd7Fgh2it1uZzAYBTxRFDFhxQS3x1SCCt/c/I2PKyLqOKQ+32PIf1OJIYkofLgQ/eb0Q0FtgdtzTjScQOo7qdh5906kRaT5uEKi9kcUReTm5sLhcLg9rlYDL710HNHRDixcGN3ieHfeWYMXX2QgGMlDqVSgXz8btmzx/D39zp2cW0VERNTeZWVZceONCuTlnXnOoBSRkQ4sXmzHiBGcD0VEJDdBrUdMYk+EBhWiuMoGU6P0DaTO5PuC7922dzV2bZPrnUlkiAYxMTFQ6sJ8fm0iCnxPPw2MHCmtb2OjEv/6VwNefZX3rURE1LGZzSJ27rRhxw4Hdu4E9u5V4uBBDUwmLQCtv8sLSGq1iB49bOjXz4lBg/D/AWAaRERoAGj8XZ7XioulzTtWqVyIieF7QqLW4uw0IiKiZpSWSrshDQtzcgI4kRcqGyvx67FfsalwEzYf24ztxdvd7hLkDxd0vcDfJQSUXbsaMGuWE999FwKns3UTe2pqVFi6NAJ33lkhSw16vR4JCQnQ6XSyjEfkb2VlFjidgFLCsy2GgvmeRqNBt27dkJ+f7/VYDocD+fn5SE1N9b4wIqJO7vaBt7sNBdtQsMEP1RARBb7q6mrJfQ0G+Rf6ELWGSiXg009DoFDU4KuvQvDuu4U45xxpgWCnMBiMAt0TPz+BKnOV22NPnfcUwriQhUgyhoLJK0gThJwHcnD2vLORdSLL7Tn1tnr0mdMH6+9Yj3OSzvFxhUTtS2FhIazWM78vVyiAhx8uRXS0A6+/3gUul8LteVdfXYePPgqBwv1hIkkGD3ZiyxbP+x08qIHd7oJazT+QRERE7dHChSZMn66D2Sz/Ar6MDAuWL1ciOZkbhBIRtSVtWFckh4ioLT2ME7WAw+GUdfxNpZvctp8VfZas1zkTvU6L+DAF9FHdfXZNImp/hg/XYeBAC3bvlrYmZe5cHZ55RkRwMOcZEBFRx1BW5sC2bXZkZTmxe7cC+/apkJurgcPB9ZvNCQlxom9fG/r3d2LQIAWGDlWhf381tNqO+3tWXCxtrk1kpANKpVrmaog6Ls5OIyIiakZ5ubR+4eHSwsSIOiOXy4WcqhxsPrYZmws3Y9OxTThUccjfZbkVpgtDv5h+/i4jINTV1eGxx+xYsCACouj5BN1Fi6Jwyy2V0OulffEHTi46jo+PZxgYdTgzZ4bg++8TkJZmQXq6FT16WJCebkGPHhZERJx5wgUXoPlHUFAQ4uLiUFJS4vVYjY2NOHy4BD17xslQGRFR5zVuwDjc+d2dcOH0+82yxjLUWmoRqgv1U2VERIGpvr5ect+wsDD5CiHykFIp4JNPQjBuXBGSkhpkGdNut+PIkSPo0aMHg8EooFQ0VuDfv/3b7bFoQzRmXjLTxxURdRyiKP3dLp/JNk8lqLDj7h24Zsk1WJW9yu05NqcN5398PpbduAw39LnBxxUStQ/Hjx9HQ0Pr73XHj69EVJQdTz+dCLv99PvZYcMa8NVXRqhUvM8leQ0ZIu3PlNksYM8eKzIzuXs8ERFRe2KxiLj/fjPmzze2yfiTJpnw/vt66HS8byUi8gWFICAsrjeCw6pRWl6Bqjr5NvLOrs1223510tWyXaM5giAgNlRARJcUKJR8jktEZyYICjz5pIhbb5XWv6ZGhXffbcAzz3CDbyIial9E0YXsbDu2bbNj504X9uwRsH+/GiUlajCGpnmJiTb07evAwIEiBg8WMGSICqmpaghC5wq4P3FC2trg6GgnAIaCEbUWfxoTERE1o6JCakqtvDukEHVEokvEO7+9g39t+ReK64v9XU6rnJd0HpSC/LvatSe1tbUoKSmBw+FAly7hkgLBAKCqSoWvv47AhAmVHvc1GAxITEyERqORdG2iQHfokBoWi4D9+w3Yv99w2rHISDt69LD+ERKWnm5BWpoVWq2Li8/8LDIyEmazGTU1NV6Ns3ZtCGbNisayZbW46ioG1hARSaUSVOga2hUFtQVNjs3dMRePn/e4H6oiIgpcFotFcl+jsW0W/RC1llIp4KqrEnH06FGv/iz/lcPhYDAYBZzRX46G0+X+/dMXN3wBhULas1oiApxO6e92+a6iZd/f9j3uXX0vPtj+gdvjokvEjV/diLevehsPDnvQx9URBbaysjJUV1d73G/48DqEhxfgwQe7wmQ6+X67Vy8zvv9eA4Ohc7/vprYxbJj095S//+5gKBgREVE7UlBgx5gxTmRlyf9uQK8X8e67ZkyezPcORET+oNSHI75rOMIqslFc7YLFavNqPIvDglp7bdPrKJQYEDnAq7FbEhqkQ5dII9TB3JyViFpv7Fg9nn3Wiuxsac+q3n9fi0cfFRluS0REActiEbFrlw3btzuxaxewd6+Agwc1qK/XAODcB3dUKhHp6Xb06+fAwIEuZGYqMXSoBpGR/D0DgBMnpM1Xi42VvnkfUWfEVcNERETNKC+XdkMaGSktTIyoM5mzbQ4e+ekRf5fhkQu7XejvEvympqYGJ06cgMPh+KPt+utr8NFHMSgtlZbK/fHHUbjppipota37mWk0GpGQkMAFNtShORwicnJ0zR6vrFRjyxY1tmz5cxchpdKFrl2teOyxWvTq5YsqqTmJiYmwWq0wm80e93W5gA8/jMacObEAgHHjDNi0qRG9ehla6ElERM25Mu1KzMua16T9q/1fMRSMiOgvLBYbRNEFKVkyarWagUkUEARBQGpqKvLy8iR9J3PnVDBYeno6lEoGJ5B/rTu6DpuObXJ77Lyk83BZ6mU+roioY7HZpC9uU6u5c2lrzBk5B0khSXj6l6ebPeehHx9CUV0R3rjyDR9WRhS4qqqqUFZWJrn/2Web8Mknebjnnm7QaFz44QcgKorvWdvCwoULsXDhQtnHbWhokH3MttKzpxohIU7U1Xn+3Wn7ds6xIiIiai/WrjVjwgQ1Kiqan9skVXKyDcuXu5CRwUAwIiJ/M0SlIy3cjsoTuSirFSGK0hZr/1Lyi9v2GH2MN+WdkVqtRnyYC8Gx3dvsGkTUcSmVCjz6qAPTpkkLBTtxQo1580y4/37e0xIRkf9VVDixbZsNO3Y4sXu3Avv2qZCTo4bDIf9znY4iONiJPn1s6N9fxODBQGamEgMHaqDTaQFwgxt3pIaCxcTw/SCRJxgKRkRE1IzKSoaCEbWVxXsW+7sEj13Q9QJ/l+BzVVVVKC0thdPpbHJMo3HhrrvK8cor8ZLGLi9XY8WKcNxyS9UZzwsKCkJ8fDzDwKhT2LevEWZzUMsn/oXTqUBeng4GgzyLnsk7KSkpOHLkyGkhii2xWBR49tkErFkT9kdbZaUa11/vwJYtdoSHc2EhEZEU08+a7jYUbG/ZXj9UQ0QUuJYtM+Ef/+iJs84y4ayzGnDWWSYkJNhb1ddo5ERGChyCICAlJUX2YLDs7GwGg5Hf3bb8NrftSoUSK25e4eNqiDoeq9Uqua9Wy4mfrfXUBU8hKSQJt397O1xw/z79X1v+hYLaAiwbu8zH1REFlvr6ehQXF3s9Ts+eFixefBQxMQlISfHs/RO1XmFhITZv3uzvMvxKEBTo18+GX3/Ve9x31y5OYSYiIgp0oujCrFmNmDXLAKdT2rzqMxk+vBFLlmgRHs5nsERE/rImew3e2/oerE4r+sf0x3lJ5+G8ruchPQQoqWhEncni8Zg/F/3str1/eH9vy21CoVAgKkSN6NgECBq+wyYi6e66y4BZs2w4flza2pW33lLjnntcUKnkv28mIiJyRxRdyM21Y/t2B7KyROzeLWD/fjWKi9UAPH9v01nEx9vRt68dAwaIyMgQMGSICt27qyEI/D3zRFmZtE2Fu3RhBgORJ/hGnYiIqBlSQ8Gio3lDStQStdC+Ak70Kj0y4zP9XYbPVFZWoqyszG0Y2F+NGVONefOiUVEh7b/nggVRuOGGaqjVTX9uBgcHIyEhASoVv7JQ55GV1bqF9+4MGcLgvEAgCALS0tJw5MgRuFwt3xOWl6vw4INdsXevocmxw4f1GDu2HmvXKqFSSXtQSkTUmQ2IHQC9Sg+z4/RQEKvTim3Ht2FowlA/VUZEFFjWr1egrEyNVavCsGpVGAAgIcGGoUNNOOssE4YObUCXLu5Db8PDw31YKVHLTgWD5efno7GxUZYxHQ4Hjhw5gvT0dD6nIr949r/PoqyxzO2xh4c9jGhjtI8rIup4PAn4/zt+Nnhm/MDxiA+Jx1WfXQWH6P73/asDX+G8Bedh450bIQh8Lkqdj9lsRkFBgWzjDR0ajYgIBoJR28vIcOLXXz3vd+CABna7C2o1F0oSEREFoupqJ8aNs2LNGvkDVgTBhRkzTHjuOSMEgfcCRET+siZ7Da5ecvUf//5L3i945/d3AAApYSk4r+t5yAhNQ5oxA8mGZAiK1j2z21vtftO+KxKu8L7ovzDotYiPUEEXniLruETUOanVCjz4oA2PPy5tXn5+vgaff27CHXcwoJCIiORnsYjYvduGHTuc2LXLhb17lThwQIO6Og0ArilzR6VyoXt3G/r1c2DgQBcyMpQYMkSNmBg1gPa1vjkQlZdLC/mPi5O5EKIOjrPTiIiImlFZKW2ScVSUzIUQdUAPnP0ANh9rP7vlDkscBo2yYz8ccblcf4SBiaLYqj46nQt33lmBN96Q9k38xAkNvvsuDDfeWP1HW0hICOLj47mQhjqlPXuk9TMYnOjVi7sRBAq1Wo3k5GTk5eWd8byDB3W4//5uKC1t/kHyunXBuO++asydy7AFIiIpBnUZhC1FW5q0z9k2Bx8nfOyHioiIAs+WLdombcePa3D8uAbffnvyPrRrVyuGDjXh7LNNGDrUhKiokwEORiMnMVLgEQQBycnJsgaDOZ1OZGdnMxiMfK7GUoNXNr3i9liEPgKvXf6ajysi6phsNpvkvgyt8tylKZdi1927cNb8s9Bod/9Z/WvRr+g1uxd23b0LBk3TDRWIOiqbzYajR4/KNl5MTAwiIiJkG4/oTIYMkRbkYbUK2LXLiqFDmz6fICIiIv/KyrLixhsVyMuT/3tZZKQDixfbMWIEA2yJiPztva3vNXssryYPeTV5+Oz//z1UE4L+4QMwOGowBkcORr/wftCr3M9dLbO43/Dk0oRLvS0ZAKBUKtElFAjrkgYFn9MSkYzuu8+A1193oKJC2tyA119XYsIEF4NviYjIK1VVTmzbdjIAbPduBfbtUyI7WwO7Xefv0gKW0ehEnz42DBjgxKBBCmRmKjFokAZ6vRYA30PJTRRdkkPB4uP5HY7IE5y1TERE1Izqamk3pNHRfHBH1JKxfcbi54yfMS9rnr9LaZULu13o7xLajCiKqKysRHl5eavDwP5q7NgqLFgQjaoqaV8t5s+PxnXXVSMqKhRxcXFcWEmd2sGD0u49evSwQqXiwqhAYjQaER8fj+LiYrfH160LxlNPJcFsbvlB5kcfhaNnzyo88ggX7hAReermvje7DQX7Oe9nP1RDRBR4ioutOHy45UkihYVaFBZqsXz5yXvS1FQL7rmnGv36tXWFRNIIgoDU1FTk5eXBZDLJMqbT6cSBA9lITU1HUBCfX5Fv3LD0BjhEh9tjn17/KcOIiGTidDol9VMo+E5Yqr4xfZH7QC76zemHSnOl23Oyq7KR/E4y9t2zDzFBMT6ukMj3nE4ncnJy4HK5ZBkvLCwMMTH8u0O+M2yY9N3Uf//dwVAwIiKiALNwoQnTp+tgNkuby3QmGRkWLF+uRHIyN0AkIgoENmfrN02otdVhU+kmbCrdBABQKVToHdYbgyIH/REUFqWLwu7K3RBdTeekh2nCoBG836Q7PFiL2OhwqAxRXo9FRPR3BoOAe+5pxKxZ0gJsDxzQ4dtvGzFmDOf2ExFRy0TRhbw8O7ZvdyArS8Tu3QL271ehqEgDgM9OmhMXZ0ffvnb07y9i8GAFhg5VIz1dDaWSv2e+Ulkpwm5nKBiRL3DGMhERkRtOpws1NdJuSGNiOAGcqCUKhQLvX/0+DlcexoaCDf4up0UXdL3A3yXIThRFVFRUoLy83KvJ5Xq9C3fcUYF//7uLx32Tkqx44AET+vbtA42GX+aJDh+WNtm9Z08bAL44DDQRERGwWCyoqqr6o83lAhYujMI778TC5Wr9PeMTT4ShZ89ajBwZ2halEhF1WJMyJuGhHx9q0l5UVwSLwwKdirslEVHntmZNI1wuz7+HHD2qg0bDxboU+FJSUmQLBnM4gCeeiEdDgwVr1ugQEsLX7NS2NhVuwi/5v7g9NjR+KEb2GOnjiog6LofDffheSxgK5p0uQV2Q/1A+BnwwAHk1eW7PKW8sR+q7qdgxdQd6RvX0cYVEviOKInJyciRt4OROUFAQEhMTZRmLqLXS09UICXGirs7zuVbbt7dBQURERCSJxSLi/vvNmD/f2CbjT5pkwvvv66HTca4gEVGgGBg7EOvy1knq63A5sLd6L/ZW78XinMUAgCRjEpQK998N00PTJdcJAFqtBvGhgDHGu3GIiFry8MN6vPOOtGddAPDaawqMGSNzUURE1O7ZbC7s2WPD9u0O7Nrlwp49Shw4oEZtrQaA9+G5HZFS6UJamg19+zowaBCQmSlgyBA1YmPVAKRvWEPeKypyAJB2r5SQwGeDRJ7gbGUiIiI3ysudEEVpH5MxMbwhJWoNjVKD5Tctx9B5Q5Ffk+/vcpqlElQYljjM32XIRhRFlJWVobKyUradpm++uQoLF0ahtrZ1PzeTk614+GETpk0Lg0YTIUsNRO1dXZ0DhYXSHuL27SvPIhGSX3x8PCwWCxobG2GzKTBzZjxWrgz3eByHQ8CECUb8738m9O/fNhMviYg6oiBNEOKC4lDSUNLk2KKdizBt6DQ/VEVEFDjWr5ceZHH11dxRjdqHlJQU5Ofno6GhQfIYDgfw9NOJ+Omnk0HNV15pwk8/gcFg1KZu/upmt+2CQsC3N3/r22KIOjin0ympn/B/7N13WFRX/gbw97ahz9BBREDFiiJgi7Gk97LppjfT22azKZtks9ls+qZtjBtN3yS/NW0To6Zo+mbTbIg9KqiAoPQZ2gwzt/z+MBANgzKXmWGA9/M89zHO3HvuNyPl3nPPeY/IZ8I9FW2Jxrabt2H6K9OxsnKl131aPC0YP388vrjkC8zKmhXkComCY8eOHfB4PH5pKywsDBkZGX5pi8gXoiggN9eN777zvb+gqMjchAEiIiLyr9JSD846S0Nhof/HpURE6Jg714mrruKYFyKiUDMzcyae/ulpv7VX3lLe5XtDo4fCpbkQLvm2iJ8gCEi2SUhIzYQoc/EqIgq8uDgJc+Y045lnok0dv3JlBL74woljj+XYGiKigaqhQcPq1W4UFuooKgI2bpSwbZsFbncYAF7TehMZqWHsWDfGj9d+CQCTkZ9vQWQkP7NQVFFhfi5jejrHXRL5gt8xREREXlRXm78gTUnhAHCi7kqMTMTSC5Zi2ivT0Ow2PzEvkCYOmogoS98fjKLrOqqqqlBfX++3MLB2UVE6LrmkDvPmpRx0v+xsF/74RyfmzLFBURgGRrS/lStbYBg2U8dOmMBrj1CWlZWFFSuKceONg7F2rfnfJw0NMs48U8VPP7mRmMhVQIiIuuuorKOwcOPCTq8v3LiQoWBENOD99JNvg63bZWW1ITubAxep78jKyjIdDKZpwL33puPTT2M7XluxIgrHHtuCzz8HbDY+bif/e+R/j6CyudLre9dPuh5p1rQgV0TUv+m6uefCksQAE3+QRRkrrl6BM98+Ex9u/dDrPh7dg6PeOAoLz1qI2eO8hyYS9VWlpaVwuVx+aUuWZQwfPpyhhdRr8vM1fPed78dt2WKB223AYjEfXk5EREQ9s2yZE5dcoqC21txzg4PJynLj/fcNFBT0/TGYRET90YyMGUE717s738UHuz7A2LixyE/IR35CPvIS8pAQntDlMdFR4UiLD4PFNiRodRIRAcAdd4Rj/nwdLpe5/tZHHzVw7LF+LoqIiEKOrhsoK1OxcqUHhYU61q8XsWmTjLIyCwCOsexKSooHOTke5ObqyM8XMGmSjFGjLJAkfmZ9RWWlubE2VquGyEiOtyHyBUcpExERebF3r7kVoQEgNZW/Xol8MS55HBaetRC/e/t3MODfsCp/mJXZt1cd93h07N27F42NDX4PA9vfhRfW4fXXE9HU1PmmfNQoJ+64w4XLLrNBlv0/cIioPygqMn/tMXVqpB8rIX8TRRE5OcPQ1ubpcVslJeE466xmfPGFDIuFk3qIiLrj+snXew0FK9xT2AvVEBGFjrIyF4qLzd2jT53qBFdeo74mKysLpaWlaGpq6vYxmgbcd99gfPJJbKf3Vq3aFwz22WcG4uIUP1ZKA12zuxl//eavXt+zhdkw98S5wS2IaABgKFhoWHT+Itzy6S14buVzXt/XDR3nv38+djfuxh8P/2OQqyMKjMrKSp+uTw9GFEVkZ2czEKwXZGRkYPr06X5vt7m5GevWrfN7u4E0aZK5UC+3W8TatS5MncqxBERERMGm6wYefLAVDz4YCU3zf0DniSe2YuHCMMTF8R6aiChUJUYmIicpB5tqNgXlfKqhYn39eqyvX4/Xt78OAMiIykB+Yn5HUNjQmKFQFAWDbAasKcMgsL+DiHrBoEEyLr64BS+/bC7c9quvIrFiBfu8iIj6E4/HwIYNbqxeraKoCFi/XsTmzQoaGhQAHD/mjSgaGDbMjXHjVEyYYGDiRAmTJikYNIifWV+3Z4+54xITNQDsKyTyBVNLiIiIvKipMRecExGhIyqKDx2IfHXaqNPw2LGP4a4v7urtUjqZmTGzt0swxe3WMX++Hf/4RxSuvlrH6acHNnAtJkbHRRfVYcGC5I7Xxo1rxR13tOGii2xMaic6hI0bzV0/pKR4kJJi8XM15G9Wq4zFiz2YPt2D6uqedVz/73/R+MtfavHYY4l+qo6IqH+bkTEDFtECt+4+4PUWTwt+rvkZo5NG91JlRES969NPnQDMDTw84ghzwRlEvS0zM7PbwWC6Dtx//2AsXRrX5T6rV0fhmGNa8fnnBhISeG9O/nHee+fBo3sPFn/l9FcY9EEUAGZDwWSZQ678be5Jc5Fpy8Ttn9/e5T63f347yhxlePakZ4NYGZH/ffJJA2w2O2y2nrclCAKys7P5c6mXXHnllbjyyiv93m5RURHy8/P93m4gTZtm/hnYihUqpk71YzFERER0SA0NGi66qA2ffmou5OBgRNHAn//cgvvvj4Io+j9sjIiI/GtmxsyghYJ5U9ZShrKWMiwuXQwAiAuLxfQhh2FG5pGY7pmOSWmTEM5FqYmoF/zpTwr+9S8dqmruGe0jj2hYvNjPRRERUVA4HBpWr3ajsFBDUZGADRskbNtmQVtbGLigqncRERrGjHFj/HgdeXnAxIkSCgosiIriZ9Yf7dljbq5ySorm50qI+j+OBCEiIvKiutrcBWl8vAqAk3+IzLjj8DuwsXoj3lz/Zm+X0kGAgBkZM3q7DJ84nRrmzXNg7txo7N4dDwB46aUknHKKHYFetP7ii+vw5psJGDGiDXfd5ca551ohSZGBPSlRP/Hzz+YGyY8a1QaujtA3ZGdH4J13mnDSSRJcLvMTeI85xoGzzqpCebkTQ4YM8WOFRET919jksSjaW9Tp9Xmr5mHeyfOCXxARUQj473/NT8I56SQGf1PflZmZibKyMjQ2Nna5j64Df/3rYCxe3HUgWLu1ayNx7LGt+PxzIDGRzwaoZ1ZVrMKnxZ96fS8vJQ9njz07yBUR0cEoCvtlA+GPh/8R6dZ0XPjBhdAN74Ftc1fORXljOT6Y/UGQqyPyj//+twnnnmtFWloE5s8vRWqq90DQ7ho2bBgsFl6LUu8bPlxBbKwKu933YcmrVzMshIiIKJgKC9twzjkCdu70/9i+hAQVb77pwUknRfu9bSIiCoxZmbOwYM2C3i6jQ0ObHR8VL8NHxcsAABbJgklpkzB9yHRMHzIdR2YdCVu4H5LWiYgOYfhwC846qwXvvmsuSPejjyKxeXMbxo5lEAoRUajSdQPl5SpWrfKgsFDH+vUCNm1SUFqqwDA4TrIrSUke5OR4MH68joICEZMmyRgzRoEk8TMbKKqqzD3bS07mosREvmIoGBERkRdmQ8ESEnhBSmSWIAh48bQXsb1+O37a/VNvlwMAGJc8DnERh578FwpaWlQ8+2wj5s2Lxp498Qe8t2tXGJYvt+Hkkx0BrSEuzsA339iRnx/HMDAiH+i6jj17zN2ejxnTs4kiFFxHHhmDuXMbcM015n63XH11NW66qRqiCDgcDoSHhyMpKcnPVRIR9T9njznbayhYV4ELREQDwY8/mht8MXy4C1lZHLhBfVtGRkaXwWC6Dvztb2lYtKj7921FRb8GgyUlMYyBzDvn3XO8vi5AwIfnfxjcYogGiLY2HXfemY64OA1xcep+f/7637GxmtdFV2SZQ64CZfa42RgUPQjHvnksPLr3PvBFPy/C1Jem4vs530MW+W9Bfce6dc0466wItLZKKC6WcPHFw7BgwS5kZ7eZai8zMxMREbxHo9AgigJycz349lvffy6vWxfgFc6IiIiow6uvtuCmm8LhdPr/929BgQvvvy/xOQIRUR8zM3Nmb5dwUG7NjR/Kf8AP5T/gCTyB2PBYPHPCM7g87/LeLo2IBoA//1nBe+8ZMAzfgy90XcAjj6j4v/9jKBgRUShQVQMbN7qxerWKoiID69eL2LzZgro6BQAXBfNGEAwMHerB+PEe5OYaKCgQMXmyBYMH8zMb6KqqRFPHpaSYy24gGsg4KoqIiMiLujpzx8XHMxSMqCfC5XAsmr0Ik1+ajN2Nu3u7HMzKnNXbJRxSU5OKp59uxPPPx6C6Or7L/V56KQknnuiAaO5++6BEUURycjISExP93zjRANDW1oaPPirB3r0Ktm0Lx/btYb/8GY6dO8OgaV0/RBw/PoiFkl9cfXUctm6tx1NPdf0z+7cURccDD1TitNPsB7xeVVWF8PBwxMTE+LlKIqL+5YZJN+C+r+/r9Pou+y6ousrJw0Q04JSUOLFrl7kJOYcd5gIQ7t+CiHpBRkYGysvL4XD8GqJvGMDDDw/C++93/36t3bp1kTjmmFZ88QWQnMxgMPLdMz8+g7LGMq/vXZl/JTJjM4NcEdHAUFnZhk8/jT3oPoJgwGbTEBurIT5+X0hYXJyKRx+Vwbz+wJmVNQvrrluHyS9NRounxes+KytXYtRzo7Dh+g2ItHCxGgp9ZWUunH66gvr6X/uiqqoUXHrpMMybV4qCglaf2ktLS+PzAQo5+fkavv3W9+O2bLHA5dIRHh6AAQ1EREQEAHC5dNx8sxMvvxwVkPbnzGnBvHkR/H1ORNQHpVvTMTR2KHbad/Z2Kd1id9lx7UfXYvqQ6RiRMKK3yyGifm78eAtOOqkVn3xi7jnEu+9G4OGHPcjMZHAKEVEwNTZqKCz0/BIAJmDjRglbt1rgcoUBYFijNxEROkaNcmP8eA15ecDEiRIKCiyIibEA4Hg4OlBNjbk+wNRUPxdCNABwthMREZEXtbW+J/gDQGIiU2qJeio1OhVLzl+CGa/NQKvHt4HP/jYzI3RXPnI4VDz5ZCMWLIhBbe2hJyoWF4fjyy+tOO64Rr/VIEkSUlJSEB/v+0RJIvpVU1MTBAEYNMiDQYM8OOKIpo733G4BO3aEYfv2cGzb1v5nOGpq9j0YLCjgbX1f9Pjjsdi2rRFLl1oPuW98vIp//KMM+fnefyeWlpZi5MiRsFjYyU5E1JX4yHgkRCSgznlgArhu6PjPpv/g/PHn91JlRES949NPXQDMhYIdeST7P6n/GDJkCADA4XDAMIBHHhmEd99NMN3ehg2ROPpoJ7780o2UFN6jUfe1ultx95d3e30v2hKNBacuCHJFRAPHnj3qIfcxDAF2uwy7XcauXb8ODn7iCWcgSyMAY5LGYMctOzBu/jjUtNZ43WeHfQcy/pGBjTdsRGo0R49S6Gpo8ODkkw2UlXUOWW5qknDNNVl4/PFyHHNMk5ejO0tKSuIzWgpJkyebmwDg8YhYu9aFadMYRE5ERGSGqqqQJAmC4H3sc2mpB2edpaGw0P+BYBEROubOdeKqqwITNkZERMExK3NWnwkFAwC35kbhnkKGghFRUNx7r4hPPjF3rMcj4tFHW7FgAUPBiIgCpbzcg1WrPFi7Vse6dSI2bpSxa5cCw+Azh64kJKjIyfEgN1dDXp6AKVMUjBmjQJb5mVH3VFebm884aJC57AaigYyzh4mIiLyorTU3SC0hgZPiiPwhf1A+Xj/jdZz73rm9WsfMzNALBaurc+OJJ5rx0ktW1Nf7NtD7hReScOyxjehi7E+3ybKM5ORkDjQn8hOns+vJYxaLgdGjXRg92nXA6w0NErZvD0d+fkagy6MAkCQRCxdGYsaMVqxb1/XKUdnZLsybV4rBgz0Hba+4uBijR4+GKHK1VSKirszImIHFWxd3ev1fRf9iKBgRDTg7dmiQZQOq6nsHwUknmQsTIwpVQ4YMgSAIuOeecLz9tvlAsHabNkXg6KOd+OmnNsTEcFVJ6p4LP7gQbVqb1/cWnLoAsshhHUSBUlWlmT42LY0/54MhOToZu36/CxNemIDi+mKv+9Q56zB87nCsvGolcpJzglwh0aG1tek4/fQ2bNoUfZB9RNx2WwbuvbcS553XcND2bDYbUlJS/F0mkV8cdpj5a9cVKzRMm+bHYoiIiAaQqqoqREREeB3Pt2yZE5dcoqC21v+TOrOy3Hj/fQMFBQwEIyLq62ZmzMTr617v7TJ8khmb2dslENEAcfjh4Zg1y4lvvzU3ZuaNNyLxwAMqUlL43JeIqCdU1cCWLe0BYAY2bBCxaZMFtbUKAIYveiMIBrKyPBg3zoMJEwzk54uYPFnBkCEKGDNDZjmdOhobJVPHDh7MeW9EvuJ3DRERkRf19eYSc5KS/FwI0QB2zthz8MCRD/Ta+YfHDUdaTFqvnf+33G43du7ciXvusePxx+NRX+97x8vWrRH45psY0zXIsoz09HSMHj2agWBEfuRyuQ6902/ExWmYOrUV4eHmOtGo90VHy1i8WMSgQW6v78+a1Yg339xxyEAwANB1HSUlJdB13d9lEhH1G1flX+X19Z8qfgpyJUREve/KK/fi+++3YP78XbjiihqMG9cKUTz0YgejRjkxeDBXgqP+Jz09HQUFEgTBP4t+nHqqHWVlxWhr8x7yRLS/9VXrvYbXAsDYpLG4aPxFQa6IaGCprjb3sz8mRkNYGIdcBUukJRJbb9yK6UOmd7lPq6cVeS/k4audXwWxMqJD0zQds2c34bvvug4Ea6frAh58cDD++c9kGF38eIqKisKQIUP8XCWR/wwdqiA+XjV17Jo1fi6GiIhogPB4PLDb7dizZ88BfZK6buCBB1pw6qnhqK31/yTPE09sRWGhhIIChmYTEfUHszJn9XYJPjllxCk4LP2w3i6DiAaQu+82f6zTKeKpp3yfL0BENJA1N+v4739dePrpFlx6aQvy812wWg3k5lowZ04U5s2Lxn//GxmQPo++KixMx4QJLlx0UQv+/vdmfPWVCw0NOnbssGDJkig8+GA0zjor8pdAMCLzdu829ywQANLSONaGyFf8TUdERORFfb25gA2GghH5132z7sOmmk14d9O7QT93qDzcbGtrQ0VFBVpbWwEAF17owhtvJMLlMncDvGBBMo48sgmCD9mHiqIgNTUVNpvN1DmJ6OBU1VxnmCzzlr6vy8wMx3vvNeG44yQ4nb9ef156aS1uu20vJB8uSdva2rB7925kZGQEoFIior7v5BEnQxIkaIZ2wOuONgd2N+5GujW9lyojIgqulpYWAEBkpI4ZM5oxY0YzAKCpScSaNVFYuTIKq1ZFYevWcBjGgZ0H06a1ATC36ilRqLv11jhIUgNuvTUWum5u0RAAuP32PbjkkjoYBlBcXIzhw4cjPJxhetS1M9850+vrAgQsOX9JkKshGnjMhoLFxakAuGBDMImiiO+u/A7nvXce3tv8ntd9VF3FsW8cizfOeAMXT7g4yBUSeXfDDQ4sXhzn0zELFiSjpkbGn/9cif0fBYWFhSEzM9PPFRL5lygKyM1145tvfH+OWVTE361ERERm1NfXw/glVXb37t0YNmwY7HYdF13Uhk8/jfL7+UTRwJ//3IL774+CKJrvSyUiotCSHZ+N1OhU7G3e29ulHNLIhJH4v7P+r7fLIKIB5vjjw1FQ4ERhoblxMy++GI5779Vgs7EPjIjotyorVaxc6UZhoY716wVs3Chj504LdJ1jrroSF6ciJ8eD3FwN+fkCJk2SkZNjgaLwM6PAq6zUTR+bns5rISJfcQYxERGRFw0NZkPBmFJL5E+CIOC1372G4vpiFO4pDOq5Z2bMDOr5fsvlcqGiogJOp/OA1xMSNJx7bj3efDPRVLubN0fgu++iMXNm8yH3VRQFaWlpiImJMXUuIjo0Xdc7Bub5KiyMK232B9Onx2DBggZcfnksJAn4858rcfbZDabaamxsRHV1NZKTk/1cJRFR3yeKIkYkjMDPtT93eu+fq/6JR495tBeqIiIKvoYG79eaMTE6jjyyCUce2QQAcDgkrF4diRUrorFqVRSKi8Nx5JHm7l2I+oqbb46DKDbgllvMBYP94Q97cdlldR1/NwwDJSUlDAajLs1fNR87GnZ4fe/C8RdiePzwIFdENPDU1R16H2/i47VD70QB8e657+L2z27HUz8+5fV9AwYu+fAS7G7ajT/N+FOQqyM60P331+PFF+NNHfv++/Goq5Px97+XIyLCgCzLGD58OESRY1Io9OXn6/jmG9+P+/lnC5xOHRER/DonIiLqLl3XUV9f3/F3p9OJb76pwZw5sdi5M9Lv50tIUPHmmx6cdFK039smIqLeJQgCZmbM7DKQP1TEhsdi6QVLERse29ulENEAI4oC7rrLwOzZ5o53OGTMnduM++7jtTQRDVyaZuDnnz1YvdqDwkID69eL2LRJQU2NAkaedC0ry/1LAJiBggIRkycrGDJEhijyM6PeUVFhLhRMlnUkJTEUjMhX/GlPRET0G01NOlwucwPMUlI4MI3I3yKVSCw+fzEmvzQ5qKsPzcqcFbRz7c/pdKKiogIul6vLfa64ohbvvBMPt9vcz5wFC5IxY0YzhC7mNlosFgwaNIhhYERB0Nx86IC+rkRG+n/wHvWOSy+NQ2lpHdLTGzF5ckuP2qqurkZ4eDisVqufqiMi6j9OH3m611CwJT8vYSgYEQ0YLS3du9602TQcc0wTjjlmX0hYXZ2EvDyG01D/d+ONcZCkBtx0Uyw0rfvBYL///V5ceWVtp9cZDEZdcatu3PbZbV7fi1Qi8erprwa5IqKBqbbW3HMWhoL1riePfxJDrENw6/Jbu9zn7i/vRpmjDM+f8nzwCiPaz4IFDXjwwbgetfHNN1ZcffVQPP98OaZMYSAY9R2TJ5v7WlVVEYWFLkyfznsnIiKi7vr660aEhwM2276/L1tmxV/+kgCn0/+T6woKXHj/fQlZWRF+b5uIiELDrMxZIR0KJgkS3j3nXYxMGNnbpRDRAHXOOREYNaoNW7eaW9h73rww3H47Q/GJaGBoadFRWOjGmjUaioqADRskbNligdNpAWDp7fJCksWiY9QoN8aN05CXZ6CgQMKkSRbExvIzo9CyZ4+5BYaTkjSIouLnaoj6P4aCERER/caePSrM3iQxFIwoMNKt6fhw9oc44l9HoE1rC/j5BkUPwrC4YQE/z/5aW1tRWVl50DCwdklJKs4+uwFvvZVg6lzr10fip5+iMG3agROBLRYLBg8ejKioKFPtEpHvujsh35voaK4U1J/ce28ciovr4Hb3vK2ysjJkZ2dzwjkR0W/cOOVG/P2Hv3d6fWvdVui6zomVRNTv6boOj8dj6tjERB02GweW0MBw3XX7gsFuuCEWqnroYLCbbqrCVVd1DgRr1x4MNmzYMEREcMIc7XPph5fCpXrvC5574lxYZP7MJQqG+npz94FxceZWPSX/+f1hv0e6NR3n/ec86Ib3f4/5q+ej3FGOpRcuDXJ1NNB98IEdt9xig2F0P2S2Ky0tIoYPHwpZ5jBP6jsOO8z8YP4VKzRMn+7HYoiIiPogXdehqiokSYIoihC6WPlTVQ3MmROJ6upROPXUBrjdIhYv7lkwbVfmzGnBvHkRCA/n81Qiov6stxbU7q5nTngGxw0/rrfLIKIBTBQF3H67iquvNhcKVl2t4IUXWnDrrZyvQ0T9y969Klat8mDNGg3r1wvYuFHGjh0WaBrns3QlNlbF2LEe5OZqyM8XMGmSjPHjLVAUfmYU+iorzYeCAQwFI/IVR4sQERH9RnW1+UHcKSn+X12LiPaZmj4VL5/+Mi5ZdEnAzzUrc1aXg2n8raWlBZWVlWhr8y3s7Mora/Cf/8TB4zE30OaFF5IxbdpOAEBYWBjS0tIYBkbUC5xOp+ljGfjUv4iiiOHDh2Pr1n3BND21Y8cOjBo1CpLE61MionYZtgxYw6xobGs84HXN0LC8ZDlOGnFSL1VGRBQcPQkl5v0HDTRXX70vGOzaaw8eDHb99dW49tqaQ7bXHgw2fPhwBoMRttRswbub3vX63oj4EZhTMCfIFRENXPX15vrOEhIYChYKzh57Nr674jsc+fqRcGveV1v4aPtHmPjCRKy4egVkkcPkKPDsdjvq6xugKDEwmcncISXFg08+MZCSwrBQ6lsyM2UkJqqorfX95+6aNQEoiIiIqI8RBAEVFRUdffqSJHVssix3/PfHHysoLU0EALz3nrnFRQ8lIkLH3LlOXHUVxxUSEQ0E45LHITY8FnaXvbdL6eSagmtw05SbersMIiJcdlkk/vY3N8rLzfXb/uMfCm66yYAsB2e+EhGRP2maga1b3Vi9WsXatQbWrxexaZOCqioFjCzpWkaGGzk5KnJzdRQUiJg8WUFmpgyRz6+pj6qqMncdk5zMsTZEZnCpDiIiot+oqjJ3YSlJBuLj+auVKJAuzr0Yf5r+p4CfZ2bGzICfo7m5Gdu2bcPOnTt9DgQDgNRUFWecYTd9/k2bIlBTE43hw4djxIgRDAQj6iVmvv+BfQFSosjrjv5GkiQMGzbML23puo6SkhK/BIwREfUnUwdP9fr6S4UvBbkSIqLgs9vtpo+NiYnxXyFEfcSVV8bhpZfskGXv91XXXFON66+v9qnNkpIStLa2+qM86sPOfOdMGOi8YqIAAR+e/2HwCyIawMyGgiUm+rkQMm3akGnYeP1GRFuiu9yncG8hsudmo9HV2OU+RP7Q0tKC3bt347DDWvDaazuRkGA+FcxqVbFkSRtGjGCgLPU9oiggN9d7WOOhFBVxsRsiIiJBEDB48OCOcUGapsHtdsPpdKKpqQl2ux11dXWYPz+w14pZWW58952HgWBERAOIKIiYkTGjt8voZFbmLDx38nNBW/CbiOhgFEXAH/5gvu+3tNSCN980v6g4EVGwtLbq+P57F+bObcaVVzZj8mQnbDYdOTlhuOyyKPzjH9H46qvIXwLBCAAURUdOjguzZ7fg0Udb8NlnTtTXaygtteCTTyLx2GPROO+8SAwdqkAUeW1LfZfZULCUlM7j5Yjo0BghSURE9BvV1eYuLOPiNKYzEwXBw8c8jE01m7B029KAnWNW5qyAtd3U1ITKykp4ero0NIA5c2qwaFEcVLX7N9IRERouuaQR994bgYyMrB7XQEQ9o2maqeMUhR3n/VV4eDgyMjJQVlbW47bcbjfKy8uRmZnph8qIiPqHyyZchs93fN7p9f+V/a8XqiEiCq6eBBHFxsb6rxCiPuTyy+MgSQ2YM8cGj+fXcO6rrqrBTTdVw8zcgx07dmDo0KEM6R+gXlv7GrbWbfX63tljz8bYpLFBrohoYLPbzQWPJCX5uRDqkREJI7Dz9zsx7vlxqGqp8rpPqaMUWc9mYf3165FuTQ9yhTQQuFwu7Ny5s+PvY8e68OabO3DddVkoKwvzqa2wMB1vvdWCKVNs/i6TKGjy8nR89ZXvx23bZkFrq47ISC6OREREA5vFYkFaWhp2797t9f116yJQWBi4/sWwMB3nn1+L8HA7fv5Z7Fi8UJIkyLLcsSmK0rHJsswFDomI+oFZGbPw0baPeruMDlmxWXj/vPdhkSy9XQoRUYfrrovAo496UFNjbjz/3/8u4bLLDAbCEFHIqKpSsXq1B4WFGoqKBGzcKKOkxAJNC+/t0kKW1aohJ8eN3FwNeXkCJk2SkZtrgcXCz4z6v+pqc32AqakMBSMyg8klREREv1Fba+7CMj5eA3+1EgWeKIj491n/xuGvHo6N1Rv93n5ceBxyknP83m5jYyP27NnjlzCwdoMHe3DaaXYsWhR3yH2jozVcdlkj7rknEmlph96fiALP7Ta3QjawLziK+i+r1Yrk5GRUV1f3uK2mpibs3bsXqampfqiMiKjvmz1uNi5ZdAkMHHjvX9tai/rWesRHxvdSZUREgaXruuk+CUEQYLFwkDUNXJdcEgdJsuOKK6xwu0VccUUNbrmlylQgWLudO3cyGGwAUnUVN396s9f3wuVwvHnmm0GuiGhg0zQdDQ3mQsGSkzlJI9QkRiZi1627kLcgr8vwxQZXA0Y+NxI/XfUTclNyg1wh9WeqqqKkpKTT60OGePDGGztw002Z2LgxslttiaKB+fMdOPlkPs+lvm3KFHOTAVRVxJo1LsycyWehRERENpsNjY2NaGxsPOD15mYRt92WEdBzt7WJUBQDuq5D13WfjxcEoSNIrD1MbP9AMcNQUFERhqQkCSkpFoSFMUyMiChUzMyc2dsldIi2RGPpBUuRGJnY26UQER0gIkLETTc5cf/95kLBfv45DB980IpzzulevzERkb/ouoHt2z1YudKDtWsNbNggYtMmBXv2KOC86K6lp7uRk6NiwgQd+fkiJk2SMWyYAlGM6O3SiHpFdbW5sTaDBnGsDZEZ/A1NRET0G2azFxISfH/wTUTmxITFYMn5SzDl5Smoba31a9szMmZAFPw3yMThcGDPnj1QVdVvbe7vqqtqsHhxLHTd+01xTIyGOXMacffdUUhO5uBxolDS3Nxs+lhOGu7/kpOT4XK5Og3uNKO2thYRERGw2Wx+qIyIqG+TRRlZsVnYad/Z6b0Faxbgnpn39EJVRESB19LSYvpYhhITARdeGAtJsuOLLzw9DgRrx2CwgWfO4jlo8Xj/efzkcU8iXObPW6Jgqq9Xoarmgk+TkjhQMRSFy+HYfMNmHPXGUfi29Fuv+zhVJya+OBEfXfARTsg+IcgVUn+k6zq2b98Ow/C++FxCgoZXXtmF224bgu+/jzlkew891IArrmBoPfV9hx1mbkIkAPz0k4qZoTMHnYiIqNcIgoC0tDS0trZ2jD0sLg7DzTdnoLra/O/a7rLZNNPHGoYBTdOgad7bKC214NRTR3b8PSpKg9WqwWbTYLPpiI3VEBurIzbWQGysgfh4ICFBQEKCgBkzBEREyAgLC+sIHSMiIv8pGFSASCUSrZ7WXq1DgICFZy3EuORxvVoHEVFXbrklHE89paGx0VwoxuOPCzjnHD8XRUS0H6dTR1GRG2vWaCgqAjZsELF5swXNzRYAXCDUG1nWMWKEB+PGqcjLMzBxooRJkyxISOBnRtRO0wzU1pq7/klL41gbIjMYCkZERPQbdXXmLizj4xkKRhRMQ+OG4v3z3sexbxwLj+7xW7szM/wzuvSbb5rgcNRi+HDzk267IyPDjVNOsWPp0gMDv2JjVVx9dRPuvDMKiYkMAyMKRT2ZlB8Tc+iJI9T3paeno6SkBG1tbT1uq7y8HGFhYQx0ICICcGL2iZi/en6n19/f/D5DwYio32poaDB9LO8/iPaZPTsWRx9dg6oq/7W5c+dOZGVlITo62n+NUkgqqS/Bm+vf9Pre0NihuHHKjUGuiIja2tpwxRUO1NfLsNslNDTIHf/d3HzwAYxpaYGffE3miKKI/17+X1z0/kVYuHGh131UXcVJ/z4Jr5z+Cq7IvyLIFVJ/ous6iouLuww6aBcZqeO550rx178OxpIlXT+3veWWBtx9NwPBqH/IzFSQlORBTY3vvzMLCzkhgIiIqJ0sy0hPT8euXbuwbJkVf/nLYDid5ibd+aonoWCH4nAc+P/Q0iKhpUXCnj2HPnbFik2IjDwwlFcQBAiCAFEUIQgCJEnq2GRZ7tgURUFYWBhkWWaYGBFRFyySBdPSp+HLnV/2ah2PHvMoTht1Wq/WQER0MLGxEq66qhlPP23uWf/q1RH47DMnjj8+ws+VEdFAVFOjYvVqD9as0bBunYCNG2UUF1ugqpw70hWrVcOYMW7k5mrIyxMwcaKECRMsCA8PAxDW2+URhayaGg2qai6iKC2N/XFEZjAUjIiI6Ddqa80NLktM9HMhRHRIszJnYf4p83HV0qv82mZPLF/uwCOPSPj22xhMmybgxRcDGwoGAFddVYOPPoqFYQiIj1dx3XVNuP32aMTFMQyMKJS5XC7TxyoKJ50NBKIoYvjw4fj555+h6z0PoN2xYwdGjhwJWWZ3EBENbDdPudlrKNjGmo29UA0RUXC0tppfyTk+npPSidolJSUBAKr8mAy2a9cuZGZmMoCvnzvj7TNgwPD63gfnfRDkaogIACIjPbjtNu8/z91uAQ0NEux2GfX1+wLDGhp+/XPwYGuQqyVf/fvsf2OIbQge//5xr+8bMHDlkitR3liOvxzxlyBXR/3Frl274Ha7u7WvogAPPVSBpCQVr7yS1On9886z4+mnbf4ukahXTZjgwRdf+P5Ms6iIz7GIiIj2FxkZiZdeGoS5cxOCet5ghoJ1l6LoiIjo3MdmGAYMw+gYW+PxdH+R2fYwMVEU8d//RmP9+kjExRmIjwfi4wUkJopISpKQlCQhOVlBVBSvVYio/5uZMbNXQ8Euzr0Yd06/s9fOT0TUXXfeGY758zXTwb2PPmrg+OP9XBQR9Wu6bqC42IPVq1UUFupYv17Epk0KKisVMDKka2lpHuTkeJCbq6OgQMSkSTKysxWIIoMZiXxVUaHB7M8bhoIRmcPf8ERERL9RV2fuwjIhwftkDiIKrDkFc7CxeiP+seIfPW4rUolEwaACU8d+/PG+MLAffvh1sPaPP0Zj3boITJjg7HFtBzNsmBsXXVSHYcNE/PGPVlitDAMj6gt8GYC2PwY6DSyiKCI7Oxvbtm3rcVu6ruO770oxc+ZQSBI7U4lo4BqTNAaRSiRaPQcG5Lg1N34o+wGHZxzeS5UREQWGrutQVdXUsaIo8h6E6DcCEQxWWlrKYLB+7O0Nb3cZQHvayNOQNygvuAUREQAcNMjHYjGQkqIiJcX7NRSfw/QNjx37GDJsGbjpk5u6DGa8/5v7Ue4ox0unvxTk6qivKysr8zl8WRCAW2+tQlKSB48/PgiGsW/BuqOPbsKbb1rZb0/9Tn6+ji++8P244mILWlp0REXxe4KIiMjj8aC8vBwTJggQxXjourlFj82wWgMXCtbYaC40wWbTIPj5IzAMA5qmQdM0fPNNON566+D3/BEROqxWDTZb+6bj8MNbcemlzZAkCZIkQZZlyLIMRVE6NlmWIYq8viGivqGnC2z3xNTBU/HSaS9B8PcPfCKiAEhJkXHJJc148cVoU8d/800kfvzRhWnTwv1cGRH1By6XjnXr3FizRkNRkYH16yVs2WJBY6MFgKW3ywtJsmwgO9uNceNUTJhgYOJECZMmKUhKUgD4vogJEXVWWambPjY9nWORiczgdw4REdFv1Nebe+ianMwHD0S95Ynjn8CW2i1YXrK8R+1MS58GRep+J4+m6ViypBGPPqpg1SrvKze/8EIynn++tEd1HYrVasVrr8Vyki5RH6LresfqlL6yWNiBP9BYLBZkZmaitLRnv0/+979o3HnnEFx7rR1PPhnvp+qIiPqm/NR8fF/+fafX56+ez1AwIup3mpqaTB8bHs6Bh0TeJCUlQRAE7N27129tMhisf9J1Hdd8dI3X9yySBW+f/XaQKyKidmZDUwFwEm8fcsPkGzA4ZjDOfvdsaIb3Ce0vr30Zuxt34+MLP+a/LXXLnj170NjYaPr4iy6qR0KCinvuSUdOjguLFkXAYuHXHvU/kyeb+7pWVQGrV7fhiCPYJ0FERANbS0sLysvLoaoqpkwBbrqpCnPnpgbt/DZb4ELBHA7zoWCB1J26nE4RTqeIqqpfx5nGxKhwOru/cKwoihAEAaIodgSJ7R8m1h4oZrFYoCgK71WJKOimpk+FIirw6OYWvjVrcMxgLJq9COEy7weJqO+4++4wvPqqDlU1d832yCMali71c1FE1OfU12tYtcqN1as1rFsnYONGGdu3K1BVXhd1JTpaw9ixbowfryMvD5g4UUJengUREWEAwnq7PKJ+q6LC3FxIq1VDRIS5PkGigY6pAURERL9RX2/uwpKhYES9RxZlvH3O2zjs5cOwtW6r6XZmZszs1n6apuP99xvx+OMWFBbGHnTf//0vBps2hSMnx2W6rq7YbDakpaVBknhDTNTX+DIQ7LciIiL8WAn1FTExMUhJSUFVVZXPxxoG8O9/J+CJJ1Kh6wKeeioeo0c34KqrDr66KRFRf3bh+Au9hoJ9tfOrXqiGiCiwHA6H6WMZTkTUtcTERAiCgD179vitTQaD9T/Xf3w9mtzewxkfPuphRFoig1wREbUzGwomCHwm3Nf8bvTv8MOcHzDrtVlo09q87rOsZBkKXizAqqtX+bSAEA08tbW1qKur63E7J57YiJSUUhx7bBqsVg7hpP7psMPM/zxdsULFEUf4sRgiIqI+xDAM1NXVdVqQIDnZfLi1ryTJQFSUuQl+3WE2FMxqDWwoWGOj2bAy3/5t2heS1DQNHs+hA3dOOGEkBGFfKNq+TUdcnI7YWANxcUBcnIGEBAEJCQKSkiQkJ8tITlYQE8N7DSIyJ1KJxKS0Sfhx949BO2eEHIHF5y/GoJhBQTsnEZE/ZGUpOPfcFrz1VpSp4z/+OBIbN7oxbhwXDScaCHTdwI4dHqxerWLtWh3r1onYtEnG7t0WAJwn1JVBgzzIyfFg/Hgd+fkCpkxRMGKEAlHkZ0YUbHv2GKaO29e3yTnQRGawl5eIiGg/brdh+qFuUhIHgBP1ptjwWCy9YCmmvjwVDa4GU23Mypx10Pc1TcdbbznwxBNhWL8+ttvtvvBCMubOLTNVkzexsbFIS0vjCnBEfVhzc7PpY6Ojo/1YCfUlSUlJcLlcPoU6eDzAo4+m4b334g94/eabbRgxoglHHMGJ5kQ0MF2ZfyVu/OTGTq9XNlei1d3KcAYi6ldaW1tNHxsXxyBZooNJSEiAIAiorKz0W5ulpaXIyMiA1Wr1W5vUO8ocZXh57cte30u3puP26bcHuSIi2p/ZUDA+m+mbpgyegi03bkHeC3lobGv0us+6qnUYNncYNl6/EbZwW5ArpL7A4XB0CmboibPOSkZUFFcqp/5ryBAFKSkeVFX5Hg62Zg3HYBER0cCkaRoqKirQ2HjgfYthAG+8kRC0Omw2DYHMxDYfvhWqoWCBq0vTgMrKfQERFRW+HfvKKzsxZUoLBEGAIAgQRbFjkyQJsix3bIqidGyyLLP/g4gwK3NWUEPBXj/jdUxMmxi08xER+dO99yp45x0Duu77RbRhCHj4YQ/eeouhYET9jdttYP16N1avVlFUZGD9egmbNytwOCwA/Pg9n/U1kPc6IHqANdcApX13xQ1JMpCd7UZOjoq8PAMFBRImTVKQkqIA4MJORKHA7OPypKTALUBA1N8xFIyIiGg/NTUazP56TEnhA1Ci3jYiYQTePfddnPh/J0IzfBtooYgKpqZP9fqerutYtqwBd9wRic2bfZ8M+/XXVmzdGo5Ro1w+H9tOEATExcUhNTWVAy6I+gGn02n62KgocysJUf8wZMgQtLW1weU69O8Uh0PCH/84BCtWdA6Sc7lEnHdeOH74wYnhw7lCChENPOFyOAbHDEZFU+eR068VvYYbp3QODCMi6ot0Xe9R4IUs81Ei0aHEx+8LYfZnMNi8eY046igB06YxyLkvO/PtM6Eb3gc0/efc/wS5GiL6LU0zN2GXz2j6rqFxQ7Hzlp0YN38c9jTv8brP7sbdyHo2C+uuW4cMW0aQK6RQ1tLSgvLycr+1N2TIED7voQFh/HhzoWDr1rE/goiIBh5Mr8aGAAEAAElEQVSXy4WysjK43e5O7/30UxS2bQve2A6rNbDhWw6HufCtgVhXU5O5moBfw8oMw4BhGNB13ydfegsTkyQJ1dUWbN0ajqQkCYmJEpKSJKSkWBAWxn4Tov5iZsZMPP7940E5119m/QXn5pwblHMREQVCTo4Fp5zSgqVLzfX5/uc/EXjkEQ+GDmXgDVFf1dCgYdUqNwoLdRQVARs3Sti2zQKPJwxAABeIGfkRcP7vAPGX+71xbwNvfAHsOipw5/STqCgNY8a4MX68hrw8YOJEGfn5FkRGBvgzI6Ieqaoyt5JAaipDwYjM4pNzIiKi/ezdy1Awor7u2GHH4tkTn8VNn97k03GT0iYhUok84DVd11FVVYX6+no4nRZs3mx+tb0XXkjC00/7PlBcEATEx8cjJSWFE02I+pG2tjZTx7UPtKKBbdiwYdi6detBJy7u2mXBTTdlorS06wci1dUKfvc7FT/8oMJqZRcREQ08Rw89Gm+uf7PT6ws3LmQoGBH1G42NjaaPjYhgeCxRd/kzGGzRoljcf/9gxMZqWLq0CdOnMxisL1q0ZREK9xZ6fe+EYSd0uUAFEQWPmYmwACBJ5ifjUu+Lj4zHrt/vQv6L+dhcs9nrPnaXHaPmjcL3V36PgkEFQa6QQlFbWxt27drlt/ZSU1Nhs9n81h5RKJs4UccXX/h+XHGxBc3NOqKj+VyUiIgGBrvdjoqKChiG4fX9119PDGo97WFSgWI2fCtU6wpkKFhjo/l+CH/UZRgGNE3rNEbpiy9icc89nRfYjYrSYLPt26xWHbGxGmJjdcTGGoiLM5CeruOsszyQZRmKokBRFISFhXWEjhFR6JieMR0CBBjw/rvJX84eczbuP/L+gJ6DiCgY7rlHwtKl5o5VVRGPPtqKF19kKBhRqNN1A6WlKlat8qCwUMf69SI2bZJRVmYB0Atj7abO/TUQDNj33yffDDy/AYC54J5ASEnxICfHg9xcHfn5AiZNkjFqlAWSxPGJRH1NVZW5/pvk5MDeWxL1Z5zxSUREtJ/qavNps8nJHABOFCpumHwDNlZvxII1C7p9zMyMmR3/res69u7di4aGho6BNqNGteHooxvx1VdWUzV98YUVxcVhyM7uXhCQIAhISEhAcnIyBzsQ9UOqqpo6TlH4sI8AURQxfPhwbN++3euA0J9+isJtt2V0a7XQTZsiMHt2I5YujYYs8/cNEQ0sN0y+wWsoWNHeouAXQ0QUIA6Hw/SxVqu5PhCigSo+Ph6CIKCiosJ0G4sX7wsEMwwBDQ0yTj01AkuWNGHmTAaD9SW6ruPKJVd6fU8RFbx77rtBroiIvGEo2MBlkS3YcN0GHP9/x+PLnV963celujDlpSlYesFSnDTipCBXSKFEVVWUlJR0Gc7gq4SEBCQmBjfQgag3TZ5s7tmTpglYtaoNRx0V7ueKiIiIQo/dbkd1dTVEUfS6ONz27WH4/vvg9g8GMuQKMB90FchQMF0PzbrMBpUBga2rsdH7dV5Li4SWFgldrZ+Rne3CEUcUd9muIAgdi2YKggBJkjo2WZY7NkVRYLFYoCgKx9cSBUhseCwmpE4I6BiavNQ8vH7G6xAFfh8TUd932GHhOOqoVnz9daSp4//v/yLxt7+pSE3llH+iUOHxGNiwwY3Vq1WsXWtg/XoJmzcrsNsVACEyr0fw8sw7eROQ9Q2w66iglyOKBoYPd2PcOBUTJgAFBSImTVIwaFAIfWZE1CPV1eb6qtLSQieokKiv4R0CERHRfsyGgsXEaAgP5wBwolAhCALmnjQXP9f9jG92fdOtY2ZlzoKu66isrITdbve6zzXXVJsOBTMMAS++mIS//333QfcTBAGJiYlISkriYAWifsrjUaHrBgQT/VlhYWH+L4j6JIvFgszMTOzateuA1999Nw6PPJIGTev+F9iyZVbcdlsD5s7tvIInEVF/dlj6YQiTwtCmHRjc2+ppxabqTchJzumlyoiI/Ke1tdX0sbGxsf4rhGiAiIuLgyAI2L374H2A3ixdasN99+0LBGtnt8s47bQILF7chCOOYDBYX/GH5X+A3WX3+t5fjvgLrOEMXSQKBWYDfmSZQ636A1EU8cWlX+CyRZfhjfVveN1HMzScsvAUvHDqC7h64tVBrpBCga7rKC4uNh0i+FtWqxWDBg3yS1tEfcW0aRbTx65cqeGo4M9ZIiIiCrrY2NiO/njDMKDrOlRVhaZp0DQNDzwQ/JoCGSYFmA+6CmRdzc0idN3c5MRQDAWTZR0REf65l/HG4TDXP3KowDnDMDq+DwDA4/F0u21BEPDssymoqLAgNlZHXJzxywYkJAhITBSRlCQhKUlCcrKCqCj28RAdysyMmQELBUuJSsHi8xcjyhIVkPaJiHrD3XcL+Pprc8c6nSKeeKIVTz0V7d+iiKhb7HYNq1e7UViooahIwMaNErZutcDtDgMQwnN4ymYAw7wsgjT1uYCHgkVE6Bgzxo3x4zXk5QETJ0ooKLAgKirEPzMi6pGaGnN9Vampfi6EaABhLyYREdF+qqvNDf6Oi9MAMBSMKJQokoL/nPsfTHl5CnY07DjovgIEZIqZ2Lx580H3y8lxYdasRnz7rblJW8uX23D99dUYOtTd6T1RFJGYmIjExESGgRH1cz/91IpTThmDESNcGDHChZEj923Z2W2Ijj74YKzISHOrB1H/FB0djUGDBmHPnj1QVeDJJ1Px738nmmrruefiMHp0A264gcFgRDSwjEsehzV71nR6fd6qeZh/yvxeqIiIyH90XYemmZuIIooiJIn9nURmtE/g8yUY7OOPbfjzn9MPCARr53DIOO20SCxZ0oQjj2QwWKjb27wX81bN8/peanQq/jzrz0GuiIj8jaFg/cvrZ76OzNhMPPjtg17fN2Dgmo+uQXljOf521N+CXB31pvZAMFVV/dJeZGQkMjIy/NIWUV+SliZj0CAP9uxRfD529eoAFERERBTiBEGAJEkd/fNlZR58+GHw++ptNv9cB3clUIFSPdHYaP5zDsVQMJtNM7VgZXeFYrCbYRj44YdIbNrUvfF1ERE6rFYNNpuGOXNqcfrpzR3Px9o3WZYhyzIURenYZFnmGF8aMGZlzsJzK5/ze7sWyYJFsxchw8a+EiLqX447LgKTJjmxenWEqeNffjkC992nITaW43WIAkXXDZSXq1i1yoPCQh3r1wvYtElBaakCwzD3vdur1lwDzHwYkH5zHz9qMWArBRyZfjlNUpIHOTke5ObqKCgQMGmSgtGjFUhSuF/aJ6K+oaVFR1OTueuUwYPZl0JkFkeqERER7ae21txx8fGBW02JiMxLiEzAkvOXYNor09Dkbupyv5G2kYCre21ee22N6VAwXRfw8stJePjhio7XRFFEUlISEhISOFCAaIAoLFTR1CShsDAKhYUHrnI2eLC7Iyis/c+MDDfa55nFxHDyLx0oISEBTU1OXHyxDd9/37Ovjz/8wYbsbAeOP97mp+qIiELf2WPP9hoKtqx4WS9UQ0TkX3a73fSxDCQm6pnY2FgIgoDy8vJD7rtsmRX33JMOXe96hlZTk4TTT4/EBx84cOyxvGcLZWe8fQZ0w/szo3fOfifI1RBRV3oS8qMovoeaUGj721F/wxDrEFz70bUw4H0RsQe/fRDljnK8dsZrQa6OektpaSnc7s4LPZlhsViQlZXll7aI+qLcXHOhYOvWcXgzERHR00+3QVWjA36e8eNb8NJLOux2AzU1GlJSNMTExEDTNGiaBl3XOzbDMLf4cjvDMB/AFYrhW0Bo1hXIADUgNEPBAN++tpxOEU6niKoqBa2tgqn+IlEUIQhCl2FisixDEBS0tlqQlKTAYuEYYepbZmbMDEi7L576IqYNmRaQtomIetuf/mTgnHPMHdvYKOHZZ1tw//1Rh96ZiA5JVQ1s3OjG6tUq1q41sH69hM2bFdTXKwD6yTPfpjRgy9nAuN+MRxF14Oh7gUX/51Nzomhg6FA3xo1TkZtroKBAxOTJFgwe3I8+MyIybfduFYDF1LFpaewTITKLT82JiIj2U1Nj7rjERIaCEYWqnOQcvHX2WzjtrdO6HMifE5vT7fZyc504/PAm/PCDueCVjz+OxXXX1SAzU0VKSgoSEhJMtUNEfdemTV1P8q2osKCiwoJvvvk1fNBi0TF8eBsmT27B669zJQ3qLCsrHTk5Dfj++56143aLuPDCSHz3XStGj2YIBBENDNdPuh73fHlPp9dL7aVQdRWyyC50Iuq7PvvMjfr6aEyc2IqoKN/6L61Wc4HoRPQrm21feNfBgsGWL7fiT38actBAsHZNTRLOPDMa77/PMOdQ9en2T7GiYoXX947MPBKzsmYFuSIi6kpPgn4sFnMDHCm0XT3xagy2Dsbpb50OzfA+Qflf6/6F8sZyfHbxZ1zop5/7z3+qMGJECyTzmQAdJElCdnY2v2ZoQMvP17F8ue/HlZRY0NSkIyaG3z9ERDQwNTXpeO21iKCca8OGKHzwQQMefzyu28foug5VVeHxeDo2VVU7Nm9hYoZhoLVVhKoeuj/Um1AM35Ikw+dnML7oD+Fb+wt0XcEOUdP1ff/2mqbB4/F43WfnTgtOP30kACAmRoPVqsFma990xMXpiI01EB9vIC4OiI8XkJAgIClJwvjxMsLDFcgyxy1Q70iJTsHIhJHYVrfNb23ecfgduCzvMr+1R0QUas48MwJjxrRhy5YwU8fPmxeGO+7QERnJPjEiXzgcGgoLPVi9WsW6dQI2bpSwdasFLlcYAHPfj33Gips7h4IBQO6/gU2zgW2neT0sIkLHqFFujB+vIS8PmDRJQkGBBdHRA+AzIyJTKivN94ENGcK+DSKz+N1DRES0n7o6cw+a4+N7tvIVEQXWKSNPwd+P+zvu+PwOr++Hy76F7Fx7bY3pULDp01sQH5+MsWNjTR1PRH3fli2+rZDhdovYsiUCsbGBHRRFfds//2lDSUkTvvzS3O+ndnV1Cn7/+1Z89JEHisLVXIio/4sNj0VSZBJqWg9MCTdg4K0Nb+GSCZf0UmVERD33z39G47vvUiFJBnJynJgypQWTJzcjP78VEREH78+MjY0NTpFE/dzBgsG++MKKu+4aAk3r/nOJ5mYJZ50Vjfffb8QJJzC8L5Touo5LFnm/dpRFGe+f936QKyKig2EoGHlz8oiTsfLqlZj+6nS4VJfXfb7c+SVyF+Si8JpCWGR+LfRHr73WgKuuSsZRR4Xjscd2Izzc/FgQQRAwYsQIBoLRgDd5srnvAV0XsGKFC8ceG5wwFCIiolDz/PNONDZGBe18Tz9twymnNGHWrO6NOxFFERaLxdR9cmOjiupqD6qrVdTWaqirM1BXZ6ChAaivF2C3C7DbRTgcIux2CQ6HhMZGKaCBUmZDrqxWDYK5oefdwvCt7tO0fYtrmBGsr62mJglNTRIqKrp37KpVmw64LxUEAYIgQBTFjk2SJMiy3LEpitKxybLMe1LqsVkZs/wWCnbKiFPw6DGP+qUtIqJQJYoC7rxTwxVXmDu+tlbGggUtuO224N0LEPU15eUerFrlwdq1OtatE7Bhg4LSUgWG4dvcwH6j/HCgMQ2wVh74ugDg/N8BS15BQvklGDfOjfHjdRQUiJg0ScaYMQpkH+dTEtHAVlFhLhRMUXTEx7N/gsgshoIRERHtp7bW3IVlUhJDwYhCmdvtxtmDzsYC6wKUNJZ0el8WfbssLihoxeTJzVi1KrrbxxxzTBP+/GfgyCN7FtZCRH3f1q3mVs0YM8b7aoJEACDLIt57LxzTpjmxdav5yRFTpzbjL3+pQEmJiJEjR3JgGBENCDMzZuKDnz/o9Pob695gKBgR9VltbTrWrNl3XahpAtavj8T69ZF4+eUkyLKO3FwnJk9uwZQpLZgwoRVhYb/2b0qSxOtAIj+y2WwQBAFlZWUdr335ZQzuuMO3QLB2LS0SzjorCu++68App9j8WSr1wN1f3o06Z53X9+6cfifiI+ODXBERHYzHY76vlaFg/VvBoAL8fOPPmLBgAhxtDq/7bKrZhKFzh2LTDZsQGx4b3AIpoD75xIHrr7dB1wV8+aUN114rY+7cUths5gY3Dx8+HLLM4ZlE06aZ/925cqWGY4/1YzFERER9hKoa+Oc/g7uQm6qKuPJKBWvXqoiJCex1bEyMjJgYGcOH+3acrmfD4/HA7XbD4/FAVdWOTdO0jk3XdRiGAV3v/rW8w2Hu/znQ4VuhGgoWinU1N0swDHMJbYGsy2yAmsWidwqqNgzD56/tdr8NE1u5MgrbtoUjPh5ISBCQlCQhMVFCUpKElBQLwsL4rJD2mZU5Cy+vfbnH7YxNGouFZy+EJJr7niAi6ksuvjgCDzzgxq5d5vrF/vEPBTffbEBRApg+S9QHqKqBLVs8WLnSg6IiA+vXS9i8WUFtrQKAi5//SgCqxncOBQMA0QDOuBLXzNiOh45+CKLA63wiMm/PHnPPzZOSNIgif24TmcVRJ0RERPuprzcbCsaONqJQ5Ha7UVFRgZaWFgDAM1Ofwemfn95pP29BYYdy3XU1hwwFEwQDxx/fhD//WcCMGQwDIyKgoqINNTXmQsFychhCSgcXF6fgww89mDHDg7o63ztMZ8+uw1137YGiAKqqY+fOnRju6whMIqI+6JqJ13gNBVtZubIXqiEi8o+vv26G02n1+p6qiigsjEJhYRReeGHfpIK8vNaOkLBp0zgQm8jfrFYrMjMzUVpaim++icHttw+Bqpp/rtDaKuHcc6Px9tt2nH56rP8KJVNqW2vx1I9PeX0vKTIJDx75YJArIqJD6UkoGMNT+7/M2EyU3lqKcc+Pw+6m3V73qWyqROY/MlF0bRGGxg0NcoUUCCtXNuOCC6LQ1vbr93hhYRQuv3wY5s8vRWqqbz83hg4divBwrq5OBACDBslIS/OgstL3Z1eFhRyPRUREA9Nbb7WivDwq6OctKQnH3XfXY9680Ay4F0URYWFhCAvzbeyVrutQVRUej6dj+22Y2JAhBo47rgl2uwiHQ4LDIaGxUYLTefB+AKs1sOFbZgOlQrUum031cyW/MhtUBoRmKJi/azIMo+PrHQA++igeb7/d9fd6VJQGq1WDzabBZtMRG7vvz8mT23DOOU5IkgRZliHLMhRFgaIoCAsL6wgdo/5jZubMHrcRHxGPJecvgTXM+/NrIqL+RpYF3HqrB7feai4UrLzcgn/9qwVXXx38ewKi3tLcrGPNGjfWrNFQVGRgwwYZW7da4HRaAHDRJm/CwnSMHu3GuHEa9o6ZgC/V5V3u++h3j2J7/Xa8fsbriFQig1glEfUne/aYOy4pSQPDHInMYygYERHRfsyGgiUm+rkQIuqRtrY2VFRUoLW19YDXs2KykBSehBpXzQGvr6tbB83QIAndf/g+eXIL8vNbsHZt5452UTRw8slNuO8+EVOm8AEmEf1q5UonAHOhYBMnsgOMDm306Ej8+98OnH56DNzu7l3biqKBu+7agwsuqIew39wKp9OJ3bt3Iz09PUDVEhGFhuOGHQdZlKHqBw5AbmxrRKmjFJm2zF6qjIjIvC++6P6kCrdbxMqV0Vi5Mhr//Cfw9ddNGDEigMURDVAxMTEYNCgTjz8eBlXt+YQYp1PCP/8pYNq0GiQlJfmhQjLrrHfOgmZ4n6D177P+zQlQRCHIbCiYIDCYZKCwhduw4/c7MOnFSVhfvd7rPo1tjRjzzzH43xX/w+TBk4NcIfnT9u1O/O53FjQ2dh5KWVwcjosvHoYFC3YhO7utW+2lp6cjKoqTtYj2l5trLhRs3ToOcSYiooHpH/8wH24kCAYMw9z960kn2XHBBXtRU6P1qz5HURRhsVhgsXQ9kXz4cOCaazq/3tKiorrag5oaDTU1GmprddTXG6ivBxoaBCQmeqAoCnRdh67rMAz/LvoYiqFghmE+gCuQdZn9rIDA1mX2swpkUBlw6M+rpUVCS4vUacKvqtbjxBNrvB+0H0EQIAgCRFGEIAiQJKljaw8Taw8Us1gsUBSFfekhKtOWiSHWIShvLDd1vCzK+M+5/8HweC5OSkQDyzXXRODRRz2oqjI3/v/JJ2VceaUBSeKzKep/KitVrFzpRmGhjnXrBGzcqGDXLgW6zsVWuhIfryInx4PcXA15eQImTZKRk2OBouz7zO76HPjyh4O38Z/N/0GpvRRLLliC1OjUIFRNRP3N3r3mrkuSk3U/V0I0sPCJORER0S903UB9vbkHb8nJ7GQjCgVlZS48/LATbW0abr+9tdP7giCgILEAy3cfmH7frDajuLEYo2yjun0uQQCuu64G117764BuSTJw2mmNuO8+CQUFDAMjos7WrzfXkSWKBgoKIvxcDfVXJ5xgw9NPN+Cmm+IOuW90tIYnnyzH9OnNXt+32+2IiIhAQkKCv8skIgoZoihiZPxIbK7d3Om9eSvm4Ynjn+iFqoiIeua778yFEcfEaJg+nZPXiQIlISEGS5c248QTBdODf9tNn96ERx7ZjaqqfZPM+tMkvb7kq51f4X9l//P63uHph+O44ccFuSIi6g5NMzepkqFgA4siKVh77VqcsvAULCtZ5nWfNq0N016Zhg9mf4DTR50e5ArJH6qq3DjlFAF793YdDlBVpeDSS4dh3rxSFBR0fga9v5SUFMTGxvq5SqK+b+JEHcu8/yg9qJISCxwODTab+YAHIiKivubrr10oLDQ/EfqMMxqxaJHNp2NiYjT8+c+VOPlkBwCgqqoKVqsVYWHmnjX0J1FRMoYOlTF06MH2Su70iq7rUFUVbW1t8Hg8UFW1Y9M0rWNrDxJr337LbNBVIAOlWlpEaJq5PpJA1mX2s5JlA5GRgZucGooBakDg62r/mtb1fZ9td0P6zztvOCTJgM2mw2bTERurIy7OQFycgfh4ID5eQGKiiKQkCUlJEpKTFURFcWpkIAmCgJmZM7Fww0JTxz930nM4auhRfq6KiCj0RUSIuOmmVtx3n7lxAdu2heE//2nF7NmRfq6MKHg0zcCWLR6sXq2isFDHhg0iNm1SUFOjgPEWXcvKcv8SAGagoEDElCkK0tNliGLXn5mjzdGttldVrsLUl6fiows+wviU8f4qmYgGiOpqc/1Bqan+DdEnGmh41URERPQLu12HqpoNBePKNES9accOJx56qA1vvWWFyxUOWdZx8cV1SE3t/BA5PyG/UygYACwtXYpRud0PBQOAadOaMX58K7ZsicCZZzbivvtkjB/v24AaIhpYNm40d62RmelGTAwH2lH33XhjHH7+uQHz5nUdDJae7sa8eaUYPrztoG3t2bMH4eHhiIpiOAQR9V+/G/07bP6ucyjY0m1LGQpGRH1OS4uKoiJzocKTJ7dCUWL8XBER7S8vLxqff96CE04wsGdP1+ETBzNtWjOefbYMYWH7BsxUVVUBYDBYb7jw/Qu9vi4JEhbNXhTkaoiou1RVNXWcKPKZ8EAjiiI+vfhTXLXkKryy9hWv+2iGhjPePgP/PPmfuH7y9UGukHqiuVnFKad4sH37ofu+m5okXHNNFh5/vBzHHNPkdZ+EhARejxF1YfJkc89IDUPAihVuHH88F08iIqKB44knzIcTJSaqePPNaJx+ehO++qp7ff1TpzbjoYcqOo213LlzJ0aOHMl7YZNEUYTFYoHF4lsfsK7r0HUdbW1tUFUV8+Y5sXdvK+rqgPp6oKFBgN0uwOEQYbeLcDikjq2l5ddrrlAM3wICG3Rlti6rVUMgc+B7UlcghWLgnKYBW7b4fu0fEaHjxRd3Ij/fBUEQIIoiRFGEJEkdmyzLkGUZiqJ0bLIs82dcN83KmGUqFOzGyTfiuknXBaAiIqK+4eabI/DUUyrsdnPT+B9/XMS55xoQRS5aQ6GvpUVHYaEba9ZoKCoCNmwQsWVLGJxOCwBzY2P6O4tFx6hRbowfryEvz8DEiTIKChTExvr+mdld9m7vW+Yow/RXp+Odc97BSSNO8q1oIhrQqqrM3UMzFIyoZxgKRkRE9Iu9e1UA5h5wpaTwgRBRb9i+3Ym//a0N775rhdv964NgVRXx6quJuOeePZ2OyUvI89rWV5Vf4fbc2306vyAADz1UgxEjkjBmDMPAiOjQtm41t9rPqFFtABgKRr555hkbtm9vxPLl1k7vTZzYgmeeKUNcXPcGau3atQsjRozwebAiEVFfcdPkm/Dod492er24vhi6rnMgKBH1KV980Yy2tlhTx06f3r1VuomoZ8aPj8IXX7TiuOOAykrf7rOmTm3G3LmlHYFg7aqqqmAYBpKTk/1ZKh3EX7/+K6paqry+9/upv0dyNP8tiEKVrpubYM17w4Hr5dNfRoYtA/d/c7/X9w0YuOGTG1DmKMOjx3buX6DQ4/HoOOssJ9as6X4oclubiNtuy8C991bivPMaDngvJiYGgwYN8neZRP3GYYeZe0YKACtXajj+eD8WQ0REFMK2bHFj+XLzYZhXXeVCVFQ0XntNQX6+ivr6rqcLWSw6fv/7Klx8cR283e6qqoq9e/ciLS3NdD3ku/YwI1ne92938sndP7atTUd1tRs1NSri4qIRGWmBqqpQVRWapkHTtI7QMV3XYRjmJmT2JBQskIFSjY1mQ67Mhcd3l8NhbtpeID8rwPznFciwsqYmczU5nSIiIgwYxr7NTN+fKIodgWK/DRNraFBQUWFBUpKE5GQFSUkKLJaB1U84K3OWz8ccM/QYPHPCMwGohoio77DZJFxzTTP+/vdoU8evXRuOzz5rxYknRvq5MqKe2bNHxerVHqxerWH9egEbN8rYscMCXQ/v7dJCVmysipwcD3JzdeTlAZMmyRg/3gJF8c9n5ksoGAA0uZtw6lun4h8n/AM3T73ZLzUQUf9XU2Puvn3QIAacEvUEQ8GIiIh+UV1tPm02NdX8A04i8t3mza3429/c+OADKzwe74Ng3n8/DldfXYOkpAMf2I+yjYIAAQYO/J6vbK2EU3UiQu7eoJrw8HCkpaVh3Dh2sBNR96iqjuJic532Y8cGdpAP9U+yLOLddyMxbZoTmzf/+vvtzDMbcN99lVCU7l//GoaBkpISjBo1ipMfiahfSrOmITY8ttODcc3Q8PH2j3HaqNN6pzAiIhO++sp8P+fxx/PRIVGwjB0b2REMVlHRvWCwKVOa8dxzpQgP9/59Xl1dDQAMBgsCu8uOh7972Ot7ceFxeOK4J4JcERH5wmwoWPuEXBqY/nLEXzDEOgRzlszp9Jyx3WPfP4YyRxn+ffa/g1wd+ULTdFx+eSM+/zzW52N1XcCDDw5Gba2C66+vhiAAERERyMzM9H+hRP1ISoqMwYPd3b732V9hIScKEBHRwPHEE27ournF2iIidNx6675xSRkZ4fjHPxpw6aVxXvcdOdKJxx7bjREj2g7aZn19PWw2G6KiokzVRMEVFiZiyJBwDBni23G6rkNVVXg8no6tPUysPVBs/zAxj0dEcrIHjY0SXK7ujyESRQPR0eb6ZLrDbFiZ1Rq4mgDzdQU6FCwU6+rNwLn2/kJN0+DxHLiI0tKlsbjnnqQDXouJ0WC1arDZ2jcdcXE6bDYD8fFAXJyBwYOB447ToSgKLBYLFEXps/2LoxNHIzEyEbWttd3aPzs+G++e+y4UyXxANBFRf/HHP4Zj3jwNra3mfs898oiAE0/0c1FE3aRpBrZudWP1ahVr1xpYv17Epk0KqqoUMJ6iaxkZbuTkqMjN1TFxoojJkxVkZMgQxcB9Zo42h8/H6IaOW5bdgm112/DMic9ADmB9RNT3aZqBujpzPycYCkbUM/wNTURE9IvqanMP9RRFh9XKYASiYCgqasZDD2lYvNgKVT14GJfbLeK11xJx5517D3hdFmWMiR2DzfbNB7yuGRp+rP4RR6cdfdB2w8PDMXjwYEREmF+Rj4gGpo0bW+F0mlvpJzfXz8XQgGG1yli82IPp0z2oqZHxxz/uxaWX1kEw0aeqaRp27NiB7Oxs/xdKRBQCDht8GJaVLOv0+strX2YoGBH1KT/8YG7CUGysisMOM3fPQkTmjBnzazDY7t0H/96dNKkFzz1XioiIgwf/VVdXwzAMpKSk+LNU+o1z3z0Xqq56fe/1M15noDZRiDMMcyGqksSFoga6K/KvQFpMGk5969Qufw8s3LgQFU0V+OrSr/j7IETddZcdCxfG96iN+fOTUV0t44EHajB06FA/VUbUv02YoJoKBVu3jsOciYhoYKiuVvH22+YXKJ0924mUlF/Duy65JA4ff2zHO+/EdrwmCAYuv7wWN91UDYule/fGpaWlGD16NO9v+jFRFGGxWGCxdO9abexY4KKL9v13U5OK6moPqqtV1NRoqKszUF9voKEBqK8XYLcLaGgQ4XCI0DQgkF9G5kOuvN/f+0tjY+iFb+l6aNbVk1AwqzVw/47e6mpqktDUJKGiouvjsrNdGD++2Ot7giBAEASIotixSZIESZI6wsMURenYZFnu1Z/DgiBgZsZMLPp50SH3tYZZseT8JYiP6FnfCxFRf5GcLOPSS5uxYIG58Tj/+18Evv/ehenTzS1MTtRdra061q51Y80aFUVFwIYNErZssaClJQxAWG+XF5IURceoUW6MG6chLw8oKBAxaZIFcXEWAObG75n12wWRfTFv1TyUNJTg7XPehjXM6r+iiKhfqa7WoKrmntkNHsx+RaKe4NNyIiKiX1RXmxv8HR+vQRS5iglRIBUWNuNvf9OwdKkVut79FJP33ovHnDk1SEg48CH05SMvx50r7+y0/1eVX3UZChYREYHBgwcjPJyd6URkzpo1nkPv1IVJk/gghczLzo7A2283YtOmBhx5ZFOP2nK5XCgvL8cQX5cVJSLqAy7Pu9xrKNj3Zd/3QjVEROY0NalYt85ckPmUKa2QZQ7sIQq20aMj8dVXThx7bBvKyrzf/xcUtOCf/yxFZGT3nmPU1NTAMAykpqb6s1T6xfdl3+OLnV94fW/SoEkMlCXqA8yGgikKnwkTcEL2CVhzzRoc9vJhcKpOr/v8t/S/yHk+B2uvW4twmc8WQ8mTT9bjqaf8Mym1qsqC7OwRDEcg6qaCAh2ffOL7cTt3WmC3a4iNZTgnERH1b3PnukwvNigIBu64o/PUoPnzo/Djj/v6HQcNcuPhh3dj8uRWn9rWdR3l5eXIzMw0VRv1bzExMmJiZAwf3t0jxgHY93Xl8Xjgdrvh8XigqmrHpmlax6brOgzDgK4feuFv86FggQu5AszXZbUGrq6mJhGGYWJFSYRmKJii6IdcUKUnAvG1ZRhGt7+2f6s9TOzllxNRXa0gLs5AXJyB+HggPl5AUpLUsaWkWBAW5p9+i1mZsw4ZCiYKIt4++22MSRrjl3MSEfUXf/pTGF55RYfHY+5n8sMPm+tXI+pKVZWKVas8KCzUUVQEbNoko6TEAk3jM62uWK0acnLcyM3VkJcnYNIkGbm5FlgsofGZ9SQUDAA+Lf4UM16dgY8u/AgZtgz/FEVE/cru3RrMRhOlpfF5OlFPMBSMiIjoF+ZDwXx/GENE3eNwOPD55w0477xMUw+gXS4Rr7+eiNtuqzrg9RmpMyALMlTjwJWhPtv9Gf5a8FfI4q+XyZGRkRg8eDDCwhjIQ0Q9s2GDueOiojSMGhUaDwuo7zrqKCtGj25BXV3P23I4HAgPD0dSUlLPGyMiCiHnjj0XF35wIXTjwPv8OmcdaltrkRiZ2EuVERF132efNcPjiTV17IwZgV0JnYi6NmJEBL780onjjmvDrl0H9kPm57fg+edLERnp27OI2tpaAGAwWADM/s9sr6+LgohF5x98QgwR9T5N01FfL8Fm0yD5OJ9PljnMivbJTcnFtpu3IXd+LhpcDV73+bnuZwx9dig2XL+BfQohoqqqCtXV/hnfkZPjxJIlYX6bWEs0EEyZYm4ivWEIWLHCjRNOMBeCTkRE1Bc4nTpeeMH82KDjj3di7NjITq/HxSl48UUHnn++FX/60x7ExJi7Hm5qaoLD4YDNZjNdI9H+RFFEWFiYz+NydV2HqqrweDwdW3uY2IknepCS0gC7XezYHA4JDoeExkYRTqf369FAh4I1NoZeWJnZmoDAhpX15LMSzGWcdUuoBc4ZhgFN07B8eRQ2ber8s/+3oqI0WK0abDYNNpuOiy9uwPHHt0KSpI5NlmXIsgxFUaAoCsLCwiCK4gFB6DMzZh7yXE8e9yROGnFSj/7/iIj6o8xMBbNnt+D//i/K1PHLlkVg/Xo3cnMtfq6M+jtdN7BtmwerVnmwdq2BDRtEbNqkYM8eBYyX6Fp6uhs5OSry8nTk54uYNEnG0KEKRDF0+6gdLkeP29hQvQFTXpqCJRcswZTBU/xQFRH1JxUV5u9xBw/m7xyinuB3EBER0S/MBiQwFIzI/+x2O/bu3QtVVTFqFDBypAtbt5rrPHv77XhccUUt4uJ+vfGMUWIwNXkqvq/6/oB9nZoTz2x4BndMuANRUVEYPHgwLBZ2nBORf1x1VRWOProG27eHY9u28I4/KyoO/nNmxIg2yPKhB28QHcqgQYPgcrnQ0tLS47aqqqoQHh6OmJgYP1RGRBQaRFHE0NihKGko6fTe/FXzcd8R9/nlPGWOMthddmTHZyNS4e94IvKvL780vwr2CSewD4SoN2Vn7wsGO/bYNuzcuW8i1IQJrXj++VJERZl7DlFbWwvDMDBo0CB/ljqgPfbdY6hoqvD63rUTr0W6NT3IFRGRr/bu9eCII8ZAEAzYbBri4lTExXn/Mz5eQ2zsvj/j4lQ+M6IDpFvTUfaHMox7fhxKHaVe99nbvBfDnh2GtdeuxfD44UGukPZXX1+PmpoaXHopEB+v4r77BkNVzQV6ZWS04ZNPBMTFKX6ukqh/mzbN/O/RlSs1nHCCH4shIiIKMa++6kRtrbmAAAC4886ur21POMGGESN2oLW1Z2Odd+/ejaioKAZmU68SRREWi8VrH8311x/82JYWFdXVHtTUaKit1VBbq6OuzkBWlgeRkZHQNA26rndshmH+mVs7wwi9QCmgZ6FggawrFD8rIJTr6t7P45YWCS0tEvbs2ff3E0+0w+12d/s8giBAEASEIQwiROjw/vvk4pyLce2E66GqOmSZIepERL91990yFi40oOu+J1kahoCHH/bgnXf4nIq65nTqKCpyY80aDUVFBtavl7BliwXNzRYA/NrxRpZ1jBzpxrhxGvLygIICEZMmWZCQ0Lc+sza1DU7V6Ze2qlqqcMS/jsCbZ76Jc8ae45c2iah/qKw0108SG6siPJz9iUQ9we8gIiKiX9TUmFsiJjGRoWBE/tLQ0ICqqiqoqtrxmiAA115bg9tuyzDVptMp4c03E3DLLdUHvF6QUNApFAwA3ih+A2fln4XfDf2dqfMREXVNxbBhwLBhbpxwQmPHqy0tIrZvD+sUFtbUtG8wyahRbgAMDCH/yMzMxPbt2+HxeHrcVmlpKUaOHMnJkETUr5yUfRLmrZrX6fUPtnxgOhSs2d2Mr3d+jeUly7GseFlH6FhaTBr+fda/cWTWkT0pmYjoAD/+6NuK6u0SEjyYOJH3HUS9bdiw9mAwF6KidMyfvwvR0T17BlH3y4ooDAbruWZ3M+7/+n6v71nDrJh3UufrSCIKPXv3qgDCYBgC7HYZdruMnTu7d+zPP7ciNjaQ1VFfE22JRvEtxZj60lQU7i30uk+Tuwljnx+Lby77BtOGTAtyhQQATU1NqKys7Pj7qac6EB+v4g9/yEBrq28Te+PjVSxZ4kFGRrS/yyTq9xITJQwZ4kZ5ue/PldasMTemi4iIqC/QdQPPPWd+Wk9engtHHx1+0H2ysrKwZcuWHoUcGYaBXbt2ITs723QbRL0pKkrG0KEyhg717Thd16GqKtra2uDxeKCqasemaVrH1h4k1r4BQGurCE0zdy1rs6mH3smk7oZJ/ZYkGaYXMekOs+FbVmtgw7fMhqgF8t8QCF5Y2f5f07Iow613DhQbbRuNP4z4A778sgy/+90IxMSosNm0XzYdNpuO2FgdcXHGLxuQkCAgMVFEYqKEpCQJ6ekKLBZOcyWi/mvs2DCcdloLFi82Fwb8wQeRKC52IzubY7YJqK5WsXq1B4WFGtatE7Bhg4ySEgtU9eD3hgOZ1aph7Fg3xo/XkJcnYOJECRMmWBAe3vc/M0ebw6/tuVQXzn3vXDxy9CP404w/QRDYP09EwJ495voVk5M1MNKIqGf4HURERPSLujpzN6gJCT1fCYhooKuvr0dVVRU0zfuDxmOOaUR2tgvFxeY62xYuTMBll9XCZvv1YXR6ZHqX+8/+YDY+Dv8Yxww7xtT5iIh+a/+ww9+KitKRl+dEXt6vq3MYBlBVJWPbtnBkZoYBiA18kTQgiKKI4cOHY+vWrX5Z0bK4uBijR4+GKHJ1PyLqH26eerPXULBNNZu63YZhGNhYvRHLipdhWcky/K/0f/DoncMYK5sqcemiS1F8SzEsEgfrEFHPeTwezJ5dh4yMNqxaFYU9e7r/s2XqVCckyRrA6oiou4YOjcBXX7lQWVmKmBj/TK6pq6uDYRhIS0vzS3sD1ez3Znud7AIAr5z+Cu+NifqIPXvMT8ZLS+O9G3UmizLWXLsGpy08DR9t/8jrPm7NjRmvzcC757yLs8eeHeQKBzan04nS0tJOrx9+eAtee20nrr8+C/X13RtCGRmp4f33nZgwIcbfZRINGBMmeEyFgq1bpwSgGiIiotCwZIkTW7eaX7TjD384dLiLKIrIyMjwem3sC5fLhZqaGiQlJfWoHaK+RBRFWCwWnxdN3BcmpmPr1lbU1GioqdFQV2egvt5AfT3Q0CDAbhdgt4uw2yU0NopwOCQ4HBJaWiRYraEXvmWzaQhkHoD58K1QDQULXF2aho5FZ31lti6P7oFmdD5WgIAFMxbAIlngcEgwDAGNjTIaG2WUl3e//VWrNiE8fN94RkEQIAgCRFGEKIqQJKljk2UZsixDUZSOTZZlPqMhoj7h3ntlLF5s7lhVFfDYYx68/DKfVQ0kum6guNiD1atVFBbqWL9exKZNCiorFTAeomtpaR6MG+dBbq6OggIRkybJGD5cgShG9HZpAWF32QPS7j1f3YNt9dvwwqkvcIwzEWHvXnMdAklJgevfIBooeNVHRET0i7o6cw8C+GybyLza2lpUV1dD1w9+cyeKwDXX1ODOO4eYOk9Li4SFCxNw/fU1Ha81eBq63L9Na8Npb52G5Rcvx8zMmabOSUS0v8bGRp/2FwQgNVVFamozBg3i5BLyL1mWMWzYMJSUlPS4LV3XUVJSguzsbK4CQ0T9wsiEkYhSotDiaTngdY/uwbe7vsWsrFlej6t31uOLHV9gWfEyLC9Zjsqmym6dr7yxHDUtNRhsHdzj2omIGhoacOqpDpx6qgOGAezebcHKlVFYuTIKq1ZFoaam6wm0M2cGdqVqIvJNZmY4UlKGoqSkxC+BzsC+hRkAMBjMpNWVq/FJ8Sde38tNycU5Y88JckVEZFZ1tbkBhxERGmJiOMyKurb0wqW44eMbMH/1fK/v64aOc947B/844R/4/WG/D3J1A5Pb7caOHTu6fH/sWBf+7/924LrrMlFWFnbQtmTZwL/+1YQjj4z1c5VEA0t+voGPvOcnHtSuXRbU12uIjzc36Z2IiCiUPfWU+bEW6eluXHhh9wLFYmJiYLPZ4HA4TJ8PAKqqqmCz2XwOSCIaaPaFiYkYOVLGyJG+HdvWpkPTMqBpHng8+zZVVaGqKjRNg6Zp0HW9Y/P1OYLZUDCrNbDhW6yr+8wGggHmQ8E2N2z2Ggo2LXkaEsITAJgPUAsL0zsCwYB9i/EZhnHI+QXeiKLYESjWHiS2bl0Edu8OQ3y8gIQEAUlJElJSFCQlKbBYGCZGRMEzeXIYjjmmFV9+aS4U+N//jsCDD6oYNIjPq/ojl0vHunVurFmjYe1aYMMGEZs3W9DUZAHA+y9vZNlAdrYb48apmDDBwMSJEiZPtiAxUQEwcBaacLh6dp9/MP8q+hd2NuzEB7M/QHxEfMDOQ0Shr6rKXB9maipDwYh6ilf/REREv6ivNxsKxvADIl/ouo66ujrU1NT49LDu+OMdeP75ZOzadfAB2V15881EXHJJHaKj952zoq3ioPs7VSdOXngyvrjkC0xNn2rqnERE7VpaWg69UxdiYhgKRv4XERGB9PR07N69u8dttbW1oby8HBkZGX6ojIio900cNBHfln3b6fUFaxZ0hIJpuobVlauxrHgZlpUsw8qKldANkxPLlf65+hgRBV9TU1PHfwsCMGSIG0OGuHH22Q0wjH0TaFetisLKldFYtSoK9fW/PiY84QQOHiMKNeHh4Rg+fLjfg8EMw8DgwQwk9dU573oP/RIgYMn5S4JcDRH1RHW1uZ+p8fEaAAaR0ME9f8rzGGIdgnu+uqfLfW5dfit2N+7GE8c/EcTK9k2m/KH8B1S3VOOooUchNjw2qOcPNlVVUVxcfMjrqCFD3HjjjR248cZMbNrU9USsZ56x49xz4/xdJtGAM3Wq+d+lK1a4cdJJ7EslIqL+ZdWqNnz3nfnfbzfe6IEsd79/f/DgwWhuboam9SyoZufOnRg1alSP2iCiroWFiQDCf9m6T9d1qKraESS2f5hYe6CYrutITDQwaVILHA6pY2trO/Q8CrNhUt1lNnwrVOsKZCiY2fAtwPzntbZurdfXj08/vuO/HQ5z01T9+W/YPjdB0zR4PB4AwNtvW/HOO977dWJiNFitGmy29k1HXJyO2FgDBQUenHiiG7IsQ5ZlKIoCi8UCRVEgy5ySS0Tm3HuviC+/NHesyyXi739vxTPPRPu3KAq6ujoNq1btCwBbt07Axo0ytm9XoKq+Xf8NJNHRGsaOdWP8eB15ecCkSRImTLAgIiIMgLl5hv2F3WUPaPv/Lf0vDnv5MHx84ccYkTAioOciotBlNhQsJcU/4x6JBjL2QBAREf2iocHcw5GkJD8XQtRP6bqO2tpa1NbWmlq5R5KAa66pwT33pJs6f1OThEWL4nDTTSrS0tJQvqb8kMc0u5tx4r9PxFeXfoX8QfmmzktEBOwLTTKLK2tSoMTGxsLlcqG2trbHbTU2NqK6uhrJycl+qIyIqHddlHuR11CwL3d+iX8V/QvLS5bjs5LPUO+s7/G5MmwZXD2LiPzG5XJ1+Z4gAEOHujF0qBvnnbcvJKy4OAwrV0Zh69YI5ObaglgpEXVXeHg4srOzuxVo0V0NDQ0wDAPp6eb6WUPRj+U/YkXFCuSl5mFmxkxIon9De5796VmUOkq9vnd53uXIjM306/mIKLDMdoXFxgZ2ciH1H3fPvBtDrENw6YeXwoD3399P/vgkSh2lePfcd4NSU7O7GRe8fwE+2vYRACDGEoOPLvwIszJnBeX8wabrOoqLi7v9TDohQcOrr+7CbbcNwfffd16o5d5763HTTey/IfKHww4z/9xz5UodJ53kx2KIiIhCwN//rsLs5GWrVcP11/s2YVwURWRlZaGkpMTUOdt5PB7s2bMHgwYN6lE7RORfoijCYrEccrzhyJHArbce+FpTk4rqag+qq1XU1GiorzdQV2egoQGorxfgcAhITXVDFEUYhuG3Zxb7Mxt0FchQMF0PzbrMBpUB5sPKvq/63uvr+Qm/jq8PxQA14OD/hk1NEpqaJFR4WWv87LPrcdhh1QdtWxAECIIAURQ7NkmSIElSR3iYoigdmyzLEMVDh/ARUf911FHhmDrViRUrzIUDv/JKBP7yFw1xcVzIpi/QdQM7dniwerWKtWt1rFsnYuNGGRUVFgBcAKEraWkejB3rQW6ujoICEZMmyRgxQoEo8jPzJtChYACwvX47DnvlMHxw3gc4IuuIgJ+PiEJPdbW5a4/UVD8XQjQAMRSMiIgIgNOpo7nZ3EVpcjI75YkORtd1VFdXo66urscPgU86yY7585NQXu7bQJjMzDbcemsrrr8+5ZcVtIAtNVu6dazdZcdxbx6Hby7/BuOSx/lcMxERALjdblPHSRIf2FFgpaamwuVyobm5ucdtVVdXIzw8HFar1Q+VERH1nksnXIrrPrqu08Td6pZqXLH4Cr+eq2BQgV/bI6KBy+12+9TvIgjAiBFtGDGiDYqiQJK8r4xMRL0vLCzM78FgdrsdAPpFMNhfv/krHvjvAx1/LxhUgHknzcO0IdP80r7T48RdX9zl9b0oJQovnvaiX85DRMFTV2fu2W58PEPBqPsunnAx0qxpOOH/ToCqq173eW/ze5j+ynT874r/BXQioEfz4Jx3z8HykuUdrzW5m3DJoktQfHMxFEkJ2Ll7g67rKCkpgap6/9y7Ehmp47nnSnH//YOxdOmv90dXXtmAhx5iIBiRvyQkSMjMdKO01PdwsMLCABRERETUi0pLPfjwQ/MTmi+7zAmbLdrn4yIiIpCYmNjjBeTq6upgs9kQGRnZo3aIKDTExMiIiZExfPih9jxwwUhd1+HxeOB2u+HxeKCqasemaVrHpus6DMM4aIC32UCpQIZvNTeL0HXB1LGhGAomyzoiInxf2NswDKyqWdXp9Sg5ClkxWR1/D8UANSCwYWXtIXlmFky/6qosWCxAbKwOm01HXJyBuDgD8fFAQoKApCQJiYkSkpIkpKRYOuZAEFHfd9ddBs46y9yxTU0Snn66GQ8+6Pu9AAWW221g/Xo3Vq1SUVRkYMMGCZs2WdDYaAHAReK9kSQD2dlujBunYsIEAwUFEiZNUpCSogDoX8+vAsnR5gjKeeqd9TjuzePw0mkv4bK8y4JyTiIKHbW15u6rBg0yd09NRL9iKBgRERGAqioNgLlO8pQUdq4TeaPrOqqqqlBfX++3yWqyDFx9dQ3+8pfuTVYbPtyF225z4uqrbVCUXwdv1zvrUdVS1e3z1jnrcOwbx+K/l/8XoxJH+Vw3EQ1suq6beuAP4JCr9hH5Q0ZGBoqLi02H1+3vhx/2YPz4MAwebG4lWyKi3rajYQeWFy9HmBwGl+oK+PnyU/MPvRMRUTc0NDSYPjYqKsqPlRBRIISFhWHEiBHYvn27X4PBDMPAkCFD/NJeb6hqrsKD3z54wGuFewpx+KuH44q8K/DYsY8hOSq5i6O756IPLkKb1ub1vQWnLIAscsgFUV/DUDAKlqOHHo2ia4sw5eUpaPW0et3nh90/YPQ/R6Po2iJEWvw/kd4wDMxZMueAQLB2ZY4yLN22FGeNMTnzKESVlZWhrc377+5DURTgoYcqkJio4rXXknDKKY144QWbnyskogkTPKZCwdat4yQwIiLqX558sg2qam4ivyzr+OMfzY/LSE1NRWNjY4/HiezatQujR48OaNAxEYU2URQRFhaGsDDffibpug5VVeHxeDq2Bx5oRWVlKxoagIYGAQ0NIuz2fVtjowiHQ4LDIcHpPHAicneCm8wyG3IFhGYomM2mQTAxH7vZ0wzN6Pz/E2eJgyj8+jsgkOFbPRGKgXMeD7BihW/XAVFRGmw2DU8/XY7x49sgiiJEUYQkSR2bLMuQZRmKokBRFISFhXXsR0Sh43e/i0BOjgubNoWbOn7BgnD86U86oqL4vd1bGho0rFrlRmGhjqIiYONGCdu2WeDxhAHgGHpvoqI0jBnjxvjxGvLzgYkTZeTlWRAZyc+sp+wue9DO5dE9uHzx5dhevx1/O+pvB1wLElH/1dyso7nZ3H1VWhp/ThD1FEeoEhERoT0UzNzgsZQU8w97iPqjQISB7e/UU+1YsCAZlZVdDxIdOdKF22934oorbJDlzh3lW2q2+HzeqpYqHPPGMfj2im8xLG6Yz8cT0cBldvIJsG91TqJAE0URw4YNw7Zt20wH2AFAYWEkbr01A8OHt+Hbb2VERPA6mYhCX6unFd/s+gbLipdhWfEybK/fHtTzMxSMiPylqanJ9LFxcXGH3omIep3FYvF7MJjD4YDDIWDcuO4twhBqftz9I3TD+33sa0Wv4YMtH+BvR/0NN0y+wVR418aqjVj08yKv741JHIOLJ1zsc5tE1PsaGswNOExIMN9vRgNXTnIOSm4pwbjnx6HOWed1n+3125H1bBY2Xr8RydE9C7P8rbu/vBtvrn+zy/dfLny5X4WCVVRUoLm5uUdtiCJw221VGD/eheuuS4Msc5Aykb8VFABLlvh+XGmpBXV1GhIS+PyJiIj6PodDwxtvmB8TdMYZTmRm9mzBj6ysLGzbtq1Hbei6jvLycmRmZvaoHSIaeERRhMViOWDR1Esu6d6xLS0qqqs9qKnRUFurISMjDLGxsdA0rWNrX8hV1/UePVMxGyYFhG4omBlu3XuIZEpEygF/D8XwLcB8uFsg62pq8r2mlhYJLS0SFEU3tVixIAgQBAGiKEIQBK9hYi0tChwOBSkpChITFSgK+8aIAkEUBdx5p4bLLjN3fG2tjOefb8Ydd5gLGabu03UDu3Z5sHq1isJCHevWidi0SUZ5uQUA53l0JTXVg5wcD3JzdeTlCZg0ScaoURZIEj+zQAhmKFi7h//3MLbVbcPrZ7yOCIX/rkT93e7dKgDfF/wBgPR0Ptcj6imGghEREQGorjb3sEcQDCQl8aKUCADcbh3ff1+DpKSagJ5HUYA5c2rw4IODO703dqwTd9zhwsUXew8Da7el1vdQMACoaKrA0a8fjW+v+BYZtgxTbRDRwNOTyflRUT0bwEfUXbIsY9iwYSguLjZ1/OLFsXjggTR4PCJWr5ZxySUOvPNODCSJg0KIKLQYhoHNNZuxvGQ5lhUvw7el36JNMx/g2VP5gxgKRkT+0ZMwYt53EPUd7cFgxcXFPQp1bldcHIY5c1Jx6631uO++eD9UGFy1rbUHfd/R5sDvl/0eLxe+jHknz8OszFk+tX/GO2d4fV2AgMXnL/apLSIKHfX15p7tJib6uRAaMFKjU7Hr1l3InZ+LnfadXvepaa3BsLnDsOaaNRiVOMov5332p2fx+PePH3SfZcXLUOYo6xfPPaurq9HQ0OCXtgRBwI03psBi4VgQokCYMsX8s6OffnLjlFM4wYiIiPq+5593obHRfN/8nXf2fBqQxWJBWloaKisre9ROU1MTHA4HbDZbj2siIuqOqCgZQ4fKGDrUt+N0XYeqqmhra4PH44Gqqh3bbwPFDMOAYRhobd0XwOTx+HYfI0kGoqICt8hAsMO3BEHw+vqQ6CEH/D1UQ8HM1mW1hl6wG2D+82r/um5/xujxeDrts3hxLP78532LCQmCgZgYFVarDptNQ2ysBptNR2ysjrg445cNSEgQkJYmYOpUEYqiQFEUyDKnLBMdyoUXRuKvf3Vj505zARvPPmvBrbcaUBTvP6PJdx6PgfXr3Vi9WsXatQY2bJCwebMCu90Cs0Eo/Z0kGRg2zI1x41RMmAAUFIiYPFlBaqoCQOnt8gYMh8vRK+d9b/N7KHWUYvH5i5EandorNRBRcFRUmL+/HTyYz9yJeop32ERERACqqsxdlFqtGhSFv05pYGtr0zFvnh1z50ahqSkBy5bVIjLS/KpK3XHGGXa88EIyqqv3dRLm5rbirrvcmD3b2q2VA7bUmAsFA4BSRymOeeMY/Pfy/yItJs10O0Q0cDidTtPHxsTE+LESooMLDw9HRkYGysrKun2MrgPPPpuCV19NOuD199+34f776/HQQ31vUjkRBZeqqiguLsbmzZuxZcsW7Ny5E5WVlaisrERNTQ2cTiecTifcbjfCwsIQERGB8PBwxMTEYNCgQUhLS0NaWhqys7ORm5uL8ePHIzr6wBXw7C47vtzxJZYVL8OykmXY3bi7l/5vD5QUmYTBMZ3DjomIfNXW1mZ6hev9V98mor7BYrEgOzu7x8FgO3aEYc6coaivl/GXv8RD1+tx//196x6u3lnfrf02VG/AEf86AheOvxBPHPdEt/p1X1z9IkoaSry+d8G4CzAiYYRPtRJR6DAbCpaQENhnX9S/RVuise3mbZj+ynSsrFzpdZ8WTwvGzx+PLy75ArOyfAuy/K13Nr6DPyz/wyH3M2Dg1bWv4q9H/rVH5+tt9fX1qK6u9lt7w4YN470SUQBNnWr++2vFCg2nnOLHYoiIiHqBqhp4/nnzk6NnznRi8mT/hGTGx8fDbrejtbW1R+3s3r0bUVFRDAAhopAmiiIsFotP9/w5OcCll+poblZRVeVGTY2GmhoNdXUG6usN1NcDDQ0C7HYBDocIu13sCHvqIkfLLxobgxu+JaJ7oWjBrqs7NA1oagq9usx+VkBg69o/rMwwBDQ2ymhsBHYfYqjVyJFOvP9+5+dqgiBAEASIoghRFCFJUscmyzJkWe4IEmsPExNFLkRLA4MsC7jtNg9uvtlcX1lFhQWvvtqCa6/lQoBm2O0aVq92o7BQQ1GRgI0bJWzdaoHbHQYgrLfLC0kRETrGjHEjN1dDXh4wcaKE/HwLoqL4mfU2e5u91869smIlpr48FR9d8BHGp4zvtTqIKLAqKszdg4SF6YiL4/U9UU+x152IiAhA7cEXk+9SfHzgVnAhCnUtLSrmzm3EP/8ZjYqKXyeLvfdePC67rC6g57ZYDFx5ZQ0+/9yGu+7y4KyzrJCkyG4fv6XWfCgYABTXF+PYN47FN5d/g+So5B61RUT9n8vlMnVc+4NwomCyWq1ITk7u1gSq1lYRd9+djq++snp9/5FH4jBqVAMuuSTO32USDQi6uxnulhpoaudVGfuy3RV78MOKNVhduA6r16zHuo2b0dbm7tax7QFh7bZu3dppH0EQMDRrCHImjoRlhAWlCbuxtmUTNCOwq4qakT8ov8vVVImIfNHQ0GD62KgoDg4k6ot6Ggy2c6cFc+Zkob7+1+ECf/1rPFS1Hg8+2HeCwepafeuHXrhhIZZsXYL7j7gft0y9BRbJ+wBrt+rGrctv9fpehByB1373mq+lElEIsdvNDZVKTub9G/WMLMpYcfUKnPn2mfhw64de9/HoHhz1xlFYeNZCzB4329R5vtr5FS798FIY6F6Q3atrX8V9s+6DJPbNFXqbmppQWVnpt/YyMzMREeGfgAUi8i4+XkJWlhu7dvk+4XHtWv4+JiKivm/hwlbs3m2+b/622/wbWp2VlYUtW7aYXnzE4wFeeCEJotiE55/n+BAi6n8kSYTNJsJmkzFypC9HjoOu63C73fB4PB2bqqpQVRWapkHTNOi63rF192ex2UApq9Xc2Jmuxrb8tv9p/0ApX9hsqqnjuqO5WYJhmLuXDFb4li8sFh3h4YFbwML8v6H3z8owDBiGYep5piiKHeOo3347Dg0NCuLiDCQkCB1bYqKElBQFSUkKLBaOt6a+56qrIvDwwx7s3WsuNPjJJ2VcdZUBSWKfWVd03UB5uYpVqzxYs0bH+vUiNm2SUVpqAcBnAV1JTvYgJ8eD3Fwd+fkCJk1SMHq0AkkK7+3SyAu7y96r5y9zlGH6q9Px7rnv4sTsE3u1FiIKjD17zB2XmKhCFLkYF1FPMRSMiIgIQHW1uY7xhITQm1RMFGjNzSqefroRzz8fg6qqzhPEXnstEbNn1wf0gZMoivjDHyx45JEoUysp9TQUrL2N4948Dl9f9jXiI/rORDkiCj5VNTdggatnUm9JTk6Gy+VCY2Njl/vs2aPg5pszsHVr1w9EDUPAdddZMWxYE6ZPjwlEqUT9jttRjoZGJ+ytOjyewA14C6bm5mb89NNP+Omnn7BixQrs2rUroOczDAM7dpZhx86yfS8IALIATAAwBiG1IFl+an6vnr+srAyrV6/GmjVrOv6sq/M94DkzMzPg/65EdHBNTU2mj42L4wQdor7KYrFgxIgR2L59u08D6XftsmDOnKGore08sPihh+Kh6w14+OG+8bOhzun7tUuzuxl3fH4HXln7Cp476TkcO+zYTvtctvgyOFWnl6OBZ098FhaZg5WI+iqHQ4XLZa7fNSWFE4rIPxadvwi3fHoLnlv5nNf3dUPH+e+fj92Nu/HHw//oU9tFe4twxttnwK11L4AdAMoby7G8ZDlOHnGyT+cKBU6nE6WlpX5rLy0tDTEx7MsmCoa8PI+pULB168xNkCQiIgoVum7g6afNB/KOGtWG00/378R1URSRkZFh6tp6504L7r47HZs2RUIQDJx4oh2nnx7r1/qIiPoyURQRHh6O8HDfAjR0XYeqql7DxFRVxbRpbiiKA3a7CIdDhMMhweGQ0NgoweXquh/TdCgYvA/WL28uP+DvwQ4r6w6zIVdAaIaCBbImILT+Dduff2qahnfeicGWLQe/BoqJ0WC1arDZ2jcd557biCOOaIMsy5AkCbIsQ5ZlKIoCi8UCRVE4Vpt6VXi4iJtvbsW995rr8youDsO777biggsi/VxZ3+TxGNi40Y3Vq1UUFRlYv17C5s0K6usVAOxX9EYUDQwd6sa4cSpycw1MnChi8mQL0tL4mfUlDpejt0tAk7sJpyw8BXNPnIsbp9zY2+UQkZ/t3Wtunnhysu/hwETUGe9aiYiIANTVmUvFj48PXOgRUahpbFTxxBONeOGFGNTUdB2CVVen4P3343DRRfV+r0GSJCQnJyMhIcF0Gy3uFpTa/TM4fH3Vehz/5vH48tIvYQu3+aVNIupffFm97bfCwkIotYQGnPT0dBQXF8Pt7jx5bP36CNxySwbq6g79sK+1VcK554bhxx9dyMzk6kBEXdE9TlTtKUddY/cnbIayqqoqfPPNN/j666+xcuVKeDye3ivGALDzl+1jAPkADgcQ23sltSsYVBC0c1VUVGD16tUHhIDV1NQE7fxEFFjertm6KzKSAwOJ+jJFUTBy5Ehs27atW8FgZWX7AsFqarq+n3vkkThoWj0eeyz0F0Kod5rvg/659mcc9+ZxOGfsOXjq+KeQYcsAAGyt3Yp3Nr7j9ZgR8SNw9cSrTZ+TiHpfZaUbZodKpaSYnzxG9FtzT5qLTFsmbv/89i73uf3z21HmKMOzJz3brTZ32XfhpH+fhCa376HBLxW+1OdCwdxuN3bs2OG39pKTkxEfH/rXP0T9RUGBgQ8/9P248nILampUJCVx6DMREfVNX33lwrp15kO9brlFhSj6fzxRTEwMrFbrQReP259hAO+8E4+nnkrtCJ8xDAHXXx+JadPcSEpiqD4RUU+IogiLxQKLxfvP0z/9qetjm5pUVFd7UF2torZWQ12dgbo6Aw0NwOjRboSFhUHTtI6xrd0Z37qjyXsfzGb7ZhiGAUEQoOvmg64GYiiY2fCtQIeC9eWwsqYmCU1NEioqfn1t2rQmOJ3eFwL6LUEQIAgCRFHs2CRJgiRJHeFhiqJ0bLIsQxS5mAj13C23ROLJJ1U0NJjr73r8cRGzZxsQRXPzIvsqh0NDYaEHq1erWLdOwMaNEn7+2YK2tjCE1MqxISQiQsfo0W6MH68hLw+YOFFCQYEF0dH8zPo6u8ve2yUA2Lfw0U2f3oRtddvw9AlPQxL5fJ2ov9izx9x1BkPBiPyDT8aJiIgA1NaauyhNTGQoGPV/DQ0ePP54E156yYr6+u4NhH711SSce24DLBb/fI9IkoSUlBS/DMTeWrcVBvz3vbtmzxqcvPBkLL94OaIt0X5rl4j6h+bmZtPHcnI+9SZRFJGdnY2ff/75gInln3xiw333DYbb3f3BDHv2WHDGGa343/9UREezK4rot9yOMpRVt8HV1rcDwerr6/HZZ5/hk08+QVFRkelQzIDyAFgJYDWACQCOAmDtvXLyU/MD0u7evXs7AsDaQ8D27t0bkHMRUe9zuVymf+Z2NYiciPoWWZa7FQxWXq7gyiuHorr60AHPjz8eD1Wtx5NPhnYwRp2zrsdt/Gfzf/DJ9k9w78x78cdpf8QZ75zRZf/xotmLenw+IupdSUlt+PzzMjQ0yL9sUpd/2u0y7HYJur7vOfLgwbx2Iv/64+F/RLo1HRd+cCF0w/vv8Lkr56K8sRwfzP7goG3VttbihP87AXubzd3/L926FHub9yI1OtXU8cGmaRqKi4v91v8UGxuL5ORkv7RFRN0zZYr5yUA//eTBaafxeRMREfVNTz5p/ho2KcmDK680Hyh2KOnp6di6dSs07eChHjU1Mu67bzC+/z6m03uVlRZcfbUDH37Ie2giot4SEyMjJkbG8OG+HafrOtxuNzweDzweD1RV7djeXPmm12NcmgsralbgsOTD0NIidvSl+ioUw7dkWUdEROAmsDsc5u5rAxmgBoRuWJn5utRu79sektedhZgAYMcOCy67bBhsNu2XTUdsrA6bTUdcnIG4OAPx8UB8vICkJKljS0mxICyMYWL0q+hoEdde24rHHjM3F2ndunB8+qkTp5wSuHuF3mQYBnbvVrFypQdr1+q/BIApKC1VYBhcrLoriYkqcnLcGD9eR0GBiEmTZIwZo0CW+Zn1R6ESCtZu7sq5KGkowVtnv4WYsM59B0TU91RXm7vXS00NwfkkRH0Qn4wTEREBqKszd1GakMCLUuq/7HY3HnqoGa+8YoXd7tvkr+pqBR9+GIvzzmvoUQ2yLCM1NRWxsbE9amd/W2q2+K2tdj+U/4DT3joNH1/4MSIVhvgQ0a9aWlpMHxsdzaBB6l2iKGL48OHYvn07dB2YPz8ZCxaYmxhVVBSJCy9sxKJF0ZAkDmggaueq34ld1W1Q1e4PQAolbrcbX331FT788EOsWLGi7/x/6ADWAtgE4EgAUwEEeUGqGEsMhsf7OALTi+rqaqxZs+aAELDKyko/VEhEfUVDg/m+F95zEPUf7cFg27dv9zppr6JCwZw5Q1FVdehAsHZPPRUPXW/A00/H+bNUv6pr7XkoGAC0elpx71f3Yu6KuahqqfK6z9ljzkZOco5fzkdEvUfXPUhNVZGa2r37V03bN9mooUFCYmJ2gKujgWj2uNkYFD0Ix755LDy6x+s+i35ehKkvTcX3c76HLHYe6tfibsGpC0/FtrptpuvQDA3/KvoX/jTjT6bbCBZd11FcXNztyXmHEh0djfT0dL+0RUTdN3WqBYJgwDB8H6+1cqWG004LQFFEREQBtnlzGz77zPxE/WuuaUN4eOD69UVRRFZWFkpKSrrc54svrHjggTTY7V1PQ1q82IaXXmrA1VeHbr8iERF1JooiwsPDER5+YFjIz7U/4/Pyz7s87rWdr+GS6ZfA5VLx7bdNqKnRUFdnoK7OQEODALsdaGgQYbfv2xwOCQ6HhMZGCU7nvnGEgQyUcjjMDQiyWnUI5qYYdYvZugIdvmX+8wpcXaoKNDWZ/3cMFIdD/mVxEd+nZ69ZswkWiwFBECAIAkRRhCiKkCSpY5NlGbIsQ1EUKIqCsLCwjv2o/7n99gg895yGlhZzX+uPPgqccoqfi+oFqmpg82YPVq3yoKjIwPr1EjZtUlBXpwDo/liHgUQQDGRleTBunIoJE9oDwBQMGaKA8REDh6PN0dsldPLx9o8x47UZWHrBUmTYMnq7HCLqoaqq/2fvvsOjqvI3gL9zp2RSJ72SHnrvomtvWLBgL4gVe0EB17LrqmADK6BSVNa6Vqyrouu6NlAQpGiAkEJIL5OZtGl37v39wQ8U02bu3CnJvJ/nyaPeuefcr4Fk7px7znuU3YMyFIxIHbyrIyIiAmA2K7sp5WaxNBA5nU5UVVWhudmGl14aquhBBQCsXp2Cs8+2QK/3/sObTqdDRkYGTCaTomv3prhJ/VAwAPi64muc/ebZ+PDCDxGhi/DLNYio/7HZbIrb/nlyBVEwREREIDc3F1de6cI773gXEvpnH30UhzvvNGPJEt/6IRoobE0lqGgU+9xpORTt3r0ba9euxccffwyLxRLscpRzAlgHYBuA8wAkBe7S49LHQdB4NxbR3NyMTZs2HRICtm/fPj9VSET9RXt7u+K2CQlckEM0kOh0OgwePLhLMFhNjR5XXpmP2lqD130++WQC3O4WPPGEKSQDnptt6oSCHdBTIJhRa8SrM19V9VpEFBwuV/ehSz3RaoGEBDcSEtwh+XuQBoaj8o7C1uu2YvKqyehwdb/RyE81P2Ho0qHYfv12RBl+36BIlERc8M4F+LH6R5/rWL15NRYcscDr8YpAW7u2GkOHevez3BOj0YicHC5EIAqG+Hgt8vOdKCvz/nPK5s2h/XuKiIioJ489JkKWlc0rjIx045Zb/D+PKDIyEklJSWhuPnTcrb1dwCOPZOCDDzx7rjB/fiyOO86GwkLlIWhERBQaHvr2IcjoeS3AD1U/4L/7/ovpRdNx5JHe9d3RIaKhwQWTKQOy7ILL5YIo7p9LdeBLkqSDX7Ls/ZoE5eFb/t0YsbV1YIWC+bMupYFgABAX578/R6V/hpGREgyG/X+XZVmGLMteb4DwxzAxjUZzSJjY7t1GNDcbkJSkQXKyFmlpeiQn66HXczwllCUlaXH55e1YvlxZCPD330fi22/tOPLI/rP2oL1dws8/O/Hzz+7/DwDTYdcuA+x2AwDvxwzDgdEoYehQJ0aPdmPcOGDiRC0mTjQgNpbfs3DmltxodbQGu4xubavfhqmrp+LDCz/E5KzJwS6HiHzQ2Kjs3jcjw49Jy0RhhKFgREREAMxmZTelKSm8KaWBw263o6amBp2dnQCAyEjgiisa8fjjGYr6q6014KOP4jFzZovHbfR6PTIyMhAXF6fomp7wVygYAKwrXYfz3j4P75z/DgxaDqoSEeBwOBS1425OFEpiY2Nx0UUWvP++DFH07f738ccTMXx4C666igEUFN46Gndjb6Po9YSeUHHVVVf17zCwP6sDsBLAGQBGBuaS49PHe91m4sSJ2Lt3rx+qIaL+TOlnDo1Gg8hILsYhGmj+HAxWW7s/EKymRvlY5TPP7A8Ge/rp0AoGk2UZZps5INd67MTHYNT1nwnURNQzUVS2AEij4TNh8q/hKcNRdksZRj03Co2djd2eU2YpQ85TOdhxww6kx6RDlmVc+9G1+KTkE1VqKG0pxdcVX+O4/ONU6c8f7r3XjEWLsnHTTQbMmdMIX340dTodCgoK+CyGKIjGjnUpCgXbupXTnomIqP+prxfx5pvKx+QvusiG1FRlAQHeysjIQGtr68Fg7c2bo3D33YNQXe35+7bVqsPll9vx9ddSSI0pEhGRd/aY9+C17a/1ed7f//t3nFx4stfjqNHROuTn6wB49x4pSRJEUYTD4TgYJHbg68+BYlFRMoqK7LBatbBYtHC5PHtfCtXwrbi48KtLaU2Af/8cldYVG+t7TX8OE/vjhiirVkXjrbfiDzlfo5ERGyvCZHL//5cEk0lCfLyEhAQZCQkyxoxx48gj3dDr9Yd86XQchwmUO++MwKpVEpxOZffPixZJ+OwzlYtSSXW1iJ9+cmLzZgnbtmmwY4cOFRUGSBKfwfckMVHEyJEujBnjxrhxGkyapMOoUQboOG+B/iRUA8EOqGuvw9FrjsarM1/FzOEzg10OESkgijKam5XdEzIUjEgd/FRGRERhz+2WYbEwFIzCl91uR3V1NWw2W5fXzj+/BS+8kAKLRdlt46pVKTjjjBb09SzAYDAgIyMDsbGxiq7jjeJG/4WCAcBHuz/CJe9dgjfOeQM6gbfbROHO7Vb28Fav16tcCZFvZs6MxwMPmHH33Yk+97VoUSTOPNOC5OR43wsj6ofa6neissmtaPdK8iMHgLcBNAI4xv+XG5/hfSgYEdGfdTeW4ymDgWHmRAPVgWCw9evLceWVuV4t1uvJ8uUJiI5uxsMPJ4RMcEaHqwNOt9Pv19EJOmSbsiHLMkOBiAYAhoJRKEuNSUXFrRUYu2Is9pj3dHtOs60Zhc8U4qerf8K/dvwLL/7yoqo1rNq8KmRDwZYta8GiRYn//+9paGzU4a67aqFVMNVDEAQUFRWFzH0NUbiaMEHG2rXet6uuNqC+XkRaGudjEBFR//HUU3bY7cpCvQRBxvz5gR3Tz8/Px6+/lmD58lS8+GIyZNn7z8XffReDRYvM+PvffZ9nQkREwfHwtw9Dkvve8HBjzUZ8UvIJTh9yegCq2j+2YzAYPHrmfc89+78AwO2W0NEhor7ehYYGEY2NbpjNEpqbAbMZaGnRwGLRwGoVkJPjgEaj8dv8LqWBUv4MuZIkoK0t9OpqbR1YoWD+Dpzr7vslyxq0turQ2qrDvn3dtzvnHDOGD6/vsV+NRgONRnNw02utVnvwS6fTQafTdQkT4/ird7Kz9bjwwg68/HK0ovaffx6FLVscGD8+QuXKPOd2yygudmHTJhGbN0vYvl3Ar7/q0dioB6MMuqfRyMjNdWHUKBfGjJExYYKAyZP1GDRIB4Hr0cgDFrsl2CX0ySbacM5b5+CJk57A3Glzg10OEXmpvt4NSVL2npSZyftBIjXwrpCIiMJec7Mbbreyt8S0NN6UUv9ls9lQXV0Nu93e4zlRURIuu6wZzzyTpugaVVUG/Pvf8TjjDEu3rxsMBmRmZiImJjC72LncLpSYS/x+nXd+ewdGnRFrzlwDraD8QRQR9W9Op/KFqUYjd3Gh0HPXXYnYudOCl1+OV9zHmDGdePrpStTViYiOjkBkpPKdcIn6I2ttMarMEgPBQtnXAOwApvv3MuPTGQpGRL5raWlR3DZQYzFEFBw6nQ6TJhVg6NBOVFX5vmAwNdWFo49uRnm5Bfn5+SExgbu5szkg1xElEWe/eTamF03H09OfxpCkIQG5LhH5h9JNHELh9x6FhyhDFHbduAtHrTkK3+/7vttzOl2dGPP8GI8WZHrrveL30NTZhOSoZNX79sVbb1kwd278IcfefDMJzc06PPJIFSIiPB9r02g0KCoqgq6vXa2IyO+mTlU+l2L9eifOOos/x0RE1D90dkpYvVr5PKCTT7Zh2LAoFSvqm8FgQGPjILz4YpyiQLADHnooHqee2oFJk5QFGxARUfCUt5Tj5W0ve3z+3//7d5w2+LSQ3mBBqxUQFycgLk6HwYM9aZFy8N8kSYLT6YTL5Tr4JYoiRFGE2+2G2+2GJEkHv/qaG6Y06MqfgVJtbYLi9/1QDN/S6yUYjf6boxeqoWBWq7Lxkr7qkmUZsixDkrwflxYEAXPnDkJkpAyTSUZCwv6vpCQNkpI0SEzUICVFi7Q0PVJS9DAYwveZzN136/HaazLcbmU/iw89JOLttwMTCtbRIWHzZid+/tmNLVuA7du12LnTAJvNAIAbFXYnIkLC0KFOjBrlxrhxMiZO1GHCBD3i4/k9I+WsDmuwS/DYHevuwMTMiTgq96hgl0JEXqiqEqE0kmjQIK6rJlIDn4oTEVHYq69XPlmWoWDUH3V0dKCmpgYOh8Oj8y+6qBkvvZSseOeXVatScNpplkN2aY6IiEBmZiaiowM72WOPeQ9ESdku8N56ddurMGqNWDFjBQQNf1cQhaO2tjbFbQP9+5HIU6tWxaGsrB3ffed9iMSpp1rwwAPVBxdolZWVYejQoVx8RWGjpaYY1Wb/TuohlWwAoAFwsn+6N2gNGJEywj+dE1FYaW9vV9w2ISFBxUqIKBRFRmrxySfRmDGjDV98Eau4n+RkF154oRw5OU7YbPs/yxUUFAQ9IKfZFphQsAM+2/MZRj07CndMuwP3HnUvog0cuyHqj5QsVgEArZYTFSlwBEHAd1d+h/PfPh9v//Z2t+f4IxAMAJxuJ17Z+kpI7dL99ddtuOKKWIhi10VQX35pwpw5OjzzzF6YTJ59TwoKCmAwcHENUSiYMsUAjUZWtOB440YJZ52lfk1ERET+8MILNjQ1KR9LWrAgOONwJ51kwjXXtGDlSuXPExwOAbNnC9i0yY3ISH62JiLqTx757hGv5txvqduCD3Z9gLOGneW/ooJIEAQYjUavN/yVJAmiKHYJE7v55nbU1HTAYtHAYhFgsQiwWgVYrdqDXw5H13sAk8l/6yBaW5XP4wzFUDCTyQ1/ZtQpD3bz71oWpd+vuDj//Rk6HBLWrYvz+PyYGDdMpv1fCxfWYPhwFwRBgFarhU6nO/hPnU4HvV4Pg8EAvV4/IOYiDx1qwBlndGDtWmWfH9aujcLu3U4MGaLuGHhtrYiNG134+Wc3tm3TYMcOHcrKDJAkboLek/h4ESNHujBmjIRx44DJk3UYNcoAvZ7fM1KXxW4JdgkekyHjw10fMhSMqJ+prlY2N0GjkZGZ2f/vz4hCAX+SiIgo7NXXKx+8TE/nWyn1Hx0dHaiurobT6fSqXUyMhFmzmvDss2mKrltREYHPPzfh1FOtMBqNyMrKQmRkpKK+fFXcVBzQ663eshpGnRHPnPJMSO98RET+0dHRobhtbKzyxbpE/mQwCHjvPQOmTbOjtNTzB5M33VSPOXMaD5lkIcsy9uzZgyFDhgR9MTmRvzVX70RtCwPB+pX1ABIBTFa/69Gpo6HX6tXvmIjCjrdjPAdoNBqvJysTUf8UESHgo4+icdZZrfjsM88nWh+QlLQ/ECwv7/ffN3a7PSSCwcw2c8Cv6ZJceOT7R/Dq9lfx+EmP47wR53Hcl6ifYSgY9SdvnfcW7lh3B55Y/0RAr7t6y2rcdthtIfEet3VrO845JxKdnT3/DG7eHI3LLy/Ac89VID299wV1ubm5QXtOTURdmUxaFBY6sGdPhNdtN2/mcyUiIuofJEnG0qXK5xlPmGDHMccEbzz/ySfj8L//2bBrl/L76N9+i8S8eS1YvpyblRAR9ReV1kq89MtLXre77+v7cMbQM7iZ9h8IggCDwdAlpP722/tu29YmoqHBhYYGEY2NbjQ3yxg1SofY2Fi43e6DX5IkQZZlyLLsU61Kw6QA/wZK+RIK5k/Kw7f8s+HDAaH4/Wpr866m9nYt2tu1qK4GgP3Bet7QaDTQaDQQBOHgl1arhVarPRgeptfr4XLpIct6JCbqoNOFzu+te+/VYe1aZW3dbg0eftiFl15SFgrmdsvYtcuJTZtEbNkiY9s2ATt26NHQoAejCHqWm+vEyJEixoyRMGGCgMmT9cjJ0UEQ+D0j/+tPoWAAEKnjczqi/qa2VtnnjIQENwwGvhcSqYE/SUREFPYaGpTdlEZGSoiJCZ2BP6KetLW1oba2VvFCUQC4+OJmvPxyMtrbvX9IEBkpob09EkVFKUFfcFrcGNhQMABYtnEZjDojHjvxsZCYPE9EgeNwOBS31esZFEKhKyXFgPfea8fRR4uwWHofWjIaJSxaVIWTTmrt9nVRFFFRUYGCggJ/lEoUdLIkobGmBA0W/+7w199pNBrk5ORg5MiRyMvLQ2ZmJjIzM5Geno7IyEhERUXBaDTC5XLBbrfDbDajrq4OFRUV+O2337Blyxbs3btX/cL+DSAJgMq/osanj1e3QyIKS76EEEdEeL/Yloj6r4gIAR98EIOzz27Fv//teTBYYqKIF16oQEFB13Flu92O0tJSFBYWBi0YrLmzOSjXBYCq1ipc8M4FeD7veSw9ZSlGpo4MWi1E5B2loWADYXd56p8eP+lx5MTl4LbPbwvYNX9r/A3rq9bj8OzDA3bN7lRW2jFjhh5mc98/f3v2GHHppYVYsaIChYXdP5vJzMzkhixEIWjsWFFRKNi2bXyWSkRE/cP779tQUhKluP1ttwV346moKC3WrBFx9NESnE7l44ArV8ZjzhwLxo6NV684IiLym0e/exQuyeV1u2312/Be8Xs4d8S5fqgq/MTG6hAbq0Nh4R+P9h2yKUkSnE4nXC4XXC4XRFE8+NVTmJgsy4rDpLRaGdHR/gu6am0NvZArwJfwLf/OIwzF71egA+cO/J3u65nQ++/H429/GwRBkBEXJ8JkcsNkciMuTkJ8/P6vhAQZCQkyEhOBxEQNUlK0SE8XMGzY/mAxf2wqM2FCBE48sRNffKHsc8Qbb0Ri4UIRWVm9j613dkrYssWJTZvc+OUXYPt2LYqL9ejsjADAeUXd0eslDB3qxKhRbowbB0yYIGDSJAMSEgwAlAWxEfnKarcGuwSPpUanYs7EOcEug4i8pDQULCXFDUYZEamDP0lERBT2lIaCJSS4ATAUjEJXa2sramtr4XJ5/1Duz0wmCRdd1IxVq1I9bhMd7cZll7XirrsikZ2d7HMNaihuCnwoGAAsWb8EkfpIPHDsA0G5PhEFxw03pKGjQ8CQIXYMHmzHkCF2FBQ4EBHR+70HF5hRfzBmTAxeftmCmTPjIIrd3xOnprrwzDN7MXKkvde+Ojs7UVNTg8zMTH+UShQ0siShvnoPmqy+348PNBqNBsOHD8cRRxyBqVOnYsSIER4tyoyIiEBERARMJhPy8/Mxbdq0g6/t3bsXn376Kd577z3U1taqU6gM4AMA1wNQMd94QsYE9TojorBlsVgUt42JiVGvECLqFwwGAWvXxuCcc1rx8cd9B4MlJIhYvbq8x1ANYH8YejCDwZptwQsFO+C/Ff/FuBXjcMuUW3DfMfchLsLz0DUi6l84ZkvBdOtht8KoNeK6f18XsGuu2rwqqKFgLS0unHKKjH37PB+Qqa/X47LL8rFsWSXGj+885LWUlBQkJiaqXSYRqWDiRODdd71vV1OjR22tiIwMvkcTEVFoe/xx5ZuI5uQ4cdFFygPF1HLYYbG4804zHnxQ2T11aqoLixZVQavtgNMZBYOBi+WJiEJZdWs1Vm9Zrbj9fV/fh7OHnQ2toH5QDnlGEAQYjUavN3MfPlzCuec60dAgorHRjaYmN5qbZTQ3y2hp0cBiAVpaBFgs+79aWwVYrVpotYA/901XGnKlJEzKG6EYvuV2A21toVeXL6Fg/qzrwJ+hJGlgsej63CT5gKFDbXjnnT2HHNNoNNBoNBAEAYIgQKvVHvzS6XTQ6faHiOn1ekRERBw8ryf33CPgiy+U/X85HAIeeaQTS5f+Pjeovl7Exo0ubN4s4ZdfgF9/1aG01AC3W8VJkQOMySRixAgXxoxxY/x4DSZN0mH0aAMMBn7PKLRY7JZgl9AnvaDHBaMuwCPHP4KsuKxgl0NEXqqrU3azn5rqv+BgonDDJ+JERBT2mpqUhYIlJroBcOdJCj1WqxW1tbUQRXV3EZk1qxmvvpoEm633QfnYWDcuv7wVd90VhYyMvnejCaRghYIBwIPfPIhIXSTuOvKuoNVARIHjdkvYsCEa7e1arF//+0M1rVZGbq7j/4PCHAcDwzIzXQcfinPyG/UXM2bE49FHzbjjjq4TP4cPt2Hp0r1IS/PsfsRsNsNoNHJhFg0YsuRG7b4ymNucwS4lZOh0OkydOhWnnHIKjjzySNV/3nNzc3Hddddhzpw5+Oijj/Dcc8+hurra946tAD4HcKbvXR0wPmO8ep2pKCMjQ71ANSLyu/b2DsVtec9FFJ4MBgHvvReDc8+14sMPTT2eFx+/PxBs8OCeA8EOcDgc2LNnD4qKigIeDNbcGfxQMAAQJRFPbHgCr+94HYtPXIxLRl8CjT9XPhCRYn3tCN8bvZ7PhCl4zDYznv7p6YBe880db+Kpk5+CydjzPYO/2O0SZsxw4LffvA8zbm3V4Zpr8vDoo/tw/PFtAACTyYS0tDS1yyQilUyZonxR6Pr1TsycySnQREQUujZssOOHHyIVt7/xRid0utCYQ/T3v8fjiy/asWGDd/fpp5xiwT331MBk2v+ZvKKiAkOGDPFHiUREpJLHvn8MTrfy+U6/Nf6Gt397GxeOulDFqigQtFoBSUkGJCUZMHy4d21FcRhcLtchX6Iowu12H/ySJOnglyx7voZLaaBUqIaC+bMupYFgQGDCt7wVESHBaFS23s8Tav7dkmUZsix7/SzqQJjYgUAxrVaLjz6KQ3u7DkVFwJ49ygKoVq+Ogtvdht27tfj1Vz3q6vRglEDPsrOdGDlSxNixEsaPFzBpkg75+XoIAr9nFPpCORQsMzYT1028DnMmzkFaDJ/VEfVXdXXK2qWlMRSMSC28KyUiorDX2KisXVISb0optFgsFtTV1akeBnZAQoIbF15oxksvpXT7uskk4uqrW3HnnTFISQmtMDAAkGQJO5t2BrWGu7+6G5H6SNx22G1BrYOI/G/3bjva27vu1ul2a1BWZkRZmRGfffb78ZgYNwYP3h8QNneuGwUFASyWyAe3356InTtbsGrV7+/9J55oxaJFVYiM9O5hfE1NDSIiIhAdHa12mUQBJbtdqKqqgLWt7xCFcDBy5EicddZZOOmkkwISQiMIAs4880xMnz4dy5cvx8svvwy328dJS1sATAGQoUJ9GgFj0sb43pGP0tPTMXHiREyaNOngPzMyMhhgQdRPuN0SzjwzGxkZLkyd2oHJk9sxeLADnuTxaDQaBhEThTG9XsA778TiggusWLu2a8iHySRi9eoKDBni+b2s0+kMSjCY2WYO2LU8Uddeh1lrZ2HFzyuw7JRlGJs+NtglEdGfOJ3KF7IxFIyCxeayYcYbMwK+8ZFNtOH17a/j+snXB/S6oijhggva8P33ysPIHA4Bt9+eg3vuqcEVVziRnZ2tYoVEpLYpUwwQBBmS5P245MaNEmbO9ENRREREKlmyRPkzyrg4N66/vuu8o2DR6QS8/LIWEye6PQqbiI114557anDaadZDjjudTtTV1SE9Pd1fpRIRkQ9q22qxcvNKn/v5x9f/wHkjzoNWUB5QRP2LTqeDTqdDZKR3gaiSJEEURTgcjoNBYge+DoSJjRrlQnt7G6xWLaxW4f//qYXL1ftzSX+GXAGhGVamtCbAv98vq1XZEvZQ/TNUs64DYWIA4Ha74XK5sGpVFoqLlYcLA4DdLuC552LVKHFA0ekkDBnixKhRbowbB0yYIGDyZAMSEw0AOJeK+ierw9r3SQH2l5y/4OYpN+PsYWdDr+VzdqL+rqFB2XzA9HT/hbsShRuGghERUdhrbla24DUxkTelFBq+/NKKNWvcWLCgxqPFn76YPbsJb7yRBLv99wslJoq45ppWzJ8fg6Qk/y/yV6rSWolOV2ewy8Dcz+fCqDPiuknXBbsUIvKjTZscADyfnNfersWWLdHYsiUad97Z7r/CiPxg+XITSkvb8NVXsZgzpwE33tig+J7kwK6wXGhJ/ZXksmFfVTXaOsI7ECwiIgInn3wyLrzwQowePTpoNdx+++044ogjMG/ePFgsFt86/ArAJb7XNSx5GKL0gZ3An5aWhokTJx4SApaVlRXQGohIXb/9ZsOuXdHYtSsSX38dBwCIjxcxeXIHJk/uwJQpHSgocKC7nL+IiIgAV0tEoUavF/DWW7G48EIr3n3398CN2Fg3Vq2qwNChdq/7DEYwWLOtOSDX8dZ3ld9hwsoJuGHSDXjg2AeQEBl6G2gQhSuHQ/lndd5DUTCIkogL370QP+z7ISjXX7V5VcBDwW680YoPP/T9vVOSNCgtjUZurgoJ70TkV7GxAoqKHNi92/v32s2bAxdKTERE5K3ychc++ED5M8Err7QhNjZGxYp8N3hwJB59tAU33ND7PfuUKe1YtKga6emubl9vamqCyWTyOjSEiIj8b8kPS2AXvX9O9Ge7mnfhjR1v4NIxl6pQFQ1kgiDAYDD0urHZQw91PeZ2S+joEFFf70JDg4jGRjeam2WYzTLMZqClRYMJExzQ6XSQJOmQ4CU1SBLQ2hr8QKk/8yUULBTDyvxZExCaf4aA8rroUHFxbowY4cSYMW6MG6fBpEk6jB6th9FoDHZpRKqy2C3BLgEAEKGNwMWjL8bNU27G+IzxwS6HiFTU0KDs3iQtTeVCiMIYQ8GIiCjsNTUpCwVLSWEoGAXXp59a8dBDWnz33f6FW5Mnt+H449v8es2kJDfOO8+MV15JRnKyC9dd14Z58+JgMoVuGNgBxY2B3UG7N9d/cj0itBG4YvwVwS6FiPxk61Zl9wlGo4TRo0Nnp08iT+j1At5+OwKvvVaJY49t9akvWZZRWlqKIUOGBGwhOZFaJGcb9lbVo6PT98lx/VVCQgIuvvhiXHTRRTCZTH03CICpU6fi9ddfx5VXXom6ujrlHZUAqAbgY5bW+HT/PuxOTU3tEgA2aNAgv16TiALvs88cAKIPOWax6PDFFyZ88cX+379JSS5MmfJ7SFhOjhMaDRAby51AiQjQ6QT861+xuOQSC956K/7/A8HKMXy48ntZp9OJkpISDB48OCCf50I1FAwAJFnCso3L8K9f/4UnTnoCs8bOCnZJRIT9v6eU6m1BEpE/yLKMGz+5ER/u+jBoNWyp24LNtZsxIWNCQK5XVrYX+/apM5504oltWLMmjmPMRP3EmDGiolCw7du5wQwREYWuxx93QBSVvVfp9RJuvz00w6mvvz4B//53Kz7+OK7La3q9hFtvrcesWc19biRXUVGBoUOH8p6diCiENHQ04LlNz6nW3/3/ux8XjroQOoFLV0l9Wq2AuDgBcXE6DB7c01ndB5lKkgSn0wmXy3XwSxRFiKIIt9sNt9sNSZIOfnUXJtbeLkCSlK1D82eglNIwKZ1OQmSkpHI1vwvV8K1QDSvzJdwtXGVlOTFypIixYyWMHy9g0iQdCgv1EAQGEdPAF+xQsOy4bNww+QZcPeFqJEclB7UWIvKPxkZl9yZZWRz3I1ILR1aIiCjsNTcru7lMSVG5ECIPffCBBQ8/rMePPx46KXrFilQcd1wbNMqeL3jsiiuaUFQkYO7cOMTGhn4Y2AHFTaETCgYAV314FYw6Iy4afVGwSyEiPyguVvZxu7DQAb2eD6Co/0lMNODKK5NQXu5bKBgAiKKI8vJyFBYWqlAZUWC4bS3YW9OETpsj2KUERVpaGi677DKcd955Ibmjc3Z2Nl588UXMnj0bjY2NyjvajJAKBUtJScGECRMOhn9NmjQJ2dnZqvVPRKHr22/7/rzR3KzHp5/G49NP4wEAqakuTJvWjjffjO69IRGFDZ1OwGuvxSEmpgUnnGDGyJG+h9u6XK6ABYM1d4ZuKNgBTZ1NuOz9y2CxW3Dz1JuDXQ5R2BNFUXFbrZYLMCiwHvjfA1i5eWWwy8Cqn1fhudPVWwzak9raWnR2tuGRR9qQkiLi5ZeVLxqYOLED770XCb2ek4yJ+otJk4B33vG+XW2tHtXVIrKyOA2aiIhCi8XixssvK39mevbZNmRnh+5Y/gsvGDF2rBN1db8HaA8ZYsPDD1dhyBDPnpe73W5UV1fz2SYRUQh5/IfHYRNtqvW3x7wHr257FZePu1y1PonUIAgCjEYjjEajV+0kSYIoinC5XOjocOHtty1obpbR3CzDbAYsFg0sFgEWiwCrVYDVqoXVqkVrqxZ2++9jlf4MulIaJmUyuf26BmmghW/588/Q5QLa2/lMqic6nYyiIidGjRIxdqyMSZMETJoUgeRkAwBu8EPhyeqwBuW6x+Ydi5um3IQzhp7BEFiiAcxqdaOzU9m9SUaGnxe5E4URvtMSEVHYM5uV3ZQmJ/OmlALH7Zawdm0rHnlEj59/ju/2nOLiSHzzTSyOPrrNb3WYTCYMG5aBY4/tf7eRxY2hFQomQ8astbMQoYvAzOEzg10OEals1y5lD5aGDXMCCL0wFSJPREdHIzMzEzU1NT73ZbPZUFVVhUGDBqlQGZF/iR0NqKixwO5wBruUgEtMTMScOXNw/vnnQ69XttN1oGRnZ+Opp57CFVdcAadT4Z/VDgDTAfjwvzo+Q3ko2HHHHYeMjAxMnDgREydORG5urvJCiKjfcrsl/Pij958ZGhr0KC+PQEQEJ8ER0e90OgGrVplQWtoEh0r5toEKBjPbzH7rW22Pfv8obppyEzT+3tGDiHrlcrmCXQKRR1b+vBL/+N8/gl0GAOC17a9hyUlLEG3wXyBBY2Mjmpv3h30KAjB/fh1SU11YsiTD676Kiuz45BM9YmL637NsonA2ZYryhY7r1ztx7rn8mSciotCybJkNbW0xitsvWBDa722pqQY8+6wF55yz/6Hp5Zc34aabGmAwyF71Y7VaER8fj9jYWH+USUREXmjqbMLyjctV7/eB/z2AS0ZfAr02tOcUEXlCEAQYDAYYDAZERwPnnut527Y2EQ0NLjQ2isjNTYJGI0IURbjd7kO+JEmCLMuQZe/uqw4IxZArIHTram0Nvbra2hgIdkBsrBsjRjgxerSEceOAiRO1GDvWgMjICAARwS6PKGRY7JaAXStKH4VZY2bhpik3YVTqqIBdl4iCp7paBKDs/mTQIN7XEKkltJ8YEBERBUBLi7Kby9RULt4g/3O7Jbz5Zisee8yArVvj+zx/xYoUHHVUm+o7dcTHxyMzM9Ovi7j8rbgptELBAMAtu3HhOxfi/Qvfx6mDTw12OUSkko4OERUVyh42jRjh3weYRP6WmJgIu90Os9n3xdkWiwWRkZFISkpSoTIi/3C11aCith0OpSFT/VR0dDQuvvhizJ49G1FRUcEux2NjxozBLbfcgiVLlijrwAGgBMAI5TWMT1ceCvbiiy8qvzARDRhbt3aioUHZYqJp0xwA+s/vbSIKDEEQUFhYiLKyMtjtdlX6DEQwWLOt2S/9+oPFboFbdkOn4fQMomByu5WNvTLQjwLpg50f4PpPrg92GQe1Odvw1q9v4YrxV/ilf4vFgvr6+i7HZ89uRlKSiL/9LQui6Nm9RFqaC//+t4y0NAYhE/U3kycboNXKcLu9f8/dtEnyahEuERGRv7lcMp57TvkC9aOP7sTEiaE/jn/22fGYN68Jw4e3YfLkDsX9VFZWYvjw4f16XioR0UDw5Pon0eFS/vu8J+WWcqz5ZQ2umXiN6n0T9SexsTrExupQWAgAngeiSpIEp9MJl8sFl8sFURQPfnUXJiYIGiQmimht1UIUPR9nCddQMKV1xcX5ry6lNfV3mZkujBjhwpgxEiZMEDBpkg6DB+shCNxonagvgQoFe+yEx3D1hKuREJkQkOsRUWioqpIUt83KCs/7GiJ/4KxTIiIKa+3tEmw2ZQ+TU1I4AZz8x+2W8MorVixebMRvv8V73G779ij88EMMjjiiXZU6EhISkJGR0e8nXciyjN8afwt2Gd1ySS7MfHMmPr74Y5xQcEKwyyEiFWzebIPbrWwXy3Hj+vfvWyIAyMzMhN1uR2dnp8991dbWwmg0Ijo6WoXKiNTlsFSiot4Gl8sV7FIC7u233+63OzZfeuml+OSTT1BcrDA0uByKQ8GyorKgb60H+FCciHzw2WfKgyiPO47jmUTUPUEQUFBQoHow2O7duzFkyBDVx5fdkhstthZV+/SnM4edCZ3AqRlEwSaKoqJ2/f0ZGfUf31d+jwvfvRCSrHxirT+s2rzKL6FgHR0dqKqq6vH100+3IjFRxNy5Oejs7H3CcFyciA8/dGDwYGUBykQUXDExAoqKHNi1y/sAlZ9/5vs0ERGFltdes6GmRnmo1x139J9x/IceiseuXfWQZeV9yLKMiooKFBQUqFcYERF5pcXWgqU/LfVb/wu/XYjLxl6GCJ3y0EyicCUIAoxGI4xGo0fnL1y4/8vtlmC1utDQIKKx0Y3GRjeam2WYzTJaWoCWFg1aWgRYLPu/hgxR5/lwT1pbQy8UzO0G2tpCry6l36v+QquVUVTkxKhRIsaNkzFhghaTJumRmqoHoA92eUT9ktVuDdi1GAhGFH5qa5XNXYiMlGAy8RkekVo485SIiMJaXZ0IQNlOsenpA3uwjYJDkiTU1NTj1FNN2L5d2WDJ88+n4PDD26F043KNRoOEhASkp6cPmIUODR0NaLGH7iIxh9uBM944A59d+hmOyj0q2OUQkY82b1YeDjN5smcPbolCXV5eHnbv3q14seUfVVRUYPDgwTAYlN23E/mD3VyOigaHKn/H+6P+GggGAFqtFjfccANuvvlmZR1UKL/2sPhh2NvkRra8E3Hpw5R3RERh7dtvlT3a0+kknHwyF8gTUc8OBIOVl5fDZrOp0qcoiti9ezcGDx4MrVa9ZyoWuwUyfFhtGECnDT4Nq2asCnYZRIT9z+CUUPP3F1FPfmv8DTPemAG76N/FV0qsr1qPXxt+xcjUkar1abfbUV5e3ud5hx/egZdeKsf11+fBbO7+s1BEhIQ33ujAlCkm1eojosAbO1ZUFAq2fTsXCxIRUeiQJBlPPql8vuWwYQ6cdlr/mTek0+kwaNAg7Nu3z6d+Ojs7YTabkZiYqFJlRETkjad/fBptzja/9V9prcSLW17E9ZOv99s1iOhQWq2AxEQDEhMNGObRFLVoAEkA9j/fdblch3yJogi3233wS5Kkg1+yBwmxVqvS8C3/zc1sb9dClpUtuPJnKJjS71Uoio52Y8QIJ0aPdmPcOA0mTtRi3DgDoqIiADAokkgNsizDYreo2qegEbrdwOiJDU9g/hHzVb0WEYW+mhpl7ZKTRQgC138RqYWhYEREFNbq65XvspuWNjDCkig0SJKEuro6tLS0QJZljBhhwPbtynaM++WXaPz0UzSmTu3wqp1Go0FiYiLS0tIGTBjYAcVNxcEuoU820YbTXj8NX8z6AocNOizY5RCRD3bsUPY7NCnJhezs/jO5j6g3giCgqKgIu3bt8uihf29kWUZpaSmGDh064O5RqH+yNe1BRaMLbrf/Jnf0JMJgQHZME7T8UfDJ0HMnYNnTudi1Z6/3jRsB2AEoeMseHj8csiyjsknEIKkY8ZnDve+EiMKa2y3hp5+UjReNGWOHyaSsLRGFD0EQkJ+fr3owWElJiarBYGabWZV+/CkpMglPT38aF4++GBqlO3gQkaqUfo5nKBj5W1VrFaa/Oj2kNzhavXk1npz+pCp9iaKI0tJSj88fMcKOV18tw3XX5aKy8tCFQoIg47nnrDj1VO5MTtTfTZok4623vG9XX6/Hvn0uZGczHIyIiILvyy/t2LYtUnH7W28VIQj9a3G8yWSCxWJBW5tvYTI1NTWIjY2FXs/3dCKiQLLarXhqw1N+v86ibxfhivFXwKjj/FiiUKfT6aDT6RAZ6d19rSRJEEURDofjYJDYga9LL21HTY0NLS0aWK0CrFbtH/6phcvV/WTIuLjQDN9iKFhX6ekujBzpwpgxEsaN02DSJB2GDjVAq1X++YiI+tbh6oBbVud30pCkIbhp8k0Ynz4eR645ssvrde11+K7yO/wl5y+qXI+I+oe6OmXtUlKU5zYQUVcMBSMiorDW0KB0R2gZSUn9c7CNQoskSaitrUVLy6GTvK+6qgnvvpsAUVS22n/FihSPQ8E0Gg2SkpKQmpo6YIM2ihtDPxQMANqd7TjltVOw88adSItJC3Y5RKRQcbGyj9pDhzoAcHIbDRw6nQ75+fkoKyvzuS+3242ysjIUFRWpUBmRch2Nu7G3UYQkBf5BhTHCgLzYZugM/WsieKiafeHpuHvhcmWNzQAyvW82PP73ELAqsxuSvBOJWR5tx0hEBADYuLEDZnOsoraHH+4AwFAwIurbgWCwiooKdHZ2qtKnKIrYvXs3Bg8eDJ3O9ykKzbZmFaryn0tGX4InT34SKdEpwS6FiP5AaXA9Q8HIn1psLTjltVOwr3VfsEvp1cvbXsbDJzzs88JNSZJQUlLi9c9jdrYTL79chhtvzMWvv/7+uWbhwhZccUWiTzURUWiYMkX554QNGxgKRkREoWHJEuUbpqWmunD55f1zwXx2djZ27tzp8zP08vJyDBkyRKWqiIjIE0t/Wgqrw+r361S3VWPVz6tw89Sb/X4tIgoOQRBgMBhgMBi6vLZwYc/t3G4J7e0iGhpcaGgQ0djoRnOzjOZmGVOnCoiMjITb7YYkSZAkCbIs+7xRMRC6oWCtraH9TEqrlVFQ4MSoUSLGjQMmTBAwaZIe6el6cA0EUeBZ7Baf2mugwSmDT8HNU27GSYUnQdDsX1Oaa8rFXmvXTZfv+PwO/HjNjz5dk4j6F6WhYGlpDAUjUhNDwYiIKKw1NCgbDIyPd0Or5dsoKed2u1FTUwOrtfsHaRkZLpx5pgXvvqtsEvPGjTH4+ecoTJzY86ItQRCQnJyM5OTkARsGdkBxU/8IBQP2D8o9teEpPHzCw8EuhYgU2r1bWVjLsGEulSshCr6oqChkZWWhurra577sdjv27duH7OxsFSoj8l5b/U5UNrlVmVTirajICOTGNEGr7zpphpQ5/eQjlYeCNUNRKNiw+EMDwGpaRLjlnUgZxGAwIvLMunXKPzMcd5xGxUqIaKATBAF5eXmqBoO1t0u4+WYLFi+OR0yMb89XmjtDMxQsx5SD5097HqcMPiXYpRBRN5R+nlcjzJCoO3bRjjP/dSZ2NOwIdil9MtvMWFu8FheNvkhxH5IkYc+ePXC7lS2YSkpy48UXK3D77dn4/vtY3HJLC+66i4FgRAPFpEkG6HQyRNH78YuNGyWcd54fiiIiIvLCjh1OfPml8lCvOXMcMBpjVKwocARBQG5uLsrLy33qx+l0or6+Hmlp3EyViCgQ2hxteGL9EwG73kPfPYSrJ1yNSH3/DMEkIv/QagWYTAJMJh0GD/7zq72P/0qSBKfTCZfLdfBLFEWIogi3231ImNiBQLEDlIZv6XQSIiP9F3JhtYbOM6moKDeGD3dh9Gg3xo0DJk7UYvx4A6KjIwBwY1uiUGC1Kwt3jYuIw5XjrsSNU25EUWLXDdvvPvJuXPvxtV2Ob6zZiObOZiRFJSm6LhH1P/X1yuYdp6UFfr0N0UAWOp8SiIiIgqCxUdnNZWKiG3wbJSVEUURtbW2PYWB/dNVVjXj//QS43co+PK1YkYqVKyu6HBcEASkpKUhKShrwYWAH9KdQMABotoXmojYi6ltVlR2NjUZFbUeN4qAXDUwJCQmw2+1obvb9/W3Png7s2NGCU05JUKEyIs9Za4tRZZaCEggWHRWB3OhmCAwEU9Wo4YVITDDB3KLgobjF+yaJEYlIMaZ0OV5vESE5dyA1dzg02tDe6Y+Igu/bb5XtqmkwSDjxxP65mIiIgkcQBBQUFKC8vBwdHR0+9WWzaXDzzbn48ccY7NjRjk8/NfoUDBZq46caaHDzlJux6PhFiDHw9y1RKJIk5Qs09HrubE7qc0tuXPLeJfi28ttgl+KxVZtX+RQKVlFRAafT6VMNUVESli7di88/T8b8+ak+9UVEoSU6WkBRkQM7d3q/oHDz5vCY90JERKHtscdckGVlz3Ojoty47bb+HZASHR2NxMREmM1mn/ppbGyEyWSC0ahs7hUREXlu+cblaLG3BOx6de11eH7T85g7bW7ArklEA5sgCDAajV7fO0qShNxcEUce2YnGRjcaG91obpZhNsswm4GWFg0sFgEWiwCrVYDVqoXVqkVrqxZRURI0ftyTz2oNzvzB1FQXRo50YcwYCePHazB5sg5Dhxqg1fK+nCiUWewWr84fkTICN02+CbPGzup1bsvV46/G3M/notN16CaCMmTcvu52/POsfyopl4j6oYYGZfcm6elcH0mkJqaZEBFRWGtqUtYuMdF/yf40MImiiJqaGrS2tnrcJjvbhdNOs+DDD5WFXqxfH4OtWyMxdqwNwP5B79TUVCQnJyvqrz8rbuxfoWBnDj0z2CUQkUJabRveeqsKJSVG7N5tRElJBHbvNqKpqe+FYxMmcHEZDVwZGRmw2+0+LSQvLjbi5ptzYbNp8PXX7Rg/ngutKTBaaopRbXYH5dqx0RHIjjFD0PI9Qm0ajQYjhubjuw2/eN/Y4X2T4fHDoelhRlBjJ+AuL0YGIqAp6rLlIRERAEAUJWzcqGxR0NixNsTERKtcERGFi/z8fJ+Cwex2DW65ZX8gGAB8910MTj65HZ99ZkRsrLLpCmabb4sL1TQyZSRWn7Eahw06LNilEFEvWltFLF2aisREEQkJbsTHi0hM/P2fBkPPExIZCkb+8PB3D+O94veCXYZX/lvxX+wx7+l2x/C+VFZWorOzs+8TPRAZqcOCBalhs/kVUTgZN05UFAq2bRvfq4mIKLjq6kS89ZbyUK+LL7YjKan/j+Gnp6ejra0NLpfLp34qKiowZMgQ3vMTEflRu7Mdj69/PODXfeT7RzBn4hxEG/r/+x4R9V+CICA21oARI7wP9e3okCAIhXA6nXC5XBBFEaIowu12H/IlSfs3oPV2E9rW1sCGgmVmOvHppyLGjIkCwDE2ov7GLfc9t13QCDhj6Bm4ecrNODbv2B7nMR/SRhBw8aiLsXrL6i6vvfXrW3jpjJf4mZ0oTDQ2Krs3ychQuRCiMMdQMCIiCmuNjcoi+pOSmFRLnhFFEdXV1Whra1PU/pprGvHxx/GQJGV/V1esSMWKFVVIS0tDYmKioj76O6vdiuq26mCX4ZFofTQePPZBnDr41GCXQkQKOZ2dGD7cjuHD7YccN5u1fwgKM2L37giUlhpht+8fDBcEGRMn9u9dP4n6kpubi5KSEkUTQP/zn1jcdVc2bLb9PzMzZ+qxYYMTaWnKdtol8lRz9U7UtgQnEMwUE4FB0WZotBzC9ZfCvEHKQsGc3jcZHj+819fNdkAyishavhSaG26CX7cUJKJ+aceOdjidyiZHH3GEEwAnVhORcvn5+aioqEB7e7tX7RwODW69NQcbNhwa6vzDDzE46aR2fP65EXFx3t/vNnc2e91GbQatAfceeS/u/MudMGj52ZQo1O3d68TKlak9vh4d7UZ8vBuJiSLi491ISBAP/vudd/JnnNTldDvx2PePBbsMRVZvXo1HTnjEqza1tbVebZzVG0EQUFRUxIUGRAPUxInAv/7lfbvGRj327nUhN5cLF4mIKDieesoOh0PZpmaCIGPevIHxHiYIAvLy8lBSUuJTPwfm3GZnZ6tUGRER/dnzm55HU2dTwK/b0NGAZzc+i/lHzA/4tYmI1BAdrQOgQ2Skd3P+JUk6GCT2xzCxPweK5ea6MG5cJ6xWLaxWLVpbtRBF/80jrKkx4IUXLHj8cQN0Os5TJepvRqeOhlaj7TYcLMGYgKsnXI0bJt+AvPg8r/tefNJivLDlBcg4dA21XbRj+abluHnKzUrLJqJ+QhRlmM3KQsEyM/k8n0hNvFMnIqKw1tzMUDDyD6fTiZqaGq8XSf1ZXp4T06db8e9/x3vd9rjj2nD33RKGD+998flAt7NpZ7BL6FW8MR4zhszAWcPOwsmFJ3P3I6J+zuFwdHs8MdGNqVM7MHVqx8Fjbjewb58BJSVG1NfrERPDKHwa2ARBQGFhIXbt2uXx7leyDLzwQjKefjr9kOMVFRE4++x2/Pe/OkREcMCY/KOxahfqLWJQrp0Yq0dGtAUagcO3/pQQH6usoYLNrYfFD+vzHIvdDenkEzHo0osgvPhPICJCQXFENFAlJLTg++8r8euvkfjppxj89FM0fvklCg5H3/dCJ5zA+yUi8l1eXp5XwWBOpwa33ZaDH37o/p5rw4YYnHhiB9atA0wm7+57m23BDQU7IvsIrJqxCsNTwnvsnag/qa/vPfC7o0OLjg4tqqu7BoDdc4+CZGiiXmigQZtT2YZSwbbmlzV48NgHodd6FlrQ1NSE5mZ13rc1Gg0KCwu5MIloAJs6VdnCAgDYsIGhYEREFBydnRJWrzYqbn/KKZ0YOnTgzBeMiIhAWloa6uvrferHarUiPj4esbEKn+cSEVGPOl2dWPzD4qBd/9HvH8V1k65DbAR/xxNR+BAEAUajEUZj758dli3b/8+KinY0N++BwSCjs1M4GBDW0qLFjTfmwuVSZx7QpZc24aqrGrBnjxlDhgzhhhxE/UxCZAKePe1ZXP/J9ZBkCQAwNm0sbp5yMy4afRGi9FGK+443xmPaoGn4oeqHLq899v1jDAUjCgM1NSIkSdmzN4aCEamLP1FERBTWlIaCJSczFIy653Q6UV5ejt27d/scCHbAnDmN0Gg8/zt30kmt+OabNvznP7E4/niTKjX0Z8VNxcEuoYus2CzcOPlGfDnrSzTMa8DLZ7+MmcNnMhCMaABwuTxPCdFq94c/nnhiKy6/3OrHqohCh06nQ0FBgUfnOp0a3HtvVpdAsAPWr4/BlVe2qlkeEQBAliTU7duNeouC5CcVJMdpkRHdBg0nWPhddJR3O/YdpGDt6Yj4ER6d12oXUfnAA5BmXwR0dnp/ISIasDo7O6HXA+PG2TBnTiNWr67ADz8U46WXynDDDfWYNKkDer3UpV1kpIRjj+V4AxGpIy8vz6OFeE6nBnPnZuO773o/96efonHiiQ60tHh37x2sULBYQyyePfVZfHPFNwwEI+pn6uu73id5Qq+XkJDAACJSl16rx4whM4JdhiL1HfX4ePfHHp1rtVpRV1en2rXz8vIQwQB1ogFt0iQDdDpl79k//aSsHRERka9WrbKhuVn558b585WHYoaqlJSUPsMOPLFv3z5IEt/jiYjUtvLnlWjoaAja9ZttzVj207KgXZ+IqD+4/noJZ5wxGJ9/HoeoKAmZmS4MG2bHtGkdOP74Vhx5ZCsA39Y1zptXizvvrIMgAKIoorS0lPffRP3QnIlzUHlbJd457x1svW4rtly7BVdNuMqnQLADnpz+ZLfHq1qr8FPVTz73T0Shrbq69833ejNo0MAb8yQKJq4sIyKisNbcrOzmMjVVWZgYDVwOhwNlZWXYvXs3Ojo6VO27sNCBE0/sPfBCo5Fx6qmt+OGHNnz+eRyOPJK75xxQ3BgaoWAjUkbg7r/cjY3XbMS+ufuw7NRlOL7geI930iai0CdJEmRZ2QM2LmShcBIZGYlBgwb1ek5zsxZXX52HDz9M6PW811+PxwMPmNUsj8KcLLlRW1WKJqszKNdPM2mQHtMJjcDPnIHQabMra2jw7vQYXQyyorM8Pr/d5kTFwkfhvmUO4AzO30UiCi2SJMHt7vqA3WCQMWlSJ66/vhEvvVSOH34oxqpV5bjmmgaMG9cBnU7G+PGdiIpikAURqSc3N7fXYDCXS4M77sjGN9/EedTfxo3ROPFEJ5qbPb/vMdsC/znw9CGn49cbfsX1k6+HoOE0C6L+pqFB2bhtQoIbWi1/5kl9K2esxAUjLwh2GYqs2ryqz3M6Ojqwb98+1a6ZnZ2N6GiGHRMNdJGRAoYMUTYe+ssvfL8mIqLAc7tlLF2qfPx90iQbjj7a9/CsUJSXlweNxrdn3pIkoaxsr0oVERERANhcNjz6/aPBLgOLf1gMq50b6RIRdefTT1vx2WdxqKkxYP78HMyaVYBt237f/HTx4io8+2wlpk+34qyzWnDSSRav+tfpJDzyyD7Mnn3oRlwOhwOVlZVq/C8QUYBlxWXhnBHnYEzaGJ8/i//RlKwpyIrtfu7z3HVzVbsOEYWm6mplYaEajYyMDM5ZJlITn4QTEVFYa2lR9laYnKxyIdRvNTbaUVpaipKSEnR2dvrtOnPmdL8jjyDIOPNMKzZu7MQnn8Rh2jSGgf1ZcVPwQsEOG3QYHj3hUey6aRd+veFXLDp+ESZlTlJ1kI2IQocvoZCRkZF9n0Q0gMTHxyO5h5vq3bsjcPHFhdiyxbNFXvffn4C33rKoWB2FK9ntQnVlOcytjqBcP8MkISVaYUgVKWKxtilr6GUo2ND4oV4HR3TaHai48+8QH7nPu4sR0YBktXo2IdpolHHYYR245ZYGvPJKOb7/vhiPPNLi5+qIKBzl5uYiLq5r6JfLBcybl42vv/YsEOyAn3+Oxoknimhq8iwAoLmzue+TVJIanYo3z30TH174IbJN2QG7LhGpq6lJWbuEBFHdQoj+X3pMOv517r/QMK8Br898HbPHzkZGTEawy/LIZ3s+Q6W154VBDocDFRUVql0vPT0dJpNJtf6IKLSNG6ds1/Ft2wyQJGUhoEREREqtXWtDaanyTQDnzh247106nQ5ZWZ5vmtSdrVsjcdJJGfjPf3rfUJeIiDz3wpYXUNdeF+wy0GJvwdM/Ph3sMoiIQo4oSliw4NAQja1bo3DJJYVYsGAQamr0B48/9lgVHnywGo8+WoWjj/bsnjk62o3nntuL007rfh5Se3s7qqurlf8PENGAs+CIBd0eX79vPSx2S2CLIaKAqq1VNnaZlOSGXs+100RqYigYERGFLVGUYbVqFbVNS+NbaLgrL7fh6qtbkJurx+bN/p+cMXSoA8cd9/tArU4n45xzrPj55w68/74JEydyZ+SeBDIUTC/ocXLhyXj+tOdRc3sN1l+1HguOWIAhSUMCVgMRBU97e7vitrGxDHWk8JOeno6YmJhDjn3zTQxmzSpATY3niTuSpMFVV8Vi40blP4NEksuGfZV7YWkPTihXlsmFpGhXUK4dzmrqFK4K93Id6vD44YouY3M4UX7hFXB985mi9kQ0cHgaCvZnUVESRo7kmBER+UdOTs4hwWAuF7BgQTa++sq7QLADtmyJwgkniGhs7DsYrNkWmFCwy8ddjuIbi3H+yPO50QNRP9fcrOxnODFRWTAJkadSolNw0eiLsOasNai+vRrbrtuGJScuwUmFJ8GoMwa7vG7JkPHilhe7fU0URZSWlkKW1Xl+npSU1OPmEkQ0ME2cqKxdU5MOe/cyzJOIiALriSeUjxfl5Tlx/vkDewPB+Pj4LnNCPOFyAcuWpeKyywpQXm7E1VdHoLWV7/NERL5yiA48+v2jwS7joCfWP4EWGze4IiL6o+eft2LHjqhuX/v003jMmDEYTz+dho4OAQceX+t0wGOP7cOYMZ299p2c7MKaNeU47LDeN0FvaWlBY2OjovqJaOC5afJN3T6zlCFjwRfdB4YR0cBQU6PsmX9yMufZEKmNiSZERBS2GhrckGVlD+VTUrj4I1zt2WPD7NkWDB8egRdeSIDNpsXKlSkBufa11zZAr5dwwQUWbN1qwzvvmDBunPeTJsKJXbSjrKUsINdacuISNM5vxGeXfoZrJ12LjNj+sZs3EanHZrMpbhsZObAn+hH1JCcnBwaDAbIM/POfSbjpplx0dnof3NversXMmQbU1Dj8UCUNdJKzDZX7qtHaEfhAMI1Gg+x4BxKipYBfm4At23cpa5jo3elKQ8EAwOF0ojwtH8663Yr7IKL+z5fPGvHx8eoVQkT0Jzk5OTCZTBBF4K9/zcaXX3qZnvonW7dG4fjjRTQ09B4M1tzp31Cw/Ph8fDHrC7x05ktIjPTy5o+IQlJzs7LpUQkJ/LxOgaPRaDA6bTTuOPwOfH7p5zAvMOPzSz/HHdPuwKjUUcEu7xAvbnkRbunQybxOp4RPP62EJKnzcxMXF4eMDD5vJQo3U6cq29wRADZs4MYbREQUOOvX27F+vfK5Pjfc4IRON/DnIefk5EAQPP9MXl5uwGWXFWDFilRI0v7vT0VFBK6/npvEERH5as0va1DVWhXsMg6yOqx4csOTwS6DiChktLaKWLiw9/VhTqeA1atTcOqpQ/DOOwlw//8wfVSUjKVL9yI3t/s51Hl5Drz6ahmGDfNsjmx9fT0sFos35RPRACUIAs4bcV63r722/TXVngsSUeipr1fWLi2NoWBEamMoGBERha36euU3l+npyiehUf+0c2cnLrnEghEjIvDyy/FwOH6/jfrySxNKSiL8XsP48TJKSmz417/iMWJE97s/0KF2N++GJAdmgOnXxl9hMvq26I2I+jens/cFqz0RBMGrCXBEA4kgCCgoKMArryRjyZIMxaG9AFBVZcBZZ4mw2TiITJ5z21pQsa8O7Z3BCQTLMXXAxFv7oKiqrkdDo1lR29RBqV6dPyx+mKLrHOB0uVBmkeBoqfCpHyLqnyRJgtut7P5Gq9XyswYR+V12djaKi1Oxbp06Y6O//hqJd9+t7XGcxSE60OHqffdipQSNgHnT5mH79dtxQsEJfrkGEQWH2azsnigpiZOYKXgi9ZE4qfAkLDlpCbZfvx3Vt1djzZlrcNGoi5AclRzU2va17sPnpZ8f/G+3W8KsWa04//w8/O9/sT73HxUVhZycHJ/7IaL+Z8IEA3Q6Ze+/GzfyfZuIiAJn8WLl8xLi40Vcf314PCQWBAG5ubl9nifLwJtvJuL884uwY0fX783rr8fjjTcsfqiQiCg8ON1OPPTdQ8Euo4unNjzl941giIj6iwceaEV9vd6jc81mHe6/PwvnnVeEH36IBrD/mdaHH7qQlHRocP7YsZ145ZUyZGV5F6hfVVWFjg7/PJcnov7liZOfgAZd13h0ujrx4i8vBqEiIgqEujpl82xSU2WVKyEirgQgIqKwVV+vfDJYWhpDwcLF9u0dOP98K0aPNuL11+PhcnV/+7RyZYrfajAajSgsLMTgwYORmxvtt+sMRMWNxar1VZhQiHnT5uHaCdd2+/q/S/6t2rWIqH8SRVFRO51Op3IlRP2LTqfDzTfHIytLWbDeH23cGI3LLmuH282FH9Q3saMB5dWN6LR1vzuaPwmCgDxTG2Kj+NkyWD77ar2idrmxkVgzYw3iDfEenW8QDMiPzVd0rT8SRRFldTbYmvf43BcR9S++7LwZGRmpXiFERL246KJULF5shkbj26QeQZCxaFEVjjyyDSUlJXA4ut6rm23Kgl37MjZtLH68+kcsPmkxog0chycaaMxmZZ+/k5M5WZFCR2ZsJmaPm43Xz3kd9fPqsemaTXjouIdwTN4x0AueLRRS0+rNqw/+++23W/HWW/Gw2wXcemsO1q6NV9yvwWBAXl6e7wUSUb8UGSlg2DBlz4u2bOF0aCIiCozSUic+/FB5qNcVV9gRExM+71vR0dGIj4/v8fWmJh1uuCEXCxdmwm7v+ftyyy3RqKoK/GZfREQDwStbX0GltTLYZXTR5mzD4+sfD3YZRERBV15uw7PPer8JV0mJEddem48bbshFVFQKxoyJwbvv2hEVtT/E+JhjWrFqVTni45WFGpeXl8Nu5z04UbhLjkrGpMxJ3b628JuFAa6GiAKloUHZ+GVaGufZEKktfJ4mEBER/UlDg7KggOhoNyIj+RY60G3e3I6zz7Zi/PgovP22CaLY+5/555+bUFZmULWGyMhIFBUVoaioiIs4FSpu8i0UbELGBDx47IPYfv12lNxcgsUnLcaSk5d0e259Rz3q2+t9uh4R9V9KA8GA/eGPROEuO9uId95xICZG+W66B3z1VTQ2bapRoSoayFxtNSivtsBu9z2MzltarRb5JiuiowK/WJN+9+5HXylqd6xsw4lPLsSqY1YhUtv357QhpiGqLcx1u90or3eis3G3Kv0RUf9gtVoVtzWZvJ8wSESk1Lx5iXj88RbFwWAajYyFC6tx+un7f+/Jsow9e/Z0CQZrtqm7Y3yENgIPH/8wNl6zscdJjETU/5nNyjZmSEriZEUKTYJGwMTMibjryLvw39n/RfOCZnx00Ue4afJNGJI0JCA1fLT7I9S11+Hhh8145pmEg8fdbg3+/vdBWLEiBbKXP0JarRZFRUUQBM7HIApn48Ype1a0bZsBksT3biIi8r/HH3fB7dYoamswSLjjjvCbJ5SZmdntpon/+U8szj67CN99F9tnH01NelxxhYubxBERecnldmHRt4uCXUaPnvnxGTR2NAa7DCKioFqwwAmbTfkGs7KsQX5+KgDg6KNjsWZNKy64oBlPPlmJyEjfxstKS0t9WidBRAPD4yd1H+S617oX2+q3BbgaIgqExkZlz+wzM5WNmxJRzziDhoiIwlajwmcHiYm+BxVQ6Prpp3bMmNGKyZOj8f77Jo8nb8iyBqtWpapSQ1RUFIqKilBYWMigGB+VtpR6db5Wo8Wxecfi6elPY+9te/HznJ9x71H3YlTqKGg0+/8uxBhikGvK7bY9dysiCl+tra2K20ZHR6tYCVH/ddhhsVi5sg2CoPwBdFGRHW+8UYroaAvq6xnWSd1zWitRVtMGhzPwgWA6nRb5phZERqobKEzeaWxqwVffblTU9hgjoPvhB5z16ANYdtQz0Gl6X1g+LH6Youv0RJIklDe40N6wS9V+iSh02Ww2xW0ZCkZEgTZ3biKeeqrF6891Go2MBx6oxowZlkOOHwgG++Puw82d6oWCHZ17NLZdvw1//ctfodcytJdoILNYlC2kSE3lZEXqH2IjYnH6kNOx9NSl2HXTLpTfWo4Vp6/AOcPPgSnCP58LREnETaufw733JnT7+rJlaVi0KANuD6dXaDQaDB48mIFgRISJE5W1M5t1KC93qVsMERHRn7S0uPHKK8rndM6caUNWlrLg6v5MEATk5eUd/O+ODgF/+1sWbrstFxaL59+PL7+MxdNPW9QvkIhoAHt9++sot5QHu4wedbg6sPiHxcEug4goaL79thXvvhunuL0gyHjssUOfz593XgIef9yObnJ5vSbLMkpKSiBJDOclCmdH5h6J9Jj0bl+79dNbA1wNEfmbLAONjcpuJDIyOM+GSG2cRUNERGGrsVFZ2EBiIgeyBiKr1YqdO3fijjtkfPxxHCTJ+w8f//63CZWVyhf3R0dHY8iQISgoKGAYmEriDH0PjkfqInHWsLOw5sw1qJ9Xj69mf4Vbpt6CHFNOj21mDp/Z7fF3fntHca1E1L91dHQobhsb2/dul0Th4qKL4nHvvS2K2h59dCtefbUMmZn7F3w0NjbCarWqWR4NAPaWMpTVdsLlCvzCIL1eh/y4FhiNEQG/Nh3q2RffhtPp/d8BPYDTIvf/u27rdsy+/yE8Nu3hXttkR2crqLB3sixjb6OI1rqdqvdNRKFFFEXFk+q0Wi0X0xNRUNxySyKeecbiVTDY/fdX46yzLN2+JssySktLDwaDmW1mn2s0RZiw8vSV+Gr2VxiSNMTn/ogotHV0iGhvZygYhZe8+DzMmTgH75z/DpoWNOGHK3/AP47+Bw7PPhyCRr3PCe82PAFJ7vk9/803kzBvXjYcjr5/lgoLC6FTY4USEfV7U6cqe98GgA0bRBUrISIi6mrZMpviz5gAsGBB+N7zGo1GpKamYsuWKJxzThHef7/7gOG+/P3vJvz6a6fK1RERDUyiJGLRt4uCXUaflv20DPXt3ACUiMKP2y1h/nwtZFn586jzz2/FtGld1yJkZWUhJibGl/IOcrvd2LNnD4PBiMLc3MPmdnv8m8pv0O5sD3A1RORPVqsbNpuyeQWZmZxnQ6Q2rgYgIqKw1dSk7OYyKYmDWAOJxWLBzp07sW/fPoiiiGuvbVDclyRpsGpVitftYmJiMGTIEOTn58NgUB4qRl1dOf5K6ISuE2kSjAm4bOxlWHvBWjQtaMLaC9Zi9rjZSIpK8qjfedPmdXu8wlKBTicnnBCFI4fDobgtf/cTHervf4/HBRdYvGpz+eWNePrpSkRHH3qvvm/fvoMLx4lsTXtQXueAKAZ+UZDBoEdBnBkRDAQLOofDiWdfVBbmOz0SSP7DHH9tWTlu/dti3Dvxrh7b2EX//A6SZRmVTSIsNcV+6Z+IQoMvAadRUVEqVkJE5J0bb0zA8uUWaLV9B4Pdd181zj7b0us5fwwGa7Y1+1Tb2cPOxm83/oZrJl6jaigKEYWu2lrlweBpacoXehOFCp2gw7TsabjvmPvw/ZXfo3lBM949/13MmTAHuaZc3zqPaAfOnwmg5/f8L780Yc6cPFitPb/v5ufnc9MsIjpo/HgD9Hplc7M2buScLiIi8h+XS8bzzyt/3nvssZ0YPz68nxenpqZi3bpEVFcrnyvV0aHFrFmAy8X3fSKivry5402UmEuCXUafbKINj37/aLDLICIKuNdft+LHH6MVt4+OduORR3r+jJGTk4OICHU+gzidTlRUVKjSFxH1T/OmzYNB2/XzvCRLuOvLnudRE1H/U1XlVtw2K4vzbIjUxlmuREQUtpqalLVLSvJ8d3sKXWazGcXFxaiqqjokFGDcOBumTlWeTv7xx/GoqtJ7dG5sbCyGDh2KvLw8BsL4ycTMifj80s9xcuHJOCr3KNw85WZ8ddlXaJjfgH+e9U+cNewsROm9XySbGZeJ1KjULsdlyFi+cbkapRNRP+N0OhW102o52EX0Z1qtgH/+Mw5Tp3b0ea5OJ+P++6txxx316OnHqaysLCghUBRaOhp2o7zBCbdb+QMKpYwRBhTENUOv0uQK8s2y1W+hodGsqO2sbjbOE+ob8MDdz2ByysRu2zQ4lAdPe6LK7Ia5eqfi9rIsw2q34teGX7GudJ2KlRGRGlpbWxW3NZlMKlZCROS9665LwLPP9h4M9re/VePcc1s86u9AMFhda52ietJj0vHu+e/ivQveQ2ZspqI+iKh/cjicOP54KyZM6EB+vh3x8SI0Gs+e92ZmevbMj6g/iTfGY+bwmVgxYwXKby3H7pt2Y+kpSzFjyAxE6xUsPhr+ATDjWkDoeQx28+ZoXH55Aerqum7mNGjQIERHK1/0REQDj9EoYPhwZc9et2zhs1ciIvKfl1/uRE2N8s+Jd9yhbCPjgWb58hjk5yvffBEAtmyJwj33KN9YhYgoHLglNxZ+uzDYZXjsuU3PoaatJthlEBEFjMMh4b77fNvw76abrMjN7XnDDUEQUFhYCJ2u69i8Ep2dndi3b58qfRFR/yMIAs4edna3r63ZuiawxRCRX1VXK19zM2gQn9URqU2du3kiIqJ+qKlJWTZmcrLKhVBANTc3o76+HpLU8y5h117bgB9/7Ga1twdEUYMXXkjBfff1/FAqNjYWWVlZqg2sUu+Oyz8Ox+Ufp3q/0wdPx8tbX+5y/JVtr2D+EfNVvx4RhS5Jknp9X+kNQyGJuhcRIWDtWh2mTXNg797ug5RMJhFPPlmJyZM7e+1LkiSUlpZi8ODBEATm44ejtvqdqGxyQ5YDH/AcGRmBvJgmaPUMBAsFjU0teHDJakVtc7XA2T3MwdG0deCz57Yi6dyur22o3wBZlqHR+G+Sf02LCLe8EymDhh1yXJZlNHU2oaq16uBXdVt1l39vdyoPxiYi/7LZbIrbxsXFqVgJEZEyc+YkQKttwXXXxUMUD70fuvvuGpx/vmeBYAfIsoyy2jKv67hmwjV47MTHEG+M97otEfV/qalOPPVU/SHH3G7AatWipUWHlpae/qlDerpvizGIQp1Go8HgpMEYnDQYN025CU63E+v3rce60nVYV7YOP9f8DBkejKlNXAVE1wPvvgG4uv+52bPHiEsvLcSKFRUoLNwfAJCWlob4+HgV/4+IaKAYO9aNbdu8b7dtmx6SJEMQGLpCRETqkiQZTz2lfEHb8OEOnHJKz4v1w0lcnA6rV3fi5JMNXcYMvfHkk/E47bQ2HH10rIrVERENHO/89g52NinfZC7Q7KIdj3z3CJ455Zlgl0JEFBCVlVU4/fQIrF6dDJvN+88amZlO3Htv33ODBEFAUVERdu/erXi9wx9ZrVYYDAakpaX53BcR9T9PTX8Kb/76Zpfj7c52vLr1VVw69tIgVEVEaqupUbbuJjJSgsnEUDAitTGJgoiIwpbZrDQULPALyck3kiShubkZjY2NHg1iTp7ciYkTO/Dzz8p2JH7//Xhce20j0tNdhxyPi4tDZmYmw8AGiAWHL+g2FOy3xt8gSRJDR4jCiMOhfPfKyMhIFSshGlgyMiLw3nvtOOYYHdraDh0Yzs+3Y/nySmRne7ZTvMvlQmVlJfLy8vxQKYWy1rpi7GuWghIIFh0VgZzoJmj1DIAMFfc+9CysrcoCsO40Abpe5qQntov4Sz3w3Z/mulR3VqOyvRK5sbmKrtsTURLRZG9Cva0eDfYG1JfUo/XHRrTIHahuqzkY+uV0e/Z7kohCjyiKiifj6XQ6jksQUci46qoECEIL5swxQRT3/276619rcNFFZkX9mR2etxucOBgrZ6zEMXnHKLoWEQ0MLperyzGtFkhMdCMxsffdTQ2GUf4qiygkGbQGHJ13NI7OOxqLjl+Exo5G/Kf8P/i89HN8uvsz1HfW9dx42IfAjcOB1euB9sxuT6mv1+Oyy/KxbFklTjghEikpKX76PyGi/m7SJOCVV7xvZ7HoUFrqxODBHJcnIiJ1rVtnx44dyuf43HabCEHgRlIHHHdcHG65pQVPPJGguA9R1GDRIglHHCFyTi4R0Z9IsoQHv3kw2GV4bcXPKzD/8PnINmUHuxQiIr9yOp1wOFoxZw4wc2YLli1LxXvvJUCWPQ/N/dvfOhAT49n9tE6nQ1FREUpKSlSZS9vY2Ai9Xo/ExESf+yKi/iU9Jh3j0sfhl7pfurz2j//9g6FgRANETY2yucupqSIAPqMjUhtHv4mIKGwpDQVLTeVukv2FJEloampCU1OT14sor722AXPm5Cu6rigKePHFZNx9dy0AwGQyITMzE1otU44HkpGpIxEXEYdWR+shx92yG69sewWzx80OUmVEFGhtbW2K20ZHKwugJAoXEybE4KWXLLjgAhPc7v334Ycf3obFi/chLs67+7v29nbU1tYiIyPDH6VSCGqpLUZ1c++Le/0lNjoC2dHNEHR8qBEq/vvtJqx6+X1FbTO0wJUebDB9cnXXUDAAuHvj3fjruL9iVMIoaDR9jyk43A402BpQb6s/+HXIf9vr0WRrggTfd+4jotDV0tKiuG1UVJSKlRAR+e6KKxKg1bbg6qtNmDu3HpdcoiwQDAB+bPixz3O0Gi0WHLEAfzvqb4jUM5CdKNyJohjsEoj6rZToFFw46kKcM/R8nLKsHfVbK4BzLwHSdnTfIL4SuGEMsKQGkLofF2tt1aGsLB4ZGVwsREQ9mzpV+fya9etdDAUjIiLVPf648oXz6ekuXH45x+3/7OGHTfjqq0788ouy782llzbhttvqUVERgaKiIpWrIyLq39YWr8Wvjb8GuwyvOd1OPPTtQ3ju9OeCXQoRkV9VVlYe/PfkZBH/+Mf+TbUWL07Hjz/G9Nl+7NhOXHONyatrGgwG5OXloby83Ot6u1NTUwO9Xo/YWA8mVhLRgPLYCY/hpFdP6nK8tKUUxY3FGJ4yPAhVEZGa6nrZK6w3KSnBWbtDNNAxFIyIiMKSJMloaVE2gSwlhaFgoU6SJDQ2NqKpqUnxLgaHHdaBsWM7sXWrsgkHmzZFIyYmHjk5mRAEZQF0FPqOzj0aH+3+qMvxlT+vZCgYURix2WyK2/JBGFHfzjknHg88YMY99yTi4oubMX9+LZRu8trc3IzIyEjEx8erWiOFnubqnahtCc5DBVNMBAZFW6DR6oNyfeqqtbUdV9x8v+LPhw/FAxF9DAX8ZgL+ndX9a9tatuHi/16MgtgCTB80HROTJsINd4+hXy1O5UFARDRw+BI+bDJ5N/GPiCgQLrssAcOHNyEysllxHxaHBfW2+l7PmZgxEavPWI1x6eMUX4eIBhaloWB8vke0nyRJ+OWXclRXZQKNY4DntgPTHgdOntd9g6hm4IS/Auue6PblOXNacN99DAQjot6NHx8Bg0GC0+n9+/GmTTIuu8wPRRERUdjavt2JL79UHuo1Z44DBgOfHf+ZwSBgzRoJhx/uRmen5/O5U1NdWLiwCtOmdQAA7HY7GhsbkZKS4q9SiYj6ncU/LA52CYq9+MuLeOLkJ7jpCxENWG1tbbDb7V2ODx1qx6pVFfj22xgsXpyBioqIHvt49FEXtFrvP6NER0cjOzsb+/bt87ptd/bu3YuCgkJERfF3NlE4ObHwRKREpaCxs7HLa7d+divWzVoXhKqISE11dcoyFNLSuOE5kT9wBhsREYWl1lZlE8cAIC2Nb5+hSpIk1NXVobi4GI2NjYoXfAOARgNce22D1+0KCuxYtqwFO3YYkJc3iAsGBri5h83t9vjPtT8HuBIiCqbuHsx5QqPR8H2CyEN3352I117bh7vuUh4IdkBVVZVPYX4U+hqrdqG2RdmCX18lxBowKMYCjZa/30PJrXc/jr37ahW1PSwCmN3N5ntuDWDVA78kAOcfBYw6E1if1ntfZW1leLb4WVz13VWY890c/O3nv2HZb8vwdvnb+F/d/7DTupOBYER0kNLPGQDDh4kodE2enIzU1FTF7Zf+uhQyuh/3N+qMWHLiEmy4egMDwYjoEG63stBwjt0S7bd3715ERtrw0kvlmDq1ff/B9XcA774KSD0s3J+8HEgs6XL4zDOtWL6cIcZE1DeDQYPhw52K2m7ZomyTSCIiop48+qhLcdvoaDduvZUL5HsydmwM/vEPq8fnT59uwXvv7TkYCHZAfX09HA6H2uUREfVLNpcNm2o2BbsMxZxuJ3Y37w52GUREflNdXd3jaxoNcNRR7XjvvRLcdVcNTKau82BPO60VJ5+sfJzdZDIhPT1dcfs/+uabGBx5pISmJmXjeETUf9005aZuj39V/hXsovJ5j0QUGurrlWYvKF/PT0Q94ww2IiIKS3V1yiZ/A0BqqrKUW/IfSZJQW1uL4uJiNDU1+RQG9kd/+Us7Ro7s9OjcwYPteP75FuzcacCNNybAYOBtVjg4Nv9YGHXGLscdbgc+3/N5ECoiomAQRWXBMzpfk42IwsyFF2ZBq1VnIUdZWZnin10KbfX7dqHeonxSti+S43TIjG6FhouGQ8orb36CNW98pKitRgNEnAwcPx2YfDow9Gwg43wg5hJANxuIvwQYfybwdgEg84+diFQkiiIkSdmOWTqdjgEWRBTSUlNTFQWD/dryK94uf7vb15IjkrHx8o244/A7oBM43kJEh2IoGJFyVVVV6OjYv9g+JkbCc8/txSmnWPa/uP0S4F/vo9u8Tr0TmDEHf3zxL39px5tvxkKn488WEXlm3Dhl7+HbthkgSVx0QERE6qitFfHOO8pDvS65xIbERAZW9ub22+Nx3HFtvZ4TG+vGI4/sw2OPVcFk6v4eoby8XPGzFSKigcSgNSApKinYZSgWY4jBsORhwS6DiMgvmpqaPJq7rNcDF19sxief7Mbs2U3Q6fbf5xoMEhYv9v15eHJyMpKSfHuvWLs2HrfckovNm6NxxhlO2GzK12kSUf9z95F3Qy/ouxx3y27c89U9QaiIiNTU2KjsmX5GhsqFEBEAgDNiiYgoLDU0KH/wm57Ot89QIUkS6urq0NLSoloQ2B9pNMC11zbilltyezxn+HAb5s2z47LLTNB1Ew5FA9+UzCn4pvKbLsef/vFpnFx0chAqIqJAkiRJ8XtQRESEytUQDWyCIKCwsBAlJSU+3/vJsow9e/ZgyJAhXOA5gLTUFKPRGpyJBakmDVIi26ERGCKtNlmWYRMdaHW2o9XZgTZX5/5/OjvQ+v9fba7//6ez85BjdWXN+PWxMuXXngr8b4KK/zNERB4ym82K20ZHR6tYCRGRf6SmpkKj0aC+vt6j8yVZwv2b74fcTepIgiEB605ZB7QAbXFtiI2NVbtcIurnlC4IViucnqi/qq+vh8ViOeSYXi/jkUeqkJws4pVXkoHdpwP/WQSc0M3k/vyvgcnLgI03Y+RIGz78MAIRERyLJSLPTZoE/POf3rdrbdWipMSJoUMN6hdFRERh58kn7XA4YhS11WplzJvH96O+aLUCXnpJj/HjRZjNXednT57cjkWLqpGR0fvmYKIoora2FllZWf4qlYioX9AKWtx/zP24/pPrg12K1wxaA16b+RoidJxbS0QDjyRJHj8fP8BkkjBvXh0uuMCMJ59MQ2GhhOHDE1SpJyMjAy6XC62trV61k2Vg5coULFuWdvDY+vUxuOCCVrz3Xgw3BiEKEzpBh9OHnI61O9d2ee2FzS/g8ZMeD0JVRKSWhgZl82XS07mWhsgfmGpCRERhqb5e2eRvnU5CfDwHqILN4ZDw7LMWjB/fgOTkvndJ8MUxx7Rh6FAbdu06dLe30aM7MX++AxdfbIJWq3wnOOr/rpt0XbehYN9WfhuEaogo0Nraet+psjdRUVEqVkIUHgwGA3JycrB3716f+xJFERUVFSgoKFChMgo2W1MJalqCs+tvhklCUrQLAB9iKLGp/je8WfIFKtpq/hDsdWgAmCQr+LO1A1gJoPe54T1LAXC8wrYANBKQ5ASamB1NRAr48jkjPj5evUKIiPwoJSUFADya+Pzo1kdRbCnu9rXHD3sceu3+3Uf37t2L3NxcBoMR0SGUhsvrdJxSReHLbDajsbGx29cEAViwoA5paS4sWZIBfHcXkP9foPDLriefegviEx34ZMWNSEjouls4EVFvDjtM+Xvxhg0uhoIREZHPOjokvPCC8od9p55qw+DBnBvkiZwcI55+ugWzZv0ecKDXS7j11nrMmtUMT/d6a2lpQXx8PDdQIaKwd92k6zAiZQQ+LfkULfYWaKCBoBEgaARoNH/4dy+OL/xmIRxuR5drPXnykwfPV9q3oBEQY4jB4dmHIy4iLgjfMSIi/6utrVX8zCo724knntiHoqIhqtaUk5OD0tJS2Gw2j853u4GHHsrAW28ldXnto4/icOONLVixQp3QMiIKfU9Nf6rbUDCrw4p3fnsH5444NwhVEZGvnE4ZLS3KQsEyM7mehsgfOIONiIjCUkODsoG0hAQ3BIGTVYPFZnPjmWesWLo0BtXVibj8cjfuuMO7nRK8pdEA117biNtvzwEAjBvXib/+1Ylzz42DVssJGwRcMPICzFo7C27Zfcjxdmc7fqn9BeMyxgWnMCIKiA8+ELFmTQ4GD7ZjyJD9Xzk5Tmg9GP/iAlUiZWJjY5Geno66ujqf++rs7ERNTQ0yMzNVqIyCqc6qfJGvL7LiXUiICk4Y2UDwUfk3OPuT+V3upX0mAXgXgFlhewHA2QAUfvw/oxJYvAkY0gpUxAAvFwLPDgPqmSdNRB6y2+2K23KhCxH1JykpKdBoNL1+vtvStAVvlL7R7WunZJ+CySmTDznGYDAi+jOGghF5p62tDTU1NX2eN3t2M5KSRPztb4MgfrwCuGEUoP/TwiENYJk2H1d/8zmemf4MhqcM91PVRDQQjR1rgNEowW73fvPGTZtkzJ7th6KIiCisrFxpg9msfMx9wQJuQOyNSy9NwMcfW/Dmm/EYPNiORx7ZhyFDuobP9GXv3r0YNmwYBE+TxIiIBqijco/CUblHqdbfkh+WdBsKdttht6l2DSKigUoURbS0tPjUh8lkgtGofgh+fn4+SkpK4HL1vvuq3a7BggXZ+O9/ew5vXLkyAZmZZtx3X6LaZRJRCMox5WBUyijsaNzR5bV7v7qXoWBE/VRtrQhZVraIIjOT43FE/sCfLCIiCktNTcraJSVxsXcwtLeLWLjQjIICN/7610RUV+8fyHzzzSSYzcpSh71x/PGtmDmzBe++a8GmTUZccEE8tFreRtF+giBgdNrobl9b/MPiAFdDRIG2fr2A//43DitXpmLevBycccYQTJ06AuefX4h7783CP/+ZhPXro9HU1PX9KiIiIggVEw0MycnJiI+PV6Uvs9kMs1lpchCFAru5FB027ycD+0Kj0SA73sFAMB89tOkl9QPBAOAzACU+tD8GgIKsQL0b+OJz4IOv9geCAUBeO/D3rUDtm8Dcrs+9iYi6aG524pNP4tDU5H0IhV6v5yIXIup3kpOTkZGR0e1rFW0VuGX9LZDRNdBHp9Fh3uh53bbbu3cvKiraVK2TiPonSVL+uV2v50ZRFH5sNhv27t3r8fmnn27F8uV7EeXIBb56sMfzviz7EmOeH4MFXyxAm4Pv0UTkGb1eg+HDnYrabt7s/7lEREQ0sLndMpYuVf65cMoUG/7yF6OKFYWHFSticMst9fjXv0oVBYIB+8cC9u3bp3JlRESk0WiCXQIRUb/l6/2pRqNBVlaWStUcShAEFBUV9TrfyGLR4ppr8noNBDvg/vsTsHKlbwFoRNR/PHz8w90e39W8C6Xm0gBXQ0RqqKpSvrYjK4vP54j8gSsDiIgoLDU2KtsROjGRC74DqbVVxH33mVFYKONvf0tEXd2huxrYbAJeeSXZrzUIgoCsrAy8+24CZs5kGBh1b/bY7reYXVe6LsCVEFGgFRd3XajvcAgoLo7EBx8kYMmSDMyZk49jjx2Oo48ehquvzsNjj6Xjhx9iuVifyEeDBg1CZGSkKn3V1NSgo6NDlb4o8Mztgf2cptFokBPfAVNUQC87INV0NKrf6QYAP/nQvgjAkd4307uBXe8BJ9R2/7oGwBObgJXf+1AbEYWFTz/twJ13ZuPYY4fhzDOLsHBhBtati0NLS98Py6Oi+OZERP1TUlJSl2Aws8OM67+/Hhanpds2p2SfgtTI1G5fW7kyBZMmGbFxY7vapRJRP9PXrua9MRjU322dKJQ5nU6UlZV53e7ww9vx4ovlSNh9IyD1/NxDlEQs/mExhi4bite3vw5ZVjZng4jCy7hxoqJ2O3YYIEn8PUNERMq9+64N5eXKPxfOncv3ISVMJh3uu08Pg8G3719bWxusVqtKVREREQBowFAwIiIlOjs7fZ6fnJqa6td1B1qtFkVFRd0GQNbU6HHZZfn45Zdoj/qSZQ1uusmEDz6wqFwlEYWi04eejsTIxG5fu+XTWwJcDRGpoaZG2docQZCRkeH9ZshE1DeuQCYiorDU1KTsoURSEh/UB0JLiwv33NOC/HzggQcS0dDQ845rr7+eCKtV/QRhrVaLzMxMjBgxAklJSar3TwPLdZOu6/ZhZ5OtCZXWyiBURESBsnt3hMfnms06/PhjDF55JRnffWfyY1VE4SM/Px9arTr3ghUVFT4tFKXgsQfwj00QBOSZ2hEbyV1M1HByzjR1O9wN4HMf2psAzASUzGN8fj2Q78HcnWtKgMc2et8/EYWPr7/+/d/Lyox4880k3HFHDo46ajhmzizCo4+m46uvYmG1dn3El5CQELhCiYhUlpSUhMzMTABAfWc9zlp3Fqo6qro9NyMyAw9OfLDb11avTsbSpWlobtZj+nQjNmxo81vNRBT6nE6n4rZ6fc/PJ4kGGlEUsWfPHsVBXSNH2vHaK5XQWYf0eW5tey0uee8SHPPPY7C9frui6xFR+Jg0Sdn8rtZWLXbuVH4fQERE9MQTyoNP8vKcOO88dTY4C0eJiYmqbIJSVVUFUVQWMEpERF11FxRDRER9q6rq/pm3p7RaLVJSUlSqpmcGgwEFBQWHHNu504hLLy1AebnRq75cLgGzZsXihx/4rJ4oHFw36bpuj68rWwenyHF6ov6mpkbZnIHERDd0On5uJPIHhoIREVFYam5WdnOZnKws5ZY809TkxIIFLSgo0OChhxJgNvedDNzZqcWrr6oX2qXT6TBo0CAMHz4ciYndJ5UT/ZlRZ0RhYmG3ry35YUmAqyGiQGlocKK2VtmuoKNG8Z6CSA2CIKCwsFCVSUeyLKO0tBSSxJ/P/sbpcgfkOlqtFnkmK6KjuIOJWu6edAUitMp32D5ENYC3ASjN8tYCOB+Agvnlp1QBV+zx/Pz5vwJ3bfP+OkQUHtav73kiXUmJEa++moxbb83FkUcOx/nnF2LJknR8800M2tsFVRbJEBEFiyzL2GPbgwd3PIgTPj0BLc6Wbs8riivCeye+B63QNaj3pZeS8fTT6Qf/22zW4dRTIznZmCiM+RIKFhHh+YYQRP2ZJEnYs2ePz+Oi2dlOHDO0++el3flm7zcYv2I8bv30VljsFp+uTUQD19Spysfjf/wxMM8OiIho4Pn+ezt+/FF5qNfNN7ug1XIBnC/y8vJ8ngciyzIqKirUKYiIiIiISAGLxeLTsyoAyMrKUqmavkVGRiI3NxcA8OOP0bj88nw0NirbRKetTYuzzzZi165ONUskohB031H3QSd0HcsXJRH/+N8/Al8QEfmktlbZYozUVIbzE/kLQ8GIiCgsNTUpewsMQLh+WHI6nXj44SYUFgpYvDgBFot3k/peey0JbW2+3dYcCAMbNmwY4uPjfeqLwtP5I87v9vj7O98PbCFEFDAbN9oUtx03ruvCVSJSxmAwIC8vT5W+mptlPPZYkyp9UWDIkgS3OzALe5Jj3IiKVCnAigAAeXGZmDvuYt87agTwGgCXD32cBkDB/BmTE1j1A+DtlPRFm4Hrd3p/PSIa2OrqHCgu9mx3TVnWoLg4Ev/8ZzJuvDEPixdnQRD42I+I+p8OZwdWb16NSasmYerqqXhr11s9npsamYrnjngOMfqYLq+9/HISnngivcvxlhYdTjstEt9+26pq3UTUP7hcyj8o6nQMBaeBT5IklJaWQhTVmaCbl5Th1flu2Y1nfnoGQ5cNxZpf1kCSuWEDER1qzBgDIiOV/W7YtIm/U4iISJnFi5U/f05IEHHttcoDxWg/QRCQk5Pjcz92ux2NjY0qVERERBqvZ8YQEYU3SZJQU1PjUx8RERGIi4tTqSLPxMbGIiYmC3Pn5qCjw7f1Dg0Nepx2moD6et+C0YgotBl0BpxceHK3rz2/6fkAV0NEvqqrU/bZLzWVz+WI/IWrA4iIKCy1tCh7C0xOVrmQMOdwOFBWVobdu3dDo7GhtVXZ5Pq2Ni1efz1JUVu9Xo+cnByGgZHP7ph2R7fH97XuQ6udC86IBqItW5RNAtRoZEyeHKVyNUThLTo6GpmZmT71UV5uwCWXFOCuu1Lx9NNmlSojf9MIQsAW6dZbgRYfJzlQV3dNuhxpUco+zwEALABeAeDLhnLHApigrOnTPwJZCq6tAfDYkX/FaTmnKbswEQ1In33WCVlW9kD9qKMCE5JJRKSW4sZi3PLpLch6IgvXfHQNNtdu7vV8nUaHZ494FulRXYO/Xn01CYsX9xxCYrHoMGNGFL75ps3nuomof/ElFIwoHFRWVsLhcKjSl16vx6icUYraNnQ04IoPrsARLx6Bn2t+VqUeIhoY9HoNRoxQtmhwyxaO5xMRkff27HHi44+Vz+m58ko7oqO5REcNsbGxMJlMPvdTX18Pp5MhBEREvhI0fH8jIvJGQ0MDJMm3cIzs7GyVqvFOXl4Cli9vhSDIPvdVWmrEzTd3qLY5CRGFpqenP93t8RZ7Cz7c9WGAqyEiX9TXK5vDnJbm+30DEXWPIzJERBSWzGZlE79SU7nDiRrsdjtKS0tRUlKCzs79q6enT7ciJ0f5hONXXklCR4fntzZ6vR65ubkYOnRowHdOoIEpMSoRGTHdLzx76senAlsMEQXEb78p+0g9aJATCQl6lashosTERCQmJipqu359NC65pBB790YAAObPj8cnn1jVLI/8yKAP3MKeaqsOzR38Ha6mOEMMFh52vbLGbQBeBuBLBu9UAEcra3raPuCyUmVt2x98BJXHzMKDEx/E0ekKCyCiAee//1U+9jh9ulHFSoiI/MPpduLNHW/imDXHYMSzI7D0p6WwOjz77HXd8Osw1DS0y/HXX0/Eo4/2HAh2gNWqw4wZkfj6awaDEYUTt1vpxg58JkwDX1VVFdrb21XpSxAEFBUVYVDcIJ/62VC1AZNXTcb1H1+P5s5mVWojov5v3Dhl7+c7dhjgdnMBAhEReWfJEifcbmWfCQ0GCbffzrF6NWVlZUGr9X0+QHl5uQrVEBERERF5xu12o6mpyac+YmNjYTQG7/PFrFkJeOihFp/7mTq1HXPn1mLPnj0+h6QRUegqTCzEsKRh3b5293/uDnA1ROSL+nplayXT0/lMjshfGApGRERhx+GQ0dam7CFxSgrfOn1hs9mwZ88e7NmzBzab7ZDXdDrgmmsaFfdtterwr3/1HQJhMBgOhoHFxsYqvh5Rd2YMmdHt8Te2vxHgSogoEIqLDYraDR3K3SeJ/CUzMxNRUd7t2vvmm4m4/vq8Qz4juFwCZs2Kxm+/dapdIvlBlF7ZgiClaq0CGjqMkCU+uFDLFcNnYGzyEO8adQJ4BYDZhwuPAzBdWdN4B7DyB0DJkoC2p5/D3vGnQ5Ik6AU9lhy2BJOSJykrhIgGlPXrlU3my852YOhQ7+6BiIgCaa9lL+75zz3IeTIHF757If63939etddqtLhy6JVdjr/5ZiIefjjT435aW3U444wofPklQ6CJwoXSXccFgc+EaWBraGiAxWJRpS+NRoOioiJotVqfQ8EAQIaM539+HkOWDcGKTSvglgI79kdEoWeSwqHTtjYtdu50qVsMERENaGazG6++Gqm4/bnn2pCZqVOxIhIEAfn5+T7343K5UFNTo0JFREThixspEBF5rqqqyuc+srKyVKjEN3femYhbblEeDHbKKRY899xexMZKEEURpaWlDAYjGsAWHrew2+O/Nv6KSmtlgKshIqUaG5XNl8nI4GdGIn/hLDYiIgo79fXKJn8DQFoa3zqV6OzsRElJCUpLS2G323s877TTLMjKUh6U8s9/JqOzs/sPDxEREcjPz8eQIUMYBkZ+s+CIBd0e39W8C06RIUBEA4nbLaGkJEJR2+HDld+LEFHf8vLyoNP1PdFWFIGHH87AwoWZ3e7029Kiw5lnCmhq4nt4qEuMD/z9fYNVRn1nDIPBVKIVtHjyyNs9b2DH/kCwBh8uOgLAGVCW6gVg6Y9Apq3v8/7Muvp17C34C2T59787Rq0RSw9fihHxI5QVQ0QDwr59dpSUKAsFO+ywnsfbiIiCxS258e+Sf2PGGzNQ8EwBHvruIdR31Cvq64S8E6AX9Icce/vtBCxc6Hkg2AFtbVrMnBmDdesYDEYUDtxuZWFCDAWjgcxsNqOhwZdBlUMVFBTAYNi/iUpWnHqLlMw2M6775DpMXT0VG6o2qNYvEfU/U6cqD1dZv56hYERE5Llly+zo6FC24TAA3Hmnvu+TyGtGoxHJyck+92M2m9HR0aFCRURE4UnQcMyUiMgTDocDbW1tPvWRlJTk0TzoQHjiCRPOP9/idbvZs5vwyCNV0Ot/nyfpcDhQWclgIKKB6pwR58AUYer2tVs/uzXA1RCREpIko7FR2T1IRobKxRDRQRyRISKisFNfrzxVPj1d+QP/cNTR0YHdu3ejrKwMDoejz/P1euDqqxsVX6+lRYe330485JjRaERBQQEGDx6M6OhoxX0TeaIwsRAJxoQux2XIeHHLi0GoiIj8Zdcu5RMBx4xRuRgiOoQgCCgqKup1d8K2NgE33ZSL119P6rWvPXuMOOccJ1wu7kwVyvSxmTDFKAtR8UVTq4jajljI3LlMFccOmoSzCo7p+0QHgFcB1PpwsSIA50Dx6PgZlcAlZd63M7/+Ifalje72tRh9DJ7/y/PIj/V9p2si6p8++0xB0uD/O+YYvhcRUeho6GjAI989gqKlRTjt9dPw8e6PIcm+/Z46afBJyM7OPvjf776bgAceUB460tamxTnnxODzz1t9qouIQp/S3ca1Wj4TpoGpra0NNTU1qvWXm5uLyMjIg/+dHpOu+gLRn2t/xrQXpuHKD65EQ4d6YWZE1H+MHm1AZKSy9/RNm7ixBxERecbplPHccwbF7Y8/vhNjxihvT71LT08/GEbsi7179yoeKyAiou7x9yoR0aH27dvnU3tBEJCWlqZSNb7TagW88kocjjnG86Cz+fNrMW9eHbrbg6e9vR3V1dUqVkhEoeSaCdd0e/yT3Z9AlMQAV0NE3rJYJDgcyp73Z2YytojIX/jTRUREYaehQfmDh5QUTgD3RFtbG3bv3o3y8nI4nU6v2p55pgXp6d61+aM1a5Jht2tgNBpRWFiIoqIiREVFKe6PyFvH5x/f7fEXtrwQ4EqIyJ82beo77LInEyZwZ1Aif9PpdMjP7z5YZ98+Ay69tADffx/rUV/ffBODa6/lQvFQl54UDZ0u8J/XzG0uVLXHQ3bzQaUaFh9xK/RCL7vLuAC8DqDKh4vkAbgAgMK/Lol2YMV6oOfYwe41vfsVavoI/EqISMDKv6xEZlSmsuKIqF/7+mtvf7P8bvr0wIdjEhH9kSzL+K7yO1zy3iXIfjIbd/3nLlRYKlTr//j842EymZCTk4OPPzbh/vt9v19qb9finHOisWFDiwoVElGoYigY0e9sNhv27t2rWn+ZmZmIjT10jFUn6JAek67aNf7opV9ewpClQ7D0x6VcNEAUZnQ6DUaOVPZs9pdf+J5ORESe+ec/O1FXp3w+zx13KB/jJ8/k5eX53IckST6HNBARhStNDzNl3LI7wJUQEYWutrY22O12n/rIyMiA0F2aVhAZDALefz8SY8Z09nqeXi9h8eJKXHZZc6/ntbS0oKGBm4AQDUQPHvcgtJqu4/IuyYWHvn0oCBURkTeqqpR/vmMoGJH/8KeLiIjCTkODsl0g4+LcMBj44L43bW1t2LVrF/bu3et1GNgBer2Mq65qUtQ2KsqNc85pR27u/jCwP+5KTBQo8w6f1+3xX+p/4W5IRAPItm3K7ieMRgmjRzOskigQoqKikJWVdcixjRujcNFFBSgr8y4446WX4vHoo2Y1yyOV6WMzkJOkhUYT+M9s1nYH9rUnQmIwmM+K4rNxy9gLu39RBPAGAF/Wrg4CcBEAH/I5l/4IpNs8P18G0PDxetQZUjw6Pz0qHauOXIWkiCRlBRJRv7Vhg7Jgr/x8BwoKOAZGRMHR6mjFsxufxZjnx+DIl47E69tfh9OtfNOP7iRHJWN02mgAQFxcHE48MRHJyercex9/fCsiI6vR3Nz7pGQi6r9kWdk4rk7XS2A1UT/U1OTEjz9WqtZfamoqEhMTu31tUNwg1a7zZ1aHFbd8dgsmrJiAb/Z+47frEFHoGT9e2SKEHTsMcLuV3Q8QEVH4kCQZTz+tPEhy5Eg7Tj6Zm3f4m8FgQGam75sFtLW1oabGqkJFREThpac5WQxvJyL63dq1Zih8NAUA0Ov1SEhIUK8gFZlMOnzyiYDc3O7D+2Ni3Hj++b2YPt2zTZgbGhpgsVhUrJCIQoFRZ8Tx+cd3+9rSn5YGuBoi8lZ1tfJQsOxsHxZoEFGvGApGRERhR2koWGIidzHpidVqPRgG5nK5fO7v7LNbkJLieT+xsW7cdFML9uwR8fzzCUhJ4QQLCp6pg6YiSt818EeURHyw64MgVERE/lBcrGxRWGGhA3o9P4oTBUpCQgKSkvYH66xdG485c/JgtSr7+b333gSsXWtRsTpSW1TKEAxKEoISDNba4cDetkRIKnweCnf3Tr4Kycb4Qw+KAN4EUOZDxxkALgUQobyLs/cCF5V7fr4MoP6zzWiQY7y6Tk5MDlYcuQKx+ljvCiSifqu83OZ1aOkB06Z5kVRIRKSSrXVbcd3H1yHz8Uzc+O8bsaNhh9+udWzesRA0v4+lTJwYjc8+cyA11bd779NPt+CBB6qh1QK1tbVoalK2WQkRDUx6PScr0sBhs7kxY4YTl1ySj/Jyg8/9JSQkIDU1tcfXs2KzenxNLdsbtuPoNUfj0vcuRU1bjd+vR0TBN2mSsnH/jg4tfvuN4/ZERNS7zz6z49dflc85ve02NwSBGw4HQmJiIqKilG/G2Nkp4P77M3HccQZ0dDDEhojIGxp0/17nlrnGhogIANautWD27FxcemkBfvlF2eZ+gwb5b9MNNQwaZMQnn7iRlHToeFtqqgtr1pRhypQOr/qrqqpCe3u7miUSUQh45pRnuj3e1NmEdaXrAlwNEXmjulpS1C462o3YWK6VJPIX/nQREVHYaWxUGgqm7IZ2ILNYLNi5cyf27dunShjYARERMq68su8FOHFxIubObcGePW4sXZqAjAwfVncTqejwQYd3e3z5xuUBroSI/OXKKxvxt79V48ILmzFhQgdiYz2b2DBsmNPPlRHRn2VkZGDLliT8/e+DIIrKh8JEUYPLL4/Bli18AB3KTOnDkZOsDUowWEenAxXtSXC7+LveF/ERsbh/6rW/H3ADeBtAiQ+dpgKYBcCH/OgkB/DcevQwxbErOcKAmi+2o8mlbCH5UNNQPHvEs4jUKpsgRET9y6ef2hW3PfpoH7YYJSLygl2045Wtr+DwFw7HuBXjsOLnFehweTepV4nj8o/rcmzChBifgsFOOcWChQuroNX+fqyurg6NjY1KyySiECSKyhf3MhSMBgpRlHDeeR3YsCEGNTUGXHZZAbZuVT7WEBMTg6ys3kO/BsUFbtHSa9tfw9BlQ7HkhyVwuRn6QzSQHXaY8vfmDRv4+4GIiHr3+OPKx9kzMly47DLlIVXkvby8PEXzAbZujcR55xXinXcSsWtXJG6/vc0P1RERDVx/3MDlj9wSQ8GIiFwuCXffvX8927ZtUZg1qxDz5w9CdbXnY1pRUVGIjo72V4mqGTkyCu+9Z0dU1P7f/wUFdrz6ahmGDnUo6q+iogJ2u/J5U0QUeoYmD0VRYlG3r935xZ0BroaIvFFXp2ycNCWFnwuJ/ImhYEREFHaampQtDk9KYijYAWZzC3bu3ImqqiqfJtT35pxzzEhM7L7vhAQRCxa0oLRUwhNPJCA11fcdjYnUdNOUm7o9vr5qfYArISJ/EEURQ4facP75Lbjnnlr885/l+P77YnzxxS4sX16BW2+twymnWFBUZIdOd+iA2IgRHOgiCoaLL07Daae1+txPa6sOM2fq0dDA0KdQFps2DHmpeghC4Ic+O20OlLcmQXTy74gv5ow6GyMSCwAJwLsAdvnQWRKAywD4OBd/+bS5SBsy2qNz5dhoVH2yFS0+zlUZlzQOT017CjqNzreO/KzSWomL370Y5S3lwS6FqN/KyGjFxRc3o6jI+18cp5zC8EAi8q895j2Yv24+Bj0xCJe9f1nAxziPzz++2+Pjx8dg3ToH0tO9u/c++WQrHnro0ECwA+rr6xkMRjSA7NnjxLRpw3HqqYNxySUFuOmmHNx7bxaeeCINL72UjLVr4/G//8Vi69ZI7NtnQHu7APn/h3MNBj57pIHh2mut+OSTuIP/bbHocPXV+fjmmxiv+zIajcjJyenzvKzY3kPD1NbubMf8L+Zj7PNj8Z+y/wT02kQUOCNH6g8uNPTWpk0MVCciop798osDX32l/EHiddc5YTAEfsOqcCYIgkefTQ5wuYDly1Mxe3YBKit/33h41ap4fPCBxQ8VEhGFF1Hyz1oSIqL+5JlnLNi589D5O599Fo8zzhiMp55KQ3t733NZs7Oz/VWe6o46KhZr1rRhypR2vPxyOTIyfAvlLy0t9dvaRCIKjn8c849uj/9S/wtq22oDWwwReayuTlm71FSulSTyJ40sy3ziTUREYeX00zvwySfep+dfeGEH3ngj9FP3/enzz1uxaJGAo49uxQUXmP1+vTVrkvD44xkH/zspyYXrrmvD/PlxMJlCe1E0hTdJkmBcZIRL6jq4/cOVP2Ba9rQgVEVEarFYLKiqqvLoXKdTg/JyA3bvNqKkxIhLL9XhuOMS/FwhEXWnrU3EX/7ixLZtviUDxca6sWJFJS64IDcooVPkOVtTCSoaRbjdgX/IEGEwIC+2EfoIY8CvPVD8u+x7nHbFrcAOHzqJB3AFAJNvtZxbdDzemv4INLIMvPse8MbrwN7Kbs+VUpKx743v0WZTLxjui+ovMG/DPEgIQFj5PxS0MQGYu/9fB8UNwlXjrsJfj/wrjDr+/Sfy1I4dv/+ya27WYuPGaGzcGI2ffopBRUVEj+0GD7Zj927+rBGR+kRJxMe7P8Zzm57DutJ1QatjUNwgVN5WCY2m54WVO3Z04qSTdKit7TvA58QTrXj00X3Q97Ehc2pqKlJTU70tl4hCzP/+14Zjjon1qo1eLyEhwY3t2yWkpvZ8H0bUH9x7rxmLFiV2+5pWK+O++6px9tkWj/rS6XQYMmSIR+Ohr257FbPWzvKmVFWdN+I8LDlpCXJMnocEEIWiX375BePHj/f4/C1btmDcuHH+KygETJ1qw08/eR+OPnmysnZERBQeLr5Y+bzgmBg3KiuBhIRu0ufJ7yorK9Ha2vvmcBUVBtx11yDs2NH9PJGMDCe2bgVSUhgOTkTUl7yn8rDXurfL8fo76pEaw2cqRBS+WlpcGDoUaGzs+SF0YqKIG2+sx8yZLdB1sxQuPj4egwYN8mOV/lFVVQ2LpUWVvrRaLYYOHcp52UQDSNzDcWhztnU5fsHIC/Cvc/8VhIqIqC/nntuBd9/1fqz09NM78NFH4Z29QORPvEMmIqKwYzYre/tLTg7fHM0PP7Tg8MPbMX16HL79NgarVyfD5fL/7mbnn9+C+HgRqaku/OMfZpSXa7BwYSIDwSjkCYKAcenjun3t8fWPB7YYIlJdR0eHx+caDDKGDnVgxgwrbr+9HocfzgnnRMESG6vD++9rkJ6uPKgnO9uBV18tw+jRHSgtLVWxOvKHyOTByE8zQtfdLAo/czidKGtNhtPhCPi1BwJJkvCvxZ/7FggWB2A2fA4ESzbGY/nRd+4PohAE4LxzgXffBZ5dDhx7DKD9fYzBnZeDvSoHggHAiVkn4h8T/6Fqn/5S1VqF+7+5H9EPRWPSykl457d3gl0SUcjr7Ow85L+TktyYPr0Vf/tbLT76qAT/+c9OPPLIPsycacagQYf+fpk2zRbIUokoDNS01eCB/z2A/KfzcfabZwc1EAwAjs8/vtdAMAAYNSoKX34pIiur93uw44/3LBAMABoaGtDQ0OBNqUQUgurqvA8Jd7kENDXpkJjowS8LohC2bFlLj4FgAOB2a/D3vw/CypUp6Gs7UUEQUFRU5PFCnEFxwV249PZvb2P48uF46NuH4BA5Nkc0kIwfr2wDkF9/NUAUw3fOFxER9ay6WsS77yqfx3PJJTYGggXRoEGDoNV2//2XZeCttxJw3nlFPQaCAUBtrQHXXMNnLUREnujpeY1bDvxmjUREoeS++9p7DQQDALNZhwcfzMJ55xXh++9jDnlNo9EgMzPTnyX6zaBBWYiJien7RA+43W7s2bMHkhSAjVOJKCAuH3d5t8fX7lzLn3WiEFVfryx7IT1d5UKI6BAMBSMiorDT3Kzs7S/cNoV3uyW8954FU6Z04Mwz47F+/e8DdXV1BnzwQbzfa4iKkvDqq40oLdXgvvsSERvLMDDqP64af1W3x/9T/p8AV0JEarPZlE8GMxqNKlZCRN7Kz4/EW2/ZERnp/WSkSZM68PrrZSgo2L+QzOFwoLKyUu0SSWXGxHzkp0dB78nKf5W5XC6UWRNht9sDfu3+TJZlXH3rg3jlrX8r7yQG+wPBEnyv59lj/orUqD8totVogKlTgSVLgM8/B55+Cu6770bFqi/RoXIg2AFn552N+WPm+6Vvf5BkCT/X/ozz3j4PUYuiMPPNmShuLA52WUQhqaWl9x0zU1NFnHaaFfffX4NPP92Ndet2YeHCKpxxRgtOO40LWonId7Is4z9l/8G5b52LnCdzcN/X96GqtSrYZQEAjss/zqPzRozYHwz25/DEA449thWLF1d5FAh2AIPBiPq/+nplE4nj493Q6Tidivqvt96yYO7ceI/OXbo0DYsWZcDdw3CpRqNBUVGRV6H7WbFZHp/rL52uTtzz1T0Y9dwofFryabDLISKVTJyobPPCzk4tduzwz7gtERH1b088YYfTqezzn1YrY948g8oVkTcEQUBeXl6X401NOtx4Yy4efDALdnvff74ffGDCqlW9P6shIiJAA4aCERH9WUmJDatWeb5r6Z49Rlx3XR6uvz4XpaURAIDU1FSPN+UIRTk5OYiIiFClL6fTiYqKClX6IqLge+T4RyBouv5+c7qdWLJ+SRAqIqK+NDQoDQXjXGYif+q/nxaIiIgUMpuV7cyVnKxscll/43ZLePNNCyZNsuOcc+KxcWN0t+etXp0Cl8t/dZhMJgwfPhynnZaBmBiGgVH/c9WEq7odvLLYLShpLglCRUSklv9j777DnKj69oHfmWSz2d57L1QRBGkWUEBERIoiYqFYEARFpdq7oIKooKCggiiiWFBQEAtV6dJEqVvZ3vsmmzJ5//BFH9wsm0wmyWb3/lzXc/1eZ+ac+f50d6edcx+DxAtgU6tTEpFz9evnj2XLqqFQWP/i+ZZbyrFiRRYCAy8cxFRdXc1J4m7AMzAeydF+8FQ7f1C20WhEZlUwtA4KimptzGYzpsycj1Vrv5PeiTeACQBC7K/nttTBGNPuuosfFBQEY+9eyLx2IrS6BvtPehET2k3AlI5THHoOR9Aatfjm1DfovKwzohZFYe7Pc1Grr3V1WUQtRl1dnU3HR0UZMHJkJebNy8PIkZbf2xERWaNCW4E3976Jjks74rpPrsPXJ79ucRM3rA0FA4COHf8OBouLu/Ce7JprqrFoUQ48PGwffFRcXIzCwkKb2xFRy1BaKq1dUJBR3kKInGjHjhrcc48fjEbrxzasWxeC2bPj0NDQuE1ycjLUNr5Ti/F3fSjYeWnlabhx7Y0Y+flIZFRkuLocIrLTFVdIX/xj/35e34mI6EK1tSJWrZK+sN9NN9UjNZWhYK7m5eWFkJB/Pwxv3eqHW25Jxa+/+tnUz5w5fkhPl75IJBFRW6BQNBEKJrasb0tERM40Z47eqiDa//rtNz+MHp2Kr78OQVhYmAMqcx5BEJCSkmLT4iIXU19fj5ycHFn6IiLX8lZ745qEayzue3Pfm06uhoisUVIibd5jVFTbyF4gchWGghERUZsiimZUVkq7MQ0Pb903piaTiI8/rsBll+lw++2BOHrU+6LH5+WpsWlToOx1BAUFoXPnzoiLi2N4Crk1laBC+5D2Fvct3LPQydUQkZxMJmmDGDw8pA9UJyJ53X13EObObX6lV4XCjDlzCvD88/lNTiAvLi5GdXW13CWSzDz8opEUHQCNp/MHZptMJmRWBaCu3oGpyq2A2WzGtNmv4v2Pv5HeiQZ/B4KF219PuFcwll77WLPH6Rt0yKgOga7BOcFvD3Z+EHem3OmUczlCYW0hFu5ZCP9X/NH13a5YfXQ1RFF0dVlELqXXS/v7oVAoZFtpk4jaDrPZjAN5B3DPhnsQ/UY0Zv40E2fKzri6LIvah7RHrH+sTW06dPDGtm0iEhL+Dgbr168Gb7whLRDsvNLSUgaDEbmp0lJp33aDgzmJjdzTsWO1GD3aC/X1tn9j/+WXAEyZkojq6n+HEiYkJMDLy8vmvrw9vBGkCbK5nSNtPL0RnZd2xnPbn4PWwIn+RO6qUycP+PpKu07//rvMxRARkdtbvlyLigrpk9bnzOHY1pYiKioKer0azz4bg0cfTZD037WqSoWJE00wGvndkoioKZYWygYYCkZEbde2bdXYsCFAcnuFAhg+3LYw25ZKEASkpqZCEOSJK6iqquI3eqJW4q0b3rK4vbC2ELuydjm3GCK6qIYGs+T3pQwFI3IshoIREVGbUl4u2rQq7v8KD2+dl02jUcSHH1bg0ksbMHFiEP788+JhYP/rgw/CYJRhMU2FQoHg4GB07twZMTExsr0IJHK1O7tYnqz//ZnvnVwJEclFp9NJbitl8gwROc68eYEYNaqqyf3e3ia88042JkwoQxMLHf7j3LlzaGhokLlCkpvKNwJJsWHw9nJ+gIooisiq8kNNPQfCNWX6Ywvw3kdfS+/AE8B4AJHy1PPegCcQ6hV40WMadA3IrA6BXu+8wDeFQoHHuj2GEQkjnHbO5gRoAmwO7DDDjOPFx3H3hrvhPd8bN356Iw4XHHZQhUQtV11dneS2DAQjIluYzWas+WMNer7fE30+6IOPjn4EnVH6Ow5nGJQ0SFK71FQvbN0qYuzYMrz55jmo1dIDwc4rLS1FQUGB3f0QkXOVl0v7JhwUxGd3cj/nzukwfLgHysulhxocOuSDiROTUVioQnR0NPz8pE9GsvU9gTM0mBrw4q4X0XlZZ3x76luYzfbfIxCRcymVCnTpIi1c/ehRjkMiIqJ/mUxmvPOO9IX9+vbV4qqrNDJWRPaKj0/EgQM+dvWxe7cv5s+vlKcgIqJWSAHL71tNZr5PJaK2x2QSMXeufUHBd95ZhR49fGWqyPVUKhVSU1OhaG7AtZVKS0tRXl4uS19E5DpdI7oiMTDR4r5ZP81ybjFEdFH5+dKDAmJjuYACkSPxSzcREbUpRUXSPzpERLSuy6YoiigoKMDzzxdh0qQgnDxpe1BJdrYntmyxZ2UDBUJCQtCpUydER0czDIxanUf6PGJxe0FtAUrrS51cDRHJoaamRnJbHx/7Bp8RkbyUSgFr1vigR4/6Rvuio/X45JMM9O9fa3V/6enpMJk4yKmlU3oFITEuEj7ezh+kbTabca7KB1X1nHD4X48+uQhLP/xSegdqAOMAxMhTzx3th+DmlAEXPUana0BmdRAMBhmSsm3kqfbEZyPfwsgOI51+bksCNYHImZGD9IfTcfslt8PXw7bBSg2mBvyQ9gMuX3E5QheEYvrm6Siv54AeahsqKiokt7Vngj4RtT2TNk7C+G/Gu1UI58CkgZLbpqR4YdUqb2hkvO0vKytjMBiRmykrkzboMCRElLkSIseqqDBg6FAzcnLsDw7OzPRESUkEgoOD7eonxl+mlzQOkFWZhZvX3Ywb196IM2VnXF0OEdmoe3dp1+m//vKE0ch380RE9Lcvv9QiK0stuf2MGbymtDShoWq8954WCoV9/23mzw/EwYPWjxMhImpLmgp5YSgYEbVFH31UhUOHpM8L8PMz4ZVXWt9i42q1GklJSbL1l5+fb9fcDSJqGZ7u97TF7YcKDnFuJVELkpsr/dkuJoahYESOxOQNIiJqU4qKpA/ijoqSvqpuSyKKIvLy8nDy5EmUlZVh2LAK+PlJv2F///0w2Jp9oFAoEBoaik6dOiEqKophYNRq+Wv8EecfZ3Hfor2LnFwNEcmhvr5xeJC1fH1bz2o+RK2Fj48K334rICbm35XlL7usDmvXpqN9+wab+hJFEenp6RBFThxt6QS1HxLiouHn45pgsJxKDSrq5FkNrTWY+fQbWLz8M+kdeAC4E4Dl226bRXiH4O3+cy56TL1Wj8yqIBiNzh/Y6KlWIznaD95BSfj81s/tCsuQW3JQMj679TPUPFmDzXduxhWxV0CpsO0jX5m2DO8cfAchC0PQ8Z2OWHZwGf+uUqtWV1cnuW1QUJCMlRBRa3ai5ARWHl3p6jJsNiDx4iGtzfHy8kJKSopsKxEDDAYjcjfl5dIGHQYHc3I3uQ9RFPHrrzkoKPCQpb9XX63AHXfY/6wR6xcrQzWOtSVtC7os64K39r3l6lKIyAY9e0q7v9dqBfzxh775A4mIqE144w3p74uSk/UYPbr1Td5vDW66KQCTJ1fa1UdDg4C771ZCq2XADRHRfwlNTEE1is5fTI+IyJXq6ox44QVvu/p45JEqREfbv9BHS+Tt7Y24OJkGcwLIzs6GVquVrT8icr77etwHH4/GQYpmmDFzy0wXVEREluTnSxuvr1SaERHBUDAiR2ICBxERtSlSQ8E8PUX4+Lj3pG1RFJGbm4sTJ06goqICZvPfA9r9/ETcdVeZ5H4zMjT4+Wd/q45VKBQIDw9Hp06dEBkZyTAwahNu7nizxe1f/vWlkyshIjk0NNgWEnSeQqGAStU6AkaJWpu4OA2++qoBPj4mDB9egQ8+yEJIiLQBnnq9Hjk5OTJXSI4geHgjPj4eAb6uGViRV6VGWZ08kzXd2YiHZ+LNd9dK70AF4HYAiTIVBGD5gCcQ4hXY5P66eiOyqgJgsjUdWwYajRpJMUHw8Iv++59VGnw79lv0juktS/+WPrpLNbTdUOy5bw/qn6zHa9e9hqRA21cAPF12Gg9ufhCe8zwxcPVA/HbuN9nqI2oJRFGEwWCQ1FahUECtVstcERG1VsV1xa4uwWaXRV6GEO8Qu/vRaDQOCQbLz8+XrT8icpyKCmnfIcPCGApG7kEURZw9exbJyfX45JOMCxY+kGLmzArMnh0sS20x/jGy9ONoBtGAGT/OwPqT611dChFZqW9f6ZMK9u/nRHUiIgJ+/VWHgwelh3pNn26AUuneY4lbszff9EfHjvYFBpw544kNG4pkqoiIqBVp4vInmrnQGxG1La++Wo2cHOnjTuPjG/DkkwEyVtTyBAQEIDIyUpa+srLUGD7cgNJSBv4TubO7Lr3L4vYvT3zJhYOJWoj8fGljZUJCjHxfSuRgTOIgIqI2paRE2kNicLAJguCeN6ZGoxE5OTk4ceIEKisrLR4zblwZvL2lT2hesSIcF3v+FgQBERER6NSpE8LDwxkGRm3KnKvmWNyeUZEBnVHn5GqIyF5SJ+0zEIyoZevb1w9bt1Zi3rw8eHraN/GzpqYGRUUcIOoOFEo1YuOTEeznmmCwgioBJXUal5zb1f4sS0Po2EH47tNd0jtRArgNQIpcVQHjOgzFyORrm9xfozUhq8rXJR+gvb08kRQTBpVP2AXb/Tz9sPnOzbgk7BK7z3Fr51vt7uO/1Co15l41FxmPZCB3Ri7uueweBHjaNqjJKBqxPWs7+q3qh8BXAzFp4yQU1BTIXiuRs9XV1Uluq9G0zesHEUnTNaIrQr1DXV2GTQYlDZKtL0cEg5WXlyMvL0+2/ojIMSoqpL2TDQtzz2/C1PZkZmb+880iIUGPNWsyJE9+v/POSixYIN8kpFj/WNn6cgaGghG5j44d1fDzkza+6fffGfxJRETAwoXSv/MFBxsxebL0QDFyPC8vJVatMkKtlvbfOSVFh7VrM9ClSznKyqQvtkxE1BoJTUxBNYnOX1SPiMhVdDodBg0qwq23lkMQpL1rev75enh5SQ++dxehoaEICbFvIbBjx7wwfnwytm71x4gRemi1vOYQuauFgxdCYSFlVmfS4e0Db7ugIiL6r8JCafc24eG8PhM5GhM5iIioTSkpkdYuONj9bkyNRiPOnTuHU6dOoaqq6qLHBgSYcOed5ZLPdfasBtu3+zXafj4MrGPHjggLC2MYGLVJsf6xFifdmWHGsoPLXFAREUkliiLMZmkvudRqtczVEJHc+vQJgb9/43taKUpKSpq9B6eWQSEoERWXgtAA1/ydLqoyo7DWG2axbUxGqtRVY+iG6bh00u0o+8WO3xEBwK0A2stVGRDpHYLF/Wc3ub+qHsiu8JZ8L2APX28NEuOioPQKsrg/xDsEP43/CUmBSXadZ2K3iXa1b06MfwxWjlyJyscrsWPiDlybcC1Ugm2T9KsaqvDhkQ8R/UY0UhanYOHuhTCKRgdVTORYTYX3W8PPT557FiJqG4K9gvHJzZ9Ao3KfQMGBSQNl7U+j0SA1NVXWYLCKigrk5ubK1h8RyctgEFFVJW1CBUPByB1kZ2dDq70wACw01IhVqzLRp0+tTX0NHlyDjz7yh1Ip37f8GL8Y2fpyhnCfcFeXQERWEgQFunTRS2p79Gjrn2xJREQXd+aMHps2SQ/1mjRJB29vjoFt6fr29cPjj1fa3G7cuFKsW5eOTp3+Xui1oKAAer20+w4iotZIUFi+BnLMBhG1JTk5OQgNNeG55/Lx5ZdpuOIK297H9+pVhwkT5Fugo6WLioqCv7+/pLY7dvhh0qQkVFb+Pb5w715fjB1bB6PR+Qu6EpH9/DX+uDLuSov7Fu5Z6ORqiMiSggJpY2XCw3ltJnI0fpUgIqI2RXoomPtM0DYajcjOzsapU6dQXV1tdbvx40vh5SX9Bnz58nCcnxutVCoRFRWFzp07MwyMCMCQlCEWt3987GMnV0JE9qirq5Pc1suLK4USuYO4uDjZQvxycnKg0+lk6YscSyEIiIhJRXigh0vOX1ptQkGdH8xi6/0gIooiZv36JsI+GIwtq/cCu6T3pVQK8LrNE+gkX30AsGLgUwjWWB5wU1GvRE6lp7wntJK/jwbxcTEQ1L4XPS7aLxq/TPgFUb5Rks6TEJCAaxKvkdRWimsSr8H2u7ej4akGvD30bbQPsT3hLaMyA3N/mQvNyxpc9eFV+DHtRwdUSuQ49fX1ktsGBVkOCSQiasoNqTdg24RtCPGybyVeZ1AJKvSL7yd7v56enrIHg1VWVjIYjKiFKizUw2yW9vseGcnAEGrZCgoKUFNTY3Gfr6+Id9/NxtChlVb1dfnldVi/3gseHvJ+z4/xd59QsGCvYEy+fLKryyAiG/ToIW1hxxMnPGEwuM/4LyIikt/rr+shitKeFT09RTz6qPuE7rd1zzwTaHVAQ3i4AStWZOKxxwrh6XnhvUJWVpYDqiMick9NfV8Rza13vBMR0f+qqalBQ0PDP//cvn0Dli/PwtKlWUhKan6ssEJhxsKFoqwLdLiD+Ph4m+dRfP11EB55JB463YX/rr77zh/TpnHBZiJ39eaQNy1uz6vJw/7c/U6uhoj+q6hIaigYv70ROVrbeoIgIqI2r6xM2o1paGjL/1hhMBiQlZWFU6dONTkI+GKCg00YO7ZM8vlPnvTCX3/5IDo6Gp06dUJISMufXETkLHOvmmtx+5/Ff0JsxeEPRK1Nba1tq/n8Lz8/PxkrISJHEQQBqampsoXaZmRkwGjkaojuQCEICI/tgKgglUvOX15jQF5tAMym1vfzsubUZgS9PwBvHP0Uxp0mYKf0vgRBwEfvPI8X7psiX4EAJna8CcOT+lvcV1rngbxK1/xcBPp6Ii4+AYKHdYNikoOS8dP4nxCksT0saHzX8U2u6upIgiDgod4P4fRDp1EypwTTek6zOazEZDZhT+4e3PDpDfB7xQ93fX0XsiuzHVQxkTxEUYTBYJDUVhAEeHi4JsiSiNzbFXFXYO99e5EanOrqUi6qd0xv+Hk65j2Kp6cn2rVrJ2sw2LZterz+erls/RGRPAoKpD9fR0a65hmQyBolJSUoK7v4N30PDzNefTUX48eXXvS41FQdNm3ygK+v/D/zsf6xsvfpCJdHXY6dd+9Ex9COri6FiGzQs6e095g6nYA//tDLXA0REbmLsjITPv1U+oJ+Y8ZoERXF50V3oVIJ+PhjJfz9L/5+4IYbKrF+fRquuMLyQpF6vR6FhYWOKJGIyO009W3FZJYW3ExE5G4sLRalUAD9+9fi66/T8NRT+QgMbPr+c9SoalxzTducT5CUlGTVWCezGXj33TA8/3xMk4HO778fhOee4/d5InfUK6ZXk98QZ/w4w8nVENF/FRdL+/4WFcVQMCJHYygYERG1KaWl0iZ6tOR8K71ej8zMTJw+fdqusBIAmDixDJ6etgcUXXddDXbsqMHttychODjYrhqIWqOuEV3hp278At9kNuGzvz5zQUVEJIVWq5Xc1tYVbojIdQRBQEpKiix9iaKI9PR0hoC6kZCYjogJVrrk3JW1euTUBkNsJcFgh4tPIXX1KIz/+VlU6+uA3wBsk96fQqHA+289hXG33YiHu92OZP8YWeqM9gnDW/1nNdpuFs0ortWgsMo1r9CD/T0RE58MhdK24J8u4V3ww10/wMfDx6Z2E7pNsOl4Rwj1DsXSYUtROrcUByYdwJCUIVAr1Tb1Uauvxdo/1yJxcSLi34zHCztegM7Y/EqMRM5mzzs8jUYjYyVE1Na0C2mHPffuQd/Yvq4upUmDkgY5tH+1Wi1bMNjRo16YOjUBc+YE45VXOPCYqCWJiNBh5cpMLFp0Dk8/nY8HHyzCnXeWYejQSvTtW4sOHbQIDzfAw6PxO5voaAawUstUWVmJoqIiq44VBGDu3ELMnl1gcX9EhAGbN5sREWHbc7e1gjRB0Kha7rOLl8oLrw9+Hfsm7UOX8C6uLoeIbNS3r/RAln37Wsf7dyIist2SJVrU10v/Djx3Lp8V3U1qqhdee83yAst+fia88koOFizIRUDAxcNsSktL7RozRkTUWghNTEE1iQwFI6LWr6SkBCZT03/vPDyA228vx6ZNZ3DPPSWNvj95eYlYsMAx7+PdwfkFm5XKpp/JjEbghReisWxZRLP9vfRSEJYvr5CzRCJyksevetzi9n25+1Cpq3RuMUR0geJiae9OIyNlLoSIGmEoGBERtSnl5dIufaGhLS+tVq/XIyMjA2fOnEFdneVVqmwVGmrEmDHWTVxRKMwYOrQau3fX4Oef/drsigVE1uoX38/i9uW/L3dyJUQklV4vbeVoQRAgCHz8JnInnp6eSEhIkKUvg8GAc+fOydIXOUdQdCfEhShlCQmwVXVdA87VBEM0GJx+brmU1ldi0DdTcfm6cUiv/v/V8fYA+MW+fpctfAz33jUSAOCpVGPhVY/Y1+H/e3/gUwj0vPB51iyaUVTvi+Jq17wLCA1QIyo2BQpB2se1PrF9sOH2DVYHal0VdxXahbSTdC5H6RXTC1vGbYH2SS1WjliJLmFdoIBtv5M51Tl4fufz8Jnvg54reuLrE187qFoi21VWVkpu6+fHd3BEZJ8wnzBsm7ANozuNdnUpFg1MGujwc8gRDHbsmBceeCDxn8mkTz4ZjJdfZjAYUUuhVhvQq1cdrr++GmPHluOBB0rwxBMFWLAgF++/n4WvvkrH1q2ncejQCezdewKbN5/Gp5+mY+nSLPj4SA8aIXKUuro65Obm2txu4sQyzJ+fA5Xq33cc/v5GbNzYgHbtHLeYiUKhaHKlb1e7Lvk6/DntT8y6chZUAn/fidxR+/Ye8PeXNun8999lLoaIiNyCTidi+XJPye2vu64el17adifwu7MHHgjC8OHVF2zr1asWX3+dhptuqoK1rwezsrK4GBwRtXlNfVMxmRkKRkStmyiKKC4utupYf38RM2cWYcOGNAweXPXP9smTq5Ca2rYXGFcqlUhJSbF4PdFqFXj00Xh8/XWwVX2ZzQpMnx6ADRsqZa6SiBxtas+pFhcWMsOM2T/NdkFFRAQAomhGaam0eQtRUc6fc0PU1nBWMhERtSllZdIufeHhLefGVKfT/RMGVl9fL3v/d99danFV7PMEwYzhw6uxf38dNm/2x5VXciIikTUe7fuoxe0H8g44txAiksxolLZytIcHVwslckd+fn6IiGh+xSlr1NbWoqCgQJa+yDkCojohPtQ1wWC19Q3Iqg2BySAtjNJVjKIR03a8isiV12Nb7sF/d+wD8JN9fS+ePxsP3HPrBdtuThmAa2J62NXvPZ2G48bEqy/YZhZNyK/zR2m1tOu+vSICPRAZ1x4KOwNFByUPwrpb10GpaP4D3cRuE+06lyMJgoB7ut+D49OOo/KxSsy+YjYifGz72yyaRRwqOIRbv7wV3vO8ccu6W3Cy5KSDKiayjj3v9IKCgmSshIjaKi8PL3wx5gvM7DvT1aVcQKPS4IrYK5xyrvPBYFKC3I8f/zsQrK7uwnutZ54JxgsvMBiMqCWw9l2uQgH4+oqIizOga1ct+vevdXBlRLbT6XTIzMyU3H748CosXZoNLy8TPD1FfPZZHXr39pWxQsti/GIcfg5bBGmCsGrkKvw07ickByW7uhwisoMgKHDppdLenx89Km1CAxERubfVq7UoKpI+dmf27JYzfphs98EHGkRG6uHhIWLWrAJ88EEWoqJsW6TLZDIhLy/PQRUSEbkHQWH5e4pJZCgYEbVueXl5MJttW1w0Lk6PN97IwerVGbj22mq88ALn3QF/f6NPTr7w/XxFhRKTJiVh505/m/oyGASMH++HPXtq5CyRiBxMEASMvWSsxX1rj69lIDeRi5SXi9Drpc1diInhtzciR2MoGBERtSkVFdJuMENDZS5EgnPndNiy5RzS0tIcEgZ2XkSEEbfcUtFou1Jpxi23VOH33+uwcaM/evVy/EBhotZkcMpgeCobrzjYYGrA1oytLqiIiGwhNRAMADw9pa82SkSuFRYWBn9/2z40N6WsrAyVlZWy9EXO4RfREYnhHpJCAuxVr21AZnUIjHr3CAZb8ed6BK4YgHePfwWT+X8+yB4AsMW+vhe+8AgennJ7o+0KhQJvXD0TCkgbhB/rG4E3+l0YgmE2icitDUJFjWv+vUcFqRAW20G2/kZ1HIWVI1de9BiNSoPbLrlNtnM6kr/GHwuvX4jC2YU4PvU4RnYYaXHFsIvRGrX45tQ36LysM6IWReGxnx9DrZ6T/sm5RFGU/HwhCAJUKpXMFRFRWyUoBCwasgiLb1gs+Z5KblfHXw1PlfPeo6jVaqSmptp0z//XXxpMmZKI2lrL35uefz4Yzz7LYDAiV5N6v+WKcHCiizEajUhPT7e7nyuvrMWqVZlYsaIKN94YIENlzYv1j3XKeawx9pKxOPngSdx92d38PSdqJbp3lzbp/ORJNQwG2yZxEhGRexNFMxYvlv5e/dJLdRg82LbvUdSyhIer8eGHdfjss3TcfXcZpH7+r6qqQk0NAweIqO1q6lsSQ8GIqDXT6/WoqqqS3L5Hj3p88kk1AgI41uc8Ly8vJCQkAABycz0wfnwy/vjDW1JfNTVK3HyzBqdPO26OJRHJ743r37B4b6k1avH+4fddUBER5eZKnzMZE8O4IiJH428ZERG1GfX1IurrpYWCRUS47pKZkaHFvfdWokMHNR5/p3qskwABAABJREFUPBQ2LjAgyX33lUKl+nsit0olYuzYShw9Wo+vvw5A9+4MAyOSqmd0T4vb39r3lnMLISKbVVdXS27r4+MjYyVE5Gzx8fGyhfvl5uZCq9XK0hc5h09YeySFe0CpdP4KJroGPTKrQ2Bo0Dn93NbaW/AHEj+6CVO2z0ed4T8/24cAbLav/5efnIrZD41vcn+P8I64u9NNkvr+YODTCPT8dwU+0WjAudpAVNU2SOrPXjHBSoTEdJS93wndJmDJDUua3D+q4ygEaJwzGVhOXcK74Nvbv4X2KS3W3boOPSJ72BxmUlhbiAV7FsD/FX90fbcrPj72MVcZI6ew59nCy8tLxkqIiP72cJ+HsX7senipXP83ZlDSIKefU61Wo127dlYFg504ocH99yehpubizwcvvRSMp59mMBiRK5lM0iaiuSIYnKgpoiji7NmzMMs0QODKKz0xYUKQLH1ZI8YvxmnnulgNG27fgM9v/RwRvhGuLoeIZNSrl7SAv4YGAUeOuOYdMBERucbmzTqcPCn9e/+MGSIEgcGy7u7GG4Nw2WX2P/OfO3eO3xOJqM1qKmjdZGYoGBG1Xrm5uXa1VygUiI6Olqma1sPPzw9hYdG4//4kZGfbNz67uNgDw4YJKCpyjwV4iQgI9g5Gr+heFvfN/22+k6shIgDIy5P+vis2luGnRI7G0WxERNRmFBZK/+AQGen8CeCnT9dj3LhKdOrkiVWrAqHTCTh2zBv79zs+WCQqyoAxYypw112VOH5ch88/D0SXLgw0IbLXlMunWNy+M3unkyshIlvV1dVJbuvn59f8QUTUoqWkpMgSClVfL2D69FrU1EhfSYOczyu0HZIiPKFSOf+5sEGvR0Z1KPQNLWuSUmFdKfp9NQlXfnUvsmsKGx9wBMB39p3j2Tn346lZ9zV73LwrHoSPh20BFpM6j8KQhCv++WeTQY/s2hDU1Dn/37NCoUBcqBJB0Z0cdo7pfabjhWtfsLjv/h73O+y8znLbJbfh0JRDqH2iFs/0f8bmScdmmHG8+DgmfjsR3vO9ceOnN+JwwWEHVUsEu1YQ5bMFETnKqI6jsH3idoR5h7m0joFJA11yXg8PD7Rv3/6iYUCnTmlw//2JzQaCnTdvXjAef5zBYESuIjUUzBWh4ESWiKKItLQ0yT/L/+Xt7Y24uDhZ+rJWrH+sU8/3X9N6TsOJB09gRIcRLq2DiByjb18PyW337+eEdSKitmTRIukhu9HRBowb5/ogfZJHQkJCk4E21jKbzcjKypKnICIiNyMoLH9DEc0MSySi1qmurg719fV29REREcEFaZoQERGM+fProFTavzBKeroGd92lg9HIsdlE7uKNIW9Y3H6u6hzH7xK5QH6+tOc6Pz8TfHx4r0PkaPwtIyKiNqOoSPqgrvBw510yT5yox+23V6JLFw0+/TQQev2F537vvXCH16DRaPDhh95YsyYQHTt6O/x8RG3FXZfeBaWi8YSSGn0N/iz60wUVEZG1GuwIY1Gr1TJWQkSuIAgCUlJS7BogWlDggfHjk/Dhh2EYO7YeJhMHRLkTTXAykiJ94OHh/JVMDAYDMqqCodPpnH7u/zKKRkza+hJiVt2I3wqOWj7oGICN9p3n8UfuxguPWw7U/a8on1A8cfndVvcd5xuBRf0e/eefTQY9smpDUVfvmkCw+FAlAiIdFwh23jP9n8Gz/Z+9YJDmtJ7TXBa84Qjeam+8OOBF5M7MRdr0NNx+ye3w8bAt4LzB1IAf0n7A5SsuR9iCMEzfPB3l9QzzIHlptVrJbQMDA+UrhIjoP/rE9sHe+/aiXXA7l5w/wDMAPaJ6uOTcAKBSqZoMBjt92hP335+I6mrbngdeey0Yc+dWyFUiEdmAoWDk7rKysqDXy7OqvVqtRmJioix92SLG37bQbrl0DO2IX+/5FUuHLYW/p79LaiAix0tN9UBAgLRJfocOyVwMERG1WIcPN2DHDunjX6dObYCHh30hUtRyqFQqxMbaH15cX1+P8nJ+PySitkcBy9dEk5nBy0TUOuXm5trVXqVSITQ0VKZqWqfx44Mwf77939NjYvR45JFCpKWlQRQ5NpvIHVwVfxWifKMs7puxZYaTqyGiggJp7UJD+TxI5AwMBSMiojajuFhaerwgmBEa6vgB4EeP1mL06Cp06+aFdesCYTRavkwfOuSDgwcdE9Tl5eWFlJQUpKamwsuLK5wRyU0QBHQO62xx34LdC5xcDRHZQurkG04iI2o91Go14uPjJbU9dswLd9yRjDNn/r7H/uEHf8yaVSljdeQMnoHxSIr2g1rt4fRzG41GZFYFQ6uVZzKoFG8f+xz+y6/Bhyc2NL3K53EA3wKwY/G2GVPvxCvPPmRTm5nd70K8X6RVx3446Bn4q30BAEZ9AzKrQ6DVOj8QTBAEJIZ5wC+io1POp1Ao8MKAF3B48mGsHrUau+/djaXDljrl3K6QEpyCz279DLVP1mLTnZtwRewVTa5a25RSbSneOfgOQhaGoOM7HbHs4DIOGiK7iaIoeVVKQRCgUjk/nJKI2paU4BTsvW8vroq7yunnvibxGqgE1/6dOx8M9r/vc86e9cT99yehslJabQsXBmHWLAaDETmb2SztwZTvc6klOHfuHOrr62XpS6VSITU11WLopaPF+Dk3FEwlqPBM/2dwZMoRXB1/tVPPTUTOJwgKdO1qkNT26FFe74mI2ooFC6S9jwcAPz8THnqIY2hbm4CAAPj5+dndT35+PgwGafciRETuqqkxFyaRk8CJqPUpLy+3+34vJsY1C2e4m7lzg/HII9K/p3fsqMUnn2QgKUkPo9GI9PR0jvEjchOzrphlcftvOb+hVl/r5GqI2rbCQmntIiL4PEjkDAwFIyKiNqOoSNpLnYAAE1Qqx6329fvvtRg5sgqXX+6D9esDYDQ2f67ly8NlrcHb2xupqalISUlhGBiRg03oOsHi9i3pW5xcCRFZy2QS8fTTUXj//TDs3OmHggIPWDunTK1WO7Y4InIqPz8/REZaFzx03qZNAbj33iSUlV0YJLV4cTDefZerx7obtV8MkqMDofF0/t93k8mEzKoAVNQLqK4Tnfa/TWcPIvrDoXh41+vQGi8SnnUCwDewKxBs8t1j8PwTj9pco6FBjecubz5I7J4ON6NPSG9U14moqjcjozoEugbnB60plUokhavhE97e6efuFtkNE7pNwJVxVzr93K5yY7sbsee+PdA+qcUrg15BYmCizX2cLjuNBzc/CM08DQatHoTfzv0mf6HUJlRXV0tuy3d2ROQsId4h+GXCL7jtktucet5BSYOcer6mqFQqtGvXDkqlEmlpnpg0KQkVFfaFlb3xRhAefZTBYETOJDUUjCGs5GoFBQV2PTf8L0EQXBYIBgCx/rFOO1efmD44PPkwXhzwIjQqjdPOS0Su1b27tHFgJ0+qodfb8SKbiIjcQk6OAevXS3+vPn68FoGBDJJsjeLi4mR5TsrMzJShGiIi99FUKFiTCwsSEbkpURRRKDUZ4/9pNBpZwmjbikWLAnDbbZU2t+vbtxarVmUiLOzfQOiGhgacO3dOxuqIyFFm9J0BT6Vno+2iWcTcn+e6oCKitkvqrU94OJ8HiZyBo9mIiKjNKCmRNqArONgER1wyjx2rxpNPAj/84Aez2bbQsf37fXH0qBcuu0xrVw3e3t6IiYmBp2fjB2gicoxpvaZh7i9zYf5PWkJJfQnyq/MR7R/tosqIqClZWQ345pugC7b5+ZnQrp0O7drp0L69Du3aNaBdOx18fS98ocWJ+0StT2hoKHQ6HSorKy96nCgCS5eGY8WKpgN9Z8wIRGpqFQYPDpC5SnIklW8EkmLVyMovhVZ7kZAsBxBFEXmVHgA8mj3WXkX1RXh036P4s+LP5g8+BeBrAHZ81xk9ejQemvkMzlVJC+XuFTwC3YK/xLHyYxb3R3tHY0qHx3Cu6n+vzc5fvVmlUiExQg1NULLTz93WqVVqPH7143j86seRW52LZ7Y/g/Un16O6wfrJ1gbRgG1Z27Bt1TYEagIxutNovDzwZUT62hYYSW3X4sUiNm9ORK9edejduw6XXqqFh4d17ywDAni/QETOo1Fp8Nnoz3Ci+AT+LLHiflAGA5MGOuU81jgfDPbkk7UoL5fn+9DGjV64775MXHJJgsvCWYjaCntW/2YoGLlSaWkpysrKZOlLoVAgJSXFpT/TEb4REBSCUyaGvjXkLVwacanDz0NELUvPntLa6fUCDh/WoW9fhggSEbVmb77ZAIPBV1JblcqM2bM5pra1EgQBCQkJdod66fV6FBYW2rywHBGRu1IoLI/nMYpGi9uJiNxVUVGRXd+aACA+Pl6matoGpVLAJ5/4o6SkBtu3WxemNmxYJV56Kc/iuKva2lrk5eUhJiZG7lKJSEaCIOCWTrfgsz8/a7Tv42MfY9mwZS6oiqhtKiqSNpYtMpKL8BA5A0ebEhFRm1FaKq1dSIi8g1QrKytx6tQp5OUVYssW2wPBznvvvabDBZrj4+OD9u3bIzk5mYFgRE7mrfZGUmCSxX0L9yx0cjVEZI2DBxsHvtTUKHH4sA/WrQvBSy/FYMKEZFxxRWcMGdIe06fHY8mScGzZ4g+VyscFFRORo8XGxl409E+rVWD27LiLBoIBQEODgDvv9Mbp0/Vyl0gOpvQKQmJsBHy8W9/zlF7U4/EDj2PwD4OtCgQT0gQIXwmASfo5R44cieeee67JAYTWUCgUmNut6ZWhXrj8Bfh4uPa67OHhgeQobwaCtQCx/rFYNXIVqh6vwvaJ23FNwjVQCbZNlK7UVeLDIx8ialEUUpak4PXdr3OwKzVr61Y1DhzwxdKlEZg4MRlXXdUJkycn4oMPQvHHH14wXuRHKDAw0Gl1EhEBwILdC5wWCBbuE45Lwi5xyrmspVKpsGaNLwYMqLG7r8TEBnz4YRYUijpkZWXZPYiciC7OeLGbqmao1WoZKyGyXlVVFQqlLr9rQWJiosvHAagEFaJ8o5xyrlHrRvH6StQG9e0rffGM/fvteKFNREQtXm2tiJUrpYc/Dh9ej6Qkxy/SRK7j4+OD4OBgu/spLS2FTqeToSIiopZPUFiegvrfRbKJiNyZ0Wi0e/EOf39/fm+SQK0W8O23XujWrfnx1PfcU4L583MvuhBjRUUFiouL5SyRiBzgjSFvWNxeZ6jD6qOrnVwNUdtVXCwtcigiQuZCiMgihoIREVGbUVoqbXJxcLA8HyrKy8tx8uRJ5Obmwmg0Ij5ejxtvrJLc3+7dfvjzz6aDCCzx9fVF+/btkZSUxJeMRC50a+dbLW7/5tQ3Tq6EiKxx7Jj1E0ny89XYscMf778fjieeiEVAgHWr1RCR+0lKSoJSqWy0vahIhbvvTsbPPwdY1U9pqQdGjVKgosIgd4nkYEpPfyTExcDPR/qA8pZm1elVuGLDFdiUs8mqQXtdKrpA9aUKolH6pMthw4bhxRdftCsQ7LyuwV0xImFEo+1jk8eib3hfu/u3h6dajeRoP6gDuApgS3Nt4rXYcfcO6J7SYcnQJWgf3N7mPjIqMjDnlznQvKzB1Suvxk/pPzmgUnJ3DQ0iDh268F2eVitg715fLF4cibvuSsHVV3fCtGkJ+OijEPz1lwam/5+fqlQqIQj8pEdEzvPVia/wxNYnnHa+gUkDZbkflJuPjwqbNnlj0CDpwWAJCQ348MNMhIX9HVJUX1+PzMxMBpcQOZDBIP0di4cHJ32T86Wn1yM9PVe2/uLi4uDj0zIWLInxj3HKeYrqijDr51lOORcRtRwpKR4ICpIWBnroECetExG1Zu++W4+qKtsWg/lfc+Y0HgdArU9kZKQs7wH4ro+I2oqmQsFMIkOXiaj1yM21/119bGysDJW0Tf7+Knz/vYDExMYLugOAQmHGY48VYObMIlgzjKq4uBiVlZXyFklEsor0jUSPyB4W972480UnV0PUdpWUSHsfGh3d8sb7EbVGnEFARERthtRQsNBQ+waClZWV4eTJk8jPz4fJdOFHj/vvL4ZCIb3/5cvDrDrOz88PHTt2RGJiIsPAiFqAWVdYHpSeXZWNWn2tk6shouacOCHt5VZKSgM8PfnYTdRaCYKAlJSUCyau//WXBnfemYITJ2wL7z11ygtjxuhgtCNYiVxD8PBGfHw8AnzdOxhsd+FuXPv9tXjjzzegF/XNHp/kl4QXQ19E+op06BuaP74pQ4YMwbx582QNunm2+7O4PuZ6KBVKqBQqjE4cjce6PSZb/1JoPD2RFBMID79ol9ZBF6cUlJjeezpOTz+NkjklmNpzKoK9bFsh3GQ2YXfObgxZMwR+r/jhrq/vQnZltoMqJnezY0cN6usv/mxRV6fEr7/6YdGiKNx+eyr69euE6dPjcfasdWGjRERyOJh3EGO/GuvUcw5KGuTU89nCy0uJ777zxnXX2R4MFhf3dyBYePiFQQVarZaTBYkcqKHB8kQBa3h6espYCVHz8vMbMHiwEg88kICaGvvfj0RGRiIgoOU8P8T6yzv56Y4ud8DHw3Lg2eJ9i5Feni7r+YioZRMEBbp2lfZ++uhR6UExRETUshmNZixdKn2M7BVXaHHFFe797ZesIwgCkpKS7O7HZDIhLy9PhoqIiFo2BSzPxTGapYU1ExG1NDqdDrW19s3lCQ0N5aJ/doqN1WDTJhNCQy9cBMjDQ8SCBTkYN67Mpv5yc3Pt/u9KRI618PqFFrdnVGbgr+K/nFwNUduj1YqSF1iIjuZ9D5Ez8DeNiIjajLIyaaFgYWHSQrtKS0tx4sQJFBQUNAoDOy85WY8hQ6ok9Q8AO3b449Sppgcg+Pv7o2PHjkhISIBKxQFtRC1FuG84In0jLe5bvG+xk6shouacPi1tsGDHjtJDUojIPajVaiQmJgIAfvrJH3ffnYziYmkryW7d6oeHHpL+bECuo1CqERuXiCB/95s4nFObgzG/jMEDux9AWUPzgyX8Pfzxep/X8VLES3h17qvQarWSzz1o0CC8+uqrUCrlXWnbU+mJRX0X4dfhv2LvyL14/vLn4SHYv8KzVN5enkiKDYXKJ9xlNZDtQr1DsWzYMpTNLcP++/ZjSPIQqJW23RPW6mux9s+1SFyciPg34/HizhehM+ocVDG5g61bbQ9+qalRYscOf3h7W570TkQkt9zqXPT/qD9Es+W/WeHe4egQ3EH28w5MGih7n3Ly8lLi++99MGRItdVtYmP1WLkyCxERlifDaLVaZGRkMBiMyAGMRumT0Pg9lZyputqIYcNMyMz0xMGDvrjnniSUlEj/GQwJCUFoaKiMFdovxi9Gln7iA+Kx+c7NWDt6LT695VOLx5hhxtBPh8pyPiJyH927S7ufPnVKDZ2O9+JERK3RF19okZ0tPRRs5kz7FhEm96JWqxEREWF3P1VVVaipsX1RASIidyIoLE9BNYu8dhJR65CTk2NXe0EQEB7OMYJy6NzZG19/rYOPz99zMf38TFi+PBs33GD99/r/lZWVBZ2O4/aIWqqBSQMR7m357+cjWx5xcjVEbU9envQxNgwFI3IO/qYREVGbUV4u7bIXEmL9saIooqSkBCdOnEBhYaFVkzkmTy6RVNd5K1aENdoWEBCAjh07Ij4+noPXiVqoYe2GWdy+9vhaJ1dCRBfT0CAiPV1ayEunTpZDQYmodfHx8YEgxODJJ2Oh09n3qm358iAsXlwuU2XkTAqlCtGxKQgNkD7A3JnqjfWYuW8mhv04DKeqTjV7vEqhwv0d7sevN/2K2KpYTJ06FfX19ZLPf80112DhwoUOfV718/CDRunaVbx9vTVIjIuE0ivIpXWQfXrH9saW8VugfVKLD0d8iEvCLmlyBdym5FTn4Lkdz8Fnvg96reiF9SfXO6haasl275YWUOjra0L//n4yV0NE1Fi9vh7d3uvWZIilr9oXfz34F/ZO2ov+Cf1lO29iYCKSg5Jl689RPD0FbNjgixtvbH6gcUyMHitXZiIy0nDR43Q6HYPBiBxAr5e+WANXbydn0etF3HyzFkePev+z7fRpL4wbl4zMTNvfL/n7+yMqKkrOEmUR6x9rV3sFFHikzyP4a9pfGNru78CvkR1Hon+85XuRs+VnsWD3ArvOSUTupVcvaddug0HA4cNc4ImIqDV64w3pz3WpqQ24+WYvGashdxAWFgaNxv7vykeP5kGv53s+Imq9mgoFM5k5TpaI3F9VVRUaGhrs6iM6OprfmWTUv78fPvqoBjExenz0UQZ69aqzq7/09HS7FhYiIsd6uM/DFrdvz9qOer308epE1Lz8fOnvs2Jj5V0cnogsY0oIERG1GeXl0m4ww8Obn+gpiiJKS0tRUlICs9m21U7atWvAdddV4ZdfAiTV9/PPATh7thjt2jUgMDCQLxKJ3MTcq+biwyMfNtp+quwUjKIRKoG36kQtwZEjdTAapU3Av+wyXo+J2orOnYOwYEE5Hnkk2O6+5swJRGpqFYYNk/Z8QK6jEARExKRCUJxFceXFJ/+70nsn38OKUytgEK2rcUDUALza+1V4q/6epLp27Vq7VzneuXMnevToYVcfrrZy5Ur06tWryf3+PhrExsZA8JB/4kBiYiKys7Nl71eq7OxsKBS2hWRZKyEhAVlZWQ7p21aCIODe7vfi3u73olpXjRd2vYA1f6xBcV2x1X2IZhG/F/yO0V+MhpfKC0NTh2LewHnoGNbRgZVTS6DVmnD4sHfzB1rQs2c91GqGghGRY4miiMuWX4ZyreWQYpWgwoFJBxDqHQoA+GncT7hnwz347M/P7D73wMSBdvfhLJ6eAr75xhejR1fj++/9LR4TFaXHhx9mIirKuvttnU6H9PR0pKSk8NsOkUxMJmmT0Bz1XEP0XyaTiPHjq7FtW2Cjffn5akyYkIylS7PRtavWqv68vb0RHx8vc5XyiPGLkdy2S3gXfDD8A/SJ7dNo33d3fIew18OgNzUO9Hlq21O4t/u9/9y3EFHr1revtBB2ANi/34Qrr5SxGCIicrmdO3U4dEh6uNP06QYoldIWDiT3lpiYiNOnT9s8/vu8nTv98OyzMZg4sQpvvMEFo4iodWrq/SlDwYioNcjPz7ervVqtRmBgoDzF0D9uvTUQPXvmo7bWvsA2ADCbzTh79iw6dOjA7/JELdBjVz+GF3a+0Ghsu2gW8dS2p/DmDW+6qDKi1i8vT1oomEplRlgYQ8GInIF3r0RE1CYYjWZUVkq7wQwLa3oAuCiKKCwsxMmTJ1FcXCz5g/CUKSWS2gFAYmIDRDEQnTt3RmxsLF9OEbmJ9iHtEeDZOOxDNIv46OhHzi+IiCw6fFj6ijA9e3KgIFFb8vDDwZg6tcLuflQqICOjEnV19q1qRa6hEASEx3ZAZGDLC3jdlr8N/b7rh6UnlloVCNbOvx02Xr8RS65c8k8gGFkn0FeDuPgEhwSCUcvgr/HHousXoWh2EY4/cBwjO4yERmXbJBOtUYv1p9aj07JOiFoUhcd/eRy1+loHVUyutnVrLXQ6ae/srr665QZNElHrMfiTwThbftbiPgUU+P6O79EprNM/2zxVnlhzyxo8cfUTdp97UPIgu/twJrVawPr1vhgxoqrRvshIPVauzERMjG1/uxsaGpCeng5RlL7yIhH9S+oq3wwFI2eZObMKX3wR2OT+ykoV7rsvCbt2+Tbbl1qtRmJionzFySzWP9bmNmqlGi9e+yIOTT5kMRAM+Pu5fMkNSyzuM4pG3PjpjTafl4jcU2KiCiEh0q79hw7JXAwREbncwoXSQ0lCQoyYNInfRNsqlUqFmBjbQ43r6wW88EI0HnooAeXlKixZEohffmn83pCIqDUQFJa/d4tmftsgIve2aVM5Dh60b8x/XFycTNXQfyUmRsPXt/nvJdYwmUxIS0vjd3miFkglqDCiwwiL+1YeXenkaojaloICaZkIoaFGKJUcZ0PkDEwNISKiNqG01ASzWdoNZkRE48ulKIooKCjAyZMnUVpaKjkM7LyOHXW49tpqm9qkpuqwbFk5zpzxwOjRYQwDI3JDA5MGWtz+weEPnFwJETXl+HFp7QIDjUhMZCgYUVuzZEkABg+ukdw+PNyAjz7KwIABNcjKyoJer5exOnKm0NiOiAluGSufZNZk4uafb8Yjex9Bpb6y2eOD1EF4+4q3sX7weiT5JTm+wFYm2N8TMfFJUCg9XF0KOUmXiC749vZvoX1Ki89v/RzdI7tDAdveQRXWFuK13a/B/xV/dHu3Gz459gkHH7UyW7dK/+85eDD/nhCRY03+bjK2ZW1rcv+7w97FkNQhjbYLCgHzB83He8Pea3IiiDUGJA6Q3NZVPDwEfPWVH0aN+neCX0SEAStXZiE2VlqYY0NDAwcgE8nEZJI2CVypbBnP8dS6vfJKOZYsCWr2OJ1OwMMPJ+CbbwKbPEapVCI1NbVFjxOI8bdtUv1VcVfh6JSjeOaaZ6BWqi967JSeU3Bp+KUW9x3MP4g1x9bYdG4ick+CoMCll0r7lnL0KK/9REStyenTevzwg/RQr0mTdPD2brn31uR4gYGBNoUN/PGHF8aMScFXXwX/s81kUuD++zWorpa+CCURUUvV1Lcgkyg9lJOIyNX0ehGPPuqNiROTMXNmHHJybB+j4+PjAy8vLh7qSPHx8dBobFuwsyl6vR5ZWVmy9EVE8nrrhrcsbq9uqMa6P9c5txiiNqSgQFq7sDA+CxI5C79cEBFRm1BUJH0SRWTkv4PARFFEfn4+Tp48ibKyMrvDwP7XlCklVh3XoYMWH3xQgZMn1Zg6NRgeHrycE7mrmVfMtLj9cMFhTv4iaiFOnlRJateuXQOUSl6jidoalUrAl196oXNnrc1tL7mkHp99lo7OnXUAALPZjPT0dN4TuLGg6E6IC3HdpKJ6Yz2m756OET+NQFp1WrPHewgeeKjzQ9g1fBeujb7W8QW2QqEBakTFpkAhcDJZWzX2krE4POUwap+oxTP9nkGMn22Tn80w44/iPzDh2wnwnu+NYZ8Ow5GCIw6qlpxp9+6LT2Zvir+/EVde6SNzNURE/3p9z+t4//D7Te6fecVMTOk55aJ9TOk5Bd/d8R18PGz/e9U5rDOi/KJsbtcSeHgI+OILP9xySxXCww1YuTITcXH2BTvr9XoGgxHJQGooWEsOVqLWYdWqCjz9dPOBYOeZTAo8+2wsVqwIw3+HJSgUCrRr167F/9xa+1zsp/bDshuXYdc9u9AprJPV/f9w1w9QKiy/h5n8/WTU6+ut7ouI3Ff37tLun0+fVkOr5b03EVFrsXChAaIobeFgjUbEjBnyTDAn9xYfH9/sc5bBACxbFo4JE5Jx7lzjBSOzsjwxdWqto0okInKZphZHM5k5EZyI3NeiRZVIS/v7WeDnnwMwcmQ7vPFGBGpqrH/3HhcX56jy6P8JgoDk5GSoVNLmdfxXfX09cnJyZOmLiOQT6x/b5IJAz2x/xsnVELUdhYXS2kVE8BsbkbO07JFBREREMikqkv6xISJCCVEUkZeXhxMnTqC8vFzWMLDzunTR4qqrai6yvx6rV1fgr788cd99QVCpeBkncndXx18NL1XjVUEMogGbz252QUVE9F9nzjQevGWNTp0MMldCRO4iIECFb78FwsKs/zswZEgVVq3KRHj4havFmkwmZGRkyFwhOVNAVCckhKqgUEgbgC6FKIpY/OdiXLXxKuwo3NHs8QoocH3M9dgzfA+mdLp44AM1LSLQA5Fx7aFo4ZNxyTm81d54ceCLyJ2Zi7TpaRh7yVibg1IaTA3YnLYZPVb0QNjCMDz8w8Mory93UMXkSLW1Rhw7Jm1F0N69tXwHSEQO883JbzDn5zlN7h/efjgWXb/Iqr5ubHcjdt2zC5G+kTbVMDBxoE3HtzQeHgLWrfPDV1+dQ3y8fYFg5zEYjMh+Ur/jyjWRgMiSTZuqMHVqgKSQgrffjsC8eVH437y7lJQUt/iZ9fLwQrBX8EWPuan9Tfhr2l+Y2msqBIVtzz8x/jF4st+TFvdpjVqM/mK0Tf0RkXvq3VvauxOjUcChQ/LcxxMRkWuVlpqwdq209/AAcNttWkREtPz7a3I8QRCQkJDQ5P6sLDUmTEjGu++Gw2Rq+vlu7dpAfPZZpQMqJCJyHWUTC+SJZn7PICL3VFqqx+uv+1+wzWAQsGpVGIYNa4/PPw+G0dhE4/8XHBzsFu/qWwNBEJCamirbYilVVVUolJqCQkQO89p1r1ncfrb8LM6WnXVyNURtQ2GhtHku4eHyZywQkWWcSUBERG1CcbG0G0wvLxOWLavE5MllqKiokLmqxh54oLjRtssuq8dnn1Xi6FENJkwIglLJyzdRa9I3tq/F7UsOLHFyJUT0X8XFehQUqCW17dKFAx2I2rJ27bywdm09PD2b/1swdWoxFizIgZeX5WcWnU7HFancnF9kRySGqWQbjHAxP+b8iH7f98MHpz+A0dzMiBQAnQI7YdOQTVjUdxE0Kq5+LVVUkAphsR1cXQa1UCnBKfj81s9R+2Qtvrv9O/SN6WvzJOfS+lK8feBthCwMQad3OuHdg+8yKMSN/PxzLfR6adeAq69m2DAROcbhgsMY8+WYJvdfGn4pvh37rU199ojqgX337UPnsM5WtxmUPMimc7REKpWAq65Kglot7R2SJXq9HmfPnuX1nkgiqb87SqXlSW1E9tq/vxZ33OGLhgbp74bWrQvB7NlxaGhQICkpCRqN+7zHuTzqcovbw33Cse7Wddh4+0bEBcRJ7v/FAS8iPiDe4r4t6Vvwc/rPkvsmIvfQt6+H5LYHDkhfZJKIiFqOxYu10Gql3W8rFGbMnSv9WkKtj4+PDwIDAy/YZjYDX3wRhNtuS8Wff3pb1c/DD/sgN1fngAqJiFxDAcsTxU0in6uIyD099VQdysstB3pVVKgwb140Ro9Oxa+/+sLSejQKhQKRkbYtmkX2UalUSE1NlW2R3tLSUpSXc5FOopZkaLuhCPEKsbjv4R8ednI1RG1DSYm096qRkQwFI3IWpooQEVGbIDUUTK8XMGdOMFatCkV2tnwTOppy2WVa9OlTCwDo1asOX31Vid9/1+D22wMZBkbUSj3Y60GL2/fk7HFyJUT0XwcPaiW3vewyTiAjauuuuy4AixdXNblfrRaxYEEOpk0rRnNZUVVVVSgpKZG5QnImn/AOSAz3cNhz3ZmqMxj+43DMPjAb1YbqZo8P9QzF8quW44tBXyDOV/qkSwJigpUIieno6jLITdzU4SbsnbQX2ie1mD9oPhIDE23u41TZKUzbPA2aeRoMWj0Iu8/tlr9QktW2bdI/fF9/PSciEZH88qvzcfXKq2EyW56kEekbid/v/11SqG1CYAJ237sbAxIHNHusoBBwTcI1Np+jJTq/KrGnp6dsfRoMBgaDETmZhwfvvUh+Z89qMXKkJ2pq7P9msHevLwyGOPj4+MhQmfPMumIWVMKFE6vuvuxunHzwJG675DZZJu9svnNzkxNTx3w5hpNTiVq5hAQPhIY2v0iGJb//LnMxRETkdDqdiBUrpL+TGTxYi0sucfzYYHIv0dHRUKn+fo4pLVXhoYfi8dJLMTaFz5WWeuCeewwwmfh+j4hah6YWPxPN/DtHRO7nr7/qsWpVQLPHZWRoMG1aIh54IAFnzlz43BEZGemUhWLpQmq1GklJSbL1l5+fj5qaGtn6IyL7Tes1zeL2nzN+hs7I8G0iuRUXSxvLwGxUIufhUwcREbUJJSXSJt+ZTH8PHBVFBd5/P0zOkpo0e3Yxvv22EgcO+GD0aIaBEbV2N3e8udFAeACoM9ThYN5BF1REROeFhNRi7twCjBpVgUsuqYenp3WDFxQKM3r3dq9JOUTkGFOmBOHRRysabQ8JMWDVqkwMHdp0aNh/FRUV8cOzm/MObYekCE+oVPIFR1brqzHltykY/ctoZNVmNXu8WlBjVpdZ2H7TdlwZeaVsdbRVcSFKBEV3cnUZ5IbUKjWeuPoJZD6SiZwZObi7293w9/S3qQ+DaMC2rG24etXVCHotCPdvvB+FtYUOqrhlKq0vdYtBHsePW15VtDnBwUY+VxCR7HRGHbot7wat0XIQuo+HD/544A+oVdInQgZqArFl3BaM6zruosf1iOqBIK8gyedpaQRBQEpKCoPBiFzMZJIe/HN+si+RXPR6PTZtKkFpqf0/WyqViI8/rkHfvrY9O7YEQ1KHYOfdO/FQr4cwrec07L53N1aNXIVgr2DZznFJ+CWY1H2SxX1VDVW4d8O9sp2LiFoehQLo2lUvqe3Ro7z+ExG5u1WrtCgulh7yPHu2/SG11PoIgoCkpCT8+qsvbrklFbt2SXsW++UXPyxeXClvcURELtJU8A1DwYjIHc2da4TBYP1cvT17/DBmTCpeeCEapaVKqFQqhISEOLBCuhhvb2/Excm3GG52dja0WumLyRORvJ7u97TFeZYmswnPbX/OBRURtV6iaEZJibS5LTExzD0gchb+thERUZtQWmr/h/vvvw9ETo7jVohWKpWIjo7GrbcmY+TIQIedh4haFkEQ0C2im8V9C/csdHI1RPS/QkLqMX58GV56KQ+ff56B/ftPYOPGM1i06BymTCnGwIHViI1tPMA8Lk6PgAAOICeiv73+egBuvLH6n3/u0EGLzz/PQNeutn9Azs7Ohl4vbWILtQya4BQkRXrDw8O+64QoilhwbAH6f98fe4r2NHu8AgrcFH8T9o7ci7s73G3XuelvEQFKBEQxEIzsF+sfi1WjVqHq8Spsm7AN1yRcY3FAw8VU6irxwZEPELUoCilLUrBozyIYRaODKna9/Jp8DFg9AGELw+D/ij+e3/E8TKL08AdHMhqNePvtbKxffxaPP56PQYOq4O9v3X+b3r3ruVgAEclKFEV0f687SutLLe5XCSrsu28fwnzsXyBFrVTj41Ef4+l+Tzd5zMDEgXafp6U5Hwym0Whk69NgMODMmTMMBiOyUlmZHhs2BGLXLl8cP+6FnBwP1NUJMFuxfpRaLT0Qkei/jEYj0tLScN111Xj77Wx4edn3d/ztt6twyy2B8hTnAlfGXYm3b3wbS4ctxZVxjgmqf++m95oMGvv4j49xtOCoQ85LRC1D9+7S/s6ePatGfT3vtYmI3JUomrFkifTvrt266TBokHzvcah18fT0RFBQICoq7Pu2/+yzAfjrr3qZqiIich2hiSmoJnPL/FZPRNSUH3+sxubNtoe+iqICX30VjFtuaYegoFgHVEa2CAgIQFRUlCx91dYKmDSpHqWlHJ9N1BKoVWrcmHqjxX0rDq9wcjVErVtJiQlGo7RxytHRHN9M5CycpUxERG1CqeU5LjYxmRT48MMwPP98vv2d/Q+lUomIiAgEB8u3Ei4RuZd7u9+LQwWHGm3fmrnVBdUQ0XkGg+GCf1YqgaQkPZKS9Lj++n8DfurrBZw964mzZzU4e1aDwEAzAE8nV0tELZVSKeDzz71x1VX1CA014tVXc+HtLX2CSVpaGjp27Njk6ovU8nkGJiBJmYesglro9YbmG/zHxuyNmH90PuqMdVYdf2nQpXiz75uI8I6w+VzUNO/geFeXQK3QgKQBGJA0AEbRiGUHluGdg+/gbPlZm/rIqMjA7J9n47FfHkPf2L547prnMDhlsIMqdo37Nt6HHVk7AAAG0YAXdr6AotoiLBu2DAqF/QsDyKm8vBwKBdCuXQPatWvAXXeVQxSBM2c0OHDABwcO+ODQIR/U1jZeaatfv9Yb7EZErjH006E4VXbK4j4FFNh4+0Z0iegi2/kUCgVeGvgSEgMTMeX7KRdMClEqlLj7srtlO1dLIggCkpOTkZGRAZ1OJ0ufRqMRZ86cQfv27fksSNSMs2eNePrpxhMx1GoRgYEmBAcbERhoQlCQ8Z//+/z/O2kSQ8FIHqIoIi0t7Z9Ax379avHhh5l48MEESZPJn3uuAg88ECR3ma2OIAj45rZvcM3qayzuH/bZMOTNzHNyVUTkLL16SbtPNhoV+P33BvTvz0AYIiJ39P33Opw65SW5/YwZJghCy/quQC3L7bcH4vvvK/Hpp4GS+6irU2L8eGD/fhEeHny3R0TuS1BY/hsmmhm0TETuw2QSMXeufVPqR4+uRUREoDwFkV1CQkKg1+tRVlYmuY+SEhWmTUvAqVNeyMioxbZtSnh5NR7HRUTOtWToEmw8s7HR9kpdJb45+Q1u7nSzC6oian3y8kyQGjcUE8P3XETOwt82IiJqE8rK5LnkbdgQiIICD1n6UqlUiI2NRadOnRgIRtTGTeo+CQo0HmBUri1HZkWmCyoiIlEU/5mw0xxvbxHdumlx660VeOKJAsyaVd18IyJqU/z8VPjxRwXeeuucXYFgwN9/n9LT02WqjFxF7ReD5KhAaDytn3D8V8VfGLplKJ76/SmrAsHCNeH4sN+HWDtwLQPBiNyMSlDh4b4P48z0MyieXYwHej6AYC/b3h2ZzCbsztmN69dcD/9X/DFu/ThkV2Y7qGLnOVFyAlvStjTa/t6h9/DUtqdcUNHF1dTUNNomCEDHjjpMmFCGd945h19/PYnPPkvHjBmFuOqqGnh5/R2ac8MNDKUgIvk8uPlB/JTxU5P7lwxdgqHthjrk3Pf1uA9bxm1B+5D2AAA/tR/eu+k9dArr5JDztQTng8G8vKRPSv0vo9GIAwfSoNWamj+YqA0rKrL8O6LXCygu9sCpU17Yt88XP/wQiE8/DcXSpRF46aUYzJoVD09PLvRA9jv/7s5ovDDk99JLtfj44wzExNi2yvzkyRV4/nkGglmrf2J/jGg/wuK+/Jp8PPbzY06uiIicpW9f6WO59u9nMDsRkbtatEh625gYPe6801u+YqjVWrbMF0lJDXb1ceSIN556qkqmioiIXKPJUDArx9kSEbUEy5dX4Y8/pD8HBAUZMW8enyNakqioKPj7+0tqm5mpxvjxyf+ETe/b54vbbquD0chrG5GrJQQmoFOo5XFFLXGcKJG7ysuTfs2LibEvaJWIrMdQMCIiahPKyuRZzctoFPDhh6F29eHh4YG4uDh07NgRgYGBstRFRO5NrVKjXUg7i/sW7F7g5GqICAC0Wq3ktnJO+CSi1iMqygvx8bGy9NXQ0IBz587J0he5jsovAkmxYfDSXHzScYWuAvfuuhe3b7sduXW5zfarUWrwRLcnsHXYVvQO7y1XuUTkImE+YXh32Lsom1uGffftw/XJ10Mt2BYWVaOvwafHP0Xi4kTEvxmPF3e+CJ1R56CKHWv10dVN7nvlt1da3DO0Ttf8v2eVCujSRYt77y3Fe+9lY/fuk/j003R068ZBhEQkj8X7FmPZwWVN7n+498N4qPdDDq3huuTrcGLaCeTMyEHh7EJM6jHJoedrCQRBQFJSkmzviSorlbj77jgMG1aPujqGFhA1pbjYLKmdv78Rnp4cQkX2y87ORkOD5cniiYl6fPJJBjp2tO77w8iRVVi6NEDO8tqEL8Z8AW8Py89Tr+99vVUEZhNRYwkJHggPN0hqe+iQPGPKiIjIuQ4dasCuXdLfu0ydqoeHB68B1Dx/fxU+/FAPlUraO4fzdu3yQHl5pTxFERG5QFOhYCYzFzMhIvdQU2PEyy/72NXHzJnVCA/nIn8tTXx8vM3f5Y8e9cL48cnIy7vwv+f33/tj6lQuEE/UEswbOM/i9pOlJ5FZkenkaohap/x8aaFg/v4meHtzjA2RszCCj4iI2oSyMqVsfa1fH4T77y9BRIRtky48PDwQHR0NPz8/2WohotbjjkvuwAu7Xmi0/bsz3+FdvOuCiojatpqaGsltfX19ZayEiFqTwMBA6HQ6lJaW2t1XdXU1iouLER4eLkNl5CpKryAkxauQX1CIypoLJ4waRSNeOfYKvsr8CqK5+Q8uAgSMShyFZ7o/A5XguNe+8+bNw7x5lj+0tlbeXp6IDfOG2j/G1aUAALKyslxdArlIn9g++HH8jxBFEauOrsKb+97EiZITMMP6SQg51Tl4bsdzeGHnC7g86nI82e9JjOo4ynFFy8gkmrDm+JqLHvPYL48hUBOIyZdPdlJVTdPr9TCbbZ8g4uEBXH65EUolP5gTkf2+P/09Zvw4o8n9Q1OHYvHQxU6pRSkoEesvT1CyuzgfDJaVlYX6+nrJ/VRVCZg8ORGnT3vh9Glg2LAafP+9F3x9OdyD6L+khoIFBZnAIVRkr9zcXNTV1V30mLAwI1atysSjj8Zj//6mvyVcfXUt1q3zg0rF5wJbeao8sWrkKoz9amyjfaJZxA2f3oCTD550QWVE5Ghduxrwyy8eNrc7doz3AERE7ui114wALr74UlP8/U148EEu+EfWGzDADw8/XIE33giyua1KJeLBB4txzz2lKChQwN/fFyoV7z+IyP00FQpmzZgmIqKW4KWXalBQYPv93HnJyTrMnRsoX0Ekq6SkJJw9exYGQ/MLB2zf7oc5c+LQ0GD52vbBB4GIiirHiy8Gy10mUatVWlqKtLQ0pKWlITc3F7m5ucjLy0NpaSkqKytRUVGB2tpa6PV66PV6AICnpyc0Gg00Gg0CAgIQERGByMhIREZGon379ujcuTP8jf6oVjUO6nt0y6PYcMcGZ/9/06UMBgMyMzNx9uxZZGdn//PvubCwEBUVFaioqEBVVRV0Oh30ej0MBgM8PDz++Xfs5eWF8PDwf/49x8XFoXPnzujcuTPatWsHDw/bv6+Q+ysslNYuLMwIQL7MBiK6OL5NJiKiVs1gMKCkpBTl5REy9ingo49C8dhj1t3xqtVqREVFMQyMiC7q0SsetRgKlleTh/L6cgR784UykTNptVrJbX187FtFiIhat8jISOh0OtTW1trdV3FxMby8vPis4eYEtR9iE/zgW3AShVUKGI1GfJnxJRb+sRBak3XXox4hPbCo7yKEakIdXG3bIggCQvyUCI9OhELJj53UcgiCgPt63If7etyHKl0VXtz5ItYcX4PiumKr+xDNIg7mH8TN626Gt4c3hqYOxbyB89AhtIMDK7fPLxm/IL8mv9njHvj+AQR4BmBsl8YTwJ2psrJScltvb2/5CiGiNuuPoj8wat2oJsMjO4d2xvd3fO/kqtoeQRCQnJyMzMzMZoNiLKmuFjB5chJOnvx3ourOnX4YOrQWP/ygYTAY0X+UlSkktfs7FIxIuqKiIqufAXx9RSxblo2nn47BDz8ENtp/ySVabNzoCU9PBoJJddslt2HxvsXYk7un0b5TpaeweN9iPNL3ERdURkSO1KOHiF9+sb3d2bNq1NWJ8PHh310iIndx7pwB33wjPdRrwgQtAgO54B/Z5pVXArBtWz2OHrX+G05ysg6vvpqLTp10AACz2YysrCykpqY6qkwiIocRBIaCEZH7KivT4b33/O3q46WXdFCrNTJVRHITBAHt2rXD6dOnYTI1/d3vyy+D8PLL0RDFi39TfPnlIMTEVGDKFOlBckStUV1dHY4cOYJjx47h+PHj+OOPP3Dy5ElJYyXr6+v/WWAvPz8fJ082saiPH4CE//9fEoBQYHPaZhhMBni00rHd6enpOHLkyD//jv/8809kZmZe9O+bJedD2Kqr/w5Wy87Otnich4cHevbsiWuuuQb9+/fHtddeCy8vBuq3BQUF0hbeCw/ncyCRM3GEKBERtUoGgwGlpaUoLy9HXZ0CBkOUrP1/+WUw7ruvFKGhxiaPUavViImJYTAIEVklUBOIWP9Y5FbnNtr35r438dLAl1xQFVHb1dDQIKmdQqFocvADEdF58fHxVq9I1Zzs7Gy0a9cOnp7SVkGmliMwqhP+1O3EHZvuQG5tgVVtor2jsaD3AnQL6ebg6toGhUIBDw8V1Col/DUGBITEQOlp32AgIkcL0ARg0ZBFWDRkEY4XHcfT257GTxk/QWfUWd1HvaEeX5/8Gl+f/BpRvlGY2G0inur/FHzVLWtCzOpjq606zgwzxn0zDv6e/hjabqiDq2paTU2N5LaBgYHyFUJEbVJhbSGu+OAKmMyWB4OFe4fj0JRDfIfhRElJSTYHg9XUCJgyJREnTjQeaPfbb7644Ya/g8H8/Djsg+i80lJpoWAhIQwFI+nKy8tRUlJiUxu12oxXX81FSIgRa9b8G/IeH9+AzZsVCApqnQPYnWnTXZsQvjAcBrHxO9g5P8/BhG4TEOTFyTxErUnPntKeb0wmBQ4ebMC113JSJxGRu3jjjQYYjdK+YahUZsyaxW/rZDu1WsDq1WZccYUJ9fXKZo8fN64UjzxSBI3mwsmVOp0OJSUlCAsLc1SpREQOoYDld69NfYsiImpJysrO4eOPFXj99Ujs3m37IrxXXVWLsWM5jrClEwQBKSkpOHv2LMzmC+/DzWZg2bJwvPdeuFV9mc0KTJ8egIiISowaFeiAaoncw+nTp/Hrr79i3759OHDgAE6cOGFzMJXdagD8+f//A4BwwHiJETMSZ+Cd8e84txYHqK2txZ49e7B7924cOHAABw8eRFlZmVNrMBgM2Lt3L/bu3YtXX30VPj4+uOmmm3Dbbbfhpptuglqtdmo95DxFRdLG2EREMBSMyJk4OpSIiFodURSRkZHxzwT7sjL5L3cNDQJWrw7BrFlFjfZ5enoiOjqaYWBEZLMRHUZg2cFljbav+2sdQ8GInEzqi2oPD07UIaLmnf/wfObMGYii/S/E09PT0aFDByiVzQ88pZapsLYQt35xK3bn7LbqeF8PHywavACTLrvHwZW1LQqlGgqBv0fkvi6NuBQb7tgAAFj35zq8tvs1HC08CjOsX8mpoLYAr+5+Fa/tfg1dI7pizpVzcEeXO1weGlOlq8I3p76x+nijaMToL0bjx3E/ol9CPwdW1jSdzvpgtv/ie0UisofOqEO397qh3lhvcb+3hzeOTT0GjYoT3p3NlmCw2loBDzyQiD//9G7ymN27fTFkSC22bNHA359DP4gAoLxc2n1rUBAHLJI0NTU1yM/Pl9RWEIC5cwsREWHAokVRCA424rvvDIiPb1kBze4qUBOIRdcvwsNbHm60zyAaMGztMOy5b48LKiMiR7niCumTUg4cMOLaa+WrhYiIHKemRsSqVY0D1K01cmQ9EhP5Dp6k6drVB88/X465c4ObPCY83ICXXsrFlVc2/Q6wqKgI/v7+XPyNiNyKUmF5PI1o5rtVImrZqqqqoNfrkZoKvPdeNn77zReLFkUiLc267+WCYMaCBWYolVxwyx2o1WokJycjPT39n21GI/DSS9FYv77p+3hLDAYBEyb4YcuWGlx5pe1hckTu6PTp0/jll1+wfft2/PrrryguLnZ1SY0V//2/pTuWIuOzDMyYMQODBw92dVVWq6urw65du/DLL79g165dOHLkiPOD1ppRV1eHdevWYd26dYiMjMTUqVMxdepUBpy3QkVF0u5vIiKsH5dORPZTmP8beUtERNQK1NXVITMzEwCwfn0gnnsuVvZzeHmJ2LLlNIKD/37o0mg0iImJgZeX9AEHRNS2ZVdlI/GtxEbbFVCg/ql6TtQjchKj0YhTp05Jauvn54eEhASZKyKi1kqn0yEtLU2WvtRqNVJTU10e2kK2MYpGTP5uMlYfW23VIDmlQompPadi8Q2L+d+aiKxSr6/H/N/mY9XRVcivkTZR3VPpieuSr8PLA17GZVGXyVugld4/9D4mfz/Z5nb+nv7YPnE7ekT1cEBVTdPr9Thz5oykth4eHujQoYPMFRFRWyGKIrq+1xV/lfxlcb9SocThKYfRNaKrkyuj/5WVlYXa2tom99fVCXjggQQcPWrdBNU+ferw44+eCAhgMBhRnz51OHDA9sndU6ZU4L33ghxQEbVmWq32gkkl9vj++wBccUUgrrmGk0rk1nlpZ5wsPWlx37pb1+G2S25zckXU2qxcuRIrV66Uvd/a2locO3bM6uOPHDmCyy67TPY63E1kpAFFRbYv4jRmTB2++IIBMURE7uC11+rw+OPS/2bv26dDnz4cg0fSmUwihgypw9atjZ/fhgypwjPP5CMgoPnJvCqVCu3bt+d3fyJyGw989wCWH17eaPusK2bh9etfd0FFRETNE0URp06darR4r9EIrF8fhKVLI1BefvFvrGPHVuLzzwMdWCU5Qk1NDbKzs1Ffr8CcOXHYtctfcl/h4Qbs3GlAx45NL+hF5O7uvfde/PLLL8jJyXF1KZJ0794dixYtwoABA1xdSpN++uknzJ8/H3v37oVer3d1OTbTaDR4+OGH8dRTT8HfX/rfVGpZUlMbkJ5ue2j988/X4bnn+F2NyFk4KpSIiFolHx8fREVFoaCgAL/+6piBs1qtgDVrQvDYYzWIiYmBRsOBAkRkn4SABIR4haBMW3bBdjPMeP/Q+5jeZ7qLKiNqWy42KbM53t782ENE1tNoNIiLi5PlA5per0dOTg6DCd3Ikv1L8Pgvj0Nr1Fp1/KCkQVh36zqEeIc4uDIiak281d54eeDLeHngyzhbdhZPbXsKm89uRp2h6dXJ/6vB1IBNZzdh09lNCPMOwx1d7sALA15AoCbQcYX/x+pjqyW1q26oxg1rbsCv9/yKDqHOC9oqLy+X3NbHhx/KiUi64Z8NbzIQDADWj13PQLAWIDExEdnZ2aipqWm0r75ewLRp1geCAcD+/T4YPLgOP/8MBoNRm1dRoZTULjSU6ymSbfR6PTIyMmTr7777NAgLYyCYI2wZtwVJi5MsBvLfs+EejOgwggszkV3OnTuH3bt3u7oM+n9duxrw88+2h4L98Qfvo4mI3IHRaMbSpbb/nT/vqqu06NOHi/6SfZRKAStXeqB7d+M/ARK+viY8+WQ+brqpCgqFdf0YjUYUFBQgJibGgdUSEclH0cQfOJPYfBAiEZGrlJSUNAoEAwCVCrjttgoMHVqFDz4IwyefhMBgaBzW6u1twmuv8f2xO/Lz80NUVDRuvFGNAwd87eqruNgDw4aZ8NtvDYiKsj04hcgdrFq1ytUl2OXIkSMYOHAgRowYgbfffhvx8fGS+qnSVeFwwWEICgH9EvpBUMgX5L1nzx7s3LlTtv6cTafTYcGCBVi1ahXmz5+PSZMmubokkkFJibTvY5GRMhdCRBfFZSWIiKjVCg4Ohp+fPw4fln8ina+vCdOmVeDZZ/2RkpLCQDAiks3g5MEWt6866t4v2IjciT2hYH5+nLRDRLYJCAhAeHi4LH3V1NSgqKhIlr7IcbZnbkfMGzF4ZMsjVgWCpQan4tDkQ/hlwi8MBCMiu7QLaYcvxnyB2idrsfH2jegT08fmQQsl9SVYcmAJgl4LQqelnbD89+UWB8/JKa08DbtzpE+uLakvweBPBuNc1TkZq7o4e54pgoKCZKyEiNqSR354BJvTNje5/80hb2JEhxFOrIguJiEhodF7pPp6BaZNS5D0XevgQR8MGtSAigqDXCUSuSWpoWBhYTIXQq2a0WhEWloazGZ5wuSCg4MRxh9Ch4kPiMfcK+da3FdvqMdtX97m5IqIyJF69JD2nursWTVqax37jouIiOz32Wf1yMlRS24/cyYDoUke8fEaLF78d+B/r161WL8+DcOHWx8Idl5FRQXq6qxfyIeIyJUEwfLYAktB7ERELYEoiigtLb3oMX5+ImbMKMLGjWdxww2VjfY/+GA1EhI4X9BdhYQEY/p0A5RK+58FMzI0GDnSCIPBKENlROQoGzduRNeuXbFmzRqb2v1V/Bce+P4BRL8RjYEfD8S1q69FzxU9Ud1Q7ZhC3VhJSQnuv/9+DBs2jPNW3Fx9vYjqamljbGJiGFFE5Ez8jSMiolZLoVCgqCjsn5WY5ODnZ8Kjj1YgPd2EpUuDEBvLl3tEJK/ZV862uP148XGHT7Qmor/pdDrJbRkUSkRShIeHyxIq2NCgwEMPeWDPnhoZqnIPxXXFWHFoBV7f8zrSytNcXc5F5VTloM/7fTDw44HIr8lv9nh/T398MuoTnJ1+Fj2iejihQiJqS4Z3GI59k/ZB+6QW8wfOR0JAgs19nCo9hQc2PQDNPA2u+/g67M3Z64BKgY+PfWx3HznVORj8yWAU1xXLUFHzGhoaJLf18ZF/gQMiav3eOfAOlhxY0uT+aT2n4dG+jzqvILJKQkIC/P39AQBarQIPPZSAQ4ekXwcOHfLBoEEGlJXp5SqRyK2YTCIqK6V9Fw4P5/Apso4oikhLS5Ptm52fnx+io6Nl6Yua9sp1ryDGL8bivu/OfIcdWTucWxAROUyvXtKu6aKowMGDvI8mImrp3nxT2iQ1AGjfvgGjRnnJWA21dePGBWHlyjx88EEWoqKkB/VnZ2dzXCgRuYWmFhwTwb9hRNQy5ebmWr24R2ysAQsX5uKTT9Jx6aX1AIDoaD2efZaLhbu7ceOC8MorFXb3o9GImDixFOnp8n0jIiLHqKqqwvjx4zFx4kTo9U2/9zeKRnxz8hsMXD0QXd7tguWHlqPeUP/P/iOFRzD/1/nOKNktbd68GZdeeil+/fVXV5dCEuXmSg+6jI7mGBsiZ+JvHBERtWpff22SrS8fHxN27dLizTeDEB4ufbUxIqKLuTz6cvh4NJ74ZRSN+OrkVy6oiKjtudiL34tRKqUPPiQiiouLg1ot/TmjtFSJ++5LwldfBWPMGE+cOyc94NBdpJeno/f7vTHl+ymY8/McdH23K37NbnkflhqMDRi3fhwS3krAgfwDzR6vElSYfcVsVMytwLhu45xQIRG1ZWqVGk/0ewJZj2bh3KPnMKHbBPh7+tvUh0E0YGvmVly58koEvxaMyd9NRmFtoSz1iWZRllAwADhTdgZD1gxBpa5Slv6aotPprB5U+F/23AsQUdv1w9kf8PAPDze5f3DyYCwdttSJFZEt4uPj4evrj+nTE3DwoK/d/R054o2bbtKjoYGBBtT2lJUZYTQqJLUNC5PWjtoWURSRnp4Oo1GeVeA1Gg0SEmwPaCZpNt+1GQpY/l0f/cVoTuIhaiWuuEL6u5X9++UbY0ZERPLbvl2HI0ekL9Q3fboRgsBnP5LX+PEREOyckSWKIs6dOydPQUREDiQ0MQWV71SIqCXS6/Worq62ud1ll2mxZk0GXnstB/Pn18LXV9piNNSyzJkTjEcflR4MFhhoxIcfZuKaa2pgNBqRnp7O6x+RG/j4448xZMgQVFZWXrC9rL4Mr/32GlKWpOCWL27B9qztTfZxuOCwg6t0byUlJRg8eDDWrVvn6lJIgvx86dey2FjOnyRyJoaCERFRq/bddx6y9VVXp8TkyQro9XxxQ0SO1S++n8Xtyw4uc3IlRG2T1I80nMBPRPYQBAGpqakQJIwYPX3aE3femYJjx7wBAPn5aowcKaK2Vp4Jii2RUTTizvV3Irsq+59tWqMWd66/84JVelzttd9eQ8CrAfj0+Kcwo/mAmKGpQ1EypwQLr18o6WeBiMgecQFxWD1qNaoer8LWCVvRP74/VIJtg9sqdBV4//D7iFoUhdQlqXhj7xswitKvR7uyd13wt95eRwuP4qa1Nzn0WlFRIX0Qma+v/WEwRNS2/Fn0J0Z8PqLJe80OIR2w5a4tTq6KbJWYGI8RI+QJ8VKrRdxzTwnS0s5KDr4ncld5edJ/5qOj5fumTK3XuXPn0NDQIEtfHh4eSE5OlqUvsk7XiK6Y0G2CxX3l2nJM/n6ykysiIkeIjlYhKsogqe2hQzIXQ0REslq4UPq43dBQI+67z0vGaoj+plKpEB0dbXc/tbW1jSYpExG1NErB8qRv0cy5NUTU8uTk5EhuKwjAsGHVGD8+UL6CyOVefz0AY8dW2twuJkaPTz7JQNeu2n+2NTQ0MNiXyE3s2LED/fv3R0VFBY4WHsV9G+5D7JuxeHzr4zhX1fzvcVP3wPSvhoYG3HHHHfjggw9cXQrZKC9P2rOch4eI0FD+bhA5E2eWERFRq3X6tB4nT3rK2ufBgz6YNq1K1j6JiP7r4T4PW9y+P2+/kyshant0Op3kthqN9BVJiYiAv4PBUlJSbGqzY4cfJkxIRkHBhcGER496Y9y4OphMrXPg1aI9i3Ag70Cj7bnVuVi0Z5ELKrrQlrQtiHw9Eo9vfRwNpuYni3YM7YjjDxzH5rs2I1AT6PgCiYiaMTBpIHbesxPap7R4a8hbaBfczuY+0ivSMeunWdC8rEG/lf2wNWOrzX2sPrba5jbN2Z2zG6O/GA29yTFBKbW1tZLbBgUFyVgJEbV2xbXF6Pth3ybDF0O9Q3FkyhGGzbqJJ58MxiuvlNvVh4eHiCVLzuHKK+tgNptx9iyDwaht0WqNaN9ei7AwA1Qq296HREUxFIwuLjc31657/f9lz+IAZJ+VI1Y2+e5t5ZGV+LPoT+cWREQO0bWrtFCwY8dsC8cnIiLnOXGiAVu2SA/1uv9+Hby8eP9NjhEcHAwfHx+7+8nLy4PR2HoXfiMi9ycoLF9LGQpGRC1NTU0NtFpt8wdeRFRUFN/htzJKpYCPP/bHwIE1Vrfp1EmLNWsykJjY+Jt7bW0t8vLy5CyRiBzk+PHjSOidgO5vd8fKoyuhM1o/Z4xj+q1jNpvxwAMPYP369a4uhWyQny/tWS4szARBUMhcDRFdDJ9MiIio1fryS8dMdPjwwyC8/36FQ/omIgKAoe2GQq1UN9quM+qwK2uXCyoiajtqaqz/0PNfcgzwIiLy9PREQkJCs8eZzcBHH4Xg4YfjUV9veaWNDRsC8OSTrS/U+K/iv/Dsjmeb3P/q7leRV+2aj+0Z5Rnovrw7hn46FEV1Rc0eH6QJwpdjvsTJB0+iS0QXJ1RIRGQblaDCI30fwZnpZ1A0qwgPXP4AgjXBNvVhMpvwW85vuO6T6+D/ij/Grx+P7KrsZtvV6evw1YmvpJZ+UVvStmDc+nEwiSbZ+7YnfMXLS/qkJiJqW/RGPbot74Y6Q53F/V4qLxybcgxeHvy74k4efzwYCxaUQ6Ew29zWw0PEW2+dw1VX/RtYcz4YrKGh+aBiotYgOVmHr79Ox7Ztp3H48Ans2XMCmzadwZo16Xj77Wy8+GIuZswoxD33lGDkyAr071+Nrl3rkZysg78/VzGlphUXF6OyslKWvhQKBVJTU6FU8mfOFQRBwFdjLD9nmmHGjWtvdHJFROQI3btLm8SQnq5GdbX874qIiMh+r79ugNksbaKZl5eIRx/lIn/kWAkJCVAo7JsMaTabkZWVJU9BREQOwFAwInIX9gY1eXh4IDjYtrFR5B7UagHffOOFbt3qmz32yitrsGpVJkJDmw7uraioQHFxsZwlEpGD1KTVAN/Y3i7AM0D+Ylopk8mEO++8E7///rurSyErFRRIaxcWxm9pRM7Gpa2IiKjV2rjRcQNpH3/cD8OHVyMy0t9h5yCitu3yqMuxN3dvo+1v7HsD/RP7u6Aiorahvr75jzxN8fX1lbESImrL/Pz8EBERgaIiy6FSBoMCL70UjW++CWq2rwULgtChQwXuvbf5Y92BUTTi7g13Q29qOnCl3lCPp7Y9hY9GfeS0uur19Zj47UR8ffJrmNH8BH4PwQOPXfUYXrj2Ba4oR0RuI9w3HO/e9C7eveld7M/dj2e3P4vtWdthEA1W91Gjr8Ga42uw5vgaxAfE4/4e92PulXOhVjUOxl5/cj1q9bUWepHHlye+RIBnAFYMX2H3RI3ztFotzGbbg1yAv4NBiYisIYoier7fE4W1hRb3KxVK/Hbvb4j2j3ZyZSSHOXOCoVSWY/bsIKsnu6pUIt58Mwf9+ze+bprNZqSlpSE1NZXXGmr1DIZ/70sVCsDPT4Sfnx7x8c23VSoZ1E2WnThRAZOpGDI9MiA5ORlqdePnH3KeQcmDMDR1KH5I+6HRvpzqHDyz7Rm8NPAlF1RG7io+Ph5XXXWV7P3W1tbi2LFjsvfbFvTuLe2duygqcOCAHtddx3BlIqKWpLjYiM8/95bcfuxYLcLDucgfOZYgCIiPj0d2dvOL4lyMTqdDSUkJwsLCZKqMiEg+SoXluTkMBSOilqSsrAxGY9MhTtaIjY2VqRpqifz9Vdi0yYSrr25AVpbl7+fDh1fghRfy4eHR/Biw4uJiqNVqBAYGylwpkXuJiIjAJZdcguTkZCQmJiIhIQGRkZEIDQ1FaGgofH194enpCU9PT4iiiIaGhn+egUtKSpCdnY0zZ87gzz//xP79+5Gfny9/kScB/A6gp/VNAjWB8tchkVqtRocOHdCxY0ckJCQgISEB8fHx//w7DgoKgkajgaenJ1QqFfR6PfR6PaqqqlBSUoLCwkKcPXsWZ86cwcGDB3Hs2DG7FsC1pKGhAXfeeSeOHDkCHx++j2vpioqkDYIID+czIJGzMRSMiIhapfx8I37/3TGre8XG6vHWW+dQWqpDcHB7DtolIoe4v8f9FkPBdmTtcH4xRG1IQ0ODpHYKhQIqFR+xiUg+YWFh0Gq1qK6uvmB7RYUSM2bE49Ah6z+UPPRQAFJTa9C/v5/cZTrdgt0L8Ht+8yvIrD62Gg/1fgg9o234cieB2WzGSztfwrzf5l00qOw8BRQY2WEkPrnlE/iqGSZJRO6rT2wf/Dj+R4iiiJVHV+LNvW/iZOlJq4IRzztXdQ7PbH8Gz+14DpdHXY6n+j2FkR1H/rN/9bHVjij9Ah8c+QBBXkF47brXZAkGq6iokNyWIcNEZK2b192M48XHm9z/5Zgv0SOqhxMrIrnNnPl3MNjMmUEQxYtfn1QqMxYtysE119Q0ecz5YLCUlBRoNI75dkbUEphM0lYjlSsgllqfI0dqMWiQH4YNi8ScOYWwN9c9ISEBXl4MmmkJ1o9dj+DXgqE1ahvte+W3VzCl5xTE+nPiF1nn3nvvxb333it7v0ePHkX37t1l77ctuOIK6eO49u834brrZCyGiIjstmSJDlqttPfnCoUZc+ZwLA85h5+fHwICAlBVVWVXP0VFRQgICODYdCJqcQSF5ZdjDAUjopZCFEUUFlpeWMtaXl5eDDFpA2JiPLFpUz2uucaA0lKPC/bdd18JHnmkyKbFYnJzc6FSqTj2i9qM1NRU9OrVCz179kTPnj3RpUsXBAcHW91eEASoVCr4+PggJCQEHTt2RL9+/S44Ji0tDRs3bsQXX3yB/fv3y1f8jwCSAVhZrqtCwXx9fdGjRw/06tULvXr1wmWXXYaUlBSb5qxpNBpoNBr4+/sjLi6u0X6dToetW7diw4YN+OKLL+x+n3He2bNnMWvWLLz33nuy9EeOIzUULCJC2sLJRCSdncOViIiIWqYvv2ywegV1W/TvX43PP09Dhw46AEBGRgZEkR8yiEh+47uNt/gBtaqhCidLTrqgIqK2wWAwSGrHQDAicoT4+Hh4ev67ElV6uifuvDPFpkAwANBqBdx2mwYZGY0nubmT40XH8fyO560+fsaPM2A2O+6jw4ZTGxC2MAzP7XzOqkCwS8MvxemHTuOb279hIBgRtRqCIGBSj0n468G/UP5YOWb0nYEwb9tWLxfNIg7mH8SodaPgM98HY74Ygx1ZO7Atc5uDqr7Qwj0L8epvr8rSV21treS2QUFBstRARK3brJ9mYeOZjU3uX3DdAtzc6WYnVkSO8sgjwViypBKC0PQzjUplxuuvn8PAgU0Hgp1nNpuRnp4OnU4nZ5lELYrUld8Fe5OeqFXKzNRi+HA1KipUWLMmFHPnxkGvlz7+IDo6Gn5+7h/Y31poVBq8P+J9i/tMZhOGrhnq5IqISE6RkSpER0v75nv4MMNCiYhaEq1WxPLl0gPOhwzRonNnz+YPJJJJTEwMlEql3f1kZmbKUA0RkbwYCkZELV1BQYHd40UthaZQ69S5szfWr9fBx+fvRYcUCjOeeCIfjz5qWyDYeVlZWfwWT61Wly5d8NBDD+HLL79EUVERzp49i7Vr12LmzJno37+/TYFg1kpNTcXMmTOxb98+HD16FHfccYc83/UNAH6x/vAAzwD7z2kFf39/DB8+HAsXLsSBAwdQWVmJnTt34vXXX8fYsWPRoUMH2eesaTQaDBs2DCtWrEB+fj6WL1+O+Ph4Wfp+//33cfx40wteUstQXCztd4qhYETOx5FtRETUKm3YIO8gLYXCjGnTivD22+cQEPDvhwuj0Yhz587Jei4iIgBQCSp0Du1scd+CPQucXA1R2yCKouSPgVydkYgcJSUlBUqlErt3+2LcuGTk5kr7e1NU5IGRI82oqZE2QdbVDCYD7t5wNwyi9RN5fjv3G7468ZXstZwqPYUuy7pg1LpRKNOWNXt8mHcYNty+AX9M/QPtQtrJXg8RUUsRqAnEG0PeQPGcYhx74BiGtx8OjdK2yTr1hnp8dfIrDFg9AGY478Pxk9uexLsH37W7H72++ZBISxQKBTQa6RObiKhtWP77cryx940m99/f437MuWqOEysiR3vwwSC8804FlMrG10Sl0owFC3IwaFDzgWDnMRiMWjuTySSpHUPB6L9KS/UYNgzIy/v3PdyPPwZg6tQE1NTY/vMSHh7ukMHwZJ+7Lr0LvaN7W9z3Z8mfsjwjEpHrdOsmLRTs2DEuBEVE1JKsXKlFaan0v81z5vB5j5xLEAQkJSXZ3Y/BYEB+fr4MFRERyUepsBx6yFAwImoJjEYjKioq7OojICCA8wHamH79/PDRRzXw8THh9ddzcOed5Xb1l56eLnkRI6KWJDAwEGPGjMGHH36IvLw8HD9+HG+//TZuvfVWhIeHO72ebt26Ye3atTh8+DAuv/xy+zs8ASDHukMDNYH2n68J3bt3xxNPPIGdO3eirKwMGzduxOzZs9GrVy9ZAsdt4e3tjcmTJ+Ps2bN4+eWX7b4eiqKIOXM4hq2lKymR9nMWHc0FdoicjV86iIio1amoMOG33+SbROfvb8TSpdmYOrUElsaE19bWoqSkRLbzERGdd1fXuyxu/+HsD06uhKhtqKurk9zW29tbxkqIiP4lCAISE1OwaFEkamvt+8Dz55/euP32ephM7jcY69XfXsXhgsM2t5v7y1zojPJMeK/V12LEZyPQaWkn/FXyV7PHq5VqvDTgJRTPKcaIDiNkqYGIyF10jeiKjXdsRN2TdVh7y1pcFnkZFGjZH4If3Pwg1h5fK7l9fX295LYcVEhEzfk5/WdM3TS1yf0DEgdgxfAVTqyInGXq1GAsW1Z5QTCYUmnGq6/mYPDgapv7Ox8MptVq5SyTqEUQRWnvO5w9oJZaNq3WhOHD9Th50qvRvgMHfHHPPUkoKbE+lCAoKMglg+PJOpvu2gSVYPm/56M/Popqne3XWiJqGXr0kHZfkJGhRmWltKBRIiKSlyiasWSJ9ECwyy7TYeBALsZBzqfRaBAaGmp3P+Xl5XaNZSMikpugsDwFlaFgRNQS5ORYme7SBIVCgZiYGJmqIXdy662B2L+/GNdfb//3ALPZjLNnz0r+ZknkSrGxsZg2bRp++uknFBcX44svvsC9996L6OhoV5cGANAZdThiPgJxkghcKUOHe6w7TM5QMA8PDwwcOBBLlizBuXPncPjwYcyfPx/9+/eHStUyFixRq9V46qmncPDgQSQkJNjV148//ojjx4/LVBnJzWQyS16MISqqZY8FJ2qNGApGREStzrffNsBgkOcS17GjFp9/no5+/WovelxRURE/vhKR7Kb3nm5xe1FdEQprC51cDVHrV1t78ev9xfj6+spYCRHRhby81PjiCyMCAuxfQWrzZn/MmlUlQ1XOc6zwGF7c9aKktlmVWVi8b7Fd5xdFEU/88gSCXwvGd2e+a/Z4BRS4rfNtqHq8Ck/3f9qucxMRuTtBEHDHpXfgyJQjqH2iFk/2exLRfi1joMh/mWHGhG8m4Psz30tqb8+Ko35+fpLbElHrd7LkJG5ceyPMMFvc3y64HX4Z/4uTqyJnmjw5CO+9VwmVygxBMOOVV3Jxww3SByWbzWZkZGQwGIxaHYaCkb2MRhFjxtRh376m3/efPu2FceOSkZnZfLCvr68vJxG1cKHeoXh10KsW9+lNetz02U1OroiI5NK7t7Tru9mswIEDepmrISIiKTZs0OLMGU/J7WfMYMgjuU5kZKQsC8JkZ2czUICIWgxBYCgYEbVMWq3W7vl8YWFhTf6do9bvkkuiZJsLYjKZkJaWxvt4cjs5OTlYunQpBg8eDA8PD1eX849zVefw5NYnEfdmHO7ZcA+OFB0Brgdwo50dnwZgxfSxAE2AnSf611NPPYWtW7di+vTpiIuLk61fR+jatSsOHDiASy65xK5+VqzgApctVUmJCUajtHCvmBjeMxE5G3/riIio1fnmG3n6GTGiAp98koG4OINVx2dlZcFotH+SPhHReT5qHyQGJlrct2jPIucWQ9QGbNyowMcfh2DfPh+Uldk2UNzLy8tBVRER/e2yy3yxenUtVCrLQQDWUqlEhITUoaCgQKbKHEtv0uPuDXfDKEp/1pr36zwU1RZJarvuz3UIWRiCV3e/CoPY/LPh5VGXI/3hdKwbsw4aFVeeJiL6X95qb8wbOA95M/Nw5qEzGNN5DHw8fFxd1gVMZhPGfDkGO7N22tx2+3YR2dlqmCVcqoOCgmxvRERtQnl9OXp/0LvJ++Fgr2AcnXKUA5TbgEmTgrB8eSXmzcvF0KH2Bz2bzWakp6ejvr5ehuqIWgazlBsxoMWsukuuN2VKFTZt8m/2uPx8NSZMSMYffzT9XUCj0SA+Pl7O8shBZl05C+2D21vc9+u5X7H+5HonV0REcujTR/qkpQMHGCJDRNQSvPGGtElpABAXp8edd3rLWA2R7RITE+3uw2QSsXUrF48lopZBqbA8ppahYETkajk5OXa1VyqVCA8Pl6kaclfx8fHQaOQZ86vX65GVlSVLX0Rtkdlsxo6sHRj9xWgkLU7CK7+9gtL60gsP6g1goB0nEQH80fxhgZpAO07i3sLDw/Hzzz/bFWD26aefcr59C5WbK/1bWHQ0xykSORt/64iIqFXRakVs2yZ9dTDg70nyzzyTh5dfzoNGY/3gcbPZjMzMTLvOTUT0X7d0usXi9q9OfuXkSohav6++8sHChVG4//4kXHttJ1x7bQfcf38iFi6MxLffBuLECQ0aGhoPOhQEgZNvicgpRo4MxPz5FZLbBwYa8cEHWbj55kqUlZWhvLxcxuocY/6v83G08KhdfdToa/DM9mdsanO86Dg6vNMBt399Oyp1lc0eH+kbiZ/G/YTfJ/+OpKAkiZUSEbUd7ULa4YsxX6D2yVpsuH0Dekf3hqBoGffUOqMOwz8bjt/zf7ep3eOPR+Cmm9rjuus64IknYvHNN4HIy2t+AqpCoYCnp33vM4moddIb9bj0vUtRq7e8NKVGpcGxB47BW80Jjm3FvfcG4e675V2RNSMjg8Fg1OYxFIwA4Omny7FypfVhvZWVKtx3XxJ27Wq8crxKpUJycjK/G7iRLeO2NPlMOuGbCdAb9U6uiIjsFRGhQmystN/dw4elh9AQEZE8Dh5swG+/SV+cb9o0A1Qq/j0n11Kr1YiOjpbcvqxMiUceicdNN0Vi794aGSsjIpKmqXcnDAUjIleqrKyEXm/f+9uYmBiZqiF3JggCkpOTZftuWF9fb3dgHVFbU2+ox4pDK9DtvW4YsHoA1p9cf/F7zX4AUuw4YVrzh7TlUDAAiIqKwqeffir5u3dFRQUOHDggc1Ukh/x86c9xMTEcY0PkbBx9RERErcqmTTrU1VlehaQ5ERF6hIcbsHp1Jm67rQIKCWMCGhoakJubK+n8RESWzLlyjsXtWZVZqNdzshaRnE6fVl/wz2VlHti3zxcffxyKZ56JxdixqejduzNGjEjF7NlxWL48DNu3+6G6Wp5VYYiIrDFnTjDuu8/2YLCUFB3Wrk3H5Zf/e/+Qn5/foid/Hyk4gnm/zpOlrw8Of4BjhceaPa5SV4kb1tyAru91xZmyM80er1Fp8Prg11EwqwCDUwbLUSoRUZszosMI7L9/P7RPajH2krGuLgfA34GSN6y5ASdKTlh1/IkT9cjL+/t5orjYA99/H4hnn43FDTd0wA03tMczz8Tgu+8CUVjY+GM4A8GIqCl9P+yL/Jp8i/sEhYBdd+9CrH+sk6siV4uMjERYWJisfWZkZKCurk7WPomczZ7VZdVqdfMHUav2zjsVmDcv2OZ2Op2Ahx9OwDffBP6zTRAEpKamMhDMzSQFJeHRvo9a3FdnqMMdX9/h3IKISBbduhkktTt6VN4gXiIist2CBdKf8fz9TZg6leN4qGUIDg6Gt7ftizrs2uWLW25ph+3b/aHXC7j7bg/U1Un/vSAikgNDwYiopRFFEfn5lr+nW8vT0xP+/v4yVUTuTu5vPFVVVSgsLJSlL6LWLLMiE7N/mo2YN2Iw5fspOF583LqGCgDDAEibSg6cA9DMZ4QAzwCJnbce/fr1wz333CO5/U8//SRjNSSXvDxpz3EBAUZ4eXEsBJGz8beOiIhalfXrzZLbPv98A774Ig1du2rtqqGyshKVlZV29UFEdF6kbyTCfcIt7nvn4DtOroao9aqoMCAnp/nJ+KKoQGamBj/+GIB33onAww8nYOvWQMcXSET0P959NwDXXmv9SrBXXVWDTz7JQFxc4y9XmZmZdk2cdRS9SY+J306EUZSnNjPMmPHjDJjNlp8ZRVHEjC0zELYwDD+m/9hsfwooMKHrBFQ9VoVZV86SpUYiorZOrVKjRt9yVjov05bh+k+uR1ZlVrPH/vCDrsl9eXlqfPttEJ58MhaDB3fEsGHt8Pzz0fjhhwCUlqrg6+srY9VE1Frcsu4WHCk80uT+z0d/jl4xvZxYEbUkERERCA+3/M5YqszMTAaDkVtraGiQ3NbDg8EfbdkXX1RixoxAye1NJgWefTYWK1aEAVAgNTVVtlXkybkWXrcQkb6RFvetP7Ueu8/tdnJFRGSv7t2ljSHLyvJARYVJ5mqIiMha2dkGfPutl+T2EydqERAgdTYokfwSExOhsHKV6vp6BV58MRoPPpiI8vJ/ny3PnNFg5syW8w2NiNompWD5+spQMCJyleLiYoiifX+D4uLiZKqGWguVSoXU1FSr7+GbU1paivLycln6ImpNzGYzfk7/GSM+G4GUJSlYtHcRKnWVtncUDOAyiUUYAVwkt08lqODtYXvQd2v0/PPPQ6mU9r5t7969MldDcigokPYNLTyc38+IXIGhYERE1GoYjWb8+GPzYR6WaDQixo3zwWWXRctSS25url2Dz4mI/teNqTda3P7JsU+cXAlR63XwYL3ktt27czAhETmXh4eAr77yRLt2TQeQnDduXCneeScbfn6WBz+YzWakpaXZPThCbi/tfMn6lX6stD1rOzae3tho+8fHPkbQgiC8tf8tq0LI+sb0xbkZ57D65tVQq9Sy1khE1JYV1BTgx7TmgxmdKa8mD9d9fB0Kay++auOvv1r/THDunCe+/joYc+fG4brrOsDDI9jeMomolXnilyfwzalvmtw/f+B8jLlkjBMropYoPDycwWBE/8NgaGYJ34tQq/ls31bt2FGDe+7xg9Fo/8SOr78OQkhIMn+e3JggCPjuju+a3D9q3agW9w6ViC6uTx9p33DNZgX279fLXA0REVnr9dcbYDRKm+KiUomYNUvaGGIiRxEEAfHx8c0e98cfXhgzJhVffmn5u9H77wdiw4ZKmasjIrKeoLB8fWYoGBG5glZrwsyZHjh3Tvo7eV9fX2g0GhmrotZCrVYjKSlJtv7y8/NRU8OQXyLg73kLnxz7BJ2Xdcb1a67Hd2e+gxnSwon+cbkdbUub3hWoCZQtINDdxcbG4sYbLc9tbc7p06dlrobkUHjxIdFNCgvj8x+RKzAUjIiIWo1t23QXrIxki/79dfD1FRAQEIDgYHkm4mVkZHBQKBHJYu5Vcy1uP1F6wqrgCiJq3pEj0tPqe/WSvkIpEZFUISFqfPutiOBgy/cCKpUZzzyTh8ceK4Sqmccko9GIzMxMB1QpzaH8Q3jlt1cc0vfsn2dDb/p7Ms/v+b8jZUkKJn47EdUN1c22jfWPxc6JO7F30l7E+sc6pD4iorbs0+OfwmRueatIpVek4/pPrkeFtsLifpNJxL590laE69RJi5AQhgYQ0b8+OPwBXt39apP777nsHjzR7wknVkQtWXh4OCIiImTtMzMzE7W1tbL2SeQMer304A6GOLVNNTU1+OwzLerr7V/0IyDAiO++0yMqit8K3F3P6J64s8udFveV1pdi+g/TnVwREdmjb1/p1/gDBzjei4jIFaqqTPj4Y+n31aNGaZGQ4CFjRUTy8PPzg7+/v8V9BgOwbFk4JkxIxrlzTYfamc0KTJ3qjZIShpcSkWsoFZbfozEUjIhc4bXXqvHZZyEYOTIVCxdGorra9mnysbEcA0pN8/b2RlxcnGz9ZWdnQ6vVytYfkbt6etvTmPDtBJwqPSVfp9EALD9yN6+s6V0BngESO22dRo0aJanduXPn+PevBSoqkhZ4FxHB5z8iV2AoGBERtRpffy190uCoUf8mSkdHR8uS9m8ymZCVlWV3P0REncI6wd+z8Rsq0SxizR9rXFARUevz11/SHo+jo/UIC+OkMSJyjc6dvbFmTT08PC58ue7nZ8J772Xhttssh5dYotVqkZeXJ3eJNmswNmDitxMdFgqTVp6G13a/hgGrB6DX+72QUZHRbBtvD2+8PfRt5MzIQf/E/g6pi4iorTObzVh9bLWry2jS8eLjGLZ2GOr0dY33Ha9HUZG0SUZXXtlgb2lE1Ipsy9yGyd9NbnJ///j+WDlypRMrIncQFhYmezBYVlYWVyomt2M0Sl9ARRA4dKqt0el0yM7OxkMPFeORRyQugfv/NBoR69bVo0cPX5mqI1dbffNqi99lAeDd39/FqRIZJykQkUOFhioRHy8tNOPwYZmLISIiqyxbpkN1tfTg3scek7aoMJEzxMbGQqm88Oc7O1uNiROT8e674TCZmp+MWVCgxv33cyItEbmGUrB8jTbDbHE7EZGjFBQ04M03/QAARqOAjz8OxbBh7bF2bTAMBuv6CAkJgaq51XapzQsICEBUVJQsfYki8NxzVSgtZcgvtV3VDdV4c9+bjuk8SWK7iwyNCdQESuy0dRowYICkdmazGUVFRTJXQ/YqKpI2TiYyUuZCiMgqHNlGREStgiiasWmTtEAOpdKM0aMvXF0pOTlZlgHg9fX1fGghIllcm3itxe0rDq1wbiFErdSpU9Im8bdvz0n8RORaQ4f6Y+HCyn/+OSGhAWvXpqNPn8ahJc2pqKhAWdlFlrxxghd2voC/Sv5y6Dme3f4sdmTtaPY4QSFgUvdJqHq8Cg/1fsihNRERtXVHCo/gz+I/XV3GRe3N3Yub192MBuOFzwA//ih9sNaAAdJW2yKi1ud06WncsOaGJidOJAclY/vE7U6uityF3MFgZjMwe7YWR47UytYnkaMZrJ3l8R8KBe/H2hqDwYD09HQAgEIBTJpUipdeyoVSafvkRaXSjBUrqjBkiNSlp6klUgkqfD76c4v7zDDjxrU3OrkiIrJH167SgkOPHZP27ZiIiKQzGs1Ytkz6399+/bTo2dOz+QOJXEQQBCQmJgL4+/3bF18EYcyYVBw/7m1TPxs2BGDFCusXiCMikougsDy3RjSLFrcTETnKk09qUV19YaBXZaUKr7wSjVtuaYedO/1gvsgrf0EQZF90iVqvkJAQhISE2NWHXq/A44/HYuHCSAwfrodW65hFk4laOtEsQmt0UNB1mMR2Fxn6yVCwCyUmJsLLy0tS29pajj9qaYqLpS3MEBXFUGgiV2AoGBERtQoHDjQgL09aKFifPjqEh1/4QlAQBCQlSY2IvlBJSQlXVCciu83sO9Pi9kMFh5xcCVHrYzKJOHNG2sDATp2kDSQnIpLTI48EY+rUCvTpU4tPP81AYqL0cJKCggLU1dkeKCaHg3kH8dru11xy7v/qH98fBTML8P6I96ESuCIcEZGjrT662tUlWOXnjJ9x5/o7YRT/fQ749Vdp1wmVyowhQ3zkKo2I3FilrhK93u8Fg2g50CZIE4RjDxyTZSETar3CwsIQKcNyjGYz8MorUVixIhxDhnji8GEOzCP3YDJJGzzPULC2xWQyIS0tDeb/zAYaNaoSS5Zkw8vLtgmMr75agfHjg+QskVqIoe2G4rqk6yzuy6zMxMu7XnZyRUQkVY8e0ianZ2WpUV7OyXlERM60dm09cnOljQEGgJkzOSGNWj4vLy/4+YXgoYfi8dJLMdBqpb3znTPHD2lpDppITUTUBIaCEVFLcPhwLdasCWhyf1aWJx56KAGTJyfi9GnLcwMiIyP57Z1sEhUVBX9/aQvE1NQImDo1AT/8EAgA2LfPF7fdVgejkddPansCPAPQL76fYzoPlNiOoWBWUygUSEhIkNSWc+tbnpISaaFgkZEcY0PkCpzRRv/H3n2HR1G9bRz/7mbTe0gjgZBGR3qxIqIoSLEhKIqCioIFFUVfFXtHFLsoVaRIEamioKJY6L2TAgnpvSfb3z/4gWISsju7yW6S53NdXMLOnLNPhGRn5pxzHyGEaBJWrFAeyHHTTTVP4vL09KRly5ZkZmYq7vuc1NRU2rdvj0YjH71CCGWujr4aD40HVYaqC17XGXVsTNjIkLZDHFSZEI3fqVNaiouV7VhwySUyqVAI4Rw+/tifY8dOolLZvkjl9OnTtG3bFjc35ZOurVVlqOLe1fc6fKJYdEA03972Lf1a9XNoHUII0ZzojDqWHF7i6DIsturYKh5c9yBzRszBbILt25XdS3TpUklgoHW7vwshmh6DycAlX1xCqa7myU/uLu7se2gfPm4+DVyZaIyCg4NRqVSKx7XMZpg+PZylS8/udJyb68oNN8APP5TRp4/8GxTOzWBQNlYsiz6aD5PJRGJiYq0Bcv37lzFnzikeeaQNRUV1j+lPmVLI008H2btM4URW37Ga4OnBVBmrqh175bdXeKDnA4T72B7IKYSoX/36KVvUALB9u44bb1T23EcIIYR1TCYzH3yg/Gd2+/ZaRoyQn9micWjTpiUtWhTb1EdJiYZ7763i999NaDTybEOIhpKXl0diYiKJiYmkpaWRlpZGeno6eXl5FBUVUVhYSFlZGTqdDp3ubLqAu7s7Hh4eeHh44O/vT1hYGOHh4YSHh9OuXTs6depEp06dCAkJcfBXVzcXVc2f1f8N4LdVfn4+R48e5dixY5w4cYK0tDQyMjLIzMyktLSUiooKKisrUavVeHp64uHhgaenJ8HBwURERBAREUHr1q3p3LkzXbt2JSYmRjaHEKIJeeYZMwZD3d/T27f7cPvt8dx6ayGPPppDcPDZcSRXV1eCguTZvrBeVFQUSUlJVFZaHs6bk6Nh0qQ2nDx54f3q+vV+TJpUxOzZAXauUgjnplKpWHzrYq775jpO5p+0b+dKlzxc5FLW3732EMrmytfXV1E7e98zCNuUlZkoK1P2LDYiQp5DCeEIkkwihBCiSdiwwVVx21Gjak7/B2jRogXl5eWUlJQo7h/O3rgkJSXRtm1bmVwuhFCsX2Q/fk/5vdrrH+/4WELBhLDB7t1aQNnkwF69Gi4wRwghLkajUdOxYzwnTpyweeDk3P1L+/btG+z+5ZXfXuFY3rEGea+a+Lj58OENH3J/z/sdVoMQQjRXGxM2kleR5+gyrDJ//3wCPAK4I/BV8vOVTXS4/HIt4LyhYCaziczSTJIKk0gqSKKoqoh2LdpxY9sbZdK0EHZ02ZzLSCtJq/GYWqVmy71baBOgbJdF0Ty1aNEClUpFRkaGVe3MZpgxI5xFi4IveD0vz5UhQ84Gg/XtK8FgwnmZTMpCxmXctvk4deoUer3+oud07VrJN98kM3FiNOnptT/7HzOmiOnTZRJ4U+ft5s3nQz/nvrX3VTtmNBsZsngI+x7a54DKhBDWuPRS5WO5O3caufFGOxYjhBCiVr/+WsWBA8pDvSZPNqBW1z4PWAhn89VXnuzcqbvovWdd/v7bhzffLODllyXUQgh7Ky8vZ9++fRw4cIBDhw5x8OBBjh07RlFRkdV9VVRUUFFRAUBGRgbHjtU8NyoiIoKrr76a/v37M3DgQNq1a2fLl1AvagsFM5ot28DSbDKhKzmDXvdPALva1Zu9R06zfft2tm/fzo4dO0hLq3ncrNr7Go3o9frz63xSUlLYs2dPtfN8fX3p27cv1113HYMGDaJHjx7yXFiIRur774v45ZcAi883m1V8910QGzf6c//9edxzTx4xMa3qr0DR5MXExJCQkFDneBNAcrI7Eye2ITOz5mv+OXMCaNmygNdek+t50by09m/Ntvu3cdvy2/jt9G/261hpWspFlqQHeAQo7LTpcndX9vzN01PC/J1JeroBpUl6kZFyLyWEI0gomBBCiEbv2DEdJ04ou6Ho1q2K6GiPi57TqlUrix/aXIxeryctLY2oqCib+hFCOK/63gVqUu9JNYaC/Zn6Z0N/qUI0Kfv3K1sw5upqols3513EL4RofjQaDTExMSQnJ9vcl9FoJDk5mfj4eDtUdnHb07bz3t/v1fv71EStUvNw74f5aPBHMuFLCCEc5OsDXzu6BEVmbp/JAZUH8Jai9gMHOj5YS2fUcbroNEkFSefDv5IKz/5KLkymylBVrc3ITiNZPnK5BIMJYQejVoxid+buWo8vumURl7W+rAErEk3Fud2tLQ0GM5th5swwFi4MrvF4fr4rQ4aoWL++lMsuUxaGKUR9UxoKptHItKnmICUlxeKd26OjdXzzTTIPP9yG48erT04eNKiUBQv8cHGR50jNwfge4/l056fszdpb7dj+rP3M3TtXNhkQwskFBbkQHa3j9GnrFzfs3Ss/64UQoqHMmKF806uQED333ScLC0XjEhzsxqxZxYwY4YrZrHy85e23AxgyRML8hbDViRMn+OOPP9i+fTs7d+7k6NGjGI2WBV3ZS0ZGBkuXLmXp0qUAdOnShVGjRnHHHXfQtm3bBq2lNrXNq6pr80ptUSr5JVpKK03o9XpOnDjBtm3b2L59O3v37rX4uZ1SpaWl/PLLL/zyyy8899xzhIeHM2bMGMaOHUv37t3r9b2FEPaj15t4/nll6wYrKlz45JMw3N1dee89bztXJpoTtVpN27ZtOXHixEWvFfbt8+LRR6MoKbn4OOTrrwcREVHIxImB9i5VCKcW5BnET3f/xMT1E5m/f759OtUpbHeRZeUSClZdWVmZonaBgfJzzpmkpyubXwPQqpXMsRHCEeQ7TwghRKO3fLkepcm0w4YZ6jxHrVYTFxfHiRMn6hy0qEtJSQkFBQXnF2QIIRonR+0C1b9/f1RlKszRZvjX+qwyfRl7M/fSs2VPJV9Os7Zu3boad4ay1rhx44iOjra9IOEQR48quzWOi9Pi7i4TC4UQzsXLy4uIiAiLF39fTFVVFWfOnKF169bVD2ZkwL59kJMD5yZneXhAaCj07AkRERa9R6W+knGrx2EyKx9csEV8YDwf3PCBBIIJIYSD5Ffks/7kekeXodiv5rdhoBl+fduqdq6uJq6/vmEWaJRoS2oM/UoqSOJMyRmrP4NXHl3JltNbGBgzsJ4qFqJ5mPbrNFYcXVHr8dcGvMadl9zZgBWJpsbSYDCzGT76KIz580Muel5BgYahQz1Zu7aEK6/0s1udQtiL0jFcFxcXO1cinE1mZialpaVWtQkJMTB//imeeCKKHTv+uW7v1aucVas8cXWV50jNyca7NhI5MxKDqfrckkd+eITRXUbj4yYL8IVwZl276hWFgh04INOrhRCiIRw5omPTJuVzbx56SIuHh1yPicZn2DB/HnywkC+/VL4wVqMxs3NnAb16ecozDiGscOLECX7++We2bNnCH3/8QU5OjqNLqubw4cMcPnyYl19+mcGDB/Pkk08yaNAgh9bkoqr554yJmsebTfpK8rJTycyvYvfu3WzZsoUtW7bYZU6bLbKysvjggw/44IMP6NmzJ88++ywjR46UuWNCOLlPPini+HHl6/CCg/U8/7xsfiRsp1ariY+P5+TJkzWOT/7yiy/PPtsardayz5XJk/0JCyvillsC7FypEM7NzcWNuSPm0q5FO5775TnbOyxX2M7/Ioc8LnKwmVJy76RWq4mMjKyHaoRS6enKQrDd3EwEBcl9kxCOIKPWQgghGr21a5UPZI4aZdmkL41GQ1RUFCkpKYrfCyA7W8OUKS7Mnl1FmzYXiZIWQjgVZ9kF6ttvv/3nhVCgM9AFaAEz/p7BktuWNGhNjV1ycjJ33HHH+VA2WwwYMEBCwRqxEyeUhYu2b68DJBRMCOF8goKC0Gq15Ofn29xXcXExHh4ehGi1sHAhbNsGe/ZAZubFG4aHQ69ecOmlcM89EBVV42kvbXmJE/knbK5TqZMFJ/lqz1c80vcRh9UghBDN2dLDS9Gb9I4uwzb934HOy88Gg50YAYa6n/l161aJr699dh81m81klWXVGPqVVJhEXkWeXd7n39JK0uzepxDNydf7v+bNP96s9fjYS8by4tUvNmBFoqkKCgpCpVKRnp5e43GzGT75JJS5cy8eCHZOYaGGYcO8WLeulKuukknzwrkoDQVzdXW1cyXCmeTm5ip+PubjY+Lzz1OYNi2SjRsDiI+vYsMGV3x8ZKpdcxPqE8prA17j+V+fr3ZMa9Ry09Kb+OXeXxxQmRDCUr16wdq11rdLTXUjL89IcLAEbAghRH167z09ZrOyeTueniYmT5Z5uKLxmjnTj99/r+T4cevnn/XoUc5bb6XRqpWelBQDsbGx9VChEE3Lfffdx88//8yZM2ccXYrFzGYzGzduZOPGjfTo0YP333+fa665xiG1qFU1L/6uaRMqbfEZvtuwlTVr1rJp0yZFm243hL179zJ69Gjat2/PSy+9xJgxYxxdkhCiBsXFBt55x7axyWeeKSUwUHmomBD/5urqSlxcHImJiRe8vmxZEG+91RKTSWVxX3q9mnvu8eXHH0u54goZgxfNi0ql4v+u/D/ig+IZ+/1YqgxVyjtTumTiIh8NAR4BCjttmsrKyhQF/LZp00bmZTiZzExl82uCg42o1fJ3KYQjyEwlIYQQjVpamoF9+9wVtY2N1dG1q+WTCXx9fQkODiYvT9lCul27vHn66dYUFGi4/fZy/vzThJubJOMK4Ywawy5Q5Pzv1xYgHtZfvR5uc3BNjYjZbOb++++3SyCYaNxMJhPDhxdy9KgnCQkenDrljtFo2UBM584173AmhBDOoGXLllRVVVFernTrm39kZ2Xh8dBD+G7bZnmjrCzYsOHsr1degaFD4eGH4frrQXX25+zfZ/7m/W3v21yfrV767SXGXDKGQE/lO/AKIYRQZsH+BY4uwT5aJMPto6EyAA6PhgP3QtqlQM33FpdfrgMsDwXTG/WkFKf8E/r1r/Cv5MJkKvQNe2/bNqhtg76fEE3J1tNbGb9mfK3HL291OQtvXdiAFYmmLjAwEJVKRVpa9UDHzz8PZfbsUKv6Ky7WMGyYJ2vXlnL11TIpWTgHk0n5c1qNRqZNNVVFRUVkZ2fb1Iebm5l33kkjJkbLE0/4ERamLKhANH7PXfUcc/bNIbkwudqxX0//yvoT6xnWfpgDKhNCWKJvX+Vzs7Zv1zFsmGwSJYQQ9SU728CyZcp/zt55ZwUhIT52rEiIhuXp6cKCBUb69zeh01l2zaLRmHjkkRzGj8/D5X/ZpRUVFeTn59OiRYt6rFaIxm/+/PmOLsEm+/btY+DAgYwYMYJPPvmEqFo2aKwvLuqaA5P/vWHDyZMn+fKTGSxZuY6srKyGKs1mJ06c4K677mL27Nl89tlndOrUydElCSH+5cUXS8nNVT63s337Sp54IsB+BQkBeHh40KZNG1JSUs5vxmXt2Ps5ZWUu3HqrB7//XkGHDl52rlQI5zey00ii/KMYsXQE2eUKx3eV5v5G1H5IQsEutM2adST/0qtXLztXImyl9FYtNNQISCiYEI4gs9uEEEI0asuXazGbLV9A92/DhukB6ybuhoeHU1FRYVWIjNkMCxe2YObM8PMhI7t2efPww4XMmSOLzoVwJo1xFygAEqE0sZQuu7rwyYefOGwXqMZk1qxZ/Pbbb44uQziB0tJSxo37Z1sInU5FcrI7CQkenDx57r8e5OZWf3DVtavlu7gIIYQjtGnThoSEBPR6vW0dqVSkfvopbYcNwy0z0/r2RiOsXXv2V8eOMHs2FX17MG71OMwo22nEngoqC3h96+t8cMMHji5FCCGalSM5R9iTucfRZdiXZxH0+fLsL70H7LsPdk+EnC78OyBs4MDq9xKl2lKSC5OrhX4lFSSRWpyK0WxsuK/jIlr5taJfq36OLkOIRimpIIlBiwbVeg3cxr8Nf4z/o4GrEs1BQEAAwAXBYF98EcKsWcomJZeUaBg+3IvVq0sYONDPHiUKYROdTqe4rZubhDw1ReXl5TWGISqhVsPbb3vi5yeBMM3dj3f9SPtP29d4LTdm1RgKni1Ao5apmEI4o379lH/e79xpZJhk/gkhRL358MMqqqqUhXqp1WamTpV7OtH49evnw//9XwGvvRZU57mxsVW8804aHTtWVTuWmZmJr6+vPOsQohlYu3Ytv//+O59++il33313g72vi6rmUDB9lZ6vv/6auXPn8scfjXuc67fffqN79+689tprPPvss6hUMkdYCEdLSKhk9mx/m/p4800trq7yjF/Yn6+vLxERETzyiJlvv7UtoDcnx5WhQ438+aeWli3d7VShEI1H38i+7Jywk2FLhnEo55B1jSuBdAVv6gkE137Y3922z5+m5scff1TU7sorr7RzJcJWmZnK7nNCQ5Vv2CeEsI3MRBFCCNGorVmjfDfHkSNrHpioS3R0NMePH7do1+nycjUvvRTJpk3VbwLnzg2kb99CHnxQgsGEcBaNfReoIwePOHQXqMYiNTWVZ5991tFlCCdRXl5+wZ/d3Mx06FBFhw4XTp4qLHQhIcGDhAR3Tp48GxTWp48MuAghnJtarSYuLo4TJ05csCujEmY3N5KWLaP9ddehtmGxLceOQf/+THu2OwnuCTbVZE+f7PyEib0n0q5FO0eXIoQQzcbXB752dAn1y7UK+n5+9lduRzg8CpKvw9UVclsm8spvpy8IAMspz3F0xRYZ1WkUapXyZ7JCNFclVSX0+qoXOmPN19L+7v4cnHgQtVq+v0T9CAgIQKVScebMGb76KoTPPw+zqb/SUhduvtmb774rZtAgmQgpHOv4cT1jxsQRGGggIMBIUJCBwEAjAQEGgoKMBAae/XNgoAF/fyP//lHr6iq7mDY1VVVVnDp1ym79tWzZEj8/CUAU0LZFWx7p8wif7vq02rFSXSl3r7qbb0d+64DKhBB1CQx0ISZGx6lT1gdk7N0rC8CFEKK+VFSYmDPHQ3H7wYMr6dDBy44VCeE4L74YwObNZWzbVntI3l135fHEE9l4eNQ+9+P06dO0aydzHoRoDoqLixk7diybN29m9uzZDRIIWNsYcfaf2YxbMq7e37+h6PV6nnvuOf78808WLlxIUFDdoY1CiPozb14pVVXKA72uuaaU224LsF9BQvxHUFAQw4YVsWKFGaPRtmeJyckeDB1awZ9/GvDykugH0fxE+Ufx531/csfKO9iYuNHyhgcAJVlFccBFpmkFeAQo6LRp0uv1LF68WFHbIUOG2LkaYaucHGWfV+Hhtq1HEkIoJ1eGQgghGq2CAiN//60sjCM8XM8VVyhrq1ariY2NJTEx8aLnJSe78eSTUSQn1z5x4Ykn/OjRo4w+fZTtdiaEEDWxxy5QueW57MncA8B1sdc1qZ2tJ0yYQGlpqaPLEE6isrLSovMCA4307VtO377/hIhFR3eqr7KEEMJuNBoNsbGxJCUl2dyXMTCQpCVLaDtypE39/NHKxIdue22ux54MJgNTN09lzR1rHF2KEEI0CwaTgUUHFzm6jIYTcgyueRWueRU9MMGKOSvOZnSX0Y4uQYhGx2AycMmsSyjWFtd43M3FjX0P7cPPQwJHRP3y9/cnP1/F4sX2WTBbWurC6tVV9OpllEUxwqHS0kwcO2bZghC12oy//z9BYX/8IRs/NCUGg8Euz8DOCQ4OpkUL23Z2F03LR4M/YtmRZeRW5FY7tuzIMqZcOoW+rfo6oDIhRF26ddMrCgU7eFACRIUQor7MnVtJXp634vZTp0q4vmg6NBo1Cxe60KuXgZKSC+dphobqef31NC6/vLyW1v/Q6XRkZmbSsmXL+ipVCOFkFi5cSGpqKt9//z0BAQH1+l4uapcaXzebjPX6vo6yYcMG+vTpw88//0xMTIyjyxGiWSosLOSuu3KIiSlnxoyWJCRYFyqs0ZiZMUMC30X9u+uuADIzC5g61fYx8yuvLCUlpZD27dvJpnKiWfJz92PtnWuZ8tMUPtn5Sd0NDMA2hW/W5eKHJRTsH3PnziU7O9vqdj169JDwcieUna3s80VCwYRwnKazsl8IIUSz8913VRgMyiYFDBmiRa1WPnHLw8ODyMhI0tPTazz+889+TJsWSXl5zYMf51RWujBqlCu7dukIDq7/HVqEEM2Hkl2gThWeYvXx1Xx//Hv+OvMXJvPZqPyOwR35874/CfJs/Au75s2bx6ZNmxxdhnAiOp1OUTu1Wi0DLUKIRsPT05NWrVqRlpZmUz8GA7y5cgCdbt7Mi6sHKeqj3BXuuwnMTjjXYu2JtfyS/AvXxl7r6FKEEKLJ+zn5ZzLLMh1dhlWCPIOI9I2klV8rgt2DSc1PJbU8lYyyDLRmraPLaxAxATH0iejj6DKEaHSumncVqcWpNR5Tq9T8cs8vxATKYgLRMGJj/di4sYwbb3QnP9+2gINx43KZODGXjIyzf5ZgMOEoOTmWLzozmVQUFmooLNTg6WnE0/PiY7mi8TCZTCQkJGA222ciqr+/P+Hh4XbpSzQdarWaNXes4fJ5l9d4fMS3I8iYkiHjR0I4oV69zKxebX27M2fcyMkxEBoqU62FEMKeTCYzH3+s/Gdrz55VDBhgXSCAEM4uPt6T6dMLmTgx8Pxr119fzEsvZeDvb/mzj/z8fAICAvD0tCxAXQjR+P3222/079+f33//ncDAwAuO6Y16juYeRWfUYcaMyWzCbD77X5PZdP41S17flbGrxvcvrmq6mzQnJydz5ZVX8vPPP9OxY0dHlyNEs2IymcjMPDuv6PLLy1mxIpHvvw/kk0/CKCiw7F7izjuL6dkzoB6rFOIfTz8dRHp6IR9+GFj3yTVwcTHzyivp3HxzEUYjJCUlERcXJ+MNolnSqDV8PORj2rVox+M/Pn5+bWON/gJq3qPx4nyBOrKq/D38FXTc9OTl5fHKK68oajthwgT7FiPsIjdX2TyZli2dcAGQEM2EjFQLIYRotFavVn4Redtttk/wDgwMpKysjOLif+4cDQb4+OMw5s8Psbif06fdGTOmlI0bNbi4yMMaIYR9XWwXKLPZzIHsA+eDwA5mH6yxj2N5x3h5y8t8cqMFKftOLCMjg6eeesrRZQgnYzQq26XMkqA9IYRwJgEBAVRVVZGXl6eofUmJmqeeimL7dh9cXK6lww0zuP2np63u5/lrIbGFohIaxJRNU9j74N5ad7cUQghhH4sOLnJ0CeepUBHmE0Yrv1bnQ7/O/Tr350i/SLxcvc63SUlJobT07OTmCkMFP6f/zJrTa9iZt9NRX0aDGNV5FCqVDOwLYY27vruL7enbaz3+9U1fc2XUlQ1YkRDQt68PP/1UzuDBkJenLBhs7Ng8pkzJ5tzHQkZGBmazmRYtnPiGTzRZOTnK2gUFGQG5/28KTCYTiYmJip/3/5eXlxetW7e2S1+i6bms9WWM7DSSlUdXVjuWXZ7NU5ueYubgmQ6oTAhxMX36KP/M375dz4gRMtVaCCHs6fvvK0lM9Kr7xFo8+aR9rv2FcDYPPRTIhg0lbNnizfPPZzBsWDFKhmVOnz5N+/btJUBAiGbk0KFDDBs2jM2bN+PldfYzdsH+BTy28THKdGX1+t6F2sJ67d/RMjIyuPrqq9m2bRtxcXGOLkeIZiMnJweT6Z8QGBcXGDmykMGDi5k3L5ivvw5Gp6v9WsfX18g770hIqmhYM2b4k5lZxLJlAVa18/Q08v77Z7jqqn8+s7VaLampqURHR9u3SCEakUf7PkpsYCyjV46u+Zo2FfhdYeeXAxe5ZVahws/dT2HnTYfJZGLcuHFkZ2db3TY8PJxx48bZvyhhE4PBTH6+sjEvCQUTwnFkpFoIIUSjVF5uYssWZTt9+fsbuP56++wS1rp1ayorK9HpdOTnu/Dss63ZscPH6n42b/Zl2rQC3n5bdlEXQtjfv3eB8vX35a/Uv1h9fDWrT6zmdNFpi/o4mne0fotsAJMmTaKoqMjRZQgnotPpFLd1d3e3YyVCCNEwwsPDqaqqoqzMusleqaluPPJIG06fPvuzz2hUcf/fTxDbcy+99i6xuJ/f28DHl1r11g3uYPZB5u2bx4ResjONEELUp6O5DXOPqVFriPCNqBby9e8/t/RtiZuLdaG/FRUV53/vpfFiRJsRjGgzgtSyVN4/+D77C/ZToC2w95fjcHd0ucPRJQjRqLz626ssOVz79fKL/V/k7m53N2BFQvyjVy9vfvqpjMGDITfXumCwu+/OY+rUrGoLEjMzMzGbzQQHB9uxUiHqpjD/nIAAWUTeVJw+fdqm5/3/5ubmJgssRJ2W3LqEHxN/rHEBwkc7PuKRPo8Q3yLeAZUJIWrTr58bKpUZs9n6BQu7dhkZMaIeihJCiGbsgw+ULyCLitJxxx3KA8WEcHZz5niwf38iERF6xX0YjUbS0tKIioqyY2VCCGf3999/c88997By5UpO5J1g/Jrxji6pycjNzWXo0KFs27aNwMBAR5cjRJNnMBhq3fzWx8fE5Mk5jBxZyIcfhrFxY0CN5z3+eDEREbI+TzQsFxc1Cxf6kZtbyq+/+lrUJijIwGefpdClS2W1Y2VlZaSlpdGqVSt7lypEo3Fj2xv5676/GLZkGGdKzvxzIBtYCphqa3kRfkDvOk5x90Otat5B22azmYkTJ7JhwwZF7V944QU8PSWg09nk5BgxGpXFC0VGNu/vCSEcSULBhBBCNEobNlRRWalsYH/QIC2urt52qyU2NpbVq1N49NEosrOV7agOMH16IH36FHHrrQF2q00IIc45dOgQHS7vgPFuI/mGfKvb+7v710NVDWfJkiWsXbvW0WUIJ1NaWqq4rbe3/a4lhBCiIUVFRZGQkIBeb9kE0l27vHniidaUlFz4GLG01IVbcuaxPeIQERmH6uynzA3uu0lRyQ1u2pZpjO4yWnb4EUKIetTKrxX7svbZ1IenxpNIv3+FfPm2uvDPfq0I9Q61++QMk8mE0VhzgESUTxQfXf4RAMklyfyU9hM/nPmB02Wn7VqDI7Rr0Y5uYd0cXYYQjcaiA4t45fdXaj1+Z5c7ee2a1xquICFq0LOnz/lgsJwcy8a37rwzn2eeqR4Idk5WVhZms5mQkBA7VirExeXnK7veCwqSULCmIDU19YLQXltoNBri4+NRq2Uyq7g4VxdXFt+6mJu+rf7A04yZIUuGkPBYggMqE0LUJiDAhdhYLUlJ1m/8tGePfC4IIYQ9bd9exd9/K18Q+MgjOjQa6zb6EKIxCQ11o0ePILKzs23qp6SkhNLSUnx9LQsjEELULSwsjM6dOxMbG0t0dDRt2rQhPDyc4OBggoOD8fHxwd3dHXd3d0wmE1qtlqqqKnJzc8nNzSUlJYWTJ09y+PBhduzYQUZGht1r/O677/jqq68w9zTbve+GpPZQ07NLTzp06EBkZCQRERFERkbi7++Pp6cnnp6etGrhhmdQm/OBKSkpKezfv5/du3ezdetWKiurh6vY4sSJE9x+++1s3rwZVW2DJEIIu0hPT6/znIgIPdOnp3HXXfm8915LDhz4Z31hVJSW556TuZ/CMdzc1Hz/vSdXX13B/v0XX/faurWWWbNSiIqqfeOboqIi3NzcCA0NtXepQjQaXcO6snPCTkYsHcGujF2QBKwAqhR2OASoY4qMf5UZ3nwT2reH3r2hmW0qVVFRwbhx41ixYoWi9j179mTSpEl2rkrYQ1qaEaXxQpGRLvYtRghhMQkFE0II0SitWqV8oOLWW+37EF6j0dC5c0u0Wtv6NZlUTJjgQ+fOFbRvLzuZCSHsL+d4DiwGRlvftmNwR7vX01BycnKYPHmyo8sQTqi8vFxxWz8/GSwUQjROarWauLg4Tp48icl08e1xvvsukDfeiMBgqPle50yaOzf3+IPf81vjqb140OL/XQfJjWTjtZzyHN764y3eue4dR5cihBBN1ktXv8RfZ/6ioLKgxuP+7v608vtfyJfvPyFf/w79CvQIdMhk26KiIovOi/WLZVKnSUzsOJHfM3/nqR1PoTPVPonL2Y3uPFomNwthob9S/+LeNffWerxvRF+W3LakASsSonY9evwTDFbXxjejR+fz3HOZtQaCnXNuwaIEg4mGIqFgzdeRI1mYzSV26UutVksgmLDKiPYjGNBmAL+l/FbtWGJBItP/ms4zVzzT8IUJIWrVrZtBUSjYwYMyzVoIIexp+nTl92L+/gYmTZK5taLpCwkJoaSkxOZAm9TUVDp27Cj3ukIoEB8fT58+fejduze9e/emS5cuBAVZPvFJrVaj0Wjw9vamRYsWdOjQgauuuuqCcxITE1m7di3Lly9nx44ddqv9ySef5MsNX9qtvwbhCcQCcUBruLn3zbza+9WLNskphSBVFi0j29CyZUv69OnDyJEjAaisrGTz5s3MnTuXDRs21Lrpl7V++eUXPv74Yx5//HG79CeEqK6qqsqqTb+7davkm2+S+eknP2bODCcjw42XX67AyyuwHqsU4uL8/DRs2GDkiiu0nD5d8/PIzp0r+OyzFFq0qPszKicnB1dXVwID5d+1aL7CfcL5YdQPXH7X5ST8kABKl5Z3BSxYHhmQXQKzpv3zQosW0LMnDB8O99wD/v4KC3B+f/zxB/fffz8JCco2QPL09GTBggW4uEiAlDNKT1d+bxQZKeNlQjiKymw2N+74dyGEEM2OXm8mLMxIYaH1F5GeniZyc8Hb2/4DnCtXFjF6tD8mk22L47p2reDvv93w9paLZCEamq2LWxvDLlAADAN6W9fkm1u+4e6ud9dLOfXt9ttvZ+XKlfX6Hlu2bGHAgAH1+h7C/k6ePIlOp2xRfpcuXexcjRBCNKyqv/8m0csLNNXvO4xGeP/9cL75JtiivkZdf5olm2KobehmSzQMHKe4VIdwc3Hj2CPHiA2MdXQpQgjRZKWVpLExYSN5FXlE+EacD/2K9I3E1915dy0/ffo0ZWVlVrfLKM/ggT8f4EzZmXqoqv4dnnSYzqGdHV2GEE4vpSiF9p+2R2vU1ni8tV9rkh9PRqOW5//CuRw6VM4NN7iSmelW4/GRIwt48cUMrFk/GBYWJsFgokFceWUZf/3lY3W7++4rZO5cmTzfWK1ZU8SYMb5Mm5bJ8OFFNvWlUqmIj4/H3d36oBjRvJVUlRA6I7TGaz+NWkPmU5kEe1n2jFWI/9q/fz89evSw+Px9+/bRvXv3+iuoCXjzzTKmTbP+mgEgM9NAeLjcxwkhhK1OndLTrp2m1k2p6vLEE2XMnKnsZ7kQjY3BYODEiRPYutzLy8uL2FiZ9yAEXHyOeJcuXRgwYABXX301/fv3JzQ0tAErgwMHDvDuu++ybNmyOjd5tMStt93Kgf4HSCpMskN1ddgBbFTQzg/oAnQCIoB/jT+sum4Vbf3bWtSNt5c7rcMD0dTyDObUqVO88sorLFq0yC7/bz09PTlw4ABt21pWnxDCOgkJCWi1NY+110WrVbFpUwDPPNMSFxcJRRWOd/RoBVdf7Upe3oWbc115ZSnvv38GLy/rPpfatGmDr6/zzqkTor6UlZUxb9483n77bbKyspR3FAo8ANQ8LeYC/U/D7wtqOejtDWPGwMMPQxMal9mzZw+vv/46a9assamfBQsWcO+9tW+mKRzrs8/KefRRb6vbBQYaKCiQcTIhHEVCwYQQQjQ6P/5YyZAhnoraDh5cwcaN9bdT2DPPFPLee7ZNHm/RQs8336QzZEi0fYoSQljMmlAwW3eBskR97QKFKzAJsKLc3RN20yuil/1qaCCrVq3itttus/h8d3d3RQNJEgrWOB09elTRIL9Go6FDhw71UJEQQjQQkwk6daI4MpIzH34I/7oGKitT88wzrfnjD+sGjqfdvJXXV19d7fUyN7hkEpxuhGtsR3YayYrbVzi6DCGEEE7m2LFjincS9orw4pqF15BanGrnqupX55DOHH74sKPLEMLplVSV0OajNhRVFdV43M/dj5QnUgjwCGjQuoSw1NGjFQwapCEj48IZkLfdVsBLL1kXCHZOaGhogy+eEs1P586VHD1q/djxM88U8u67jfCBheDvv0sZPNiL0tKzEfVTpmQxblweSvf+iYmJwdvb+omvQgB8tecrHlr/UI3Herfsza4HdzVwRaKpkFAw+9u8uZLrr1c232zVqgpuuaX+5psJIURz8eijZXz2mbJQL1dXE0lJRlq3dq37ZCGaiOLiYs6csX2zmYiICLvPbRWiMfr3HPGAgAAGDRrE4MGDGTx4MBEREQ6s7B8HDhzg/vvvZ8+ePTb39eLCF3k9+XU7VFUHa0LB3IBLgK5AFFDD87xBkYP44NIPrCrB1dWVNqGueFxk88ft27dz3333cezYMav6rslNN93E6tWrbe5HCHGh0tJSUlJSbOqjVatWBAQE2KcgIezgjz9KGTLEi/Lys2NaN91UyMsvp+Oq8NY2Pj4eDw8PO1YohHOqrKzk119/ZfXq1SxbtozS0lLbOvQD7gf8LTt9xHFY860FJ952G3z+OTTSeTEJCQmsX7+exYsX2+Ue5NVXX+Wll16yQ2Wivrz4YhlvvGH989l27bScOCGbrAnhKBJ5LIQQotH57jvlO3TcfHP9ZmG+9ZY/116r/Caze/dyli9PonXrMtLS0uxYmRDCVl26dOHRRx9lxYoVZGdnk5CQwJIlS5gyZQr9+/evl0kT8fHxTJkyhe3bt7N//37uvPNO1EpWXv2XHvjZuiYdghtfAFJBQQEPP/ywxedfe+21XHrppfVYkXAmJpNJ8a5f7u7yIEsI0cht3AgnTuD/66+Efv45/G/PgPR0V8aOjbU6EAzgrbVXsXjIp9Vef2ZQ4wwEA1h5dCV/pPzh6DKEEEI4EaPRqDgQzMXFhdigWLbcu4XWfq3tXFn9Gt15tKNLEMLpmUwmun/ZvdZAMDe1G3sf3CuBYMKpderkxc8/G4iM1J1/7aabChUHggHk5OSQk5NjpwqFqFlBgYuidsHBsodiY3T8eAW33OJxPhAM4IMPwpk+PRwlj/xbt24tgWDCJg/2epCuoV1rPLY7czffHPimgSsSQtSmXz931Gpln/+7dimfqyaEEOKsoiIjCxcqC2cEuOWWSgkEE82Ov78/vr7Wz9/4r4yMDPR6vR0qEqJxa9WqFQ8//DCbNm0iJyeH5cuXc9999zlNIBhAt27d2LFjB08//bTNfR1ZfYR2LdrZoSo7CAVuBJ4ChgNtqDEQDODBDg9a3b1eryc5s4qS7OO1nnPppZeyZ88exowZY3X//7VmzRp27ZIgeCHszdY1dK6urhIIJpzOVVf58vXXpWg0JiZMyOH115UHggEkJSXJtb1oEnQ6HWVlZaSnp3PgwAF+/PFHPv30Ux577DEuvfRSAgICGDZsGHPmzLE9ECwAGIfFgWAA/loLT/zuO+jUCb61JEGsYRmNRiorKykoKCAhIYG///6bJUuW8NprrzFy5EhatWpFu3btmDJlin1CiV98UQLBGoGsLGU7rYWGyjiZEI6kcXQBQgghhDVMJjM//OBW94k10GjM3HZb/aahazRqli51p08fLSkp1gWGjBmTz9NPZ+HqenYCWlFRET4+PvJQUggHcaZdoHRGHZnemfiN8SOwZSD5S/Mh08ZOjwJnAAvWIUf5R+Ht1vgWREyePJns7GyLzvX09OTLL7/k/vvvr+eqhLOorKxU3FZ2VxFCNHqffXb+t6GzZlHZsSNbA4fxxBNRFBQoe1xoMql4aOtEYvvu5bKd8wD4ORa+6GOXih3myZ+eZOeEnahVsreCEEKIs8/rlPLy8gIgNvBsMNjVC64mvTTdTpXVr9FdJBRMiLpcveBqThWdqvGYChU/jf2JuKC4Bq5KCOt17OjFzz9XcP31Zrp3r+DVV9MVB4Kdk5OTg9lsJiwszD5FCvEvRqOJwkJlzzJCQpRNdhSOk5Gh5cYbXcjJqb5aYtGiYPLyNLz5ZjpubpYFvoSHh+Pvb8XsbyFqsfGujUR9GIXRXD1E+sH1D3Jbx9vwcvNyQGVCiH/z81MTG6slMdH6DaD27pUxAiGEsNWnn1ZSWuqjuP2zz8qyF9E8tW7dmuPHjyve/PKcU6dO0a6dk4QDCeEgZ86ccXQJFnFxceG9994jJiaGRx55RHE/69at46PHPuLh3y3fXNnuYoGrgBjLTr+m5TV0CFC2ibXJZCI110SY/jjBEe1Q1TC44enpyeLFi4mOjuatt95S9D7nvPrqq6xfv96mPoQQ/8jNzVW8Sd85rVs3rg36RPNx220B/PZbNv7+uTb3ZTabSUxMpH379qhtHcgXwg52795Nnz5OvFggErgDsDJvO6DKipPz8+HOO88GhH39NXjZf0xw2LBhbNiwwe792oObmxsfffQREydOdHQpwgJKQ8HCwiQUTAhHkqs+IYQQjcr27VoyMpRFol96aRXBwcp2irZGSIgbS5fq8PS07ELXw8PE22+f4bnnMs8Hgp2TlpaGVmtptLQQwlbOtAtUibaE5UeWc+d3dxLyXghDFg/hyz1fku+XDxOAy+3wJn9bdlqnkE52eLOGtWHDBhYvXmzx+a+++ipxcbIwszmxZbcIHx/lkxSFEMLhkpPhp58ueKn144/z41KV4kCwc8rLXbg97XNS2/ShxB3uH2FTd05hT+YeFh5Y6OgyhBBCOImSkhLFbf8dNhAXFMeWe7cQ4es8u07Xpnt4d+fZQVoIJ3Xv9/fy55k/az0+d8RcBkQPaLiChLBRhw5ebN1q5PXX03Gx07Babm4uWVlZ9ulMiH8pLTWi1Sqb+hQeXv/jxsJ+SkoMDB1q5NSp2oNcfvwxgIcfbkNZWd3/Jlq0aEFwcLA9SxTNWIRfBNP6T6vxWJWhiluX39rAFQkhatO9u0FRu0OHlM1VE0IIcZZeb+aLL6wPZTzn6qsr6NlTeXshGjO1Wk2bNm1s7ken08nzOSEamYcffpg33nhDcXu9Xk/Z7jI6Bne0Y1UW6sDZue73YHEgGMBDHR+y+a2ziwyknUnCpK+o9Zw333yTZ5991qb32bhxI+npjWMTMCGcnclkIicnx6Y+vLy8zm/WJ4QzuuKKMHx9rUwlqoXRaCQxMdHm4GAhmjQV0A8Yj9WBYGBlKNg5K1fCoEFgw8azjU1cXBxbt26VQLBGJCdHWShYeLhlG7MJIeqHhIIJIYRoVFauVDY5C+CmmxruYcdll/ny/vtFdZ7XurWWRYuSGDasuNZzkpOT5UGNEA3kzJkzfPbZZwwaNAhX14af1Jldls3sPbO5cfGNhLwXwuiVo/n28LeUaP+z6FgNXA/caOMbngDK6j7NIQPCNiguLuahhywfGO7ZsydTpkypx4qEM6qsrFTc1tvb246VCCFEA1uwAP5zf6EG5vzajT49ar8vsVR6hjs3+//ME0M0pAbY3J1T+GL3F44uQQghhJOw5T7Cz8/vgj+3bdGWX+/5lXCfcFvLqlejO492dAlCOLU3t77JwoO1h8g+f+XzjO8xvgErEsI+oqO9aNfOvpso5OXlycJDYXcZGXrFbcPCZMpUY6HTmbjllkr27697Qc+OHT6MGxdDbm7t4fd+fn60bNnSniUKwSsDXqGNf80L9X9K+olNSZsauCIhRE169VLWLiPDlcxM5XPWhBCiuVu8uFLxZsAATz2lbLGaEE2Ft7c3QUFBNveTl5dHVZWSlc1CCEd5/vnnueGGGxS337xpM68MeMV+BdWlHTAJuAOItK5p//D+dA7sbJcyiku1nEpJR1+aWes5b7/9Nrfccovi9zCZTCxcKBtNCmEP6enpmM22BU1ERUXZqRoh6k/r1q3x8PCwS186nY7Tp0/bpS8hmpxQzoaBDQEU7pfur/TW+e+/4frrobRUYQeNg5ubG1OnTuXQoUP069fP0eUIK+TkKNs8L9y5pzkL0eTJDDchhBCNyvr1yicG3H67mx0rqdukSUGMG1dU6/EBA0r49tsk2rfXXrQfo9EoD2qEaMISCxKZ8fcMrph3BS3fb8mD6x9kY+JGdEZd3Y37AgNteHMTcLDu0xpbKNhTTz1l8e5LGo2GOXPm4OKi7KGGaLy02ot//tZGpVKhVsuttBCiEfvrrxpf9tSWsjr7KqJa2zYBVK024zPsLeZ3bzqLY47mHrV50okQQojGz2AwKA7u12g0Nd5HtA9uz6/3/EqYd5it5dWbUZ1HOboEIZzWssPLmLZlWq3HR3YayZvXvtmAFQlhX56ensTFxaFS2W/hbV5eHpmZtS/CEcJatoRzREQ07NixUMZoNDF2bAm//mr5Fs4nTngydmwsp05V/zv28vKSxUGi3vxw1w+oqPlzc9SKURhMTeeZqRCNVd++yucFbNtmwRwOIYQQ1ZhMZmbOVD7PpkMHLUOH2mfRtBCNWUREhF02uj116pRsVC1EI6JSqfj8889xc1P2LPOPP/5gWOwwuoR2sXNl/xEF3AeMARQOfT/U0fLNoC1RWaUlKb2YiryEGo+rVCoWLFhAZKSV6WX/snTpUsVthRBn6XQ6iott28w2ICAAjUZh6osQDUitVhMbG2u3f68VFRWcOXPGLn0J0RS0a9uWkVeGwkTOXp/aIMCW5RS7dsFNN4Gh6Y0Lurm5MW7cOE6cOMH06dPx9PR0dEnCSrm5ysbJWraUTRuEcCRZySyEEKLROHJER0KCu6K23btX0aaN7YOh1po1y49evcoveE2lMvPYY9l89FEqfn6WDaxWVFSQnZ1dHyUKIRygXFfOG1vf4JIvLqHtJ22Zunkqf5/5GzMKwiauAuJsKCax7lM6hjSeULDNmzczd+5ci8+fMmUKPXr0qMeKhLMyGo2K2tljcpUQQjjU3r21HorIOMSqkPvx9VX2M9IzLJXeb97GH27vKq3OKV0ZdaVdF8ELIYRonAoLCxW39fLyqvVYx5CO/Hrvr4R4hSjuv770iehDbGCso8sQwintSNvBmFVjaj3eq2UvVty+ogErEqJ+1EcwWH5+vgSDCbsJC9Py6qvpPPFEFvfem8eIEYVcdVUpXbpUEBmpw8ur5mccGo2Z4GBZINIYTJlSzPLlAVa3S0934557Yjl48J+JyG5ubkRHR9uvOCH+o1NIJyb0nFDjsWJtMfetvq+BKxJC/Fffvm6o1co2Adm5U8IzhBBCiZ9/ruLgQeWhXo8/bkCtlrFaIQBiYmJs7sNoNFq84aoQwjnExsYyfvx4RW2rqqo4sP8Arw541c5V/Us3zgaC2RC8cEXYFXQN6mqvis4zGAycytZRlHmsxuN+fn58/PHHivs/fPgwubm5itsLISAtLc2m9iqVioiICDtVI0T9U6vVxMfH222T+uLiYrKysuzSlxCNkaurK8OHD2fdunUcv/deVvyZw/KV4KG3rV+bQsEAtmyBt9+2sRPnERMTw0svvcTp06eZP3++jLk3UqWlJsrLlYWCRURIJJEQjiQz3IQQQjQay5bpAGW7nAwf7phkZXd3NStWqOnXT09uriv+/gbefTeNK64os7qv3NxcvLy88PW1fBdkIYTzqdBX0OPLHiQU1LzzkNVUwFDgM0BJfkcqoAcuknPUMbhxhIKVlZUxYULNE+1rEhcXxyuvvFJ/BQmnZTAYMJuVTfb28JDdR4UQjVhSEhQVXfSUXnuXMPeGntz58xSMRgsnV7tW4Dv4HXR9ZrBTW2l7nU6kS2gX5gyf4+gyhBBCOIHS0lLFbf39/S96vFNIJ36991eu+foa8iryFL+PvbVt0RaTyWS3iWhCNBWpxalcveBqTOaaF4RH+kay/YHtDVyVEPXHw8ODuLg4kpKSFD9T+6/8/HzMZrNM0hc2CwzUceutFw9vrapSUVSkobDQhcJCDQUFLlRUqHFxiWygKoVSb79dwMcfByluX1Sk4YEHYpgxI5Vrrqm06yILIWrzxdAv+O7Yd+RX5lc79s2hb3jisifo2bKnAyoTQgD4+KiJj9dy8qT1m1Lu3SufIUIIocSMGcqfJYSG6hk3zrPuE4VoJtzc3AgLC7N5k+nDhysoLCyja1cfO1UmhKhvDz74IF9++aWitidOnOCee++he3h39mftt29hAHaYUjux40TbO6mF2WwmLd+I1nCS0Mg4VOoLF8Hfeuut9OrViz179ijq+/fff2fkyJH2KleIZqW8vJyKigqb+ggNDZXn/qLR0Wg0xMfHk5CQYJfx97y8PFxdXWnRooUdqhPC+anVam6++WaGDx/O8OHDz/7bP3wYbrsNgNuPQlQx3HQnZCu87fXX2qHQN96Am2+GSy6xQ2cNLyYmhjFjxjB06FAuvfRS2WC9CThzRg9YPz4G0KqVsjAxIYR9SCiYEEKIRmPdOuUfW6NHKwsTs4eYGE/mzy/m+eddmT79DJGRyqOmU1NTad++PRqNfIQL0VjN2zfPfoFg5wQB3QHrxyPBAGQBrWs+HOIVQguvxvFw+NlnnyUlJcXi87/66is8PWXiWHNUVmZ9OOc58m9GCNGo7d1r0Wm3//Q0J27uyourB9V98lVvorr6TUo1lVBzJoLDeWo88XX3xc/dD1+3//33f3/2c/Or9Vgrv1Z0DO4og1hCCCGAs7soK2VJyH+X0C78cs8vDPx6YI2Lxx1hyaElrDiygn6R/Zhy2RRu6XiLo0sSwuHKdGV0n9UdrbHm2V++br4cnHgQjVqe4YumpT6CwQoKCgAkGEzYxGCoe2MoDw8z4eF6wsP/GaM9e68voWDObP78QqZNC7S5n8pKNXPmhDBhgrssDBINQq1W8/3o7+m/oH+Nx4cvHU76lPQGrkoI8W/duhkUhYIdOnSRndaEEELU6PBhHT//rHyezUMPafHwkNAiIf4tJCSE4uJiReNWZjOsXh3AO++0JD5ey65dJtzc5F5ZiMagZ8+etG7dmjNnzljd9sSJE6hVal4d8Co3fXtTPVRnm34h/ejeonu9v09usY4qwylaRYTg4n7hpl5Tp07ljjvuUNTvtm3bJBRMCIXS0tJsaq/RaAgJCbFTNUI0LDc3N2JiYkhOTrZLf5mZmbi6uuLn52eX/oRwZiaTic2bN1NZWUlRURG3jhhB1LhxoNOdP6dfOuyYDcPGwOEw698jQPlU0X/odDBuHOzYAY1wLfipU6dYtWoVhYWFlJSUMHDgQFxdZZykMUtPV77YJzJSQsGEcKTG9ykihBCiWUpJ0bN/v7JtRNq21dK5s7IEW3sZOtSfLl1SKS1VHggGZ3cTSUpKom3btjJpWYhGqqCyoH467oWyUDCAPGoNBesY0lFhpw1r69atfPHFFxaff9999zFw4MB6rEg4M1tCwSxZzC+EEE4rK8viU6etvp7jgxNZ/GNc7Sdd9wxc8R7mesjMcjOAnxb8fFrgG9rK4iCv/77m6+aLq4sMQAkhhLCNwWDAZFI2IK7RaCx+jtc1rCs/3/Mz1y68tv6eH1hJb9Lz55k/+fPMn7i7uHN568uZevlUhrQd4ujShMBsNvNH6h9klWUxIHoAod6h9fp+JpOJ7rO6U1hVWONxV7UruybsIsgrqF7rEMJR6isYLCNDRe/eLe3Sn2h+LAkFq4kEgDu3vLx85s51w2Sy/e8pOlrL2rUuuLrKFDnRcK5qcxU3tb+JNSfWVDuWUZrBM5ufYfqg6Q6oTAgB0KsXrFhhfbusLFfS0vS0aiVjDkIIYanp0/WYzco29PXyMvL447JxnxA1iY6O5sSJE1Y9oysocOHVVyP59dezIQEHD3rx7LOFzJxpeyC3EKJhXHPNNSxcuNDqdpmZmQAMbzec3hG92Z2x296l2WRix4kN9l6l5VUkp2bTJrQEN/9/Js7fdNNN+Pv7U1xcbHWfJ0+etGeJQjQbBQUF6PW2ra+LjJTNX0Tj5uXlRVRUFKmpqXbpLzU1lbi4ODw95V5aNH2lpaVs3LiRjRs38uSTT3IZMBEYBZxbgd6mGP6aB6NHwo9trevfLqFgcHZD988/h8mT7dRhwzp27BjHjh3j888/JzAwkDFjxvDwww/TqVMnR5cmFMjMVDYH2sPDRECAZBkI4Ugy40kIIUSjsGKFDlA2qWrYMD3g2FAwgNatW5GQkGDzg0u9Xk9aWhpRUVF2qkwI0ZCGtRvGK7+9ghn7LJo6LwLwA0oUtM2v/VCnYOd/UFNZWcn9999v8SSXsLAwZsyYUc9VCWemZKfEczw8lIWUCiGEU7Dy59+8Xy7hdJ90/tpVwyTQ4GOorni/zkAwLxcvLgm6hEj3MFqv+ZGAUh2+2rOBX766/wV/abngNV8tuBv/18FbT8HE56yqWwghhLC3wsKaA4As4eXlZdX53cO7s3nsZq5deC1FVUWK37c+aI1atpzewpbTW/DQeNA/qj/PXfUcA6IHOLo00QyZzCZuW34bq4+vBsDL1Yv3r3+fib3rb+HAwIUDSSpMqvGYChUb79pI++D29fb+QjgDDw8P4uPjSUxMtEsw2JYtvjz9dBhvvlnA009LoJ6wntForPukGsjmS86ruLiYrKxMPvpIxXPPtWLzZn/FfQUH69mwwUirVtZdkwthD8tHLidoehDl+vJqx97f9j6P9HmENgFtHFCZEKJfP+W7mW/frmfkSAkFE0IIS2RlGVi+XPlC5DFjqmjRwtuOFQnRdGg0GiIjI0lLS7Po/K1bfXjppUjy8y+8jvnkkwBuvLGYQYOU33sLIRqO0oX35zbRValUvHr1KwxdOsyeZdmkd3Bveof0btD31Gp1JGUYaa09gU/o2XE9Dw8Prr32WlatWmV1fwkJCfYuUYgmz2QykWXFBrc18fDwkI2+RZPg5+dHy5Ytz4d42mru3FxGjw4nJERZQLcQjdW2//16CngGeBTw5OzahHVL4YnB8Flfy/vzt1coGMCnn8Jjj0Ej37issLCQzz77jM8++4whQ4bw+uuv06tXL0eXJayQkaGsXXCwAbVaPleEcCQJBRNCCNEorFmjfGL2yJHO8XGnVquJi4uzenemmpSUlFBQUEBQkCyQEKKx6dmyJy9d/RKv/v6q/TuPAQ4oaFda+6GOIR2VVtNgXnjhBRITEy0+/5NPPiEwUHa4a850Op2idi4uyieICyGEU7DyPsRNX8mq1Mu4NHo/p07/E4ro4VNO0OO3kmGsfbeQbkHdeKbbM3QN6nr+NdfWj9D2hhuw6u7ODovMhRBCCFuVlChJ4D5Lyf1nz5Y9+Xnsz1y78FqKtdbvRtwQqgxVbErexKbkTXi5enFN9DW8cNULXNb6MkeXJpqJZYeXnQ8EA6jQVzBpwyROFZ7i7eveRq268KpTp9Nx8uRJjh49yrFjxzh58iRFRUWUlpZSWlpKWVkZ7u7u+Pr6nv8VFRVFp06d6NSpE7NSZvF7yu+11vPV8K+4Nvba+vpyhXAq7u7utG3bloSEBJvGu37/3ZcpU1pjMKiZOjUIk6mAZ56RcS9hHZNJ2U6m8qzXOVVUVHDmzBkA3N3NvPfeGd55x8C337awui8fHyOrVlXSqZOfvcsUwiJuGjcW3LyA21fcXu2YyWxi8KLBHHv0mAMqE0L06eOGi4sZo9H6BTi7dpkYObIeihJCiCboww+r0Gp9FLVVq808/bSEMApxMQEBARQVFZ0P+6lJRYWK998PZ/nymu+rjUYVEyZ4cOCAAX9/55hrL4SoXXR0tKJ2paVnJ4mb9JVc4taWrkFdOVhw0I6VKTexY/1t9nMxRqOR0zlGIvTHCYrsAMDVV1+tKBTs9OnTdq5OiKYvOztb8fjOOVFRUXaqRgjHa9GiBTqdjvz8fMV9mM2wYEEwH3wQzqJF5fz6qwteXjIeKpqfPM6Ggs0EPgRGARoTfPoDtM87Gw5msmAhg7/WjkUlJMDmzXD99Xbs1LE2btzIxo0bufPOO/nwww8JDQ11dEnCAllZyuZ4hYbadt0mhLCdPLkVQgjh9PLyjGzf7lH3iTWIiNBz6aXudq5IOY1GQ1RUFCkpKTb3lZGRgZeXFx4eyv7fCCEc5+WrX6ZcV86MbTPs23GIwnYXyUfqGOzcoWDbt2/no48+svj8ESNGcPvt1Sffi+ZF6UCim5sk2wshGjkF9w6h2SdY1fUuBvgvo7hYQ3i4ju7PT+LHguM1nu/v5s8L3V9gcKvBqP6zo40+IoKUOXOIeeCBeq1ZCCGEsLeqKuVbv3l7eytq1yuiF5vHbua6b66jRKs8lKwhVOgr2JCwgQ0JG/Bx82FQ7CCm9Z9Gz5Y9HV2aaMKWH11e4+vT/55OSnEKC25eQHpKOhs2bOCHH37g999/t+l7GYBQoO3/frUG/jd/curlU3mgpxXXuEI0AW5ubjYFg23d6sOTT54NBDvn2WeDMBoLeO45CQYTlpNQsKZDp9Nx6tSpC15zcYHnn88kLEzPRx+FW9yXq6uJhQtLueqqADtXKYR1RnYayRWtr+CvM39VO3Y8/zgfbv+QJy59ouELE6KZ8/ZW07atluPHrZ9Ptnev8k0thRCiOamoMDFnjvJx3htvrKB9e2XP1oVoTqKiojh+/HiNz0cOHfLkuedakZJy8WuelBR3Hn64iMWLA+qpSiGEvfj6+ipqZzabMZRmk5pTQkWljkc6PcJDfz5k5+qsd2nYJVwVeSU6vd5hNWQUGqgyJtAysg2dO3dW1IdWq0Wn08n8YiEsZDAYbAo+AvDz85PvOdHktGzZEr1er2jjSpMJ3nsvnEWLggHYscObUaNKWL3aB41GnmeK5ikTGA0sBuYDQcBjOyG2EO4YCWUXuVV2MYGb0c4Fff55kwoFO2fp0qX89NNPfPHFF4waNcrR5Yg6ZGZav1kOSCiYEM5AruiEEEI4ve++q8JgUHbBeeONOtRqZW3ri6+vL8HBwXbpKzk52eYdEoQQDU+lUjF90HQe7fOofTsOUNjuYqFgIc4bCqbVarnvvvss/jno5+fH559/Xs9VCWeXmVnF8uWB7N/vSVmZdbfEEsQphGj0FN6HdD+4iq/7vEPPnuXc/O40fiz4psbzWnu35qchPzGk9ZBqgWDnlPfrR+Yzz1j+5i1q3rFWCCGEaCj5+TruuCOGGTPC2brVx6r7CFdXV9Rq5UNxfSL7sOnuTfi6KZvgrdTkvpO5LuY6PFysvwcq05Xx/fHv6fVVLwLeCeDOlXdyJOdIPVTZNFRVVbF9+3Y+++wzxo8fzyWXXIJGo0GlUln9a8GCBY7+chqM0WTkt9O/1XzQAMsWLyM4Lpj4+Hgef/xxfvrpJ9sDwQBygL+ABcAMYDPcEHwD0wdNt71vIRqhc8Fgtd3/1eavv3x48sko9Prqn5HPPx/EG28U2KtE0QwoHSfVaGQPRWdiMBhITEysMWRQpYIHHsjj9dfTcHGpO4RQpTLzySfF3HJLQD1UKoT11o9Zj6vatcZjz2x+hoIK+dwTwhG6dTMoanfwYM3fz0IIIS40e3Yl+fnK77umTpUgZyEsoVaradOmzQWvGQzwxRchjB0bW2cg2DlLlgSwZElRPVQohLAnd3frg40B3FxMJKUXUlGpBeCy0Mvo2cLxmzu90u9B4gIL8PVW9nXZS0GJltMpKbSJCFTcR1lZmR0rEqJpe/31Yt59N5ziYuVzaVq1amXHioRwHlFRUXh6elrVRqtVMXVq6/OBYOds2ODHxInF9ixPiEZpLdAD2P2/Pw9NgD/nQauLfHuYVGd/2dX69WBjKKazKigoYPTo0Tz++OMYDMrGXkTDyMlR9g87LMz6zSKFEPYls9yEEEI4vdWrld9F3Xabc+ZfhoeHU1FRQUVFhU39mEwmkpOTiY+Pt1NlQoiGolKp+GjIR1QZqpizb459OlW64Ukt9+a+br5E+kYqLqe+vfrqqxw7dszi89955x0iI5336xEN4++/q3j99X/+HURG6mjbtoq2bato166Kdu20REVpqWlNmLe37EIqhGjkevRQ3LTnzhcJnrKYWaeO13g80C2QBVcvwFtT98/K/Lvvxv3YMYLWrbPgjR0/CU0IIUTz9tNPFRw+HMDhw158/XUwLi5mOneupE+fcvr2Lad793K8vGq+sfby8rL5/fu16sePd//IDYtuoExX/5OJXVQuTOs/jRDvEADWn1jPjG0z2Ja2DZ3xIqniNSjWFvPtkW/59si3BHkGMaztMF66+iXiguLqo3Snp9VqOXjwILt372bPnj3s3r2bI0eOyGQYBfZl7aOoqujCF3XANmAnUA7llNdvEZXAX/DLjl+44487eOmll+jUqVP9vqcQTuhcMFhiYqJF4Ux//+3N5MlR6HS1j9+9+GIQJlMBL70UZM9ShbiAq6sEejgLk8lk0c+Qm28uIijIwNNPR1FZWfvPkJdfLuShh+Tnh3AeAR4BvH/D+0zeOLnaMb1Jz9AlQ9n2wDYHVCZE89arl5lly6xvl5PjSmqqnqgouZYQQojaGI1mPvlE+RKV3r0r6d/fukXQQjRn3t7eBAYGUlhYSEqKG88/34qDB60fn5o82ZurrqqidWvZNFMIZ6U0eErj7oP+X+ORKpWKRzo9wv1/3G+v0qzWN6wz10ddikqlIsq3kGwXX/JKjA6rp7xCi7ZK2QYUABUVFQQFyTNJIepy5kwVH3wQQFmZC+vWBTBpUg6jRhVgzZBNcHCwTZvzCeHsYmJiSEhIQK/X13luSYmaxx9vw+7dNc/bnjs3kJYtC3j9dfmMEvWnd+/eNW78dDF6vZ6qqiqqqqrIzc0lOzubM2fOcPToUY4ePcr27dvJzc21W42pwADge2AQ0C0bds6GYWNgb0T1880q2BQHgxPtVgIYjbBnD1x/vaLm69evt+p8s9lMVVUVWq2W0tJSMjMzyc7O5uTJkxw9epQDBw6wf/9+jEb7XYN//PHHnD59mmXLluHhIc8WnFFOjrJrqPBwCQUTwtEkFEwIIYRTKy838fvvym4CAgMNXHed895AREdHc+LECZtvnqqqqsjMzKRly5Z2qkwI0VDUKjWzhs2i0lDJ4kOLbe9Q6dV9LQMpHYI7oFLZO97ePvbu3ct7771n8flXXnklEydOrMeKRGOxf/+FA/fp6W6kp7vx229+519zczMRF6c9HxR29r9aOnTwaehyhRDCvtq3Bx8fsGKSWKYPvH0VfNkLdNQcCAbwRu83CPUMtaxTlYqM11/HIzkZryNHaj/P0xMkWEEIIYSDbdly4Z+NRhUHD3px8KAXc+eGoNGYuOSSf0LCunWrwMPj7CB4QECAXWq4vPXlbLxrI4MXDaZcX79BRwNjBp4PBAMY1n4Yw9oPw2Qyser4KmZum8nOjJ0YTNYFWRVUFrDw4EIWHlxIiFcIN7W/iRevfpEo/yh7fwlOQa/Xc+jQIXbv3n0+BOzQoUMWTdoTdfsl+ZcLXzgObAQcsMmpwWBg2bJlrFq1iieffJKXXnpJQsVFs+Pm5kZ8fHydoT7bt3szeXKbiwaCnfPyy0EYjQW8+qpMUBa1sySIrjaamnaFEA3OZDKRlJRkcUhq//5lzJlzikceaUNRUfW/wwcfLOTll+XnhnA+j/V9jFm7ZnE072i1Y9vTt7Ps8DJGdxntgMqEaL769VN+LbB9u4SCCSHExaxaVUlSkvINM6ZMkUVmQlirZcuW/Pijkccea3XRIO2Lyc93Zfz4Kn76yQ0XFwnaEMIZ5eTkKGoXFhZW7bW+oX3pE9KHXbm7bC1LkZf6TDg/P12ldiHcpwIPtYr0YnerQyXsxcWGZ8bu7u52rESIpuv//q+KsrKza/yKizW8804E337bgilTshgwoJS6lq2o1WpCQy2coypEI6VWq2nbtm2d602zsjRMmhRNYuLF182+8UYQEREFTJok42fCebi6uuLq6oqvry8hISE1bsJ49OhRfvjhB5YtW8bu3bttfs9yYBiwFrgBaFkGf8yHdo9Bul/18z/pa+dQMLApFMxaKpUKT09PPD09CQgIoHXr1tXOKSkpYevWraxcuZLVq1dTXGz7xLu1a9cyYsQI1q9fj5ubm839CfvKyVF2z9OypXOuLRaiOZGntUIIIZza2rVVigcor79ei0bjvBecarWamJgYu/SVn59PSUmJXfoSQjQsF7ULC25ewMhOI23vTKewXS3PgTuGdFRcSn3S6/WMHz/e4kUi7u7uzJ4922kDzkTDOnrUpc5zdDo1x455snZtIDNmtOShh2KYMCFaFooJIRo/tRq6d7fo1FwvmDoI4h6HT/qB7iI/Au+IvYP+LftbV4uLC6fmz8cQGFj7Od26gUvdP7eFEEKI+vT33xefwGswqNm3z5uvvgrlgQdiuOKKjtx3XzRLlwbZNRjoyqgr+eGuH/ByVb6YyhKjO9e8EF2tVjOy00j+uv8vtC9o+ebmb+gT0QcXlfWf1bkVuczZN4c2H7ah5fsteeSHR8goybC1dIcxGAwcOHCAuXPnMmnSJPr06YOPjw+9evXioYceYvbs2ezdu1cCwezo19O/nv1NGbAY+BaHBIL9m16vZ/r06XTq1InNmzc7thghHMDNzY22bdvWujP3rl3ePPZYG7Ray8f8XnstiBdfLLBXiaIJ0mq1itvKBFTnkJKSYvXfY9eulXzzTTKRkRcOit10UzGff+5vz/KEsKuNd29Erar5c/C+tfdRZahq4IqEaN5693ZDo1G20HznTuXBpEII0RzMnKl8flZ0tI5RozztWI0QzYNarWbIkDB8fGzbpPqXX3yZObPIPkUJIezu5MmTitq1adOmxtcf7viwLeUo1jOkAzdGX1Ht9QAvMzEBJQ6bp1tVpfzZjI+PbDgsRF127Chl2bLqz/BPn3Zn8uQ2TJgQzfHjFw83ioiIqHUsUoimRK1WEx8fX+v6p8REd+6+O67OQLBzHn88gO+/L7JjhULUv06dOvH000+za9cuDh8+zH333WdzEKsOGAmcixjz0sOeWaCq4ZH/xraQaO8svT177Nxh7bQGLTnlOSTkJ7ArfRe/JP9CQn4CJvM/X6yfnx/Dhg1jwYIFZGVlMXv27BoD2qy1efNm7r33XoeF/YqaGQxmCgqUrcuJiJD1uEI4mtwFCSGEcGqrVim/+L/1Vue/2PTw8CAyMtIufaWmpqLTKU0EEkI4kkatYcmtSxjebrhtHZUrbFfLGolOwbY/zKkPb731FgcPHrT4/BdeeIEOHTrUY0WiMTl+XNlir3bt5DNWCNFEXHrpRQ8XesC0gRDzBMy4Airr2OxehYpnuj2jqBSzpyeJK1Zgqm2iRr9+ivoVQggh7CUnR1fnpMP/0unU7Nrlw5Ej3nafjNi/TX82jNmAp6Z+FkVp1Bpu6XhLneep1Wru7nY3OyfsRDdNx1fDvqJ7ePdaF7hfTFZZFp/v+pzImZG0+qAVU36aQl5FnpLyG4TRaOTQoUMsWLCARx99lEsvvRRfX1+6d+/OAw88wKxZs9i9e7c8p61HWoOWP1L+gAzgKyDB0RVdKDU1lSFDhjBjxgxHlyJEg3N1daVdu3bVPv927/bikUfaUFVl/efEG28E8dxzEgwmambL562EgjnemTNnKC9XNrAVHa3jm2+S6dChEoArryxj2TJfXFxkGpxwXlH+UfzfFf9X47EKfQW3L7+9gSsSonnz8lLTtq2ya4n9++XzRgghavP331Vs26b8+fXDD+twcXH+eb9COKOICHc++UTpBNJ/vPyyP4cO2d6PEML+/v77b0XtalvY3zukN5eGXnweWX14qe8DtYaceHm6EedfgKeHbYEPSpSWlipq5+LigqenhJoKUZdnnlFhNNZ+rb9jhw+jRsXx0kuR5OZWDwd0c3MjICCgHisUwrm4uroSFxdX7fU9e7y4555YsrPrmNz9L3q9mnvu8eXPP0vsWaIQDaZz587MnTuXY8eOceutt9rUVxlwC5D/vz+HVcDYGpYnmlUw8Ua4yEeX9fbuteg0k9lEcVUxKUUpHMw+yNaUraw7sY5vDnzDpzs/5Y2tbzB101QeXPcgo1aM4oZFN9BvTj86fNqB8BnheL7picebHoTNCKPdp+3oO6cv131zHe0+bcegbwZRVFVU7T09PDx44IEHOHToEHPmzCEsLMymL/Xbb79l+vTpNvUh7Csry4jJpOwfdESEjIsJ4Wgqs0QtCiGEcFJ6vZmQECPFxdbv9uHlZSQ3V4WXV+O44Dxz5gzFxcU291NV5UaPHvEy4VmIRqrKUMVN397EpqRNyjrYBCgZ870Z6F795TV3rGFE+xHKaqknhw8fplevXhYv9unSpQt79+7F1dWyh94DBgzg999/t7quLVu2MGDAAKvbiYal15vw9QWt1vrPyalTC5k+PbAeqhJCiAZ2+DBcckm1l0vc4aN+8P7lUGxF9kkH/w6suG6FTSV57dtH7D33VD+wfz9062ZT30IIIYQtvv66kHHjlN0HvP9+AVOm2Hu7uLN+PfUrQ5cMpcqgfLfimtzY9kY2jNmguL3BZOCLXV/w1Z6vOJJ7BDPKhyCj/KMY02UMz175LAEeAYr7sbcFCxYwfvx4R5dRo/nz5zNu3DhHl1HvtqZs5eopV8NawODoai5uzJgxzJkzRxYCiGbHYDBw8uRJTCYTe/d6MXFiGyorle02ec4zzxTy7rvybE5cKDc3l+zsbEVtO3bsiIuLbf8uhXJZWVnk5dkeBFtWpuazz8L4+GM/AgMtX/wghCO1ntmatJK0Go/9cs8vDIwZ2MAVCWe1f/9+evToYfH5+/bto3v37vVXUBM0Zkw5S5d6W90uONhATo5LrYvYhRCiObvllnJWr7b+ZytAQICBM2fU+PjI3FchbDF2bBGLFgXY1EePHhXs2OGBq6t8PwrhLAoLCwkNDcVgsG5wzN/fn61bt9a6mdX+/P2M/W2sPUq0SLfgduy7Y3Gd91Mmg4H0iiCKy7QNVBkcOHCAu+++2+p20dHRnDp1qh4qEqLpWL68iNGjAyw+39PTyP3353HPPXl4ep6ddxIXFyfj7qJZKi0tJSUlBYDNm/34v/9rhU6n7Do9NFTP77/r6dDBy54lCtHgVq1axQMPPEBhYaHiPoYC6//3+90R0OfBms+LKoJHd8L9+yCosu5+zUCV5uxajCIPKHb/3389oCjAg+J3X6OoqohibTHF2uKzv68qPv9aUVURpdpSm+Zd1mXaVdN4feDrFz2noKCABx54gO+//17x+2g0GrZu3cpll12muA9hP9u3V3HZZdZtkHzO6dN62rSR+RhCOJI8pRVCCOG0Nm2qUhQIBnDNNVWNJhAMoHXr1jbvSH3smAc33xzNtGlF9ilKCNHgPDQefD/6ewZED1DWwRmFbxxR88sdgzsq7LB+GI1Gxo8fb3EgmFqtZs6cORYHgomm79ChCkWBYFBjfo4QQjROXbrAVVed/2O5K0y/AmIeh5cGWhcIBtAzuKfNJVX06EH6tGkXvnjZZRIIJoQQwuF++0354s4hQ5QNoFtiYMxA1t25Dg+Nfd9jdOfRNrXXqDU81u8xDj18iIoXKph+3XQ6tOiACuv/P6YWp/LOX+8Q+G4gcR/H8epvr1KmK7OpPtE0vPfxe7AKpw8EA1iyZAk333wzWm3DLVgQwhloNBratWvHyZOeTJpkeyAYwPTpgcyYkWuH6kRTYu0CuH+TQDDHKSgosEsgGICPj4nZs70lEEw0KhvGbKj1Hmnk8pGYTKYGrkiI5qtXL2Xt8vI0pKY2gptSIYRoYElJOtatU76wePz4KgkEE8IOPvvMh5gY255JBwYaOH481U4VCSHs4ZtvvlH0PPTyyy+vNRAMoHuL7lwRdoUtpVnlxT73WxSwrNZoaOVTTJh/w4UxHzt2TFG7tm3b2rkSIZoWnc7ECy9YN7elstKFTz8NY/jwdqxb54+np7cEgolmy9fXl4iICJYvD+Spp1orDgQDyMlxZehQNZmZModFNG633nor+/fvp6MNG3dsAL793+/djOBirPm81AB45npo+RS0fxTuugWm3AD3j4CRo+C6e6DPBGj7GIROBfcXwWsatHwaOj4Kl06AwWNh9O3w0KAqnvn5Gd768y0+2/UZiw4uYv3J9fyR+geHcg6RWpxKibakXgPBAP4882ed5wQFBbFq1SqmT5+ueIMUg8HAgw8+aNO8DmE/6enKxqBVKjMREcoyHoQQ9iMjJ0IIIZzWd9/VcjdlgZtvtl8dDSU2NlbxTdKaNQGMHRtLerob06cHsmpVkX2LE0I0GC9XL9bduY7LW19uXcNKIF3BG3oCwdVfdnNxIyYwRkGH9ee9995j9+7dFp//6KOP0q9fv3qsSDQ2e/boFbft08fdjpUIIYSDPfwwVRr4qB/EPQ7PDoIChfOzuyYU26WkwlGjKBg58oIahRBCCEfbtk3ZfUBkpI6OHet3V8XrYq9j9ejVuLvY517FzcWNm9rfZJe+4Gzw+dQrpnLs0WOUPVfG69e8TnxQvKK+kguTeeX3V/B724/2n7bnnT/focpQZbdaReOxePFi1s9cX/eJTmTTpk2MHj1aJjiJZkej0TBoUBt69LBgq1QLdO1awZVX5nLq1Cm79CeaBr1e+fNe4RilpaVkZGTYrb/o6Gg8POovjFeI+tA1rCv3dr+3xmOFVYU8uL6WrciFEHbXr5/ykNBt2+Q6RAgh/uv99/UYjcrmv7q5mXjqKbm2F8Ie/Pw0zJunQ6OxfhGxl5eR115L48MPU1GpyigqKrJ/gUIIq2m1Wj744ANFbYcMGVLnOY90ekRR39bqHBTLLXHXWHy+Sq0ixLuKqIDKiwab2YuEgglRPz74oIjERGXX+tnZrnz4YTghIa3tXJUQjUtQUBAdO3pjj4/D5GQPhg41Uloqc1hE4xYVFcWf7u4o3PsDgCeB7aEw8F4w1jFcoNPAyWBY0g1mXgbzesJ3neCXWNgdCYktINcb9I1gb7J2Qe0sPnfq1KnMmzdP8Zr3w4cP8/HHHytqK+wrM1NZ2FxQkBFX14YLaxZC1ExCwYQQQjglk8nMxo3KFrRpNCZuvbXxTRDQaDRER0db1UanU/H66y2ZNq0VWu3Zj3WTScWECT6cOFFRD1UKIRqCj5sPP4z5gd4RvS1vdABQEtodR413Be1atEOjdp4k7xMnTvDqq69afH5UVBRvvvlmPVYkGqODB5W18/U10rZt47u2EEKImuiMOmbF5BP/hJonhkC2j239XTl/A5779tlemEpFxosvUt69O4SHw+23296nEEIIYYP0dC0nTijbafTSS+0TgFKXG+Jv4PvR3+Pm4mZzX0Pih+Dv4W+HqqrzcvNiWv9pJDyWQPGzxUy7ahrRAdFW92PGzMn8kzz3y3N4velF58868+H2D9EZdPYvWjidNWvWMG7cOOp5M8R6sWbNGu655x7M5kZYvBA28PXV8OOPHlx1VZlN/XTpUsGsWafx8TFRXl5OcnIyJpOyHSxF02I0KttgqiEWkInqKisrSUlJsVt/rVq1wsfHxgdbQjjI3OFzCfQIrPHYvH3zOJx9uIErEqJ56tXLDY1G2XXlzp1yPSqEEP9WWGjkm2+Uz6u59dZKIiOdZ56aEI3dgAG+PP54oVVtevQoZ+XKRG65pYhza33T09NlwwshnMD06dMVPVcLDQ2lf//+dZ53SdAlXB1+tZLSrPJinwdQq6x/NuvnpSY2oAhXV9d6qOoss9nM33//rahtnz597FyNEE1HXp6O997zs6mP558vxc9P7hWEuPPOAN5917pr/Nq0aKEnOTlJxtxFoxfk6ckGIEZh+yzgqksgv373fnU6Y7uNter8cePG8e677yp+v3fffZeKClnn7miZmcrahYQom5cjhLAvmekmhBDCKf31l5asLGUP7q+4ooqgoEYQq1wDb29vwsLCLDo3K0vD+PExLF/eotqxggINo0ZBebkMxgrRWPl7+PPT3T/RNaxr3ScbgG0K36hLzS93DO6osEP7M5lM3HfffVRVVVncZtasWbIYRFRz7JiyQcG2bbW4uMjtsxCicTOYDMzfN5/2n7Zn0o+Pku5jn8HczrkQM24cmpwc2ztTqzk9Zw6Vn80Cd2Uh0UIIIYS9bNyofCJC//4NNxA+pO0Qvhv1Ha5q2yZBj+482k4VXZyfhx+vD3ydU4+fIn9qPk9f/jSt/FpZ3Y8ZM0fzjvLkT0/i+ZYn3WZ144tdX2AwyfPQpujkyZPcfffd9ll8pOLsbLCrgTHg+7QvqqkqeBF4DngCeAAYCvQAjZ0mGC9dupQZM2bYpS8hGhMfHw0bN3owYECpovadOlXy5Zen8fX95x62oqKC06dPyyRlofhzQekutkI5nU5HcnKy3foLCwsjICDAbv0J0dDUajUrRq2o8ZgZMzcuubGBKxKiefL0VNO+vbKg8f37ZexYCCH+7dNPKykrUz5n95lnZJG/EPb21lsBdO9e91iXRmNm8uRs5s8/RevW+guOmc1mTp06VV8lCiEs8Ndff/Haa68panvvvffi4mLZ5/PDnR5W9B6W6hAYzcj4axW39/BwJ86/AG/P+plPdujQIbKyshS1HTBggH2LEaIJefHFcgoKlF/rd+5cySOPBNivICEauaeeCmLKFNuCwe64I58ZM87g4qInKUmCwUQjFx5OGPAdoHTmpGE7Z9dkNhPdw7tzResrrG43depURo4cqeg9c3JymDNnjqK2wn6yspRtZhoaKp8TQjgDGZkWQgjhlFauVL5w7qablF2gOouQkJA6g2x27PBm9Oh4Dh6sPYr64EEvHnzQtt3XhRCOFeQZxOaxm+sO6PoLKFbwBr5Au5oPdQrppKDD+vHxxx9btQPTmDFjGDJkSD1WJBqrEyeUTQjo0EHZZHAhhHAGRpORJYeW0OmzTty39j5OF522W9+RJRBQBWqTifiRI1FVVtrUn8kEH86K4sZPBqLXywCCEEIIx/rtN+VhETfe6GnHSuo2rN0wVo5aqTgYzFPjyfD2w+1cVd2CvIJ4b9B7nHnyDFlPZTG572Ra+rS0uh+T2cTB7IM8/MPDeLzhQe+vejN/33yZuNZEVFVVMWrUKMrKbHzW7QlcCzwJ3AtcA7SDUp9SzN5mcAHcgQCgFdAHwsaEUZxdzPr16xk0aJBt7w88//zzbNumNNlfiMbL21vD+vWeDBxoXTBYx46VfPXVafz8qv88r6io4NSpU/KzvplT+vdv6UI4YR8Gg4HExETMZvuM4QcFBRESEmKXvoRwpGtjruXG+JrDv86UnOGFX19o4IqEaJ66dVM2P+3gQTdMpsY9P00IIexFrzcza5bygI5rrqmgRw/ZMEoIe3NzU7NwoRkvr9qvd2Jjq1i8OIkJE3Kp7XGJVqslxx6bxAkhrHbo0CFGjBihaHOEsLAwRo0aZfH5nQI7cW2E8tCuukzrcz8uatuey2rc3Ij2KyLI17bNsmry448/KmoXHR1NdHS0fYsRook4erSCefP8berjnXd0aDSy/F2If5s+3Z877ihS1Pbxx7N4/vnM89f+Wq2WlJQU+xUnREPr2ROAHoDiUbVy4MSFL8UWwLTfIdq2DD6nNLnvZMWbqH3xxReKx+m/+uorRe2E/WRlKbumklAwIZyD3BUJIYRwSuvXK3tYr1KZGTWq8U8QiIqKQqOpviOC2Qzz5gXz4IPRFu2YsGRJADNnFtRHiUKIBhLqHcrP9/xMfFB8zSekAr8r7Pxyar0jqDOIrIEkJyfzwguWP55r0aIFH374Yf0VJBqtwkI9aWluitp27iwPsYQQjY/ZbGbVsVV0m9WNu1bdRUJBgt3fo8u/5n1qCguJGT8ejMoW0FRUqHjqqdbMmRPCb7/5MmmSksRTIYQQwn62b/dQ1C46Wkt8fMOGggGMaD+C5bcvR6O2fpfVoe2G4uN28U0K6luYTxgfDfmIjKcyOPPkGR7q9RCh3qFW92M0G9mTuYf71t6H+5vuXDrnUpYeWtqsQ2OO5h5lyaEl7M7Y7ehSFHn88cc5cOCA8g5UwGXAZOAqwM+yZl6uXhyceBAvDy+GDh3Kpk2b2LhxI+3bt1dcisFgYPTo0RQUyDN70fycDQbz4rrrLAsGa9/+bCCYv3/t95iVlZUSDNbMGRU+g5BQsIZjMplITEy02/epr68vERERdulLCGfw3ejv8NTUfP/4zp/vkFaS1sAVCdH89O6trF1+vobTp/X2LUYIIRqphQsryMhQHs7x1FPKN+gQQlzcJZd48+qrNc+9GDMmn2XLkujUqarOfnJyctBqtfYuTwhxEZs3b6Z///6Kx5See+45PDysG++e1GmSoveqS9uAKEa3tX3zHQCVi5oI3zJaXmTswFrl5eV8//33itoOH3KN3eoQoqmZOtWATqd86fr115cwbJhtoWJCNEUuLmoWLvTj2mst35BLozHz5ptpPPBAHv/NAiovLyctTcYiRCPVq9f5304FrN+K9H/2//Pbdnnwx3x4fQskfgxrloJv3bfNjUILzxbc0eUOxe2Dg4N57rnnFLU9cuQIu3c3zrmLTUVOjrJnsOHhskGOEM5AQsGEEEI4nYMHdSQnKwvt6NlTS2Sk9QvfnI1arSY2NvaC18rK1EyZ0pqZM8MxmSy/CH/uuQC2brVu93UhhHOJ8I3gl3t+oY1/mwsPZANLASVrKfyAi0xw7Rji+FAws9nM/fffT0VFhcVtZs6cKTvEixrt3Gn5v6P/6t5dFokJIRoPs9nM+pPr6fVVL25bfhtHco/U23t1+c9msF5HjhDx4otn04ytkJWlYdy4WH7++Z9JHHPnBvLeexKWIIQQwjFSUqpISlIWCtavX6Wdq7HczR1u5tvbvsVFZd09zOjOo+upImVa+bVi1rBZZD+dTfLkZMZ1H0cLzxZW92MwGdiRvoMxq8bg8aYHV82/ijXH19RDxfbj5uZGixbWf621ef/v9+nyeRfuWnUXfWb34cF1D2IwWb+buKP88ssvtu0U6AXcDdwAWJHV56JyYcf9Owj1uTCYbvDgwezevZvbb79dcUlnzpzh6aefVtxeiMbM09OF9eu9uf76koue17ZtFbNnnyYgoO5FPZWVlSQnJ0swWDNltvL5wzk1bcwk7M9kMpGUlITBYJ9rDw8PD9q0aVP3iUI0Ih4aD+aMmFPjMZPZxOBFgxu4IiGan379lI8Db9/eeO6vhRCivphMZj78UPnP0k6dqhgyRNmzeCGEZZ58MuCCwICQED2zZp3muecy8fCw/NmKhPML0TAqKiqYMmUKgwcPpqioSFEfw4YN49prr7W6XXv/9lwfeb2i97yYF3rfp2hjq4tp4W0gOrDcLhtAfPfdd5SVlSlqe/W1Q9EVS5CKEP+VllZAUpLy4GCNxsT06bLsXYjauLqq+f57T7p3r3t9jKenkU8/TWHEiKJazykqKiInJ6fW40I4rX/t+uEFjFe6j+spQA/uBtjyNUT87xbaxQwjTkDee9Al29ZiHW9Czwl4utq22e3DDz+seM3mhg0bbHpvYZucHGX3TuHhdi5ECKGI3B0JIYRwOsuX6xS3HTHCfrt+OJqbmxutW7cGICnJnTvvjLtgkbyltFo1Y8a4k5kpuzQJ0ZhF+Ufx672/EukbefaFJGA+oHSt8RCglrEWtUpNuxbtFHZsP7NmzeK3336z+Pzrr7+esWPH1l9BolHbv1/5NUKfPrY9+BRCiIZgNpvZnLSZy+ZexvClw9mXta/e37NzDWPAQevW0WLRIov7OHzYkzvvjOPYseo/a59/PpA1a4psqFAIIYRQ5tdflYcKDxjg2J2xbut0G0tvW2pxMJiPmw83tr2xnqtSLiYwhvk3zSfvmTyOPnyUMV3GEOARYHU/epOeP1P/5OZlN+PxhgfXfn0tPyX+ZP+CreDq6kqPHj2YMGECs2bNYvfu3ZSWlvLoo4/apf/kwmSe++U5zPzzb3L23tncu/pejCbnf45uMBiYPHmy8g78gQlAnPVN+0b2JTYotsZjPj4+LF++XPHOhwALFixgx44ditsL0Zi5u6tZu9aHwYNrDgaLj69izpxTBAZa/nOqqqpKgsGaKaWhYPZYKCbqdvjwGbRa+4xPu7q6VttQS4imYswlY+gX2a/GY0dyj/D5rs8buCIhmpeePd1wdVV2Hbl7t1x/CiHEpk1VHD6sPNTr8ceNqNWWb5ArhLCei4ua+fNdadFCz6BBxaxalcgVV1gffmMwGMjMzKyHCoUQAGVlZXz88cfExcUxc+ZMxc+74+PjefHFFxXXManTJFTY77M51i+SMe3qJ/Tcx1NDrH8h7m5uivuoqKhgwYIFitrGxcXRvn17TmeXY6wqUlyDEE2NyWSiuDiTZcuSePXVdFq00Fvdx733ltCtm089VCdE0+Hrq2HDBhdiYmofiwsKMjB//imLrv9zcnIoLCy0Z4lC1L+ePUkMd+OdK6HXg/DWoyhLTTEAKfDxD/8Egv2bmxF+WwBt820r15HUKjWT+kyyuR93d3fGjBmjqO2PP/5o8/sL5XJzlQU1R0ZKFJEQzkC+E4UQQjiddeuU7wQyapTy3QSckb+/P1ptMGPGxHL6tLviftLT3Rg9Wo/BIBPShGjMYgNjWT9yPV6/eMEioEphR12BjrUfjgmIwUPj2F0YU1NTefbZZy0+39vbmy+//LIeKxKNXWBgJddcU0KrVtaFj0ZE6AgJUT5pQAghGsLWlK0M+HoA1y+6nh3pDRcu0KWWjaFaTp+O986ddbb/8Uc/xo2LIS+v5vs4g0HFvff6cOCAst0YhRBCCKWuuCKPTZtO8MYbaYwYUUjLlpbfRwwZ4vhQ4ds7387iWxejVtU9DDii/Qi8XL0aoCrbdQzpyOLbFlP4bCEHJh5gZKeR+Ln7Wd2P1qjl19O/MnjxYLze9GLwosFsPb21Hir+h6urK927d+eBBx7giy++YNeuXZSVlbF3716++uorHnroIXr16oWbDZPW/2vxwcXoTdUn2C45tIRxa8Y5fTDYJ598wtGjR5U19gXuBQKVNd+Wto2BXw8kp7z2nVDfeustnnzySUX9m81mHnvsMcVhNkI0du7uatas8WHo0AuDweLizgaCBQVZ//OpqqqKpKQkCQZrRmz5u3Z1bVrjyc5o5swCrrkmkiNHbB9rUqvVxMfHo1bLFDfRdP0w5gc06prnyTz505MUycJSIeqNh4eaDh2UbV65d698NgkhxPvvK3++FR6uZ9y4xvFsWojGrnVrD375pYj33z9DQIDysYHCwkLKy8vtWJkQzVtlZSUbNmxgwoQJRERE8Pjjj5OVlaW4v/DwcL744gu8vJR/vsb7xTO4tf1CvJ7vPR5XF+Vrg+ri7uFObEA+vt7K1tnMnj2b3NxcRW3PbWKt0+kpyFP+9yZEU5OVlYXZbMbFBW69tZANGxKYMCEHd3fLxnUCAgy89ZbcJwhhiYgIdzZsMBISUn1uUFSUlkWLkunc2fJFZ+np6ZSW1pCIJISTOZl/kje3vkn3b66g7UQdz10HeyMAbyBGWZ9up2HcgdqPt6iE9UsgsFJZ/452S4dbiPKPsktfd9xxh6J2+/btQ6+3PixU2K6oyEhlpbIxrZYtZUMHIZxB/T1ZEUIIIRQ4dUrPwYPKJgd36KClQwflwVnOqlevcG6/vYivvw6wqZ8//vDhqacK+egjhSuhhBAOVVZWxrx583j77bepyKpQ3lEoMOzip3QMuUhiWAOZMGGCVQ+UX3/9daKjo+uvINHoXXllMZdffnb3kvJyNYmJ7pw86UFCgsf//utOSUn1W+T27bWAhIIJIZzTjrQdvLjlRTYnb3bI+3e6yJyoNvffT8JPP6GPiKh2zGyGWbNC+PzzsDrfo7hYwy23uLJ9u47QUPl5LIQQomHodDpatoSbbirippuKMJshLc2NnTu92bnTm127vMnNrR4mERdXRZs2jg3ZPmd0l9EYzUbGfj8Wk7n2yZWjO49uwKrsp2tYV1bcvgKAnek7eXPrm/xy6hfK9dYtRqk0VPJT0k/8lPQT3q7eXBN9DdP6T6Nfq36Ka9NoNHTu3JlevXrRu3dvevXqRbdu3XB3b9hn18uOLKv12KKDi3BRuTDvpnkWhcc1tLy8PF599VVljV2AO4Eg22rYkb6Dy+Zexsa7NtKuRbsaz/nggw9ITk5mzZo1Vve/a9cuFixYwPjx420rVIhGys1NzapVPowcWcK6dX7ExJwNBGvRQvmiRK1WS1JSEnFxcRIe1AwYDAbFbSUUrH4tXVrE1KmBGI0qxo+PYebMMxbtQF4TlUpFfHw8Li4udq5SCOcS5BXEu9e9y1Obnqp2TGfUMWLpCLaOr98gYyGas27djBw6ZH27gwfdMJnMqNWyIEII0TwdPKjj55+VL9Z/8EEtbm5yfyZEQ+nWLYSEhCK0Wq1N/aSkpNChQwd5/iaEBXQ6HTqdjuLiYvLy8sjMzCQxMZETJ06wa9cu9u3bh06nLKT4vyIjI5k9ezbh4eE29zWxw0R+OvMTJmzbhKONb0vGdhhqcz11cdG4EeVbSLaLL3kllo8xpKWlsXDhQkXvGRYWxogRI87/Ob/MTAtdOWo3b0X9CdFUGAwGCgoKLnjN29vE5Mk53H57IR99FMaGDQEX7WPKlBJCQ20c7BeiGenY0YvvvithyBA15eVnx9O6dKng009TFI29p6SkEB8fj4eHc8x/E+KcY7nHWHl0JSuOruBQzkUe6McASdb3H5YIbnV8y7TLh1XLYNBYMDSy4evH+j5mt7569+6Nr6+v1SGCWq2WI0eO0L17d7vVIiyTnm7k7KRK60VGNrJ/7EI0URIKJoQQwqksX64DlA30Dx2qB5peKBjAl1/6cehQBXv32rbjwccfB9KnTyF33y3BYEI0BpWVlfz666+sXr2aZcuW2b7rgh9wF3XmG3UMdmwo2Lx589i0aZPF5/fp04fJkyfXY0WisTOZTJhM/0xQ8PY20a1bJd26/bNNg9kM2dma/wSFeXDJJcoXlwkhRH3Zl7mPl357ifUn1zushphC8L7IZi1qIO722zmxeTPmf+1AWVWl4qWXItm4McDi9zp1yp1bby3j1181uLnJxFIhhBD1q7Ky+nZuKhW0bq2jdWsdt91WiNkMp0+7sWuXNzt3+rBrlzcFBRouvbQKcJ5JUWMuGYPJbOKe7+/BjLnacX93f26Iu8EBldlX38i+rLnzbCjTHyl/8Pafb/Pb6d+oNFi3NV+5vpz1CetZn7AeXzdfBsUO4sX+L9K9Zfda22g0Gjp16lQtAMzRk+OO5BzhSO6Ri57z9YGvcVG5MHvEbKcLBvv4448pLi5W1ngQUD2XVpHkwmQum3sZa+9YyxVRV9R4zvz58+nevTupqalW9//2229z7733yuIp0Wy5uan57jsfHnssn9GjcwkOVh4Ido5WqyUxMZH4+Hj53mri8vO17N3rRUCAgaAgI35+Riz9K2/ooM7mZPPmYu6/3w+j8Ww4SmWlC48+2obXXktn+PAiq/uLjY3FzU1C4kXzMOWyKXy550tO5p+sduyP1D/47uh33NbpNgdUJkTT17s3LFpkfbvCQg3JyTri4+WzSgjRPE2frkfpJnve3kYef9zTvgUJIeoUExPD8ePHberDZDKRmpoqG7iKZmX37t306dPH0WXUqmvXrnz44YeEhITYpb9Yv1iGRg1lXeo6m/p5rvc43FwaJgBUpXYh3KcCD7WK9GJ3zObqY+P/ZjabefnllxWHso0fP/6CzScMBiPFeakERjh+U24hHCktLa3WYy1b6nnnnTTuuiuf994LZ9++6iF6MTFannkmoB4rFKJpuuoqPxYuLGL0aD8uu6ycGTNS8fK6+GfhxSQlJdGuXTvZaEk4lNls5kjukfNBYEdzj1rWsLWy91MV1H0OwIDT8NU6uO9mZe/jCJeEXkL/Nv3t1p9Go6FPnz78+uuvVrdNSEiQUDAHOBsKpkyrVhIKJoQzkFAwIYQQTmXNGuUT9EeObLofa+7ualasUNGvn568POUPVeLjqwgMzKW0VIOvr68dKxRCKNGQu0ARANwD+Nd9aqeQTvZ5TwUyMjJ46qnqu2DXRqPRMGfOHNklXlxUVVVVneeoVBAebiA8vIz+/cvOv96iRYv6LE0IIaxyJOcIL//2Mt8d+87RpdAlp+5zNCUlxI4dS9Ly5eDiQm6uhsmTozh82Pqw47/+8uH++4v45psA64sVQgghrFBYWFjnOSoVxMToiInRMWrU2ZCwxER3wsIsuOluYHd3vRujycj4NeOrBYON7DQSd03TCsW4qs1VXNXmKgA2J23m3b/e5c/UP9EatVb1U6orZdXxVaw6vgp/d3+GtB3Ci1e9SHh4OOPGjTsfAtatWzc8PZ1v8dqyI8ssOm/e/nm4qF2YNWyW0wSDVVRU8PnnnytrHANcatdyKKgs4NqF1/LNLd9we+fbqx0PDAxk/vz5XHvttVb3nZCQwKpVqxg5cqQ9ShWiUXJ1VfP554EkJuZjr0fhOp1OgsGagYMHTdx7b+z5P6vVZgICjAQGGggMPPfff//+n/+2bSsT2OvDvn1ljB7tTWXlhd93BoOK559vRV6ehnHj8lCpLOuvTZs2TnmdJUR9+vGuH4n/JB6T2VTt2L2r72V4u+G4aSR8SAh769tX+VyDbdv0EgomhGiWMjMNrFyp/Hr9rrsqCQrysWNFQghLaDQaIiIiyMjIsKmfsrIyioqKCAgIsE9hQghF1Go1Y8aMYcqUKXYP7Xi8+2P8cOYHjGZli8db+YQxruNwu9ZkiQAvM26qElJLAzEYat8QeNGiRezcuVPRe0RHRzNq1Khqr1cZZB67aN6qqqooKyur87xLLqnk669PsWmTHzNnhpOe/s9zlddeq8DdPbA+yxSiybr11gC++y6X1q2zsfWywGw2k5iYSPv27WW8XTQos9nMoZxDrDiygpXHVnI8T0GodZCy9y60Yr7K+P1wIhjevVLZezW0x/o+hsrSQXoLxcfHKwoFO3PmjF3rEJbJyFAWFOnpacLPTz4HhHAGTTc9RQghRKOTnW1g504PRW0jI3X07du0FrD9V2ysJwsWFHPzzX4YDNbfiN14YxEvv5yOl5eZ1NRU2rdvj0YjlwJC2IOz7wJFJHAHYGEWYMdgx+1UNGnSJIqKiiw+/5lnnqFr1671V5BoEiwZZKyNt3f1nYiEEKKhJeQn8Mrvr7D00NJqYR6OYkkoGIDnyZO0+r//Y/P4j3lscjTZ2cpHmxctCqB9+wKmTVM4YieEEEJYQMn9g0oFbdtqadvW+ULBAO7tfi8ms4mJGyaiM56dwRLiFcIbA99wcGX1a1DcIAbFDQJg7Ym1vP/3+2xP247OZF3qTLG2mG8Pf8u3h78lyDOI4TcNZ0j/IcQFxdVH2TYzm80Wh4IBzN47GxeVC58P/dzuE4CUmDNnDvn5+dY3VAGD7V4OAFqjllErR/Fe8Xs8ddlT1f4/DRw4kFtuuYXvv//e6r6nT58uoWCi2VOr1cTHx5OYmGi3TTIkGKzpy86+MDDHZFJRUKChoODiY5+uriYqK+uzsubp1KlKhg93o7Cw9v//H3wQTk6OhqlTs6jr2zIiIkI2uBLNUkxgDFMuncKMbTOqHSvXl3PHd3ewavQqB1QmRNPWs6c7bm4mdDrrrxt37zYzdmw9FCWEEE5u5swqtFploV4uLmaefloCFYVwlKCgIIqLiykvL7epn/T0dHx8fGQeuhAO0rZtW1566SW6d+9u974Dfd3o5OXPPR1uZP6xdYr6eLbnPbi7OObz3svTjTh1PqnloVRWVd84Kjk5mY8//lhx/88++2yNIWw6o4xFiOYtNTXV4nNVKrjhhhIGDChlyZIWfPVVCJdcUsmddzrnnBshGosRI0JISamgtLTU5r6MRqOMt4sGYTab2Z+1n5VHV7Li6AoSChJs69AXcAGszLYtBSoAS7c9f+sXSAiCVZ2se5+GFugRyF1d77J7v9HR0YraZWVl2bcQYZHMTGXrj0JCDKjV8hxXCGcgV2NCCCGcxnffaTEalS06GjpUh1rt+AVL9W3oUH+mTSu0qo1GY+b//i+Dd95Jw8vr7AW82WwmKSkJk6n6DrNCiCZEBfQDxmNxIBhAh+AO9VTQxS1ZsoS1a9dafH67du148cUX67Ei0VRUVFQobuvjIzuTCiEc53TRae5fcz8dP+vIkkNLnCYQDKBzXaFgGg107QoPPkjAyy9TVh5sUyDYOa+8EsiKFUU29yOEEELURmkYiUqlwt3deTctGN9jPIcmHeKNa97g/evf58SjJwj3CXd0WQ1mRPsR/D7+dypfqGTZyGVc1uoyNGrrF6oUVBbw9YGvif8kntD3Qnlw3YOkFls+ubUhHMg+wMn8k1a1mbVnFo/+8Chms2OvN00mEzNnzlTWuBcQZtdyqpm6eSqPbXwMo6n6zLEZM2bg5mb9JJhdu3axdetWe5QnRKN2LhhMyfdRbXQ6HQkJCTIW1kTl5ir7zAoMNOLiIlOl7CkvT8fQoZCeXvf376JFwTz7bCt0utrH9UNDQwkKkkB40Xy9e927tPRpWeOx749/z5+pfzZwRUI0fe7uKjp2VPY8aN8+FztXI4QQzq+83MScOco2/wUYOrSCtm1lMZkQjtSmTRubNwkxm82cPn3aPgUJISwWHR3Nm2++ycqVK+slECzAx40I7xLULi5M63M/GrX19zwtvYN5oPPNdq/NGq7uHsT4FeD2n/CuyspKnnrqKaqqqhT1e80113DllVfWeExnkLEI0XwVFxcrmmvj7m5m/Pg8Nmw4yRdfmGT8Rgg7aNOmDR4eyu/Z/02n08k1v6gXZrOZPRl7+L+f/4+2n7Sl51c9eevPt2wPBDtH4WMna1adqc3wzffQO13ZezWUB3o+gJerpVFnllO6zs6WtX1CuYwMpaFgco8jhLOQbRmEEEI4jdWrlQ8w3nZb85lkNW1aALt3l7B+vV+d5wYH63n//TP07Fn9hkmv15OWlkZUVFR9lCmEcLRQYBhg5bd4hG8E/h4Nv8tKTk4OkydPtvh8lUrF7Nmz7fbAWjRtWm313b4soVKpZGcTIYRDpJWk8ebWN5m7by56k97R5dSoy/vfQGIp5OZCZeXZFz08ICQEevaEbt3A0/P8+eMvhePHC5k+PdCm9zUaVdx/vy9dupTRsaMENwohhLAvW3ZFd+ZAsHPatWjHC/1fcHQZDqVWqxnVeRSjOo/CZDKx6NAiPtnxCfuy9mE0W7dFYG5FLrP3zmb23tmE+4QzsuNIXuj/gsPD1pYdXqao3ee7P8dF7cJHgz+yeTGQUlu2bFE2oVAF1Dz/3u4+2/UZqcWpLL1tKd5u3udfj42N5c477+Trr7+2us/58+fTv39/e5YpRKN0LhgsKSlJ8fO8/9Lr9SQkJNC2bVt5ztfE5OYqaxcUZABsDy0XZ1VWGhk+XMexY5Y/o/nxxwAKCzV8+GEqPj4XTiINDAwkNDTU3mUK0aio1WrW3rmWPrP71Hj85m9vJufpHPlcE05r25ltPLbxMRILEmnh1YJLQi+ha1jX8/+ND4rHRcGi8vrWrZuRAwesb3fokCsmk7lZbGQphBDnfPVVJYWF3nWfWIupU53vc0CI5katVhMVFUVKSopN/VRVVZGbm0tISIidKhNC1ESj0XDllVcycuRI+vfvX6/jeEVlOtxdPAj2rCLWvxXjO45g9pHvrerjmZ734KFx7Ni5Sa8nraIFOv2FYw2vvvoqiYmJivr09fXl+eefr/W4q4QZiWbKZDKRnm5bIkp4uAvt2tW9Pk4IYZnY2FgSEhLQ622ff15RUUFqaqqsPRU2M5vN7MrYxcqjK1l5dCWnik7V35u5ApXWN7M2NtZLD2uXQt8JkNbwyzDrpFapebjPw/XSt5eXsqAxpeG8wjbZ2cruIcPCJBRMCGchoWBCCCGcQmmpia1blQW7BAUZGDiw+YTCuLioWbTIiz59qkhIqP3r7tmznBkzzhASYqj1nJKSEgoKCmS3ZSGakhbAVUBXQMH4YsfgjnYuyDKPPPII+fn5Fp8/YcIEWSwpLGYw1P5ZeDEajdwyCyEaVnZZNm//+Tazds9Ca7TPAuj6oFapaX/NSBhk3X3YW2/5c+JEMWvW2DbyNXZsHgZDLlpt20YRwCKEEKLxKCwsVNxW6e5nwnHUajX3dLuHe7rdg8FkYN6+eXyx+wsOZh/EZLZuQkNWWRaf7vqUT3d9SqRvJKO7jOa5K58j2Cu4nqqvmdlsZtkRZaFgAJ/s/AQXlQsf3PCBQ4LBFi1apKxhJyDAnpVc3LqT6xjw9QDW37meMJ+w869PmTJFUSjYqlWr+Pzzz/H8V6iuEM2VWq0mLi5OgsFEnQoKlH1OBQZaFwIqamcwmLj99nK2b7d+oc6OHT6MGxfDF1+knB/L9vHxITIy0t5lCtEo9Y7ozV2X3MXiQ4urHcuvzOeRjY/wxdAvHFCZEBeXX5HPDYtuoFRXCkCxtpjkwmTWnFhz/hwPjQedQzpfEBR2SdglhHo7NhSyd29YuND6dkVFGhITdbRr52b/ooQQwgkZjWY++UR50HLfvpVceaU8AxPCGfj6+uLv709xcbFN/WRnZ+Pv74+bm1wPCWFParWam2++meHDh9OpY0e8vJUHcloruxi0Rj8ivAp4ofd9LDi2Dr3Jsjm4oZ5BPNj51nqu8OJ02ipSy0Ko+s8Yw9KlS9mwYYPifp977jnCw2vfHMpNY1bctxCNWV5eHiaTbYEREjYkhH2dG3M/efKkzd+fcHbtaVZW1kU/B4WoiclsYmf6TlYcWcHKYytJLU5tmDdWtnwMJXe1Lctg/RK44n4od7Lb4uHthhMdEF0vfSsN95JnB46Rna1srpSEggnhPGTGoxBCCKewZk0VWq2yj6UbbtCi0TSvHRf9/TUsW2bAx6fmiet3353HnDmnLhoIdk5GRgaVlQrir4UQTsPV1ZXhw4ezbt06lmxZgrqHWvGVviNCwVatWsXKlSstPj8iIoLp06fXY0WiKTEajZjNygbbPTyaT+ioEMKxzGYzb259k9iPY/lox0dOHQgG0DaoLR4a639GurioWbzYmx49KhS9r7u7iffeS2XSpFxUKkhKSsJolMW8Qggh7Ke8vFxxWwndb9w0ag0P9nqQfQ/to/L5Sj684UM6h3RGhfXPndNL0/lg2weEvBdC9IfRPP/L85RUldRD1dXtythl806KH+74kKmbpyq+l1aqqqqKVatWKWt8qX1rscTujN1cOvdSjucdP/9a165dGThwoNV9lZSUsG7dOnuWJ0Sjdm6Ssj2fzen1ertNehbOIT9f2SBIUJD8G7CXhx4qZsMG6wPBzjlxwpOxY2M5dcoNDw8PWfQjxH8suHkB/u41b67w5e4vOZZ7rIErEqJuGxM3ng8Eq02VoYo9mXuYv38+UzZN4bpvriNsRhjhM8IZ9M0gnvrpKRbsX8DezL1UGRpux/h+/ZRvFrV9u96OlQghhHNbubKSU6eUL96bMkXCMoRwJpGRkbi4uNjcz6lTto1LCCGqM5lMbN68meXLl7Nh/VoyMzMb9P2LynScKmlBhHsQEzrfYnG7qT3H4uXquHm3FZV6koqCqNLqLnh99+7dvPfee4r7ve666xg+fPhFz3HXyBw20fyYTCZyc3Nt6sPHx0fm6wtRDzQaDfHx8XbbEDAvL4/8/Hy79CWaNpPZxF+pf/Hkj0/S5sM2XDb3Mj7Y/kHDBYIB6Oo+pSZKY3i7ZcPSlaByssdek/tNrre+lc6z9W7AsGPxj5wcZfNrJAtSCOchoWBCCCGcwurVyu96br21eQWCndOjhw+ffnrhYjJPTxPTp5/h2WezcLViQ7ZTp07JQgghGhm1Ws2tt97K/PnzyczMZO3atQwbNow7L7mTeSPmKe63Y0jDhoIVFBTw8MMPW9Xm008/xd+/5knwQvxXWVmZ4raenrI7qRCiYby45UWmbZlGhV5ZWFZD6xLaRXFbb28Nq1eriYy0bsQtOFjP/PmnGDz4n3sgk8lEUlKS3MsIIYSwC5PJhF6vbBGnSqWSXcyaEDeNG49f+jiHHz5MxQsVvHvdu7Rv0V5RQFhKcQpv//k2/u/6E/dxHK/9/hoVuvq75lt2eJld+nl/2/v838//16DBYOvWraOkREF4WhDQ2u7lWOR00Wkun3s5W1O2nn9t7NixivpavHixvcoSoklQq9XExsbadRFAaqqKceOK0GrlHrIpkFAwx5o2rYB58wJt7ic93Y1Fi0KIjY1FrZYpbEL8m0atYeltS2s8ZsbMjUtubOCKhKibp0b52Gp2eTY/J/8/e3cdHsW1hgH8XY1u3IkLQYK7tlhxKO7Bi7sVaKGllApFihVooUiRYsUdWqS4O0SIu9tuVu8fubRQIrtnZ5NN8v2eh6f37sw580FLdmbOOe85j5U3VmLkkZFosLkBLJZZoPr66ui/vz+WXl6KIy+O4HX6a6g13H+f160rhokJW7+3bxvZSh9CCDGgVavY5+r6+MjRty/NwyHEmPD5fPj4+Ojdj0KhQFxcHAcVEULelp2djVOnTmHJ0mX46KOPMHToUBw9ehT5+aWz2aRUlo+wTDtMDxoCE0HJY+EOpjYYH9SnFCorXHquAK8zJO9tMBkZGYnp06czzwVwdHTEokWLij2Hz+fDxtaZqX9CyrOYmBi95xS4u7tzVA0h5L/EYjEn9/tvxMfHs83rIZXCs+RnmHpqKjxWeaDlry2x+uZqxGTFlH4hMgBK3ZvxAJjrcdnur4CVZ/TogGM1HWuijXcbg/XPGlpsaWnJcSVEG8nJbIHwrq6VM7eBEGNEM6oIIYSUOblcg3Pn2Cb1W1io0LVr5d0VYPhwW0ycmA4A8PLKx+7dYejcOVPnftRqNcLDw7kujxBiQG/vArVz505ERf2bmj+87nD81PUnpn5rONbgqkStTJ06FYmJiVqf37t3b/Tqpf2uU4Sw7kAAABKJhMNKCCGkcBqNBj/f+7msy9BJTceaerX39DTF/v35MDfXbofE6tWl2LMnDLVqSd87JpfLER0drVc9hBBCCKDfswPtWlpxmQpNMbfFXLyY/AI583Pw5Ydfws/Wj6mv8PRwLP5rMSy/sUS1ddXw/d/fQ6aUcVarWqPGvmf7OOvv+2vfY+HFhaUWDHbo0CG2hux5tZxIl6Wjw84O2PtkLwCgV69eMDEx0bmf06dPIy+vfIQEE1Ja3gSDcRHcn5AgwqhRPti50w7duuVCKtXueZQYr/R0tkmLDg4U2qGvkJB4/PorN5N1GzXKxdatEgoEI6QInQM6o4Nvh0KPRWREYMmlJaVcESHFa+nZktP+1Bo1XqS8wP5n+/H5n5/j498/hu8aX1h/a43mW5pj3LFxWH9rPS5HXka6NF2va4nFPFSrpttmJm/cv892X0IIIeXN1asy3LzJ/ow+ebICAgEtJCPE2JiamsLBwUHvftLS0vQaayOElOzhw4dYuHAhOnTogF9//RUyGXfjjEVRKpWQK/wxIrB3iefOqjcUlmJ9ohTYaFRKxOdYIDZT+N64ZmZmJiZNmoTMTN3X1wCAUCjE8uXLYWtb/AYJdhIhBGb6b6JASHkil8v1Dgeys7ODUCjkqCJCSGHMzc3h6enJWX9RUVGQSt+fy00qt98e/Ya6G+ti7a21iMsu48DoNOENfj4AAQAASURBVLZmEoBhu9C38PmY1noOxtcfp08vnKnuUN2gc/5CQ0OZ2llZWXFcCSmJQqFBWhrbOJabG73LJcRY0KwqQgghZe7MGRmysthuLNu2zYeZWeX+Olu92hpTpyZhz54w+Puz7/wik8mYU5oJIWXjzS5QM2bMgJeXF5o3b44dO3ZAJpNhfMPxWNVxlc59VneoboBKC3fixAns2rVL6/Otra2xbt26Ys9RqpV4lPgIOx/uxK5Hu5Ccm6xvmaSc02fQgWURLyGE6IrH40GsxW6KxiTISf/khWbNJNi0KQt8fvEDTu3bZ2LbtnC4uBS9bU92djaSkpL0rokQQkjllpGRwdyWAoUrB3OxORZ9sAihU0OROS8TC1otgJe1l879aKDBy9SXmHd+Hsy/NkfQhiD8eONHyJVsi4/fCEsL43yHxW+ufoNFfy4yeDCYRqPBhQsX2BqXcSgYAMhVcgw6OAg7Hu6AtbU1unTponsfcjkuX75sgOoIKd/4fD58fHz0CgZLSBBi1ChvxMYWPHufPy9B9+55FAxWzqWlsS0SoVAw/SQlJSE/PxU7doTD31+/RYdVq8pw4oQIFha04IeQ4hwecBimwsKDqJdcWoL4bJrjQYyHs6UzGldpbPDr5MhzcD3mOjbf24zJpybjg20fwO57O3iu8kTX3V0x//x87H68G0+SnkChUmjdb716bPeHjx+LoVbTPQYhpOJbvpz9OdrWVolx4/QP/SaEGIaLiwvEYv3mrahUwNq1GVAq1RxVRQgpSnp6OlauXIkuXbrg9OnTBr+eRqPBAO9PYCooej6tnak1JtXuZ/Ba/kulkCMy2w6pWe/PK1MoFJg2bRoiIyOZ+58+fToaNGhQ7DkCgQD2NhRuQCoffTdy5fF4cHFx4agaQkhxrKys4Orqyll/p07FIjlZvzlOpOLIV+ZjxpkZUKi1fxdvUIzLCXz0uWZgIPD33+B99z3WdFlb5IY/penA8wOwWGaBYYeGISUvhfP+nzx5wtTOx0evP2nCIC5OCY2GLdzLza1y5zYQYkzobyMhhJAyd/Ag+wBgr14cFlJOiUR8fPedFSQS/QdSU1NT9d6tgRBSdq5fv47hw4fDw8MDy5cvx7g64/BNu2+0bm9ragsnCycDVvivzMxMjBunWwL+8uXL33kZrdFoEJERgX1P92H22dlo/WtrWH9rjTob6yD4cDCG/jEUgesCcTPmJtflk3JELmcbcODz+eDz6ZGZEFI6xtYfW9Yl6ISLUDAAGDrUFgsWpBd5fOzYJKxYEQ1z85IX0yQlJTHv6kgIIYQAQF5eHnNbGxsb7goh5YKVqRW+bvs1IqZHIHVOKmY3mw13K3ed+9FAg6fJTzH9zHSYLTND3Y11cSfuDlNNt2JvMbUrydIrS/HlpS8N0vcbDx8+RHIyQ7C7NYDSeZWllUknJyFDlsEUCgYA586d47giQiqGN8Fg5ubmOrdNShJizBgfREe/u1jpwgUJunTJQ25u0QHUxLhlZLBtOOXoSDuZssrIyPgnlN3ZWYnt28PRoEEuU19ubnKcPKmBo2P5CsonpCyYi82xsevGQo+pNCp03tW5lCsipHjdArqV2bWjs6JxMuQkvv37Www5NAS1fqoFi2UWqLOxDoYeGorv//4ep0JOITYrttDw64YNi+hYlAsEnATqbgNcHrx3OCtLgFevjGTBEyGEGEhoqBwnTuj+XP7GqFEyWFjQHBxCjJk+C3Ojo0UYMcIH8+dXwZdfZnBXFCGkWMnJyZgzZw6mTJli8DlTjmaO6O87oMjjM+oOgkRsYdAa/itflo+wTDvk5OW/d0yj0WDBggW4e/cuc//t27fH8OHDiz2Hz+fDy1EIkYSCjUjlkpOTo9em3QDg6upK8/QJKUX29vZwcHDQu59r1ywxbJgPunVT0Fg7AQBIlVKDhE4xi2Br5s/SyMQEmDMHePAAaNoUACASiLCv3z7UcKzBVgiHZCoZfnv8G5yWO6Hxz41xJfIKJ/1GRkYiIiKCqa2/P9OfNNFDbCz7Rg/u7mzzcggh3KMnJ0IIIWVKpdLg1Cm2yb4ikRoff1z0jiOViampKapUqcJJX1FRUcwBKoQQ45CSkoK5c+fCz88PvnG+WNR6kVbtqjtWB49XOgtiZs2ahdjYWK3P/+CDD9BrcC+cDj2NJZeWoNvubnD+wRk+P/pgwIEBWHF9Ba5EXUGe4t1F3OmydMw+N5vr8kk5olKxvcDSd/dDQgjRxWetP8OsZrPKugytiPgi+NtxNyDzxRc26Nfv3YlpIpEay5bFYOrUJOgy7yM6OhoymYyz2gghhFQearUaCgXb4k0ej0fPD5Wcnbkdln+0HNEzohE/Kx5TGk+Bq6XuO2yqNWo8THyIE69OMNVxK84woWAA8OWlL/HVpa8M1j9zGJYvt3XoK0eeg6jMKHTowLbjI4WCEVI0Pp8Pb29vnYLBkpOFGD3aB5GRhY8l/vWXBF26yJCTQ5OVy5vcXCVyctgmHzo5USgYi+zsbMTExLzzmZWVGps2RaBDB90WHNrYKHHsmBx+fmZclkhIhTa87nA0cG1Q6LGHiQ/xy71fSrkiQorWrWrZhYIVRqFW4FHiI+x6vAvzzs9Dl91d4L7KHfbf2+PDbR9iyskp+Pnuz7gRcwO1Grw1vmATATRaDwzpDMyzB4Z0BT4eCYyvB7T6+r3r3LxJoWCEkIrthx/kUKnYnqfEYjVmzjTluCJCCNdEIhHc3Nx0aqPRAH/8YYO+ff3x4EFBGNB339ng2rVsQ5RICCnCX3/9hX79+uHp06cGvc7IqiOLPDal9kCDXvu/svNUCMuwgVxe+LPYsmXLcPr0aeb+/f398dVXxY+N8ng8eNjzYe4QwHwdQsqr/44X6EokEsHOzo6jaggh2nJxcYGVlRVz+2PHbDBpkhfy8gS4dcsC/fvnQalUc1ghKY8kYglqOdUq6zIKqAGEsTXVaWWEtzfwzTdAdDTw/feA6bvvvWxMbXB80HE4mjuyFcMxDTS4HXcbrbe1husKVyz/eznUava/u2fOnGFqx+Px4Ofnx3xdwiY2lu3fNZ+vgaurkONqCCGsKBSMEEJImbp6NR9JSSKmti1bymBrS2mzb9ja2sLa2pqTvsLDw/V6uCOEGIf4+HgMGDAAD1Y/wOSgySWeX92heilUVbDAccuWLVqfLxALEN4yHI4/OKLzrs5Y/NdinAg5geS8ZK3aR2REMFZKyjt9Qi5NTWlCIiGk9PB5fPzw0Q84MfgEHMz134nJkKo5VINIwPYMVxiBgI/t2y3RqFEuAMDOTomtW1+je/cMpv7Cw8OhVNKCbkIIIbrJzc1lbkvPDuRtLpYuWNN5DeJmxSFqehTG1R9XahN8smRZBu1/0V+LsOzKMoP0feHCBbaGRhYKZmNqA19bX3h5eTFNYnr8+DESEhIMUBkhFQOfz4evry8sLCxKPDclRYjRo70REVH85kKXL1uic2cZsrPpObI8SUhgD91wcaFJi7qSyWSIjIws9JiJiQbLl0dj4MBUrfoyNVVj795c1K9vyWWJhFQKJwefhJBf+M+wyScnI0eeY7Brx2bFvrcxEyFFqetSF24S3cIkykK6LB2XIi9h3e11+OT4J2i2pRk+OOMAfGYKfCYGpvsAXScDAacBYf67jT/8ArCKfuej27c1pVc8IYSUsrQ0FX77jT3Ut29fKdzc6FmMkPLAzs5O61D+tDQBpk/3xKJF7sjL+3cuv0LBx4gRIuTm0vs2UnE0bNgQGo1Gp19yuRxZWVlISkrC06dPcfHiRWzfvh3z5s1D9+7d4ejI7fhhfHw8Ro4ciWvXrnHa79scTB1gKnh/bFwiMoe1Sem879OoNUjJFSMyw7zItS5r167F3r17ma/h6uqKn376CZaWRf+eBAIBvJ1EkDhXY74OIeVVamqq3vMz3d3dOaqGEKIrT09PnTbiAgrCgLdsccCCBe5QKv8NDD950grjxum2eRCpeAR8AX7u/jPMRbr9d2UQ4QAYM6rrF3fQxARo2BAYPx44dgwICwM+/RQo5p7ex9YHhwcehomg+DkrpS0hJwFzz8+F+TJzDDo4CIk5iTr3sW3bNqZrV6tWDWZmtHFYaYuPZxu/srNTQSikTfcIMRYUCkYIIaRMHTjA/jKwZ0+aUPVfHh4eEIvFevejVCoRFRXFQUWEEGNw9OhRHJ15FP1t+hd7nrOFs8FrycnJwdixY3Vqo2qlQrQouuQTi1AeJh0Tw8jKYl8QretgByGEcKFLQBc8HP8QbbzblHUpRQpyCuK8TzMzAQ4fFqJt2yzs3h2GunWlzH2p1WqEhYVRyDEhhBCdpKenM7fVZwdFUrF5WHtgY/eNSJqThLCpYRhRZwTszezLuiy9LLy4EN9d/Y7TPjUaDa5fv87W2JvTUvRiLjLHxq4bYSkuWCDQpg3bPf2NGze4LIuQCsnHx6fYYLDUVAHGjPHG69faBXdevWqJTp1kyMqihYrlRVwceygY7WSqG4VCgbCw4rdTFgiABQviMXVq8ROGBQINNm/ORMeO3GxyRUhl42TphCVtlhR6LF+Vjx57enB+zatRV9Ho50ZwX+UOyTcSzDozCyq1ivPrkIqFx+Oha0DXsi6DnTAfEJZwryFQApL4dz66d482tSSEVFxr18qQm8v+c27ePO42nCKEGJ63tzd4vOIXfV6+bInevf1x8WLhY2QhIaaYMYNxJTYhFYRIJIJEIoGjoyNq1KiBNm3aIDg4GN9++y2OHj36T1jY8uXL0bBhQ06uKZVKMXnyZPz999+c9FcYZ7P355m7WZTOBklqlRKxuVZIyCz6Z9S2bduwefNm5mvY2dlh8+bNcHFxKfIcUxMx/KpYwcKxKvN1CCmv1Gq13ptcmZmZabUBECHEcLy9vbVee6pSAd9844rVqwv/bty61Raff57GZXmkHGri3gQnB58s+2CwO+xNP7xwAdi9G/jlF2DDhoJ/7t4N3LsHZGcDt28DP/0EdOsG8LWLZmnu0Rxbe25lL8qA8lX52PtkL1xWuKDBpga4+PqiVu0ePnzIPM/vww8/ZGpH9MMaCuboSGPChBgTCgUjhBBSZtRqDY4fZwuw4vM16NfPuJKSjYWvr2+JA7LayMnJQXJyMgcVEVLxlYddoKKionBi4Ql05nUu8pyEHP0GabQxd+7cIneUL5QzgOb6XbOdTzv9OiDlVl4e+67ltLCfEFJW3CRuODfsHJa2WQoBz/gWkdR0rGmQft3cTHD4MA9VqrAv7H1DoVBQyDEhhBCd6PPsYGtry2ElpKLytfXFrx//ipS5KXg28RkGBQ2CjalNWZfF5NMLn+KHaz9w1l94eDhbqLfk/7/KmKO5Iz5t8SmeTXyGAUED/vm8QYMGTP3dv3+fq9IIqdB8fHxgaWn53udpaQKMGeODsDDtAsHeuHbNEh99lE/BYOVERoYKZma6h4HzeBq4uOi/uVJloVKpEBoaCo2m5EmiPB4wdmwyliyJgUBQ+PnffpuOYcPo3pkQfcxvOR9+tn6FHvsz4k8ce3mMk+tk5Wdh0olJaPVrK9yJK1hBodaosfLGSux7uo+Ta5CKrVvVbmVdgmHl2QMpge989OSJGGo1bW5JCKl45HINNm5kf45q1y4PtWvTcxgh5Qmfz4enp2ehx/LyePjqK1dMmuSN1NTiA/9++cUGR45kGKBCQiqOGjVqYPbs2bh9+zaePHmCUaNGwcREv/UxCoUCM2fOxNOnTzmq8l08vL9GRa4GNCrDvltXyvMRkWWHjGx5kefs27cPK1asYL6GRCLBpk2b4O3tXeQ5Vpam8PVyhdiqCvN1CCnP4uPjtRozKI6HhwdH1RBCWPH5fPj7+0MgKH6Oen4+D3PmeGDPnuI3QFy61A4//UTBYJXdB94f4Pig4zATmpVNAbEAXrA1rV69OpzatgUGDQJGjwYmTCj456BBQL16gIg98H5wrcH44oMvmNvroppDNdwacwstPVoWet9elHsJ99BuRzs4/+CMb658U+wGQQsWLGCuj0LBykZCAlvOgJMThYIRYkwoFIwQQkiZefhQjogItgH/Bg1kcHOjnZwLIxQKix2M0EViYiJyc3M56YsQ8q6y2AUqNzcXF76+AP9U/0KPx+fEF/q5PtKkaTgbdhZLLy9Fi0Ut8NPGn7RvzAPQA4CeeSgUClZ5yWQy5rZCId1nEELKjoAvwMLWC3FpxCV4WBnXJIggpyCD9S2RSODs/P6OkixycnL03pWOEEJI5aBWq6FUsk1S5vP59OxAdFbdsTp299mN9HnpuP/JffSp3gcSsRGkW+lgzrk5WHV9FSd93bt3j62hKyeXZ9bKsxV2996N6BnR+Kb9N/Cy8XrnOIWCEWJ43t7e7wSDpacLMHasN0JDdQsEe+PmTQu0b5+PzEwKBjN2DRpIcevWM9y69RRnz77E3r2h+OmnCCxbFo05c+IxdmwS+vRJQ9u2WahfPxfe3vmwsVHCxkYFsZimSWlDrVYjNDQUKpVuEz179crAmjWRMDV9N7Rt1qw0zJ5tx2WJhFRap4acKnIi/5BDQ6BU6/c9duzlMdRYXwMb7mwo9PjB5wf16p9UDu182sFEUEE3esxxBv7YDuRbv/NxdrYAL14UvTidEELKq+3b85CQwL7wcdYs/Te3JYSUPolE8t6Gmo8fm2HAAH/s21d8IMAbGg0PEyaYIzmZ7pEI0UbNmjWxZcsWPH/+HL1799arr7y8PEybNg0ZGRncFPd/+ap8ZCne3+gnTZqB5+lmUMrzOb3eG1JpPsIy7ZAnLbr/o0ePYunSpczXMDMzw4YNG1CtWrUiz3GyEcHD0wf8cjauSwhXlEol0tPT9erD2toaYjGFBhNiDN4Eg/F4hT+3Z2by8ckn3jh3zrrQ4/81daoNDh3K4LBCUh618WmD44PLIBhMDeAUe/NOnTpxVkphFn2wCINrDTboNQBgcqPJaFSlEa6MuoL0een4pP4nMBeZa90+KTcJCy4ugPkyc/Tf3x9xWXHvHD9+/DhOnjzJVJtIJEK7drS2sywkJrK9n3V2po1wCDEmtFKBEEJImdm3TwGAbRJYjx6UNFscCwsLODs7IzExUe++IiIiEBgYSAscCSkDNWrU+GcnqKdPn2LlypXYtWsX8vPZB07lcjkSfk0AbzAPGrd3H9AvRV6CVCGFmYjtBZxMKcODhAe4FXvrn18haSEFBxUAfgKgyzuBpgD03EzJRGCC5h7N9euElFusC/vpO48QYixaeLbAg/EPMOboGPzx4o+yLgcAUNOppkH7d3R0hFQqRVbW+5PIdJWSkgJTU1PY2NjoXxghhJAKKzs7m7mtqSlb6Aghb9R1rYsD/Q8AAG7G3MSyK8tw6vIpKKAo48pKNvPsTAj4AkxtMlWvfphDsMogFEwilmBY7WGY0GhCiWG5tWvXhkgkgkKh279LCgUjRDfe3t6IjIxETEwePvnEG69e6Te59PZtC7Rvn4uzZzWwtWVf9EwM6817XzMzDczMFHB11e5nrVoNAIYLO69IXr9+rfN32ButW+dgy5bXmDTJCxkZQgwenIHvvrPhtkBCKrEA+wBMbjwZa2+tfe9YtjwbQw8Nxd6+e3XuNzEnEVNPT8W+p/uKPS8yM1LnvknlYyG2QBufNjgderqsS+FGrgMQ0gV41Q0I7QTIC18AfuOGEjVqVNAwNEJIpaRWa7B6NftOjkFBMnTsSO/QCSmv3N3d8fLlS+Tnq/Dzz47YtMkJKpVuC0nj48UYOzYThw9T+AepvLLzs3E77jakCimEfGHJv6yFWLllJTr37ow5U+YgIz2D6bqJiYlYuHAh1q9fr/fvIU+Zh/3h+7E9ZDvS8tPeO56pyESrQ20wstpIzK3bEU5W3G0OkJkHxGRaQ6Mpei7w6dOnsWjRImg0bIvWRWIRpi2dBmUVJR6nPUagdSDEgn9/bvF4PLjb8WHtGsjUPyEVxevX0Xq15/F4qFJFz4UhhBBOiUQi+Pn5ITQ09J3PExJEmDDBS6fNuJRKPoYPl8DRMQutWlmV3IBUWG192uLYoGPotqcbZEpZ6Vz0EoAY9ubBwcGclVIYHo+HLT22ICIjAteirxnkGhKxBMF1/v19WJtaY1P3Tfip60/Ycn8Lvr7ytdZjfHKVHPuf7cf+Z/tRx7kOvm//Pepa1cXo0aOZ6+vSpQvs7bULGSfcSkxk2ziPQsEIMS48DetbD0IIIURPtWrJ8OQJ26D/y5dyVK1Kg4QliYiIQE5Ojt79mJiYICAggIOKCCH6ev36NWbPno1Dhw7p1Y+ZvRmko6XAf0Lfjww8gh6BPUpsr1Kr8DL15TsBYA8THxa9+/RpADd0KNAGwEQAev6ob+vTFheCL2h9/ocffohLly7pfJ0///wTH374oc7tiOGo1Wo8e/aMqa2FhQV8fHw4rogQQthpNBpsvLMRM87MQL7KMLsqasNMaIbs+dkQ8Nknf2srJCREryDUt/n5+cHMrJR3HSKEEFJuREVFMYdROjs7w9HRkeOKSGX3xRdf4Msvv9S9YU8A9Tgvp0TrOq/DpMaTmNt36tQJZ86c0b3hAADVmS+rkzrOdTCh4QQMqT0ElmJLrdvVqlULT5480fl6SUlJ9LOFEB2tWZOMadO4+Xsjkaiwc2cEOnf2oN3KjVR4eDjy8vJ0bsfn81GjRg0DVFSxREZG6hWc+8br12Ls2+eArVttIBKxTTQlhBROrVbDdaUrknKTCj1+Y/QNNHFvolVfGo0G2x9ux8wzM5EuSy/xfBdLF8TPitepXsLmwYMHqFdP+4e8+/fvo27duoYrSEfrb63H5FOTy7oMdhoe8HAwcGcyENsI0JQ8LjJhQi42bLAoheIIIaR0nDwpRdeu7GOsP/+cizFj6OciIeWZVCpF584KXLqk36L+TZvS8cknthxVRUj5cfzVcfTb3489DCEDwG8AUthrcBnmAtsGthDwBBDwBAXBYzxhwf/n//8znrDQ/y1VSvEo7RHi8+KhLCaU620CngCeli5o6VYbFiJzKNUqKDUqKNVKqDTqgv+vVkGpUUKpVhX9mUoJmUqDfKUSao0aKk3BcZVGBZVaVfBPjQryZ3Io9ioANeMfEB8FY45v5X2ZCczwQ5Mf0Nq1NURCITwdRTCz92O8ACEVQ3i4FC1aCBAcnIqBA9MgEum+HN3JyQlOTk4GqI4Qoq/s7GxERhaEBYWEmGD8eG8kJbFtoOXoqMClSwpUr25e8smkQjsffh7d93Q3fDDYYwAH2ZvXqVMHDx484KqaYiXnJqPJL03wOuM1531PbTwVP3b+sdhzHsQ/wPQz03El6grUGh1uoPMB4W9CKKO1eyYozB9//IGPP/6YuT1h5+kpR3S07nOfvvkmF59+Su92CTEWwrIugBBCSOUUGipnDgSrXj0fVavSzora8PT0xKtXr/7ZMZtVfn4+YmJi4O7uzlFlhBBWPj4+OHjwIA4dOoQxY8YgPb3kydmFkaZKgT8ADHn381FHRmFak2lo59sOjdwaQSQQQaPRICYr5t8AsLhbuBt3F9lyLReFRAO4qWOB3aB3IBgAtPNpp38npFySSqXMbSk4hhBibHg8HiY0moAWni0w4MAAvEh5USZ11HCsUSqBYEBBkNfLly+hUqn07is8PByBgYEQCulVKCGEkPexBEq8YWtLCxgImXxqMgR8AcY3HM/UnjXQG9xtMl4oE4EJ+tfsjwkNJ6Cpe1PweDyd+/D392cKBXv69CmFzxOio6lTHZGRkYbFi/X74SCRqPDzz6/h5ydDaGgo/P39KRjMCLG+K+DzKZiqJHFxcZwEggGAn58Sv/5qBaGQ/twJ4Rqfz8eRgUfQbEuzQo/32NsD8TPjS/y5F54ejk+OfYILr7XfYCkxJxEKlQIiAduCIFJ5dK3atdyGgomkVaDYdBXI8Nap3YMH9J1HCKlYVqxg33fe1VWB4GBaAExIeWdmZoZhw2Rg2GP1HXPmSNC2rRT+/jQnj1Qe+cp8DDk0RL8QBBsAowDsBMCYz53wRwISPBI4mY+tDZVGhdfZsXj9MtbwFwsB8DvYA8F4AHrjnUAwAJCqpJh9czZu97sBPzdbCCXOepVJSEUwb54cCQnW+P57V+zda4eZMxPQtm02tB1CFwgEFAhGiBGTSCRwc3PDkSMZmDbNC9nZ7PPEk5NF6NpVjb//zoerK639NWaxsbH4/vvv8dlnnxlk48L2vu1xdOBRdN/T3XAboj9DwbpIPYwbN46TUory/fffo3r16ujevTscLRxxfPBxNNvSDFn5bJvYFmVy45LHY+q61sVfI/5CjjwH887Nw/aH25GryC2+kQzAXugVCFalShV07dqVuT1hp1ZrkJzMtn7G1ZXjYggheqFRaEIIIWVi/34Fc9vu3dnbVjZ8Ph++vr6c9PXoUR6uXuX2gZMQwq5379548OABqlevzt5JCApS8d+SKk3For8WocXWFrBYZgGLZRYw+9oMnqs90Xd/X3x/7Xv8FfGX9oFgSgBHAOgyT6wOAH8dzi8GhYJVXvosXLKwoDR7Qohxqu1cG3fG3sHoeqPL5Po1nWqW2rX4fD78/LjZZVGj0SAsLAxqNessMEIIIRWVWq1mDtPn8/kUOEnI/004MQGb727WuZ1CoUBsLOOiAANl8vnZ+mF5h+WInRmLHb12oJlHM6ZAMKAgFIxFREQEUztCKrtFi+ywdGkac3tLSxU2bYpAzZoFi7TUajVCQkIgl8u5KpFwhELBDCM5ORlpaex/h97G4/Hg7+9P98uEGFBT96boV6NfoceScpMw48yMItsq1UqsuLYCQRuCdAoEAwANNIjPYVyJXMZSU1Nx5coVbN68GbNmzcKAAQPQqlUr+Pv7w9nZGRKJBEKhEGKxGNbW1nB2doa3tzcaNmyIHj16YPz48fj6669x+PBhhIeHQ6NhD0qpDLxtvBHkFFTWZeistnNt9Eu/rHMgGAA8fiyGSkX/XRBCKoYHD/Jx8SJ7qNf48XKIxWzv1AghxmX0aFv07p2pVx9ZWUIMH66CUklzNkjl8SLlBTcL/c1RsPmzDWP7HAC39S/D6ISjIBBMn70mewIo4rFVqpIiTZRCgWCEALhyJRsHD1r98/+jokwwfboXRo/2xrNnplr14ebmZqjyCCEcsbOzg6mpHfLy9B9Pff3aBF26qJCdzR4iRAxPoVBgzZo18PPzw5IlS5CRkcH5NTr4dcDRQUdhIjBAQNxVAPvAHhALwNPTE6NHG3ZNxrNnz9CjRw+0bt0aly9fRg3HGjjQ7wAEPO42ae/s3xkB9gFan28ptsT6ruuRsyAHv/b4FT42PoWfmA5gC4AI/er7/PPPIRLRZkNlITNTDZmM7ee6mxvNryHEmNDfSEIIIWXi6FH2r6B+/eghQBdisRgeHh569fHXXxIMHOiHgQNNER9voHRuQojOPD09cfXqVTRo0IC9kzMAiljTpFArkKfI0y+V/y8AKTqcbw6gI/vl3mZlYoUGbnr82ZByTSqVMrelUDBCiDGzEFvglx6/YE+fPZCIJaV67SDH0l3AIxaL4eXlxUlfCoUCkZGRnPRFCCGk4nj1KhtPn5qCJVfCzIx2MyfkbeOOj8OWe1t0ahMZGckW3CoBpzua83l8fFztY5wZegavprzC7OazYW9ur3e/rKFgr1+/1vvahFRWCxfa4ZtvdA81srBQYePGCNSq9e47RY1GQ8FgRog19Fsg4G5ibUWTkZGBxMREzvrz8fGBWMzhlzUhpFC7++wu8h3x2ltrEZIa8t7nDxIeoOkvTTH73GxIlWxjabFZjMG+pUgul+Pq1av44Ycf0LdvX3h4eMDBwQGtW7fGuHHjsHLlSuzbtw9Xr15FWFgYkpKSkJOTA5VKBYVCgaysLCQlJSEyMhJ3797FsWPHsGnTJnz22Wfo1asX/Pz8YG1tjfbt2+Pbb7/F3bt3aVOKQnQNKF87vzdzb4a/hv+FVvXYFn3n5Ajw/DltdEkIqRi+/5594a6lpQpTpmgXDkAIKR82bTJDlSr6vR+7ds0SX3+dwU1BhJQDAfYBEPI5Csy3BDAA7CtAr6Fgg2cOmQhMYMovo+/7CAB7oN/vqSuAusWfUs25lh4XIKRiUKnUmDOHD43m/cDf27ctMXCgHz77rAoSE4v+eWdiYgJra2tDlkkI4cigQTb47rt0TvrKyeHj/v3X9N68HMjOzsbixYvh4eGBqVOnIjw8nNP+P/L7CEcGHuEuGCwDwA4A5/XvatGiRaU2pn3lyhV88MEHaNSoEVJupeDHj37krO8pjacwtx1RbwTCp4Xj8fjHaOvTFnze/x867gD4CUCyfrX5+Phg1KhR+nVCmMXEsKcoV6lCEUSEGBP6G0kIIaTUJSQocesW2yCAp6cc9evTBGJdWVtbw87OTud2KhWwdq0TpkzxQna2ALGxYvTvr6DdmggxInZ2djhx4gR8fIpIZi+JIXeBikPBYLIuOqMgGIwDH3p/yN2gOil3rlzh4/lzU+Tn67bzKI/HA59Pj8qEEOM3MGgg7o+7j0ZujUrtmkFOpRsKBgASiQTOztzsupibm4v4+HhO+iKEEFIx7NqlwsCB/mjVqjqmTPHEb7/Z4+VLE2gzH8nKyqrkkwipZMYeG4ttD7ZpfT5z+JUtW7P/crV0xaLWixA5PRJ/DPgDH/l99O/kJg74+fkxtaNQMEL08+mndvjuuzTweBqtzjc3LwgEq1On8GAUCgYzPhqNdv9u/0sopPGCwuTm5iImJoaz/jw9PWFuztFADyGVmEwmw40bN7B+/XqMHDkStWrVglAoBI/H++eXSCBC9oJs4Au890vzhQZVHaqCx+Nh27ZtkCqkmH9+Phpuboi78Xf1qi022zhDwR49eoQffvgBnTt3hq2tLVq1aoU5c+bg4MGDnP6ceyM7OxsXLlzA/Pnz0bBhQ1SpUgWzZs3CgwcPOL9WedWtareyLkFrH/l9hHPDzsHWzBZNm7LfM9y4QaFghJDyLzZWiYMH2TfFGDJECltbCmUmpCJxcBBj0yap1u/bCmNvr4CTUxaysrI4rIwQ42UuMsfQ2kO569AVQGvGtrkAXnJThrOZMz6t8ymudLuCqz2u4vN6n8PN3I2bzrURBWA3AH0evToCKGG6XY/AHnC0cNTjIoRUDLt2ZeLmzaI32tZoeDhyxBbdu1fFTz85Ii/v/Tn7Hh4ehiyREMKxWbPsMHOmfsFgDRrkYtu2cNjZ5SMsLIyCwcqJnJwcrF27FgEBAejYsSN27dqFvLw8Tvru6N8Rhwcehligx5pwKYALANYD4CC3rG7duhg+fLj+Henozp07GDx4MJb1WYYGTxoAeu7bFWAXgI7+HfWuK8g5CBeCL+Bok6Nw3uMMHAfAwRSZ5cuXQyQS6d8RYRIbq08oGM2vIcSY0N9IQgghpe7AgXyo1UW/GCxO164K8PkUCsbCzc0NeXl5kMlkWp2fkSHAvHnuuHbt3Z1lr161xMyZ6VizhqOVV4QQvTk7O+PgwYNo0qQJFAqGkc5rAJqA26cDFYAjAHR5fxsAgMONldr5tOOuM1LufPGFC16/NoFAoIGXVz6qVpUhIODNP2Vwc1OAV0heGL1wJISUJ352fpjaeCqGHR5WKter6VSzVK7zX46OjpDJZMjMzNS7r9TUVMjlJvDy0j00mRBCSMVz9WrB/X92tgB//WWFv/4qCPqysVGiUaNcNGqUi8aNc+Hrm//e84ONjU0pV0uI8dNAg1FHRoHP4yO4TnCJ50dERLBdSFLyKcVp59MOExpOQI/AHhAJDPcewMXFhakdhYIRor+5c+0gEKRhzhzbQncvf8PMTIWffopE3bqFB4K98SYYzN/fHyYmHO1gS5hRKBh3ZDIZp987rq6uFJ5LCIP8/Hw8evQId+7cwd27d3Hnzh08ffoUSqWSk/5fpLxAnY11EJIWwkl/MVncB2yxUCqVuHz5Mo4cOYIjR44gMjKyTOtJSEjAypUrsXLlStSvXx/z5s1D3759K/VmRE3dm8LOzA5p0rSyLqVYfar3wa7eu2AiLLjPCwoSw8xMDalU9393d+5oMGYM1xUSQkjpWrlSBrnckqmtQKDB7Nk0v5eQiqhrV2t88kk6Nm3Sfe5427ZZWLw4FnZ2KkRH56JatWoQCCg8kFR8n7b4FNsfbIcG7IF672gO4A4KNoPW1QMAek77Guw7GLPrzIaI/+/YWn/f/ujl3QtrnqzBtpBt+l2gJDEAfoN+4QRtATQr+bSFrRbqcRFCKob8fDUWL9ZuAxCplI8NG5xx4IAdpk1LRLduGeDzAUtLS5iamhq4UkII177/3hrx8RnYs8dG57YdOmTim29iYGJScP+Tn5+PyMhI+Pj4cFwlMRS1Wo2zZ8/i7NmzsLS0RLdu3dClSxd06tQJjo7soamd/DvhjwF/oNfvvSBX6XBDl4SCe+CHAPKZL/8OExMT7Ny5s0znD8TFxSHuQFzB/3EGUA2AP4AqAHQYmpjceLLeG2BKpVLs27cPGzduxI0bN/Tq622tu7VGnz59OOuP6C4uju1Z1NxcBWtrem9DiDGhGW+EEEJK3ZEjRU++L0nfvnQzqQ9fX1+8ePGixJT1p09NMXOmJ+LiCp+gsXatLRo1SsewYRQMRoixqFevHhYuXIgvvvhC98b/3wXKvK458hTcJPnjCnRLrBcD6MrNpd+gULDKKztbicjIgu8wlYqH8HBThIeb4vTpf8+xtFQhIKAgIKxq1fx//neVKjT4SAgpPxJyEjDq6KhSuZZELIGHVdnt2ubh4YH8/HytQ44Lo9EAv/7qgF27JLh6VYqAAPYdrgkhhJR/crkat28XPoExI0OIc+esce6cNYCC3csbN/43JMzHR0WLFQgpggYajDg8AgKeAENqDyn2XOZQMIY1ibamthhRdwTGNxyPqvZV2a6rIwoFI6RszZplBz4/DbNmFR4MZmamxoYNkahfX7t34hqNBqGhoRQMVsb02UmaNoR4l1KpRFhYGGf9OTg4wN7enrP+CKmoFAoFHj9+jDt37vwTAvb48WO2jZ+09N3V74B63PUXmxXLXWc60mg0uHLlCvbs2YP9+/cjNTW1zGopzr179zBgwAAEBgZi0aJFGDx4cFmXVCaEfCE6+3fGrse7yrqUIo2qOwqbum+CkP/vVGqhkIegIBlu39Z9DOHBA3pfRAgp33Jy1Ni6lX3eTPfuefD3Z9swmBBi/FatssLly1I8f67dfZK5uQqffhqPjz/O+GfzHY1Gg4iICPj5+RmwUkKMQ6BDIPrV7Id9T/dx06EYBcFgZxnavgagAMD4inRBnQUY5D+o0GMivgizas+Cj5UPFt9dzHaBksQC2An9AsFa//9XCTr4dkDjKo31uBAhFcO332YgIkK3jVeTkkRYuNAdv/1mjwUL4jBwoLuBqiOEGJJAwMf27VZISsrGhQva79o3eHAq5s6Nx3+n1OXm5iImJgbu7vQzobzJycnB3r17sXfvXvB4PDRo0AAtW7ZEkyZN0LRpU3h7e+vUX5eALjjU/xB6/d4LCnUR42JyFNz7hQF4CSBZv99DYZYsWYKgoCDuO2aV+P9flwCYAfAB4I6CgDA3FHkPbym2xIi6I5guGRYWhsuXL+PYsWM4e/YscnNzmfopkgS4XPMy7L6zw7gG4/Dlh19CLKSNBEpbXBzb/BonJxUAGu8ixJhQKBghhJBSlZWlxuXLbJMGHByU+OADmmSvDz6fDx8fn2IneP/xhw2WLnWDXF58SvSkSVaoXTsHdeqw7QpHCOHenDlzsGnTJsTHx+vc1u6VHeJ3xyMmOwYXwi9gw+0NeJD4gK2QRBSEgumiHQAbtssVxsXSBTUca3DXISlX7t6VQq0ufgAiJ0eA+/ctcP/+u5MRjx1Lh6enIasjhBDutNzasuhBMY4FOQWBx2MPeOaCr68vXr58CZVKpXNbuZyHJUvccORIQbDxxx8rce2aEtbW9HqUEEIqq0uXspGba63VuampIpw6ZYNTp2wAAIsWpeLLLw1YHCHlnAYaBB8OBp/Hx6BahS8QAIDERF0S5d+iw7rCxlUaY0LDCRhQcwDMRKUbCmtvbw+RSKRzwENysgFmtBFSSc2YYQeBIA0zZthCrf73mdbUVI316yPRsKFum2S8CQbz8/Ojnc3LiD6hOWIxTTJ9Q61WIyQkBBoN286w/2Vtbc0chklIRaZUKvH06dN/AsDu3LmDR48eQS7XZwVr2YvJjin1a7569Qpbt27Frl27EBNT+tdn9fLlSwwZMgQ///wz1q9fjxo1Kt/4ddeArkYbCjaz6Uz88NEPhY591Kunwu3buvf55IkYKpUGAkHZjqcQQgirTZukyMhgD/WaM4cWixFSkZmZCbBtmwqtW6uRn1/8HPN69XLx9dcx8PB4/12OVCpFamoqhYuTSmFBywXchYIBQB0A5wHourZbCSASgL/ul+zh2QMD/QaWeF5v7954kvYE+1/v1/0ixYlHQSBYvh59NAPQVrtTF7ZaqMeFCKkYEhPlWLXKirn98+dmyMuzg1BIczMJKa9EIj7++MMMrVvn4cGDwjfdfNuMGQkYOTIFRU0zz8jIgFgshpOTE8eVktKi0Wj+Get6w87ODoGBgQgMDETVqlXh7u4OJycnODs7w8HBAWZmZjAxMYGpqSn4fD7kcjlaubTClnZbMGrPKCizlUAOgDQAqQCSULAekZsh7EINGDAAc+bMMdwF9CUF8Oz/vwCAj4K1lg4A7AHYomAzTUugZ7OekGZIoTHVwMTEBCYmJlAqlZDL5ZDL5cjIyEBycjKSk5MRERGBkJAQvHr1Cnfu3DHs3DQRgIEAzIB0WTq+/ftbLL+2HB39OmJN5zXws6OQ8NKSkMDWztFR97U6hBDDoicrQgghperwYSnkcrZJA5065UMgoF3E9GVmZgZXV9f3QoPkch6++cYVBw5ot5tDdrYAAwYIcOuWElZWdEtBiDEwNzfH7NmzMWvWLJ3bSl9JoVKo4GvrC98GvhjbYCz+jvobnXd1RrY8W7fO7gPQ5fnfHUAj3S5RkrY+bcs8uISUnXv32BeG1a9f8qAFIYQYgwnHJyAsvfCwX0uRJaRKKVQa7l7I13SsyVlfrPh8Pvz8/HRetJqWJsCMGZ64d+/f58lnz8zQr182Tp60gFBY/GRVQgghFdOFC+zfky1a0LswQkqi1qgx9I+hEPAF6F+zf6HnpKWlsXVewj4V5iJzDA4ajAmNJqC+a322a3CAx+PB2dlZ59ACuVyOnJwcWFrShhyEcGHqVDsIhemYMsUGajUPJiZqrF0biUaN2HY61Wg0CAsLo2CwMqJPkI5IVMQWupWMSqXGkydhEAi4eW9kbm4ODw8PTvoipDxTqVR49uwZ7t69+8+iiIcPH0Imk5V1aZyLzYotlevk5eVh//792LJlC65c0XVHKuPy119/oW7duliyZAnmzZtXKcaxlWoltj/Yjp/v/lzWpRRqaZulWNBqQZH/Lho0YPt3lJsrwLNnctSqRWGkhJDyR6XSYN069uempk2laN68dEP5CSGlr3FjS8yfn4Yvvih8rrlQqMHEiUkYNSoZgmJyAuPj4yGRSCjEnVR4dVzqoFvVbjj+6jg3HVoA8AFQ9P7wRYuBzqFgVa2r4rN6n2n9HDuvzjw8y3iGp+lPda+vMAkAdgDQ5/VKIwAdtTu1pWdLtPZqrcfFCKkY5s/PQ2amDXP7unXzMHq0dpv0EUKMl0QixIkTKrRsmY/Xr00KPUco1GDJklh0755RYn9JSUkQCoWws9Nu3Soxfmlpabh+/TquX79e1qVo5YMPPsD27dvL1xiNGgWhaYVMsdu1dRd2wcg2ZeEB6AegyrsfqzQqnAw9iZNrTyLQPhBft/0afWr0KYsKK5XERLb/1p2ddU2hJoQYGq14I4QQUqr++IO9be/e5eiBy8jZ29vDyurfnRvi40UYPtxH60CwN16+NMOwYblQqehGnxBjkK/Mh7ieGDyGXWelUikuX778zmctPFvg/rj7CLAL0K0zXVL5+QB6gPMnk3Y+7bjtkJQrT56w/Qfl5KSAm1vhAxaEEGJMzoWdw8a7Gws9xufxcXfcXVweeRme1p6cXTPIKYizvvQhFovh7e2t9fmhoSYYPNjvnUCwN86dk2DatEwOqyOEEFKe/P032yIDCwsVPvxQwnE1hFRMao0agw8OxoFnBwo9npqaytZxEXne1R2qY02nNYidGYufe/xcpoFgb7BOZmT+syGEFGriRFts2JABc3MV1qyJQtOmbIFgb7wJBquIQS/GTp9QMBMTevcLAFOnZmLwYHekpBSzMldLur6nIaQi27lzJ2rXro2RI0di/fr1uHnzZoX9nojJ0i30ltXWrVsxYsSIch8I9oZCocD8+fPRvXt39oBkIxeTFYNZZ2fBf40/xF+JMebYGNyMu1nWZb1nXed1WNh6YbELf5o1Yw/FuX6dfQMrQggpS/v2SRERwR7OM3OmLhPGCCHl2cKFNmjWLOe9z319Zdi1KwxjxxYfCPZGREQE98URYoQWtlrIbYc+jO3iSz7lbZZCS6xqugpmQu1DP00EJljRZAWsxRyEASWiIBBMqkcf9QB00f70ha2Kf1YkpDK4fz8HO3dalXxiMb77TgGBgJatE1IRuLmZ4MQJFRwd33/naW6uwvr1EVoFgr0RFxeH7OxsDiskRDuNGzfG4cOHac6AIfEB9ARQtfjTXqa+RN/9fWHzrQ3mnJsDmbLijaemS9Oh1pT9evuEBLb7MWdnjgshhOiNtjInhBBSamQyNS5cYNsxWyJRoXNn2m2bS+7u7ggJCcHly2LMm+eB9HS224KjR62xbFkaPv+cktoJKSuJOYnYeGcjfrrzExJzEwFvMO0CdfPmTXTs+O52SH52frg2+hp67u2Ja9HXOKn3HWoAG7jvdvQXozEao7nvuAht2rRhbqvR0KQ4rr14wfadVrVqPgD2Cd6EEFIasmRZ6Lm3Z5HHV320ClXtq6KqfVU8GPcAY4+NxcHnB/W+rrGEggGAhYUFXF1dER9f/Gy1K1csMWeOB3Jzi55tumGDLQID0zB1Kj3PEEJIZZKfr8bdu9pPXn5bw4Z5EIspFIwQbak0Kgw6OAgCngC9qvd65xjzQvi31iaK+CL0rt4bExpOQGuv1kY3UV8iYft5kZaWBi8vL46rIaRyGzfOFi1aJAB4f8EiizfBYL6+vjAzY7uvILpTKNhDNoRCmiL11Vdp2LCh4B1IcLAvNm2KhIcHW9CaUCiEv78/+Hxa2ENIZROXHQeNRmN0997lxYkTJ9CoUSOcP38ePj6sK7mNx7mwc1h/ez0uR15Guiy9rMsploAnwLaPt2Fo7aElnlujhggWFqpixxeKcueOBp98wlIhIYSUrVWr2L/bfX3l6N2bno0JqSyEQj527BCgQQMlsrIK3rcMHpyKGTMSYGqq/VxIuVyO+Ph4uLq6GqpUQoxCU/emaOvTFhdfX+SmQw/GdjoOy33d6Gt4Wuq+IWUViyr4ttG3mPj3RGh02mX6LUkAtgPIY2sOAKgNoDsALW9xGrg2QEe/jiWfSEgFN3euBkol+3v/bt2y8NFHHAQDEkKMRvXq5jh4MAudO/P/eV9qb6/Ahg2RqFFD9zCfyMhI+Pv7w9SU1gmT0tGyfUucOXIG5uZF7EJJ9GZubo7OCzrjgvACMmQZWrXJzM/ED9d+wKrrq9Detz3WdFqDqg4lJIoZuVeprxD8RzBuxt6ERCzB6k6rMareqDKrJzmZ7Z7OxYXWuRJibGhmFiGEkFJz6pQM2dlsOw63ayeDqSl9bXGJz+fDx8cPK1e6MAeCvbFkiS1On87iqDJCiLYeJDzAyCMj4bnaE19c+qIgEAxg3gXq3r17hX7uYO6A88POo0/1PoyVElK6Xr5kGyCoXp12bSaEGL8229tAqix8C8QPvD7A1KZT//n/tma22N9vP37q+hNMBPrtbFPTqaZe7blmb28PW1vbQo9pNMBvv9lj8mQvrRbszJ5tgzNn6HmGEEIqkz//zIFUyvaesmVLem4gRFdKtRL9D/THkRdH3vk8NTWVrUMTwNPaE1+3/RrRM6Kxt+9efOD9gVGGElhZse2izPxnQwgpVlCQCxwcHDjr700wmFRa+HM64Z4+oWCV3c8/p2Px4n/fpURHm2DoUF88far7+3Q+n0+BYIRUYvmqfKRK6X5VH+Hh4WjZsiWeP39e1qXoLEeegxXXVqDB5gYQfyXGR799hCMvjxh9IJiJwASHBhzSKhAMAAQCHoKC2IIzHzxge+dECCFl6fJlGW7fZg/1mjJFAYHA+N7NEUIMx9/fDN9/nw1HRwU2bozA/PnxOgWCvZGamkrv1kilsLDVQu46Y933MFP7U0cHjkZbt7aMFwJaurTE+Orj2RonQ/9AsJoAPoZOq2YXtFpglGONhJSmI0cycf48+yZ5JiZqLF9OG7QQUhG1amWFHTuyIRSq4eWVj507w5kCwd4ICwujcV9SKqxaWOHiyYsUCGZAVapUwZ9//okDCw8gfV46DvQ7gGoO1bRur9KocCbsDALXB6Lq2qrY+2SvAas1HKVaib77+uJm7E0AQLY8G6OPjsbPd38us5qSk9nGq1xd6bmIEGNDs7MIIYSUmkOH2BNie/XisBDyD7FYiD17VJBIVHr1o1TyMHy4GSIiaGCWEENTqVU4/OIwPtz2IeptqodtD7ZBrvrPZFTGXaBCQkKKPGYmMsO+fvswo+kMts4JKSWRkTKkpbENKAYFUZo9IcS4Lf5zMe4lFB7iaW1ijTNDz7z3OY/Hw/iG43F77G1Ud6jOdF17M3s4WzgztTWkKlWqwMzs3cnpCgWwZIkbvvvOFWq1dgMSCgUfgweb4/lzfWaTEUIIKU/On1cyt+3QQcRhJYRUHkq1Er1+74Wll5ZCoyl4/k5PZ1s0/lPvnxA+NRwLWi2As6Xx3ae+TSJhmzSdlqbjdu2EEK25uHAbDAYUTFrOy6NnytKgVLLdx1X2xVxHjmRg0iRraDTv/jmkpQkxcqQPrl2z1LovHo8HPz8/CIW0sIeQyiwmK6asSyj34uLi8MEHHyAsLKysSynRs+Rn+OToJ/BY5QHJNxLMPjcb9+LvQaEuH4u2LMWWODXkFHoE9tCpXd26bHOpnjwxgVJJ486EkPJl+XL2+aN2dkp88gl7oBghpPwaN84Wp0+/RosWOXr1ExERAbVazVFVhBinNt5t0NS9KTedSQCwrO2W//9XCRo7NsbkGpMZLvCucdXHoYVzC90apaAgECxXjwtXA9AbOq2YreFYAx9X+1iPixJS/qnVasTEZMDRkf19z+jRmahWjUJXCKmoeve2wbZt6di5MxweHvq9G9ZoNAgNDaXnAGI4ZgD6A5O/nAyRiOZ7GkqfPn3w6NEjNG7c+N/PavTB80nPETYlDN0CukHI135eQUhaCAYdHATrb60x4/QM5MnLzzycoy+P4nHS4/c+n3hyIi6EXyj1euRyDfPaSgoFI8T4UCgYIYSQUqFSaXD6tAlTW7FYjZ49dd+hmGinbl1LrF2bpXc/SUkiTJ2aTy9kCDGQTFkmVl1fhYC1Aej1ey9cirxU9MmMu0BFR0cXe5zP42Nlx5X4sdOP4IEe8Ilxun2bfceRevVoERMhxHjdibuDry5/VegxHng4N+wcTIRFP3PVcq6F22NvY0y9MTpfu6ZTTaNdPOvj4/PPItTMTAEmTPDGgQO63wylpQnRsycfqalazH4jhBBS7l29yvaeUiJRoXlzC46rIaTy0ECDz//6HG4r3bDo4iLIZGzP8D3r9ISAz7aTXWmzsrJiaieV0gYchBiSIYLBwsPDkZurz0olog2Vim2hOp9feadHXbuWjWHDJFAoCv8zkEoFmDTJC8eOWWvVn7e3N0xM2O6nCSEVR2xWbFmXUCEkJyeja9euzIHJhqJWq/H7k9/Rfkd7SL6RoOaGmvj5/s96hcEJeGXzDGdnZoeLwRfRxqeNzm0bNmQbF5FK+XjyhMYaCCHlx6tXcpw8yb5wf8wYGczNK+8zFyGVXVCQt959qFQqxMRQ8DCp2Hg8Hha2Wshdh2LGdiXkdziZOuH7xt/rtHC/KAKeAN80+gau5q7aNUhFQSCYPjmD/gD6QufQtAUtF4DPo/sZUrkVBNhn4/jxEIwfnwRTU93WhdnbK7BkCc2nIaSiGzLEHp6e3IT/qVQqCgYjhlEVwAQANYD+NfuXdTUVkoODA7Zs2YIDBw7Azq7wdRu+dr44NvgYcufnYkGrBbAz0359R1Z+FlbfXA3JtxJ02NEBz5KecVW6way5uabQz5VqJfrs64MXKS9KtZ64OPaNk6tUoWcjQowN/a0khBBSKi5dykdKCtvgQOvWMlhbl48FPuXV8OG2mDhRv0mGLVpkY968eISHh3NUFSEEAEJSQzD11FS4r3LHzLMz8TrjdcmNGHeBys7ORl5eySnqU5tMxcH+B2EqpMDGyiRPkYf47HioNcb90v3hQ7b6hEIN6ten3YkIIcZJrpSjw84O0KDwneUXtFqARlUaldiPhdgCP/f4GXv77IWVifbhBEGOQVqfW9r4fD78/f0RFWWCIUN8cfOmJXNfISGm6Ns3HwqFcX/XEUII0U9urhIPHpgxtW3cOA8iEQ2tEaKvhJwEfPVn4YG32ihPQSSstcrltICcEENzcXGBk5MTp32+fv2agsEMjELBdPPiRR569TJFdnbxg0ZKJQ8LFnhg2zZ7aAp//QQA8PDwgIUFLeohhECvcKiyZGphitatW2P69OlYvXo1Dh8+jIcPHyIqKgqpqamQyWRQKBTIyspCXFwcbt26hf3792PhwoXo2LEjzMzY3icU5+XLl+jXrx80xf0ALgUpeSlYdHERaqyvAfFSMQYeHIgLry8gR86+GtvBzAF9a/TFpeGXcHLISQ6r1Y6bxA2XR1zWavykMM2aiZivfeMG+2ILQggpbT/8IIdazRaEaGKixvTpNH+MkMpMLBbDxcVF736ysrKQnZ3NQUWEGK+uAV1Rx7kON52xPq4U86gi5Aux/aNVcDDjbkMNWxNbrGyyEiJ+CQWnoSAQTJ8fA74ABgDQccmSr60vBgQN0OPChJR/SqUSGRkZAABzczUmTUrCsWMh6N5d+zVmc+dmw96eNbGQEFKeeHl5wdSUm3cBcrkcERERnPRFdGNiYlLxxn2dAQQDGAzACqhqXxW1nWuXaUn29vZlen2umZiYYPbs2QgNDcWoUaO0aiMWivF126+ROjcVRwceRU3HmlpfT61R4/zr86j5U034r/HHzoc7WUs3qEeJj3Ap8lKRxzPzM9F1d1ek5KWUWk0xMWxzawDA3V3/kGhCCLcq56w3Qgghpe7AAfabyJ49y3biW2WxerU1WrRgm8w3fnwS1q+PhLW1CjKZDPHx8RxXR0jlotFocCH8Arrv6Y7AdYFYe2ut7pNtGcdUtAkFA4Be1Xvhz+F/wsGcu8FfYrzW3lwLx+WOcFvphnqb6uFa9LWyLqlIz56xBYl6e+fDwoJeXBFCjFPnXZ2RIcso9Fgd5zpY2napTv0NCBqA++Puo3GVxlqdH+RkvKFgACAUChEQ4I7cXP1fdf71lwQTJ2ZxUBUhhBBjdf58DvLz2b4zWrYsYetkQoj22IcMIBSWn+d31loVCvp5Q0hpcHJyomCwcoZ1p2iBoPJtQBUXl48uXQRIStJ+heCKFa5YvtwFhf0xu7i4wNramsMKCSHlWWx2bFmXoBUrGyuIaomAHgAmAbLZMtSYUwOrVq3CtGnT0LNnT9SuXRseHh6ws7ODiYkJhEIhJBIJXF1d0ahRI/Tt2xdLly7F6dOnkZqaiiNHjqBHjx6cfrdcuHABa9YUvoO4IV2Pvo5BBwbBabkTHJc74qsrX+F5ynOoNIwhnDw+Au0DMb/lfMTPikfy3GTs77cfrb1b4wOvD2AhKr0FRr62vrg68ipqOmm/uOS/qlUTwdKS7c/i7l3myxJCSKlKTVVh1y720Mt+/aRwdS0/7+oIIYbh4ODASYBuVFQU87sfQsoDHo+HBa0WcNMZaw5xMY+yKz5agU71BsPHWQyhkLtn3iC7IHxa59OiT0gHsA2APtO1vAAMBFNY2vyW8yHk0/0Mqdyio6Pf+8zFRYFly2Kxd28o6tcvftyralUZZsywMVB1hBBj5OvrC5GIfVOFt+Xl5SEqKoqTvoj2XF1dkZycjP3796Nfv34wNzcv65LYuQHoA2AcCoJi/29AzQHg8diC8LmyYsUKPHv2DF988QVq1KhRprXow9LSEpMnT8aLFy+wfPly5nkD3QO748nEJ4iYFoGegT11ug8PSw9D8OFgSL6RYMqpKciVG8+8nHW31pV4Tnh6OHr93gv5yvxSqAiIi2OdW6OBs3Plm19DiLGjUDBCCCEGp1ZrcOIE24M+n69B374mHFdECiMS8fH770K4ucm1biORqLBuXSQmTUrC2/MdU1NTkZVFC+kJ0ZVUIcUv935B7Y210X5nexx/dRwaMAYjMr5flclkWp/b1L0pro++Dn87f7aLkXLhTtwdTD09FXmKgsC4R4mP0HZ7Wxx4dqCMKyvcixdsiXiBgdp//xFCSGlad2sdLkZcLPSYmdAMl0dcZurX19YXV0Zewdzmc0s8V59FM6UlIMAMu3fnwcRE/wmiv/xig507S28nFkIIIaXr4kX2DQg++oibyUyEEFSaUDDWSZByOb2nIKS0ODk5wdnZmdM+X716jZAQ7TbgILphXRhanr47uJCVpUTXriq8fq37OPvOnQ749FN3yOX/TpC2t7eHgwNtEkNImRIA0H+NPWdismLKuoQieXh4YPbs2Vi1fxXkM+VQ9FEA9QE4AuABm+5uQmRGJFPfZmZm6NGjB44cOYKQkBAEBweDz+dmCu78+fMREhLCSV9FkSvl2Hh7I5pvaQ6zpWZovrU59j7di+S8ZOY+LUQWaOPdBr/1+g35n+XjxeQXWNZuGVwsXd45z0Rogg5+HfT9LWglyCkIV0dehY+tj179CAQ81KrF9mx2/z4tmCCElA8//ihFXh7bzyweT4O5c+mdOSGkgJeXl96LrTUaDSIiIrgpiBAj1ad6HwTaB+rfEeswUhHTawcGDcSUxlMAAOYOAfCrYg1TU+7W8PTz6Yfunt3fP5AB/QPB3AEMBtNm2u5W7giuE6zHxQkp//Ly8ord7KZmTRm2bXuNVaui4O5e+A+fr7+WQSSiZeqEVCZ8Ph9+fn6cvR/PyspCQkICJ30R7ZmZmaFv377Yt28fUlJScOzYMYwfPx4eHh5lXVrJRACCAIwC8AmAWngvMaV/zf6lXlZhqlevjsWLF+Pp06d4+fIlVq5cibZt23IWrGdI1atXx4oVKxATE4O1a9fC29ubk369bLxweOBhSBdKsbj1Ytib2WvdNkeeg3W31sHqWyu03d4WjxMfc1ITqzRpGn579JtW516Nuooxx8ZAo2Gfw6ytuDi2a9jZKSEUlm2YHiHkffS0RQghxODu3ZMjKootoKNxYxlcXCrXJO2yVKWKKX77TQaxuOQJ9VWrSvH772H44IPsQo9HRUXRwiVCtBSXHYfPLn4Gj1UeGHtsLJ4kPdG/U8ZdoMRi3X5e+9v549qoa2jq3pTtgsTobbm35b3P8lX56L+/P1ZeX1kqL6O0pVCoERbGNhGhZk09ViMTQoiBhKWFYfrp6UUePzTgEKxMrZj7FwvE+K7Ddzg95DScLJwKPYcHHoKcgpivUZo6dLDG6tWZevczbFgKatdOQEoKBYMRQkhF5OmZixYtsmFmptszgK2tEo0bWxioKkIqIT2yXMtTsAtrrfRunZDS5ejoyFkwmEIBzJvngdathXj4MIeTPsm/WN9HCwSVJ5hDLlejVy8pHjxg38351CkbTJzohZwcPqysrODq6sphhYSQkohEIgTVDoJnG0+gGwoWM8wH0LiMC3tLbHZsWZfwDktLS4wbNw6XL19GZGQkGo9ojLnP50Kmfn9DLA00OBFyQu9r+vj4YPv27fj7779RvXp1vfuTSqWYM2eO3v38V2RGJKadmgbfH31h+rUpJpycgOsx1yFTab9Z2H+5Sdwwsu5IPBz/EDkLcnBx+EUMqT2kxB3duwV0Y76mtppUaYJLIy7BVcLNd1fdumwPr8+eiaFUGs84OiGEFEYmU2PzZvawj3btpKhVi21eMCGk4hEKhXB3d9e7n7y8PKSlpXFQESHGScAX4NOWn+rXiQzMc8QL23C6hmMN/Nz953eC/UQSN/h6usLakptgMB6Ph8/rfY4Aq4B/P8xEQSCYPlO93AAMBcBY5pzmcyAW0P0Mqdyio6NLPIfHA9q3z8KRIyGYPTseEsm/820+/DAbffvaGLBCQoixEgqF8Pf31zsc+I2UlBSkpqZy0hfRnZmZGbp164affvoJUVFRePbsGdatW4fevXvD3l77wCaDMgFQE0A/AHMA9AXgWfip1R2qo6aj8W2KXrVqVcyYMQMXLlxAamoqjh8/jlmzZqF+/fqchezpq3bt2vjiiy/w5MkTPHv2DDNnzoS1tbVBriXkC/FFmy+QMjcFJwefRG2n2lq3VWvU+DPiT9TeWBs+P/pg6/2tBqmxJFvubYFUKdX6/N8e/Yavr3xtwIoKJCSwjVE5OdHaSkKMUfmZMU0IIaTc2r9fAdY37T166LEyiDBp08YKX3+dhjlz7Io8p1u3DCxaFAszs+IfDsLDw1G1alWjeSglxNjcir2FH2/+iH1P90GpZh2hLQLjukELC90XODtaOOJi8EUMOTQEf7z4g+3CxGhdeH2h0M810GDW2VmIzIjEyo4rIeCX/aKq2NhcNGgAvHplipQU3XZNqFXLQEURQggjtVqNlr+2hEpT+Iv1sfXGopN/J06u1dG/Ix6Of4hhfwzD+fDz7xzrVb0X7MyKfjYwNuPH2+L583SsWWOrc1uhUIOFC+PQt286ACAhIQEmJiaQSCRcl0kIIaSMKJVKdOyYgY4dM6BQAE+fmuH2bUvcvGmBBw/MkZ9f9Dusxo3zIBSyh3ESUpmYCEzgY+sDP1u/gl92ftBoNHie/BxXo6/iafJTQI/5IxQKRggxBEdHRwBAYmIicx9KJTB/vgfOnSuYENmxIw+nT+egbl1LTmok7MrDLrtcUKnUGDYsCxcv2ujd182bljh1yglffumgf2GEkCKJRCLUrFkTDRs2RIMGDVC/QX3cVNzEwksLkS0vfIM2YxCbZRyhYEFBQRg/fjyCg4P/eY/7y71fMO74OKg1Rc83Ov7qOCY2mshJDU2bNsXdu3cxZswY7N69W6++jhw5gtu3b6NRo0bMfajVapwOO40NtzfgatRVZObrv5GGkC9EkFMQBtQcgIkNJzJvVtIloIvetRSnnU87HB54GJZi7u69GjXi4aefdG8nlfLx6FE+6tfnZgE9IYQYwvbtUiQmsm+EMXs2N4t+CSEVh7W1NTIyMpCdrd+zTFxcHCQSSaV5n0MqnyG1huCLv75AZGYkWwesuXkmAP7z9W0ptsTB/gcLfY7iiy3h7ukHk7gQJGUoGC/6LzOhGVY1XYWBFwciJy2nIBAsQ48OXQAMA2DK1tzR3BFj6o/RowBCyr+MjAwoFNr//RaLNRg+PBU9emTgp5+ccOiQLX74gdaKEVKZicVi+Pr6IiwsjJP+4uPjIRKJYGVFc/TKWvXq1VG9enVMmjQJGo0GISEhuHXrFm7duoX79+/j2bNnBg105vF48PDwgHOAM+6I7kDjqSm4/9Pya6d/zf6cBdYZikQiQdeuXdG1a1cAQHZ2Nu7cuYNbt27hzp07ePToEcLCwqBSGS6kycLCAjVr1kSLFi3QqlUrtGzZ8p+5M6Wtc0BndA7ojJisGEw/NR1HXx2FQq3dfUpERgRGHx2NqaemYljtYfiu/XfMY1m6UKlV2HBng87tPv/zcwTYBWBA0AADVFUgPp7tv38nJ8pzIMQYlZ8Z04QQQsqtY8fYB+X69aMBvbIwe7Ydbt/OwL59Nu98LhRqMHduPAYOTIM2z8VKpRJRUVHw9vY2SJ2ElEdKtRKHnh/C6hurcT3mumEuwrgLFI/Hg7k5287xZiIz7O+3H7POzsKPp35k6oMYn+jMaISkhRR7zppbaxCVFYVdvXfBXMT23w9XTExysGlTwe4gaWkChISYIiTEFK9emSIkxAShoaaQyQp/C9yoEU3IJoQYl4EHByIhJ6HQYz42PtjUfROn13OxdMGZoWew5uYarL6xGil5Kejo3xGbu23m9DqlYeVKa4SGZuHkSe0Hc6yslFi1KhqNG+e+83lUVBQCAgIgFtOukIQQUhGkp6f/879FIqBuXSnq1pVi7NhkyOU8PHpkhtu3LXDrliUePjSDQvHv80PLlhyHeRNSztma2sLPzu+d4C9fW1/42fqhilUV8HlFz8J6kvQE3574Fruwi+naxj5p622sG2ZoNGy79RFC9OPo6Agej4eEhMKfx4ujVAILFrjjzJl/d0hNTBShY0fg1Kkc1K9PwWD6UirZ78cqyyLSixdjceRIFU766tMnE4sWlZ+geELKA6FQiJo1a6JBgwb/hIDVqVMHJiYFY1R5ijz03NvzvY0bjFFMVkyZXr9Dhw6YP38+2rRp887nP1z7AXPOzSmx/cXXF5Erz4WFmD0I5W1mZmbYtWsXvL29sWzZMr36+vLLL3H8+HGd2229vxVXblzBk+QnnGxIZmNqg5YeLTGh0QR08uvEyWaArhJXNHBtgLvxd/Xu6796VeuFPX32wETI7ZhvkybsG2PduKGkUDBCiNFSqzVYvZp9GUnt2jJ06MCYwEEIqdA8PDzw4sULqNX6LSJ9/fo1qlatylFVhBgXkUCEuS3mYtLJSWwdJDFe2Ob9j7b22IpqDtWKbMLj8+HkHghT4QvEpKn1/rvtJfHCHJ85WLxqMZBe8vlFckJBIJgZexezms0q8znPhJQltVqNuLg4pra2tiosWBCPadMy0KCBH8eVEULKGzMzM3h6eiIqKoqT/qKiouDn5wczMz2+6AmneDweqlatiqpVq2Lo0KH/fB4fH4/nz5/j9evXiIqKwq4ruxAWHQbkAZDi37WNKgBqAALA0swSJiYmMDExgaWlJZycnODs7AxnZ2e4uLjA19cX1atXR2BgICwsCsZwdj3aheDDwcVuBvNf/Wv25/BPoHRIJBK0adPmnbGv/Px8vHz5EiEhIYiMjERUVBSio6ORkpKC1NRUpKWlITc3F3K5/J8NKN/8+ZqYmMDU1BS2trb//Bk7OzvD3d0d1apVQ7Vq1eDh4WF08/DcrdxxYMABKNVKfHv1W6y5uQbJeclatc1V5GLj3Y3YfHczWnq2xOpOq1HPtZ7Baj3+6jgiMiKY2g4/PBxeNl5o6t6U26L+LzGR7d+rszPNWSTEGFEoGCGEEIN6+VKO58/ZJjgFBcng708TB8rK1q2WePYsD0+eFAx2ODkpsGJFFOrWlerUT05ODpKTk8ssJZoQY5EmTcPPd3/G+tvrEZ0VbeCLsTWTSCR6vcwR8AVY3Wk17v96H5dvXmbuhxiPC68vaHXe4ReH0XZ7WxwbdAyOFmX3814q/fc7ys5OhSZNctGkyb/hLioVEBMj/n9ImClevTJBSIgpMjMFdM9BCDEqvz/9Hfuf7S/0mIgvwtWRVw0yAMPn8TG96XRMbTIVPPCMbpBHWwIBH3v3mqN583+fZ4rj7Z2Pdesi4eUlf++YRqNBWFgYAgMDOVn0RAghpGwVtzO5WKxBw4Z5aNgwDxMmJEMm4+HBA3PcumWB27ct0KkTBUSSysfdyv2d0K+3/2lrZsvcb5BTEH7o/ANzKJhSqSw34S667Kz8NgqlJaTsODg4gMfjIT4+Xus2KhXw2WfuOHXK5r1jSUkFwWCnT+eiQQNugkcqq/z8fOa2leHnanR0NFxdM/HLL3JMmuSFrCz2KWEffJCN3bslEAjoXQghrIRCIWrUqPFeAJipadHjUfPOzSsXgWAAkJmfiRx5DizFpRd6yePx8PHHH2PBggVo2LDhO8c0Gg0+u/gZll3VLpArX5WPi68vontgd05r/Prrr6FSqfDdd98x93Hq1CnExsbq3G7tzbWAK/NlwQMP3jbe6F61O2Y2mwkvGy/2zorRrWo3zkPBRtQdgZ+7/wwhn/vp0NWqiSGRqJCdrXs42N27tHCCEGK8Tp6U4cUL9sW106erweeXz7FkQohh8fl8eHl54fXr13r1I5fLkZCQABcXF44qI8R4KNVKvE5/DR540IDhuSGC8cL/yf+f0XQG+tXsp1VTK5dq8BWHITJZyTz2BQApKSnY9tk2IJW5C8ABQDAAPV+358hzoFaraT4YqbSSkpL0DvqrU4ebTUoIIeWflZUVXF1ddRpjL86dO5GoVs0Xjo4Vf4y3PHN1dYWra8HARPChYITxw4o8t4qkCl5NfgVzse6hrENqD4EGGgT/EazV/XOQUxBqONbQ+TrGyMTEBLVr10bt2rXLupRSJ+QL8Vnrz/BZ689wPvw85pybgwcJD7Rqq4Yal6Muo/7m+vC09sTClgsxpv4Yzu/9195ay9w2X5WPnnt74uaYm/C28eauqP9LTGT7vbq40NgWIcaIQsEIIYQY1P79cgBsD+Dduum/cyVhZ2EhxP79cjRrpoSfXz5++CEaDg5s/04SExNhbm7+T0I3IZXJ8+TnWHNzDbY/3A6pUrdQPWaMu0D5+Phwcvl6rvVwGRQKVhFoGwoGADdjb6LZlmY4NeQUAuwDDFhV0d7sbFAUgQDw8pLDy0uODh2y/vlcqRRAIKhu6PIIIUQrSTlJCD4UXOTxX3v+CjcrN4PWwOeV/8lOEokQR44o0KyZAklJRQdGNG2agx9+iIK1ddETXFQqFcLCwhAQUDbfb4QQQrgjk8m0PtfUVIOmTXPRtGlB0HCNGhVjogghbxMLxPCx8fk38Out0C8fWx+YCg0XoK1PqFdlCAUrL78/Qioqe3t7ANBq0rJKBSxaVAUnTtgUeU5KSkEw2MmTOWjcuPTCUyqa589VWLjQA7a2StjaqmBrq4SdnRI2Nqq3PlNBJHp/kmJFDwVLSEhAZmYmAKBuXSl27nyN8eO9EB+v+++7du08HDliBrG4/L8fIqQ0ubi4YMSIEf+EgNWpU0fnXezPvy4fgWBvxGbFItAhsFSu1b17dyxbtgxBQUHvHVNr1Jhycgo23NmgU5/HXx3nPBQMAL755hu8evUKf/zxB1N7tVqNHTt2oHPnzhxX9j5ToSnqu9RHcJ1gjKw7EmKh4b8vu1Xthi8vfclZf9ObTMeKjisMNq7B5/NQq5Yc167pHpxz/z5NzyaEGK8VK9gXd7m5KTB0KHugGCGk4rOwsICdnR3S0hh3t/2/lJQU2NjYFBuuTEh5kq/Mx6yzs/DLvV+Qr2LcAEENoOisheK9FQrW0rMlvmuvW6C1qZ0f/EySEJWQiTyp7vWnpaVh7Nix+oUG2gEYDoCD1+xLryzFyhsrMbXxVHzV9iuDBE0TYqxUKhVSUlL06kMikdB3NCHkHfb29lAoFHr/fImOFmP8eC+4uChw8SIfFhb0HW3shh4ail2Pi94Y0t3KHS8nvWQKBPvnGrWHQq1RY8ThESUGg/Wv0Z/5OsQ4tfdtj/vj7iM+Ox7TT0/H4ZeHIVcVv37wjajMKIw7MQ4zzs7A4KDBWP7RctiY2uhd09OkpzqtuSxMUm4Suu/pjr9H/Q0rEyu9a3pbcjLbuJmrHhsQEUIMh+6GCCGEGNTRo7rvlPhG//606KWsVatmjuPH02BuHgd91yBFREQgMDAQQiHdfpCKT61R42zYWay+sRpnws6UfgERbM38/f05ufzq1auxevVqXIu+hh57eiBVqs+WTtoxF5kjfV46xIKSJypHZUZh091NOPHqBF6kvHh3cP1XAJEMBQwH4AOYCExQ3bE6ugV0w7iG4+Bu5c7QmXHQaDS4EK7bC6qw9DA029IMxwYdQzOPZgaqrGhKJVt4JQ0UEEKMSctfW0KuLnyQ4uNqH2NI7SGlXFH55etrhv37s9GpkwBS6fsDGwMGpGLevHitnnXy8/MRFRUFT09PA1RKCCGkNCgUCuZdTkUiEe0QTMotaxPrQkO//Oz8UEVSBQI++zt8fegTzsL6/F8WWGut6OE1hJQH9vb24PF4iIuLK/IctRr44osqOHrUtsT+UlNF6NyZh+PHs9GsmYTLUiuN0FA1zp61KfE8iUQFG5t/g8McHJTYt6/ijjunpqa+N7ne1zcfO3eGY8IEb4SEaL8ox9s7HydO8GFtTe/MCdFVp06d0KlTJ7368LX1xYuUFxxVZHix2YYPBWvVqhW+/fZbNG/evNDjCpUCI4+MLHaxSVFOhJyARqMBj8fTt8x38Hg8bNu2Dbdu3UJsbCxTH3v27DFYKJijuSPa+bTD1CZTy2Q8t75rfbhYuiAhJ0Hvvr788Et83vpzzv8d/le9eipcu6Z7u+fPxVAoNBCJDFsfIYTo6t69fPz1F/sizAkT8inQnhBSIjc3N2RnZzNvnPHG69evERgYSON0pFzLkedg0slJ2PN4DxRq/f5OIBxANmPb/y/udrZwxr6++yAS6P59LrRwgreXNeLjopCepX0wWEZGBsaOHYvQ0FCdr/kPGxTM1ebw9XqeIg/f/v0tVt1YhTH1x2DFRytgIjTh7gKEGKmYmBi9+6hSpQoHlRBCKhoXFxfI5XJkZWUxtX/61BQTJ3ojLU2IqCgT9O+fhSNHLCEU0vOAsRpycAh2P9ld5HEPKw+8mPRCr0CwN4LrBEOj0WDkkZHFBoP1q9lP72sR4+QqccXv/X6HWq3G8mvLserGKiTmJmrVNk+Rh1/u/4It97egmUczrO64Go2qNGKuZd2tdcxt3/Yk6QkGHBiAY4OOcRZUrFZrkJzM1peLC41pEWKM6E6IEEKIwcTFKXHnDlvyv7e3HHXq0KIXY9CihR1sbfXfTkWj0SA8PJyDiggxXrnyXPx0+yfUWF8DnXd1LptAMD12geIqFOyN5h7NcW30Nfja+nLab2FaebbSKhAMADytPfF126/xYPwDyD6T4eH4h5jYaCIC7AIAPd9d5Kvy8SDhAZZeWQqPVR6QfCNBy60tsfL6SmTIMvTrvJS9SHmB+Jx4ndulSlPRdkdbHHx20ABVFU0u1y7lvzC0UxEhxFhMOjEJIWkhhR5zsnDCwX6l+7O1ImjdWoJ16zLf+Uwg0GDBgjh89pl2gWBvZGVlITk5meMKCSGElJb09HTmtubm+k9KIcTQqtpXxYi6I/BVm6+wu/du3BxzEylzUpA+Lx13P7mLff324Zv232BM/TFo49MGntaeZRYIBkCvhYMUCkYIKS12dnZwc3Mr9JhaDSxZ4obDh0sOBHsjLU2Irl3N8PffrKu2KrekJO0CXrOzBYiONsGjR+a4dMkKf/5pVWEXjmZmZiI+vvD3+M7OSmzbFo6GDXO16svBQYETJ1Rwd6f35YSUlcUfLIZEXH6CI2Oy9F88WJzg4GBcvny5yEAwqUKKPvv6MAWCAQWhZg8TH+pTYpGsrKywZs0a5vaPnzxG6w2tOamFz+OjukN1fN76cyTPSUbSnCTs6bunTALB3tTTxb+L3v382OlHLPpgkcEDwQCgUSO2a8hkfDx8yD6GTQghhvL99+zv1iQSFSZPNuOwGkJIRebj46N3H48fi7BpUxoH1RBS+lLyUtDn9z6w+dYGOx7u0D8QDADu6NHWGxDwBNjXbx9cJa7M3fCFJnBz94OrrXaLzDMzM/HJJ5/g1atXzNeENYAR//+nAeSr8rH+9npIvpFgxOERyJHnGOZChBiB/Px8ZGfrN05lb28PoZA2FyGEFM7T05Nprt3Vq5YYOdIHaWn//nw5edIK48ZlFtOKlKVBBwYVGwjmaeWJV1NecRII9sbwusOxtedW8IpY/FfbuTaqOVTj7HrEOPH5fMxrOQ8JsxPw5/A/0cC1gdZtNdDgWvQ1NP6lMTxWeWDdrXU6bzacIcvAjkc7dC27SKdDT2P66emc9ZeeroZczjZHxs2tYs6tIaS8o7+ZhBBCDGb//nxoNGwTo7p1k4PPp1RZY+Hp6cnJS1u5XM7JrhKEGJuozCjMPTcX7qvcMfHkRLxMfVl2xeixC1T9+vU5LQUoWJB6ffR1NKnShPO+39bOpx1z29rOtbG+y3q8mvIKH3h9wGFVBTt8/R39N2adnQXb72xh/709Ov3WCdsfbIdcadwTgC+8vsDcVqaUod/+flh9YzV3BZUgJ4d9EN7CwoLDSgghhM2F8AvYcGdDocf4PD4uj7hcYRewGtqoUbaYM6cgCEYiUWHDhkgMGsQ2aTQxMVHvSTGEEELKhj4/v21sbLgrhBADmd9qPn7t+Ss+a/0ZBtUahMZVGsPe3L5UFkizMDFh32Vbn2Dw0sZaK4WCEWI87Ozs3tvtXK0Gli51w8GDdjr3l54uRLduZrhyhZ4tdcWa021nV37CJHWRl5eH6OjoYs+xslJj48YIdOhQ/GR5S0sVDh2SokYNCsMlpCw1rtIY10df53y80lBis2IN2r+VlVWRx7Lys9B5V2cce3VMr2scf3Vcr/bF6d27Nxo00H4Rwjs0QHYE+72CpdgS7X3aY2/fvVB8psCzSc+wpM0SOJg7MPfJpW5VuzG3FfAE2P7xdkxtMpXDiorXpAl7qPWNGxXzPoQQUn5FRytw6BB7qNewYVLY2JTdRgOEkPJFLBbD2dmZqa1KBfz8syOGDPHDrFl2ePCAAnpI+RGTFYNOv3WC03InHHpxCCqNipuOYwG8YGzrAMAS+Lb9t2jtpX8INY/Ph32VavB2EkEgKHo+W3Z2NsaNG4fnz5+zX0wCYDgAG/YutKVQK7D94XbYfGuDfvv6IS2PQglJxVPSuEJJ+Hw+8/c7IaTy8Pb21mney5EjNpgyxQtS6fvvHLZutcXnn9N3srEZsH8A9j7dW+RxT2tPvJzyEqZC7jekGlF3BH7p8Uuhx4bXGc759Yhx+9D7Q9z55A4SZyVicNBgmAi0n5MYkxWDKaemwPIbS4w8MlLr+/+t97ciT5HHWnKh1t9ej7U313LSV2ws+zOouzu9+yXEGNFKQkIIIQZz5Aj7YqO+fWnXAGPC5/Ph6+vLSV8ZGRnIyMjgpC9CjMGuR7sQuC4Qy68tR4Yso6zL0WsXqA8//JCzMt7mZOGEi8MvomdgT4P0DwDtfNlDwUpTmjQNZ8LOYMSRETD92hRuK9zQb38/HHt5TOdkeUPTJxQMKEjPn3FmBqafng6VmqNJDcXIzc1lbmtpaclhJYQQorsceQ567O1R5PEVH61AoENgKVZU8XzzjTU++SQVv/0WjubN9ZssGhkZifz8fI4qI4QQUlpkMhlzWwoSJoR7PB4PIhHbwuryFNLKWqupKfeT4ggh7GxtbeHu7g4A0GiAZctcsX+/7oFgb2RkCNG9uxkuXSo/P8+MQUoK29izra3h30+XNrlcjtevX2t1romJBsuXR2PgwNRCj4tEauzYkY1WrYoO3yGElJ6aTjXx5/A/safPHrhJ3Mq6nGLFZhs2FKwoKXkpaLejHS5FXtK7L0OGggHAnDlz2Bsn6na6k6UTxtYbi6cTnyJ7fjbOBZ/DgJoDjHKzkfa+7SEW6B6ELBaIcaD/AQTXCTZAVUWrWlUEKyu2+4m7dzkuhhBC9LRqVT4UCrbvBqFQg9mz2YP+CSGVk6Ojo87vu6OjRRg50gdr1jhDqeRBKuVj+HA+5HLjml9JyH+FpIag9a+t4bnKE2fCzkADjVbtnMydSj5JDeCUHsX5A72r98asZrP06OR9lk6B8HW1hEkhoR+5ubkYP348nj59qscFUBAIxv46/h22prZanafSqHDg+QE4/uCILru6IC4rjpsCCClj2dnZes2dAQBXV1ejfN9ECDEufD4f/v7+EAiKD5fRaIBffnHAZ5+5Q6kseix46VI7bNiQznWZhFG//f2w79m+Io97WXvh5WTDBIK9MareKPza81eYCf8Nv2/u0RxTGk8x2DWJcXOydMKuPruQtyAPP3T4Aa6Wrlq3lSql2PZgGxyWO6DZL81wPfp6keeq1Cqsv72ei5LfM/3MdJwMOal3PzEx+oSCUa4DIcaInsAIIYQYRHq6Clevsj24OToq0LIlTR4wNmKxGB4eHpz0FRMTQ4voSYWQmpeK0UdHQ6bUb3CEM3rsAlW9enU4OWkxsMzIXGSOg/0PYnKjyZz3bWdmh7oudTnv19A00CA+Jx4Hnh1Aj709IFoqgs+PPhh9ZDRuxNwo09pUahX+iviLk75+vPkj+h/oD6lCykl/RdFnkFKXXUgIIcQQPtz2YZG7hbTybIXpTaeXbkEVkEDAx/r11vD3V3DSX1hYmNEFehJCCCmaXC6HRqPdpOv/EolENKGREAOxtdVu4v1/ZWVlcVyJ4bDWyvpnQwgxHBsbG7i7u2PtWif8/ru93v1lZgrRo4cZwsIyOaiuckhLYwsFs7OrWKFgSqUSoaGhOt3fCgTAggXxmDYt4Z3PeTwN1q7NRK9eNhxXSQjRB4/Hw8CggXg5+SXmNp8LEZ8tTNfQYrJiyuSarX9tjTtxeuyU9ZZbsbeQlJvESV+F6dmzJ6ytrdkaZ+h2+pmhZ7C5x2bUcKzBdr1SJDGR4EPvD3VqYyGywMnBJ/FxtY8NUlNx+HweatWSM7W9f592VCeEGI/sbDW2bmVfjNm9ex58fIzzvoQQYty8vb3B45X8XkejAf74wwZ9+/rj/v13N+x59Mgc8+bRezRinB7EP0DDzQ1RdV1VXIm6onUYWDP3Zngy4QkeTXhUcmDCJQB6PIZ7tvbErz1/1ervoq5MbDzh6+EIS4t/fw95eXmYOHEiHj16xN6xOYBgAA56lwgAEPKFeDD+AW6PvY16LvW0aqPWqHEq9BTcV7mjzbY2CEsL46YYQspITIx+7/NEIhGNYxNCtPYmGKyo+w+VCvj6a1f8+KOLVv1Nm2aNQ4cyOKyQsOi7ry8OPDtQ5HFvG2+DB4K9MaLuCLyY/AK/9vwVhwccxpWRVyAS0Luryo7P52NW81mImxWHKyOvoLFbY/Cg3XOQBhrciL2B5lubo8rKKlh9Y/V760VOhZ5CeHq4IUqHWqPGgAMD8ChRj+coAHFxbGtcLC1VsLSkudKEGCP6m0kIIcQgDh9m31Gsc2c5BALuBxyI/qytrWFnx81WK+Hh4bSInpR7d+PvIl9lJAF3eu4C1alTJ85KKYqAL8CazmvwQ4cfOO23jXcb8Hll+2gT6BAIc5G5Xn2oNWpEZERg64OtaLalGcRfiVFjfQ3MPDMTL1NeclSpdu7F30OGLIOz/g49P4R2O9ohJS+Fsz7/S6FgC3kRCinFnhBStr7860vcjS98q3grEyucHXa2lCuquIRCIXx9fTnpS61WIzQ0lJ5pCCGknEhLS2Nua2FhUfJJhBAmrO+aK0MoGFfv4Qkh3LKxscGwYaawsVFy0t+ECcmQSqP1ulepTFJT2UI17O0rzrO7Pu8jeDxgzJgUfPVVDASCgoWJixenY9w4WsBDiLGyFFviuw7f4dGER+jg26Gsy3lPbHZsqV4vNC0ULbe2xPOU55z1qYEGp0L0GGQvRoYsAz/c+gEaH7aQcpSfxx4mXQO6an2uraktLgRfQDvfdgasqHj16rGFjL54IYZczvjfACGEcGzjxjxkZrLPkZk7l4IOCSFshEIhqlSpUuw5aWkCzJjhgUWL3JGXV/jPm7VrbXDuHAWDEeNxNeoqgjYEod7mekXO/fovHnho59MOEdMicG30NdR0qglnS2eMqTem6EaPURAKxojnwsOJWSdgZWLF3kkJBGa28PL0hoO1GDKZDFOmTMG9e/fYOzRDQSAYh3tdB9cOhqe1Jxq6NcS9cffwdOJTNHdvrlVbDTT4K/Iv+K/1R5Ofm+BJ4hPuCiOklCQnJ0Ol0m8TFQ8PD46qIYRUFiKRCH5+fu99LpPxMHu2h06bcSmVfAQHS3DlSgV/eW7Eev/eGwefHyzyuI+ND15OegkToUmp1eRp7YkRdUegZ7WeZb6ukBiflp4tcXPsTSTNSUJw7WCdwurisuMw48wMWCyzQPCh4H/WQ669tdZQ5QIAcuQ56La7GxJyEko+uQjx8WzjUg4OFWvDPUIqEvqGI4QQYhB//MHetk8f+noyZm5ubjA11T+tW6VSISIiQv+CCClDAXYBxvPSSM9doIKDgzkrpTg8Hg+zms/Cvr77YCLg5kVfO5+ym/z7xsZuG5G7IBehU0Ixp/kcBDkGQcwX69WnQq3A85TnWHVjFaqtrwbzr83RcHNDLLm0RK+XO9q48PoC531ej7mOZluaITQtlPO+1Wo1cyiLWKzfvydCCNHHvfh7+PLSl4Ue44GHs0PPlspOOZWJqakpZ5NT5HI5oqOjOemLEEKIYeXk5DC3pV1OCTEcWzu2v1+3wm9xXInhZGdnM7Wzt9d+4iMhpHS1amWFEyeksLPTLxhs9ux4DB2aCgCIi4ujYDAtpKezLUC3s6sYQRxqtRphYWFQKvX7b+/jjzOwZk0kJk9Ow+LFFEJJSHlQzaEazgw9g/41+5d1Ke+Iyfr/4HReHpCWBuj586k4jxIfoeXWlojMjOS87+Mhxznr6178PQT/EQzXFa6w/c4Wn//5ObJcGBcosT1KlBvahoK5Wrri8sjLaOLexMAVFa9RI7bNLfPz+bh/30g2miOEVGpKpQbr17PPj2nWTIqmTWncmhDCzsbGBpaWloUeu3zZEr17++PCBeti+1CpeBg71hSZmYZ79iAVS2xsLKZNm4bk5GRO+z0Vcgr+a/zR6tdWeJr8VKs2fB4fPar2QNysOJwPPg8vG693js9pMQdCfiHhnc8A6LEuBwCGjx6OIKcg/TrRAk8ghK2TF+bMmoZbt/QYyzMFMAyAC1eVFfz5f9ry03c+q+FYA3+P/hsR0yLQzqcdeNDuue9W3C3U2lgLdTbWwc2Ym9wVSYgBqdVqJCUl6dWHubk5zM3120CdEFI5mZqawsvr33ufzEwBxo3zxvnzxd//FyY3V4A+fczw7FkelyUSLfTa2wt/vCj6xtTX1hcvJr2AWEjrs4jxcTB3wPZe25E7Pxc/dvoRVSTFB5e/TaaSYefjnXBa7oSgDUE4G3bWgJUWiM6KRs+9PSFVSJnaJzAuOXV2plAwQoyVkSQYEEIIqUikUjUuXmQLerGyUqFTJ5o8YOx8fX3B5+t/G5GXl4fExEQOKiKkbPjY+mDxB4vLugy9d4GqU6cO6taty1U1WulXsx/OB5+HnZn+C07Kckfg//Kz88P3Hb7H44mPkf95Pm6NuYWx9cfC19ZX7wA5qVKKu/F3sfivxXBd4Qrrb63x4bYPse7WOuTI2Re4F8YQoWBAwQ7ezbY0w42YG5z2K5PJmNuamZlxWAkhhGhPrpSj3Y520KDwhamftvy0zBe5VFTW1tZwdHTkpK/s7Gy9J8wQQggxvPx89sWXFhYWHFZCCHmbuRXbpOHPTn6G06GnOa7GMNLT05na2dlRSAshxqx5c4lewWAzZyZg+PDUdz6jYLCSpaWxhYI5OFSMULDIyEi97mvf1q5dPn780YaTvgghpYPH46G6Y/WyLuMdidkJUAh4gIUFYG8PiEQA7///v2ZNYPhwYM8egHFjnzeuR1/HB9s+QGKuYeaWnAk9A7lKztRWqVZi24NtaP1ra5h/bY4Gmxtg56Od727w5MRYWAWfd+9n54fqDsX/N+1j44MrI6+UyuL1kjRtKmJue+sWhVYQQsre779LERnJvihz1qyK8VxFCClbnp6e78w9z8vjYelSV0ya5I3UVO3utyIjTTBxIrdzJUnFpVAosGbNGvj5+WHJkiXIyMjQq7/fn/wOj1Ue6LK7C8LSw7RqI+QLMShoEFLnpuLIoCNwsSw86crT2hPBtf+zufNVAPsA6PFYbeloiU2LNrF3oAO5XI4+ffrgr8vXmPuwtLRE54WdADcOCwPQv2Z/BNgHFHrMy8YL54PPI25WHLoFdNN6rvejxEdouqUpAtcF4kK4YeZcE8KVuLg4aDT63dNztRErIaRykkgkqFKlCuLjRQgO9sG9e+zz8ZKTRejaVYC4ONqMobT03NMTh18eLvK4n60fnk98ToFgxOjx+XxMbTIVMTNjcGP0DTRzb6Z1OLAGGq1DoblwK/YWhh8eDrVG9wfChAS2jW6cnOgdMCHGikLBCCGEcO7kSRlyc9kmZbdvL4NYzHbTSUoPn8+Hj48PJ30lJycjO7uCb3FKjBYXu0B93vpzrOq4Su/AJ2Yc7AI1btw4TkrRVUvPlrg26hp8bNh/nrhbuSPArvCBWmPQqEojbO6+GWFTw6D4TIGTg09iQM0BcJO4af3iqChZ+Vm4FHkJU05NgeQbCRyXO6Lb7m7Y83gPlGr2icUypQxXo67qVVtxUvJS0GZ7G/zxXM//cN+Sk8M+0YcW+BNCykrX3V2RIcso9Fhtp9pY1m5Z6RZUyTg7O0MikXDSV1JSEjIzMznpixBCCPfy8/OZJzeKxTRRhRBDEkvY/o4pMhXovqc79jzew3FF3GPZFEMgEMDaWvcdUQkhpatpUwlOn5bBwUGhU7tp0xIwcmRKocfi4uKQmppa6DECpKezjT87sYaxGJHo6Gjk5uZy0pdAIEBAQAAnG0ARQio3DQ+IL+wVa14e8OwZsGMHMHgwYGICdOsGhGm3YPpt58LOof3O9kW+S+dCtjxbp7HR2KxYzDk7BwFrA2Cy1AQjj4zElagrkCqL2K3blqNCK6CuAV2LPFbTsSaujroKPzu/UqyoaP7+ItjYsI3B37lD8+AIIWVv1Sr2+39//3z06kUb7hFC9Mfn8+Hl5QUAePLEDAMG+OP33+117mf3bhvs3p3BcXWkIsvOzsbixYvh4eGBqVOnIjw8XKf2m+9uhvNyZww8OBAxWTFatRELxBhbfywy52Vid5/dsDG1KbHNpy0/LZiLngFgB4DzOpVZqOVLl5fKmLdSqcSAAQNw4sQJ5j7Mzc2xd+dmHJqzD02qcLuR5oKWC0o8x8XSBccGH0Pq3FQMrDkQAp5276Nfpb5C+53t4b3aG0deHNG3VEI4p1Ao9A5FtLGxgUjEHphOCCEAYGtri/R0Z0RGmujdV0SECbp2VSE7mzZkMLTuu7vj6KujRR73t/PHs4nPKBCMlDtN3Jvg2uhrSJ2bilF1R8FMaHzvP/c/24/PL36uc7vERLZ3wS4u+m30RAgxHJrhRQghhHOHDrEnwvbqRROhygszMzO4urpy0ldUVBSUSnoRQ0ofF7tA8Xg8TG86HccGHYNEzE2whNY42AXK09MTo0eP5qoinQU6BOL66Oto5NaIqX07n3bg8crHdwefz0fngM7Y23cvYmfGQrZQhp0f70Rn/86wN9N9cst/peSl4ETICQw+NBjir8RwX+mOwQcH41zYOah12IH7evR1yJQyvespjkwpQ599fbD25lpO+svLy2Nua2lpyUkNhBCiiw23N+D868JnbpkKTXFp5KVSrqhy8vDw4GziW3R0NGQyw35/EkIIYZOens7clkKECTEsoaWQrWEOoFQrMeTQEKy/tZ7bojiUkZHBdI/o4OBQbt53EVLZNWpkiTNn8uHoqF0w2JQpiRgzpvBAsDfi4+MpGKwQcrkaWVlsoWCOjuV7alRCQgJnYeQ8Hg/+/v4UCEYI4UysNsPjSiVw4gTg7w8EBAB//61V3wefHUTX3V2Rp2AfB9TW8VfHiz1+4fUF9Pq9F+y/t4f7Knf8cP0HhKaFarc7t/GtITAafWr0KfTzxlUa49KIS3CTuJVyRUXj83moVUu3MNg3Hjxgu4chhBCu/PWXDHfvmjK3nzJFAT6f3lURQrhhYWGBhARHDB3qi4gI9jCAqVMtEB1NczSIbnJycrB27VoEBASgY8eO2LVrV5FzT9VqNZb/vRy239li3PFxSMpL0uoaZkIzzGw2E9mfZmNz980wF5trXZ+jwBHVHlYD1gPQLbesUDVr1cSYUWP076gEKpUKQ4cOxeHDh5n7MDMzw9H929D140EwNZFgf7/9cDB34KS+noE9Ucu5ltbn25jaYE/fPcj6NAuj642GiK9dEFJkZiQ+/v1juK1ww46HO1jLJYRz0dHRerXn8XhwczOedzSEkPKtf38bfP89+1y+t4WHi3HxYrROa6WIbrrt7objIUWPnwTYBeD5pOcUCEbKNVszW2zpuQU583Owvst6eFh5lHVJ71h2dRm2P9iuU5ukJLb5IM7OTM0IIaWAZnkRQgjhlFKpwZkzbIN0JiZq9OzJPvmAlD57e3tYWVnp3c/t22YYMyYLKhW9iCFlQ99doACgS0AXXB99HT42Pgao8D8ywNkuUIsWLSqVXaCK42zpjD+H/4nuVbvr3LadTzsDVFQ6xEIxhtYZipNDTiJlbgoy52VidcfVaOXZSu+AOQ00iM2OxZ4ne/DRbx9BvFSMgLUBmHB8Au7F3yu27YXXF/S6ti41Tj09FbPOzNJuwnwx8vPzmdrxeDxa/EQIKXVhaWGYempqkccP9T+k1e6QRH98Ph9+fn6cfReEh4dT2DEhhBih7Oxs5ra2trYcVkII+S+xHeM7qdyCf2igweRTk7Hk0hJoNOyblRhKQkICUzsvLy+OKyGEGFL9+pY4fTofTk7Fh0RMnJiITz5J1qrP+Ph4pKQUHx5W2SQkyKHRsC1Cd3Yuv++A09LSOP1vwc/PDyKRdovYCCFEG7G6ThcJDQVatgQGDwaKWajz6/1f0f9AfyjUbCFMuvpvKFiePA+rrq9Cw80NYbLUBO13tMfhF4eRJk3TvXP6sVukpu5NMaz2sHc+6+DbAeeHnYe9uf6banGtfn0VU7sXL8SQyWg+FCGk7Cxfzv4zyN5eiTFjtA8zIYQQbbRp44j27dnH7wAgNVWEkSMVNO+cMFGr1Th79iyGDh0KZ2dnDBo0CDt37kRycjLUajU+v/g5rL61wtzzc5Ehy9CqT4lYgi8++AI583Ow4qMVOgUjPH36FFOmTIG3tzeeHXoGcPAoLBKLsHf3XgiFjBv0aEmtVmPUqFH4/fffmfswMzPD8ePH0a5Lv38+87D2wJ4+e8CD/sGkC1stZGpnLjbHLz1+Qc78HExrMg2mQu3WOcXnxGP44eFw+N4B626tY7o2IVyJiclFRoZUrz6cnJxorj0hhFMzZ9ph1iyGd+1vcXGRY8eO1/Dzy0VoaGiFDQbTaDQ4+Owg5pydg59u/wSFqnTGTACgy64uOBFyosjjVe2q4tmkZxDyDXu/SUhp4fP5mNhoIqJmROH22Nto6dGSk+cRLow9NhaXIy9rfX5yMttmNW5uxvH7JYS8j75tCSGEcOrPP2VITWXb5rJ1axkkEppAUN64u7sjJCQECoXuLxY0GmDnTnusXOkClYoHf/80fPaZnQGqJEQ7b3aBWr9+Pdq3b4/g4GD06tUL5uba/Wyq6VQTN8fcRJ99fXAl6gr3BUoBXANwA5wM+tatWxfDhw/XvyMOWIgt8MeAPzD11FRsuLNB63btfMtvKNh/WZlaYVrTaZjWdBoAIC4rDpvvbcaxV8fwLPkZZEr2ne1UGhVC00IRmhaKjXc3QiwQI9A+EF0CumBcg3Hwsf03zK60QsHeWHljJSIzI7Gz106YidjuIVgDWAw94YEQQv5LrVaj1a+toNIUvnBkdL3R6BzQuZSrqtwEAgH8/PwQEhKid19qtRrh4eHw9/eniTCEEGJE5HI5c1tt3wcQQhix5u7lvPt/F/+1GCl5KVjdaTX4POO5D2MNBfPxKYVNBwghnKpf3xJnzuSgUycgMfH95I9x45IwYYJ2gWBvJCQkQKPRwNHRkasyy7WEBPYQblfX8pnGkp2djbi4OM768/b2hqkpbdBFCOFWDOsecnv2AKdPA8eOAS1avHNo1fVVmHl2pv7F6SAkLQRnQs/gj+d/4GToSURnRevdJw88eFh7oH2V9tiKrRxUWTFt/3g7egT2wJOkJwhyCkKf6n3A4xnnooNGjdieN+VyPu7fl6FZM/oeJoSUvpcv5Th9mm0uDgCMGSODubklhxURQgggEPCxdasJ6tZVIDmZ/b3NhQsSrFqVhtmzad45YZeTk4O9e/di7969AA/gufGg8dAAVQC4o8SxLDszO3ze+nNMbTxV67lCubm5uH37Ns6cOYOjR4/i2bNnev8+/mvpV0sRFBTEeb//FRUVhR07dujVh1QqRbt2hpsL3viLxgbr+x9eAEa++1GqNBVTTk3BZxc/w7wW8zCvxTyaT0ZK3aRJSty7F4CZMxPQvn0WdH3lIhQKaZyKEGIQ331ng/j4DOzebaNz24AAGX76KQLOzgXjx3K5HJGRkRVyrs3UU1Ox7va/IaM/3/sZZ4edhYO5g0Gv2/m3zjgddrrI44H2gXgy8QkFgpEKq6FbQ1wZdQWZskzMPTcX2x9uR74qv8zqUagV6PV7L9wYfQMB9gHFniuTqZGRwfZ309XVOMfnCCEUCkYIIYRjBw+y7YoIAB9/rOGwElJa+Hw+/Pz88PLlS2g02v87zMvjY/FiN5w+bfPPZ19+aYNGjbLQsSPrzFFCuPFmF6izZ8/C0tIS3bp1Q5cuXdCpU6cSBzYcLRxxbtg5TDgxAb8++JWbgpIA3AHwEABH7xBMTEywc+dOowpFEvAFWNdlHXxsfTDn3JwSz6/mUA1uErdSqKxsuFm54YsPv8AXH34BAHiW/Ayb727GmbAzCE0LhVLNvghKrpLjcdJjPE56jO/+/g7mInPUcqqFTv6dcDv2Nke/A+0dfH4Q8TnxODLwiM4vqFUqlU7fP2+jBVCEkNI2+NBgxOfEF3rM28Ybm7ttLuWKCFBwX+Tl5YXIyEi9+5LL5bh5MxbNmnlwUBkhhBB9yWQy5ucFsVj73ZsJIWzyLRlfdKW//9HaW2uRKk3Ftp7bIBIYR/hLeHg4U7uKOFGRkMqgbl1LnD2bi44dNUhI+Pc+YuzYJEyalMTUZ2JiIgDQggsA8fGVKxRMKpVy8p7iDXd3d1ha0kJ+Qgj3YiV6NE5PB1q1AjZvBsaMgUajweK/FuOry19xVp8uOu3qpHcfYoEYdZzrYGitoRjbYCzMRGaIiopiCgUTCARQqdjnYJUXPB4PfWv0Rd8afcu6lBI1acI+t+LWLRWaNeOwGEII0dLy5Qqo1Wzvuk1N1Zgxg+bVEEIMw83NBGvXZmDgQBu9+lm82BodO+aiVi0LbgojlZsG0MRqgNi3PjMDYA/A4f//tAJgAdg72mP+R/MxotEImJiYQK1WAyiYNySXyyGVSpGSkoLk5GTEx8cjNDQUISEhePz4MR4/fmzQ573+A/pjzpyS52CT0pGZn4kFFxdg6ZWlmNp4Kr5q+xUFaJBScf58Jo4etQYAzJzpifr1czF3bjxq1tR+k/IqVaoYqjxCSCUnEPCxbZsVkpKycf689gMNjRrl4McfoyCRqN/5PDc3FzExMXB3d+e61DLzLPnZO4FgAHA/4T7a7WiHC8EXDBYM1nFnR5wNP1vk8WoO1fB4wmO6nyGVgrWpNTZ134SorCicDi06KK80pEnT0G1PN1wffR12ZkWHo8fGKgGwvQ92dxcwVkcIMTT61iWEEMIZtVqDEyfYbhgFAg369jXhuCJSWoRCITw9PbWenB4RIcaMGZ4IDX130ohSyUdwsBlu3pTC25t9hzpCuPT2LlA8Hg8NGjRAy5Yt0aRJEzRt2hTe3t7vtTERmmBLjy2o4VgDc8/NhQY6LkCWo2BQOQzASwDJ+v8+/mvJkiWlsguUrng8HmY3nw0PKw8EHw6GXCUv8tx2PobbGcoY1XCsgdWdVv/z//+O+hu/3P8Ff77+E9FZ0VBr1EU3LkGeIg83Y2/iZuxNDiplcy36GppvaY5TQ07Bz85P63Y5OTnM1zQ3N2duSwghutr/dD9+f/p7ocdEfBH+Hvk37QZYhiQSCZycnJCUxLZQ+439+23xzTeu2Lw5HSNGlLBdKCGEEINLTy8kOUhLFJpAiOFlmWWxNcwEoMR7I927H+9GujQdB/ofgLmo7J/5Q0NDmdpRKBgh5Vft2hY4fz4PH30ExMWJMWpUMqZMSdJ55/W3JSYmQqPRwMnJibtCyyEHBzlGj05GRoYAaWlCZGQIkJ4uRFqaAFlZRU99srRUwcKifE2NksvlzMGShXF2doaNjQ1n/RFCyNti9N3vTaMBxo6FOjsL06tFYO2ttZzUVZrszezxofeHmNRoEtr4tHnveFxcHFO/zs7OzG2JYfj6imBnp0Ramu73FnfuGKAgQggpQUqKCrt3s8/B7N9fCmdnCtkhhBjOgAE2OH48A7/9ZsPcR7duGcjPT4JaHUhzbohhSAHE/P/XW1KRitmrZmM2ZpdFVUVq0aoFdmzfAZ4+L6WJQeQp8vDt399i1Y1VGFt/LFZ8tAJiIW1URgxDpVJj3rx3N0y5d88CAwf6o3v3dEydmggXl+I3YzE1NYVEos+OAIQQUjyRiI9Dh8zwwQd5uH+/5Dk+HTtmYtmyGIjFha/Py8jIgFgsrjDj6nse7yn080eJj9B+R3tcCL4Ae3N7Tq/ZYUcHnH99vsjjNRxq4OGEhxQIRiqVV6mvyjwQ7I1Xqa/Qd19fnB56GmJB4c8SsbHsa0urVKFQMEKMFX3zEkII4czt2/mIiWHbGaxxYxmcnCgEqjyTSCRwcHBASkpKsedduCDBwoXuyM0t/CEhKUmE/v3luHpVDbGYBmiJcdFoNLhz5w7uvDVj087ODoGBgQgMDETVqlXh7u4OJycnODs7Y6DnQLh1csMnpz5BrjoX4AFQ/f+XEkAegFwAOQDSAKQCSAKQCOiaI6aLAQMGGP0uUAOCBsBN4oaee3siXVb4Iu7KFgr2Xy08W6CFZwsAgFqtxrFXx7Dj4Q5ci7mGhJyEMq6OTUhaCJptaYZjg46hiXsTrdrk5uYyX48W+RNCSktSThKG/jG0yONbemyBm5VbKVZECuPk5ASZTIasLN3DKZRKYMUKF/z2W8HOSxMnWsHPLxutWtHEGEIIKUv6hAjb2lK4IyGGlihPBCxQ8H5MFxoA6QAc3z90KvQUPtr5EY4NOgZbs7L9e0yhYIRUTjVrmuPcuTz8/HMaRo1K0SsQ7I03AdYVZQIzCw8PGaZPL/x5XakEMjIEyMgQ/hMUlpFR8E+Nhgeg/Py55eUpER4eCq4Giezs7ODoWMgXJiGkUmni3gQ3YZiNgWL1DQUDoPgfe3cdJlXVxwH8O7mdbHfRSkh3S3cpHaKEKEiImCiiICCKhUgoKN0hHdLdsLDd3Tsd9/2DFxCZ2Z25c6d2f5/n8dF37j3n/uR1d+4995zv4QMTz8zCBpaZwZbG5/ER4xWDAXUG4N0W71Y6tn/9+nVW1wkLC6NQMBvD5/Pw8stKnD5t/LTrmzdpIQUhxPK++04GmYzdvBgej8HcuaLKTySEEBP9+KMrzp1TICnJuI3Fa9RQ4fPPM9C+/eN3gSkpKTS2Tqq9lxq/hP1798PBwbifJ2K6Or51UOZWhoyyjErPVWgU+OHKD1h1bRVGvDwCP/T6Aa5imstMuLVuXQmuX9f9rnzfPi8cPeqBsWPzMWFCPpyddQdHhIaGmrNEQggBALi5CXHggAZt28qRmKh/TfKoUfmYMycbleUA5+bmQigUwtvbm+NKLYthGGy9v1Xv8Vs5t9B1Q1ccG32Ms2CwLn90wYmkE3qP1/etj5uTb1IgGKl2frz8o7VLeM7J5JOYemAqVvddrTMMOjOTXSiYUMjAz4/eZRFiq+jblxBCCGe2bat4p4CK9O/PPoGW2I6AgABIpVJIpdIXjmk0wMqV/lizpvKJ51euuGDq1CL89hstviS2r7CwEBcuXMCFCxesXYpBOnTogN9//90udoFqF94O5yeeR88/eyK5OPm5Y+4O7ugc2dk6hdkgPp+P/nX6o3+d/gAAuVqOP2//iS33tuBq5lW9wWq2KE+ah06/d8KmwZue/vtURCaTsb4WTX4ghFhKu3XtoNQodR7rV7sfRjccbeGKiD5hYWGIi4uDQqEwuE1ZGR9z54bi7NlnAWAymQDDhjng/HkZIiMpAJsQQqzFmN/n/8bj8eDkRL+/CTG3zLLMx8FebPK+C6EzFAwAzqWdQ4f1HXB41GEEugWaUKFpEhISWLWrU6cOx5UQQiytXj1nLFzIICmp4o10jJGbmwuGYeDv789Zn/ZEo9HoPSYUAj4+Gvj4aAA8f//3+F2IfYSCqVRaDBokhUgUhM8/z4BIZFowmJubG4KCKISeEAJMbjoZizsuxtt/v427uXc57TvdxFAwuRAYPgTYa+O3wM4iZzQLaoYJjSdgxMsjjFr0Ykoo2MWLF1m1JebzyitanD5tfLvYWDFkMi2cnGhzREKIZcjlWvz6K/s5Md26yVC/vjOHFRFCiG7u7kKsWydD165iqNWGzWnt1KkUn32WAW/vZ+NFEokExcXF8PT0NFOlhNi2Bm0b4MLhC3B2pu9va/B38ceD9x5g78O9mHFoBpKKkypto9Kq8Put37Hx9kYMrDsQq3qvgrezfQeYENsgkaixYIFLhefI5XysWuWHnTu9MH16Dvr1K4bgXxkQbm5uNMeeEGIxgYEOOHBAig4dVMjNfTGgfPbsLIwdW2Bwf5mZmRCJRHBzs99NnW/n3MajgkcVnnMz+ya6beiGY2OOwdvJtHuIzr93xsnkk3qPv+T7Em5NvgV+ZalshFQxZYoyrLu5ztplvGDNjTWoVaMW5raZ+8KxrCx280xq1FBDIKBNIgixVfQNTAghhDMHDrC/6Rs2TMxhJcSaIiIiIBA8nwpcWCjA5MkRBgWCPbFmjRd+/dV+QmwIsQfNmzfH7t277eolTR2fOrg48SJahrR8+hmfx8firovh4ehhxcpsm6PQERNfmYgjo4+g8P1CFMwpwJKuS9AqpBVcRBW/6LMFMrUMA7cMxA+Xf6j0XKVSd8hOZfh8Pg1KE0IsYvrB6XhUqPvFnK+zL3YO22nhikhloqOjDf6OSEsTYfToqOcCwZ7IzhZjwAAGZWXsA7QJIYSwZ0qAsFhMY5WEmFuZogxlyjIggGUHuRUfvpN7B23WtkFCIbtgLlNpNBo8ePDA6HY+Pj606zIhVYSLiwuioqI47TMvLw/Z2dmc9mkv1Gp2z9b2Mgas0WgxYUIpDh92x/79nnj77TBIJOxrd3R0RHh4OIcVEkLsXYeIDrj+5nWs6L4C7g4mJnn9S6YbwDbCsEwM9Bppu4Fgga6BGNtwLG68eQOS+RKcGncKYxqOMSoQjGEYHDlyhNX169evz6odMa+mTdl9P6vVfFy/zu69NiGEsLFunUznQlpDzZ5t+5tNEkKqjg4d3PDuu5XPF3d21uDzz9Px3XepzwWCPZGRkcF6DIkQe1anRx1cO3mNAsFsQL/a/ZD4biJOjj2JOj6GDXhoGA22398O36W+6P1nb2SWZpq5SlLVLVpUhvR0w+a85OWJ8MknIXjttWhcvvxsfUFISIi5yiOEEJ3q1HHGzp1yuLo+u88XCrX4+us0owLBnkhJSYFcLueyRIvaem+rQefdyL6Bbhu6oVBWyPpaHdd3rDAQ7GW/lykQjFRbf9z64/H8Rhs079g87Hqw64XP2YaC+frq36iPEGJ99C1MCCGEE7GxSsTGsguZadBAjshISpGtKvh8PiIjI5/+77t3nTB8eDQuXnQ1uq8ZM9xx5Uo5l+URUm317t0bJ0+etMud0Pxd/XFuwjnseW0Pfur1E669eQ2Tm062dll2xdvZG3PazMH5iedRPr8cyTOSMb/tfDT0bwgHgW2GxDFgMP3v6ZhzZA60jFbveRoNu4EnWuRPCLGEE0kn8MMV3QGHfB4fp8edhoAv0HmcWA+fz0dMTEyl51275oyRI6ORkOCo95zbt53x+utSaDT6v8sIIYSYR1ER+7B5V1fjx7EIIcbJKs96/A+BbDuo/JSk4iS0WdsGt7JvsbwIe/fv32cVTti4cWMzVEMIsRZnZ2fOg8Hy8/OrZTCYVsvuufq/GxnZqvnzS7Bxo+fT/33+vBsmTIhEfr7x9YtEIs7/uyOEVA0igQjvtnwXj95+hHGNxnHSp0IIFLBYc1zgBHQZC5yMrPxcSxLwBFjYaSFK3i9B5qxMrB+wHo0CG7Hu7/Lly0hLS2PVtmnTpqyvS8ynVSv289suX6YFFYQQy9BqGXz3neEhlv/VsKEcXbrof/9JCCHmsGiRJxo1kuo93qiRBNu3x2PgwGLw9OQWMgyDpKQkM1VI7M2FtAvosbGHtcswLycg8q1I3Nh3A0Ih++9+wr2OER3xYNoDXJ50GY0CGhnURstocTD+IEK+DUGn9Z2QWJho3iJJlZSWJsf33xu/IUBsrBMmTozE9OlhcHLytZt3K4SQqqVNGzf88UcZRCItXFw0+PnnFPTuXcK6v4SEBKhUKg4rtAyGYbD1vmGhYABwPes6Xt3wKopkxs2VZBgGHdZ3wOmU03rPaejfEDffukmBYKRa0jJarLy80tpl6MWAwcidI3Et89pzn2dns9vswd+f1roQYsvom5gQQggntm5l/5Dcty/tylPVODo6Ijg4GLt2eWLMmEhkZ7MLXpHJBBg2TIT8fNotkxBT1O9VH7t377brXaD4PD761e6HKc2mGPyClOgX7hGOL7t8iZuTb0L+kRw337qJuj51rV2WTksvLMVr21+DXP3iTh1KJfvvB0dHmsBIbBujUaM0OxbpKXFITIhDbGwsHsbGIikhDhkpcSjLiQXDcjEksYxyZTn6buqr9/g33b5BXV/b/N1LHodHhoeH6z2+e7cn3ngjAkVFlU+qO3DAHXPmsH8xTQghhJ1Fixzw2WdBOHjQA/n5xk2C9vLyMlNVhJAnMsv+v8u1GUPBACBHkoMO6zvgbOpZlhdi59q1a5WfpAOFghFS9Tg7OyM6OprTPvPz85GVZeAvwiqC7eYQ9rBwZfnyQixZ8uL95/37ThgzJgppaYa/Z30SdE4TswkhFfF39ce6O9E4twZozMHXSbqR6wwz3ID244ErwaZfm2saRoMuUV3g7mj84kldtmzZwqpdREQEgoKCOKmBcCs8XAgfH3bz3K5e5bgYQgjRY/9+OR4+ZL9B4MyZGvD57BaPEUIIW2IxHxs2AM7Oz48BCYUMpk/Pwbp1SQgNrXytgkKhQG5urrnKJHbgSMIR1FpZC63XtsbD/IfWLsd8agEeMzxw/KvjcBTSXFhb1SyoGW68dQN3p9xFq5BWBrVhwOBUyilEr4xGy99a4m7OXTNXSaqSDz6Qo7yc/XsRiUSAiAhfDisihBDjDBzoiZ9/Lsb69Ulo2VJiUl8MwyA+Pp715lPWciP7BuIL441qcy3rGl7d+CqK5cUGna/VatFhfQf8k/KP3nMaBTTC9Tev03tnUm0dSzyGhwW2/UwpU8vQd1NfpJemP/2MbSiYnx/DVVmEEDOgb2NCCCGc2LuX/cDhsGHsAqOIbfPy8oKTkzNUKtNuN5KTHTBihAIajX0NwhBiE5wADAM+Xvwx7QJFKtQwoKHO0C1bse3+NnT9oysKpAXPfZ6QUIbERDHULOZdu7i4cFQdIdxitFoUZMTiUXwCUvPVKC5TQCpTQK1WQ6VWQyJToKhMgZQ8NeLj41Gc+cDaJRM9Oq3vBKlK9y6mbUPb4r1W71m4ImIsNzc3+Pv7P/eZRgMsX+6Pjz8OgVpt+LPOt9964ddfjduFiRBCiGn27HHDjh3eeP/9UHTqVAf9+8dg4cJAHDnijqIi/WOZPB6PQoQJsYCnoWA+ANgMWxUBkBl2aomiBN02dMOBRwdYXIgdtqFgr7zyCseVEEJsgZOTE6Kjo8HjcbeouqCgoFoFgzEMuwmIth4KtmlTMebO1R9Im5bmgFGjonDvXuX3pzweDzExMTb/70wIsRFff43WacCVX4Gf9wNeBt5b65LhZvi5CV5AuwnAfT/21zM3rp4bysrKsGbNGlZtBw4cyEkNhHt8Pg8vv8xu46pbt+g7mhBiGcuWsW8bHKzEiBH2u+kkIcS+vfSSMxYseLbhWmSkHBs3JuDNN/NgzPTX3NxcKBQKM1RIbNmO+zsQ/m04um/sjrjCuMcfCgGIrFoW9/wBjAF4I3jYNH4TIr0irV0RMUB9v/o4P/E8Et9JROeIzuDBsHcFlzIu4eVfXkbDXxriUvolM1dJ7N2VK+XYvNmDdXsej8HSpVoIBLTcnBBiXRMneqNZM25u4jQaDeLi4uwqGGzrva2s2l3NvIpXN1QeDPYkEOxM6hm95zQOaIxrk65RIBip1lZeXmntEgySVZ6Fvpv6olxZDgDIzWX3cxsQQKFghNgy+kYmhBBisowMNa5fZ7ezWFSUEg0aUChYVTV7tjeGDSs2uZ+jR93w4Yem90NItVILwBQA9YC2YW2tXQ2xcUlFSUgqTrJ2GRU6l3YObda2QWJR4tPPtm3joX//WmjRoh6GDYvGhx8G4/ffa+DCBRfk51c8qdrNzYgVCoRYiFZZhrTURGQVqaFSGbC7pVKJ9EINMlPjwGjYLUAg5vH56c9xNUv3lu/uYnccHXPUwhURtnx9feHh8XiyjFTKx4wZYVi3jt1ueO++64ETJ0q5LI8QQogeDx5IkZ7+/JhjYqIjtmypgVmzwtC+fV0MGhSDxYsDcOKEG0pKnr0uc3BgN85JCDHO01AwPoAglp2kGH6qXC1H/839sfH2RpYXM86pU6dYtWvevDm3hRBCbAYFg5mGbSiYLW+YcvRoCSZOdIdGU/F/E4WFQowfH4nz510rPC86OhpiMb13J4QYYONGQCIBAAgYYPJV4NFK4M2rAI/Fr9t0d8POu+sHtJ0AJOnPQrQJ++P2c9LPb7/9htJSduPBo0aN4qQGYh6NG7NbQPbwoRhSqf0sPiOE2Kdr1xT45x8n1u2nTFFCJOLuuZUQQow1c6YnunYtw+uvF2DLlgTUr89uo9OkpCS7WvhP2Ft7Yy0ClgZgyLYhSC1Nff6gG4C5AIYCqAf7DggLBjAYwFsAooAFHRegZ82eVi6KGCvSKxLHxx5H5qxM9KnZB3yeYct6b+fcRss1LVHnhzo4kXTCzFUSezV7Nip931CRgQNL0b49za0nhNiG8PBwzjb1VKlUSE5O5qQvc2MYhnUoGABcybyC7hu7o0ReovO4VqtFu3XtcDbtrN4+Xgl8BVcnXaVAMFKtJRQmWHTzUVPdzL6JETtGQKPVIC+P3QY1gYEcF0UI4RR9KxNCCDHZ1q0KMAy7wcM+fSoPOyD2bc0aV9Svb8K2sv939KgDsrPzOKiIkGccHBzg4uJi7TK49f9doDACgDsQ6RmJYPdgKxdFbN3xpOPWLsEgDwseotWaVriScQUAcP/+40dapZKPBw+csHevF5YuDcSbb0aiU6e66NChDt54IwJLlgRg925P3LvnCLn88T2LLS8GI9WTWpKHxJRslJYbP5mtsFSB5JQUaJVlZqiMGOtm1k18duozncd44OHQqENwFHLzopJYRmhoKKRSZ4wZE4lTpwxc4aaDXM7Ha685IT7e9OcjQgghFfv778rvqeLiHLFxow/efTcc7drVxbBh0Vi6NAAyGfvf9YQQwz0NBQOAKJadJFZ+yr9pGA1G7xqN7y99z/KChsnJycHdu3eNbhcdHY3ISNrRnZCqzNHRkfNgsF9+0eLHH4s4688WmbKAUySyzZV+16+XY/hwF8hkhk3bkskEmDYtHPv2eeg8zuXEeEJINfD55y985CMFVu0HLq8GWqQb112GAY/Rl4KB9uOBbDtYV3gz+ybSS438Q/iP8vJyfPPNN6za1qtXD6+88opJ1yfm1awZu2nXajUf167RJj+EEPNavFjNuq27uwbTprEPFCOEEC4IBHzs2iXC/PlZcHJiFxIPAGq1utqE6VdHWq0WKy6uQI0lNTBx70TkSHL0nywCUB/AMMBhvgP6ftYXk96chNDQUEuVy5qzszNee+01nDt3DgdOHkDPgT3Ro1YP/DHgD3zc4WNrl0dMEOAagH0j9qFgbgGG1x8OAc+whfsPCx6iyx9dELEiAnti95i5SmJPtm4txj//VLyxSEWcnLRYsoQ2HSGE2JaoqCjO3vVKpVKkpqZWfqKVXcu6hqTiJJP6uJxxWWcwmFarRdt1bXE+/bzetk0Cm+DKG1coEIxUez9e+REM2I9JWMO+R/sw5+gc1qFgQUH0c0+ILaOfUEIIISbbs4f9xPUhQ9jdZBL74eoqxPbtDDw92U84ee21Avz2WzLy83Mg+f+OtYRwITAwEHl5edi2bRuGDh0KZ2dna5fEXhCe2wXqiXbh7axUELEn9hIKBgC5klx0/L0j9j3ch9jYil9AFhYKcemSKzZs8MHHH4fgtddi0KJFPSxeHGSZYgkxkEZRgpSsYsgVCtZ9SKQKpKbnQKtm3wcxnUqjQuc/Out9CTC3zVy0Cm1l4aoIFxo3joC/v8bkfvLyROjfHygpYf98RAghpHL//GPcmCPD8PDggRP++KMG/Pw8zVMUIeQ51ggFe+LdQ+/ik5OfgGHMM3nn2LFjrNp169aN40oIIbaIy2CwHTu88PnnwXjnHU98/30hB9XZJrWa/TO0LYaCJSXJ0K+fGEVFxm1coVbzMH9+KNavr4F/f4UFBQXBzc0OUnYIIbYhJQWIi9N7uGkmcH4NsGYP4GPg1IyDMRUfPx4JdBkLFNlRxoipu38vWrSIdQDBzJkzTbo2Mb9WrdjfX1y+bPp7BkII0Sc1VYVdu9h/4Y4ZI4OnJ83nJYRYn6urI/z8/Ezup6ioiOacVzFarRYLTi2A52JPzDw8E4Uyw8ZEXUWu+Ljdx5B+IsXeT/fi11W/IjU1Fffv38cPP/yAQYMGoUaNGmau3jDu7u4YNmwYtm7diry8PGzatAmtW7dGr5q9cHDkQfw98m+Mbjja2mUSjng6emLzkM0onVeKCY0mQMQ37HkzpSQFA7YMQNCyIGy8tdHMVRJbp1Jp8dFHpm0a8tZbJYiOtqPBO0JItcDn8xEdHc1ZQFVpaanNBwdvvbeVk34uZVxCjz97oFRRCuDxfXTrta1xIf2C3jbNgprh8huXKRCMVHvlynKsvbHW2mWw8u3Fb6FqsJpVWwoFI8S20U8oIYQQkxQWanDuHLsBxIAAFdq0ceC4ImKL6tRxxurV5eDzjVtk5eioxaJF6fjwwyyIRI/bJicnmzT5n5D/cnJywpAhQ7B161bk5+dj3759mDx5sl3sAgURgJcATADwJoCX8cIdftvQthYvi9gXhmFwIumEtcswilQlxYAtA3DfxfiBNq2WBx8f0xfcEcIVrUqG1IxcyOSmh3mVS+XISE8Do6F7JWvp81cfFMmLdB57yfclfN31awtXRLgiEvGxY4cYMTFyk/u6f98JH31UBK1Wy0FlhBBC/kuj0eLSJXaTFevWlcPfn3Y/JcQSngsFCwbA5lVBPoBidtf/4p8vMO3gNGi03C/IPnToEKt2FApGSPXh6OiImJgYk4LBdu3yxIIFjzc/0Gp5mDHDC99+WzWDwZRKJeu2thYKlp+vRK9eQEYG+3vOZcsCsWRJALRawM/PD97e3hxWSAip8latqvQUPgNMuAE8Wgm8fQngVzKMeTMQKNPza21XHaDXSEBiZ4/aB+LYh4IlJSVh+fLlrNqGhIRgzJgxrK9NLCM8XAQfH3bv4q5e5bgYQgj5l+XLFVCr2S0NEQoZzJpFc3kJIbbDz88PDg6m/15KSUmhuRlVgEqjwqzDs+D6lSs+O/0ZypRlBrXzdPTEN12/Qcm8Enze+fMXAg7q1q2LadOmYceOHcjLy8PDhw+xYcMGTJ8+HW3btjX7uBuPx0NYWBgGDRqEb7/9FlevXkVhYSG2bNliNxtdR0REgGGYav/XqVOnTPpzdBY7Y03/NSj/oBzvNH8HjkLD1mdllWdh9O7R8P3GFz9d+cmkGoj9SknJQLduJXByYvd95+enwmef0cYjhBDbJBQKTX6v/m8FBQUoKCjgpC+uMQzDWSgYAFxMv4geG3ugWFaMVmta4VLGJb3nNg9qjosTL1IgGCEANt7eiBJFibXLYK/3NCDqqNHNgoPp558QW2bctpOEEELIf+zcKYda7cKqbc+eCvAN3M2C2L8hQzwxa1YRvvnGy6DzQ0KUWLEiFbVrP7/onmEYJCYmolatWuYok1RzTk5O6NOnD/r06QMAePDgAU6cOIETJ07g9OnTtjH45wAgBkA9ADUBVDKBul14O/PXVIWMGzcOHTt2NLpdREQE57VYyt3cu8iV5Fq7DKNpGS20r04HGv8I7PsFyGgFaAxbUdCggZmLI8RAjEaF9PQMSKSmB4I9UVIuhyA9CYGh0eDRixmLWnV1FY4kHtF5zFHoiDMTzli4IsI1Hx8xdu+Wol07NYqK2A+rDhhQhPHjc5GcXIaoqCgOKySEEAIA9+7JkJ3NbryydWsFANr9lBBLeC4UTAAgAsBDFh3dBcAyE//nqz+jUFaIPwb+AbGAm5QCuVyOPXv2GN1OIBCgU6dOnNRACLEPDg4OiImJQXx8PBjGuE119u71xKefBoNhnk1+ZhgeZs3ygkZTiNmzq1ZIlCmhYFwsHuWKVKpB375KxMa6mtzXxo0+6NePQYMGvhxURgipVs4YPk7tJQdW/g28cR14uxdwNlz3eRo+8GEX4Pu/n/98WStg9qsA7HCvnmOJxyBTyeAkMm6MgGEYTJw4EQoFu/c+c+bMgVhsZwlq1VTDhkocP278e4Jbt2jKNiHEPMrKtFi3jv3Y9oABUkREsBtXJ4QQc4mMjERsbKxJfWi1WqSmptr1/M7qTKqUYsahGfj99u9QagwfI/Rz8cPCTgsxqckkg9vweDzUqlULtWrVwqhRo55+npWVhQcPHiApKQmpqalITU1Fdnb200CJ4uJiKBQKKJVKqNVqCIVCODg4PP3L1dUVfn5+8Pf3h7+/PwICAhAVFYW6deuidu3acHGh71/yjFgoxnc9v8O33b/Fp6c+xbcXv4VEJam0Xb40H9MOTsP84/Pxfpv38X6b9ynUo5pQKpWQy0swZQowaFARVq70x969ns+9P6rM/Pll8PCoWu+VCCFVi1gsRlRUFBISEjjpLysrCyKRCO7u7pz0x5XLGZeRUpLCaZ8X0i8g5NuQCu8nWga3xLkJ5+jegRA8fs+38vJKa5dhGr4GGNUD2PU7cGdU5ef/X0gIvb8ixJbRTyghhBCT7N7Nvu3gwQLO6iD24auvPHD9ehmOH694J4n27UuxaFE6PDx071ahVCqRnp6OkJAQc5RJyFN169Z9uhMUwzCIi4vD5cuXcfnyZdy4cQP3799HYWGheYvwABAEIAxAOIAAAAaOtfk4+6B2jdpmK60qGjdunLVLsLjjScetXYJpfGOBCR0BpQuQ0h5I6giktQLS2wCM7h+WV16hUFJifYxWi8z0ZJRKuAsEe6KwTAFBRjz8QylE1VKSipIw7eA0vce3D90OT0dPyxVEzKZ+fWds2FCCgQPdoFIZ9wKUx2Pw3nvZGDu2ADweIJVKkZmZiaCgIDNVSwgh1dOhQwoA7CZPUx4PIZbBMMzzoWAAUBsWDwUDgC33tqBIXoSdw3bCRWz6wosDBw6grMywHer/rV27dvDyMmxDDUJI1eHg4ICaNWsiLi7O4GCw/fs98NFHwToXdDAMD3PmeEOjKcT771edBRwqlYp1W6HQNqZFabVarFmTjYsXgznp7/33CzF0KAWCEUJYeGj8TXfDHOCfdcBfLwPj+gNqHb9af2gOvHYH8FQA+2sBK1oAWba1nsYoMrUMJ5NPolfNXka1++6773Dy5ElW16xVqxYmT57Mqi2xvFde0eI4i9fscXFiSKVaODvTAitCCLd++kmG0lL2Y1uzZ9NcXkKI7REKhQgKCkJmZmblJ1egvLwcxcXF8PT05KYwYnbF8mJM2T8F2x9sh1qrNrhdiHsIlr66FMPrD+eslsDAQAQGBnLWHyGG4PP5+KLzF1jQcQGWXliKr85+hWJ5caXtShQlmH9iPr488yXeafEOPu/0OYR82xgjJ+aRlpb29J/9/dVYuDADI0YU4JtvAnH1auXPB/XqyTBtmqcZKySEEG44OTkhLCwMqampnPSXmpqKqKgoODs7c9IfF7be22qWfisKBGsV0gpnx5+lQDBC/u9E0gncz7tv7TJMx9cCg0cDTX8GLs0AYgcAWv3rKN3dNXB2pvFhQmwZPdkTQghhTSrV4uRJR1ZtPTzUePVVdm2J/RII+Ni0yQHNmimQkvLiztw8HoMpU3Lx1lt5qGw8obi4GK6urvSSllgM212gCosKUSwpBtQAtHgc6CUEIHj8d0dnRzSt2fSFXaB8wnzw4e0PcS3/Guua24a1BY9nh1svE4uy+1CwJ8QSoObfj/8CAJUjcGEmcOYjQPVssN7JSYP69W1n8J5UXzkZ8SgqM3wHQ2PllSgh4MfCJ7iO2a5BHtNqtWi7ri00jEbn8fGNxqN3rd4WroqYU+/eHvjmm0LMmGH4AmsnJw0WL05Hp07PB0QUFhbC0dER3t5VZ7E2IYRY25kz7F59CQQMunenZwVCLKFEUQKZWvb8h/UAHACg+7Zav2wAuQD82NdzJOEIum7oigMjDsDbybT7sj///JNVu3+PNxJCqhexWGxwMNjBgx748MOQSnd4nzfvcTDY/PlV41nTlFAwW5nAnJiYiE6d5PjkE2DhwiBotezf3YwZU4wvv/TkrjhCSPWSn8+qGQ/AyDtApyQg5l1A9p954wwP6DAeUFeh+eIHHh0wKhQsNjYW8+fPZ3297777DmKxmHV7YllNm7K7x1Crebh6VYH27WnOHCGEO2o1gx9/ZL85Xps2MrRo4cRhRYQQwh1vb2+UlJRAItG/kN0QGRkZcHV1tZkAeaJbTnkOJu2bhANxB6BldG8srkuMdwy+7/E9etbsacbqCLE8Pp+PuW3mYm6bufj5ys/49NSnyJPmVdpOopLgq7NfYfmF5ZjUZBKWdVsGsZDGHKoaiUQCmUz2wuf16smxdm0STp50w7JlAUhNfXHd1hNffaWAUEjPAoQQ++Du7o7AwEBkZWVx0t+jR0kICakJHx/rf0dqGS223d9m0Wu2CW2Df8b9YzPv0wmxBSsvr7R2CdwKP//4r9Jg4MoU4NqbgPTFzed8fDR4vNCZEGKraESTEEIIa/v3yyGVslso162bAiIR+53JiP3y9RVj06YydOkigkz2bODA3V2Nr79OR7t25Qb3lZ6eDicnJzg46B+oJsTcKtoFSq6WI2R5CPDi+xYAQJBbEFJmpOjdhad9y/aYsHcCNt/dzKq2tqFtWbUj1Ydaq8bp5NPWLsM8RHKg/VdAk9+Ai+8CV6YCci/UrKmAUMjtQn+GYaDUKKHUKKHQKB7/Xa3Q+5kx5zz5TM2oUd+3PkY3GA1/V39O6yeWl5cei/wSw3cxZCu7SA0B7wG8guqa/VrV2ahdo5BZpntX0nCPcPzW9zcLV0Qs4d13vfHgQRFWrfKq9NzAQCVWrkxB7doKncczMzPh4OAAFxd6RiaEEFNpNFpcusRuwmL9+jLUqEGhYIRYgs77Z0cAtQA8YNHhJQB9TavpYvpFtF/XHodHHUawezCrPpKTk7F3716j2zk4OGDw4MGsrkkIqRqeBIPFx8dDq9W92O3QIXd88EGIwWFSH374OBjs44/tPxhMrWY3jmYrm6akpKRALpcDAIYOLUKNGmrMnRsKhcL4CdY9epRizRp3CAQ0OZsQwkJ6OlBJAGVlgsqBvZuAbmNePFaVAsEAYH/cfvzA/GDQ94lUKsXQoUN1LsQ0RP/+/dGjRw9WbYl1tGzJPnzn0iU12rfnsBhCSLX3119SpKWxf884a5Zp9weEEGJu4eHhePDgQaWB+hVhGAbJycmIiYnhsDLboNKo8MnJT3Aw/iC8HL0wv918vBr9qrXLMkpKcQom7JmAk8knwcDw/5/r+9bHL31+QdswmitNqr4pzaZgSrMp2HhrI94//r7e+Yr/ptAo8MPlH7Dq6iqMbDASK3uuhKvY1QLVEktIT0/Xe4zHAzp3LkO7duXYvNkbP//sh7Ky5wfvunUrQ79+nmaukhBCuFWjRg2oVCrks9wA5QmplI/33guFUqnCyZN8uLhYN2rjUvolpJWmWex6bUPb4vS40xQIRsi/JBUlYd+jfdYuwzzcM4AuHwGtlwHbNwMJz48Z+Psbu4srIcTSKBSMEEIIazt3sn+5NmiQbUzCJtbRqpUbli0rxNSpjxci1Kkjw/LlqQgNNX6n78TERNSuXZsGIohNavlbSxTICnQecxI64cabN/QGggGAk8gJfw36C/V86uGTU58Yff124e2MbkOqlysZV1CmLLN2Geblkvd48KrD50BBTUiFbfDZqcDnAreeC+ViEeql0hr//cXWz1d/xrkJ5xDgGmCxaxJuFWY+QE6x5QZNMwo1EPBj4R5Qx2LXrE523N+BTXc36Twm5AtxdsJZuk+twn74wQPx8WU4ftxN7zkNGkjx3Xcp/99BRb/k5GTUrFkTYrH1d5wihBB7dvOmDHl57BY/tWqlAEChYIRYgt5J6g3ALhTsFoDOAEzMWL2Xdw9t1rbB0dFHUbNGTaPbr1ixAhqN8c97vXv3hqenp9HtCCFVi1gsRkxMjM5gsCNH3DFvXqjBgWBPfPKJN7TaQnz6qX0Hg7H53QrYRihYZmYmysqeH4Pv3LkMq1cn4+23w1Baavi0rWbNJNi+3RlCIY01EUJYKizkpJuuicC4G8D6xpx0Z7NSS1JxN/cuXvZ/udJz33zzTdy9e5fVdTw8PLByZRXbebwaCAsTwc9Phdxc48PBrl61/j0KIaRqWbGCfTJnrVoK9O/PbqMNQgixFD6fj7CwMKSkpJjUj1wuR15eHnx9fTmqzPq0jBZDtg3B3ofPNiy5mH4RZ8afQbPgZlaszDD38+7jjb1v4EL6BaPaNQ1sitV9V6NRYCPzFEaIDRvVcBRGNRyFvQ/3YsahGUgqTqq0jUqrwvqb67Hh1gYMqjsIv/T+Bd7O9v3eoLorLCyESlX53HWRiMHo0QXo27cYv/ziiy1bakCt5kEo1OKbb2h8ghBinwICAqBSqVBSUsKqfX6+ANOmReD+/cfjIUOGlGLfPlervoPdcm+Lxa7l4eCBgyMO0voGQv7j56s/Q8vo3sSvynAqAgaOBr5NAzTP1qz4+VXxf29CqgAKBSOEEMKKSsXgyBEHVm2dnLTo18+R44qIvZkyxRuXLxejsJDBxx9nwtGRXcicRqNBcnIyoqKiOK6QENOM2DECt3Ju6TzG5/Fxatwp+Ln6VdoPj8fDxx0+Rh2fOhi7eyxkasN2F3YWOaNxQBWfiU1MdjzpuLVLsByhEvC/h3jcw4LT1i6GvcSiRGy8vRGzW8+2dimEhZKsB8gstPwuCmkFGoTzH8LVr7bFr12V5ZbnYsTOEXqP/9b3N4S4h1iwImJpQiEf27Y5onVrGWJjX5ws37t3MRYsyICDQ+XPOgzDICEhgQKPCSHERIcPK8A2FahzZ5rwSIil6A0Fq4nH2XxSIztUA7gIoItJZQEAUkpS0GZtGxwedRiNAw0fW8vLy8OaNWtYXXPs2LGs2hFCqh5dwWDHj7vh/fdDodGwu1f57DNvqNWF+OIL+13gwzYUTCBgvzCeC7m5uSjUE8DTuLEUf/yRhMmTw5GdXXlAeK1achw4ILL6LtWEEDsnkXDW1dIjwMYGgNq6v2rNbv+j/ZWGgv3444/4888/WV9j5cqVCA0NZd2eWE+DBiocO2Z8KNjt2/R9TgjhzsmTcty4wX4u7vTpavD57OYBE0KIJbm5ucHDw4P1wv8ncnJy4OHhUWU2bPvqzFfPBYIBgEKjwPvH3seJsSesVFXlrmRcwZv73sTNnJsGt+GBh7ZhbbGm3xpWG7sQUtX0q90P/Wr3w8mkk5h6YCpiC2IrbaNhNNh2fxt2PNiBHtE9sLrvagS5B1mgWsIlrVaLrKwso9p4emowb142hg8vxPLlAYiO1qBhQy8zVUgIIeYXGhoKlUoFqdS4CUYpKWJMnhyB9PRnzwOHDrlj0qRirFnjAT7f8vMHtYwW2+5vs9j1ShQl6LelH/a/vh8uYhN3XySkCjmdYscLDZ9gAFT2a8w1F6jxEMh99v7T35/dun5CiOXQ22VCCCGsHD8uR1ERux3COnSQw8XFmeOKiD369Vd3PHoUC4Yx7cFBKpUiJycH/v7+HFVGiGmWnV+GTXc36T3+W9/f0Dy4uVF9Dq0/FJFekei/ub/+hZP/0jKkJUQC4yegkurFnkLBxAIxGgU0QvOg5nArexlfTesAaERA5Ekg6jgQefzx4FQ1kCupHv+eVU157kOkF1pnBwWGYZCar0EkPx5OPjFWqaEqar++PZQapc5jfWr2wdhGtLC/OvDyEmH3bhXatlUhP//Zvdf06TmYNCkPPCPeD2s0GiQlJSE6OtoMlRJCSPVw5gy7115CoRbdu7tyXA0hRB+9Y1tCAM0BnGLR6QUATQB4sizqX/Kkeej4e0fsfW0vOkR0MKjNRx99hPLycqOvVatWLfTp08fodoSQqkssFqNmzZqIi4vD8eMumD07DGq1aZOPFy70hlZbhC+/tM8FHmxDwawZul1cXIzc3IrHcaOjFdiwIRFTpkQgPl7/Iv6gICUOHmTg61s1FqsSQqzIzY2zrtwVgEBTcSiYlxRwVQIOakAiBrLcObu8xRyIO4AP2n2g9/g///yD9957j3X/gwYNwujRo1m3J9b1yitaHDtmfLu4ODEkEi1cXGiDEEKI6b75hv0cBB8fNSZOZDcHmBBCrCE4OBjl5eWsx4qeSEpKQu3a9r+x4tGEo/j45Mc6j51MPokLaRfQKrSVhauq2ImkE5h6YCoeFjw0uA0PPHSP7o7V/VbT5oyE6NApshMevP3gcdje/jdxM/tmpW20jBYH4w8i5NsQdIzoiDX91iDSK9L8xRJO5OTksF5/FRmpxMqVqYiOrsVxVYQQYnkRERGIj4+HUql7Lv9/3bnjhGnTwlFU9OL8wvXrPREUZJ336efTzhu0RpBLp5JPoe+mvtg/Yj+cRbTGmxBb4SJygaejJzwcPR7/3eHZ31/4zPHFY43qC5FQlAI0/xFotA5w0DGXUe0AFEc891FAgGX+/Qgh7FEoGCGEEFZ27GA/mWDAAEqOJY+JRHxERUUiISHB5L7y8vLg7OwMNw4nshLCxuH4w5hzdI7e49ObT8f4xuNZ9d00qCkuv3EZA7YMwNXMqxWe2y6sHatrkOpDqpLifNp5a5ehVx2fOmge3BzNg5qjeXBzNPBvAAfh491Jly0rBAq8H594Iwq4MREAAwTcBDp8AUQeAxzLrFa7ubUNa2vtEoiRpPlxSM3XmByEagqtVovkPBWiBMlw8IqwWh1Vxbt/v6t3gpqPsw92vbbLwhURa6pd2xl//VWCvn3dwOMBixalo1u3UlZ9yWQypKenIySEJjISQoixNBotrlxht4CpQQM5PDxoggshllLhZLbmAM4BUBnZqRrAMQBDWJf1nFJFKbpv7I79I/aja1TXCs+9desWfvvtN1bXmT17tlVDawghtkkkEqFmzVqYPFlmciDYE2fPCpCQkIzo6AhO+rMkrZbde2mh0DpTosrKypCenm7QuQEBavz+eyLeeScc1669uBOzp6ca+/YpER1NAbaEEA74+HDW1T/hgEJHVqGrAvjgLNDnEfByzvObURc6AXf8gDv+wG3/Z/8sseHMwwvpF5AvzYeP84t/dnFxcRg4cKDBC47+KzAwEKtWrTK1RGJFzZqxe5bTaHi4ckWBjh31h4ISQogh7t9X4NAh9qFekybJ4eREzxqEEPvB5/MRGRmJ+Ph4k/pRqVTIzMxEUFAQR5VZXlpJGkbsHAEG+ueifXnmS+wfsd+CVem3J3YPZhyegeTiZIPbCHgCDKgzAL/0+UXnMxkh5HnNgpvhxls3cC/3Ht7Y+wYuZlystA0DBieTTyLq+yi0CG6BNf3WoL5ffQtUS9hSq9UoKCgwqQ93d3c4OdnwgBwhhBiIz+cjJiYGDx8+rDQ4+J9/XDF7dhhkMv1juosWeSEoqAjTplk2GGzrva0Wvd4TJ5NPou+mvtj3+j4KBiMEj9f7jt7FfiMfEV+kO7jL4fHfdYV5/ft/uzu4Q8g3bY5LXq4GKK0N/P09cGIh0PB3oPkPgM+jxydo+cD+nwHl8+vvAwO5mZdECDEfCgUjhBBiNK2WwcGD7AYBhUIGgwfTpCbyjJOTEwIDA5GVlWVyX6mpqahdu7bVJvkTklSUhL6b+up90d4urB2+7/m9SdcIdg/G6XGnMW73OGy7v03veRQaRCpzLvUclBp2k9S5FugaiBYhLZ4GgDUNagoPRw+959+9q2swngdkNwa27AQECqDhBqDNEqBGnPkKt4Ka3jXRu2Zva5dBjCAvTEJKnpr14kUuaTQaJOfIESnMgNgt2Nrl2K1Tyafw/WXd3+d8Hh+nxp4yeUCe2J9u3Tzw44+FcHUtRP36cpP6Ki4uhqOjI3w4XKRHCCHVQXl5GfbsycTVq864fNkVly+7ID7esHHI1q0VAGhyCyGWUmEomDOAxgAus+j4LoC6ADiaq67QKDB291g8evsRXMQvBrUAgFwux9ixY1k98wUEBGDMmDGmlkkIqaJEIiH273dCjx7luHDBtEXabduW4dtv0yCTMUhKSkJkZCRHVVoG26B9gUDAcSWVk8vlSElJMaqNu7sWq1Yl44MPQnD06LNxcUdHLTZvluCVV/SPlRNCiFECAgCBAKhkcYwh9tTR/fm3h4E3rus+5i0DOqQ8/usJLQ9I9nwWEnbb/3FQWJz343np1qZltDgUfwijGox67vPCwkL07t0bhYWFrPoVCoXYsmULjQHbuVat2C+gvXRJg44duauFEFI9LV2qAsM4sGrr5KTFjBk0j5cQYn+ezKXIz89n3YdczsNHH4kwd64UderY3/tBhVqBIduGIF9a8Z/BgbgDuJl9E40CGlmmMB023NqA94+9j6xyw9cIiPgijHh5BH7o9QNcxRReSYix6vvVx4U3LiCpKAkT907EqeRTFQYIPnEp4xJe+vklNPRviNV9V6NZcDMLVEuMZeiGJPrweDzarJQQUqU8CQZ79OiR3nfKu3Z5YsGCYGg0lYfezJjhgYCAYgwe7MlxpbpptBpsv7/dItfS5UTSCfTb1A97X99LwWCk2hvVYBRcRC7YdHcTssqzng/u+leAl75wL0ehI3g864VryWRalJb+a46Mwh24PB24Mg0IvAZ4xwOp7YDSF+8Fg4Nt4KUsIaRCtEKREEKI0S5eVCAzk92EgJYt5fDxYb87GamaatSoAYlEgtLSUpP6YRgGCQkJqFmzJvh8ehghliVVStHk1yZQaVU6j4e4heDE2BOcXMtZ5IzNQzaj3ul6WHB6gc7jLUNacnItUnUdTzpuleu6id3QLLjZ0wCw5sHNEexuXDiRRqOBm5sGZWV6FnVpHIDrbwA3xj9Otu83CeBbP5CJC3PbzIWAb/nFbIQdZUk6knMVle4+Y0kqtRopWRJE8vMgdPG1djl2R6KUoM9fffQeX9xlMe2WV41NnOiNxMRiSKWm95WdnQ0HBwe4ublVfjIhhBAAQElJCTw8NOjSpQxdupQBAAoKBLhyxQVXrrjg8mVXJCfrXiDVuTPtdEWIJVUYCgYArQBcA8DmUWovgCAAHG3cmVmWiaTiJLzk95LO4zNnzsStW7dY9T1r1iw4OLBbuEkIqR7c3YU4fNgRPXuW49w5dgvg2rQpw4oVqRCLH0+ClkgkdhkMxoZIJLLo9VQqFRISEli1dXBg8M03afj6azU2b64BgYDBr7+WoHt3y+5ETQipBvz8ABM3bNMCWP3Ki5/zGKDvQ+P64jNAVNHjvwbEPvtcJgTu+wK3+7fAnQGtcTvnNm7n3EaeNM+k2tk4EHfguVAwpVKJgQMHIi6O/cZEX3/9Ndq1a8dFecSKgoOFCAhQITvb+HuOa9fMUBAhpFrJzVVj82b2izWHD5fBz093CD4hhNi6gIAAlJaWQqk0fkPU+/cd8cEHIUhMdMS9exKcO6eFUGhf881nHZmFyxmG7ayy6MwibB261cwVvWjl5ZVYcGoBCmQFBrdxEDhg0iuT8M2r38BRSMGVhJgq0isSJ8aeQHZ5Nt7Y+wb+jv8bWqbyedS3cm6h+W/NUbtGbfzU+yd0juxsgWqJIeRyOcrLy03qw8fHh9ZZEUKqHJFIhOjoaMTHxz/3OcMAq1b54scf/Q3uS63mY+xYN/j5laFdO/PP3z6betaoAF1zOJ50HP0398fe1/bCSURrvkn1NrDuQAysO9DaZbCSnq4GoGMzG4YPZDZ7/JceQUF0f0iIraNQMEIIIUbbvl3Num2/frYTiEBsS0hICOLi4qBS6Q5UMpRKpUJ6ejrCwsI4qowQw7T4rQWK5EU6jzmLnHFj8g0I+dzdfvN5fHzW8TPU8amD8XvGQ66WPz32Xsv3aIcsUilLhIKJ+CI0DGj4XABYbZ/a4PNMGzCaOzcLc+ZkISdHhEePHPDokSMePXJEXJwjkpMdoFb/f0E/IwBuTgDSWgOTGwEihen/UlYU5BaE0Q1GW7sMYiB1WQ6ScyRQq9nfO5uLQqlESlYxIkLFEDh4WLscu9L5986QqCQ6j7UObY3ZbWZbuCJiayIiIvDo0SNOfvZTU1NRs2ZNiMU6XtAQQgh5gVRHKmONGhr06FGKHj0eB9Hn5gr/FRLmgrQ0B4jFWnTrRs/QhFhSpaFgXngcDHaWRecKAH8BGA+Ag00sRXwRajjV0Hls5cqV+OWXX1j1GxMTg+nTp5tSGiGkmnBzE+LQIUf06lWOM2eMu2dp1aocK1akwsHh+V2R7SkYzJSwfaHQclOiNBoN4uPj9e5AbQiBAJg/Pwt+fmqEhoowerQ3hxUSQsj/1atncijYiMGAXEcGUsNMwF/38LnRnNRAkyygSaupQPcxTz/PKc/Bndw7uJ1z++nf7+Xeg0JjvneAh+IPQaVRQSQQgWEYjBkzBv/88w/r/gYNGoRZs2ZxWCGxpgYN2IWC3bpFU7cJIaZZsUIOmYzduDaPx2DOHPo9RAixb5GRkXj40PBUYo0GWLfOBz/+6Ae1+vHcxcuXXbBgQSG++MJ+xmD+vP0nfrzyo8Hnb7+/HbH5sajjU8eMVT2m1Wrx1dmvsOT8EpQqDN8k3EXkgndavIPPO33O6RxrQshjAa4B2D9iP4rlxZi8fzK2398ODVP5uPvDgofo8kcXRHhGYEX3Fehfp78FquVOYlEiPj31Ka5nXccrga9g+avL4Wvnm+impaWZ1J7P58PX177/DAghRB9HR0eEh4cjJSUFwOP7/y+/DMK2bcbf60skAgwa5IjTp6WoV4+DiUcV2HrP8gG+uhxLPIb+m/tjz2t7KBiMEDuVmVl5ALA+ISECDishhJgDjZgRQggx2v797HdVHjaMdr0nuvH5fERHR+Phw4cmTZgHgNLSUhQWFsLb235e1BL7NmzbMNzNu6vzGJ/Hx+lxp+Hj7GOWa7/20muPX1ZdWI5CWSF6xPTA+EbjzXItUnUUyYpwLZP77Ydr16iNZsHNnoaANQxoyPmubXL54wA8Hg8ICFAhIECF9u2f7XykVPKQlOSAR48cEBf3JCwsGrnbtwKv29dL6f96r+V7cBDSvZQ90MiKkJxdAqXStLBTc5LJFUjNyEV4qAh8kXlfWFUVX/7zJS5n6t5p003shmOjj1m4ImKL+Hw+YmJiOHmuYRgGCQkJqF27Nu3QRwghldBqtQYFMvr5qdG7dwl69y4BAGRni5CQ4AhX13Bzl0gI+T+GYSoPBQOA9gBuAzB83cgzeQD+ADAWgIlz1T5u/zEC3QJf+Hz16tV49913Wfe7YsUKODjQMz4hxDCurkL8/bcjevcuw+nThu1I3KJFOb77LgWOjrqfTSUSCRITExEREWHTz5xKpZJ1W0uFbGu1WsTHx5sUYPYEjwfMmCG1i8A2Qoidat8eOM5+46AlbYAtL+s+5iNj3a1+AwY89z/9Xf3h7+qPrlFdn36m1qoRXxiPOznPh4UlFSdxUkKxvBjxhfGo61sX06dPx5YtW1j3Vb9+faxbt46TuohtaNxYiyNHjG8XHy9GWZkWbm62ex9GCLFdMpkWq1ezn4vTvbvM7ItaCSHE3EQiEYKCgpCZWfn7hvR0ET78MATXr7u8cGzxYk/07FmG1q0NG3Ozpjs5dzBp3ySj2jBg8PXZr7F+wHrzFIXHz2QfHv8QP1z5AVLVi5s46ePh4IF5bedhbuu5Nj0+SUhV4enoic1DNqNcWY53/n4HG29vhEpb+fzW5OJkDNgyAEFuQVjSbQlGvjzSAtWaplRRih4beyCuMA4AcD/vPs6lnsOVSVdQw1n3ZlC2rqSkBAqFaaH4wcHB9PuWEFKlubm5ITg4GPHxmXj//VCcPOnOuq/8fBF699bi3DkFgoLMM7dHo9Vg+4PtZumbjaOJRzFgywDseW0P52vACCHml5HBLhRMKNTC15dCwQixdRQKRgghxCj37ikRF8fuYbZRIznCw+mhkOgnFAoRFhb2NJndFJmZmXBycoKTEyWUE/P6+uzX2HZ/m97j6/qvQ9OgpmatoVaNWvilzy9mvQapWu7l3QMD04JKAlwD0CK4BZoHPw4AaxrUFJ6OntwUWIGysrIKj4vFDGrXlqN2bTmAkqefFxfXxI7CuVhxY4mZKzQPT0dPvNnkTWuXQQygVUqQkpkPuYL9gkVLkUgVSEvPRFhYOHgC9sG/1cGt7Fv4+OTHOo/xwMPfI/+mnXHIU0KhEFFRUUhISDC5L41Gg4SEBNSsWZODygghpOoqLWWTGvQ4aDg62jJhEYSQxwpkBQZNMIcYQDcAO1heKBvAbwCGAfA3rqmQL0SfWn3wTvN30Cmy03PHNBoNPvzwQyxZsoR1CGyfPn3Qu3dvVm0JIdWXi4sQBw44oW/fMpw8WfEixWbNyrFyZQqcnCr+PSWVSpGUlITIyEibXQhSWqpEfr4QHh5qiIwcvrJU+GJSUhJUKm42B3BwcEB4OAXWEkLMaOpU4NNPWTX9oTnwfjf9x/0kLGvS26Ef4F75oh0hX4g6PnVQx6cOhtYf+vTzMkUZ7ubefS4o7E7uHRTLi1mV8/HHH+PHH39k1RYAwsLCcOjQIbgb8O9E7Efz5uzuobRaHq5cUaBzZ5pHRwgx3tq1MuTnvxhsY6g5c2zz+Y8QQozl7e2N4uJiSKW6g6gYBtizxxNffx0IiUT3AleVio9x40S4cUMNFxfbXV5XIi/B4K2DIVMbn8a88fZGfNbxM0R4RnBak1wtx8zDM7HuxjooNIYH1fg6+2JBxwWY0mwKp/UQQgzjKnbF2v5r8UvvXzD76GysvrYaco280naZZZkYtXMUZhyagQUdF2Bqs6kWqJadlZdWPg0EeyKpOAmjdo3CgREHwOfZ3/2wISGYFRGLxfDw8OCoGkIIsV1eXl7IzgbOnDE99Dc52QG9e0tx+rQa7u7cPyv8k/IPciW5nPdriiMJRzBwy0DsGr6LgsEIsTNZWezmMfr6asDn01oyQmyd7Y5aEkIIsUlbtijxeDWO8fr2VXNbDKmS3Nzc4OPjg/z8fJP7SkpKQp06dWx2IQOxfwfjDuKD4x/oPT6jxQyMaTjGghURYhixwLjvclexK5oFNXsaANY8uDmC3YLB4/HMVKF++ibxVMbTU4MlLRfiUfldHIw7yHFV5vd2s7fh5mD7OxJWd4xGibSMLEhlpu3IZUllEjky0pMRHBoNHt0z6aTWqtH5j856wxRnt56NNmFtLFwVsXVOTk4ICQlBenq6yX0pFAqkpqYiLCyMg8oIIaRqKikpqfwkPWgxLmFj/fr1GD9+vLXLeM748ePNVtO6deswbtw4TvrKLDNiwvLLAO4AeMTyYgV4HAzWDUATAJVsavey38sY32g8RjYYCT8XvxeO379/H1OnTsXp06dZFgR4enpi5cqVrNsTQqq3x8FgzujbtwzHj+seK3zlFQl++KHyQLAnZDKZTQeDnTvHYPDgOgAANzcNvLzU8PL67991faaBWGz+8NeUlBTIZMYvxtRFKBQiOjraJv9/IIRUIT4+QMOGwK1bRjVb0xiY3qvic2Rc/9qdNs2k5m4ObmgV2gqtQls9/YxhGKSXpj8XEnY75zZi82Oh1uqe09Q5sjMO/H4ACxcuZF2Lr68vjh49ipCQENZ9ENvUqhX7//AvXdKgc2cOiyGEVAtaLYPvv2e//KNxYzkFEhJCqpSIiAg8ePDghU08iooEWLAgCMePVx6AEhfniBkzirF6taeZqjQNwzAYv2f8CwE3htIwGiw5twQ/9f6Jk3pK5aWYdnAaNt/brPc5Spdgt2As7rYYI18eyUkdhBDTiIVifN/zeyzvvhyfnvoU3138DhJV5Ynv+dJ8TDs4DfOPz8e8tvMwt/VcmxrTligl+PbitzqPHYo/hIX/LMQnHT6xcFWmyc3NhUajMamP0NBQjqohhBDb17evF5YsKcR773mb3Nft207YvDkdb7wRzPn33dZ7WzntjyuH4g9h0JZB2Dl8JwWDEWJHMjPZh4IBFApGiK2jUDBCCCFG2beP/VfH8OHmn3hNqoaAgABIpVLWwS9PaLVaJCYmIiYmhqPKCHkmoTABAzYP0Hu8U0QnfNtD90slQqytWVAztA5tjfNp5184JuQL0dC/4XMBYLVr1IaAX8nKWQtRKNiFLfF4PIiEImwcuBFNVzdFYlEix5WZj5PQCe+0eMfaZZBKMFoN0tNTUCaxn0CwJ4rLFBCkxyMgJIaCwXTo81cfFMoKdR6r71sfS7otsXBFxF54enpCJpOhoKDA5L5KS0uRl5cHX19fDiojhJCqx5QxJE9PT+4KIYRUyqhQMAAYAOAXAKUsL6gCcBDAZQAdAdTBc2/IvRy9MOLlERjfaDxeCXxFZwD6gwcPsGLFCqxZs8bkCddr165FRESESX0QQqo3JycBDhxwQb9+pThy5Plw08aNJfj55xQ4Oxs32U8mkyExMRFRUVE2tXgHAHJytE//uaxMgLIyAVJTK2/n7q5GSYl5/10yMzNRVlbGSV98Ph8xMTE29+dPCKmivvoK6FVJwte//PUyMKlf5efd53LoUigEPvqIww4f4/F4CPUIRahHKHrVfPZnoNQoEZsfizs5z8LC5Go5mgQ2QcijEMyYM4P1NT09PXHkyBHUqlWLg38DYmsCA4UIClIhM9P4BRPXr5uhIEJIlbdnjwyPHjmzbj9jhmljW4QQYmv4fD7CwsKQkpLy9LMzZ1zxySfByM83/B5tzRoP9OlTgv79Kw8Rs7RlF5ZhV+wuk/pYe2MtPm7/MQLdAln3kSfJw5v738Teh3uhZbSVN/i/KM8orOixAn1r92V9bUKI+Qj5QnzZ+Ut80fELLDm/BF+f/Roliso3ZStRlOCD4x9g4T8L8W7Ld7Gg4wII+dZfpvzrtV9RINM/V++zU5+hRXALdI/pbsGq2NNqtcjLyzOpDxcXFzg5OXFUESGE2IeZM72RkVGIZcvYB4M5OGixeHEaWrcuQ3y8jNN3uWqtGjse7OCkL3P4O/5vDN46GDuH7YSD0MHa5RBCDJCT8+KcR0P4+Rn+fE8IsR7rP20TQgixGykpKty8yS7huWZNBerXp4dAYriIiAg8fPjQ5EVWcrkcCQnZiI4O4KgyQgCpUoqmq5tCpVXpPB7mEYZjo49ZuCpCDMfj8XBo5CF8dfYr3M29C3cH96cBYI0CGtn0jg4qle6fu8oIhY8ff72cvLBr+C60WtMKUpVp4ZOWMrHxRPi6UAiMLWO0WmSnJ6CkTGntUlgrKFVCmBkH35Da1i7Fpvx67VccTjis85ijwBH/jPvHwhURexMYGAiFQoHy8nKT+8rJyYGjoyPc3Nw4qIwQQqoOrVbLevyIz+dDILCNAGRCqgujQ8GcAQwFsA6AKXNQ8gFsB+AIoB7wcrOXMa7XOLz56ptwdXR9/tT8fFy/fh1XrlzB7t27cfXqVRMu/My7776LgQMHctIXIaR6c3DgY+9eVwwYUIpDhx4HgzVsKP1/IBi7X5Zyudwmg8HYrnXx8tLAnFOi8vLyUFioO0TeWDweDzExMU/HsAkhxOx69gS8vICiokpP3VUHGDMQYAyYRx7vDSgEgAMXWSPduwMW/D4SC8Ro4N8ADfwbYCRGPv38jz/+wLh3xrHu18XFBQcOHECjRo1ML5LYrAYN2IWC3bxJ3/2EEOMtX85ucRcAhIYqMWIE+0AxQgixVW5ubnB3d0dOThmWLQvAli01jO6DYXiYPNkJrVsr4etrO5ugn04+jXnH5pncj0KjwLILy7D01aVGt00tScWkvZNwNPEoGBi+GUFdn7r4qfdP6BjR0ehrEkIsj8/nY17beZjXdh5+uvITPj31KfKl+ZW2k6gkWHRmEZafX45JTSZhabelEAut83tUrpZj6YWKf88xYDBi5whcf/M6wj3DLVQZexkZGWAY4zaC+a/Q0FCOqiGEEPuyeLEnsrKK8ddfnka3dXdX44cfUtG48eP1RkqlEikpKYiMjOSktlPJp5AnNS300dwOxh3E4K2DsWPYDgoGI8QOsA0F8/c37V6TEGIZtjOTjxBCiM3bto19yEGfPuwCPEj1xefzERUVZXI/+/Z5oHlzH1y+bPoifEKAx4uNm6xugmJ5sc7jLiIX3Hjzhk0tmiFEFzcHNyzqsgh7X9+LjYM24p0W76BlSEubDgTTarWsX246ODwbiG7g3wC/9f2Nq7LMSsATYFbrWdYug1QiLzMOBaX2Gwj2RE6xCoWZD6xdhs1IKU7B1ANT9R7fOnQrvJ3Z7yBEqo+wsDCIRMYvCNIlJSUFCoWCk74IIaSqKC4uZt3W2ZkWQBFiaUaHggFAKACuNmuWA7gO3Fl1B7P6z4Kbkxvc3NwQEhICHx8fiEQi+Pr6onv37vjoo484CwRr3749lixZwklfhBACPA4G27PHFb16laJBAyl++SUZLi6m7eD5JBhMq7WdnUALCthNXHwcCmYexcXFyMnJ4ay/yMhIiMW2s9iUEFJNfPNNpaf8HQMMHwpoDHztreEDccavvX+RQAD8+isHHZlm69atmDBhgknvJvfs2YPWrVtzXBmxNY0bs7t3SkwUo6TEfPcshJCq5/JlOc6edWLdfupUFYRC9qFihBBiy0JCQrBsWRCrQLAnsrPFeOMNGYdVmSazLBPDtw+HhuHmnvGXq7+gQFpg8PkP8x+i7dq2CF8RjiOJRwwOBHsl4BVcmXQF96fdp0AwQuzU1GZTkTcnDxsGbECQW5BBbeQaOVZeXgnXr1wxYc8ESJWW37R5/c31Br2LLpQVYui2oVCobXsOnlKpRElJiUl9eHt704YkhJBqSyDgY/16d3TtWmZUu8BAJTZsSHoaCPaERCJBeno6J7VtvbeVk37M7UDcAQzZNsTmvzMJIUBuLrt1zAEBFApGiD2gpAJCCCEG27OH/dfGkCE0kEiM5+DggODgYFZtVSoevvwyEPPnh6KwUIjhw0XIz7f/sA5ifUO3DUVsfqzOY3weH2fGn6GAEELMRCKRsG7738X+r7/8Oma2nGlqSWb3+suvI8IzwtplkAoUZMQit7jqBOBmFmpQkkXBYFqtFm3WttE7sW5sw7HoW7uvhasi9orP5yM6Opqz0Ni//06HQmE7C7QJIcTaSktLWbd1d3fnsBJCiCFYhYIBQAsAnTgt5any8nJkZGSgoKAAarWa8/6bNWuG/fv3U+ALIYRzYjEfu3a5Yu3adLi6cvOcKJfLkZCQYDPBYPn57Bas16hhnoANLid7A4+DxCmolhBiFRMnAs2a6T18MgIYNBxQCYzr9r6vaWUBAL76CggybMGpuezZswcjR46ERsPu+0QkEmHbtm3o0qULx5URW9S8Obuxf62Wh8uXaR4TIcRw33zD/jnH3V2DKVNsd5NAQggxFZ/Px6JFjvD0NG2Mf+9eD6xaVcRRVeypNCoM2zYMORLuguklKgm+u/Rdpeddz7qOJr82QZ0f6+Bc2jmD+28T2gYPpj7AtbeuoWlQU1NKJYTYiFENRyHjvQzsHr7b4HnMKq0K626ug/vX7hi2bRgKpYXmLfLJdTUqLD632ODzr2RewczDtj2HPC0tzaT2PB4PAQEBHFVDCCH2SSTiY+dOpxcCvvSpVUuGjRsTERWlOwSruLgYubm5JtWk0qiw88FOk/qwpP2P9mPs7rHWLoMQUoncXCNf6v5fYCBtIkGIPaBQMEIIIQbJz9fg4kV2kwKCglRo2dKB44pIdeHl5QVPT0+j2uTkCDFuXCQ2b36241NysgNGjFBAo7GNRQzEPi38ZyF2xuoffPtj4B9oHNjYghURUr2Ul5ezbuvi4vLCZ4u7LkaH8A6mlGR2c1vPtXYJpALFWQ+QVcT9gnFrSy/UoixHdwBmdTFm9xhklGXoPBbmHoa1/dZauCJi74RCIaKiokzu5++/PfDaa5EYO7aUnm0IIeT/ZDL2O3YbO+ZECDEd61AwAOgAoC1npVhEgwYNcPjwYbi5uVm7FEJIFSUW89G4cQxEIhFnfSoUCpsJBissZDetycuL+9rLy+VISkrirL/AwEAKqSWEWNeRI4CO4NrzoUDfEYCcxVeLyaFg9eoBc+aY2IlpDh06hGHDhrEODBYIBNi4cSP69qWNRaqLVq3YB0BfumSeIFNCSNWTkqLC7t1OrNuPHSuDhwe7hWGEEGIvoqKcsHRpmcn9zJ3rhvh49u8fufD+sfeNCuQy1MrLK1Gq0L3h0j/J/6D+j/XR5NcmuJ513aD+eODh1ahXkTIjBWcnnEUd3zpclksIsRH96/RH0rtJOD7mOOrUMOznXMNosO3+Nvgu9UWfv/oguzzbrDVuursJycXJRrX5+erP2HBrg3kKMpFEIjFpLgwABAQEcLaJKSGE2DM3NyEOHBAgKkpe4XnNm5dj/fok+PlV/G4gNzcXhYXsQy9PJp9EgayAdXtr2HJvC44nHrd2GYQQPTQaBvn57MZ+g4IoFIwQe0BPdoQQQgyyY4ccajW7G7xevZTg8+nmkLAXEhICsY7JqLpcueKCYcNicPv2i7tqHz3qhg8/LOa4OlJd7H+4Hx+f/Fjv8dmtZmPkyyMtWBEh1Y8pLzidnF6cHCkSiLBlyBYEuwWbUpbZ9KnVBy/7v2ztMogeZdmxSC+omhP1GYZBar4G0vw4a5diFbse7MKfd/7UeUzIF+LMhDM0WYKw4ujoiNDQUFZtGQb48Uc/zJ0bCoWCjy1bPPHFF8XcFkgIIXZIq9VCo2F3TyYQCOg7nRArMCkUDAC6AujESSlm17ZtWxw7dgxeXl7WLoUQUsXx+XzUrFnT4HdphlAoFIiPj7d6MFhhIbuJizVqcFt3SYkabdtqsWFDjcpPNoCPjw9q1OCmL0IIYc3TE/jpp+c+uhYI9BwJSFh+pZgUCiYUAsetu6jk+PHjGDhwIJRKJav2PB4Pa9aswbBhwziujNgyf38hgoPZ/Tdz/TrNpyOEGGbpUgXUanbj2UKhFrNm0aa+hJDqYeJELwwaVGJSH6WlQowfr7HauNi2e9vw7cVvzdJ3sbwYP115/jnwwKMDiP4+Gh1+74D7+fcN6ofP42NA7QHInpWNw6MPI8wjzBzlEkJsTOfIznjw9gNcnHgRDf0bGtRGy2hxIO4AgpYFofPvnZFUxN3GG09otBosOrOIVdu39r+FOzl3OK7IdHv35oNh2LcXCoX0DoIQQv4lMNABBw5o4een0nm8Z89i/PxzCtzcDHsGyMzMRFkZu0DiLXe3sGpnbQ/yH1i7BEKIHvn5GtZjx0FBNIeaEHtAP6mEEEIMsns3+0lIgwfT1w0xXVRUFHg8/f8dMgzw++81MGlSBAoLhXrP++YbL+zcWWyGCklVFlcQh4FbB+o93jWyK7559RsLVkRI9cR2Aj6fz9e72N/f1R87hu2AWMDdgjmuzGszz9olED0kuY+QauFAMAcHMUQikcWuxzAMUvJUkBcmWuyatiBfmo/Xd7yu9/ivfX6liWzEJB4eHvD1NW5lnFzOw5w5ofjlF7/nPv/iCy9s2lTMYXWEEGJ/iouLWbd1dn4xUJ4QYn4mh4IBQAcArwGwvUf5p9566y2cOHHC6Hs/Qghhi8/nIyYmhtNgMKVSafVgsKIidqFgvr4mrJb5D4VCi3795Lh1yxlLlgRi+XJ/mPJH4uHhgYCAAM7qI4QQk0ycCMyYAQC44we8OhoodWTfHetQMD4fOHwYsOLvx9OnT6Nfv36Qy+Ws+/jpp58wduxYDqsi9qJBAzWrdrduWe7dHyHEfpWUaPDHHy9uhGeogQNlCA+n3zeEkOpj1Son1qGtABAersCUKTlIT0/nsCrDPMh7gAl7J5j1GssvLIdUJcWmO5sQsjwEfTb1QWKRYfPDhHwhRr48EkVzi7DrtV3wc/WrvBEhpMppEdICNyffxJ3Jd9AiuIVBbRgwOJl8ElHfR6HVb61wL/ceZ/XsfLATDwsesmorU8sweOtglMhNC5Tk0t9/l2LEiHCMHRuJO3fYPQeEhIRwXBUhhNi/OnWcsXOnHK6uz68BGTs2H19/nQ6x2Lj3yykpKUa/T1BqlNgVu8uoNraiUUAja5dACNEjPZ392jYKBSPEPtBPKiGEkEpJJFqcPs1u1p+XlxpdupgwY5CQ/xMKhYiIiNB5TCLhY/bsUCxdGgiNpuIAO62WhzfecMXDh1IzVEmqonJlOZqtbga1VvckznCPcBweddjCVRFSPanV7CZTVxak1CKkBX7o+QOrvs2lbVhbtAlrY+0yiA6ywgSk5KvBmLINl5HEIhEi3PIR4VYAgYDdQkg2NBotknOVUJakWeya1tZuXTsoNAqdx3rX7I3xjcdbuCJSFfn7+8PNzc2gc/PyhBg/PhKHD3u8cEyr5WHSJDdcvMhutylCCKkKSkrYT8z08HjxdyshxLw0Wg2yy7M56atFlxb4dOOnqFO/Dif9ccXV1RWrV6/GL7/8YtFgZ0IIAapmMFhhIbuxMB8fbq6v0WgxYkQZ/vnH9eln69b54sMPQ6BSGb+plouLC0JDQ7kpjhBCuPLtt3g4eQi6jQEKTczPflQDUBk7I5XPB7ZvBzp3Nu3iJjh37hz69OkDqZT9PJLly5dj8uTJHFZF7EmTJuzulZKSRCgutuxGRIQQ+/PTT3KUlrKfJzB3rv4NVgkhpCry8RFj1SoZ+Hzj53YNHVqIrVvj0aCBDKWlpSgtLTVDhbqVK8sxeOtglCvLzXqdPGke/L7xw4idI5BRlmFQG7FAjMlNJqPsgzJsHLQR7o7uZq2REGIfXvJ/CRffuIjEdxLRKaITeDBszPxixkW89PNLaLyqMa5kXDGpBoZh8OWZL03qI64wDuP3jLfonGB91Got3n//8f37jRsuGDEiGvPmhSA72/D3zk5OTnB1da38REIIqYbatHHDH3+UQSR6PJ47Z04WZs/OBp9l0kZCQgJUKpXB5x9PPI4ieRG7i1kJDzzMbT0XbcPaWrsUQogemZns5/OEhNDYMSH2gELBCCGEVGrvXjlkMnZfGd26KSASGT8hmhBdXFxc4O/v/9xniYlijBgRhSNHDF/IWVQkxNChgETCLlyGVB9arRZNfm2CEoXuRcYuIhfcnHwTfLYjgIQQgymV7Hfvc3SsPKB0UpNJeKPxG6yvwbV5beZZuwSig6I4FSm5SosughQKhYhwL4BI7AAHRwdEuBdZ9HtHrVYjOVsKVVmOxa5pLTMPzURsfqzOYzWcamD3a7stWxCp0kJDQytdpP3ggSNeey0ad+/qX4knkQgwZIgD0tKM222KEEKqCplMxrqtuztNVifE0vKkedAw7Bc7B7gGYE7rObg39R4uvnERnw39DHdu3kHQ4CCAu/wb1oYMGYLY2Fi88YbtjC8QQqqfJ8FgDg4OnPWpVCoRFxdn8WAwjUaL4mJ2ExD9/LgZP3vnnRLs3PniO8j9+z3x9tthkEgMv45YLEZ4eDgndRFCCJeSipLQpeYF5HCwVlAlABK8jWggFAJHjgADB5p+cZYuXbqEnj17oryc/cL7hQsXYubMmRxWRexN8+bswnoYhodLl9i/ByeEVH0qFYOffmIfPN+unQxNm3L3fEgIIfaid28PvPlmscHne3ur8eOPyfjkk0w4Oz8LhUlLS4NGY/4QV4Zh8MbeN/Ag/4HZrwUAEpXEoPOchE6Y03oOJPMl+LnPz3AU0kbxhJAXRXpF4sTYE0ifmY7eNXuDzzNs3Pxm9k00/6056v5QFyeSTrC69sG4g7iVc4tV23/bFbsLyy4sM7kfU61aVYI7d56fK3jggCf69KmJlSv9IJVW/mdLG5MQQkjFBg70xMqVJViyJA1jxhSY1BfDMEZtsLX1/laTrmdJMd4x+KDtB7g1+RYWd1ts7XIIIRXIyGA3l8fdXQMnJ1oTTYg9oJ9UQgghldq1i/2OB4MGUSAY4Zavr+/TnSuOHXPHiBHRSEw0/iXjnTvOmDjRvLspEfs3aOsgPCp4pPOYgCfA+Ynn4enoadmiCKmmTJmI7+LiYtB5K3utRLOgZqyvw5X6vvXRq2Yva5dB/kNVloXkHBnUasvt1i0Q8BHhXgjxvxZxOjk5INy9FDye5e6zlSoVUrJLoJHZ1840xvgn+R+suLRC5zE+j49T405ByKddMAh3+Hw+oqOj9Yb8HTvmjrFjo5CbW/kk/4wMMQYM0FLoMSGk2lGr1ayDKYRCIQV8E2IFmWWZRrcR8UUYVHcQ9r2+D2kz07Ck2xLU86339LhQKMTyz5YDbwNoBIDdOmyTNG/eHIcPH8a2bdsQHBxs+QIIIeQ/njxzchkMplKpcPJkMpRKywWD5eerodGwGwPz9zf9Xu+LLwrx009eeo+fP++GCRMikZ9f+ZePUChETEwM3YMSQmxOemk6Ov/RGRllGZz1ed/XwBNr1gQSEoAuXTi7trGuXr2K7t27o6ysjHUfH330ET788EMOqyL2qEUL9oE9V65Y7t0jIcT+/PWXFOnp7NPwZ81iP/eXEELs3fLl7qhXr/INhjp1KsWuXXFo3/7F+YkMwyA5OdkM1T1v5eWV2HJvi9mvYyh3B3d80ekLlH9QjiXdltCcKUKIQYLcg7B/xH7kzc7D0HpDIeAZ9uI2tiAWXf7ogsjvIrH34V6Dr8cwDBaeWci23BfMOzYPp5NPc9afscrK1Fi4UPd8d4WCj19/9UPv3jWxc6cX9OVVuru7V7pRKSGEEOCtt7wwbBg37701Go1BG2wpNUrserCLk2uaS+0atfFRu49w862bePT2Iyzqsggv+79s7bIIIZXIymI3BuznR2tPCLEXNNuMEEJIhVQqBkePspsw7uSkRd++tCMM4V5YWBj+/tsbM2eGQSJhv8pryxZPLFtWyGFlpCpZcGoB9jzco/f4n4P+RAP/BhasiJDqTSIxbHc6XZ6ESVbGUeiIHcN2wNfZ0NUK5hGbH4uJeyeiXEnhlbZCLS1EcnYZVCqVxa7J4/EQ7l4CR8cX78VdnEUI85BarBYAkCuUSMnMh7YK/ncpVUrR6y/9QXxfdfkKL/m9ZMGKSHUhEAgQHR393GcMA6xe7YuZM8Mgkxk+dHv9ujPGjJFAo7Hc4mxCCLG24uJi1m2dnJy4K4QQYrACqeE7bDb0b4gV3Vcgc1YmdgzbgT61+uhddDL8peFw8nYCBgCYCaADAMPywVkTCoUYOnQozp07h0uXLuHVV1817wUJIcRIT4LBHB25eVcbF+eAoUPDMHBgucWCwTIylKzbBgSYtlBx9eoifPqp/kCwJ+7fd8KYMVFIS9O/yIbP51MgGCHEJuWU56DLH12QXJzMab+VhoIJBMCCBcCjR0BYGKfXNsaNGzfw6quvoqSkhHUfs2bNwhdffMFhVcRe+fkJERrK7t7l2jXacJMQoptWy+Dbb9nPjaxdW4G+fWksnBBSfTk5CbBunQYODrrHspycNFiwIAPffZcKb2/9Qa0ymQwFBYa/3zDW+bTzmHVkltn6N0YNpxr4vuf3KJlXgo/af0TjWYQQVrydvbF16FYUzyvGuEbjIOIbFqSdXJyM/pv7I3h5MP6882el559MPomL6RdNLfcpDaPB8O3DkVWWxVmfxliwoBTZ2RUHeuXni/Dpp8EYNiwaFy8+/0Kcx+MhJCTEnCUSQkiVEh4eztm7dJVKhaSkpArPOZpwFCUK9u8jzKWuT1180v4T3JlyBw+mPcAXnb9Aw4CGFt3AnhBimuxsdu18fWndCSH2gkboCCGEVOjoUTmKi9lNmu7USQ5nZ/qqIdzj8/kYN84HEREKk/uaP98Tp0+z3/WVVE17Yvfgs9Of6T0+r808DH9puOUKIoRALpezbmvMrkehHqHYMmSLwTtUmYOG0WDdzXXw+NoDAzYPQHY5yxE6wgmtsgwpmQVQKNgvQjQWj8dDmIcEzk76/9t1c+YjxNNyNQGAVKZAWkY2GI1lr2tunf/oDIlKd/Bgq5BWmNtmroUrItWJg4MDwv6/8E2h4GH+/BB8/70/q7527vTARx8Vc1gdIYTYtrIy9uM5Hh4eHFZCqqNx48aBYZhq89e4ceM4+XML9wyv8Li3kzemN5+O629ex83JN/Fuy3fh4+xjUN89Y3o+/gdXAJ3wOBxsNODazhU1a9Y0qe4nPDw8MGTIEKxduxbp6enYunUrWrduzUnfhBBiDnw+H1FRUSZPZk5IcMAbb0SiqEiIgwfd0b9/ORQK808OzM1lf43gYMPHhP9rz55iTJvmAYYxbKJzWpoDRo2Kwr17L/4583g8REdHQyg0LaSMEEK4ViAtQNcNXfGo4BHnfesNBePzgQ4dgMRE4JNPOL+uMW7duoWuXbuiqKiIdR/Tpk3D0qVLOayK2LsGDdhtLnTzpmGLowkh1c+JE3LcusX+ee6dd9Tg82kBJyGkemve3BUffFD8wucNG0qxY0cCBg0qgiFr3bOysqBUcj9fKqc8B0O3DYVaq+a8b2MEugZiff/1yJ+bj+nNp1u1FkJI1eEqdsW6/utQ/kE5pjefDgfBixvk6pJZlolRO0fB7xs//HzlZ73nfXnmS65KfSpHkoNh24dBpbHcBsIAkJQkw08/GT6P5dEjJ0yaFInp08OQlPT4fYivry+FORJCiJGioqIgEnEzPiuTyZCamqr3+JZ7Wzi5Dhde8nsJCzouwL2p93B/2n0s6LQAL/m9REFghNipnBx2P7sBARQKRoi9oCc9QgghFdqxQ//ON5UZMIDhsBJCnufrK8amTUo4OZn28KFU8jFypAMyM00PGCNVw4O8BxiybYje492ju+Orrl9ZsCJCCPB49ww22Cy26hTZCUu6LWF1PS5pGS32PNyDoGVB6LCuAx7mP7R2SdWOViVDanoOZHLL3ieEuMvh5lx5MJ2nM4NAD8sOxJZJ5EhPSwWjZf+cYEu+OvMVLmVc0nnMVeyKY6OPWbgiUh25u7ujRg0/vPVWBPbv9zSpr8WLvfD77+wXshFCiD2RyWSs27q7u3NYCSHEUDW9a2J0g9HPfcbn8dGrZi9sG7oNme9l4vue36NxYGOj+17UZdHzHwgBRAPlXcpx+NJhJCcnY8+ePfjqq68wZswYtGrVCnXq1EFwcDDc3d0hEAjg7OwMf39/xMTEoHHjxujXrx/mzZuHP/74A9euXUN+fj62bduG8ePHw9+fXZArIYRY2pNgMCcnJ1btExPFmDgxAoWFz8ZZDx1yR79+5ZDLzTs+lJ3Nrn9HRy3c3dlt+nD+fBlGj3aDSmXcdKrCQiHGj4/E+fOuz30eEREBBwfDFjoRQoillMhL0H1jd9zNvWuW/l8IBfP0BN57D5BIgFOngP9vkmAtd+7cQdeuXVFYWMi6j4kTJ2LlypUcVkWqgldeYTdPLjlZjKKiqvHejRDCraVL2c+/9fVVYcIEds+BhBBS1Xz4oSdaty4HAAiFDKZPz8H69YkIDTUu5Cs5OZnTutRaNV7f8ToyyzI57dcYIr4IO4btQOasTIxtNNZqdRBCqjaxUIzve36P8vnl+KDtB3ARuRjULk+ah6kHp8Lza08sObcEWu2zubIX0i7gRNIJs9R7NvUs5h2bZ5a+9Xn/fSVkMuPfa5w65Y5Bg2pi+/Ya8PPzM0NlhBBStfH5fMTExHAWqlhaWoqsrKwXPper5djzcA8n12CroX9DfNHpCzyY9gB3ptzBJx0+QT3felatiRDCjZwcdr/D/Pwo/4EQe0FbURJCCNFLq2Xw99/sJikLhVoMHmzartOEVKZlSzcsW1aIqVO9Tern5ZelyMzMRkBALdodo5orlZei5ZqWenfdivKMwsERBy1cFSFEq9U+9zLXGGKxmFW7mS1n4krmFWy+u5lVey4xYPBP6j+o82MdNPRviJ97/4xWoa2sXVaVx2jUSM/IQLlUbtHrBnmo4WHYnAcAQA0XFTSME3JLLRcOVlIuhyA9EYEh0eDZ8b3T7Zzb+PDEh3qP/z3ybziLnS1YEanOAgP90K9fIa5dM+IXgA4Mw8OUKe6IiipFu3YUeEMIqbrUajXrZwShUEjjP4RYCY/Hw5p+a9Azpicupl9EtHc0htQbgiC3IJP7ru1TG8Fuwcgoy3jh2AfHP8DmIZsRHh6Ofv36mXwtQgixN3w+H5GRkUhKSjIqWDUpSYyJEyNRUPDi7shHjrijT58y7NvnDCcndgFclenQoRwnT+agsFCA4mIhCgsFKCoSorhYgMLCx38vKhI+989qNQ+enmrweMaPC8fGSjFwoCPKytj9+8hkAkybFo4vvkhHnz4lCA0NhYuLac/5hBDCtXJlOXr91QvXsq6Z7RoPfQBNj+4QdOoMDB4MREeb7VrGun//Prp06YL8/HzWfYwaNQq//voreDx2u26Tqqt5c/b3RBcvKtGzJ4X3EEKeuXdPiSNH2P9eeOstBRwdXSs/kRBCqgGhkI/ffxdg6FAJ5s3LQv367OaCKZVKZGVlITAwkJO6PjrxEU4mn+SkL7ZUWhX4PHpvSgixDCFfiEVdFmFhp4VYfG4xFp9bjBJFSaXtShQleP/Y+/j89Od4t+W7+KLjF/jyzJdmrXX5xeVoFdoKQ+rp32ieK2fOlGL7dvbz/LRaoHt3uvcnhBC2BAIBYmJiEBcXB4YxPSCnoKAAYrEYNWrUePrZkYQjKFWUmty3sRoHNMbQekMxuN5g1KpRy+LXJ4RYRm4uu/dTQUH0rpMQe8FjuLhLIYQQUiWdPStHu3bsgr3at5fh9GmarEQsY8KEYqxb52l0O4GAwaxZ2Rg1qgA8HuDs7IyoqCjuCyR2QavVos6PdRBXGKfzuJvYDekz0+HuSOEKhFiaRCJBUlISq7Y1atRgPRFHopSg5ZqWZtsp3RRRXlFY/upy9K/T39qlVEmMVovM9AQUlSosel1/Dx58XYyfeMZoGWRJ3FBYpjJDVfr5eojgH1rbotfkilqrhv9SfxTKCnUen9VqFpa+utTCVRECjBxZjL/+8jS5n06dSnHggAhOTvRcTgipmvLy8pCTk8Oqrbu7O8LCwjiuiBBiCz47+RkW/LPghc+dRc6QzJdYoSJCCLEtWq0WycnJkEqllZ6bkiLG+PGRyMt7MRDs3zp1KsO+fU5wceF+T8Lk5GSUl5cbfD7DAOXlfEgkAnTtatyYVWamAm3bAklJ7DbM+jcHBy2uXi3GSy+ZtqkRIYT812effYYFC168363MunXrMG7cOMhUMvT+q7dFFp3HT49HtLfthIEBQGxsLDp27Mh6PAEAhg0bhr/++gsCgXkCMf/t5s2baNy4scHn37hxA40aNTJfQaRS+fka+Pqy+29jwQIJPvmEwkQJIc+MGyfB77+z+73g5KRFaioDHx/zf18RQog9yczMQmFhgcn9REdHmzwXY3fsbgzcMtDkWrjQNKgpLr9xmYKPCSFW8dOVn/DpqU+RLzU8wF0sEEOpUZqxqsdcxa64OukqavuYb46sRqNF27ZSXLzIPtTrtddKsGmTB4dVEUJI9SSTyZCQkMBZf2FhYXB3f7z+cNTOUfjzzp+c9V2RpkFNMaTuEAypN8Tm3tMQQszD3V3DavO7VaskePNNejdFiD2gSH9CCCF6bd+uZt22f38th5UQUrGff3ZHkybGLeqqUUOF335LwujRjwPBAEAqlZo0AZTYt36b++kNBBPwBLgw8QIFghFiJRIJ+4W7rq7sX5S6iF2wa/gueDiY/2Wps9AZbULbgAfDJtckFiViwJYBCFwWiF+v/Wrm6qqf3Ix4iweC1XAXwsdJxqotj89DoEspPFxNX7RojLwSFQoyYi16Ta7029RPbyBYPZ96FAhGrGbtWne0amX4gmddunYtwddfpyExMRFqNfvnekIIsWVlZWWs23p6enJXCCHEpsxrN0/njvZSlRS7HuyyQkWEEGJb+Hw+IiIi4OzsXOF5aWliTJhQeSAYAJw86YbevWUoL+f++dPYZ1oeD3Bz0yI42Lj31Gq1Gp9/XspJIBiPx+CHH0ooEIwQYnMUagUGbx1skUAwALifd98i1zHUw4cP0alTJ5PmgwwYMAB//vmnRQLBiH3y8REgPJzdouRr1zguhhBi13Jy1NiyhX3YzOuvSykQjBBCdAgKCoRIVPl4V2WSk5Oh1bJfJxFfGI+xu8eaXAdXrmZexdHEo9YugxBSTU1tNhV5c/Lwx4A/EOhq2AbQlggEA4ByZTkGbR2EcqVpc/kq8tdfJSYFgrm4aPD115adN0wIIVWVk5MTwsPDOesvNTUVUqkUMpUMex7u4axfXZoHN8c33b5B4juJuDLpCt5v+z4FghFSTUgkWlaBYAAQHEwxQ4TYC/ppJYQQotf+/exefPF4DIYNo4FFYjkODnxs28aHr6/KoPMbNZJg69YENG364k7oeXl5Ji0sJfbp4xMf40DcAb3HNw/ZjPp+9S1YESHk36TSF39fG8rFxbTU+hjvGPw5yPy7ckxrPg1nJ5xF9qxsDKwzEAKeYYNy2eXZeGv/W/D82hOfn/7cpAlH5LH8jFjklVhm0sATnq5iBDiXg8dnv+Mij89HiEsx3Jwtex+eVaRGceYDi17TVL9d/w1/x/+t85iDwAFnxp+xcEWEPOPgwMeuXWJERLALJpw0KRfLlqXB2ZkBwzBISEig7wZCSJV09Sogl7O7dzIlOJgQYtschY5oGthU57Evz3xp4WoIIcQ28fl8REVF6R03TUsTYcKECOTmGv6e+PRpN/TsKec8GEyj0bBqx+cbPhVKq9UiLi4OkyfnYMgQ3QHyxvj88yK88YaXyf0QQgiXNFoNXt/xut5xcXOwpVCw+Ph4dO7cGdnZ2az76NmzJ7Zs2QKhUMhhZaQqatCA3f3Q7dumh1MQQqqOb7+VQy5nt8SDz2cwZ46Y44oIIaTqiIyMNLkPjUaD9PR0Vm2lKikGbx2MUkWpyXVwid6hEEKsbXTD0ciclYldw3YhwiPC2uU8dT/vPt7c9yYYhuG8b4VCi08/rXgTl8pMm1aK8HBHjioihBDi5uaGoKAgzvpLSkrCrrv7zRIw2SqkFZa9ugzJ7ybj0huXMLv1bER6mf68QwixL+np7OfpBAVRzBAh9oJ+WgkhhOh0544SCQnsAgUaN1YgJIQmwhHLiox0wvr1UgiFFQ+4jxyZj7Vrk+Hnp/+BJzU11ejdx4n92nF/BxaeWaj3+Px28zGk3hALVkQI+S+Fgl0wCo/HM2oBmD69a/XGZx0+M7kffcQCMWa0nAEA8HP1w87hO1E8rxhvNH4DYoFhkzVLFCX49NSncPnKBdMPTodcLTdbvVVZUeYDZBdZ9h7AzcUBwS5FJgWCPcET8BHqWghnJ8sGg6UXalCaE2vRa7KVUpyCKQem6D2+dchWeDt7W7AiQl7k7y/Gzp0quLsb/vtIJNJi0aI0vPNOLv791adSqZCSkmKGKgkhxHqKilQYOTISbdrUxYQJEfj5Z19cu+YMlary+ymRSMTJMwIhxHZ92vFTnZ9fz7oOqZJ96DghhFQ1kZGRLwSDZWSIMHFiJLKzjV9AfvasK3r0kKOsjLuxNbYh1wKBYRsuaLVaxMfHQ6PRQCgEPvkkE1On5rC6JgBMnVqEjz6icSVCiO357fpv2BW7y6LXvJ9vG6FgCQkJ6NSpEzIzM1n30bVrV+zcuRNiMQWskMo1acJukXByshgFBewCUQkhVYtUqsWaNewX9ffoIUOdOvSdRQgh+ojFYgQEBJjcT2lpqdEbUDMMg8n7J+N2zm2Tr8+1f1L+wdnUs9YugxBCMKDuACTNSMKx0cdQu0Zta5cDANh0dxN+uvIT5/0uXlyMpCT2c32DgpT4+GM3DisihBACAN7e3vDx8TG5H60WWL7cD9NW/clBVQAPPLQNa4sV3VcgbWYazk88j/davYdwz3BO+ieE2KfMTPabx4eGUgYEIfaCVj4QQgjRaetWJeu2/frRJCViHb16eeCjj4p0HnN01OKrr9Iwb142RKKKJ+ExDIOEhATWiw2I/biXew/Dtw/Xe7xXTC982Zl2wCLE2rKyADabLHG5W/fHHT5Gn1p9OOvv38Y2HIsgt+d3FHEVu2J1v9WQzJfgg7YfwEXkoqf18+RqOX648gPcvnLD69tfR6G00BwlV0ml2bHIKLTsfayLswNCXQrAE3D33ypfKES4az4cHSw70TctXwNJ3iOLXtNYWq0Wbde1hVqre3Hq6Aaj0a9OPwtXRYhujRu7Yv368kpDjwHA21uNtWuT0Ldvic7jEokEWVlZXJdICCFWc+SIBGo1D0olH1euuOKnn/wxblwUWreui0mTIrB6tS9u3XKCSvViW2dn03ZZJYTYvl41e8FV7PrC5wyYCjcGIISQ6igyMhKuro9/Z2ZmPg4Ey8piP6Z07pwruneXo7SUm2Awc4eCJScnQ6l89k6cxwOmTMnDp59mgM83bkB68OASfP+9h1FtCCHEUi6mX7T4Ne/nWT8ULCkpCZ06dUJ6ejrrPtq3b489e/bA0ZF9OAupXpo1Yz8l++JF9nP1CCFVx5o1MuTns58/MGcOLQ0hhJDK+Pj4wMnJyeR+UlNTjRq/WnVtFTbc3mDydc3lyzM0V5oQYju6RHVB7NuxuDjxIhr6N7R2OZh5eCanY2xKpRJt2+ZiwIAi8HjsAsY//lgCV1cKciCEEHMICAiAhwf7d78qFQ8ffhiCtX8JUBywl3U/PPDQPrw9VvZcifT30nFm/Bm82/JdhLiHsO6TEFK1ZGSwm1cjEmnh7U1jyYTYC/ppJYQQotO+fewHB4cNE3FYCSHG+egjT/TtW/rcZ6GhCmzcmIA+fXQvktdFpVKZNDmU2L5SeSlarWkFDaM7ACbGOwb7Xt9n4aoIIf8lk2nQrVsttGlTF2PGRGLhwkBs2eKNGzecUVZW8SMtlxP0+Tw+NgzcgBjvGM76BB4P1M9pPUfvcSFfiEVdFqF0XilWdF8BH2fDdh1Ra9XYfG8zfL7xQfcN3ZFSnMJVyVVSee5DpFl4921HRweEueaDL+T+3lkgEiPCLR9iseXuyxmGQUqeGrKCBItd01jjdo9Deqnu+7tQ91Cs77/esgURUomBAz2xcKHu0OMnataUY9OmBDRqJKvwvIKCAhQVVdwXIYTYixMndE+IlMv5uHjRFd9/749Ro6LRtm1dTJkSjnXrfHDvniM0GsDT09OyxRJCrKJ/7f6Wx9t4AAEAAElEQVQ6P193c52FKyGEENsXEREBHs8NEydGIiPD9JD5CxdcMWpUOdRq04PBGDY7RcCwzSLS0tIglUp1HhsypAjffpsKBwfDJk926FCGv/5yg0BAU7AIIeSJB3kPoGWstwlbSkoKOnXqhLS0NNZ9tGrVCgcOHKCAcWKUli3Z309dvkybcBJS3Wm1DL7/nv283SZN5OjYkYIsCSHEEOHh4eDxeCb1wTAMkpOTDTr3csZlvHvoXZOuZ26H4g/hWuY1a5dBCCHPaRHSAjcn38SdyXfg5+JntTpUWhWGbhuKPEkeJ/2lpqbCz0+NL77IwJYtCWjevNyo9g0bSjFpEm1UQggh5hQaGsrq/YBEwsfbb4dh/yFH4I2WgJHhj3weH50iOuHHXj8i470MnB53Gm83fxtBbkFG10IIqfqysti9j/X11YDPN21chBBiOTQjjRBCyAuSk1W4dYvd5IDatRWoW9f0CeOEsCUQ8LFhgzNq1pQDADp2LMXmzQmoXVthdF+lpaUoLCzkukRiA7RaLRr/2hhlyjKdx90d3HFt0jXw+XS7TIi13bghhVrNQ1mZADduuGDLlhpYuDAIY8ZEoXXreujevRbefjsM33/vh7//9kBCggOerDfjepK+p6Mndg3fBWcRd/0OqTcENWvUrPQ8Pp+Pd1u+i7w5efhr0F8I8wgzqH8GDI4kHkHEdxFo+VtL3Mq+ZWrJVY4sPw6p+RrWiwzZEItFiHDNh0BovvtmodgBEW4FBi2C5IpWq0VyrhIKGwyh2xO7Bxvu6N5tU8gX4uyEs/S9T2zS++97Y/z4Yp3HOnQoxYYNiQgKUhnUV0ZGht4Fz4QQYk/On3cw6DypVICzZ92wfHkAXnstBkOGxMDFxcXM1RFCbMGiLot0fp5dno17ufcsXA0hhNi++vXDMXascQtO9PHzU2Hy5Fw8evQIKpVhz6tcq2w8LDs7GyUlFW8k1LlzGVavToa7e8XhZg0aSLFnjxPEYhpXIoSQf5OoJEgrYR/IZYq0tDR06tQJKSns31U0bdoUf//9N1xdXTmsjFQH3t4CREQoWbW9fp0WXxBS3e3aJUN8vGHj37rMnGm9QE5CCLE3QqEQISEhJvcjlUornWeeL83H0G1DodSwu0+0pEVndb9fIYQQa/Ny8kKxvNiqNaSXpmPEzhHQaE0L9S4rK4NcLn/6v+vWleO335Lx/fcpCA83bM3T4sUq2qiEEEIsICIiAmKx4es98vOFGD8+EucvC4HX+gM+cQa14/P46BLZBb/0/gWZ72XixNgTmNpsKgLdAtmWTgipJrKy2LXz9aWNagixJ/T0Rwgh5AVbtxofnvRE797WmdxNyL95eAixdasaM2Zk47vvUuHuzn7CS2ZmJmQyGYfVEVvQ+6/eSCxK1HlMyBfi4sSLcHd0t3BVhBBdrl+veNFVZqYYp0+7Y/VqP8ydG4oBA2qiefN6GDo0GjyeG+f1vOT3Etb1X8dZf++3ed/oNq+//DpSZqTg+JjjqOdTz+B2lzIuodGqRqj3Yz0cTzxu9HWrIkVRMpLz1NBqLTc5ViQUIsItH0IjXhCxJXZwQIR7IQQCgdmv9YRGo0FyjgyqskyLXbMyhdJCDN8+XO/xX3r/YnDQHiHWsGqVO9q3f35x9rhxefjuu1S4uBj3+yspKQlqdcXfrYQQYsvy8pS4f9+JVdt69RQUAkpINRHmEYYIzwidx+Yfn2/ZYgghxE4sXOiNjz82baMcX18V1qxJQliYElqtFnFxcayDwUx5dq1oYnZBQQHy8/MN6qdxYyn++CMJAQG6F2xGRChw4AAfHh6WC+UnhBB7cj/vvsWvmZGRgU6dOiEpKYl1H40aNcKRI0fg4eHBYWWkOmnYkN39z+3bIo4rIYTYm+XL2YcDhoUpMXw4u7FzQgiprjw8PODmZvr8wszMTL1jYBqtBiN3jkRqSarJ17GEnQ92WuVZjhBCKrPswjKbCFc8lngMn536zKQ+MjIyXviMxwM6dSrDrl3xmDcvs8INS3r1KkX37jRuRQghlsDn8xETE2PQWozkZDFGjYrCgzgAr/cHYo5UeL6AJ8Cr0a/i1z6/IntWNo6NOYa3mr4Ff1d/jqonhFQH2dnsxpT9/GiDCULsCa1+IIQQ8oI9e9iHBgwdSpOeiW1o1MgV778PcLHWMykpyaJhIcS8Pjj+AQ4lHNJ7fOuQrajrW9eCFRFCKnLnjvFtVCo+cnNF8PFx5L4gAMPqD8PsVrNN7qdbVDc0CWrCun3nyM64N+0ebk2+hZbBLQ1u9yD/Abpu6Iqwb8Ow6c4m1te3d8rSDCTnyKHRWG6HA4FAgAi3AogdzPPfpi6Ojg4Idy+xaACGSqVGclY51FLDFliaW9t1baHQ6A4+7hnTExNfmWjhiggxjkjEx44dYsTEyCEUavH55+mYNSsHbPL+GIZBfHw8Pd8QQuzWoUMSaLXsXmK3a0c7WxFSnUxtOlXn54cTDtO9ECGE6PH559747DN2wWA1aqjw229JiIh4tijnSTCYUmn8Qh2Fgv0mVvpCwUpKSpBl5Dap0dEKbNiQiJgY+XOf+/iocOCABiEhlhvnI4QQe2PpheRZWVno3LkzEhISWPfx0ksv4ejRo/Dy8uKwMlLdNGnCsGqXmipGfj6NXxFSXV28KMf58+xDvaZNU0IoZB8qRggh1VVoaCgnc6r0BRN/fvpzHEmoOAzA1nx19itrl0AIIc/Jk+Rh1bVV1i7jqYVnFuLAowOs2ubn51e4KYpIxGDkyEIcPBiH0aPzIRQ+P8YgFmuxdCmt2SOEEEvi8/moWbMmeDz94y63bzth9OgoZJTkA9PqAdFHdZ/IACiKxJTglciZnYPDow5jUpNJ8HXxNU/xhJAqLzeX3ZhwQAC7d1mEEOugUDBCCCHPyc1V49IldpOXg4OVaN7cgeOKCGEvICAAzs7OJvej1WqRmJjIQUXE2rbe24qvz36t9/in7T/FwLoDLVgRIaQyDx6w2xG5Vi155SeZ4KuuX6FTRCeT+pjXdh4ntTTwb4ALb1xAyowUdI/uDj7PsEf9tNI0jNg5Aj5LfLDi4opqtShaLclFcnY5VBW8XOcan89HhHsxHJwsv1DQ2UmEMPeyCl9GcU2hVCIlswgaRanFrqnLrMOz8CD/gc5jNZxqYO/rey1cESHs+PiIsXu3FqtXJ2PgwGKT+lKr1UhOTuakLkIIsbRTp9i37dWLAhsIqU5mtpoJAe/FFFWFRoENdzZYoSJCCLEPn37qjS++MC4YzNtbjbVrkxEV9WL4l1arRXx8vNHBYCqVyqjz/01XKJhUKkVaWhqr/gIC1Fi/PhGvvCIBALi6arBzpwz16pn+DpIQQqoyS4aC5eTkoHPnznj06BHrPurUqYPjx4/Dx8eHw8pIddSsGfvNOC9eND5MlRBSNSxZwj4U0MNDjSlT6PmEEELY4PP5CA8PN7kfpVKJ7Ozs5z47GHcQn//zucl9W9qmO5uQWERz5gkhtmPFxRWQqqTWLuM5o3aNQlKR7kBIfbRaLXJycgw618NDg7lzs7F7dxw6d342B3fChBLUrUv3/oQQYmlCoRDR0dE6j50+7YYJEyNQHLQbeKcW4JWsuxMNH9jzK/BdIv6YMQX3r+ne6IoQQoyRk8MuKohCwQixLxQKRggh5Dk7diig0bALC+jdWwk+n3YbI7YlIiICAgH7CXdPyOVyo3cPJ7blds5tjNgxQu/xfrX64bNOn1muIEKIQR4+ZBc4WreuecOehHwhtgzZglD3UFbtmwU1MzlU7L/CPMJwaNQh5M3Ow+svvQ4h37DdoApkBZh5eCbcv3bHB8c+gFpruaAsa9DIi5GcVQKlkv3CQmPxeDyEeZTCycl6L29cnYUI8TBvWN5/yeQKpGbkQquSWfS6T5xNPYvlF5frPMbn8XFq7CmDf04IsQX16zujb18PTvqSSqXIzMzkpC9CCLGkCxfYb2ZAoQ2EVC9CvhBtwtroPPbNuW8sXA0hhNiXjz7yxqJFhgWDeXursWZNEqKiFHrP0Wq1iIuLMyoYzNgQsX8TiZ7faEKpVCIpybjFOf/l4aHFr78mo2fPYvz+exnatXM3qT9CCKkO7udbJhQsLy8PXbp0QWxsLOs+atasiRMnTsDPz4/Dykh11aKFGDweu8UUly6xDwUihNivpCQV9u1jP349frwcbm60JIQQQthycXGBt7e3yf3k5+dDLn88NyupKAmjdo4yuU9r0DAaLD672NplEEIIAKBYXowfrvxg7TJeUCwvxuCtgyFXGz4nNysrCwxj3HhBeLgS332XirVrk9CmTRm++MLF2FIJIYRwxNHR8YVA4R07vDD9QwEUAwYDw4YCYonuxhohsH0bcHMSAEAiEWDQIEfcv29boZeEEPuTl8du3XxgIOVAEGJPaOUjIYSQ5+zZw/5mbvBg04OXCOEan89HVFQU4uLiTO6roKAALi4ucHenif72plhejDZr20DD6J5AWcu7FnYN32XhqgghlcnKUiA3l10oWP36Wo6reZGviy92DNuBduvaQaHRv+hNl3lt54HHM88gmrezN/4a/BfW9l+LuUfnYvX11Qa9eJaoJPj63NdYfnE5RjcYjRU9VsBV7GqWGq1Fq5IiNTMPcrlx/3+ZKtRDBlcnUeUnmpmHM6Bh1MgssdxwkEQqR3pGBkJDI8ATWO66UqUUPf/sqff4ws4L8ZL/SxarhxCu1KhRA3K5HEVFRSb3VVhYCEdHR04mtxJCiCVkZSkQG8suFKxFCxkA2l2PkOrmi45foMPvHV74/H7efRTLi+Hp6Gn5ogghxE588IE3+PxCzJun/5nRy0uN1auTEBNT+VgbwzCIi4tDzZo1IRZXfl+mVrPfuIDPf7YYXq1WIz4+3uiFNro4ODBYs0aGwMBAk/sihJDq4H7efTAMY7b3YcDjORxdu3bFvXv3WPcRGRmJEydOsP79vnbtWqxdu5b19fUpLy/nvE9iGV5eAkREKJGUZPxY1PXrFOpDSHW0bJkCajW7+QQikRbvvcduXg0hhJBngoKCUFZWBpWK/SaTFy644PPPZVi3QYsh24agSG76vA5rWX9rPT7p8AmC3YOtXQohpJr78fKPKFWUWrsMnW5k38D0g9Oxut/qSs9Vq9Umzfdr1kyCrl2F8PFht5E1IYQQbji7OIPvwcfNxFv4fbcERwo2Ae/8AwgqeLet5QHbtgKxA5/7OD9fhN69tTh3ToGgIBrbIYQYT6NhUFDAbo0WhYIRYl8oFIwQQshT5eVanD7NbmGdt7canTuza0uIuTk4OCA4OBgZGRkm95WamopatWoZtGCB2AatVovGqxqjXKl70qyHgweuvXXtuUUihBDbcPmyDAC7Ae4mTSwTwNQsuBl+6v0TJu6daHCb2jVqY0CdAeYr6v8chY74vuf3WNF9BRadXYSl55eiRFFSaTulRok1N9Zg/c316FurL37u8zMCXAPMXq+5MRoV0tIzIZFaNhAs2EMNd2fbGTD1dtFAAxFySkxfCGmo0nI5MtOTEBQaDZ6Fvm+7buiq97u/ZXBLfND2A4vUQYg5BAcHQy6XQyaTmdxXZmYmHBwc4OJCuwgSQmzfoUNSMAy754P27XWHhBNCqrb2Ee3h6eiJYnnxc58zYPDJyU/wfc/vrVMYIYTYifff94ZAUIi5c73AMM+Pb3l4qLF6dTJq1TJ8rO1JMFhMTAwcHCq+r2O7APPfwTNarRbx8fHQarnZQMLd3Z0CwQghxAililJklmWabRF5UVERunXrhtu3b7PuIywsDCdPnkRISAjrPlJTU3Hu3DnW7UnV1KiRilUo2O3bNKWbkOqmuFiDP/5wYt1+0CAZQkPpPR8hhHAhMjISjx49MrqdXM7Dd9/5Y+NGHwBA7EuDcIe5znV5FqXUKLH0/FJ82+Nba5dCCKnGJEoJvr1o27+HfrvxG1qFtsKExhMqPC8tLc2k6/B4PAQHU1AjIYSYk0QpQUZZBjJKM577e3pp+tP/nV2eDQ3z/3mInv//qyIMgEMrXggEeyI52QG9e0tx+rQa7u40NkwIMU5urgZqNbvfHcHBtI6aEHtCdwmEEEKe2rNHDrncmVXb7t0VEAppcgGxXV5eXpBIJCguLja5r8TERNSqVYtCpOxEjz97ILk4WecxIV+IS29cgqvY1bJFEUIMcusWu8VafD6DJk3YT5o01oTGE3A54zJWXVtl0Plz28wFn2e57xA+n4+P2n+Ej9p/hF+v/YpPT32K7PLsSttpGA12P9yNPQ/3oH14e6zuuxo1a9S0QMXcY7QaZKQno0xi2UCwAHcGXi62F0Dh4ySDhnFFfmkFu9JwrKhMAUFGPAJCa5n9WovPLsaF9As6j7mKXHF8zHGz10CIuT2ZjKpWm/5znJycjJo1a1LwMSHE5p08yT5otVcvyz0fEEJsy/B6w7Hq+ovP63/d+YtCwQghxACzZz8OBps161kwmLu7Gr/9lozateVG98cwDOLj4ysNBtNo2I2pPQkF02q1SEhI4OS5GQCcnJwQFhbGSV+EEFKd3M+7b5ZQsJKSErz66qu4ceMG6z6Cg4Nx4sQJhIeHc1gZIY+98gqDXbuMb5eeLkZOjhr+/jS1m5Dq4ocfZCgrYz9vbe5c+n1BCCFcEYvF8Pf3R05OjsFtHjxwxAcfhCAhwRFwyQFe6487zCUzVmk5q66twvx28+Hr4mvtUggh1dSqa6tQICuwdhmVmnZwGhoHNEbjwMY6j8tkMkgkEpOu4efnR2uXCCGEJS2jRb40v8Kwr4yyjBc2HDSZzAPY+xvwYEiFp9286Yxly7Lx6af0u54QYpz0dA3YRgUFBdHvG0LsCb0JIoQQ8tSuXQzrtoMGsV+UR4ilhISEQCqVQqlUmtSPWq1GamoqIiIiuCmMmM3co3NxNPGo3uM7hu1AbZ/aFqyIEGKMe/fYDTKFhSnh5qZ/QZk5fNfjO9zMvolLGRVP6gl2C8bIl0daqKoXvdnkTbzZ5E3sfbgX7x1+DwlFCZW2YcDgdMpp1PqhFhoFNMIvvX9Bi5AWFqiWG4xWi+z0BBSXmfb9byxfdwF8XKUWvaaheHwe/J3LoWbcLfrnkl+ihIAXC9+QOma7xt2cu5h/Yr7e4wdGHICzmF0QMiG2hM/nIzo6Go8ePQLDsH+WBx4vyKbgY0KIPbh40ZFVu7AwBWrWpFAwQqqrhV0W6gwFK5AV4FL6Jbt6viWEEGuZOdMbfH4h3nvPCy4uWqxenYw6dYwPBHviSTBYdHQ0HB113+OxDfN68lybkpIChYKbDQJEIhEiIyM56YsQQqqb+3n30S26G6d9lpWVoUePHrh69SrrPgICAnDixAlER0dzWBkhzzRvLmDd9uJFJfr3p6ndhFQHKhWDn39mP7elQwcpXnmF3n0TQgiXfH19UVJSArm84rEvjQZYt84HP/7oB7VzBtDzG+CVVYDIsvPTzEmmlmHFxRX4ssuX1i6FEFINydVyLD2/1NplGESulmPItiG4OukqvJy8XjielpZmUv8CgQC+vhTQSAghuijUCmSWZT4N93oa9PWvsK+M0gyotCrLFaURAWfnAWfmA+rK5ztOmZKLIUPyER9fipiYGJrHTQgxWEYGu832ACA4mN5DEWJP6CeWEEIIAECpZHD0KLuFdS4uGvTuza4tIZYWFRWFhw8fmrxwvry8HHl5eTTAbsP+vPMnvjn/jd7jn3f8HP1q97NgRYQQY8XGilm1q11bAcCyoWAOQgdsH7YdTX5tglxJrt7z3mv1HhyElq1Nl361+6Ff7X64kHYBUw9Oxc3smwa1u5l9Ey3XtESMdwy+ffVb9Kndx7yFciA/8xEKStktImTLy00MP+dSALYbnMvj8xDsXASt1hulEm4WSBoip1gN4f/Yu+/wpsovDuDfzKZ7790yy95TNoqACIKgIIhsBWQjqKg4UEAQEVAQBJnKUkQQBUTZe0NbWrpnutI2STNvfn/wc2DTNrm5GW3P53l4lHvv+94DmvTed5zDj4d3SFPO+9YxOvT6thcYA2P0/JzOc9Ajqgfn9yXEXkQiEaKiopCammpxXzqdDqmpqbQJjhDisDIzVUhKYjf+2LlzBWz9fkAIcRx+Ln5o7NsYiUWJlc69/fvbOD6u6oIChBBC/jFrlg/E4mL4+BQjLo59QrC/GAwGPHz4sMrEYAxjfHynJnw+H5mZmVAoFJaGCODRZpuGDRvS4mtCCGHpfsF9TvtTKBQYOHAgLl68yLoPf39/nDx5Eo0aNeIwMkIe16mTGDyeAQaD+XOFV64wePZZKwRFCHE4O3dWICeHfVKv+fMddz0CIYTUZlFRUdWuM8/KEuGtt8JwPScReGkUEH4OELDfiOvItt7cSknBCCF2se3mNuTKc+0dhslSSlLw8o8v48cXfgSf9898gkwmg0ZjWcLI0NBQS8MjhJBax2AwQKaSVU729Veir/JHxwqVhfYO9XE5bYAftwPS5jVeyucb8PbbOXj++RIAgEajQXp6OhWrIoSYLCeH3f54Ly8dJBJKMURIbUKfWEIIIQCAX39VoazMmVXbPn3UcHamimOkdhAKhZxtnM/Pz4eLiwtcXV05iIxw6WbuTYz7YVyV54c1GYYlPZfYMCJCiLl0OgZJSew27sfF2WeRTZhHGPY9vw99vu0DvaFyDN4Sb0xuO9kOkVWtS3gX3Jh6A4mFiZj681ScTj8NA2oeGEwuTsYz3z2DYLdgvN/7fUxqO8kG0ZpPWZiEfJltE4J5ujkhxLUEPD77CuC2whMIEeZahHSDLxRK2yUGyylh4OKSDievSE77fXbPsyiqKDJ6rolfE6x+ajWn9yPEEbi6uiIkJAQ5OTkW91VRUYGsrCyEhYVxEBkhhHArO7sMTz2lxpUrriguNm9qq1cvdgklCCF1x5zOczDtyLRKx/9M/xMMw1CiF0IIMdGrr/ogN1eNoiLLk4IB1ScGY5sUTKfTobS0lIvwwOPxqBozIYRY6H4hd0nBKioq8Mwzz+Ds2bOs+/D19cWJEycQFxfHWVyEGOPpKUBMjBoPH5o/3339Oj17EFIfMIwBa9aw/7w3aaLGwIFUyJcQQqxBKBQiNDQUWVlZjx03GIBDh7zw8SdBUHafDzzzuSPXi+RErjwXco0cbmI3e4dCCKlHtHotPjn7ib3DMNvhB4ex/OxyLH5iMYBH8xyWrulzcnKCh4cHF+ERQohDUmqV+DHhR9zKu/VYsq/ssmxU6CrsHZ55stsBmy8Bhpr3kEgkDFasyETv3uWPHVcoFLSOmxBistxcdknBAgL0oBRDhNQuNHtMCCEEAHDgAPvNccOGcRgIITbg6uqKwMBATvrau1cKhcK2yUZI9YqVxei+tTsYg/HvtSZ+TbD/+f02jooQYq779ytQUcEuqVKLFhwHY4YekT2w6slVRs/N6DgD7k7uNo7INI39GuOP8X8gZ14Onm387GOVqqqTK8/F5MOT4b3cGx+d/oj1Zj1rYDQKZBXbNh43FyeE1pKEYH/hC0WIcCuCs4RdEj42DAYDsoo0MOi5e4b65sY3OJp81Og5J4ETzrxyhrN7EeJofHx84OPjw0lfMpkMhYUOVjmLEEIA+PqW4tNPM/HHHwn44YckLFqUg759S+HhUfPzxIAB7AohEELqjsltJ0PMF1c6rmW02HB1gx0iIoSQ2is4OBi+vr6c9fdXYrCKiopKx9ngcnwyNjYWIpGIs/4IIaQ+uie9x/o7/d/UajWeffZZnDp1inUfXl5e+O2339CyZUuL4yHEFK1bs5sHu3WLnj8IqQ9OnFDh9m32Sb1mzdKBz6/jmWgIIcSOvLy84Ob2TyKskhIB5s4Nx5KPXKEc/DzQpe4nBAOAdsHtKCEYIcTmdt/ZjfTSdHuHwcrbp97GyZSTAACpVGrxnEV4eDgXYRFCiEOSKqRotqEZxhwcgxXnV2DXnV34I+0PJBcn17qEYP7OAWh54xeTEoJ5eenw9deplRKC/UUmkyE/P5/rEAkhdVBeHruBCX9/x9n3RwgxDaXxI4QQAr3egF9+qbwhxhQiEYOhQ22XQIAQrvj7+0OhUEAul7Nqr9cDX30VgK++CsBvv8mwZ48XtwESVhiGQZtNbaDQKoye95J44drka1TVnZBaIClJDYnEGSqV+Z/Xdu3YPddw5fVOr+NewT18ff3rv481D2iOBV0X2DEq0wS5BeHHF36EXCPH67+8jl23d0HDaGpsJ1PJ8Papt/HRmY8wue1krOi/Ak5C+z4jFkmzoNFobXY/Z2cnRLgWgS+ofQv1BUIRIt0Kkcr4Qq2p+b83Fyoq1JDlJ8E7pKnFfWWUZmDqz1OrPP/diO/g5+Jn8X0IcWQhISFQqVRQKpUW93XmTAkaNHBGixauHERGCCHc0Pz/GYXHAxo0UKNBAzXGjCkGwwAPHkhw+bIrLl92xbVrrpDL/1lcExOjQnQ0JQUjpL7j8/noHd0bvz78tdK5tZfWYkbHGXaIihBCaq/g4GAAQFFRESf9/ZUYLDY2Fs7Ozn8fMwfDAFxO/URFRUEiYb9BnxBCyCMlqhJIFVIEurEv2qbRaDB8+HAcP36cdR8eHh749ddf0bZtW9Z9EGKutm2BAwfMb5eTI0Jeng5BQbS8m5C67NNP2SfNDAjQYvx4GvcmhBBri4iIQEJCAk6fdsGSJaEolFwDpr0AeJmQqKbCE8htA2R1RdM4FQYPEUDH6Dj7pWW0Jl1niWivaOx8bqdFfRBCiLn0jB4fn/3Y3mGwxhgYvHjgRVyZdAXlhcaTvZjK3d2d5ikIIXXaR6c/Qposzd5hcGLD4PXoNtYD3burkJJS9Xd3aKgGX36Zhujo6vdrFBQUQCQScVYwmhBSN+Xns0sKFhBAScEIqW1o1pgQQgjOnlVDKmU3WNi9uwre3i4cR0SIbURERODBgwfQ6cyb+CwtFeCNN8Jw7pw7AOC777zQoUMx5s6lwRZ767+jPzJKM4yeE/FFuDzpMlzE9J1FSG3Qtm0pLl7MQWamGElJEjx48OhXUpITMjOrTjbl7KxHXJx9Fz/yeDxsHLwRvaJ64c+0PxHpFYlJbSfB3cndrnGZw03shm+e/QabntmEt06+hfVX1leZcPHfKnQVWHt5LTZc3YCRcSOxftB6eEm8rB+wEWUsEsqx5eQkRqRrAfii2pssVygWI8q9ECllPtBqLVsUZqoytQjeFvbBMAy6f9O9yoVsY1qMwdAmQy28CyG1Q1RUFKv3m387fdoNCxeGIzBQi4sXNfD3t2+iTUIIAYCKiooqk0Lw+UCTJio0aaLCuHFF0OmAhATnv5OExcVpAdAiSUIIsKzvMqNJwZKKk5Anz0OQW5AdoiKEkNorODgYPB4PhYWFnPX58OFDxMTEmL3JRSoVYtq0KCxcmIvOnWsew6xJWFgY3NzcLO6HEELII/cL7rNOCqbT6TBq1CgcOXKE9f3d3Nzwyy+/oGPHjqz7qE5ERAS6devGeb9yuRy3bt3ivF9iOx07sp+rvHBBg2HDaHk3IXXV3bsanDjBfl3L1KlqSCT0zkIIIVbHA4qhw+xNl6B+bjkQfAOoab9tVifg9FvAg8H46+L434E3O5XgpZcsXSVlHoPBAMbAsEo05iXxQmPfxuDx2G0wJoQQtg7GH0RiUaK9w7BIgbIAA7YPwO7euyHisy8yHBoaymFUhBDieGr79/1f+sX0w/Cmw8Hj8XDkiBI9e2ohlVb+/m/SpAIbNqTD39+0Nd45OTkQiURwd689e5AIIbYllbJ7Zw8OZl+wghBiHzyDueU1CSGE1DkzZ8qxbh27RQJr1igwa5YrxxERYjsajQYPHjww+fr4eAnmzIlAdvbjm+PFYga//aZAz5402GIvc3+di88uflbl+SOjj2Bgw4E2jIgQYomEhIQqk5oolXwkJzv9P0nYXwnDnFBWJkTLlkrcukXJ/7jGMAzWXFqDZWeWoaiiyOR2fB4fT8Y8iY3PbESEZ4QVI3yctjwHienFNrmXSCRCjEcRRE7sE4IVFsmQnJKJ5NRMZOVIkZWTj+zcAhQWyyArLUeJrBxyhRIarRYazaPPhZOTCBInJ0icxPD0cENggA+CAnwRFOCLRrGRiGscjbjGMfD3M29BmbpChZQyH+j1etZ/HlPxeDw0bRgBvpj989PLP76M7be2Gz0X5hGG9Fnp4POr33Tx1/Pg/fv3ER8fjwcPHkAmk6G8vBzl5eWQy+VwcnKCu7v7378iIiIQFxf39y9vb9su3COkKjqdDomJiVUmz6mKwQDs2OGLVauCwDCPJoi6d5fj5EkXiMW2S7JICCHG5OTkoLiY3bOdr68vgoODOY6IEFJbBawMQIGyoNLxiW0mYvOQzXaIiBBCar+8vDxOE4MBj5JyZWVlmXRtWRkf48fHIClJAqGQwbJl2Xj66VLW9w4MDIS/vz/r9oQQYk3vvfceli5dan7DZwG04Twck617eh2md5xudju9Xo8xY8bg+++/Z31vFxcX/PLLL+jRowfrPuzl5s2baNPG9P9wN27cQOvWra0XEDFbeTkDLy/e32Pu5li0SI6PP6aEP4TUVePGKbBjx3/W3LrmAzEnAJ0ESOkPqD2MtnVx0SMjA/D1FdggUkIIqT8KlYW4k38Ht/Nv4470Du5I7+Cu9C6UWqVpHcgDgQM7gdS+MJY5zNdXixs39AgPp2JGhBBSFYPBgDYb2+BWft1Ikh4gCcC2ntsQ7hZudlta60IIqQ8+OfsJFp9cbO8wLCLkC3Hn1Tto4tfk72Pnz5fjqadcIJf/M3bTubMcn32WATc3xux7xMbGwtmZfXJ5QkjdFR2tQVqa+QXg339fjiVLaA6KkNqESkkRQkg9ZzAAP/9s/oMfAPD5Bjz/PPvkB4Q4ArFYjPDwcGRmZtZ47aFDXvjggxCo1ZU3xWs0fIwZ44QrV9QIDqbPha1tv7W92oRgy/oso4RghNQyVSUEAwAXFwYtW1agZcuKv48ZDIBUKoRKJQEQZf0A6xk+n4+5XeZibpe52HVnFxafWIzMspp/djIGBsceHkPkmkh0Du2Mjc9sRMvAllaPVylnv/HPHEKhAFHupicEUygqcONOIm7dfYA78cm4fS8Z8Q9SISstN/veSqUeSqUKAJCTV4D4B6lGrwsJ8kfPbm3Ro0sb9HmiAxo1iKy2XydnCaIgQ2qpJxjG/IkncxgMBihlOXALaMyq/U+JP1WZEEzAE+DsK2erTAj28OFDHDlyBEePHsWff/4JlUrFKoa/NG/eHAMHDsTAgQPRrVs3CIU05EbsQygUIiYmBg8fPjS5jVbLw0cfBePAAZ/Hjp8964bJk2X49lsvjqMkhBDzyOVy1m0pcSch5N9eavmS0THE/ff3U1IwQghhKSgoCDweDwUFlZMusmVqQjC1modZsyKRlPRoM6VOx8fCheEoLBRi7FjTCxv8xcfHhxKCEUKIFcQXxpvdhmEYTJgwwaKEYM7Ozjh8+HCtTAhG6gZ3dz5iY9VISjJ/DdGNG1Ssg5C6KjdXh717/7ORM+gmMLY/4Pr/hMtKH+DEcuDGBMDw+PfB6NEq+PpSEV9CCGFLpVMhviD+seRft/NvI0+ex65DvQg4tRQ4uwjGkoH9pahIhFdeUeHXX8UQCOhZjxBCjDmSdKTOJAQDAKlKisG/DsagiEGY1HgSYjxiTGrH5/MRGBho5egIIcT+prWfhrWX1iJXnmvvUFib03nOYwnBAKBrV3ds3y7DqFEe0Gr5GDRIhg8+yIZIZF6x57+kpKSgYcOGEIvZ7f8mhNRdhYXsCkcEB5tfzIYQYl88g8HA7kmCEEJInXDjhhpt27JLYNShQwUuX6ZM06RuyMnJQXFxsdFzGg0Py5cHYe9e3xr76d5djt9/d4FIRJO2tnI15yo6be4ExmA8ccmIuBHY9/w+G0dFCLGETqdDQkICq7YeHh6IiIjgOCJizPGHx/H6sdeRUGjef6s4vzh8MfAL9InuY6XIAFlOPLKK9VbrH3g08R7tKYOzc9XP0olJaThz8SYuXr2Dy9fv4X5iKvR668ZVk+ZNYzFyaH+8MOxJNIyt+rOiUOqQVuoGc4eNpBVSrL+/HhnyDHQK6IQXY1+Ep9izyuujAkSskoIVK4sRsjoEar3a6PlNgzdhcrvJjx3TaDTYs2cPPv/8c9y4ccPse5rKx8cHkydPxowZMxAWFma1+xBSHZlMZtIm6tJSAebMCceVK1VXe/noo2K8+aZPlecJIcTa7t69y6odj8dDs2bNOI6GEFKblanK4LXcCwZUfs85Oe6kVd9TCSGkrpNKpZBKpZz0lZDghMWLw9CnTzkiIzXw9tbBx0cHLy89vL11cHExQK8HFiwIx/HjxsedXnmlALNn56OKfPGVuLu7IzKy+mT6hBBiim3btuGVV16xdxi28yyANtVf0juqN35/+Xezuk1LS0N0dDT7uOqhGzduoHXr1vYOg/zH888rsH+/+cl7goO1yMkRWSEiQoi9vfGGHCtW/Gde7sUhQOPDlS/O7Awc2QDkPfphy+cbEB+vRaNGtAmUEEJqwhgYpMvSKyX/SipKgt7A0dqtkmhg3/dATgeTm2zcWIQpU2pei04IIfXRiL0jcCD+gL3DsAoeeGju3RxTm0xFz5Ce1V4bEhICHx9aq0cIqR9+iP8Bz+19zt5hsBLiHoKE6Qlwd3I3ev6rr0pw+bLOrDnrqggEAjRq1AgCAbsEQISQukcuZ+Duzu7L5ciRCgwcSHkhCKlNKCkYIYTUc4sXy/HJJ1Vv/q3OBx/I8fbb7NoS4oiSk5OhUqkeO5aXJ8LcueG4c8fF5H5mzizB2rXeXIdHjChUFiJyTSSUWqXR8838m+H2tNvgWzqCRgixqZKSEmRnZ7NqGxQUBD8/P44jItW5mXsTU3+eiss5l81qF+EZgRX9VmBU81Gcx2SLpGA8Hg8Rngq4u/wzuZKYlIYTf17GqbNXcebiTUgLjCccdQQ8Hg8D+nbBnGmj0b9350rnZQoeskrNW0xcoavA4F8HQ6r6ZwNosEswVnRcgda+rY22YZsUrPmG5rhXcM/ouQGxA/DLS7/8/XulUonVq1dj3bp1yM/PN/tebAmFQgwfPhzvvPMO4uLibHZfQv6Sm5uLoqKiKs+npooxY0YkMjKqTxQuEBjw/felGD7ci+MICSGkZgqFAqmpqazaSiQSNGjQgOOICCG1XcsvW+KO9E6l493Du+PMhDN2iIgQQuoOLhKDVVTwMHp0DJKTq16AKJEw4PMNUCqrX/T8zDMlWLo0G6Ia8mnQcyMhhEuUFKyyQNdA5M3PM6tbSgpmPkoK5pg++USBxYvNTwoGANnZOoSECDmOiBBiT0olg4gIBkVF//lsz2wI+CYbb8TwgfvDgd8/wMCuQThyuOqCXIQQUl8VVxTjTv6jxF938u/gtvQ27krvQq6RW++mWR2AHccBtWnfywKBAVOmFGDyZCkaNoyCmxvtvyCEkP+qah63rmnk0QhvtXkLbf3aVjonEonQuLH562kJIaQ2G753OA7GH7R3GGbbM3wPXmj+QrXXpKeno7y8nJP7iUQiNGzYkPZHEkIAAAkJGjRtyq54xK1bGrRsSYUnCKlNKCkYIYTUcy1aqHD3roRV28REDVUdI3UKwzBISEgAwzAAgEuXXLFgQThKSsxfZLd9ewnGjqXEYNakY3SI/jwaWWVZRs97S7yRNScLLmLTE7oRQhxDVlYWZDIZq7aNGjWCWEzPJ/aQLkvHlMNTcDzlOAwwfajBz8UPS3oswYwOMzibpCjNi0dmoXWTggGPEmtFe5VjxsJlOPHnZWRm2y7hFJfatGyMVe/PQe8n2gMAypQMMmTmV374Ie0HvHPtnUrHBTwBpsdNx4TGEyDgPb5ZMzpQDFf/RmbdZ8FvC/DphU+NnvNx9kH+/HwI+Y+e3w4dOoRZs2YhPT3drHtwSSQSYc6cOXjnnXfg6spu4wchbKWmpkKhUFQ6fuGCK+bNi0B5uWlVo9zd9fjjjwq0bUsLUwkhtpWdnY2SkhJWbf38/BAUFMRxRISQ2m7XnV146eBLlY4LeAIo31RCLKQxBUIIsURBQQHrpOwqFQ8zZkTi0iXu3j27dSvH6tWZcHFhjJ6nxdOEEK5RUjDjChcUwtfF1+RuKSmY+SgpmGM6dUqFPn3Yrcvbv1+J4cNpvQshdcnnnyswe7aR+eIhk4C2W0zqw1vijQDXAPi7+sPf5f+/XKv+p1hAY12EkLpDrVMjoTABd6R3cDv/9t9JwLLL2RUfZa08CFiVA4Bn0uUREWp8/HEWWrasAADw+Xw0adKExqMIIeQ/Zh6diXVX1tk7DJtp69cWkxpPQvfA7uDxHv1MiY6ONnuNqZ7RQ8toodFroNVroWW0lf7J9pxW///zVZzTGXSI84vDSy1fQqhHqDX+mggh9UBOeQ7i1sehVF1q71BM1jOyJ069fOrv7+/qPHz4EBUVFZzc19nZGbGxsZz0RQip3U6eVKFfP3bzT4WFevj6mraHhBDiGCgpGCGE1GPJyRo0bMhu0r9pUzXu33fiOCJC7K+iogLJyQ+xdasfPv88EAxj2qTtf7m763HmTAVataJN89bSa1sv/Jn+p9FzIr4IiTMSEe1NC4UJqY2Sk5OhUqlYtW3evDnH0RBzFSuLMf3odOyP3w8dozO5nZvYDa93fB1Ley/9O6ETWzplMRJScizqw1R8Ph/NmjWzyb2sbciAHlj+3hzo3RqCzXDR+9ffx77UfVWe7+TfCR93+Bj+zv4A/r/IrVEs+ELT3yvOZZzDE1ufMJp4jgcebk67iZaBLSGVSjFhwgQcOXLE7D+HtURERGDz5s3o37+/vUMh9QjDMEhKSoJWq/372Pff++Djj4Oh15v3rhMZqcaFC0BwMI0FEEJs58GDB9BoNKzaUsJgQogxDMPA9WNXqHSVxx0+7vsxFnVfZIeoCCGkbmGTGEyt5uH11yNw/rw75/E0a6bE+vXp8PV9vIgAn89H48aNIRDQYkdCCHcoKZhxZ145g+4R3U3ulpKCmY+SgjkmuZyBpyeP1dqjN96Q45NPaM0RIXWFXm9Ao0ZapKQYGbN2KgNeegoIv8j5fT2dPCsnC/tP4rAA14C//10iZLeRjBBCuGQwGJBRmlEp+VdiUaJZa9GsJfjYceRe7GfStSNGFGPBgrxKCetdXV3pnYcQQv6jVFWK5/Y+h99Tf7e4LyFf+PcvAU/w2O+FfCEEfCPHTLjO6DU8AfgQYOdOA2TiuxBG3IBOaHpiGxFPhADnAES4R0AkEZmdoMucIs7WEu4RjnMTziHcM9zeoRBCaqmvr32NKT9PsXcYJhHwBLg57SaaB5i2b8nYOm5LeHh4ICIigpO+CCG11/btCrz8snnJZAHAyYmBUskDn89uzzwhxD4s22VLCCGkVtu3TwuA3ca4Z57RAqCNwKTucXZ2Rnl5GL74wpN1QjAAKC8XYORIIa5c0cHDgx65uPb6L69XmRCMBx4Ov3iYEoIRUoux3fRPm7ccg4+LD/aM2IOtuq2Y/9t8bLmxxehm6/+Sa+RYdnYZPr3wKV5u9TLWPLUGLmJ21a+FLj5wdS6CokLNqr05GIap+aJa4qdjp3Hq3A0sXrwYzzzzjNntk8uSqz1/qeASRpwcgY/af4TuQd3h7iIyKyGYUqPEgF0DqlzE8GGfD9EysCWuXbuGYcOGITMz06z4rS0jIwNPP/00PvnkE8yfP9/e4ZB6gs/nIzY29v9JdRisWBGMPXt8WfWVnu6EYcMU+PNPEZycqGItIcQ22L4b8Hg8SghGCDGKz+djQOwA/Jj4Y6VzX179kpKCEUIIB/z9/cHj8ZCXl2fS9Wo1D7NmWSchGADcu+eCsWNjsHFjOsLDHz1f8ng8NGjQgMaUCSHERu4X3DcrKRghdYWbGx8NG6qRmGj+Grvr12kcnpC65ODBCqSkVLH+Qe0BbD0NdPoC6PUu4CTn7L6l6lKUqkuRXFz9XP5f3MRulZKG/ZVILMA1oNJxV7H5G88IIeTfZCoZ7krvPkr+lX/nUQIw6R2UqcvsHZpRfaP7YsknndCvnwE6XdVrzH18dFi6NBu9epUbPa9QKCCTyeDl5WWlSAkhpPbxlHji5LiTyCrLQlZZFuvEXnweHzyebZMcrFpVDNl3PgAAHQBh7B8IfH4psiV/1NhWa9AiW5mNbGW2VWO0psyyTGy7uQ1Lei6xdyiEkFpqYtuJ2HVnV5X7BB3JzI4zTU4IBjxap9SgQQMkJiZysu+krKwMubm5CA4OtrgvQkjtlZvLrp2fnw58Pq2tJqS24RkMBvungyaEEGIXXbpU4OJFZ1Ztr1xRo317SgpG6q6lS4vx3ns+FvczZEgpDh50h0BAi/W4svXGVkz4aUKV51f0W4EF3RbYMCJCCNfu3r3Lqp2zszNiY2M5joZYimEYfHj6Q6y6uMqsBVsCngBDGg/BV4O+QoBbgNn3Lc5OQE6JbapDtmjRwib3saUhQ4bgvffeg0gkMul6g8GAboe7oVxrfDHbf41vOB4re86BX2hLk2PqtqUbzmedN3quY0hHXJp8Cbt378akSZNQUVFhcr/2MHr0aGzevBnOzuzexwgxl0qlwpgxShw8aPk7zqhRMuza5UHvOIQQq1MoFEhNTWXVViKRoEGDBhxHRAipK+IL4hG3Ic7oudRZqYjyirJtQIQQUkcVFRUht4aViBoND7NnR+DMGeskBPs3Hx8dvvwyDXFxKjRo0AASicTq9ySE1D/btm3DK6+8Yu8wbOdZAG1qvmxWp1lYM2CNyd2mpaUhOpqKgJnjxo0baN26tb3DIEaMHKnAvn3mJ80JDNQiL8+0eTpCiOPr2rUCFy6YMDfsng08NRdovtf6QXHAWehcYwKxloEtEekVae9QCSEOQKlV4nDiYdzMu4k70ju4nX8bmWWOVfCvJmdfOYtuEd2wcGEJVq70NnpNr15leO+9bPj66qvti8fjoXHjxhAKqfA0IYTUZiUlWjRuDBQUVH6H92hyAU6jXkEBL9EOkdnWzI4zsfbptfYOgxBSiz0oeoCWX7aEWm/9ovBsBboGInFGIjwlnma31Wg0SEpKAlcpPYKDg+Hry65INCGk9pszR441a9zMbtemjQrXr9NaGUJqG9q5RQgh9VReng6XL7N7eIuI0KBtW8oGS+q2t9/2wuDBllea+uknT2zZUsRBRAQArmRfwaTDk6o8/0KzFyghGCG1nEqlYt2Wkus4Jj6fj3d6vYPSRaX4ctCXCHQNNKmd3qDHDwk/IGhVEPp82wdJRUlm3dc7qAFcnCmJLVs//fQTpk6dirIy056HpCqpyQnBAGBb0jYMPDoJKSUpJl2/8tzKKhOCuYpccerlU/j666/x0ksvOXxCMADYvXs3hg4dCrXacScuSd0ikUgwb54ILi7VLzo1xfffe+HDD2WWB0UIITUoLi5m3dbd3fpJJQghtVdT/6YIcQ8xem7xycU2joYQQuouX1/faisUa7U8zJsXbpOEYABQXCzEvHkRCAmJpIRghBBiY/cL7ts7BELspn17dpu88vNFyMzUchwNIcQezp9XmZYQDADKQ4H93wO7fgIYnnUD40CFrgIZpRm4lnsNx5KPYcftHVh9cTUWnVyEiT9NxJDvhiDq8yiM3DcSOsY2Rd0IIY7pUtYlRHwWgRcOvIBPzn2CI0lHal1CsCdjn0S3iG4AgI8+8kSbNsrHzjs76/Hee9lYuzajxoRgwKMCjGwLJBFCCHEc774rN5oQDADKErqgYGkCQn89iWZOPcGvw1u5u0d0t3cIhJBarpFvI7zT8x17h1Gtlf1XskoIBgBisRgxMTGcxZKbm4vS0lLO+iOE1C65uezGjgMCGI4jIYTYQt19kySEEFKt/fvVYFguGhg0SAs+3/EXHBBiCYGAj507XdCwIfvkNAAwZYoUnTrlW7SRlTwilUvRc1tPMAbjL58tAlpgz4g9No6KEMK18nLTkwr9l6ur+RWWiW1Naz8NefPz8MPIHxDjbdqkhgEGnEo7hUbrGqHdxna4kn3FpHY8gRChvk7g8ei5la0rV65g/PjxJk0YJZcmm99/zhW0/qo1vrv7XbXX3ZPew6KTi6o8f2T0Efyw7wdMmzaNs+o5tvDbb79h1KhR0Olo8TOxja5d3fHVV2Xg8Sz/nOzY4YKsLCkHURFCSNWUSmXNF1XB29t4ZW5CCPnLxDYTjR4/nHjYxpEQQkjd5uvri5CQyokY/0oI9scfHjaLxdmZwdatFfDxoQSyhBBia5QUjNRnnToJWbe9eJGSghFSF6xcyaJoT9IzwM5fuA/GTvbd34e1l9baOwxCiB1N+GkCiipqd4Hlpb2W/v3vIhEfO3bg78JsLVsqsX//QwwfXgJzlqqp1WpIpbT2ghBCaqukpAp8/XXNyWGyL/TBvcV/oO25Gxjg92KdSw4W5RWF55o+Z+8wCCF1wIKuC9AioIW9wzCqW3g3vNTyJYv6cHZ2RmRkJEcRAZmZmRatsSSE1F5SKbt9ckFBtWe/FSHkH3XrDZIQQojJDh1inxxhxAgBh5EQ4rg8PYXYu1cHd3fzF+a4uemxdm06Zs6UQiAAcnJyUFFRYYUo6wcdo0PbTW1RoTP+d+jr7IvLky/bOCpCiDVYMijt5ubGYSTEmoY2HYqHrz/E2VfOolVgK5PbXc+7jo6bO6LRF41wNOlojdc7eUUgzIeGPiyRlJSEGTNm1Pgck1xmflIwACjXlOPFAy9i4qGJUGgUlc7rGB16fduryqSgr3d8HbJbMowfPx4MU/uqVhw6dAjjxo2rVcnMSO02dqw33nyzxKI+unSRY/v2FMhkUpSVlXEUGSGEPI5hGGi17DY98ng8iMVijiMihNQ1bz7xJvi8yu+LCq0CPyX+ZIeICCGk7vLx8XksMZhWCyxcGIZTp2yXEEwoNOCbb8rQrx+7ys2EEEIsU1xBRdRI/dW+vRgCAbt5oKtXa9/cFyHkcQ8fanD4sAu7xilPoblmPKfx2NP5zPP2DoEQYicavQbxBfH2DsMiTzd4Gp3DOj92rFkzF3z0USmmT8/Ht9+mICJCw6pvqVQKtVrNRZiEEEJsbMECDVQq09coXz3eEsdn7cLgpFvwEftZMTLbeqPbGxDy2SdFJ4SQv4gEImwestnoeh574vP4WD9wPSfF6t3d3Y0W1WIrNTUVajW7dxFCSO2Vn8/ue5KSghFSOznWkxEhhBCbKCtjcPq0hFVbPz8devZ04jgiQhxX69ZuWLfOvI3uDRqo8N13D9G7d/ljx1NTU2tlsgpH0Htbb2SXZxs9J+aLcW3KNUiE7L7XCCGORaVSsWrH4/EgEFDi0tqmW0Q33Jx2E/dfu48nIp4AD6ZNlCQVJ2HQ7kEIWRWCrTe2VnutZ3BTBPvQZLMlbt68ibfeeqvaa9gmBfvLNze/Qfuv2+N2/u3Hjg/7bhgKlYVG2zT2bYzpsdPx0ksvQafTWXR/AODz+ejTpw/effdd/Pzzz3jw4AGkUik0Gg3KysqQnp6OS5cu4csvv8SECRMQGBho8T0BYM+ePfj000856YsQUyxd6oURI0pZtR01qggbNqTBw+PRe01GRgbrn92EEFIdhaJyslBTSSQ0PkAIqZlEKEG74HZGz33w5wc2joYQQuq+vxKD6XTAokXhOHHCtsm5Pv20BC+84GXTexJCSH3wQe8P8H6v96t8tv5LI99GNoqIEMfj6spHw4bsNmVdv05LvAmp7Vat0kKvZ7dhVCxm8N3EFQh05WZe2t5aBLSwdwiEEDsR8UVoFWR60UhHtLTXUqPHX3/dCzNmlEBo4dI0Wl9OCCG1z++/l+HQIfPnOvR6Hn7a1RzMmiREe8RaITLbCnILwvjW4+0dBiGkDukY2hGzOs2ydxiPea39a5y+0/j4+MDPj5vkkL/84o6+fTVQKCzfS0EIqT0KCtjtnwwOtjy5ISHE9mjGmBBC6qEff6yARsPuR8CAAWoIBPTgR+qXceO8MX16iUnXDhwow65dDxEZWXlBH8MwSElJ4Tq8Om/60ek4m3nW6DkeeDg65igivSJtHBUhxFrYJvYRWrqyhthVU/+mOP3KaWTPzcaQRkNMru6SK8/FhJ8mwHu5Nz4+83GVi6N8Q5ogwEvEZcicCgzwRZ8nOmDS2KH48M1XsePL93H8wHrc+GMXMm8fQUnKKSizzkJfcBna/IuQZ5xBYdIJxF/Yj9M/f40dX76PJfMnYdig3ggJ8rdKjMePH8e+ffuqPG9pUjAASChMQMevO2LDlQ0wGAz49ua3+DnpZ6PXigVinBh9AiNHjoRcLrfovr6+vli2bBkyMjJw8uRJvPfeexg0aBAaNmwIf39/iEQiuLu7IyIiAh07dsS0adOwZcsWZGVl4eeff0b//v0tuj8AvPnmm7hw4YLF/RBiCoGAj+3b3dChg+kJdwQCA958Mwdvv51baTFrSkoKJ4n5CCHk32QyGeu27u7u3AVCCKnTlvRYYvT4tdxrUGqUNo6GEELqPh8fH+j1Ebh40dWm933jjWLMmuVj03sSQkh9EeYZhiU9l+DqlKtIn52OL57+Av1i+kHI/2cQ0V3sjg2DNtgxSkLsr1UrdmPot2457vwmIaRmJSV67NjBvojF8OEVaBbjjzUD1nAXlJ24ilwxoc0Ee4dBCLETHo+HD3t/aO8wWBvcaDA6hHYweo7P5yMqKsrie+h0OuTm5lrcDyGEENvQ6xksXGhZIeshA4Bfxh6Bu7h2r3GZ23kuJEIq3kcI4dYHvT9AlFeUvcMAAPi7+OP93u9z3m9QUBA8PS0rpLVzpy8WLgzHuXNuGDFCCZ2OEg0TUh/odAYUFbHbQ0lJwQipnXgGg8Fg7yAIIYTY1rBhCvz4I7vF1gcPKjFsmAvHERHi+LRaBr17K3HunJvR80KhAfPn52L06GLwang38vX1RXBwsBWitA09o4dGr4GzyNnq99p8fTMmH55c5flVT67C3C5zrR4HIcQ2GIbB/fv3WbV1c3PjZIENcQxlqjLM+nUWdt3eBS2jNbmds9AZU9tNxfJ+yyEWih87Z2AY5GUlo6iMXSXu6rRoYXpF2wYx4ejQJg7tWzdF+9ZxaN40Fj7elk3o/FdySiZ+OvYn9v54Apeu3eWsX2dnZxw4cADh4eGPHWcMDDof6owKfQVn93oq9imcTD0JHWN8k8T+5/fjt89/w6ZNm1jfg8/nY/bs2ViyZAm8vLxY9wMAx44dw+zZs5GYmMi6j/DwcNy8eRM+PrRJldhGdrYKXbrwkJnpVO117u56fPppJrp2rToBn1gsRoMGDcDnUw0KQgg3EhMTodWa/hz4b02aNKGkwYQQk7ktc4NCWzlZ6ptPvImP+nxkh4gIIaTuO326HEOGOKO01PrPbOPGyfDNNx4QCOh9lRBiG9u2bcMrr7xi7zBsZuvWrRg/fnyl4yUVJTiXeQ5yjRxPxj4JH2fzxr3T0tIQHR3NUZT1w40bN9C6dWt7h0GqsHKlHAsXGl9vVJO0NC0iIyk5GCG10QcfyPHOO+w++wBw44YarVs7wWAwYODugTiWfIzD6GxrRb8VWNBtgb3DIITY2dxf5+Kzi5/ZOwyzXZtyDW2D21Z7jVQqhVQqtfhe0dHRcHW1bUJ9Qggh5tuypQSTJnmzbu/hoUN8vB4hIU74If4HPLf3OQ6jsx0viRcyZmfA3al2JzYjhDimX5N/xYBdA+wdBrYM2WLVROcpKSlQKs0rXMgwwGefBWLbtseLyb/8sgxbttDcOCF1XXa2DmFh7NbbnDmjQvfulNCVkNqGkoIRQkg9o1IxCAgwoLzc/KoE7u56SKU8SCT0Ykjqp5wcNTp04CEn5/EkI35+WqxalYm2bU0fhImIiICHhwfXIVqVWqfGGyfewBeXvwAPPIxpOQafPfWZ2Qt4TXUh8wK6b+0OxmA8U/1LLV7Cjud2WOXehBD7KC8vR3p6Oqu2AQEBCAgI4DgiYm8anQZvnXoLG65sgFJr+s9ZEV+EUc1GYd3AdfCU/JNwy8DokZ2RCplcxWmc1SUFa9CgAXp2b48BPVujR5e2CPCv+efm/eIUfHZjN/IritAvvBNmtBwJPo/dM/ituw+wfO23+P6H42AYy6u/9O/fH6tXr37sWJYiC08fe9rivk01uvloTPCagH79+rHuw8/PD7t370b//v05i0sul2PChAnYt28f6z5eeeUVfPPNN5zFREhNrlyRo29f5yrHCMLD1Vi3Lh0xMTUnVKQEnYQQrliSLJjP5yMuLo7jiAghddmYA2Ow++7uSseD3YKRMy/HDhERQkjdl5Skwfvvq7B7tzsYxnpVSAcMKMPhw24QCmlumxBC/m3m0ZlYd2VdpeMNfRriwcwHdoiIGHPz5k20adPG5OspKZhjO31ahZ492W2y+O47JUaNogKehNQ2Go0B0dE65OSwS+rXu7cSv//+z2c/tSQVzTY0Q4WOu0JdthLnH4ebU29CJKAEh4TUdxq9Bt2/6Y4rOVfsHYrJnm38LH584UeTrk1KSoJarbbofnw+H02aNKGCbIQQ4sAUCh2aNtXXWIizOkuWFOP99/9ZS7z4xGJ8cu4TLsKzqSU9luD93u/bOwxC6iVGI4dSlg2N7tHeAB4AZ4kTnLwiweObv2fYUY37YRx23LbfvsFOoZ1wfuJ51vs4TMEwDJKTk6HRmFb4XqvlYcmSUBw54mX0/KJFxfj4YypQTkhddumSCp07s5tzSk3VIiqKxmkJqW1opJAQQuqZY8dUrBKCAUDfvipKCEbqtZAQJ+zcqYJY/E9CjbZtFdi796FZCcEAICMjw+QBG0fx1dWv8Pmlz8EYGOgNemy/tR2dNndCYmEi5/fKk+ehz/Y+VSYEax3UmhKCEVIHyeVy1m3d3NhXVyWOSywUY2X/lShfVI6V/VeanIhSy2ix885O+KzwwaBdg5BVlgUA4PEFCA2PgLur9SobuLu748knn8T777+PkydP4ocffsDseW+hb9/+JiUEyyzPQ++D07D5/o84nHoGs05/inHH3wXbnO6tmjfC7k0f4fqpnWjVwvIEGcePH8etW7ceO/aw7KHF/Zoq1D0UW5/Zitdff511HxEREbhy5QqnCcGAR99De/fuxeLFi1n3sW3bNly6dInDqAipXocObti8uRwCQeXvmPbtFdi9O8WkhGDAo5/jeXl5XIdICKmHysvLWbeVSKiCFSHEPB/3+9jo8Vx5Lu5J79k4GkIIqbvKyxl8+aUCXbtWoFEjMXbu9LBqQjBvby0++YRPCcEIIcSIQ4mHjB4f1WyUjSMhpP5o314MoZDdXN+VK5YX/SGE2N727UrWCcEAYP78x9+Xor2jsbTXUkvDsosNAzdQQjBCCABALBDj+xHfw9PJs+aLHcR7vd4z+dro6GiL78cwDDIyMizuhxBCiPV8/HGZRQnBIiLUWLz48Z+FH/T5AH2j+1oamk25iFzweif263gJIewopA+QmpKM+KR0pEm1yCnWI6dYj+xiPZJzlEhIfICcjCToyvPtHSonVj+1Gn4ufna5Nw88rBu4zqoJwYBHiYEbNGgAgaDm/d5yOR+vvhpZZUIwAPjkEx+sW1fCYYSEEEeTnc1u3ojHMyAkRMhxNIQQW6DVb4QQUs8cPMhugREADBvGYSCE1FK9e3vgo49kAICxYwuxeXMq/P11rPpKSUkBw9SexXtfXfuq0rHk4mR02twJxx8e5+w+OkaHthvbQqVTGT3v5+KHCxMvcHY/QojjqKhgX9GUNv/XbXw+H/O7zkfRwiJsH7odYe5hJrVjDAyOJh9F+Gfh6LalG+7m3wVPIEZ4aDBcnNlPyv9XYGAgRo0ahY0bN+LPP//EqlWrMGzYMAQEBPx9TXapGGXKmn/uv3tpI6QVxY8d25X4C1bd2GlRjOHRTfHtjt0YP368Rf0AwLfffvvY75PKkizu0xQCngBnXjmD9evX4/79+6z6CAkJwe+//46oqChug/uXZcuWYc6cOazaGgwGzJw5k3USOELYGDnSC++88/gE8PDhxdi0KQ1eXnqz+iosLIRMJuMwOkJIfVRaWsq6rbu7O4eREELqgwjPCER6Rho999bvb9k4GkIIqVv0egOOHavAqFEKBAUZ8Nprrrhwwdkm9y4pEaFLFxcsWlSMigrz3m0JIaQuK1OVIbMs0+i5OZ3ZjWsTQmrm4sJHo0ZqVm1v3KBl3oTUNgxjwOefsyvcCwBxcSoMGFB5DczszrPRKrCVJaHZ3NiWY9Ezqqe9wyCEOJBo72hsHrLZ3mGY5Lmmz6F1UGuTrxcKhQgJCbH4vnK5nNZdEEKIgyopUWHdOg+L+njvPSWcnR9/XxDyhdgzfA/CPExbG+0IprSdYrdEPYTUR5rybKSnJiNVqoFCqapynbler0dxmRoPMosgzUqEQa+1caTc8hB7IMozyi73ntJuCtqHtLfJvfh8Pho2bAger+qiWgUFQrzySjQuXXKrsb85czyxf7+MwwgJIY4kN5fdXiNvbz3EYusV7yOEWA/NFhNCSD3yaOG1mFVbsZjBs89Ssg1CAGD+fB/s25eBhQvzILKgiJ1Op6s1FZ0KFAVIKEwweq5UXYqndz2N9ZfXc3KvHlt7IFeea/ScWCDGtSnXIBHS9xEhdZFGo2HVjs/ng8+n19v6Ymyrscicm4ljY46hsW9jk9udzzqPFl+1QPMNzXEm5yoiQ/wgceImMdiJEyfw9ttvo2vXrhBV83CQWeoChbLqZKKZ5XnYmfiL0XNvnP8Cv2deYRVfqdKAnFIhBAIB5s2bh7fesmxj+6lTp1BYWPj375NLky3qz1TOImdcfHARS5eyq4AsFovx008/ITY2luPIKlu9ejWeffZZVm2vXLmCbdu2cRsQITV4+20vjB4tA49nwIIFuXj33RyIROwmjLKysixK9EkIIUqlknVbb29vDiMhhNQXr3V4zejxX5N/rVVFHQghxFEkJmqwcKEcUVFaPP20M/budYVSyX5DPFsVFXwsX+6DuDgd9u2T2fz+hBDiiNZeXmv0eLBbMHxcfGwcDSH1S6tW7BKV3r4tBsNQMRlCapPfflPh7l32a9tmzdKDz6+8OUskEGHTM5vAQ+3YuOXp5ImV/VfaOwxCiAMaETcCr7U3Pi7vSN7r+Z7ZbXx8fODq6mrxvbOzs6HTsStYTQghxHoKCzOxZUsaOnWSs2rfoYMC48Z5Gj3n7+qPAyMPQCxgt+fPlkR8EeZ1nWfvMAipN0pz45GcWYpyhcrkNgzDQCrTIiU1DZrS2rFv8b8O3D8AnxU+uJp71eb39nH2wUd9PrLpPYVCYZV7HFJTxRg7NgYJCaYV4NLp+Hj5ZXecPl3OZYiEEAfBNimYvz8V1COktqJd04QQUo+cPq1GQQG7DEZPPKGCp6ftF2sT4qiGDg2pNgO7qeRyOQoKCjiIyLrOZZ6r9rzeoMeMX2Zg+pHp0FpQSWDa4Wm4kHXB6DkeePhlzC+I8Ixg3T8hxLGxXchSXRImUnc91eApJMxIwNXJV9EhpIPJ7e4V3EOvb3shdmMbXC37E2Kx7f7/MRgMSC9zR0WF8QR4n93cDS1j/HPAGBiMOrYYGeV5Zt1TrtQhq/TxCaAXXngBM2fONKuff9PpdDhy5Mjfv39Y9pB1X+aQa+QYvXA0SktLWbVfuXIl2rVrx3FUVdu6dSsiItg9t3z88ceUfIDYFJ/PxzffeGD79jSMG1cES191UlJSaIEqIYQVhmFYf3/w+XwIhUKOIyKE1Adzu8yFgFd5/kOlV2H3nd12iIgQQmqf0lI91q9XoEuXCjRpIsbKlW7IynKMjStpaU4YOdILq1dnQ6FQ2DscQgixqz139hg9PrjhYBtHQkj90749u3aFhUJkZNB4OyG1yapV7BP5BQVpMX68S5XnO4Z2xPQO01n3b0sf9fkIgW6B9g6DEOKgVj21Cq0CW9k7jCo9H/c8WgS2YNU2MjLS4vXlBoMBaWlpFvVBCCGEW+Xl5VCr1WjcWIWvv07D+vVpiIpSm9yexzNg5UoGAkHV27k7hnbE2gHGk/o7kpdbvYwwjzB7h0FInadXlyIrPQmZRXrWa8orVGokZ8tRkhMPQy1Zly5TydD9m+4YsW8EFFr7zO0u67MMvi6+Nr+vRCJBVFTUY8du3nTG2LExyM42b+5dqRTgueckuHePfYFWQohjystjN+YQEFA7fg4QQiqjpGCEEFKP7N/PfoHQs89SxUFC/k0oFFYaaGErPz/f4TchnM04a9J1G65uwMDdA1FSUWL2PTZe3YiN1zdWef7zAZ+jT3Qfs/slhNQOGo3xJEmmkEjYV1gltV+7kHa4PPkyUl5PQb+YfiZXxU0vTceLP09G9x+74fvU722WgIlhGKSVeUGtenwxQFGFDJvu/VBt20KVDMOPLoRKZ9pCAmWFBhll7jAYKj/LT548Gd26dTM98P84d+5RwlAdo0NKeQrrfsyiAXCFXdM+ffrg9ddf5zScmnh7e2Pr1q2s2iYlJeHgwYMcR0RI9Zyc+Bg5MpSTvgwGAx4+fEjJ7QghZrt0SY6FC8Owb5830tPFMPIYUyVnZ9Mq4RFCyH8J+UJ0De9q9NyK8ytsHA0hhNQeer0BR49W4PnnFQgO5mHGDFdcvOiYz2RhYRr06CFDamoq0tLSoNdTBVRCSP2jY3RIKEowem5BtwU2joaQ+qdjR/bFOC9cYF+cjxBiW7dva3DiRNVJvWoybZoGYnH1ax4+6vsRQt25mdOzlrbBbTGt/TR7h0EIcWASoQR7n98LV5GrvUOphAce3u35Luv2fD6fdRHBf1OpVLWi6DQhhNQXWVlZf/87jwf06CHHwYNJWLw4B15eNe/VGzq0DD17utd43ZR2UzC+9XhLQrUqPo+Phd0W2jsMQuo8ZWESktPyICs3PflgVRiGQXaxHpkZKdCz2OtnS+sur0PgykCcyzxntxjaBbfDpLaT7HZ/Nzc3hIU9Srx46pQ7Jk+ORmkpu0KpRUUiDB4sQFaWissQCSF2lpfHrl1gIO3rIKS2oqRghBBSTzCMAUeOsKvGzOcbMGKEE8cREVL7ubq6IjCQm2p2aWlp0Okct7LnmYwzJl97IuUEOm/pjAdFD0xucy7jHF498mqV519u9TJmdpppcn+EkNpHLpezbuvq6niLg4jtRXtH4/jY4yhYUICRcSMh4Jm2sL6goggfXv8QXQ93xRd3v4COsf7PY71ej7RyH2jV/0zUrbu9FwptRY1tr0rvY/qfy40m+vo3lUqN9DKvKhPy8Hg8vPXWWxCJROYF/3/Xr1+HWq1GpiITGoZ9Uj/zbgqg5r+iSgQCAdasWcN1NCbp06cPhg0bxqrtihWUfIDYnlgsRmRkJCd9abVapKenc9IXIaT+OHpUh19+8cL774di8OBG6NevMRYvDsMPP3ghO7v65xYPDw8bRUkIqYve7/2+0eN3pXchU8lsGwwhhDi4+/fVmDdPjogIHQYNcsb+/a6oqHDs5UeLFuVCInk0niaXyxEfHw+pVGrnqAghxLa239oOxlB5zsBL4oWGvg3tEBEh9Uu7dmIIhew2XFy5Qhs1CKktVqxgn8TP1VWPmTNrLorn4eSBL57+gvV9rI0HHjYM3AABn30yREJI/dDItxE2Dq66kLC9jGo+Cs0CmlnUh7u7Ozw9PS2OJT8/H2q15YkgCCGEWKagoMBosRGRCBg9uhg///wAL79cWOV7v7MzgxUrTNvPx+M9ep5uE9TGopit5fm452kskRArMui1kGYlIiVPDa2W20IBZXIVktLzIZcmctovFzJKMxC3Pg4zf5lpu30JVVg3cJ3dxzS8vLxgMARhwYJwqFSWzcOnpTlh8GAGZWWOu2eVEGIeqZTd90JQkBlVmgkhDsWxV+URQgjhzI0bGqSns0sK1qGDCsHB7DJKE1LX+fv7w83NzeJ+DAYDUlJSOIiIewqNAtdzr5vV5kHRA3Ta3AknU07WeG1OWQ76be8HA4y/WLYLbodtQ7eZdX9CSO0jkylYt+Xie5jUHb4uvvj++e9Rvrgcr7V/DU4C05LbKnQKbErchE6HOuH96+9DqVNaNU6tVoe0cj/oNBootBVYe/t7k9t+c/8nbLp3sMrzGrUaaWU+Rhch/Ft4eDiGDh1q8n3/Ta1WIz4+Hg/LHrJqbzYGwEV2TSdPnowWLVpwGo45Pv30U4jF5r+LXblyBadPn7ZCRIRUz93dnbPkxwqFArm5uZz0RQipH86dezzxl1Qqws8/e+Gdd8IwYEBjDBjQCEuWhOLwYS/k5T0+XsnFwnpCSP3VK6oXPJ0qf48YYMDSP5baISJCCHEsMpkeX3yhQMeOFWjWzAmrV7shJ4ddsnlb69mzDD17llc6LpVKkZCQAIWC/dg0IYTUJpuvbzZ6vFdkL9sGQkg95ezMR5Mm7Da03bhBS70JqQ1ycnTYv9+ZdfsxYyrg42PaptNhTYfh2cbPsr6XNU1uOxmdwjrZOwxCSC0xpuUYTGg9wd5h/I3P4+Pdnu9y0ldoaCiEQsv3X6SmptVYPJIQQoj1MAxTY5ERT08G8+fn4aefktGvX2ml81OmlKJBA9PfFZxFzjgw8gC8Jd5mx2tti7svtncIhNRZmtJMpKalQSrjNhnYv+l0OqRJtcjLfABG5xjJZxefWIzoz6MRXxhf47WDGg4yuXA8GxNaT0DnsM5W698cLVr4YflyGSd93brlgvnzS6ssNk8IqV2kUnbfgxxtDyGE2AHNFBNCSD2xbx/7AYEhQ+iFj5DqREREcDJxq9FokJWVxUFE3LqUfQk6xvyM8DKVDE/tfApfXf2qyms0Og3abmoLlV5l9Ly/iz/OTzhv9r0JIbXPkiXu6NWrMSZPjsLKlUH48Ucv3L8vgVrNq7Etm2Q7pO5zFjlj/aD1UL6pxLs93oWHk4dJ7TSMBvtS96HrT10x58IclKhKrBajWqNButwPm+4cQLGq8kKA6sz8cyUu5t2pdFynUSOt3Bc6nWk/u0eMGGHWff8tLS0NSWVJrNubdzMAMvObCQQCLFq0iONgzBMTE4MXX3yRVdutW7dyHA0hpvH39+csuU5RURFkMhknfRFC6jatlsHVqy7VXpOdLcaPP3rjzTfD0L9/Ewwa1BDvvReCq1fdOBmbIYTUb8/HPW/0+M47O20cCSGEOAa93oAjRyowYoQCISE8vP66K65cYb/B3R7EYgZvvFF1smqdTofU1FSkpaWZPJ5GCCG11bXca0aPz+k8x8aREFJ/tWpVfUGfqty5IwbDUCIIQhzd6tUqqNXstmYIBAbMn2/e2pcvnv4CbmLHKqLn5+KHZX2X2TsMQkgts/bptYjzj7N3GACAF5u/iCZ+TTjpi8/nIyoqyqI+SksFmD07CBs2yDiJiRBCiPmys7NNTs4YHq7BZ59lYuvWFMTFVQAAAgK0WLrU3ez7RntHY9dzu8BDzevobWVgw4FoFdTK3mEQUucYGAYlufFIzi6HssI2iboKSzVISUuHuiTNJvcz5mbuTYStDsMn5z4BY6h+73KwWzCuTbmGn0f/bLXkhF4SL3zS7xOr9M3WrFk+WLjQ8r0svXqVYfLkPCQnJ1NiMELqgIICdknBQkMprRAhtRV9egkhpJ44fJj9prjnn68dVZ4JsRc+n4+YmBhO+pLJZA63Yf5M+hnWbfUGPV498ipe/+V1o4nFntj6BPIV+UbbOgmccH3qdYiFlOyHkPogIUGMoiIRLl50w/btfliyJAyjRjVAx45xGDKkAebNC8fGjf74/Xd3ZGWJ8NdYNG38JzXh8/l4r/d7KF1UivUD1yPANcCkdnqDHidyTqDnkZ6YeHoiMuWZVomvTCnHyhvfm91Oy+gw/OhC5CuL/j6m12qQVu4Hjcb0hMBxcXEICgoy+/7Ao6RgD8sesmprttvsmg0fPhyRkZHcxsLC3LlzWbU7ePAgKioqOI6GENOEh4dDIpFw0ldWVhaUSiUnfRFC6q4zZ+QoLzdvsjojwwkHDvjg7l3TEsASQkh1PurzkdHjhcpCXMm+YuNoCCHEfu7fV2PuXDkiInQYPNgZBw64oqKidi4vmjixEOHhNY+VyeVyJCQkQCqV2iAqQgixvd+Sf4NGr6l0XCKUoEdUDztEREj91L49u3ZFRUKkprIvCEoIsT6FgsE337CfVxs0SImGDc1bIxfuGV7leJa9LO+3HL4uvvYOgxBSy7iKXbF3xF44C+2bjJ7P4+Odnu9w2qdEIoG/vz+rthcuuOK55xrg1189sXixBxISaM0FIYTYmkajQWmpeQV/AaB9eyX27HmIZcuy8OGHpfD0ZLfW/emGT+O9Xu+xamsNb3Z/094hEFLn6CtKkJXxENlFepsna1KpNEjOUaA4Jx4GG96bYRi8/MPLaLOpDbLLs6u9ls/jY0HXBciZl4O2wW0BAG/1eAuNfRtzHtcHvT+Avyu7Z3drWrbME2PGyFi3Hz68GJ99lgFnZwM0Gg3S09O5C44QYnOlpXooleySggUHO06yWUKIeWrnqj1CCCFmefBAg/v32S04aNZMZfZiA0LqI7FYjPDwcE76ysrKglptm+z+pjibedbiPr64/AUG7R4EmUr297FJP03C5ZzLRq/ngYffXvoNYR5hFt+bEOL49HoGSUlORs8xDA+pqRL89psn1q0LxKxZkXj66cbo0qUpXnopBqdPe9k2WFKrvdbhNeTPz8f+5/cjyivKpDYGGHC54DIG/joQo06Owp2iO5zGdDTzKHKVuaza5igK8Pwvi6DV68DodEiX+0GlrryppyYdO3Zkdf+CggKkK5JZtTWLFkA8u6Zz5szhNBS2WrZsiT59+pjdrqysDIcPH7ZCRISYJiYmBgIBu4mj/0pNTYVOVzlRMCGE/OX4cfbfEf37U7JgQojlAtwC0NCnodFzb//+to2jIYQQ2yop0ePzzxXo0KECzZo54bPP3JCTU7sLR4WGajBhQoFZbaRSKRISEqBQKKwUFSGE2Mfay2uNHu8Ywm5+gBDCTseO7MfbL12i8XVCHNmmTRUoKWE/Tr1gAbvvh+kdpqNDSAfW9+VS1/CuGN96vL3DIITUUs0CmmHdwHV2jeGlli+hkW8jzvsNDAyEWGz6XgyViofly4MwZUo0pNJH43Pl5QK8/LIBOp1tE0UQQkh9l5WVxbotnw8MGVKKiRN9LIrh7R5vY2DDgRb1wYUnIp5At4hu9g6DkDpFUfAAyRn5KJXbb/+gwWBATrEeGekp0CmsXzzp+MPj8F3pi+23t9d4bRO/Jkh5PQUr+q947LhEKMHXz3zNaVytAlthWvtpnPbJFYGAj61bPfDkk2Vmt50+PR/vvpsD4b+GrBQKBTIzMzmMkBBiS9nZ7OeKwsK42RNCCLE9SgpGCCH1wN695icG+MvgwbSgiBBTeXp6wteXm0p3KSkpNs/yb4yO0eFC5gVO+vrt4W/osqULkouTseHKBmy5saXKa9cNXEcViQmpR5KSVCgvN29wSakU4NYtFwDGk4kRUp3hccOROisVp8efRouAFia3uy+7j9F/jMbgXwfjTN4Zi+NgDAy+SfzGoj7O5NzA/LNrkKnwgbKC3aRgTEwMq3Z6rRLJpTaoFvMAAIs/WlhUGDp37sx5OGyNHTuWVbtdu3ZxHAkhpuPz+YiNjQWPZ3llGIPBgOTkZId4zyGEOKZz59gVJnB21qNXLzeOoyGE1FezO882evxU2il6jiGE1Dk6nQGHD1fguecUCAnhYfZsV1y96mzvsDizaFEuJBKD2e10Oh1SU1MpuTUhpE45nX7a6PEp7afYOBJC6re2bcUQidi9W165Qu+khDgqvd6AtWvZJ1Xu1KkC3buzK/or4Auw6ZlNEPDsu6GLz+Njw8AN4PNoawohhL1XWr+CMS3G2OXeAp4AS3ossVr/0dHRJl2XkCDBCy/EYudOv0rnLl92xdKlMo4jI4QQUhWFQgGlUmlRH4GBgeDzLXtG5vP42DlsJ2K82a3z5cr5zPOYcGgC5Bq5XeMgpC4w6DXIz3yA1HwNtFrHmIssV6iQnFmE8vwEq/Sv1CgxYOcAPLnzSchUsmqvFfFFWPPUGsRPj0ekV6TRa56IfAJT203lLL71A9dDyHfcoqQiER8HDrigXTvTClsJBAYsXZqNadMKYGz5d2lpKfLz8zmOkhBiC1lZ7OeKQkMpKRghtRXNvBBCSD1w+DD7h7WRI2t3BWhCbC04OBgSCbtFOv+m1+uRlpZmeUAWupl3Ewotd9XQEwoT0HZjW8w4OqPKaya2mYjXOrzG2T0JIY7v6lX21U3atWOXOIAQ4NGE0O1Xb+Puq3fRLbwbeDAt6U26PB2vnXsNfY70waG0Q6zv/0fuH0gpT2Hd/i9rb3+HPfEHWLcPDQ1l1a6kQgkdY4PJyHh2zbIisvDBnx9Az+i5jYelYcOGwcnJ/ESGx44ds3hxCSGWEIvFiIqK4qQvnU7nEO85hBDHo1YzuHaNXQKKdu0q4ORE012EEG5MazcNIn7leREto8VX176yQ0SEEMK9u3c1mD1bjvBwHYYMccYPP7hCpapbz1M9epShV69yi/pQKBRISEiAVGr9qtiEEGJNd6V3Ua6p/J0o4AnwYrMX7RARIfWXRMJHkybsintev06bNQhxVPv3VyAtjf3alTlzzE9m/G+tg1pjTuc5FvVhqdc7vo5WQa3sGgMhpPbj8Xj4ctCXiPQ0vvHfmsa1GocGPg2s1r9IJEJISEiV5/V6YMsWP7z4YgwePqx6Dfry5V44f96yMS9CCCGmycrKsqi9UCiEn1/lJI9seDt74+DIg5AILd+nxJbeoMfWm1vh9YkXhn8/HIXKQrvFQkhtppalISU1HQWl7MYIrUmn0yO9QIfcjCQwWu7WrW+/tR2+K33x68Nfa7y2a1hX5M3Lw6zOs2q8dnm/5Qh2C7Y4vrEtx6JbRDeL+7E2NzchjhwRITZWVe11EgmDtWvT8dxzJdVeV1BQgOLiYi5DJITYQG4uu6RgEgkDT8+6tS6IkPqEPr2EEFLH5ebqcPUqu4G/qCgNWremRBuEmCsmJsbiih4GA/D11xLs2FH9IIy1nUk/w3mf5ZpyGGB8MVPHkI7YPGQz5/ckhDi2O3fYtXNyYtCiBbvEAYT8W7OAZjg74Swy52RicMPBJlevLVAV4O1rb6PbT92wJXELGMb0AVaDwYAtiVvYhlzJ0utLkSBjV53HxcWFVbtytQ0WmRkAsM2b1hx454930G9HP+SU53AZFSuenp4YOHCg2e00Gg1Onz5thYgIMZ2rqyuCgy2fPAeAxEQttm0r4qQvQkjd8ccf5VAq2W1s7N7d8RZJEUJqLz6fj95RvY2e+/zi5zaOhhBCuFNcrMdnnynQrp0KLVqI8fnnbsjLc6ziUH5+Wk76EYsZLFqUx0lfACCVSpGQkACFgrsiOoQQYkufnv/U6PE4/ziL1zUQQszXujW7YjZ37ojAMJYlDiKEWMdnn5lWfMyY6GgNRoywfN3Le73es0sSHQBwF7tjae+ldrk3IaTu2XZzGzLLMm16TyFfiLd7vG31+/j4+Bhdo5WdLcKECdFYsyYIOl3172haLR/jx4ugUNigiCMhhNRjxcXF0Gotm7NgW6y3Kq2CWmHj4I2c9smG3qDHwYSDCFgZgP7b+yNdlm7vkAipFQwMg+KceCRnK1ChUts7nGoVlanxMC0LqmLLCp9L5VK039QeL//4MlS66hNZuYhc8P2I73Fu4jn4uPiY1L+nxBMbBm2wKEYPJw+s6L/Coj5sKTBQjCNHGAQEGP8Z5e2tw5YtqejRQ25Sfzk5OSgvp6TDhNQmubns2vn768Dnsx/HJoTYF63qIISQOm7fPhUYht3D2qBBGnrQI4QFPp+P6Oho1u2VSh4WLQrDJ5+EYPp0D9y8adpgjDWczTxrs3sFugbizCvcJyEjhDi+e/fYbf6PjVVDLKbXWsKdUI9QHB59GCULSzCu5TiI+KZtjCzTlmHN3TXo9FMnrLy1Ehqm5sQUVwuv4nbxbUtD/ptKr8LsC7NRqik1u61YzC4RsIpX/QQdJ/IAsCk25Akg4NG//pH2B3p/2xsylYy7uFhikxQMAI4fP85xJISYz9fXF15eXhb1ce2aC0aPjsXUqd749dcybgIjhNQJJ06wq14FAP37CzmMhBBCgA/7fGj0+IPiB5DKpTaOhhBC2NPpDPjxRyWGDlUgJISHuXNdcf26/arIG+Phocf48QqcOaPCqFHsKk6LRI8/S06YUIjwcG4Tx+p0OqSmpiI1NRU6HW26JITULseSjxk9PrblWBtHQggBgPbt2SX2KikR4uFDbpKoEkK4c/asCpcusU/qNWOGFgKB5Wt0XcWu+HLQlxb3w0a5phzNNjTDlewrdrk/IaRu0Og06Le9H14/9joYA/t5QzbGtxqPGO8Ym9wrKioKPN6j732DATh0yAvDhzfA9euuJveRlCTB7Nn2W1dOCCF1HcMwyMuzrPCIRCKBu7s7RxH9Y1yrcXit/Wuc98uGAQacSD2BqM+j0GVzF9zNv2vvkAhxWDplITLTU5BTrIfBUDuS/qvVGjzMrUBRdgIMZhRN/8vHZz5G6GehuJZ7rcZrn238LEoWlmBks5Fm32dok6EY3nS42e3+srTXUgS5BbFubw+NG7vghx9UcHd/vPhEaKgG27enoGXLCrP6S09PR0WFeW0IIfbDPimYbcdaCCHcot3ThBBSxx06xP6rfsQI2lBHCFvOzs4IDg42u11GhhgvvRSLo0e9AADl5QKMGiVEWZntNxgYDAacSbdNki4ngROuT7kOsZBdUhJCSO324AG7z36TJtxu7CLkLx4SD3w77FvIF8sxr8s8uAhNW8Sr0quwPXk7Ov3YCW9eeRNyTdULsLYkbuEq3L9lK7PxxuU3oDeYV2FcqWS34VIltEFSMLZFhv6zVu9B0QNsuc7937m5+vfvz6odJQUjjiIsLAzOzuw2Nvz4oxcmTYqCTCaERsPH6NEuiI9n9/1DCKl7zp0zLRnrf7m76/HEE24cR0MIqe86hHaAn4uf0XNvn3rbxtEQQoj5bt/WYOZMOcLCdBg2zAWHDrlCrXac5UECgQF9+yrx7bcK5OXxsHWrK7p3l0AqZbcRvls3OV59tQQiEYPQUA0mTizgOOJ/KBQKJCQkQCqlJJGEkNohT56HfEV+peM88DC9w3Q7REQI6diR/Xq8ixcpKRghjmblSvPm5v/N21uHqVPZJxT7r6cbPo1RzUZx1p85ssqy0HFzRzyz+xkoNTT/Rwgxz+382wheFYyTqSdtfm8RX4S3erxls/vx+XxERERAJhNg3rxwvP12GBQK8wuqbtniiR9/lHEfICGEEOTn54NhkQDn3yIiIjiKprLPBnyGzmGdrdY/GxezL6LFVy3Q8suWOJtx1t7hEOJQ5PkJSM4oRJnCBmvuOWYwGJBbokN62kNoyyvPMxiTVJSE2LWxePP3N6Fjqt8H6evsiz9f/hM/vvCjRXsJv3j6C3g6eZrdrpl/s1o7T9K1qzu2by//u3hW06YV2LnzIaKi2O2vSklJgUZDe7MIqQ3Y5q4NDKSkYITUZo6z6o8QQgjnZDI9zpxhV+3Z31+LJ55w4jgiQuoXX19feHh4mHz9H3+444UXYpGU9Pjn9sEDCcaOVUCvt+3L14OiByhQWm/jxL8FuwVDpa99g5yEEMsplTqkprJ75oiLY7+4khBTiIVifPrkpyhfLMeyXkvhKTZtwkhn0OFwxmF0O9wN089Nh7Ti8U2CCbIEnMs/Z42QcS7/HDbc32BWm+LiYlb3kjvboOokR0nBACC7PNuiULgQGRmJ2NhYs9vduXPH4upzhHAlOjoaQqHpm5b0emD16kAsWRIGne6f4ejiYiGGDuWjuJg2MRFS3ykUOty44cKqbfv2SohENNVFCOHemBZjjB7fe2+vjSMhhBDTFBXpsXq1Am3aqNCqlRjr1rkhP59d4lVradRIjaVLFUhL0+PECReMG+cKZ+d/nuWkUnbPdUFBemzY4I2LF5VYvjwHEon1K2xLpVLs3JmO+/dpszshxLGtvrDa6PFIr0i4iNm9ixNCLNO2rRPEYnbrf65csf5zDiHEdMnJGhw5wv7n6YQJKri6cju+vWbAGnhJvDjt0xw/J/0MnxU+WHd5nd1iIITULivOrUCbjW1QrGK3dslSE9pMQJRXlE3v6e7ujvPnA3D8uPmJC/5iMPDw6qsukEpp4z4hhHBJp9OhqKjIoj48PDwgFrNPblMTsUCMfc/vg7+Lv9Xu8ZcgtyD0iOwBHkwr6nJHegdPbH0CsWtjcTjxsJWjI8SxMdoK5GY8QFqBDjpd9cmxHJ1cqUZyVjHK8hKqvIZhGMw8OhON1zVGSkn1i/954GFau2mQzpeiR1QPi+MLdg/Gp09+ana7dQPXQSRwrPl0cwwd6oV160rRrVs5tm5NhZ8f+71VBoMBDx8+hF5P+7MIcXT5+eyK7QUG0vwSIbUZ7ZQghJA67Mcf1dBq2X3VP/20BgIBuwdEQsg/wsLCIBJVP0ik1wNffBGAmTMjUV5uvOLTTz95YtkymRUirJotq3Sklaah49cdcTr9tM3uSQhxDDduVECnY/fM0aoVvdIS2+Dz+Vjc8x0UzkrGJ50+RoAkwKR2DBiczjuNvkf7YuwfY5FcmgwA+CbxG2uGi00Jm3Ay2/Tqmenp6azuU+JcwqqdyQwAsli2jap8aHCjwRYEw53evXuzanfx4kWOIyGEHT6fj9jYWPB4Nf/8Vir5mD07Alu3Gl+E9OCBBM8/r4JWS9VnCKnPTp1SQKVi92zfrRslFiSEWMd7vd4zuri5VF2KP9L+sH1AhBBihE5nwMGDSgwZokRICA/z5rni5k12BaOsxdNThwkTFDh3ToX4eDHeeccVYWHGE00XFBifI6tJQMCjxclt27rhxRcj4OvryzpeUykUfMybF4K2bSWYN68EcnntXsxPCKm7DsQfMHr8uSbP2TgSQshfxGIemjZll7zhxg12z0uEEOv49FMN9Hp2613EYgZz53L//hbkFoTl/ZZz3q851Ho1Zv4yEw3WNsA96T27xkIIcVwqnQpPfPME3jjxBhhD1esFhHwhBDzrPAOJBWK8+cSbVum7JvPmeaNHD8uKMebliTF5cgVHERFCCAGArCy2C1b/ERYWxkEkNdzDIwzfj/gefJ5119Ev7r4Yf47/EznzcjCk0RCT75dSkoIh3w1ByKoQfHvzW6vGSIgjUhWnIiUtE0VldSeBq16vR0ahDjnpSWA0jz/HXsi8gKBVQVh3ZR0MqD7pTKRnJO69dg9fDv4SfD5332ET20xEr6heJl//QvMXzLreUU2Z4o2dO4vh6mr5Gmy9Xo/k5GQwDK3nJsSRSaXsxkiCgigpGCG1Ge2gJoSQOuyHH9g/qA0fTj8iCOFCTRvmZTIBXnstEps21Zxc5P33vXHsWBnXIVbpTMYZm90LAIoqitBvez98c8O6iVIIIY7l2jX2m/g7dnSsDW6k7hO6+GFut3E4PfRPbOi2AZFukSa3vVl0E8NODMPgXwfjWNYxK0b5yFtX30JqeapJ1968eZPdTULYNTNZCQA1i3bu///1f2KBGBsGbkCf6D4cBWaZdu3asWp348YNjiMhhD2RSISoqKhqr8nNFWHs2Gj88YdHtdf9/rs7pk8v5TA6Qkht8/vv7BeSPPlk7a3WRwhxbF4SLzQLaGb03Dun3rFxNIQQ8ribN9WYOVOO0FAdhg93weHDLtBoHGduVyAwoF8/JXbsUCI3l48tW1zRtasEfH71m+ULCownC6tJSMg/f3Y+n4/g4GA0adIELi4urPozxcaN/pBKRVCr+Vi92htxcXrs2SOz2v0IIYQNlU6F1BLj8wTzusyzcTSEkH9r3VrPqt2dOyIwDG3cIMQRFBfrsXOnM+v2zz9fgZAQdu9ANZnUdhK6hXezSt9/EfFrHpt/WPIQLb5sgRf3vwiNru5shCaEWO5KzhUEfhqIs5nVFy6O9opG5pxMrOy/0ipxTGozCRGeEVbpuyYCAR/btgng7W1ZovmffvLExo1WLupICCH1hEqlglxuWcJGPz8/TpPcVKd3dG+rJgT2c/HDpLaTADxKPnzoxUMoWViCsS3GQsg37V0mV56L8YfGw3eFL1ZfWE2JZkidZ2AYFGUn4GGuEip13XwPLi5X42FaDioKk6HRaTBi7wh0/aYrCpQF1bYT8ARY2msp0manoal/U87j4vF42DR4E5wETjVe6yZ2w6f9P+U8BnuJioqEszP7Map/02q1SE01bf8JIcQ+2BbbCw7mOBBCiE05zqpAQgghnKqoYHDyJLtEGR4eegwYQEk2COGKUChERETlieN79yQYNSoW58+7G2lVmU7Hw8svOyM11TaVnc5mVD/hbg1aRouJP03E/N/mQ8+wWwRJCKld7t1jVzXVx0eHiAh6XiG2J3IPQVSgM3qF9sLPT/2MPb33IM4rzuT26fL0GqvgcEGhU2D2hdlQaBXVXldaWoq7d++a3b+rpyvgxzY6E+WybPf/AWshX4ip7aYieWYyXu3wKmdhWYqSgpG6wtXVFSEhxrMD3rrljBdeiMWDB6ZNNH/9tTdWrSrmMjxCSC3y0kt52Lw5FVOmSNG6tQJCoWnPSp6eOnTp4mrl6Agh9dnCrguNHj+feR46xrKNOoQQYq7CQj1WrpSjdWsV2rRxwrp1bpBKHStBauPGanzwgRzp6XocP+6Cl15ygbOzacuSdDoDiovZbYiPjq48TiwUChETE4PIyEgIBOwWRVbl4UMn7Njx+MBYZqYTRo/2Qr9+5bh/X8np/QghhK0vr3xpdD7C38UfIR7WrvpBCKkOy6kilJYKkZTEvugWIYQ7X3yhgkLB/l1j4ULrvc/xeXxsemaTSYm72No/cj++G/4d3MRu1V5ngAHf3fsO3iu88e3Nb60WDyGk9lj6x1J0+roTytTVF0ie0HoCkmcmI8gtCLM7z8bgRoM5jcNJ4ITFTyzmtE9zRUc749NPyy3u59133SCT0XgUIYRYKjMz06L2fD4fAQEBHEVjmnld5mF40+FW6Xt2p9lwET1efMVD4oHtz21H+eJyzOw4ExKhaev4iyuKMe+3efBc7om3fn+L5tpJnaQrz0d6egpyS3QwGOp2Un+1RoNN14/AZ7k3DsQfqPH61kGtkTU3C+/0tG4Bvoa+DfFuz3drvO6dHu8g1CPUqrHYWnR0NEQibsaBKioqkJGRwUlfhBBuPVpXw25M+t/F9gghtQ99ggkhpI46epT9ooO+fVUQi9kl6CCEGOfu7g4/v382CPzwgxfGjYtBTo7YrH6kUhFGjmSgVlu3SkZueS4eljy06j2qs+rCKjz73bM1TvwTQmq/+/fZDT43bqziOBJCTOfkFYmoABH4fD6a+zTH932/x9GnjqKTfyfw4DjP0SnlKVhybUm1k4s///wzdDrzJ9gj2kZYf1SJbVKwEGB86/FInJGIrwZ/hXDPcE7DslTLli1ZTbxRUjDiiHx8fODj4/PYsSNHPDFhQrTZm7kXLfLC4cOlXIZHCKkFdDodxGI9OnVSYOZMKXbsSMW5c/H46qs0TJhQgBYtlODzjT/LdOxYAaGQprkIIdYzpsUYo1VE9QY9Vl9YbYeICCH1jVZrwP79SgwerEBICA8LF7rh1i3HKpTg7a3DpEkKnD+vQny8E95+2w2hoeYn98rP10OvZzeuVt3iRXd3dzRu3PixOTpLGAzAxx8HQ6czHuvJk+5o21aCuXNLIJfTphZCiH1tv73d6PEnY5+0cSSEkP/q3JldMlQAuHSJkoIRYm8ajQFffWXemr9/69tXiZYt2bc3RZx/HBZ2M57w3lKDGw3GkMZDMKr5KJS8UYKXW71c4zoJpVaJ8YfGo9n6ZkgtSbVKXIQQx6bUKNHx645478/3qi2m6CRwwqEXDmHLs1vA5z8a8+HxeNj27DaEeYRxFs+UdlM47Y+tCRO88dxz7NdJNG+uxObNqcjJSQPDWHddOSGE1GWlpaVQq9UW9RESEvL3zy5b4fF42PrsVjTxa8Jpv+5id0zvOL3K8xKhBGufXgvFYgXe6fEO3MXuJvUr18ix7MwyuC1zw/Sj06HS0V4AUjeU5yUgKasYckXd/39arpHj5T9eflS4XFd9YlongRM2P7MZN6beQJBbkE3im991PloGtqzyfBO/JpjVeZZNYrElPp+PBg0acPZzqKysDLm5bDdyEEKsJSdHB4bhfl0NIcTx0SeYEELqqIMH2WcVHzaMw0AIIX8LCgqCUOiCpUtD8M47YdBo2D2KXb3qitdes+5m+bMZZ63avymOJB1Bt2+6IU2WZu9QCCFWlJLCbqFj06a02JnYl7NvA0T6C8HjPRpUDXcLx+Yem/HHoD/QP6Q/BDz2VYG5dDz7OL558I3RcxqNBtu3G98UVBMXfbwlYZmG5VzSF+O/wNZntyLGO4bbeDji5OSExo0bm90uKysLBQUFVoiIEMuEhITAxcUFDAN88UUAFi0KZ/Wuo9PxMW6cK+7cUVghSkKIoyopKal0zMWFQbducsyZk4/du1Nw9mw81q1Lx7hxhWjatAI83qNxz+7d6Z2AEGJdfD4fAxoMMHpuw5UNNo6GEFKfXL+uxmuvKRASosfzz7vgyBFXaLWOs7xHKDSgf38ldu1SIieHj6+/dkWXLhLwLMiVn5XFPoFWaGj143B8Ph9BQUFo0qQJXFxcqr22Jr/+6oFLl9yqvUat5uOzz7wRF6fHzp2Vn3cJIcQWGIbBnfw7Rs9ZK0EIIcR0rVuL4eTELmnDlSvs1wQSQrixbZsSeXnsCuABwPz5HAZTjbeeeAsNfBpw2qdEKMHaAWv//r2QL8S2oduQOCMRTXxrTkRwv/A+YtfGYtJPk6Bn9JzGRghxXGczziLw00BcyblS7XWNfRsja24WhjQeUumcr4sv9gzfw8l6LIlQgkXdF1ncD1c2bXJGaKjGrDYCgQHTpkmxfXsKoqI0YBgGmZmZVoqQEELqvpycHIvai8VieHl5cROMmdyd3HFw5EG4iaufuzDH9A7T4SXxqvE6Pp+Ppb2XQvaGDJ8P+By+zr4m9a/Wq7Hhyga4f+yOMQfGQKaSWRYwIXbCaBTIyUhCeqEOen3df8f97uF36HGkB64XXa/x2r7RfVG4sBAT2060QWT/EAlE2PzMZvB5xufWv3j6C4gF1k3Ubi8CgQANGjT4e2+LpYqKilBUVMRJX4QQbmRns/9ZExbmGPvbCCHsOM6qQUIIIZzR6Qz49dfK1etN4eTEYOhQZ44jIoT8JTY2Cnl5lg8gffONNzZutN5GgjMZZ6zWtznuSu+iw9cdHCJJGSGEe2q1GocPJ2HfvmQsW5aF8eML0K1bOQICat7c36wZLXYm9ufq3wjhfo8PjvpIfLC6y2qcH3Iez0c/DzHf/hNHa++uxfn885WOf/PNN6wWM4QAkLa2PK4ascx/1bNtT27jsIIGDdgtvr537x7HkRDCjaioKHz3nT82bQqwqB+ZTIhhwwQoKDBvwSshpPYqLy+v8Rp3dwY9e5ZjwYI87N37EGfOJGDNmnSMGCG0QYSEkPru474fGz2eXpqOdFm6jaMhhNRl+fk6rFghR8uWKrRr54Qvv3RFYaFjPe80barGRx8pkJGhx2+/uWD0aBdIJNwsO7Jk8WJoqGl/T0KhEDExMYiMjIRAYP6CR6WSj5Urg02+PjPTCWPHeqNv33Lcu1d9pWxCCOHa/vj90Bsqf7e6id3QMrClHSIihPybSMRD06bsxsFv3KCNG4TYE8MY8Pnn7D+HzZur8OSTtlmf6yxyxleDvuK0z7eeeAvR3tGVjjf0bYj4GfH4+pmv4Sys/s9ngAFbbmyBzwofHLh/gNP4CCGOZ9GJReixtQfkWnm1173W4TUkzEiAn4tfldd0j+iOD3p/YHFM09pNQ4h7iMX9cMXXV4xNmyrA55u2HjIiQo1vv03B9OlSiP6Vo7K8vBxlZWVWipIQQuouqVRqcTKf8PBwjqJhp6l/U3wzxHjxYHNJhBLM7jzbrDZ8Ph+vd3odhQsLsWPoDoS6h5rUTsfosPvubviu8MXg3YORU2ZZcjZCbKmi6CEepmWjuExt71CsLl+Zj6HHh+Kjmx9By1S/z8dD7I4jo4/gxLgTnCYrNEeH0A6Y03lOpeMjm41Ev5h+dojIdsRiMWJiuCuqnpubi9LSUs76I4RYJjubXbEZHs+A4GDHWn9ECDEPJQUjhJA66NQpFYqK2D2k9eihgrs7/XggxFpEIj6+/16EkBDLN7nPmeOBS5eqnyhny5GScBUqC9F3e198e/Nbe4dCCOFYeXk5xGIDmjRR4ZlnZJg3Lx9ffZWOkycTceZMPL75JhWLFuVg+PBitGihhLPzPwNY7dqxr7pKCJc8ApsgzKfyol8XoQveafsOLj17CVObTIWIb7//ZxkweOPyG8hWZP997MaNG9i4cSOr/mYIgEwfrqKrgh5AzTlCKuHxeIiNjeU8HK6xTQqWlpbGbSCEcITP52PRIl80a1ZhcV8PH0rw3HMaaDTsJq4IIbWLSqUyu42npx59+5ajSRP7LBwihNQvTf2bItjNeAKYN0++aeNoCCF1jVZrwN69SgwcqER4OB9vvOGGO3ck9g7rMT4+OkyZIsfFiyrcv++EN990tcpiwZwcdkUgvL11EIvNq3bs7u6Oxo0bw8+v6k2mxnz1lT+kUvPH+H7/3R3t2knw5ptF0Ol0ZrcnhBA2vrz6pdHj3cO72zgSQkhV2rRh91xw544YDEMFtAixl2PHVLh/n/1726xZevD55r3DWKJvTF+MazWOk74a+jTEgq4Lqr1mUttJKHmjBCOajqixvzJ1GUbsG4H2m9rT5n9C6qAyVRlaf9Uay88thwFVP7s4C53x65hfsX7gepP6faP7G3gy9knWcTkLnfFG9zdYt7eWgQM9MXWqrMbrRowoxr59D9GqlfG1GZmZmRYntiGEkPpEo2GwcCEfWVns1/e6urrC2dk2iX+r83yz5zG/y3yL+5nYZiIC3QJZt3+p1UvImpuFI6OPoIGPaetkGQODI0lHEPZZGHpu64mkoiTW9yfE2gyMHoVZCUjJU0GtqfvFb9feXYsnf3kSD8se1njtwPCBuDD0Anp5N7RBZNVb3m85Xm3/KsQCMQQ8AZ5r+hy2PrvV3mHZhLOzMyIjIznrLzMzEwqFgrP+CCHs5eaymxvy9dVDJLLdmDQhhHuU9YUQQuqgAwfYT+YMHUqLhgixtpAQJ+zapYZYbNkm94oKAXbuVEDD8UBimboMt/JvcdqnpTR6DcYfGo83jr8BPUMT1oTUFUqlsspzXl56dOigwJgxxXjvvRzs3p2Cixfv48iRB1izJh3t2tl/ApWQv3iFNEWwt/HNkEK+EJOaTIKHyMPGUT1OppFhzsU5UOlVePDgAWbOnMlqE2IYgC5B3MdXiQyoZk1glUJCQuDi4sJ1NJxjmxQsNTWV40gI4Y6HhxCHDgEBAdVXAjPFw4diXLyYwUFUhBBHptPpwDDsxkaEQiH4fJriIoTYxittXjF6/FDiIRtHQgipK65eVWPaNDlCQvQYNcoFv/ziAq3WcZ5thEIGTz2lxJ49SuTmCrBxoxs6dbJusrL8fHbtAgLYzRnx+XwEBQWhSZMmJo0lpaQ4YccO85KI/ZtazYdWq0FCQgLy2f5hCSHEDJeyLhk9PrPTTBtHQgipSrt27DZglJUJkJBQ9zccEuKoVq1iv742OFiLceNsP5e96slV8HX2tbif9QPXw0noVON1TkIn7Bu5D7em3UKUV1SN11/LvYbwNeGYc2wO6zkDQohjOZlyEkGrgmpch9wioAVy5uXgyQamJ/ni8/jYMWwHgtzYLV56rcNrrNta26pVHoiLM57sy8dHhy++SMe77+bAxaXq70qDwUAFBwkhxAyrVsnw7bd+GDKkIVavDkR5uflzNeHh4VaIjJ2P+32MXlG9WLcX8oU1JgI21cCGA5E0MwnnJ5xHy8CWJrUxwIDT6afRaF0jtNvYDldzrnISCyFc0ZbnIC0tBXkyHQwGx9h/6yQWI8CTBx6P22QvD2QP0O9oP3yd+DUYVP+u7ufkh+/6fIflHZeD0RuQkqeGNCsRBr3la4nZEvAF2DBoA2RvyFC0sAgHRh6Ai8jx9xdwxd3dHSEhIZz1l5aWxvneVUKI+dgW2/Pzo73YhNR2jrOqkBBCCCcYxoAjR8Ss2goEBowYUfOkPSHEcr16ueOjj2Ss2zs5MfjggyxMnVqAlJQUThfEnM88D8bgmAtsVpxfgef2Podydbm9QyGEcEClUpl1PZ8PRERo0LdvOdzcjCdgIsRefEObwN/TeLWwn9J/QpG6yMYRVRYvi8fMHTMxfvx4lJaWsurjCwDJ7IuAmU7GrllMTAynYVhLbGwsq3aUFIw4uthYZ+zdq4JEwv59olUrJXbvfggfHzkyMzM5jI4Q4miKi4tZt3V1deUwEkIIqd5b3d8CD5UXUCq0Cvyc+LMdIiKE1EZ5eTp88okCzZur0KGDEzZudENhoWONcTZrpsLHHyuQmcng2DEXvPCCC8Ri21QLzc1ldx9/f8vms4RCIWJiYhAZGQmBQGD0GoMBWLYsGDod+7+LBg1UGD360fhgQUEB4uPjIZfLWfdHCCHVOZ95HhW6yhvJxXwxBjYcaIeICCHGdO7M/lnw8mXawEGIPdy8qcbvv7PfQPrqq2qbvWP9m5+LH1Y9ucqiPkY2G4n+sf3NatMysCVSZ6Vi9ZOrIRZUv6aZMTBYc2kN/D/1x6/Jv1oSKiHEzmb9Mgv9dvQz+k7yb/O7zsftV2/DS+Jl9j0CXAOw+7ndRsftq+MicsHCbgvNvp+tODsLsG2bHk5Oj4939epVhoMHk9Crl2nrpisqKlBUZP91aoQQ4ugKCzX49NNHxX61Wj62bvXH4MGNsHevN0ytt+vj4wOh0HHmeoR8Ib4b/h1C3NklghndYjQivSI5jalLeBfcmnYLd1+9i65hXU1udz3vOjp83QFN1jXByZSTnMZECBulufFIziqFQqm2dyh/83EXIdarBAGuKjTwLoXEid1+4n9jGAZLri7B8JPDkV9RfaEjHnh4ueHLODnwJJp5N3vsnFSmRWpaGjSl9l0D7CxyhqfE064x2IuPjw/8/NgXvfq3hAQnDB1aAbnc/IL0hBDusK0/FxhIc0qE1HaUFIwQQuqYq1c1yMpi9xLfsaMKAQGOMyBJSF03f74PRo2Smd0uNFSDHTtSMHToo7Y6nQ4ZGRmcxXU24yxnfVnDT4k/ofvW7kiXpds7FEKIhbRadtU/HGkClZB/CwhtCB+Px5Ps6hgdtj7YaqeI/kUD4BhwcfVFlJezS675EoChAO75cxhXVWTsmgUHB3MahrUEBbGrOkpJwUht0LOnO9atY5d4cNAgGbZsSf27Ik1paSkKCgq4DI8Q4kDYPpMAgJeXF3eBEEJIDVzELmgb3NboufdPv2/jaAghtYlGY8B33ykxYIAS4eF8LF7sinv3JPYO6zG+vjpMnSrHlStq3L0rwaJFrggKsv34K9vFi0FB3BS5cXd3R+PGjY0ujP7tNw9cuuRmUf9vvpkL0b/qCej1eqSlpSElJQU6U3cXEUKIiVZfWG30eOug1rYNhBBSrZYtxawLbFy54piF/gip61asYP/s7uamx4wZzhxGY55xrcahT3QfVm3dxG5Y/aTx5wtTzOkyB0ULi/B0g6drvLa4ohgDdg1A92+6o1BZyPqehBDbK1YWo+n6plh7eW2117mKXPHny39iZf+VFt2vd3RvvNPzHbPazOgwAwGuARbd19o6dHDD4sUyAICzsx7vvZeNtWsz4Otr3gbe3NxcaDQaK0RICCF1x1tvKVBc/Ph8SHGxEB98EIoRIxrg7Nnq5wV4PB7rdaDWFOgWiP3P74eIb7zIcVV44GFRt0VWigpoFtAM5yaeQ/rsdDwV+5TJyT0TixLRb0c/RK6JxP77+60WHyFV0avLkJ2ehMwiPfR6x0iqIhAIEOmtRIi7HPz/76txkjghxksGPw/287wX8y+i+8/d8WP6jzVeG+UWhSNPHcH8lvPB5xtPU6GsUCM5uxyynHjWMRHLBAUFwdPTsqRoly654uWXo/HLL54YMUIJrZbGpgmxl7w8dmmBAgIMHEdCCLE1SgpGCCF1zL597BcePPssvZQRYmtbtriheXOlydd361aO779/iKZNVY8dl8vlnG2WP5NxhpN+rOl2/m103NwRFzIv2DsUQghLDMPAYGA3sOTk5FTzRYTYAY/PR3BYDDzd/tnceTz7OLIUWfYLSg3gIoC1//8ny/Hc5gC++v+/37XF+jgZu2aOuMjCGEoKRuq6iRO9MW9esVltXn89Hx9/nAUnp8e/qPLz8y1KHEQIcVwqlarmi6rg6urKYSSEEFKzJT2WGD1+LfcaVDr232eEkLrp8mU1pk6VIzhYjxdfdMGvv7pAp3Oc5TlCIYOnn1bi+++VyMkR4Kuv3NC+vX3HXPPz2f39BAZyt3iRz+cjKCgITZo0gYuLCwBAqeRj5UrLktA//bQMHToojJ5TKpVISEhAXl6eRfcghJB/+z31d6PHJ7adaONICCHVEYl4iItjl6jhxg0Bx9EQQmqSna3DgQPsk3qNGVMBb2/7fXZ5PB6+GvQVnATmv/st7bUUoR6hFt3fTeyGo2OO4vyE8whxD6nx+nOZ5xC8KhhLfjc+JkcIcSxHHhxB6OpQJBQmVHtdu+B2yJufhx5RPTi575IeS9ArqpdJ17qKXLGg2wJO7mttb73lhVdeKcL+/Q8xfHgJeKblTKkkLS2N07gIIaQuuXdPia1bq06S8vChBK++GoVp0yKRlGT8GTooKKjKRDj21iW8Cz576jOz2gxrOgxN/ZtaKaJ/RHhG4NhLxyBdIMWIuBEQ8Ex7T8oozcDz+55H4KeB2Hh1o5WjJOQRZWESHqbnoqRcbe9Q/ubu4oSG3iVwd6782eELBAhyUyDKWwGh0PTkYBW6Ckw7Ow2Tz05Gubb6tbpCnhALWizA4acOI9wtvMa+GYZBVrEemWnJ0FeUmBwT4U54ePjfc9/m+uUXT0ybFgmF4tH/b7/+6oGJE8ug19MedELsQSq1/7oaQoh9OOabJyGEENZ+/pl9Ru+RI8UcRkIIMYWrqxD79gHe3jUn9Hv1VSnWr0+Hp6fx6gL5+flQKIxvKjCVWqfG5ezLFvVhK1KFFIN2D0Jmaaa9QyGEsGDJ95Wzs/2qpxJSEx5fgLDwCLi5SmAwGLAlcYvtg9ACeADgJwCrABwDIGffXTiAXwD8lXrDFknBPHXsqtIEBgZyHIl1+Pr6QiQyrxIbAM6SwBJiC8uXe2HIkNIar5NIGKxenYHJkwuqXMyanp5OVWwJqWM0Gg3rJMEikchhF1YSQuquZ5s8C1dR5YSEjIHBsjPL7BARIcTR5Obq8NFHcsTFqdGpkxM2bXKrVGHe3lq0UGH5cjmyshgcPeqCkSNdIBaz3FXIsYICdpvjrZEfXigUIiYmBpGRkTh+3Av5+eaP4fzFxUWP+fNrTvhVWFiI+Ph4yOUWDOIRQgiA1JJUlKgqb6zh8/iY0GaCHSIihFSnTRvj639qcveuGAxDmzgIsaVVq1TQaNiNSwuFBixYYP+1uQ19G+LtHm+b1aZ5QHPM7DiTsxi6hHdB9txsLO21FEJ+9e/MOkaHD898iOBVwTibcZazGAgh3Jry0xQM3jMYKn3VxTN44GFJjyW4OuUq3MRunN1bwBdg13O74OfiV+O1r3d63aTrHIFQyMf69S6IiLBsjYRGo0Fubi5HURFCSN2ycKEOWm3Nz/fnzrljxIgG+OCDYBQV/TOPIRQK4evra80QLfZah9fwUsuXTL5+cffFVoymMj8XP+x7fh/KFpVhUptJEAtMe2eSKqSYdmQavD7xwkenPwLDUGIawj2DXgdpViJS8tTQaLT2DgfAo2TfwZ4MIjxKIRRXn/DbzVmIBl7F8HCtOTH4zxk/44nDT+Bc/rkar23p0xKnBp/CuEbjTI77L6VyFZIz8qEoeGB2W2K5qKgoiMXmjU19+60vFi4Mr1T8bMcOL7z1lozD6AghpiooYDc+HRLiGOuCCCHs0a4JQgipQxISNEhIYFfFuWVLFaKj2S9oJoSw16SJC77+Wg4+3/iCPXd3PdavT8Nrr0khqGFPRFpaGnS6mhOMVeVa7jWodFVPzjuaElUJtt3cZu8wCCEsWJIUzM2Nu8VBhFgDTyBGRGgQrsouI7E0kfsb6ACoAZQByAOQBOASgKMAvgbwCYDdAK4DsDCHTjSAUwDC/v/7Imcgz92yPqvTwKcBdg7bid6BvVm1D7LGTlAr4PF4rBKYaTQa2hxKag2BgI9du1zRurWyymsCArT49tsU9O9fVmN/ycnJtIiHkDqkpIR95T+2lesIIcRSzzR6xujxLTfskAyaEOIQVCoGu3cr8dRTSkRECPD2226Ij2c3V2stfn46vPaaHNeuqXH7tgQLF7ohMNCxkpUBgFTKLilYSIj1lj25u7vjrbdC8O23JQgNZTfI9tprUgQEmDZvp9frkZaWhpSUFIvm+ggh9duKcyuMHm/k06jGxBuEENtr145du/JyARISqJAGIbYilzPYulXCuv3gwUrExto/KRgALOy2EHH+cSZf/+WgLyEScL+u+J2e70A6X4qekT1rvDZPnocntj6BJ3c8iTJVzXOKhBDbyJPnocHaBvj6xtfVXufh5IELEy/g/d7vWyWOEPcQ7Bi2o9pr3MXumNdlnlXuby3Ozs6cJJspKipCRUUFBxERQkjd8euvZTh61MPk6xmGh717fTFoUCNs2eIHtZqHsLCwmhvaGY/Hw8bBG9EysGWN1/aP6Y/2Ie1tEFVlLmIXfD3kayjeVGBB1wVwEZm2JqhUXYq3T70Nt4/dMP+3+dDqHSNxE6n9NGVZSE1LhVTmOP9PSZzEiPWWwddVCx7ftMQuQrETwt1LEeqpM1p8s0RVghdOvoDFVxZDzairv79AghUdV2BX713wEnux+SMAALRaHVLzNcjPfACDnsY2bYnP56NBgwYQ1LQpFQDDACtWBOHTT4OrvGb5ch+sXVvMZYiEkBoYDEBBAbu53uBgSgpGSG1HScEIIaQO2buX/YDDM8/QwmJC7Gn4cC/Mny+rdLxx4wp8//1D9OhhWvIHg8GAlJQU1nHUxqp6Ci37xEKEEPuxZLEJJQEgtQFf7IZtSVurvygbwHssfn0I4GMAqwF8BWAXgF8AXP5/n+yKilfSCcA5ALH/OnYvgJu+/yvCMwJbhmxB/PR4jGk5BsXF7CaKHL362r/5+PiwaldUVMRxJIRYj5ubED/+yEdwcOUJ/GbNlNiz5yHi4kxLSswwDCUGI6QOKS8vZ93W29ubw0gIIcR0y/ouM3o8pzwHCYUJNo6GEGJPFy+qMHmyAiEhDMaMccFvv7lAp3OcRXQiEYNBgxTYt0+JnBwB1q93Q9u2jpWs7N9KS/VQKtkmBbP+3/u4cd6Ij+fj9ddLIBab/k4aG6vC6NHmj+MolUokJCQgLy+P3oEJIWY7/OCw0eOjmo+ycSSEEFN07sw+Wd+FC7TWjxBb2bixAjIZ+8/rggXs3nesQSwQY+PgjSZd+3Krl9E9orvVYvF29sYf4//AibEn4OfiV+P1x1OOw2+lX5VJUAkhtnPg/gFEronEw5KH1V7XNbwr8ufno1NYJ6vGM6DBACzqtqjK87M6zYKvS+1ZT/SX4OBgiESWJ2ZMS0ujMSZCCPk/vZ7BwoXsnu0VCgHWrAnCzp3Btaa4tYvIBQdHHoSnk2e11y3uvthGEVVNyBdiRf8VKF9UjmV9ltUY818qdBVYdWEV3Ja5YeKhiVBoaG8RYU+WG4/krDIoK6pPkmVLfh5CxHiVQCIxP1k5j8+Dt6sesV4yOEv+mSvekrgFvY/2xj3ZvRr76BnUE2cGn8HT4U+bff+qFJRqkJKaDrUsnbM+Sc34fD4aNmwIHq/q+XWNhoc33gjDjh01j9PMm+eNfftkHEZICKlOaakeFRXs0gLZYl0NIcS6KCkYIYTUIT/9xH7xwMiRjlGJjJD6bNkyT/Tt+8+m2GeeKcGOHSkIDzcvA75Go0FWVharGM5knGHVzl4EPAFeavmSvcMghLCgVrObLOHz+UarlRDiaC5kXsDpzHP2DoMVPoBZAE4D+G+Nl7scJwULcQ/B+oHr8WDGA0xoMwFC/qMFF2yTgrm7u3MZnlWxjZXt3w0h9hIZKcG+fWq4uPyTsfDJJ0uxdWsqAgLM27RkybsOIcSxsH0fAChJMCHEfqK9oxHhGWH03OIT9l8oTQixrpwcHT78UI6mTdXo0kWCzZtdUVLCflO4NbRqpcKKFXJkZTH4+WdXjBjhApHI8Rf3ZWezT2gRGmqbzfXu7kJ8/rk3Ll9Wolcv0xLcvvlmLizZt1lYWIjExESLEuoSQuoXmUqG7PJso+dmd55t22AIISZp0UIMZ2d2CRquXDFwHA0hxBi93oB169g/2HfpUoGuXc3fuGtN3SO6Y0rbKdVe4yXxwor+tkm+1TemL/Ln5WNB1wUQ8Kp/x9MyWrxx4g1EronE9dzrNomPEPIPhmEw9uBYjNg3Ahp91euaeeBhWZ9lODfhHCRC23wHvt/7fXQN71rpuIeTB+Z2mWuTGKwhOjra4j70ej2tsyCEkP/buLEUt2+zX3Pi7a3D4sW1IyHYX2J9YrHzuZ1Vnu8c1hm9onrZLqAa8Pl8LH5iMWSLZNg4aCMCXQNNaqdhNPjm5jfw/MQTI/aOQKGy0MqRkrpEX1GCzLQkZBXpHSaZqlAoRJSXAkFuCvAFls1JO0mcEOMpQ7khEwOPDcSau2ugN1RfgdxT5IktT2zBum7rrPJMX6FS42GOAsU58TA4yN95fSAUChEbG2v0XHk5H6++Goljx7xM6kun42H8eHf8+SfNZRNiC1lZ1X9vV8dW62oIIdbjWCsUCSGEsJadrcP16+wqPMfEaNCyJSUFI8TeBAI+9uxxQteuKowaVYxRo4pRTQL2aslkMri5ucHLy8vkNoyBwbmM2pO8JNY7FluGbEHzgOb2DoUQwoJOx26jl1BIr7Gkdlh+brm9Q2ClBYCvAFReJvfIPX9u7hOgFmHxkBWY2m4qnEXOlc4XFRWx6tfDw8PS0GyGbaxs/24Isadu3dzx5ZcleOUVL0ydWoBp06Rgm+OzrKwMUqkUAQEcZykkhNiMRqOBwcBu06JIJKIkwYQQu5rWbhre/P3NSsePPTwGg8FQbUVNQkjto1IxOHBAhW3bgD/+cIZO53gbPfz9tRg5Uo2JE0Vo08axNpqbKjub/ULvsDDbLl5s1coNp04BO3aUYPFiV2RnG59jf/ppGTp2tLwavV6vR3p6OlxcXBAREUHj44SQaq25uMbo8VD3UHhJvGwaCyHENEIhD82aqXD1auW5sprcukWbOAixhb17K5CWxj5pwJw5jpnA75N+n+BQ4iHkK/KNnl/WZxkCXG03F8fn87Gi/wrM6zIPQ74bgsvZl6u9PqM0A+02tcOzjZ/FdyO+s1nSIULqs6yyLHTb0g0ZZRnVXucl8cKpcafQOri1bQL7P5FAhO+Gf4e+2/siqTjp7+Obn9kMb2dvm8bCJbFYjKCgIOTl5VnUT1lZGcrLy2tVsUVCCOFaebkOH37oalEfc+eWISDAh6OIbGdwo8FY0mMJPjj9QaVzi7svdtg57intp2BK+ynYf38/5v82H+ml6TW20Rv0OBB/AAfjD6J/TH9semYTIr0ibRCtbRUWFiI5ORnJycnIyspCVlYWsrOzUVhYCJlMhpKSEsjlcmg0Gmg0j5K5Ojk5QSKRQCKRwNPTE4GBgQgKCkJQUBAaNWqEuLg4xMXFwd+fo4XitYRC+gBZJQy0WvZFjLjm4eqEEOcCCMXs9gn/F8MwmHN2Fb64vRcGVD9OwQMPw6OGY0mbJVZfo8cwDHKKAbk6BSGBXhC6+Fn1fuQRiUSCqKgopKWl/X1MKhXi1Vcj8eCBeePUSqUAw4dL8OefSjRrRoVeCbGm7Gz2ScFsva6GEMI9Wi1GCCF1xN69ahgM7AYoBw3SAKCkYIQ4An9/MS5cKEVeXrHFfWVlZcHZ2RlOTqYNBN4vuI8SVYnF97W2PtF9MLvTbAxsOBACPr2UElIbsU0IBjwahCbE0d0vuI9DiYfsHYZZhN7A53JgmhaobgrvroXrfr0rgDfOAjMua+G6bHaV15WUsHsmqU2L19jGWlxs+XMiIfYwbpw3wsKyERBg+TuHVCqFRCKpVYkACSH/sORnmZub4yXiIITUL/O6zMOSU0sqVU1V6VTYc3cPRrcYbafICCFcYRgDLl5UY8sWHQ4elEAmc7zFq2Ixg6eeUmH8eOCZZ5whEonsHZJFcnLYJQWTSBh4etonYezYsd4YOlSHJUtK8NVXnlCr/4nDxUWPefMs26j5X0qlEgkJCfDz80NAQAAlyiWEGPX93e+NHn+m0TM2joQQYo7WrRlcvWp+uzt3xNDrDRAIHHPjLiF1xWefsf+MxcRo8Nxz5if9swVvZ298PuBzvHDghUrn2oe0x5R2U+wQFRDoFohLky7hp8SfMO6HcShVl1Z7/aHEQ/Be7o3VT67Gqx1etVGUhNQ/u27vwvhD46Fjql/z1zuqN46NOQax0D57EsI9w3F58mXsvL0T+fJ8DG0yFO1C2tklFi75+fmhtLQUFRUVFvWTkZGBJk2aQCCgddeEkPrpgw/KkZvLPlFkTIwKCxd6cReQjb3b810kFSfhu7vf/X1sbMuxtWLscETcCIyIG4GTKScx45cZSChMqLGNAQb8lvIboj6PQpewLtj0zCY0D2hug2i5pVAocOPGDdy6dQt37tzB7du3ER8fD5lMZnZfSqUSSqUSAJCTk4P4+Hij14WEhKBnz57o0aMH+vTpg0aNGlnyR3BYBr0G0pxUFJRq7R3K3/h8PoI9NPCSqMDjc5MQ7GLeHTz781xIK2petxvsEowNXTeggWcDTu5tqjKFCsqMQoT5FMEtoLFN711fubm5ISwsDFlZWUhJccK0aZHIzWX3HldUJMKgQQzOnlUhLIz2ehFiLTk57IpPODsz8PSkcQBCajtKCkYIIXXEoUPsFx88/zz9OCDEkfj5eUKrVaKoqMjivlJSUtC4cWOTNgecST9j8f2sxUnghJdavoRZnWahRWALe4dDCLFQeXk567YuLo63CY+Q/1pxboW9QzANH0ADAO0AXSPgxxRg6k6gqiJABrBPCuahAuZeAGZfBDzV/z84ZQqwaVPl+xgMUKlU7O5TixIEsY3V0kV+hNhTr17BSE5W/F19zhIZGRlo0KABJQwlpBaSy+Ws23p5eXEXCCGEsCAWitE5rDPOZZ6rdG752eWUFIyQWiwzU4utWzXYtUuIBw8c8z2jdWsVxo7VY9w4Cfz86s44aW4uu3b+/jrw+fYrfOXuLsSaNd6YOFGBWbMYnDr1KAH8q69KERhonWrihYWFKCkpQVhYWK1Kjk8IsT4do8OD4gdGzy3otsDG0RBCzNG+PbB5s/ntFAoB4uM1aN6cCoESYi2nT6tw5Qr7pF4zZ2ohEDjuZ3Rks5HYH78f++/v//uYi8gFGwdvtHuhziGNh6B4YTGmH52OTdc3gTFUnUxapVPhtaOv4bOLn+HQC4fQ1L+pDSMlpG5jGAYj94/EgfgD1V7H5/Gx6slVmN15tm0Cq4aXxAszOs6wdxici4yMRGJiIgwGdpuAgUfrsdLT0xETE8NhZIQQUjukp6uwfr1la0s/+EAFsdgx549MIeALsPu53RjedDhu5t1E+5D2GNRwEHi82pNsvG9MX8RPj8f13OuYcngKruVeM6ndhawLaPFlC7QIaIEvB32JbhHdrBwpe4mJiThz5gwuXryIy5cv4/79+9Dr9TU35FBOTg727NmDPXv2AACaN2+OkSNH4oUXXkDDhg1tGoul0tLSEB0dbe8wrMZQVHWlAR2jw+hf38K+5JM19sPn8TG18VS81uw1LsMzi06nQ5oU8FU9QFBoFHgOPJ5SV3h5eaGkRIsJE7xQVGRZEbL0dCcMGqTEmTM6eHjQPnVCrIFtsb2AAB0A+k4lpLaj0pGEEFIHFBfrce4cu8HFoCAtunXjJns4IYQ7wcHBnGxu1+v1SEtLM+nas5lnLb4f14LdgvFh7w+ROScTm4dspoRghNQRCoWCddvalPCH/I+9+w5vqvziAP7NTZo2Sffeg7a0bBEQkCHgj6GAIFumgKAgCAiCA8Ute8hwskEZgspQUESW7L1HKXTvnWbn5vcHLmzaJjc3s+fzPH2Qm/u+91Db5I7znlM3pZelY/OVzfYOo3oCAA0A9AEwA8BQAEkPtv8aD8zuUv3QPE+g2Mz1pjIN8MZR4N4yYM7hfxUEA4CNG42O0Wq5d11yd3eeaxuusfJRTIkQe2EYBvHx8SYVLTZFamqqzZNeCCGWU6vVte9UDZlMxmMkhBDCzXud3jO6/Ur+FZSrym0cDSHEEkoliw0bKvG//ykQFyfCnDky3L7tWPcWgoO1mDRJjkuXNLhwwQOvvipDYKBrdfHMyeG2mDEoiFvSI9+aNJHh4EEvbNxYgieeKMewYZY3/amJXq9HWloaUlJSUV5uneJjhBDns+bCGqPFMvw8/FDPjxZ8E+LI2rblvuDqxAnuz9QIIbVbsID7M6iAAB3Gj+deUMwWBAIBNvfbjFntZqFJcBP0TOyJX0f8ikfDHrV3aAAePFf8rNdnSH0lFU2Dm9a6/53iO2i0qhGG7RgGrZ7eHwmx1L2Se4hcEllrQbBAaSCuvHTFIQqCuTKRSITIyEiL51EoFCguLuYhIkIIcS5fflkOhYL7s5V27eQYPNj589cFAgEGNByAD7t8iL7JfeEmtKwIjL08GvYozo4/i9uTbuOJmCcggGmFza7kX0H7te2R8GkC9tzaY+UoTXPr1i2sXLkSAwYMQEhICJKTkzFu3DisXr0aV65ccYjcyKtXr+Kdd95BUlISnn76afz666/2DonU4se7h+D3ZReTCoI18U/AsWcP27Ug2L8VlWuQnp4OVsN9vRExXVxcEN5+u4KXuS5flmLMGDlY1jGe4RPianJzuY0LCrL/uQQhxHJUFIwQQlzAzp0q6HTc3tKfekoNhnGeyv6E1CX16tXjZbG8QqFAXl5erfsdTTtq8bH40jK8JTb324z7U+/jrY5vIUgWZO+QCCE8UqlUnMeKxVShnji2RccXQcc68GI8A4C7AK4BuASg9OGX53YAdlTTOPfneNMP46EFXj0OpC4DPv4N8Fca2UmlAg4dqrLZkqJXIpHzdJfhGqslRdMIcQRCoZC3zrMsy+Lu3bv0EJkQJ6JSqTh3sKZrAUKIo3iy3pPwdq+a9G2AAe8dNl4wjBDiOFjWgGPHVBg9uhKhoQaMGiXDb79Jodc7zvNSd3cWffpU4vvvFcjKEmH5ck80beq650K5udy+98HBjnUtOHy4Hw4ckMLX1zaFbL/5xh0NGrBYu7YEer1jfS8IIba35sIao9u7xNXQCYQQ4hAaNXKDVMptUca5c9zusxFCanf7tgY//WRmx6x/GTtWBanU8ZdpiIVizP3fXFyecBl7hu7B41GP2zukKmJ8Y3BpwiVs6rcJMrear7cMMOCbq9/Ab54fNl3aZKMICXE9X5//GonLE5Ejz6lxv6cSnkLO9Bw0DG5oo8jqNh8fH3h5eVk8T3Z2NjUkJITUKWVlZXjuuXx89tl9xMebn7/OMAbMn2+AUOj45/d1TWJAIg49fwiZ0zLRK7EXGIFp/4/ultxF7y29EbE4AhsubbBylMaNGTMG0dHRSE5OxqRJk7Bjxw7k5+fbJRZTGQwG/Pzzz+jWrRseffRR/P777/YOifxHuUaOTjvGo+9PMyDXKmrc113ohi86v4nLw7agTZgYwT6O86y8olKF+xnZYDX8FKsiNZsyxR+zZlleODguToXx4/OQkpJCOd2EWAHXvJqQEPp9JMQV0NUoIYS4gB9+4D62f3/X6iRNiCthGAZxcXG8zFVQUICKiupviKWXpSOjPIOXY3ElFAgxqNEg/DHmD5x+4TSGNhkKsdB1F7kQUpdxTSoRCum8hTi2QkUhvjr/lb3DqJ0GQAqA/QCWAvgawEUAf9aaem4AcCnk4SE6Bni9a+1Tu+mBl08Ddz8FFv0CBNfWqGfZsqrh1ZGiYG5u3LqsUWIecQUeHh6Ijo7mZS6NRoOMDPteyxBCTFdSUsJ5rKenJ4+REEKIZQY0GGB0+8bLG20cCSHEVOnpWsyZI0dysgYdOnhg3ToZyssd637jo4+qsGRJJbKzDfjhBxn69pVCJHKcBGxryc/n9m8MDXW8IhgikQhxcXGIi4uz6n2qsjIhli4NQXa2GGPG+KFTJwUuXJBb7XiEEMd3IeeC0e3T2kyzcSSEEHMJhQI0bszt2c+FC451PkuIK1m4UAOW5Xat4u7OYupUD54jIsOaDEPp66UY3mQ4BKj5/02lthIjfhiBpp81RVppmo0iJMT56Vgden3TC+N2j4PeUH3RUqFAiM97fo6fhv0EEeM8eTquICoqipdm0/fv37c8GEIIcQIsyyIrKwsA0L69HN99l4LZs7Ph52d649+BA8vw+OOWF2Uk1hPuHY7dQ3ejeGYxhjUZZvL5SXZFNkb9MAqB8wOx9ORSmxaxWbt2rVPnPF64cAFdunRBnz59kJ6ebu9wCIAvruxA0FddcTj7fK37do5oicIXfsP4xv0AAAJGiGCZCvX8KiAWc8tt55tCqUZ+Xs1Figl/PvrIF8OHl3Ie/8gjldi48R7Cw7XQaDRIS6N7MYTwLS+P272AkBDHy6shhJiPioIRQoiTUyhY/P47twQCHx8dunWj5ANCHJlEIkFYWBgvc6Wnp0OnM/4A42jaUV6OwYWfhx9mPj4TqVNSsXXAVjwe9TgEAtdf5EJIXcWyLOeHZmIxFQokjm35qeVQ6pT2DsN8mQB+ALAEwB+AlgWavwTMexxQ/vls/MOOQH4NdTiELPDCOeDOp8CKn4BwU5vznD1bZZNWqzUv/n9xpqJgXGOlomDEVXh7eyM4OJiXuSoqKpCbm8vLXIQQ65LLuRcq8PPz4zESQgixzEdPfmR0e4GiAGezq17nEELsQ6FgsX59Jbp0USAuToT33/fEnTvu9g7rIaGhWkyZIseVKxqcO+eBqVNl8PevW8Ud8vK4/XsdOXlRJpMhOTmZt+ve/1q+PBglJf/cWzp2zBOtW0vx8sslKC83fTETIcQ1/HTnJ2jYqveNJSIJ2kW3s0NEhBBzPfJI9UU3anL1qhh6veOeExHirIqK9Ni8WcJ5/KBBSoSFOc9za2ciYkTY2G8jrr98HfX969e6/5X8K4hbFocXd79o0wX+hDijW4W3EL4oHHvv7K1xv1DPUNyadAsvtnzRRpGRf2MYBrGxsRbPo9FokJlJORaEENdXUFDw0HmgSAQMHlyMvXtvY/ToAri51XyOKJPpMW8erblzFj4ePtjUbxMq3qjApFaT4C407ZlgkbII0/ZPg888H7zz+zvQs9zu09RFu3btQtOmTbFp0yZ7h1JnZcrz0HTzYLx06BNo2Jrz773cpNjdawkO9vscnmJpldelEjHifYrh5+UYa3YKyzRQldyzdxh1glDIYM0ab3TrVm722C5dyvHVV/fh4/PPe2dlZaVTFz4kxBEVFHArCcTTsnRCiJ1RUTBCCHFye/eqoFBwS5Tu2lUNNzcqvEOIowsICIC3t7fF8xgMBty9e9dogsux9GMWz2+u5MBkfNbzM2RMy8C8rvMQ7RNt8xgIIbanVqs5j5VIuCddEmJtco0cy08vt3cYllEA+BXAMsBwDXi9GxAzDRjXG/igYzVjDMDgK8DNFcBXu4GYMjOPmZdXZZMlRa+oKBghziU4OJiXax0AKCwsRFmZuW9ChBBb4/o5JhAI6HqAEOJQQj1DkeCfYPS12Qdn2zgaQsi/sawBR46oMGpUJcLCDHj+eRl+/10KlnWcZ6IeHiyefbYSu3YpkZEhwtKlnmjc2DGSq+2hoIDbs+7wcJ4DsYLg4GAkJydDJpPxNue1ax7Yts2/ynatlsGqVX5ITmaxenUJ9Hpa8E5IXbH8lPFnE60jWts4EkIIVy1bcjtXVSiEuHaNe7MdQohxy5YpOefkCgQGzJzpxnNE5L+SA5Nxa/ItfNHzC3iIai7SYIABX57/Ev7z/fH9je9tFCEhzmX5qeVouKohChQFNe73bPKzyJqWhXj/eBtFRoyRSqXw9696b8hUBgOwZ48P2rf3Q1qaisfICCHEsbAsi8LCQqOveXmxePXVPOzadQfdu1efb/byy+WIiaGiYM7GQ+SB5U8vh/xNOWZ3mA1PcQ0dkf9FrpHjgyMfwPNjT0z6aRJUOvqcNEVZWRlGjBiBUaNGUX6zjb1z8jPEruuNK8V3a913SGI3FI8/iF5xHWrcT+gmRoRXBaJ8VRAK7d/IqqCMivTZipsbgx07pGjRotLkMYMGFWHx4nR4eFRtXFFWVoY8I+tECCHc5Odze08ODXWcXClCCHdUFIwQQpzczp3cu/3160cndIQ4i8jISLi5WZ4wpNVqkZmZWWX70fSjFs9tqh4JPbBv2D5cm3gNL7V8CTIxfwshCCGOTy6Xcx7L58IpQvi2+fJmlKhK7B0GP+QAvgPwLVAgAL5uAbBG7iAxLPD9t8CWHUBCMcdjafldqCAQOM81DsNwuy1nMFDHd+JaIiMj4e5uWle+2mRkZEClomQcQhyVUqnk/DkmFtfdIhmEEMc1pfUUo9sP3jtotDEDIcS60tK0eOcdOerX1+CJJzywYYMM5eX2T1T+t5YtlVi6tBJZWQbs3ClD794SiETOcy/DGnQ6A4qLuf1/CgtzjpQnkUiEuLg4xMXFWVzQnmWBjz8Oh8FQ/c9NTo4YL7zgh06dFDh/nvv9eEKI8ziWYbwB2IRWE2wcCSGEqzZtuOcDnThBRcEI4ZNKxeLLL7k/t3rySWWdLvpsa+NbjkfJrBI8m/xsrfuWqcvQb1s/tPqyFXLluTaIjhDHp9Fp8L8N/8Mr+14Ba6j+nraIEWF93/XYOXgn51wXwq/w8HBOOeVlZQxmzozEG29EIS3NHaNGaamwPCHEZWVmZtaaoxIZqcXChRnYsCEVjRsrHnotPFyDt9/2smaIxMpEjAgfdPkAZbPKsKT7EgRIAkwap9KrsPLMSnh94oXhO4ejXFVu5Uhdw4YNG9C9e3eUlpbaO5Q644Mzq6Gv4TweAEKk/jg1cB2+7fExRIzpzyl9pAIk+BZDJuUnt5cruVIDg15n1xjqEk9PEfbudUNCQu152JMn52H27BzUVDuuoKAAxcVcF5kQQv6i0RhQUsI1r6Zu5yQR4irojiwhhDgxnc6AX37hdnEtkbB45hnqWECIs2AYBvHx8bwUuigvL3/opkqxshjXCq5ZPG9NpG5STGg5ATdevoGfh/2M7gndwQjoVJSQukihUNS+UzU8PU3r1EOIPZzKOmXvEPh3C8AXALKMv7zhe6DvbR6OU/Bwp1FLCqHqdM7z4E/LsSAaFUUhruavax2+kodTU1Od6r2AkLrk+vUylJVx+12nawFCiCOa2HIi3Jiq1y9aVouvzn9lh4gIqXsUChZr1yrQqZMC9eqJ8MEHnrh7176Jyf8VFqbFtGlyXL2qwZkzEkyZIoO/v2MVK7OnnBwdWJbbs6+ICOd6ziSTyZCcnIzg4GDOc/z4oy8uX5aatO+xY55o00aKiRNLUFZG18mEuKpLuZcg11QtACgUCDGgwQA7REQI4aJhQzfIZHpOY8+do2YyhPBp3Tol8vK4P69+7TVaZGVrHiIP7By8E+fHn0eMT0yt+5/NOYvIxZGY/st0KuxP6rTLeZcRtigMv937rcb9Ir0jcfeVuxjZbKSNIiOmiouLM2v/Eydk6NcvEfv2+f697fBhL8yfX8pvYIQQ4gA0Gg3Ky00v5NS8uQKbN6di7twMhIZqAACzZ8vh6WlZow/iGBiGwdQ2U1E4sxDr+65HuFe4SeN0rA6br2yG33w/9P6mNxUXNsGhQ4fQsWNHlJS4SJNtJyaAANMeGYrs0fvwWGhjTnO4uXsg1rsUoT72a9qt17NQltyzy7HrqpAQMfbsYREcbHydg1BowAcfZGL8+AKY8mORnZ2NiooKnqMkpG7JydHV2DiuJs6WV0MIMY5+kwkhxIn99psKxcXcbjI+8YQKMhl9DBDiTEQiEaKjo3mZKzs7G6WlSgDAH+l/8DKnMVHeUZj/v/nInJaJVT1XITkw2WrHIoQ4B5Wq9q4RxggEAghraiNBiJ3F+8WbPygCwLtmfr0N4A0ArwGYCGAUgL4A2gGoD8C0NYGmKwOwDsDdhzc/fwEYdoWnY+TlPfRXKgpWM0u+P4Q4KoZhkJCQwMtcubkMXn21lLrZEuKA5s/3QIcODTBoUDwWLgzFkSOekMtNuz/p5+dn5egIIcR8DMPgiZgnjL625OQSG0dDSN3BsgYcOqTCiBGVCA01YMwYKQ4flnIuLGUNHh4s+vevxJ49SmRkiLB4sScaNaIi38ZkZnIrfgEAERHOeb84ODgYycnJkMlkZo0rKxNiyZJQs8ZotQw++8wPycksVq8uoWtlQlzQwuMLjW5vEtKEtyL8hBDrEwoFaNJEw2nshQvOeU5EiCNiWQOWLeO+6L9pUxX+9z9q1GsvzcOa4/7U+1jYdSHEwpqvwfUGPRafWIzghcH49e6vNoqQEMcx/4/5aP5FcxSrimvcb2jjoUibkoZoH37ylgm/xGIxQkJCat1PpRJg3rxQjB8fh/z8qjlHH3zgi/PnqxabJoQQZ5aRkWH2GIYBevYsw65dd/Duu1kYP96X/8CI3Y1sNhJZr2Zh95DdJud9swYWe+7sQfiicHRa1wkpxSlWjtK5XblyBb169bKokTyxTKJvNO6M2InFHV61+DmBgGEQKFOjnm8Z3O3U1FqtcZ61Aa4iKUmKH35Qwcvr4Wf5EgmL5cvT0LdvqVnzpaWlQalU8hghIXVLXcyrIYQ8jDI/CCHEie3Ywf1krm9f6hJIiDPy8vJCYGCgRXNotQJ88kkYunVjoVazOJZ+jKfo/tEuqh22DdiG1CmpeK3da/CT0OJdQsgDXAv2iETUbYk4thcefQENAhtYbX4BBHBn3OHl4QV/b3+EBIYgMi4ScU3j0KhLMlqNaoX2r7dHlwFA+15Ao0cA3mpnaAF8A+DP59gyNbD8Z57mBgC1+qG/ii14aOhMRcG4xmrJ94cQRyYWixETU3v37ppcv+6B556Lx/LlgZg1q5SfwAghvDl5UgKDQYAbNyRYvz4QL78ci/btG2DYsHpYujQEx497QqGoWsxDIBDAw4MWUhFCHNOHXT40uv1W0S3ky/NtHA0hru3+fS3efluOhAQtOnf2wKZNMlRUOFby2mOPKfHpp5XIzjbgu+9k6NlTAqHQcYqVOaLsbG5FqgQCA8LDnfeesUgkQlxcHOLi4ky+9718eTBKSrj9m3NzxZg+3Qtnz96hTsyEuJj9d/cb3T6y6UgbR0IIsVSzZtzyAK9dE0OnozxAQvjw008q3Lzpznn81KksGIauAe1t+uPTUTSzCN3ju9e6b5GyCN02dcMTa59AsaLm4kiEuAKVToUOazpg1oFZYA3V35NxY9ywdcBWbO6/mYoNO7igoKAan6PevOmBIUPisWlT9XnnSiWD559noNFQMXlCiGuoqKiwqPCIRGLA5MkSCIX0GejKeiX1QsorKTg2+hiaBDcxaYwBBhxOO4zE5Ylo+WVLnMs+Z+Uondfx48cxciTdo7Y1ESPE/Hav4PaInYj3jeJ1bonEHXHeRRCJHOv5PLGetm29sHFjBdzcHlwn+PvrsGbNPXTowK2gcGpqKjQabo0xCKnruObVMIwBYWHOm1dDCPkH/SYTQoiTYlkD9u7lloAgEhnQvz8tpCPEWYWGhkKhUHDqnJCfL8L06VG4ePFB9/GJE0tw4/GjvMQlYkQY3GgwprSeglYRrXiZkxDiWliWhcHALSHZ3Z174iUhthDiGYLjY49j7+29uFF4A2Kh+O8vd6H7gz9F7jX+/a9t2pIMVKgk0Kr1EDNiuDFuEDFVb+F4yTwQ5GWANDDxn41jHk4yvgZgMYDNAB4uvWUmPYBtAEYBcULAk89nMkFBD/3Vza1qV0pTUVEwQpybl5cXQkJCkJeXZ/bYAwe88cYbkVCpHiRkLVrkj6SkEowbRwWKCXEEd+4okZ4uqbJdrxfg8mUpLl+WYvXqIIhELJo0UaJVq0o89lglmjVTwMeHPvsIIY6rdWRrBEgCUKQsqvLaO7+/g897f26HqAhxHZWVLL79VokNGxgcO+YBg4H7PQNrCQ/XYsgQNV54QYwGDaqe75CaZWdzu1/s76+Hm5vzpzzJZDIkJycjPz8f+fnVF5O8ft0D27f7W3SsV17Jg0ymRVpaGiQSCWJiYqgZByFOLrs8GwWKgirbBRBgQqsJdoiIEGKJVq0E+OIL88cplUJcuaJG8+b0PJ0QSy1axL3AXni4FsOH0zWho/AUe2Lf8H04ln4MA7cPRK48t8b9j6QfQciiEMzuMBtzOs2xUZSE2NaZ7DP434b/oVxdXuN+cb5xOD72OEI9Q20UGbFUbGwsbt269VBepl4PrFsXiBUrgqHT1V7U5soVKWbOLMHSpZRfQQhxfllZWRaNd3Nzg7+/ZffjifNoF90OlydcxtW8qxi/ZzxOZJ4wady5nHNo+VVLJAcmY+XTK9ElrouVI31YSEgIGjVqhHr16iE2NhYxMTEIDQ1FYGAgAgMD4enpCXd3d7i7u4NlWajVaqhUKhQUFKCgoABpaWm4ffs2rl69ilOnTiE7O5v3GHfs2IEvv/wS48eP531uUtVjIY2wt9cyBEp9rTK/QqlBZqU/dDqtVeYnjqlPH1+sWFGCjz+WYtWqNERHc19AYjAYkJKSgqSkJAiFVFyOEHNYkldDOSGEuAb6TSaEECd16pQa2dncCnu1bq1CYCAlIBDizP56iKvXm94p9OxZKWbMiEJR0T+LZtZs8AATfcaiWAKlgXipxUuY0GoCwr3CLZqLEOLazp1ToG/f+qhfX4XERBXq11ehfn01oqPVqO0+k1QqtU2QhFjA18MXw5oOs3wi/wQAgKr4HioUGmj0DDQ6AAIBxCID3Bk9vL2kEPtEVx3LMAD7TyeIRgBWA5gNYAaAnZbEpQGwFbg/GmAFAMNX0/GIiIf+akkRQGfqIMM1VioKRlxdUFAQVCoVysrKTNrfYAC+/joIn34aUuW1V17xQWJiBTp18uI7TEKImX76SQmg9vuROh2DCxdkuHBBhi+/BMRiFlu3liAxsdahhBBiN0ObDMXy08urbN96fSsVBSOEA5Y14NAhNVav1mPXLg/I5TJ7h1SFRMKiZ08lxoxh0K2bB4RCxytW5ixycrjdYAoK0sOVUp6Cg4Ph7++PjIwMVFZWPvQaywIffRQOlhVUM7p2jRop0L9/yd9/VyqVuHnzJgICAhASEgKGqX1xKCHE8Sw6scjo9ji/OHiIqFEgIc6mTRvu55QnT+qoKBghFjp/Xo1Dh7jnpUyYoLao+RWxjvbR7ZEzPQdzfp+Dj499DB1bfeMuHavDu4ffxRfnvsB3g77D41GP2zBSQqzrvUPv4b3D78GAmu/DjG0+Fl/2+pLuEzgZkUiEiIgIZGZmAgCystzw5puROH/evPuqK1b44umny9Ctm481wiSEEJsoKiqyuLFsZGQkT9EQZ9I4pDGOjz2OtNI0jNs9DgdSD9R67gQANwtv4skNTyLGJwaLui1C/4b9eY8tISEBrVq1QsuWLdGyZUs0btzYrMJ1DMNAJBJBJpMhICAAycnJ6NChw0P7pKSkYNeuXdi2bRtOnTrFW+zTpk3Dk08+ifj4eN7mJA+TiNzxdZfZGJr0lFXmN7B6FCplyCtzB2CfgmDuYtd5JuyMxo/3Q+fO6VCrLV+jwbIsUlJSkJiYSNedhJiBa15NcLAOrpRXQ0hdRr/JhBDipLZv536jsk8f04sIEUIcE8MwqFevHu7cuVPrvgYDsHFjABYvDoVe/58FAxGnwYLb+0mT4CaY2mYqnmv8HCRuVGiQEFK7c+e0yM72RHa2GIcOef+9XSxmER+v/rtQ2IM/1QgI0EHw59uWp6ennaImxH48/OPgYW7DMW9voLS0yuY4ADvwoCjYCwBKquxhonJA/hOQ4g/UL+I6yb8wDPCfbi8CgQBubm7Qas1/eFhRUYGQkKqFgRxRRUUFp3EeHrSYi7i+qKiov7vT1UStFmDOnAjs3etr9HWVisHgwR744w8lEhLomoUQezpyhFt3N61WgDZt6FqAEOLY3u/8PlacXlElKbhUVYoj94+gY2xHO0VGiHO5e1eD1as1+PZbMe7fd8xr3zZtlBg+nMWwYR7w9XW8YmXOKDeX27jgYLb2nZyMSCRCXFwcKisrkZGR8ffCpR9/9MXly9yLEwgEBrz1Vs5/b8EBeLBAqqSkBFFRUfDyooLahDibnTeNtwHp34D/hWeEEOtLTnaDl5ceFRXm30c7d84KARFSx8yfrwPArbiel5cekybRcyhH9l7n9zCl9RT03doXR9OP1rhvjjwH7da0Q/f47vhu0HfwFNMzCuK8FBoFOq3vhDPZNTcOdhe6Y9vAbXgm6RnbBEZ45+vri5KSUnzzjQiffBKGykrzzyn1egHGj/fApUs6+PjQUkNCiPNhWRa5XB86/EkikUAmo+c/dVmMbwx+GfELChWFeGnPS/jh5g/QG2pfg5lWloYB2wcgRBaC9zu/j/EtxnOOoXHjxujUqROeeOIJdOzYEcHBwZznMlVCQgJa9W+F38N+xyO3HwF7jMXVg1fBspY9j1MoFHj99dexfft2niK1gRgAox/eNLr+aLza5FWLpg3yZhAsqYRAWHMhpEXnN+L1EyugY2v/uesZ0x7fPT3Xak1CNGoVMhXBUCjVVpnfFEKhEBK/OLsdnzyQmBiNu3fvQqlUWjyXVqvFvXv3qFggIWbIzeXWQM4V82oIqavoTh0hhDipvXu5dxUbOJA6AxLiCtzd3REZGfl3dydjFAoGc+aEY98+X+M7tJtn1jEFEKB3Um9MaT0FnWM7QyDg3pWcEFL3XLlifLtGw+DGDQlu3Hg4SdLfX4fERBUeeUSBVasccyEgIQ6nfn3g9OlqX+4HoCWAHgBucD3GHWBuPWANH0XBfIx3l/Tz80N+fr7Z05WXl1sakc1wjdXPz4/nSAhxTPXq1cOtW7eg1xtPbigsFGLq1BhculTzwuj8fDf06aPDiRM6eHvT7XBC7OXkSW4LopKTVQgNpcVUhBDH5uvhi4ZBDXGt4FqV19459A4OPX/I9kER4iTkchbffKPEhg0Mjh/3gMEgtndIVURGavDccxqMHStGUhKdl/AtL49bB+CQENdNXpTJZEhOTkZ+fj7u3CnEkiWhFs3Xr18JmjSpPkGbZVmkpaVBIpEgOjoabm7c8xAIIbaj0CiQVppm9LXpbafbOBpCCB+EQgEaN9bgxAnzzzkvXOBWkJ8Q8kBGhhY7d3K/3hsxQglfXyoc5ej8pf44MvoIfr37K57b8RyKlDUnPOy/ux8B8wPwyZOf4NW2li3+JsQejqUfw1ObnoJcK69xv6SAJBwbcwyB0kAbRUasJSoqGj/+qORUEOwvaWnuePHFUmzZ4stfYIQQYiM5OTkwGAy171iDqKgonqIhzi5QGojvBn0HuUaOKT9PwabLm6BhNbWOy6vMw4t7XsTMX2diVrtZmNVuFhim5mdhvr6+6Nq1K3r06IEePXogPDycr3+GyS7nXUaPzT2g0CoebGgP9OjRAwXfFuCchdXov/vuO5w8eRJt2rThIVL72HBnA56KegoNfBtwnqOgnIVc44tIaQHcPaqu671bmoGndk/BndL0Wufyc/fGd0/PQ5fIVpzjqU1ppQDZFX5gWfsVBAMAT4kbBELK+3UEcXFxuHPnDqem7/+lVCqRnp6O6OhoHiIjxPXl5XFbvx0SYtm5MSHEcXDLriOEEGJX16+rcfs2t8JezZqpEBtLibyEuApfX1/4+voafe3+fTGGDatXfUGw4KtA4j6TjuMp9sSU1lNwe/Jt/DjkR3SJ60IFwQghZrtxw7wb8sXFIpw65Ylz52S1PhAjhPypV69ad4kGcAxACwsOsy4PqLBg/N+Sk41u9vf35zRdXSgKxvV7Q4izYRgG8fHxRq87bt1yx9Ch8bUWBPvL9esSDBqkgE7nuovGCXFk164pkJ3NrcBH27YqnqMhhBDreO3x14xuP5Z+DDpWZ+NoCHFsLGvAr78q8dxzlQgNNeDFF2X44w8JDAbHeeYgkbAYNKgS+/Ypcf++G+bP90RSkuMVLHMF3IuCuX7yYnBwMB55pD7Gjq2Ahwe361lvbx2mTMkzaV+lUolbt24hJyfH4s7vhBDrW3lmJQyo+l4YLAtGiGeIHSIihPCheXPjTTJqc+OGGFqt658fEWItixerodVyuzYRiQyYMYOa9DqTrvFdkT8jH6+2eRWMoOb/7xq9BtN/mY7YpbG4mHPRNgESwoPXD7yOjms71loQbGKribg56SYVBHMRIhGD9esF8PTkdk75l61bfbFxYwlPURFCiG3odDqUlFj23uXj4wOxmJ4FkYd5ij2xus9qVLxRgeltp0MiMq2gdJm6DG8efBNec70w89eZVXIGIiMjMXHiRPzyyy/Iz8/Htm3bMGbMGLsUBAOAWQdm/VMQ7E/75Pvw3NLnMGPGDIvnX7hwocVz2JPeoMecc3Mszv1QqtS4W+qLEgUDA/vgXh7Lsph2ZBESN/artSCYAMDYhn1Q+MIBqxUE0+s0yCz3QmaZ2O7PCwUCAYJ9qSCYo2AYBgkJCbyt6yovL0dOTg4vcxHi6rjm1YSG0nMjQlwFraomhBAntHUr94rKvXvT4hNCXE1kZGSVBxC//eaFIUPikZLiYXyQtAB4rjcgqPnirp5fPSzpvgSZ0zKxtMdSJPgn8BU2IaQO4lrUNDnZ8m4ShNQZL79s0m7+APYCiON4GEMlMIjr4H/r39/o5oCAAE7TVVTwUqrMJrjGyvV7Q4gzEovFiImJeWjboUNeGDmyHnJyzEvC2r/fG1OnlvEZHiHERD//zL2wV6dO/MVBCCHWNKLpCLgLq9730Bv0WHZymR0iIsTx3Lmjweuvy1GvnhbdukmwZYsMlZVCe4f1kLZtlVi1qhK5ucDWrTJ07y6BUOg4xcpcUUEBt7SlsLC68f9FJhNhwQI/XLigQrdu5heYnzIlD35+5i0ELSoqws2bN53qPhshddGmy5uMbn8q4SkbR0II4VOrVtzOjZRKBpcva3iOhpC6oaKCxdq11eTXmaB3bwXi4qhJr7NhGAaLui9CxtQMtAxrWev+aWVpaP5lc/Tf2h8qHTUzIY6rXFWORz5/BPP+mGe0iPBfJCIJfhn+C1Y+vdKG0RFbaNBAig8/tDwvYupUL2Rk0PsdIcR5ZGRkWDReIBAgIiKCp2iIKxKLxFjYbSHkb8jxUZeP4OPuY9I4hVaBBccXQPaxDON2jYNC86DwVkZGBlauXImuXbvCzc2+15Tnc85jX8o+o6/NOjgLvV7uhZUrLTtv3LVrF/LyTGti46hulN7AphTj9+XNwbIsskrdkFHhgxOZFxC+tgeWXvq2xvN3AIjyDMHloVvw9ZNv81aU6b8USi1SSvxRKneM+4yB3m5w9421dxjkX4RCIRISEow2e+aiqKgIhYWFvMxFiCujvBpCCBUFI4QQJ7R7N/cq14MHU+cCQlxRvXr1IBAIoNcDS5eGYOrUmOoX0wjVwOB+gN/9aud7IvoJ/DD4B9yedBtT20yFj4dpN60JIaQ6BQUaZGVxOw9p1Mi+XUYIcSr+/oBMZtKuIQB2AOD6OHlfPvCTJYXBBAJg+nSjL/n7+3Oa0tJub7bENVau3xtCnJWnpyfCwsJgMADr1wfglVeioVBwKxywcqUfVq50nvcJQlzF0aPcfmcZxoAePUw7ryGEEHtjGAZd63U1+trKM7SwitRdFRUsPv+8Eo8/rkT9+mLMm+eJtDTHelYZFaXBrFly3LqlwfHjEkyYIIO3N6XS2ILBYEBBAbdzxfDwupW8mJwsxf793ti6tRSxsWqTxjRooET//tyugVmWRVpaGu7evQutlpp2EOJoWJbFtYJrRl+b0XaGjaMhhPDpsce4F809dYoahRLCxeefK1BWxj0fd+ZMxyp2TcwT7h2OM+PPYMegHfB29651/503d8J/nj++OveVDaIjxDy/pf6G0EWhuJR3qcb9mgQ3Qfb0bHSNN34/mzi/SZN80aOH+cXl/624WITFiyvAspS3SQhxfEqlEpWVlRbNERQUZLUiO8S1MAyDNzu8idLXS7Hq6VUIlgabNE6j1+DrC1/De643Bm4fiGJFsZUjNd3cY3OrfU1v0GPQd4PQZ3gffPjhh5yPodVqsWmT5QW17G3l9ZXIkFtWhBAAdKwO4w9OxuPfj0NeLT8LQgGD2a3GIn30XjQOSLD42MYY9DrkySVILfF0mOeCMqkHgkKoWKMjEovFqFevHm/z5ebmoqyMGj4TUh2WNaCggNv967AwnoMhhNgNXa0SQoiTSU/X4sIFbp3JEhLUaNzYsRLtCSH8EIlEiI2NxRtvRGL16qAa9mSBoT2BmGPGX1bL4LnlKL54/Cf0Se4DIUOJS4QQfpw9y71zXPPm9F5EiFleftnkXZsDeIvrcSqBIU2AjNpzY6s5ePNqXwoICOA0ZW5uLsdgbI9L1yuhUAgfHyrWSuqegIAA3LkTjIULw2AwWLbw+9VXfbB/v2UJsIQQ0+n1LE6elHIa27ChEkFBdC+TEOI8PnnyE6Pb75XeQ3pZuo2jIcR+WNaA/fuVGDKkEqGhBkyYIMOJExJ7h/UQqVSPIUMqsX+/Evfvu2HuXE/Ur0/nHbZWVsZCqeR277eudjQdNMgXV68K8dprJZBIal6UOXt2NoQW3lpXKpW4desWcnJyaBEoIQ5ky7Ut0Bv0VbZ7ib3QOKSxHSIihPAlOVkMb++qv9+mOHvWwHM0hLg+nc6AFSu4Xws+/rgSbdpwy+UljqVfg34omVmCcY+OgwA1X28qdUqM3zMeSSuScKvwlo0iJKRmU36egv9t/B+UOmWN+81oOwOXJ1yGr4evbQIjdiEUMlizxh3BwdwKOnh4sJg9OxtjxuQhKyuL5+gIIYR/GRmWFegRCoUIDjatsBMh/zah1QTkvZaHrQO2Iton2qQxeoMe313/DoELAtFjUw+75xHcKryF765/V+M++ZX5GPTdIMyYNQPdu3fnfKz9+/dzHusoVHoV3jv/HgwG7vfhDmcfRvvd7bE/s/bvR5OABNx/fjc+aDOB8/Fqo1apkVrmj4Jyx3kO6C3zQExUBBgxNRN1VBKJBDExMbzNl5GRYXGBT0JcVWkpC7WaWzmg8HAqI0SIq6DfZkIIcTLbt2s4j+3VyzGqdRNCrEMmk2HsWIBhqrvBaAAGDwDifzP+cmkM8Gkq5DfbY+BAoLKSuogSQvhz4QL395RWrbgVESCkzpo3DxCYvjDyNQBcm0BU3AAGDgI0XBYYfvtttS8FBdVU5LR6zlIUrLS0FCqV+cUSAwMDITDj/y0hrqRfv2CMH19i8TwaDYOhQ6W4cUPBQ1SEkNpcvqxAfr4bp7GPP67mORpCCLGuxiGNEeoZavS12b/NtnE0hNje7dsazJolR2ysFj16SLB1qwwKheMU+xcIDHj8cSU+/7wSubkCfPutDN26ScAwdJ1tL1lZ3ApeAEBkpOP8bNmaTCbC/Pl+OH9ehe7djRe97tevGE2b1rwQ2BxFRUW4efMmysupyDYhjuCLs18Y3d4huoONIyGE8I1hBGjcmFtu4IUL3DrFE1KXbd2qRHo696Jgr75KxfhcCcMw+LL3l0idkorGQbUXWr1ddBsNVjbAyO9HQsdSniWxj2JFMRqsbIBPT39a434yNxkOjzqMBd0W2CgyYm9hYe5YscL8RfWNGyuwbVsKBg8uhkAAlJWVoaKiwgoREkIIP0pLS6HRcF9jBwARERE8RUPqqkGNBiFtahp+HfErkgKSTBpjgAH77+5HzNIYtFvdDtfyr1k5SuPm/TEPBtR+bXs84zhe+/U1rFq1CmIxt+voo0ePcsqbdjSnCk7hx7QfzR6n0Ckw5sgYTDoxCZW6ms/TxIwbPuv0Oi4P3YJIzxCuodbIwBpQUsngbqkvlCrHydEL9BEjKjoGjJtjNR0jVXl5eSE8PJy3+e7fv2/xZzohrigzk3teDRUFI8R10G8zIYQ4mR9/5P7WPWAAJf8Q4ur69/fFjBmlxl/s9C7Q4Hvjr6k9gW92A5UPupxcuSLF2LFyq8RICKmbrl3jdg4TGamBvz+3IgKE1Glt25q8qxTADK7HuQecCgGmdzNznL8/UL9+tS9z7R6Tl5fHaZytcS1exmdXHUKc0cqVPnjyScsTTgUCA65cyYFWS8XTCbG2/fu5J2p07kwFOgghzuf5Zs8b3f79rWruyxLi5MrK9Fi1qhJt2yqRlCTG/PmeyMjgvqDaGmJiNHj9dTlu39bijz8kePFFGby8KFXGEViSvBgRUXeLgv0lOVmKffu8sW1bKWJj/0nW9/bWYcoU/u+RsSyL9PR03L17l66nCbGz09mnjW6f2maqbQMhhFjFo49yO0e6cUMMrZYKFBFijiVLuF8bJiSo8eyztEDVFcX6xuLKxCvY0HcDZG6yGvc1wICNlzfCb54fvr1SfVM0Qqxh7+29CF8cjpuFN2vcr0VYC+TOyEXH2I42iow4ioEDfTFiRKlJ+zKMAS+9lI8NG1IRF/fw892MjAywLGuFCAkhxDIsyyI7O9uiOdzd3eHt7c1TRKSu+1+9/+HmpJs4/cJpPBr6qMnjjmceR+PPGqPZ581wIuOEFSN8WHpZOjZe3mjy/stPL8cJ+QmMHj2a0/FUKhUuXLjAaayjWXB5AQpVhSbvvz11Ozrs7oAzBWdq3ffxkBbIH/sLXmoywJIQa6TXapAh90FWmZvDnOe5iUSIC3ZDaFR9CIS0dshZ+Pv7IzAwkJe5SkoYjB1bAbmcCq8T8m+WNNuLiqL3U0JcBWU6EkKIEykq0uPECY+HN7pVAk9PAiY0BQYNAKKPGR0bHq5F27buNoiSEGJvH3/sg//97z8L5Z94H+j0vvEBBgA7vgXym/y9SSg0ICpKiYyMTOsFSgipU27e5LYYMCnJcTqPEOJUDhwAGNNv+4wAwOmWrw5AGrCiNfBNk1r3/sfevTW+HBcXxyUazsW2bI1rnFy/L4S4CpGIwfbtHkhKUnKeIylJiW+/TUXDhkrcvXvXYZIaCHFVR49ya1IgEhnQvXvNi20IIcQRvd3xbQhQtaihXCPHnlt77BARIfzT6w3Yt0+JQYMqERYmwMsvy3DypGMthJbJ9HjuuUocOKBCaqobPvnEEwkJjlWsjAA5OdyKVkgkLHx9qSjYXwYO9MX16yLMmlUMiYTFK6/kw9+fe2JobZRKJW7duoWcnBy6pibEDo7cPwKVTlVlu1goRtf4rnaIiBDCt5YtuRXKV6sZXLzIvUA/IXXNoUMqnDvnUfuO1Zg8WQuGocYWrmxEsxEonlmMoY2HGr3f929yjRxDdw5Fs8+bIb0s3UYRkrps/K7x6PVtL6j11efVCSDA2x3fxtnxZ+Ep9rRhdMSRrFzpiXr1ql5D/ltUlBobNqTi5Zfz4WYkeYxlWaSlpVkpQkII4S4/P9/ie9RRUVE8RUPIP1pFtMK5F8/h1su30DG6Y63XE3+5nHcZj695HInLE/HznZ+tHCWw6Pgi6Fjziu+M2z0Onft35nzMW7ducR7rSMq15Zh3aV6t++Ur89H/QH+8f+F9aNia79tJhVIsa7sMX7Rfh1J1BHQa66yhkSu1uFPih3K546zR8fH0QEJMCGTBSfYOhXAQGhoKHx8fi+bIynLDiBH1sGlTAAYMUECrpWfQhPwlK4vb74NMpqeGiYS4EPptJoQQJ7Jjhwo63X9uBg0aCDy2Egi5AjTcAYzuCHR/FRA9vED2qac0lIRASB0hFDL45hv3f7qCd38F6Dyn+gEXxgC3e/39V39/Hb766h5GjSpCWVkpSktLrRswIcTl6fUs7tzhVpy0QQPq9EAIJxIJsGKFybsHAejC9Vh/1hAd1xu4FmTC/s88A7RpU+MusbGxnEJJTU3lNM7WuMZJRcEIAfz83PDDDwYEBGjNHtupUzk2bLiHsLAHY3U6He7du8d3iISQP7Esi9BQNSIjzV+M2LixEn5+1KWKEOJ8pGIpmoc2N/raB0c+sHE0hPDr5k0NZsyQIyZGi6eekmD7dhmUSsdJOREIDGjfXokvv6xEbq4A33wjw5NPetDzUQfGNXkxKIjuGf+XRCLE3Ln+uHRJhSFDym1yzNzcIgwZUobTp+U2OR4h5IElJ5cY3d4irIWNIyGEWEubNtzviZ06RedJhJhqwQLuiwsDA3V44QUpj9EQRyUWibG5/2ZcnXAVCf4Jte5/Oe8y4pbFYeLeiVREmVhFrjwXCZ8m4KsLX9W4n7e7N06MPYH3O1fTSJjUGV5eIqxZo4VIZLw4f//+xfjuu7to1qzmxmyVlZUoKSmxRoiEEMKJXq9HYWGhRXN4enrCw4N7oWBCalM/sD4Ojz6MzGmZ6JnYE4zAtOeqKcUpePqbpxG5OBKbL2+2SmwFlQX46nzN55TGKHVKvHXjLURERnA6rqsUBQOAfZn7cCj7ULWvr7q2Cl1/7orbZbdrnatbRDcce+YYuoQ/yOSvqFQjpdQPFQr+mgCxej1y5VLcL/GETucY9xAZhkFEgBCR0fUglPjZOxxigaioKEil3O6V3bjhgeHD6+H+/Qfrzfbv98bYseXQ6+m+CiEAkJvLrdleUJD1GskRQmzPcTI0CSGE1OqHH/6TtO6ZAyT+p/q7wAC0XQK81ByIOP335v796S2fkLpE61GIvnOXArP8gbbLq9/xRl9g19d//7VZMwW2bUtBq1aKv7dlZmZCrXacLgCEEOdz544KFRVCTmObNuU5GELqkgkTgPr1Td6dc1GwnAd/KMRAv8FAeU01ACUS4Mcfa52Sa1Gw9PR0aDSO3wU9JSWF0zgqCkbIA8nJUmzerIBYbPpD39GjC7B0aTqk0ofHKJVKZGZm8h0iIQSAXC7HtGl5+Pnn2/jll1v48MNMPPNMCcLCav+sfvxxug9BCHFeb3V8y+j2szlnodKpbBwNIZYpLdVjxYpKtG6tRIMGYixa5ImsLLG9w3pIbKwGb70lR0qKDkePSjBunAyenvRc1Bnk5nIbFxxMyYvVSUyUolGjZISEhFj9WFu2BGD7dj+0ayfDuHGlKCpy/HtyhLiC3+//bnT7C4++YONICCHWkpjoBh8fbgvzzp7lORhCXNStWxrs2yfhPH7sWBWkUrrurEsaBjfEncl3sPLplfAQ1lw4gjWw+OzsZwhYEIBdt3bZKEJSF+y4vgMxS2Nwt+Rujfs9HvU48mbkoXVkaxtFRhzdE094Ydq00oe2+fvr8OmnaXj33ewqORTVycrKcpgCEoQQMm9eGRYvDkFFBffz8sjISB4jIqR64d7h2DN0D4pmFmFo46EQMSKTxmVVZGH498MROD8Qn576lNfCw8tOLYNSV3NR0OrcLbkLQRy3pkw5OTmcxjmqDy9+CLn24eY5KWUp6PZTN3x28zOwhpr/n/m7+2Nzp81Y1GYR3JiHGwXodHqklUqRU+EJ1sJzMLVShdRSXxSWO84zVqnEHQkRXvALawABQ/dYXEFsbCzEYvNySU6ckGH06DgUFj78879xoy/eequUx+gIcV6UV0MIAagoGCGEOI3KShaHDv3nYbJWVv2AwFvA2LbAc73gGXsFnbqYdtOIEOK88ivzserMKjyx7glELo7E0puvA5IaOjMdnw5s3QngwQ3ZIUOKsHbtPYSEVL1hmJqaSt3rCCGcnTnDfUF/ixbcOyETQgBcvAiITLsWaMv1GMX//OftQGDsM0C1/SgOHjRpSqlUymnxIsuySE1NNXucrVFRMEIs1727D5YsKat1P5GIxQcfZOLVV/MgrKZGaWlpKYqKiniOkBBSWlr693+HhWnRp08pPvooC/v338ZPP93Ce+9l4emnSxEUpK0ytksXbsljhBDiCPo16AepW9UOmKyBxdyjc+0QESHm0esN+OknJQYOrER4uACTJ8tw+jT3xdLW4OWlx7BhlTh4UIW7d93w4YeeqFeP7iM6m9xcbud8wcHcOqHWJUFBQWjQoAE8PT2tMn9BgQirVgUDAHQ6Ab7+2hcNGwrw2WfF1LWZECu6U3QHZeqq98MYAYORzUbaISJCiDUwjABNmlS9X2aKixe5NeoipK5ZsEALluV2PeLhwWLatJqLQhHXNbHVRBTPKkafpD617luqKkWfLX3Q5us2yJPnmXwMlUqFkydPYuXKlRg9ejSaNGkCkUgEgUBg9te6dess+NfaV2xsLKd/s6t9derUCSzLYsTOERiwfQA0+uoLcgsgwMddPsYfY/6Ah4jep8jDPvrIB82bP2gW3alTOXbuvIPOnSvMnufevXt8h0YIIWbLyVFj3jxvrF0bhJ4962PLFn+YWy8nICAAIhPzagnhi6+HLzb334yKNyowsdVEuAtr6sD8jyJlEabsmwLfeb549/d3LV7XVa4ux4rTKyyaI9OdWxNWuVxe+05OJE+Zh2VXlwF4kL8+59wc9DvQDznKmoufCSDAsPhh+P3p39E0oGmN+xZVaHG3zA8qlfnrcQysAcWVIqSU+kKldpzmPsG+boiLjYXYJ8reoRAeMQyDhIQECKtL1P6PPXt8MHFiDCorje8/b54/li0rNvoaIXUJ97waytsgxJXQ1SshhDiJ3btVUCr/s4hE7Q1cHAk8ssH4IIYFkvZCnrQXnnMZxPrFIt4vHvX86v3zp/+DP73dva3/jyCE8K5IUYSdN3Zi67Wt+P3+77V2EvjbianALwsACODhweKdd7LRu3dptbvr9Xrcv38f9erV4yNsQkgdc/kyt3Hu7iyaNKm6iJYQYgaJBLh2DWjQAKjlQXAC12P8Zw3Sd42ApRnAtJP/2W/jRqBNG5OnbdCgAfLyTE+O/UtKSgqSk5PNHmdLd+/W3Lm1Oo7+7yLE1iZO9MONGyVYscLP6Ou+vjosXZqOFi0Utc6Vk5MDd3d3qy2YJqQuUiiM/+4JBEBUlBZRUSXo168EBgNw/74YZ87IcPq0Jy5dkqBbN/pdJIQ4t16JvbDt+rYq27++8DXe7fyu7QMixATXr6vx9ddabN3qjuxsxyoCBgAMY0D79iqMHMliyBAJZLIamicRp5Cfz62PYWgoJS+aQigUIjY2FgqFAunp6dBZ2EX83xYvDoVc/nCCdn6+GyZO9Me6dZX49FMDWremc3pC+Lbg+AKj25MDkiFiKA2UEFfSvLkex46ZP+7GDTE0GgPEYiq4T0h1Cgv1+OYb7te8gwcrERJC16N1mcRNgh+G/IBz2efQb1s/pJel17j/qaxTiFgcgVfbvoq5T84Fw/xzLaxWq3H58mWcPXsW586dw9mzZ3Ht2jVer9+Ic1Pr1YhbFof08pp/zvw8/HBw5EE8EvaIbQIjTsfNjcHGjcB332WhX78SCDieLqrVauTn5yM4OJjfAAkhxAxvvaVEebkvAKCkRISPPgrHt9/6Y8aMXLRvL6/1PY5hGE4Nawnhi4fIAyufXollPZZhzqE5WHZyGSq1lbWOq9BU4L0j72He8XkY9+g4LOy6EGKR2Ozjf3bmM6PNJ8ziy21YRYX5RUkd3dbUrYjzisOq66tQpq39+xoli8Ln7T9HtGe0ycdQqzW4q/FBiDeLAIkKAqb2Z6w6jQZZykBUVKpRQ6tvm3Jzc0OUvwDSoPr2DoVYCcMwSExMxK1bt2AwGP+5MxiA9esDsGhRWK3zzZjhh/DwEgwcaDxHnJC6IC+Pa14Nz4EQQuyKskEIIcRJ7NxZzQX47i8BvRho8XWN41mwSC1JRWpJqtHXA6WB1RYMC/cKByPgdvJICOFfmaoMP9z8AVuubcGB1APQsWYmgdzoA+xfDECAyEgNli5NR1KSqtZhCoUCeXl59BCEEGK2554rwCOPFOP2bQ/cuePx55/uKC+v+ZI0Pl4NNzfHW4BIiNOpXx84fRp47LEaC4OFARADMLsXkObPr389W36tG9AyG+jwV17i558Dw4ebNW3z5s1x6NAhc6PB1atX0atXL7PH2Yper8eNGzfMHhcYGIioKOqKRMh/LVnig5SUcuzb93Cx8/h4FZYvT0NUlNbkudLS0pCYmAix2PxkGULIw1iWNXnRikAAxMVpEBenwaBBJRAIGHh5NbRyhIQQYl2fPPmJ0aJgWRVZuFV4C0mBSXaIipCqSkr02LhRiU2bhDhzRgLAtI7UtlSvngZDh2owdqw7YmPpXqEr4V4UjIpcmEMqlSI5ORkFBQXIz8+vNgHbVOfOSbFnj2+1r58+LUP79gaMGlWCefNkCAiga2xC+LLn9h6j24c0HmLjSAgh1tayJbfzHY2GwfnzKrRp48FzRIS4jmXLlFAquRWwFQgMmDmTll6QB1qEt0Da1DTM/2M+Zh+cDS1b/TNJvUGPBUcX4Ks9X2F0yGjI78tx7tw5XLlyBVqt6c8ySd1zMvMkUF7zPp1jO2PfsH2cCkKQuqVRIyl8fIpRWmrZPPn5+fDx8YG7u+PdSyaEuL4LF+TYuNG7yvbUVA9MnBiLxx+vwIwZuUhMVFc7R2ho6EOFWgmxFxEjwkddPsIHnT7A0lNL8dHRj1CsLK51nEqnwvLTy/H52c8xpPEQrHhqBbw9qv5eGKPUKrH45GJLQ38oX9wclj6jckQGGPDJpU9q3U8oEGJyo8kYmzSW23EMBuSWCSDX+iJCUgC3Gs7FKhR6ZMl9odNV/15oa75e7ggLDYbQ3cfeoRArE4lEiI+PR0pKSpXXWBZYsCAUmzYFmjSXTifA8897Izi4Ak884cV3qIQ4Be55Na73mUtIXUZPpgghxAlotQb8+ms1F+t6d2D3V8DNZ4FnXgC8cjgdo1BRiEJFIU5lnarymrvQHXF+cQ8VDfurYFicbxwkVKyDEKurUFdg9+3d2HptK/al7INGb3a5jgd0YmDrTgACdOxYjo8/zoSPj+kd1QsKCiCVSuHlRTdTCCGmc3fXolkzDZo1U/69zWAA8vJE/yoS9uDPe/fE0Oke3LRKTtYAoPMMQnjRogVw+zbQsCGgqf48whNA7Y+UjdDioYe8egYYPBA4/wUQuu47oH9/s6ds3rw5l0hw7tw5TuNs5fr161AqlbXv+B9cvx+EuDqRiMHWrVK0bavE9esPzhvatavAggUZ8PIy/VoHeJA4cffuXSQlJVHyFyEWsqSzo0RCixYJIc6vnn89RHlHIaM8o8prb/72JnYM3mGHqAh5QK834KefVFi7lsXPP0ugUnFbDG1N3t569OmjwtixQnTo4A6GoUWNrqigQMhpXFjtTYOJEUFBQfD390dGRgbkcjmnOXQ64KOPwk3YT4DVq/2we7cWc+aU4MUXfSAU0nU2IZYoVhQjR248H2hK6yk2joYQYm1t27pxHnv6tA5t2vAYDCEuRKVi8cUX3AuYdO2qRMOGUh4jIq5gZruZeKnFS+i/vT8OpB54sFEPoABA9r++8oBSfSmWYIndYiVOqIb1m4yAwaJuizC1zVSbhUOcX3h4OORyucnNnapz79491K9fn/IqCCE299prhr9zzI05ftwLAwZ4on//EkycmIfAQP1Dr7u5ucHf39/aYRJiFoZh8GrbV/Fq21ex/uJ6vPHbG9XeC/43LavFxssbsfnKZvRK7IUven+BUM/QGsesubAG+ZX5lgfNsSqBRFI314U09muMlY+vhL+H5e8/coUaKWo/RHjK4S17+P2Q1WmRp/JFUbkODy5M7Y9hGET4CeATlmjvUIgNeXh4IC4uDvfu3ft7m1otwFtvRWL/fvMKwykUQvTv74HDhxVo1Ijuy5G6h3teDTXbI8SVUFEwQghxAr/+qkJpaS03Pu48Day6Cjw9CWjyLa/HV+vVuFl4EzcLbxp9Pdwr/KGCYfX86v1dNCxIGgSBgE4gCeFCoVVg7+292HptK/be2QuVTmX5pKdfgUAgwIQJeXjxxQJweR6bnp6OpKQkiER0KkkIqZ1OpzPa1UUgAEJDdQgNlaNDh38WIGm1Aty7J8adOx6Ij3cDQN1ACOFNfDygVgPt2gHHjxvdRQqORcGM5IrleAFDlrTDgWf7cLoB9eijj3KJBOfPn+c0zla4Fi2jomCEVM/bW4Qff9SiXTstunUrw/TpueB6uaLX65GamoqEhAR+gySkjim1oMW0t7dp3SsJIcTRvdjiRcz+fXaV7T+n/GyHaAgBrl3T4OuvNdi61R05OY6XcM0wBnTsqMSoUcCgQR6QSmX2DolYkVZrQHExJS/amlAoRGxsLBQKBTIyMqDVas0av3WrP+7cMb2Ib36+G15+2Q/r1lXi009ZtGlDTYcI4WrJSePFI6K8o+DtQdfRhLia+Hg3+PrqUFpq/o3us2fpXImQ6qxZo0RBAfdrzRkz6PeLVKXX65F2Jw3D9MPgleqFPYf2QJutNZpDQQhfAqWBOPL8ETQIamDvUIiTYRgGsbGxSElJsWgenU6H7OxsREZG8hQZIYTU7ocfSvHbb7617seyAmzf7o+ffvLBCy8UYMSIIri7P8hjp/ct4uhGPTIKox4ZhV23dmHa/mlILUmtdQxrYLHr9i7sXrQbT8Q+ga97f414//gq+2n1Wiw4voCfQKvvTV0jPz8/fo5vorTSNJse77/cGXfMeXQOesf05nVevV6P9DIJ/FgxwjyKwbi5QaVSI6MyEGo1x/85ViCVuCMyWAqxV4S9QyF2IJPJEBkZiczMTJSXM5gyJQZnz3K7L1dU5IaePVkcO6ZCZCQ1nCV1h1ptQEkJtwURlFdDiGuhSg6EEOIEduxgTdtR6Q/s+AaQBwFtP7VuUP+SXZGN7IpsHE0/WuU1T7FntQXDYnxi4Cbk3tmQEFek0qmwL2Uftl7bit23dqNSW8nr/C936oZGfdMeKsBjLoPBgLt37yIxMZG6PBFCaiWXm/d+4+ZmQP36atSvr0ZISIiVoiKkjvvjD2DXLmDAAOA/C/84lyCtZg3n4aw/8NZvb2Fe13lmT5mcnAyJRAKlUmnWuNTUVJSUlNj84bGpuBYF41okjZC6IiFBguPHy6BU5lo8l0qlQkZGBqKioniIjJC6ydzP73/z9fXlLxBCCLGj1x5/DXMOzYHe8HAHVqVOia1Xt2Jw48F2iozUJcXFemzYoMKmTUKcO+cBQGzvkKqIj1dj2DAtxoxxR0wMdXatK7KzdTAYuD0nDg+nZ1OWkkqlSEpKQkFBAfLz84029vivwkIRVqzgds/+zBkZOnQwYMWKbIweHQix2PHeiwhxdNuubTO6vXcSv4uJCCGOgWEEaNpUiyNHzE/xvnSJW+FVQlwdyxrw6afcl000a6bCk0/SokNS1caNGzF69Gh7h0HqkKcSnsKu53ZBxNBSMMKNh4cHgoODkZ+fb9E8paWl8PPzg0xGzR0IIdan07F48013s8ZUVgqxbFkotm/3x9SpeejXT0vvWcRpPJP0DJ5JegbH0o9h4t6JuJJ/pdYxBhhw6P4hJCxPQMuwlviq91d4JOyRv1//9uq3SCvjqUgWx2Vuts7H/ODIBzY93r+1D2mPRW0WQSqy3vPvkgoNKtV+8PHQo7DCAwaD4xQEC/EVITAsDgIhXbfUZb6+vlCptBg0yBM3bljWuC4tzR09eypw9KgO3t70c0XqhuxsHQBueTWRkfSsiBBXQp98hBDi4FjWgJ9/NjMpdv8yIPQSEHfYOkGZQa6R41LeJVzKu1TlNUbAINon+qGiYX8VDIv3i4ePh48dIibE9jR6DX69+yu2XtuKH2/9iHJ1uVWOE+UdhWWvdEFKSsp/63+YTavVIjMzE9HR0fwERwhxWZWV3Isbenl58RgJIeQhzzwDaDTASy8B69cDqgflwDj/xtZwyTL/+Hy0iWyDZxs8a9aUQqEQLVu2xNGjVYsP1+bIkSPo06eP2eNs4dChQ5zGPfbYY/wGQogLio/3QU6OAkVFRRbPVVZWBg8PDwQFBfEQGSF1C8uy0Ol0nMYyDAORiB5dEUJcg1gkRuuI1jieebzKa58c+4SKghGr0ekM+OknFdauZfHzzxKo1Y63wMHbW49nn1Vh7Fgh2rVzB8OYt5CDOL+sLD0oedH+goKC4O/vj8zMTFRUVNS475IlIZDLuX/vfX11aNasFLdvF8Pf3x+hoaHUfIgQE2l0GtwpvmP0tZmPz7RxNIQQW3n0UT2OHDF/3I0bYqhULDw86HOWkH/bs0eFW7e4Lz6cNk0PhhHwGBEhzuFm4U0sPbkUGeUZeDrhaUxsNRECAf0u2My/HlULBUKsfHolXmz5ov3iIS4jODgYZWVlUKvVFs2TlpaG5ORkusdDCLG6Tz8txY0b/pzGZmeLMX9+KMaOrb05BiGOpn10e1yecBmX8y5j/O7xOJV1yqRxZ3POovmXzdEgsAFW9VyFjjEdMffYXP4C45iemZiYyF8Mtdh7ey9+S/3NZsf7izvjjhWPr0CbkDY2OZ5Go0WB49QCg1jshih/ISSBCfYOhTiI0NAgvPRSMaZMsawoGABcvizFwIHl+PlnT7oGIXVCZib3vJqICMqrIcSV0MoKQghxcMePq5GTw6HD2N7PgYmNAIblPyiesAYW90vv437pffx2r+qNljDPMIxqNgrvdX4PYiF1CyauRcfqcPDeQWy9uhXf3/weJaoSqx9zQMMBEAqFiI+Px61bt0zq+l2T8vJyFBc/SNwnhJDqqP4sNMSFhwd1WSXE6j7//MHXTz+h/MUXoczM5DZPLfean//xeTQObozEAPMe6D755JOcioIdOHDAIYuC5eXl4erVq2aPi4+PR1xcnBUiIsT1hIWFQaVSWVSY9C95eXnw8PCgQqWEmKm8nHuxc4nE8uQPQghxJO92ehfdNnWrsv1y3mXINXJ4ij3tEBVxVVeuaPDVVxps2+aOvDzH+0wVCg144gklRo0yYOBACSQSxytWRmwnK4vbM2yGMSAsjFKd+CQUChETEwOFQoGMjAxojXQWOn9eil27/Cw6zowZufD0fPD/vbi4GKWlpYiIiICPDzUKI6Q2X1/4GgZUfbbvL/FHjG+MHSIihNhCy5bcFjVptQwuXFChbVt61k7Ivy1axH1sRIQGQ4dK+QuGECdxp+gOOqztgEJFIQDgpzs/4XbRbSx7apmdI6tDmj/4I9QzFMdGH0O8f7x94yEuJS4uDjdv3rRoDpZlkZ6ejtjYWH6CIoQQI8rKdJg717LcrZkzK2jNC3FqTUOa4uQLJ5FWmoYXdr2A3+79ZvSe8X/dKLyBzus7I0gahAJFAX8BZXAb1qJFC/5iqIFKp8Ir+16xybH+S8gIEesVa5dj25uftzvCQkPBiCnfljzslVf8kZ1djHnzLPss9vTUY8iQIqSk5CIhIYEKgxGXl53NLa9GKDQgJISKghHiSugTjxBCHNx33+m4DSxMRjv3F/gNxsZy5DmY+8dczPyVOpsS16Bn9Th0/xAm7JmAsEVh6L6pO9ZcXGOTgmAA0L9BfwCASCRCdHQ0L3NmZ2dDqVTyMhchxDVpNNxaj9ANWkJs7OmnceeHH7iNdQdQSyPYcnU5+m/rD4VWYdbUXbt25RTSgQMHOI2zNq5xcf0+EFJXxcTEwM2NW2ec/0pLS+N8PkNIXVVWVsZ5LBUEIIS4mq7xXeHt7l1luwEGvHfoPV6OUaoqxednP8eg7YPQ+9ve2HljJy/zEudQVKTHkiWVePRRFZo2FWP5ck/k5fFzLsyXxEQ13n23EqmpOvz2mxQjR8ogkdC9v7ouJ4db8qK/vx4iUS03oggnUqkUSUlJCAkJgUDwz/dYpwM++ijMorlbtqzE008/fJ3AsiwyMjKQkpJC192E1GLthbVGtz8Z96SNIyGE2FKbNtwLoZ46pecxEkKc39mzahw5wr149ssva+HmRtchpG4xGAx4ae9LfxcE+8unpz/Fb6lVm0ATKwgGEAE8m/wssqZlUUEwwjuRSISIiAiL55HL5SgtLbU8IEIIqcY771SgoID7s6/69VWYOtWXv4AIsaMY3xj8OvJX5M3IQ7/kfhAKTCv4wWtBMCWALPOH+fv7o0GDBvzFUYOFxxcitSTVJsf6L4VOgQ8vfAiDofaiba5CKBQiOlCEiOhEKghGqvXRR74YMaKU8/jgYC3Wr09Fq1aV0Gg0uH//Pm+xEeKosrO5fZYEBOggFNL9bEJcCWVaEkKIg9uzh9vNS4HAgBUD5hhdbOJstl7bau8QCOGMNbD4I/0PvPLzK4hcEonO6zvj83OfV0mWsLYwzzC0jWr799+9vLwQGBjIy9z37t0Dy3JbvEEIcX16PbeEY7FYzHMkhJDaXL16ldtAX9N2u5J/BRP2TjDrQedjjz0Gb2/zr2lu3ryJtLQ0s8dZ2759+ziNo6JghJiHYRjEx8c/tIjZEikpKXTNQ4gZFArzioD+m6+vL3+BEEKIg+jXoJ/R7RsubeA8p57V49e7v2LojqEIWxSGCXsnYPv17dhzew/6b+uPb698y3lu4vh0OgO+/16BPn0qER4uwKuvynDhgoe9w3qIj48Oo0fLceyYCjdvijFnjgzR0Y5VrIzYV3Y2t3FBQVTgwtqCgoLQoEEDeHk9SNrfutUft29zL6AgFBrw5pvZqO4SXaVS4fbt28jOzqZrb0KMYFkWl/IuGX1tetvpNo6GEGJLcXFu8Pfn1kz07FmegyHEyc2fz7ExLwBvbz0mTnSsa25CbGHL1S04eO+g0dde2vsSlFpqJGttzKMM1vddj52Dd1JzTWI1fn5+kMlkFs+TlZUFnY775y0hhFQnJUWJL7+0rLncxx+r4OZGn6XEtQTJgrBj8A6Uvl6K5x95Hm6MDZ/DXgLA4XFO9+7dTTuvVauBlBTgyhXg/Hng+nUgIwMwMfc8rTQNHx/92PwAeXQ49zD2Z+63awy24in1QEKkH7xDk+0dCnFwQiGD1au90b17udlj4+NV2LQpFfXrq//eplAokJGRwWeIhDic3FxuRcGCgymvhhBXQ1e0hBDiwK5c0eDuXXdOY5s3V+OR+uF4q8NbPEdleyJGVKcqpBPnZzAYcDrrNKbvn46YpTFov7Y9lp9ejlx5rt1i6tegHxjBw6d+oaGhkEqlFs/NsixSU+3TRYEQ4tjUanXtO1XDw4OSKgmxtb2/7OU20N/0XTdc2oCvzn9l8v4ikQidOnUyPyYAW7c6VnFhlUqFH3/80exxQqEQnTt3tkJEhLg2kUiE+Hh+uiWzLIu7d+/S4mRCTMCyLOfCwEKhkBY1EEJc0kedPzK6PV+Rj4s5F82a627xXbx98G3ELYtDt03d8O3Vb6HSqarst/LMSi6hEgd38aIakyfLERGhQ79+UuzaJYNG4zifnUKhAf/7nwIbNlQiJ4fBmjWeaNfOAwxD3SdJVXl53H4uQkIoedEWGIZBTEwM4uPjkZbGvSAYAAwdWoTExNqfFRQXF+PmzZsoKyuz6HiEuJo9d/ZAy2qrbJe6SdE6srUdIiKE2ArDCNC0qYbT2EuXhDxHQ4jzSk/X4vvvuZ/TjhyphI8P/U6RuqVMVYZXf3m12tdTilPw0VHj9zwJT4TA2RVnMbLZSHtHQuqAmJgYixuuGQwG3L9/n5+ACCHkX157TQOVivuzsM6dK9C/vy9/ARHiYDzFnljbZy3kb8gxrc00SESWPdOplQ7ACW5DhwwZYvyFlBTg88+BceOA5s0BLy8gMRFo2hRo0QJo1AiIjgb8/IAuXYCZM4Ft24By44WFXv3lVSh19i9i/MmlT1Cmcd1nXgKBAKG+IsTExsHNK9Te4RAn4ebG4LvvpGjZstLkMY8+Won16+8hLKzqs7KysjLk5tpvrS4h1paTw+1aPTiY1jsQ4mocJ0OUEEJIFdu2cUvsAYBnnnmQEP1K61cQ4xPDV0h28ULzFyx+2ESItRkMBlzIuYDXD7yO+E/j0frr1lh8cjEyyzPtHRoAYEDDAUa3x8bGQii0PHFJpVIhJyfH4nkIIa6lvJqHLabw9PTkMRJCSG1YlsWBAwe4DTajKBgATP55Ms5mm96i/JlnnjEzoAe+/fZbTuOsZe/evaioqDB7XIcOHeDn52eFiAhxfR4eHoiKiuJlLrVajcxMx7i+I8SRlZaWch4rkVg5MY0QQuwk3Dsc8X7Gi5W+efDNWsfLNXKsu7gOT6x7AgnLE/Dh0Q+RUV5zt8scOd2rdRWFhXosXCjHI4+o0Ly5O1as8ER+vg07PZsgKUmN99+XIy1Nj19/lWLECBkkEkpFITXLzeWavEiNpGxJIpHgm2/88P33pYiPr1qEsjaBgVpMnJhv8v4syyIjIwMpKSnQaLjnShDiSlaeNl7stW1kWxtHQgixh+bNuS3cuHlTDKWSFn0QAgALF6qh03G7RhWJWEyfzq2pLyHObM6hObU2wJ33xzxcy79mo4jqnmefeRbN45vbOwxSRzAMg+joaIvnUalUKCgo4CEiQgh5IDu7BNeucT8fF4kMWLiQ1qGRukEsEmNx98WQvyHHB50/gLe7t3UO9AcADnWuwsPD0bNnz3826PXA998DXbsC9esDEyYAX38NXLwIaKsW/gEAlJUBv/8OLFgADB4MREQAL70EXL789y6/3P0FO2/sND9AKyhWF2Ph5YX2DsMq3N3FiA/zQGBkMgQMFVIn5vH0FGHPHjckJNT+7Pl//yvDF1/ch49P9Y3DCgsLUVxczGeIhDiM/HzKqyGEPCCydwCEEEKqt3s397fpgQMfjPUQeWDu/+biuR3P8RWWTTUKaoRZ7WfZOwxCqnUt/xq2XN2Cbde34XbRbXuHY1SQNAgdojsYfY1hGNSrVw937tyx+DhFRUWQSqXw8fGxeC5CiGtQKrl3WaGiYITY1oEDB1CSX8JtcJh5u2v0GgzYNgDnxp9DgDSg1v0HDBiAl19+GWq12qzjXLx4EdevX0fDhg3NC9BKNm/ezGnc8OHDeY6EkLrFx8cHSqUShYWFFs9VXl6O/Px8BAcH8xAZIa7JksLA3t5WSkgjhBAHMPmxyZi6f2qV7b/d+w0sy4JhHl6cajAYcCz9GNZeXIvt17dDrpGbdbwQWYgl4RI702oN2LVLiXXrDPjlFwk0Gse7T+brq0P//mqMHStE69buYBhaJE3Mk5/PbVF+WBglL9pD376+eOopFh9+WIwlS3xQWWlagv/06bnw9DS/IIlKpcLt27fh5+eHsLCwKp+ThNQlf2T8YXT7hJYTbBwJIcQeWrXi9hmo0zE4f16Fdu08eI6IEOdSUcFi/XruzSj69lUiNlbGY0SEcCAEIAbAPQXLLBdzL2L56eW17qdjdRi/ZzyOjj4KRsD/Ndv9+/d5n/Mvr/z8ikn/xv9qHdEaR0cfhZvQtIL9u3fv5twEb+zYsZzGEcKVl5cXfHx8UFbGocrHv+Tk5EEo9Ia/P90vJoRYhmVZlJbmYNs2Fjt3+mHlyhAUF5u3vu6558rw6KO+1gmQEAfFMAxmd5yN2R1nY9WZTYw+mgABAABJREFUVZi2fxo0ep6asKQDOMxt6IwZMyAUCgGDAVi1Cpg7F7C0QatcDnzxxYOv9u2hnvcRJp+fbNmcxrAACgBk/flnCYBSAJUAtAD++va64UG1BjcAHgC8gR+8f4CgqQCPN3gcDRs2RFRUFAQC5y5WGOAtRkhYJBg3qb1DIU4sJESMvXsV6NhRi7w849fYgwcX4Y03ciA04bF0dnY23Nzc4OXlxXOkhNhXXh7l1RBCHqCsKUIIcVD372tx6RK3xJykJDUaNvznYcrgRoPROqI1X6HZjIgRYcOzG+AhogQl4lhuF93GB4c/QONVjdH4s8b48OiHDlsQDACeTX4Wwhqq77u7uyMyMpKXY2VkZFDnbkLI31Sq2rs3GCMQCCASUQ1rQmxp1apV3AfHmj8krSwNw78fDtZQ+6JAHx8f9OrVy/yDAFi2bBmncXy7f/8+du3aZfY4d3d39O/f3woREVK3hIaG8vawNz8/36KiR4S4OoVCwXmsr68vf4EQQoiDmfzYZIiYqvc6NHoN1lxc8/ffM8sz8dGRj1B/RX10XNcRay+uNbsgGACEe4VbFC+xjwsX1Hj5ZTkiInQYMECKPXtk0GgcJ6VDJDKga1cFNm9WICeHwddfy9C2rQcYxrkTl4l9cC0KFhpKP2/24u7O4IMP/HHpkga9etV+XdyiRSV69rRsIWlJSQlu3rxp8YJUQpzVuexzqNRWVtkuYkR4NvlZO0RECLG1tm1NKzpizKlTeh4jIcQ5rVqlRHm5aQVtjZkxg/tYQjgRAggF8CiAXgDGA3gDwGO2OTxrYDFx70ST8jgA4HjGcXx17isrR8WvzPJMfHnuS05jT2WdwlsH3zJ5/zVr1tS+kxFhYWHo0aMHp7GEWCIiIsKinM3cXDeMGxeLYcPU0OvNLxJPCCH/lp+fD5ZlIRIBgwaVYM+e2xgzpgBubqa9v3h56TF3LvcCwYS4gg7RHfgrCJYH4Fs8KJBlJmmAFC+++CJw9y7QqRMwaZLlBcH+69gxLJ3Vib91feUAzgDYBGAugM8A7AJwAsBNALkAKgCo8OB7wgJQ40GhsNI/X78N4Czw/Zrv8dprr6Fnz55o164dxowZg88++wzXrl2DweA8RVtEIiFigkQIi65PBcEIL+rXl+L771Xw8qp6H3vKlFy89ZZpBcH+kpaWBqXSRhXVCbGR/Hxu96dDQ3kOhBBid46TQUoIIeQh27apOY/t2VP70N8FAgEWd19saUg293bHt/Fo2KP2DoOQv13IuYC2q9siaUUS3jn0Dq4VXLN3SCYZ0HBArfv4+vrytvg2NTUVLEsPdAkhgFarrX0nI4Tm3L0lhFjszJkz+PHHH7kNDgTgyW3ovpR9+PDIhybtO2zYME7H2LhxIwoLCzmN5dPSpUuh15u/+KJnz55UIIUQnkRFRUEsFls8T2mpECNG6JGZya34KSGuTK/Xc74fIBQKwTD0yIoQ4roYhkHH6I5GX1twfAG2Xt2K7pu6I3pJNGb/PhspxSkWHY+KgjmP/HwdFiyQo1kzFR591B2rVnmioID7wn9raNBAjQ8+kCMtTY9ffpFi6FApPDzoc5twx7IGFBZyW2AYTm9vdhcfL8Hu3d744YdSJCQYvzYWCg14881s8NHsnGVZZGRkICUlhRoTkTpn4YmFRrc3DWlK19CE1BHR0SIEBuo4jT13judgCHEyOp0BK1dyv75u106J1q2pmS2xHjc3NzzyyCN44YUX8Nlnn+HMmTOoKK/A4OWDgWcAtAQQDsCGPRXXXVyHE5knzBoz68As5FTkWCki/n1y9BOo9dzz8xccX4C9t/fWul9+fj527TG/cRwAjBw5knLniF0wDIPY2FhOY/fu9UG/fgk4fdoT+/Z547PPqMA7IYQ7vV5fJefTy4vFtGl52LXrDnr0KK11jilTyhAe7m6lCAlxDnP/mMvPRHcBrAXAsdaO4n8KrF4xEmjaFDhyhJ+Y/iPTG/igI08FtjIALAawF0AKAB4fTVVUVODMmTNYtWoVhgwZgi5duuDdd9/FlStX+DuIFXjJPJAQFQCvkGR7h0JcTNu2Xti0qeLvop8ikQEffpiJF14o5PScOTU1lZ4nE5fxIK+G2/2hsDBqtkeIq6HsEEIIcVA//sj9gd7AgVWfAj8e9bhJhYEcRYuwFnij/Rv2DoOQvxUqCtFxXUeczDxp71DM4ufhh06xnUzaNzIykpdF8hqNDjt35lk8DyHEubEsy7l7ibs7PYglxFb0ej1eeeUV7hMkWHb8dw+9i/0p+2vdr2fPnggMDDR7fqVSiaVLl3KIjD8FBQVYvXo1p7GjRo3iORpC6i6GYRAfH2/RgsnUVDGGDq2HXbv80LevHgqF+cX+CHFlpaWlnMdKpdRBkBDi+j7sYrwo8u2i2xiyYwh+ufsLDOAnUZWKgjk2rdaA7dsV6NlTgchIBjNneuLyZcdaaOznp8O4cXKcOKHC9evumD3bE+HhNlyFSlxaaSkLlYrbtVlYGKU5OYo+fXxx9aoYs2cXQyZ7+Pr4ueeKUL8+90XWxqhUKty+fRtZWVnUnIjUGb/e/dXo9uebPW/bQAghdsMwAjRtym0R08WLVEyE1G3ffKNARgb3PLjp03laTEwIAJFIhGbNmmHMmDFYtWoVTp06hYqKCly4cAFfffUVXnrpJbRs2RKeUk9sGbAFV166gnp+9WwaY5GiCDN/nWn2uDJ1Gabun8p/QFaQXpaOry98bfE8o34YhczyzGpfV2gUaPlyS7A6bteuY8aM4RoaIRbz8PBAUFCQyfuXlTGYOTMSr78ehYqKf84/33zTGzdvKqwRIiGkDsjMrP5zNjJSiwULMrFx4100aWL8fSY6Wo033vC2VniEOIXUklRsubrFskk0APYB2ASAa//UpgAaAK/Kd+BYoPXODaZ3AyotXwr3gA0fQRUWFmLHjh0YOnQoBg0ahO3btztUQSOBQIBwPxGiY+pBJAu2dzjERT3zjC9WriyDTKbH8uVp6NOnlPNcBoMBKSkpnBq5E+JoiotZaDTc8mMiIuj5ECGuhrLlCCHEARUU6HHqFLfk/4gIDR57zHghjblPzoUb41jdxY1xF7pjw7Mb4CZ0/FhJ3bHj+g7INXJ7h2G2vsl9zfpdqlevHgQWtO0uK2MweXI0Bg8OxY4dpZznIYQ4v8rKSs5jJRIJj5EQQmrywQcf4ORJC4qeNrPs+AYYMHTnUKSVptW4n1gsxqRJkzgdY/HixUhPT+c0lg+zZ8+GXG7+eWT9+vXRq1cvK0RESN0lFApRrx63BPrjxz0xfHg8MjIe3HM5d06GESPk0OtpITIhfykvL+c81sfHh8dICCHEMbWNagtfD1+bHIuKgjmmc+fUmDixEuHhegwaJMVPP0mh1TpOyoZIZED37gp8840COTlCfPmlJ9q0caxiZcQ1ZGVxT8KNiHCc3xkCuLsz+OADf1y+rEHv3g+uBwICtJg4Md9qxywpKcHNmzctKkpMiDPIKMtAkbKoynYBBBjXYpwdIiKE2Msjj3C7B337tjsUCrp/TequpUu5L3yqX1+NPn0ob4VwIxKJ0LRpU4wePRorV67EyZMnUVFRgYsXL2L16tWYMGECHnvssRobJjYOaYy7r9zFpz0+hbvQNo0V3/ztTaPnn6bYdm0bfrrzE88R8e/jox9Do7d8gX2RsghDdwyFjtVVee1Y+jGELAxBxuEMTnO3a9cO9evXtzREQiwSEhJiUoPpkydl6N8/ET//7FvltYoKIUaONEDHsTgeIaTuUqlUqKioqHW/Rx5RYtOmVMybl4GwsIc/3+fMUUAqpUY3pG6b/8d8sAaOn8NqACcBfPrnn1xrZgcD+DMFWicEBg4Ecjw5zlWDg3HAtsb8z2trN27cwPvvv4+ePXvi+++/t3tRIw93dySEy+AfkQyBBY14CTHFuHF++OOPHLRvb/m6XZZlkZKSQk2miNPLzKx638lUlFdDiOuh32pCCHFA332ngl7PrShPz54aMIzxsfH+8Zj82GRLQrOJj7p8hIZBDe0dBiEP8RA558KXAQ0HmLW/SCRCbGwsp2PdvOmBIUMScOSIN1hWgHHjPKnTEyF1mCVFwby8vHiMhBBSnS1btuD999/nPkEIgDDL4yhWFmPg9oFQ69Q17jdp0iRIpVKz51cqlZg1axbX8Cxy6dIlfP01t06zM2bMAEMPUgnhnYeHB6Kjo80a8803/pg4MeahzrYAsHOnD955p4zP8AhxakqlkvNYb2/q0koIcV1avRY/3vwRfbf0RbmaewFFc1BRMMeRl6fDvHmVaNJEhZYt3fHZZzIUFjrWQoRGjVT4+ONKpKfrsW+fFM89J4W7O/fmIYTUJjOTexJ7VBQ1lXJE9epJsGuXN378sRTvvZcNLy/rJlmzLIvMzEzs3ZuO/HzH6ZhOCJ8WHl9odHu8f7zT5i4QQrh57DFuz4p0OgHOnaPPSVI3HTyowoUL3D8vJ0/WVZuDS8h/hYaG4vnnn8fy5ctx4sQJlJeX49KlS1izZg0mTpyI1q1bw8OD28/j5NaTUTyzGIkBiTxH/bBTmafw1fmvLJpj4t6JqNRwzxWztvul97Hmwhre5juafhTvHXrvoW2zDsxCx7UdIb8nBwq4zTtmzBgeoiPEcnFxcdW+plYLMH9+KMaNi0NeXvX36s6ckWHOHMqnIISYJyPD9MKaDAM8/XQZdu26gylTciGV6tGyZSVGjaKmdKRuy67IxtqLa80bpAVwG8AuAIsA7ANgSW0ebwDDAPyrzmiuFzB4IMBnzywtA0x+ir/5HEFubi7eeecdPPvsszhz5oxdYgj0EaNeXDTc/WLtcnxSNzVrFgmJhJ8i/VqtFvfu3eNlLkLsJSuLe85FZKRj5aURQixHKwsJIcQB/fgj94SC/v1r7nA2u+Ns+Ev8Oc9vbe2j22Nqm6n2DoOQKgY2GohoH/MWjtubt7s3nox70uxxMpkMISEhZo3ZvdsXw4fXQ2bmP3dtS0pEGDgQqKzkXpmaEOK8LCkIwNfNXEKsJSsrC1OmTEFBAccsPgewc+dOjBw5EgYD1xZOAFryF8+Z7DOYtn9ajfsEBARwToDcsmULvvvuO05juVKpVBg1ahSnTjOhoaEYOXKkFaIihAAPig8FBwfXup9OB3z4YRg++SS82uLtn3zii/XrS/gOkRCno9PpOHdXE4lEVAiTEOKSruZfxfT90xG5JBJ9t/bFj7d+5N6N10xUFMy+NBoDtm5V4KmnFIiMZPD66zJcvepYxTsCAnR48UU5Tp9W4+pVD7zxhgxhYZQURmwjO5vbe6FMpoeXF503OrJnnvHFhAlRNmn8odEIMHFiCBo0YLB0aQl0Our2TFzLD7d+MLrd3KZghBDn16YN96KoJ09Svg6pmxYs4H5uGBiow9ixlLNCTNejRw+sXbsWkyZNQps2bXjPeZKKpRjaZCinsaY8t9GzekzYOwEGWJA7AiCtLA1zDs2xaA5r+ujIR9CyWn7nPPoRDqQeQLmqHM0+a4b5f8x/8H28wG0+mUyGQYMG8RojIVy5ubkhPLzqc4ZbtzwwZEg8Nm4MNGmeBQt88McfFXyHRwhxURUVFVCra24sa4yHhwEvvFCIvXvv4Isv9BAK6TkCqduWnFgCjf4/heJ1ANQAygHkArgD4BSAnwB8BWAugG8AnAdgaY15XwDPAzBSn+9oDDCrq4Xz/8unrYHrtaeBOqV79+5h7NixmDt3LlQqlU2OKRKJEBvshtCo+mBE7jY5JiH/FhcXBzc3fpqEKZVKpKen8zIXIfbANa/Gy0sPmYzOhwlxNfRbTQghDkYuZ3H4MLeFAf7+OnTpUvNYP4kf3un4Dqf5rU3mJsO6PusgZGoubEaIPUjdpNg7dC+CpEH2DsVkzyQ9A3eON+KCgoLg6elZ635arQAffhiGN9+MhFpd9dTy6lUpxo61pEUEIcRZcXkwCwAMw1BBAOLwtFotPv30U8THx+P9999HaWmpvUMyy/z58zFgwABotRYkPPoAaM5bSACAz85+ho2XNta4z/Tp0yEWi2vcpzovvPCCTbu+TJs2DZcuXeI0dvr06XB3pweqhFhTcHAwvL29q329vJzBhAmx2Lo1oMZ5DAYBJkzwpkRWUueVlHAvjieVSnmMhBBC7KtEWYJVZ1ah1Vet0OSzJlh8cjHyK/NtHgcVBbOPM2fUeOklOcLD9RgyRIp9+6TQ6RznPpdIxOKppxTYskWB7GwhPv/cE61a0bUnsb2cHG4LjYOC9DxHQqyBYRjExMQgPj6et6RtY9atC0R6ujuKi0WYNs0Pjz2mwtGj5VY7HiG2JNfIkV5mfKHC9LbTbRwNIcTeYmLcEBTE7Zne+fPcG5MS4qyuX1dj/37uRZnGjVNBInGca3lCLDF1/1Qcvn+4xn0+O/sZLuRyrGL1H0tPLsWFHH7m4lNqSSrWXVrH+7wGGDBo+yCELAzB5fzLDzZqAVzlNt+gQYNMytklxFb8/f3/fo6r1wNr1gRiyJB6SEkxfZ2LVstg9Gg3yOVUrJYQUrvMzEyLxoeFCfDoo9XnghHiCs6ePQuBQFDj18LuC4F38fDXhwA+AbAYwOcANgP4GcBpAFkA+HoEFwFgLAD/6ndZ0hbY2sjyQ+V4Au92snweR2YwGLB582YMHDgQqampVj2Wt6cHEqKD4RmcZNXjEFIThmGQkJDA23qy8vJy5OTk8DIXIbbG9Uc3MJDyaghxRfTUihBCHMyPP6qgUnF7e+7eXQ2RqPZkngmtJiDBP4HTMaxpYbeFiPePt3cYhFSrcXBj/D7qdwTLnKOVQP8G/S0aHx0dDZFIVO3reXkiPP98XK2L5Ldu9cWiRcUWxUIIcT46HbdEjpredwhxNBUVFZgzZw6ioqLwyiuvWP2Bm6XS09PRtWtXzJo1CwaDZV1e8QQAK/y6vrjnRVzJu1Lt67GxsXj11Vc5zV1WVobevXujqKiIa3gmW758OT7//HNOYxMSEjB58mSeIyKEGBMZGWm0AF96uhjDhsXj5EnTkq6VSiEGDnRHWpptOrIR4ogqKrgXxvPxMdIakhBCnIie1eOXu7/guR3PIWxRGF7+6WWczT5rt3gkIgl83Om91VZyc3X45JNKNGqkwmOPueOLLzxRVORY97caN1Zh7txKZGay+OknKQYPlkIspuIAxH5yc7mNo6JgzkUikSApKQlhYWEQCPh9z8nOdsNXXz3cyOnCBSk6dfLCyJGlyM+3tI09Ifa1/NRyo9tDPUMRKA20cTSEEEfQrBm3omAXLzrWtQkhtrBwoRYGA7fzT4mExdSp3Br6EuKIKtQV6LS+E57c8CTKVVWLKOfKczH74Gzejqc36DF+z3joWce6fv/wyIfQsdYpSFSiKoFK/69nxNcBcOujidGjR/MSEyF8io2NRW6uGGPHxmHJklBOTTDu3PHA1KnUZI0QUrOCggLo9ZadQ0RFRfEUDSHEbAIArQGMBuBV++5j+wDXgmrfryavdQPkdaT/1f379zF8+HAcP36c97kZhkGEvxBR0fUgktZQzY0QGxEKhUhISODt+XJRUREKCwt5mYsQW+KaVxMS4lj35Qgh/KCiYIQQ4mC+/5774vx+/Uy72BELxZj/v/mcj2MNXet1xYstXrR3GITUqlFwIxwadQihnqH2DqVGMjcZusd3t2gOhmFQr149o6+dOSPDoEEJuHxZatJcb77pi8OH6aEuIXUF14JgAODhQQmWxPnI5XIsX74ciYmJ6N69OzZv3gyFQmHvsP5WWlqKt956Cw0bNsSBAwcsnzAUQDPLpzFGqVOi/7b+KFOVVbvP7NmzERkZyWn+a9euoWvXrigtLeUYYe2++uorTJkyhfP4pUuXGi1SRAjhH8MwiI+Pf6ir1JkzMjz3XD3cv2/e72FOjhh9+rDU4ZbUWR995I116wJw7ZoHzM3T9PIyIRuMEEIcUEpxCmYfnI3YZbHovqk7tlzdArWe44ovHoV7hfNefIU8TKMx4NtvFejeXYGoKAZvvinD9euOdU8rMFCHCRMqcfasGleueGDWLBlCQqggAHEMeXnc3qNCQlieIyG2EBAQgAYNGvB63j9/fqjRRmssK8DGjb5o0IDBkiXF0OnoZ4Y4p2+ufGN0+1MJT9k4EkKIo2jenNtnWkqKGJWV9HlI6o78fB22bDEtl82YIUMUCA6ma2fieg7eO4jABYH45OgnD21/7dfXUKauPjeDi7PZZ7Hi9Ape57RESnEKNlzaYLsDXuA2LDExER06dOA3FkJ4wDAM/P3Dce2axKJ51qzxxfffl/ITFCHE5bAsi/z8fIvmkEqlkEq5XwsQQiwQjAfFwJ6Cyc2mK8VAv8FAGcdU6SMxwOam3MY6q4qKCrz88svYuXMnb3NKPNwRH+4Jv/AGEDBUaoI4DrFYXO16Vi5yc3NRVsbv/Q9CrI1rUbDgYHomRIgrojM1QghxIBqNAb/+ym3RgEymR8+epo/tm9wXHaId4wGij7sP1vRZQ4tUiNNoENQAh0YdQphnmL1DqVav+r0gcbPsISzw4EbKv7umGAzAunUBGDcuFsXFpidBaTQMhg51R3a2/RfFEUKsr7y8andJU8lkMh4jIcS2WJbFL7/8guHDhyMkJATPPfccNm7ciIKCArvEc+3aNUyePBmxsbH4+OOPUVlZafmkQgDP/vmnldwpvoPRP46GwWC8YLJMJsOCBQs4z3/hwgW0bt0aV69e5TyHMXq9Hq+//jpefPHFamOvTa9evdCzZ09e4yKE1IxhGCQkJAAAduzww/jxsSgv57bg49IlKZ57TgG9nh6okbqlvFyHDRv8sWhRGIYMSUCHDg0weXI0Nm4MwK1bHmBr+JUQiUQPFeYjhBBHJ9fIsfbCWnRc2xGJyxPx0dGPkFmeae+wHhLuFW7vEFzWqVMqjB8vR1iYHkOHSvHLL1LodI7zOebmxqJnz0ps26ZAdrYQq1bJ0KIFFZ0mjic3l9vvTUgIz4EQm2EYBjExMYiPj4ebm5tFcx075onffvOpcZ/iYhFefdUfrVqpcPQoNS0izoVlWVwvvG70tdcef83G0RBCHEWrVtzOn3Q6Ac6e1fAcDSGOa+lSFZRKbr8vAoEBM2ZYdq5KiCPTslq8efBNRC2JwpmsMzh8/zA2Xd5klWPN/n02MsoyrDK3uT448gH0BjO72XBVDOA+t6GjR4/mMxJCePXoo56YPbvUojkMBgEmTpQiP5/OTQkhVWVlZXHOt/xLdHQ0T9EQQkwWAKAvgJcAcPgVvB0IPN8XMPe3X8cAk542/3iuQKfT4d1338Xu3bstnivIxw314mLg7kvvn8QxSSQSxMTE8DZfRkYGP2tpCLGRvDxu97lDQy07ryaEOCbHyVAlhBCCX35Robyc2+r6Ll3UkEhMf1sXCARY3H0xp2PxbflTyxHpHWnvMAgxS1JgEg49f8hhF1j1b9Cft7l8fHwQEBCAykoG06dHYdGiMOj15hfxy84WY/BgLbRaWiBPiKtTKBScx3p5efEYCSH2I5fLsWXLFowcORIhISFo1aoVpk2bhi1btuD+/ftWOWZlZSUOHTqEN954A40aNULjxo2xYsUKfjubdAZggwWY39/8HotOLKr29SFDhqBXr16c5799+zZat26NlStXQqfTcZ7nL9evX8eTTz6JefPmcU5Q8fX1xfLlyy2OhRBiPrFYDE/PWCxeHAKdzrKC5Xv2eGPWrFJ+AiPESezfL3+oIEpFhRCHDnlj/vwwDBiQgCeeSMa0aVH49lt/3L3rjn9/VFJRYEKIs8iuyMaYH8cgdGEoxuwag6PpR+0dUrUc9Z61s8rO1uHDD+Vo0ECNNm088NVXnmY1zLCFpk1VmD9fjsxMFnv2yDBwoBRubtSIhziuggJuqUphYZS86OwkEgmSkpIQFhbGqWGYRiPAJ5+Y3rTp4kUpOnXyxIgRpbTolDiNTVc2gTVUfZ7u7e6NBkEN7BARIcQRtGnDvVDRqVOWPwcjxBkolSy++opbQ14A6N5diYYNqbA2cX2Z5Zl47OvH0Otb7vkWtZFr5Jj08ySLi3tY6nbRbasVPjPqIrdhQqEQo0aN4jUUQvj2+uu+6NhRbtEcublivPCCiqeICCGuQqPRWJzf6uvrC5HIsZ7dEeKyGAD1ATwHYBKAR2BRhYIfGgDz25k3ZlUr4EodbiRkMBjw9ttv48CBA5zGu7m5IS5EjJCoJAiEYp6jI4RfXl5eCA/nLwfq/v370GjomTFxDvn51GyPEPIPuuIlhBAHsmMH90I5zz5r/piW4S0xrMkwbL6ymfNxLdU3uS+GNx1ut+MTYon6AfVx+PnD6Ly+MzLLM+0dzt8kIgmeSnyK1znDwsKweLEbfv215s7btTl2zBOvvlqC5cv9eIqMEOKIVCruyRtiMT1cIK7HYDDg7NmzOHv27N/b/P39kZSUhKSkJNSvXx+RkZEIDg5GSEgIAgMDIZFI4O7uDg8PDzAMA41GA41GA6VSicLCQhQUFCAnJwcpKSm4c+cOrly5gitXrkCvt2KH00YAzHz4aonXD7yOVuGt8ETsE0ZfX79+PR555BFkZHDrMKtQKDBp0iSsWLEC7777Lvr27Qt3d/MSvW/cuIGlS5di9erVFn/v16xZg9jYWIvmIIRwFxvribVrSzF4sI/FhcEWLfJHUlIJxo2j6x5SNxw8WPOijtJSEQ4c8MGBAw/uKQQEaNGqVSVatarEtGnetgiREEIsklGWgUe+eATFymJ7h2ISKgpmOZWKxY4dKqxfD/z+uwQ6nae9Q6oiKEiLQYPUGDvWDc2bc1/0TIg95Odza5IVGkrF7lxFQEAA/Pz8kJmZifLycpPHrV8fiPR08+7fsawAmzb54qefdJgzpxiTJvmCYaiHJnFcX5770uj2TjGdbBsIIcShREW5ISREi7w884uDnTtH51Ckbli9WonCQu5NKF57jc4RSd0i11hW3Kc2u27twvc3v0e/Bv2sepyavH/4faMFd62CBeeiYN27d+d1kTMh1iAUMli3TogWLXQoKeG+DPHoUSkuXMhD8+a0SpkQ8kBmpmVrcAQCAX2OEmJtAgDJeFAMLAmAlN/p33wSaJkNPHmv9n3zZMDbnfk9fhUMgEAAwQD8//zyAiD788sNgPDPLz0AHQANgAoA5QBKAeT++VUAwAq1kvV6PWbNmoUNGzagUaNGJo/z9fRAWEgAhBLKayXOw9/fH1qtFgUFBRbPpdUa8NZbJZgzJwCenlRehTi2ggJueTXh4fRMiBBXRJ9ahBDiIPR6A37+mVsRDDc3Fn37cutS9vGTH2PHjR1Q6WzfeSVQGogven3BqQswIY4iwT/h78Jg6WXp9g4HANAjoQc8xfwvUvrwQ3/8/nslzp3jnkAFACtW+OGxx0owYgTdSCTEVb3+egAqKwVITFSjfn0VEhNVCA/XoraPfKGQ200rQpxRcXExTpw4gRMnTtg7FNPEAHgWDx7u2ojeoMfg7wbjwosXEOYVVuV1f39/bN26FR07doROx73L+c2bNzFkyBD4+vpiwIAB6NChA1q1aoXExMQqHeQKCwtx/vx5nDlzBj/88MNDhd4sMWXKFDzLpdIzIYRX/fr54v33i/Hmm/4WzePlpYdAUIrSUgF8fX35CY4QB3bihHn3JYuK3LBvny/OnZNhzhy6BiCEOL5VZ1Y5TUEwgIqCccWyBpw6pcbq1Xrs2OGO0lKes5l5IBaz6N5dhVGjgGeekcDNzfyCAITYm0Zj4LxwkJIXXQvDMIiOjoZKpUJaWhq0Wm2N+2dnu+HLL4M4H6+4WITr13W4efMmwsPD6XqdOKyz2cbvOU9pM8XGkRBCHE2TJtyKgl26RGnixPWxrAHLl3P/WW/eXIUuXajgNnE9AoEABmusQDfR5J8n48m4J+HjYVkjWi5uFNzAt1e/td0BU/GgAAAHY8aM4TUUQqwlLk6CRYtKMGYMt9zvdu0q8MEHWXBz00Gh8IJU6nj34AkhtlVZWQmFQmHRHMHBwdQEghBrMwC4C0ALQAWgAQBf/qZnGWDIAOD8F0BULefUM/8HlPN9+S4GEA0gDg9y5UPwoPCXKZg/95UAMHbZU4kH37vbAG7iQQExnmg0GkyfPh3btm2Dt3fNTTkZhkG4nwC+YQn8BUCIDYWEhECj0aCsrIzzHAqFADNnRuHwYW9cvlyOPXs84eZG5xDEMSmVLMrKuObV0M81Ia6InvYSQoiD+OMPNfLyuN2ZaN9eBT8/bg9Gon2iMa3NNHxy7BNO4y3xfqf3ESwLtvlxCeFbPb96OPz8YXRa1wlpZWn2DgcDGg6wyrzu7gy2b2fQurUWBQWWLTZ6+WVvPPFEBaKjvXiKjhDiKPR6FgcPeqGkRIR9+/7Z7umpR0KC6s8iYf8UC/Py+qcjo1jMrUAqIcTKIgAMgV3uIuVV5mHQd4NwcORBuAmrnn+0bdsWS5YsweTJky0+VmlpKb7++mt8/fXXf2/z9PSEj48PVCoVysrKLCo+Vp2OHTti/vz5vM9LCOHmjTf8cetWKdav9+U0PiZGjeXL0xAXp0FmZiXc3d0hkUj4DZIQB1JUpMHVq9x+xlu3VkIorDkpiRBCHIFcI7d3CGahomDmycrSYc0aFTZvdsOtW465ALhZMxVGjNBj1CgPBAbSQini3LKydDA9k/5hERFUUNYVeXh4ICkpCUVFRcjNzYXBYHzB+oIFoVCpuCewRkRoMHZsAVjWgMzMTBQUFCAmJoaeSxCHcvDeQaj16irb3YXu6BLXxQ4REUIcSYsWLA4cMH9cSooYcjkLT09aCEJc148/KnH7Nvfr5alT9TxGQ4jjWNB1ATYJN+Fi7kW7HD+7IhtvHXwLK55eYfNjv3/kfbAGtvYd+XKB27DAwED07t2b31gIsaLRo/2wd28ZduwwvdifhweL6dNzMXhw8d9NZe/fv4/k5GQq5ENIHZeZmWnReJFIhKAg7o0kCCFm0ABI+fNrP4BIAC0BNALXx34PKZQBT44ErnwGuFdzib76EWBDc8uPBQDwApAEIBkPioFZ6xGkDEBTQNpCijBRGASXBMj5JQeVhZW8TJ+VlYXZs2fj008/rXYfqcQdkUESiL0jeTkmIfYSFRUFnU6Hykrzf39KSoSYNCkGly8/uH/4yy/eGDOmFOvWeUMopGsS4nge5NVwy2OgomCEuCYqCkYIIQ5i+3bui8v79LGsk9Pr7V/H6gurkV+Zb9E85pr08yQUKYswu+Nsmx6XEGuI9Y3F4ecPo/P6zrhXes9ucYiFYvSq38tq88fFSbBuXRn69PGGTsetI7tMpscHH2SiokIOnS4JIhGdkhLiStLT1SgpqVoUQC4X4uJFGS5elD20PSxMg8REFerXV2PcOBbx8baKlBBikkQAA8H1njIvjqUfwxu/vYGF3RYafX3SpEkoLS3F22+/zfux5XI55HLrFQBo1aoV9uzZQ4sPCXEwX37pjbt35Th2zNOscY89JsfixRnw8fknMyU1NRVJSXTdQ1zXL78ooNf7chrboQP/xTYJIcQanm3wLFacsf3CNa6oKFjtlEoW27crsXGjAL//LoFeb955ny0EB2sxaJAa48aJ0bSpYxYrI4SLrCw9uK4OiIykomCuLCAgAH5+fsjMzER5+cOt4P/4wxMHDpi+2NSYmTNzIJH8k1ehVqtx+/Zt+Pr6Ijw8nBahEoew7OQyo9tbhre0cSSEEEfUqhW3zyq9XoAzZ9To3JmuK4jrWryYWw4bAERFaTB0KBXgJq4pQBqAC89fwNarW/HC7hfs0vxg1ZlVGN50ONpEtrHZMa/lX8PWq1ttdjwoANzkNnTYsGGUL0KczhdfSHDypAZZWbX/7DZqpMAnn2QiLk7z0HaWZZGRkYGYmBhrhUkIcXDFxcXQarUWzREREcFTNIQQs2X++fULgHYAHoPFxcHuBALh04GfNwOPZf2zXSMEFjwOzLa0b4YIQAMAzQDUA8DTY6FgWTAivCIQ4R3x4E+vCER6R/7zd+8I+Lj7QPBndVS1Wo0vvvgCc+bMQWlpqcXH//3337Fv3z706NHjoe0MwyDYm0FAWBwEQspdJa4hJiYGKSkp0Gg0te/8p8xMN7z0UizS0twf2r5pky8iIooxd64/32ESYrHsbO6F7imvhhDXRGdzhBDiIPbu5fZQj2EMGDjQvfYda+Dt7o33Or2HCXsnWDSPuVgDi7d/fxvfXPkGB0YcQLg3LVQhzi3GNwaHnj+Ezus7I7Uk1S4xdIvvBm93b6se4+mnfTB7djHefdf8Gx8JCSosWZKO2FgNDAbg7t27SExMpER7QlzImTNqAFWLglUnJ0eMnBwxjhwBxoypsF5ghBDztQTwFKzXAckMi04sQo+EHvhfvf8ZfX327NlQKBT45JNPbBwZd02bNsX+/fvh5eVl71AIIf8hFjPYuVOMtm1VuHvXtIVSAwYU4803s+H2n+QWg8GAlJQU1K9fn657iEs6eJD72O7daZEDIcQ5dInrgvc7vY93Dr1j71BMQkXBjGNZA06cUGP1ah127vRAWZms9kE25u7Oont3JZ5/XoDevSUQiXhoq0yIg8nK4pa8KBQaEBLiADepiFUxDIPo6GioVCqkp6dDo9FAoxHgk0/CLJq3Q4cKdO5s/PlDaWkpysrKEBERAV9fX4uOQ4ilDqUdMrp9fIvxtg2EEOKQ2rblfi/t9Gk9OnfmMRhCHMipUyocO2Z6jsp/vfyyFiIR3asmrm1w48HoWb8nwheFo0Jj29wsAwwYv3s8zo0/Bzehbe51vXf4PRhgWbNts1wBoK91L6PGjBnDayiE2EJAgBhfflmG3r3dwLLGC3MyjAHjxhXgxRfzq+RQ/KWiogJlZWXw8bGsEDwhxPmwLIvc3FyL5vDw8KC8S0IcgQLArwBOAOgBoLFl0xVLgdbjgCdTgTeOAp4aYNwzwJUQCyb1BdAKwKMwZ4kLxELxQ8W+Ir0jHy7+5R2BMM8wuIvMW9Pr7u6OV155BQMHDsTEiRPxww8/mDXemIULF6Jjx46QSqUQiUTwkTIICvSHSBpo8dyEOBKGYZCQkIBbt25Br6/9Qvz6dQ9MnBiDoiLjFyXz5vkjLKwYU6ZQYTDiWLjm1YhEBgQFUV4NIa6IioIRQogDuHhRjXv3uBX2atFChfBw7kkNf3nh0Rew/PRyXC+4bvFc5rpReAMxy2KwuNtiTG492ebHJ4RP0T7ROPz8YXRe3xkpxSk2P/6ABgNscpzZs31x9mw59uwxvQBZjx6leO+9bEil/1yYarVaZGZmIjo62hphEkLs4NIlbklVIhGLRx91vMWYhNRJEgC9ATS0dyAPW3pyabVFwQDg448/hkQiwZw5c2Aw2DDBk4P27dtj586d8PPzs3cohJBqBAWJ8f33lXjiCR1KSqq/jc4wBrz2Wi6GDSuCoJpG9DqdDvfv30e9evWsFC0h9nP8OLd7mqGhGjRuLOU5GkIIsZ63n3gbPh4+mLJvir1DqVWYp2WFU1xNRoYWa9ZosHmzCHfumFbw1daaN1dhxAg9Ro70QEAA3R8jri0nh9s9m4AAHYQ2WjxM7M/DwwP169dHcXExli1TVencbA43Nxavv55T7TU78KCgd2ZmJgoKChATEwOxmIpCENu7UXAD5eryKtsZAYPhTYbbISJCiKMJDxchLEyLnBzzz4nOnrVCQIQ4iIULOVbiAeDtrcfEiZbn3hLiDBYdX2TzgmB/uZJ/BYtPLMas9rOsf6y8K9h+fbvVj/OQC9yGtWjRAk2bNuU3FkJs5OmnffDiiyX47LOqeU9RUWp8/HEmHnlEWes8mZmZ8PT0hFBIi5YJqUvy8vLAstwKHfwlKiqKp2gIIbyQA/gODwrm9gFgYUrYb/UefMEAoIbnO7XyAfAKgP/0cvXTixERVr/aYl+R3pEIkARAUNPDJQuFhYXh+++/x+LFizFz5kyTChxVJy8vD1s2fY1P3n8LYu8oCKh5LXFhDMMgMTERt27dqnG9yPHjnpg2LQoKRc3XGjNm+CE0tBSDB/vyHCkh3HHNqwkMpLwaQlwVFQUjhBAHsG2bFgC3RNbevblf9P+biBFhQdcF6PlNT17mM5eO1eGVfa9g3cV1+HXEr/CXUoVl4rwivSNxaNQhdNnQBbeLbtvsuCJGhGeSnrHJsYRCBps2SdGqlarWhVRCoQHTp+di+HDji+TLy8tRXFwMf3/6vSfEFVy7xu0hQr16Gri7O+bCTELqlPoAegEwve6nzSh1tSeLvf3222jatClGjBiBigr7JLTW5sUXX8Ty5cvhVl0rTEKIw2jSRIYNG8rw7LNe0OmqnuPIZHosWJCBDh3ktc6lUCiQnZ2N8PBwa4RKiF3k52tw8ya3c/g2bZQQCqnrMyHEubzS+hUESALw/P/Zu+/wpsq3D+DfpGmadA+6W6B0QNlbBBEHIEvZQ5Gp4l4IuPf4Kai4cIMMEdlL9hBlgzKFAh10772SZr5/8KJiV3JyMpp+P9fFpZ6c5zm32qQ5z7mf+948HTqDzt7h1MlL7gUvN3bFVqkMWLtWhWXLJPjtNyX0ese7/woJ0WLixBo88IAcnTpxTYyaD6HJi4GBegCO914m6/L398fLLxvg4lKMDz/0QUWF+RtEZ8woRMuWGpPOrampwZUrV+Dr64uwsDBIuWmCbGjBkQV1Hm/foj1/Fonob507CysKdvYsU8XJOaWmarFpk/CiXtOmqeDl5SliRESOKbk4Gf879D+7xvDmb29ifIfxaOPXQBMljQY4fx7480/g1CkgJwdQqwGjEVAogIAAoFs3oEcPoGtXwKN2cf03fnvDav8OdcoBkCts6MyZM0UNhcjWPvrIG7/9psLFi//8Lh47thjz5uXe0Dy6IUajEampqYiOjrZWmETkYHQ6HYqKiiyaw9vbG25uwhtJEJEVXQbwDYAJAMJFmM/MmlwuBiC0AogoB8IrgPD//DWiHAirANxv6g0cPChCgJabPXs22rdvj9GjR0OtVgue57sfVuG1t+bDjc8TqBmQyWSIjo5GUlJSna9v3eqD116LgE7X+IeITifBjBleCA6uwG23Md+KHENOjrBxzKshcl580ktE5AB++UX4x/GECeJ1qR0aMxQD2wzE3pS9os35bwHKAJTXlENr0NZ7zqncUwj9OBTfjvgW07pOs0ocRLYQ7h2OA9MOoNd3vZBVkWWTa94ZdSf8lLW7LlmLj48Ma9aoceut+nqT8AMCtPjoowz06FHd4FzZ2dlQKpVQKtl9kaipu3xZ2HeTdu1qAHADJDUNbm5u8PDwQFVVlb1DEU8wgLsANJB/aW+j2o4y6byRI0fi+PHjmDhxIs6fP2/doMzg6emJhQsX4sEHH7R3KERkhhEjfPDBB8V47rkbixiHh2vwxRdpiImpMXmu4uJiKBQKFkQmp7FjRxUMBmHrELfeKk6jAyIiW5vceTL8lH4Yt2acSYWLbS3Mq/kWIDUYjDh8uAaLF+uxcaMC5eW1NwXam5ubAUOHqjBjhhTDhikgkzERi5qf3FxhHbWDg03bSEjORy6X4rXX/DF9uhrPPluJDRtMLy4cFqbBgw8WmH3N0tJSlJWVITw8HL6+vmaPJxJiR9KOOo/f1/k+G0dCRI6sWzcDdu0yf1xyshwVFQZ4eXFTIDmXjz6qgU4nrKiXTGbAnDksJEDOz2g04skdT6JGb/ozTWtQ6VR4bNtj2DF5ByT/7iyrUgGrVgGLFwN//HGtMFhDli699lepFOjYEZg2DZgxA/Dzw5ncM9iQsMFq/w51Oi1smEKhwL333ituLEQ2plS6YOlSPfr3N8DDw4A33sjC7beb38BRpVKhqKgIAQEBVoiSiBxNWlqmxXNERESIEAlR09SzZ08Yjf804Bmzegw2XtrY8CA9AN3//6n6/z9lAAr+/08mgIa3e5mnDMBSAJMAWKnup5caGHUJuCnrxgJgQVWAiyn9iVSOlesxZMgQbN68GSNHjhRcGKyyshJfffUVXnzxRZGjI3JMCoUCUVFRuHr16t/HjEbghx9aYOHCELPmUqlcMHasEgcOVKFTJ8fLNaLmJ1dgAXrm1RA5Lz7hJSKys+RkDc6fF1YAo127GrRtK15RMIlEgg8HfQiJuaXUTZkbEqyfsB7Zz2WjS3CXBs/V6DWYvnk6+i/pj0pNpeixENnKn9l/2qwgGACMaz/OZte6rmtXT3zxRXmdr3XrVoU1a5IbLQh23dWrV2Ew8OaTqCnTaAxIThaWNBkfz6IA1HSEhoaioKAAa9euxfjx4+Hu7m7vkIQLAzAWwMNw2IJg/kp/vH3723i89+Mmj4mPj8epU6fw0UcfwcvL/l1bxo0bh0uXLrEgGFETNXu2Px56qOTvf+7evQo//ZRsVkGw67Kzs52rqCQ1awcOCF9DHDqUBYGJqOkaFjsMu6fsho+b6UVJbKU5FgVLS9PitdcqERenwa23KrBsmQfKy+tuYmEvPXqo8cknVcjONmLjRg/cc48SMpn4z+KImgKhRcGCgkzJ4Cdn1rKlAuvX+2DHjnK0a2faZo1583KgVAr72TEajcjMzERiYiJqauy7eZ6cX2F1IXIr687ufrL3kzaOhogcWa9ewlK+DQYJjh/n7zNyLmVleixfLrz55OjRKrRsyWLd5Pw2XdpUbwFaW9uVvAs///XztX9ISQGeew4IDwceeAA4cqTxgmD/ZjAA5879M8fMmXhj87PWCbw+OgAC+9SNGjUKfn62awBMZC29enniq68KsX59oqCCYNfl5ORAY85nABE1SRkZatx2WxhWrvSHVitsjhYtWkAq5XZoouvmD5qP1r6tGz7JBYAbAA8AQQCiAHQFMAjAfQDmAXjs//9ZrHQDLSBdCQzZATx6EnjqGPDcEeCFg8BrB4C39wPv7wE+2gU89AcQXQxITHic06IKWLkeKHsfWL4JePwkMPIy0DMbCK00sSAYAOh0FvzLWcfgwYOxePFii+b4/PPP+Z2KmhUPD4+/i4Xq9cD774eaXRDsuuJiGUaMkCEjQ1hhPiIxMa+GiP5LZu8AiIiau7VrtQCEFfa6+24trq3MiKdLSBfM6DoDS84sEXXeZ/o8gwGtBwAAzjxyBh8f/Rjz9syD3lh/AZBDGYcQtCAIK0avwNj2Y0WNh8jadiTuwMjVI212PalEipFtbXe9f5s61Q8nTpRg0aJ/khQmTy7Ec8/lwdXV9JtJg8GAlJQUxMTEWCNMIrKBM2eqodUK68LapQsf0lLTolQqMW7cOIwbNw4qlQr79u3Dtm3bsG3bNmRkZNg7vAa5KlyhjdECvQG0tHc0N/J280b30O7oHtId3UO7o0dYD8T6x8JFav6GbplMhtmzZ2PSpEl45ZVXsHLlSps/7OzduzfefvttDB482KbXJSLxLVrkg+TkCnh66vD669mQy4U/OEtNTUVcXBxcXbnZhJq2o0eFrUtGRGjQrl0TLqpKRATglpa34PcZv+OuH++qt4CDPTSXomDV1QasWaPGsmXA778rYTA43veq0FAtJk2qwQMPyNGhA4thEl2Xny9sHTgkhMmLdM2QId64804DPvigGPPn+6Ciou51w379KnDHHcI3o15XU1ODxMRE+Pj4IDw8nBvOyCo+OvJRncdb+bSCp1zYczcick433yy8eejJkwYMHChiMER29uWXapSXewgeP28et1CQ86vR1eDpnU/bO4wbPLPrGdy15QL831pgXhGwhqhU+HPnD9jcSpzpTHYJgGk1q2uZOXOmqKEQ2dO0aS1w+XIR9Bb2hL169Sratm0rTlBE5JBeeEGNzExfvP9+GH7+OQBz5uTi1lsrIDGx5oFUKkVQUJB1gyRqYmL8Y3DxsYs4nnUcORU5cHVxhavU9e+/yl3ktY419lrCxQR8/PHHWLlypUVNUwwG4NBx4G0APU04/0oAML8fsLQroK/jUUyfDGDrKqBFteCQ/qFwzOf39913H/744w8sXLhQ0PicnBzs2rULd999t8iRETkuX19faLVaTJ/uiu3bfS2aKz3dDcOHV+PgQR18fLh2SPZTUMC8GiK6kcRoNPIdTkRkR337qnD0qLCOZSdO1KBXL3GLggFAdkU2Yj+PRbVWjJUSoG1AW5x++DSUrjf+e2aWZ+LO5XfiStGVRucYEj0EmydthlwmPLmJyFZ2Je3CsJ+GwWA02Oyad0TdgX1T99nsev+l1Rpwxx3V+PNPd7z+ehaGDy8TPFdAQABCQ0NFjI6IbOXrr0vw6KPCuhgmJqoQEyO8iyuRI0lISMD+/fuxf/9+/PbbbygqKrJ3SPD29saQIUMwbtw4fF32NfZn7bd3SPBT+F0r/BXa4+8CYG382kAqsc7Gury8PHz55Zf4+uuvkZ+fb5VrANeKkY0ePRrPPPMM+vbta7XrEJHtVVZqkZp6BYDlS+oymQxxcXHcTExNVmamGpGRwhKkxo0rw9q1PiJHRERkH8nFyRj842CklKTYOxQAwNy+czF/0Hx7h2EVBoMRBw/WYPFiPTZvVqC83Pzi0damUBgwbJgKM2ZIMXSoAi4uwjo3EjmziAgNsrLMf977wQeVmDePhXHoRunpasyeXYP162+8v3B1NWDjxiS0aiVugwCJRILw8HD4+vqKOi9R7OexSCpOqnX8qd5P4dOhn9ohInIEZ86cQbdu3Uw+//Tp0+jatav1AiKHER6uRXa2+YWRx46twrp1wgsoETkSrdaIqCitoHsLAOjfX4Xff2d+CjUdb7zxBt58802zxw2bMwzbPbdbISLLPPgn8N1Wcee8+17gF1vXEloBINn8YS1btsTVq1f5nJicikqlQnKygDfEfzB/nMh5nThRib59PaDX3/js7KabKjF3bi7atlU3OkdERATXZols6OrVq5gzZw42bNhg0TwRAM4ACDDx/E1tgdH31j7+/CHg/b0WhfKPQYOA3btFmkxcNTU16NSpExITEwWNnzJlCpYvXy5yVESO77PPivH00/6izDVgQAX27vWATMb7drKPsDAtcnLMfw40f34l5s5lXg2RM+JvJCIiO8rL0+HECWGb5yIjNejRwzoFssK8wjCv7zxR5nKRuGD56OW1CoIBQIR3BC4/cRmv3/p6oxv/dybvRMCCAOxOdsxFF6Lr9qXss3lBMAAYFz/Optf7L1dXKVavdsWPPyZbVBAMAIqKilBWZtkcRGQf584JG+ftrUNUlPiFTonsJT4+Ho8//jjWr1+PgoICXL58GStWrMCTTz6JW265Bf7+4jxwqI9EIkHLli0xZswYLFy4EH/88QeKi4uxevVqDB81HIdzD1v1+nVp4d4Cd0XfhZdueQnrxq/D1aevomheEfZO3YsPBn2AiR0nIsY/xmoFwQAgODgYb775JjIyMrB79248/fTTiI2NFWVuHx8fjBs3DkuWLEFmZibWrFnDgmBETsjT0xVRUa1FmUun0+Hq1auizEVkHyX4+eckPPtsLvr1q4BSaXrr5wEDbLtmQkRkTdH+0Tg04xA6BXWydygArj3fcTapqVq8+molYmO1uO02BVas8HC4gmC9eqnw2WdVyM42Yv16D4wYoWRBMKI6GAxGFBQI66gbEsL3FNXWsqUC69b5YOfOcsTHq/4+Pn16oegFwQDAaDQiMzMTV65cQU1NjejzU/Ok1qmRXFz3xum5/ebaOBoiago6d9YKGnf2rLDvYUSO6KefqgUXBAOAOXNEDIbIge1M3mnvEOr0fQ/gYEvx5jsZZoeCYGUABPaJuG/KfSwIRk5HqVQiIMDUUh/1KyoqgkqlavxEImpy5s5FrYJgAHD8uCfGj4/G66+HobCw/vtWuVzOgmBENhYVFYX169dj/fr18PMT1jQeADIBTDPj/Fsy6j6eKGbqfSfHyO+oi5ubG7766ivB47ds2QKNRvxnZESO7qmn/PH888UWzyORGHHzzRVISUmCwcA8V7K9a3k1wvLiwsO53kTkrPiUl4jIjtatq4FeL6wD3/DhWkil1ikKBgBz+s7Bt6e+RXZFtkXzvHjLi+gd3rvBc964/Q1M7jwZg1YMQlpZWr3nVWoqcdePd2Fc/DisGrcKMil/jZFj2X91P+768a56C4LJpDL8MukXvLj/RZzOPS3adSWQYHT8aNHmEyoszA133BGIzMxMi+fKyMiAUqmEXG69zzkiEl9CgrDfzW3b1sDFhV2JyTlJJBLExcUhLi4O999//9/Hc3JykJCQgKtXryI9PR3p6enIzc1FUVERioqKUFpaipqaGmg0Guh0OshkMri5uf39x9PTE0FBQQgODkZwcDBCQkLQpk0bxMfHo23btvDwqPs9dTDtIGr0ttmw1j6wPd674z10D+2OCO8ISCSOsXlTLpdj0KBBGDRoED755BOkpaXh7NmzuHjxIhISEpCYmIiSkhJUVFSgoqICVVVVcHNzg5eX199/IiMj0b59e7Rv3x4dOnRA586dIZPx/oSoOfDw8EBYWBiysy1bLwGudcvNzMxERESECJER2ZZKVYkOHWrQoYMaM2cWQqsFLlxQ4uRJT5w44YHTp91RU1P3A+ahQ4U1SSAiclShXqH4bfpvuHvV3TicYfsizP/mLEXBqqoM+PlnFZYvl+LQIQUMBvO7H1pbWJgWkybV4IEHXNG+fe3GOERUW0mJARqNsOTFiAjHKgZIjuWuu7xx9qwB8+cX48cflXjooQKrXk+j0SAxMRHe3j4ICwtnl2iyyHd/fgcjjLWOBygDEOHNNSMiqq1HDwN2CqjxkpwsR1mZHj4+/F5FTZvBYMTChcJ/jtu1q8GIEVyjpubBkTevzrobOPM14GZ6z5l6vX675XOY7QxQx9d4k1yJvCJmJEQOIzQ0FOXl5dBqhRWxvS41NRVt27Zl8TwiJ7JmTSl+/9233teNRgk2bPDHjh0+ePDBQkydWgiF4sZftJGRkVaOkojqM2bMGPTs2RNDhgxBQkKCoDm2AfgZwCQTzg2oBnxVQOl/HsGfFDMVokcPEScT35133okBAwbgt99+M3tsWVkZDh06hDvuuMMKkRE5tnff9UVOTimWL/cVNF4uN+B//8vE4MHl0Giu3Zu0adNG3CCJGlFQoIdOJ2xfUlgY76OJnBV3KxIR2dGmTcI3xY8bZ90EHQ+5B965/R3M3DJT8Bxdgrvg1QGvmnRubEAsUp9Jxexds/HJsU/qTHq8bl3COuxbsA9b792Kfi37CY6PSEy/p/6OwSsGQ2+sO0vBReKCA9MOoF/LfugV0QuDVwzGnzl/inLtW1reghDPEFHmspSvry8qKytRWlpq8VwpKSmIi4vjg12iJuTKFTdB49q2tSwRhKgpCg0NRWhoqM2vu+/qPlHni/COQLBHcJ3fa3QGHUa2Gynq9ayhVatWaNWqFe655x57h0JETYS/vz/UajWKiy3vKlVaWipa11wiW/pvR0FXV6BrVxW6dlXhoYcKoNFIcO6cEidPeuDECU+cPauEVitF69Y1iI5m4RQicj5+Sj/snrIb49eOx/bE7XaLoykXBTMYjPjttxosXqzHli0KVFQ4XgF5pdKA4cNVmDFDirvuUsDFxfGKlRE5sowMHQBhz7iZvEiNcXWV4uWX/TF7thoZGa426YK+dq0RS5eq8cknOtx5p7fVr0fOaemZpXUeHxw92LaBEFGT0auXsO9TRqMEx49rMHgw1+aoadu/X42zZ4X/HD/5pA5SqbDcFiISz6VA4INbgNfM3+N+g2MRwI5YcWIymRHXioIJ0RrYkLsBy84sw7Su08SLichBREVF4coVywrf6fV6ZGZmomXLliJFRUT2pNEY8PLLphXlValc8PnnwVi71g9PP52HYcPKIJVea+CoVPJelsieWrZsiUOHDmHw4MH4809h++CeBXA3gMayACQAFFoA/3nbZ/gAhUqghUrQ5W/Us6cIk1jXSy+9JKgoGAAcPXqURcGoWXJxkeL7772Rl1eOXbvMe3br5aXHZ5+loWfP6r+PVVdXIyMjg8VJyaaysvQQWv4nPJx5NUTOiu9uIiI7qagw4OBBYR3HWrTQ4bbbrJ+YMLXLVHQJ7iJorKvUFctHL4fcRW7WuI/v+hhnHjmDYI/gBs8rUZfglh9uwczNMx26mxU1D4fTD+OO5Xc0WBDs12m//l3Ezl/pjz1T9qBXWC9Rrj82fqwo84glIiICcrl57/266HQ6pKenixAREdlCQYEG2dnC3vsdO/J3OZGtFKuEF7Bp7dsaY+LH4N073sWOyTuQNycPGc9m4MD0A3Wen1GWIfhaRESOLiwsDO7u7qLMlZOTg6qqKlHmIrIFtVoNo7Hh9udyuRE9e1bj0UcL8MMPV3HkSAK+++4qnn++yEZREhHZnrurOzZN3ITJnSbbLYamWBQsJUWDl1+uRHS0FnfcocDKlR6oqLBuYxxz3XSTCl98UYXsbCPWrvXAsGFKuLgIb/xD1FxlZwtfB46IYM9DMo1SqUBcXBzCwsIgkVjvs7q6WooFC0Lx11/uGDTIC5MmlSI7u8Zq1yPnZDAYcC7/XJ2vzek7x8bREFFT0aeP8OLEJ07UnddE1JQsWNDw2nRDgoK0mDmTxQSIHMW7/YHLFvZNev02UUIxTyqAEoFju137y2PbH0NCQYJIARE5DrlcLkqTzPLyclRUVIgQERHZ28cflyIpybx9c7m5crz4YiTuv78Nzp1TshAHkYPw9/fHtm3bEBUVJWh8LoCvTDy3oq4tsxJgshhb57y9gVhbVxY236BBgwQXST169KjI0RA1Ha6uUqxb545evUzPyQ4O1mL58pQbCoJdV1ZWhtzcXDFDJGpQVpbwvJrwcObVEDkrFgUjIrKTjRtVqKkR9jF81101Ntls4CJ1wUeDPxI09q3b30Ln4M6CxnYO7ozs2dl4oNsDjZ77w5kfEPpxKM7knBF0LSJLHc04ituW3dZgQbC9U/eif6v+Nxz3U/ph95TduCn8JotjGBM/xuI5xNamTRtREu0rKytRUFAgQkREZG06XQUWL76K55/PwZgxxejYsRoKhWmLUV27OtZGTyJnZup3jxj/GEzoMAEfDPwAe6bsQdG8Ilx9+irWT1iPl/q/hCExQxDkEQQA8JR7wt21dmEclU6FcnW5qPETETmS1q1bQyYT5wFaamoqNBqNKHMRWVtJifk7HRQKI/r0qcLIkSygQkTOzdXlWsOUJ3s/aZfrh3pavtnGFiorDfjuuyr0769CTIwr3nvPE6mpljeaEFN4uAZz5lQhIUGDY8eUePxxD/j6cg2LyBJCkxc9PfXw9GR6E5nH398f8fHx8PHxscr833wTiLy8a0VZjEYJVq/2Rfv2Lnj//WJotWyEQqbZdHkTdAZdreMerh7oHtrdDhERUVMQHCxDRISwteRTp7g2R03bhQsa7NkjvKjXrFk1UCh4b0HkKDQy4JERgNBSf4cjgd0xooZkmtMCx7kBaH/tb6u11XjtwGtiRUTkUAICAqBUWl6EMz09HXo9i9oSNWWFhRosWOAtePz58+4oKPATLTeLiCwXHByM9evXw9VVWNH6DwE0tqpV6A5U1ZM6sDsGWNVR0KX/MX48YMWmMmKRSCSYMGGCoLEsCkbNnaenDL/84oqYGHWj58bEqPHjjymIiam/+VNhYSGKi4vFDJGoXkKb7Xl76+HuzrVvImfFdzcRkZ1s2iR87Jgxtlt8uLPNnRgeO9ysMX0i+ljctVQqleL7e77HkZlH4Kfwa/Dc/Kp8dP+2O57Z+YxF1yQy18msk7h16a11JuoCgFQixa77d+G21rfV+bqvwhe7p+zGzRE3C46hT0QfRPo4XvcTmUyG1q1bizJXXl4eqqpMr9BORPah01Wjd+8q3H9/Ed58MxurVqXg2LGL+OWXK1i4MB2PPpqPO+8sQ8uWNZBIbkzn6t27djEhIrKOGd1mYHrX6X//swQStA1oi/s63YcPB32IX6f9ipLnS5D4ZCJWj1uNef3mYWCbgfBX+jc4b0vvursRbbm8RczwiYgcilQqRUxMjCgFkY1GI5KTk2EwcOMwOT5LujL7+TW8zkdE5AykEik+HfIp3rrtLZte10/hB6Wr5RttrMVgMGLvXhXuu68KoaFGzJrlgUOHlDAaHSfhVqk0YPz4KuzYoUJamisWLPBAu3aOVayMqCnLzRW2zTcwkJv/SBipVIrIyEjExMRALhfv8zwlRY7lywNqHS8rk+HFF/3RrVsN9u4tE+165Ly+PPllncf7Rva1cSRE1NR07lx3nlJjzp4VtmGTyFEsWKAVvI6gVBrw9NOOu25C1FwdiAKWdhU29vXbRQ3FNGoAFwWO7QjgX7+K96XsEyEgIsfUqlUri/MojEYj0tLSRIqIiOzh1VerUFwsvKBXhw4qPP64r3gBEZEounXrhpdfflnQ2DwAjWWVb24LoIGvEY8NBzKE1xsEHn/cgsG2NXy4eft5rysuLkZhYaHI0RA1LUFBcmzfbkRwsLbec3r0qMKyZSkICan/nOuys7MtypslMlVurrBxgYHCnhsRUdPAomBERHagVhuwd69C0FhPTz2GDRM2VqgFgxbARWJa93OlTIllo5ZBJhWnG8PNkTcjf24+xrcf3+B5Rhjx6fFP0XJhSyQWJYpybaKG/JH9B/ot6ddgQbCdk3fizjZ3NjiPt5s3dt2/C/0i+wmKY2z8WEHjbMHDwwPBwcGizJWamgqdjjenRI5Mra7dRcHFBWjVSoOBA8vx2GP5+OSTDGzblohjxy7ip5+S8cYbWXj00Xz4+TH5mMhWZFIZfhj5AzKezcC5R86h7IUyXHriElaOWYnn+j6H21rfBl+Fr9nzdg/tXufxnck7LYyYiMixyWQyREVFiTKXXq9HSkqKKHMRWZNG01jPxrpJJBIoFLZd1yQisheJRIJXB7yKRcMWQdJQxqqIwrzCbHIdcyUlafDii5Vo00aLQYOUWLXKA5WVpj1zspWbb1bhyy+rkJNjxJo1HhgyRAkXF8cpVkbkLHJyhL2vgoJYFIwso1AoEBcXh7CwMBE2pAL/+18YdLr6U+4uXFBi8GBvTJxYiszMxjtQU/N1NPNoncef6P2EjSMhoqame3dhzSWuXnVFSQm/W1HTlJenw+rVwot63XdfNVq0cKz1CCK6Zs5goMDMfpK/twL2tbFOPA36C4DQNNZuN/5jtH+0pdEQOSyZTIaIiAiL56murkZxcbEIERGRrV28WI0lS3wsmuP99zWQybj1mcgRzZ07F6GhoYLGLm3k9bUdGn69VAnMGAUYhDzuuekmoFu3xs9zEL1794arq7B9NlevXhU5GqKmJzZWiU2b1PDyqr0mPmhQGb75JhXe3qavtaelpUGlUokZIlEtOTnCmu0FBbEpOZEz450xEZEd7NypRkWFsASDO+9UQ6Gw7cd3fGA8ZvWYZdK57w98H3EBcaJeXyaVYc34Ndh9/254yb0aPDejPAPtFrXDa7++JmoMRP92JucM+i7uC62h7krgUokUv9z7CwZFDzJpPi83L+yYvAP9W/Y3OxZHLgoGAIGBgfD09LR4HqPRyM3xRA5Oq228O8J17u5GdOqkwtixJXjqKSZtENlDhHcEOgV3gpdbw9+vTTU4enCdx0/lnBJlfiIiR+bu7i5KQitwrdBqRkaGKHMRWUN1dbXgsXK5XMRIiIiahsd6PYafxv4kWiOVhjhSUbCKCgO++aYK/fqpEBfnivff90RammP9HoiM1GDevEpcvqzBkSNKPPqoB3x8uDmYyJqEdjQNDmbyIonD398f8fHx8PERvhltzx5vHDvW+LNPo1GCNWt80bGjDP/7XzG0Wv4c042OZx5Htbb2Pbar1BUjYkfYISIiakp69xZ272I0SnD8uLCC/0T2tnChGmq1sLxZqdSIuXMda12CiP5R7A7Mvsu8Ma/fZpVQGnda4LhAAP96nKyQKfDZkM/EiIjIYfn4+MDLy/K8tOzsbMFNq4jIfubO1UGjEb7vbfDgcowYYVlRMSKyHnd3d8yZM0fQ2P0A6iupU6wE9pnQn3VfG+Dz3gIu/vjjAgbZj7u7Ozp27ChobGpqqrjBEDVRffp4YeXKCsjl/zyrve++IixYkAE3N/OLL6WkpPD+hKwqL09YkzPm1RA5NxYFIyKygw0bhFVrBYDRo0UMxAxv3PZGowW5bm99u1U7lg6KHoTCuYUYFjOswfMMRgPe/v1txH0eh8zyTKvFQ83TubxzuOn7m+ovCAYpNk/cjKGxQ82a18vNC9snb8eAVgNMHtM9tDui/ExY8bSzli1bQiazfNObRqNBZibf00SOyGAwwGAQtoDEwgBEzmFku5F1Hk8rS7NxJERE9uHr64uAgACL56mqkmLGDG9s2FBqeVBEVlBSUiJ4rBhFw4mImqJJHSdh671b4e7qbtXrhHuHW3X+xhgMRuzercKkSVUIDTXikUc8cOSIEkajsGQla3B312PixCrs2qVCaqorPvjAE3FxXJsispW8PGEpSsHBwp+tE/2XVCpFZGQkYmJizH4+UV0twfz5oWaNKSuT4aWX/NGtWw327Ckzayw5t4+OflTn8S7BXSCVMqWTiBp2883C72NOntSLGAmRbVRXG7B4sULw+CFDVGjblvf/RI7sxy7Anjamnftra+CAPdJm8wFkCRsq7S5F5+DOmNxpMj4c9CHSnknDzZE3ixoekSOKjIwU5R73+HHmjhM1Jbt2lWP7dm/B42UyA+bP5/oYkaObMmUKXF1dzR6nAvB7Pa9tagfoTKyF//wg4GKgGRe+6SbgvvvMGOAYoqOjBY1LT08XORKipuvuu32xaFEZpFIjZs/OxQsv5MBFYM9Ao9GIpKQk6PVcZyfrYF4NEdWFd8hERDam1xuxc6ewBAO53IBRo4QnN1giyCMIL/V/qd7XveReWDJyCaQS6/5qkcvk2DZ5GzZM2AClTNnguYnFiWj9SWt8dKTuZEoic/2V9xd6fdcLGkPdFb0lkGDjpI0Y0VZY515PuSe23bcNt7e+3aTzx8WPE3QdW5NKpWjTxsSMjUaUlpaitLRUlLmISDwqVX39WhqnVDb8+5yImgZfhS8Ustr3KtXaalRrqu0QERGR7YWGhsLDw0Pw+KwsV9x/fxvs2+eDGTM8cepUpYjREYmjqqpK8Fh/f38RIyEialqGxAzB3il74afws9o1wjzDrDZ3QxITNXjhhUpERWlx111KrF7tgaoqgdlzViCRGNG3rwpff12F3FwJfv7ZA4MHKyGVOk6xMqLmoqBA2HPkkBCRAyECoFAoEBcXh7CwMEgkpv1O+PbbIOTlmb/BBQAuXFBizBhPnDqVBLVaLWgOci77ru6r8/iMbjNsHAkRNUUtWrggMrLu3KXG/Pkn74Wo6fn++2oUFgpvSDl3LrdLEDUFj44AVI281Y0AXjctvVZ8p4UNk7nKkP5DOs4+chY/jvkRz/V9DkEeQeLGRuSgpFIpWrduLXi8wQAsWxaAgQNb44cfhDevIiLbMRgMSEoqQUCAVvAc06aVo0sXNp0jcnSBgYG44447BI09Xs/xte1Nn6NGBtw/BtCYkprg5gb88AMEVwGyI6F78SoqKkSOhKhpe/BBP+zfn4MZMwph4qPhel37vpMEg8EgTnBE/5KfL2wtOzSUz36InBmfchER2djvv9egoEBYomj//mr4+NhvAeKZPs+gpU/LOl9beNdCtPZtbbNYRsePRsHcAtza8tYGz9Mb9ZizZw66fN0FhdWFNoqOnNGF/Avo+V1PaPT1FwRbN2Ed7ml7j0XX8ZB74Jf7fsHANgMbPXds+7EWXcuW5HI5IiMjLZ5HpZLgmWd0yM6uESEqIhJLZaXwghWennxwS+QsIr3r/l2/9cpWG0dCRGQ/rVq1EtQB78wZJe67LxpJSdcKLJaXyzB2rCvy8oRt7CKyFo1G2M+kRCKBm5ubyNEQETUtN0fejN9n/I5Qz1CrzB/mZbuiYBUVBnz1VRX69lUhLk6ODz7wRHq6sIY41tKypQbPP1+Jy5e1OHxYiYcf9oCXF9MjiOwpP1/Yc24mL5I1+fv7Iz4+Hj4+Pg2ed/WqHMuWBVh0rVmzCiCXq5GUlISMjAwmijdjaaVpKFYV1zougQQPdnvQDhERUVPUpYuwDdZnzwrLWySyF4PBiM8/F/5z26OHGrfdZp9GvERknmR/4O0BDZ+zPwo42Mo28dxAD+CcsKEjho9AeGi4qOEQNSXu7u6Cmkfl5rpi1qzW+PDDUGg0Ujz3nBeuXhXevJaIbCM3NxcDBlRg27ZEPPRQPuRy89ZAfX11eO89dytFR0RiE1oU7FQdx0oUwF4z61+dDgXebOQeAgDw5ptAfLx5kzuIgABhz6YsafxJ5KwGDAiDUqkUZS6tVourV6+KMhfRvxUUCGuOwWZ7RM6NWa9ERDa2bp1O8NiRI40iRmI+hUyBhXctrHX8nrb3YGa3mTaPx0Pugd9m/IZlo5ZB7tLwZpNzeecQ9lEYvv3zWxtFR87kcuFl9Py2J2r0dReikkCC1eNWY0z8GFGu5+7qji2TtmBw9OB6z+kU1AlxAXGiXM9WfHx8BC9IAkBGhhz3398Gy5a1wMSJWmi1TJQnchQqlfBkCw8PDxEjISJ76hrStc7jO5N32jYQIiI7kkqliI6OhsSMVlJbt/pi5swoFBff+CAvNdUNo0ZpUFPDex9yDJYkC7EgGBHRNR2DOuLwzMOI8Y8RfW5rFwXT643YuVOFCROqEBJixGOPeeDoUXGS5cTi4aHHvfdWYc8eFa5edcX773siNtaxipURNVcqlQFlZcKSF8PDmdpE1iWVShEZGYnY2FjI5bV/bxiNwPvvh0KnE/6zGBWlxv33F/39z2VlZUhISEBxce3CUOT8FhxZUOfx2IBYyGX87kJEpuneXVgeYWqqHMXFepGjIbKejRtVSEoSvr787LN8xkLUlLzfDzgbVPdrRgBTR9s0HACATCpDZG4kIPAx2cyZts+vJ3I0YWFhZjVX277dB2PGxOD48X8azpaUyDB9uh56PX+3EzkqnU7393qnh4cBTz2Vj61bEzFsWKnJc8yeXY6gIK6PETUVN998s6BxiXUc29wO0AnoL/T+LcCRuntaX9O/PzBnjvkTOwihe22qq6tFjoTIOURFRQlq/FwXlUqFtLQ0UeYiAoDqagPKy4U122NeDZFz4zuciMiGDAYjtm0TtkAplRoxbpz9N8+NiR+DxfcsRlxAHFq4t8BD3R/C6nGrzdrsKrapXaYi97lc9Azt2eB5WoMWD//yMG7+/maUq8ttFB01dYlFiej6TVeo9eo6X5dAglVjV2F8h/GiXlfpqsTmSZsxJGZIna+Pby/u9WwlNDQUCoX53Rd/+80LEydG48qVa5vMDh3yxOzZZWKHR0QC1dTUXTSxMRKJBFIpb0uJnMWgNoPqPP5H9h82joSIyL5kMhmio6MbPc9gAD79NBgvvRQBrbbu70THjnlixoxyJraSQygpKRE81tPTs/GTiIiaiSi/KByacajewspCWaso2OXLGsybV4nWrbUYOlSJtWs9UF0tLAHJGiQSI265RYVvvqlCbq4EP/3kgYEDlZBK7ffciohqy8oS3jgrLIxryGQbbm5uiIuLQ1hY2A35D3v3euPIES+L5n7ppRy4ut5YvMVoNCI7OxtXrlyBWl33s2hyTlsub6nz+IT2E2wcCRE1Zb17C78vO35cI2IkRNb18cfC7+9bttRg4kTHKmhORA0zSoFes4BzgTceV8mAW6cD2d7WvX64VziGxgzFvL7zsGL0Cpx95CwqX6xEl5wuguYLCQnB0KFDRY6SqGmKiopq9JyyMinmzYvA889HoqKi9vfd33/3xAcflFohOiISQ2ZmZq1jYWFafPBBJn78MRldujRcoCYqqgbz5vlaKToisoaYGGHN0DLqOLa2vbAYDFJgymigsq7tul26AFu2AC6Ok99gLiH77wDwuRNRPaRSKWJiYuAi0udCRUUFcnJyRJmLKDOTeTVEVDe+w4mIbOj0aQ3S0oQVBevVS43QUGHdk8U2s9tMXH7iMvLn5OPbu7+FQiZsgUFMfko/nJx1Ep8P/RwyacP/nY5lHUPQh0FYdX6VjaKjpiq5OBldvu4Cta7+gmArxqzAxI4TrXJ9hUyBTRM3YUTciBuOh3uF4+k+T1vlmrbQpk0bk4sA6fXAokVBeOKJVrUe8H7xhR9WrBC+IZmIxKPTCVt4EqvDAhE5htHxdbdkTS1NtW0gREQOQKFQIDKy/hZ01dUSPPdcJL7/PrDec65btcoX77xTKmJ0RMJUVQlsgQ7A399fxEiIiJq+YM9gHJh2ALe2ulW0OcUsClZWpseiRVXo00eFdu3kWLDAE5mZjtWVu3VrDV58sRKJiVocPKjErFke8PRk+gORo8rOFl7oODy86SbqU9Pk7++P+Ph4+Pj4oLpagvnzQyya7667ytCnT/33UxqNBklJSUhPT4fBwKLgzq5cXY6M8rq2PAHP9nnWxtEQUVPWp4/we7QTJ/j7hpqGY8fUOHJEeFGvJ57QQCZj0XBqvnqF98LtrW9Hx6COCPYIhoukadxfa2VAt0eAuYOubexPaAH0fgg41Fq8a3jWADcH98Ss7rPw+dDP8dv031A0rwiZszOxffJ2fDDoA9zf+X50Du6MksIS7Ny5U9B1pkyZApnMMXL/iexNLpcjODi43tePH/fA2LGx2LHDt8F53nnHF6dOVYocHRFZSq1Wo7Ky/vdmly4qrFiRggUL0hEeXneh6rfeqoabG5/1ETUloaGhkMvNX6OqAPDvMoGlCmBP4z1Y65XiD8y+6z8Hu3YFdu8GfH2FT+wAhBb3ElpMjKg5cHFxQXR09A1NoixRVFSEwsJCUeai5s2SvJqIiKax7kdEwnCFmYjIhtau1QJwEzT27rv14gYjArFufMT0RO8nMK79ONy5/E5cLLhY73k1+hrct+E+fH/qe2ybvM0hCpuRY0ktTUXnrztDpVPVe86yUcswudNkq8bhJnPDpombsPTMUuy7ug/BHsGY228uvN2s3PLMiqRSKaKiopCcnNzgeWVlLnj++QgcPlx/5+3HH/dGp06V6NrVU+wwichEOp0ORqOx8RPr4OYm7HsRETmmFu4t4Obihhp9zQ3HKzWVUOvU/M5NRM2Oj48PVCpVrYe9ubkyPPVUKyQkmL6R5a23/NC2bSkmTfIVOUoi0xgMBmi1WkFjJRKJoAQwIiJn56Pwwc7JOzFx3URsvbLV4vlCPC0rWKLXG7Frlxo//GDAtm1KqFQeFsckNk9PPUaOVGPmTBfcdpsbpFL+fiFqKoQmL8pkRgQFMXmRbE8qlSIyMhJubjW47bZqrF7tCqPR/PwIpVKPOXNM6w5dXl6OhIQEhIaGsrCyE/vsxGd1Hg/1DIW/O/+/E5HpAgJc0KqVsAalf/7peDl/RHWZP194zqyPjw6PPuouYjRETc9jvR7D9GnT//5ng9GAUnUpCqoKUFBd8Pdf86vy/zn2r+MFVQXQGoQ9G7KUwQX4sB/wfTegWg5oBO56khqAtkVApzygUz7QOe/a37cqA6Tb3gKGDm10jmXLlglumDlz5kxB44icVWBgIMrKym4oblFTI8GnnwZjxYoWJs2hUkkxfboUJ08aWDyIyIGkp6c3eo5EAgwZUo7bb6/Ajz8G4LvvAlFVdW39/+abK3HvvT7WDpOIrMDT0xPFxcVmj6sGcP2ufXNbQGvh48DvegB3XwbuvgJgwABg06YmXxAMEN7E092dayJEDZHL5WjTpk2je1tNlZubC1dXV/j48PsMCZeVJSyvxtXVgBYtmFdD5MxYFIyIyIa2bhX+sTthAjc2mCrEMwQXHruA9w6+h1d/fRUGY/1fhven7keL+S3w89ifMaLtCBtGSY4srTQNHb/siGptdb3n/HDPD5jSZYpN4nGRuuCB7g/gge4P2OR6tqBUKhEaGoqcnLqT4BMSFHj22ZbIymr4s6+iwgUTJsjwxx86eHvzqy2RPTTU2akxfNhA5HzCvcORUpJS6/iOxB0YHT/aDhEREdlXSEjIDd0w//pLiaeeaomCAlez5jEYJHjoIS+0aVOJ3r1ZFJlsT2iCEcDOg0REDVG6KrFh4gY8sOUBLD+7XPA8QR5BcHUx7/vFdRcv1mDxYi1+/tkN2dmmFy21FYnEiP791ZgyxYB771XCw8PxipURUeOys4U1lggI0MFF4OcbkRiCgtywapUbHnqoHM88I8P58+Y913jkkQKEhJi+edxoNCI7OxuFhYVo2bIl76ec0Krzq+o8PiKO+SpEZL4uXbSCioKdO8f8GnJ8V69qsXWr8JySGTPU8PTk8xSif5NKpPBX+sNf6Y+2aNvo+UajEeU15X8XCMuvyr+xaNi//74wHQXVhVCLfAtfasbHQGhF7eJf8YWAor5bsrNnTSoK9sMPP5gexL/cfPPNaNeunaCxRM6sdevWuHz5MoxGIy5fVuCFFyKQlGTe+sf58+6YN68En37qZ6UoicgcZWVl0Gg0Jp/v5mbEAw8UYtSoEnz5ZRA2bPDDhx8a4eLCQn9ETZG7u7ugomDqf/39uvbixPLgSOB84OsIeu41QOocnylFRUWCxnGfDlHjlEolWrVqhbS0NFHmy8jIgEwmY14TCSa02V5goB5SKfNqiJwZn+wSEdnIlSsaXLwoLGGzQwc1YmOZ7Gmul/q/hMmdJuOO5XfUWZjguiptFe7++W7c0/YerJ+wHjIpfz02Z5nlmejwZQdUaevf7Prd3d9herfptgvKSQUEBKCqqgrl5eU3HN+0yRfvvBOGmhrTFmETExWYMqUMGzZ48WEQkR1YUhzAy8tLxEiIyBF0Ce5Sd1GwJBYFI6Lmq2XLlkhKSsKWLQq88kqEyfc6/1VZ6YKxY+U4dqwG4eFuIkdJ1LDS0lLBY/m9n4ioYTKpDD+M/AEBygAsPLZQ0BxhXmFmnV9aqseKFWqsWCHFyZNKAI733SIqSoPJkzWYOdMNUVGOV6yMiMyTmyusKFhQkB4AkxfJ/u64wxunThmwcGEx3nvPG6WljecUREWpMWWKsM0aGo0GSUlJ8Pb2RkREBKROsnmludMZdLhUdKnO1+b2nWvjaIjIGXTvDmzZYv64tDQ5ior0CAhg53hyXB9+WAOdTti9gKurAbNnO95aB1FTI5FI4KPwgY/CBzH+MQ2fvGwZjNOno0oO5HsABe5AQSN/zfcAqoX2yzYCkeXA00eB7rnXCoG1qL8HcN3+k7dal8OHD+Py5cuCQpw5c6agcUTOTiaTISIiAv/7XzU+/jgYWq2wNY9Fi3wxfHgZBg/2ETlCIjKHwWBAVlaWoLEBAXq8+moOnnqqFH37RoscGRHZilqtbvykOly/FShzA3aL9BGQ7wHMijyDjRIJJOJMaXcpKfXvh20I8/WITOPl5YWwsDBkZ2eLMl9qaipiYmLg5sa1STJfTo6wcYGBzKshcnbMGCIispE1a0zvfPBfI0aY3jmWbtTKtxWSn0rG8/2eR2NLOlsub0GL+S3wW+pvNoqOHE12eTbiF8U3WBDs6+Ff48HuD9owKucWEREBV9drN50ajQRvvRWGV181f5P8li0+ePfdUitESESNEfogBwA73BM5oYFtBtZ5/ETWCRtHQkTkOKRSKaKiorF6dYDggmDXZWbKMWqUDiqVXqToiExTXW3uTop/+Pr6ihcIEZGTkkqk+GjwR3jvjvcEjTelKJheb8S2bSqMG1eFsDAJnnrK4/8LgjkOLy89pkypwoEDaiQlueLttz0RFcWkJSJnkJMjLPU+KEhYJ1Qia5DJpJg71x8XL+px332lkEgaLnb34os5cHUVVhDvuvLyciQkJKC4uNiiecgxLD+7HAZj7c81X4UvYgNi7RARETV1vXsLX28+dkx4LiORtV0rZi58zWLMGBUiI7meQGRTNTWQAPDUAG1KgJuygBFXgBlngHmHgQV7gKWbgG0/ASe+A65+ClS9B1S9C6QuBNb9DHQxcf9tUCWwewWQvhB47hhwe6qAgmAAYELO25IlSwRMDHh4eGDixImCxhI1Bz4+PnBxUQguCAYAer0Es2YpUFqqFTEyIjJXYWEhDAbL1vG7dzev+RERORahDeY9IiMBAFvaAprG+7CYbPPlzfjhzA/iTWhnycnJgsZFRESIHAmR8/L390dgYKAocxmNRnz9dT4qK1kPgMyXl8e8GiKqG4uCERHZyNatwjvrTZjABAVLvT/wfVx47EKjG2PKaspw27LbcP+G+y1enKamJbs8G+0WtUOlprLec74Y+gUe7vmwDaNyflKpFNHR0cjLc8X06VFYu9Zf8Fxvv+2HnTsb795GROLSaIQlC7OrPZFzGhM/ps7jV0uv2jgSIiLH4urqgo0bXRAebvlGqz/+8MDUqZVctyCbMRgM0GqFJVNLpVLI5ULbvBMRNS8SiQQv9n8R34z4ptEmJ/8V5ln/s4+LF2swe3YlWrbUYcQIJdav94BK5TjrMlKpEQMGVGPJkmrk5kqwfLkHBgxQQCp1lt69RAQIT14MDrasoBKRNYSGumHlSl/s31+Jzp3r3nk+eHAZbr5Z2EaY/zIajcjOzsaVK1csatRC9vf9qe/rPH5bq9tsGwgROY0+fYSvux0/zsYT5Li++EKFigrh+bbz5om4m5iITOMi7D3rrgValQFjLwFnvgV+WQlEldR/fp904MzXwKAUgXH+m6zhz4qqqiqsWbNG0NTjxo2Dl5eXoLFEzcWbb/qgVy/L1k7S0tzwyCPirL8QkfkMBgMKCgosmsPDwwNKpWM1MSIi05WXl0OlUpk9TiKRwP3qVWDLFqy9PUj0uJ7e+TRSSsS4abAvlUqFv/76S9DY1q1bixsMkZMLDg6Gj4+PRXMYjcBnnwXhmWciMWaMClotc7zJPMyrIaL6OE62LxGRE8vJ0eGPPxSCxrZurUHXrtw4J4b4wHhkPJOBx3o+1uiGmpXnVyL4w2D8kf2HjaIje8qtzEX8l/Go0FTUe86nQz7F470ft2FUzYdMJkNAQDhSU90smkenk2DqVCWuXjV/UZmIhNPrhSULszAAkXMK8QyB3KX2+7u8phxaPTszElHzFhGhwIYNGnh6WrbZSqk04JZbSpGRkSFSZEQNq6ysv4B6YxQKYWuiRETN2awes7B63Gq4Sk1vGPPfhiglJXp8+mkVevZUo0MHNyxc6InsbMdqQBMdXYNXX61ESooOBw64Y8YMd7i7M32ByFnl5wt7fzN5kRzZbbd54c8/FZg/vxh+fv90e1YqDZg7N1f062k0GiQlJSE9PZ2FwpuoP3P+rPP4s32etXEkROQs/Pxc0Lq1sEYUp0+zEDM5Jq3WiK++Ep5DNmBANbp3tywHjYgEEKmYx/BE4MIioE89j0GfPAGECn9sdaNGYl6zZo3gZ2QzZswQNI6oOZHJpFi2TGJx/sTq1b5YsaKBaoJEZDWZmZkwGi1bw4+MjBQpGiKyh8TEREHjvLy8IHFxQdmgW7GrRam4QQGo1FRi6sap0BuadlH848ePC27kGRUVJXI0RM4vMjISHh4egsZqtcBrr4Xju++uFTrcs8cLM2aUQ6/nM10yHfNqiKg+bIVDRGQDa9fWwGAQdkMwfLgGUimLZohFKpVi0fBFmNFtBob+OBSFqsJ6zy1UFaL3d73xcM+HsWjoIkilwjejFBYWIikpCUlJScjMzERmZiaysrJQWFiI0tJSlJSUoLKyEhqNBhrNtWQtNzc3KBQKKBQK+Pj4IDg4GCEhIQgJCUFcXBzat2+P9u3bIzAwUHBcjuZK0RWUqkvRObgzFDLLN42qVCqcOnUKiYmJSE1NxdWrV5GTk4OqqipUV1ejqqoKBqMBV6uvwuBqANwAKAAEAAgE0AKAP/DxsI/x1E1PWRwP1a9rV08sWlSCqVP9LJqnoMAVEyZocOiQAW5u3EBGZG2WdKRncQAi5xXqGYq0srRax/ek7MGw2GF2iIiIyHH07u2J774rxeTJPjAYzN90FRysxeefpyE+Xo2KCiAvLw/BwcFWiJToH6WlpYLHsgs6EZEw4zuMh6/CF6NXj0aVtvEu92FeYdDpjNixQ40ffjBgxw4l1Gphz6Wsydtbj9Gj1XjgARf06+cGqZSbdImai4ICF0HjQkNFDoRIZDKZFHPn+uP++2swZ04lVq3ywcMP5yMkxHoNEsrLy5GQkIDQ0FD4+/tb7Tokrl1Ju6DR1y7co5ApcGvrW+0QERE5i65dtUhNNT+38OxZxyocTXTdjz+qkJ3tLnj8nDkseEdkF61aiTaVUge8sx8YOK32a3+GAff9JdKFGol5yZIlgqaNjo7GrbfyOz6RKeLj3fHuu8V4+mnL1jf279dh/Hg1c1KJbEij0aC8vNyiOfz9/SGTcWszUVP211/CvpxfL1j1y5Vf6lw3F8PhjMNYcGQBXrjlBavMbwvbtm0TNM7Ly4s5pUQCtWrVCklJSX/v7zZFdbUUzz0XiUOHbsyVXbnSF+HhJfjgA8v2ylLzITSvJiyMa+JEzo53zkRENrB5s/AvVePG8aPaGnqG9UTenDxM2zQNP57/sd7zjDDi6z++xpbLW7Bnyh60D2zf4LxVVVU4ffo0zp49i/Pnz+PcuXNISEgQtHmyuroa1dXVAIDs7GwkJCTUeV5YWBgGDBiAW2+9FXfccQfi4uLMvpa9GY1GzNwyE0vPLAUAtPZtjeWjlqN/q/5mzaPVarF3715s374dR48exdmzZ6HT6Rof2ACZXIbtx7bDMMSAIUOGoEOHDhbNR/WbMsUPJ06U4IsvLFvsOHdOiS1bsjB+PDvHEFlbRUWF4LGenp4iRkJEjqRzcOc6i4Jtu7KNRcGIiABMmuSLy5eL8cYb5iW2dupUjU8/TUdg4D/3uQUFBX8XEyeyluvrU0L4+TGhgYhIqEHRg7B/2n4MXTkUxariBs/dttoPb9ytQ26u0kbRmU4qNWLAABWmTTNi/Hgl3N0dr1gZEVmXwWC0IHmRDWCoaQgNdcPKlW545JEKeHk1/HtbDEajEZmZ2XjrLQOefdYTrVpx06uj++z4Z3Ue7x3W28aREJGz6d7diE2bzB+XkSFHfr4OQUHMTSTHYTAY8cknwu8B2rWrwbBh/F5EZBdduwJSKWAwiDJdj5y6jx8RMyW0R496X0pMTMShQ4cETTtjxgxIJNyMSWSqxx/3xY4d5di509vssb6+Orz+ejYGDixHamoR4uLiLGoCT0Smy8jIsGi8RCJBSEiISNEQkb0cOHBA0LiYmBgAwNqLa0WMprbXfn0Nd0XfhW6h3ax6HWswGo1Ys2aNoLG9e/O5A5FQUqkUMTExuHz5MvR6faPnFxW54PHHW+HChbqbHMyf74ewMMsLIZPz0+uNKCwU9rwmNJTrUETOjqtdRERWVlqqx8GDwhINAgO16N+fXdKtRSqVYsWYFTgw7QC83Rp+kJRdkY2OX3bEC3tvrBB/+fJlfP/993jwwQfRuXNn+Pj4oH///njiiSfwzTff4OjRo4IKgpkjOzsbq1atwqOPPoq2bduiU6dOePvtt5GYmGjV64ppxbkVfxcEA4DU0lQMWTkEv1791aTxBw4cwLRp0xAUFIRhw4bhiy++wJ9//mlxQTAA0Gl02Lt3L+bMmYOOHTsiNjYWCxcutPr/1+bq4499cMstlYLHh4VpsHx5CuLjy5CTU09mCBGJRqVSCR7LomBEzuuOqDvqPH4867iNIyEiclyvvOKLiRNLTT5/yJBSLFly9YaCYNdlZGRArVaLGB3RP3Q6AzIzhY2VSqXs6kpEZKHe4b1xaMYhhHuFN3je1p9aIzfX1UZRmSY2tgZvvFGFq1d12L/fHdOmecDdnekJRM1RYaEeWq2w9394OD83qGnp398LnTu3g6+vr9WvtXmzLz79tAU6dXLFm28WQ6MRZ/M9WcfB9IN1Hn+458M2joSInE3v3sKKrwLA8eNaESMhstzevWqcOye8qNfTT+sglXIDFJFdeHgA7dqJNp2vGmhTR73lYxFAlRjLoAoF0ECD4CVLlgiaViqVYtq0aUKjImqWXFykWLLEDUFB5n037devAhs2JGHgwHIAgE6nQ1ZWljVCJKL/qKystCh/HABCQ0NZxI+oiTMYDNizZ4+gsTExMSivKcfOpJ0iR3UjrUGL+zfeD7Wu6eVW7t27F+np6YLG9u3bV+RoiJoXqVSK2NjYRgt+Z2TIMXVqm3oLgl03Z44fVq8uFTFCckYFBXrodMLWtplXQ+T8+C4nIrKyTZtqBCc5Dx2qgYsLkxSsbUDrASiaV4SRbUc2eJ4RRnyw+QO0GNcCw0YOQ3BwMNq1a4eHHnoIixcvxvnz502qAG1tf/31F1577TW0bdsWw4YNE7zIZkvfnfqu1rFqbTWG/zQc+1L21TlGp9Php59+Qo8ePXD77bdj+fLlNinUlZSUhNmzZyMiIgKPPvqoxV1O6EaurlKsXu2K8HCN2WP79q3A6tXJ6NDh2oJtUVERysrKxA6RiP5FaPEJiUTC4gBETmxM/Jg6jycVJ9k4EiIix+XiIsWyZd7o06fxosiPPZaH+fMzoVAY6z0nJSVFlMLYRP91/HgVBg1qh+HDY/HGG2HYscPH5G5UCoXwzVtERPSP+MB4HJ55GHH+cfWfFHDFdgE1wMdHhxkzKnHwoBqXLsnx+useaNnSsYqVEZHtZWYKf34aFsa0Jmp6pFIpIiIiEBcXBzc36zSBKyuT4pNPQgAAFRUueOMNf3TqpMG2bXw26oj+yvsLFZqKWsddJC6Y1GGSHSIiImdy001ySCT1rx035MQJ++e5Ef3bggXCfpYBIDhYi+nTlSJGQ0Rm69lT1OkMdaXPS4CRkwDhnxb/r3NnoJ7cNb1ej+XLlwuadvDgwYiIiLAkMqJmKTTUDYsWVZl0rkJhwMsvZ+Orr9JqNVUrKytDRUXt+28iElem0M5y/08mk8Hf31+kaIjIXvbu3Su4IGf37t3xy5VfUKOvETmq2i4WXMRL+16y+nXE9t577wkee/PNN4sYCVHzJJPJEB0dXe/rFy4ocP/9bZCe3vizYJ1OghkzvHDgAO9VqH7MqyGihvBdTkRkZRs3Cn/0OHYsP6ZtRSaVYdOkTdg6aSvcXeuozrwJwMcAvgCK1hdhx5YdyM/Pt3GU5jEajdixYwcGDx6M7t2749dff7V3SHXKqcjB4fTDdb6m0qkwYtUI7E7efcPxffv2oUuXLpg8eTJOnTplizBrqaqqwtdff4127drh3XffRU2N9Rcjm4uwMDesXFkDudz0btazZuXjyy/T4Ot74w1wRkYGNBrzC4wRkWm0WmGdg11chHcrJiLH19KnJVyltTd9l9WUQWdgwRoiouvc3KTYuNEVrVvXfT/p5mbAggXpePTRAjTScAoGgwHJyckwGEy/jyIyxZ491353p6e7Yf16f8ybF4nbb2+HkSNj8M47odi92xslJXV/v/f29rZlqERETuvcOQ0+fDUAJR/9ClTXkyDfdottg/oXFxcj7ryzGsuWVSEnR4olSzxxyy0KSKVsekNE12RnC79PiYhgcwlquuRyOWJjYxEREQGpVNzcj0WLglFcfOP748oVBUaM8MGoUWVIS2t6Xe+d2YdHP6zzeIegDqL/bBBR8+Pr64KoKGHP7U+d4mcQOY6//tJg3z7hRb1mzaqBQsGfaSK7uv12UadT17MksC8a+LaHhZM3EOvOnTuRnZ0taNqZM2cKjYio2Rs3zhfTppU2eE6HDtVYvToJkyYV15tDkZGRwbwJIisqKiqyuGlhZGSkSNEQkT199dVXgsfedtttWHtxrYjRNGzhsYXYl7LPZtez1P79+3HgwAFBY5VKJfr37y9uQETNlEKhQFRUVK3jBw96YsaMqFrPahuiUrlg7Fglzp83rRgyNT+W5NWEhzOvhsjZ8ekXEZEVqVQG7NunEDTW21uPIUOEjSXhRrQdgaJ5Rbgz6s4bXzgDoNweEYnj9OnTuOOOOzBy5Eikp6fbO5wbbLy0EcYG+napdWrcs+oe7EzaidzcXIwdOxYDBw7ExYsXbRhl/aqrq/HKK6+gQ4cODlt4rSkaMMAL771X2uh5np56fPZZGp58Mh/11RhKSUnhA14iKzAYDDAahRU/dXNrvBsCETVtIZ4hdR4/kHrAtoEQETm4kBA3rF+vhbf3jQlzgYFaLF16FUOGmL4YodVqkZaWJnaI1MwdOlT3w+KUFAVWrw7Ac8+1xK23xmPMmBh88EEI9u/3QlnZtUdPvr6+NoyUiMi5FBbq8dFHVejWTY0uXeT44gtPFKSFAd/8gTqX09ttBpTFNo0xLq4Gb71VibQ0PfbudcfUqR5QKpl+QES1ZWUJe0bj7a2Huzs/V6jp8/X1Rbt27US7R7p0SYHVq+spFApg82YfdOzoijffLIZGw2ekjmBH0o46j9/f6X4bR0JEzqpLF2FFwc6e5UYRchzz52thNAorMO7ursfTTwsvKEZEIpk4ERDpvqfGBShq4G395DDgWITAySUSYNasel9esmSJoGn9/f1xzz33CAyKiADg8889ER1du9C5VGrErFn5WLEiBW3aNNwo2mAwMG+CyEoMBgNyc3MtmkOpVMLDw0OkiIjIXk6ePIlNmzYJGhsfHw+ljxI7EuteN7eW6Zuno1RdatNrClFTU4NHH31U8PihQ4fC09NTxIiImjcPDw9ERPyzALFpky+efLIVVKp6NrE2oLhYhhEjZMjIYHMnqk1oXo2Pj475ekTNAN/lRERWtGOHGlVV5n/BB4A771RDLmcXdXtQyBTYO3UvVo1ZBTcX5ypasmXLFnTu3Bk//vijvUP527qL6xo9p0Zfg7vfuRvxHeOxYcMGG0RlvuTkZAwaNAjz58+3dyhO47nn/DFxYmm9r8fEqPHzz8m4/faKBufR6XQOVwyPyBlUVQnvUKBUMhmTyNl1DOpY5/Gtl7faOBIiIsfXvbsnfvihEjLZtQof8fEq/PRTMjp2VJk9V1VVFXJycsQOkZoprdaAEyfcTTo3MVGBH39sgaefboX+/ePxzjthkMm4qZCIyBw6nREbNlTjnnuqER4uwZw5Hjhz5j/NY8qigIvjag+WaYCOq6weo6+vDjNnVuHwYTUSEuR49VVPdhskokYJ3SPUooVe3ECI7EgqlSIiIgJxcXEWNU4xGIB33w2FwdBwLkllpQveeMMfnTpp8MsvZYKvR5bLrcxFflV+reMSSPB4r8ftEBEROaPu3YU188rKkiMvT9f4iURWlpOjw5o1wvNIJk9WISBAWJ4uEYlIqQSmTxdlqqORgLaBZUetCzBuApAnpKbIXXcBbdrU+VJhYSF++eUXAZMCkydPZqNMIgt5ecmwZIkWMtk/m6EjIjRYtiwFTz6ZD1dX0+apqqpCSUmJlaIkar5yc3MFN5O+LjIyUqRoiMhe9Ho9nnrqKcHjhwwZgm2J21CjrxExqsZllmfiie1P2PSaQrz44ou4cuWK4PETJkwQMRoiAq41gAoODsaSJS3w6qsR0OuF7/lPT3fD8OEGlJVxXZ5ulJMj7Ht2UBDzaoiaAxYFIyKyog0bhC94jh4tYiAkyKROk5A/Jx83R9xs71BEVVZWhilTpmDatGnQaBrulmNtBVUF+C3tt8ZP3A/olulQWlRq9Zgsodfr8fzzz2PcuHGoqGi4UBWZZvFiT3TsWF3r+LBhpVi5MhmtWpn2M1xZWYmCggKxwyNq1nbt0uDll8OxbFkAjh71QGGh6QmWXl5eVoyMiBzBba1vq/P4scxjtg2EiKiJGDPGF2+9VYKBA8uwdGkKQkKEP/AtKipCaWmpeMFRs3XkSBUqKszfSGU0ShAezmYHRESmOn26Bk88UYnwcB3GjnXH1q3u0GgaeIx/Zkbdx7v9YJX4ZDIjBg6sxo8/ViMnR4rFiz3Qt68CUik/64nINEKTF4ODmbxIzkculyM2NhYRERGQSs1P29uyxRdnzpi+6/3KFQXuvtsHo0aVITWVXaft4eOjH9d5vJVvK7jLTSvETUTUmJtuEl4M6ehR++aOEQHAJ5+oUVMjbEuDVGrEnDlykSMiIsEefRSQWL5uuLfuml03yPIGJo4HtOZ+fDz2WL0vrVixQnBe9cyZMwWNI6Ib3XqrF2bPvlbgfOzYYqxbl4SuXc1vqJaVlQWdjhvticSi0+lQXFxs0Rw+Pj6Qy/ndnaipe/vtt3HsmPBc8KlTp2LtxbUiRmS6ledXYs2FNXa5tilWrVqFhQsXCh7v7e2NESNGiBgREV0XGBiINm3EKQR+/rw7Ro5UQaMxNH4yNRtCm+0FBvLniKg5YFEwIiIr0emM2LVL2Bd9NzcDRo0S3vmMxOOt8MaRB47YOwyrWL58Oe666y67bhTedGkTDMYGbjwMADYD+N1WEYlj/fr1uOuuu1gYTAQeHjKsXQv4+V17MCuTGfHCC9l4//1MuLubt4kkLy8PVVVV1giTqFk6eFCKLVv88OGHoZg1Kwq33x6PAQPa4cEHW+ODD0KwcaMvLlxQQK2uneilVPJ7DpGzGxs/ts7jicWJNo6EiKjpePFFf3z5ZYHZ9zp1yczMhEplfmIs0b/t2aMVPPbOO/n4iYioIQUFOixYUImuXdXo3t0NixZ5Ij/fxBb3yYOBitDax8P+BPySRYuxXbsavP12JdLS9Nizxx2TJ7tDoeDnOxGZLy9P2GbgoCAmL5Lz8vX1Rbt27eDr62vymPJyKRYuDBF0vc2bfdCpkyt++ikPBgPfW3XZdGkT2n7RFn4f+KH3d73x7u/v4q/8v2A0WrZOsz5hfZ3Hx8SPsWheIqJ/691bDolE2OfViRP8vUD2VV1twOLFCsHjhw2rRlwcCwsQOYy4OGDUKIunMaUoGAD81hp4fpAZE3fqBAwfXu/LP/wgrPFCt27d0LVrV0Fjiai2d97xwZIlqXjjjWx4eAj/vnr16lURoyJq3jIyMiwaL5FIEB4eLlI0RGQvP//8M9566y3B47t06YKY9jHYnrhdxKjM88gvjyCrPMtu16/Pnj17LC40/Mgjj8DDw/TGMkRkniee8MMLL1hWJPU6Hx8dEhOT+NyW/iY0ryY4mD9DRM0Bs3aJiKzkwAE1CgtlgsbeeqsaXl78iCbrO3DgAG699VaUlJTY5frrEtbV/6IOwFoAp20VjbiOHj2KoUOHorKy0t6hNHnt2rnju+8qERysxZIlVzF5crHgZnKpqans/EQkkoSE2t9ziotlOH7cEz/+2AKvvRaBSZNicNNN7XH33bGYPTsSX30ViFOnPCGV8nsOkbOL9o+GTFr7c6JUXcqHF0REDYiObgMXFxdR5kpJSeH9D1nk0CETi9P8h1JpwO23e4ocDRFR06fVGrFuXTVGjKhCeLgU8+Z54uxZAZteDTLg7NS6X/NNtShGPz8dHnywCkePqpGQ4IZXXvFEWJiwZ11ERNfl5QlbDw4JsbxgMpEjk0qliIiIQFxcHNzcGm8498UXwSguFv57WSo1IiKiGAkJCSgqKhI8jzO6kH8BE9dNxJWiKyhVl+Jk9km88usr6PRVJ8R+Hovndj2Hg2kHoTfozZpXrVPjakndG5Cf6/OcGKETEQEAfHxcEB2tETT29Gk+uyf7+u47FYqKhH/HmTtXnGcqRCSiRYsAPz/Bw0sVwMkw089feDPwc0cTTpTJgKVLgXry1k6ePInz58+bfuF/sXTzPhHdyNVVigkTAi2ep6amBvn5+SJERNS85eaqUFpabdEcgYGBzB2nZi0rKwtPP/00CgoK7B2KYBs2bMDUqVMtaqTx8MMPY9uVbVDr1CJG9i+XAKQ2fEqJugQzt8y0uCGImHbu3Il77rkHarXw/y5ubm545plnxAuKiOr0zju+mDq11KI5HnooH++8kwWjUYPU1FRR4qKmT3hejciBEJFD4t00EZGVrFtnXjLgv40a5TgLC+T8zp8/jxEjRqC62rKFenMVq4qx/+r+ul80AtgMIMGWEYnv8OHDGD58uEULc3TN2LG++O23bHTrZtnPqdFoREpKikhRETVvly+b1mnVYJAgNdUNe/b44Msvg7Fjh/CkLyJqWoI9gmsdM8KIwxmH7RANEVHTIJVKER0dDYnQSsj/YjQakZTETlIkjEZjwB9/uAsa2717NZRKbsQiIrru1KkaPPZYFcLC9Bg/3h3btnlAq7XwMf2fDwG6/xQP0SqBvC5mTyWTGTF4cDV++qka2dlSfPedB/r0EVCsjIioHvn5QpMXLb8vImoK5HI5YmNjERERUe/GuEuXFFi92t+i6zz1VD78/fUwGo3IycnB5cuXoVKpLJrTWexK3gWNvu5iOsklyfj42Me4demtCPkoBDM3z8SWy1tQrW38ufVXJ7+CEbXzfwLdAxHmbUaVAyIiE3TpIqxBxLlzwhoDEIlBrzfis8+E/wz26qXCrbdyDYPI4YSGAp99Jnj4r60Bg5lLCQ/cA5wPauSk558Hunev9+UlS5aYd9H/5+bmhvvuu0/QWCKqn4eHB3x9fS2eJz8/n3n8RBZ68kkNRo+Owa+/ekFIDR0XFxcEBTX2i5rIuWm1Wnz22WeIjo7GW2+9hdLSUnuHZJb58+dj3Lhx0Gq1gudo2bIlHnjgAaxLWCdiZP+RA2ApgGVosDjY7uTd+PLkl9aLwwwLFy7EiBEjLP6+Mn36dISGhooUFRHVx8VFisWLvTFkSLnZYyUSI156KRtPPZWP6yni1dXVyMjIEDlKaory84XlXIeGshYFUXPAomBERFZgMBixfbtphTL+y8XFiHHjGu8CSySmI0eOYOrUqTa95pbLW6Az1JOQtg+AsIZbdVMAiAMwGMB9AJ4Apq+cDrVaDY1Gg+LiYqSkpGDPnj1YtGgR7r33XtEWw37//Xc8/vjjoszV3MXGRkImE94Z8jqNRoPMzEwRIiJqvsrKdMjIEPZdp0MH4YVTiahpaR/Yvs7jWy5vsXEkRERNi1wuR6tWrUSZS6fTsZMUCXLgQAWqqoQ9ZO7XT3gCGBGRs8jL02H+/Ep07qxGjx5u+OorDxQWWr62+beSaOCXrwCNx7V/1iqBX74GqluYPEX79mq8914V0tP12LXLHffe6w6FgukDRCS+ggJhn3/MW6fmxtfXF+3atYOf343NVQwG4N13Q2EwCC+UFx+vwrhxxTcc02q1SE5ORlpaWrMvKF6jqzHpvMLqQvxw5geM/HkkWsxvgdGrR2PpmaUorC6s8/zl55bXeXxw9GDBsRIR1adHD2HjsrNdkZMjrKAYkaU2bFAhJUVY7gkAPPssNzwROaz77wfuuUfQ0L1tzB9TLQdGTwJK66sT2KkT8Npr9Y5Xq9X4+eefzb8wgJEjR8Lf37IizkRUt7CwMFHyxlNTU5v92geRUAcPVmD9em+kpbnhqada4cEHWyMhwbzCvGFhLI5PdF1FRQVef/11REZG4qmnnkJKSoq9Q2pQeno6Bg0ahOeffx5GIVUB/+W1116DFlpsu7JNpOgacBXXioN9C+AMgDqWvubumYtLhZesH0s9cnNzMWbMGMyePRt6vWX7a/z9/fH222+LFBkRNUYmk2LtWnf06lVl8hi53ICFC9Nx773FtV4rKytDbm6umCFSE1RQICxfm832iJoHETOPiYjouj//1CAjQ1hhr9691QgKUoocEdmbxFOCLp26oGeHnmjdujVatWqFkJAQtGjRAi1atICnpyfc3Nzg5uYGg8GAmpoaqNVqFBQUoKCgAGlpabhy5Qr++usvHD9+HNnZ2aLHuH79enz77beYNWuW6HPXZd3Feqr7nwFwSKSLRAPogWsFwf71rWdW91n45u5v/v5nPz8/+Pn5ISoqCgMHDsRjjz0Go9GIAwcOYMmSJVi1apVFi2xLlizBzTffjAcffFDwHARIpVK0adMGV65csXiu0tJSeHp6itJFiqg5OnGiCkajj6CxXbsKW6gioqZnQKsB2JOyp9bxIxlH7BANEVHT4unpidDQUOTk5Fg8V3V1NbKzs5lkR2bZt094UvTAgSwoQ0TNk0ZjxKZNKixdCuzZo4BO52ndC56ZAVwaBQRcAUraANWBjQ4JCNBh7Fg1HnjAFb17m5ewT0QkRHW1AeXlwtaEw8L4vZKaH6lUivDwcAQGBiI9PR1qtRpbt/rizBkPi+Z96aVsuNTzVqyoqEBCQgKCg4PRooXpBUadSbsW7cweo9KpsOnSJmy6tAlSiRS3tLwFo9qOwsh2I9HGrw0MBgPO59XdCW1ev3mWhkxEVMtNNwl/Dn/0qAZjxjCdnGxv4ULhG5Zat9ZgwgTm2RI5tB9+AAYMAP76y6xhQoqCAUCyPzBlNLD5Z0D673oFwcHA+vWAvP4ihOvXr0dpaamg686cOVPQOCJqnFQqRevWrZGUlGTRPDqdDtnZ2YiIiBApMqLmQa83YO5cKYzGf763nzjhiYkTozFyZCmefDIPQUENF5l2c3ODj4+wfHMiZ1ZZWYnPP/8cixYtwsCBAzF16lSMHj0a7u7u9g4NwLX9VgsWLMCnn36KqirTi97Up2vXrpg2bRo2Xt4IlU4lQoQmygawCcAeAJ0AdAbw/ymUKp0KUzZOwZGZR+Dq4mqzkDQaDb799lu8+uqrgu9B/uv9999HYGDj+SJEJB5PTxl++cWAW25RIzGx4fwrLy89vvgiDd27V9d7TmFhIeRyOYuON1OVlQZUVjKvhojqx6e4RERWsHatFoCwomAjR7ILSZPnj2uLRNf/BAFGdyPO4Axi2sfg+bHPQyat/1ewVCqFTCaDh4cHAgIC0K5dO/Tv3/+Gc0YuGoktW7YAFwBkiRf6s88+izvvvBPR0dHiTVqHMnVZnQUiUAxguwgXiAAwGEDL2i/N7DrzhoJg9ZFIJLj99ttx++2347XXXsMLL7yADRs2CA7pySefRPfu3dG9e3fBcxAgl8sRGRmJjIwMi+fKzMyEUqmEm5uwz2ui5uzMGeGFEnv3ZlImUXMxOn40Xvn1lVrHLxddtkM0RERNT0BAAFQqlSjJH8XFxVAoFHxgTCY7fFhYspOHhx4DBniJHA0RkWP7448afP+9FuvXK1BYaOMkXbUfkHVTg6fIZAYMHKjG9OnA6NFKyOVWLlZGRPQvWVk6APVvum1IeDiTF6n5ksvliImJQWlpKQ4csOy9MHp0Cbp2bXiTjdFoRG5uLoqKitCyZUsolc3rWU77wPYWjTcYDfg97Xf8nvY7Zu+ejU5BnRDrHwu9sfbzNE+5JzoHd7boekREdendWw6p1AiDwfwiSydPGjBmjBWCImrAkSNqHD0q/DvHE09o4eIi7F6DiGzE3x/YvftaYbDERJOGpPsAVyyoVfxLW+CdW4HXfvtPDLGxDY5bsmSJoOtFRkZi0KBBgsYSkWkUCgWCgoKQn59v0TylpaXw8/ODh4dlhdeJmpOVK8tw/LhfreNGowSbNvlh1y5vzJxZiGnTCqFUGuuY4drvSiKqn8FgwO7du7F79254enpixIgRGDZsGIYMGWKXIk8XLlzA119/jRUrVqCsrEyUOd3c3LBixQrIZDKsvbhWlDnNVgXg2P//aQGgPYBY4A/DH3jn93fw5u1vWj2EkpIS/Pjjj1iwYIEo++Gu69+/Px588EHR5iMi0wUFybFtmwr9+2uRl1d3vm1IiAZff52G6OiaRufLzs6Gq6srvLyYf9vcMK+GiBrDomBERFawdavwCuETJjBRoanp2LEjbrvtNqR4p2C7ZjvQwH6adRfXYV/KPmy7bxtujrxZ0PXWX1yPLYVbgL649icXwCFcKxBW91q6yaqrq/HCCy9g7VrrLrT9cuUXaPSaGw8aAGwEoKlrhImkAO7Atf8uddzPTOsyDYtHLjZ72tjYWKxfvx6rV6/GI488ImhDtlqtxtSpU3HmzBnIZPwKZgkfHx9UV1ejqKjI4rlSUlLQtm1bSKW8ASYyx19/CXvPhIZqEBTE7zpEzUX7wPZwkbjU2vhUrCqGwWDg718iIhNERESgpqYGKpXlHfKys7Ph5ubGJFdqlEqlx6lTwora9OxZDbmcSQlE5Pxyc3VYurQGP/7oggsXFBDaKMaaOnZUY/JkPaZPd0NIiGN0FCai5icrS3hDrPBwYZ1QiZyJr68vdu404IsvivH2214oKjIvF8XLS49nnsk1+XytVovk5GR4eXkhMjKy2azhRvtHw1XqCq1BK8p85/PP43z++TpfuyXyFlGuQUT0X56eUsTE1ODKFfPvT0+dah6f9+RYFiwQ3ozO11eHhx9uXkVMiZqs0FDg4EFg8GDg3LlGT98XZfkl37gN6JENDK8Ku1YQrEOHBs9PTU3Fr7/+Kuha06ZNazb3TUT2FBQUhLKyMtTUNL6RviFpaWlo164d37dEJqipMeD11xt+vqhSuWDRomCsXeuPZ57Jw/Dhpfj328vT0xMKhcLKkRI5j8rKSvz888/4+eefIZFI0KNHD9xyyy246aab0KdPH7Ru3Vr0a1ZVVeHkyZPYtWsXtmzZgosXL4p+jbfeegsdO3ZEtbYa2xK3iT6/2QoB/P7/f5TA2+vfRtm4Mky8ayK6d+8ONzfxcj+Kioqwe/dubNmyBZs2bYJarRZtbgAICQnB6tWrIZGY3ySAiMQRG6vEpk0VGDxYiooKl/+8psZXX6UiOFhn8nxpaWmIjo5udg2cmjtL8moiIrhPnag54DudiEhkly9rcOmSsAWAzp3ViIrioqej8/X1xaBBgzBkyBAMGTIEYWFhf792Lu8cBq0YhPyq+rvRlKhL0HdJX8zoOgPf3/29WQ+W8qvy8ci2R248GAJgHIBbAGwGkGPWv04t69atw7Fjx9CnTx/LJmrA+oT1tQ+eBGBJsXs3ABMARNf98uROk7F01FILLgBMnDgRnTt3xogRI5CSkmL2+AsXLuCTTz7BnDlzLIqDgNDQUFRVVVm8KKrX65Gamoo2bdqIFBlR83DpkrACqHFxNRBavZ6ImqZAj0DkVt646cwII05mn8RNETfZKSoioqYlKioKV65cgU5n+oPh+qSmpiIuLg6ursIL2pPz+/XXSqhUPoLG3nKLOBuoiYgckUZjxIYNKixdCuzbp4BO53iFNlu00GHsWDUefNAVPXvyeRMR2V92trDkRZnMgMBAFgUjAgAXFymeftof992nwdy5pfjxRx/o9aZt8HjyyTz4+5tfcKOiogIJCQkIDg5GixYtzB7f1MikMrRt0RZ/5f9l9WupdWqsubAGQ2KGwNvN2+rXI6LmpXNnnaCiYOfOcb2YbCs5WYOtW4UXMJ8xQw1PzwY6txKRYwkOBn7/HXjySWDFigZP3StCGqdRAtw/QYY/Jv2M6EYKggHADz/8AKPR/I7MEokEM2bMEBIiEQkQFRWFS5cuWTSHwWBAenq6VYqqEDmb998vRWqqv0nn5ue74qWXIrBypT/mzs1Fjx7VAK41QiQiYYxGI/744w/88ccffx/z9/dH27Zt0bZtW8TFxSEiIgJBQUF/r+MrlUq4ublBoVBAKpVCo9FAo9FApVKhsLAQBQUFyMnJQVJSEhITE3H+/HmcP38eer3wot2NmThxIubOnQsA2J64HdXaaqtdSxAVYLxgxKcXPsWnb34KV1dXxMbGIi4uDnFxcWjTpg1CQkIQHByMoKAgeHl5/f3f2NXV9e//vlVVVcjJyUFmZiauXr2KM2fO4MyZM/jrr79gMAgv9NIQV1dXrFu3DqGhoVaZn4hM16ePF376qQxjx3pBo7m2T7xXr0p8+mk6vLzM/wxISUlBbGws5HLuvWsusrKE/S6Wyw3w92fRa6LmgEXBiIhEtmaNBkKLXdx9t+WbO8k6IiIicM8992DUqFG47bbb6t082zm4M3Jm5+ChrQ9hyZklDc75w5kfsD1xO3ZP2Y3OwZ0bjcFoNOLhXx5GYXVh3SeEAHgIwF4ARxqdrkEffvgh1q1bZ9kk9ajUVGJH0o4bD6oB/GbBpHIA0wCE1f3ypA6T8OOYHy24wD/i4+Nx6NAh3HLLLYIKg7355puYNGkSH3KIoE2bNrh06ZLFi6TV1dXIy8tDcHCwSJEROTe93iAokRgA4uP5XYeouYlvEV+rKBgAbLq0iUXBiIhMJJVKER0djStXrghKSP83o9GIpKRkxMbGQSbjg0CqW2FhNeLj5bh0SQGj0bxOgoMGcQMhETmf48fVWLJEh3XrFCguFr5h1VpcXQ0YNEiN6dOBUaOUcHXlplgichxCO5oGBuohlfK7JdG/BQbKsXSpHA89VIGnnnLBqVMNfy+Jj1dhwoRiwdczGo3Izc1FUVERWrZs6fQdqdsHtrdJUbADaQdwIO0A5C5y3Bl1J0a2HYl72t6DUC9u3CEiy/XsCQhJ98rNdUVWlg7h4UwpJ9tYsEADvV5Yjq1cbsBzz7EQOlGT4+MDLF8OjB8PPPwwkFO7+7ER4hQFA4BSVx1GH3wcR+OOwkNef3MHo9GIZcuWCbrGrbfeyma0RDYkk8kQHh6OrKwsi+aprKxEaWkpfH19xQmMyAnl5WmwcKH5xewvXHDH9OltMGhQGRYtUkEm4z0mkZiKi4tx9OhRHD161N6hmGTAgAFYtmwZJJJruWfrLlpnj6KYtFotLl68iIsXL9o7lAZJpVJ899136Nevn71DIaL/N2KEDxYtKsGsWb4YPLgc772XCblcWL73tTzvJLRt2xYuLmyk1hzk5Aj7WWnRgnk1RM0Fd/0QEYlsyxbhX7THj2f1XkeVkZGBRYsWYdCgQfUWBLtOKpVi8cjFODzjMPwUfg2em1eVh65fd8WzO59tNIYfz/2ITZc2NXySFMBgAMMana5BW7ZsQV5enmWT1GN74naodeobD/4OQGjBfymAe1FvQbDx7cdj1bhVAievW2hoKPbu3YugoCCzx1ZWVuK5554TNZ7mSiqVIioqSpS5CgoKUFFRIcpcRM4uLa0GpaXCHtR26iRyMETk8G5teWudxw9nHLZxJERETZurq6so3WrVagmeey4Ejz9eZnlQ5LR69izBmjXJOHjwEj75JA2TJxciJkbd6DgvLz369q1/YwURUVOSk6PDu+9Won37GvTpo8C333qiuNixEtc7d1bjgw8qkZFhwLZt7hg/3h2uruYVcyQisrbc2rXiTRIUZL2u5ERNXb9+XjhxQoFPPy1GQIC23vNeeikbYuSJa7VaJCcnIy0tzWod7R1B+xbtbXo9jV6DHUk78Mi2RxD2cRj6fN8H7x96HwkFCRYXhSei5qt3b+Ef/EePakSMhKh+JSV6rFwpvNjo2LEqFrAjasruvhu4cAGYNQtQ3Fjg768gIF/Efgfn889j1i+zGvx+vXfvXqSlpQmaf+bMmUJDIyKB/Pz84OFh+fPorKws6HRscEtUnxdfrEZZmfDv3AUFrmjTxvx9NkTkPHr37o1NmzbBze1aI3qVVoVfrvxi56icg1Qqxffff49p06bZOxQi+o8HH/TDmjX5mD8/Q3BBsOsMBgOSkpKc+tks/YN5NUTUGBYFIyISUVaWDn/+KawLWVSUBl26sCiYM+nbsi/y5+ZjfPvxDZ5nhBGfHP8ErT5phcSixDrPySzPxJM7njT94r0B3GFGsP+h1Wrx448/Cp+gAesT1t94QAXghAUTDgRQT12oLsFdsGb8Ggsmr19UVBRWrFgBqdT8r1Nr167FhQsXrBBV86NUKhEWVk9FODOlp6fzIS+RCU6erBE8tnt3JmYSNTej2o2q8/ilwku2DYSIyAl4eHhYdP9TWCjDAw9EYccOX3z7rR8+/rhYxOjIWeh0ur8TCXx89Ljzzgq88EIuNm5Mwm+/JeDDD9MxcWIRoqJqFwnr3bsarq587ERETZdabcBPP1Vj8OBqtGzpglde8URCgpu9w7pBixY6PPZYJf78swZnzyowb54ngoO53kJEjis3V1ixwsBAJrcSNcTFRYqnnvJHQoIR06eXwsXlxsTykSNL0LWrStRrVlRUICEhAQUFBaLO6yjaB9q2KNh/Hc86jhf3vYj2X7ZHu0XtMG/PPBzJOAK9gcncRGS6Xr3ktX4nmOqPP/j9i2zjiy9UqKwUXsBu3jyugxA1eX5+wDffAJmZwPz5QJs2AIC9bcS/1E/nf8Jnxz+r9/UlS5YImtfb2xvjxo0TGhYRWaBVq1aCcvf/zWg0IjU1VZyAiJzM6dOVWLHC26I5PvhACxcX5o4QNVfDhw/Hr7/+Cl9f37+P7UjagSptlf2CchIymQyLFy/GjBkz7B0KEdVj3LhgeHgIb4jwb1qtFlevXhVlLnJsOTnC8mqCgvhch6i54B02EZGI1q6tgdEo7AvY8OHstueMZFIZ1oxfg93374anvOEWVull6Wi3qB3e+PWNG44bjUY8sOUBlNWUmXfx/gCizRvyb7t27RI+uB4qrQrbrmy78eApAELrMLUB0Lf+l8/mncXnxz8XOHnjBg8ejGeeecbscUajEf/73//ED6iZ8vf3h7e3ZQ+fgGv/Xy5fToZezxtiooacOycsiVgmM6BbN8u7tBFR09I1tCukktrLT0WqIjtEQ0TU9Pn7+8Pf39/scZcvK3DvvW1w7pz738eef94X27aZudZATq+0tLTe1/z99bjrrnK88koOtmxJwv79l/DBBxkYO7YYkZE16N9fa7tAiYhEYjQaceyYGg89VIWwMAMmT3bHnj3u0OmEPeuxBldXA0aMqMK6ddXIznbBokWe6N7dsYqVERHVJz9f2OdpSIhlnXOJmovAQDl++MEXv/9eiR49rm2o8fLS49lnBbYTboTRaEReXh4uX74MlUrcomP2Zu+iYP92pegKFhxZgH5L+iHs4zA8tOUh/HLlF6h1tQt0ExH9m6enFLGxwnIQ//yT6eRkfRqNEV9/LXxN4/bbq9G1K9dEiJxGQAAwdy6QlATs24e9Q2Ktcpnndj+H39N+r3W8tLQUmzZtEjTnxIkT4e7u3viJRCQ6qVSKyMhIi+cpL6/BkSNspEb0X/PmGaHTCb8/HDGiHIMH+4gYERE1JY888gg2bdpU67vy2otr7RSR8wgMDMTevXsxffp0e4dCRI2IioqCq6urKHOpVCqkpaWJMhc5LubVEFFj+BSXiEhEmzcL3yQyfjw7mDmzQdGDUDS3CENjhjZ4nsFowJu/v4m4z+OQWZ4JAPjmz2+wO3m3+ReVABgOQGBjvYMHD0KtFjepdFfyrhur+xsAnBQ4mQuAYY2f9tTOp/DJsU8EXqRxb775JsLCwswe9/PPP7Nat4giIiIsXjApLJRh6tQIvPtuqThBETmpCxeE3UZGR9fAzY23oETNUQtli1rHDEYDzuScsX0wREROICwszKwk8/37vTBlShRyc+U3HNfppJgyxQMXLlSLHSI1YeXl5SafGxiow7BhZXjjjWxs356Ip54SuAhFRGQH2dk6vPNOJdq31+DmmxX4/nsPlJQ41nOaLl3UWLCgCllZRmzd6oGxY93h6uo4xcqIiEyRlydsTTg4mMmLRObo29cLx48r8fnnJXjhhRwEBOitej2tVovk5GQcOZKJmhrnaLgUGxALF4nj3dfmV+Xj+9Pf4+5Vd6PF/BYYu2YsVpxdAY2ejQeJqG6dOwvrzHj+vDiblIgasnx5NbKzhf+szZnDdREipySRQDPgFvzmmm2V6fVGPSasnYCs8qwbjq9cuVJwjvTMmTPFCI2IBPLy8oKPj/CiQ4mJbrjvvjYYPdoLOTk1IkZG1LRt3lyGvXu9BI93czNgwQLHet5KRLbh7++P9evX46uvvoJMduPngEqrwtbLW+0UmXPo1asX/vzzTwwYMMDeoRCRCaRSKWJjY+HiIs5zx4qKCuTk5IgyFzkmoXk1LApG1HxwRzYRkUhKSvQ4fFghaGxwsBb9+rGDmbOTy+TYPnk71k9YD6VM2eC5icWJaP1Ja7y490XM2T1H+EX9AXQVNlStVuP06dPCr12HdRfX3XggFUCpwMl6AKhdX6JOz+56Fh8d+UjghRrm6emJt956y+xxer0eCxYssEJEzZNUKkV0dDQkEmHJX6dPu2PChGicOuWBt9/2w44dpm+CJmpuxo4txtNP52Lo0FLExKghk5m2iNS2LTcnEDVX7Vq0q/P4xksbbRwJEZHzaN26da0Emv8yGoElS1rgmWdaQqWq++FySYkMo0ZJUVjI72p0jSUF4n18hCeHEhHZglptwIoVVRg0qBqtWrng1Vc9cemSYz2bCQrS4oknKnH6dA3OnFFgzhwPBAY6XnEKIiJTFRQI+wwLDeVmfyJzubhI8cQTfpgzJwgKhbDcFXPodMCMGQHo0EGDjRtLrX49a5O7yBHjH2PvMBpUpa3ChoQNmLppKrp+3RXpZen2DomIHFDPnsI2geTluSI9XStyNET/MBiM+PRT4Wsc7durMWSI9b/jEJF9HM88fmPDYZHlVeVh3NpxqNH9U/xnyZIlguaKj49Hnz59xAqNiAQKDw9vNGfivwwGYPnyAEyaFI3Ll5XIz3fFzJk10Oudo+A5kSV0OgNefFHe+IkNmDmzDO3amd7kkIicw4gRI3Du3DmMGTOmztd3Je+y6nd9Z6ZUKvH+++/jyJEjiIyMtHc4RGQGS/e5/ldRUREKCgpEmYscD/NqiKgxLApGRCSSDRvU0GqFfawOHaqBiwu/gDUXY+LHIH9uPvq37N/geXqjHu8fft/yxa8ewodevnzZsmv/S42uBluv/Ke6/yWBk0kB9DVvyJw9czD/8HyBF2zYlClTEB4ebvY4SzqNUW0ymQwtW7Y0a4zRCKxc6Y+ZM6NQUHCtE6VOJ8G0aUpcvaqyRphETZrBYEC3blV48MFCzJ+fiY0bk3D8+EWsW5eI997LwIwZBejXrwJBQbWThdu3t25XeiJyXP1a9qvz+MH0gzaOhIjIeUilUsTExNT7wFijkeDVV8OxcGEIjMaG15ySkhQYM0YDrZaJrs2dTqeDwSDs50Amk0Eq5SMnInI8BoMRR46o8cADlQgNNWDqVA/s3esOnc5xnsnI5Qbcc08VNmyoRlaWDJ9/7omuXR2rWBkRkRB6vRGFhcKSF8PCHOdzmqipkcvliImJQWRkpFXv01av9seVK0okJyswZowvhg8vR1JS036+2j6wvb1DMFlCYQJe2f+KvcMgIgfUu7d5hRH+7dgxFgUj69m9W4W//hJe1Ovpp/WQSnmfQOSs9qbstfo1jmUew7O7ngUAnDt3DqdOnRI0z4wZM8QMi4gEkkqlaN26tcnn5+a6Ytas1liwIBQazT/rJTt3euOrr8qsECFR05KWlo3+/Svg5iYsZyQgQIu33/YQOSoi5+Hm5gYPD+d6j3Tp0gV79+7F1q1bG9xPt/biWhtG5TyGDh2Kv/76C88//7zZhVCJyDHI5XK0adNGtPny8vJQVsZ7F2ej0xlRVCTsc55FwYiaD+7QICISyaZNwseOHcuP4+bGU+6J32f8jqUjl0LuYllHjUaFAfAWNlTMomB7U/aivKb8PxcQOFk7AL7mD3t+7/N47+B7Ai9aP7lcjkcffdTsceXl5dhkyYcH1eLl5YUWLVqYdG51tQQvvBCB998Pq7UJsKDAFRMmGFBTw03xRP9WUVFR65hcbkTbtjW4++4yzJ6dh6+/TsO+fZdx6FAClixJwQsvZGPs2GL0b7gWJhE5sVFtR9V5PKEwwbaBEBE5GZlMhqioqFrHi4td8NBDrbF5s5/Jcx086IlZs8obP5GcWklJieCx7u7s9kpEjiUjQ4u33qpCfLwG/fopsGSJJ0pLHStRsls3NT76qArZ2UZs3uyB0aPdIZMxWYeInEdBgR46nbDn4GFhfH5OZCkfHx+0a9cO/v7+os9dWOiCRYuCbzi2fbs3unSR4+WXS5rsM9amVBQMAC4VCu3CRkTOrGdPOWQyo6Cxf/zRND+/qWn48EPhY0NCtJg+nWvQRM5s71XrFwUDgK/++ApLzyzF4sWLBY2XyWSYOnWqyFERkVAKhQKBgYGNnrd9uw/GjInB8eOedb7+0kveuHSpWuzwiJoMnU4HlaoUTz6Zj19+ScSIEaVmzzFvXgUCAqy8L4qoCQsNDUVBQQHWrl2L8ePHN+k8q169euGnn37CqVOncOeddzZ4rlqnxtbLW20UGYBIAOEAmnDaxZAhQ3DkyBFs375d1GJCRGQfSqUSrVq1Em2+jIwMVFVViTYf2V9+vh56vbBfXOHhzKshai74biciEkF1tQH79wvrYubtrcfgwcI7oFHTNq3rNOTMzkGP0B7WvVDtPcImycnJES2EdQnrbjyQC0BocerOwuN4ef/LePu3t4VPUI/JkydDIjH/Bmz58uWix9LchYSENLpInpYmx+TJ0di+3bfec/74wwOPPcYK6kT/Zs7ioY+PHr16VWPy5GK88UY2br9dacXIiMiR9QzrCUkdT1gLqgrsEA0RkXNxd3e/odNeUpIb7rsvGqdOmd9ZcOlSX7z/frGY4VETU1cRYFP5+ZlehI6IyFpUKgOWL6/CwIHViIqS4fXXPXDlipu9w7pBcLAWTz5ZiXPnNDh1SoHZsz0QEOBi77CIiKwiK0sveCyTF4nEIZVKERYWhri4OCgU4uWlLFwYgoqK2t9hqqtd8N57fmjfXoMNG0pFu56tNLWiYJ2DLUicICKn5eEhRUyMRtDYU6f4HYys49w5DfbtE77h+ZFHNJDLm/COXiJqUHlNOY5nHrfZ9R7e9DCWrVgmaOywYcMQHBzc+IlEZDPBwcGQy+suRFRWJsW8eRF4/vnIOtcxrquocMHUqUbodCySS81TRkbG338fEqLF//6XiVWrktG9u2k547Gxajz7rK+VoiNyHkqlEuPGjcOaNWtQWFiIrVu34pFHHkFkZKS9Q2uUu7s7Jk2ahMOHD+PEiRO49957IZU2vo60K2kXKjTC89HMFgPgIQDPARgJoCMA89Mobc7b2xszZ87EyZMnsWPHDtx88832DomIROTl5YWwsDDR5ktNTUVNTY1o85F9ZWZaklfDnEOi5oJPcImIRLBtmxrV1cK+QA0erGbCQjPn7+6PP2b9gc+GfgaZVGadizTeBKdOlZWVolxeq9di86XNNx7MFDiZHECsZfG8duA1vHngTcsm+Y/WrVujd+/eZo/bvXs3cnNzRY2Frv3/cHGp+3P511+9MGlSNJKSGk98X7LED19/XSJ2eERNlkqlEjzWzc2xNuESke1IpVIEKANqHdcb9biQf8EOERERORc/Pz8EBATg4EFP3H9/G2RlCe+8+eqrfti4sVS84KhJUavVgsd6eDSBDCoickoGgxGHDqkxY0YVQkKMmDbNA/v2uQvuoGcNbm4GjBpVhU2bVMjMlOGzzzzRqRM7ZROR88vKEr6JLjzcSs9MiZopuVyOmJgYREZGmrRRpyFnziixZUvDhaFTUhQYO9YXw4eXIylJ+LMlW2tKRcFCPUPx1u1v2TsMInJQXbvqBI07d85V5EiIrpk/Xyt4rIeHHk8+yaa7RM7sQOoB6I3CN0CaS3NRg7ISYc1iZ86cKXI0RCSGqKja3dOPH/fA2LGx2LHD16Q5Tp70wOuvs5E0NT/V1dV1Nozu2FGFpUuv4uOP0xER0XDh6ffeU8PVlVuUicyhVCoxYsQIfPXVV0hPT8fFixfxxRdfYMyYMQgIqJ1vbQ/e3t6YMGEC1qxZg4KCAqxatQp9+/Y1a461F9daKbpGeALoBmAcgDkAHgUwBEB7AN72Cem/PDw8MGLECKxcuRK5ublYvHgxevbsae+wiMhK/P39ERgocIP3fxiNRmzZkoWKCmHPAcixWNJsLyyMRcGImgtm0RERiWDDBqPgsaNHO87GFLKvJ3s/ifHtx6PzV51RUF0g7uS+woZVVIhTkf/X1F9Rov5PYaUsgZO1BiDC/cobv70BvVGPN297ExKJOO/DO++8E8ePm9exTK/XY9OmTXjkkUdEiYGukUqlaNOmDRITE/8+ptcDixYF4bvvgsyaa/Zsb3TtWoE+fbzEDpOoydFohHUUlkqlFm8yIaKmLS4gDoWZhbWOb7y0ER2COtghIiIi5xIaGork5GJUVVl2w6zTSTB9uidat65Et26eIkVHTYFGo4HBIKxog6urK7/vE5HNpadrsXhxDX76ydWk4v/20L27GlOm6DF1qgL+/iyeSETNT3a2sO+XPj46KJVMZyKyBh8fH3h5eSE3NxfFxcVmj9fpgHffNb2T9fbt3vj1Vz2eeqoYr7/uA6XSsROT2wa0hQQSGCE8B8gWAt0DsW/qPoR5iddVnIicS8+ewM8/mz+uoMAVaWlatGrF4mAknuxsHdauVQoef//9Kvj783kFkTPbm7LXthc8LWxYUFAQhg8fLm4sRCQKV1dXhIWFITs7GzU1Enz6aTBWrGhh9jwLFvhg2LAK9OvHfHFqPjIzM+t9TSIBBg0qx4ABFfjpJ398800QKitvXN8bMKAC48b5WjlKIucXHx+P+Ph4PP744zAajUhMTMSJEydw4sQJnD59GhcvXhS0pm8qiUSCyMhI9OzZE/3790f//v3RtWtXuLgIX9Ov0dVgy+UtIkYpkARAMODf2h+x/rGIDYhFkC4IyAYq0iqQmZiJhL8SkJ6eLjh3zhR+fn7o3Lkz+vfvj4EDB6Jv375wdeUaHFFzEhwcDI1Gg7Iyy4oR79vnheefj0T//lXYvt2DxVmbuJwcYc+l/fx0cHNjXg1Rc8F3OxGRhXQ6I3bvdhM0VqEw4J57HHOzCtlHdkV27eJZYpALG2Y0ipPsuu7iutoHswVO1tqSSG709u9vQ2/Q45073hGlMNgdd9yB9957z+xxu3btYlEwK3Bzc0NERAQyMzNRWuqC55+PwJEj5j+oValccO+9cpw8qUGLFgLfTEROQq8XVoGeDyyIqG9kXxzJPFLr+G9pv+EVvGKHiIiInM8HH/ji8uVy/PKLZe3systlGDPGFWfPauDtzXug5qK0tFTwWHd3d/ECISJqQHW1AWvWqLF8OfDbb0oYDI633hASosWkSTV44AE5Onbk8x8iat6ys4U9ZwwM1IPpTETWI5VKERYWhhYtWiA9PR1qtdrksWvW+OPSJfOKeqhULvjgA3+sWVODBQsqMHasr5kR247SVYk2fm2QXJJs71Dq5avwxZ4pexAfGG/vUIjIgfXuLXzD5rFjLApG4vr4YzU0GmFFvVxcjJgzh88piJydTYuClQMQ+HV/ypQpkMm4XkHkqPz9/XHpUgWmTQsW3ExGq5VixgxXnDqlg6cn3+/k/EpLS01qFi2XGzF9ehHuuacUX30VhLVr/aHXS+DiYsSCBZbvwSGiG0kkEsTFxSEuLg7333//38dzcnKQkJCAq1evIj09Henp6cjNzUVRURGKiopQWlqKmpoaaDQa6HQ6yGQyuLm5/f3H09MTQUFBCA4ORnBwMEJCQtCmTRvEx8ejbdu28PAQt9HZ7uTdqNBUiDpnY3zcfBAbEHut+Nf/FwC7/ld/pX+DY9VqNZKTk5GYmIi0tDRkZWUhKysLeXl5KCkpQUlJCcrLy6FWq6HVaqHVauHi4gKFQvH3H09PT4SEhCA0NBRhYWEIDw9H27Zt0blzZ0RERNjovwIRObLIyEjodDpUVVUJGv/zz/54771QGI0S7N3rhenTS7F8uTdcXFgYrKkSWhSMeTVEzQvf7UREFtq3T43iYmGdzAYMUMPTk5vm6JoaXQ2mbpwKnUEn/uQCf+MrlcK79F2nM+iw6dKmGw8aARQKnDDUwoD+471D70Fv1ON/d/7P4sJg3bp1EzRu//79fy+6krh8fX2RkVGNiRNbIDtbeJJYaqob7r23Ajt3yrhQQs2WKQ9+66NQcBMsUXM3st1IfHj0w1rHLxZctEM0RETOycVFilWr3NGvXzXOnRO+3uTqasBDDxUgM7Mc7dq1g1TKe6DmoKJCeBKWr6+veIEQEf2HwWDEoUM1WLxYj02bFCgvd7xnKgqFAUOHqjBjhhRDhyogk3HzNBERAOTlCRsXFGS9LtxE9A+5XI6YmBiUl5cjMzMTBkPD772iIhd88UWw4OtdveqGTZsq0KHDJbRs2dJhC0y3D2zvsEXBvORe2HX/LnQJ6WLvUIjIwfXsKYdMZoBOZ/7a7okTBkycaIWgqFmqqjJgyRLh+SLDh1cjJkbcTclE5FiyyrOQUJhguwuewbX8ZQFmzpwpZiREZAU9ekRCoTC9+HldEhMVeOaZEnz/vZ9IURE5JoPBgOzsbLPG+Pvr8fLLObj33mJ8+GEIWrbUo1cvX+sESES1hIaGIjRU5A11VnQ697TNrhXuFY7TD59GC/cWgvcFKhQKdOjQAR06dBA5OiKiG7Vq1QpJSUlm7dEzGoHPPw/Cd98F3XD8p598ER5egvnzef/SVOXmCvu9xbwaouaFu3mIiCy0fr1e8NhRowQ+WSSn9Nqvr+FCwQXrTC6wjoufn+U3hAfTDqKguuDGg5UAhL51gho/xVwfHP4Ac/fMhdFo2XvS398fYWFhZo8rLy/H0aNHLbo21a9TpzD0719t8Tx793rh5ZdLLQ+IqImypEiA2J1jiKjp6RvRFxLUXrDOqxS4O5SIiOrk6SnDpk0ShIQIWwjw89Ph++9Tcc89pTAYDEhOdsxNsCQ+tVp4cjS/7xORNaSmavHqq5WIi9NgwAAFli/3QHm5i73DukHPnip8+mklsrON2LDBA3ffrYRMxm7YRETXCU1eDA5m8iKRLXl7e6Ndu3bw9/dv8LyFC0NQUSH8+1hAgBaPPZYPnU6HlJQUpKamQq8Xnm9jLe0D29s7hDopZUpsu28beof3tncoRNQEKJVSxMUJWyM+fZpp5SSeb79VoaREeJPMuXMday2IiMS37+o+217wjLBhN910E9q3d8x7BSL6h5ubFMuWGaBUWra+uGSJLzZuLBUnKCIHlZ+f32iTgPq0aVODL79Mw1dfsWE0EdVPKVNaNLZTUCeMiR+D5/s9j+/v/h6/Tf8NqU+l1nl+eU05Aj0CBRcEIyKyJalUipiYGMhkpq2barXAK6+E1yoIdt2CBX745JMSMUMkG2JeDRGZQviTNiIigsFgxLZtboLGymRGjBvHRVC65kjGESw4ssB6F6gSNiwyMrLhE2pqALUakEgAhQKQy2udsj5hfe1xZcLigQKAlfaZfnT0I+gNenx818cWLQTGxsaa3TUFAHbt2oX+/fsLvi41bPFiT1y4UI2//rKs4/SCBX7o1asUY8f6ihMYURNSVSXwlwmubSghouZNKpXCT+mHYlXxDcf1Rj0SixIRGxBrp8iIiJxPVJQSa9aU4667XKBSmb5hJiZGjc8/T0NEhPbvYzU1NUhPT0fLli2tESo5CI1GI7hQuqurK6RSbhQkInFUVxvw888qLF8uwcGDShgMrvYOqZawMC0mTqzBgw+6on174UmsRETNQX6+sO+JISEiB0JEjZJKpQgLC0OLFi2QkZEBlUp1w+tnziixebNlDcWeey4PXl7/JCdXVlbi0qVLCAoKQmBgoEVzi8kRi4LJXeTYPGkz+rdiPgERma5rVz0uXjR/3PnzchgMRkil3ERJltHrjfjsM+FrOzfdpMItt3DthcjZ7U3Za7uLpQIobuykus2cOVPMSIjIirp398QrrxTj5ZcbLn7eEKNRgscec0e/fhoEBdXeG0HU1On1ehQWFlo0h5eXF7y8uB+OiOo3s9tMfHj0Q+RX5df5upuLG6L9oxHrH3vtT8A/fw3zCoNUUvdzRrmLHBr9jcXwKzWVosdPRGRN1wuDXblypcFCrdXVUsyeHYnDh70anG/OHF+EhJRi0iRfkSMla8vPF/YsJiREWM43ETVNLApGRGSB48drkJ0tbCHzppvUaNGCSQsEVGmqMG3TNBhhxS/iRcKGxcb+qzhDUhJw7Bjw55/X/pw+DVT+Z+HMzw/o3h3o0QPo0QOGPjeJWxSs4ftXi31y/BO4u7rj3TvfFTxHaGiooHGHDx8WfE1qnIeHDGvXatC3r86iDpS+vnqUl5egqsoVHh5WqlBH5KBqamoEjzW1gwERObcYvxicUJ2odXzjpY2Y12+eHSIiInJe/ft746uvSjBjhi+MxsYfGPbvX4H58zPg6Vn74XJ5eTny8/MRFFR3lylq+oqLBe6AAHhvTEQWMxiM+P33GixerMfmzQpUVDje54pSacDw4SpMny7FkCEKuLg4XrEyIiJHlJdnepHif2NRMCL7kcvliI6ORnl5OTIzM2EwGKDXA+++G2bRvN27V2HEiNJax41GI/Ly8lBUVISWLVvC3d2yBk9icLSiYDKpDOvGr8Og6EH2DoWImpgePYCffjJ/XGGhDGlpWkRF8d6XLLNunQqpqcJ/tz/7LDc1ETk7o9Fo26Jgp4UNc3d3x6RJk8SNhYis6vnnfbFrVyV+/91T8BxSKXD8eBbuvjtKxMiIHENmZqbFc4SHh4sQCRE5swD3AJz7P/buPLypKv0D+Dc3adMkTVe6t7SllFJAFgVExQ0FVEQUFXBUBNxFHVfcfjrjOOMu7qLjoLgriCKCoOKCoICggLKUpfu+r2nSLDe/PxAVm9Lm5GZp8/08D8/ASc657whN7j3nPe+57hcs3LQQpS2lSDAkIDs2G4NiByE7JhupEalQS+6vJUaHRaPaVH1EmxNOlDSXoH8kDz4lot5Do9EgKysLBw4ccPl6XZ0a8+dnYM+e7msQOBwqzJtnREJCK04/3csbsElRNTXMqyGi7nFnNhGRB5Ytswv3nTbNoWAk1Jvdte4uHGw46N2LlIp1O274cOCdd4CXXgJ++KH7Do2NwFdfHfoF4If+QJWrA7JE68qIr8312KPfP4rLhl+G3Lhcof7JyWIJ0du3b4fT6YRKxZM2vWXwYD1efbUJM2ZEQpbd/+88fHg7nnqqBImJdhQVFSEnJ4eFjiio2Gw2oX78OSGiw05MOxE/VnQuCvZt0bcsCkZE5AVXXBGNvLwGPPro0U/AvfzyOtx+exXUR1lXrKmpQVhYGCIiIhSOkgJB21+LvrshOjpawUiIKJgUFtqweHEH3n03FIWFgXmK9NixZlx+uYzLLgtDVFTgFSsjIgp0dXViyYuC5+8QkYIiIiIwePBgVFdX45VXZOTliR94p1Y7ce+9FTjaMrjdbkdBQQHCw8ORlpYG9dEmKbxscL/Bfrv2X0kqCe9OfxdTc6b6OxQi6oWOP178s3TzZhYFI889/bR4DlxmphUXXcQDd4n6ur11e1HZVumbi3UA2CPW9cILL+QaKVEvo1ZLWLJEjeOOEztI+rzzGnHPPZUID5dRUVEhvDeAKBB1dHSgtbXVozFiY2OZG05EPZIQnoDHJj6m6JipEamdioIBh3LRZ4+Yrei1iIi8TavVIjMzE4WFhUe0l5SE4rrr0lFaqu3xWGazGhddpMPXX7dhxAgfbMImRdTWiubVcA86UTCR/B0AEVFvtnq1ePLLxRf3/Iac+q51Bevw4tYXvXsRM4By97vF6HTInTgRuOyynhUEc2F5V3W1xOrKAD74sZGdMnbX7hbuHx4u9tDc3NyM/Px84etSz1x4YRTuuKPJ7X4zZ9bj9dcLkZh4qBik0+lEQUGBwtERBS5ZliHLslDf0NBQhaMhot7q3EHnumzfVbPLx5EQEQWPf/87CtOnN7t8TaNx4h//KMeCBUcvCHZYSUkJOjpEq3xTIPPk79VgYJEcIuo5k0nG//5nwimnmJGVpcF//hOOwsLAmjdISbHi9tvbsHevFVu26HDjjQZERfmvKAURUW9lMslobRX7/ExOZioTUSCQJAlJSUm4+eY4XHNNIzQap9A4s2bVIyenZ8+dbW1t2Lt3L2pra4WupYTw0HCkR6b77fqHqaDCkmlLcPHQi/0dChH1UsceG4qQELE1/q1bxfoRHbZxowVbtogX9brpJhvUam5qIurr1hWs893FdkE4b3nu3LmKhkJEvpGZqcNTT7lX+Cgy0o6FC0vwn/+UIzz80D1xQ0MDTCaTN0Ik8ovS0lKP+kuShISEBIWiISJyX05sjsv2reVbfRwJEZEyDAYDUlNTf//zr7/qcPnlA9wqCHZYQ4MG550XgpISi5Ihkpe0tsowmZhXQ0TdY1luIiJBe/Z0YP9+sQpFI0ZYkJERpnBE1Ns0W5ox75N53r/QTgACuVrZWjOkOrPwZZ0Alg/p4kXRomA+unPx5PTfsDDxn+2ffvoJAwcOFO5PPfPww5H4+edWrFtn7Pa9Wq2M+++vwLRpTZ1es1qtKCsrO2LihaivMpvFvw90Op7eSkSHnJZxmsv2qrYq3wZCRBRE1GoJb75pQHGxCT/99EfxpogIO55+uhRjx7qXvJqfn4+cnByoe1JFjHqFjo4OOJ1iG7tZAJiIekKWnfj22w4sXuzAypVhaGsLvGKCOp2MKVPMmDdPwqRJYVCr+flGROSpsjI7ALHPUyYvEgWWmJhQvPJKKK66qg033wxs3tzzQ7JiY2244YYat69ZXV2N+vp6pKWl+aUY9ZC4IShuLvb5df9s0ZRFuHzE5X6NgXrmtddew2uvvab4uG1tbYqPScFFp5OQk2PBrl3u5zFt3877MfLME084hPvGxNhxzTXMMyEKBj4tCrZdrNuAAQNw2mmnKRoKEfnO3LnRWL26GcuXR3b73pNOasVDD5UjLs7e6bXi4mIMHjwYksT7ZOrdWltbYbF4ViAiKSmJPwtE5FejEkfh3V3vdmrfXbvbD9EQESkjKioKNpsNH35owu2394fZLH6/VVKixZQp7fjuOxuio0MUjJKUVlpqAyBWoyI1lXn8RMGERcGIiAQtXWqH6A3X1KmdFwso+Nz6+a0obfHspI1u2QFsEuu6/1TA9BlgECzgtTUFKO1qDU0078fLzyoqqHD/KfdjWPww4TG0WrHPBeBQUbCZM2cK96eeUaslvPeeFmPGdKCoqOu/r5QUK55+ugS5uV0vfjU1NSE8PBxRUVFeiJQocLS2undi2p+Fh/d8cwgR9W1qSY2osCg0WZqOaLfJNhQ3FSM9Kt0/gRER9XEGgwYrVtgxbpwV5eWhyMjowAsvFCM93er2WLIsIz8/HwMHDmSSXx/R0NAg3NcfG7OJqPfIz7di8WIr3nsvFEVFgXlIyrhxZlx+uYxLLw1DZCQ/04iIlFRRIXBi0W/S0pjKRBSIxowJx8aNMhYvbsT994ejpqb7JPLbbqtGRITY54HdbkdhYSHCw8ORlpbm0wLlQ+KGYM3BNT673l89PflpXDv6Wr9dn9xTUlKC77//3t9hELk0cqQDu3a53++XX0Ihy05Ikkr5oKjPO3DAitWr9cL95861wGBgnglRX2dz2PBt0be+uVgtgDKxrnPmzIFKxe9Dot7slVd02LLFirIy1wcYaLUybr+9CrNmNaCrH3dZllFaWor0dOa2Ue9WXl7uUf+QkBBER0crFA0RkZjx6eNdthc2Ffo4EiIiZcXFxUGWNR4VBDts1y49pk1rw5dfqqHVMtc7UJWXi+fVpKSwKBhRMOEnORGRoJUrxW+aZs7kKfPB7tN9n+L1Ha97/0LfA2gW6GcEGkcAT54ofukPhxzlRdE7EPFDBI8qxZiCW8fdip+v/RkPnv6gR2N1dHQI990lkolHQvr1C8V771mh07n+RzV+fCs++CD/qAXBDisrK/Po752oNzCbzcJ9WSiAiP4sKzrLZftHez/ycSRERMElNTUMH31kxZlnNuPtt/OFCoIdZrVaUVrq5SLn5DNtbW3CfZnsSUR/1dYm47//NWH8eDOys0PwyCPhKCoKrPWQ1FQrFixoQ16eFZs26XDDDQZERjJJhohIaWVlYot6oaEyYmKYykQUqNRqCddcE428POCaaxqh0Ti7fO+oUSZMndrk8TXb2tqwd+9e1NTUeDxWTw2JO1qyg3f9Z8J/cMu4W/x2fSLqW447TqxfQ4MGBQWCp0hS0HvySSscDrECOlqtjNtuC8zi8kSkrK0VW9FqFT+k0i3bxbqpJBWuuOIKZWMhIp+LjQ3Ff/9rgSR1nsMYMsSMpUsP4pJLui4Idlhrayuam0U2ZRAFhtraWtjtdo/GSEtLUygaIiJxo5NHu2yvNdX6OBIiIuXNnx+Ne+9tVGSshgYJO3cWQJbFC0+Rd1VWiv3dhIXJiIpiXg1RMOFPPBGRgJISG7ZvF0s+GDiwA8OGBdYmGPKtuvY6XP3p1d6/UAmA9YJ9TwQgAY+fBFQY3e/uRDdFwbo/NNg1z9YhjpBgSMCNY27EhrkbUHJrCRZOXoiRiSM9Htdi6b6IVFcKCgo8vj713LhxRixc2NKp/frra/Dii8WIjOz5hpWCAk6SUN9mtYoVjVCpVJAkPnYS0R+OTz3eZfvXhV/7OBIiouAzdmw43nmnA5GRnj+7tLa2orq6WoGoyN9E7/UBQK/XKxgJEfVWsuzEl1+accklJiQmOnHttQZ8/70OTqfY5k9v0OsdmDHDhLVrzSgqCsFjj4UjJ4frNERE3lRV1XWhoKPp188BSQqc7xAici06OgSvvBKNzZvbccIJnYtNS5IT991X2e2GWnfU1NQgLy8PJpNJuUG74K+iYPeOvxf3nnyvX65NRH3T8ceLF8HeskXBJC0KGg0NDrzzjk64/0UXmZGcrFEwIiLfWbJkCVQqlVd+Pfig2EG3c+fO9VpMS5Ys8ei/17qCdR717zEHgJ1iXZ2ZTnxW85mi4RCRf5x9dgSuvbbp9z9LkhPXXFODt9/Ox4ABPV8vLysrg8PhpRPOibxIlmWPC+7r9XrmiBBRQNBIGmjV2k7t7bZ2P0RDRKS8f/0rEnPmNHk0xvjxrXjttSLo9RYUFRUpEhcpr6JCrF+/fnbm1RAFGe7OJiISsGyZ+Ga5c8/lKXrBbv5n81Ft8vLG2WoA7wEQ2ecbAeC3wvntocD9p7s/xI5EoDD6KG8Qzd3pEOz3m1hdLK459hp8NfsrlN9WjufPeR7j+4+HpFLulqitrXPSc08VFRXB6RTbJEFirrsuGnPnNgEAjEYHXnyxCDfcUAN3axg5HA5OklCfJno6VEiIaBVIIuqrzs0+12X7rzW/+jgSIqLgFB8fD6NRoPq3C7W1tTwJt5ezWCzC8xChoSymQxTsDhyw4u6725CZacOkSTq8/74BJpP4ZmNvOOEEMxYtMqGqSoUPPjBg8mQd1GomxBAR+UJlpVi/uDhuqiPqTY47zoANG/R45ZVGJCT8kQsza1YDcnLED9Pqit1uR2FhIYqKioTXrnoit1+u18buyi3H34J/T/i3z69LRH3bqFGhCAkROyRi61YejEfue/55i0fzQwsWMMeEKFj4rCjYAQCidYVHATevuRmbSjcpGRER+clTT0VgyBAzUlOteOONAtx0Uw3cTW91Op3MFadeqaKiwuM9KmlpaQpFQ0TkuRhdTKc2J5w4WH/QD9EQESlLrZbw6qsROOusFqH+55/fiOeeK4Zef2iOv729HaWlpUqGSAoRPWwvPp7rN0TBhkXBiIgEfPKJ+MfnRRfxJLNg9v6u97F091LvXiQfwOsAzIL9zwbwp0Wu10cBOxPcG+LD7g7OFd03KlBvKyosCnNHzsXaS9ei8vZKvDL1FUzInAC15J0NapWiuxwAdHR0oLy8XMFoqCcWLYrAzJkN+OCDfJxyinhRt/b2dlRVVSkYGVFgsNvtwovBWm3nU1iIKLhNzJrosr2yVfweioiI3JOWlqZYQafS0lJYLMpv8iXfWLXKhOefj8eWLQZYLO4VyVGquBwR9S6trTJeftmEE080Y9CgUDz2WDhKSgKrSGD//lbcdVcb9u+34ocfdLjuOgOMRi6JExH5WlWVWBHGhAQmLxL1Nmq1hGuuicbevcA11xwqDjZ/vncPSWtra0NeXh5qamq8Mn5kWCRSjCleGduVa4+7FgsnL4RKxQK2RKSssDAJublih59u3x5Yhb8p8FmtTrz8svg80RlntGP48MCaZyIi72iztmFTmY8KbW0X7BcGYDBgk224aNlFqG+vVzIqIvIDnU6NpUvt+PDDgxg5UnSTBWA2m1FXV6dgZETeZbPZ0NTU5NEYUVFRPCSaiAJKWoTrQoXri9f7OBIiIu/QaCR8+KEeY8a4V+n86qtr8K9/lXcqgNzc3Mw9rwGoslJsbZhFwYiCDzOgiYjcVF/vwKZNYUJ9k5NtOOEEFscIVpWtlbhh9Q3eu4AVwFoAbwMQ3Y87HMBfDr11qoA7JgE9LQfjRA+KgonuG+1hvSZjqBGXDb8Mn17yKarvqMZr017D5IGTEaL2/mKEJ0XBAKCgoEChSKintFoJr7+uQ1qaWCLkn9XV1aG1tVWBqIgCR1ubeLE8vV6vYCRE1BdoJA0itBGd2q2yFRUtFX6IiIgo+EiShIEDB0KSlFkeKCgogN1uV2Qs8q3lyzX473/jcdVVmTjppFzMm5eBRYvi8NNPethsR19sjo6O9lGURORvsuzE55+bMXOmCYmJTlx/vQGbNun8HdYRDAYHZs0y4YsvzCgsDMGjj4YjO5ubSImI/Km6WrQomNgBFUTkf9HRIXjllWj88osFUVG+ueaKFe2YOLEVe/e2Kz72kLjukh6Ucfnwy/HSlJdYEIyIvGbkSIdQv19+CYEs896Mem7JknZUVYnn5t1xB78LiYLF+qL1sMs+WFtsA3BAsO8xAH47A7yitQKLti1SKCgi8qehQ41ISgr3eJyqqipYrZ7nnBP5QmlpqUf9VSoVkpOTFYqGiEgZg/sNdtm+tWKrjyMhIvIeg0GDVatCkJ3d/UZxSXLi//6vAjffXIOulhzr6urQ0NCgcJTkiZoa5tUQUc+wKBgRkZuWL7fAbhe72Tr7bCskickLwerqT69Go6VR+YE7AGwG8Nxv/yt6Tx8P4FzXL63LAtZk92yY3fHA/n7dvKlzHYieMQPoIp9XH6LHzKEz8dGMj1BzZw3euuAtnDvoXISqfbv568AB0SyCQwoLCxWKhNyh0+kUW7AqKSnhhnjqU0wm904W+DOjUbQKJBH1ZQOiB7hs/yjvIx9HQkQUvCRJQlZWliJjybKM/Px8yDJPHuptNm/+4+ADq1XC1q3heOmlBMyZMwAnnpiLq6/OwKuvxmHnTh1stj/6qVQqhIWJHZpARL3H/v1W3HVXGzIybDjrLB2WLjWgvV3t77B+p1I5cdJJZrzyiglVVSq8954BEyfquAZDRBQgamrE0pGSkpi8SNTbxccbMXjwYMTGxnr1OlarCo88koR164w49tgw3HFHA0wm5dZofVEU7KIhF+G1aa9BUjGFk4i857jjxO6vmpo0yM+3df9GIhwqKv/ss+LzRsOGWTBpEueciYLFuoJ1vrnQTgCiy5ejjvzjnto9nkZDRAEiNTUVarXn613M96fewGQyob3ds2L68fHxih06SESklGOTjnXZzvt2Iupr4uND8dlnTiQmdl2UWKuVsXBhCWbO7L7gV0VFBVpbW5UMkTwgmleTmMi8GqJgo/F3AEREvc2KFeIbSi68kJOhwerX6l+x+sBq5Qa0ASgEkAdgFwBPD5uJAHApgKPUz7pjEjApH9B0s0j+YU9yY0WLggFADYCMQ7/VqrWYMmgKZg6diSnZU2AINXgwsOeamppQXl7u0RjV1dUKRUPuiomJQVtbG1paWjwax+l0Ij8/H9nZ2VwEoz7BYun+VIGusFAAEbkyJnkMdlTt6NT+VcFXuHHsjb4PiIgoSGm1WqSnp6O4uNjjsWw2G0pKSpCRkeF5YOQT+flmFBXpunzdYpGweXM4Nm8OB5AAvd6BY49tx9ixJkyZYsbQob6LlYh8p7nZgXfeseCttyRs3qzDUSeM/SQjw4pZs6y48spQDBzY9ecYERH5V02N2Ma6xEQWdyTqCyRJQlJSEuLi4lBcXAyz2az4Nd58MxZFRVoAh55hn3oqBsuWdeCxx9owa1aUx+Pn9sv1eIyjOXfQuXhn+jvQSEzf7O369++Pk046SfFx29rasHPnTsXHpeBz/PHinzObNtmQnR14cwMUeNautWDPHvF5mr//3cFC70RBZF2hj4qCbRfslwDgL+fLjkoc5fKtRNT7SJKEjIwM5OfnezSOzWZDZWUlkpKSFIqMSHlr1tQiJwdQCd5qazQaxMXFKRsUEZECTk4/2WV7cbPneZBERIFm4EAdPv64FZMmqdHaemQeRkSEHS+8UIJRo3peCLa4uBhZWVnQ6Zh35281NWLrN0lJnEsnCjbMKiEicoPJJOPbb8WKW0RF2XHmmSyMEaxcFT04KjsAB4AOAO0AWgE0AKgHUA6g6rfXlRAFYDaAyKO/bW8c8L9jgeu2Hf19y3uSGxsCwIhD/7/cJFVLmDLpUCGw83LOg1FrdH8QL9m+XTSL4A/19fUKREKiUlNTceDAAdhsnp12arPZUFZWhv79+ysUGZH/WK1ilSeVOE2NiPqmKdlT8OrPr3Zq/6X6Fz9EQ0QU3IxGIxISEhQpUN3W1sak115kzRoLgJ4v6re3q7FxoxEbNxoxZEij9wIjIp9zOJz44gsLXn9dxqpVOpjN/j14wZXwcAfOO8+CK69U47TTtJAkbkgmIgpkDocT9fVi6UjJyUxeJOpLNBoNsrKy0NrairKyMjgcyiQ5VFaG4L//je/UXlKixSWXaPG//7XiuefUGDJEL3yNIXE9OQ1NzJkDzsSyi5chVM372r5g3rx5mDdvnuLj7tixA6NGsfgEeW7UKC1CQ2VYre4fard1qxOzZ3shKOpznnzSKdw3OdmG2bPFv7OJqHepaqvCrppd3r9QKYA6wb5/uQWbljMNt4y7xcOAiCiQ6HQ6xMbGepyzX19fj6ioKG6mp4D01VfNuPjiDIwebcKdd1ZiyBD3D4hOSUnxQmRERJ4bmTDSZXtdu+hDABFRYBs3zoj33mvG9OnG3+f6k5KsePnlYgwY0OH2eAUFBcjOzkZoKNcq/cVud6KhQWzfJfNqiIIPi4IREbnh008tMJvFEhAmTepASEjgbaYh79q2bRvGjBnj7zC6lgJgFg4V6OqBB04H/vYrENHFs+K+WGBXQg+vnQihomBnqc/CyktWut/RB7755huPx2BRMP+SJAlZWVnYt28fnE7xhDUAaGlpQX19PWJjYxWKjsg/Hn+8H1JTbcjOtiA72wKjUe5Rv5CQEC9HRkS91eSBk122l7eW+zgSIiICgLi4OFgsFjQ3N3s8Vn19PXQ6HaKiojwPjLxq/Xr3NwECgErlxFlnMamZqC/Iy7Pif/+z4v33Q1FeHng/1yqVE+PHWzB7toxLLtHBYOD6ChFRb1Fd7YDDIVoUTOw+lYgCm9FoRE5ODqqrqxVZD3/iiUSYzV1/Xnz1lRHHHSfjhhsa8eCDRoSHu/+Z5K2iYOP7j8eKmSsQpuGhgkTkG6GhKuTmdmDnTvc/d3bs4EFg1L0dOzrwzTfiRb2uu64DoaHMLyEKFl8VfOWbC4me76sGsk/LxrhB4zAmeQxOST8FIxJHKBoaEQWGpKQktLS0eHyIdFFREXJyciBJnNekwOFwyFiw4NA99rZtBsyalYWpU5tw883VSEiw92iMsLAwGI093GRERORjkiQhTBMGi/3IgofttnbIsszvZSLqk6ZMicRLLzXi6qujkJ1twaJFxYiP79m93V85nU4cPHgQOTk5UKu5DuAPVVUOyDLzaoioZ1gUjIjIDR9/LF4gZvp0Vl+lAKICMBbARLh1N1BrAB4dDzzcxbr8cnfyYpMBHHDj/b/5fsP3sNvt0GgC7zbmq688T1hgUTD/02g06N+/P4qLiz0eq7KyEnq9nqdAUa9VWmrBkiVxR7QlJ1uRnW3BoEEWZGd3YNAgC9LTO/DXj2X+uyeiroRpwhAeGo42a9sR7R2ODtSaahFniOuiJxEReUtaWho6Ojpgsbh/MuhflZaWwW7Xol8/3g8Gss2bxf5+Bg2yICWFf7dEvVVTkwNvv23BW29J+PFHHYDAO+0vM9OKSy+1Yt48LTIz+XlDRNQblZc7IJqOlJrKhFOivkqSJCQlJSEuLg4lJSVob28XGueHHwz48svIbt9nsUhYuDAay5Z14LHH2nDJJVFuXSdWH4t4QzxqTDVCcboyJnkMVv9tNQyhLHhLRL41cqQDO3e63++XX0Ihy05IEvMeqWuPP24HoBXqGx7uwI03cv6HKJisK1zn/YtYAewW6zpt2jSsuGuFktEQUQDLzMzE/v37PRrD4XCgrKwM/fv3VygqIs+9/nozfv45+vc/O50qrFwZjS+/jMTcubW44oo66PVH3xuXlpbm7TCJiDwSq4t1eRj13rq9GBo/1A8RERF535VXRkOWazFsWC2MRtmjsWRZxsGDB5Gdnc1iin5QVmYH82qIqKf4KU1E1EM2mxNffCGWvKDTyZg6lad8UoCIBzAXwNkQem546gSgpIsc2xfHuDFQkvvXBoDm5mZ88cUXYp29qKysDJs2bfJ4HBYFCwxGoxH9+vVTZKzCwkLIsmcTLUT+snVr56IQFRWhWL8+Aq++Go8FC9Jw/vnZGDt2CC6+OAv33puCJUti8f334QgJ4YYGIupaZlSmy/aP8z72cSRERHTYgAEDPD7xyWYD/v3vJJx2GtDSInYCFXnf3r3tKCsTKwR0wgkdCkdDRN7mcDixerUZF19sQnKyCjfdZPitIFjgMBoduOwyE775xoKDB0Pw0EPhyMwM8XdYREQkqKzMIdw3KYnJi0R9nUajwYABA5Cenu72PITVqsIjjyS71ae0VIu//S0KZ57Zij173CtENiTOnVPRjm5EwgisvWwtIrQRio1JRNRTo0eL9WtpUePAAZuywVCfUl5ux4cfis8zXXaZGdHRfAYgChZOpxPrCnxQFGwPAMHlrGuvulbRUIgosIWGhiIpSXBDw5+0tLSgpaVFgYiIPGcy2fHgg67zt81mCS+9lICpUwfhk0+i0NX2BqPRCK1WbO8cEZGv9I90XZDzu+LvfBwJEZFvXX11HOLjlblXs9lsKCgoUGQsck95udheY5XKieRksWJiRNR7sSgYEVEPrVtnQVOT2M3S6adboNfzI5f8LBbA+QCuA+DBYTRWDTD5MuCvZ4O8eixQ4U7+ajqE70TeeecdsY5e9M4778DpPPqJKT3BomCBIzExEXq93uNxZFnmBAn1Wjt39mySyWaTkJenw6efRuOpp5Iwf3469PpwL0dHRL3Z6GTXuw98kgBKREQuSZKErKwsqFQqof7NzRKuvz4DS5fGYvduHWbObIfdzgLJgWjNms7Ff3vqtNM8n/sgIt/Ys6cDt93Whv797Tj3XB0+/NAAszlw1ikkyYlTT23Ha6+1o7JShbfeMuC008IgSWLfQ0REFDgqK8XuGaOj7QgLC5zvKiLyLqPRiJycHMTGxva4z5tvxqKoSCzJ/auvjBg3Totffy2C3d6zQuZD+ilTFGxwv8H44vIvEKOLUWQ8IiJ3jRsnvkFk82YWBaOuPfWUBTab2D28RuPEHXeIHV5BRL3T/vr9KGsp8/6Ftot1S0lJwaRJk5SNhYgCXmxsLHQ6zw/TKS0thcMhflgCkVIeeaSl20PiampC8H//l4pZs7KwdWvnvRKpqaneCo+ISDG5/XJdtv9U+ZOPIyEi8r3MzEyEhChz4KbFYkFxcbEiY1HPiebVxMQ4EBLC/EqiYMNsOiKiHlq+XHwT4/nnc7Mc+YkEYBCASwDcCGAkFPn2z4sDTrgSqPqt3su3GcANU9wb47hGYIBgvZgPP/wQFRUVYp29wG63Y9GiRYqMZTabFRmHlJGRkeH2CdWuWCwWVFZWKhARkW/t3i327z89vQPh4aw8T0RdO2vgWS7bd1Tt8G0gRER0hNDQUPTv734l8eLiUFx2WRa2bPnjQX/t2gjcfnuzkuGRQr77Tuw+X5KcOPts1yfKElFgaGx04Lnn2jB2rBlDh2rx9NPhqKhQJgFIKQMGWPF//9eG/Hw7vv1Wj7lz9TAYuGRNRNSXiCYvxsVx0xxRsJEkCUlJSRg8eHC3hzVVVYXgv/+N9+h6s2bVQ6VqQ15eHmpqarp9/5A4z4uCZUVn4avZXyHe4FnsRESeGDEiFGFhYrmP27Yx75Fca2uT8frrYcL9zz23HVlZLApGFEx8ckhcAwDBfaxXXHGFIrmiRNT7ZGRkCB+edpjT6eRGevK70lILnnsussfv37tXh3nzBuCWW9JQUnLo3rxfv378PiSiXuG45ONctu+t3evjSIiIfE+SJGRnZyt239ba2hpQe7WDgeg2Y+bVEAUn7tImIuoBWXZizRqxBASNRsaFF4onPxC5SyWpEH9cPFSDVKjvXw+b1jsnNm5JA4bdANy8GXhsPGDvwTPk8Cpg5m5gxm5gYAPwJIA7Ba5ttVqxcOFCPPnkkwK9lffuu+8qtpBntVoVGYeUIUkSBgwYgAMHDng8VmFhI6qqwjFqlFGByIh8Y98+sY3DgwdbAfD+h4i6dm72uS7bS1tKfRwJERH9ldFoRGJiIqqqqnr0/i1bDLjttjS0tHRebnjuuWgMHtyA66+PUTpMEuRwyNiyReyk48GDLYiP9/yUZCJSlsPhxGefWfD66zLWrNHBYhE8icGLIiIcOP98C668Uo3x47WQJG74JCLqy6qqxDbQxcWJH9JFRL2bRqPBgAED0NrairKyMjgcnZOZH388EWazeDHZpCQrrr669vc/19TUoKGhAWlpaTAYXBfA9rQoWFpEGr6a/RWSjckejUNE5KmQEBVyczuwfbv7a/g//8zN4OTayy+3o6lJfB7qzjv5b4v6ljlz5mDOnDn+DiOg/Vjxo8djaCQNhicMx5jkMRiTPAYAcNWnV/3xhnYApwLhoeG4/cTb3Rp73rx5HsdHRL2TWq1GamoqSks9y1trb29HfX09YmNjFYqMyD333GNBa6v7z31ffRWJ9euNuO++KjzwAAvbE1HvcEr6KS7bS1pKfBwJEZF/SJKEgQMHYv/+/XA6PT/co6GhASEhIYiLi1MgOupOVZXY31l8PPNqiIIRi4IREfXApk0dqKgQK2xx4okdiInhZjnyHafsRHteO8b3G4+Jx03ECRNPQEd4B/K/eB/5H7yMgmggPwYoiAbqj37Ybrfq9cA/Jhz9PQPrgUt/BWbuAnLrjnztQgALAIg8wrz44ouYP38+MjMzBXorp729HQ888IBi47EoWODRarVITU1FWVmZ8Bj79mlx6639oVYDW7da0a8fNz5S4LPZZBw8KHb/k5trVzgaIupr9KF6GEIMMNlMR7Rb7BY0WZoQFRbln8CIiAjAoZM/LRYLmpqajvq+pUuj8cgjybDbu970f8stUcjKasakST0/jZS8Z9eudlRViW3UOukkCwDOcxIFit27rfjf/6z44AMtKisD72dTkpw49VQzZs8GZswIg17vutACERH1PdXVYv0SE5m8SBTsjEYjcnJyUFNTg7q6P5ILfvjBgC+/9Gxe4a67KqHTHZmZYLfbUVhYCIPBgLS0NGg0R6ZSelIULCk8CV9f8TXSo9KFxyAiUtLIkXZs3+5+v127QiHLTkiSWOFX6pscDidefFE89+mEE8w48cTAm88iIu+Sne4996ugQm5cLsYkj8Ho5NEYkzwGIxJHIEzzRz6bLMu4+tOr4TychZx66JdZZcY/H/incsETUZ8XGRmJpqYmtLa2ejTOZ58145xzjIiNZZ44+dbWrW14/33x+TOHQ4XTTzdCksSL8hMR+dKQfq7n7+vb630cCRGR/4SEhCArKwsHDx5UZLzq6mqEhoYiMpL53t5WVSV2382iYETBiUXBiIh64MMPxQtbTJvGmyzyvdbWVqxZswZr1qwBAJxwwgm4LjkZ938N/Lm8S7MWRxQJy//T70siAYcHc/pRZmDFu8AppUBXaWGZACYB+FxgfIvFgptuugmrVq0SD1IB//73v1FcXKzYeCwKFpiioqLQ1tbW7YZ4V1atisSDD6bAYjn0A3XJJa1Yu1YDtZqLZhTYdu1qh8UiVixg+HAmBBNR99Ij07Gnbk+n9hV7V2DOqDm+D4iIiI6QmpqKjo4OmM3mTq/Z7cBTTyXi7bf7dTuO1Srhb3/T4/vv25GT42F1cvLY55+Lzzucfjrv84n8raHBgTfftODtt9X46acwAIG3oWDgwA787W82XHmlFv3783OfiCgYVVeLrX8kJHh+ei0R9X6SJCExMRH9+vVDSUkJmpvNeOSRZI/GPOmkVkyY0PWmXpPJhLy8PMTFxSEhIeH39nhDPGJ0MWgwN7h1vX76flg3ex0GxgwUjpmISGmjR6vw+uvu92tpUSMvrwNDhmiVD4p6raVLzSgqEp/3ufVW3vsTBaN5I+fh7V/e7vL1zKhMjEkZgzHJh34dm3QsjFrjUceUJAkxuhjUm4/c+O9wOrCreheGJQxTJHYiCg5paWnIy8uDLLu//8dqVeGFF+KxZEk/TJ/egg8/DLw1POrb7rzTCYdDPKfjggtacOqpLP5ARL2HJEnQh+jRbms/ot1sN0OWZRY5JKKgERYWhvT0dMX2N5eWlkKj0cBg4AGg3lRTI3bvnpjIuXWiYMSiYEREPbBqVYhQP5XKiYsv5oQ++d+mTZuwCcDtABYAuBGADkBkBzCq6tCvv7JJhwqD5ccA+2OAl8YAe+PQdYWvPxlbBnzx1qHxu3MdxIqCAcDq1avx4osvYv78+YIjeGb9+vV4/PHHFR2TRcECV2pqKtrb23v8d2SzqfDkk4l4993YI9rXrTPivvsa8OijMd4Ik0gxP/1kE+47ejQTgomoe8clHeeyKNgXBV+wKBgRUYDIzMzE/v37Ybf/UTC/tVXCggVp2Ljx6En4f1ZfH4Jp0+zYtMmG6GixeTZSxoYNYstCarUTkyaxuA+RP9jtTqxebcaSJU6sWaNDR0fgJdxERDgwfboFV16pxoknaiFJnBcgIgpmNTVqoX5JSQoHQkS9mkajwYABA1BY2Ia0NBuKisTuMUNCZNxzTyVUPchzqK2tRUNDA/r37w+DwQCVSoUhcUOwsWRjj68XFRaFLy77AkPihgjFS0TkLccfL54uvmWLA0P4sUZ/8vTT4sUGBgywYvp0nYLREFFvcXrm6fhoxkd49PtH0dLRguyY7EMFwFLGYHTyaPTTd38YkSuD+w3G96Xfd2pfumcpi4IRkVskSUJGRgYKCgrc6nfwoBZ3352KffsO3eMsXx6J119vxNy50d4Ik6iTZcuasH59lHB/nU7G449z3xsR9T79dP1QYivp1L6zeidGJY3yQ0RERP5hNBqRnJyMiooKRcYrKirCwIEDodUyB9BbRPNqEhMVDoSIegWWuyUi6sauXVYcPCh28zpqVAfS0rjRkQJHHQ4VBcsCsLSb94bIQFYjMCkfuHErsOcl4JdFwMjKo/cbXQ58/nbPCoIBwNTf4hF1++2344cffvBgBDGlpaW45JJL4HA4FB2XRcEC24ABA6DqQcZ4TY0G8+ZldCoIdtgTT0Rj+fImhaMjUtavv4r1MxgcyMkJUzYYIuqTJg+c7LL958qffRwJERF1RZKkI56DSktDcPnlA9wqCHbYvn06XHyxBXa7+6fqkjJkWcb111fh/vvLMXlyM2Ji7N13+s2wYWbExjIJlMiXfv3ViptvbkNqqh3nn6/HihUGdHQEztKuWu3EGWe04403TKiqUuH11w0YPz4MkiS+KZSIiPqG2lrR5EV+hxBRZ5mZ4fjmGz1ef70Rycnur6XPmVOH9PSe93M4HCgsLERhYSHsdjuG9Ot5FZzw0HCsvXQtNxsRUUAaPjwUOp3Y3Oy2bZzTpT98950FW7eKF/W6+WYb1Gre+xMFqwtyL8CWq7Zg7/y9WHnJStx/6v04a+BZwgXBAOCU9FNctq8vWi88JhEFL71ej5iYnh36LMvAW2/FYubMrN8Lgh12++1GFBaavREi0RFsNhn33edZzva11zYjK4uFe4mo9+kf2d9l+4biDT6OhIjI/2JiYhAfH6/IWE6nE5s2FaO1tec5xuSe2lqxg1ySkwMnf5SIfIc/+URE3fjgA/ECPeedp2yxICKlVAKYCWAagAY3+h1TA2z5H3D/egBO1+957RMgytLzMdUAHnIjhr/q6OjAlClTsHPnTg9GcU9NTQ3OPPNMVFZ2UyGN+hyNRoOMjIyjvmfbNj1mzMjCjh2GLt8jyypcfXU48vLaFY6QSDl79ohNMGVnd0Ct5qMmEXVv6qCpLttLmjuf2kRERP4TGhqKjIwMbN+ux6WXZiE/XzyZ8KuvjLjxxmYFoyN3mEwm9O9vxYwZjXjyyVJ8+20ePv74AO6+uwJnnNGMiIiuF/BPOKGH1d+JyCP19Q4sXGjCscdaMHx4KJ5/PhzV1YF18MigQR148EETCgvtWLdOj9mzDdDpOA9ARESHtLbKMJnEioKlpPD7hIhcU6slzJkTjb17Jdx4YyNCQ3tWnCYx0YqrrqoVuqbJZEJeXh7SwtJ69H6dRofVf1uN41OPF7oeEZG3hYSoMGSIWB7k9u1i93fUNz3xhHhObGysHVdfzWIDRKSsi4Zc5LJ9b91eH0dCRH1FcnIyQkKOvj5XVaXBNddk4PHHk2C1dp7XbGzUYM4cBxwOFtgl71q4sAkHDojn8cTH2/DPf7p/MCARUSAYEuf6UI+fqn7ycSRERIEhPj4eUVFRHo9z8KAWs2ZlYvp0M2w2PtMorbnZAbNZLD8mOZkHbhAFI2bUERF149NPxQpiAMDFF4v3JfKFlQBGAdjmRp9QB/Cvb4DLuqjBtUugoPSs3+IQ1dTUhAkTJmD9eu+f7HXw4EGcfPLJ2L9/v1fG12q1XhmXlGMwGJCQkNCp3ekE3nwzFlddlYn6+u43azY2anDxxYDJxKrpFJj27w8V6pebK15QlYiCS0RYBHSazknfZrsZbdY2P0RERERdMRgMiI/vB5PJ8yWFV16JxjPPNCoQFbmrsfHI/+4qFTBwYAcuvbQBzzxTig0b8rBs2UHceWclTj21BeHhf2zumjCBC8lE3mK3O/Hxx+2YNs2E5GQVbr/dgO3bPTvNWWmRkXbMm9eG77+3YO/eUDzwgAFpaYFVrIyIiAJDaalNuG9KCotNENHRRURo8Pzz0diypR2nnNL9HPJdd1VBr+/itLMeipe6T4AIVYdixawVOCX9FI+uRUTkbSNHihVz2rUrFA6HZ5+n1Dfs32/FZ5/phftfeaUFej23LhCRso5NOhaSqvNnS117HWSZG1eJSExmZmaXr61ZE4np07OxZUv4Ucf47rtwPPZYk8KREf3BarXiuONqcN554jk4997bishI7nsjot5pTMoYl+376vb5OBIiosCRmpoKg8Eg3P+nn/SYPXsAqqtDsG6dEXPmtLDYscLKysQP3mBeDVFw4soaEdFRFBXZsHOn2OabnJwODBnC4j7BbvTo0XA6nW79slqtaGlpQU1NDXbv3o2vv/4ab7zxBu666y5MnToVcXFxisZYAuA0AF+62W9OF0XBNvZ3PwYVgGd++19RDQ0NmDRpEp555hmvLeR//PHHGDdunNcKggFAWFhgbfgj1+Li4hAe/sdibnu7hAULUvHEE0lwOHr+L3nXLj2uvJJFTyjwNDfbUVoqVhRs6FBO9hFRz6VFprlsX7lvpY8jISKi7kyeHIGnnmpWZKw774zE1q0sDOZr7e3tR31dkoDBgy2YPbseL7xQgg0b9uK99/Jx661VmDz56AnNROS+HTs6cNNNbUhJsWP6dD1WrjS4PEncX9RqJ848sx1vvmlCZaWExYvDceKJYZAkFgkkIqKuVVSIzw+npjJ5kYh6ZuTIcHz9tR5LljQiJcX1YTUnntiKM85o8fhaWRFZR31dI2nw4cUfYlLWJI+vRUTkbaNHi/VrbVUjL0+8+Cv1HU88YYMsi80NabUybr2VeXFE5B3xhs7FfJ1w4oeyH/wQDRH1BaGhoZ0OkG5pkXDXXalYsCANra09m8v897+j8PPPzBMn7ygtLUVioh3/+U853n//II491uRW/yFDzJg/P8o7wRER+cCp6ae6bC9tLvVxJEREgSU9PR2hoe7vCfziiwhcc03GEc87774bhbvualIwOiovFy8KxrwaouAUOJnlREQBaNmyDuG+U6YwEYbEhISEwGg0Ii4uDkOGDMHpp5+O2bNn49FHH8XKlSt/Lxb2xBNPYLRottZfmACcC+BzN/ocXw6oXeT1rxgsFsMpAG4R6/o7q9WKW2+9Faeccgp+/PFHD0f7Q35+PmbNmoXp06ejvr5esXFdYVGw3qN///7QaDQoKgrFpZcOwNq1UULjfPBBFJ56qkHZ4Ig89OOPJjidYomcI0dygomIeu7YxGNdtn9+0J07UyIi8pUbb4zGDTd4VsxLkpy4444qhIWVw2RyLyGRxMmyDLvd7lYfjQYYNsyMq65qQEQET4YlUkJdnQNPPNGGkSMtGDVKixdeCEdNTYi/wzpCTk4HHnqoDcXFDnz5pR6XX26ATsclZSIi6hnRomBarYyoKH7fEFHPqdUSrrgiGnv3SrjppkaEhv7x+aPRyLjnnkqoFKhnG6ft+tA2FVR4Z/o7mJoz1fMLERH5wPHHi8/xbdrEXMhgV1/vwLvviue1zZhhRmIi55mJyDuGxg112f7R3o98HAkR9SVxcXG/5/Vv2WLA9OnZ+OyzKLfGMJslXHGFhI4OHrZLyjKZTDCbzb//eehQC5YsKcTTT5cgNdV1Ef2/euSRDmg0nJcnot4rOzYbKnReCKg3e3ffHxFRoJMkCQMHDoRG0/P52HfeicEdd6S5PNT0qadisHAh974qpaLCKdRPp5MREcH7d6JgxJ98IqKj+OQT8aIWF1/MBAbyniFDhuCOO+7A1q1bsWvXLsybNw9ardajMa0ALgKwrYfvD7cCGS72AVcYgc8HiMXwMIBcsa5H+P7773H88cfjnHPOwYoVK2CzuZ+Y5nQ68d133+GKK67A4MGD8cEHH7jVX6/Xu/XgfBiLgvUekiQhM3MA7rknFQcPevb3du+9UVi/vlWhyIg8p9ebcN11NTjjjGakpblXJHXsWJ2XoiKivmhi1kSX7dsqe3pXSkREvvbss5GYNKlFqG94uAMvvliMSy9tgEoFFBUVwWrtWTIieaa1VfyZk3MVRJ6x2ZxYvrwdU6eakJKiwoIF4di5M7B+rqKj7bjqKhN++MGCvXu1+L//C0dKCtc4iIjIfZWVYv3i4uyQJAWq9xBR0DEaNXjuuWj8+GM7Tjvt0LPvnDn1yMhQZr6hsK2wy9demvwSZgydoch1iIh84ZhjQqHTiRUj2LZNbJMK9R3PPmtGe7tYPq1K5cSCBYFVGJ+I+pYJmRNctm8s2ejjSIior8nIyMDbb8fiqqsyUV0tdj+za5ced97ZrHBkFOzKyso6talUwJlntuCTTw7gjjsqYTQ6uuw/cWIrzjsvyosREhH5hj5E36mtw9EBu+ze4ZlERH3N4cJgknT0UjJOJ/D00wl49NFkOJ1d52wsWBCN999vUjjK4FRZKbbewrwaouDFomBERF2oq3NgyxaxjTnJyTaMHetZgSainho6dCgWL16MvXv3Yvr06R6N1QbgAgA9rYnv8jlPBVw841BxMHeFAfgIQJT7XV1as2YNLrjgAiQkJOCCCy7A008/jbVr1+LgwYNobGyE1WqF3W5Hc3MziouL8c033+CVV17B5ZdfjrS0NJx66ql48803Ybe7Pxn4wgsvwOHoeiGlK9xo27totaF49VUHdDr3/67/zGqVcOmlWlRUuFd8ichbEhLaMX9+DZ55phSffXYAW7bswTvv5OOf/yzH3/5WjzFj2hAZ2fmzMSnJiri4UD9ETES91fk557tsL24q9m0gRETUYxqNhKVL9RgyxNz9m/8kNdWKt98uwPjxbb+3OZ1O5OfnQ5Z5Kq63NTeLJxkbjQKTPESE7ds7MH9+G1JS7LjoIj1WrTK4PEnPXzQaJyZObMc777SjokLCq68acMIJYVAxb4SIiDwgnrzIZwIi8syIEeH45hsj3n67AVdfXaPYuF9XfO36ejEjcJJhPB5/vAatrdxcRES9g0ajwtChYnkpO3aIH65KvZ/FIuO//xXPhz3jDDOGDWMuCRF5T1fFeg80HPBxJETU12g0GkydGo6QEM/mL196KQqff87CYKSMhoYG2Gy2Ll8PDXXiiivqsXr1flxyST3U6iPn7TUaGY8/zkVhIuob4gxxLtt/rvjZx5EQEQUejUaDrKysLl+32VS4774UvPaa68/SP3M4VJg3z4ivvhI7VJr+UFHBvBoicg+PeCYi6sKHH1pgtxuE+k6Z0gFJ4slm5FuZmZlYvnw5PvroI1x11VVobGwUGqcMwBUAVvXgvdYu8r1aw4DzZwHrXwd0bua/DsahwmCTNRrYBIpxudLY2IgVK1ZgxYoViozXneuuuw7nnHMOnE73H9AiIiK8EBF507hxRjz9dCOuuy7ao3HKy0Mxd24L1qwJ6bYKO5G3Wa1Hnp6u18sYPtyM4cP/KPzgdAK1tRrs3x+GAwfCsH9/GKKiZAAxPo6WiHqzGH0MwjRhsNgtR7SbbCa0W9uhD+18ghMREflfZKQGn3xiw4kn2lBb2/0c2LHHmvDMMyWIju5cUNnhcKCgoAADBw70Rqj0m/b2duG+0dGePe8SBZOaGjveeMOCt9/W4JdfwgAE3uEhubkduPRSG+bNC0NSEu+3iYhIWVVVYhuJEhKYvEhEyrj00hjY7REoKSnx6Fn4sG8qvnHZ/o9j/4GvvorAXXfF47nnrPjPfxpx2WWRUKu5zktEgW3UKAe2bXO/365doXA4nFCruXE8GC1ZYkZ1tVguLQDceSf/3RCRdw2MGQiNpIFdPjLnuMnSBLtsh0bitikiEnfSSUbceWcjHn5YfN3c4VDhmmvCsGOHDdHR3GdE4mRZRlVVVY/eGx3twL33VmLWrHosXJiI9esP7VOZPbsZI0cyD4SI+oaMyAwUNRV1at9QugFjU8f6PiAiogCj1WqRmZmJwsLCI9pNJgm33ZaGH37o+aHBZrMaM2bo8fXXbRgxIlzpUINGdTXzaojIPcxCISLqwooV4okIF17Ik/HIf6ZPn44dO3YgNzdXeIzVAN7v5j0daqDmKLk+W1OAedMAkbrFpw8ahCVLlkCt7n0/S6eccgqeeeYZ1NXVCfVPSkpSOCLyhWuvjca8eWKF+A7LzLRg/vwqFBUVKRMUkSBZliHL3U8UqVRAfLwd48e3Ye7cOjzySBn++U/Pfg6IKDilRqS6bP/s4Gc+joSIiNwxcKAO779vRljY0e8dzz+/Ef/7X5HLgmCHWSwWlJaWKh0i/UaWZdgFC69LkgSNhhsliI7GZnNi2bJ2TJnSjtRUCQsWhP9WECxwxMTYcc01bdi82YI9e7S4775wJCXxZ5uIiJQnnrwodhIqEZErGo0GAwYMQEZGhkc5BzXmGvza+Gun9lRDKpI12XjssUQAhw5/mjMnGhMmtGPnzjbh6xER+cLo0WL3ayaTGnv22BSOhnoDWXbi2WfF55GGD7fgzDMDa66MiPqmpHDXubdf5H/h40iIqC968MFIjBlj8miMkhItrr/eszGIqqure5Tj/WcDBljxwgsl+O9/CzF2bBsefli84C8RUaAZEj/EZfv2yu0+joSIKHAZDAakpv6xZ6euToO5czPdKgh2WEODBlOnhqCkxKJkiEGlulqsvA+LghEFLxYFIyJyoa1Nxvr1YokIMTF2nHEGkxjIv/r374+NGzfiuOOOEx7jVgBHW3balgxYu8n3ef8Y4D+nCFz8+uvxt0svxbJly6DVagUG8I+TTjoJq1evhlarRW1trdAYiYmJCkdFvvLSS5EYPVpssXbixGa8914BBgywor29vccn+BB5Q0dHh3BfnU6nYCREFCxGJox02b7mwBrfBkJERG6bMCECzz7b7PI1lcqJ22+vxL/+VY6QkO43+Dc3Nws/S9PRtbS0CPflPT5R1376qQPXX9+G5GQHZszQ47PP9LDZAmfpVaORMXlyO957rx2VlWq88ko4jj+eaxdERORdNTVi34WJiSwKRkTKCw8PR25uLuLi4oT6/zfvvy7bJyRPwOLF8aiqCj2i/bvvwjF2rB433dSIlhax4txERN42blyIcN/Nm1kULBh99pkFeXni+Xu33CJDksQP6CUi6qkRCSNctq/MW+njSIioL9JoJLz5pgrh4V0fhtYdlcoJg8GGqqpqBSOjYGK321FfXy/c/4QTTFi2rAEJCaHdv5mIqJcYmzzWZXteXZ6PIyEiCmxRUVFISEhAUVEoLrtsAPbuFc8NLi3V4pxznGhs5JqBCPG8GoUDIaJeI3Ay04mIAsjKlRZYLGIfkZMmdUCjYRID+V9MTAxWr16NzMxMof5VABYd5fXv0ns2zv0TgI9y3biwXg/MmQMAuOCCC7Bq1SpERka6MYB/nHjiiVizZg3Cw8MBQLioU1KS69PKKPBptRKWLZMQH9/zCQ212ok77qjEU0+VwmD4o1p3XV0dWltbvREmUbc8+bdnMPD0KCJy35kDznTZvrViq48jISIiEddcE41bb208ok2vd+C550owZ049VG5Mk1VXV/NZyAuam10XbuuJiIgIBSMh6v2qq+147DETjjnGgtGjtXj55XDU1XVzcoKPDR1qwSOPmFBaKmPtWj1mzdIjNJRrFkRE5Bu1tWqhfklJ/K4iIu9JSEjA4MGD3VrHarG2YEXxCpev5aomYcmSfi5fs1olvPBCNHJzZSxZ0giHgyc2E1FgGTo0BHq9WCGDbdtYyDUYPfmk+N97crINl13GgyeIyDcmZU1y2b6pfJOPIyGivmrwYD0efljsQK7kZCtee60Qt95ajbq6WlgsFoWjo2BQVlbm8RipqakKREJEFDhOyzjNZXt5a7lvAyEi6gXi4uJQWtoP5eWeF4ndvVuHadM60NHBtVB3Ma+GiNzFomBERC58/LF4IsP06byxosCRkJCA5cuXIyRE7JTHJwFYu3htQw+LggHA5RcA23taifjuu4GoqN//eOaZZ2L79u0YPXp0zy/oY/PmzcNXX30Fo9H4e1tBQYHQWIks2dyrZWTo8MYbZmg03X+PxMTY8eqrRbjiCteb5EtKSmC38wRp8r329nbhvn/+HCQi6qkLBl/gsr2oqci3gRARkbAnnojElCmHkl+Tkqx4880CnHaaWHGv4uJiWK1dzUaQCE/u8aP+NEdDFKysVic++KAdZ5/djtRUCXffbcCuXWH+DusIsbF2XHttG7Zu7cCuXWG4+24DEhMDq1gZERH1fXa7E/X1Yt8/TF4kIm/TaDTIzMxEZmYmNJruP6ue3vU0OhwdndollYRPXzoHNtvR0y4rKkIxd240Tj+9HTt2tAnHTUSkNLVahWHDxOZft28X26hCvdfPP3dg/Xq9cP/rr+9ASAjv9YnINy4eerHL9oJGsVxeIiJXbrghEmed5V5hsPPOa8SHHx7E6NF/rNsXFRVBlrl5nnrOYrGgrc2zOaa4uDhIErcSE1Hfkh6VDhU6zz00mBv8EA0RUeC7/voY3HtvY/dv7IE9e7TYsKGYzzZusNmcaGgQW2tJTuZcO1Gw4pM8EdFfWK1OfPGF2IYevd6BKVMCazMQ0ahRo3DfffcJ9a0GsNJFu0MFfJ/W83HaQ4FplwBV4d288dhjgXvu6dScmZmJ77//HnfeeWePEnR9RavV4pVXXsHixYsRFnbkz35hYaHQmElJSUqERn501lkRuP/+o0+ODB/ejg8+OIgxY0xdvsfpdCI/P58TI+RzHR2dNzj0hEql4mIxEQmJD4+HVq3t1N5qbYXVzqIwRES9gVot4b339Jg1qwHvvpuPnByxe8rDDh48yGchhciyDIfDIdRXrV0F7DwAAQAASURBVFZDreZGPwpeW7d24Npr25Cc7MCsWXqsXauH3R44z70ajYyzz27HBx+0o6JCjZdfDsfo0Z3vq4mIiHylqsoOWRZLQkxJCZzvWCLq2wwGAwYPHoy4uLgu37O1dis+LPzQ5WtD1Wfih43RPb7ehg3hGDtWjxtvbERLCw+EIqLAMGqU2Hzh7t2hsNvFD1ul3ufxx8W/u4xGB268UadgNERER5cYnugy96TN2oZ2q/gBOkREf6ZWS3jtNS3i423dvjcy0o6FC0vwn/+Uw2g8Mv/BbrejvLzcW2FSH1RaWupRf0mSjjofRkTUm4WHdt6saHVYmYNORNSFf/0rEnPmNHk0Rnp6B956qwCJiSYUFRUpElcwqKiww+kUy6tJTmZeDVGw4k8/EdFffPGFBS0tYpvdJkzogF7Pj1YKPHfeeadwsaklLtp+TQBa3Kx/VxoJXDATsHRV0ys0FFiyBOii6FdoaCgef/xx7Ny5E2eeeaZ7F/eCs846C7/88guuueYal6+LFgUbNGiQJ2FRgLjvviicd16zy9dmzarHkiWFSEzsPnHOZrOhrKxM6fCIjspuF0vqDKSijUTU+yQbk122rzm4xseREBGRKKNRg9de06FfP7ENZX8myzLy8/MViIqampqE++p03LBFwaeqyo6HH27D0KEWjB2rxX//G476+sB63j3mGAsee6wNZWUyPvtMjxkz9AgN5SlwRETkf2Vl4s8CKSksRktEvpWQkIDBgwfDYDAc0d7h6MCCLQtc9umnjUPNyx+4fS2bTcKLL0YjN1fG6tX1LIRORH43erTYPEJ7uxq7dnEzZbAoLbXho4/E54hnzzYjKor3+UTkW2mRrk87/mTfJz6OhIj6sqQkLV58setDoQHgpJNa8dFHBzFxYkuX72lubkZra6vS4VEf1NzcLHzg82EpKSk8+JmI+qx4Q7zL9h8rfvRxJEREvYNaLeHVVyNw9tldP68czTHHtOPNNwuQlnaoWHJ7e7vHRWyDRXm5eF5Nairn24mCFZ/miYj+Yvly8eS7Cy5QMBAiBen1etxxxx1Cfb8GYP5L24b+YnFsTgOumQq4PDPyn/8Ejjmm2zGGDBmCL7/8EmvWrMEZZ5whFogHcnJy8NFHH2HNmjVHLeAlsnk5LCwMWVlZnoRHAUKtlvDWWwYMGmT5vS0sTMbDD5fhvvsqERLS85NTW1paUF9f740wiTqRZRlOp9jJvmFhblaLJCL6k+EJw122sygYEVHvotPpkJqaqshYHR0dKCkpUWSsYNbSIrZoDwAREREKRkIUuDo6ZLz3XjsmT25HWpqE++4Lx549gfWM26+fHTfc0IaffurAL7+EYcGCcCQkBFaxMiIioooKsXV2lcqJ5GR+rxGR72k0GmRmZiIzMxMajQaV7ZU4a81ZqOuoc/n+cWWvorosSvh6jY0aaLV12LdvHzf9EpFfjRsXItx3yxaxQ8ao91m4sAM2m9g2A43Gidtv1yocERFR945NPNZl++oDq30cCRH1dRddFIUrrmjq1K7VyrjnngosWlSM+Pju751LS0tZPJy6VVFR4VH/0NBQREZGKhQNEVHgyYjKcNm+sWSjbwMhIupFNBoJy5bpMWbM0Qse/9Wpp7bgf/8rREzMkcWtmpubUVVVpWSIfVJ5udjznyQ5kZTEvBqiYMWiYEREf+JwOLFmTahQ35AQGRdcwEQGClyXX345QkLcT+oyA/juL23fpYvH8dYI4ImT/tJ4zTXAPfe4Nc5ZZ52FdevWYefOnbjuuuuQkJAgHlQPnHnmmVi1ahX27t2LC7qpANjU1ISioiK3rzF48GCo1azY3FdERGjwwQd2GI0OpKZa8fbbBZg6tUlorMrKSpjNfy3PR6Q8TzYg6HTiJ8QSEZ2R6brY64/lPKWJiKi3iYqKQr9+/RQZq6WlBTU1NYqMFaw8eZaMiopSLhCiALR5swXXXNOG5GQZf/ubHl98oYfdHjhLpyEhMqZMMWHZsnZUVKjx4ovhOPZYrkEQEVHgqqgQO3AiOtqB0FCVwtEQEfWcRqvB8prlOPfzc7ssCHZWv5n4/L9TPbrOtdfWIDHRBofDgeLiYhQUFMBuZ3EdIvK93NwQhIeLnUa/bZvCwVBAam2V8frr4kXzp05tR2amePE5IiJRZw8822X7tgp+gRGR8p5/PhxZWX8cHj1kiBlLlx7E3/7WAFUPpztlWUZxcbGXIqS+oKamBg6H2PPbYWlpaQpFQ0QUmIbFD3PZvr1yu48jISLqXQwGDVatCkF2tqX7NwO48MIGPPNMCfR617khdXV1qK+vVzLEPqeyUiyvJibGAY2GeTVEwSpwMtuJiALA9993oLpaLBnhpJMsiI5mMR8KXHFxcZgwYYJQ3y1/+r0TwAYPioIBwN1nAitzfvvDFVcAixYJjzV8+HAsWrQIFRUV+Pbbb3Hrrbdi7NixCA0VK/B3WEhICCZMmICFCxfiwIED+PLLLzFlyhSoerBKt2PHDqFrDh06VKgfBa6RI8Px7rtNeP/9g8jJ6dkESVcKCwt5GhR5ncnkXoX/PzMajQpGQkTBZnrudJft+Y35Po6EiIiUkJiYiPDwcEXGqqmpQUtLiyJjBRtZloWTQ9VqNSSJS0jU91RU2PHvf7chN7cDJ5wQhldfDUdDQ2CdoDZihAWPP96GsjIZq1YZcNFFeoSEMKGDiIgCX1WVWPJifLxnG5qIiDyx5sAaDFs0DP/3zf/BKltdvidECkHTh0/AZhN/Ts7I6MDs2Ucmwbe3tyMvLw+VlZVcByYin1KrVRg2zPVnXnd27OCcYTB4+eV2NDeLz5ktWMA8WiLyj65yT4qbWXCHiJRnNGrw2ms2aLUyrr66Bm+/XYABA9y/zzaZTGhsbPRChNTbybKM2tpaj8YwGAw89JmI+ryxKWNdtu9v2O/jSIiIep/4+FB89pkTiYlHf5a5/voa/OMfFdB0M21cWVnJnO+jEC0KFhfHvBqiYBZYWe5ERH62bJn4CZzTpondjBH50oQJE/D555+73e/nP/3+YAxQ7eG+XqcKuHQ68EPHZTjmydfR4+NwjkKSJJx66qk49dRTAQAdHR3Yvn078vLyUFxcjKKiIpSXl6OtrQ3t7e1ob2+H0+mE0WiE0WhEZGQkMjMzMXToUAwbNgzDhw8X3sAsWhRs2DDXpxNQ73buubEoKGhGe3u7R+PIsoyCggIMHDhQociIOjObzcJ9tVqtgpEQUbBJiUhBiBQCm2w7or2lowV22Q6NxCksIqLepn///jh48CCsVrHNZX9WUlKC7Oxs3nO6qampSbivXq9XLhAiP7NYZCxfbsEbbwDffKOD3a5M0UIlxcXZMGNGB668MgSjRoX5OxwiIiIhlZVi/eLiWAiHiHyvqKkIt35+K1bkrej2vdmqU7D52zSPrnfPPRUICXGdV1RfX4+mpiakpqbyEB4i8plRo2Rs3ux+v927tbDbnTyRvg+z25144QXxwzhPPNGMceNYdICI/CMiLAL6ED3abUfmalrsFtS31yNWH+unyIiorzrlFCM2bCiFTtfs0Tjl5eUwGo3QdLfDnoJKeXk5nE7P9qmlpXk2p0VE1Bucln6ay/bylnLfBkJE1EsNHKjDJ5+0YeJECS0tRz6TSJIT999fgYsu6nkh45KSEmRlZbE4rQtVVWJrKzxsjyi4cbaIiOhPVq8WS2ZQqZy4+GJuSqTAd8IJJwj1O/Cn329IVyaWNi1wXsJG/NhehzhDnDKD/olWq8W4ceMwbtw4xcfuzrZt24T6HXvssQpHQoEiIyMD+/btg8Ph2QO4xWJBZWUlkpKSFIqM6EiiBRskSYIk8URgIvJMkjEJJc0lndrXFazDWQPP8kNERETkCUmSMGDAAOzfvx+y7Pkm//z8fOTk5ECtVisQXXBobhZPPI6MjFQwEiLfk2UnNm/uwGuv2bF8eRiamgKv0F1oqIzJky2YMweYOlWHkJAQf4dERETkkepqseTFhAQWBSMi37HYLXji+yfw8MaHYbFbetTHuu1yj645cWIzTjzRdNT3OBwOFBcXQ6/Xo3///twETEReN3q02L2b2Szhl186cOyxzJXsqz74wIySEvG5tNtu4+G6RORfGZEZ2FO3p1P78r3Lcc1x1/ghIiLq6447LgV5ea0e50UUFhYiOztboaiot7NarR7lfABATEwM55iIKCgkRyRDUkmQnUd+FzdZmvwTEBFRLzR2bDjefbcZ06cbYbUe2h8YFibjiSdKcdpprW6PV1BQgOzsbISGih9A0ReJ59Vw3p0omHHXNhHRb3butKKwUOwG87jjLEhJ4WQpBb6BAwcK9Sv90+839FcmFuDQ6bvTl06H1SFWhCZQffvtt273CQkJwUknnaR8MBQQDm+GV0J9fb3Hi3xEXREtXMdJOiJSwjHxx7hsX71/tY8jISIipWg0GsWehWRZRn5+viIFxoKF2WwW7hsREaFgJES+U15ux0MPtWHIECtOOikMixeHo6kpsObuR4604KmnTCgvd2LlSj2mT9cjJEQs2YOIiCiQVFeLpSAlJjJ5kYh8Y/X+1Rj20jA88O0DPS4IBgCLHsvE7bc3ICzM/TkJnU7GggVVPX5/e3s78vLyUFlZyTkQIvKqcePED1/YssWuYCQUaJ5+WnxrwcCBHbjgAp2C0RARuW9s6liX7Z8f/NzHkRBRsJAkCenpnp+63tHRgZqaGgUior6gtLS0+zcdhUqlQmJiokLREBEFvvDQ8E5tNtnm1loAEVGwmzIlEi+91AyVyomoKDv+979CoYJgAOB0OnHw4EHY7VxP+DPRvBoWBSMKbiwKRkT0m6VLbcJ9zztPrIAGka8lJSUJFW5pBdD+2++/83zN6ggbSzbi+lXXw+nsGw8m+/btQ3l5udv9xowZA4PB4IWIKFBotVqkpqYqMlZpaSms1r5VTI/8z5N/U1otTwEmIs+dnnm6y/bNZZt9HAkRESkpLCwMaWlpioxltVo9TnwMFna7XXjzsEajgSRx+Yh6D7NZxptvmjBxYjvS09V44IFw7NsXWM+p8fE23HhjG3butGL79jDcdpsB/fqJb74lIiIKRLW1Yt9t3JdERN5W2FiIae9Pw7nvnYv8xny3+2cnpOPJJ2Pw888WnHmme4nv11xTg8RE9/OR6uvrsW/fPrS2iiXaExF1Z/DgUBiNYjmP27b1jRwv6uzbby346acw4f4332yHJLH4PRH517nZ57ps31613ceREFEwMRgMiIqK8nicmpoaWCwsXhLsTCaTR4fAAUBiYiLzPogoqCQYEly2f1/6vY8jISLq3a68MhpPPdWAN98swIgRnt2T8jDozmprxe7Rk5M5704UzPh0T0T0m08/Fd+AM2OG+0WWiPwlPLxz9fueaDcYUGEECmIUDgjAaztewzObn1F+YD/4+uuvhfqddtppygZCASkqKkqRRV8AKCgo4KQIKcqTTQUsakhESrgo9yKX7QcbD/o4EiIiUlpkZCTi4+MVGau1tRU7d9YqMlZf1tTUJNxXp9MpFwiRl8iyE99/b8G8eW1ISpJxxRUGrFunh8MROMkPWq2MadNM+PjjdpSXa/D88+EYPpxrCURE1HfV1GiE+iUnM3WJiLzDbDPjwW8fxJCXhmDlvpXC4yQZkwAAubl6fPmlEe+914T+/Tu67ZeR0YHZs+uFr+twOFBcXIz8/Hyeok1EipMkFYYNEzs4bMcOsfs+CnxPPCGeh9Svnx1XXcW5ZSLyvymDprhsL29x/7BfIiJ3JCcnQ6Px/F65qKiI+eFBztPD8jQaDWJjYxWKhoiodxgQPcBl+w8lP/g4EiKi3u/WW2MxdKgy6wA2mw0FBQWKjNXbybITtbVi/12TkhQOhoh6FWbWEREBKCiw4ddfxU44Gzy4Azk53MhDvYderxfqZ9m1Cxvef0zhaP5wx5d3YM2BNV4b31dWr14t1I9FwYJHamoqQkM9/96w2+0oKSlRICKiQ0wmk3DfiIgIBSMhomCVHpUOjdR5krvJ0sREJyKiPiA+Ph5Go9GjMWQZeOaZBJx4Ygx++EG8qG0wKC1tg9Mp1lepYtZE3lBaasODD5oweLAV48eH4fXXw9HcHFgbUY891oKnnzahosKJFSsMOP98PTSawClWRkRE5A3NzQ6YzTzRlIgCx6f7PsXQl4bin+v/CYvdIjxOvCEeoeoj13ZnzYrCnj1q3H57A8LCup67vueeSoSGCj6c/4nZbEZeXh4qKys5V05Eijr2WIdQvz17QmGzef75RoElL8+KtWvFi3pdeaUFOh23JRCR/4VpwhCh7ZzLZpWtKGlmviUReY8kScjMzPR4HLvdjoqKCgUiot7o22+bsXOnZ+vfqampCkVDRNR7HBN/jMv2ndU7fRwJEVHfkJGRgZCQEEXGslgsKC4uVmSs3qy5WYbFIppXw7l3omDGTwAiIgBLl4qdegcAU6faFIyEyPssFrGE11C9HhvgvQVx2Slj1vJZ2FO7x2vX8LbGxkZ88cUXbvczGAwYP368FyKiQDVgwACoVJ5vcmlra0Ntba0CEREBHR3dn2jeFSVONyMiAoDE8ESX7d8Wf+vbQIiIyCvS0tKEiyS3t0u49db+WLw4Du3talx8sRYlJeKbevu6a66Jw+mn5+DOO1OxdGk0iopCe1wkzNPibURKa2+X8cYbJpxxRjsyMzX45z8NOHBA6++wjpCYaMPf/96GX3+14qefwnDLLQbExKj9HRYREZHPlJWJFZQAgJQUfmcSkXIKGgsw9b2pOO/981DYVOjxeMnGZJftBoMGTz4Zg59/tmDixM6FyydObMaJJ7Z5fP0/q6+vR15eHlpbWSidiJQxerRYCrnFImHnTvF8SwpMTzxhhSyL5TKFhcm49VaxQ3mJiLxhYPRAl+3Ldi/zcSREFGy0Wi3i4+M9Hqepqcmjg36pd7LbZdx8cwhmzRqIe+9NQVWV+7nZOp0O4eHhXoiOiCiwHZ96vMv2A/UHfBwJEVHfIEkSsrOzoVYrk8/R2toa9MWPPcurYUkgomDGTwAiIgArV4p/HF58sTLVbol8RXSByGAwYEPJBoWjOVJLRwvOe+881LfXe/U63vLxxx/DZnO/UOC0adOg04mftEi9j0ajQUZGhiJjVVdXc+GXFCHy+QWwIBgRKWto3FCX7Z/u+9THkRARkTdIkoSBAwdCktybi6uqCsEVV2Ti66//ONW7oiIU06bJaGuzKx1mr9fSYsfOnTrU14dg7dooPPRQCqZOHYQzz8zBPfek4uOPo1BW5npOU6PRuP33Q+QNsuzEhg0WzJljQlKSE3PmGPD113o4HJ4XWVdKWJiMCy4wYeVKM0pLNXjmmXAMGyZW+JCIiKi3Ky9nUTAi8i+zzYx/fPMPDHlxCFbtX6XYuCnGlKO+npurxxdfGPH++01ITz90AI9OJ+POO6sUi+HPZFlGcXEx8vPzhdf2iIgOGzdOfK1/yxbOy/YldXUOvPeeXrj/zJlmJCQwd4SIAscJaSe4bF9XsM7HkRBRMIqPj4dW6/kBR8XFxZBlWYGIqLd45ZVm/PrrofvyTz+NxtSpg/DCC/Fob+95DkdaWpq3wiMiCminZZzmsr2iNbgL0BAReeJwzrdKpUzOZkNDA2praxUZqzfyLK+G8+9EwYw7O4go6FVX2/Hjj2KnlKWlWXHccdzkQ71HS0sLzGaz2/1UKhU6VB34tfpXL0R1pPzGfFy07CLYHL0vgfWdd94R6jdr1iyFI6HewGAwICEhQZGxioqKYLcz4ZLEybIsnDwQGsp7ISJSzqkZp7ps31y22ceREBGRt0iShKysrB6//9dfdbjkkgHIy+tcTHvHDj0uu8wEh4OJsH/2xRdtsNk6L//U1IRg1aooPPBAKs4+OweTJw/C//1fClaujEJV1aEiYXq9+MYvIiUUF9vwwANtGDTIilNOCcMbbxjQ0hJYhUJGjzbjmWdMKC934qOPDJg6VQeNJnCKlREREflDZaXYPblOJyMykqlLRCTO6XTik7xPMOSlIfjXd/9Ch6ND0fG7Kwp22MyZUdi9W40772zEjTdWIynJu/kOZrMZ+/btw759VZwXISJhgwaFICJCbBPKtm0KB0N+9eyzZpjNYvflKpUTCxZwQxIRBZbzB5/vsv3XGu/nQBMRAUBmZqbHY8iyjJKSEgWiod6gpcWOf//bcESbxSLhlVfice652fj44yg4unl8i4iIYE43EQWtfvp+kFSd5zaaOpp8HwwRUR8SEhLiVs53d6qrq9HU1KTYeL1JRYVTqJ9e70BkZGDl0BKRbzGzjoiC3ocfdsDhENuwc845VkgSN/tQ73HgwAGhfkajET+U/QAnxB483PVt0be4ac1NcDp9cz0l7N69G19//bXb/aKiojB58mQvRES9QVxcHMLDwz0ep6REg7vvblQgIgpWIgUjD9PpOhdnICISdWHuhS7b9zfs93EkRETkTVqtFunp6d2+b82aSMydm4m6upAu3/PJJ5G4555mJcPr9b7+umfzKRUVofjkk2jcd18qJk7MwTnnZMNqjfZydESdtbfLeP31dpx+ejsGDNDgoYfCkZ/v+enZSkpKsuHWW9uwa5cVW7fq8Pe/GxATw0QLIiKiwyoED9nu18/O9XYiEnaw4SCmvDsF539wPoqairxyjZSInhUFAwCDQYPHH4/GP/4RAY3G+8VRnE7gkkuMOPnkdvz0k8nr1yOivkeSVDjmGKtQ3x07OC/SV1gsMl55RXwubuJEM4YMCay5PCKiCRkToELn+Yaqtio/RENEwUij0SA1NdXjcdra2oJ2w3yw+de/WlBV5bqgV21tCB54IBWzZmVhyxaDy/eoVCpF/s0REfVmEdqITm122Y42a5sfoiEi6jvCwsJ6lPPdU2VlZTCZgm9ts6JC7KCn+Hixw12IqO9gUTAiCnorVognGV90EZNbqHfZtWuXUL/MzExsKN6gcDRH98pPr+DFrS/69JqeeOaZZ4T6TZ8+nSeyBLn+/ft7lBS+YUM4Zs3KwlNPxeGppxoUjIyCSWtrq3BfJQrbEREdNih2ENSqzs9ZjeZGyLLYJDgREQUmo9GIhIQEl6/JMvDii/FYsCANHR3dL2M88UQ0Fi9moeTDNm0S24BlNkvIzHSdQEqkNFl2Yv16C2bPNiEpyYl58/T49ls9ZDlwioKEhcm48EITVq0yo7RUg4ULwzF0KOfxiIiIXKmsFDvoJz6e8z1E5L52Wzvu//p+DH1pKNYcXOPVa6UYe14U7DCDwYDBgwcjPj7eCxH94dNPo7B9uwGbNoVj3Dgdrr22EY2NNq9ek4j6nlGjxDaT7N0bCput9xz2SF177TUzamu7PpijO3feGTjzeUREh0mShGhd54NwHE4H9tTs8UNERBSMoqKiYDB4vv5eXl4Ou92uQEQUqAoLzXjppchu35eXp8NVV2Xippv6o6joyHXruLg4SBK3CRNRcEs0JLps9/V+SCKivshoNCI5OVmx8YqKitDR0aHYeL1BlWCt+rg4FgUjCnZ82ieioNbaKmPDhjChvv362XH66WJ9ifzl22+/Feo3cOBAbCjx/STYLWtvwZf5X/r8uu6qrq7GO++8I9T32muvVTga6m0kScKAAQPc7ifLwKJFcZg/Px0tLYeKit17bxTWrxcv7kTB68svnVixIgp79oSho8O9hE0lkhaIiP4s3tB5o5QTTmwq2+SHaIiIyJvi4uIQGXlkYqPZrMKCBWl4+WX3Ns7edFMkvvuOz0ONjTbs2qUT6jt2rBlqNZeNyLuKimy4//42ZGdbcdppYXjrLQNaWgLr8I2xY8147jkTKiqc+PBDA6ZM0UGt5uZGIiKio6mqEvuuZFEwInKH0+nEx3s/xpAXh+DfG/4Nq8Pq9WsmG8WT2+Pj4zF48GCvHLDT0iLhqaf+2OBkt0v473+jMXgw8MorjXA4+PlKRD0zZozYfVxHh4QdO7z/OUzeJctOPPec+EGGI0ZYMGECc2iJKDDlxOa4bF+6Z6mPIyGiYJaenu5xoabWVhWef75OoYgoEN11lxVmc8/XzL/9NgIXXJCNRx9NRFOTGmq12uvF6YmIeoMB0a73ZTH/nIhIGTExMYrddzqdTuzeXYDW1uApgFxdzbwaIhLD3R1EFNQ+/tiMjg6xj8LJkzu4EYh6FVmW8eWXYgW2MjIzsK1im8IRdc/hdODiZRdjX90+n1/bHQ888ADMZrPb/caPH4+xY8d6ISLqbUJDQ5GWltbj9zc3q3Hjjel46aUEOJ1/fBdZrRIuvVSLiorgqpROnnv/fQPuvz8VM2cOxNixQ3DeeQNx++1peOWVOHz9tRFlZSGQXcwhqVQqnixFRIobEjfEZfvKfSt9HAkREflCWloatFotAKCmRoN58zLx+efdn4D6V2azhIsvDkNBgfvP533J55+bYLeLzVmefHLwLK6Tb5lMMhYvNuHUU83IytLg3/8OR0GB1t9hHSE52YbbbmvD7t0d2LJFh5tuMiA6OrCKlREREQWymhqxe9DERCYvElHP7K/fj7PfORvTl05HcXOxz66bEpHiUX+NRoOMjAxkZmZCoxEvuvJXL70Uj4aGzuPV1ITguuuiMX58O7ZubVPsekTUd40bFyLcd/Nmzif2dp9+asa+feLzdLfe6oAkMYeWiALTyf1Pdtm+vmi9jyMhomAmSZJb+eF/9dNPelx44UDcdlsili1rUi4wChgbNrTgww8j3O5nt6vwzjv9cN552QgPFy9qT0TUlwxPHO6y/ZfqX3wcCRFR3xUfH4+oqCiPx2luVuPqq/vjggvMsNmCI2+kulps/2ViYvfvIaK+TblMEyKiXmjFCvG+06czmYF6l3Xr1qG8vFyoryHdAFu9TeGIeqa5oxnnvX8eNl+5GdG6aL/EcDR79uzB4sWLhfrecccdCkdDvVlkZCTa29tRX19/1Pfl5YXhllv6o7w81OXr5eWhmDmzDV9/HYKQEBZrop7Jy/vj35Msq1BYGIbCwjB88cUfxRj0egeyszuQnW3BoEEWZGdbMHx4cEy8EZFvnZJ+Cr4q/KpT+/el3/shGiIi8oWsrCx89lkhrryyP2pqxDeh1dSEYNo0G374wQ6jMTiXP775xincd/Jk18+ZRCJk2Yn16zuweLEDK1eGobXV4O+QOtHpZEyZYsa8eRImTQqDWi3++UNERBTsqqvFimkmJCgcCBH1OSarCQ9veBhPbnoSVofV59dPMXpWFOwwg8GAwYMHo7a2FtXV1R6NtW9fGN57L/ao79m8ORwnnujE3LmNePTRcMTE8HmHiFwbODAEkZF2NDe7P5+6zffnS5LCnnpKPAc2NdWKv/1Nr2A0RETKumjIRXj8h8c7te+p3eOHaIgomBmNRkRGRqK5ubnHfWw2FV54IR6vv97v98Ojb7zRgPHjO5CUFFiHL5E4h0PGggXSEQeEu2vSpDakpUUpFxQRUS92QsoJLtsPNhz0cSRERH1bamoqbDYbTCaTUP/KyhBcd106CgrCAABz5jThzTcjoFb37X2wNTWiRcHE88KJqG/o25+ORERH0dHhxLp1YUJ9w8MdOOccsb5E/rJo0SLhvuZUs4KRuG9//X7M+HAG7HJgnTDpdDpx4403wuFwuN03OzsbU6dO9UJU1JslJSUhLKzr75eVK6Nw2WUDuiwIdtjGjeG47baeLx5TcGtrs6O4uPskgfZ2NXbu1OPDD2Pw8MPJmDt3AD75JMYHERJRsJk+eLrL9n31+3wcCRER+YokSTj++DSEh7v/fP1Xu3bpMWNGOxyO4Cxg+8MPYgnA8fE2DB/ODVzkuYICK+67rw1ZWTZMmBCGd94xoLVVrEiItxx/vBkvvGBCRYUTy5YZcPbZOqjVPASEiIjIE3V1Yt/3ycn8DiYi15xOJ5bvWY7cF3Px8MaH/VIQTKvWIkan7FpYXFwccnNzER4eLtTf6QQefjgJstz956fdrsKrr0YjNxd4+eXGoJ0rIaKjkyQVhg8XOyhy587AmvMh92zb1oENG3TC/W+4wYaQEN7PE1HgOi7pOEiqztulattrIcu8NyYi30pJSYFG07NCvAcPavG3vw3Aa6/FHVEsqqYmBPPmdfD5vg95991mbN4sNkcEAAaDA489xn1tRESHnZJxisv2yrZKH0dCRNT3paenQ6t1P195/34tLrtswO8FwQDg3XejcNddTQpGF5hqa8XWVJKSOA9PFOxYFIyIgtbnn1uENyOdcYYFYWH8CKXeY+vWrVixYoVQ39zcXGxv3a5sQALWFazDbZ/f5u8wjrBw4UJ88803Qn0XLFgASeLnCHU2YMCATv82bDYV/v3vJNx3Xyo6Onr27+aFF6Lx1luN3giR+piffzbD4RCbIBo5kp9jRKS8YQnDXCZm1rfXMzGTiKgPi4sLxUcf2REV5XlB8LVrI/Dyy7UKRNW71NZasWeP2CaucePa+/wpW+Q9bW0yXn3VhJNPNmPgwBA8/HA4ioqOXtDc11JTrbjzzjbk5VmxebMO8+cbEBXFjatERERKsNmcqK9n8iIRKWdf3T5MfnsyLlp2EUpbSv0WR7IxGSqV8p9TarUaGRkZyMzM7PGG4MNWrYrCzz8b3OpTUxOC66+PxkknmfHjj21u9SWi4DBqlNj62969obBaeUJ9b/X44+Jz8RERDtxwA4sPEFFgkyQJcfq4Tu1OOLGlfIsfIiKiYCZJEjIyMo76HlkG3n47FjNnZiEvz/W6/9q1EXjxxSblAySf6+iQ8Y9/eHZw2/z5LUhP5305EdFhUWFRUKs6r1k2W5r9EA0RUd8mSRKysrLcWuvcutWAK64YgJqakE6vPfVUDBYubFAyxIBitTrR0ODeuvBhzKshIu7wIKKgtXy5+GbyCy5QMBAiL3M4HLj55puF+0+aPAmbSjcpGJG45398Hq9se8XfYQAAdu7cifvuu0+o7/DhwzF37lyFI6K+QpIkZGZm/v7nqioN5szJxAcfxLo91vz5Edixg4nddHQ//SR26i8AjBnDxWQi8o6uEjN/qvzJD9EQEZGvjBgRjjfeaING41kRyPnzq3HKKbWoqKhQKLLeYe1aE2RZbPH3lFMcCkdDfZ0sO7FunRl/+5sJiYlOXHONARs36o44rdrfdDoZM2aYsHatGUVFIXj88XDk5ARWsTIiIqK+oLLSLnwPkJLCtCUi+kObtQ13r7sbxyw6Bl8WfOnvcJASkeLV8Q0GAwYPHoyEhIQevb+1VcJTT/Xsva5s2WLAo4/akJ+fD6vVKjwOEfU9o0eL9bNaJfz8c4eywZBPFBfb8PHHYgdMAMDs2WZERrLgPhEFvqFxQ122f7T3Ix9HQkQEhIWFIS6uc04ccChX/NprM/DYY0mwWo8+Z3rffZHYu7fdGyGSDz32WBMKC7XC/ZOTrbj/fqOCERER9Q2R2shObQ6nA02WJt8HQ0TUx0mShIEDB0KSus/7WLs2Atdem462tq7nlRcsiMZ77zUpGGHgqKgQP6SDeTVExE8BIgpKDocTa9aIbf4JDZVx/vksgEG9x0MPPYTNmzcL9x9z9hiYbCYFI/LMjWtuxDeF3/g1hvLyckydOhUdHWKJbU8//TTUaiZGUdd0Oh2Sk5OxdasBM2cOxC+/iJ0E1NqqxsyZGrS0iE8cUN+3e7fYZq24OBtSU3lPRETekdsv12X7in0rfBsIERH53HnnReGRR5qE+oaFyXjyyRJcd10tVCqgoaEBDQ199+Sov/rmG/FiTGefzXt76pmDB6245542DBhgw8SJOrz3ngEmU2DNc51wghkvvWRCZaUTH3xgwOTJOqjVgVOsjIiIqK8pKxMvMJuSElj3EUTkH06nE8t2L0Pui7l47PvHYJPFD7RRUorRu0XBDouLi0Nubi7Cw8OP+r6XXopHfX3nk7N7ymh04O9/r4LZbMb+/ftRUVEBWfasMDsR9Q0nnCD+2bJlCw8b6I2eeqoDdrvYFgKNRsYdd4gXLyAi8qXTMk5z2b6hZINvAyEi+k1CQgJCQ4/cx7R2bQSmT8/G5s1Hnxc4rK1NjSuucMJm4zN9b9XSYsWzz0Z4NMb995sQHq5RKCIior4j0Zjosv27ou98HAkRUXDQaDTIysqCStV1fubbb8diwYI02GxHn5N2OFS48koj1q1rVjpMv/MkryY1lff9RMGORcGIKCht2NCB2lqxZJaTT7bwlDPqNd5//33861//Eu4/YsQIVBurFYzIc3bZjouWXYSDDQf9cv3m5macffbZKC0tFep//vnnY8KECQpHRX1RTEwMSksj0dDg2YP7/v1huPxyExwOLv6Sa3v3it0TDRrEE3+JyHtO7n+yy/aNJRt9HAkREfnDHXfE4KqrmtzqEx9vw5IlBZg8ueWI9oqKCphMgVPs3Js2bRLbiJWSYsWQIWLFqCk4tLbKeOUVE046yYxBg0Lw6KPhKC4WO3TDW9LSrLjrrjbs22fFDz/ocP31Bs7jExER+UhFhdj6gyQ5kZzM5EWiYLe3di8mvjURMz6cgbKWMn+HcwRfFQUDALVajYyMDAwYMAAaTefPxn37tHjvvViPrnHjjdWIjf0j4byhoQF5eXlobu57ifVE5J4BA0IQHS122NxPPykcDHldS4sDb7yhE+5//vlmpKeLF5IjIvKlGUNnuGzfX7/fx5EQEf0hMzMTANDSIuHuu1Nx55390drq3rrm1q0GPPBAkxeiI1+oqSnBokVFGD1aLJdlxIh2XH11pMJRERH1DQNjBrps31S+yceREBEFD61Wi4yMjE7tsgw89VQCHnssCU5nzw51NZvVmDnTgB072hSO0r9E82rUaicSEpgHSxTsWBSMiILShx+KJbEAwLRpTgUjoUBVXl6Ov//976itrfV3KMI++ugjzJ49G06n+L/Za6+9Ft8VB141/AZzA8577zw0W3ybnFpRUYFTTz0Vv/76q1B/vV6PJ598UuGoqC+7774oTJ3a0v0bu7FyZSQefrjJ84CoT9q/X6xwQG6u+P0UEVF3zs8932V7Xl2ebwMhIiK/eemlCJx2WmuP3puba8a77+Zj6FCLy9eLiopgs9mUDC/gmEwdiIhwICTE/YXj4483eyEi6u1k2YkvvjBj1iwTkpKcuO46A374Qdfj5Axf0OsdmDXLhM8/N6Oo6FCxskGDAqtYGRERUTAQTV6MiXFAowmcewsi8q3WjlYs+HIBhr88HF8VfuXvcFxKifBdUbDD9Ho9Bg8ejISEhN9P1HY6gYcfTobDIf6ZOXiwGTNmNHRql2UZpaWlOHjwIKxWq/D4RNS7SZIKw4eLfQbs2MHNKL3NokUWtLSI/73dcQf/zomo98jplwON1LnobqOlEXaZuW9E5B8hISGIjk7GzJkDsXp1lPA4Tz4ZhQ0bPM8xJ99qbW2FxWLBkCEWvPZaIZ59thj9+7t3SPNjj9mgVnNLMBGRKyMSRrhs/7VabB8gERH1jMFgQGpq6u9/ttlUuOeeVCxZEuf2WA0NGpx3XghKSlznhPdGFRVie/xjYuzMqyEiFgUjouAjy06sXi22MUiSnLjoIrHCGdS72Gw2PPfcc8jKysK//vUvNDU1+Tsktzz++OO46KKLPNrw2r9/f8ydNxcbSzYqGFkP9HDfwN66vbhk+SVwyI7u36yAX3/9FePGjcPOnTuFx1i4cCGysrIUjIr6OrVawttv6zFokOeTGK++akBFRb0CUVFfUlpqQV2d2Amuw4aJbfQiIuqJkQkjIak6T1vVtdf5IRoiIvKHkBAJH36oRXb20Z+HJk5sxpIlBUhI6Dpx3+l0Ij8/H7Lcd+9hW1sbsXhxEX74YS9efbUQV19dg5EjTdBoul9IPuUU38ytUO9w4IAVd9/dhsxMGyZP1uGDDwwwmQJno59K5cSJJ5rx8ssmVFWp8N57BkyapIMkMfGBiIjIXyorxfr168f7UKJg5HQ68cGuDzD4xcF44ocnAnojfrIx2W/XjouLw+DBgxEeHo5VqyLx888Gj8a7774KaDrXQvidxWLB/v37UVFR0afnT4ioa6NGif3s5+WFwmLh50ZvYbc78eKLYjkiADB+vBnHHx+mYERERN6XGJ7osn1dwTofR0JE9IeUlBhMn27yaAy7XcKVV4airS1w51aos/Ly8t9/r1IBEya0YsWKg1iwoBJGY/dz5uec04LJkyO9GSIRUa92QuoJLtvzG/N9HAkRUfCJiopCQkIC2tokXH99Oj77LEp4rNJSLc45x4nGxr5xIHRVlVhRsPh45tUQEYuCEVEQ2rHDiqIisaJgY8ZYkJR0lCw56nNaW1vxj3/8A2lpabj55ptRUFDg75COqqSkBBMnTsRdd90Fp1PsQeGwBx54AAUtBag3+7iI0NsAvgbQ1v1b1xxcgwVfLvBqOLIs46mnnsLYsWNRWloqPM60adNw7bXXKhgZBYuICA0++MDeo4W+rhx/fBvefrsADQ2VMJvNCkZHvd3WreIF5449VjxRlIioO5IkIVYX26lddsr4pfoXP0RERET+EBsbik8+kRET4zqJ9eqra/Dkk6XQ67ufA7Hb7SgsLFQ6xIDR2toKAAgLc2LcOBNuvrkGb71ViO+/34uXXy7CvHm1OOaYdkhS5/9W55yj83W4FGBaWhxYtMiEE080Y9CgUDz2WDhKSsTm0L0lPf1QsbL9+234/nsdrr3WAKORy5xERESBoLparF9CApMXiYJNa0crzn7nbMxaPgsVrRX+DqdbKcYUv15frVYjIyMDF13UD+ec0yI8zrRpjRg5smdrxA0NDcjLy0Nzc7Pw9YiodxozRmyexWaT8PPPVoWjIW959912lJaKz/vddptn+YhERP4wPH64y/ZP8j7xcSREREd6/PFIHHNMu0djHDgQhr//vVWhiMjb6urqYLd3zn8JCXHi8svr8dln+3HZZXVdHv4WGirjySe5n42I6GhOTj/ZZXtVW5WPIyEiCk5xcXHYty8BW7aEezzW7t06TJvWgY6O3n8wSWWl2KG38fG9//87EXmO2fJEFHSWLhWvDDt1KhOTg1VbWxuef/55ZGdnY/LkyXjnnXfQ3u7ZIoySmpqacN9992HIkCFYt87z06tGjhyJK664AhuKNygQnZtMAL4D8DSApQAOAjjKs8vCzQux+OfFXgll8+bNOOWUU3DHHXfAYhEvnJOcnIzFi70TIwWHkSPD8cILYoneV11Vi1deKUJMzKHvsMLCQp7uTL/bsUPs34Ja7cSxx7JwABF5V05sjsv2j/d+7ONIiIjIn3Jz9Xj33XaEhPxx7xoaKuORR0px8801kNxY5TCbzUecutqXWK2uN97p9TJOOqkNt95ajXffLcDGjXvxwgvFmD27Drm5ZmRkdCA7m/f2wcjhcGLtWjNmzDAhKQm44QYDNm0KrH8LBoMDl1xiwpdfmlFQEIJHHgnHwIGBVayMiIiIgKoqsdSj+HgWFCAKNnM+mYPP8z/3dxg9lhLh36Jgh2Vn67B6dQQ+/LAJAwa4l7dgNDpw663ubXaSZRmlpaU4ePBgl/MNRNT3jBsnfijYli3MqewtnnlGLdx30KAOTJsWWPOHREQ9MTFrosv2zWWbfRwJEdGRtFoJb7whQ6fzLKf7tdei8dFHTcoERV4jyzKquzlhIyrKgbvuqsLHHx/Aaad13jcwb14zcnP13gqRiKhPCA8Nh0bqXECxtYNFNImIfOWKK2Lxf//XoMhYmzbp8fHHZb1+L2x1tVhRsIQE5tUQEYuCEVEQWrVK/GSEGTO44SjYybKML774ApdddhkSEhJwySWX4K233kJtba1f4tm9ezduuukmZGRk4OGHH4bJZPJ4TK1Wi7feegsajQYbSvxQFOwwB4A9AN7GoQJhawAUw2WBsOtXX69oAbONGzdiypQpOOGEE/D99997NFZoaCjeeecdxMbGKhQdBavZs6Mxf35jj99vMDjwzDPF+Pvfq6H+U06fLMsoKCjwQoTUG+3eLZbwmZHRAYOBp00RkXed1P8kl+3flXzn40iIiMjfJk+OwMKFzQCAmBg7Fi8uxLnnNguN1djYiPr6eiXD8zuLxQKns2cLv0ajjFNPbcWdd1Zh6dJ8fPppiZejo0Czb58Vd97ZhowMG84+W4dlywxobxffDKg0lcqJ8ePN+O9/TaiqUuHddw0480wdJEksKYKIiIi8r6ZGLPUoMZHJi0TBxOqwYvX+1f4Owy3JxmR/h3CECy+Mwq5dIbj33kbodD0rwHPjjdWIjRUr1mOxWLB//35UVFT0+kR7IupeRoYGsbF2ob4//aRwMOQVX39twfbtYcL9b77Zzjk6IuqVZgyZ4bI9vzHfx5EQEXU2alQ47r+/yaMxcnLMkKRaFvYOcJWVlT3O68jIsOL550vwv/8VYvBgM4BDuTIPPWTwZohERH1GpDayU5vD6UBde50foiEiCk4PPRSDefN6vg/WFYPBgZdeKsawYS0oKipSJjA/qa5mXg0RieMubiIKKgcOWLF7t1hiw9ChFmRniydFUN/T1taG999/H++//z5UKhWOO+44jB8/HscffzzGjRuHjIwMxa9pMpmwdetWfP7551i5ciX27Nmj+DX+9a9/YdiwYQCA74oDpOBCK4Atv/3SARjw26/+APoBNtmG6UunY88NexBniHN7eKfTiV9//RUrVqzAW2+9hYMHDyoStkqlwmuvvYbTTjtNkfGInn46Ejt3tmHjxvCjvi8ry4JnnilBRobrBV6LxYLKykokJSV5I0zqRfbtEyt4mpNjBcD7IiLyrmk50/DY9491at9bu9cP0RARkb/deGM0GhrqMG5cPZKTbR6NVVlZibCwMBgMfSNhsrFRfOE8JqZv/Dego2tuduDtty146y0JW7boAATe4RcZGVZceqkVc+eGIitL5+9wiIiIyA2iRcGSklhQgCiYhEghiAqLQrWp2t+h9EisLhZhmsBbC9Pp1PjPf6Ixd64Zf/+7DZ99FtHle3NyzJgxw/NTuBsaGtDU1ISUlBRERnbeTEVEfYMkqTB8uBXffON+WvmOHYFTcJ669sQT4gUe+/WzY948ztkRUe+UHJGMUHUorI4jcylbra2w2C0Bed9PRMFlwYIofP55K9avN7rVT6VyYs6cOtx4Yw1CQ50oLCxETk6Ol6IkT9jtdqG8juOPN+H99/OxcmUUoqN16NePh9QTEfVEsjEZ9ebOh4auL1qPC4dc6IeIiIiC0yuvRKKqquWo65ld6dfPhkWLijF4sAUA0N7ejpKSEvTv31/pMH2itlY0r0bhQIioV2JRMCIKKkuXWiG64encc8VOwqPg4HQ6sW3bNmzbtu33tpiYGOTk5CAnJweDBg1Camoq4uPjkZCQgH79+kGn00Gr1SIsLAySJMFqtcJqtcJsNqOurg61tbWorKzEwYMHceDAAfz666/49ddf4XCIneLaEzNnzsSdd94JAChuKkZpS6nXriXMDGD3b78AQAsgCaiLq8PsktmYP3k+EhMTkZiYiIiICGi1WoSEhMBiscBkMqGtrQ0VFRXIz89Hfn4+tm/fjo0bN3q0gbYrDz/8MC699FLFx6XgFRIi4YMPQjBmjBUVFa6/z846qwkPPlgBvf7oyXz19fXQ6/VM3A5isizj5JNbERVlx4EDYaipCelx39xc3hcRkfcdn3I8VFDBiSNPt6gx1fgpIiIi8rf/+78Y7N9fB7sCt6NFRUXIzs5GaGjgFUdyV1tbm3Df6OhoBSOhQOJwOPH55xa8/rqM1avDYDYHXgE4o9GB886z4Mor1Tj1VC0kqff/PBIREQUbWXairk4s9Sg5WeFgiCigqVQq3Hfyfbh57c3+DqVHko2B/SE1cKAOq1fr8PHHTbjzzjDk53cuZHDffZXQKJQdKssySktLUVtbi/79+/eJ+RQi6mzkSBnffON+v337QmE2y9DpxDa1kPft2dOBzz8XL+p19dUW6HRHP8CQiCiQpUakoqCxoFP7yn0rMWPoDD9ERET0B7Vawuuva3DccXY0NvbsQT4pyYr//KcMY8a0/95ms9lQUVGBZE68BpzSUvE9OWo1MH16M3Jz+fdKRNRT2THZ+LXm107tm8s2sygYEZEPaTQSli7VY8IEE378sef5qxkZHVi0qAipqUceIN3S0oKqqiokJiYqHapXybITtbVii7aJiTxsj4hYFIyIgsynn4qfSjdjRs8LZRABh05L3bRpEzZt2uTvUHrk1FNPxRtvvAGV6tCDwoaSDX6OqIc6ABQd+rV261qsfWGtf+P5zQ033IC7777b32FQH5ScrMW777Zi0iQNrNY/EirVaiduv70Kl11WD1UPn/dLS0uh0+mYtB2kTCYT5s//o7BOU5MaBw6EYf9+7W//G4aDB8NgNndO3B0xgpNKROR9kiQhRhfT6bQmh9OBvLo8DO432E+RERGRv0iShIEDB2Lfvn1wOp3ddzgKp9OJ/Px85OTkQJJ692a1jo4OoX4qlQo6nfhGMApMe/Z0YPFiG95/X4uKisD7+5UkJ8aPt2D2bBmzZulgMAResTIiIiLqueZmGWaz2Bp8UlLvvg8nIvfddPxNCA8Nx21f3IYmS5O/wzmqlIgUf4fQIxdcEIVzzpHx0EMNePrpSLS3H/pMPu+8Rowa1d5Nb/dZLBbs378fMTExSExM7PVzKkR0pLFjxX6m7XYJP/1kwfjxnQsUUmB44gk7nE6tUF+dTsYtt/Dvloh6t2MTj3VZFGz1/tUsCkZEASEzU4eFCxsxd273h3pNndqIe+6phNHY+fDohoYGREZGcg02gJjNZphMJo/GiI+P5xwMEZEbRiSOwEd5H3Vqd1UojIiIvMtg0GDVKhnjx1uwf3/388zDh7fjhReKER3tcPl6XV0dQkJCEBsbq3SoXtPYKMNqFcurSU7mcwARAfwkIKKgUVlpx9atYskJGRlWjBzJginUd40dOxYrVqyAVvtH8s+G4l5SFCwA3XHHHXjhhRf8HQb1YaeeasTDDzf9/ufYWBv+979CXH55zwuCHVZQUABZ7rwwTH1fW1vbEX+OinJgzBgTLr20Af/8ZwXefbcAmzfvwerV+/HMM8W44YZqTJzYjPT0DoweLZYsSkTkrkGxg1y2f7S382ItEREFB41Gg8zMTEXGcjgcKCjovAGgNzGbzcJ9WSC672hqcuD559swdqwZQ4dqsXBhOCoqAuuQiwEDrPi//2tDfr4d69frcOWVBhgMXKYkIiLq7crLXSdi9kRqKu8FiILR3FFzsXf+Xlw85GJ/h3JUKcbeURQMALRaCf/+dwx++cWKKVNaYDQ6cOutVV69ZkNDA/Ly8tDc3OzV6xCRb40bJz6ftGWL+H0heVdNjR0ffCB+eMCsWe2Ij+cZ5ETUu5018CyX7T9W/OjjSIiIujZnTjQuuqjr5+zISDuefLIEDz9c7rIg2GHFxcXMCw8gpaWlHvVXq9WIi4tTKBoiouBwUtpJLttdFQomIiLvi4sLxWefOZGUZD3q+047rQX/+19hlwXBDqusrERLS4uSIXqVZ3k1YsXEiKhvYYYdEQWNDz/sgCy7WSnlN1OmWCFJYn2JAt2UKVPwzTffICoq6oj2DSUsCuYulUqFJ598Ek888QRU7lZmInLT7bfHYObMJowcacLSpfkYPVrspGe73Y6SkhKFo6PeoCfFAyQJ6N/fijPOaMX119di4cJSrFp1ADk5PAWWiHzjhLQTXLavL1rv40iIiCiQ6PV6pKQosznXYrF4nITpT42NjcJ9w8PDFYyEfM3hcGL1ajMuvNCE5GQVbr45HFu3im/u84aICAcuv9yEb7+14MCBEDz0UDgyMgKrWBkRERF5pqxMPHkxJYWFBYiCVWJ4IpZevBSfzPokYItvBWpcR5OVpcOqVRH44YdGxMV5f/OvLMv49NM6zJ3bhNraoyfxE1Hv0L+/Bv362YX6/vSTwsGQYp55xgKzWWy7gErlxB13cD6PiHq/C4dc6LK9uKnYx5EQER3dyy/rkJra+Rn7xBNb8dFHBzF5cvcb32VZ7tU5EH1JU1MTrFbP5kyUyo0hIgomJ/V3XRSs2lTt40iIiOiwrCwdPvnEiogI12sQF17YgKefLoFO5+zReCUlJR4dquxLnuTVpKYyr4aIWBSMiILIJ5+IF+i56CLeOFHfdN1112HFihXQ6/VHtNeaarG3bq+fouqdtFot3nzzTdx+++3+DoWCyOLF4Xj99WLEx4slZR7W1taG2tpahaKi3kJ0oVmSJEgSHyWJyDfOG3Sey/bdtbt9HAkREQWa6OhoxMbGKjJWc3Nzr30mamtrE+4bHR2tYCTkK3v2dOC229rQv78d556rw0cfGYQ39XmDJDlx2mnteP31dlRWqvDmmwacemoYD90gIiLqoyore5aQ+Vd6vQORkTzRlCjYnZdzHvbM34P5Y+ZDhcB6ZkiJ6L0bLocN64fc3FwYjUavXsfhAB5+OBlLlkRhyBAVnnuuAQ6H94uREZH3SJIKw4eL5RHs2MH8ykBkNst49VXxQ98mTzZjyBCtghEREflHVFgUdJrOB6uY7WY0WZp8HxARURdiY0Px6qsWSNKheVetVsbdd1dg0SL3csVbW1vR3NzsrTCpB2RZRkVFhUdjaLVaREREKBQREVHwCNOEIUTqXOS8zSqeZ0dERJ4bMyYc771nglZ75Hri/PnV+Mc/KqBxc5mhoKDA4yK8vlBRIbZ+Gh7uQHh44OQGE5H/8JOAiIJCU5MDGzaIJTfExdlw8slMbKC+JSYmBsuXL8eiRYugcfG0tLFkox+i6r2GDBmCLVu24LLLLvN3KBRkDAYNsrPTFRmruroaJpNJkbGod7DbxYrJhYTwFFgi8p2T+5/scjMYT2siIiIASEpKgsFgUGSs6upqtLa2KjKWL4kuaKtUKoSFiW8GI99qbHTg2WdNGD3agqFDtXj66XBUVATWs1lWVgceeKANBQV2fPONHnPm6KHXcxmSiIiorysvF0tejIsTPwmViPqWCG0EXjjnBWyctxFD4ob4O5zfJRuT/R2CRyRJQnp6OrKysry2trdsWQz27j1UWKGuLgR//3sMjj/ejO+/733zK0T0h1GjxO7vDhwIRXs7CwMGmsWLzairEy/YtmAB5/eIqO9Ij3KdZ7l8z3IfR0JEdHRnnRWB665rQm6uGUuX5uPSSxsgco5vWVmZcJ4wea6mpgay7NkzUlpamkLREBEFn6iwqE5tslNGRYtnBRuJiMgz55wTiUWLmiFJTqjVTvzzn+W47rpaqATOj3I6nTh48GDAP/eIHrbXrx/zaojoEK7WEVFQ+OQTC6xWsY+8s8+2Qq0OrBNJiTxx7rnn4pdffsH06dO7fM+Gkg0+jKh3u/7667Ft2zaMGDHC36FQkDIYDEhISFBkrKKiooCfCCFl2Gw24b5aLYulEpHvSJLkcmHWLttR2Fjo+4CIiCjgpKenK7a5tbi4uFecGnWYJ4WdeV8f+Ox2Jz791Izp001ITlbhllsM+OmnwCrkFhHhwBVXmPDddxbs3x+KBx8MR3p6YBUrIyIiIu+qFqzbHh/P5EUiOtKJaSfi52t+xoOnPYhQdai/w0GKMcXfIShCp9MhJycHiYmJUIlk03ehoUGN557rvEb9008GnHpqOObMaUJtbe+ZYyGiP4wdK5ZjabersG0bf+4DiSw78fzz4gXBRo2y4PTTA2s+kojIE2OTx7psX3twrY8jISLq3sKFkXj33UIMGNAhPIbT6URxcbGCUVFPORwO1NXVeTSG0WjkQW9ERB5IiXA9x7++eL2PIyEior+aOzca//lPA559tgQXXtjo0ViyLCM/P9/jgrzeVFUl1i8hgXk1RHQIi4IRUVD4+GPxvtOn86MyGGm1WhgMBn+HoagRI0Zg3bp1+PTTT5GScvQEVl8WBVNBhREJIzB/zHy8d+F7AXX679EMGzYMn3/+OV566SXodDp/h0NBLi4uDuHh4R6P43Q6UVBQoEBEFOhaW8VP6O5r349EFPgGxgx02b58L09rJSKiQwUks7KyFNvYevDgwYBeHP6zxkbxxXAlniHJO3btsuKWW9qQlmbHeefp8PHHBlgsgTNHrVY7MWFCO954w4SqKhWWLDHg5JPDIEk8WIOIiCgYVVWJ3QPEx/eOe24i8i2tRosHTn0AO67dgZPSTvJrLF1tGOqt+vXrh9zcXBiNRkXGe+aZRLS2ql2+5nCo8MYbUcjNVeHZZxvgcPAzn6g3GTdOvOD7li08hC6QfPKJGfv3ix8Occst3HBERH3LlEFTXLb/XPWzjyMhIuqeVishKyvN43HMZrPHxanIfWVlZR6P0d1+HyIiOrpBMYNctv9Y/qOPIyEiIlfuvjsWZ5+tzBy0zWYL6P2w4nk1ToUjIaLeKnB2ERAReYnFIuOrr8ROSDAaHTjrLJ6uEIySkpJQW1uLZcuW4eKLL4Zer/d3SMLGjBmDd999Fz///DPOOOOMbt/f2tGK7ZXbfRDZoUm2xrsaseO6HXjhnBcwa9gsJCcm++TaolJTU7F48WLs3LkTkyZN8nc4RL/r378/NBrxEz4Ps1qtiixGUmAzmUzCfZXaLEBE1FPjUse5bP+m8BsfR0JERIFKo9FgwIABiowlyzJWrSpVZCxv8+S+PiYmRsFIyFMNDQ48/bQJxx1nxjHHhOLZZ8NRVSW+AdMbsrM78M9/mlBQYMdXX+kxe7YBOh2XGYmIiIJddbXY/UBiosKBEFGfkhuXi+/mfodFUxYhQhvh8+uHSCHop+/n8+t6myRJSE9PR1ZWFkJCxJ85d+7U4eOPo7t9X/3/s3ff4VFV+RvA37lTMiVl0nsnCWAXEQsoKqLSRKqKva9lxYb6s63rumtjdVl77yig2BDL2gsKUgSpgfRMep9e7v39EQLEDJC5U5O8n+fhSTh3zrlfQSZ37j3nPS1qzJ+fgGOPteOHHzpln4+IQisnR42UFJesvmvXMjQ+kixcKP/vIzvbifPPH7jzJYmIvJlWMs1re00n50oSUWSKiYlBbKz/90Xq6+vhdDoDUBH1h8Ph8GvjZgBITEwMyJoAIqKh7Mj0I722b2rcFNpCiIhov/Ly8qDRaAIylt1uR2VlZUDGCjT582q48RIRdeNsfSIa9D791A6z2fvulAczYYIdUVGcrDJU6XQ6zJo1C0uWLEFzczM+/vhjXHPNNcjO9n/XlWDT6/U499xz8dNPP2H16tU477zzIAj9+7G/qmYVPFLgdvpLMaRgYoH38CyT2YQ4bVyvti+//BKrVq3CX//6V2RlZQWsDn8dcsghWLRoEXbs2IHLLrus33+eRKEiCELAFsG3t7ejvb09IGNRZLLb7bL7BuqGGxFRf00pnuK1/Y+mP0JcCRERRTKdTuf3fQRJAl56KQnTp+fggQdaA1RZcIiiCJdL3uI8hULB6/oI4HZLWL7ciunTLcjIUODmmw1Yt04X7rJ6iYtz49JLzfjxRzu2bdPgvvsMyMmJrLAyIiIiCq/GRrmTF7mjKREdmKAQcM0x12DLtVswffj0kJ47PSYdgmLwzgfQ6XQoKSlBWloaFArf5kR5PMCDD/q20du6dXqMHx+Diy9uR2MjFyETDQSHHy7vvuPvv3PReqT49Vc7fvpJ/r3G665zQaXivFkiGly0Ki1iNH03w3R6nKjtrA1DRUREB5eVlQWlUt5aqH2Vl5cHoBrqj+pq/zahEwQBqampAaqGiGjoGps91mt7RXtFaAshIqL9EgQBw4YNC8hnHgDo6uqCyWQKyFiBJHdeDT8WEFGPwTt7hYhot/fflz+hePr0wNVBA5tOp8OUKVPwzDPPoKqqClu2bMGTTz6JGTNmIDExMdzlAQBiY2MxZ84cLFmyBE1NTVi8eDFOOOEEn8fZ2LDRrzpKEktw+VGX45WzX8GO63eg/pZ6fH7h59Ao+y42NTvNaLX2XWR73HHH4T//+Q+qq6vx22+/4b777sOYMWMC9gGvv/R6PS666CL8+OOP+OOPP3DDDTdAp4usxZlE+9JoNAELLqypqYHD4QjIWBR55IYHhPp9mIgIAE7NP9Vre11XXYgrISKiSGc0GpGUlCSrr9OpwN13Z+KJJ9IgSQrcf388li5tC3CFgWO1WmX31Wq1AayEfPX77w7ccIMZWVluzJihx4cfGuBwRM7jOqVSwoQJVrz+ugV1dQJefjkaJ56ohSBwESARERH11dQk755xWhqvLYiofzJjM7F87nK8N+c9pEWnheacMZkhOU+4JSUlYcSIEYiJ6RuMsD/LliVg61bf50yIogKvv27EYYcpsGOHCaLIna2JItnRR8v7N1paqoHFwn/fkeCxx+RvCBob68G113J+HBENToUJhV7bl25ZGuJKiIj6RxAE5OXl+T2Oy+VCXR3n2gVbV1eXX5s2A0BaWho3ryciCoAxmWO8tjdaGkNcCRERHUhPMJivGxntT2trK5qamgIyVqDInVeTkcF5NUTUjdsyEdGg5nZL+PzzKFl9o6JEnHMOJzeQdyNGjMCIESNw3XXXQZIklJaWYvXq1Vi9ejXWr1+PLVu2oLW1b9hVoCgUCmRnZ+OYY47BuHHjMG7cOBx55JEBCWtRC2qfXjsqYxTGZo/F2JyxOCH7BCQbkr2+tsBYgG0t2/q0v/3H27j+2Ov3e45Ro0Zh1KhR+Nvf/obOzk589913+PHHH/HLL79g7dq1sFgs/a73YARBwJFHHonTTz8dEyZMwNixY7lQlgacuLg4WK1WtLS0+D1WWVkZSkpK+HBxkBFFUfZE+6goeddVRET+UAkqxEXFocPR0avdJbpQ3VGN7LjABGISEdHgkJaWBrvdDrPZ3O8+ra1KzJ+fg/XrDXvaPB4FLr88FgUFFowaZThA7/Boa5MfWObLYl8KjOZmD157zY4331RiwwYtgMj7bFVS4sC8eS5cdpkWmZn6cJdDREREA4DTKaGtjZMXiSg0ZoyYgXf/eBdLtiwJ+rkyY4dGKBjQPUciNzcXNpsNVVVVB9xYqLVViUWLUvw634QJnXA6W7FtWzsyMjJgNBr9Go+IguOYY+TNEfF4FFizxoHx4znXKpwqKlz44AP59/cuucSGmJjoAFZERBQ5jss8DhvqN/Rp/3LXl5h/3PyQ10NE1B86nQ6JiYl+zwtvaWmB0WjkBulBVFtb61d/tVqNhISEAFVDRDS0aVQaaJQaOD3OXu1mZ//nFBIRUWio1WoUFhZi586dARmvoaEBarU6Ip5D2u0i2tvlxfmkp3NeDRF1YygYEQ1q335rR3OzvJvW48bZERPDxU90cAqFAsXFxSguLsYFF1ywp72urg5bt25FeXk5qqqqUFVVhfr6erS0tKClpQXt7e1wOBxwOp1wu91QqVSIiora8ys6OhopKSlITU1Famoq0tLSUFBQgBEjRqCkpAQGQ3AWpJ5/2Pm479v7+oQuAEBcVBxOyD4BY3O6Q8BGZ4yGTt2/f2Pjcsd5DQX7ePvHBwwF21dsbCymTp2KqVOnAugOtikvL8cff/yB7du3o7KyElVVVWhoaEBzczPa2tpgt9vhdDohCAIMBgNiYmIQHR2NmJgYZGVlobi4GCUlJSgpKcHIkSMj4sMekb/S09NhsVj83m3I4/GgoqICBQUFAaqMIoE//19wMgARhUthfCHW1a/r0/7+1vdx43E3hqEiIiKKZDk5OSgtLT3gQtYepaVRuOGGXNTWavoc6+pS4pxzVPjlFwcyMiIrxMlqtcruy3sfoeF2S/joIxtefVXC55/r4HRGXric0ejGzJkOXH65EmPGREEQIuv/cyIiIopsJpMbktT/zYb2lZHBzUiIyDcb6jaEJBAMADJjhk4oWA+dToeSkhK0tLSgvr4ekiT1ec1//pOKzk75000TEty47roGAN1zPWpqatDU1ITc3FxoNH3vyxBR+Bx/vPx/k6tXuzF+fOBqId8tXOiA2y3vOl2tFnHLLbxHSESD19nDz8aza5/t076xcWMYqiEi6r/09HR0dnb2aw7EgVRUVHCz6CBpamqC2+32a4ysrKwAVUNERACQoEtAvbm+V5sECZUdlciNyw1TVURE5I1Wq0Vubi4qKysDMl5NTQ3UanXQ1uD3l8nkASDv81dWlrxN+oho8GEoGBENasuWeWT3nT697wQ3Il+kp6cjPT093GX4LNmQjFWXr8J9394HU5cJecY8nJh9IsbmjMUhKYdAUMj7EHLuoefihXUv9GlfX79edq2CIKCwsBCFhYWyxyAarAoKCrBt2zaIoujXOFarFSZTPTIy0gJUGYWb2Sx/d5Nw3wwjoqHr2KxjvYaCfV3+NUPBiIioj577BTt27DjgZ6Lvv4/GggXZsFj2/+C0ujoK06db8N13Kuh0kfGAVRRF2ZN9FQoFF9oG2fr1Drz0kgtLlkShqSnyNp1QqSSccooNl1wCzJihhVbLz3lEREQkT22tB4C8sIHsbE5XIiLfTFk8JWTnGoqhYD0SExMRHx+P6upqdHV17WnfuFGH999P8Gvsm26qR2xs7/s0DocDO3bsgNFoREZGBhclE0WIrCwV0tJcqK/3/Vrvt9+4c304dXR48Prr8jd7mz7dhpwc3i8kosFrQsEEr+1/DgogIopE+fn52LFjh19jeDwe1NTUICcnJ0BVEQC4XCL+7/+AOXPUSE+XN5dDr9dzjjYRUYBlxmR6vdb/tvxbXHzkxWGoiIiIDiQmJgYZGRkwmUwBGa+8vBxFRUWIigrfRhg1NfLn1WRmRsacdSIKP86iIKJBSxQlfPqpvAVuSqWEWbO44xkNXSOSR2DJ7CX48bIf8eaMN/GX0X/BYamHyQ4EA4DxueO99m+2NsMt+rcrChH1JQgC8vPz/R5nwwYdTjrJiA0b5AdJUWSxWq2y+0ZHRwewEiKi/ps8bLLXdu7WSkRE+6NSqVBQUOD1mCQBr7+eiBtuyD1gIFiPNWsMuPhiMzwe/0KXA8Viscjuq9VqA1gJ9WhqcuPRR8048kg7jj46Ck89FY2mJnkP8oNlxAgHHnjAjMpKD774Qo/zz9dDq+VjQiIiIpKvtlbe9bEgSEhN5eRFIuq/O/93J2q7ar0eOyXvFIzJHBPQ82XEZAR0vIFGEATk5uaisLAQarUaHg/w4IP+/ZkceaQF06a17/d4e3s7tm3bhvb2/b+GiELrsMPkLWTfuJHhr+H01FM2dHbKv9ZesIB/f0Q0uKkEFeK18X3a3aIb25q3haEiIqL+02g0AdmwvrOzE52dnQGoiHosWtSOF19MxtSpRVi0KAUWi+/P4bOzs4NQGRHR0FaSWOK1fY1pTYgrISKi/kpISEBKSkrAxtu5cxdstvCtXTeZ5M2rUakkpKRwXg0RdeNsfyIatNaudaK6Wl4o2LHH2pGaygkORIEkCALSo/s+iJIg4ePtH4ehIqLBT6fTISND3gRtSQIWL07ApZfmY9cuLebMUaGjgwF+g4HD4ZDVT6FQcHduIgqbiYUTvbabugKzCwgREQ1OWq22z8RJl0uB++/PwKOPpkMUFf0ea+nSOPztb+0BrlAefxbIxsTEBK6QIc7lkrBsmRVTpliQmSlgwYJo/P57ZIWuxce7ceWVZqxaZceWLVG4++5oZGTwvjcREREFRl2dJKtfYqIbKlX/r8WJaGir6qjCIz8/4vWYXq3HZ/M+w0+X/YRFZy5CtCYwm9tkxmYGZJyBTqfToaSkBEplBtxu+e/bgiDhrrvqcLDHjKIooqamBqWlpXA6nbLPR0SBcfTR8haqlJZqYDZHxuYKQ43LJeHpp+XNlwWAk06y4ZhjuJEuEQ1+xYnFXtuXbl4a4kqIiHyXmJgInU7n9zjV1dXweDwBqIja2lx4+OHueRgOh4AXXkjB5MlFeO+9ePT3j9hoNEKtjqxNx4iIBoOj04/22r65cXOIKyEiIl+kpKTAaDT6PY7HAzzwQCqmTrXB5QrPcwt/5tUolZxXQ0TduKKbiAatpUvl7VYHANOmcWIKUTCMzhjttX3pFj5MJwqWhIQExMbG+tTHZlPg//4vC//8Zwbc7u6PDKWlWlxwgRUeD39GDnRut7xwN5WKC8eJKHw0Kg1iNH1DTJweJ+rN9WGoiIiIBoq4uLg9u0a1tytx9dW5eO+9BFljPfhgPN58sy2Q5clisVhk901IkPffTnutW+fAtddakJHhwezZeqxYYYDLFTmP21QqCWecYcXbb1thMgl4/vloHHdcZIWVERER0eAgd/JicjIXmxFR/016axJEyfvzyVfOfgUalQZKQYkbxtyAzdduxuSiyX6fMzOGoWD7OvTQBGzapMHf/taK6Gjf38Pnzm3F8OH2fr/e4XBgx44dqKmpgSjy2TRRuIweLe9+lygqsHo1g/3C4e23raitlR8KdsstASyGiCiCjcsZ57X9m4pvQlwJEZE8eXl5UCj8WxwuSRIqKysDVNHQdt99ZjQ19Q70amlR429/y8Ts2cOwapXhgP0VCoXsDcCJiOjAxuaM9dpe0VER2kKIiMhnWVlZMBgOfC19IHa7AjffnIN3303EV1/F4OKLO8OyJpbzaogoECJnlQIRUYB9/LH8nRJmz+YuC0TBcM6Ic7y2r6pZFeJKiIaWrKysfu8gVF2twQUXFOCTT4x9jn3ySSwefLA9sMVRSImiCEmSd0NJq+UiciIKr/z4fK/ty7cuD3ElREQ00KSkpMDjicO8eQVYsyZa9jiSpMDVV8di1aquAFbnG49HxKOPdj+k7ujw7RGPIAgM+5WpocGNRx4x4/DD7Rg1KgrPPGNAc3Nk/VmOHGnHP/9pQVWVB599psd55+mh1fIxIBEREQVPfb28hWepqQx4IaL+eXrN09jctNnrseMyj8OcQ+b0asuJy8HH532Md2a+gxRDiuzzZsYyFOzPNBoB992XgD/+cGH69I5+90tIcOP66xtknbO9vR3btm1De3u7rP5E5J/jj5cfLrV6NRerhJooSnj8caXs/sOHOzBlCueEENHQMGPEDK/tW5q2hLgSIiJ5lEolsrKy/B7no49UWLmy/5/xqa/SUhteeCHuAMe1uOqqfFx/fQ7Kyrx/xkpJSYEg8Lk+EVEwjMoY5bW9ydIU4kqIiEiO3NxcREVF+dyvo0OJK6/Mw9dfx+5pW7zYiNtvbw9gdf3DeTVEFAi8a0BEg9L27U5s2+b7xR4AHHaYHYWF8ie1ENH+/XlSbo+azpoQV0I0tAiCgMLCwoPuDPXddzGYO7cQO3bo9vuaBx6Ix6ef8iHwQNXVJT+8QKfb//8XREShcGzGsV7b/1f2vxBXQkREA9Ghh2biuONsfo9jtSoxe3YUqqrsAajKd2vWWPDyy8mYPz8X48aNwJw5hXjssTR8/300zOYDP/Jh0K9vnE4JS5ZYMWmSFVlZAm6/PRqbNkXWn2FiohtXX23G6tUObN6sxZ13GpCeHllhZURERDR4yZ28mJIib+MKIhpaOu2duOnzm7weUwtqrDh/hddjCoUCcw+di63XbcVlR17m83mNWiP0ar3P/YaK3Fwtli+Pw4oVHSgpOfh9lvnz6xEbK3/SuiiKqKmpQWlpKZxOp+xxiMh3GRkqpKe7ZPVduzbAxdBBffWVHb//Lv/e5V//6oYgyLu+JyIaaMZkjoECfd/zmqxNEEUuuCSigSEuLg4xMTGy+prNAu6+OxM33ZSDK6/UobmZn7fluu02J+z2gy/N/e67WMyYUYR//jMdbW17w3yVSiWSk5ODWSIR0ZCmElSIUvZdX2x1WcNQDRER+apnPawvmyGbTGpceGE+Nmww9Dm2cGECFi5sDWSJB8V5NUQUCAwFI6JBackS+Temp0xxB7ASItqXVqVFvDa+T7tbdGNN7ZowVEQ0dKhUKuTk5Hg95vEATz2Vguuvz0VX14F3DnW7FbjkEj3Ky/1fTE+hZ7FYZPeVO4GAiChQzhx2ptf23xt+D3ElREQ0ECmVAl5/PRajR8u/Ju5RW6vBgw92we0O/X3EL77YuxBPkhTYulWH115LwnXX5WHs2BGYN68ATzyRip9/jobV2vthMq/p++e33xy45hozMjI8mDtXj5Ur9XC7I+dxmkol4qyzrHjnHStMJiWefTYao0fL2yCDiIiIyB+NjfKukdLTOXmRiA5u2jvT4PR4n/vz0ISHkKBPOGD/BF0CXjr7JXx10VcojC/s93kzYjJ8qnOomjQpDhs3RuH++1sRE+Px+pojjrDi7LPbA3I+h8OBHTt2oKamhkENRCF0+OHyQsF+/52h9aH22GPyr7FTUly49FJuEkdEQ4cgCEjW9w1gESURa+uYbElEA0d2djYEwbd7tGvX6jFr1jB8+GH3eo7aWg2uvprzweX4+utOfPhhXL9f7/EosHhxIiZPLsZrryXC6VQgKysriBUSERHQ/azgzyRIKG0pDUM1RETkK0EQMGzYsH599tm+XYsLLihAefn+N9C4/fZ4vP12ewArPDC582rS0jivhoj2ipxVDEREAfTRRwcONDmQOXPUAayEiP7ssJTDvLa/ufHNEFdCNPTExMQgKSmpV1tHhxLXXZeLZ59N6fc4TU1qzJkjwuHghOuBxmaT//A+KoqLzIkovCYXT/baXtNZE+JKiIhooIqKEvDhhyrk5Dj8Gufii5tx7bUN2LVrV8gXov7ww/7vXXo8CmzcqMdLLyXj6qvzcOKJI3DRRfn4739T8NtvesTH9w1qp2719W489JAFhx5qx+jRUXjuuWi0tETW4sVDD7XjoYcsqKkR8emnesydq4dGI28XMSIiIqJAkD95kdcwRHRgH277EN9Vfuf1WFFCEW4+/uZ+j3Vq/qnY9JdNuP3E26FUHHwuUWZMZr/HHuo0GgH33puATZtcmDGjo9cxQZBw110m+Lg2+aDa29uxdetWtLe3B3ZgIvLq6KPl3fvctUuDri7OJwmVzZud+PJL+aFeV13lgFbL5QRENLSMTB7ptX3ZlmUhroSISD5BEJCXl9ev17pcCjzxRCouvTQftbWaXsfefz8OL7/cGoQKBy+PR8SCBfLWrHV1KfHYY+l45ZV0buxGRBQCOXE5Xtv39wyCiIgij0qlQmFhIRSK/c81+fVXAy65JB9NTQfOh/B4FLjiilj8738dB3xdoDQ1yfvckJ4e4EKIaEDjUzwiGnRqa91Yu3b/Sa4Hkp/vxJFHMvCCKJjOKjrLa/u3ld+GthCiISotLQ16vR4AsGWLFnPnFuKnn3x/qPjbbwb85S+dgS6Pgszp9L6j+sEIguDzjmJERIGmVWlhUBv6tDs8DrRYW8JQERERDUTp6VFYvtyFmBiPz31VKgn331+LW2+th1IJuFwuVFVVBaFK79xuEWvW9H9xl9stYP16A55/PgVPP50KlSqyQq7CzemU8M47Vpx5phXZ2QLuvNOAzZvl3VcOlqQkN/7yFwt++82BTZu0uP12A1JT+fdIRERE4SeKEpqb5V2XcPIiER2IW3TjwuUXej0mQMDKeSt9HlOn1uGhCQ/ht6t+wzEZxxzwtZmxDAXzVW6uFu+9F4eVKzsxfHj3BkWzZ7dixAh7UM4nSRJqampQWloq+9knEfXP6NHy5giIogK//urfxgzUf4884oIkyQve1elE3Hij/EAxIqKB6uS8k722/1D1Q4grISLyj16vR2Ji4gFfs3NnFM4/vwAvvZS83+vGW2+NRXm5/E2Hh5pXX+3A2rV95zH2V2ysG3feKb8/ERH1X0lSidf232p/C3ElRETkj6ioqP2GIq9cGYdrrsmF2dy/AC6bTcDcuQZs2GAOYIV9iaIkOxQsI4NrOIloL74jENGgs3SpQ/Ykh8mTOVmMKNguOvwir+2lLaUhroRo6MrLy8Mvv8TioosK+uz45ItXXjHi2WfbAlgZBZvH43vwAQBoNPL/PyEiCqQ8Y57X9g+2fRDSOoiIaGA7+uhovPxyF5RKqd994uLceP75CsyY0fszkNlsRn19faBL9GrVKgs6OuQFL5x4Iu979vj1VzuuvtqM9HQPzjtPj88/18PtjpzHZWq1iMmTLViyxAqTSYmnnzZg1ChuZEFERESRpa1NhMMh7xqKkxeJ6EAueP8CdDm7vB7765i/ojChUPbYR6YdiVWXr8K/J/4berXe62uOyzxO9vhD3ZlnxmLjxig8+GArbrihIejnczgc2LFjBxYvboTbLQb9fERD0fHHy58n8Ouv8uYmkG8aGtxYskR+qNf559uQlCRvURIR0UA2Z+Qcr+3bW7aHuBIiIv+lp6dDrVb3aRdF4M03EzF3biG2bTvwNWNbmwoXX+yBx8PP1wdjsbhx//3e7yv11403diIjg3MAiIhCYVTaKK/tW5q3hLgSIiLyl8FgQHZ2dq+2115LxIIF2T7PAW5tVWHqVA0qK4OzyREAtLSIcLk4r4aI/Md3BCIadD78UF4gGADMni1vUR0R9V9GbAZ0qr4PlmxuG2o7a8NQEdHQIwgCJk9ORVKS2++xbr45Fr/84n1iPkWWlhYnPvssFmVlUXD7+FcfFcWHz0QUGY7JOMZr+5dlX4a4EiIiGuhmzTLi/vv7F3Kcn2/H22+XYfRoi9fjzc3NaG9vD2B13n3xhUt23wkThvbjoLo6Nx580IyRIx047jgtnn8+Gq2tkXUv+PDD7XjkETNqakR88okBs2froVbLv9dNREREFEy1tfJDHjIzGTpARN6tqV2Ddze/6/VYiiEFCycu9PscKkGFm46/CX/85Q+cUXhGr2OHJB+Ccw891+9zDGVqtYD/+78EjBpVEJJNh1atMuD881MwapQd337LZ9ZEgZaWpkJGhrx7kmvX8r5WKDz+uB12u7x7v4Ig4bbb+oZHEBENBSNTRkKp6Ht/os3WBlFkIA4RDTz5+fm9ft/QoMI11+Th4YfT4XT273rxhx+i8dBD7UGobnB56KFOVFfLn1Odk+PAnXfGBbAiIiI6kHG547y2V3ZUhrgSIiIKhLi4OKSmpkIUgUcfTcNjj6XLHqumRoPJkyW0tcmfm33g8eWv283MHNpzvomoN74jENGg0tbmwU8/aWX1TU114cQTGXhBFApFiUVe21///fUQV0I0dKWnR+GttxyIivJvEovNpsR552nQ3OwMUGUULKtW2XDbbTk4++wijBkzEnPmFOKuuzLx2muJ+PnnaDQ3qyBJ3vsaDIbQFktEtB9nFp7ptX193foQV0JERIPBXXcl4IIL2g/4mhNO6MKbb5YhJ+fAn3lqampgs9kCWF1fP/0kb4GWTifilFOG3jW93S7i7betmDjRipwcJe6+Oxpbt0bW/d/kZBeuu86Mdesc+P13LW67LRopKZEVVkZERETkjT+hYFlZvN4hor5EUcS0d6bt9/hH534EQQjcVMf8+HysnLcSX130FW474TYsOnMRfrrsJ8RpuSgzELRaLYqLi5GRkQGFIjjBQC6XAv/6V/dE/40b9Tj11Gicf3476uocQTkf0VB1xBHyFsNs3MhrvmCzWkW8+KK8ubIAcOaZNpSUBD/AkYgoUqVFp/VpkyDh64qvw1ANEZF/NBoNUlNTAQCffRaLGTOGYdWqaJ/H+cc/jFi3zhzo8gaNmho7/vMf/+4d/e1vVuh03DiDiChUjkg9wmt7s7U5IOPb3Xbsat2Fdnt7QMYjIqKDS05ORllZGl5/PcnvsTZv1mHaNAccjsCHxNfWyh+T82qIaF98RyCiQWX5cgdcLr2svmed5YRSyZ3PiELhlLxTsLFhY5/2z3Z+hjvH3RmGioiGppNPjsE//9mKW25J8Gscg8GDzZtNGDeuIKCT8Smw1q/fu0jL6RSwdasOW7fqer0mPt6N4mI7iorsu786UFhoR2xsbKjLJSLyakrJFK/t1Z3VIa6EiIgGi5deikV5uRk//dR3Qux557VgwYI6qPr5JKWsrAwlJSVQ9beDD5xOEWvWyLvvedRRVuj1vk/4HYgkScKvvzrw0ksevPdeFNra5P2ZBZNGI2LiRBsuuUSBadN0UKt5T5qIiIgGHrmTFw0GD2JiuOCJiPq67X+3od5c7/XYrJGzMCZrTMDPqVAocGr+qTg1/9SAj03dEhISYDQaUVNTg87OzoCO/cYbiSgv3xuGI0kKLF5sxMqVbtx5ZytuvtkIlYrPron8dfTRIlau9L1fWZkG7e0eGI289guWF1+0oqVF/n3fBQv4HklEQ9thKYehtqu2T/sH2z7AhIIJYaiIiMg/ycnJePNND267rW/oYX/Z7QIuvljAb7+JiIri9eKfPfdcJ7q6UmT3Hz3agosuYiA9EVEoCYIArUoLu9veq93qskIUxX6tf3J6nChrK0NpSylKW0v3fm0tRXVHNSRIAIBLj7wUT016Cjq17iAjEhGRv6ZPT8Ldd7fiH//wb00sAPz4YzSeesqE+fPTArou1mSSN68mNtYDvZ7PVohoL4aCEdGgsny5/L4zZ/KmNVGozDtsHv7z63/6tG9q3BSGaoiGtptvTsDq1e14912jrP4zZ7bizjvrEBUloaqqCnl5eQGtjwJn8+aDX+u0tanw66/R+PXXvRNH8/IcKC/nR0ciigzRmmjo1XpYXdZe7Ta3DR32DsRpOWmGiIh8o9EIeP99DY47zoHy8igAgFIp4Y476nDuua0+jSVJEnbt2oWioqKAByb/8IMZZrO8sN4TT3QFtJZIZDK58fLLdrz1lhrbtmkP3iEMjjjCjgsv9ODii7VISjKEuxwiIiIiv9TXS7L6JSd7AHDyIhH1Vt5Wjid+ecLrsWhNNN46563QFkQBJQgCcnJyYLfbUVVVBafT6feY9fUqPPtsstdj7e0q3H57At5804onnnDj1FO5+RGRP449Vt61myQpsHq1ExMnchFkMIiihP/+V/5mA6NG2XHyyZF5H5WIKFQmFEzAZ7s+69P+c/XPYaiGiCgwrroqCc88Y0dpqfxrvT/+0OO229qwaFF8ACsb+Lq6ujBnTiNSU21YuDANFRVRPvVXKCQ8+qgIpZLr1oiIQi1Jn4Sazpo+7Vuat+DQlEMBAG7RjYr2Cq/BXxXtFRClgwe7vLLhFRyeejjmHzc/0P8JRETkxQMPJMBkasPLL/v32eXWW+swcWIrKirsKCgoCFB1QF2dvH5JSZxXQ0S98U4CEQ0aVquIr7/27cZqj9hYDyZO5CQHolAZnTkaKqFvwEybvQ1Wp9VLDyIKppdeisZhh/n2b0+jEXH//bX4299MiIrqXvxjNpvR1NQUjBIpALZv18jqV1Tk/8R8IqJAyonL8dr+4fYPQ1wJERENFikpGixf7kJcnBsxMR48/XSFz4FgPVwuFyorKwNcIfDll27ZfU87bXA+CrLbRbzxhgWnn25Fbq4S99wTjW3b5N0fDpaUFBeuv96M3393YsMGLW65xYCkJD6sJyIiooFP7uTFlBRPYAshokHhrLfO2u+CmjemvwGNSt4zLoosWq0WxcXFyMjIgEKh8Gusxx5Lh8124M/XmzbpMWFCDM49tx0mk8Ov8xENZccdJz94avVqXvsFy/LlNuzcKf9e6E03HXwhKxHRYDf7kNle23e17QpxJUREgWMwqPDqqy6o1f5d7z39tBGff94RoKoGh5qaGigUwPjxXXj//Z244w4TYmP7P49j+vROnHxyTBArJCKi/cmJ9T7v/K8r/4rJb09G8X+LoXtQh6L/FmHS25Nw42c34sk1T+LzXZ+jrK2sX4FgPf5X9r9AlU1ERP3w3HNxmDSpU1ZflUrEww9X4+KLWwAAVqsVVVVVAautvl5ev9RUPlshot4G50oQIhqSVqyww2qVt6Bq4kQ7NBr/JpwRkW+yYrO8ti/buizElRCRwaDC0qVAfHz/Hk6mpzvx+utlmDGjrc+xhoYGWCyWQJdIfnK7RZSWypsQOnKk/PABIqJgODrtaK/tX+z6IsSVEBHRYHLEEdF46y0z3nxzF044wb/PNBaLBXVyUxL246ef5C2A1us9GD9+8EwsFUUJP/9sx+WXm5GeLuKiiwz43//0cLsj595uVJSIadMseP99K2prVfjvf6Nx+OFcwE5ERESDS0ODvOuv1FQpwJUQ0UD3xC9PYHvLdq/HxuWMw/QR00NbEAVdQkICRowYgdjYWFn9f/nFgM8/j+vXayVJgXffNeKQQ5R4+OFWuN0MwSHyVUqKCllZ8jYSW7cucu7ZDTYLF8r/s83NdWLuXF0AqyEiGphy4nKgEfo+v+l0dMLutoehIiKiwDjhhBgsWNDu1xgejwJXXqlFe7srMEUNcE1NTfB49i7MV6slzJvXik8/LcWFFzZDpTrw/QadTsQjj3DOABFRKIiSiOqOanxd/jWe++053PrFrajurPb62m8qvsGnpZ+itLUUbjEwa2ZSDakBGYeIiPpHpRKwZIkexx7r27xvg8GDZ5+txKRJvcOQOzs7US83zetP5A6TksLnmUTUmyrcBRARBcry5fInEJ9zDiegEIXaCVknoKK9ok/78q3LcdERF4W+IKIhrqREjxdeaMecOXEQxf3/XDz+eDMefrga8fH7Tx2vqKhASUkJVCp+3IgU27fbYbHoZfU97LAAF0NE5Kczhp2Bt/94u0/72rq1YaiGiIgGk8mTjaipMaO9Xd4it321tLQgKioKCQkJfo/lcIhYu1beIq1jjrEhKira7xrCrbrahVdeceKtt1TYsUMb7nK8OuooOy680IOLLtIiMdEQ7nKIiIiIgqq+Xt4ehAwFI6J9tVpbseDLBV6PaQQNPjrvoxBXRKEiCAJycnJgt9tRVVUFp7N/92JcLgX++c90n8/X3q7CHXck4M03rXj2WRdOPLF/oWJE1O2II1yoqfF9AfuGDeogVEO//GLHqlXyQ72uu84JlYqBBEREAJAZm4ny9vI+7St2rMDMkTPDUBERUWD87W9GfPmlBatXy3turdGIOPfcVtTXd8FoLA5wdQOLKIpobGz0eiwuzoMFC+oxd24rHn88FV995f1+w1VXdWDYsPhglklENKRIkoQ6cx1KW0pR2lq692trKXa27gxryO/k4slhOzcR0VBlMKjwyScixo6192t+cXKyC888U4mSEu8/L5qbm6FWq5GYmOhXXQ0NnFdDRIHBVfpENCi43RI+/zxKVl+tVsS0aZG5kIxoMJs1cpbXMIc1pjVhqIaIAGDmTCNuu60VDz/sfdH6lVc24rrrGqFUHngcSZJQVlaG4uKh/SA4kvz2mwOAvFCwUaM4UZeIIsu0kmle26s6qkJcCRERDUZZWVmw2+2w2/2fHGQymaDVaqHXy7sW7/Htt2bYbLGy+o4dO3B37rXZRCxdasPrryvw7bc6eDyR99kkLc2FOXMcuOIKDQ47jPeYiYiIaOhoapI3eTEtjZMXiWivqYunwiV6/9y68IyFMGqNoS2IQk6r1aK4uBitra2oq6uDJB3458SbbyaivFz+5+9t27Roba3Bjh0NyM3NRVSUvLlmREPNUUdJWLHC937l5Rq0tXkQH3+QSSbkk0ce2f8mfgcTF+fGX/7i3/1qIqLB5Ki0o7yGgn1S+glDwYhoQFOpBLz2mgLHHutBV5dv1+MlJTb86181KCpywO0G6uvrkZaWFqRKI19tbe1B71fk5jrxxBPVWLOmFY8+moatW/eG+KakuHD//THBLpOIaFBqtjZje/N2lLaWYkfLjj0BYDtbd8LisoS7vD4MagPOGnZWuMsgIhqSkpM1+PRTG8aNc6Kubv+bYuTlOfDccxXIyDjw3Oq6ujqo1WrExsqbuw34M69G9imJaJCS925CRBRhvv7ajtZWeTmHJ59sR3Q03w6JQm1qyVQooOjTXmeugyiKYaiIiADgwQeNmDChq1dbdLQHixZV4q9/PXggWA+n04mampogVEhybNwor59OJ+LQQzkhlIgii1FrhFbVd9GP1WWFxRl5D3mJiGjgKSgogLK/H34Oory8HG63268xUlPb8PDD1Zg5sxXZ2Q6f+k6YMLAW3ImihB9/tOPSSy1IS5Nw8cUGfPWVHh5P33tI4RIVJWL6dAs+/NCG6moV/vOfaBx22P4nERARERENRo2N8q4z09Mj57qOiMJr2ZZl+LnmZ6/HRiSNwPXHXh/iiiicEhISMGLECMTFxe33NfX1KjzzTLJf57n44hbk5zvhdDpRWlqK6upqzk8h6ocxY+TfY/z1V2cAK6Hychc+/lj+HI5LL+VcWSKifZ1ReIbX9tU1q0NcCRFR4A0frsc//9nZ79crFBIuvbQJb79dhqKivfMSmpubA7Kp2kDkdDrR0dHR79ePHm3BO+/swj/+UYOUlO6QgTvv7EJcnLy1bkREQ1VNZw3OePMMJD+ajLGvjMWlH16Kf/34Lyzbsgy/N/wekYFgADCleAp0at3BX0hEREFRWKjDhx86ERvrfc72kUda8MYbZQcNBOtRVVUFq9Uqu57GRnmfAzivhoj+jE/2iGhQeO89+bufTZ/O3YiJwkElqJCkT+rTLkoivq38NvQFEREAQKkUsHhxFPLyuh/oDhtmxzvv7MIpp3QdpGdf7e3taG9vD3CFJMeWLfIm6Q4bZodKxY+NRBR5smOzvbZ/suOTEFdCRESDkSAIKCwshELh/4NVSZKwc+dOvxaYajQWTJrUgb/9zYRPPy3Fl19ux4MP1uDss9uQnr7/RXUxMR6MHRst+7yhVFXlwn33mVFS4sS4cVq8+qoBnZ2RFWg2apQdTzxhgckkYflyA6ZN00Gl4sN3IiIiGnrsdhHt7fImL2Zk8PqJiACn24lLPrjE6zFBIeCzCz4LbUEUEQRBQHZ2NoYNGwaNpm/49sKFabDZ5N8rSEtz4qqrGnu1dXR0YOvWrWhtbZU9LtFQcNxx8gPxV69m8F4gPfaYA263vGtqtVrEzTdHBbgiIqKBbebImV7bKzoqQlsIEVGQXHutEZMmHTwYLD3diZdeKsfNNzdAo+m7vqqiomJIhmrL2RxbEICzz27Hxx/vwN13m3D99cbAF0ZENMid9955+GLXF+Euw2ezR84OdwlEREPe6NHRWLzYgqio3p9fTjmlEy+8UAGj0bcsivLycjidvm9+YrOJsudAZ2ZyHScR9cZ3BSIa8ERRwooV8iaeqFQSZs3SBrgiIuqvo9KO8tq+eNPiEFdCRPtKStLgnXecOOecNrz11i7k5srfubWmpgYOh+PgL6Sg2r5d3sTOkpL+pd8TEYXa/q4jP9vJxWJERBQYGo0GeXl5ARnL7XajvLxcdt8/T65NS3Nh2rR2/OMftfj88x349NPtuP/+Wkye3L5nt1kAGD3aCrU6ch8DWa0iXn3VilNPtSI/X4W//z0aO3dG1qK09HQX5s83448/nPjtNy1uvNGAhITICisjIiIiCrXaWu+7qvZHZiavpYgIOPe9c2FxWbweu/X4W5ETlxPiiiiSaLVaFBcXIyMjY09g+6+/GvDZZ0a/xr3ttnro9X0XNkuSBJPJhB07dsBut/t1DqLBKilJiZwcefNG1q0LcDFDWHu7B2+8oZPdf8YMG7Kz1QGsiIho4EvUJ0Kr6ruOwOqyotN+8BAdIqJIJwgKvPhiVK95BH82dWob3ntvJ0aPtu73NW63G7W1tcEoMWJZLBZYrfv/MzkYvV7CjTdquDEzEZGPzE4zfqz6Mdxl+Eyv1uOsorPCXQYREQGYNCkOzzzTAUHofi44Z04LHn+8Clpt3+eEB9OzMbTb7ds8mZoa+fNqMjL4GYKIepO3dScRUQRZvdqB2lp5wV5jxtiRlCR/ogQR+WdK8RR8UdY3vX8g3sAjGmzGjInBU0/VoaXF9xsef1ZWVoaSkhIIAm9KhIPZ7EZlpbwA1UMP9S0Bn4goVE4vPB1Ltizp0/6b6bcwVENERIOVwWBARkYGTCaT32PZbDbU1tYiMzPTp37t7e0HPK5QANnZLmRnt2HGjDZIElBZqcHq1QYUFKgAxMgvOghEUcKPPzrw0ksefPCBFp2d+nCX1IdWK+Kss2y47DIBZ52lhVLJhXJERERE+zKZxIO/aD+yshgKRjTU/VT1E5ZvW+71WHp0Oh4+/eEQV0SRKiEhAUajEbW1tXj66QS/xjr+eDNOP/3AoQ5OpxM7d+5EXFwcMjMz+Wyb6E+OOMKNqirf5x38/jvvrQXKk0/a0NUVLbv/ggVcMkBE5E1uXC62t2zv0/7+1vdxyVGXhL4gIqIAS0+PwlNPtWP2bGOv9rg4N+65x4QzzuhfCGJHRweMRiNiYiJrDkKw1NTU+NVfpVIhKSkpQNUQEQ0dakGNeG082uxt4S7FJ5OLJkOvjrx5cEREQ9Wll8ajrq4V9fUuXHllE3bvQySLKIrYuXMniouL+/38kPNqiCiQOHOBiAa8pUvlJ6aefTaDLojC6YLDL/DaXtZeFuJKiMib9PR0aLXygjf35fF4UFFR4X9BJMvatTaIory7V4cfzo+MRBSZzhl+jtf2io6K0BZCRESDXkJCAuLj4wMyVltbG1paWnzq09XV5dPrFQogL8+JOXPaMH16lE99g6miwoV77jGjqMiFk0/W4vXXDejsjKwH16NH27BokQUmk4T33zdgyhQdlEo/ZgIQERERDVK1tfImLyqVElJSIusakIhCSxRFnPOu93u7APDJ+Z+EsBoaCARBQHZ2Nj78UIk5c9qhUPi+oZVKJeLOO039nuzf0dGBrVu3orW11edzEQ1mRx0l7xqwokKD1lbO0fSXyyXhmWfk3+8dP96Ko4+OnPvFRESR5JiMY7y2r9y5MsSVEBEFz6xZRlx8cfue359wQhfef39nvwPBelRVVUEU5S9uHyhaW1vhcrn8GsPXDeOIiKhblCoKV4+6Otxl+Gz2yNnhLoGIiP7k//4vAfPnW/wKBOvhdrtRVtb/Ne9y59WoVCKSkzmvhoh64wpvIhrwVqyQv5vc7Nmc6EAUTvG6eERr+u5g6PQ4saN5RxgqIqI/KygoCMguyFarFfX19QGoiHy1bp38B9OjR/sfCkdEFAyJ+kREKft+njM7zbC77WGoiIiIBrPMzEzo9YHZya+urg4Wi6Xfr7fZbLLPFRsbK7tvIFitIl5+2YLx460oLFThH/+IRlmZJqw1/VlGhgs332zG5s0OrF6tww03GBAfzwfqRERERAdSV+d7IAsAJCa6GbpKNMTd+NmNaLI2eT12/qHn4+j0o0NcEQ0UWVlavPuuEZ9/3olDDvHtXsnFF7cgP9/pUx9JkmAymbBjxw7Y7XzmQAQAY8bIv2f2yy++/Rukvt580waTSf482Vtu4XU4EdH+TC6a7LV9bd3aEFdCRBRc//1vNEaOtOGOO0x45plKpKS4fR5DkiRUVlYGobrIIYqi3/PdtVotYmJiAlQREdHQc9/4+3BI8iHhLqPfdCodJhVNCncZRETkRV5eHjSawMxbttvt/f48JHdeTXKyB4LA+/lE1BtDwYhoQNuyxYHt2+UFex1xhB15efInShBRYIxIGuG1/fWNr4e4EiLyRhAEFBQUBGSs5uZmdHV1BWQs6r+oKAdGjbIgNta3B/jJyS5kZTEUjIgiV1Zsltf2T0s/DXElREQ0FOTl5UGlUgVkrPfea0Rz88EXwrndbtm77KpUqoAEPPtKFCV8+60dF15oQVqahMsvN+C77/QQxch5SK3TiZg1y4IVK2yoqlJh4cJojBzJzSOIiIiI+qu+Xt7kxZQUT4ArIaKBpLSlFE+tecrrsdioWLx2zmshrogGotNPj8P69VH4179aERd38GefqakuXHVVo+zzOZ1O7Ny5E9XV1bLv0RANFscdJ3/RzK+/8jrQH6Io4Ykn5N/rHT7cgUmTOPeDiGh/zi4522t7TWdNiCshIgqumBgVvv/egXnzWuHPVAKLxYLW1tbAFRZhGhoa/L4HkJOTE6BqiIiGJq1KizdnvAm1MDDW/U4ungyDxhDuMoiIyAtBEDBs2DAolYHZLLirqwsmk+mgrzOZ5IeCERH9GUPBiGhAW7rU990pekydKr8vEQXO6QWne23/cteXIa6EiPZHq9UiIyMjIGNVVVXB7ebP4FAaP74Nr75ajh9/3IYvv9yGp5+uwPz59Zg8uR1FRXaoVN4fXpeUOEJcKRGRb45IPcJr+8rSlSGuhIiIhoKeB8MKhX/hVkuWxOOyy/Iwa5YDLteBJ5K2tbXJPo9er5fdV47ychfuvtuMwkIXTjlFizffNKCrKzAP0QNlzBgbnnzSApNJwtKlBkyapINSGTlhZUREREQDRV2dvGuolBSGqRANZWe9dRYkeJ/8vHjmYqiEwARx0+CnVgu4444EbNniwdy57VAo9j+pfsGCOuj18ibd76ujowNbt24d1IueiQ4mIUGJvLyDb3Tgzfr1nKrujy+/tGPjRvmhXvPnuyEIvA9KRLQ/eo0e0ZroPu0OjwP15vowVEREFDyJiUZER/d9z/OVyWQalHPB3W43Wlpa/BojNjYWGo38UGUiIup2ZNqReOCUB8JdRr/MHjk73CUQEdEBBGr+d4/W1lY0NTUd8DUNDZxXQ0SBwyetRDSgffSR/IVlc+fyRitRJLjwiAu9tm9t3hriSojoQBISEhAbG+v3OJIkYdeuXdxJOYR6/qwVCiAtzY1x48y4/PJmPPRQDd5/fydWr96K994rxUMPVeOyy5owblwXUlNdGD588D2wJ6LB5bSC07y2rzGtCXElREQ0VKhUKuTn58vq63YDDz2UhgceyITHo8B338XgL3/pOGCfrq4uWecCAKPRKLtvf1ksIl580YKTTrKisFCFBx+MRkVFZN1zzcx04pZbzNi61YlfftHhuusMMBojK6yMiIiIaKCRO3kxNdX/UBYiGpge+ekR7Grb5fXYKXmnYFLRpBBXRINBRkYU3nnHiC+/7MKhh1r7HD/uODNOP70zYOeTJAkmkwk7duyA3W4P2LhEA8nhh7tk9fv9dwY/+uOxx+RfR6emunDppaHdQIKIaCAqiC/w2r5089IQV0JEFHw5OTkQBP+Xk5aXlwegmshSU1Pj9xhZWVkBqISIiADg1hNuxdicseEu44B0Kh2fcRARDQBqtRqFhYUBG6+hoQHt7e0HOM55NUQUOAwFI6IBq7rahfXro2T1HTbMgUMPjawFakRD1fCk4dAo+/577HJ2od3eHvqCiGi/srKyoFar/R7H5XIF5MEpHVx/JqSr1RKKix2YPLkDN93UgKefrsT//rcd99xjCUGFRETyzRgxw2t7WVtZiCshIqKhRK/XIyMjw6c+XV0Crr8+F2+9ldSr/aWX4vHoo6377efPAtNA7O7rjShK+OorG+bNsyAtTcKVVxrwww96SFJgdtAKBJ1OxOzZFqxcaUNlpRqPPRaN4cN5L5iIiIgoUBoa5E01Skvj5EWioajZ2oy7vr7L67EoZRQ+Ou+jEFdEg81pp8Vi/XotHnqoFXFx3ZseqVQi7rzThABt+N2L0+nEzp07UVVVxY2waMgZNUpev6oqDZqbPYEtZojYtMmJr77Sye5/1VUOaDSRc++WiChSHZ95vNf2L3Z9EeJKiIiCTxAE5Obm+j2Ow+FAY2NjACqKDHa7HWaz2a8xkpKSAhK4RkRE3ZSCEq9Pfx3RmuDMgwuEs4rOiuj6iIhoL61WG5DPQj1qampgsXhfe9nYyHk1RBQ4vNNARAPW0qVO2YvNpkyRt2sdEQVHnjHPa/vbm94ObSFEdECCIKCwsBCKAMye7uzsREtLSwCqogPp6uqS3Tc21hDASoiIAi8tOm2/4bJOtzMMFRER0VCRkJCAxMTEfr22ulqDCy4owE8/xXg9/n//F48PPmjv0+52u2UvLFWr1QGfaLpzpxN33mlGYaELEybo8PbbBpjNyoCew1/HH2/DU09ZUFcnYckSA848UwelkgveiIiIiAKtqUnedWB6eoALIaIBYdJbk+AW3V6PLTprERfLUECoVAJuvz0BW7Z4MHduOy65pAUFBcF9TtDZ2YmtW7eisXH/ge9Eg82xx8q/5/jLL3x2J8cjj7hkz5HV6z248Ub5gWJEREPJtOHTvLb/3vB7iCshIgoNg8GA+Ph4v8dpbGz0a7OzSFJdXe1Xf0EQkJKSEqBqiIioR358PhaduSjcZezX7JGzw10CERH5ICYmBpmZmQEbr7y8HA6Ho097Y6PceTWc80xEfTEUjIgGrA8/lP8WNmuWKoCVEJG/xuWM89r+0XbuCkwUaVQqFXJycgIyVl1dHWw2W0DGIu+sVqvsvtHRXIRBRJEvIybDa/uXZV+GuBIiIhpq0tPTYTAcOEj3t9/0OP/8ApSVaff7GrdbgUsuicaGDb13nG1tlb+gVK/Xy+67L7NZxPPPWzB2rA3FxWo89FA0Kir6BnKGU3a2EwsWmLF9uxM//6zDtdcaEBcXWWFlRERERIOJKEp+hIJxihLRUPP2prexxrTG67HDUg7DVaOuCnFFNNhlZEThnXeMePhhVUA2ujoYUZQwa5YaM2d2oKpqcCyCJjqQMWPk3xtcvdoTwEqGhro6N5YulR/qNW+eDYmJvFdKRNQfEwsnem2vM9eFuBIiotBJT0+HSuX/uqqKigrZG55Fio6ODq8L+X2RkZER8M3biIio2yVHXoLpw6eHu4w+tCotphRPCXcZRETko/j4+IAG+u7atQsu195NsjweCc3NDAUjosDh3QYiGpBaWz34+ecoWX0zMlw4/nh5fYkoOM479Dyv7evr1oe4EiLqj5iYGCQlJQVkrG++qYXDMbAfBkcyuQ+pFQpFQB72ExEF2+Eph3ttX1G6IsSVEBHRUJSbmwu1Wu312PLlRlx5ZR7a2w9+Xd3RocKMGWo0Njr3tHV1dcmuy2g0yu4rihK+/NKG886zIC1NwtVXG/DTTzpIUuQ8aNbrPZg714LPP7ehokKNhx+ORnFxZIWVEREREQ1Wra0iXC55U40yMzlFiWgosbvtuOKjK7weUyqUWDlvZYgroqEkISEeI0aMQFxcXFDP8/XXMfjhhxi8/34cDj1UjQceaIXLxWffNHjFxyuRn+88+Au9WLcucu4vDhRPPGGHwyHvGloQJNx6K++ZEhH1l0pQwag19ml3i26UtpSGviAiohAQBAH5+fl+j+N2u2EymQJQUfj4W79Go/FrngYRER2YQqHA81OeR4ohcAEugXDWsLMQrYkOdxlERCRDSkpKwK7hly2Lw5Qp1j3PCJubPXC7Oa+GiAKH7wxENCC9955d9kXRWWc5IQicZEIUSU7JOwWCl8uSJmsT3KLbSw8iCre0tDTo9Xq/xli5Mg6zZhXg2ms7AlQV/ZnL5ZLVj4FgRDRQnJJ/itf2X2t+DXElREQ0FAmCgMLCQigUe+81ejzAwoWpuPfeLJ/uX5aXR2HGDCeczu6Hwna7XXZdBoPB5z6lpU7ccYcZ+fkuTJyowzvvGGCxyNupKhgUCgknnGDDs89aUF+vwDvvGDBxoo73eYmIiIhCrLpa/nO7jAxOUSIaSmYtmQWb2+b12J1j70RmbGaIK6KhRhAEZGdno6ioCFFRgd880mZT4JFH0vf8vqtLiXvvTcARRzjw+eedAT8fUaQ44gh5cxB+/9375grkndUq4sUXtbL7T5pk5UYKREQ+Kkoo8tq+dMvSEFdCRBQ6UVFRSEnxP2Clvb0dFoslABWFXmNjIzwej19jZGdnB6gaIiLan2RDMl6a9lK4y+hl9sjZ4S6BiIj8kJWVJWu+dQ9JAp55Jhn33ZeJL76IxUUXdcLjEVFTI//zBefVEJE3fGcgogHpgw/kL/aaOZNvfUSRRhAEpMWk9WmXIGHFjhVhqIiI+iMvLw9Kpe+LxF0u4OGH07BgQTZsNgEvvxyP555rC0KFQ5soipAkSVbfYEyMJyIKhhkjZnht39W2K8SVEBHRUKVSqVBQUAAAsFgEzJ+fg1dfTZY11k8/RePyyzvhdDplX8ur1WoIQv/uf3Z1iXj2WQtOOMGG4mINHn44GlVVkbVQLCfHidtvN2P7dhd++kmHq682ICaG93eJiIiIwsVkEmX3zcriZhREQ8W3Fd9iRan35/xZsVl44NQHQlwRDWVRUVEoKipCVlZWr2B3f730UjJMpr73UbZu1eHMM2Mxc2YHqqrkh74TRapRo+Tdt6yp0aCxkRtD9tfzz9vQ2ir/+nnBgsjZ8IGIaKAYmzPWa/vX5V+HuBIiotBKSUkJyJzhyspKiKL8+8fhIIoimpqa/BrDYDBAp9MFqCIiIjqQKcVTcNXRV4W7DABAlDIKU4qnhLsMIiLyU25urqzPQ2438Pe/Z+Dpp1P3tL3zjhELFnRwXg0RBRxXThDRgGOxiPjmG3m7oBmNbkyYIH8HNSIKntEZo722L9m8JMSVEFF/CYKwZ/F7fzU3q3DFFfl4882kXu033RSLX37pCmR5Q54/u27xATURDRQ5cTlQC313Fu9wdMAtcmEBERGFhk6nQ2ZmFq6+Og/ffhvr11hvvmnEgw/KD00+2K5Voijh889tmDvXgrQ0CX/5iwGrVkXW9b/B4MF551nw5Zc2lJer8dBD0SgqiqywMiIiIqKhqrZW3uTFmBgPDAZOUSIaCkRRxMwlM70eU0CBFedzUzAKD6PRiBEjRiAuLs7vsaqqNHj55aQDvub99+Nw6KFqPPBAK1yugbUomuhARo+WHzb1yy+uAFYyeHk8Ev77377PP/tr9Ggbxo3jHFkiIl/tb1O6zU2bQ1wJEVHo5efn+x2kLYoiqqqqAlRRaDz+eDsefzwFZrP8e9fZ2dkBrIiIiA5m4RkLURhfGO4ycOawMxETFRPuMoiIyE+CIKCwsBAqVf/DuGw2BW66KQfLliX0Ofbvf8fjjTecsmqJjfVAp+O8GiLqi+8MRDTgfPKJHTabvLeviRMdUKsDt+sjEQXO9JLpXttX1awKbSFE5JOoqChkZWX167Xr1+sxZ04h1q3ru0jdZlPivPM0aG6Wd+OD+jKbzbL7RkdHB7ASIqLgSotO89r+Tfk3Ia6EiIiGsvh4I2680QGFQvJ7rAcfTMHPPx843Gv/dcR7bd+xw4nbbzcjL8+FM8/UYckSA6xW+Qv4Ak2hkDB2rA3PPWdBfb0Cb79twIQJOggC7+USERERRZL6enn9kpM9gS2EiCLWNSuuQaut1euxi464CIenHh7iioj2EgQB2dnZKCoqkrXrNwBIEvDQQ+lwuQ4+d62rS4l7703A4Yc78NlnnbLORxRpxozRyL4HumYNrwn74/33bSgrk79Jwk03+X+PmohoKDoh6wQo0Pe5VKOlMQzVEBGFlkqlQmZmpt/jmM1mtLe3+19QCDQ3O/HPf8bipZeSMXlyMZYujYfbxz1I4+PjfQoPICIi/0VrovHGOW9AUIQ3GmH2yNlhPT8REQWOIAgYNmwYBOHgP1va25W48sr8A24gvWyZvM2lU1J8/EBCREMGQ8GIaMB5/335kxZmzOAiMqJINeeQOV7bqzurQ1wJEfnKaDTCaDTu97gkAW+9lYDLLstHU9P+dzOtqIjCeec54PFwp+RAsNlssvvqdLoAVkJEFFyHpRzmtf2THZ+EuBIiIhrqLr00HgsWtPk9jsejwDvvJMrqazDsDRPr6PDg6actOO44G0pKNHjkkWhUV8tfTBYMeXlO3HmnGaWlLvzwgw5XXWVAdDQfXRERERFFKpNJ3rP6lBQGQBANBVsat+DFdS96PWbUGvHytJdDXBGRd1FRUSgqKkJWVhYUCt/mkn37bQx++CHGpz7btulw1lmxmDmzA1VVdp/6EkUao1GJggJ5m72tXcv7fv3x73/Ln+Oal+fEnDmc70FEJIcgCEjSJ/VpFyUR6+rWhaEiIqLQMhqNveYbyNHUpMI114jo6or8xex3321Ba2t3oFdrqwp//3smZs8e1u8N3BQKBdLT04NZIhER7cfx2cfjzrF3hu38UcooTC2ZGrbzExFR4KlUKhQWFh7wuWFtrRoXXliA33/XH3AsSZJ3jz85metpicg7PmElogHF5ZLwxRfydmrU6URMmaINcEVEFCh6jR5GrbFPu1t04zfTb6EviIh8kpWVBY2m7+Jyq1WBO+7IwkMPZcDtPvhNjf/9LwZ33dUehAqHHqdT3kRcQRD6lW5PRBQpxueN99q+qmZVaAshIiIC8OCDRpx9dodfY8yY0YqFC30PSddoNPB4JKxcacPs2Rakpytw3XUG/PprZC0Ci472YN48C776yo5du9T45z+jUVgYWWFlRERERORdY6O8yYupqZy8SDQUTH57MiR4Dw9cMmsJnz9RxDEajRgxYsQBN8Dal92uwMMPy1/w+/77cbj+ehuqqqogivzZSAPX4YfLW+C/caMqwJUMPj//bMcvv8i/n3v99S4oldw4l4hIrhFJI7y2L9uyLMSVEBGFR25uruz7N//7XyxmzBiGd99NwPXXdwW4ssDassWKV16J69O+c6cWV1+dj2uvzcWuXQdet5aWlsZ7XUREYXTvyffi6PSjw3LuM4adgdio2LCcm4iIgicqKgp5eXlej23bpsUFFxSgokJevkV/pKXx2SERece7D0Q0oPzvf3a0t8ubHDJ+vB0GA9/2iCLZoSmHem1/a+NbIa6EiOQoKCjolYheWanBvHmF+PRTo0/jPPpoPN57rz2wxQ1Bbre8ibhqtTrAlRARBdeMETO8tu9s3RniSoiIiAClUsBbbxlw1FFWn/sqFBJuvbUOf/ubCWq190XU+1NdrcZ//5uI3FwXJk3SYdkyA2y2yLkXqlBIOOkkG154wYL6egXefNOAU0/VQhC4QI2IiIhoIKmvl3eNmZrq2/UtEQ08f//u76joqPB6bGLBRJxeeHpoCyLqJ0EQkJWVheLiYkRFHXgi/0svJaO2Vn6wuVYr4oYbGtHZ2YmtW7eipaVF9lhE4TRqlLxru9paDerr5c1jGCoefdQju6/R6MbVV0fWBhFERAPNyXkne23/vvL7EFdCRBQegiAgJyfHpz5ms4C7787ETTfl7Fnr9frr8Vi6tC0YJQbEbbe54XTu/173Dz/EYObMYfjHP9LR2qrsc1ylUiExMTGYJRIR0UFolBq8cc4b0Kq0IT/37JGzQ35OIiIKDYPBgOzs7F5tv/xiwCWX5KO5ObjrLVNSOK+GiLyLnBUhRET98N578pNOp0/nBRFRpDtr2Fle27+p+CbElRCRHCqVak8i+jffxODccwuxc6fvN9lFUYErr4zGtm2+L6Knbi6XS3ZfrTb0D0aIiPxRmFAIldA3PLrd3g5R5G4ZREQUegaDCh9+KCAz09nvPnq9B//9bxUuvrgFin7mZFksApYvN+KSS/IxaVIJnnwy0a+FqcGQn+/E3XebsWuXG999p8MVVxi4cQMRERHRANbUJDcULMCFEFFEqTfX4+/f/d3rMa1Ki+Vzl4e4IiLfaTQaFBUVISsrC4LQ9+dddbUGL7+c5Nc5rrqqCenp3c9xJUlCXV0dtm/fDrvd7te4RKF27LF9F8X316pV/b9nOtTs3OnExx/rZfe/9FI7oqN575WIyB9zRs7x2r6teVuIKyEiCp/o6GgYjcZ+vXbtWj1mzRqGDz+M73Ps+uujUVfnCHB1/vv88058+mnsQV/n8Sjw7ruJmDKlGK++mginc+9EjszMzGCWSERE/TQyeSQenvBwSM+pUWowtXhqSM9JREShFRcXh9Tdk1w++SQOf/lLLiwW+c9F+isjg5ssE5F3fPpHRAOGKEpYuVLeojaVSsLMmQy4IIp0Fx1xkdf2HS07QlwJEcllMBjgcKTjpptyYDbLv+HR1qbC7NmAxcJdYuXo6uqS3ddgMASwEiKi0Eg19F1ZKkHCj1U/hqEaIiIiIDtbi6VLHTAYPAd9bUaGE2+8UYaTTz74dbwoAr/+asD//V8mTjllOO69Nwtr10bWNXxMjAcXXmjGt9/asXOnGg88EI38/ODukEVEREREodHUJO++PycvEg1uk96aBI/k/fPvM5OegV4jP+CEKNSMRiOGDx/eZwH0Qw+lwemUP902N9eBiy9u7tPucrmwc+dOVFVVcaMTGjDGjImCIMjboHXNGv5/vj+PPeaExyPvulmjEXHLLZwfS0Tkr0NTD4VS0ffeR6utlddqRDSkZGRkQKXqu0lnD5dLgSeeSMWll+bvd+OyxkY1LrvMAY8nct4/PR4RCxbs/7/Lm64uJRYuTMe0aUX44otYaLU6xMTEBKlCIiLy1fXHXo8JBRNCdr6JhRMRp40L2fmIiCg8kpOT0d6egrvuyoLbHZo4nrS0kJyGiAYghoIR0YCxapUDJpO8xWPHH29HYmLwk1iJyD9ZsVnQqvpOULK5bTB1msJQERHJMWpUIm69tc3vcf74Q4/LLzcHoKKhx2KxyO4bHR0dwEqIiELjkORDvLZ/uOPDEFdCRES01/HHx+D557sOuEDuiCOsePvtXSgudsDlUsDl8v666moNnnwyBWeeWYwrrsjHxx/Hw2aLnEc8giDh5JOtePllK+rrFXj99WicfLIWgsDwByIiIqLBwmYT0dHh24KpHhkZkXPtSkSB9dqG17C+fr3XY0elHYVLjroktAURBYAgCMjKykJxcTGioqLw7bcx+P77WL/GvOOOOmg0+79H1NnZia1bt6KlpcWv8xCFQmysgIICp6y+69bxutCbtjYP3npLJ7v/zJk2ZGbKu1YnIqLeUgwpfdokSPi28tvQF0NEFCaCICAvL8/rsV27ojBvXgFeeikZknTg+QCffRaLJ59sD3yBMj3/fDs2bpQXXl9bq8EDD2TAaMwOcFVEROQPQSHglbNfgVFrDMn5Zo+cHZLzEBFR+I0dm4L/+z//18f2V2Ymn58QkXd8dyCiAWPZMrfsvmefHTm7SxDRgRUlFHltf2PjGyGuhIj88eCDRkyY0OX3OO++a8TTT3Pis6/sdrvsvhqN9127iIgi2Um5J3ltX1W9KsSVEBER9Xb++UbcdZf3h8JTprTjpZfKkZjoAQB8/XUMxo4dgb/8JRevvJKEX3/V4eWXEzFzZiEmTSrGc8+loK4usq7XCwsduOceM8rK3Pj2Wz0uvVQPvZ6PnoiIiIgGo9pa+c/rOXmRaHCyOq24ZsU1Xo8pFUp8Ou/TEFdEFFgajQZFRUU48sh4HHmkVfY4p53WgbFjD74ZliRJqKurw/bt2+FwOGSfjygUjjxS3rXhpk3yNoUd7J580gazWf6mtwsWMBCMiChQDks5zGv7h9u4KR0RDS1arRbJycl7fi+KwFtvJWDu3EJs3dr/QNu7747D1q3yP1MHSleXGw884N+myTff3ImkpMias0FEREBWbBaemfxM0M+jFtSYVjIt6OchIqLI8cADCbjsstAEg3GzPSLaH747ENGA8ckn8iaEKBQSZs/mjVeigeKUvFO8tq/cuTLElRCRP5RKAYsXRyEvz7/JyhMmdODooxvQ3t4emMKGCJfLJaufUil/kikRUTjNGDHDa/uOlh0hroSIiKiv++4zYs6c9l5tN9zQgDvuMKGiQoPvvovBO+8k4KWXkmG1KvHjjzH497/TcMUVhXj88XTs2NH/CbWhEBvrwcUXW/D993bs2KHB3/8ejdxcLuYjIiIiGuxqa+VvxJWZyXvPRIPRjCUzYHd736jm3pPvRVp0WogrIgqOsWNjsWaNFgsXtiIhwbcgJK1WxIIF9T71cblcqK6u9qkPUaiNGiWvn8mkRl2d/LDZwcjplPDMM1Gy+596qhVHHim/PxER9XZawWle23+q/inElRARhV9qaio0Gg0aGlS45po8PPRQBhwO35aims1KXHyxBJdL/v3lQHjggS6/NmErKLDj9tuNgSuIiIgC6txDz8V5h54X1HNMLJwIo9YY1HMQEVHkee65OEye3Bn082RlcV4NEXnHUDAiGhD++MOJnTvlTVw48kgHcnK4KI1ooLjg8Au8tm9s2BjiSojIX0lJGixe7IRO5/G5ryBIuPnmevz739WIjhZRU1PD3ZD7SRRFiKK8h+dRUZwoSkQD04jkEVAq+t4Eb7W1yn5P3JfNZcPq2tX4ofIHNFub/R6PiIgGP7tdxLZtTnz2mQ0vvGBDbq4KyckuCIKEtDQnXn45CWPHjsSsWUW4/vpcPPhghk+76YaaIEg45RQrXn3Vgro6BV591YBx47QQBEW4SyMiIiKiEDGZ5N1jUalEJCdz8iLRYPPlri/x+a7PvR7LjcvFvSffG+KKiIJLpRJw880J2LpVxIUXtkMQpH71u/LKJmRkyNvQiSiSHXus/Ou7VaucAaxk4Hv9dSvq6uTPb73lFt6jJSIKpLmHzPXaXtpaGuJKiIgiQ35+AW6+OQerVkXLHmPNGgPuvbc9cEX5qLLSjqeeivVrjAcesEOj4TJcIqJI9tSkp5AZkxm08WePnB20sYmIKHKpVALefVePMWMsQTyHiMREzqshIu9U4S6AiKg/3n3XCUDergxTp3JnOaKBZHTmaCgVSnik3iFCbfY22N12aFXaMFVGRHIcd1wMHn+8DddcE9/vPgkJbjzySHWfmyVlZWUoKSmBIPCh6oHY7d53ZO8PnS5yQwiIiA4m2ZCMenN9rzYJElbXrsZx2cf1exyz04zf63/H2rq1WFe3Duvq1mFL05Y916dGrRFvnPMGphRPCWj9REQ0cIiihIYGD8rK3KioEFFRIaK6GqipUaCmRgmTSYnmZhUkyfv9zPp6+bvPhlpRkQPz5rlx6aUa5OTow10OEREREYWRydS/8JM/S0ryQKnkJl5Eg4koipizbI7XYwoo8On5n4a4IqLQSUnR4PXXNbjyyi7ceKMS69fv/35JTo4Dl1zCjUZocDr2WA0EQYIo+h5ItXq1iBkzglDUACSKEp54Qv5Cn5Ej7TjzTM6lIyIKpFxjLtSCGi6xd7Brp6MTTrcTGtXAec5HRBQIarUKjz5qwaRJEjwe+YG0jz1mxKRJnRg3zr9wLjluv90Oq1X+dfMJJ5gxd27o6yYiIt/E6+Lx6vRXcfobpwd8bLWgxrSSaQEfl4iIAsvlkmCxiLBY9v3a/ctqlWC1Yvf3gM0GWK0SLBbAZlPs/v3e77u/dv+y2xWwWuU/FzmY5GQPBIHzaojIO4aCEdGA8PHH8t+u5s7lhRDRQJMdm42Kjoo+7cs2L8MFR1wQ+oKIyC9XXx2P1avb8PLLBw8GO+wwK/7972qkpfXdLdnj8aCiogIFBQXBKHPQMJvNsvsaDIYAVkJEFFojk0b2CQUDgA+3f7jfULBORyfW163Hurp1e0LAtjVvg4T9L3Jtt7fjqo+vwq6/7oJOzTBFIqLByGwWUV7uRkWFBxUVIiorJVRXK1BTI8BkUqKuTgWHQ4XB+oglLs6NGTPsuOwyFU44IQqCEBXukoiIiIgoAtTVyQsFS0nxAOAze6LB5PKPLke7vd3rsSuOvgIjU0aGtiCiMBg3LgZr1oh48slW/P3vsWht7Xuf6I476qDRyPv5SRTpoqMFDBvmwI4dvt87XLeOG8H1+PxzOzZvlv+8cf58DwQh8AuQiIiGuoyYDFR2VPZpX7lzJc4efnYYKiIiCq+JE+Nw3XVtWLSo/xtE/5nbLeCyyzRYv96N6OjQzbVoaOjA2rXyA8EEQcKjj0pQKvk5hohoIJhQMAE3jrkR//n1PwEfN14n/+cgEdFQJkmA09kd0mU2i71Cuv4c2NX9qzuoy27v+f2+IV3oFdS193sBdrsCLpcAQP5GHOGSkMB5NUS0f4NzxQoRDSoVFS78/ru8m7DFxQ6MHMlFa0QDzXFZx3kNBXt/2/sMBSMaoJ5+Og4bN1rw22/7D52aM6cFt99ef8CJ0VarFfX19UhLSwtGmYOC1WqV3Tc6OjqAlRARhda43HH4uuLrPu0/Vv8IAGiztWFd3bruX/XrsNa0FqWtpbLOVWeuQ4utBVnqLL9qJiKi0PN4JNTUuFFevm/gl4TqagG1tQJMJhXa2lQAhtYu30qlhPHjbbjoIgmzZ+ug0/GzARERERH1Vl8vL2wgJUUMcCVEFE4bGzbitd9f83osQZeAZyc/G+KKiMJHqRRw440JOO88J267rR1vvhm3Z3fwU0/txLhx8jdzIhoIjjjCLSsUbNMmLmzpsXCh/ODAtDQXLr5YH8BqiIiox1FpR3kNBft4x8cMBSOiIeuRR+LwzTdWbNok/xp0504tbr21Dc8+G5pQFVEU0dJSiyVLRCxbloCnn05Be7tvS2lnz+7ACScYg1MgEREFxb9O+xe+2PUFtjZvDdiYs0fODthYRESRQhQl2O3doVxmswirtecregV19Xxvsyn2BHbtDejqCe1SwG7fG9hlsyngcAh7Ars8HgW6w7oGXmBXKCQkcJMhIto/hoIRUcRbutQBuQmnkye7ADAUjGigmTVyFt7Z/E6f9jW1a8JQDREFQlSUgKVLlRgzxoXGRvWfjom4+24Tpk9v79dYzc3NMBgMiImJCUKlA9+6dYDBoEZGhgsKH9ZoKRQKCAJ3siKigWvGiBm4/7v7+7SvqV2Dgv8UoLy9PGDnUgkqGLXGgI1HRESB09bmQVmZGxUVHlRWSqiqklBVpUBtrYDaWiUaGlRwu9XgjkrdiosduOACFy69NApZWVxARkRERET719AgLxQsNZWTF4kGkylvT4EE7/+u35vzHp810ZCUkqLBa69pcMUVnZg/X4XNm7VYsKAu3GURBd0xx0hYutT3fvX1atTWupGZObSnsG/c6MRXX8m/J3vNNU5oNLzPTUQUDBMLJ+KD7R/0af+15tfQF0NEFCGiogS89pqIE08UYbPJu/9z7LFmzJrViKYmN5KTkwNcYV/Nzc0QRRFqNXDeea2YNKkdL7yQgrfeSoDbffD/Br3eg4cf1ga9TiIiCiydWoc3Z7yJMS+OgVt0+z2eSlAxHJiIQsrjkXaHb4l7Qrp6Qrt6QrosFml3IBd2f6+AzdZ9vDukq3dAl80G2O0C7HbFnqAuu10BSeq5LmZYVzglJHCzPSLav6H9RJWIBoQPP5R/MTl7Nt/miAaiaSXTvLabzCaIosiJxEQDVF6eFq+91ompU1Vwu7sXD2VmOvH441UYMcLu01hVVVUoKSmBSsWf9X92xx1pKC3VwmDwoKjIjqIiB4qL7bu/tyM21vuNIv5ZEtFAVW+ux7q6dVhXt87rcYfHEdBAMAA4Put4RGuiAzomEREdnNMpobLShfJyDyoqRFRVSaiuVqCmRoHaWiVMJhW6uriT1MEYjW7MmGHH5ZercNxxURAEbqpARERERAfX2Cjv+RxDwYgGj3u+vgfVndVej00umozxeeNDWxBRhBk3LharV4v45psmpKW5Qnpup5OLBSj0jj1W/hyDVaucmDVraM9RePhhFwCNrL4Ggwc33MBwAiKiYJl9yGxc++m1fdoDPfeEiGigOeqoaNxzTyv+7/8SfOqn0Yi48cYGXHBBCwQBaGhoQFxcHDQaedfD/SGKIpqamnq1xcWJuPXWesyd24rHH0/Fl1/GHXCM667rRG5ufNBqJCKi4Dk6/WjcP/5+3PX1XX6PNaFgAhJ0vv3sI6LByeXqDuqyWKQ9IV09AV09IV0WS08wF2CzSbBYusO5un+PPWFdVqtin4CuvV/tdgEOhwBAAYBrqIcKnc4JUdRx3TwReTW0n6gSUcRrbvbg11/lTV7IyHBhzBguaCMaiNRKNZL1yWiy9n4QI0oivq/6npOJiQawM8+MxT33tOK++xJw4oldePjhGsTFeXweR5Ik7Nq1C0VFRbzhsQ+7XUR5efdDcotFiQ0bDNiwwdDrNWlpThQX21Fc7EBRkR3FxXbk5joQE8MJo0QU2SRJgqnLhLV1a7Gubt2er6YuU8hrmVg4MeTnJCIa7ERRQlOTB2Vl7j2BX92hXwJqagSYTEo0NakgisGbFDqYqVQSxo+34eKLJcyapYNWy3BLIiIiIvJNU5O88N2MDEWAKyEKv4aGBmzZsgVbt27Fli1bYDKZ0NnZia6uLnR1dcHlciEmJgaxsbGIiYlBQkICSkpKMHLkSIwcORKFhYVQKgdWoHVNZw3+9eO/vB7TqXRYNmdZiCsiikxKpYAJE1LhdMajqqoKdrtvm2PJNXu2C//9bzumTTOG5HxEADB6tAZKpQSPx/frvTVrRMyaFYSiBgiTyY1ly3Sy+19wgQ0JCbzHS0QULEn6JGhVWtjdva/lLC4LzE4zN5EjoiFtwQIjvviiC99+G9Ov1xcX2/DQQzUoKnL0ai8vL0dJSUkwSgQA1NTUQJK8b1iRne3Ev/9djbVrW/Doo2nYvFnf5zXp6U7cc0///huJiCgyLThxAVaUrsDP1T/7Nc7skbMDVBERBYMkdW84bLGIMJvF3WFd6BXYZbXuDerqbgfs9p7fK/YEde39ujeoq/t7ATabAm63AG5aTMGg17tQU1OD7OxsKBScY0NEvTEUjIgi2rJldrjdhoO/0IvJkx0QBHWAKyKiUDki7Qj8r+x/fdoXb1rMUDCiAe6uu4yIi6vF+PFt8Ge9g8vVfcMjJycncMUNcOvWWeB2H/ghdH29BvX1Gnz//d42tVrE++93IDc3yAUSEfWTJEmo6qjaE/zVEwLWaGkMd2kAgDMKzwh3CUREA47VKqKiwoXycnGf0C8FamsF1NYqUVengs2mAh9bBNbw4Q7Mm+fCZZdpkZHRdyIrEREREVF/dIf4yruhn57OCYs08Nntdnz77bdYsWIFPv30U5SVlfk1XkxMDCZMmIBJkyZh0qRJyMjICFClwTPprUnwSN43+nlh2gvQqrj5DNG+NBoNhg0bho6ODtTW1kIUxaCer6oqCmefbcSUKZ144gk1Cgvlhw0R9ZfBIKCoyIFt23zfuHXduqG9+du//22H0ykvUEaplHDrrdw8g4go2LJjs1HaWtqn/f2t7+OiIy4KQ0VERJFBqRTw6qtqHHWUG21t+5/foVBIuOSSZlx/fSM0mr7hXC6XCyaTKSj3xZxOJzo7Ow/6ulGjrHj77TKsWGHEE0+korFx7/qzu++2ICYmPuC1ERFR6KgEFV6f/jqOePYIWFwWWWMoFUqcXXJ2gCsjGhpEUYLd3h3K1R3UJe0J7No3qKvne5tNsSewa29AV09olwJ2+97ALptNAYdD2BPY1b1xhRIM7KKBSq8X0dnZifr6eqSnp4e7HCKKMFxdQ0QR7YMP5E8QnjmTF/BEA9nU4qleQ8G+r/rey6uJaCBRKgVcd10qtm9v3+8uTP3V2dmJlpYWJCYmBqi6gW39eresfi6XgJEjuViDiMJDkiSUtZXtCf7qCQFrsbWEuzSvEnWJODr96HCXQUQUUTweCSaTG+XlHlRUeHYHfgHV1QJqawWYTCq0tKgA+L44jHwXH+/GzJkOXH65EscdpwX/3ImIiIjIX01NHrjd8qYYZWQM7cAHGti2bduG//znP3jjjTdgschbMOJNV1cXli9fjuXLlwMATj75ZMyfPx/Tpk2DIETev5nn1z6PTY2bvB4bnTEa8w6bF+KK/JeXl4fKyspwlxEU33zzDcaPHx/uMmi3uLg4xMTEoK6uDm1tbUE/3yefxOLrrz24+eZW3H23EVFRkfeeQoPLEUe4ZYWCbdw4dDd7tVhEvPyy/PkZkydbMWyYvI12iYio/47JOMZrKNjK0pUMBSOiIS83V4t//7sNl17qPTQrPd2JBx+swejR1gOO09rairi4OBgMgb2+ra6u7vdrBQGYOrUdEyZ04LXXkvDyy8koLrbj6qvjAloTERGFR2FCIR4/43Fc9clVsvqfVnAaEvVcq0SDi8cj7Q7fEveEdPWEdvWEdFks0u5ALuz+XgGbrft4d0hX74Aumw2w2wXY7Yo9QV12uwKS1POMgmv9iQ5Ep+teX9vS0gK1Wo2kpKQwV0REkYShYEQUscxmEd99J2/yQ0KCG6edxmALooFs3mHzcONnN/ZpL28rD0M1RBRoKpUKOTk5AZlsX1dXB71eD52Oux1v3CivX3y8G7m5DAogotD7ufpnXPfpddhQvyHcpfTbhIIJUAp8MEVEQ0tHhwfl5d2hX5WVEqqqJFRXK1BbK6C2Vom6OhVcLjWAobuQK9xUKgknndSFs89uw9y5sUhN5Y61RERERBQ4tbUeyJ1ilJnJMBIaeH7++Wc88MAD+Pzzz/3e4KY/vvvuO3z33XcoKCjAzTffjKuvvhoqVWRM6zM7zfjryr96PaYSVPh03qchroho4BEEAZmZmUhOTkZVVRXsdntQz2e1KvGPfyTgnXfsePRRO6ZPNwb1fDS0jRol4d13fe/X2KhGVZULOTlD757yc8/Z0NYmP/Tgttv4nJKIKBQmDZuExX8s7tO+tm5tGKohIoo8l1wSjxUrOrBsWe/wrKlT23DnnXWIiRH7NU5lZSWGDx8esKD8rq4u2Gw2n/vpdBKuuaYJM2a0QadLg1KpD0g9REQUflccfQU+2vERPtnxic99Z4+cHYSKiLxzubqDuiwWaU9IV09AV09Il8XSE8wF2GwSLJbucK7u32NPWJfVqtgnoGvvV7tdgMMhAFAA4HN8okgRFbX381N9fT1UKhWMRmP4CiKiiBIZs4eIiLz46CM77HZ5N1InTnRApeJuaEQDWaI+EdGaaJid5l7tDo8Du1p3oTChMEyVEVGgxMTEIDk5GU1NTX6PVV5eHtCHwgPVtm3yJswWFTmgVPLaiYhCq83WhhnvzkCDpSHcpfjkjMIzwl0CEVFAuVwSqqpcKC/3oKJC3BP4VVOjQE2NEiaTCp2dSnCnrsik1YqYP78eZ53VgYQEDwCgudmMmJgo6PWcpEpEREREgVFb278FXN5kZnJqEg0czc3NuP322/HKK6+EJAzsz8rKynD99dfjueeew9NPP42xY8eGvIY/O3vx2XB4HF6P/eOUfyBJz12KifpLo9Fg2LBh6OjoQG1tLURR/s/X/ti5U4tzztFi8uRO/Oc/ahQWcpMtCrwxY+Rf6/3yy9ALBfN4JPz3v/L/m8eMsWHsWP5bJiIKhekjpgMf9G2v6qgKdSlERBHruef0+OUXJ2pqNIiNdePee00444xOn8YQRRHV1dXIzc0NSE21tbV+9c/MVKCkxBiQWoiIKDIoFAq8OPVFHPrMoWi2Nve7n1KhxPTh04NXGA0IkgQ4nd0hXRaLuDusqyecS9rna3cg177fd/9eseer3d4d2NXza29YlwCbTQG3WwDn6RINTWp177kJtbW1UKlUiI6ODlNFRBRJOPOOiCLW8uXyJ1jOmKEIYCVEFC7DE4fjt7rf+rS/9vtr+Pspfw9DRUQUaKmpqbBYLLBarX6NI4oiysrKMGzYsABVNjBt3x4lq9+IEa4AV0JEdHAbGzYOuEAwADi98PRwl0BE1G+iKKG1VUR5uRvl5R5UVoqoqgKqqxWorRVgMqnQ0KCCx6MJd6kkk8Hgwbx5rQAApVIJtVoNtVoNs9kMnU4HhYL3SYmIiIjIfyaTvNCS2FgP9HpOXKaB4Y033sD8+fPR2toa7lKwadMmnHTSSbj00kuxaNEiGAzh2dhlxY4V+Lria6/HCuMLcfvY20NcEdHgEBcXh5iYGNTX14fkPWfFilh8840HN93UinvuMSIqamhvtEWBdcwxGqhUEtxu3+9Drl4tYs6cIBQVwZYts6GiQv5mDjfdFPrQUiKioSpaEw2D2gCLy9Kr3eFxoNHciJTolDBVRkQUORIS1HjxxU488IAD999fi9RUt6xxurq60NHRgbi4OL/qaWlpgdstr4YeWVlZfvUnIqLIlBqdihemvoBz3j2n331OzT+VG6NEMFGUYLf3hHVJu3/tDeyyWCTYbHvDu7rDuXoCuxSwWgG7vSe0qzu4qyekqyeoy27v/urxKNAd1sXn3kQUHC5X72d3kiShqqoK+fn50Om4UQjRUMdQMCKKSC6XhC++0Mrqq9d7MHmyvL5EFFkmFEzwGgr2xa4vGApGNIjk5eVh+/bt8Hg8fo1jt9thMpmQkZERoMoGloYGJxoa5IU5HHpocHehJiLyJl4XH+4SfHZI8iHIiuXEHyKKHHa7iIqK7sCvigoRVVUSqqsVqKlRoLZWCZNJBauVkxEGBwk6nYisLBeGD7chK8uDkhIdcnMVGDZsGNRqNZRK/j0TERERUXCYTPLCB5KT3eDnEYp0brcbt9xyCxYtWhTuUnqRJAkvv/wyfvvtN3zwwQfIz88P6fndohvnv3++12MKKLBy3sqQ1kM02AiCgIyMDCQlJaGqqgp2uz2o57NalXjwwQS8+64dX37Zhby85KCej4YOvV5AUZEDW7f6voHZhg1DL6Du3/+Wv4lDfr4Ts2Zx8Q8RUSgVxBdgU+OmPu3Lti7DtaOvDUNFRESR54wzYlFUVAar1b8wrpqaGhgMBqhU8pa6iqKI+vp6v2rQ6XRhC+cnIqLgmz58Oi478jK8vOHlfr1+1shZQa5ocPJ4ukO4usO6ukO6eoK7ekK6uoO6sOf33SFd3ce7Q7q6v+4N6QJsNgEOR+/ALkkSAAy9e4xENPjY7X2fHYiiiMrKShQUFECj4ebfREMZQ8GIKCJ98YUdnZ3yJjCceqodej1vxBINBhcdcREe+umhPu1bmraEoRoiChZBEFBQUIDS0lK/x2ptbYXBYPB7t6iB6NdfrQDk3eQ56ih+NCSi0Ds89XCcUXgGPt/1ebhL6bczCs8IdwlENISIooT6eg/Ky92oqBBRUSGiuhqorhZQWyvAZFKiuVkFSeKDvsEgMdGF9HQXGhvVaGxU72nPz7djypR2zJzZhsTEvUHKSUlJSEvjPVAiIiIiCo2GBnn9UlK4IQVFtpaWFsyePRvffPNNuEvZr40bN2L06NFYsmQJTj311JCd9+LlF6PT0en12LWjr0VRYlHIaiEazDQaDYYNG4aOjg7U1tZCFIP7s3PECBvM5gZs396K7Oxs6PX6oJ6PhoYjj3TLCgX7/XcNRFGCIMgPyhpIfvzRjtWr5Yd63XCDC0olnwcQEYXSmMwxXkPBvtj1BUPBiIj2kZeXh61bt0KS5G0uAXQH5FdWVqKwsFBW/7q6Or/ODwDZ2dl+9Sciosj3xJlP4JuKb1DeXn7A1ykVSpwz/JwQVRUaLpcEi6U7nMtsFmG1SnsCuvYN7LJasfvX3u+7Q7sAu73n+55wrn2Du7pDuxwOAYACDOsiIuo/u937e6bb7UZFRQUKCgpkBygT0cDHf/1EFJHee89z8Bftx/TpgauDiMJrRPIIqAU1XKKrV3uXswvt9nYYtcbwFEZEARcVFYWsrCzU1NT4PVZ1dTV0Ot2QS0H//Xd5E8QVCgmjR3OyNxGFx6vTX8XRzx2NOnNduEvpl4mFE8NdAhENImaziPJyN8rLPaio8KCqCqiuVqCmpjvwq65OBYdDBd7GH/h0OhEZGS5kZorIzBSRkyMhJ0eBlBQ7DIYWpKa6oNF0T0799tsY3H9/JmbMsGHSpCYUFlq9jsndaYmIiIgolOrr5QU1pKYyFIwiV2trK0455RRs2tR3gXekaWlpwVlnnYWPPvoIZ5wR/I0L1prW4u0/3vZ6LFmfjEVnLgp6DURDTVxcHGJiYlBfX4/W1tagnCM62oObb+5O+nS5XCgrK0NMTAyys7MhCFygRfKNGgUsXux7v+ZmFaqqXMjLUx/8xYPAo4/KnxObkODGVVfJDxQjIiJ5ppZMxYvrX+zTvqF+Q+iLISKKYIIgICcnB5WVlX6NY7PZ0NzcjKSkJJ/6ud1utLW1+XXuuLi4ITfvnIhoKIqJisHr57yOk145CRL2HyY5Pm88kg3JQa9HFCU4nT3BXOLusK6ecC5pn6+AzYZe33f/XrHna09gV8+vnrAuu12AzaaA2y0AUAb9v4mIaKhTq0WoVIBKJUGh6P5ZI0kKeDyAy6WAy6VAd3hit+JiB047LQppaWkQBAGCIEChUOz5ns/wiIiriYgo4oiihJUrfd85Dui+WJoxQxvgiogonPKN+djRuqNP++JNi/GX0X8JQ0VEFCxGoxFmsxnt7e1+j1VWVobi4uIhdeNj82Z5/605OU7Exsq79iIi8ldadBqWzF6C8a+Oh0eSPxE+FKKUUTgp96Rwl0FEA4TbLaGmxo2KCg8qKkRUVkqoqpJQXS2gtlZAXZ0KbW0qAJxQONAJgoSUFDcyMtzIyhKRnS0hJwfIyRGQlyegoECFpCQlBKHvNXd1dSs6OpwAAIVCgZiYGMybZ8TVVyuhVsfAalWivLzc6262ej2DfYmIiIgodBob5d1/Tk3d/2R6onDq7OzEmWeeOSACwXo4nU6cc845WLlyJU4++eSgnmvq4qn7PbZ87vIh9fyNKJQEQUBGRgaSkpJQVlYW8PGvu64RSUnuXm1dXV3YunUrUlJSkJwc/EVuNDiNGSN/MeEvvwyNULDSUidWrJB/T/fSS+0wGKIDWBEREfXHmYVnem03dZlCXAkRUeSLiYlBbGwsOjs7/Rqnvr4esbGxPgV0VVdX+3VOhUKBzMxMv8YgIqKBY2zOWNx+4u146KeH9vuamSNmwWrtDunqDuzqDu3qCeyyWCTYbHvDu7rDuXoCuxSwWgG7vSe0qzu4qyekqyeoy27v/urx9DxzYWAXEVEw6XQitFoRWq0ErVaCTidCp8Pu7yXo9RJ0OkCnw57v9XpAr1dAr5eg1ytgMCh2/x4wGBSIjhag0wHR0cLu7xVQqfY+S29ra0NtbW2vOtxuoK1NhaYmFZqbVSgoiMaZZ/oWjExEQwtDwYgo4vz0kwP19fKCvU480Y74eC6IIxpMTsw50Wso2EfbP2IoGNEglJWVBavVCqfT6dc4brcbVVVVyMvLC0xhA8D27fICJUpKHAAYCkZE4TM2ZywePf1R3PzFzeEu5YBOyj0JOjV34Caibm1tHpSVuVFe7kFlpYTKSgk1NQrU1gqorVWioUENt1sNYPAvZhrsYmM9SE93IyvLg8xMCTk5EnJyFMjLE5Cfr0Rurhpqte9/15IkwWKxQKfTwWg0Ii4uDipV70c2er0emZmZqKmp6dOuVHISEBERERGFTkODvOvP9HTFwV9EFGJ2ux2TJ0/GmjVrwl2Kz2w2G6ZOnYqvvvoKo0ePDso5bv/ydtSZ67wem14yHSfmnBiU8xLRXhqNBjk5OQEds6jIjnPPbfF6TJIkNDQ0oLW1FdnZ2QyjJ5+NGqWBSiXC7fY9NHL1ahHnnhuEoiLMY4854fHIm9MRFSXi5pu5US4RUThoVBrERcWhw9HRq90lulDeVo78+PwwVUZEFJmysrKwfft2eDz+bQ5aXl6OkpKSfr3WZrPBYrH4db7k5GSG4BMRDRAeT3cIV3dYV3dIV09wV09IV3dQF/YJ7er+3mbrCekCzLbboTv8Y9hiNvc9iQRce8o5uNYiAODPByKiYBIECVqtCJ1u36/dIV3dAV17v9frsTu8q3dQ174hXQaDYk9IV8/vDYbusK7ua/7Qvq/Hx8fD7XajoaFhT5tKBSQnu5Gc3L2RT1oaNwQhogNjKBgRRZylS90Hf9F+nH02dxomGmzOPeRcvLLhlT7t6+vXh6EaIgqFgoICbN++HZLk38/1L74AkpLaMWOGMTCFRTC3W0RpqbxgrxEj/Hv4TkQUCPOPm4+fa37Gsi3Lwl3Kfp1ReEa4SyCiEHE6JVRUuHYHfomoqpJQVaXYHfqlRF2dCl1dSnBntoFPpRKRluZGZqYHmZninsCvnBwF8vOVyM9XIT4+OH/XkiQhLy8PWu2BF3MZjUY4HA40NTXtaTMYDAGvh4iIiIjoQJqb5YaCBbgQogD461//ih9//DEgY6Wnp2PKlCk45phjcPTRRyM1NRXx8fGIiopCW1sb2tvbsW3bNvz222/4/vvv8f333/v9/KurqwszZ87Ehg0bkJCQEJD/jh6V7ZV4bNVjXo8Z1Aa8O+vdgJ6PiELnrrtMUB1ktrDL5UJZWRmio6ORnZ3NUHrqN51OQEmJHZs3+x5ctWHD4F9Y2drqwVtvyd94aNYsGzIyeE+YiChcihKK8Fvdb33a3938Lu4Ye0cYKiIiilyCICAvLw+7du3yaxyXy4W6ujqk9+MGc3V1tV/nUiqVSElJ8WsMIiICXC4JFkt3OFdPSJfVKvUK6bJau7/2BHh1twE2mwJWK2C393yvgM2mgN3e/ctmU8BmE+BwKOBwCAAUCEioy+/vAH85rHu4fUkCYEn1f3wiogFMpdob1LU3pEvaJ7QL0Ov3Bnd1B3YBBgOg0/WEdGFPaFdPQFd3u7AntEujUUAQBvfzqKSkJLhcLrS2tno9/ucNpYmI/ozvEkQUcVaskLcjmkIhYfZseWEYRBS5JhRMgAIKSOg9ObrR0gi36IZK4OUM0WCjUqmQl5eH8vJyWf1FEXjxxWQ8+WQKjEYPRo60Yvjwwb2bcV2dDfn5CuzapYXN5tsDjsMPD1JRREQ+UCgUeGnaS9jUsAnbW7aHuxyvJhZODHcJRBQAoiihqcmDsjI3KipEVFZKqKoCamqAmholTCYlGhtVkCR596cosiQkuJGR4UZmpojsbAnZ2UBuLpCXp0R+vhKZmSooleH5uxYE4aCBYD1SUlLgcDjQ2dkJgKFgRERERBRaFouIzk55kzAzMgZ/yAMNLIsXL8YLL7zg9zhnnXUW/vrXv+L000/fb2hOSkoKUlJSUFxcjGnTpgHoXqT42muvYeHChWhvb5d9/urqalx88cX46KOPoFD8ebWKfGe9dRZESfR67NXpr0Kj4v0SooFo6tQ2jBpl7ffrzWYztm3bhpSUFCQnJwexMhpMjjzSg82bfe+3caMGoihBEAL38yzSLFpkg8USLbv/ggXqAFZDRES+OiH7BK+hYF+Xf81QMCIiL3Q6HRITE9HS0uLXOC0tLTAajdDp9h+w297eDqfT6dd5MjMz/epPRBTJRFGC0yntE9Ql7gnl6gnt6g7u6gnn6v6+J7CrO4wLu0O6sE9A176hXQJsNgXcbgEDbpPVxkOBziwgrqZ3uyACaivgGtxrkIhoYIqKEhEVJUGnE/cEdPWEdnWHdEnQarE7pKs7rGtvYJei1/d7g7q6v/YEdRkMAtTqnrkeA+y9PQIpFAqkp6fD7XbvmQe+L4aCEdHB8F2CiCLKxo1OlJXJm0Q4apQdmZnyd1QjosgkCALSotNQZ67r1S5Bwqeln2JaybQwVUZEwWQwGJCamoqGhgaf+nV2Crjrrix8+20sAKCtTYXZs5345Rc3DIbB+/FHre7C4sXN8HiAmhoNSku12LFDi9LSKOzYoUV1tQaS5H0S7ahRnEBKRJEhNioW7815D8e+eCysrv4vTgmFjJgMHJpyaLjLIKJ+sFpFlJe7UV7uQWWliKoqCVVVCtTUCKitVaKuTgW7XQXeGh/4tFoRaWluZGZ6kJXVHfqVm6tAXp6wO/RLtfszwMD/u1YoFMjKykJZWRkcDgf0ek44IiIiIqLQqa11A5D3DD8zk6FgFDl27NiBq666yq8xRowYgUWLFmHChAmy+mdnZ+Puu+/Gtddei7///e9YtGgRJEk6eEcvPvnkEyxcuBC33nqrrP5/9uTqJ7G1eavXYydknYBZI2cF5DxEFFrR0R7cfLNvz9wBQJIkNDQ0oKWlBTk5ObwfRQc1ahTw1lu+92tpUaGy0oX8/ME5b8HplPDcc/I3up0wwYrDD+e/PyKicDpnxDlYtHpRn/Y/Gv8IQzVERANDeno6urq6/A7sqqioQElJCQSh731mURRhMpn8Gj8qKgqxsbF+jUFEJIcoSrsDuMQ9AV1mswibbd/ALuwJ7bJaFbu/dgd1dX/FPgFd2BPS1f21O6jL4RDg8TDU5YC2nQOM+W/f9oSdQMPhoa+HiAYsnU6EVtsd1LU3tAt7gru6A7uw52v3993hXN3hXXtDunpCu6Kjhd2vEXZ/r4BSyff1gahnHnhFRQWs1t5rpdTqwfl8hIgCZ+CvhiGiQWXJEifkTiieNs0T2GKIKGIck3EMPt7xcZ/2pZuXMhSMaBBLTk6GxWKB2Wzu1+t37IjCTTfloKqq94TKP/7Q4/LL2/HOO8YgVBkZbDYbAECpBHJzncjNdWLChL3p8VarArt2aXeHhUXtCQ1zOBQ45BBOICWiyHFIyiF4YeoLmPf+vHCX0svEwolQKAbvDuVEA4XHI8Fk6g78qqjwoLKyJ/BLgdpaASaTCi0tKsi9t0SRQ6GQkJzsRkaGB1lZHmRlScjJUewJ/SooUCElRQlBGDp/14IgIDc3F/X19V4nvBIRERERBUttrSi7b2YmJ6JS5Ljiiiv6/czJm/PPPx/PP/88DAaD37UkJCTgiSeewBlnnIELLrgAra2tssa56667cPbZZ6OoqMivetrt7bjli1u8HlMLanxy/id+jT9YyA1wIwqn665rRFKSW3Z/t9uNsrIyREdHIzs7G0olf7aTd2PGyP9/Y9WqwRsK9uqrVtTXy792uOUWPp8kIgq3k3JOggIKSOj9eaDR0himioiIBoa8vDzs2LHDrzE8Hg9qamqQk5PT51hjYyNEUf69a6A7wJ+IaF8eT3cIl9ks7gnpMpvFXiFde7/HPkFd3es1usO5er7vCekCbDYBdrti96/u7yVJAMA5YGHXsp/nKwmlDAUjGgQEQdod1iXtCezqCenqCezS6yVotd0BXTqdBIMB0OkU0Ov3BnX1hHQZDIo9IV09v4+OFqDVKnbP6+X7Ou2fIAjIyclBeXk5HA7HnnaVinE/RHRgfJcgoojy8cfy35bmzBk6iwCJhprpw6d7DQX7uebnMFRDRKGUk5ODHTt2wO0+8ETlFSvi8Le/ZcJu934D7d13jTjmmFbcemtCMMoMu31vBnmj10s47DAbDjvMtqdNkoDOThVUquHBLo+IyCfnH3Y+VlWvwpNrngx3KXtMLJgY7hKIhoSODg/KyrpDv6qqJFRVSaiuVqCmRkBtrRL19Sq4XGoAg3Nx0FBiMHiQmdkT+iUhO1vaE/iVl6dEbq4KWi3/rv9MrVYjMzMz3GUQERER0RBjMslbWKVWi0hKYnAIRYa3334bP/zwg+z+9957L+6///4AVtTtrLPOwurVqzF+/HjU1NT43N/pdGL+/PlYsWKFX3VMWzwNTo/T67FHTn8E8bp4v8YnovAoKrLj3HNbAjKW2WzGtm3bkJKSguTk5ICMSYPL0UdroFaLcLl8X/S0Zo2I888PQlFhJooS/vMf+dfDhx5qx8SJ2gBWREREcgiCgARdAlpsva+rPJIHv9f/jiPSjghTZUREkU2j0SA9PR11dXV+jdPZ2YnOzk7ExsbuafN4PGhubvZr3OjoaGi1vN4mGihcLgkWS3c4196Qru6Arn0Du6xWwGKRdgdzYXdglwJWK2C393y/N7CrO7RLsSe0y+kUACjAUJchpHU/oWCJpaGtg2iIUanE3eFc4j4hXdI+oV3d6+B0ur1fu4O5AL1e0ev77qCuvYFd0dHCntAujUYBQeCcBYocKpUKubm5KCsrg9vthkKh4EbRRHRQDAUjoohRXu7Cxo3ybqoOH+5ASUlUgCsiokgx95C5uPyjy/u0V3VUhaEaIgolQRBQUFCw392iXC4FHnssDW+/nXjQse66y4hjjunC+PExgS4z7Dwej899FAogOZk3jogoMi08YyHWmNbg19pfw10KFFDg9MLTw10G0YDnckmoqnKhvNyDigoRlZU9gV8K1NYqYTKp0NmpBMCHrwOdUikhNdWNzEw3srLE3aFfQF6egPx8JQoKVIiPF6BQ8F6eHHz4S0REREShJjcULDnZA0Fg0C+Fn9lsxoIFC2T3X7BgQVACwXoUFhbiq6++wsknn4z6+nqf+3/66af45JNPMGXKFFnn/2DrB/ihyntgWnFiMeYfN/+A/WtqarB582Zs374dJpMJdXV1qK+vR2dnJ+x2O+x2O5xOJ1QqFbRaLbRaLfR6PVJTU5Geno60tDQUFBTgkEMOQVFREdRqvm8QyXHIITZs3ty77a67TAjk5uKSJKGhoQEtLS3Izs6GwWAI3OA04Gm1AoYPt2PTJt/nf65fPzjvea5caceWLTrZ/efP90AQFAGsiIiI5BqRNAI/Vv/Yp33ZlmUMBSMiOoDExES0t7fDZrMd/MUHUF1djeHDh0OpVO7+fa3ftWVlZfk9BtFQJ4oSnE5pn6AucU8oV09oV3dwV084V/f3PYFd3WFc2B3ShX0CuvYN7RJgsyngdgvgvEIKipb9hIIl7AxtHUQRIipKhFYr7gnp2vdrdzjX3oAunU6CXt8dzqXVYk8ol8HQE9ql2PNLr1fsDutSwGAQoFb33BPmezsNPRqNBnl5eSgrK4NSqYRCwecARHRgDAUjooixZIkTgLzJfVOnugBwISHRYGXQGGDUGtFub+/V7hbd2FC3AUemHxmWuogoNDQaDbKzs1FdXd2rvbFRhVtvzcb69f2bbOx0Cpg3Lwpr1jiQkTF4rhvcbjckSZLVl7tcEVGk0ig1WDp7KY5+/mg0W/3b1c9fR6cfjSR9UlhrIIp0oiihtVXErl0uVFSIqKoSUVWF3aFfSphMSjQ2quDxaMJdKgWA0ehGRoYbGRkisrNFZGcDubkK5OcrkZenRHa2CiqVGnLv8xERERERUWSpq5PXLznZA34uoEjwr3/9C7W18hYKzpw5Ew8//HCAK+qruLgYH374IcaOHQuXy+Vz//nz5+PMM8+Eysf0H6fbiQs/uNDrMUEh4LN5n/Vqc7vdWL16Nb799lt88803WLNmDTo6Onyud3/UajUOOeQQnHTSSRg/fjxOPvlkJCQkBGx8osHstdeisGZNG+67LxqNjWpMmdKOUaOsQTmX2+1GeXk5oqOjkZ2dvWdRNtERR3iwaZPv/TZu1EAUpUEXgLVwobx5HACQkeHCRRfpA1gNERH546S8k7yGgn1X+Z3fY9vddmyo34CtTVuhU+swtXgqDBqGrxLR4JGXl4dt27bJnucsScC778bDbO7A448noK7OgVNPTcEFFygxY0abrDDsxMREn++jEQ0koijtDuAS9wR0mc0ibLZ9A7uwJ7TLalXs/tod1NX9FfsEdGFPSFf31+6gLodDgMfDUBca4DpyAace0PzpXqqb62wocigU3aFcWq24J6Cr+3vsDunaG9al13cHdWm12BPQpdejV0iXXo89IV3dxwQ8/rgSU6YA48YJUCoH5yYORJFEq9UiJycHTU1N4S6FiAYA3sEgoojx4YfyPyzMns3JxESD3SHJh+Cn6p/6tL+x6Q2GghENAXFxcbBarWhpaQEArF2rx623ZqO52bdrAJNJg7lzzfj6a/U+OwsMbGazWXZfnU7+rrRERMGWHZeNxTMXY+IbEyFB/qR5f51ReEbYzk0UKWw2ERUV3YFfFRUiKiul3YFfAkwmASaTClarEpzcM/BpNCLS093IyPAgK0tEdraEnBzFntCv/HwVYmNV4KMFIiIiIqKho6FBXjhDSooY4EqIfGO32/Hjjz9i4cKFssd47733oFAo8Morr+CSSy4JXHFeHHvssfjXv/6FW2+91ee+u3btwuLFi3Hhhd4DvvZn3vJ5MDu9P2e6ccyNyI/PhyRJ+OGHH7B48WIsXbp0z7O6YHC5XNiwYQM2bNiARYsWQaVS4bTTTsO5556Lc845B3FxcUE7N9FAp1QKuOaaeMyZ48Jdd7VhzpyGoJ/TbDZj69at6OjIwIknMsCPgGOOAd580/d+bW0qlJU5MWzY4NlYZP16B775Rn6o1zXXOKBWc04sEVGkmD1iNv75wz/7tG9t3urTOG7Rjc2Nm7HGtAZratdgjWkNNjVuglt073lNblwuvrvkO+Qac/2um4goEiiVSmRnZ6Oqqsrnvs3NKtxzTyZ+/DEGgiBhwoQOLFsmobzciAceyMTbbyfi1lvrMXZs/+dRC4KA1NRUn2shCgSPpzuEy2wW94R0mc1ir5Cu7u//HNQFWK094Vw93/eEdAE2mwC7XbH7V/f3kiQAGBxrJYiCSlQBm+YBo17o3b6Tc8fp4ARBgk7XHdQVFSX2CujSarsDu/R6aXd4V/fvDYbuQK7uY71Dunq+7w7r6v59dLQArVYBQQje+/pPPwELF3b/SkkBpk0DzjkHOO00ICoqKKckIgDR0dHQaAbPcxEiCh6FJDdqnYgogBoa3MjMVMLj8X1CcXa2ExUV6kG3UxwR9fbg9w/i7m/u7tN+ZNqRWH/1+jBUREThUFq6Ey++aMDChWmyrht6XHddG558Mj6AlYVPTU0N2tvbZfUtKipCFO/SElGE+8f3/8A939wTtvN/d8l3OCn3pLCdnyjYRFFCfb0HZWVulJd7UFkpoaYGqK4WUFsroLZWheZmBkANFklJbmRmupGRISI7W0R2NvYEfhUUqJCWpuQ9NiIiIiIi6mXCBCu++sr3QIMLLrDgjTcMQaiIqK//Z+++o+Oo7reBPzM729Qtq620q+ZecDeGgE0zJYAxxZiSQKiBEEIgdJLfCyF0Qk0gIRgDIVRjegs1YINxw8Zg46qy2qIuWW3blPcPWbJly7Z2tqk8n3N0LO3OvfdrrS3Nztz73EAggA0bNmDNmjVYu3Yt1qxZg40bN0KW5YM37oN4hIIBgKZpOProo/HVV1+F3XbixIn44Ycf+nz8StdKHPbMYb0+l5eShx2/2YEXX3wRf/3rX7F169aw64m2lJQUXHLJJbjuuutQXFwccX/FxcWorKwMqw2nWVI8rV+/HlOnTu3z8evWrcOUKVO6v25paYHL5YKqxjakc8MGK375y1Icf3wrHntMwtix+kOQaOD79ls/Dj/coqvtv//djgsuGDznjued145XXtH390lJUeB0AsOGcSMWIqL+xHCnAarW89xKgAD5/+Rdi7N7UjUV2xq2dQeArfGuwTrvOvhk30HHumTKJXhm/jNRq52IqD+orKxEa2trn4//7LNU3HFHAZqbd89ZyskJoqHBuM/88SOOaMUNN1Rj5MjAQfvNz89HZiaDramnUKgzqKsrsKu9fXc41+7POwO52tu1XcFc2PWY0P2c3y/0COzqDO0SukO7gkGGdBH1S+YW4JSrgLFvAcFkYPmtwLfXJroqioDRqMJi0WCxqLsCujSYzdquxzoDuzq/3v2nydQZgGU2AxYLYDR2fm4ydX0IMJkAo7HzT0kCBAHQNAGyrEFRAFUFFAWQZa378z0/VFWDogi7vu76XIOqCj3aqCogyzjA18Ie7Xse1/tjXW32PVZVsd954oLQ9b1TYTQCmtbZbsSIAJ57rvMeW35+PjIyMuL8ChMREQ0tXM1FRP3C0qUBKIq+SRAnnxyEKDINlWiwu2DyBb2Ggm1tSPwEZCKKn6KiUnzxhS+iQDAAeOKJYTj00CZceOHADwbz+/262zIQjIgGgttm34YVrhX4YNsHcR87xZSCw+y9L4wjGija2lSUl3cGflVUKKisBKqqBLhcIrxeAzweCcGgBF4qHvisVgX5+TIKClTY7SocDg2FhQKKi0UUF4soKTHCauVrTURERERE4amt1bdIxWZjeA7FRigUwg8//IA1a9Z0h4D98MMPCIVCiS4tYoIg4LHHHsP06dPDDvL58ccf8cEHH+Dkk08+6LGqquK0V07bz5PAJcolKC0tRU1NTVg1xFJbWxsef/xxPPHEE/jVr36Fe+65B7m5uYkui6jfSktLw9ixY1FTU4OGhoaYjKEowN1350PTBHz8cRqmTVNx9dVNuP32VCQn8xrkUDRtmhkmk6prkfPatRouuCAGRSWA2y1j6VKr7vYXXODHsGGDJyCNiGiwyE3OhbfN2+MxDRqWO5djdtFsVLVUYbV7dWcImGc11nrWYmdgp66xKnZWRKFiIqL+xeFwYPPmzQe95tXeLuK++2x4661953fX1va+buzrr1OxYkUKFixoxFVX1WL4cKXX44xGIwPBBhBV1RAMdgZydQZ1qejoQHdIV2c4l4b29q6Art3BXZ1fC/D7sSukC91BXZ0hXZ1BXYFA5+eyLAJgMDPRkBVIA974DwANEDRAY4BfrIiitusDuz40CELn54LQGUK1Z+ay0Muysc4NXDrDrDq/7gy8UtXOwCpN6/y8o0NEayt/tkdC03b/ztxTerrcfU6XkpKSiNKIiIiGFN55J6J+4a239Ad7LFjAN2dEQ0FheiEskgV+uWf4TUeoA9Vt1chLyUtQZUQUTyaTiCVLDDj00BBqa40R9XX11WmYNKkNU6YM7IuQwWBQVzuDgedQRDQwiIKIF854AdP/NR0VzRVxHfvYkmNhMjCEmvovWdbgcnUFfqmoqFDhcgFVVSLcbhEej7Rrx0z+Ox7oRFFDbq6M/HwFdrsCu11DYSFQVNQZ+FVaKmH4cANEkaGvREREREQUXbW1+q4l5+VFtrkHEQDIsoyNGzd2B4CtWbMGGzZs0H1vZCCYMmUKLr74YjzzzDNht/3rX//ap1Cw6z++HrXttfs+4QIyPsvAPeX3hD12vCiKgsWLF+P111/H7bffjmuvvRaiyAU6RL0RRRE2mw1ZWVlwOp3w+XxR7X/p0mHYtGl38JHPJ+LBB4dhyZIA7r+/DQsXZkR1POr/TCYB48YF8P33lrDbfvfd4Jm/8NBDfoRC+uahSJKG66+PbC4MERHFxoTsCfuEggHARW9fhPZQe+/vsXQqSC2IWl9ERP2FKIooLi5GWVnZfo/57rsk3HabHW53+POcVFXAa68Nx/vvZ+Dyy+vwy182wGzuuXGF3W4Pu1/al6p2hnG1tano6Ngd2tUVzNXernWHd/l8Gjo6hD0Cu4Tu4K7d4Vy7P/f7Bfj94q7PRahq13W/wfOekYj6MwHQeH8zljrDu/g9HujKy8341a9KcNllbZg4kTElREREscbftkSUcK2tKr76KvyJIACQlSXjmGP0tSWigWdk5kj8WPvjPo+/8P0LuPGIGxNQERElQlGRBc8/34J58yTIsv4Lwq2tBtx3XxD/+Y8MSRq4b43C3Sm+i8nEcBAiGjgyrZl4/ezXccTiIxBQAnEb94TSE+I2FlFvGhsVlJXJqKhQUFmpobJSg8slwOUS4XZLqK2VIMtGAFwgMtClpSnIz5dRUNAZ+OVwaCgqElBUJKKkxICiIiOMRr7WREREREQUX4qioaFB3/Xz/HxO6KbwKIqCTZs2Ye3atd0BYN9//z38fv/BGw8yt956K5599tmw7wH973//Q0VFBYqLi/d7TFljGR5f+XjPB1UAXwP4AmhWm8MtNyFaWlpw/fXX4/3338cLL7yA/Pz8RJdE1G8ZjUaMGDECra2tqKqq0n1/eU9NTQY89lhur89VVJhxzjlmPPNMCx57TMLYsUkRj0cDx+TJCr7/Pvx2GzYYoaoaRHFgn0O2tal49ln981lPPbUDI0YkR7EiIiKK1E7/Tqz1roVB7D2MpLy5POpjHl96fNT7JCLqD5KSkjB8+HA0NDT0eDwUEvDkkzlYvDgr4qCQ9nYDHn00D0uWZOLaa6tx4oktEITOsZOTB/e5tqJo6OjoDOjqCulqb1fR3r47qKsznKszqKsztKszoKszuAvw+zs/3x3S1RkC7vd3fh0IiPD5RAACAAb1ExERDU0CvvsuGS0tia6DiIhoaBi4K9+JaNB46y0fAgF9F1dPPDEAg2FwX5glot2OLjq611CwD7Z9wFAwoiHmpJPS8H//14jbb8/U3cfFF9fhmmtqsGNHHUaNGjUgdxGPZCGMxcJgVSIaWKbnT8ffT/47Ln/38riNeeLIE+M2Fg09waCGiooQyssVVFSouwK/sCvwywCPR0JbmwHc6XDgkyQVNpuM/HwFDocKu11DYaGAoiIBJSUGlJRIyMjga01ERERERP1Pba0CWdYbCjbwrrlTYr3wwgu4+OKLE11GvzBixAjMnz8fb775ZljtNE3Diy++iD/+8Y/7PebnL/4cKvYIBAoAeA3ADn21Jtrnn3+OyZMn4+2338bPfvazRJdD1K+lpqZi7NixqKmp2WcBdrgeeywXLS0HPkf4+OM0TJum4re/bcQdd6QhOZnTlYeCGTOAf/87/HY7d0rYvj2I0aMH9uZm//hHB5qbU3S3v/FG3icgIkokX8iH9dXrsdqzuvPDvRpbGrbEvY7jSo+L+5hERPFis9nQ0tKCUCgEACgrM+OWW+z46SdrVMdxu0248cZC/Oc/HbjlFi/OPNMe1f7DEQppu0K6Ov/cHdKl9Qjs8vnQHdTVGeAF+HxC93N+v9Ad2OX3C91BXV2hXcEgw7qIiIgofhYuHNjXcomIiAYK3mUnooQLcw5jD2eeObB3hiOi8PzikF/g76v/vs/jG2o3JKAaIkq0P/4xA2vX7sQ776SH1S4pScFdd7lx/PGd2xKEQiG4XC4UFhbGosyYam1t1d02JUX/RFQiokS5dOql+KbqGzy7/tmYj1U6rBQjM0fGfBwanFRVQ22tgrIyGZWVnYFfTidQVQW4XAZ4PAbU1UnQNN4QHQyGD5dhs8koKFDhcGgoLNRQVCSgqMiAkhIDCgokGAx8rYmIiIiIaOBxuxXonVpUUMCFR0Th8LR68OZPb8In+3DWuLNw3XXXhR0KBuCAoWAPr3gYWxu37n6gDcCLALz6au4v6uvrMXfuXLz66quYN29eossh6tdEUYTNZkNWVhacTid8Pl/YffzwgxVvvDGsT8f6fCL++tdMLFkSwP33t+GcczLCHo8Gllmz9E9L//bb0IAOBVMUDU8+qb/+ww/34Wc/i24QAhER7V9ICeHH2h+7w79We1bjx9ofoWhKQusanz0e+an5Ca2BiCjWSkpKsHnzVrz8ciYeeSQPgUDsriV//30SqqqGwWTqea6uqhqCwc5Ars6gLhUdHegO6eoM59LQ3t4V0LU7uKvzawF+P3aFdKE7qKszpKszqCsQ6PxclkVwo0AiIiIaTCZN8qOkxJLoMoiIiIYEhoIRUUIFgxo++0zfyX9KioKTT+YbB6Kh5DDHYTAIhn1uujf6GuGX/bBI/JlANJQYDCJeeCEZM2f6sXVr3/7/l5T48eijTpSWBns83tLSgoaGBgwfPjwWpcZMR0eH7rbJyclRrISIKD4EQcATJz+B77zf4fua72M61gmlJ8S0fxrY2ttVVFTIKC9XUFGhwunU4HQKcLtFuN0GeL0S/H4JvPw68Fks6q7ALwV2e1fol4DiYhElJQYUF0tITuZrTUREREREg5PLpX8hbEEB3ycR9dXm+s045vljUN1WDQC49bNbcePPbkThiEI4dzjD6uunn37CunXrMHXq1B6PN3Y04pZPb9n9QAeAZwE0RFh8P+Hz+XDGGWfgjTfewGmnnZbocoj6PaPRiBEjRqC1tRVVVVVQVbVP7RQFuPtuGzQtvI08KyvNOPdcM555phV/+5sBY8Yk6SmbBoApU0wwm1Vdi/pXr9Zw4YUxKCpOXnvNh4oK/f+2r7tOi2I1RES0J1VTsbVha3f412rPaqyvXg+/7E90afuYWzI30SUQEcWcyWRCdXUe7r9/eNjvL8NlNKp46KFU3H+/jFBIgCxj158CNK3rfQsDu4iIiIjCMW+enOgSiIiIhgzOwCOihProIz9aWvTtbnbccX5YLAyzIBpq7Gl2VO6s3OfxpT8txS8O+UUCKiKiREpLk/Daa37Mnq2gtfXAN2WPP34n/vIXN5KTe5/Q7PV6kZSUBKt14Oy8GggEdLUTBAGSxLeDRDQwWY1WLF24FNP/NR07AztjNs6JI0+MWd/UvymKBre7M/CrslJBZWVn4FdVVWfol8cjobFRAjBwd6unToKgISdHhs2mwG5XYLdrKCoSdn2IKC2VkJNjgCjytSYiIiIioqHJ69UXTJCRIcNi4TVoor56eMXD3YFgACCrMu5dfi+G/WIY8G8AFeH198Ybb+wTCnbqy6cipIY6vwgBeBmDJhCsi6IoOO+88/D5559j1qxZiS6HaEBITU3F2LFjUVNTg4aGg/9QeOONYdi4UX/o0aefpuD773fAZDLA4XDwnvUgZDIJGDcugPXrw9/Ycd26gb0Q/+GH9YcZjBgRwJlnDpy5KkREA8Uazxrc9dVd+KLiC7QEWhJdTp/MLWUoGBENDdOnC/jVr+rx3HPZMR0nFBJRUxN+aDERUdRkbwKMHUDNIYBiTnQ1RERRsXAh51UTERHFC++oE1FCLV3at10Ge3PGGVEshIgGjFkFs3oNBXvzpzcZCkY0RE2enIInnmjChRcO6/V5g0HDdddV48ILGyAcZA5meXk5xo4dC1EcGDeAQ6GQrnacXE1EA92IzBH49xn/xvxX5sekf4NgwDHFx8Skb0q85mYF5eVdoV8anE6tO/DL7TbA65Ugy0YAxkSXShFKTlZQUCCjoECB3a7CbgeKigQUF4soKTGgsFCCxcLXmoiIiIiIaH88Hn2hYNnZCjgliajvljmX9fp4k9gEXATgOwAfA/D3rb9PPvkEf/nLX7q/fm3ja1jhWrH7gHcBVOksdj+KiopwzDHHYPLkyZgwYQLy8/ORl5cHq9UKi8WCUCgEv9+P+vp6eDwebN26FRs2bMCyZcuwfv16aJq+nzd76+jowGmnnYYffvgBOTk5UemTaLATRRE2mw3Z2dmorKyEz+fr9bjmZgMeeyw3orEWLmzE+PF+tLcDmzdvRk5ODv+vDkJTpihYvz78dj/8YIKqahBF/eFaifLVV36sWaM/1Ot3v5NhMHBhMBFRNG1r2IajnjsKHaGORJfSZwbBgKOKj0p0GUREUaUoCvx+P3w+HwKBAILBIFaskPDPf2bA4zFCFDWo6sB7D0BEdFCiDCw4Fxi/tPPr+jHAK28C9eMSWxcRUYQMBg2TJjEUjIiIKF44A4+IEkZRNHz4ob6Tf5NJxfz54e8mR0QD34LxC/Daptf2eXyVe1UCqiGi/uKCC4Zh1aom/P3vPYPBMjNl/PWvVZg5s71P/aiqirKyMowcOTIWZUaVqqq6F0iYzZxMSkQD32ljTsOtR96Ke5ffG/W+D3ccjnRLetT7pdgLhTRUVoZQXq6gokLtDvxyuQS43QZ4PBJaWgwABvZu8wRIkobc3BDy87sCvzQUFqI78KukREJmJl9rIiIiIiKiSNTU6GuXk6N/czCiocjT6jnwAdMAjAbwIYCNB+9vzZo1aG5uRkZGBoJyEBe/ffHuJzcC2KC/1j3l5ubi4osvxoUXXohx4w68kMlsNsNsNiM9PR0jRozA7Nmzu5+rq6vDK6+8gkWLFmHDhsiLq62txa9//Wu89dZbEfdFNJRIkoQRI0agtbUVLpcLiqL0eP6xx3Kxc6f+KcfDhsn43e96nlzU1taisbERDocDycnJuvum/mXGDOC558Jv19JiwNatQYwdO/AWlD34oHLwg/Zj+HAZl1+uP1CMiIh699z65wZUIBgAzLLPQpo5LdFlEBH1maqqCAaD8Pv98Pv9CAaDCAaDkGUZiqLsd45zS0sKli1LjXO1RERxNu3p3YFgAJC1BTjpOuA/HyWuJiKiKDCZNAAMdSUiIooXhoIRUcIsWxZAXZ2+YK8jj/QjIyMpyhUR0UAwf8z8Xh93t7qhqipEUYxzRUTUXzz8cDrWr2/D8uUpAIBJkzrw0ENO5OXJYfXj9/vh8XiQn58fizKjpr29b0FnvbFaOaGUiAaHO4+5EyvdK/F5+edR7feE0hOi2h9Fh6pqaGhQUFYmo6JCRWWlCqcTqKrqCvwyoKZGgqoOvMUitK+MDBn5+TIKClQ4HCrs9s7Ar67QL7tdgiTxtSYiIiIiIoql6mp9990YCkbUd23BNrQEWg5+YAqAswFMAvA+gAM0URQFn3/+Oc4880wsfH3h7oXwHQDei7hkpKen44477sAVV1wRlXtO2dnZ+N3vfoff/e53ePfdd3HzzTfjp59+iqjPt99+Gy+99BLOP//8iOsjGmpSU1MxZswY1NTUoKGhAQDw449WLF067CAtD+y666qRnr7vOYIsyygvL0dycjIcDgckidOaB7pZs/S/ht9+Kw+4ULCtW4P44AP9c1kvvdSPpKSUKFZEREQAEFJDiS4hbHNL5ia6BCKiHmRZhs/ng9/vRyAQ6A78kmUZqqr/GrDNNvB+RhMRhS3v+30fG/lfwNoA+IbHvx4ioigxmRgIRkREFE+8e05ECfP66+EFdOxp/vzed4wgosHPJJmQlZSF+o76Ho+rmoqvq77G7KLZ+2lJRIOd0SjitdeMmDkziNmzW3HTTdUwGvWdMzQ2NiI5ORnp6elRrjJ62tradLdNSeGEUiIaHCRRwstnvYypT02Fp9UTtX5PHHli1PqivvP5VJSXh1BRoaKiQoXTqaGqSoDLJcLtFuHxGOHzSeAlzYHPZFKRny/DZlNgt6twODQUFQFFRSJKSyUUF0tITeVrTURERERElGi1tfom9OblRbkQokHM3eIOr8EYAMUAPgOwGsB+boV98sknyJmRg7e3vL37weUAfHqq3O2kk07C4sWLYbPZIutoP+bNm4cTTzwRd955J+655x5omv75QX/605+wYMECmEwDK1yGqD8QRRE2mw3Z2dlwOp148MFcaJr+hT6TJnVg/vzmAx7T3t6OzZs3IycnBzk5ObrHosSbPNkEi0WF3x9+wOyaNSouuij6NcXSgw+GdG9YYzaruO46fRvrEhHRgV005SI8tOIhqNrACS6fW8pQMCKKH1lW4XQGsH17cI95WiI8HgM8HglXXVWLo45qjcnYeXkMBSOiISCQ1vvjjm+ArfPiWwsRURSJ+vYVIyIiIp24qoqIEkJVNbz/vr6JEKKo4eyzzVGuiIgGksm5k/FZ+Wf7PP7SDy8xFIxoiLPZzFi+fCfa2rwR91VVVQWr1dpvFwr4fPpXbURj13Yiov4iJzkHS85egqOeOwqyqj98ukumNRPTbdOjUBntSVU1eL0KystllJcrqKzUUFUFVFV1BX5JqK+XAPD9/mCQlSWjoEBGQYEKh0OFwwEUFgooKTGgtFRCXp4Botg/z7GIiIiIiIhot9pag652Nhs3+SLqK3drmKFgQOcltJMBHALgHQB1+x7y9Yqv8fqrr+9+oBXAKl0ldvvDH/6ABx98EGKMZ/ubTCbcddddmDVrFs455xzd98TKy8uxaNEiXHXVVVGukGjokCQJpaWlePrpNlxzTRu+/jr8zacEQcNtt3n6vFCotrYWjY2NcDgcSE5ODns8SjyjUcC4cQGsWxd+2NV33+k7/0yUhgYFL72kP9Rr4UIf8vL475yIKBbGZ4/HXcfchds+vy3RpfRJsjEZs+yzEl0GEQ0iwWAQPp8PX3yh4qefNLhcQvccLY/HiJoaCbJsBdD7fOKKChOOOio2tSUnq0hLk9HSwmWtRDSIVf2s98cLv2YoGBENaIqifwMRIiIiCh+vnhBRQqxfH0RFhb6FvjNm+GGzMciCaCg7dfSpvYaCfVn5ZQKqIaL+prg4HS5XK5qbmyPuq6ysDKNHj4754gY9gsGgrnaiKPbLvw8RUSR+5vgZHjrhIfz+o99H3Nfc0rkwiANrwUF/0NqqorxcRlmZjMpKbdfukQJcrs4dJL1eCcGgBF6OHPisVhUFBSEUFCgoKNDgcGgoKhJQXCzu+jDCauVrTURERERENBjU1em7RpKXx4nAFD9GoxETJkzAjBkzsGHDBqxaFWHyVZy5W3SEgnVxALgSwHIAXwFQdj/1o+NHaB17BPStBhDBngo33ngjHnjgAf0d6DBv3jy8++67OOWUUxAIBHT18fe//52hYERRMG1aCr78UsVzzzXh//4vGV5v3zd9WLiwERMm+MMaT5ZllJeXIzk5GQ6HA5LE680DzdSpMtatC7/djz+aoKoaRHFgnE8+9pgPHR3hh+UBnYF5N91kjHJFRES0p1uOvAWrPavx5uY3E13KQR1VfBRMBm6sRUR9o6oqfD4f/H4/AoEAgsEgQqEQZFmGqqrQtN3XhO66qwRr14YfRFtdHdtz1by8EEPBiGhwcx7R++OOr+NbBxFRlCnKwY8hIiKi6OHVEyJKiNdeC6Fz69LwzZvHdw1EQ90vJ/0S1/33un0eL2sqS0A1RNQf2e12dHR06A7O6iLLMpxOJ4qLi6NTWBTJsr6VG0YjJ5US0eD0u0N/h2+qvsGrG1+NqJ8TR5wYpYoGD1nWUFUlo6JCQUWFiooKFVVVQFWVCLfbAK/XgOZmCYBp1wcNVAaDhpwcGfn5Cux2BQ6HhsJCoLCwM/CrtFTC8OEGiKK+azpEREREREQ0cLS1qWhr0xcKVlDAjSkoNiRJwoQJEzB9+nTMmDED06dPx+TJk2E2d16rmDBhQoIrDJ+n1RNZBwYARwEYD+BdAE4AwwFt+h6BYBqA7/UPcdppp+H++++PpErdjjvuOPzzn//ExRdfrKv9Tz/9hBUrVuDwww+PcmVEQ4/BIOLSS4fh7LNl3HprE55+Oh2h0IF/52dkyPjd72p1j9ne3o7NmzcjJycHOTk5uvuh+JsxQ8DixeG3a201YPPmAMaP7//3Ifx+FU89pb/OuXN9mDgxKYoVERHR3gRBwHOnP4dNT2/CloYtiS7ngOaWzE10CUTUT6iqilAo1B36tWfgl6IoUFU1rP7y8kK66vB6YzvX2GYLYetWa0zHICJKqI5soH40kLW15+P2bwBDAFD6/7UPIuqdIGgwGABR7Pxz769Fcc/P93ysc552Z5vdn3c93vkn9vhT6/F15zFCj3a7n9vzmM7HJQk9+pQkQFWBxx5LOui1/d4kJSn4979FJCUNjA0diIiIBguGghFRQrz3nv4fPwsXcoEx0VCXlZSFZGMy2kPtPR4PKAGUN5WjZFhJgiojov6ktLQUW7Zs6bHjlR5tbW2oq6tDdnZ2lCqLXCRhZxaLJYqVEBH1H4IgYNFpi7ChZgN+qv9Jdz8njDghilUNDI2NCsrKZJSXd4Z+OZ2A2y3A5RLhdkuorZUgy0YADJYc6NLSFOTny7DbFRQUaHA4NBQVCSguFlFSYkBhoXFXgChfayIiIiIioqHO5ZKhN/y7oEBfmBjRniRJwvjx4/cJANvffQ6fz4ctW/r3Iu/euFvd0ekoG8AlANYAKAWw53z8CgA79XU7fPhwLF68GIKQuAn+F110ET744AMsWbJEV/tXXnmFoWBEUZSWJuGJJ4bhssvacM01wPLlKfs99tpra5CeHvkGoLW1tWhsbITD4UBycnLE/VHszZqlf37oypUKxo+PYjEx8txzPtTW6v/3eMMNXDxHRBQPaeY0vHnOmzh00aFoC7Ylupz9mlvKUDCioaKtTcb27X6UlcmorFSxc6eG889v6A78inTO895sNn2hYNXVsZ07pDesjIhoQHEdum8omEEFjrwP+PL2xNREg5IoagcMpOoZQKXtE1DVs82BAql6D63q+ugcZ++Aqq4Qq84/BWF3WFVvoVWdX+/ZBnvVAUiSsGvsfZ+XpJ6P7e/rzj+76tvzuJ5f792m83vVdV1v4F3fW7KkQ1cgGACcfLIfZ53F6/NERETxxlAwIoq7bduC2LhRXxjF+PF+jB7NIAsiAsZmjcVa79p9Hn9+/fO445g74l8QEfU7kiShuLgY5eXlEfdVU1ODpKSkfjPB2ONpR329AVlZ4U+g7i9/ByKiWEgxpWDpwqWY+fTMfQJk+2J89njY0+wxqCxx/H4VlZUyKio6A78qKzVUVQlwuQS43QZ4vRLa2gwAuFh3oDMaVeTlycjPV+BwqHA4NBQWCigsFFBSYkBJiYSMDL7WRERERERE1Dcej6q7rd3O954Uvry8PFx00UXdIWCTJ0+G1Wrtc/vvv/8eihJ58Ey8RS0UrMuMXh4r09/dXXfdheHDh+vvIEoee+wxvPvuu/D7/WG3/eyzz2JQERFNnZqC//1PxfPPN+FPf0qG19szTPSQQzpwxhlNURtPlmWUl5cjOTkZDocDksTpz/3ZpEkmWK0qfL7wF5itXq3h4otjUFQUqaqGxx7T/29w0iQ/5s7lPFgiongZlz0Oz81/DguWLEh0Kb3KTc7FxJyJiS6DiKJAllVUVQWwY0ewe55W56aMBni9Bni9RjQ0GAHsDlc2mVScdZYXscpjt9n0bUK893u8aNMbVkZENKBo+7lfNucuYOM5QP3Y+NYTR51hSz0DqbpCqPYNoNo3pKpniNW+AVa9hVb1fkzPkKrdQVL7HtcVSNUzXGp3aJQoavs8tvtD2OP5gwdS9RZitXfQVVcAVc8Qq31DqwShK6Rq4AVUUfy98Yb+ANozz+S/MSIiokTgXXEiirvXXgtC747C8+bJ0S2GiAas40qO6zUU7L87/stQMCLqlpycjNzcXNTU1ETcV0VFBcaMGdMvJhe/8oqGW28dh8xMGaNG+TF6tL/7zxEjArBY9n+hNiVl/zs1ExENBuOyx+GZ057BuUvPDbvtiSNOjEFFsaOqGmprFZSVyd0TySorNbjdAlwuAzweA+rqJGhabCdpUXwMHy4jP19GQYEKu11DYaGGoiIBxcUGlJQYkJ8vwWDga01ERERERETR4XLpC1cymVQMG6Zvd2Ea2k466SScdNJJuttv2rQpitXEj7slyqFgvdG5f05eXh4u7iepLDabDZdeeimeeOKJsNtu3LgRNTU1yM3NjUFlREObwSDikkuGYcECGbfe2oSnn05HKCRCEDT88Y8eiDE4JWhvb8fmzZuRnZ3N/9f9mCQJGD8+gLVrww++Wreu/59Lvv++H5s39z28dG/XXafuWqxJRETxctb4s3DzETfj/q/vT3Qp+5hbOhdCrNKAiCiqQqEQfD4f/H4/AoEAQqEQQqEQFEXBhg1mXHhhCUIhK4C+nysGgyIaGw0YPjw2Yfd5efrCtxobJfj9wgHnI0eCoWBEFE+CoHWHOvUMpNozdKrnMQcKrOrL1wYD8L2jA97eCjLISP31PJzi/QJJQkaPUCpB2B1Ote/Xe4ZG7Q6P2jv4quu4PQOl9g6g2vvrvUOrugKp9gy66i2kqrevDYaugCqe4xL1J7Ks4eOPzbraWq0qTjuNmxwQERElQuJXsxPRkPPuu/p3BT77bGMUKyGigeyCyRfggW8e2OfxTfWRT/bWNA1bG7ZihWsFWgOtmFkwE4fZD4u4XyJKjOzsbLS3t6OtrS2ifjRNQ1lZGUaPHh2lyvTbuLFzEmxjo4SVK1OwcuXuoC9R1FBYGNwnLKygIARRBEwmhoUQ0eB3zsRzsMK1Ao+tfCysdieMOCFGFenT3q6ivFxGebmCykoVTqcGp1Po3kGyulqC3y+Bl/gGPotFhc0mo6BAgd2uorBQQ2GhgOJiEcXFBhQXS0hO5mtNRERERERE8VNdrW+xV3a2DFHkdWiKv/JynclXCeZp9cR2ABWAziEuuOACmM36FgfEwmWXXaYrFAwA1q9fjxNPjO6mEE6nEytXrsT333+PsrIylJeXw+PxoL29He3t7QiFQrBard0fKSkpKCgogMPhgN1uR3FxMaZOnYoJEybAaOR8KBrY0tIkPPHEMFx2WRt+/3vAZgtgwgR/TMesq6tDY2MjHI5CpKQkx3Qs0mfqVAVr993v8aB+/NEERdF2LSDtnx56SH8wQn5+CL/4hf5AMSIi0u+uY+/CWu9afFr2aaJL6WFu6dxEl0BEAFRVhc/nQyAQgN/vRzAY7A78UhQFmnbgc8Dhw2WEQvoCbqurjTELBYskfKumxoiiomAUq9lNb1gZ0WDRGdi0Z/jU3qFVuwOmdgda7R1CdeBAqgOFVvV8DD0e6/y883357mCpg4VWCXu06dln58f+Q6z6Hlol9Ohz/4FUvQVbdV1jiO+1hjnPVsPr7P25VtN21B9zMT78xYeQRM4LJaLY++wzPxob9V2XPOooP5KTk6JcEREREfUF3y0QUVx5vTJWr9aXCFxUFMTUqZw8TESdJuZMhFE0IqT2vCHUEmhBi78FaZa0PvcVVIL4zvsdljuX4+uqr/G182vUddT1OOaeY+/BrbNvjUrtRBR/hYWF2Lp1K2RZjqifYDAIl8sFu90epcr02bx5/wsDVFVARYUZFRVmfPJJevfjVquC885rxjPPxKNCIqLEe+D4B7DasxrfVH3Tp+PNBjPmFM2JcVW7KYoGt7sz8KuiQkFlJeB0Ai6XALdbhMcjobFRAsD3wQOdIGjIyZGRn6/AbldgtwOFhUBRUWfoV2mphOxsAxdMExERERERUb/i7XXr8oPLzlajWwhRHw3EUDBVU+Ft0/mfra+a0RkMpsNZZ50VzUoiNmXKFIwaNQrbtm0Lu+22bdsiDgVrbW3FRx99hHfeeQeffPIJampqDtqmra2tx8ZFmzbtu8mZ2WzGIYccgp/97Gc45ZRTcNRRR/WrMDaicEydmoIvvlDhdrehpSX24ymKgl/+Moji4iD+8pdUpKZySnR/Mn06sGhR+O3a2gz46acgJk7sn/dNvvsugC+/1L8A7je/CTAMkogoQSRRwstnvYzp/5oO5879pDMkwHElxyW6BKJBT1FUNDTI8Pl8sFj8CAQCCIVCkGUZiqJAVSO/ppmdHYIoalDV8ANnvF5TzIKVIwnf8npjFwoWSVgZxYbBoO0TSNUzeKr3MKrdx+0ZYrVnsFTfQ6v2Dova/bywaxyhx/FdwVR7BkF11iZ017xnUNSe/XYd29dAqt5CrPYOuur6c+9Aqn0DqrpCqvpvGDZFzi/7sdK98oDHfFr2Kf7w3z/g8Z8/HqeqiGgoW7pUfwjt/Pn6N0kgIiKiyPAOOBHF1euvB6Cq+nbmO+WUIBfIElEPxRnF2Na474Tfl398GVfMuGK/7Zr9zVhRtQLLncuxvGo5VrlXwS8f+EbaHV/egUunXYqc5JyI6yai+BNFEaWlpdi6dWvEfTU3NyMlJQUZGRmRF6aDoqjYujX8hQA+nwEWi75dyIiIBiKTwYTXFryGqU9N3SfwtTezi2YjyRi9HWyamxWUlXWGfjmdGpxODVVVAlwuEW63AdXVEmTZCICT/ge61FQFNpuMggIFdrsKh2N34FdxsQFFRRLMZr7WRERERERENLBUV+tbjJKby1AwSoyBGApW214LWY1sQ5uDatDXLCkpCdOnT49uLVEwZ84c3aFgkcrKykIwGP2FsIFAAGvWrMGaNWvw+OOPIzk5Gccffzx+9atfYd68eTAYDFEfkyiWDAYRhYV5kOUsOJ1OdHR0xGyslSuT8fbbwwAAr78exL33NuGCC4bFbDwKz2GH6Z+i/u23oX4bCvbAAzIAfeGNqakKrr7aGt2CiIgoLFlJWXhj4Rs4YvERCCiBRJeDMcPHwJHuSHQZRAOez6egrCyA7duDqKhQUVWFXXO0JHi9EqqrjWhvN+Gqq5rwm98cfB6ZHpIEZGfLqKkJf35QdXXs5hSlpqpISVHQ1hb+9YVY1hVJiJoeJpMKm02GJGm7PjpfM6NRhdEowGjUYDRi159dAVS9BVT1HmLVFU6199c9Q6o6/9xfQFXXmHuHWPX2dW+hVXsHYfUWUrW/rw2GroAqhlQRRcsq9yoElYNfT/7bqr9hQvaEA66BIyKKlKpqeP99fdc0JUnDggWWKFdEREREfcVQMCKKq7ff1n+BcMEC/sgiop6OKDyi11Cwd7a8031BVNM0OHc68XXV150hYM7l+LH2R2gIL6E8qARR31HPUDCiAcxkMsHhcKCqqirivlwuFywWKyyW+O/SXVYWQEuLvkmikyZFuRgion6uIK0Aryx4Bce/cDxU7cALUk8ccWKf+w2FNFRWhlBerqCiQt0V+iXA7Rbgdhvg8UhoaTEA4GKtgU6SNOTmhlBQoKCgQIXDoaGwUEBRkYCSEgNKSiRkZvK1JiIiIiIiosGnpkZvKBh3CabEqKioSHQJYXO3uGM/SKu+ZpMmTYIk9b95OtOnT8czzzwTdruGBp3paHuIRSBYb9rb2/HWW2/hrbfeQkFBAS699FJcddVPZHi9AAEAAElEQVRVyM3Njcv4RNEiSRJKS0vR2toKl8sFRVGi2n8oJOCee2zdX7vdJlx4oQmLF7fi8cdFHHKIvo1LKXomTjQhKUlBR0f491DWrNFw2WUxKCpCVVUhvPGG/lCvCy/0ISMjJYoVERGRHtPzp+Mfp/wDl7xzSaJLwdzSuYkugajfU1UVwWAQfr8ffr8fgUAAL71kwVdfWeHxSPB6jaivl6BpSQAOvCGknsCucNhsQV1jeL2xrSsvL4Tt28M/L49lXZIE5OSEUF0dnzDgYFDEEUd04MUXM+IyHhHRssplfT726g+vxpisMTi6+OjYFUREQ9rKlQF4PPqCvWbN8iMrixsdEBERJUr/m7lDRINWc7OCZcv0vXHIzg5hzpz4h24QUf92zoRz8Nz65/Z5fKV7Jf6+6u/dQWCuFlfEYwkQkJ+aH3E/RJRY6enp6OjoiGjiv6YBS5YMw/LlQfz3v0YYjWIUKzy41asDAPRdUJ02LbYTB4iI+qNjS47F3cfejVs/u/WAx3WFgqmqhvp6BWVl8q7ALxVOJ1BVJcDlMsDjMaC2VoKq9s/dySk8w4bJyM+XkZ+vwuFQ4XAAxcXirg8D7HYJksTXmoiIiIiIiIae2lp9175ttv4dCtYSaMH/Kv6H+o56nDr6VG4INEgEAgF4vd5ElxE2d2scQsF05liVlpZGt44o0VtXW1tblCuJD7fbjTvvvBMPPfQQrr32Wtx4441IT09PdFlEYUlNTcWYMWNQW1uL+vr6qPX74ouZKCvbdy7i//6XihkzVFx5ZRPuuisVqamcJp0okiRgwoQgVq8Of37D+vX9czOWhx8OIBTSF+olSRquv55zYImI+ouLp16MVe5V+Ofafya0DoaCEQGyLMPn83UHfgWDQciyDFmWoaq9bwK5bl0qPvooLeyxYh2+ZbOFsH59+O3iUdf27eGv5aqujn5dgiBAFEUYDAZce+1OGI0GFBeLKC2VUF4ewplnDov6mF1eeikDM2Y04rrrMmM2BhFRl6+cX/X5WFmVseC1BVh1+SqUDuuf1+aJaGBbskTW3Xb+/Ohu+EFERETh4d1uIoqbt9/2IxjUtwPfSScFYTAwxIKIejqh9AQIEKCh5+KCBl8Dfvfh76I61qTcSciwZES1TyJKDJvNhvb2dvj9/rDb+v0C/vKXfLzzTudN5z/8oQl/+1vsbkD3ZsOG3ic5HIzJpGLy5APvgkZENFjddMRNWOFagXe2vNPr8wbVit8uHAGPOwCPxwifTwIvmw18JpO6K/BLgd2uwuHQUFgIFBcbUFJiQEmJhJQUvtZEREREREREvamt1RfEkJcnRLmSyGmahm9d32LRd4vwysZX0BHqAACYDCZ8/MuPcVTxUQmukCJVV1cHTevfgXS98bR6Yj9ISF+znJz+GZiXm5urq117e3uUK4mv9vZ23H333fjHP/6Bu+++G1dccQUEof/9vCXaH1EUkZeXh6ysLDidTnR0dETUX02NhCef3P/PqWBQxOOPD8PSpUHcc08TLrwwvvf0abepUxWsXh1+ux9+MEFRNBgM/ednXWurimef1bcpLgDMm9eBkhJ982eJiCg2Hj3pUayvWY9vXd8mZHxREHF08dEJGZsoXlRVRSAQgM/n6w78CgaDUBQFiqLovp5js+m74BHr8K28PH11xSJ8a082m77UeK83/I0UuwK/JEmC0WiEyWSCxWKB1WqF0WiEKO7ejOLmm3u2/fDDRl11huPWWzMwfXor5sxJjflYRDR0yaqMb6q+CatNg68Bp718Gr659BukmcMPviQiOpD339d/vnn22dzogIiIKJG44o2I4ubNN/W3PfPM/jO5g4gSq6atBl9XfY3lzuVY7ly+TyBYrMwpmhOXcYgoPkpLS7F58+b97iLWG5fLiOuuK8Tmzbt3sf3734dh5sz4TiLeuFHf27gRIwIwmcLfgZeIaCBRFA3V1QrKymSUlytwOjVUVQFVVSKctU9BOO4baEn77kKvdKRi2VcMThxosrNDyM9XUFCgwuFQ4XAARUUCSkoMKC2VkJtrgCiGPzmNiIiIiIiIaKiTZQ2NjfquRefn9597+w0dDXhhwwtY9N0ibKzbuM/zQSWI37z/G2z67aYEVEfR1NgY+wWDseBuccd+EH17zSApqX9eL01O1hemYjDoCzrsbxobG/Gb3/wGS5cuxeLFi+FwOBJdElFYJElCaWkpWltb4XK5oCiKrn4eeigPPt/B/1+73Sb86lcmLF7cisceEzB5coqu8Ui/6dP1nRt2dBiwcWMQkyb1n/s8//hHB3bu1P9v6KabBsfvIiKiwcQsmfH62a9j2r+moba9Nu7jz8yfyc2KacCrrw9i+/YAyssVVFSoqKoS4HaL8HolPPVUBYzG2Mzz1x++ZYKmAbHK2dZbV+zDymRd7fauSxAEiKLYI/DLbDZ3h37tGfilx48/Rta+L2y2EJqbqxEIdNZORBQL66vXoy3YFna7jXUb8Ys3foG3znkLBpHXEYgoOjZtCmDrVn3nPZMn+1FcrH+jBCIiIoocQ8GIKC78fhWffabv5D81VcFJJ/GNA9FQpGkatjRswXLn8u4gsO2N2xNSy+zC2QkZl4hiQxRFlJaWYvv2vv1MWbYsBbfcYkdLy75voa6+Og2TJrVhypT4TCDeskXfpNcxY4IAGApGRANba6uKsrIQyssVVFZqqKzUuieTeTwGeL0SgkEJvV/ySgJqlwKXHAXsPbErxJ+P/U1SkoL8fBkFBQrsdg0Oh4bCQgHFxeKuDyOsViOA2E6KIyIiIiIiIhqKamoUKIreULDYL9w6EFVT8UX5F1i0bhHe+OkNBJXgAY/f0rAFsipDEjmFaiBraGhIdAm6uFvjEAqm8/KZEKvVsRHSNH2LiftryJlen376KSZOnIjnnnsOZ5xxRqLLGRCqq6tRXV2d6DL6bMuWLYkuIaZSU1Mxbtw4VFdXo75+381cDmTVqmR8+GFGWG2+/DIVhx6q4te/bsLdd6ciLY2/9+Pl8MP138f59ttQvwkFk2UNTzyhv5af/cyHww7j/Ugiov6oIK0Ary14Dcf9+zgomr7AUr3mls6N63hE4VJVFc3NPnzzjYyKChVOJ+B2C3C7DfB4jKiuNqK11QSg9/OkmhoJdru+kKyDycs78DW//fH5RLS0GJCeHpv/7zabvr9vfb0RwaAAkylWIWoH/n5Jkobc3BBsttCu+VoqHA4NI0cKcDgcsFqtMJlif26+ZUts54Edf/xO3HmnGykpKsrKyjBmzJiIg8yIiHrzVeVXutu+t/U93PbZbbj/+PujWBERDWWvvhoCoC8UbN48feGyREREFD28s01EcfHhh360tembYDd3rh8Wi76dPoloYAnIAXzn/Q7LncuxvGo5vnZ+jQZf/5jAPbuIoWBEg43FYkF+fj48Hs9+j1FV4KmnsvGPf+RA03pf/NDaasDChRLWrJFjPnnY51NQXq7vYuyECfGdtEREFC5Z1lBVJaO8XOkO/XK5gKoqcddkMgN27pSg96YUAKBqDtCeDaTU9Xw8pRYQFEDjzlrxYDBoyM2Ve0wiKywEioo6A79GjDBi2DARosjdGImIiIiIiIgSweWSoXdKUUFBYq6veFo9eG79c3hm3TMoayrrczuzwQyDwGtCA11jY2OiS9AlLqFgOi+xuevjUJsOHR0dutplZ2dHuZLEa2lpwVlnnYV7770XN998c6LL6ff++c9/4s9//nOiy6C95OXlISsrC06ns0//v0Mh4J57bLrGCgZF/P3vw+B0NuGppwLIycnh4u84GD/eiORkBe3t4Z9vrVmj4de/jkFROrzySgecTv1zWP/wh9iEOxARUXQcVXwU/nrCX3Hdf6+L67gMBaNEUlUVoVAIPp8Pfr8fwWAQoVAIsixDURSoqgoAaG42YN68cbrGqK42xiwUTG/4FgB4vcZ+FwoGdIaoORyx+X4VFgYxfrwPNlvnBo0OhwqHo3NzxpEjTSgsNMNo3H/AWzwoioqtWy0x6VsUNVx7bQ0uuqgeXTn4iqKgoqICpaWlMRmTiIa2Zc5lEbV/4JsHMDFnIi6YfEGUKiKioezdd/WvczvnnP6xaQMREdFQxlAwIoqLN97QP6nh9NOjVwcR9S9NviZ8U/UNvq76Gsudy7HKvQoBJZDosvYxMnMk8lLyEl0GEcVAZmYm2tra0NLSss9zO3eKuO02O776Ku2g/WzbZsEvf9mCN99MgcEQu4nD69Z1QJZTdbWdPJkTmokocVRVQ1OTirIyGRUVSvfukS6XAJdLhMcjoaZGgqIYAcR2xz/sOAmY/ELPx4w+IGszUDchtmMPEWlpCvLzZdjtCux2DQ6HhqIiAUVFIkpKDCgsNMJojMNrTURERERERES6eDyq7rYFBfGbiiSrMj7c9iEWrVuE97e+D0ULfzFfbkouBKH3TUFo4Gho6B8bTYXL3RKH4K2D3+bq1b9X/Bujl43GDT+7AUZD/7mOV11draudw+GIciX9g6ZpuOWWW7Bt2zb861//YsARDUiSJKG0tBRtbW2oqqqCouz/9/lLLw3Hjh36F4lLkopLL61DfX0QTU1NsNvtSE3Vd/+d+sZgEDBxYhArV1rDbrt+ff8Jbn3kEf21jBwZwBlnhP/3JyKi+Pr9rN9jlXsVXv7x5biMZ5WsONx+eFzGoqFJluXuwK9AIIBQKIRQKNQd+KVpfVvfk56uwGpV4fOF/37T643d9YTcXBmCoO13s98D8XqNGDvWH4OqIgsFq642RRQKJooiJEmCJEkwmUwwm82wWCywWq2YOFHCL36hu+u42L7dj9bWpKj3m5kp44EHqjBrVvs+z3V0dKCmpga5ublRH5eIhi5VU7GsMrJQMAC47N3LMGr4KBxmPywKVRHRUOV0hrBunb5r6iNHBjBxIjf4JiIiSjSGghFRzCmKho8+0nfybzarnBBBNMgoqoLnv38ej377KH6o/SHR5fTJ7MLZiS6BiGLIbrdj27ZtCIV230zfssWCa68thMvV910N3n03DXff3Yj/9/8yY1EmAOC772TdbWfOjM0OWkREAOD3q6islFFe3hn4VVmp7Qr8EuB2G+DxSLt2AO8Hk/e90/YNBQMA23cMBesDo1Ht3jWyoECFw6GhsFBAUZGAkhIDSkokpKf3k9eaiIiIiIiIiHTxePRt+jVsmAyTKfZTkcqayrB43WI8u/5ZeFo9EfWVm8wFX4NBU1NTokvQJdJ/v32Soa+Z2qjits9vwysbX8Hi0xZjev70qJalV3l5ua52Y8eOjXIl/cszzzwDURTxr3/9K9GlEOmWkpKCcePGoaamBnV1dfs8X1sr4ckncyIa44ILGlBaGgQAKIqCyspKJCUlobCwEJLE6dSxMmWKgpUrw2/3449myLIGSUpsgOv//ufHd9/pn29xzTUyRJGL54iI+jtBEPD0vKfxY+2PcZnbPKdoDswSfz+QPrKsoqoqgO3bg6ioUJGREcDUqW2QZRmKovQ58KsvBAHIywuivDz886Hq6r7Pvw2X0aghO1tGbW34wWOxDCtLS1NgtSrw+cKfN3WgugRBgMFggCRJMBqN3YFfFosFJpNpUISEJyW14qWXvNi61YJt28zYutWCrVst2LlT/3u1SZM68NBDVcjL23/YWl1dHZKSkhgYTURR81PdT2jwRb6RSVAJ4vRXTsfqy1fDkT44N70gothbsiQIvZt4n3pqCADftxIRESUa72ITUcx9+WUA9fX6JkXMnu1Hamr0d3sgosR5bOVjuP7j6xNdRljmFM1JdAlEFEOiKGLEiBHYsmULNE3Du+9m4M9/zkcgEP5N8r/8ZRhmzNiJk09Oj0GlwA865xtlZsooLOTFWCLSR1U11NQoKCuTUVnZGfi1O/TLAI/HgPp6CZoWu4lcUeXZz+K1/LXAhgviW0s/NHy4jPx8eVfgl4rCQqCwUEBxsQElJQbk50swGAbIa01EREREREREulRX61s4mJOjIFZTkQJyAG9tfguL1i3Cp2WfRq3f3BSGgg0GHR0diS4hbL6QD03+OISZDUfnXP/9r33sXQ0ABdhQswFHPXcUPv/V5zi04NDo1xemNWvW6Go3fXr/CDWLpaeffhopKSl4+OGHE10KUURyc3MxfPhwVFVVob29vfvxv/41Dx0d+jckyckJ4cor9w0b6+jowObNm5GVlYWcnJxBsZi+v5kxQ8BTT4XfzucT8eOPAUyZkti5Dg8+qOpum5Ul47LLuCkuEdFAkWxKxhvnvIEZ/5qBnYGdMR1rbuncmPZPA1tTUwjbtgVQXi6jokJFVZUAl0uExyOhulpCdbURoZAVQOd5xs9/3oxx4+pjVk9engw9Gd2xDN8CgLy8kK5QsOrq2NXVGaIWQnl53967JCUpsNlCsNlkZGUJSE5OhslkgtlshtVqhcVigcEwNDZmVBQfDjmk86OLpgF1dRK2bbP0CAsrKzMjFOp676YB2DdI+JxzGnDTTdUwmQ5+rdvpdGLMmDEMiyaiqFjmXBa1vmraazD/lflYdvEyJJuSo9YvEQ0db7+t/3r3ggU8NyIiIuoP+BuZiGLu9dcV3W1PPz16u5QQUf/wt1V/S3QJYZtdODvRJRBRjEmShMLCQlx3nR/PPJOtux9ZFnDRRUlYudKHkpLoT+zcuROQJA2yHN5OuKNGBSCKvBFERL1rb1dRXi6jvFxBRYW6R+CXCLfbAK9XQiAgYdBcRqqeAmgCIOz1fjPNlZBy4slqVWGzhVBQoMBu1+BwaLsCv0SUlIgoLjYiKWkQvdZEREREREREpIvXG9416C7Z2foDE/ZnU90mLPpuEf79/b+jsrP63nKTGQo2GIRC4SZeJZ671R2fgUQA+QAqw2wXAuAFYAfaQ+148JsHseTsJVEvL1xfffVV2G0cDgdKSkoiHruoqAhTpkzByJEjMXLkSBQVFSE7Oxs5OTlIS0uD2WyG2WyGLMvw+Xzw+Xyorq6G2+2G0+nEhg0bsH79eqxfvx5+vz/ienrzyCOPoLS0FFdffXVM+ieKF0mSUFJSgvb2dlRVVWHFCjM+/DAjoj5vvNGLpKT9n6vU19ejqakJdrsdqampEY1FPR1+uP7QhW+/lRMaCrZ5cxAffaR/7sell/phtaZEsSIiIoq1kZkj8eKZL+LUl0+N6TgMBRu6VFWFz+eD3+9HIBBAMBhEKBSCLMtYtGgYFi3KQkuLEZ0J330T6/Atmy2oq108QsE2bAi/XSxDwQDAZguhvNwCg0FDTk5n4JfNJqOgQIHDoaGoSEBpqYSRI83IypJgMFh2tRza542BQGCfxwQByMmRkZPThiOOaOt+PBQCKivN2LbNgo8/TsOnn+7eyNlsVvF//+fB/PnNfR5b0zTs2LEDo0aNYlA0EUXsq8rwr2EfyLrqdbjo7Yvw6oJXIQr8GUVEfdfQoGDFCsvBD+xFfn4Ihx+e2M0aiIiIqBNX+BFRTKmqhvff13fR3GDQsGAB3zgQDTayKie6hLDYUmwoHVaa6DKIKA5SU1Nx1FEynnkmsn7q6oxYuDCI5ctVmM3RvfHypz+5cfPNHpSVmfbY+arzzwPteDZu3MBbDENE0aEoGlyuzsCvykoFlZWA0wlUVQlwuzt3kGxqkgCYEl1q/ARTAddhgGNFz8dbbYmpJ0pEUUN2toz8fAV2uwqHQ0VhoYCiIgFFRSJKSyVkZxsginyfTUREREREREQHVlOjr11eXnRCwdqD7Xht42tYtG4Rvqn6Jip97g9DwQaHYFDf4tREcrfEKRQMAEYg/FAwANgEwN75qasl8ZsqrF+/Htu3bw+73c9//vOw20iShJkzZ+KYY47B0UcfjenTpyMzM7NPbU0mE0wmE9LT05GXl4cpU6b0eN7n8+HLL7/EBx98gJdffhn19fVh13cg119/PWbNmoWZM2dGtV+iREhOTsbYsWOxaVMj7PYgXC5997NmzWrDiSe2HPQ4RVFQWVmJpKQkFBYWQpI4xToaxo41IiVFQVubIey2a9bEoKAwPPhgEKqq79+dxaLiuuv0LbojIqLEOmX0KbjjqDtwx5d3xKT/7KRsTMqdFJO+KbFUVe0Oiu4K/eoK/FIUBap64GtnkqShpSX8c9BYh1zl5embfxqP8C09ohlWJggCRFGEJEkwGo0wmUx4/HEFqak+FBebYTKZMKTm5UVAlvu+xsRoBEaODGDkyABOPbUdN90k4L330lBQEMQjjzgxblz4YeyhUAgulwuFhYVhtyUi6qJpWtRDwQDg9U2v4y9f/gW3H3171PsmosHrjTf8kOVkXW1//vMgRDG25/NERETUN7xjTUQx9d13QTid+hYcH3qoH7m5+ndZI6L+6fJpl+P2/w2cC5Gzi2ZDEPTthk5EA88FFwzDqlVN+Pvfh0XUz5o1yfjNb5qxeHFGdArD7gUtRqOGMWMCGDMmAGBn9/M7dxqwdau5Oyis88MMn8+ACROisxCLiPqfpiYF5eVdoV8anE4NTqcAj0eE221AdbUEWQ5v98gh4fO7gPNPBYy+zq87MoHltya2poNITVWQn9+5a6TdrsHh0FBYKKC4WERJiQFFRUaYTHytiYiIiIiIiChyNTX6NrzIzdV0j6lpGtZ612LRd4vw0g8voTXYqruvcOSmMBRsIKluq8Y3Vd/AnmbHjPwZEIXOf6sDMhSsNY6hYGMBfK6j3QYAxwKQgFNHnRrdmnR4+umndbU7//zz+3RcSkoKfv7zn2P+/Pk45ZRTkJGRoWu8g7FarTjppJNw0kkn4a9//SveeecdPPDAA1i9enVU+g8Gg1i4cCHWrVsXs78DUbydeWYmTjhBxv/9XxP+8Y90BAJ9P1eRJA233eZFOFN/Ojo6sHnzZmRlZSEnJweiGN3NwIYag0HAIYcEsWJF+HNB168PP0gsWurqZLz8cpLu9uec40Nurr5Fd0RElHj/d9T/YY13Dd7b+l7U+z6u9Lju97M0sPh8CoJB366PIILBIEKhUHfgl6bpvzYG6A+5qq01QpaBWGXa6q3L4zFC0xDWuXg4bDZ914O83r6HdImiCIPBAKPRCKPRCLPZDIvFAqvVCqOx9zla+fm6yhrSFEXR/f8nKcmK//wnCVdd1YCrrqpFerqiu46WlhY0Njb2ORieiGhvFc0VMbv2f8eXd2B89nicPeHsmPRPRIPPW2/pPxE/6yy+ZyUiIuovGApGRDG1ZEkIgL5QsNNOY3gF0WB08xE345OyT7DcuTzRpfTJ7MLZiS6BiOLs4YfTsX59G5YvT4mon507VbhcHtjt0bnD39Jy4J2L09MVzJzZgZkzO7ofU1XA7TZhzJicqNRARPEVDGqorAyhvFxBRYWKqqrOwC+XS4DbbYDHI6G11QAgcZPhB6zyY4F/rgfGvQGoBmDdJYBveMLKkSQNeXkh5OcrKChQ4XBoKCoSUFQkoLjYgJISCZmZfK2JiIiIiIiIKD7q6vRdg8jLC79Ns78ZL254EYvWLcL66vW6xo1EbjJDwQaKT8s+xZmvntkdGDclbwr+eco/Mcs+C6GQvsWpieRp9cRvsBwA+QDCHbINwDrgsl9fhluOvCX6dYXB4/Fg8eLFYbcbNWoU5syZs9/nBUHAscceiwsvvBBnnXUWkpPjG95iMpmwYMECLFiwAO+++y5uuukmbN68OeJ+KyoqcNttt+HJJ5+MQpVE/UNKioRHHhmGyy7rwDXXKPj889Q+tbvggnqUlgZ0jVlfX4+mpibY7XakpvZtPOrdlCkqVqwIv92mTSbIsgZJiv+Gjo8/7ofPp2/eiCBouOkmTtEnIhrIREHEC2e8gBn/moEdTTui2vfckrlR7Y+iQ1FUeDxB7NgRQlmZjMpKDW737jlaXq8R9fUSli71YtQofeeXB6M35EpVBdTVGXWHdx2M3n47OgxobRWRlhabdUF5efrqqq+XIMuA0SjAYDBAkiQYjUaYTCaYzWYkJSXBZDIxHDiOWlv1bxCRlJSE9HQJ//ynCZWV+gPBung8HiQlJcFisUTcFxENPV9VfhXT/n/11q8wInMEptmmxXQcIhr42ttVfPGFvvOZjAwZc+fyXIiIiKi/4B1HIoqpd9/tffeLvjj7bP1tiaj/MktmLF24FIc+fSgqd1YmupyDYigY0dBjNIp47TUjZs4Mwu3u+45gu9uruO02LxYsaEJzM5Camoz09PSI6+ro6Dj4QXsRRcDhCKKwMLKAMyKKPlXVUFenoLxcRkWFispKDU6nhqoqEW63AI9HQm2tBFUN/+cQ9VHDaGB5fBayDRsmIz9f3hX4pcLh6Ar8ElFSYkBBgQRJ4mtNRERERERERP1Dba2+UDCbrW9hDZqmYZlzGRZ9twhLNi2BX/brGi8a8lJ0JJlR3Gmahqs/uLo7EAwA1levx+HPHI4rZ1yJ1pD+hYOJ4m5xx3fAQwG8FX6ztG/ScN/z98EgJnbDgt///vfw+8P/WXHLLbdAEPb92ZSRkYEzzjgDv/3tbzFy5MholBixefPm4YQTTsCdd96J+++/H4oS2ULWp556CpdffjmmTp0apQqJ+ocJE5Lw2WfAiy8245ZbkuBy7f/+Sk5OCFdcURfReIqioLKyEklJSSgsLIQkcdq1HjNnCvjHP8Jv5/OJ2LAhgGnT9G1Mq5ffr+Kpp/SPecIJPowfnxTFioiIKBEyLBl445w3cPgzh6MjFP7cvf2ZW8pQsESQZRk+nw9+vx9+fwAPPZSEqioDPB4DvF4jqquNCAQsAA68+N3rNcYsFExvyBXQWVesQsEiqau62oi0tPh+v6xWddfmjJ0bNNrtKux2DcXFIkpLJYwcaUFKysSY1ET6tLe3627bFeCcmpqKrKws1NfXR1xPWVkZxo4dy2A4IgrbMueymPbvk32Y/8p8rL58Ne9vEdEBvfeeHz6fvuuTJ5wQgNEY3010iIiIaP94d5qIYmbLliB++knfxIhDDvFjxAimCRMNVjnJOXjnvHfws2d+hvaQ/ps4sZZhycDEHN70IxqKbDYzXnyxFSecICEY7PtN3by8IB55pAoTJ/q6H6uqqoLVaoXJFFnYi56FDl04MZko/jo6VFRUhFBerqKiQkVVlQanU4DLJcLtNsDrleDzSeClmYHPbFZhs8ndk8gcDg1FRUBxsQElJQYUF0tISeFrTUREREREREQDw86dCjo69IX/FBQc+Hp6bXstnl//PBatW4StDVt1jRFtuSm5iS6B+sDV4sKWhi37PK5Bwz/W/APWfCtwCIAf4l+bXu7WOIeCHQLgfwCaw2vW0tSCSy65BG+99Vav4Vrx8Nxzz+H1118Pu92oUaNw4YUX9vrc6tWrYTT2v80KzWYz7r77bhx33HFYuHAhGhoadPelqiquvvpqfP3111GskKj/+MUvMjB/voz/9/+a8OST6QgE9j0PufFGL5KT1aiM19HRgc2bN2P48OHIzc3l4vAwzZqlP1zy22/luIeCLV7sQ12d/oVvN9yQmN+ZREQUfZNyJ2HRvEU4/43zo9LfyMyRKMooikpftJuqqggEAvD5fAgEAggGgwgGg1AUBYqiQNO0fdq88EIeGhvDn8tTXR2795KZmQpMJjWsOatdvN7Y1ZWbG1ko2OjR0Q8FE0URpaUaLr+8CXa7hqIiYVfglwk5OUYYDGYA8T2HJP0imR9tsexed5aXl4eOjg5dmzDvSVVVlJeXY8SIERH1Q0RDz1eVX8V8DFeLC2e8ega++NUXsEhce0tEvXvjjX3fA/XVmWfy2iYREVF/wtWIRBQzS5YEAegLvzj1VDm6xRBRvzMpdxJeOuslnP7K6dCg/0JDLB3hOCLhOx4TUeIcdVQq7rmnETfckNmn42fNasMDD1QhM3PfXbvLysowevToiCYGh0L6JlYwEIwo+hRFg8cjo6JCQXm5AqdTg9MJVFWJ8HhEeDwS6uslcGLRwCcIGrKyugK/FNjtGgoLgaIisXv3yNxcA0QxsuBHIiIiIiIiIqL+wu2WAegNBdu3naIq+KTsEyz6bhHe3vI2ZLV/zQXITWYo2EBQ3VZ9wOd9Bh9wFoApAN4H0BiHoiIU91AwA4DjASwJv+k777yDm2++GQ888EC0qzqozz77DFdeeaWutk8++eR+75P1x0CwPR177LFYvXo1jjvuOJSXl+vu55tvvsGnn36KuXPnRrE6ov4jJUXCww8Pw6WXduD3v1fw2Wep3c/NmtWGE09sifqYDQ0NaG5uht1uR2pq6sEbEABg7FgT0tIUtLSEf565dm1855WpqobHH9c/z2LyZD+OPZaLcomIBpPzDjkPqz2r8ci3j0Tc19wSnpvrEQwGuwO/ukK/ZFmGoihQVX0hsHl5IV2hYF5v7OYICQJgs4VQWRn+nLNYhpVZLBoyM+W4fb8EQYAoipAkCUajESaTCWazGRaLBVartcc83Jkzw+6e+qFgMKirXW9zsouLi7F582bdPxu6+Hw+eL1e2Gy2iPohoqGjuq0a2xq3xWWsb13f4tfv/hrPn/58wjbzIKL+KxTS8PHH+taxWK0q5s3jtU0iIqL+hKvDiShm3nlHf5DOwoX9e/IdEUXHaWNOwz3H3YNbP7s10aX0anbh7ESXQEQJdv31mVi9uhmvvppxwOMuu6wOV19dA8N+Tn9kWYbT6URxcbGuOlRV7XW3ur4wmxlKRBSunTsVlJfLKC9XUFmpwenUUFUlwO0W4XYb4PVKCIWMAPi+ZaBLSlJQUNAV+qXB4ejcObK4WEBJiYSiIgkWC19rIiIiIiIiIho63G79i6Xs9t0XyZ07nXh23bNYvH4xnDud0Sgt6swGM9LMaYkug/qgpr2mbweOAHAVgGUAvgbQvzLoevC0euI/6AQA6wHoWJf04IMPQlEUPPjggxFtghOOd999F+eccw4CgUDYba+44ooBH4RVUlKCL774AkcffTQqKip09/Pggw8O+O9FNFx55ZU4/fTTE11Gn23ZsgXnnntuossYMCZMSMKnnwIvv9yMm2+2wus14dZbvYjVmkhFUVBZWQmr1YqioiJu1NUHoihg4sQgvvnGGnbbdevi+/195x0ftmxJ0t3+D39QIIpckEtENNjcP/d+rPWuxVeVX0XUz9xSnpvvLRBQsWOHH2VlIVRUqHA6AZdLwPDhIVx5Za3ueZMHY7MFsWlT+OcmsQzfAjrDyvSEgnm9sa3LZgvqDAXbty5RFGEwGGA0GmE0GmE2m2E2m2G1WmEycWPGoUhR9t2MuS96+/ciiiJKS0uxffv2SMtCQ0MDkpOTkZbGa8hEdHDLKpfFdbwXNryAiTkTcdMRN8V1XCLq/z791I/m5vDf6wDAMcf4kZSk/9ooERERRR/vRBNRTHg8Mtas0ZcIXFISxJQpDK8gGipuPuJmbKzbiP9s+E+iS9nH7CKGghER8MwzKdi4sQM//rjvhc3kZAV33+3Ccce1HrSftrY21NXVITs7O+waOjo6wm7TxWrVdzGXaLAKhTQ4nSFUVCioqFBRWdkZ+OVyCXC5DPB6Ddi5UwKgP+SY+geDQUNuroz8fBl2uwq7XUNhIVBUJKKkxIDSUgnDhokQRb7/JCIiIiIiIiLq4vHoCwWzWFQkpSh446e3sei7Rfho+0fQEJtFm9GSm5LLHdQHiOq26r4fLAE4BsAkAO8DKItNTZHQNC0xoWAAMB/APwG0hd/04YcfxqZNm/Dss88iLy8v2pV1CwaD+Mtf/oK7775b1+LvadOm4dFHH41+YQlQVFSEDz/8ELNmzUJLS4uuPj7++GNs2LABkyZNinJ1A0teXl5M/91S/3DeeRmYN0/Gm29WY8SI8AMFw+Xz+fDJJ2Vwu7Nx8cXpMBjiE5o4UE2dquCbb8Jv99NPJoRCGozG+Jy3Pfyw/nHs9iDOP5+L5oiIBiOjwYjXFryGaf+apvv9nAABx5QcE+XK+jdVVdHYGMKmTUGUlcmorNTgcolwu0V4vRI8HiPq6iRo2r6/P8eM8eGKK/oYEq6DzRbS1S7W4Vt5efrqinVYmc0WwsaNBz5m2DAZNlsINpuMggIFDoeKww4TkJ+fD6vVCrPZHLegcRo49ITBd7FYel+zZrFYUFBQALfbrbvvLk6nE6NHj2ZgHREdVKThsXrc8uktGJc1DvPGzIv72ETUfy1dqn8TsNNP79/394mIiIYihoIRUUwsWRKApiXranvKKUEAvGBKNFQIgoCn5z2N7Y3b8a3r20SX080iWTAjf0aiyyCifiA5WcLrrwdx+OEympp2v4UaMcKPRx91org42Oe+ampqkJSUhOTk8M6T2tp0rMzYJdyxiAYyVdXQ1KSirExGebmCysrdu0e6XCI8Hgk1NRIUhe83BoP0dBn5+QoKChTY7RocDg1FRQKKiztDvxyOzt0kgdhOeiMiIiIiIiIiGky83l4eFBRg0n+AvPWAagTacoH23M4/2/IAYxsMh76GwsdeQm17bbxL1i03OTfRJVAf1bTpWAQ8HMCFADYA+C+A9ujWFIn6jnoElb7fX4qqFADnAHgBgI4SPvroI4wbNw633347rrjiiqhvTvPee+/hpptuwk8//aSr/cSJE/Hf//53v4tCB6KxY8fi3//+N04//XTdfTz//PN46KGHolcUUT+WkiLhggtsaG9PQ1VVFWRZjul4992Xh6++SsNzz7Xh8ceBadNSYjreQDZzpr6wLb9fxPffBzBjRuw3+lmzJoBly/T/brvqqhAkifeiiYgGq9yUXCxduBRznp2DkBp+cNP0/OnItGbGoLLEkWUZPp8Pfr8fgUAAoVAIoVAIsixDVTsXoi9dOgx33FEQdt9DOXxLj1h/v4qKgigqCsBmCyE/X4HdrsLh0FBcLKK0VMLIkRakpUngMkUKV2vrwTdl3p+UlP2//xo2bBja2tqwc+dO3f13KSsrw+jRoxlqR0QH9JUz/qFgGjSc/8b5WHHpCkzMmRj38Ymo/1FVDR9+qO/6pCSpOOuswXN/jYiIaLDg1TYiiom339a/W9rZZ/NHE9FQY5EsePOcNzHz6ZlwtbgSXQ4A4DD7YTAZOEmLiDqNGZOEp59uxsKF6VBVASed1Iw//9mDpKTwd1CoqKjAmDFjIEl9P+fx+Xxhj9OFoWA0mPj9Kioq5F0fGiorNVRVCXC5BLjdBni9EtrbDQAMiS6VImQ0qt27RhYUqN2BX4WFAkpKDCgpkZCezolkRERERERERETR5vXuvfuvBpxzJjD2nQO2awfQ3o9Cl/oiN4WhYANFTbuOULAukwCMBvApgDVRKihC7lZ3QsefOH0iLp17KW675DZd96Cam5tx3XXX4b777sMll1yCCy64AOPGjdNdT11dHV599VU8/fTT2LBhg+5+xo0bh88++wxZWVm6++iv5s+fjwsuuAAvvPCCrvavv/46Q8FoyElOTsbYsWNRW1uL2trYhJb+73+p+OqrNADA11+nYNYsFZde2oT770/ddR+L9jRrlv6gim+/leMSCvbAAzIAfeOkpSm46ioumiMiGuwOsx+Gv/38b7jy/SvDbju3ZG4MKoodVVURCATg8/kQCAQQDAa7A78URYGm7X0NqXd6Q65aWiR0dIi65mj2hd5QsJoaIxQFMMRoepr+ULDI57wLggCDwQBJkmAymWAymWCxWGCxWPCvf5l2BSLF/pyMhpaOjg7dbQ8UCgYADocDPp8PwWBk4fyyLMPpdKK4uDiifoho8GryNeGHmh8SMnZbsA2nvXwaVl2+CllJg+/aOBGFZ8WKADwefdcof/azADIzo7sZEBEREUWOd52JKOqamhQsX67vjUNubghHHMEbBURDUV5KHt459x0c+eyR6Ajpv7kTLbMLZye6BCLqZ846KwM339wIRQngl79sgKAzA1XTtO5do/oqEAjoGksQBO5MRQOGqmqoqVFQViajokJFRYWKqirA5RLgchng8RhQXy9B00wAGNw50A0fLqOgQEZBgQq7XUVhIfYI/DLAZpNgYEArEREREREREVHcVVfvdfE7f+1BA8EGqtxkhoINFBGFggGABcCpABQA66JQUITcLYkJBUs1peLOY+7Eb2f+FkaDEeMzx+O0007TfR+qpqYG9957L+69914UFxfj6KOPxpQpUzB+/HgUFBQgNzcXSUlJsFgsCIVC8Pl8aGhogNvtxrZt2/D9999j+fLlWLduXZ8Xk+/PjBkz8M477yAnJyeifvqzhx9+GO+99x6amprCbut0OrFq1SoceuihMaiMqH/LyclBZmYmqqqq0B7FBFO/X8B999l6PCbLIp56ahjeeiuEv/ylCZdckg6Dgffru4webURamoKWlvATNNaujUFBe6msDOHNN/UvervwQh/S0w8cSkBERIPDr6f/Gqvcq7B4/eKw2s0t7V+hYE1NIWzbFkBZmYzRo9uRkRFAKBSCoihQ1egFcekN3wKA6mojSkv1vWc9GL3hW7IsoL5eQm6uHOWKOuXl6Qsvam01oL1dRHJy769d11xSg8EAo9EIk8kEs9kMq9UKi8UCQ6xSzogOwu/362onCEKfNmcuLS3Fli1bIr721NbWhrq6OmRnZ0fUDxENTl9XfQ0Nkf2ciUR5czkWvLYAH1/wMUyce000pL3+uv73KfPnxyaQmYiIiCLDUDAiirq33gogFErS1fbnPw/CYNC/IxwRDWxTbVPx79P/jQVLFiS6FIaCEVGv7rorA1u3boUc4XyOYDAIl8sFu93ep+NlnQMajTyvov6jrU1FebmMigoFFRUKKiuBqioBLpcIj8cAr1dCICCBlyoGPqtVhc0mo6BA2RX4paGwUEBRkYiSEhHFxUYkJfG1JiIiIiIiIiLqj2pr9woFS6pPTCFxwFCwgaOmLcJQsC5p0ekmUp5WT9zH/OWkX+KBuQ/Alro7wOaEE07A//73P5x//vkoLy+PqP+Kigo899xzEVYZPlEUccMNN+Cuu+4a9PfFsrKycM011+DPf/6zrvbvvfceQ8FoyJIkCSUlJWhvb0dVVZXu++97Wrw4G25374ssa2qM+PWvh+HZZ9vwt78JmD49OeLxBgNRFDBpUhDLl4cfvLVuXexDKh56KABZ1hfqJUkqbriBm+ESEQ0VgiDgiVOewPc132Ott2/JlRbJgiMKj4hxZbsFgyrKyvzYsSOEykoVTqeGqqrOOVoejxHV1RJaWowAOt9H/fWvLTjxxNhs6BxJKJjX2/9CwYDOumIVChZuXQaDhpycEGw2GYGAGVlZnfNGzWYzLBYLrFYrJEni5rLUb4VC+v4v9jXITpIkFBcXR3ztCwC++64RJSXJGD1a33o5Ihq8llUuS3QJ+LLyS/zug9/hn6f+E4IgHLwBEQ1K772n716ZIGg4+2yGChIREfVHXH1JRFH35pv62551Fm82EA11Z40/C3cefSf+3//+X8JqMAgGHO44PGHjE1H/JYoiSktLsXXr1oj7am5uRkpKCjIyMg54XCQTki0Wi+62ROFQFA0ul4zycgUVFSoqKzU4nRpcLhFutwiPR0JTkwSANwoGOlHUkJMjIz9fht2uwm7vCvwSUFwsorRUQlaWAaLI15qIiIiIiIiIaCCqqdlrMZVnBtCRCSQ1JqagGMpNYSjYQFHTHqVQsH7C3eqO21ipHal4/6r3Mbuo902xDjvsMKxfvx6/+c1v8NJLL8WtrmgoLCzEs88+i2OPPTbRpcTNNddcg4ceeghtbW1ht12xYkUMKiIaWJKTkzF27FjU1taitrZWdz9VVUY880zWQY9bsSIFhx2m4pJLmnDffSkYNmxwhxf2xZQpCpYvD7/d5s0mBIMaTKbYLGrduVPB88+HH1bW5fTTfSgqYvgbEdFQYpEsWLpwKab/azoafA0HPf7IwiNhkaIzl09VVciyjI6ODgQCAQQCAYRCIciyjGuvzcP69VbU1hqhqn0Pramujt15SlKSivR0GTt3hr98zeuNXV3Dh8uQJBWyHP76lc7vly/6RWHfELX0dBk2Wwj5+TJsts4NGouKgJISCSNGGFFUZIbJZELnvLwRMamJKFZUVYWmabrams19D+VNTk5Gbm4uamr0X2P8+usU3HyzHYWFQaxYISM5mUtyiWi3r5xfJboEAMC/vvsXDsk9BFcfenWiSyGiBPjxxyC2b9e3ccHUqQE4HFx/RkRE1B/xCgQRRZXPp+Lzz/W9cUhLU3DCCXzjQETAn+b8CRvrNuLVja8mZPyptqlIMenb+ZGIBj+TyQSHw4GqqqqI+3K5XLBarQe8Oa1nUn+XpCTuRkXR0dSkoKysM/TL6dR2fQhwu0W43QbU1Bghy7t3j6SBKy1Ngc0mo6BA2RX41RX6JaKkxICiIiNMJr7WRERERERERESDVV3dXqFgHVnAK28DP78GsK1LTFEx8vuPfo8bPr4BVqMVqaZUZFozkZ2UDVuqDYXphSgdVorRmaMxPmc8spIOHvxBsVPTNshCwVriEArmB/AFcNro0/YbCNYlLS0NL774IubNm4c//elP2LFjR+zri0BhYSFuueUWXHrppbsWPg8dmZmZOP300/Gf//wn7LYrV66EqqoQRW7YSJSTk4PMzEy4XC5d9+MfeMCGYLBv/5dkWcS//jUMb78dwp13NuHSS9NhMAzd/4czZ+oL9QoERKxb58esWbGZX/qPf/jR0qI/1Oummzgdn4hoKCrKKMIrC17Bif85EaqmHvDYuSVz+9yvoijw+Xzw+XwIBoMIBoMIhUJQFOWgATr19RKqq8N/nxTL8C0AsNlC/S4UTBSBvDwZLpee71d034uKogiDwQCj0Yj0dCNee60JJSUmjBxpRkaGBC79o8Gqvb1dd1urNbxQ3+zsbLS3t4f9HlBVgaefzsYTT+RA0wT88IOEyy9vxksvZYTVDxENXu3BdqzxrEl0Gd2u/ehajBk+BsePOD7RpRBRnL36ahCdYcHhO+00JbrFEBERUdTwyiARRdX77/vR3q4vfOKEE/wwmbhbGhEBgiDg2fnPYkfTjoRcHJ1TOCfuYxLRwJKeno6Ojg40NBx8l7+DKSsrw5gxY/Y7AT+SULDU1FTdbWnoCAY1VFaGUF6uoKJC3SPwS4DbbYDHI6G11QDAcNC+qH+TJA15eSEUFCgoKFBRWKjB4RBQVCSgpMSAkhIJw4bxtSYiIiIiIiIiGqpkWUNjYy/XhpxHAk99ByTXAinVQHINkFLT+efYNwD7SsAwMCcKh9QQQoEQWgItcLceOKjJKBphkSxINadimGVYd4CYI82B0mGlGDV8FMZnj0deSl6cqh8agkoQTf6mRJcRVQf7txax9QA+AdAOZB3W90C7c889F2effTZefPFF3H333di6dWusKtRl6tSp+M1vfoOLLroIRuPQ3bji3HPP1RUK1traio0bN+KQQw6JQVVEA48kSSguLkZ7ezuqqqogy3Kf2n35ZSr+97+0sMerqTHiiiuG4dln2/DWWxpyc4fmvfzDDtP/83vlShmzZkWxmF1kWcOTT+qv68gjfZg5M7xAAiIiGjzmls7Fvcfdi5s/vfmgxwGAqqoIBoPw+Xzw+/3dgV+yLENRlAMGfvWFzRYEEP56jGiHXO0tLy+EzZvD/31ZXR3b9355eSFdoWDh1CUIAgwGAyRJgtFohMlkgtlsRlJSEkwmU6/zRh2OsEsiGpAiCQVLSQl/A/jCwkJs3bq1z+//WlpE/PGP9n3eA778cgZmzGjEH/6QGXYNRDT4rHSvhKz27edKPCiagoWvL8TKy1Zi9PDRiS6HiOLo3Xf1R4acfTbjRoiIiPor/pYmoqh64w39N6LOOEPfLnBENDhZjVa8dc5bmPn0THjbvHEd+2A7JRMRAYDNZkN7ezv8fn9E/SiKgoqKCpSWlvb6fCT9m81m3W1pcFBVDXV1CsrK5D0CvzRUVYlwuUR4PAbU1UlQ1dhO7KL4yMyUkZ8vIz9fhcOhobAQKCoCiosNKC42oKBAgiTxtSYiIiIiIiIiot55vTJU9QCLGttzOj/2tOJ6wNKMM5+4BW9W/QsaIlu82p+F1BBCwRBag63wtHoOeKwkSp0BYqZUZFgyegSIlQwrwajMURiXPQ75Kfn73TSEOtW21ya6hKiLWShYNYD3AVTtfmj48OFhdWEwGHDhhRfiF7/4Bd59910sWbIE77//Pnbu3BnVUvtCFEUcccQROOOMM3DmmWeiqKgo7jX0R3PnzoXZbEYgEAi77ZYtWxgKRrSX5ORkjB07FrW1taitPfDvHL9fwL332iIaLylJRV2dE21tVhQWFg65kMORI43IyJDR3Bz+9PW1a2Mzv/SllzpQVaV/M9s//GHwnv8SEVHf3PizG7HKvQpLf1ra6/OCasRvzxqJam8ARqOGN9/cHrNa8vJCutp5vbE9J7HZ9NUV61Aw/SFqnXUJggBRFGEwGGA0GmE0GmE2m2GxWGC1WiFJXLJHdCA+n09326SkpLDbiKKI0tLSPgXhb91qxnXXFcLp7H0e9m23ZWDGjFbMmTM0A5+JaLevKr9KdAn7aPY3Y97L8/Dtpd9imHVYosshojioqAjh++8tutqOGRPA+PFce0ZERNRf8QojEUWNLGv473/1nfxbLCpOO03fmw4iGrwK0grw9rlvY85zc+CXIwvdCceRhUfGbSwiGthKS0uxefNmqKoaUT8dHR2orq5GXl7ePs8Fg0FdfRoMhohqooGho0NFRUUI5eXqHqFfQnfgl9crweeTwLf/A5/ZrMJmk1FQoMBu7wr9ElBcLKKkxIDiYgkpKXytiYiIiIiIiIhIP5dLAaBjsaU/Aw8f9zfcIl2KK967Auuq10W9toFGVmW0BdvQFmyDt82Ln/DTfo81CAZYJAtSTCkYZhmGrKQs5KXmdQaIZZRgZOZIjM8eD0eaY0gGiNW01SS6hKg7WKhc2PwAPgewBsBet6yys7N1dWkwGHD66afj9NNPRygUwiuvvIJbbrkFHk+Uaz8Iv9+P+vp6uN1uFBYWQhC44aDZbMb06dPxzTffhN22vLw8BhURDQ45OTnIzMyEy+VCW1tbr8c8+2wW3G79G/CYzSpuuqlzY0Sfz4ctW7Zg+PDhyM3NHTK/40VRwCGHhLBsWfj3NNevj80ciEce0d/v6NEBzJ9vjWI1RETUn6mqCr/fD7/fjx07QnjzTWP3HK2q2ichnLACWuq+75m0QDJWfpsOADCZVKgqEKtf/XpDwWpq+mcoWKzDyvb3/RJFDdnZMmy2EPLzZdjtCgoKNBQVCSgtlTBqlBk5OeOHzDkcUazoCTwHdgfy6WEymeBwOFBVVbXfY95/Px133FEAv3//YwQCIs4/34zVqwOw2RiiQTSU9cdQMADY2rAV5y49F++f/z4kkXPLiQa7JUsC0HWfH8App4QA8HyGiIiov+LZPBFFzeef+9HYqG+Cw1FH+ZGSEv5ODUQ0+M0smIln5z+L85aeF5fxxmWNQ1ZSVlzGIqKBr2vXqO3bI9+9r76+HsnJyUhN7blrlN7AMZNJ/2Rk6h8URYPHI6O8XEFFhbIr8AuoqhLhdovweCQ0NEjgBfiBTxA6J5Ll5yu7Qr80FBYCxcXirtAvCbm5Bogi/18TEREREREREVHseDz6rkcLgob8fAlFxplYdfkqPLn6Sfzp8z+hNdga5QoHJ0VT0B5qR3uoHTXtNUDD/o81CAaYJTNSjClIt6QjOykbeSl5sKfZUTKsBCOHjcS47HEoySgZNAtTa9oHVyhYQA6gvqM+eh2uA/ApgPbeny4qKtLd9datW/HKK6/gzTffxPfffw9N03T3pYeqqli9ejVWr16Ne+65B0VFRTj//PNx5ZVXorCwMK619DezZs3SFQpWUVER/WKIBhFJklBcXIz29nZUVVVBluXu51wuI555Rl/QYpfLLqtDQUHP4ImGhgY0NTXBbrcjLS0tov4HimnTFCxbFn67zZtN8PtVWCzRO8f5/HM/1q/Xv5ntNdfIEEXeryciGiyCwSB8Ph8CgQACgQCCwSBkWYaiKPvM4du8OQn33lu6xyOpQPWHwFWTgb2zjNXdv7uCQRGNjQZkZSkx+TvoDd9qbJTg9wuwWGLzvs9m07cxanW1MWYhaoIgYOZMP9rbm3vM1RoxwojSUgtMJiP0Lqonor7Z8z1XOIzGyP5vpqeno729HY2NjT0eD4UE/PWveXjppeF96sftNmHhwjZ88YURkjQ4rsUSUXiCShDfur5NdBn79fGOj3HjxzfikZMeSXQpRBRjb7+tf+ODs89m1AgREVF/xt/URBQ1S5fqvzl1+unxnThIRAPLuRPPxaa6TfjLV3+J+VizC2fHfAwiGlwsFgvy8/OjsjO60+nEmDFjIEmdb9X8fn9EdVH/tnOngvLyztCvykoNTqeGqiqhewdJr1dCKMTJRYNBcrKC/Hy5O/DL4dBQWCjsCvwyoKhIgsXC15qIiIiIiIiIiBLL49F33z4zU4HR2HldWxIlXDPrGpw17ixc+99r8fqm16NZYtSIgogkYxL8sh+yqm/xWSIomoKOUAc6Qh2o7ajFtsZt+z1WFESYDWakmDoDxLKsWchNyYUjzYHijGKMzByJsVljMSJzRL/eJb6mLfGhYJ7WyO8BRb0vL4D3AbgOfFhJSUlY3YZCISxduhSPPfYYvv22fy1mqqysxL333osHHngAZ555Jm6//XZMmDAh0WUlxIgRI3S1czqdUa6EaHBKTk7G2LFjUVdXh5qazt9D999vQyCgf5G3wxHAxRf3HgqpqiqcTiesViscDseg3wBs5kx938dgUMS6dX4cfnj05kI8+KC+UFwAyMqScckl+jbRJSKi+FNVFT6frzv0KxgMIhQKdQd+hRuC3Gv4Vt0koKkEyCzv+XhSI2BuAQKdAaDV1SZkZfn0/lXCr6uPqquNKC7WF951MHl5+uoKhUQ0NkrIygr/2o0oijAYDDAajTAajTCbzTCbzbBard3nWxMmAJdfrqs0IoqQ3kAwIDrzo/Pz89HR0dE9T7u2VsL11zuwfn1yWP0sX56CP/yhCY8/Pizimoho4FnrWQufHJvzumh5dOWjmJAzAZdNuyzRpRBRjNTXK1i5Ut/5UUFBEIceyk0PiIiI+rP+O6OLiAYUVdXw/vv6JqNIkoYFCxhaQUQHdsfRd2BT3SYs/WlpTMeZUzQnpv0T0eCUmZmJtrY2tLS0RNSPpmnYsWMHRo0aBVEU0draqruvlJSUiGqhyIRCGpzOEMrLFVRUqKis1OByCbs+DPB4JLS0GADo35GD+geDQUNuroyCAhkFBWqPnSNLSgwoLZUwbJgIQeDNEiIiIiIiIiIi6t+8Xn2hYNnZCvaeglSQVoAlZy/BB9s+wG8/+C0qmisiLzCKpuZNxZpfr+n+urqtGpvqNmFbwzaUNZXBudMJb5sXdR11aPY1ozXYCp/sG1ABYqqmwif74JN9qOuow3Zs3++xXQFiScYkpFvSMdw6HHkpebCn2VGcUYwRw0ZgbNZYjMocBZMU36CS6rbquI7Xm//3xf9Dx4QO/HH2H2E1Rhb+4W51R1aMD8DnANYAOMh/WUEQUFxc3KduVVXFCy+8gNtvvx2VlZWR1RhjiqJgyZIlWLp0KX71q1/h/vvvR3Z2dqLLiqvS0lJd7SK590g0FGVnZyMzMxMrVnixcmV4C8P3dsstXpjNB/7B7fP5sHXrVgwfPhy5ubkQRf0hZP3ZrFn6p66vWqXg8MOjU8emTQH897/6f69ffrkfVivnZRAR9QeKoqK6OoQdO4IoK5N3zdMSMXt2C2bMaIOq6g+B3J+srBAMBg2KIvR8Yst84PBHez4mALCtBSqOAQB4vUZMnBib8Ai94VtAZ139LRQM6Kxr71AwQRBgMBggSRKMRiNMJlN34JfZbB6051FEg0kk1yiSkpKiUkNpaSk2b96MVassuOEGBxoa9G3q+re/DcPMmU244AIGgxENNV9VfpXoEvrkqvevwujho7lejmiQev11P2RZ3/XrU04JQhQH9yYVREREAx1DwYgoKlatCsDt1hfsNWuWH1lZ3DGNiA5MFEQ8f/rz2NG0A+ur18dsnNlFs2PWNxENbna7Hdu2bUMopH8CC9C5A/s333hx5JEF6Ojo0N0PQ8FiR1U1NDaqKCsL7Qr8UuF0AlVVnYFfXq8BNTUSFIUXxweD9HQZ+fkKCgoUOBwqHA6gsFBASYkBJSUGOBwSJMkIQN+EECIiIiIiIiIiov6iWmf2Uk7O/hfXnjzqZGy8aiPu+uouPPjNg/0mVCs3JbfH13kpechLycOxJccetG19Rz021W7C1sat3QFinlYP6trr0ORv6gwQC/kQUiO7XxBPewaINfgaUNZUtt9jRUGEyWDqDBAzpyPTmonc5NzdAWKZnQFio4ePhkWKfIO4mvaaiPuIlKIquHvZ3Xj5x5fxxMlP4KSRJ+nuy90SQSjYdwA+BdDH20d5eXmwWA7+GqxduxaXXXYZ1q9fr7+2BFBVFc8++yzeffddPP744zjvvPMSXVLcDB8+XFe79vb2KFdCNPgZDAYceaQd69d34Pe/l/HRR2lh93H00S2YM6etz8c3NDSgqakJdrsdaWnhj9fflZYakZkpo7Ex/Cnsa9Yc/Ji+evBBGZqmb2Mnq1XFtddyI1wionhpbZWxfbsfZWUyKipUVFUJcLtFeDwGeDxGVFcb4febAfT8uW4yBTBtWmSbfO6PJAHZ2SFUV+81P8wzs/cGjq97hILFSkqKitRUBa2t4W9UWV0du7qys+XeQ9T2YrGoyMsLwWYLIT9fgd2uorg4Cbm5abBYLLBarZAkLoMjGgxef13BkiUOjBrlx+jRnR8FBSH0JdMvWu+TRFFEfn4Jbr3VoDsQrMtvf5uGSZPaMHky524TDSXLnMsSXUKfhNQQznrtLKy7Yh3safZEl0NEUfbWWwd+n3UgZ50V/ntHIiIiii9eDSWiqFiyRP/E3dNOU6JYCRENZsmmZLxz7juY+fTMmEz+LkwvRGF6YdT7JaKhQRRFjBgxAlu2bIGmHWRr9v2QZeDRR/Pw4ouZePvtnRg5MqCrn66d8Egfv19FRYWM8nJlV+iXBpdLgMslwO02wOOR0NFhAMDv8UBnNKrIz+8K/VLhcGgoKhJQVNQV+iUhLU0CL58QEREREREREdFQUFPThxVXvcjN3X8oGAAkGZNwz3H34BeH/AK/ef83/WKRRG5y7sEP2o+spCzMKZ6DOcUH31G9ydeETXWbsLWhZ4BYbXstGv2NaA20wif7EFJC0KDv3kK8qZoKv+yHX/aj0deI8uby/R4rQOgOEEszp2G4dThyknNQkFaAovQijMwciTFZYzB2+FgkmZJ67aM/hIJ1KWsqw89f/DnOHn82Hj3pUeSn5ofdh6fVE3ab8RnjsemvmwBXeO1KSkoO+Lyqqrj99ttx7733QlGiP3cnKSkJSUlJsFqtCIVC8Pl8aGtri/pY9fX1OP/88/Hll1/i8ccfh8k0+DdtSU7Wt+N7JBsSEQ11o0cn4cMPgddfb8ZNN1lQXt63QCizWcXNN3vDHk9VVTidTlitVjgcjkH1s00UBRxySBBffhn+Pdj166Nzj762Vsarr+rfyPbcczuQk8PF/kRE0aCqKgKBAHw+HwKBAILBIEKhEGRZhqIo0DQNV11VhGXLUsPuO5YhVwBgs/UWCjaj94MnvgIs+1Nc6srLC/W7UDCDobOuUEhAXl4I+fnyrrlaKgoLBZSWShgxwgibzQSDYd+ANyIafL7+WsInn6Tjk0/Sux+zWhWMGhXoERQ2apQf6ek9rz9H8/1RRoYVzzyzE/PnGyHL+gM1WlsNWLhQwurV8q45p0Q02CmqguXO5Ykuo8/qO+px//L78beT/5boUogoitraVHz5pb7NCzIzZRx7LDc+ICIi6u94lYGIouL99/XfBFq4kDdtiKjvHOkOvHXuWzj6uaMRUPSF5ezP7MLZUe2PiIYeSZJQWFiIysrKsNvW1xtw442FWLOmcxL/RRcl4fnnNTgc+uqg3qmqhupqZdfOkQoqKzVUVQFVVWL3DpL19RI0bfBMqh7KsrLkHpPIHA6gqEhAcbEBpaUS8vIMMBj4WhMREREREREREQGRhIL1LcxqQs4EfHnRl3j+++dxw8c3oMHXoGu8aIgkFCwcw6zDcEThETii8IiDHtsaaMVPdT9hS8MW7GjcgcqWSnhadgWI+RrREmxBR6hjQAWIadAQUAIIKAE0+ZtQuXP/90+6AsSsRivSzGnItGYiJykHG2o3xLHivlmyaQk+2v4R7j72blw18yoYxL4vtt7RtKPPxw6zDMM9x92DPE8eznCdEXadY8eO3e9zDQ0NOOecc/DZZ5+F3e/ejEYjjjzySBxxxBGYPn06xowZA4fDgZSUfcNSFEWB1+tFZWUl1q1bh7Vr1+KTTz6B2+2OuI6nnnoKGzduxHvvvYf09PSDNxjALBZ9izT8fn+UKyEaehYsyMAppyj4858b8fjj6fD5Dvw74NJL62C3h3SP5/P5sHXrVmRmZiIvLw+iqO98rb+ZNk3Fl1+G327zZhN8PhVWa2Tfh0cf9cPn0xfqJQgabrghtmEuRESDSVdAsN/vRyAQQCgUQigUgqIoUNUDh4x3sdmCusb2emM7Jygvr5ff8Y0jAUUCDHttuD58e/ensQ8rC2LbtvDfM0Tj+yUIAkRRhMFggNFohMlkgtlshtVqRVmZASaTAQB/jxIRsHnzvj8LfD4DNmxIwoYNPTcPyM0NdQeFzZnTgYkTo1vLySen409/asQdd2RG1M/WrRZcc00jFi/OGDTv3Yho/36s/RE7AzsTXUZY+uP9FiKKzDvv+OH3977x0sGceGIAkqRvExoiIiKKH64UJ6KIbdoUwJYt+oK9Jk/2o7iYacJEFJ7D7Idh0WmLcMGbF0S1X4aCEVE0pKamIjs7G3V1dX1us369FddfX4ja2t03uevqjDjllNHIywvtseNV5w5YRUUBGA8wN8ZsHrqhq21tKsrLZZSXK7tCvwCXS4DL1Rn45fVKCAQk8O3wwGe1Kt2BX3a7CodDQ2GhgOJiEcXFIkpKjLBa+VoTERERERERERH1VV2dvoVKNpvQ52MFQcBFUy7CvNHzcNMnN2Hx+sW6xoxUbkp8QsHCkWpOxaH2Q3Go/dCDHtsebMfm+s27A8R2VsLT6kFNWw0afA1oCXQGiAWV4IAMEGv2N8O505nokg6oNdiKaz66Bs9//zz+eeo/MSN/Rp/avfHTGwc9RoCAy6ZdhnuOuwdZSVm45557dNU4derUXh93u9044YQTsGnTJl39djn88MNx5ZVXYv78+X0O4TIYDLDb7bDb7TjiiN1hed999x0WL16M//znP9i5U/9CquXLl+OYY47BJ598guHDh+vup7/TG+6lN0yMiHqyWg24775MXHqpD9dcE8JHH6X1epzdHsQll9RHZczGxkY0NzejoKBgUAQfzpih77xTlkV8950fRxyh/+eZz6fi6af1tz/pJB/Gj9e30I6IaLAJBlWUlflRWRnCIYe0IxgMIhQKQZZlqKoKTYvO+1GbTV/Aptcb6/CtXurSRKAjC0it7vm4FACsjYAvMzF19UFf6uoK/JIkCUajEWazGRaLBVarFSYTN2Ykor5RFBVbt/Z9nnNNjRE1NUYsX54Ko7EJv/pV9Gv6058ysGZNC957r/f3d31x6KFtuPjiGrhcbSgsLIxidUTUH31V+VWiSwjbxOwopyoSUcK9+ab+991nntn3e/xERESUOFwZS0QRW7JEBqAveGLePPngBxER9eKXk36JjbUbcd/X90WtzzlFc6LWFxENbbm5uWhvb0dHR8cBj9M04JVXMvHAA3mQ5X0nvWqaAK/XBK/XhC+/3H2j2WhUUVoa6A4K6/zTj+xsGYIAJCUNzgmosqzB5eoM/KqsVFFZqcHp1FBVJcLtFuHxSGhulgBwgtFAJ4oacnNl2GwK7HZlV+AXUFQkoqhIRGmphKwsA0Rx6AbgERERERERERERRZOmaairM+hqm58f/oTh4UnD8cz8Z3DRlItw5ftXYlNdZOFE4cpN7n+hYOFINiVjev50TM+fftBj/bIfW+q3YHPD5s4AseZKuFvdqG6rRqOvETsDO7sDxFRNjUP1g8ta71oc+vSh+O3M3+KuY+9CumX/QS0/1PwAb5v3gP3NyJ+BJ05+AocW7A6HW7t2ra7apk2bts9jXq8Xc+bMQVlZma4+AeDII4/Efffd1yPUK1LTpk3DtGnTcO+99+Khhx7CQw89hLa2Nl19rVu3DvPmzcNnn30Gq9UatRr7k/b2dl3tBus9RKJEGTXKig8/tGLp0mbceKMV5eU9713ecosXZnP0wjlVVUVVVRXq6upQWFg4oIM3Dj9cfxjKqlUKIvkV9MwzPtTXJ+tuf+ON+gLNiIgGGkVRUVsbwvbtQZSXy6is1HZtzGiAxyOhulpCba0Rqtp5jrl2rQsmU2xCqfPy9IVcVVcboWmAEKN1zvsN39p2MjCtlxB023dA2dyYh4Lp+X6lp8tISlIhSRIMBkN34FdX6JfFYoEo8ncgEUWH0xlAU5O+azaHHBLlYnYxGET85z9JmDnTj23bwg8RvvjiOlxzTQ0kCWhpaUFjYyMyMzNjUCkR9RdfOQdWKNjUvKn4y7F/SXQZRBRFwaCGjz/Wt/lBcrKCU07hRjJEREQDAUPBiChi77yjb2IwACxcOHAnphBR4t193N3YVL8J72x5J+K+spKyMDZrbBSqIiLqVFxcjC1btkBRlF6f9/kE3HlnAd57LyPsvkMhEVu2WLFlS8+b4hkZMkaN8uPttwfmjg1NTQrKyrpCv7TuyWRutwi324CaGiNk2QggthOjKPbS0hTYbDLsdgV2u7Yr9EtAcbGIkhIDioqMMBr5WhMREREREREREcXLzp0qfD599/5tNv3XpGcXzca6K9bhkRWP4M9f/hk+2ae7r3DkpgzsULBwWCQLJudNxuS8yQc9NigHsbVxK7bUb8H2xu2o2FkBd4sbNW01qPfVY6e/M0AsoAQYILYHDRr+vvrveP2n1/HoiY9i4YSFEPZada6oCi5/9/L99pFuTscDxz+AS6deCoPY8/+inlAwURQxeXLP17ylpQU///nPdQeCpaam4uGHH8Zll12mq31fx7jjjjtw6aWX4uKLL8Znn32mq58VK1bgwgsvxJIlS6JcYf/Q0NCgqx1DwYhi46yzMnDyyQruvLMRjz2WDp/PgKOPbsFRR7XGZDy/34+tW7ciMzMTeXl5AzKgo6hIQlaWjPr68Kexr1mjf1xV1fD44/qnzk+d6scxx3CxHBENDrIsw+fzwe/3IxgMIhgMoqpKwx//mAOPR4LXa4TPZ0ZfNw6vqTHC4QjGpFa9oWB+v4jmZgOGDet9/l6k9lvXjhMOGArW0GBEMCjELUTNaFRhs4Vgs8koKJCRn6/C4dBQXCxixAgjRo40Iz1dApC264OIKLZWrw4A0BcKNm1a7JbCpqdLeO01P+bMUdDa2rdr5UlJCu66y43jj2/p8bjH40FSUhIsFr5/IBqMNE3DsspliS7jgCySBTPzZ+LIwiNxVNFROH7E8RCFgXcNiYj27+OP/Whp0XdOdeyxAVitvGdEREQ0EDAUjIgiUlUVwrp1fbvZt7cRIwI45BB9bYmIAEAURPznjP/giMVH4IfaHyLq68jCI/eZmE1EFAlRFFFaWopt27bt81xVlQnXXuvA1q3R3Z28uVnC5s1W5OT0v59nwaCGiorQrsAvFU6nBqdT2BX61bmDZFubAYD+wFnqHyRJhc0mIz9fgd2udgd+FRUJKC42oKREwrBhfK2JiIiIiIiIiIj6E7dbgd5rdnZ7ZNf6TAYTbj7yZpwz8Rxc/cHVeH/b+xH11xd5KXkxH2MgMkkmTMyZiIk5Ew96rKzK2N6wHZsbNmN7Q2eAmKvF1SNArC3YNqQCxKrbqnHu0nNx62e34s9H/xmH2Q9DbkouUk2peGL1E1jpXtlru+m26fjvL/+L4UnD93muvr4elZWVYdcyevRoJCcn93jskksuwffffx92XwAwcuRIfPDBBxg1apSu9uFyOBz45JNPcMcdd+DOO+/U1cfrr7+Ov//977j66qujXF3iRRLsRkSxYbUacO+9mbjkEh+uvz6E3/zGG/MxGxsb0dzcDIvFjtLSgRXgIYoCDjkkiC++CH8a+/ff6z/3fOstH7Zt07/Y7brrYhMqQ0QUbaqqIhgM9gj9CoVCkGUZiqJA03oPozIYDFi+PEXXmNXVsQsFs9n0hYIBnXXFKhRsv3V5p/X+eP6q7k+jHaImCAIMBgMkScLRRwtYtKgJJSUGjBhhQkGBCZLU94A3IqJY27BB37VCSVIxdWpswyumTEnB3/7WhIsuGnbQY0tL/XjkESdKS3v/eV5WVoaxY8cOyCBnIjqwbY3bUNNek+gyeshOysYRhUfgSMeROKLwCEyzTYPJYEp0WUQUQ0uX6r//esYZUSyEiIiIYoqhYEQUkSVLgtA0o662p54aAm8uEVGkUs2peOe8dzDz6Zmo76jX3c/swtlRrIqIqJPZbIbdbofL5ep+7MsvU3HrrfY+7yIVrtGj/TAYkg9+YBSpqoa6OgVlZTIqKlRUVmpwOoGqKuwK/DKgtlaCpvHG0mCQmSkjP19GQUFn4JfDARQVYVfglwEFBRIMvIlIREREREREREQ0oLhc+hfIFhRE53p3cUYx3j3vXby5+U1c8+E1cLe6o9Jvb3KTc2PW91AhiRLGZo/F2OyxBz1WVVWUN5fjp7qfsK1xGyqaK1DVUtUZINZRj+ZAc2eAmByAog38sI3y5nJc+NaF3V+bDWYElECvxx5mPwzfXPLNfjew+vLLL3XVcOihh/b4+sknn8TSpUt19TV16lR88sknGD5839CyWBIEAX/+85/hcDjw61//er/BBQdyww034MQTT4xbmFm87NixQ1c7u90e5UqIaG+jRlnxzjtW1NUFUFtbq+tnVzi2bDHivPNS8ItfNOH++5ORlTVw7tNOnariiy/Cb7dliwkdHSqSksJfWP/ww/o3WCssDOK882IbQEBE1Ff/n737jo+izvsA/tnZ2Zoe0nbTA4SOAgKCigXBLkrRUwTRQyx3z+NZzzu98zwfy6mnnHfnqadXLKigICgqzYaNKhZqCIS0TSM9W2dnnj9iAiFLkp1tKZ/368UL9rfz/c2XQLKzs/P7jCRJcDgccDgccLlc7YFfkiRBltUvCo6N9cJk8sLh8P99vs2mbj1BT6SkeKDRKFAU/3+O22w6jBjhDEFXQFraSUK96gYD7ihA39JxfPhqQCMDigCbreehYBqNBoIgQKvVQqfTQa/XQ6/Xw2g0wmQyQRQ7LgsbMgQ4/XQ1fyMiovD48Ud155Pz8twwGo1B7qaz669PwNatdXjuuZMHg82c2YA//rEMUVEnf92VZRmHDx/G4MGDQ9EmEUXQ50c+j3QLGJ40HGdknoEzs87EGZlnYEjikJN+zkBE/Y/Xq+DDD9WdC9bpZFxxBdf1ExER9RUMBSOigKxerf6OBXPn8kcQEQVHTnwOVl29Cuf99zx4ZHV3BGMoGBGFSnx8PJqbm3H0aD2efz4Fzz+fEtL9DR+u/s6IJ2O3yzh8WMLhw14UFckoKVFQXKxBaamAsjItbDYRTqcIvsXs+4xGGRaLBKvVi4wMGVlZCrKyNMjJEZCbq0VOjoioKP5bExERERERERER9Tc2m7rACpNJRnx88G6CodFoMHvEbMzIm4EHP30Qf9nyF8iK+gXNvoiCiATTyRd0UfAJgoDBiYMxOLH7BXCyLKOksQR7qvdgzf41eH7H82HoMLROFggWo4/B2/Pe7nKhzsaNG1Xtc8aMGe1/Li0txa9//WtV8+Tn52PdunVhDwQ73uLFi9Hc3Iw77rjD71qXy4Vf/OIXWL9+fQg6i5wtW7aoqsvJyQluI0R0UsnJyUhMTERpaSmamppCsg9FAR591AqXS8C//pWA997z4MEH63DLLXHQatVf1xkuEyeq61GSBOzY4cRZZ/kXBrBlixNffmlStU8AuO02D0Sx74SuEVHf5fHIOHLEhcJCDw4dklBcDJSVCSgv16K8XMR55zXilluqQ7JvjQawWDw4dKh3hYLpdEBysoSqKv/3Ecq+YmNlmM1e2O0nfL0UofXXibQSMP1eYONTHfpqC/wSRbE99MtoNMJsNkMURQhC739dJyLyx4ED6o6rhw1zAwh9KBgALF0ah127mvHVV9EdxrVaBXfcUYGFC4+iJ9k7DocDNpsNFoslRJ0SUSRsLt4c1v3ptXpMtE5sDwGbkjkFSeaksPZARL3Ll1+6UFmp7rjozDOdSEjgzQ+IiIj6Cq7iJSLVamu9+OordYnAFosHU6cyTZiIgufMrDPx/KXP4+drfu53bZQuCuMs40LQFRFRq4yMDLz4oj7kgWAAMGqUf4ujvF4F5eVtgV9eHDnSGvhVUqJBebmA8nIRR4+KAHhxa1+n0ShITm4L/PIiI6M18Cs7uzX0Ky9PREqKFoLAf2siIiIiIiIiIqKBpqxMXfBWcrKEUJw/jjHE4OkLnsaCsQtw8/s3Y1v5tqDNnRKVAkHDBbW9lSAIyI7PRnZ8NqpaqvpFKNjJ/On8PyE9Nr3LbdSGgp1//vntf77zzjvR3Nzs9xxmsxkrV65EcnKyqh6C6Ve/+hV27tyJV1991e/aDRs24KOPPsKFF14Ygs7Cz+VyYceOHapqc3Nzg9wNEXVFq9UiOzsbdrsdJSUl8HiCe4OvDz+Mw/btUe2Pq6t1+OUvE/Df/7bgL3+RMWVKTFD3F2xTpqgPadm61Yuz/Lz/41NPeVXvLzbWi9tuUx8oRkR0PLfbDYfDga1bJWzb1nqNVlmZFuXlWthsOlRV6SBJJgC+f+5kZ/sOHQ6W1lAw/xcWhzJ8C2jtS00oWEVF6PpqC1ErLPQRoia4fRed+Wc8fMOZuH7aDFitVgZ+EdGA43bLOHhQ3VqykSOlIHdzcjqdgOXLRUya5EZ5eev578RECU89VYKJE1v8muvo0aOIiopCbGxsKFologj4/MjnYdlPgjEB71/7PiZYJsAgch0uER2zYoX646JZs9TdLIyIiIgig6FgRKTaO+84IUlR3W/ow0UXuSAIof3wj4gGnhvH3YjdVbvx9DdP+1U3NXMqRIGHRUQUWr/+dSJWrbLjxx9De0eF8eM7/jxraPDi0KHW0K8jRxSUlCgoKdGgtFRAWZkWNpsISdIB4LFZXxcV5UV6elvol4LMTKU98Cs3V4usLBFGI/+tiYiIiIiIiIiIqLOKCnV1KSnqwxV6YpxlHL7++dd4cceL+M2m36DB1RDwnKlRqUHojMKhsqUy0i2EjKgRsXj84i63KSwsxMGDB/2ee8yYMUhLSwMAfP/993j77bdV9fjkk09i1KhRqmpD4R//+Ac+//xzHDlyxO/ahx9+uN+Egm3cuBEul7ogiCFDhgS5GyLqCbPZjGHDhqG6uhpVVVVQlMAXXTU3C3jqqTSfz23bFoWzzlKwcGE9nnjCjKSk3nlTqOxsHZKTPaiu9v/z6+3b/du+qMiDd99Vf63GDTc4EBMTrbqeiAYOr9cLp9MJh8MBl8sFt9sNj8cDr9cLWZY7vAa8/noa/vvfQX7vw2YL7c/1tDR1IZahDN8CWvv67jv/60L99Tr77GaMHu1CerqMzEwFOTkC9KnFmPP5yY/Zl5YuxsKYnRCErJD2RkTUG+3aZYfHo+7Y+pRTwhukmJ5uxGuvNeLCC0WMGOHEn/9cjNRUdQEcxcXFyM/Ph17fO9+fEVHPlTSUoKi+KKhzDk0cioLagk7jTe4mTM2cGtR9EVH/sHatumMKjUbB3LkMGSQiIupLmH5BRKq9+65Gde2cOT7uiENEFARPzHgCe2v24sODH/a45qwsP28dSUSkQlSUiBUr3Jg6VUJdXejeiv33vwKefNL+0x0kRTQ2agHw2Kuv02oVpKZKSE+XkJEhIyNDQVYWkJ3dGviVlyciIUGARsMT9EREREREREREROS/igp1n/+npIT+TsJaQYtbJ96KK0dcibvW34VlPywLaL7UaIaC9RUVzSrT6voASZGw6fAmXDjk5EFVb775pqq5Z8yY0f7nRx99VFX4zCmnnIJbbrlF1f5DJSoqCk8++SSuuuoqv2u/+uorbN26FZMmTQpBZ+Gl9v+FyWTC2LFjg9wNEfkjOTkZgwYNQklJCZqamgKa6/nnU7oM0/J6Nfj3v+Px3nse/P73dbjttjhoteFdQN8TY8d6sGmT/yEy333n3zUXf/6z66ebpflPp5Nx5538HJ6IAFmW4Xa74XQ64XQ64Xa74Xa7IUkSvF6v38fdFotbVR/hCN9SI9R9ReLrpdFooNVqIYoidDod9Ho9DAYDTCYTDAYDBEHAyy93rntuW9fnLY46jmLeinn4fNHnMIh8jSGigWXnTnWvMwBw2mnh/5l57rmxeOONSuTm1kCnC+xc+KFDh5Cfnw9B6H3vzYio53bYdgRUrxN0OM16Gs7IPANnZp2JqZlTkRyVjMQ/JaLOWddhW0mWsL18O06znhbQPomof9m1y4XDh9UdF02Y4ER6uinIHREREVEoMRSMiFRpaZHxySdGVbXx8RJmzFBXS0TUHa2gxRtz3sCUl6dgb83eHtWclc1QMKKBSlEAWVbg9QKSdOx3WT75Y69Xgder+en3Y+OyjJ+eP1Zz/OO2bRYtasbSpXFQFPUBq1154w3enbYvio+XYLVKsFplZGbKyMwEsrM1yM3VIjdXi4wMEaKoAxDaC+iIiIiIiIiIiIhoYKqqUrcQKS1NDnInXewrOg2vz34di05ZhNs+uA0Haw+qmic1iqFgfUVlS2WkW/BbjD4GI5JHYJJlEjSCBpUtldhathVF9UWdtn1xx4shCQW7/PLLAQA1NTVYtWqVqjkefvjhXrlAcd68eRg3bhy+/fZbv2tffvnlPh8KVldXh3fffVdV7WmnnQadjp8zEUWaIAjIzs6Gw+FAcXExPB7/F8QfPGjA668P6tG2NTU6/O//JuC//23Bs8/KmDo1xu/9hdL48TI2bfK/rqBAD7tdhtnc/WtVfb0Xr7yifqHbFVc4kJUVpbqeiPqOpiYJBQVOHDok4cgRGSUlGixcWAOj0QNZDv57X7XhW9XVIjweIFSHdhaLur5sNh0UBdCE5pI41V8vm+3kXyhBENoDv3Q6HQwGA4xGI0wmE0RR/VKr9YXru91ma9lW3LX+Lvzt4r+p3g8RUV/0/ffq6mJjJeTlRSZIcfbsVBw40AC3W11AZRtJklBcXIycnJzgNEZEEeFvGHCiKRFTM6fijMwzcEbmGTjNehpMus7nKUanjMbm4s2dxl///nWGghFRB8uXewCoOy66/HJvcJshIiKikGMoGBGp8v77TjgcZlW1M2a4oNPxIgkiCp04Yxzeu+Y9THppEmodtV1uqxN0mJw+OUydEXVPlk8MoEKn8KnOIVXwGWLlK5DqZCFWJwZdHT/vic+37gvtvyvKscder+ankC3NcTUn7qu1puN+TtxO0/7nY79rOj0+cfvWX5qTjh1f0/pnDYC2K5FCdEVSJ+qOoajv0utlWCwSrFYvMjJkZGYqyM4GsrIE5OWJyM0VERMjgm/RiYiIiIiIiIiIKFLUhoKlRiBfa8bgGfjh1h/w+BeP47EvHoPb699iLIaC9R2VzX0jFEwURFyWfxkWj1+MCwZfAK2g7fD8UftRWJ+2dvq/umrfKpQ1liE9Nr3TnN9//z1+/PFHv3vJzMzEtGnTAADLli1TtVhxyJAhuOSSS/yuC5c77rgDCxcu9LtuxYoVeO6556DVarvfuJd69tln0dzcrKp2ypQpQe6GiAJhMpkwbNgwVFdXo6qqqscLShUFePRRCyTJv+sbduyIwrRpChYsqMcTT5iRnKxX03bQnXaaumNQSdJg+3YXpk3r/ua0f/+7A42N6m+u9utf83N8ov5AkmQcOeJCYaEbRUUyiosVlJQIKCvTwmYTUVGhQ22tCKDjz4tp02qQnx+aMGy14VuyrEF1tQ5Wq7r67qjty27XorFRQFxcZL9eGo2C5GQJFosHFouErCwvYmJiYTDoYTQaYTQaodfrQxaC7PF68PHhj3u07d+3/R1TMqZg/tj5IemFiKg32rdP3fF1fr4LWm3k1qHl5eVh//79focBnai5uRnV1dVITk4OUmdEFG7n550PS7QFtmabz+eHJA5pDwA7I+sMDE8aDkHT/bHnBYMv8BkK9knRJwH3TET9y/vvqz9fedVVveO8MBEREfUcP6kkIlVWrlR/InP27HAFbhDRQDY4cTDeueodzHh1BiRZOul2J7vLAh3TGvB0fADViY9bx04MqPIVYnV8SFVPHsuyxue8nUOqNB3m6D606sRAqo5hVB2Dp7oOrTr+8bGgq47PnSyQqjUcS9PpcSu+XhL1FUlJEtLTJaSnyz+FfgHZ2Rrk5mqRlyciLU0LQeDJcyIiIiIiIiIiIuq9qqvVheRYrZH5PMMoGvGHc/6Aa8dci9vW3oZNhzf1uDY1mqFgfUVlS+8OBRuSOASLxy3G9adej7TotJNuN8g8CHNHzsWyH5Z1em7av6dh///shyh0vIxv6dKlqnq69tprodG0fl+uXr1a1RwLFiwI2QL5YJg7dy5uueUW2O12v+rq6uqwZcsWTJ06NUSdhVZNTQ3+8pe/qK6fOXNmELshomBJTk7GoEGDUFJSgqampm63/+ijOGzbpi7gyuvV4D//icfZZx/CjBkGWCyWiP+8P/10neraLVsk/JSDeVIej4J//EP9Z/XTpjkwYQKvKyPqC9xuN5xOJ5xOJ1wuFzweDzweD7xeL1wuBZMnj4DHYwLg3/d0RYUO+fmukPSsNnwLAGy23hcKBgAVFXrExTmD2M0xbX1FRXlhtXrab9CYnu5FVhaQkyNgyBA98vIMMBp1AI5/jUkISU++fF36NZrc3b+mt1ny/hKcknYKRqeMDmFXRES9x+LFVZg8uQkFBcaffhngcHR/bnr48NC87vWUKIrIycnB4cOHA56rsrISZrMZUVGRCzkjIvViDDFYd9063L3hbhQcLUBKVEp7ANgZmWeo/gxq4SkL8cAnD3QaL6gtCLRlIupHCgvd+OGH7m+U4Mvw4S4MG2YIckdEREQUagwFIyK/eTwK1q9Xd/BvMsm47DJ1bzqIiNp0DqXy/ThDmorfjf8LHtz+i5POlYnJ+PhjZ3tNVyFVbcFSHcOkWoOpWrdvC3w6NnZ8GNWxUKoTg6Xawq06hlQd+71jiNXJQqp8PfYdYHVsvC2Q6tjYsWCr1vk0OBZOxZAqIhp4TCYZVqvnuMAvBdnZGmRnC8jJEZCbq4PJJIJvr4mIiIiIiIiIiKiv8ngU1NaqCwWzWCL7+VH+oHxsWLABy35YhjvX34mqlqpua1KjGArWV1Q2975QMIPWgLkj52Lx+MU4O/vs9gCu7iwZv8RnKNih+kOY9eYsLJ+7HFH61oWAlZWVWLas87Y9MX/+fABAS0sLvvjiC1VzzJ49W1VduJhMJlx44YVYuXKl37Uff/xxnw0Fu+uuu1BXV6eqNiUlBeecc05wGyKioBEEAdnZ2XA4HCguLobH43uxe0uLgKeeOnkIZU9cckk9TjvNjro6OxoaGpCeno64uLiA5gxEVpYOKSkeVFX5Hw62fXv3r8HLltlRVqZ+of1dd6kuJaIgkmUZDoejPfDL7XbD4/FAkiTIsgxF6fpG1zodEBvrxdGj/gch2myhuwlgfLwXBoMMl0tNX+pDFbuTmhpYWNmwYYGHggmCAK1WC1EUodfrYTAYkJZmQFWVG8nJegDqzmGEw/rC9X5tb/fYMWf5HGy7aRtiDbEh6oqIqHdwu90YO9aBsWMd7WOyDJSV6XHggAEHDhjbw8KOHNEfd6NtYNQoORItdxAVFYXU1FRUVgZ+zrKoqAjDhg2DKPLaY6K+aEzqGKy7bl1Q58yMy4RRNMIpdTyetnvsqGiu6PLGJEQ0cKxY4QGg7lzFZZd5ADAUjIiIqK/hmQMi8tumTU7U16u7+9k55zgRFWUOckdEkSXLyk+BT0p7IFPbn9uCpY5/fGKQ1PEhVh1/HRs7MaCq7XlZPn4OnLDNsed9BVK1PT4+NKotzOrEkKqO2x0LlvIVXtVx+65DqjqGT7XVaU4Y05xQ729I1W3ARfuAyX/1+ezyf6Vi+VcMKyQiGogEQUFqautdIzMyvMjIUJCVhfbAr7w8EYMGaSEIPPFNRERERERERERE/Vd5uQRFUbeg2Gr1f/FysGk0GswfOx8XD70Yv930W7yw4wUoOPmicLV3aafwkmQJNfaaSLfRbkzKGNw0/ibMHzsfiaZEv+unZU+DBhqf/zc/KPgA01+ZjveueQ/JUcl45pln4HK5/N7HuHHjMGbMGADAzp074Xa7/Z4jOTkZo0eP9rsu3M4991xVoWDbt28PQTeht2bNGrzyyiuq62fPng2ttvcGJxBRK5PJhGHDhqGmpgaVlZWdQm6efz5ZVXhWm6goL+66q6L9sSzLKCkpQXV1NbKysqDXhy74pitjx3qwcaP/f6/vv+/6EnhZVvDMM+p/9g0f7sKll/KaMqJQ83plVFV5UFfnRGKio0Pgl9frhSwHJwAkLc2Do0f9/1kTyvAtjQawWDwoKvL/uqSKitD1pdcrGDRI3derJ31pNBpotVpotVro9fr20C+j0Qij0QhBiPx5hkCsK/Q/HOLA0QO4cfWNWDFvRY+Dp4mI+qKmpqZOY4IAZGa6kZnpxvTpx553ODQ4dKg1KOzAASOmTQvda58/kpOT0dLSgubm5oDmURQFhw8fxtChQ4PUGRH1B0MShuDH6h87jb/63au454x7ItAREfU2a9aof888b17vOJ4iIiIi/zAUjIj89s476j9gveKKru/GRMHRGujUVSBV65+Pf3x8+JTvkKquH0uS8lPAk8bnvJ1DqjTtNW3hVCcPrdJ0mKdjCBU6hVidPJCqbdvjg640x83RMbzKdyBV59CqY3cg4Qexvda6p4ERK4DYis7P8Z+NiKjfio31wmqVkJ7eGviVmakgO1uDnBwBOTlaZGfroNPpAPDkNhEREREREREREQ1cZWVeqD1PmpHRe0JmEkwJ+Mel/8D1p16PW96/Bd9VftdpG0EjYEzKmAh0R/6qsdd0Ge4WTr87+3d46JaHAl6crdFoOgW8tNlStgVn/OsM/PPsf2Lp0qWq5r/rrrva/7xz505Vc0yePFlVXbip7fO77zr/XOjt9u/fjwULFgQ0x/z584PUDRGFQ1JSEhITE1FSUtK+aL6w0IDXXksKaN7bbqtCcrLUadzpdOLAgQNISEiAxWIJexjLhAkyNm70v66gQI+WFhlRUb773bTJie++U3fzWwD43/+VeAMxoiBoaZFw8KAThw5JKCqSUVKiQWmpgPJyLWw2ETabDg6HAWef7cLf/ha6UGCLxYPdu/2vC2UoGNAaVtbbQsGA1q+Xv6Fger2MlhYBgiBAFEWIogidTtce9mUymSCK/Xv5Uo29BjvKd6iqfWfvO3jmm2dw55Q7g9wVEVHvYbfbe7ytyaRg1CgnRo1yAgDy8/ND1ZbfsrKycODAAUhS5/dX/nC5XCgtLUVGRkaQOiOivm5azjSfoWAfHvyQoWBEhMpKCVu3qruJQWamGxMmROamEERERBSY/n1WnYiCTpYVfPCBuoN/rVbBxRcb0Nwsdwip8hVadXx41PEhVseHQh3/+GShVW3BUh3DpJT24Kq2EKu2seNr2n4/PrTqxCCqE0OqOgdNHT/WMaTqZI+Pn7+1v46BVb5CrE4MsGJIFdEJZBFY+TqwaHrn59K+D38/REQUMFGUYbFIsFq9yMyUkZGhICtLg+xsDXJztcjNFREfrwXQexakEREREREREREREfVGZWXqbgwmCAoslt536dHpGadj+5LteHbLs/j9J79Hi6el/bkbTr0BqdGpEeyOeqqyuTLSLbTLS8gLOBCs2d0MWen6e62gtgAXLL8ArkQXYPNv/uzsbFx99dXtj/fv36+mTYwcOdKv7T/99FOce+65qvb173//G4sWLVJV62+fbUpKSuD1eqHV9o3Pj4qLi3HRRRehsbFR9RyTJk3CmWeeGcSuiCgcBEFAdnY2HA4HiouL8dhjFkiS+teiIUOcuOaao11uU1dXh4aGBlitVsTHx6vel79OO01dCJnXq8G2bS6cc47vhXBPPaU+XDQlxYMbblAfKEY0UMiyDLfbDbvdDpfLBbfbjU2bdHjrrWiUl4uoqNChpkYHILrbucIRvqVGOMK31Aj118ti8eDHE7IIkpI8sFg8sFolWK0yMjLk9uu0hgzRIz1dD602DUBaSHvrzTYe2hhQuPW9G+7FROtEnJV9VhC7IiLqPZxOp+pavb73hFgIgoC8vDwcOHAg4Lnq6+sRHR0d1vdgRNR7zR89H89te67T+PeVXPdGRMDbb7vg9Uapqr34YjcEofccTxEREVHP9b4r84ioV3I4gHHjgJYWBeXl6j5I9Ho1yMzkjx0iipDiaYArBjA0dRzP+iIy/RARUZcGDZJgsUhIT5eRmakgK0tBdrYGOTla5ORokZ4uQqvlSWkiIiIiIiIiIiKiQNls6kLBEhO9EMXeeQ2AKIi4c8qdmDdyHv6z6z/YU7MHZ2WdhVtOuyXSrVEPVbb0nlCwYKi2V/doO5fOBdwAYDmAgz2f/8477+zw/VhSUuJfgz/Jzs5WVRduUVFRGDRoEI4e7Trg5kRerxc2mw0ZGRkh6ix4Dh8+jOnTp+Pw4cMBzfPrX/86SB0RUSSYTCYMGzYMv/1tPe6+24mCAt8BWN25//5y6Hpw2acsyygtLUV1dTWys7PDsvB+yhT1+9iyxYtzzuk8vnu3Gxs2qA/1WrLEBaOx+xAjov7O4/HA4XDA6XTC5XLB4/FAkiRIkgRZ9v0+srQ0AevXx/q9L5sttD9v1IZvhT4UzK2qLhRfL41GA0EQoNVqcd11dlxyiRfZ2QLy8nQYPNiAqCgdgNB+Pfq69YXrA6r3Kl5c9fZV+Pbmb5EWPXDD1Yio//J41L0e98Zz0Hq9HpmZmarPwR2vtLQUJpMJBoMhCJ0RUV82JXMKtBotvIq3w/hRx1G4JTf0ItdOEA1k776r/qYRc+f2jZvlEBERUWe976wIEfVKGg3QehNRdXdlIyKKOFkESk8HBm/oOB5XAsQVAw1ZkemLiGgAMhrlnwK/vMjIkJGVpSAzU4OcHAG5uVrk5IiIihLBt6xEREREREREREREoVderq4uOdmL3n4eNzMuE787+3eRboNUqGzuX6FgVS1VPd9YD+AaAO8B2NX95ikpKfj5z3/eYayiosKP7o5JS+s7C8/T0tL8DgUDgKqqql4fCvbxxx/jqquuUvX3O96IESNwxRVXBKcpIoqoyy+Px4UXynjkkVo8/XQcmpt7vojr4ovrcdppdr/253K5cODAAcTHx8NqtUIQQnfdaHq6iLQ0j6rgne3bfY8/8YQHiqJuoazJJOP229UHihH1FbIsw+l0tv9yu93weDzwer3wer1QFEXVvGlp6kKumpq0aG4WEB2tLrS6O2pDwSordfB6AW2I1s6mpYUvrKwt8EsUReh0Ouj1ehiNRpjNZoii2OFnfX6+qrYGNEVRsK5wXcDzVDRX4Oq3r8amhZsgCr37nAsRkT9kWT5pqGh3whFWrEZcXBxaWlpQW1sb8FyHDh3CsGHDQvrei4h6P41GA2uMFSWNnQMHV+1bhatHXx2BroioN2hqkrF5s7obRiQlSTj3XHW1REREFHk8S0xEPRKqDzOJiMKq+MzOoWAAkPklQ8GIiIJEo1GQkiLBYvEiI8OLzEwgKwvIzm4L/RKRkqKFIPTOD+mJiIiIiIiIiIiIBprKSnV3FU5N9Xa/EZFKlS0DOBQMALQArgAQA2Bz15s+9thjiIqK6jBmt/sX/tLGZOo7IShms1lV3YUXXohf/epXWLJkCZKSkoLcVWBcLhf+7//+D48//jgkSQp4vr/+9a9cTErUj+j1Ah56KBGLFjlwxx1urF4d121NVJQXd92lLigSAOrr69HY2Air1Yr4+HjV83Rn7Fh1oWDff9/5MvjKSgnLl6t/Pbv2WgeSkqK635CoF1MUBTU1HhQUuHDokIQjRxSUlGhQXq5FebkWv/61DSNGOEOyb7XhW0Br0NWQIa4gdnOM2vAtr1eD6moRaWmBH5v5oravE0PUNBoNBEHoEPhlMBhgNBphMpl4TBgGu6t3o7xJZer6CT4/8jl+u+m3eGLGE0GZj4ioN3A4HKpre/P5KqvVCrvdDqczsGOrnTv1WLasFg8/3LvOVRFR+E1Kn+QzFOydve8wFIxoAFu1ygGXS905ywsucEGr5flOIiKivoqhYETUI/wskIj6heIzfY+n7A5vH0REfVh0tBdWq4T0dC8yMuSfQr/aAr+0yM4WYTDoAPh/wS4RERERERERERERhV9FhbpQsJQUJcidEB1T2RzkUDAZwFF1pV988QUWLVoU0O6rW6rVFU4HEAvgAwA+vuUmTZqEG264odO42oWIBoNBVV0kGI3q7mpeXV2N+++/Hw8//DBmz56N+fPnY+bMmRDFyF5KuXbtWtx9993Yt29fUOa79tprMX369KDMRUS9S26uCe++a8L77zfgzjsNKCg4+c/DW2+tQkpKYEE2siyjtLQU1dXVyM7Ohl4f/BuAjRsnY/16/+sOHtSjqUlGTMyxC1yfecYJpzNaVR+CoOCee3itA/V+Xq8XTqcTn3ziQWGhjJISoLRUQHm5CJtNhM2mQ0uLHoDv79cjR/QhCwVTG3IFhDYULNCwslCFgnXXl04nIzVVgsXigdUq/XStloLsbAGDB2cgLs4Ykp/L5L/1hSpeyLrw5FdPYkrGFFw54sqgzktEFCnNzc2qa6Oj1R3fh0teXh727dsHWZb9rlUUYPnyRDz+eBokScCwYXW47rqEEHRJRH3F7BGz8c7edzqNby3bGoFuiKi3ePdd9bWzZ6u7FoCIiIh6B4aCEVGPMBSMiPqF0smAOwrQt3Qc96i7gzARUX8jigpSUz1IT/ciPV1GRoaC7GwNsrM1yM3VIjdXRGKiFq23pyciIiIiIiIiIiKi/qCqSt0FARYLQ8EodCpaKoIyT058Dm445Qa8fs/rOPDjAVVzvPzyy0hLS8Mf//hHCCovoKlqqVJVBwCYCCAGwDsAjssM0Gg0+Nvf/gaNpvPF/GoDrlyu0IQwhILD4Qio3ul0YtmyZVi2bBmSk5MxZ84cXHLJJTjvvPNgNofnGgKPx4P33nsPTzzxBLZs2RK0eZOSkvDnP/85aPMRUe906aVxmDlTxiOP1OLpp+PQ3Nzxc/whQ5y49lqViZg+uFwuHDhwAPHx8bBarapfE32ZNEndXLKswbZtLpx3Xmswmt0u46WX1IVGAsBFF9kxbFiU6nqiYJBlGW63G06nE06nEy6XCx6PB5Ikwev1QlGOvQ+79dZ8lJb6HwhVURG68DuTSUF8vIT6ev+PR2220PWVmChBp5Ph8fj/88Zm0+PUUwM79jyZtDQPRo50ID392A0a227OOGSIHpmZBojiyQPeqPdYV7gu6HMuWr0Io1NGY+igoUGfm4go3Ox2u+raqKjefYwuCAJyc3NRWFjoV53TqcHDD1uxZs2xELDbbovFmDHNOOWU3h2ERkShM3vEbJ/jpY2lYe6EiHoLl0vGpk3qznlGR3tx8cXqz5cSERFR5DEUjIh6pPX6QQUAU4GJqA/zRAFf3QWc88djY44EYOfiyPVERBRG8fESrFYJ6ekyMjNlZGYC2dkCcnIE5OZqkZEh/nQhGRERERERERERERENFGpDwdLSeP0AhU5lc6XqWp2gw5UjrsTicYsxPW86BI2AmX+dialTp3YIUfDHI488gq+//hrPPfcchg0b5nd9tb1a1X7bDQewEMAyAD/lEdx+++2YOHGiz83VhloFGrQVToEsJj1RdXU1nn/+eTz//PMwGAyYNm0azjzzTEyePBmTJ09GfHx80PbldDrx2Wef4YMPPsAbb7yB6uoA/2+cQKvV4s0330RaWlpQ5yWi3kmvF/DQQ4lYtMiBO+5wY/XquPbnfvvbcuhCkK9TX1+PxsZGWK3WoP18nDJF/XUKW7Z4cd55rX9+6SU7jh5Vv3j+nnt4gzQKPUmS4HA42gO/3G43JEmCJEmQZdmvuSwWt6pQMJsttNcGWSyeXhcKJgitAVwlJQa/awPtSxAEiKIInU4HnU4Hg8EAo9EIk8kEURSxe3dA01Mv4PA48PmRz4M+b6OrEXOWz8E3i7+BWcebHxNR3+Z2u1XVaTSaoAYSh4rJZILFYoHNZuvR9iUlOtx5Zxb27TN1GG9q0uLqq7XYulVCbCyX/RINREbRiERTImodtR3GvYoXW0q3YHLG5Ah1RkSRsm6dC42Npu439GH6dCeMxt4dsEpERERd49kBIuqRI0c8AEL3YSsRUdh8+gegLg8Y+gHgTAC+vBdoSYl0V0REARMEBZmZbqSleZCW5oHF0vorPd2L8eOTMHSoEdHRIvg2kIiIiIiIiIiIiIjayLKCmhp1542t1iA3Q3Scyhb/Q8FGJI3A4vGLsWDsAiRHJXd47vTTT8f06dOxceNG1T19/PHHGD16NJYsWYLbb78d+fn5Pa6taqlSvd92mQB+DuA1YOLQifjTn/500k3VhoJVVqoPYwu3ioqKkMzrcrmwYcMGbNiwAUDr4tPs7Gzk5+cjPz8fQ4cOhcViQWpqKlJTUxEfHw+j0QiDwQC9Xg+v1wuHwwGHw4HKykqUlZWhuLgY33//PXbt2oVvv/02pOFrjz76KKZPnx6y+Ymod8rNNeHdd01Yu7YBd95pwJAhTkycGLzwxBPJsozS0lJUV1cjOzsben1gAUMWiwir1YPycv+vUd25s/V3r1fBs8+qv8Z1wgQnzj7bqLqeCAAkScaRIy4cPOjGkSMy3G4JF17YAEmS4PV6VQfUnozF4lFVF8rwLaA1fGvvXv8Xq1ZUhLYviyX4oWCCIECr1baHfun1+vbAL51O1ydCTChwm4s3wyk5QzL3D1U/4Jb3b8F/r/gvNBqGsxNR3yVJkqo6XSiSjkNk0KBBaGlpQWNjY5fbbd4cjfvuy0Bjo+/z8vv3m7BwYQPeeScGWi2PJYgGojEpY/DZkc86jb/+w+sMBSMagN55x78Q+eNdeWUQGyEiIqKI4GpwIuqR5ctdYCgYEfUPGuC761t/ERGFiCAoEITW37VaX487Ptc2ptHIEASgsNAAoONFPKIow2BQoNcrMBplGI0yTCYZRqOC6Gjg0ksduPpqe/vFP8cuAhIQFeVCdDTvFkhEREREREREREREHdXXy3A6tapqLRYuSKLQOWo/2qPtTKIJV4++GjeNvwlTMqZ0uUh66tSpAYWCAa0LGJ977jk899xzmDx5MmbNmoWJEydi/PjxSExM7LCtx+PB/v37sX37dnyy7xNA3U28O0oCNDdp8Purft9lAEtsbKyq6YuKilQ2Fl7Nzc2ora0Ny74URUFRURGKioqwfv36sOxTrcWLF+Pee++NdBtEFEGXXBKHGTNkHDhQHZb9uVwu/OIXDRg+XIvbb4+HKKo/Phw7Vl0o2K5drZfCr1rlQGGh+usi7rxT/eI6Gjhqatw4eNCFw4e9KCqSUVKiQVmZAJtNRHm5DpWVIiTJhLYDv4wMN845J3Shq6mp6kLBwhG+pYbNFljAYHfS0nreV0yMF2lpHlitHgwf7kV0dDT0ej0MBkN76BcDv6jNuoPrQjr/q9+/ijMyz8DNp90c0v0QEYWKJEmqw1ENBv8DPSMpIyMDBQUF8Hg6H3fIMvDCC8n4xz9SoChdBz2uXh2Hxx6rxQMPJHa5HRH1TxcNuchnKNinRZ+GvxkiiiivV8GHH6o7X6LXy7jiCt4EgYiIqK9jKBgR9ciaNeouAiYiIqLeoTWUqqtAqtbQquPHNBpAqz1Wo9W2BVu1bneyx8e27zh2bN/HHrfOr/lpn5oO+xMEQBTRYc62x6J4fM2J+/T9/LE5Oo6duE3b49btFAjC8Y/b5j5xno7PCULbh7U9vzuf0+lERUUFdDod/vOfWCQmCsjJERAf3wiDoQZ6/ck/EB88eDBMpqQA/5cQERERERERERER0UBTVuYFoO56gPR0LoCm0EmPTUdZU9lJn59gmYDF4xfjmtHXIM4Y16M5uwoMU2PLli3YsmVL+2NRFBEfHw+9Xo+Ghga0tLQc2/hmBCcUDIASpeDaDdfinYR3MGPwDJ/bZGVlqZp77969gbQWNrt37450C73OjTfeiBdffDHSbRBRL6DXCxg9OhNOZzKOHDniczF6sOzebcTLLydBUTR47TU7/vIXL6ZNi1E117hxMj76yP+6wkI9Ghq8ePpp9a/z2dluXHVVkF6oqc+SZRkOhwNOpxMulwtutxsejweSJOGzz8y4994MNDXpAfR8IWZFhQhZbr1eKRTUh2+FOhTMraou1GFlbaFgoqggNdUDi8UDq1VCerqMjAwFOTkCcnO1GDLEgORkPVrfKxsBqPu5RgPH+kOhDw/+34/+F+Mt4zExfWLI90VEFGzNzc2qa83mvnVDZEEQMHjwYOzfv79DEFpDg4Df/CYTmzf3/LjioYfiMXFiIy64QF34PxH1XQvGLsB9m+7rNH6w9mAEuiGiSNq82YXqanXBXmed5URcXN86liIiIqLOGApGRN2qqfHim2+YCExERMHVGrbUMZCqLXiqNZDqZGFUvoKtOoZZnTy0ytc2nUOqWkOgTpz7+ECq1sCsttCo1lCr1rlPHDsWUnV8Tc8Dqo7f5sSgq2O13T9uDacK7kIHCi6j0YicnBwAwP33HxtXFCOOHHF0+aF4X7sTFhERERERERERERH1DqWlXtW1mZmhXbBNA9v/TPofLFi1oMNYnCEO88fMx+LxizHOMi5CnZ2cJEmoqanx/WRUcPfV5G7Cxcsuxr9n/RvXjb2u0/Ntnzn56/iQs97sm2++iXQLvcpNN92EF154IejBd0TUtxmNRgwbNgxHjx5FRUVFhwXpwSDLwP/9nxWK0vqzZ9cuM849V8HPflaPp582IzW158FJADBpkrrUJEXR4JVXHPj662hV9QDwi1+4IYr+9Ut9iyzL8Hg87aFfxwd+eb1eyLLcZX10tISmJv/DlCVJQG2tiKQkSW3rXVIbClZfL8Ju18BsDu7PhTZt4Vv+CmaImkajgVarhVarhV6vh16vx5136nDPPQ5kZxug0/kX8EZ0MmWNZfix6seQ78ftdWPuirnYuWQnBpkHhXx/RETB1CE4308xMX0vnFMURWRlZeHIkSMAgH37jLjjjiyUlvp37CFJAhYuNGHrVieys7mmj2ggscZaYRJNcEiODuMOyYHyxnJYY60R6oyIwu3tt9WfU5o1KzTnfYiIiCi8GApGRN165x0nJCnIVycSEfUyxwKoTgyk8hVAdfzY8SFWHQOr2gKpugqtOj68quOcJwZWKR1CqU4MqTo+POpYaNSx8KgTg6/atjsxlKq7x74CpzQapUNo1fH7PFlIlSAwpIqopzQaDTIyMlBYWOjzDr56vR5CqG4pSkRERERERERERET9Wnl514vfTyYqyouYGP8XxRP11HVjr0O0Phr//e6/iNZHY0beDMwdORdmXR+9o3UILruRZAkLVi1AWWMZ7j3j3g6BULm5uarmrKqqwu7duzFq1KhgtRkSn3zySaRb6BVEUcRTTz2F22+/PdKtEFEvNmjQICQkJKC0tBSNjY1Bm3flygT8+GPH12VZ1mDZsnh8+KGE3/62Fr/6VTxEsWfXM0yZoj6c58UX1V8OHxcn4dZb++jxBbVrbpZgtzug0Tjhcrng8Xjg8XjaA78CDcVTG3IFADabrteFggFARYUOeXnuIHZzjNq+JEnA0aMikpO7/3oJggBRFCGKInQ6HYxGI4xGI0wmE0TR988Ei0VVW0Rd2nBoQ9j2VdxQjPkr52PttWuhFXhOhoj6DqfTqbrWaOybYVgxMTFISkrCv/8t4aGHrHC51F3nXVWlw7x5bnzxhQy9nteKEw0kQxKH4IeqHzqNv/L9K7jvzPsi0BERhZssK1i7Vt05U0FQMHeuIcgdERERUSQwFIyIurVxIxOBiSKhNbDp5IFUHQOolE4BVR1rugqk8r1N26/W/Rz/S4EgHB84dexxW0iVRnMsrOpYaFXHkKoTg686hll1DLE6FiR1YtBUx9Cq1jk6zukrkOrE0KrWr1XbBdIMqSKi3qftrlGHDh3qdKFiX/3Am4iIiIiIiIiIiIgiz2ZTdz1AcrIXABegUmhdMfwKXDH8iki3ETgjQvrtct+m+1DaWIqlFy5tXxh+yimnqJ5v5cqVvToUrLm5GevWrYt0GxGXmpqKt956C2effXakWyGiPkAQBGRlZcHpdKK4uBhud2BBQPX1WvzlL6knfb6uTsQ99yTitdfs+MtfvDj77Jhu50xNFZGe7kZZmf8L3XbvVr/A7cYbnYiOjlZdT6EnSTJKS104eNCNoiIZR44oKC0VUFamRXm5CJtNh9paEX/8YwOuvLI+JD0kJ0vQahV4vf5fW2iz6TBmjCMEXQUWVhbKULBA+qqqEpGS4oVWq20P/DIYDO2hX7x5IvU26wrD+95kXeE6/N/n/4cHz3kwrPslIgqE2vcfff01Py0tDaWldaoDwdps2xaF226rw0svJQSpMyLqC87NOddnKNhHBz9iKBjRALFrlxtFRerOe06c6ITFYgpyR0RERBQJDAUjoi7Jsozf/e4ILr3UhFtuyYHT2bdPqlJgWkOfOgZStYVKnRhA1TF8yleIVdeBVF2HVnUMkzoWJNV5u+MDqQRB+SkUqi3ECu1jJ87ZFhx1rKb7QCpf25wYdNW2rxNDrI5/3DqP5qe7+DKgioiIWplMJlitVpSVlXUYZygYEREREREREREREalVUaGurjUUjIh6xBz6Xfxt299Q3lyO1658DSadCcOHD0dCQgLq6ur8nuu1117DAw888NM1C73PW2+9BafTGek2Iur666/Hn//8ZwwaNCjSrRBRH2M0GpGfn4/a2lrYbLZONyXrqWefTUV9ffeXoH/3nRnnnqvgmmvq8dRTJlgsXS9iO+UUSVUomKKoe83S6WTccYf6QDEKDo/HA4fDAafTCZfLhf/8x4idO/U/BX6JqKzUwe02Aeh6IaPN5v//nZ7SaoHUVA/Ky/3fh82mC0FHraKiZMTEeNHU5H8CbUWFHkBL8JsCkJQkQRQVSFLH702z2QuLxQOLRUJ6uoT0dAVZWQqyswUMHqxDXp4BUVFDQtITUSjIiowNhRvCvt+HPnsIkzMm48IhF4Z930REani96s4l6/WhO74Ll6VL4/Ddd8348svAgohffjkBkyfX4aabGAxGNFBcN/Y6PLv12U7jvoLCiKh/Wr7cA0DducvLLuNn+URERP0FQ8GIqEvNzc0QBAUTJtgRE+PtVaFgGo3SHurUMYRK8REwpXQKmToxlKo1sKrr0KqOwVEn1p0YWKW0h1JpNMfCqTo/Pj406lh4VOeQKs1xc/oOqeruse/wK02HUKuThVZptW0BVb3zok8iIqKBICEhAXa7vcMCDoaCEREREREREREREZFalZXqPv9NTZWD3AlRPxYVnt2s3LsSM1tmYvXPViPRlIjJkyfjo48+8nueAwcO4IMPPsAll1wSgi4DoygKnnnmmUi3ETEjRozA3//+d5x77rmRboWI+rjExETEx8ejtLQUjY2NftXu3m3E22/3fCG6omiwbFk8PvxQwm9+U4s77oiHKPq+DnX8eBkffOBXOwGZPduBzMwwvVAPULIsdwj8crvd8Hg88Hq98Hq9PoPpNm6Mw+efx/q9r1CGbwFAWpq6ULCKitD2ZbG40dTUdWCaL6H6egmCAJ1Oi9tvr0V8vAbZ2Rrk5YkYMsSApCQRWi2vc6L+Y6dtJ446joZ9vwoUzF85HzuX7ER2fHbY909E5A+Xy6W6tj9cH63TCVi+XIeJE92qjiWP9+KLelx1VSPi4vw/Viaivmdi+kRoNVp4lY7BPrWOWjglJ4xi3/8ZSURde/999REgV13V98NViYiIqBVDwYioS6Iowmq1AgAee8wFl8vdIUyqpkaDXbu02L5diwMHBBwfGPXggy5MmSJ3CJw6MaSqLQCru0Cq4+c4FprVti+GVBEREdHAYbFY4HQ64XA4APSPD72JiIiIiIiIiIiIKDIqKtTdGCw1NciNEPVnYcwa+aL4C5z5rzPx0XUfYebMmapCwQDg97//PS666CIIQu+5eSAAvPrqq9i9e7eqWkEQIMt9M9Bw1KhRuP/++3H11Vf3un8TIuq7BEFAVlYWnE4niouL4Xa7u62RZeCRR6xQFP+v2ayrE3HvvYnYtq0WL74oID4+vtM2kyZp/Z43EPfey8voAyHLMiRJ6hD65fF4IEkSvF6v6tddi8Wjqi704Vu9t68DB8ITCqbRaCAIAkRRhE6ng16vh8FggNFohMlk6nCc8tRTfk9P1OesO7guYvuuddRi7oq5+OKGL2AQDRHrg4ioO/6GEB8vOjo6iJ1EjtVqwKuvNuKii0S43erO61xxRR3uv78cJSUKTKZ86PUM+iAaCDJiM3Ck4Uin8Xf2voP5Y+ZHoCMiCpeCAjd271a3VmzUKCeGDuU6MyIiov6Cn2YSUZfMZjPMZjMA4Oc/73rbigpgzRpg1Spg2zbgvvsMYEYFERERUXAJgoDMzEwUFhZCURTodKG9eJCIiIiIiIiIiIiI+q/qanWLkCwWJcidEPVjYQwFA4C9NXsx5eUp+Pc5/4ZGo4Gi+P/9unPnTvzzn//EzTffHIIO1amvr8d9992nuv6ZZ55Bbm4uPvzwQ2zcuBEFBQVB7C74RFHEzJkzcdNNN2HWrFnQaHjTRCIKDaPRiPz8fNTW1sJms3X5urFqVQJ++MGsel8ajYI5c2pRWupEdXU1srKyYDAcCzKZPDl81z+cc44d48er/7sMBA6HF4cOuXDwoBtFRTJKSoDSUgFNTRo88USpqmOMnkhL653hW2r7UhO+5Y9gfr0EQYBWq4VOp4NOp+sQ+MXrk4g6W39ofUT3v718O3710a/wj0v/EdE+iIi60nYDZDX6SygYAJx3Xiz+7/9qce+9iX7V6XQyfvtbG+bMqUPbqaFDhw4hPz+fwfFEA8Dk9Mk+Q8FW7V3FUDCifm75cjcAdSGgl14qBbcZIiIiiiiGghFR0KSlAUuWtP5yuQADbzpDREREFBJ6vR6ZmZmoqqriAgAiIiIiIiIiIiIiUq2qSquqLi2N56aJeiwCeSPlTeWYt34ehp86HHu/3atqjrvuugtnn302hg8fHuTu1Lnxxhths9lU1Wq1Wlx99dVITU3FZZddBgAoLS3Fxx9/jM2bN+Orr77C3r17QxZu4k+fkyZNwty5czF//nykpqZGtB8iGlgSExMRHx+P0tJSNDY2dnq+oUGLpUsD+7k0b14tRo1yAgBcLhcKCgoQFxeH9PR0CIKAlBQRmZlulJSoW/Dmj7vuGtjHs7Iso7HRjV27PDh0SMKRIwrKyjQoK9OivFyEzaZDTY0IRTHD18HMH/9YGrJrhC0W9eFbigKE6jIa9X2F9v9zT/oaNMiDtDQJVquE9HQvMjJkjBypwGq1wmQywWAwMFSCyE+NrkZ8VfJVpNvA8zuex5TMKVh4ysJIt0JE5JPT6VRVp9FoIIr9a9nrPfckYtu2BqxYEdej7dPS3HjmmRKMHt0xWE2SJBQXFyMnJycEXRJRbzJn5Bws37O80/jWsq0R6IaIwum999R9hg8AV13FYHciIqL+pH+dHSGiXoOBYEREREShFR0dzbtwEhEREREREREREZFqbreCujp1lw5ZrQM7RIEGlieffBJmsxlr167FJ598AofD0X3R8aJC01d3Gl2NaMlqAb5VV9/S0oLZs2dj8+bNGDRokM9tzjnnnLAEaT300ENYtWqV6vorr7yyU8BWRkYGFi5ciIULWxfP19fXY9u2bdi1axd27dqF7777DgUFBXC73QH13hWTyYSRI0fi9NNPx/nnn49zzz0XcXE9WxhKRBQKgiAgKysLTqcTxcXFHX4G/vWvKaivV3/ZeXy8hP/936pO4w0NDWhsbITVakVCQgLGjvWEPBRsxAgXLr7YGNJ9RJokSXA4HHA6nXC5XHC73ZAkCZIkQZZlAMD+/QbMnTtU1fyVlTpkZYXmNTItTV34lssloK5Oi8REb5A7amWxqPv71taKcDo1MBpDc8yUleVGbq4LVqsHVmtr4FdGhoKcHAF5eSKGDDEiOloHgNcYEQXTp0WfQpKlSLcBALjl/VtwatqpGJs6NtKtEBF14vGoO7bTatUHYfRm//pXFPbscWD3blOX202e3Iwnnig56bFtc3MzqqurkZycHIo2iaiXuGLYFT7Hy5rKIMsyw52J+imbTcK2berOXebkuHHqqaG/4QIRERGFD0PBiIiIiIiI+igDk1iJiIiIiIiIiIiISKWyMglqF4ZbrVxoQANHUlISFi1ahNtuuw1OpxPffvst9uzZg71792Lv3r0oKytDU1NT+y9JkhAdHY2YmBjExMSgKqcKNaiJSO/eMV5gE4BmdfV79+7FBRdcgA0bNiAhISGovfXU008/jT/84Q8BzXHPPfd0u018fDxmzJiBGTNmtI/JsoyioiIUFBTg8OHDKCsrQ1lZGWw2G2pra1FfX4/6+no4HA643W54PB5oNBoYDAYYjUYYjUaYzWYkJyfDarXCarXCYrFg6NChGDNmDIYMGdJvF7kSUd9mNBqRn5+P2tpa2Gw2/PijAcuXJwY05+23VyIuzveCdkVRUFZWhurqapx6ahrWrg1oVz3oRYIg9N3rLWRZhsvlgsPhaA/8crvd8Hq98Hq9PQ7sVBu+BQA2W+hCwSyWwPoKVShYIF+vykodsrPVf70EQYBWq4UoitDpdNDr9TAajT8FjOpwxx0CgL77f5qoL1p3cF2kW2jnkByYs3wOtt+0HXFGhgwTUe8hSTJ+9zsr8vKcyM93YehQJ5KSJGh6cL+J/np9dHS0iBUr3Jg6VTpp6PLixdX45S8r0d0po8rKSpjNZkRFReiOBEQUcnpRj0GmQTjqONphXFZkfF36Nc7IOiNCnRFRKL39tguyrO71/ZJL3BAEhoIRERH1JwwFIyIiIiIiIiIiIiIiIiIiIiIaYMrKvFAbCpaZyUuOaGAyGo2YMmUKpkyZ0uOa8185H5sObwphV10QAZwOYKP6KXbs2IEpU6Zg7dq1GDx4cLA665Ysy7jrrruwdOnSgOY555xzMGnSJFW1giAgLy8PeXl5AfVARNRXJSYmIj4+Hl99dRQxMV40Nqo7Bhwzxo7Zs+u63c7tdiM39yiAWFX76YnUVA9uuMEcsvmDoabGjYICFw4f9iIlxYnc3BZIkgSv1wtZloO2n9hYGWazF3a7/wGVFRXq3kf0RHKyB4KgQJZ7kBZxgooKHUaNcoagq8DCyioqTh4KptFoIAhCh8CvtoBRk8kEQWAgM1FvtK6w94SCAcDB2oNYtHoRVl61EpqepO0QEYXBjz/asWpVx5D5hAQJQ4c6kZ/vxNChrUFhgwc7YTZ3DLY1mUzhbDWsRoww48UX6/Gzn8V1OOaNivLikUdKMX16U4/nKioqwrBhwyCKPF9P1F+NTR2LT4o+6TS+7MdlDAUj6qdWr1b/nm7uXB4TEBER9Td8dSciIiIiIiIiIiIiIiIiIiIiGmDKytQFCmi1ClJT/Q8OIBqoqlqqItvAZADbAdSrn2L//v2YMGECli5dikWLFgWnry4cPHgQ119/Pb766quA5tFqtXjmmWeC1BUR0cAkCAJuuikZF17oxJ13tuDtt+P8qtdoFNx/fzl6mms0YoRDRZc9t2SJC3p96AKtuuNyySgsdOLQIQ+KimQUFwOlpRqUlYmw2URUVOjQ1KQHoAcALFpUjbvuCs3XRKNpDboqLPT/2N5mC93XUKcDkpMlVFb6v49QhpXFxMiIjvaiublnXy9RVJCa6oHV6oHBoIXZbIZOp4PBYIDBYIDJZIJerw9Zv0QUOoW1hSisK4x0G528u+9dPPXVU7jnjHsi3QoREQBg587Ooah1dSK2bo3G1q3R7WMajYLMTHd7UFh+vhM33BATzlbDbt68eGzbVocnn2wNTRs82ImlS4uRk+M7SPZkFEXB4cOHMXTo0FC0SUS9wCVDL/EZCvZZ0WcR6IaIQq2+3ovNm42qapOTPTjrLEOQOyIiIqJIYygYEREREREREREREREREREREdEAY7MpquoGDZKg1UYuSIH6t//85z+44YYbIt1GBzfccEPoepoFYFxopm6nA3AxgGWBTdPQ0IAbbrgB//nPf/D444/j9NNPD0Z3HdTV1eFPf/oTnn32WTgcgQeg/OIXv8Cpp54aeGNERITMTCNWrDBi/foG3HGHHnv2mHpUN2dOHUaNcvZ4P7GxMrKyXCguDv4CNrPZi9tv71nfasiyDI/HA4fDAafTCbfbDY/HA4/Hg6VLB2HVqnhUV4tQFHOP57TZQhsalZbmQWGh/wsNQxm+BQAWi1tVKFg4vl4HD7aGgiUkSLBYPLBYJKSne5GZKSMzU4OcHAFDhuiRlWWATtcW8BYV0r6IKLzWF66PdAsndd+m+zAxfSLOyTkn0q0QEeH77zU92k5RNCguNqC42ICNG4GoKC9++cue1fZljz4ah507m6DTefHQQ+Uwm9XdxMPlcqG0tBQZGRlB7pCIeoMFYxfg7g13dxrvjSG1RBS41audcLvVnUe66CI3P8MnIiLqhxgKRkREREREREREREREREREREQ0wKgNBUtO9qI1ZYiI+ox8AKMB/Bj4VJ999hmmTJmCM888EzfffDMuv/xyxMbGqp5PURRs3boV//rXv/D666+jpaUl8CYBDB48GA8//HBQ5iIiomNmzozDrl0ynnqqFo8/HovGxpNfih4XJ+H22yv93sfIkY6QhILNn+/AoEHRquslSWoP/HK5XO2BX16vF16vt8tatxuoqlITchXq8C2Pqrpw9LVrl/91we5LEASIoghRFKHX6/HCCw7Ex0sYMsSI2FgRXIpBNDCtP9R7Q8FkRcbP3v4Zdt68E9YYa6TbIaIBbu9eraq6oUNdEMWeB+n2VaIoYOVKA44cOQBNgBlo9fX1iI6ORnx8fFB6I6LeIyU6BWadGXaPvcO4U3KiuKEYWXFZEeqMiEJh1Sr1tXPmCMFrhIiIiHoNfhJFRERERERERERERERERERERDTAVFSoW2mUmioHuRMiCovLAFQCqA7OdF988QW++OIL6HQ6TJs2DWeccQbGjx+P4cOHIyMjA1FRne9k7vV6YbPZUFRUhG+//Rbbtm3Dhg0bUFFREZymfmI2m7Fy5cqAwsqIiOjkdDoBv/lNIhYscOKuu5qxYkUcFKXzseXtt1ciPr7rsCxfRo1y4KOP4oPQ6TGCoODuu/UnfV6SZLjdLjidDrhcLrjdbng8HkiSBK/XC0VRF6jbJjVVXfhWRUVow7fS0npnKJjavvz5emk0Gmi12vbAL71eD6PRCKPRCL1eD0HovJAyI0NVW0TUj3i8Hmw6tCnSbXSpsqUSV799NT5e+DF0Woa6E1Hk7N+vLuh32DA3gP4fCgYAsbF6ZGVloqSkJOC5SktLYTKZYDAEP2CZiCIrPzEfuyp3dRp/9btXcf+0+8PfEBGFhNMpY9Mmo6ra2FgvLrxQXS0RERH1bgwFIyIiIiIiIiIiIiIiIiIiIiIaYNSGgqWkBBaIQEQRYgDwMwD/BOAM3rQejwebNm3Cpk0dF8ZHR0fDZDLBaDRCkiQ4HA40NTXB6/U/HMYfGo0GL730EsaOHRvS/RAREZCRYcRbbxmxeHED7rhDj927Te3PjRplx+zZdarmHTkyiC9UP5k5046GBgVvvWVHUZGMkhINSksFlJeLsNl0qKwU8cknRYiLC83rlMWiLuSqulqExwPoQpTporavigodFAXQqHtL0a1AQ8E0Gg0EQYBWq4VOp4Ner4fBYGg/NtFqtcFsl4gGkC1lW9Dkbop0G936ovgL3LfxPvz5gj9HuhUiGqAaGyUUF588lLcro0YNrJtSxMXFoaWlBbW1tQHPdejQIQwbNsxnwC0R9V3n5J7jMxTso8KPGApG1I988IETzc3qglGnT3dCr+98sx4iIiLq+xgKRkREREREREREREREREREREQ0wFRVqVsYlJbGUDCiPmsQgIUAXkFQg8F8aW5uRnNzc2h3cgKNRoMXXngB11xzTVj3S0Q00M2YEYdvv5Xx1FO1+NOfYtHYqMUDD9igNndpxAhHcBsE8NFHUfjoo663qajQ9bpQMEXRoKpKh/R0dfXdUduXw6FFY6M27F8vrVZBSooHFosEq1VCeroXGRkKsrM1yMsTMWSIAcnJIxmCQEQhs+7guki30GNPf/M0pmROwdyRcyPdChENQFu3tkBR4lTVjhs38AJcrVYr7HY7nM7ATth5vV4UFRUhLy8vSJ0RUW9w3ZjrsPSbpZ3Gf6z6MfzNEFHIrFyp/jP4K68MYiNERETUqzAUjIiIiIiIiIiIiIiIiIiIiIhogKmuVrdQ3mIJciNEFF5WANejNRgs+JkrESMIAp5//nncdNNNkW6FiGhA0ukE/OY3ibj+ehdef70ao0erf5GJiZGRk+NCUZEhiB12z2bTYdiw0KRmqg3fAlr7ClUoWFqaW3WtzRaaEDWNRoNhwyTMn1+PjAwZ2dlAbq6IwYN1yM42QK/XA9AHfb9ERD2xrrDvhIIBwO0f3Y5Zw2ZBp9VFuhUiGmB27VJ/nDhxoimInfQdeXl52LdvH2RZDmgeu92OyspKpKamBqkzIoq0CdYJEAURkix1GK931sPutsOsN0eoMyIKFklSsG6dunOhBoOMK64YmMdPREREAwFDwYiIiIiIiIiIiIiIiIiIiIiIBhBZVlBdre6yobQ0TZC7IaKwswC4CcBbACoj3EsQJCQkYNmyZbjwwgsj3QoR0YBntRpwzz0W1NYaYLPZoCiKqnlGjHBEJBQsVOLivDCZZDgc/gfzhrKv1FQJGo0CRfH/GN9m02H4cP9D1ARBgFarhU6ng06ng8FggNFohMlkgk7X+ncdNQqYOdPvqYmIQuqo/Si2l2+PdBt+KW8qxw9VP2C8ZXykWyGiAebHH9XdkCItzY3U1IEZACsIAnJzc1FYWBjwXNXV1TCbzYiJiQlCZ0TUG2TEZqCovqjT+Nt738bCUxaGvyEiCqpPP3WipkZdsNe0aU7ExDAckIiIqL9iKBgRERERERERERERERERERER0QBSVyfD7daqqs3IUFdHRL1MIoDFAN4H8F2EewnA+PHjsWLFCuTl5UW6FSIiOk5iYiLi4+NRVlaGhoYGv+uHDnXiww9D0FgXQhm+pdEAqakeVUFnFRWhC0XQ6xUMGiShpsb/v7uvr5dGo4FWq4UoitDpdNDr9TAYDDCbzdDr9RAEdeEQRES9wcZDG6FAXdhlpAgaAdYYa6TbIKIBaO9edcfW+fluAAMzFAwATCYTLBYLbDZbwHMVFxdj2LBhEEUuHybqD05PP91nKNiqvasYCkbUD7z9tld17RVX9K33qUREROQfvqsnIiIiIiIiIiIiIiIiIiIiIhpASkokAOrCvaxWLuQn6jd0AK4EMBrABwDqItuOP6KiovCHP/wBv/rVr7i4kYiolxIEAZmZmUhJScGRI0fgdru73F6Wga1bo7BmTTzWrYsLU5fHVFSELhQMACwWdaFgoQwrA1r76i4UzGSSYbG4YbFIsFq9yMiQccYZWqSmpsJoNMJkMvH1mIj6vfWF6yPdgt/uP+t+pEWnRboNIhpgvF4ZBw74f9wLACNGeILcTd8zaNAgtLS0oLGxMaB5FEVBYWEhhg4dynBeon5g7si5eHP3m53Gt5Vvi0A3RBRMsqzggw/UhaJqtQrmzlV33EVERER9Az99IyIiIiIiIiIiIiIiIiIiIiIaQMrLZdW1GRm83Iio3xkKTPvTNEy3Tcdf/vIX1NbWRrqjkxJFEddeey0efvhhZGVlRbodIiLqAYPBgPz8fNTV1aG8vByKonR4vrhYj9Wr4/Hee/Gw2dQtgAuG0IeCdR2KdjKh7is93Y2qKh0sFg+sVgkZGV5kZCjIytIgL0/EkCF6pKTooNUaQ9oHEVFvpigK1hWui3Qb3TLrzDg17VSMTxuPn43+Gc7IOiPSLRHRAHTkiAv19SZVtWPGBLmZPiojIwMFBQXweAILSfN4PCgtLeU5NKJ+YNbwWT7Hbc02yLLM8D+iPmzHDjdKStQFe02a5ERKirrjLiIiIuobeJUeEREREREREREREREREREREdEAUlamLhQsOtqL6GhtkLshokganjQct512G26deCtEQcSdd96JF154AUuXLkVpaWmk22tnNptx/fXX495770VOTk6k2yEiIhUSEhIQFxeHsrIyNDQ0YNWqeLz7bgJ27oyKdGsAAJsttOFbaWnqFvQHoy+NRgNBECCKInQ6HfR6PQwGA4xGI95/3wStVgAQ2r8/EVFftqd6D8qayiLdRgfR+miMSxuHCZYJGG8ZjwnWCRg2aBi0As/bEFFkbd/uAqAunGL8eC51BQBBEDB48GDs37+/U6iyvxobG1FVVYuUlMQgdUdEkSAKIpLMSaix13QYlxUZXxR/gWk50yLUGREFasUKDwB1oWCzZqm/ERgRERH1DTxTQkREREREREREREREREREREQ0gFRUqFtIlJzsBcDFpUR9nUFrwLxR87Bk/BKcmXUmNBpN+3PR0dG46667cMcdd+Djjz/G66+/jpUrV6KxsTHsfWq1Wpx77rlYsGABZs+ejejo6LD3QEREwSPLMo4ePQq73Q4AeP/9+F4TCAYAVVU6SBIghujqeotFXShYRUX3YV2CIECr1UKn00Gn08FgMMBgMMBkMkGv16vaLxERHbO+cH1E9x9niGsN/vopAGy8ZTyGDhoKQSNEtC8iIl8slhbceacTBw4YceCAAYcOGSBJ3f+8EkUZ48f3nvcHkSaKIrKysnDkyJGA5vnoo1j8/e9R+PRTJ7KzjUHqjogi4ZTUU7Dp8KZO48t+XMZQMKI+7L331Af1z5vH835ERET9HUPBiIiIiIiIiIiIiIiIiIiIiIgGEJtN0/1GPqSkeIPcCVFHixYtwqJFiyLdRtCkPJmCant1pNtoNzJ5JJaMX4IFpyxAoimxy20FQcD555+P888/Hy+++CK++eYbfPzxx/j444+xY8cOtLS0BL0/rVaL4cOH45xzzsH06dNx7rnnIj4+Puj7ISKi8GpqakJ1dXV7GFibWbPqsXVr7wl8lGUNqqt1qsO7upOW5v+8iYkS0tI8kCQdoqNbQ7/0en174JfBYIAgMBCGiCjU1hWuC9u+Ek2J7eFfbb/nJeR1CHMmIurNUlKaccMNx459PR6gqMiAggIjDhwwoqDAgAMHjKio6BhikZfnhsHA0KrjxcTEICkpCTU1NX7XShLwzDNpeOWVJADAvHkt+OILGXo93z8Q9VWX5l/qMxTs8yOfR6AbIgqG/fvd2LfPoKp2zBgn8vJ47ERERNTfMRSMiIiIiIiIiIiIiIiIiIiIiGgAqahQV5eaKge3EaJ+zCt7UWP3f8FesBlFI64adRWWjF+CqZlTVS0k1+l0OOuss3DWWWfhwQcfhKIoOHToEH788Ufs2bMHpaWlsNlssNlsqKqqQktLC5xOJ1wuF9xuN7RaLYxGY3uASWJiIiwWCywWC6xWK/Lz8zFmzBiMGDECRiMXMBAR9QdutxuVlZVoamqCLPs+hjz//AY88ogFdrs2zN2dnM0WulCwE+c1GGRYLB5YLB5YrV5kZMjIzFSQkyMgN1fE0KFGxMSIaL3cf1hIeiIiou45JSc+O/JZWPalgQZVd1VBq+09r41ERP6SJKnDY50OGDrUhaFDXbj44ob28YYGAQcPtgWFGWGxyAB4XuhEaWlpsNvtnUKWu1JTo8U992Rh+/ao9rFt26Jw2211eOmlhFC0SURhcN3Y63DHujs6jR+qOxSBbogoGJYvdwPQd7udL5ddxpt5ERERDQQMBSMiIiIiIiIiIiIiIiIiIiIiGkAqKwVVdampSpA7Ieq/ah21UBC575lRyaOwZMISXDf2OiSaEoM6t0ajweDBgzF48GDMmjUrqHMTEVHfJcsyampqUFdXB4+n+2Ats1nBzJmNePfd4C9K12pleL3+H/NWVOiC2odGo4FWq4UoisjP1+Nf/6pDbq6IwYN1sFr10GoNAAxB3ScREQXXgaMH4JScAc9jibZggnUCxqeNxwTrBNz03k2oaqnqsI0CBVvLt2JK5pSA90dEFAmyLENRenY+LC5OxoQJdkyY0Bp2FR0dDSAphN31XTk5Odi/fz+83u7DP3btMuGuu7JQVdX5vc3LLydg0qQ6LFnCYDCivijJnIQoXRRaPC0dxl1eF4rqi5ATnxOZxohItTVr1AdCz5vHiBAiIqKBgK/4REREREREREREREREREREREQDSHW1ulCwtLQgN0LUj524uDscjKIRV4+6GksmLMGUjCnQaDRh74GIiAaepqYmVFVVweFw+F07a1ZdSELB9HoFKtqBzdbzUDCNRgNBEKDVaqHT6aDX62EwGGAymWA0GqHVdl7UN3So/z0REVFk6QT/AyMzYzM7BICNSxsHS4ylwzbPbnkWmw5v6lT77r53GQpGRH1Wc3Oz6lqz2RzETvoXQRCQl5eHgoKCk26jKMCbbybiiSfSIEknP///q1/F4tRTmzFpUnQoWiWiEMsflI9vK77tNP7Krlfw+3N+H4GOiEitsjIJO3YYVdXm5rpx6qm80QAREdFAwFAwIiIiIiIiIiIiIiIiIiIiIqIBpKpK3V2HLRYGDBH1VLW9Omz7Gp0yGjdPuBnzx8xHgin4wSpEREQncrvdqKysRGNjIxRFUT3P+PF2pKe7UVamD2J3gNer7rj1+FCwtsAvURSh0+lgMBhgNBphMpmg0+kYvklENECMSB6BCwZfgHWF63w+nxufi/GW8ZhgmYDxlvEYbxmP5KjkbuedljXNZyjYVyVfBdwzEVGkBBIKFh3NkKquGAwGpKeno6ysrNNzDocGf/xjOt5/P77beRwOLa6+Wodt29xISgru+zAiCr3pudN9hoKtK1zHUDCiPmbFChcUJUpV7SWXuAHwdZyIiGggYCgYEREREREREREREREREREREdEA4XDIaGhQd8lQeroQ5G6I+q+qlqqw7McSbcH3t3zPYBIiIgo5WZZRU1ODuro6eDyeoMwpCMCsWXV47rnUoMzXxu0++XFrXJwEi8UDq1WC1epFerqM7GwgN1fE8OEmZGWNhCDwuJeIiI5ZdfUqPP7F4/i24luYdeb2ELBxlnFINCWqmnP2iNl48LMHO43vP7o/0HaJiCLG6XSqrjUajUHspH9KSEhAc3MzGhoa2seKi/W4445MHDhg6vE8RUUGXHttEz78UIRWy/c+RH3JglMW4Kmvn+o0vrt6dwS6IaJArF6t/nO9efMYD0JERDRQ8FWfiIiIiIiIiIiIiIiIiIiIiGiAKCuToPbOwVYrFwgR9VR1S3VY9mNrtuFQ3SEMThwclv0REdHA09jYiOrqajgcjpDMf9ll9UELBcvJceLGG2tQVaVDcbEeFosHoihj+fJEVFfrYTR68d57dpx1VmxQ9kdERAODSWfCQ+c+FNQ5R6eOhqARICtyh/Eaew1kWWZAJRH1SS6XS1WdIAj8uddDmZmZcDgccLvd+OyzGPzmNxloatL6Pc+GDTG4//5aPP64unBLIoqMsaljIQoiJFnqMN7gakCLuwVR+qgIdUZE/qir8+LLL9UFoqamenDGGYYgd0RERES9Fc+WEBERERERERERERERERERERENEOXlcvcbnUR6uv+Li4gGqqqWqqDNZdaZceOpNyLR5HuR3j0b7gnavoiIiACgstKNRx6pxdixdnz4YVXIAsEAICPDg4kTm4My15IlNbjyynrcfHM1HnmkDOPHt+CVV5JRXd0aiut0anHVVUYcPhy6vw8REVFPJZuTO40pUPBtxbcR6IaIKHBer1dVnU6nC3In/VteXh7eeScBv/xltqpAsDZPPpmAlSvrg9cYEYVFVlyWz/G3dr8V5k6ISK2VK53weNRFfFx0kRtarSbIHREREVFvxVAwIiIiIiIiIiIiIiIiIiIiIqIBQm0omCgqSElhKBhRT1XbqwOe45TUU/Dcxc+h/M5yvDzrZfzPxP/xud0HBR9AltUH/hEREQGA2y1j2bJ6XHRRIzIzRTzwQCJ++MGM1asTQr7vWbPqgzLP8eFib7yRiNtuy+m0SL6iQo8rrlDQ3CwFZZ9ERERqDU8a7nP83X3vhrcRIqIgcLvdqmuNRmMQO+n/RFHEVVclID4+sPc0sqzBTTdFY/9+e5A6I6JwmJIxxef46n2rw9wJEan17rvqa+fMYTQIERHRQMJXfiIiIiIiIiIiIiIiIiIiIiKiAaK8XFFVN2iQxLsOE/mhqqVKVZ1ZZ8bPx/0cWxZvwbc3f4tbJ96KOGMcAOC3Z/0WWk3ncD6X14UXdrwQUL9ERDRwffNNE5YsqUN6uhfz58fjo49i4fEcu8T8gw/i4HaH9jhwxoxGmEzegObIynIhLU2CJAGPPGLBo49a4fX67vv778342c/s8HoZqklERJFzVtZZPse/KP4izJ0QEQWuqalJdW1UVFQQOxkYRoww48UXmyEI6s73t6mtFTFvHtDSwtBkor5i3sh5Pse327aHuRMiUsNul/Hxx+oCUWNjvZg5k2GqREREAwlDwYiIiIiIiIiIiIiIiIiIiIiIBgibTd0ioZSUwEIaiAYaf0PBTk07Ff+45B+w3WXDS5e/hEnpk6DRdAwy0Yv6ky4af+rrp1T3SkREA095uQsPP1yL0aMdmDIlBv/8ZwJqanQ+t21oEPH55zEh7cdsljFjRmNAc0yc2ILGRgG33ZaDN98c1O32a9fG4t57GwLaJxERUSBmDZ/lc3xvzd4wd0JEFLiWlhbVtTExoX2/0V/NmxePu+6qD3iepCQJBw4UBTwPEYXHJfmXQIPOIegVzRWQZYafE/V2a9c6Ybd3vgFQT8yc6YRez5t4ERERDSQMBSMiIiIiIiIiIiIiIiIiIiIiGiAqKtRdKJySwoUERP7wyJ5ut4nSReGm8Tdh203bsHPJTtxy2i2INcR2WfPEjCd8jh+qO4TDdYdV9UpERAODyyXj1VfrcMEFjcjO1uH3v0/E7t2mHtWuXh0f2uYAXHFFPaKj1QfR5uW5cN11efj66+ge1zz9dAJefLFO9T6JiIgCMT5tPAQfy7qq7dUR6IaIKDAul0t1rU7nO6CYuvfoo3GYPr1JVa0gKLj99gosXVoMnc6J0tLSIHdHRKEgCiKSzEmdxmVFxidFn0SgIyLyx8qV6m7gBQBXXslAMCIiooGGoWBERERERERERERERERERERERANEZaW6i4VTU9VfoEw0EI1LG9flc89f8jxsd9nw4mUv4jTradBoeva9OTF9IlKjUn0+d/f6u1X1SkRE/VtDQwMOHjyIzz4rwMKFCVi/PhaS5N8l5Js3x6CmRhuiDgFRFHHBBSY8+mgFxoyxQxD8P/Z8/vlkHD5s9Lvu9tvj8PHHjX7XERERBUoQBAwyD+o0Lisyfqz8MQIdERGp5/F0H5DviyiKQe5kYBFFAW+8YUB2tn+hbPHxEv7xjyIsXlwD4ae3h/X19aivrw9+k0QUdCf7/OHNH98McydE5A9JUrB+vUFVrdEo4/LL/T/3SURERH0bQ8GIiIiIiIiIiIiIiIiIiIiIiAaIqip1lwsxFIzIPw+f+zBGJI1ofxytj8aS8Uuw/abt2HnzTtx82s2IMcSomnvJhCU+x9cWrIUsy6rmJCKi/sXpdKK4uBi7d+9GSUkJnE4nrFYPJk9uVjWf16vB2rXxQe1Ro9EgNjYWQ4cOxfDhw2G1puG88+qxbNkhfPnlXvz970W4/voajBjhgEbT3bGogqYmdWECTqeAa64x4eBBh6p6IiKiQOQPyvc5vnLfyjB3QkSknizLqs9J6fX6IHcz8CQn6/HGG26YTD37Nxg1yo7lywsxdWpLp+dKS0vhcvkXMEZE4Xdp/qU+x78o/iLMnRCRPz7+2InaWnXnMM8+24noaMaCEBERDTR89SciIiIiIiIiIiIiIiIiIiIiGiCqq7Wq6iyWIDdC1M8NMg/CD7f+gI0LNuKzRZ+h/M5yvHDZC5hgnRDw3L8967fQajp/L7u8Lvxz5z8Dnp+IiPomWZZRUVGBffv24eDBg2hsbISidAzTuvzyetXzr16dACUIObFGoxGZmZkYNWoUsrKyYDAYAAAOh6O93+hoGdOmNePuuyuwfHkhNm/ei6VLj2D+/BoMHer0MasmoJ6qqnSYNQtobJQCmoeIiMhfZ2Se4XP88yOfh7kTIiL1HA71AbsmkymInQxcU6bE4KmnGrrdbs6cWvz3v4dhsXhOus2hQ4d44wGiXm7+mPk+xw/XHw5zJ0Tkj3fe8aquveIK3sCLiIhoIGIoGBERERERERERERERERERERHRACDLiupQMKuVlxkR+UsraDE9bzqmZU9DjCEmaPMaRSPOzDrT53NPfvVk0PZDRER9Q0NDAw4ePIg9e/agpqYGknTyYKvzz2+A2axu8VlBgRH79hlV1YqiiOTkZIwcORJDhgxBXFxcp23q6upOWh8XJ2P69Cbcd18FVq48iM8+24s//7kYV199FDk5LqSluVX1dbw9e0z42c/sXPxORERhNWv4LJ/je6r3hLkTIiL1mpubVddGR0cHsZOB7bbbEnD99fU+n9PrZTz0UBn+8IdyGAxdh4p4vV4UFRUFv0EiCppEcyKidZ1/frq8LhTWFkagIyLqjiwrWLtWr6pWFBXMnavuvCwRERH1bbxaj4iIiIiIiIiIiIiIiIiIiIhoAKip8cLjUXe5UHo6LzMi6k0em/6Yz/HCukIcrjsc5m6IiCjcnE4njhw5gt27d6OkpAROp7NHdWazgpkzG1Xvd/Xq+B5vq9FoEBsbi6FDh2L48OFITU2FIJz8mNKfIIHERC9mzmzEAw/Y8N57BfjgAwcSEk4ehtYTMTFeXHHFUS5+JyKisDo9/XRooOk0XtVSFYFuiIjUsdvtqmujoqKC2Am98EIsxo/v+O9hsbjxyiuHMHv2yYOYT2S321FZWRns9ogoiIYlDfM5/t/v/hvmToioJ7ZudaGsTF0o2OTJTiQlqbvxFxEREfVtvFqPiIiIiIiIiIiIiIiIiIiIiGgAKC31qq61WnmZEVFvMiVzClLMKT6fu3fjvWHuhoiIwsHr9aKiogL79u3DwYMH0dTUBEVR/J7n8st7vhD8RB98EA+Pp3NwyfFMJhOysrIwatQoZGVlwWAw9Ghut9utqieNRoNx4+Lw6qst0OlkVXNkZbnw2muFmDq1BXa7HeXl5armISIi8pcgCEg0JXYa9ype7K/ZH4GOiIj8F8ixfFfBweQ/g0HAihUaJCV5AABTpzbhrbcKMWpUz4Kkj1ddXY2mpqZgt0hEQTI9d7rP8Q2FG8LcCRH1xIoV6m9oMGuW+s/4iYiIqG/jWRMiIiIiIiIiIiIiIiIiIiIiogGgvFxdSAIAZGSIQeyEiIJh8YTFPsff2/8eZFn99zsREfUeiqKgvr4eBw8exN69e1FTUwNJUr+ADAAmTLAjPV3dov26OhGffx7daVwURaSkpGDkyJEYPHgwYmNj/Zq3paVFVT8A2kPHLrkkDk880eB3/cSJzXj99UPIyzv2NamtrUVtba3qnoiIiPwxNHGoz/GVe1eGuRMiInXUvkfR6XRB7oQAIC/PhP/8x44lS6rw3HNHkJCgPkikuLg44PegRBQaC05Z4HN8T82eMHdCRD2xdq36455583p20wUiIiLqfxgKRkREREREREREREREREREREQ0AJSVqQsJio31wmzmZUZEvc3vpv0Ogqbz96bL68JL374UgY6IiChYnE4njhw5gj179qC0tBROpzNocwsCMGtWner61asTAAAajQZxcXHIz8/H8OHDkZKSAkFQd8xYX1+vup/o6GMhZb/6VQKWLOn5323OnFq88MIRxMd3XiRfXl4eUFgZERFRT03JnOJz/LMjn4W5EyIi/0mSBEVRVNW2BfxS8F1ySRzuv98JrTaweRRFQWFhIW9AQNQLjU4ZDZ3QOWSo0dWIRmdjBDoiopPZs8eF/fvVHfeccooTOTkMUiUiIhqoeLUeEREREREREREREREREREREdEAUFGhri4pqXNIAhFFnlE04szMM30+9+RXT4a5GyIiCpTD4cXLL9dh/vxaFBQcRFNTk+rF9d257LJ6VXUpKR6MHCkhMzMLo0aNQmZmJvR6fcD9BBK+lZiY2OHx3/8eh+nTm7qsEQQF995rw4MPlkOnO/nXuKioCG63W3VvREREPXH5sMt9ju+u3h3mToiI/Nfc3Ky61mw2B7ETOlFGRgZ0usBDRDweD0pLS4PQEREFW3Z8ts/xN3e/GeZOiKgrK1ZIqmsvu0x9LREREfV9DAUjIiIiIiIiIiIiIiIiIiIiIhoAbDZ1oRKpqQwFI+qtHj//cZ/jB2sP4kj9kTB3Q0RE/vJ6ZXz2WRMWLqyH1apg8eIELFuWiD17jCHdb0aGB6ed1rMgLr1exsUXN+LNN+tRWqrF3/6WiLi42KD1oiiK6uAtjUbTKZRMFAWsWGHEsGEOnzVRUV789a9HsGDBUWg03fdWWFgIWZZV9UdERNQT07Km+RyvaFaZ7k5EFEaBBPzGxMQEsRM6kSAIGDx4MDTdvfHpgcbGRtTW1gahKyIKpqkZU32Or9m/JsydEFFX1qzRqq69+urAb8hAREREfRdDwYiIiIiIiIiIiIiIiIiIiIiIBoDKSnWLf1JSGIJA1FtNyZyCZHOyz+fu2XBPmLshIqKeOnzYgQceqMWIEW6cc04MXn01HvX1Yvvza9YkhLyHWbPqunz+1FPteOyxWpSUSFi7NhZXXx0PnS74l57b7XbVtQaDwed4QoIOq1crGDTI02E8Pd2NV189hGnTmnu8D6/Xi8OHD6vukYiIqDuCICDeGN9pXJIlHK7jaxAR9W7vvqvFG28kYscOMxob/Xu/YDSGNgyZAFEUkZWVFZS5ysvL4XQ6gzIXEQXHVaOu8jm+07YzzJ0Q0cmUlHjw7be+z2F2Z8gQF0aPZigYERHRQMZQMCIiIiIiIiIiIiIiIiIiIiKiAaCyUt2lQmlpSpA7IaJgWjx+sc/x9/a/B1lmqB8RUW/R0iLhpZfqcO65TRg61IhHHklEQYHvRfBr18bB7VYX6NpTM2c2wmTydhhLTfXg1lvrsGNHM7791oz77ktESkpoF57V1XUdTtaVmJiYkz43bJgZy5bZode3vhaOG9eCZcsKMXSoy+/9OBwOlJaWqu6TiIioO0MShvgcX7l3ZZg7ISLyzxtvROPRR61YtCgPZ5wxEjNm5OO227KxdGkq1q6NQ0GBAR5P5zpB4LLWcImJiUFSUlJQ5jp06BDPNxL1IhcOuRAadD5/VNFcwe9Vol5ixQo3FEXded5LL/VxEEVEREQDCs+eEBERERERERERERERERERERENAFVVakPBQhtIQUSB+f3Zv4eg6fz97fQ68e9d/45AR0RE1MbrlfHxx4247rp6pKcDN92UgE8/jYHX2/XxVUODiM8/P3ngVTCYzTJmzGiEwSDjsssasXx5PUpKtHjuuQSMHx8d0n0fr6WlRXVtQkJCl8/PnBmHpUvrcfnldXjppSIkJnq73L4r9fX1qKmpUV1PRETUldMzT/c5/knRJ2HuhIjIPwcOGDo8rqjQY/PmGLz8cjLuuy8Ts2cPxaRJIzFnzmD85jcZ+Ne/kvDFF9Gw230HJFNopKWlwWw2BzyPLMs4dOhQEDoiomDQClqkRKV0GlegYMOhDRHoiIhOtHq1+iiPuXPFIHZCREREfRFDwYiIiIiIiIiIiIiIiIiIiIiIBoDqanUXDlssQW6EiILKKBoxNWOqz+f+9OWfwtwNEREBgMPhQFFREX73u0pMnx6L11+PR0ODf8diq1fHh6a5nwiCgAcecKCkRMKaNbGYNy8eOl14Ly2XZRkej0dVrUajgV6v73a7W29NxDPP1EGvV1Tt53gVFRVoamoKeB4iIqITXTr0Up/jP1T9EOZOiIh6rrTUiepqXbfbSZKAAwdMeP/9eDzzTBpuvTUHmzfHh75B6iAnJwdarTbgeZxOJ2w2WxA6IqJgGJc2zuf4W7vfCnMnRHSi2lovvvrK0P2GPlitHkyZoq6WiIiI+g9GhBIRERERERERERERERERERER9XN2u4zGRnULfqxW3neQqLd77PzHcNa/z+o0XlBbgOKGYmTFZUWgKyKigUWSJFRXV6O+vh5erxcAcPbZLjz2mLqE1c2bY1BTo0VSkjeYbcJsNiM5ORkxMTFBnVeNlpYW1bVGo7HH2+bk5ODAgQOQJEn1/toUFxdj6NChPQokIyIi6qnpedN9jtuaGLpCRL3Xtm1OAD0/Lj/e+PHdh4lRcAmCgLy8PBQUFAQ819GjRxEVFYXY2NggdEbUe9XU1ODgwYM4ePAgSktLUVpairKyMtTU1KC+vh51dXVobm6G2+2G2+0GABgMBhiNRhiNRsTFxSE1NRVpaWlIS0tDfn4+Ro4ciZEjRyI5OTkoPV427DJ8VPhRp/EvS74MyvxEpN477zghSVGqai+6yA1B4PESERHRQMdQMCIiIiIiIiIiIiIiIiIiIiKifq6sTAKgLrggPZ2hYES93ZlZZyLJnIQae02n5+7dcC/enPtmBLoiIur/ZFlGfX09jh49CpfL1en59HQPJk5sxrZt0X7P7fVq8MEH8Vi48GjAfep0OiQmJmLQoEEQhN5zbFdfX6+61p9QM0EQMGTIEOzfvx+KoqjeJwAoioLCwkIMGzasV30tiYiobxMFEXGGODS4GjqMe2QPShtLkRGbEaHOiIhObtcuWVWdICiYMMEU5G6oJwwGA9LT01FWVhbwXMXFxcjPz2dgMvULLS0t+Pbbb/Hdd9/hhx9+wPfff4+9e/eqOm9ht9tht9sBAOXl5di7d6/P7axWK84++2xMmzYN5513HvLz81X1fu2Ya/GLD37RabyovkjVfEQUPO++q1FdO2cOzzsSERERQ8GIiIiIiIiIiIiIiIiIiIiIiPq9sjJ1C7QAID1dG8ROiChUFo9bjMe/fLzT+Or9qyHLMoNLiIiCyG63o6qqCi0tLd2GTM2aVa8qFAwAVq9WHwomCAJiY2ORkpLSaxdpty2SVSMxMdGv7UVRRF5eHgoLC1Xvs43X68WhQ4cwZMiQgOciIiJqk5eQh28rvu00vmrvKvzP5P+JQEdERF3bs0fdeeOcHBeio41B7oZ6KiEhAc3NzWhoaOh+4268/34ZZs3KhlbL847Ut+zfvx+bN2/GN998g61bt2LPnj3wer1h7aG8vBxvvPEG3njjDQDA6NGjcdVVV+FnP/sZhg4d2uN54o3xiNHHoMnd1GHc7XVjf81+DEsaFtS+w6W4uBjbt2/Hjh072n8/etT/c2TZ2dkoKioKfoNE3WhpkfHJJ+qOd+LjJZx/Po+ViIiICOC7bSIiIiIiIiIiIiIiIiIiIiKifq68XF0omCjKSE5mKBhRX/C7ab+DoOl8SaBTcuK/3/03Ah0REfUvkiTBZrNh7969OHToEJqbm7sNBAOAGTMaYTKpW1h64IAJ+/b5twDMbDYjOzsbI0eOREZGRq8NBJNlGR6PR1WtIAgQRf/vjW0ymZCRkaFqnydyOp0oKSkJylxEREQAMDl9ss/xTYc3hbkTIqKe2bdPp6ouP98d5E7IX5mZmQG9V5Rl4KWXkjBvXg7uv78+eI0Rhcj+/fvx97//HXPnzkVqaiqGDx+Om266CS+//DJ++OGHsAeC+fLjjz/i97//PYYNG4aLL74YGzZs6HHt8KThPsdf+f6VYLUXUmVlZVi9ejV+97vf4eKLL0ZKSgqys7MxZ84cPProo1i/fr2qQDCiSHr/fSccDnUxHjNnuqDTaYLcEREREfVF/n8aSkREREREREREREREREREREREfUpZmbpQsORkLwRB3eIuIgovs96MKRlT8GXJl52ee/zLx3HDuBsi0BURUd8myzLq6+tRU1MDt1vdwnWzWcbMmY1YvTpBVf3q1fEYPryiy210Oh0SExMxaNAgCELfuGd0U1OT6lqj0b+gtOPFx8fD4XAEZTFpQ0MDjEYjkpOTA56LiIjooqEX4fkdz3ca/77y+wh0Q0TUNY9HRmGhuuPyUaOkIHdDauTl5WH//v09Crs+XlOTgPvvz8Ann8QCAJ58MgGTJtVj9uz4EHRJFJgbb7wRGzdu7FOh3oqi4MMPP8SHH36IcePG4c9//jPOPffcLmtm5M3AtvJtncY3Fm7EI+c9EqpWVamoqMD27dvbf+3YsQMVFV2f9yLqi1au9O/19XizZzMQjIiIiFoxFIyIiIiIiIiIiIiIiIiIiIiIqJ9Tez19SooXAEPBiPqKR897FGf/9+xO4weOHkBpYykyYjMi0BURUd9jt9tRVVWF5ubmoMw3a1a96lCwtWvjceedldDpOi4kEwQBsbGxSElJgV6vD0abYdXQ0KC6NiYmJqB9WywWuFyuoPz7VlZWwmg0BtwTERHRhYMv9Dle3lQe5k6IiLr34492OBzRqmrHjGHQRW8giiJycnJw+PDhHtcUFBhwxx1ZOHLE0D4myxrcdFM0Ro2yY9gwcyhaJVLt3//+d6RbCMi3336L8847D5dffjn++te/Iisry+d2C8YuwKNfPNppfG/N3lC32KWqqirs2LGjQwhYeTmPban/83gUrF9v6H5DH0wmGZddpv6GCERERNS/MBSMiIiIiIiIiIiIiIiIiIiIiKifq6hQt9AqOVkOcidEFErTcqZhkGkQjjqOdnru3g33YtmcZRHoioiob5AkCVVVVWhoaIDX6w3q3BMmtCA93Y2yMv/Du+rqRGzeHI3zzmsCAJjNZqSkpCA6Wt0C/N7Cbrerrk1IUBewdrysrCwUFBTA4/EEPNeRI0cwdOhQGAzqFvsREREBgF7UI0YfgyZ3U4dxl9eFquYqpESnRKgzIqLOdu5Ufxw9cSKPm3uLqKgopKamorKystttP/ggDn/4QzocDqHTc7W1IubNc+PrryVERXHJMlGwrVmzBp999hn+9re/4brrruv0/PDk4dALerhld4fxJncT6p31iDfGh7zHo0ePYvv27R1CwEpKSkK+X6LeaONGJ+rrTapqzz3XCbOZIZtERETUqvM7cCIiIiIiIiIiIiIiIiIiIiIi6leqqtSFgqWlKUHuhIhC7cZxN/ocf3ffu5BlBv0RER3P65Xx4YeN+Pe/S7Fv3z7U1tYGPRAMAAQBuPzyelW1JpMXNTUmpKWlYeTIkcjLy+vzgWCyLEOSJFW1giBAFANfZC4IAgYPHgxBCM7l9AcOFMLl4ussEREFJjc+1+f4qn2rwtwJEVHXvv9eXV1UlBfDhhmD2wwFJDk5ucv3mB4P8Kc/peHXv870GQjW5ocfzLjppuZQtEhEABoaGrBgwQJcf/31cLvdnZ7Pjs/2WffGD2+EujUAwIQJE3DhhRfi/vvvx6pVqxgIRgPaO++oP0d4xRX8bJ6IiIiOYSgYEREREREREREREREREREREVE/V1Wl7jKh1FReeEzU1/zh7D9A0HT+nndIDrz6/asR6IiIqPfZt8+Ou++uxeDBHlx8cSwefTQJSogPey67rM6v7SdNasHTT9eirEzGH/+YgqSkpKAFWEVaY2Oj6lqTyRS0PkRRRF5eXsDztLQI+N//zcD11zfC62UwGBERqTcxfaLP8Q2HNoS5EyKiru3dqy6od+hQF7Ta/vG+pj/JysryGb5cXS1i8eJcvPZaUo/meeONeDz9dG2w2yOi47zyyiu44IILUF9f32H8zKwzfW7/3oH3wtAVEbWRZQUffqhXVSuKMubMYXgqERERHcMzKERERERERERERERERERERERE/VxVlVZVncWiCXInRBRqZr0Zp6ef7vO5x754LMzdEBH1Ho2NEp59thZTpzZj5EgT/vznRBw5YgAAHDxoxN69oV1wlZnpwYQJLV1uk5Hhxq9+VYfdu+3YsiUKd9yRiIQEXUj7ioTXX/fgmWdS8eWX0bDb/TvejI2NDWovRqMRmZmZquvLy3VYsCAPn34ai7feisfDD9cHrzkiIhpwLhpykc/x7yq/C3MnRERd279fXdjFiBHuIHdCwSAIQqfA5J07zbjqqsHYuTPKr7l++9t4fP55UzDbI6ITfPrpp5g2bRrq6o4F0F896mqf2+607QxXW0QE4OuvXSgvV3c+d+pUFxIT1X2mT0RERP0TQ8GIiIiIiIiIiIiIiIiIiIiIiPoxr1dBTY26C4itVoaCEfVFj033Hf61/+h+lDaWhrkbIqLI8XplrF3bgHnzGmC1anD77Yn4+utoKErnY5zVqxNC3s+sWXWdxsxmL+bMacB77zWgqEjEM88kYORIc8h7iaSVK43417+SccstOTjjjJFYsCAXf/1rCrZsiYLT2fXxZ1xcXND7iYuLQ3Jyst91u3aZcM01g1FQcCxQ7uGHE/Dmm/VB7I6IiAaSS/Iv8Tle2sD3cUTUe3g8Ei67rB7nn9+A7GwXNBqlx7UjR8oh7IwCodfrkZmZCUUBXn89ET//eS5qavwPNXG5BFx7rQE2mysEXRJRmx9++AGXXnop7HY7AGBG3gxo0PmcSlVLFWSZP3uJwuXttyXVtbNm8XuViIiIOhIj3QAREREREREREREREREREREREYVOdbUXkqTuMiGrlfccJOqLpuVMwyDTIBx1HO303K83/Bqvz3k9Al0REYXP3r12vPSSCytWmFFS0rMQqQ8+iMPdd1dAp+v5gnZ/zZzZiMcek+FwCJg8uQXXXOPCokWxIQm66q08Hhnbth0LPZMkDXbtisKuXVF48UVAp5NxyikOTJrUjIkTWzB2rAN6feu/iSAIEMXQXP6empoKp9OJpqamHm3/3ntxePDBdHg8HY+XZVmDm26KQW5uEyZPjglFq0RE1I8ZRSOidFFo8bR0GHd6nai11yLRnBihzoiIjmlqasQtt1S3P7bbNTh0yIgDB4woKDDgwIHWP9fXdz52HzdO3c0rKDzi4uJw6JAHjz+eFNA8ZWV6XHVVMz75RAdR5GcMRKHy1VdfYeHChXj77bchCAJSo1NR0VzRYRsFCj4q/AgXD704Ql0SDSzvv+9/oCYAaDQK5s3TB7kbIiIi6usYCkZERERERERERERERERERERE1I+VlXmh9jKh9HQu2CHqq2449QY89fVTncZX7VsVgW6IiEJPkiRUVlbif/7HjFWrEgCYu605Xn29iM8/j8b06T0LhVIjKkrG0qXVOOusGIwYEQUgKmT76q02b25GU1PsSZ/3eARs3x6F7dtbvzZGo4xTT7Vj0qQWzJvnCmlvmZmZOHjwINxu90m3kWXgb39LwT//mXLSbZqbtZgzx4BvvnEiI8MYilaJiKgfy4nPwe7q3Z3G393/Lm4cd2MEOiIi6qilpWNwodmsYPRoB0aPdrSPKQpQUyOioMCIAwcMP/1uxMSJpnC3S36aNSsJixbV4z//iQ9oni++iMZdd9XhL39JCE5jRBGQmpqKUaNGIS8vDzk5OcjOzkZaWhqSkpKQlJSE6OhoGAwGGAwGyLIMl8sFp9OJ6upqVFdX48iRIzhw4AB+/PFHbNmyBeXl5UHv8Z133sGLL76IJUuWYIJlAtYWrO20zfLdyxkKRhQGP/7oxsGDBlW148a5kJnJ84hERETUEUPBiIiIiIiIiIiIiIiIiIiIiIj6sbIyWXVtejovLyLqqx465yE8/c3TkJWOPwMckgOvffcarjvlugh1RkQUPLIso7a2FrW1te1BThaL+uOXd99NCEkomF6vx6BBg5CQkIDRowd26OqGDZJf2zudAr75JhrffBONiy9uDFFXrQRBwODBg7F//37IcudjaLtdg/vvz8DGjXHdzlVWpscVV7Tgs88kREXxmJqIiHpugmWCz1CwDYUbGApGRL2Cy9V9WK9GAyQnS0hObsbUqc3t4ykpo0PZGgXJ88/H4ocfWrBjR2BB1s8+m4DzzqvFrFmJQeqMKHSGDBmCiRMn4rTTTsNpp52G0aNHIzGx5/93BUGAKIqIiorCoEGDMHz4cJx11lkdtjl48CDWrFmD5cuXY8uWLUHr/Y477sD06dNx+bDLfYaCfVXyVdD2RUQn99ZbbgB6VbWXX+4NbjNERETULwzsT5WJiIiIiIiIiIiIiIiIiIiIiPq58nJ1oWBxcRJMJl5eRNRXmfVmTLJO8vncI188EuZuiIiCq6WlBYcPH8aePXtQUVHRHggGAJddVq963s2bY1BTow1Ch62LQRMTEzF8+HDk5+dj0KBBEAQeW335pbqFcWazF+ecEx3kbjrTarUYPHhwp/HKShGLFuX1KBCszY4dUVi4sAVer/qQXiIiGnguHHKhz/GdFTvD3AkRkW/Hv//yh1YbnPdaFHoGg4AVKwQkJ3sCmuf662uQnV2Opqbgh28TBWr06NH45S9/iRUrVqCyshIFBQVYtmwZ7rzzTkybNs2vQLCeGjJkCO68805888032LVrF6655pqgnCuy2+2477778LNRP/P5fFF9UcD7iDSLxRLpFoi69d576m8MMG8ebypAREREnfGTZSIiIiIiIiIiIiIiIiIiIiKifqy8XFFVl5zMOxIT9XWPTn/U5/i+mn0obywPczdERIHxeDwoLS3Fnj17cPjwYbS0tPjcLiPDg4kTm1Xtw+vV4IMP4gPoEoiKikJubi5GjhwJq9UKUeSCrjYul4wdO0yqaidMcMBgCM+l7waDAVlZWe2Pd+824pprBmPvXv97X7kyDg88UB/E7oiIqL+7bNhlPsdLGkrC3AkRUWeyLEOW1YXe6vXqAoIpMnJzTfjPf+wQRf8/XzCZvHjqqWLcfXcFRBEoLi6GJEkh6JKo5+Lj4zFv3jy8/PLLKCsrww8//IC//vWvmDt3LlJSUsLezymnnIJly5Zh586dmDBhQsDzvf3229izaw9iDbGdnvPIHuyu2h3wPsIlLS0Nl1xyCR588EGsWbMG5eXlKC/n5xnUuxUVefDdd0ZVtcOGuTBypCHIHREREVF/wE+ZiYiIiIiIiIiIiIiIiIiIiIj6scpKdXUpKeoWdxFR73Fu7rlINCWi1lHb6blfb/w1Xp39agS6IiLqOVmWUVtbi6NHj8Lj8fS4btasemzbFq1qn2vWxGPhwqN+1ej1eiQlJSE+Ph6CwHs2n8ynnzbBbo9TVXvGGe4gd9O12NhYpKSk4NVXnbj//gy4XOr/Xf/0pwQMH16H669PCGKHRETUX0Xro2HWmWH32DuMOyQHGp2NiDV2DnogIgoXl8ulutZkUhcQTJFz8cVxeOCBWvzhD4k9rsnJcWHp0mIMHnzs/4qiKCgsLMTQoUP5npnCKiMjA5dffjmuuOIKnHPOOdDpdJFuqZNTTjkFW7ZswX333YennnoqoLmeeuopjLhwBLaUben03Gvfv4bHzn8soPlDITU1FRMmTMCECRNw2mmnYcKECUhPT490W0R+W7HCBUDdz5hLLvEAYCgYERERdcZQMCIiIiIiIiIiIiIiIiIiIiKifqyiQqOqLjWVoWBE/cGiUxfh6a+f7jS+ct9KvAqGghFR79Tc3IyqqirY7fbuN/ZhxoxGPPKIFw6H1u/a/ftN2LfPiOHDnV1up9VqERcXh5SUFIgiL8nuiY0bvaprZ8wI/9c4JSUFLS21AQWCAYCiaHDrrbHIy2vEWWcxyIWIiLqXFZuFfUf3dRpfs38Nrjvlugh0RETUqqmpSXVtVFRUEDuhcHnggXhs396I99/v/r3M+ec34OGHyxAd3fmzBY/Hg9LSUmRlZYWiTSKfSkpKIt1Cj2i1Wjz55JPIzc3FL37xC9XzrFmzBr+85pc+Q8E2HtqIxxDZULCUlJROAWAZGRkR7YkoWFav9v88dJu5c3lumYiIiHzjUQIRERERERERERERERERERERUT9WVaUuxCAtLciNEFFEPHTOQ3jm62egQOkwbvfY8dp3r3FBORH1Gm63G1VVVWhsbIQsBxZOajbLmDGjEWvWJKiqX706HsOHV/h8Ljo6GikpKTCbzYG0OCB9+aVeVV1MjBdnnRUd5G565ne/S8T+/fVYtiw+oHkcjv9n777jq6rvP46/783NuJk3e5BFwkpwIEPEgRs3CIJad+2ytbV1tLa/am3V2lpbbdXWukfrQlFAQRH3nogDCCtACJlkr5ubm3N/f1gH5pJxcnJvcvN69uFD873n8/2+qyE599zz/ZwwnXlmlD7/vEOJiU5rwgEAQtbUzKl+m4K9sPUF3sMBCCqzjZslKS4uzsIkCJSwMLv++99ozZjh1ubNUX6Psdt9+vnPq/Xd7+6WrZdnlDQ3N6u+vl5JSUlDlBYY2X7yk5+ooaFBV111lan6rq4uRa6P9Puav3PLoZSamqqpU6d+1fxr+vTpysnJCWgGIFB27+7We+/5/x3Zl6ysLs2c6f/PLQAAAE3BAAAAAAAAAAAAAAAAgBBWXW3uycQ0BQNCQ2xErA4cc6De2/Vej9duePMGNpQDCCrDMFRXV6f6+np1dXVZOveppzaabgq2YoVLl11WrfDwLxoqRkREKCUlRS6XS3a7uYaro11bm1cff2yukdr06e0KDw9OAwGbTbrvvnht29aqd94x35jM6TT0y19WqaKiRXFxE+VwcBs/AGDv5hTO0SOfP9Jj/MPKD4OQBgC+1tnZaarOZrPxXmoES0hw6PHH3Zo9u1utrXt+3pCY6NVNN+3UzJlt/ZqroqJC0dHRiooy1zwFCHX/93//pzfeeEOrVq0yVf/RGx8pYnaEPN2ePcZbPa2qb69XUvTQNOU76qijlJmZqWnTpmnatGnKy8sbknWA4ejJJ93yemNM1Z50Uqfs9nCLEwEAgFDBlRQAAAAAAAAAAAAAAAAghO3eba4pWGamxUEABM0fj/qj3/ENuzeoqrUqwGkAQPrkk1Z9/PF2rV+/XtXV1ZY3BJOkadPaNGaMp+8D/WhqCtP69TFKTk7WpEmTNGHCBCUlJbGJfRBeeaVNbre5f3+HHmr998dAREba9fTTEcrPN9cAIS2tSw8+WKpjjmmWz+fT1q1bZRiGxSkBAKFk3qR5fsfLmsoCnAQA9uT1ek3V0RR35DvggFjdfnvzHmP77tuuxYu39rsh2JdKS0t5TwTshc1m07/+9S9FRESYqn/jjTeUF+O/IZe/prNWue+++/THP/5RCxYsoCEYRp2lS22ma087zdzn+AAAYHTgk2kAAAAAAAAAAAAAAAAgRLW1GWppMXczcVYWtxYBoeLogqOVGJXo97Vfrf5VgNMAGK127/boppvqNW1au6ZMidWjj0YO6Xp2uzR3buOAagoK3Lryynpt2uTW2WfnKzMzk83rFnnpJfMbvo89Nvj/DdLTI/TUU12Kjx9YE4R99mnXY49tVVGR+6uxrq4u7dixw+qIAIAQ4opyKcoR1WO8ratN7Z72ICQCAMkwDPl8PlO1kZFD+/4PgXH++Yn6yU8aJEmLFtXrgQe2KSNj4E2cDcNQaWmp1fGAkFFQUKDvfve7pmrdbrcmdU3y+9qzm54dTCwAfrS2GnrttZ7v3fojKcmro482VwsAAEYH7twDAAAAAAAAAAAAAAAAQlR5+cCaFnwTTcGA0HL+lPP9ji/ZsCTASQCMJl1dhp58slFz5zYrJ8ehX/0qSWvWREuSli5NlMn95P12yikNfR4TF9ets85q1OrVTdq0KUJ//nOSCgudQxtsFHrrrQhTdS6XV7NmxVqcxpwDDojVAw+0yuHo3zfuccc16f77tyk1tec5eVtbmyorK62OCAAIITnxOX7Hn91MMwcAwdHa2mq6Njo62sIkCKa//z1Bd9xRpt/9rkIREebf1Lvdbt4TAb344Q9/aLp2kvw3Bfu48mPTcwLwb/lyt9xuc5+pz5nTKYfDZnEiAAAQSrhzDwAAAAAAAAAAAAAAAAhRFRWG6dqcHIeFSQAE23VHXiebem4uaO9q1yOfPRKERABC2ccft+riixuUm+vVokUuPfNMfI/NUZs3R6mkJGpIc+TkdGnatLYe43a7T7Nnt+rOOxtUUeHTww+7dMwxCQoL49bqoeD1enXtteW69tpynXxyo9LSuvpdO2NGhxyO4fPfZf58l66/vu9mcz/+cY1uummnoqL2vkm+rq5ODQ19zwUAGJ2mZEzxO/78lucDGwQA/mcwTcHi4uIsTIJgCg+367vfTbdkrrq6OjU3N1syFxBqpk6dqpwc/01i+2Kvt/v9LKC2vVZew/zDhCTJ5/Npc91mPbD2Ad301k1aVrJMvqHu+g8MY08/bf77f8ECGoIBAIDececeAAAAAAAAAAAAAAAAEKLKy7tN1UVEGEpKGj7NFwAMXmxErGZkzdD7Fe/3eO2Pb/xRZ+17VhBSAQgltbUe3Xdfqx57LEpr18b2q2bZMpeKiqqGNNe8eQ366KMYSVJhoVunn96u73/fqYKC/mXE4DU0NCg7u0vZ2Y2aP79RPp9UVhah99+P+d9fsaqv939b+6GH9r+BWKBceWWSSkoa9cADrh6vRUYauu66XTrhhKZ+zbVr1y5FRkYqOjra4pQAgJHu2IJj9cT6J3qMf1jxYRDSAIDU0dFhujYyMtLCJAi2yMhIZWdnq7y8fNBzlZWVacKECYqIiLAgGRBajjzySD300EMDrquqqlLGvhmqbK3cY9wnn1ZuXqm5E+f2ey5Pt0drKtforbK39NbOL/6qaavZ45jv7PMdPXIaDx7B6OPx+PTCC+YeehEd3a2TThraB2YAAICRj6ZgAAAAAAAAAAAAAAAAQIiqqjL3dOKUlG7Z7eEWpwEQbNcfdb3m/HdOj/H1tetV1VqljNiMIKQCMJIZhqFt2+r1859H6MUXY9XZmTSg+pUrXbr88mqFh5s7Z+mPOXOatXlzoy64wK7DD49VWBibrQKtpaVlj69tNikvz6O8PI8WLWqQzyeVlkbq/fdj9MEHXzQKa2r64jb3OXOG5znpXXfFq7S0Va+//nVzuZSULv3jH2Xab7+BNUvYtm2bJk6cKIeDW/sBAF+bXzRfP3z2hz3GtzVuC0IaAJA8Ho+pOrvdLrudB1CEGpfLpdbWVjU2Ng56rtLSUk2YMIHvE+BbiouLTdW1trZqRtYMLd+0vMdrT657stemYA0dDXp759tfNQB7f9f7cnvdva736OeP6pKZl+ig7INM5QVGqhdecKu52Wmq9qij3IqOjrE4EQAACDV8cggAAAAAAAAAAAAAAACEqMrKvo/xJzW1W9LwbMAAwLxjC49VYlSiGtwNPV779Yu/1gOnPhD4UABGpJaWFtXU1Kijo0OGIa1dO0GdnQPfvNvQ4NDrr8fq6KNb+j54gMLCwuRyuTRpUqoeeohbpoPJ7e5986jNJhUWdqqwsFPf+U69DEPavDlKa9ZEa8aM4dmwMjzcriVLIjRrlltbtkRp0qQO3XZbmTIyugY8l8/n05YtW9gEDwDYQ0p0iiLDItXZ3bnHeKunVW6vW1EOGp0CCKzu7m5TdeHhXGcOVdnZ2WpvbzfdMO5LXq9XZWVlys/PtyYYECLM/ploaWnR6RNP99sU7K3yt776Z5/Pp9KG0i8agJV90QRsXe06U2tWtpj8QBIYwZYsMUzXnnqqdTkAAEDo4lNDAAAAAAAAAAAAAAAAIERVVdlM1aWnm7+JGcDwdu5+5/odf3L9kwFOAmCk8Xg82rlzp9atW6cdO3aoo6NDkmS3S/Pm9Ww22F/LliVaFVE2m01xcXEqLCxUUVGRMjMz5XDQECyYvF6vDGNg55Z2uzRxolvnntussLDhe7t7SkqEli41NH9+gx58cJuphmBf8nq92r59u3XhAAAhYUz8GL/jq7asCnASAKPdYJo+RUXRxDCUFRQUyGYz9znEN7W2tqq2ttaCREDoiIuLM1Xn8/l0xj5n+H1tR+MO3fLOLVq4eKGybs7SuNvG6fyl5+uuNXeZbggmSXmuPNO1wEjU3e3Tc89FmKoNDze0YAHnRwAAoG/D91NSAAAAAAAAAAAAAAAAAINSXW22KZjP4iQAhovrjrxONvX82dDW1abHP388CIkADGeGYaimpkYbN27Upk2b1NTUJJ+v53nCKac0ml7jjTfiVFcXNoiUUmRkpLKzs1VUVKS8vDw5nc5BzQfr1NfXm66NiYmxMMnQmDw5WnffbSg6evBNddvb21VRUWFBKgBAqNg/fX+/4ys2rwhwEgCjXUtLi+nakXBeD/McDofy8/Mtmau6ulptbW2WzAWEgsjISFN1TqdTsRGxio+M7/Fat69bl71wmZZsWKKq1qrBRpQkxUXE7fW8FQhVb73VqerqcFO1hxziVmLi4K6HAwCA0YGmYAAAAAAAAAAAAAAAAECIqqkxd3tQZiZNwYBQFR8Vr2mZ0/y+dt3r1wU4DYDhqrm5WVu3btX69etVU1Ojrq6uXo/Pzu7S9OnmNu56vTatXOkacJ3D4VBycrKKioo0fvx4uVwu2e3cGj3cDKZ5gMvlsi7IEEpOTlZiYqIlc9XX1w+qkRoAILQcPfZov+MfVHwQ4CQARrvBNGqKi4uzMAmGo5iYGKWnp1sy1/bt2+X1ei2ZCxjpWltbTdWVtJZovzv2U3Nns8WJ/Dsk9xCF2WlwhNHlySfN/66aN4/P4QEAQP/wyTcAAAAAAAAAAAAAAAAQompqzN2En5FhszgJgOHk+qOu9zu+rnadalprApwGwHDh8Xi0c+dOrVu3TmVlZero6BhQ/bx5DabXXr7c1a/jbDab4uLiNG7cOE2aNEmZmZkKC2PT4XDmdrtN18bExFiYZGiNGTNGTqfTkrkqKioG1XQBABA6FhQt8Dte2lAa4CQARrvOzk7TteHh4RYmwXCVmpqq2NjYQc/j8/m0bds2CxIBI19Njblr9Zu8m/RZzWcWp9m72bmzA7YWMFysWGHu/MZm82nRokiL0wAAgFBFUzAAAAAAAAAAAAAAAAAgBHV3+1RX5zBVm5VFUzAglB037ji5olx+X/v1S78ObBgAQWUYhmpqalRSUqJNmzapqalJPp/P1Fxz5jTL6ew2VVtS4lRJSdReX4+KilJ2drYmT56svLw8RUXt/VgMHx6Px/T3U3h4uOz2kXWr+9ixY+VwmDv//rbt27fL4/FYMhcAYOTKjMtURFhEj/HmzmZ5DW8QEgEYrbq6ukzVWXV+jJEhNzfXkv/mnZ2dKi8vtyARMLJt2rTJXGGStTn6MjuPpmAYXT75pFOlpeYae02b5taYMZwfAQCA/hlZn5QCAAAAAAAAAAAAAAAA6Jfq6m51d5tr7pWVxW1FQKg7Z99z/I4/se6JACcBEAxNTU3aunWr1q9fr5qaGnm9g28qER1t6Nhjm03XL1vm2uNrh8OhlJQUFRUVady4cXK5XH7rMHw1NDSYro2OjrYwSWDY7XYVFhbKZht8g12fz6fS0lIZhmFBMgDASJYZm+l3/IWtLwQ4CYDRyjAM0+elERE9GxsidNntdhUUFFgy17332vTaay2WzAWMRGVNZVr+4nJzxVnWZulNZFikpmdND9yCwDCweLG5ZqmSNHeuuYdqAACA0Ym79wAAAAAAAAAAAAAAAIAQtGuX+ZuKs7PDLEwCYDj641F/lE09m5a0drXSGAwIUfX1nSorK9O6deu0c+dOdXR0WL7Gqac2mq5dscIlr9emuLg4jRs3TpMmTVJGRobCwjgvGalaWsxv4E5MTLQwSeCEh4crPz/fkrm8Xq+2bdtmyVwAgJFrv/T9/I6v2LwiwEkAjFZlZR16+mmXPv/cqY6OgTXAdTqdQ5QKw1VERIRycnJM13d22nTNNVn6/e/H6OyzI1VZ2WlhOmB48/l8uvPDO1XwjwLl/SlPmz7dNPBJnJJSLI+2VwdlH6RIR2TgFgSGgWefdZiuPf10GqYCAID+oykYAAAAAAAAAAAAAAAAEILKy803BcvMpPkGEOrio+I1NXOq39eue/26AKcBMFQ8HkP//W+Djj++WdnZDpWWtsnn8w3ZetOmtSkryzOgmqQkr7773UYtW9auKVMmKy8vT1FRUUOUEIHU2Wl+83Z0dLSFSQIrJiZGWVlZlszV0dGh8vJyS+YCAIxMR409yu/4e+XvBTgJgNHq9dc9+t3vsvWd7xRq5sxinXzyeF12WY7uuCNVL70Up507I2QY/mtjY2MDGxbDQkJCgpKSkgZct2tXuM47r0BPPZX0v68jdPrpXerq2ss3GBBiHvrkIV204iJta9wmfSLJzLd+oQLaOeCw3MMCtxgwDJSWevTpp+auXU+a1KmJE2kKBgAA+s98K1IAAAAAAAAAAAAAAAAAw1ZlpbmGHy6XV1FR3FYEjAbXHXmdTnzkxB7jn9V8pt3tu5USnRKEVACs8M47Lbr33m4tXRqjurrEr8ZXrnTpvPPqhmxdu12aO7dR//53Wq/HORyGjjyyTeec49UZZyQoMtI1ZJkQHB6Px3QDuoiICNntI/vZ10lJSXK73aqvrx/0XI2NjXI6nUpOTrYgGQBgpFlQtECXrrq0x/jWhq1BSANgNPr006/P630+m3bsiNSOHZFavTrhq3Gns1vjx3dq/Hi3xo93a8KEL/65uDgmGJExDGRlZam9vV1ut7tfx7/1VqyuvDJbTU17fjbx5puxuvzyBt16a+JeKoHQ8eAnD37xD15J75icZB+r0vTP7LzZgV0QCLInnuiSZK6x1ymndEmKtDQPAAAIbdy9BwAAAAAAAAAAAAAAAIQgs03B0tK6xW1FwOhwwvgTlBCZoKbOph6v/frFX+ueufcEIRUAs3btcuvee9v1+ONOrV8f5/eY5cuHtimY1HtTsOLiDp1+eoe+971oZWf7z4jQMJhmWDExodE4ICsrS263W+3t7YOeq6KiUm1tkcrNjbUgGQBgJMlNyFW4PVxdRtce443uRnkNrxx2ruEAGFobNvT9c6ajI0yffhqtTz+N/mps8uQOff75yG72i8EpKChQSUmJDMPY6zGGId19d6r++c80+Xw2v8fcdluiZsxo0Lnn0hgMoe2r87q3JPW8ZN+3OEkTLAzUhzBbmGblzArcgsAwsGyZ+XObRYvCLUwCAABGA66qAAAAAAAAAAAAAAAAACGoqsr/Bpq+pKbufYMOgNBz9n5n+x1/fN3jAU4CwAyPx9BDDzVozpwW5edH6JprkrR+vXOvx2/c6FRJSdSQZsrJ8WjatLavvk5O7tL3vtegt95q0bp1Tl1zTZKys4c2A4KvtbXVdK3L5bIuSJDl5+fL4Rhcs5bOTpt+/etsHXWUQ7W1HouSAQBGkozYDL/jr21/LcBJAIxGJSURpuomTeLcdbSz2+0aO3bsXl9vbrbr5z/P1e23p++1IdiXLr44Xp98Yv59JjASXDLzEqlMktlTvIMV0K4BUzOnKjaC5uUYPaqrvXr/fXPXtb+4Zm7unAoAAIxeNAUDAAAAAAAAAAAAAAAAQlB1tbm6jAyaggGjyR+P+qNs6rnprtXTqiXrlwQhEYCBOPZYQ+efn6jVq+Pk9fbvtuBly1xDG0rSaafV67jjmvWf/zSooiJM99yTqIMPjhvydTF8dHZ2mq6NiYmxMElw2e12jRs3TjabuYa9u3eH6cILx2rlSpe2bo3SggUeeTycrwPAaLNP2j5+x5/d9GyAkwAYbVpbvdqxI9JUbXFxt8VpMBI5nU5lZmb2GN+4MVJnnlmoV1+N79c8LS1hOv10h5qbvVZHBIaNvM48RT0RJZl52x8vabrViXo3O292YBcEgmzJkk51d5u7xnfiiR7Z7eZqAQDA6EVTMAAAAAAAAAAAAAAAACAEVVebuzUoPd1ncRIAw5kryqUDMg/w+9q1r10b4DQABqq52THgmhUrXOrqGpoNSDabTfHx8brssjQ9/3y8zjknURER3K482rjdbvl85s4pIyIiLE4TfA6HQwUFBQOu27gxUt/5TqE+/TT6q7E334zVD3/YbGU8AMAIcET+EX7H3975dmCDABh11qzpMN38YsoU3gviC8nJyYqP/7r517PPJuiccwq1c+fAGs5t2hSlc89tU3c3jZIRelavXq3Zs2fL3eI2N8EJksItjdQnmoJhtFm61Pw19YULwyxMAgAARguurAAAAAAAAAAAAAAAAAAhqKbG3M3FmZkWBwEw7F17hP/mX5/WfKrd7bsDnAbAUGtocOj112MtndPpdConJ0eTJ09Wbm6uIiMHtrEXoaWhocF0bWystd+bw4XT6VR2dna/j3/llTide26Bqqp6Nkl78EGX/vSneivjAQCGuQVFC/yOb2nYEuAkAEabjz/uMl07Y0aUhUkw0mVnZ8vnC9cNN2TqN7/Jkdttbmvz8uUJuuGGRmvDAUHU3t6uyy67TMcff7waGxvNTbKfpCIrU/XPITmHBH5RIEhaWgy9/rq5c5uUFK+OPJLzIgAAMHA0BQMAAAAAAAAAAAAAAABCUG2tuaZgGRnmn3IMYGQ6acJJSohM8Pvab178TYDTAAiE5csTBz2Hw+FQWlqaiouLVVhYqIQE/z9HMPq0traark1MHPz35nDlcrmUnJzc6zE+n3T//Sn6+c9z1dGx9/P5q69O1FNPNVqcEAAwXI1LGieH3dFjvKGjQYZhBCERgNHis8/MXStOSelSTg7NL/A1u92u3NxCffhhzKDnuvbaRD3/fLMFqYDgaW1t1a233qrCwkLdcsst5s/p0iSdbGm0ftknbR8lR/d+jQMIJUuXdqiz01xbjuOO61RYGJ+/AwCAgaMpGAAAAAAAAAAAAAAAABBiWloMtbWZawo2Zgy3FAGj0Vn7nuV3/PF1jwc4CTB6ud1uVVRUBGSt11+PU339wM8VbDab4uPjNX78eE2aNElpaWmy2zl3wJ48Ho+pOpvNJqfTaXGa4SUzM1MxMf43wXd12fS7343RzTdnyOfrfaNgd7dNF1wQpzVrzDdgAwCMLGkxaT3GfPLp7fK3g5AGwGhRUhJuqm7ChE6LkyAUJCQ49PjjXsXGdg9qHq/XpvPPd2rHDrdFyYDA6Ojo0IoVK/SDH/xAWVlZ+vnPf66qqirzE8ZLOltShFUJ+++w3MMCvygQRE8/bb52wQIaggEAAHP4FB4AAAAAAAAAAAAAAAAIMTt3dpmuHTPGXDMxACPbDUffIJt6bkxo8bTo6Q2D2O0AoFfd3d2qqqpSSUmJtmzZovb29gHVFxV1mFrX67Vp5UpXv493Op3Kzc3V5MmTlZubq8jISFPrIvR1dHTI5/OZqo2ICMIu1iDIy8tTePiezRUaGsL0/e/na+nSxH7P09ISpgULwlVVRcMFABgNJqdO9ju+bOOyACcBMJps3GjuvV9Rkfnr0whtBxwQq9tvbx70PDU14br99iYZhmFBKsAaHo9Hra2t2rVrlz755BM9//zzuv322/Wzn/1MBx10kFwul04++WTdc889amlpGdxiLkkXSEoYfG4zZufNDs7CQBB4PD699FKUqdrY2G6deKK5WgAAAEewAwAAAAAAAAAAAAAAAACwVkWF+Y0w2dk0BQNGI1eUS1Mypujjqo97vPaH1/6g+UXzg5AKCE2GYai5uVm7d++W2+0e1FxHHNGsDRvM1S5b5tI559Tt9fXw8HAlJiYqJSVFdjvPIUb/NDQ0mK6NjY21MMnwZbfbVVhYqE2bNskwDG3dGqmLL87Trl0Db4q2Y0ekTj21Ta+9Fq7ISP6cAkAoOzzvcK0uXd1j/O2yt4OQBsBosHOnW7t3m2tise++5hoFY3Q4//xEvf9+g/71r/43Rf4mh8PQb35TqUWLGlRa2qJx48ZZnBCj3YcffqgZM2YEO8bejZF0pqS44EU4LPew4C0OBNjzz7vV3Ow0VXv00W5FRcVYnAgAAIwWfPIHAAAAAAAAAAAAAAAAhBizTcEiIw25XNxSBIxWfzjiD37HP63+VPXt9QFOA4Qet9utHTt2aMOGDSovLx90QzBJmjWrVU6nud/7JSVObdy45wZvm82mhIQETZgwQRMnTlRaWhoNwTAgW7e6ZZjsT5uYaG5D+EjkcDhUUFCgd9+N0TnnFJhqCPal996L0fnnN6u723xjYADA8Dd/kv9GzZvqNwU4CYDR4oMPzL9nPeCAcAuTIBT9/e8JOuSQ1gHXpaV16cEHt+n00xtks31xraWysnIIEgLDkE3STEnfVVAbghUkFmhM/JjgBQACbMkS89fc5vO8HQAAMAh8Sg8AAAAAAAAAAAAAAACEGLN7YFJTvbLbbdaGATBinDLxFMVHxvcY98mn37z0myAkAkY+r9eryspKbdiwQVu2bFFLS4t8Pp9l8zudPh17bJPp+mXLXP+bx6m8vDxNnjxZOTk5iogw36AIo9s554zR7NmTdOmlOXrkkSRt2RKp/nzL22w2RUVF9X1gCImKilJRUYrpJmrf9PjjLl1/fePgJwIADFvFacUKs4X1GK9rr5NhxS8TAPiWtWvN/WwJC/Np6lSnxWkQasLD7Vq8OFxZWZ5+1xx4YKsWL96i/fbr2GO8rq5Ozc3NVkcEhpWiyUXKuCRDOkGSI7hZZufNDm4AIIC6u3167jlz18ojIgydeurout4JAACsRVMwAAAAAAAAAAAAAAAAIMRUVpprNpKayiZSYLT7zj7f8Tv+2OePBTgJMHJ1dxt6+eVmnXNOoxYubFFdXZ26u7uHbL25cxsHXBMZaeikk5q1YEGYiouLVVhYqLi4OOvDYVTZtKlDZWWRampy6MUXE/SnP2Vp/vzxOuKISbriihwtXpyobdsi/DYJG62N6A45JE7//nezbLbBNwu89tpEvfNOnQWpAADDVWpMao8xn3z6sPLDIKQBEOpSU9067LAWpad3DaguL69TsbFB7liDESErK1L//W+nIiL6/lziu9+t1Z13bldysv/rK2VlZfJ4+t9gDBgpJkyYoAcffFCff/q5XvjNC4qNiA12JM3OpSkYRo833uhUbW24qdrDDnMrIaFnY2cAAID+4uoKAAAAAAAAAAAAAAAAEGKqqmym6tLTaQoGjHY3HHWD7vroLvm0Z3OSZk+zlpcs19xJc4OUDBj+Sks7dM89bj3xhFNbtsRLksLCfPrFL6qUkjJ0TcFmzGhTZqZHlZV9N1WaMqVdZ57p1oUXxio1NX7IMmF0eu65DknOHuP19Q6tWpWgVasSJElpaV2aPr1NM2e2acaMVmVnd43qpnTnnpuokpIG3XBDouk5HA5D11xTobi4RjU3hys+nj/fABCKilKKVNVa1WN8aclSHTjmwCAkAhDKjjqqQUceWS9Jamqya/PmKG3aFPXV37dsiVR7e89GF5MmeSRFBTgtRqojj4zTH/9Yr1/+Msnv69HR3br++l069tjmPucqLS3VhAkTZLfbrY4JBFR4eLiOP/54/fCHP9RJJ50km+2Lz/z2Td9XDy94WKc+dmqP6/eBdFjerxbL1AABAABJREFUYUFbGwi0J5/0mq6dNy94f04BAEBooCkYAAAAAAAAAAAAAAAAEGKqq802BePmZGC0S4pO0v4Z+2tt1doer13z2jU0BQO+pbXVq0ceadHDD4frzTdjZBh7NkTq7rZp5UqXzjuvbsgy2O3S3LmNuvPONL+vp6d36bTTWvW974Vr6tRYSdFDlgWj2+uv92wI4E9NTbhWrnRp5UqXJGnMGI/WrRvd56HXXpugjRubtGRJwoBrXS6v/v73Mk2b1i5JKisr07hx4xQVRSMGAAg1s3Nn65Xtr/QYf6vsrSCkARDKDMOQz/f1OXpCgqHp09s1fXr7N46Rdu0K36NR2ObNUZo82XzzDIxOV1yRpA8+aNTixa49xgsK3LrlljIVFHj6NY/X61VZWZny8/OtDwkMMbvdrlNPPVWnnHKKTjnlFCUnJ/s9bu7Eubrh6Bv0m5d+E+CEX8iMzVRhYmFQ1gYCzTB8WrGi7wdx+GO3+7RwYaTFiQAAwGhDy2sAAAAAAAAAAAAAAAAgxNTUmLstKCNjdDdjAPCF3x/+e7/jn1R9ovr2+sCGAYah7m5Dq1c36eyzGzVmjPSjHyXq9ddjZRj+m3IuW+Ya8kzz5jXu8XVUlKFTTmnWE080aufOMP3zn4n/awgGDJ1333X2fZAfcXHdSkgY3ZvkwsLs+s9/YjV9etuA6goL3Xrkka1fNQT7UmlpqbxemjEAQKiZXzTf73jJ7pIAJwEQ6tra+j4vtdulnJwuHX10iy66qFY337xTzzyzWZde2r8GTsA33XtvrCZP7vjq6zlzmvTII6X9bgj2pdbWVtXW1lodDxhyhmFo9erVWrx4sf7zn/+orKxsr8deeciVOnvfswOY7muH5R0mm83cg4mAkWbtWo+2bzfXFGzGDLcyMx0WJwIAAKMNTcEAAAAAAAAAAAAAAACAEFNbG2aqLjOTG/kBSPMmzVNcRFyPcZ98+u3Lvw1CImB42Lq1Q7/+db0mTPBozpwEPfKIS83NfW/s2bTJqZKSqCHNlpPj0dSpbZo6tV1/+Uu9du70avnyeC1c6FJ4OLcLY+itW9euigpzm+QOPthtcZqRyekM09NPhyk7u3+b3g85pEX/+U+pcnK6erxmGIZKS0tlGIbVMQEAQbR/xv6y23qe2+3u2B2ENABCWWtrq+na+Pie15SAvsTGOvTEEz4lJ3fpiisq9de/7lRMjLn3M9XV1f1qbAcMNy0tLXruued06aWXKi8vTwcffLAeeughud17Xjex2Wy6+5S7deCYAwOecXbu7ICvCQTL4sU9r7n11ymndFuYBAAAjFZ8yg8AAAAAAAAAAAAAAACEEK/Xp7o6c08epikYgC+duc+Zfscf+fyRACcBgsvr9aqyslIbNmzQZZe5deONSSotHXiDr2XLXNaH+4bo6Gg995yhjz6K1i9/maSUFHPNmQCznnvOfGOvI46wLsdIl50dpSVLPIqN7X3j4Dnn7Nbtt+9QXNzeN8l7PB6VlZVZHREAEGQpzpQeY4bP0NrKtYEPAyBkdXR0mK51Op0WJsFoUlQUrQ8+aNL559fJNsiPKrZv3y6v12tNMCBI3nnnHZ1//vnKycnRTTfdtMfPZme4U0vPWKoxcWMCmml2Hk3BMHo8+6y5z9sl6fTTuT4PAAAGj6ZgAAAAAAAAAAAAAAAAQAipqvLKMMztmBkzhtuJAHzhz0f/WTb1/FnS3NmsZzY+E4REQOAYhqH6+npt3rxZJSUlqqurU3d3t+bNazQ954oVLnV1Wd98MykpScXFxSooKFBaWpzl8wP99cYbYabq7Hafjj8+xuI0I9uBB8bqnntaZLf7erzmcPh09dW7dOWVVXL0Y19ia2urqqqqhiAlACBYJqZM9Du+tGRpYIMACGkej8dUnd1ul93ONWaYN3ZsimJjYwc9j8/n07Zt2yxIBATf7t279atf/UqFhYVavHjxV+OZcZladuYyOR2BacaYGJWoyWmTA7IWEGybN3u0bt3AHw4iSZMnuzV+PE3BAADA4HGFBQAAAAAAAAAAAAAAAAgh5eXdpmvHjDHXzAFA6EmKTtJ+6fv5fe2aV68JcBogMNrb27V9+3Zt2LBBFRUV6uzs3OP16dPblJVlbmN0Q4NDb7wx+E2t35aUlMSGawRdd7ehd9+NNlVbXNyh1FQ2yX3bGWe49LvfNewxFh/v1b//vV2nn96wlyr/du/ercbGRgvTAQCC6dDcQ/2Ov172eoCTAAhlXq/XVF14eLjFSTAa5ebmytGfLsh96OzsVHl5uQWJgOGhsrJSZ5xxhubNm6f6+npJ0rSsabp/3v0BWf/Q3ENlt3EdEqPD4sXmPgeQpJNPNnceBQAA8G2cfQMAAAAAAAAAAAAAAAAhpKLCMFVns/mUlTX4jTYAQsfvDv+d3/G1VWvV6G4MbBhgiHi9XlVUVGjDhg0qLS1Va2urfD6f32Ptdmnu3EbTay1blmi6FhjOPvmkXTU15jb/H3xwZ98HjVJXXeXSWWc1SpLy8zv18MOlmjmzzdRc5eXl6ujosDAdACBYTp10qt/xDbs3BDYIgJDV1dVlujYyMtLCJBit7Ha7CgoKLJmrsbGRJskIOcuXL9cBBxygDz/8UJJ0xj5n6OrZVw/5uoflHjbkawDDxTPPmH+Q1umn0yQVAABYg6ZgAAAAAAAAAAAAAAAAQAipqPDfyKQviYndioiwWZwGwEi2oGiB4iLieoz75NNvX/ptEBIB1jAMQ/X19dq0aZNKSkpUX1+v7u7uftUOpinY66/Hqb7e/GYiYLhatcpjuvbIIzn/3JuwMLvuuy9eP/xhrf77363Kzzf/71mSSktL5fV6LUoHAAiW6ZnTZVPP35+1bbVBSAMgFLW0tJiujYmJsTAJRrOIiAjl5ORYMld5ebk6O2lIjf6bPn26fD7fgP7yeDxqbm5WTU2N1q1bp5dfflkPPvigrrzySp1yyilKTU21NGNZWZmOOOIIrV69WpL0+yN+rwVFCyxd49tm580e0vmB4aKy0qsPPogyVZuf79GUKREWJwIAAKMVTcEAAAAAAAAAAAAAAACAEFJVZa4pWFpa/5qhABhdzph8ht/xhz97OMBJgMFrb2/X9u3btX79elVUVMjjGXiDnZwcj6ZNazO1vtdr08qVrl6PsdlokISR5803HabqHA6fjjuOpgG9iYy067bbEpSQYAx6Lp/Pp61bt8owBj8XACB47Ha7kqOTe4x3+7q1vmZ9EBIBCDVtbebe80pSXFzP5vKAWQkJCUpKSrJkrtLSUt4LYUiFh4crLi5OqampKi4u1pFHHqnzzjtPf/7zn7V8+fKvmoXddNNNmj59uiVrtrW16eSTT9aqVatkt9n10KkPaf/0/S2Z+9uiw6M1NXPqkMwNDDdPPtkpwzB3nf6kkzyy27nGDwAArEFTMAAAAAAAAAAAAAAAACCEVFaaq0tNZUMMgJ7+dMyf/I43dTZp5eaVAU4DDJzX61VFRYXWr1+v0tJStba2DnrOefMaTNcuX+7yOx4TE6OxY8eqsLDQ9NxAMHR3G3rvPaep2n326VBiYrjFiUJPRESE8vLyLJmrq6tLO3bssGQuAEDwTEia4Hf86ZKnA5wEQChyu92mayMiIixMAkhZWVmKiooa9Dzd3d3avn374AMBg1BcXKwrrrhCH3zwgT7//HNdeOGFioyMHNScHo9HCxcu1IcffqiYiBgtO3OZ0mLSLEr8tVnZsxQexjUcjA7Llplv6rVwobmHJwAAAPhDUzAAAAAAAAAAAAAAAAAghFRXm7tROT2dpmAAekqJTtG+afv6fe13r/wuwGmA/jEMQ3V1ddq0aZNKSkpUX18vw7Du99ycOc1yOs3Nt2GDUxs3frGZNSIiQhkZGSouLtbYsWMVExNjWUYgUHbtatWECZ2Kihr4n4mDD+4cgkShKS4uTunp6ZbM1dbWpkqznYQBAMPCwbkH+x1/bcdrAU4CIBR1dXWZqgsLC7M4CfCFgoIC2e2D3wrd3t6u6upqCxIBgzd58mTde++92rBhgxYsWDCouVpbWzV//nzV1dUpz5Wnp894WhFh1jZpnJ0329L5gOGqsbFbb7xhrhllamqXDjtscI3+AAAAvommYAAAAAAAAAAAAAAAAEAIqa42d0tQRobP4iQAQsU1h1/jd3xN5Ro1uhsDGwboRUlJuy6/vEH33rtDlZWV8ng8Q7JOTIyhY45pMlU7c2aboqLiNXHiRE2YMEEpKSmWbGwFgqdRd921XW+/vUEPPliqiy+u1owZrYqI6LtJ2FFHmWtmO1qlpqYqISHBkrnq6urU2NhoyVwAgMCbN3Ge3/F1tesCnARAqDEMw3RT7YgIaxvQAF+y2+0aO3asJXPV1taqpaXFkrkAK4wdO1ZLlizRkiVLlJiYaHqe8vJynX/++ZKkg3MO1p0n32lVREk0BcPosWyZWx6Puev1xx/vUVgY1zsBAIB1uIsAAAAAAAAAAAAAAAAACCG1tWGm6jIyLA4CIGScVnyaYiNie4z75NNVL18VhETA15qavPrHP+o1a1ariouduvnmRD36aPKQrztvXmO/j83J6dRllzVo/fp2vftujE46KU3h4eFDFw4IoPb2dklSeLhPU6e266KLanXffV80Cbv33m360Y9qNHVqmxyOPRsLhIcbmjOn5+8W9C4nJ0dRUVGWzFVeXv7Vfz8AwMhycPbBsqnnZvOatpogpAEQSjo7O03XOp1OC5MAe3I6ncrMzLRkrrKyMnk8XkvmAqyyYMECrV27VkVFRabnWLFihR577DFJ0gVTLtDlsy63JFu4PVwzx8y0ZC5guHv6afO1CxbQEAwAAFiLpmAAAAAAAAAAAAAAAABACKmpcZiqy8riViIAe3d68el+x//76X8DnASQursNPftskxYubFJWlk2/+EWS3n03Vj7fF5tu3ngjTnV15ppk9teMGW3KzPTs9fWYmG4tXNikZ59t0rZt4frb3xJVVBQ9pJmAQDMMQ16v/43UkZE+HXhgm3760xo9+OA2vfXWBt155zZ973u12m+/dk2d2qG4OHPnraNdQUGBwsKs+Rm3bdu2vf43BAAMX3a7XYnOxB7jXsOrrfVbg5AIQKhoaWkxXRsTE2NhEqCn5ORkxcfHD2oOr1f629/SdPrpberuNvouAAIoNzdXb775pqZNm2Z6jksvvVRtbW2SpBuPuVEnjDth0LlmjJkhZziNHxH63G5DL71krhl/XFy3jj/emkb+AAAAX+JOPgAAAAAAAAAAAAAAACBENDV1q6PD3C1BmZk8vRjA3v35mD/7HW/qbNLzW54PcBqMVuvXt+vSSxuUn+/VKackaMmSBLW392yM4/XatHKla0iz2O3SKac07jFms/k0a1arbrutQRUVPj3xRIJOOilBYWHcrovQNJCGAdHRPh18cJt+8YtqPfxwqf7735ohTBba7Ha7CgsLZbMN/vzd5/Npy5YtMgw2wwPASDMucZzf8SUblgQ4CYBQ0t7ebro2Li7OwiSAf9nZ2QoPDzdVW1cXph/9KF/335+qZcsS9Kc/NVobDrBAUlKSVqxYobFjx5qqr6qq0h133CFJCrOH6dHTHlVRStGgMh2We9ig6oGRYuVKt1pbzTXiP+YYt6Ki+BwAAABYi7MLAAAAAAAAAAAAAAAAIETs2uU1XZudbe4mZwCjQ2pMqvZJ3cfva1e9fFWA02A0aWz06pZb6nXggW2aPDlaf/97osrLI/qsW77cNeTZ5s1rlCTl5XXq8svrtWFDh95+O1Y//Wmi4uMdQ74+EGyNjY2ma10uGgYMRkREhPLz8y2Zy+v1avv27ZbMBQAInFk5s/yOv7r91cAGARBSOjs7TdXZbDbZ7WxVxdAz2yT500+dOuOMcXr//divxv7wB5dWrWq2OiIwaOnp6VqyZInpBnh//etf5fF4JEkJUQla/p3lSnImmc4zO2+26VpgJHnqKZ/p2lNPtS4HAADAl7jSAgAAAAAAAAAAAAAAAISI8nLDdO2YMTQFA9C7qw+/2u/4mso1anZbt4HO8BnaUr9Fn1R9Ip/P/CYMjFyGYWj37t1av36Txo3z6bLLkvTBBzEDmqOkxKmSkqghSviFceOkV19t1Nat4frrX5M0cWL0kK4HDDcdHR2ma10ul3VBRqmYmBhlZmZaMld7e7vefLPakrkAAIFxyoRT/I5/XvN5gJMACCVer7mHTjgcNMZG4DgcDuXm5vbrWJ9PWrw4UeefP1bV1Xs2WPJ67TrvPKd27HAPRUxgUA444AD99re/NVVbXV2t5cuXf/X1uKRxemLREwqzDfxzQJtsOiTnEFM5gJHE6/Vp1apIU7WRkYbmz3danAgAAICmYAAAAAAAAAAAAAAAAEDIqKw01xTM6TSUkMCtRAB6d/rk0xUT3rMxk08+XfXKVYOev6q1Sje8cYPG3TpO428bryl3TtHUu6Zqd/vuQc+NkaG1tVWlpaVav369qqqqZBgeHXJIq+n5li1zWRfuf8LCwpSUlKRJkyZpwoQJOvxwl8LC+B2K0ccwDNMNA+x2O00DLJKcnDzoBmtdXdL112fq6KNT9cILTdYEAwAMuSPyj/A7XtVaFdggAEKGYRimm7NHRpprogGYFRcXp5SUlF6PcbttuuqqMbruujHyev1fu6mpCdeiRd3yeMw/cAUYKr/85S9NNwN/4IEH9vj6qLFH6bYTbhvwPPtn7K+EqARTGYCR5NVX3dq929z1ysMOcysujs8IAACA9fg0FQAAAAAAAAAAAAAAAAgRFRXm6lJSvLLbI6wNAyAkLZq8SA+sfaDH+H8+/Y9uPeHWAc9n+Ayt3rpad625S8s3LpfX2LPBzNqqtbp01aX6z/z/mI2MYa6rq0vV1dVqbm6WYfTcgHnqqY1avjzR1NwrV7p02WVVCg8fbEopNjZWqampion5ojHefffdp/vuu2/wE39La6v5JmhAIDU3N5uudTqdFiZBdna2Ojs71dHRMeDapia7rrgiV+++GytJOuusaL35ZrsmTYq2OiYAwGJh9jC5olxqdDfuMd5ldKmsqUy5CbnBCQZgxGppaTFdGx3N+SMCLyMjQ+3t7Wpvb+/xWnl5uC69NFclJX2///zggxj95CcNuucec9efgKESHR2tK664QpdffvmAa19++WV1dHTscQ3mxzN+rM9rPte/PvxXv+eZnTt7wGsDI9GTT3abrj31VHNNVQEAAPpCUzAAAAAAAAAAAAAAAAAgRFRWmrvpOC2tZxMWAPDnxqNv9NsUrNHdqFVbVum4ccf1a56Klgrd//H9uufje7S9cXuvx75b/q6JpBjODMNQXV2d6uvr1dXV1eux06a1KSvLo4qKgTevrK936M0343TkkeY2NkdERCglJUUul0t2u32P18rKyvTWW2+ZmhcIBU1NTaZrExISLEwCSRo7dqw2bdokr9fb98H/s2NHhH760zxt3x751VhdXbhOPdWrd97pUmKiBR0VAQBDqjCxUB9VftRj/KkNT+kXB/0i8IEAjGhtbW2ma+Pi4ixMAvRffn6+Nm7cqO7ur5u5vPFGrH7962w1N/d/+/S99ybqwAMb9MMf0hgMw8u5556rX//6131eQ/22jo4Ovf766zruuD2v1//9+L+rpK5EL297uV/zzM6jKRhCn2H4tHKluYdnhYX5tHBhZN8HAgAAmGDv+xAAAAAAAAAAAAAAAAAAI0FVlc1UHU3BAPRXWmyaJqdO9vva1a9c3Wttt9Gt5zY/p/mPz1fuLbm66pWr+mwIJkk2mfvZhuGnpaVFpaWlWr9+vaqrq/u1mc1ul+bObTS95rJlrgEdHxYWpqSkJE2aNEkTJkxQUlJSj4ZgAKT29nbTtS6Xy7ogkCTZ7XYVFhbKZuvf78z334/RWWcV7NEQ7EsbNzq1cKFbXi/vEQBguJuZPdPveH+bPADAN3V0dJiujYykGQaCw263q6CgQJJkGNIdd6Tq4ovzBtQQ7Eu/+EW83n+/1eqIwKCkpqbqqKOOMlX73nvv9RgLDwvXE4ueUGFiYb/mODT3UFNrAyPJRx95tHOnuaZgBx7oVnr6wH/nAAAA9Ad3KQAAAAAAAAAAAAAAAAAhoqbGXOOcjAw2/APov6sP99/868OKD9Xsbu4xXtFSoetfv16FtxbqxEdO1NKSper2dfd7vbSYNNNZEXwej0fl5eVav369duzYYaqR0GCagr32WpwaGsJ6PcZmsyk2NlYFBQUqKipSVlaWHA428gB7YxiGurv7/3P8m8LCwmi0N0TCw8OVn5/f53FPPpmoH/0ov9dN8i+/HKeLL26yMB0AYCicPP5kv+OfVn8a4CQAQsFbbzm0ZUuk+tG/ew92u51zfARVZGSkxozJ1hVX5Ohf/0qXz2fuc5KOjjCdcUa4du/2WJwQGByzTcHWrFnjdzzJmaRnvvOM4iPje62fmDxR6bHpptYGRpInnhjgyc83zJ3LZ+wAAGDocLUFAAAAAAAAAAAAAAAACBHV1b03PdmbdO7pBzAAZ0w+QzHhMT3GffLpd6/+TpLUbXRr5eaVOvWxU5V7S66ufuVq7WjaYWo9moKNPIZhqLa2Vhs3btSmTZvU2NgowzC/OSYnx6OpU9tM1Xq9dq1cmeD3tcjISGVlZamoqEj5+fmKjo42nREYTRobG03XOp1O64Kgh5iYGGVlZfl9rbtbuvHGDP3hD2Pk9fa9Sf6uuxJ18831VkcEAFjo2MJj/Y5XtlYGOAmAUPDrX2dq/vzxmjmzWAsXFuo3v8nW/fen6M03Y1VT45DP578uIiIisEEBPxITXZozx1zz6m/avj1SZ53Vqe5umrxg+Jg1a5apus2bN+/1taLUIj122mOy2/beZuCAzANMrQuMNM8+G266dtEi87UAAAB94TFmAAAAAAAAAAAAAAAAQIjYvdtcU7CsrL6bAgDAN51WfJoe+uShHuMPrH1ASc4k3bPmHu1s3mnJWqnRqZbMg6HX0tKi2tpatbe3Wz73qac2aM2ans3o+mPZskSdffYXjW3CwsLkcrmUmpoqh4PbaAEzmpubTdfGx8dbmAT+JCUlye12q77+64Zera12/epXOXrjjbgBzXXllS5NmNCkk0/231wRABBcDrtD8ZHxau7c83ezp9ujiuYKZcX7bxQJAN9WU+NRZeUXzb26uuzauNGpjRv3bOibkODVhAlujR/f+b+/uzVunFsJCZHBiAz0cMUVSfrgg0YtXuwa1DyrV8fpt7+t15//nGRNMGCQxo0bZ6pu587er8+fMP4E3XTsTbr8hcv9vu7vwSBAqNm40aMNG8ydy+y7r1uFhVEWJwIAAPja3lv4AgAAAAAAAAAAAAAAABgxurp8qqsz1xQsM5OmYAAG5sZjbvQ73tTZpGtevcayhmCSlBaTZtlcsF5trUd//Wu91q5drx07dgxJQzBJmjOnWU6nYarW47GpuztehYWFKioqUmZmJg3BgEEYzJ9zl8tlXRDsVVZWlqKjoyVJ5eXhOvfcggE3BJMkr9euc8+N0WeftVkdEQBgkYLEAr/jSzcuDWwQACPaBx909HlMU5NDH3wQq0ceSdbvfz9GZ59dqIMOKlZpKY1/MXzce2+sJk/u+/u5NzabT263R7W1tRalAgYnMzNTERERA65raWnp8xrOpQddqv3S9/P7Wrg9fMBrAiPNE094TNeefLLXwiQAAAA90RQMAAAAAAAAAAAAAAAACAGVlV75fOaae40Zw21EAAYmIzZD45PGB2St1JjUgKyD/uvqMvTEE4065ZRm5eQ49MtfJum112KGdM2YGEPHHNPU7+Pj4706++xGvfRSszZujND+++fK6XQOYUJgdOju7pZhmGvQFxYWJrud885Ayc/PV2lptM46q1BbtkSZnqex0aH588NUW2t+kyQAYOjMyJrhd/zF0hcDnATASPbxx92ma6dMGdrrAcBAxMY69OSTPrlc5hq1JCR4dccdO/T97+9WdXW12tpokIzhITY21lRdX03BbDablixa4ve1TfWbTK0JjCTLl5t74JYknX46jfMAAMDQ4jFnAAAAAAAAAAAAAAAAQAgoL++WZO7m4zFjzN/wDGB08RpePbf5Od215i5tqd8SkDXTYtICsg76tmZNq+65p0tPPRWr6mrXHq8tW5aoo49uGdL1585t1DPPJO719bAwnw47rFVnneXVWWfFKSbGtddjBys3N1eHHHKI5fO2trbqk08+sXxewCqNjY2ma6Ojo60Lgj7Z7XYdcUSusrK61NAwuG0DW7dGacGCVr30kkMRETR2A4Dh5MRxJ+ruNXf3GP+kmnNKAP23bp25c7ycHI8SEiItTgMMzqRJ0br77kadcUaCDKP/D1IpKurQLbeUacyYrq/Gtm/frokTJ8rhYCs2gis6Olr19fUDrnO73X0eMy55nPIS8rSjacce4++Vvyev4ZXDzvc/QlNFhVcffmiukf7YsR5NmcI5EAAAGFqciQMAAAAAAAAAAAAAAAAhoKLCMFVnt/uUlcVtRAB6V9ZUpnvX3Kt7P75Xu1p2BXTt1OjUgK6HPdXUeHTffa16/PEorV0bu9fj3ngjTvX1YUpK6h6yLAce2KaMDI+qqiL2GB8/3q3TT2/X977n1NixcUO2/jddeOGFuvDCCy2fd+3atTrggAMsnxewSnNzs+nahIQEC5OgP+LjHVq2rEsHH9ylmhpzDYS/9Oabsfr3v6t0ySUZFqUDAFjh+PHH+x3f1RzY920ARraSkoi+D/Jj4kSPJBpiYPhZuNClyy9v0E037b25/DfNn9+g3/62QpGRvj3GfT6ftm3bpvHjxw9FTKDf+tPcy5+IiP79fD8k9xDt+GzPpmBtXW36uPJjzRgzw9TawHD3xBOd8vliTNWedJJHkrnzJwAAgP7iMT0AAAAAAAAAAAAAAABACDDbFCwpqVsOh83iNABCgdfwavnG5Tr5kZM19h9jde3r1wa8IZgkpcWkBXzN0a6ry9Djjzfq5JOblZvr0G9+k6S1a6N7rfF6bVq50jWkuex2ae7cRklSQoJX557bqFdfbdGGDRG6/vokjR3rHNL1AUgdHR2ma+Pj4y1Mgv4qLHTq8cfdiooy935B+qKR8JVXVurII3dr586dFqYDAAxWlCNKsRE9m/d2dndqd/vuICQCMNJ0dxvavNlcY6+iIq/FaQDr/OlPCTr66JZejwkPN3TNNbt07bW7ejQE+1JnZ6fKy8uHIiLQb21tbabqYmL61/BoWuY0v+PzH5+vbQ3bTK0NDHfLlpn/fHzRIh64BQAAhh5NwQAAAAAAAAAAAAAAAIAQUFlpri4lpdvaIABGvB2NO/S7V36nvL/nad5j87Ri8woZPvONRAaLpmCB09LSomXLdio7u1tnnunSihXx6uzs/62my5a5hi7c/yxa1KR77mnQrl3SQw+5dPjhcQoL43ZYIBC8Xq8Mw9zvA4fDIbudP6vBcsQRcbrttiZTtTEx3br99h0655w62WxSU1OTamtrLU4IABiMsa6xfsef3vB0gJMAGIk2bnSrrS3MVO1++1kcBrBQWJhdjz4aqfz8Tr+vZ2R49NBD27RwYUOfczU2NqqxsdHihED/NDc3m2rSbrPZFB3d+4MeJKmls0UPrX3I72u7WnZp3zv21b8//Ld8Pv+N84CRqKGhW2++GWWqNj29S4ccYq6hKgAAwEDwySoAAAAAAAAAAAAAAAAQAqqrzdWlp9MUDIDkNbxaVrJMJz58osb+Y6yue/06VbRUBDuWJCk5OjnYEUKax+PRzp07tW7dOu3YsUMZGS1qaTG3GbikxKmSEnMbaXpjs9kUFxencePG6Zhjxut730tUTIzD8nUA9K6hoe+N0nvTn02oGFrf/36iLr+8fkA1Y8Z49N//luqww1r3GK+urlZLS4uV8QAAgzA9a7rf8dWlqwOcBMBI9MEH/hsm9cfUqeEWJgGsl5oaoUcf9cjp3LPB9cyZrXr88a3aZ5/+N1oqLy9XZ6f5Py+AWZs3bzZVFxcXJ5vN1usxrZ5WnfjIifqk5pO9HtPW1aYfr/ix8v+Rr/988h/taNyhboPPFjGyLV3aqa4uc202TjjBo7Cw3v9sAQAAWIE7IgAAAAAAAAAAAAAAAIAQUFVl7sbltDSe7A2MZtsbt+veNffq3o/vVWVrZbDj9JDsTJbDzq2OVjMMQ7t371ZDQ4O6urr2eC0mxtCxxzZp+fJEU3MvW+bSpElVVsRUVFSUUlJSFB8fL7ud5+ACwTaYJlAJCQkWJoFZN97o0qZNzXrmmfg+j506tU233FKmpCT/G3137NihCRMmKCIiwuqYAIABOn7c8bp/7f09xtdWrQ18GAAjzmefmbs+7HQa2mcfmv9i+DvooDj97W/1+slPkiRJ3/9+rX7602qFmeiJX1paqokTJ3KdCgH1+eefm6obO3Zsr69XtVRp1r2ztL1pe7/mK2sq03lLz5MkOWwO5bnyVJBYoLGusV/8PXHsV18nOZP6bEgGBNPTT5uvPe00fgcAAIDA4E4ZAAAAAAAAAAAAAAAAIATU1Ji7ATkjg6ZgwGi0cvNK3fb+bVq1ZZV8Gr4/B1JjUoMdIaQ0NzertrZWHR0dvR43d26j6aZgK1e6dNllVQoPN1Uuh8Mhl8ul1NRUhZnZnQlgyLjdbtO1cXFxFiaBWWFhdj3ySLQOO6xda9fuvYHD3LkNuuaaCkVE9H6OsGXLFk2aNIkN8QAQZCePP9nv+M7mnQFOAmAkWrfO3BbTwkK3wsNpCoaR4cc/TtLnn9drwoQWHX20+YbX3d3d2r59uwoKCixMB/Tu1VdfNVU3bty4HmMdXR16bstzenDtg1q+abnpTF6fV1sbtmprw1a/r8dHxn/dLOxbTcPyXfmKckSZXhsYrI4OQy+/HGmqNj6+W3Pm8P0LAAACg6ZgAAAAAAAAAAAAAAAAQAgw2xQsM5MndQOjzU9X/lT//OCfwY7RL2kxacGOMOJ1dnaqurpaLS0t8vn61wBuxow2ZWZ6VFkZMeD16usdevPNOB15ZP83WNpsNsXGxio9PV1RUWyoAYaj5mavrr02XdOnt2nGjDYlJ3f3u9bhcNA0ahiJjXVo6VKvZs3q+XPeZvPpF7+o1ne/u1u2frxNMAxDW7duVWFhIf+NASCIoiOiFRMeo7autj3G3V63Gt2NckW5ghMMwIiwadPA3/tL0qRJXRYnAYbWbbe5VFJSJcMY3Dzt7e2qrq5Wenq6NcGAXhiGodWrV5uq/bIpmNvr1vNbntfidYu1fOPyHueM3xZhj9DElIn6rOYzU+tKUnNnsz6p/kSfVH/i9/WsuKw9G4Z9o3FYVlyW7DauMWDorFjhVlubucamc+a4FRERY3EiAAAA/2gKBgAAAAAAAAAAAAAAAIxwhuHT7t3mbgXKyrI4DIBh7ZOqT0ZMQzCJpmBmGYah2tpaNTQ0yOv1Drjebpfmzm3UnXea+/e/bJmrX03BoqKilJKSIpfLZWodAIGzalWrHn88WY8/nixJGjfOrQMPbNOBB7Zq+vR2JSTsvUlYTAwb5YabvLwoPfFEi449NkwdHWGSJKezW3/+c7mOOqr/TR2lL5pPlpeXKzc3dyiiAgD6KTchVxt2b+gxvqxkmc6fcn4QEgEYCVpbvdqxI9JUbXFx/xsFA8OB3W7X2LFjtXXr1kHPVVtbq+joaMXFxVmQDNi7F198Ubt27TJV68vw6ZynztHyjcvV4unfe/1wW7iWf2e5ji08Vre+d6suf+FyGb5BdtLzo6KlQhUtFXqz7M0er0WERSjfld+jaRhglaee6t/DU/yZP5+HbQEAgMChKRgAAAAAAAAAAAAAAAAwwjU1GV9t5h+ozEyetg2MJtsbtwc7woCkRqcGO8KI0tTUpN27d6ujo2PQc82bZ74p2Guvxau+PkxJST03CDscDrlcLqWmpioszNzvLgCB9/LLe26W27IlSlu2ROmRR5Jls/k0ceKXTcLaNHVqm+Livt4wSuO/4emQQ+L073836IILXEpP79Jtt5Vp0iS3qbmam5tVU1OjtDSaeQJAsEzPnO63KdgLW1+gKRiAvdq5s03TpoVp06YoNTYObKvplClcV8bI43Q6lZmZqcrKykHPVVZWpokTJ8rhYJs2hs4dd9xhuvYvu/4iNQ2sZvHpi3XcuOMkSb846BeakTVDh91/mHwy30RpoDzdHm2q26RNdZsCtiZGD6/Xp1WrzDVEjYoyNHdulMWJAAAA9o53mwAAAAAAAAAAAAAAAMAIt2tXtyRzjVWys9m8BYwm+2fsryhHlNxec00/Ai0thuYifens7FR1dbVaWlrk81m3OSsnx6OpU9u0Zk3MgGu9Xpueey5BZ59dL0my2WyKi4tTWlqaoqLYNAOMRG+/vffNcj6fTSUlTpWUOPXQQymy230qLu7QjBltmj27RcXFA/85gsA477xENTbWar/96pSS4h3UXDU1NYqKilJ8fLxF6QAAAzGncI7+89l/eoyvqVwThDQARor4+Fbde2+DfD5p926HNm2K0ubNkdq0KUqbNkWptDRSXV3+rx/PmMH7e4xMycnJamtrU3Nz86Dm8fl82rp1q8aPHy+7nc9ZYL0PPvhAS5cuNVecIil2YCX7p++vUyedusfYIbmH6C/H/kW/XP1LczmCrMndpP9++l8VJhZqxpgZcthpqzDavfyyW/X1TlO1hx/uVmxstMWJAAAA9o6zVwAAAAAAAAAAAAAAAGCEKy/vNl07Zgy3EAGjSb4rX7cef6t++OwPgx2lX1KjU4MdYVjq7DT07rt1Sk+vk9c7uCYuvZk3r9FUUzBJeu21eH3ve+1KTU1VQkKCxckABFJdnUfr1vV/s5xh2PT559H6/PNo1dZG6oIL2Bw9nP30p8nasqVBHs/g5yorK9O4ceNoAAkAQTB34ly/42XNZQFOAmAk6ejokCTZbFJqqlepqa065JDWr17v6pJ27IjU5s1RezQM83ptys7mnA8jV3Z2tjZv3qyurq5BzdPV1aXy8nLl5uZalAz4Qnd3ty655BLzE4wbeMnvj/i93/FLZl6iuz66S5vrN5vPEySN7kad+/S5kqTs+Gw9vOBhzc6bHeRUCKYlS8x/pn7qqdY9lAUAAKA/+IQVAAAAAAAAAAAAAAAAGOEqK83dhBwd3a2EhDCL0wAY7n4w7Qd6ZMEjCreHBztKn9Ji0oIdYVh5660WXXhho7KyDM2fn6iODvMbWPpjzpwmRUUZ/T7e4TA0Z06zHnqoQa+8Eq1x48bREAwIAatWtau722aqdvbsoWtcCGvY7XYVFhbKbrdma0Fpaam6u4f29xMAoKf4qHg5HT2beLZ3tavV0+qnAgDUZ0Ok8HBp3LhOnXBCk37+82rdfnuZXnhhk1at2hqghMDQ+PJ9kM1m7r3uNzU3N6u+vt6CVMDXrrvuOr377rvmJ9h/YIfHRsTquMLj/L4WERahm469yXyWYaK8uVwLFy+Up9uCrugYkQzDpxUrIkzVOhw+LVxIQ1QAABBYNAUDAAAAAAAAAAAAAAAARrhdu/rfsOWbUlPZrA+MVt/Z9zt6/pznFR8ZH+wovUqNSQ12hKArL3frD3+oV3Fxhw49NE733+9Sfb1DDQ0OvfFG7JCuHRtr6Jhjmvs8bvLkDl17bb127OjSqlXxOvfcREVGcosqECpeecV87XHHmdtoh8AKCwtTQUGBJXMZhqGtW7fKMMy9RwEAmJeTkON3/JmNzwQ4CYCRwmwz1/j44d9oHuiLw+FQbm6uJXNVVFTI7XZbMhfw2GOP6dprrzU/QbqkzIGVnDzhZDnDezaY/dLciXN1RP4R5jMNE7XttdpctznYMRAk77/fqV27zF2rnDnTrZQUHrQFAAACizsuAAAAAAAAAAAAAAAAgBGuutpcXVoaTcGA0eyosUfpje++oay4rGBH2au0mLRgRwiKzk5DDzzQoGOOadHYsRH6/e+TtGFDz01Zy5YlDnmWuXMb/I6npHTp+99v1Ntvt+jzz526+uokZWVFDnkeAIH39tvm/mxnZno0eXK0xWkwVKKioizbEO/xeLRz505L5gIA9N/UjKl+x5/f8nyAkwAYCQbTwCgqKsrCJEDwxMXFKSUlxZK5SktLaY4cZLt27dLPf/5z1dbWBjuKaU8ueVLnnneufD6f+UmmD7xkYdHCXl+32Wy6ec7NsslmMtTw4HQ4lZtgzbUPjDxPPOE1XTtvHp+pAwCAwKMpGAAAAAAAAAAAAAAAADDCVVWZuwk/LY0NKsBot1/6fnrne++oKKUo2FH8Gm1Nwd54o1nf/W6jsrIMffe7iXrppTh5vXu/1fP11+NUXz+0T6c/8MA2ZWR4JEnh4YaOP75ZDz/cqF27wnT33S7NmhU3pOsDCK6aGo9KSsxt+J85s0NhYdyuPpLEx8crLc2a370tLS2qqqqyZC4AQP8cW3is3/GPKj8KcBIAI0FLS4vp2piYGAuTAMGVkZGh6OjBN7Q2DEOlpaUWJIJZXV1duvXWW1VYWKhrr71WjY2NwY7UL4bP0Ftlb+nQCw/VokWL5O0y37hICZIOGFhJdHi0Thh/Qp/HHZB5gC6YcoGpWMPFj6b9SHGRXM8erVasCDddu2gRD0QBAACBx6esAAAAAAAAAAAAAAAAwAhXXW3uNqD0dIuDABiRchNy9eaFb+qQnEOCHWUPdptdSc6kYMcYcm63W3feWaNJkzo0e3a8HnjApfp6R79qvV6bnnsuYUjzhYVJF120W9ddV68dO7r03HPxOusslyIiuAUVGA2ee65NhmGuAe3s2d0Wp0EgpKWlKT4+3pK5du/eraamJkvmAgD07dSJp/od3964PaA5AIwM7e3tpmtjY2MtTAIEX35+vsLCBt94v6PDrddfr7EgEQajpaVF11xzjXJycnTJJZcMy2ZtPp9P7+x8R5c+f6myfpelQ488VG/d/5bkG+TEh0vq36Xlr5w0/iRFh/evMd71R13f72OHm3FJ4/THo/8Y7BgIkvXrO7Vxo7nGXvvv71Z+vvmGYgAAAGZxRwYAAAAAAAAAAAAAAAAwwtXUmLsNKDNzsLsLAISKJGeSVp+7WguKFgQ7yldSolNkt4XmbY7d3d2qqqpSSUmJtmzZopoajzZudJqaa9myRIvTfc3pdCo3N1fXXJOlq65KUmamuU0zAEauV14x1xBMkk44IcrCJAik7OxsRUZa8zN/586dcrvdlswFAOhdUnSSohw9f/+2dbXJ7eVnMYA9dXZ2mqqz2WxyOAbYcQYY5ux2uwoKCgY1R2urXZddlqPjj0/WBx+0WpQMg9Ha2qrbbrtN48eP13HHHaeHH354UA0RB8vn8+n9Xe/riheuUP4/8nXwPw/W32/4u6pvrJas6FuWIWn/gZctKl7U72Oz4rJ05SFXDnyRILPJpgfmPTBiG5ph8J54wmu69pRTzNcCAAAMRmjeLQMAAAAAAAAAAAAAAACMIrW15p5gn5FhvskDgNDjDHdq8cLFunjGxcGOIklKjU4NdgRLGYahxsZGbdmyRRs2bNDu3bvl9X6xmWTOnGY5nYapeTdscGrjRusa74SHhystLU3FxcUqLCxUfHy8ZXMDGHneecfcz5fsbI8mTWKj5Uhlt9tVWFgou92a7QalpaVf/c4DAAyt7Phsv+MrNq0IcBIAw11XV5epOhqCIVRFRkYqO9v/79G+bN0aqe98p1Avvpigjo4wnX56uHbv9licEGYZhqEXXnhB55xzjtLT0/Wd73xH//nPf1RbWzvka/t8Pn1U8ZGuXH2lCm4t0Mx7Zupvy/6mskfLpL9LekOSuR/HewqTNP9/fx8Ap8OpE8efOKCaKw6+QmPixgxsoSC7fNblOiT3kGDHQBAtX27us3RJOuOMCAuTAAAA9B9XYAAAAAAAAAAAAAAAAIARzOPxqaHB3I3MWVk0BQOwpzB7mG474TblxOfo1y/9OqhZ0mLSgrq+Vdxut6qrq9Xa2iqfz+f3mJgYQ8cc06Rnnkk0tcayZS796ldVpjPabDbFx8crPT1dERFscAHwhfJytzZtMtcUbNasDkn8PBnJ7Ha7xo0bp02bNg16LsMw9PjjFTrzzGyFhfFccwAYSvun768t9Vt6jD+35TmdVnxaEBIBGI4Mw9jrNYq+cN0Aoczlcqm1tVWNjY39rlm1Kl5XXz1GHR1ff06zfXukzjqrRc895+A90DDT2tqqxx57TI899phsNpumTZumQw89VDNnztRBBx2k/Pz8Qa/h8/m0tmqtFq9brMXrF6u0ulTaJWmrpI2ShqIX2ZGS0gdeduL4ExUTETOgmujwaP3p6D/pvKXn9XzxFklNA88xZJok/V766//+Z6W8vDxt377d0jkxNHbu7NLHH0eaqh03rlP77GOuFgAAYLBoCgYAAAAAAAAAAAAAAACMYBUVXvl84aZqs7LYjAKgJ5vNpisPvVJZcVm6cPmF8hreoOQYyU3Buru7VVNTo8bGRnV3d/erZt68RtNNwVascOnSS6sUPsBfB06nU2lpaYqLizO1LoDQ9vzzHZLMNQU7/HDD2jAIioiICOXl5WnHjh2m5zAM6bbb0nXPPan6+ON6/fWvSRYmBAB827EFx2rJhiU9xj+o+CAIaQAMV21tbaZrnU6nhUmA4Sc7O1vt7e3yeDy9Huf1Sn//e4YefDDF7+urV8fpqqvq9ac/8R5ouPL5fPrwww/14YcffjWWlJSkiRMnauLEiZowYYKys7OVlpam9PR0paSkyOl0KjIyUlFRUbLb7fJ4PPJ4POro6NDbJW/rqY+e0oufvqiqsiqpTlKNpGpJ5vow9s9kSYeYK11YvNBU3dn7na1b379VH1Z82PfBQJA98YTH9GfpJ5/cJYmmYAAAIDhoCgYAAAAAAAAAAAAAAACMYLt2dUsydyNzTg63DwHYu3P3P1cZsRlasHiBWj2tAV8/NTo14GsOhmEYam5uVm1trTo7OwdcP2NGmzIzPaqsjBhwbX29Q2+9Facjjmjp89jw8HAlJiYqJSVFdjvNIQHs3ZQp9frb31r0/vsx+uCDGJWW9r9B2AknmGsmhuEnLi5O6enpqq6uHnBte7tNv/1ttl58MUGS9Le/JWnSpAZ9//vmmmACAPo2f9J8XbTioh7j2xq2BSENgOGqtdX8dR4ai2M0KCgo0MaNG+Xz+e/ktHt3mH75y1x9+GFMr/P85S+JmjGjUQsWuIYgJYZCfX293nnnHb3zzjvBjtI/eZLmS7INvDTKEaWTxp9kalm7za6b59ys2Q/MNlUPBNKyZeY/B1m4kM/SAQBA8HA3BwAAAAAAAAAAAAAAADCC7dplmKqz231KTw+zOA2AUHNs4bF6/YLXlRGbEfC102LSAr6mGR0dHdqxY4c2bNig8vJyUw3BJMlul+bObTSdY9kyVy9z25WQkKAJEyZo4sSJSktLoyEYgD45nW7NmdOsq66q1LJlW/TyyyW68cadOu20euXm7v1nXX5+pwoKnAFMiqGWmpqqhISEAdVUVTl0wQUFXzUE+9LPfpagV1/tu4klAMCctNg0RYZF9hhv8bTI4/UEIRGA4aijo8N0rdPJuT5Cn8PhUH5+vt/X1q516owzxvXZEEySDMOmH/wgVhs3tlucEJA0RtKZkkz2LDp+3PGKizTf6PGwvMN0WtFppuuBQKiv79bbb/d8f9QfWVldmjXLXC0AAIAVuKMDAAAAAAAAAAAAAAAAGMEqK/0/qb4vycleORwmHh0OYNQ5IPMAvX3h25qQPCGg66bGpAZ0vYHwer2qrKzUhg0btHXrVrW0tMjnM/fz+JsG0xTs1Vfj1NCwZ7PH6Oho5eXlqbi4WDk5OYqIiBhkQgCjhdvt7vFzLTXVqxNPbNLvf1+hFSs2a/XqjbrhhnLNm9egrKyvm4zMmmW+wQCGr5ycHEVFRfXr2M8/d+qsswq1YUPPhhFut11nnBGlrVv5PgGAoZIVl+V3fNXWVQFOAmC48njMNQm02+00GceoERMTo/T09K++9vmkRx9N0ne/O1Y1NeH9nqe+3qHTT5fa2rxDEROj1XhJ50saRJ/GRcWLBh3jxmNuVLi9/38egEBbssQtr9fcucsJJ3hkt/NZOgAACB6uwAAAAAAAAAAAAAAAAAAjmNmmYKmp3RYnARDKxiaO1VsXvqVZ2bMCtmZaTFrA1uqP7m5DFRX12rx5s0pKSlRXV6fubmt/lubmejR1apupWq/XrpUrExQeHq709HQVFxeroKBAcXFxlmYEMDrU19f3eUxGRpdOOaVR11+/S6tWbdJzz23UtdeW66yz2OgcqgoKChQWFtbrMc8/H68LLhir2tq9bwquqQnX3LlSczPfKwAwFPZL38/v+MrNKwOcBMBw5fWaOw8LD6fxC0aX1NRUxcbGqqPDpv/7v2zdcEOWqeYyn34arR/8oHUIEmJUmi7pTEmDeP5DZFikTp5w8qCjFCYV6pKZlwx6HmCoLF1qvqnXaafRhgMAAAQXZyMAAAAAAAAAAAAAAADACFZVZe5m5vR0w+IkAEJdSnSKXjzvRc2dODcg66VGpwZknb5s3dqhX/+6XhMnenTllYY6OzuHdL158xoHXHPAAe268cZ6XXZZiiZOnKjU1FTZ7dwiCsC81taBb1bOzu7S/PmNOuaY2CFIhOHAbrersLBQNlvP9yA+n3THHan65S9z1dnZ9++g9eudOv30dnm9vC8BAKsdPfZov+Pv7XovwEkADEddXV2mayMjIy1MAowMubm5uuOODD37rGtQ8zz6qEs339x3A25gr5ySTpd0sqTe+3X36bhxxyk+Mt6CUNJVs69SsjPZkrkAK7W1GXrllShTtS6XV8ccY64WAADAKtzxAQAAAAAAAAAAAAAAAIxgZpuCpaX5LE4CYDSIDo/WktOX6KJpFw35WmkxaUO+xt60tnp1550Nmj27VRMmROnGG5O0dWuUVq50aRB7Z/tlzpwmRUX13SAlI8Ojiy9u0Jo1rVqzJlq/+lWSUlMjhjYcgFHD4/GYqrPZbIqKYsNcKIuIiFBeXt4eY263TVdema1//St9QHOtWhWvSy9tsjIeAEDSgqIFfsdLG0oDnATAcNTS0mK6NiYmxsIkwMhgt9t1441xyssb/IMC/u//XHr9dfN/BjGKTZD0Y0nF1ky3sGihNRNJckW59Icj/mDZfIBVnn3WrY4Oc600jj22U+Hh5j6DBwAAsApNwQAAAAAAAAAAAAAAAIARrKbG3C1AmZk0BQNgjsPu0L9O+peuP/L6IV0n0E3BursNvfBCk846q1FZWTZddFGi3ngjVobx9caP+nqH3nwzbkhzxMYaOuaYZr+vRUUZmju3SU8+2aidOx26/fZEHXBA7JDmATD6tLe3m66NiKA54WgQGxurzMxMSVJtrUMXXjhWzz3nMjXX7bcn6p//bLAwHQBgTPwYhdvDe4w3dTbJa3iDkAjAcNLW1ma6Ni5uaK+JAMNVamqEHn3UI6ez70b+venstOussyLV2Dj4BmPoKTIyMvSaF6ZLOk/SWZLirZky3B6uuRPnWjPZ//xw2g81KWWSpXMCg/XUU+Y/C1+wgIZgAAAg+GgKBgAAAAAAAAAAAAAAAIxgZpuCZWRwMzMA82w2m347+7e6f979CrOFWT6/w+6QK8pl+bz+bNnSoSuvbND48V067rgEPfqoSy0te///tGzZ0OeaO3fP5ijTprXpppvqtXOnV8uWJei001xyOLgFFMDQaGgw36ApNpZGhaNFcnKybLZEnXVWgT77LHpQc112WYJeeKHJomQAAEnKjMv0O/5S6UsBTgJguHG73aZraQKM0WzWrDj97W+Ng5rD6TT0859Xq7KyVIYxuAZj6CkzM1O1tbV64okntGjRIkVHD+69alBlSTpN0o8kFVg79ZzCOUqISrB0zvCwcP1tzt8snRMYjK4un154IdJUrdNp6JRToixOBAAAMHDcEQIAAAAAAAAAAAAAAACMUIbh0+7dDlO1mf73hgLAgFww5QI9e9azigmPsXTe1OhU2WxD17zQ6/XqjjvqddhhrZo4MUp/+Uuitm3r3waR116LV3299Y3QvunAA9s0dWqbfvazBq1d26oPP4zRFVckKSWFzbcAhl5bW5vp2qSkJAuTYLibPHmM5s41//3yJY/HrrPOilZJSbsFqQAAkrRv2r5+x1dsXhHgJACGm66uLlN1YWFDey0EGAl+/OMkXXBBo6navLxOPfLIVp1wQpO6u7u1fft2S7PhC06nUwsXLtTixYu1e/duPfPMM7rooouUk5MT7Gh9C5e0j6QLJf1Q0r4aki4AC4sXWj+ppBPGnaCocBopYXh48UW3GhvNfYZ+xBFuxcTQggMAAAQfZyQAAAAAAAAAAAAAAADACNXQYKiz09wtQFlZ3DoEwBrHjzter17wqtJi0iybMzUm1bK5vmQYhurr67Vp0yaVlJTonnsi9eabsTKMgTUf83pteu65BMvzfSk8PFxZWen64AOnbr01UfvvHztkawGAPx6Px1SdzWZTZGT/GiwidNx+e4KOOqpl0PPU1YXrllvaTDepAADs6cj8I/2Ov7PznQAnATCcGIYhwzBM1XKuD3zh3/+O17RpA2uOfNRRzXr00a0aN67zq7H29nZVV1dbHQ/f4HQ6dfLJJ+uOO+5QWVmZ1q9fr9tvv10LFixQcnJysON9IVLSZEmLJP1S0kJJuUO3nMPu0LyJ84ZkbpvNpqQomsVjeFiyxNz5jiSdeqrPwiQAAADmmWtxCgAAAAAAAAAAAAAAACDodu3qlhRmqnbMGHN1AODP9KzpevvCt3X8w8drS/2WQc9nZYOx9vZ21dTUqLW1dY/xU09t0Jo1MabmXLYsUWefXW9FPEmS3W5XfHy80tLSFBERYdm8ADBQbW0D29j8TTQJGJ3Cw+168skozZrVoY0bnabn+clPqnXRRbXaurVOEyZMkN1OE2MAGIyFxQt1xeoreoxvbdgahDQAhovOzs6+D9qLqKgoC5MAI1dkpF1PPGHXzJldqq0N7/VYu92nn/2sWhdeuFv+3uLU1tYqOjpacXFxQ5QW31RUVKSioiJdfPHF8vl82rx5s95//329//77+vjjj7V+/XrV11t3zdevBElZ+qLxV56kDEkBfPt7TMExSnQmDtn8u3bu0o+e+ZHuWnPXkK2xN8nOZK04a4VmZs8M+NoYXgzDp+eeM/c5i8Ph02mncc4DAACGB5qCAQAAAAAAAAAAAAAAACPUF03BzMnO5tYhANYqTCrU2xe+rZMfPVnv73p/UHMNtimY1+tVTU2Nmpqa1N3t/2flnDnN+tOfDHV0DHzX1YYNTm3cGKmJE81vppWk6OhopaenKybGXHMyALBaQ0OD6drY2FgLk2AkSUwM19KlXTr00C7V1fW+Kf7bIiMNXX99uY4/vlnSF7/Dt23bpsLCwqGICgCjRp4rTw67Q17Du8d4o7tRhmHQfBEYpbZubdXOneEaM6bLb4Oi3nC+D3xt7Fin7r+/SaeeGi+v1+b3GJfLq7/8Zadmzeq9+XZZWZkmTpwoh4PPbALJZrNpwoQJmjBhgs4555yvxisrK7VhwwZt27ZNZWVlKisrU1VVlerq6lRXV6fGxkZ1dnbK4/HI6/XK4XAoMjLyq79iY2OVlpam9PR0paenKzoxWv8p+4+qndVSiqQgPw9iUfGiIV/j2iOv1SOfP6JWT2vfB1uorqNOB917kC6ccqHuPuVuzndHsXfe6VRFhbnGXrNmuZWcbL7pPQAAgJV4lwgAAAAAAAAAAAAAAACMULt2GabqYmK6FRcXZnEaAJBSY1L18nkv64wnz9CKzSvMzxOdOuAawzDU2Nio3bt3y+Px9Hl8TIyhY45p0jPPJJqJqOXLE/XLX1YNuC4iIkJJSUlKSkpiYxKAYaetrffNyr1JSkqyMAlGmkmTovXww02aOzdOHk//fr+lpHTp1lvLtO++HXuMd3R0qLy8XNnZ2UMRFQBGjYzYDJU3l+8x5pNPr5e9riPyjwhOKABB9d//hunGGyfK6ezW+PGdGj/erQkT3P/7e6cSEvb+EAqaggF7OumkBF11Vb1+//ue74UnT27XLbfsVGZmV5/z+Hw+bd26VePHj+da4TCQmZmpzMxMS+f8RfMvdNRDR2lT3SZL5x2oMFuY5k2cN+TrpMem6/8O/T/938v/N+Rr+XPf2vv07OZntersVZqSOSUoGRBcTz7p7fugvZg3z9xn7wAAAEOBd4gAAAAAAAAAAAAAAADACFVV5TNVl5q6981dADBYMRExWnrmUn3/gO+bniMtJq3fx7a1tWnbtm1av369Kioq+tUQ7Etz5zaaSPeFZ591qavvfX2SJLvdrsTERE2cOFETJkxQSkoKm/wADDuGYairvz/YvsVmsykiIsLiRBhpjjsuQTff3NSvY4uKOvToo1t7NAT7UmNjo+rq6qyMBwCjzuTUyX7Hn9n4TICTABgu1q93SJI6OsL06afRWrIkSX/6U5YuvLBAhx5apKOPnqiLLsrTzTen65lnErRxY6S6umyy2WxcxwD8uOoql04+uXmPsYUL6/Xgg9v61RDsS11dXSovL+/7QIxIY+LH6JXzX9GE5AlBzXF0wdFKjk4OyFqXzrpUeQl5AVnLn5q2Gk29a6p+uvKnMgyaPI02zz4bbqrOZvNp0SKubwIAgOGDKzEAAAAAAAAAAAAAAADACFVZaa4uLY2mYACGlsPu0F2n3KXfH/57U/Wp0am9vu71erVr1y6tX79e27ZtU1tbm6l1DjywTRkZ/W8i9k319Q699VZcr8fExMRo7NixKi4u1pgxYxQebm4zCgAEgtmfpZIUFRVlYRKMZBdfnKif/rSh12OOPrpJDzxQqowMb6/HVVZWqrW11cp4ADCqHJ53uN/xt3e+HeAkAIaLjRt7b3RRUxOut96K0/33p+r//i9HCxeO14EHFusf/8gIUEJgZAkLs+u//43W+PFuRUQYuvbacl1zTYUiIwf+QJfm5mbV19cPQUoMB1lxWXr1/Fc1MXli0DIsLFoYsLWiHFH68zF/HrL5Y8NjdWzBsb0e45NP//zgn8r5e47W1awbsiwYXj7/3KMtWyJN1U6Z0qncXD7DAQAAwwdNwQAAAAAAAAAAAAAAAIARqrraZqouPX3gG1IAYKBsNpuuOeIa3X3K3QqzhQ2oNi0mrceYYRiqq6vTpk2bVFJSooaGBhmGMaiMdrs0d26j6frly109xiIiIpSZmani4mKNHTtWMTEx5gMCQAA1Njaaro2L671JIkaXW25J0HHHNft97Qc/qNHNN+9UdHT/3pPs2LFDHo+5Bp4AMNotKFrgd3xz/eYAJwEwHHR2Giot7b0pmD9er02pqWxDBfYmIcGhxx/36qGHSjV/fuOg5qqoqJDb7bYmGIadzLhMvXrBq5qUMinga4fZwjS/aH5A1zxj8hk6KPugIZn7luNv0QvnvqCVZ61UbERsr8dWtFRo3zv21RUvXDEkWTC8PP64+WtIp5zSe/N6AACAQONqDAAAAAAAAAAAAAAAADBCVVWZu/2HpmAAAun7U7+vpWculdPh7HdNakzqV//c1tambdu2af369aqsrLS8Mci8eY2ma195JU6NjWGy2+1KTEzUpEmTNGHCBCUnJ8tu5xZNACNLe3u76drExEQLk2CkczjsWrw4WsXFHV+NhYcbuuGGcl1ySY0G8ivS5/Np69atg24ECgCj0cSUiX4bNNd31PNzFRiF1qxpk9dr7lrF/vubezgFMFoccECsDj+898ZE/VVaWsrv6RCWEZuhV85/RUUpRQFd94j8I5QSnRLQNW02m2457hbL5z1+3PH63gHfkySdMP4E7f7lbh1feHyvNT759Ld3/qa8v+dpcx0NckPZM884TNeecUa4hUkAAAAGjztOAAAAAAAAAAAAAAAAgBGqttbc7T8ZGTQFAxBYJ084Wa+c/0q/Nx45jST94x/1mjmzTc89V6m2trYhy5ab69EBBwx8/tzcTl1ySZPy8nJVXFysMWPGyOEwv+EEAILJMAx1dXWZqrXb7QoPZ9Mc9hQf79CyZVJaWpeSkry6775tOuWURlNzdXd3q7S01NqAADBKpMWk9Rjzyaf3dr0XhDQAgmnNGq/p2unTIy1MAoSmjIwMRUdHD3oewzB4/xPiMmIztPrc1YoIiwjYmouKFwVsrW86KPsgnbnPmZbNlxCZoLtPuVs229fNKiMdkXrunOf01OlP9flgkrKmMk365yRd/fLVlmXC8LFjR5c++STKVO2ECZ0qLuZ8BwAADC80BQMAAAAAAAAAAAAAAABGqJqaMFN1mZm2vg8CAIvNzJ6pty98WwWJBX0ee8iUdP3iF0l6//0YLVvmGvJs8+Y19uu4mJhuLVrUpBUrmlRaGq6//S1ROTkxQxsOAAKgtbXVdG1UlLnNdgh948Y59eSTbj3yyFZNmdIxqLncbrd27txpUTIAGD2KU4v9ji8tWRrYIACC7rPPzNUlJnqVl0eTDKA/8vPzFRZm7nObb3K73aqsrLQgEYYjwzA05z9z5On2BGQ9u82u+UXzA7KWP38++s+KDLPm98itJ9yq7Phsv6/NL5qv3b/crSPzj+x1DsNn6Po3rte4W8dpR+MOS3JheFi8uNN07UknmXtYAgAAwFCiKRgAAAAAAAAAAAAAAAAwArndhhobHaZqs7JoCgYgOMYnj9fbF76taZnT9n6QT+poivvqy5UrXeoa4v0Yc+Y0KSrK8PuazebTwQe36rbbGlRR4dPixQk68cQEhYVxCyaA0NHY2Gi6Ni4uru+DMGoddlic9tsv3pK5mpqaVFtba8lcADBazM6b7Xf87Z1vBzgJgGDbsCHcVN348Z1cAwH6yW63q6Cg7wci9EddXZ2am5stmQvDh2EY2u/f+2n97vUBW/PwvMOVFpMWsPW+Lc+Vp8tmXTboeeZOnKtz9zu312OiI6L18vkv69HTHlWUo/cm9lsbtqrw1kL98fU/Djobhofly803ZVy0yNxn7gAAAEOJqzEAAAAAAAAAAAAAAADACLRrl9d07Zgxg39SPQCYlR6brqfnrdYE+1H+D7BJGvfCV1/W1zv05ptD23AmLs7Q0UfvuckuL69Tl19erw0bOvTWW7H66U8TFR/PxhAAoam9vd10bWJiooVJEIoyMzMVExNjyVzV1dVqaWmxZC4AGA0WTFrgd3xj3cYAJwEQbJs2RZiqKyoa4k7tQIiJjIxUdna2JXOVlZXJ4/FYMheCzzAMTblzitbVrgvouguLFwZ0PX9+feivB9WYLMmZpDtPvlM2W/8eenTmPmeq9pe1OiTnkF6P6/Z166pXrlLR7UWqaK4wnQ/Bt3t3t959t/dGcHuTldWlmTMjLU4EAAAweDQFAwAAAAAAAAAAAAAAAEagigrDdG12Nk3BAASe12vo6acbNX9+kyaOjdem3z8v7R7v/+Bpd+3x5bJlriHPN3dug2Jju3XGGY167rlmbd0arr/+NUkTJ0YP+doAEEyGYcjrNddw1m63y+GgYSL6lpeXp/DwcEvm2rFjBxvjAaCf9knfR3Zbz+1ju9t3yzDMX1sCMLJUV3tUVWWuKdjkyfysAAbK5XLJ5XJZMldpaSm/s0OAYRg64M4D9FnNZ3s9Ji7C+gdj2GTTgiL/TWIDKT4yXtcdeZ3p+n+e+E9lxGYMqCY2IlZvXvimHpj3gCLCev8dWFJXoty/5+pv7/zNdEYE15Ilbnm9/Wsa920nndQpu91cLQAAwFCiKRgAAAAAAAAAAAAAAAAwAu3aZW4TSFiYT2lpNAUDEDitra0qLS3V6tVbtGCBS0uXJqijI0wywqV735EMPz+TJjwrxe366svXXotTQ8PQ/ewKCwvTCSdEqqLCp8cec+n44+MVFsYtlgBGh6qqFnk85ja+RUVFWZwGocput6uwsFA2mzWbLLds2cLGeADop9To1B5jPvm0pmpNENIACIYPPugwXXvAAVxLBszIzs5WRIS5Znzf5PV6VVZWZkEiBIthGJp611R9WvPpXo85cdyJKv15qfZP39/StQ/LO2zAzbSGyoUHXKh90vYZcN3C4oU6Y/IZptc9f8r5qr6iWjOyZvR6XLevW1e8cIX2u2M/1bTWmF4PwbF0qfnrTaedxrkOAAAYnrhjBQAAAAAAAAAAAAAAABiBKit9puqSk70KC+NpxwCGlsfjUXl5udavX6/t27ervb1dOTkeTZ3atueBHcnSZ9/pOYG9Wzrw9q++9HrtWrkywfKcsbGxKigoUFFRkXJyshQX57B8DQAY7u68s1uHHFKkH/wgX3ffnaq1a53q6upfbXx8/NCGQ0hxOBwqLCy0ZC7DMLR161YagwFAPxSlFPkdX1ayLMBJAATL2rXdpupsNp8OPDDG4jTA6FFQUGBJY+TW1lbV1tZakAiBZhiGpt09TZ9Uf7LXY04Yd4JWnL1CKdEpeum8lzQlY4pl6y8qXmTZXIPlsDt085ybB1STGp2qf534r0H/OXJFufT+D97XHSfdoXB7eK/HflbzmbJvyda/PvjXoNZE4LS1GXrtNXMPLkhK8uroo3noAQAAGJ5oCgYAAAAAAAAAAAAAAACMQFVV5pqCpaWZ2wAGAH0xDEO1tbXauHGjNm3apMbGxh6NOubNa+xZ+NEP/U940N8l+9ddaZYtS7QkZ2RkpLKyslRcXKz8/HxFR0dbMi8AjFRvvRUut9uud9+N1a23puvccwt16KFFuuiiPN1/f4rWrYtS915OIV0uV0CzYuSLiopSTk6OJXN1dnaqvLzckrkAIJQdmnuo3/E3yt4IcBIAwfL55+a2kebmehQfTwN1wCyHw6H8/HxL5qqurlZbW1vfB2LYMAxD0++errVVa/d6zHGFx2nl2Su/+jo5OlkvnvuiDsg4YNDr22TTgqIFg57HSscWHqsTx5/Y7+PvPPlOpcakWrb+RdMv0q7Ldmn/9P17Pa7L6NLFKy/W9Lumq7693rL1MTSWL3ero8Pcuc6cOZ1yOHiYFgAAGJ5oCgYAAAAAAAAAAAAAAACMQJWV5m5QTksz+j4IAAagpaVFpaWlWr9+vaqrq9XV1bXXY+fMaVJU1Ld+DpUdKjVl9zw43C3t+/BXX27Y4NTGjZGmMoaFhSk5OVmTJk3S+PHjlZSUJLudWygBoKvL0Pvv92yO2N4eprfeitPNN2fozDPH6bDDivSzn+XqoYeSVVISJcOQ7Ha7HA4aBGDgEhISlJKSYslczc3NqqmpsWQuAAhV84vm+x0v2V0S4CQAgsUwfHI6B/6wiIkTO4cgDTC6xMTEKD09fdDzdHba9NvftqqtzWtBKgw1wzB04D0H6uOqj/d6zJyCOXr+nOd7jCdHJ+vF8wbfGOyQ3EOUFZc1qDmGwl+P/avCbGF9Hnf2vmfv9Tx2MFJjUrX2orW65bhb5LD3fl3ro8qPlHlzpu5dc6/lOWCdp54y9yAtSVqwgIZgAABg+OKOFgAAAAAAAAAAAAAAAGAEqq42d5Nyerr5G6MB4Esej0c7d+7U+vXrtWPHDrW3t/erLjbW0DHHNH9r1CZtOd5/wT6L9/hy+fLEfme02WyKjY1VYWGhioqKlJmZSfMaAPiWt99uU0tL3xsxW1rC9Oqr8brppkwtWjROs2dP0iuvJAcgIUJVRkaG4uLiLJmrpqZGzc3fPr8AAHxpSvoU2W09t5DVttcGIQ2AQDMMQ7/73S69++4GrVy5SX//+w795CfVOvbYJuXnd8pu3/v14qKigTcSA9BTamqqYmNjTddXVobr/PPH6h//SNcPftBqYTIMBcMwNPOemfqo8qO9HnPM2GO06txVe309yZmkF897UVMzp5rOsbBooenaoVSUWqSLpl/U6zGZsZm69YRbhzTHLw76hcp+UabilOJej/N0e/T9Z76vg+89WM1urj0MN11dPq1ebe5hMtHR3TrppCiLEwEAAFiHpmAAAAAAAAAAAAAAAADACFRdbe7Wn4wMmoIBMMcwDNXW1mrjxo3atGmTmpqaZBjGgOeZO7eh5+Drv5X8/Xga+7IU9fXxK1YkqKur9/kjIyOVlZWloqIi5efny+l0DjgjAIwWL7zgNVXX1OTQ2LFsmsPg5OTkKCIiwpK5Hn64XuXlbkvmAoBQY7fblezs2czT8Bn6vPrzICQCEEgdHR2SJLtdysnx6OijW/TjH9fq5pt36plnNuvdd9frsce26Npry3XOObs1c2arkpK+eJ+w335cSwaskpuba+qBBe+8E6PTTy/UunXRkqRHH3Xp5pvrrY4HixiGoYPuPUgfVn6412OOyj9Kq89b3edcSc4kvXjui5qWOc1UltOKTzNVFwjXHH6NEiIT9vr63afcrSRn0pDnyIzL1LqL1+mGo25QmK33pvnvlL+jtL+m6ZHPHhnyXOi/F15wq6nJ3MNgjjrKrehoWm0AAIDhizMVAAAAAAAAAAAAAAAAYASqre395vS9ycy0OAiAkNfS0qLS0lKtX79e1dXV6uqrK1cfDjywTRkZnj0Hm/KlLcf1PNjRKe376Fdf1tWF6+2343ocFhYWpuTkZE2aNEnjx49XUlKS7HZukQSAvrz5ZripOqfT0JFHxlqcBqON3W5XYWHhoH5n+3zSffel6OKL8zR/frc6OrotTAgAoWNi8kS/40+VPBXgJAACraWlpdfXnU6fJk92a/78Rl15ZZXuuWe7XnutRK+8skEnnmju/QKAnux2uwoKCvp9vM8n3XNPii66KF+NjXs2vPnNb1x67bXe/2wj8AzD0MH3HawPKj7Y6zFH5h+pl85/qd9zJjoT9eJ5L2pG1owBZZmVPUvZ8dkDqgmk1JhUXTX7Kr+vfXfKd3XShJMCmuc3h/1GWy/ZqnFJ43o9rrO7U2c/dbaOeOAItXvaA5QOvVmyxPx1oFNPtS4HAADAUOCOFwAAAAAAAAAAAAAAAGCEMQyf6aZgGRk2i9MACEUej0c7d+7U+vXrtWPHDrW3W7fBJSxMOuWUxp4vvP8z/wWz/rrHl8uWuSRJNptNcXFxKiwsVFFRkTIzM+VwmHsiPACMRh6PoY8+cpqqnTatXU6nufNR4JvCwsIGtDH+mzwem66+eoxuuSVDPp9NH34Yo3PPbVV3t2FxSgAY+Q7OOdjv+Os7Xg9wEgCB1tHRYaouJaVbaWkxFqcBRreIiAjl5OT0eVxLi12/+EWu/vGPDBlGz890PB67zj47UpWVnUMREyYYhqFD7z9U7+16b6/HHJ53uF4+/+UBz+2KcumFc1/QgWMO7HfNouJFA14n0H524M96NDubmDxRtxx3S1Dy5LnytPlnm3X17Ktlt/XefuG1Ha8p5aYULVm/JEDp4I9h+PTcc5GmasPDDS1YEGVxIgAAAGtx9wsAAAAAAAAAAAAAAAAwwtTXG+rqMteEITub5g0A/OvqMvT008168cVuXXJJ5ZCuNW9eo+6+O23Pwa3HSS2ZUty31k7aJh1+jfTaH5SQ4FV2tqExY7KVkBAvu51nowKAWa++2qK2tgRTtYcc4rE4DUazqKgo5ebmqqysrN819fVhuvTSXK1Zs2ejiiVLEnTNNfW6/vokq2MCwLDV0dGhDRs2aN26ddqxY4eqqqpUWVmp2tpadXR0yO12q7G1UWrSFzvJvvwrSno78W1dvflqjRkzRkVFRSouLlZqampQ//8AsFZnp7mmQTabjesuwBBISEhQW1ub6uvr/b6+ZUukLr00V9u3997oZteuCJ1+eqtefjlc4eH8WQ0mwzB02P2H6Z3yd/Z6zOzc2Xr1gldNr+GKcumFc17Qcf89rtfGY186rfg002sFSqQjUs+f87yuf/16vbfrPe2fvr+uO/I6JUSZu1ZllWuPvFbn73++jnnoGG1v2r7X4zq8HVr4xELNKZijZd9ZpigHDaYC7a23OlVVZe7f+yGHuJWYGG1xIgAAAGvRFAwAAAAAAAAAAAAAAAAYYXbu9Eoy19wrK4vNIQD2tGZNq+6+u0tPPRWrmhqXJOm44xo0caJ7yNbMy/PogAPa9PHH32jkYTikjSdK0+/tWXDEtTp3vkt3fP9niolJHLJcADCavPSSYbr26KNpNAtrxcfHKy0tTTU1NX0eu2VLpH760zzt2hXh9/UbbkjUhAkNOu88zhkAhKbKykq98soreuWVV/T6669ry5YtMgxzv9c71KHr379+j7HU1FTNmjVLRxxxhI444ghNmTJFNpvNiugAgqC7u9tUXXh4uMVJAHwpKytL7e3tcrv3vP76/PPx+t3vstXR0b/Pcd58M1aXX96gW2/lvU+wGIah2Q/M1tvlb+/1mENzDtUr578y6LUSohK06pxVOv7h4/Vu+bt7PW7mmJnKTcgd9HqBkORM0s3H3RzsGD0UJhVq2y+26crVV+qmt2+ST769HvtC6QtK+UuKHl/4uE6acFIAU+KJJ7yma+fN2/t/UwAAgOGCO/wAAAAAAAAAAAAAAACAEaaiwnwDh+xsniMIQKqp8ehPf6rXlCnt+n/27js8qjJ94/g9Jb0HkpBCCaEGFRQVC/YCrlIUARv2XtaCba27+rOtrl3X7oqiUgVUBHsFBREUCDUhhJCQhPQ+mfL7AxuSNmdOMinfz3V5LTnnPO/7yDqTOWfOe5+RI8P1wgsxKiz8Y7HnwoXRbd7D+PFl+27cMbrxgy3Sm2U36amf/i2Ph8UaAGCG774ztsg/LMylY46JMLkbQIqPj1dkZGSzx3zzTbimTevfZCCYJHk8Fl11VaS++67S7BYBwG8KCwv13HPPafTo0UpOTta5556rV155RZs3bzYcCNaUoqIiLVq0SDfddJMOOugg9e3bVzfffLN+/PFHU+cB0PacTqfh6yjBwcEmdwPgz/r37y+rdc8S74YG6ZFHeumWW/q0OhDsN888E6M33yxtixbRAo/Ho2PfOFbf7fiuyWOO6H2Evrrwq9//v/bVb8Fgh6cc3uQxZ6afacpckB456RGtv3q9kiOSmz2uuqFap71zmsa/M14Op6OdusOHHzZ9bag5FotHkycHmdwNAACA+QgFAwAAAAAAAAAAAAAAADqZnTuNLfaMiHApLIxbhoDuqqHBrXffLdOpp1aod2+77rgjVj//HNrosR9+GK2GhrbtZ8yYcgUF7f1+FhrY/EKMOz+/U9M/ni63x9xF7wDQ3dTWuvTTT43/DmjJwQfXKDCQz5RoGykpKQoK2vfzgMcjvfVWD117bV9VVdlaHKemxqbJk4O0fXtdW7QJAO1m3bp1uvDCC5WSkqJrr71W3333XbsHJe/YsUP/+c9/dMghh+jQQw/VrFmz5HK52rUHAMZUVVUZrg0JCTGxEwB/ZbValZqaqt277br00lS99VZPw2Ndc02k1qwx/nqHMce9cZy+yfmmyf2Hpxyuby78xrRAsN9EBkVqyXlLdETvI/bZF2AN0OT0yabO190NjRuqnBtydN2h18kiS7PHvr/5fcU9GqfPsj5rp+66r19+cSgry1go2MiRdUpO5iFaAACg4+PbWAAAAAAAAAAAAAAAAKCT2bXLWF1cHAs2ge5oxYoqXXFFqVJSXDr77GgtXhwph6P52wdLSuz67ruINu0rIsKtE06okN3u0QknVOrVV0v1z//kt1j3xPdP6KKFF6nB1capZQDQhX3+eZVqa43dSj56NO+/aDtWq1VpaWl7LZpuaJDuuy9JjzySKLe7+QW4f5afH6iJE92qqnK2RasA0KaysrJ0xhlnaP/999cbb7yhhrZObW6llStX6qyzztKgQYM0b948f7cDoAW+hIJFRLTtdSEAe8L3amsT9csvxkK7f1NZadPUqXZVVHDu016O+99x+mr7V03uPyz5MH170bemB4L9JjIoUkvOXaITUk/Ya/s/j/2n+kb3bZM5uzOr1aqnT3laq69YrYSwhGaPrXBU6MQ3T9Tk2ZPldPOabCuzZzsM144fz/flAACgcyAUDAAAAAAAAAAAAAAAAOhk8vI8huri47nJGeguHA6HcnJydPfdeRo1KlwvvRSjwsIAr8ZYuDC6bZr7lcVi0T/+UaXMzHp9+mmELr44RkV1rUs9nPHzDE2aPUm1DbVt2iMAdFWffeY2XHvSSd79PgG8ZbVaNWDAAElSeblNV13VT3Pnxhoaa82aUJ17brVcLuP/zQNAe6qvr9edd96p9PR0vffee/5up0lZWVk688wzdfzxx2vTpk3+bgdAE+rq6gzXBgcHm9gJgKacckqU7rqr1OdxNm8O1rRpnPu0hxPeOEFfbv+yyf2HJh2q7y7+rs0CwX4TERShT6Z9ovemvqfHT35cyy5epjuOuqNN5+zuhvcarryb8nTZQZe1eOzcDXMV92icvs35th06637ef99uuHbKlEATOwEAAGg7hIIBAAAAAAAAAAAAAAAAnUxhocVQXUICi0GArsztdquwsFAbN27U5s2bVVFRoSOOqDI83pdfRqiszGZih3sEBwcrJSVFw4YN0+jRKerT549FpnmVea0e5/3N72vszLEqrys3vUcA6OocjgZFRzu9rouMdOqII8LaoCNgb4GBgerTp6+uvrqvfvgh3KexFi2K0m23lZnTGAC0oU2bNumwww7Tgw8+qPr6en+30ypffPGFDjroIL366qv+bgVAIxwOh6E6m83860EAmnbXXdE67bQKn8dZvDhCn39eYEJHaMqJM07U59mfN7n/kKRDtPyS5W0eCPYbi8WiiUMm6sbDb9ThvQ9vlzm7O6vVqpfGvaQVl65Qj5AezR5bVlemo14/SufNP09uN9/RmmXbtgb98oux8NIhQ+o1eDChYAAAoHMgFAwAAAAAAAAAAAAAAADoZHbtMnbbT0KCx+ROAHQE5eXlyszMVEZGhgoLC+V0/hHy0ru3QwcdVG1oXKfTqsWLo0zp0W63q2fPnho6dKgGDBig6OjoRo/zJhRMkr7e/rWOfeNYFVSx2A0AWsvpdOrKKwv11VcbNXfuVt16a76OPbZCERGuFmsPOaRWAQHcgo72ERkZoXvucchm8/085j//idWrr5aa0BUAtI358+dr5MiRWrNmjb9b8VpNTY0uvfRSXXDBBWpoaPB3OwD+xGgASWAgYRlAe7LZrHrrrVANHFhneIz4+Aa9/vo2JSYWq6SkxMTu8Jsxb47RZ9s+a3L/yMSR+v6S79stEAz+dUjyISq8uVDT9p/W4rEz185U/GPxWrlzZTt01vXNnm0s9FSSxo3jfAUAAHQenFkAAAAAAAAAAAAAAAAAnUxRkdFQMJMbAeA39fX1ysnJ0fr167Vjxw7V1tY2eeyECWWG51m4MMZwrcViUWRkpAYMGKAhQ4aoV69estlszdZ4GwomSWt2rdHo10cruyzbYKcA0L2Ulu4JRrJapcGD6zRtWrGeeSZH33yzQe++u1XTp+dr9OhKhYbuGxJ21FEsnEP7mjQpWvffb06Y16xZVpWVlZkyFgCY6aWXXtLkyZNVXW0s0LmjmDFjhsaNG9fp/z2ArqKuzni4UHBwsImdAGiNqCi7Zs92tiqw+68OPrhas2Zt1YgRe64R5+XlNXu9GN4b++ZYfZz1cZP7D0o8SCsuXUEgWDdjtVo144wZ+uaibxQdHN3sscW1xTr0lUN16aJLDYd2Yo+FC42/ziZPDjCxEwAAgLbF2QUAAAAAAAAAAAAAAADQyRQVNR+q05SkJIvJnQBoT263WwUFBdq4caO2bNmiiooKeTyeFutOPrlcwcHGFplkZIRo8+Ygr2qCg4OVkpKiYcOGqU+fPl4tJDUSCiZJW0u26sjXjtS6wnWG6gGgO6msrGx0u80mDRtWpwsvLNZ//7td3367QW+9lanrr9+lww+vUnCwWyedxMI5tL9//CNW559f5tMY5523W48+ukO5ubksjgfQoTzzzDO64oorukwwwNKlS3XKKaeovr7e360A3V5Tn/tbIywszMROALTWiBHhevbZCq9qLrhgt15+eZt69tw7TGzbtm1d5vOFv53y1ilamrW0yf0jeo3QyktXEgjWjY3uM1pFtxRpcvrkFo99dfWrSno8ST/v+rkdOut6CgqcWrHCWHhp794OjRwZaHJHAAAAbYczDAAAAAAAAAAAAAAAAKATqa11q7zcbqg2KYnbhYDOqLy8XFu3blVGRoaKiorkdDq9qg8Pd+vEE71bTPZnixbFtHiM3W5Xz549lZ6ergEDBig6OtrreSrrK1XpML5gNa8yT0e/frSW71hueAwA6A7q6upadVxAgDR8eK0uvXS3XnopW8uWbdCoUYQDwD9efjlSo0dXeV1nt3t0zz07ddttu2T7NVs5KyvL689TANAWFixYoBtuuMHfbZjum2++0XnnndeqEGsAbaempsZwbXh4uImdAPDG+efH6JprSls8LiTEpccey9HNN++SvZGvjNxut7KystqgQ/8orS1VZkmm6pytu6ZhllNnnqolmUua3D+i1witumwVgWCQ3WrX7Mmz9em0TxUZFNnssQXVBTrwxQN13eLrCO/z0rx59XK5jD0E629/c8hq5QFaAACg8+AsAwAAAAAAAAAAAAAAAOhEdu40vng9OZnbhYDOoq6uTjk5OVq/fr127NjR6gCXpowf3/JCsqZ88EGUGsvNsFgsioyM1MCBAzVkyBD16tXLp8VP+VX5hmt/U1pXqhPfPFFLty71eSwA6IqcTqfhxYYhITbZbHyehH8EBlo1f36g0tJa/5koMtKpF1/M1uTJe38O8ng82rp1KwtvAfjVunXrdM4555j6XhQUFKTjjjtOt99+u95++20tX75cOTk5Ki8vV319vZxOp8oqyqSbJV0h6WxJx0saKinEtDYkSXPnztX9999v7qAAvFJfX2+ozmKxyN5YwhCAdvPEE1HNhiL361evd97J0pgxzT8Ioq6uTvn5vl9z9bfnVjyn3k/01oBnBmjws4Pb7drvaW+fpsVbFze5/4CEAwgEwz5O6H+Cim4u0vhB45s9ziOPnl35rPo82UcZRRnt1F3nt2CB8VCvM8+0mdgJAABA2+NMAwAAAAAAAAAAAAAAAOhEdu40vlg0OZmbnYGOzO12a9euXdq4caO2bt2qiooKeTweU8Y+9NBq9erlMFRbXBygZcvCf/85ODhYvXv31rBhw9SnTx8FBQWZ0uPOip2mjFPTUKNx74zTu+veNWU8AOhKSkuNh0SGhoaa2Angvbi4QL33nkvR0S0HJffrV6+3387SoYdWN7rf6XQqOzvb5A4BoHUaGhp0/vnnq7a21pTxxowZo3fffVclJSX6/PPP9dBDD+nss8/WYYcdpt69eysyMlKBgYGy2WyKiohSVI8oKVHSYElHS5oq6RZpzuI5uvjiixUSYk5C2P3336+VK1eaMhYA7zU0NBiqIxAM8L+AAKtmzQpQUtK+13NPPLFc77yTqbS01gX/FRcXq6Ki+fCwjmzNrjX6+5K/q7phz7ldTnmOxr0zTgs2LmjTece/M14fbvmwyf37x++v1ZevJhAMjQq0B2rh2Qv14TkfKiwgrNljd1bu1H7P76dbPr6lnbprnYyiDL2++nWtyltl2vdUvqqsdOvrr4MN1fbs6dRxxxmrBQAA8BfONgAAAAAAAAAAAAAAAIBOJC/PWCiY3e5WXByhYEBH9O23lXr77VxlZGRo9+7dcjpbDrrwls0mjRtXZqg2IMCtnJwQxcXFKT09XQMGDFBUVJS5DUrKq8wzbawGd4POmXeOnl/5vGljAkBXUFlZabg2JibGxE4AY/bfP0wzZlTLbm/6vOiww6r01luZ6tu3+UDUmpoa5eWZ9/kDAFrrwQcf1OrVq30eZ8yYMVq9erWWLFmiqVOntjrAMy0mbd+NVik/Nl+vvvqqtm3bpuuvv142m2/XkZxOpy644II2OccF0Dy32204wMOs8HcAvklKCtLMmfUKDNxz7mO1enTjjbv0+OM7FB7u3fdEOTk5cjiMPTDC315e9bLcnr3/fRvcDZo8Z7Le2/Bem8w58d2Jen/z+03u3y9uP625Yg2BYGjR3wb+Tbtv3a0xaWOaPc4jjx5b/pj6PdlPmSWZ7dRd0578/kkNe36YLl50sQ5++WDdsOSGDhEMtmBBrerrjb3uxoypl81mMbkjAACAtsUZBwAAAAAAAAAAAAAAANCJ5OUZu+m6Z08XNzsDHciOHXW6994SDR1aq6OOitD//V+PNp9z/Pgyr47fb78a3X9/ibZvb9DDDycoISGhTRc6mRkKJu1ZSHPN4mt031f3dYgFKwDQEdTV1RmuDQsLM7ETwLhx46L08MNlje6bOrVYzz+fraio1i2SLykpUUlJiYndAUDzCgsL9eijj/o0Rnh4uN58800tWbJEI0aM8Lr+0ORDG93+2bbPJEkJCQl68skntXLlSg0ePNiXVrVhwwb973//82kMAN6rrq42XBsSEmJiJwB8ceyxEXrggTLFxDj10kvZuvji3bIY/JonKytLbrexh874i8vt0rwN8xrd53Q7NWXuFM3fMN/UOU9/93Qt3LSwyf3D4obp5yt/JhAMrRZsD9aS85Zo/pT5CrE3/zt2e/l2DXp2kO754p526m5fn2V9phuX3rjXtqdXPK25GXP91NEf3vMhB/CMM/iOHAAAdD6cdQAAAAAAAAAAAAAAAACdSH6+sWCb+HiXyZ0A8FZtrUuvv16qE0+sVP/+Qbrvvlht3LhnEciGDSHatCmoTefv18+hESOaXxQaF9egyy4r1fffV2nt2lDddVesEhPbtq/fmB0K9pt7v7xXNyy5QW5P51r0BgBmczgchhcABwQEsOAVHcr06bG67LLS33+2Wj36xz/ydNdd+QoI8G6svLw8n4IzAMAbDz74oE/vOSkpKVq+fLnOO+88w2P8beDfGt3+S8Eve/184IEHauXKlTrllFMMzyVJ//rXv+RwOHwaA4B3qqqqDNeGh4eb2AkAX918c6yWLMnWqFG+nbM4nU7l5OSY1FX7+G7HdyqoLmhyv9Pt1JQ5UzQvo/HgMG+dMesMLdi0oMn96T3TtebKNVwfgSGnDz1du2/ZrWP7HdvscW6PW/d/fb8GPD1A28u3t09zv6qor9DFiy5udN9tn96mOqfxhw34yuHw6LPPgg3Vhoe79Le/GasFAADwJ848AAAAAAAAAAAAAAAAgE5k1y5jTzKOjycMB/CXb76p1IUXlik52aOLL47RZ59FyOnc97W8aFFMm/cyYULZPtsCA90aO7ZCb79dptxcm156KUajRrX/AtC8qrYJBZP2PMn+/PfOV4Oroc3mAICOrqyszHBtaGioeY0AJnnuuSgdf3ylIiJc+u9/t+ucc0oMj5Wdna2GBj4nAGhblZWVeuWVVwzXJyYm6osvvtB+++3nUx9j0sY0ur2xoOaIiAgtWLBAp556quH5cnNztWDBAsP1ALxXW1truDYkJMTETgCY4aCD+sliMfbd0J9VVVWpqKjIhI7ax5z1c1o8xuVxaercqa06tjlnzj5T7218r8n9Q3oO0c9X/Sy71e7TPOjeQgND9cUFX2jmGTMVZGv+YSyZpZlKeypND37zYDt1J01fOl055Y2HB24r26Znfnim3Xr5qyVL6lRRYTNUe8IJdQoOJlIDAAB0PnyCAQAAAAAAAAAAAAAAADqRggJjCz8SEjwmdwKgOTk5dbrnnhINGVKro4+O0BtvRKu0tPkFQx98EK22zqIYM6ZcQUF7QgIPOKBGDzxQou3bG/TRR5E6++xoBQb677bCxhagm2nm2pmaOGuiahpq2nQeAOioKisrDddGR0eb1whgkoAAq+bODdbbb2fpiCOqfBrL4/EoMzNTbjdhygDazuzZs1VdXW2oNjAwUPPmzdOAAQN87iPQHqiIwIh9tte76lVYVdjo3O+++65PYWSvvvqq4VoA3nM4HIbqrFarrFaWnAIdjd1uV79+/UwZq6CgwPDnkfbk9rg1b8O8Vh3r8rh09ryzNXv9bENzTZkzpdm5BvcYrLVXrSUQDKY5Z/9zVHhzoY5IOaLZ41wel+78/E6lP5euvIq2/f7koy0f6ZXVzQcY/983/6eiav8EC86bZ/x6zcSJvocqAgAA+ANXaAAAAAAAAAAAAAAAAIBOpLDQ2C0/hIIBbc/lcmnXrl06++xSpaUF6f77Y7VpU0ir60tK7Pruu30XZpspIsKthx8u0sqVVfr551DdcUesevVq/on07aWtQ8EkafGWxTr5zZNVVlfW5nMBQEdTV1dnuDYsLMzETgDzxMQE6LjjkkwZy+l0atu2baaMBQCNefPNNw3X3nHHHTr88MNN6yU1JrXR7e9tfK/R7eHh4Zo5c6bsdmNhGJ9++ql2795tqBaA93bt8shj4HJwQECA+c0AMEVYWJgSEhJMGSs7O1tOp9OUsdrK8h3LlV+V3+rjXR6Xzpl3jmatm+XVPGfNPUtzMuY0uX9Qj0Fad/U6AsFgusjgSH13yXd6bfxrCrQFNnvsht0b1Pepvnp8+eNt0ktpbakuff/SFo+rqK/QvV/e2yY9NMfl8uijj5r/O2pKYKBbEyd2jO/AAAAAvEUoGAAAAAAAAAAAAAAAANCJFBXZDNUlJfEUZKAtuN1ulZWVacuWLdqwYYN2796tyMgGOZ3GXnMLF0ab2+CvAgICFB8fr/T0dN1wQ4IOPji8TeYxyuPxtEsomCR9t+M7HfO/Y5Rf2fpFZQDQ2TkcDnmMpAJoz+8Qq5XbztFxhYWFKSnJnGCw2tpa5ebmmjIWAPxZTU2Nli1bZqi2T58+uv32203t55CkQxrd/knWJ03WHHDAAbr66qsNzed2u/Xll18aqgXgndLSBh133FAdffQQXXJJPz38cC/Nnx+jtWtDVFPT/PWq4ODgduoSgBFxcXEKD/f9uq7H4+nwgcjNBXU1xeVx6Zz55+jdde+26viz556tWeubDhEbGDtQ669eTyAY2tRFB16kXdN36eDEg5s9zul2avrH0zX8heEqrCo0tYcblt7Q6u9nXlz1otYXrjd1/pZ88029ioqMBZeOHl2n6Ghj360DAAD4G9/OAgAAAAAAAAAAAAAAAJ2E2+0xHAqWmEgoGGCmuro6bd++XRs2bFBubq7q6+t/3zdhQpnhcb/8MkJlZeYsULBarYqKitKgQYM0ePBgxcfHd9hQl7K6MtU569ptvl8KftHo10crqzSr3eYEAH8qKSkxXBsWFmZiJ0DbiI2NVWxsrCljlZWVqbi42JSxAOA33377rRoaGgzVTp8+XUFBQab2c8qAUxrd/nPBz83W3XrrrQoMDDQ05+eff26oDoB3VqyokSSVldm1YkW4Zs7sqXvvTdY556TpsMPSdeqpA3Xjjb31/PPx+vTTSOXkBMrt3lMbGhrqx84BtEafPn1kt/seUlVfX99hA5HdHrfmbZhnuPbc+efq7bVvN3vcufPO1bvrmw4PGxA7QBnXZBAIhnYRExKjlZev1HN/e04B1ubDr34p+EUpT6Tovyv/a8rcizYt0oyfZ7T6eLfHrVs+ucWUuVtr7lyn4doJE9wmdgIAANC+OBsBAAAAAAAAAAAAAAAAOomiIpecTmO3/CQldcwgIKAzcTqdKioqUllZmVwuV5PH9enj0IEHVmv1au9DVJxOqxYvjtI55xgPbwkJCVF8fLwiIiIMj9HeWvsUejNllWbpyNeO1NLzluqAhAPafX4AaE9VVVWGa2NiYkzsBGg7SUlJqqurU01Njc9j5efnKzg4mFA8AKb5/vvvDdUFBgbq/PPPN7kb6dRBpza6Pbd833CQyvpKrdm1Rj/l/6RV+asUNCRIjl8cXs+5evVqr2sAeG/NmqavWXk8FuXkBCknJ0iffvrH9pAQtwYMqNOyZSw3BTo6q9Wq/v37a/PmzT6PVVZWpvDwcEVHR/vemIl+yP1BuRXGA8vcHremvTdNHo9H5x5w7j77z5t/nt5e13RoWFpMmjKuJhAM7e/qQ67WmUPP1ElvnqRfCn9p8rgGd4OuXny1Xlv9mj6e9rFiQoxduyuuKdbl71/udd1HWz/S0q1LNWbAGEPzesPt9ujDD42FElutHk2eHGxyRwAAAO2HO/0AAAAAAAAAAAAAAACATmLnzqYXdLUkOZlbhQAj3G63SktLtWXLFm3cuFHFxcXNBoL9ZsKEMsNzLlzo/QKOgIAAxcfHKz09XWlpaZ0qEEzyTyiYJO2q2qWjXz9a3+V855f5AaC91NfXG64lFAmdSb9+/WS3m7NwOzs7Ww6H96E3ANCYLVu2GKo7/vjj2ySoI9gerLCAfX/H17nqtHDjQv1n2X907vxzNeTZIYp6OEpH/+9o3bD0Br35y5uqHFBpaE6jfwcAvLNunffXgWtrrSoutis83FjoBoD2FRgYqN69e5syVm5urk/XDNrC3Iy5Po/h9rh1/oLz9dYvb+21/fz3ztfMtTObrOsf018ZV2cowBbgcw+AEfHh8fr5qp/1n5P/I5vF1uyxP+b/qF7/6aXXV79uaK5rFl+jguoCQ7XTP54up9tpqNYba9Y4lJ1t7PPJwQfXKTGRcD8AANB5cacfAAAAAAAAAAAAAAAA0Ens3Ok2XJuczE3PgDdqa2uVnZ2tDRs2aOfOnV4vjDr55HIFBxt7zWZkhGjz5qAWj7NarYqKitKgQYM0ePBgxcfHy2rtnLcF+isUTJLK68t10psnafGWxX7rAQDaUn19vTwej6HawEBCAdC5WK1WDRgwQBaLxeexPB6PMjMz5XYbPw8DgN8YDcQ6+uijTe7kDymRKY1unzhrom7+5Ga9vfZtbSreJI/+8jmir7H5iouLVVpaaqwYQKtt2mQsyGbw4I4VCgSgeVFRUYqNjTVlrKysrA5z3uPxeDR3g++hYNKvwWDvna83f35TknThggv15i9vNnl8/+j+2nD1BgXauRYC/7vp8JuUc0OOhvYc2uxxDpdDFy+6WEe+eqQq6ipaPf6c9XM0a/0sw/2tL1qvV3961XB9a82e3WC4dtw44w/bAgAA6Ag6590/AAAAAAAAAAAAAAAAQDeUl2dsUUZkpEuhodwqBLTE6XQqPz9fGzZsUGZmpqqqqgyHqEREuHX88a1fgPFXixbFNLkvNDRUffv2VXp6unr37t0lAlv8GQomSbXOWk14d4Jm/jLTr30AQFsoKSkxXBsWFmZiJ0D7sNvtSk1NNWUsl8ulrKwsU8YC0L3l5Rk75znooINMmb+wulBLti7RA18/oEmzJyn1qVRtKt5kbLAoSQY/IhQXFxsrBNAqLpdbmza1HDTfmCFDnCZ3A6CtJSUlKTg42OdxXC6Xtm3L9r0hE6zMW6mc8hzTxvPIowsWXKCjXjtKb/z8RpPH9Yvupw3XEAiGjiUpMkkZ12TogeMfkM1ia/bYZbnLlPBYgt5Z+06L4xZUFeiqD6/yub+7v7hbFfXGvwdrjQ8+MP7QqylTeD0DAIDOjTv9AAAAAAAAAAAAAAAAgE4iL89YOFFcHAu6gKa43W6VlJRoy5Yt2rhxo4qLi+VymfP08AkTSg3XfvBBlJx/eukGBAQoISFB6enp6t+/vyIiIkzosOPwdyiYJDndTp333nl65odn/N0KAJiqqqrKcG1MTNMhlUBHFhoaqpSUFFPGqqur044dO0wZC0D3ZfT3cf/+/b2uya/M1webP9B9X92nCe9OUO8neivhsQSdMvMU3fXFXZq/Yb6yy7IN9fM7gx8RfPlcAqBl27bVq6LCWHjGAQeY3AyAdtG/f39Zrb4tFS8psWnatHi9+abx69lmmbN+juljeuTRtzu+bXJ/36i+2nTNJgLB0GHdcdQdyvx7pgbEDmj2uDpXnc6Zf46O+99xqnHUNHqMx+PRVR9epeJa38N6i2qK9OA3D/o8TlO2bHFo/XpjwYfp6XUaNIjXNAAA6NyMx6MCAAAAAAAAAAAAAAAAaFcFBcbq4uPd5jYCdAFbt9aqpqZQNluVPB5jgXstGTWqWgkJDSooCPC6trg4QGvXhum44wIUHx+vwMCuvXghr8r/oWC/+fuSv2t3zW7989h/ymKx+LsdAPCZw+EwXBsaGmpiJ0D7io6OVm1trYqLfV/o+sknTsXGlmnixGjfGwPQLVVXVxuqi4+Pb3Kfx+NRbkWuVuWv0k/5P+mn/J+0Kn+VdlXtMtpm64UZKzP69wCgdVaurJcUYqj2oIO8v34FwP+sVqtSU1OVmZlpqH7t2hDddFNv7doVqHXrXDrggCoNHx5ucpet4/F4NHfD3Hads29UX228diOBYOjw+kb31ZbrtuieL+7RA988ILen6e9+v9z+pXo+2lMzz5ip04eevte+t9e+rfc2vmdaX098/4SuGHmFUmNSTRvzN7NnOyQZe22OG8cDswAAQOfnW/wzAAAAAAAAAAAAAAAAgHaza5excJqEBELBAEmqrHTqv/8t1VFHVWnw4GC9805AmwWCSZLNJo0fX+pVTWKiQ9deW6rVq6s0bVqqUlJSunwgmCTlVXacUDBJuu/r+3Tt4mubXVgDAJ1BXV2d4d913eH3D7q+xMREhYUZTK751Zw5Mbriin664IJwrV5dZVJnALobl8tlqO6vAZ25Fbm694t7NfatsUp4LEF9nuyj02edrvu/vl8fbvmwfQLBJKNr82Wz2cztA8Befv7Z2HWMgAC3RowgEBjorEJCQpSYmOhVjcez51znggtStWvXnl/slZU2TZliV0WFf8J0VuWvUnZZdrvN1yeqjzZeu1HB9uB2mxPw1X3H3aeN12xU36i+zR5X66zVGbPP0Ng3x6rOWSdpz/cw1350ran9OFwO/eOzf5g65m/ef9/4ucPkyYSdAgCAzo9QMAAAAAAAAAAAAAAAAKCTKCw0drtPQkLbhR4BHZ3L5dbSpeU6++xyJSdbdPXVMfr223C53RYtXBjT5vOPG1fW4jEhIW5NmFCu+fPLlJNj1zPPxGjEiPA2760j6WihYJL0/I/P69z558rhcvi7FQAwrLTUu3DKP4uIiDCxE8B/+vbtq4AA7xeDOp3SI4/00n33JcvptKiiwq4zzghQQQGfDQB4LyQkxOcxVuxcobSn03Tf1/dpaeZSFdUUmdCZQQYvNf015AyAuTIy7Ibq0tLqFRjIUlOgM+vRo4ciIyNbdWxdnUX33pus++5LVkPD3q/9zZuDNW1atVyu9n9YwtyMue02V0xwjDZdu4lAMHRKA3sMVPYN2br58JtlUfMPlFqatVQ9/91Tizcv1mXvX6ayujLT+5m1fpaW7Vhm6pj5+U6tXGns9dm3r0MHHsjDDgAAQOfHlRoAAAAAAAAAAAAAAACgkygoMPZE5MTE5m8IB7qiLVtqdeutpRowoEFjx0bp3XejVFm592tow4YQbdoU1KZ9pKY6NHx4TaP7Dj64Wo89VqIdO5xasCBKp58eLbu9+93W5/a4lV+Z7+82GvXuunc14d0JqnZU+7sVADDkf/+zaP78GO3YESCPl+EdMTFtH54JtAer1aq0tDRZLK0/L6qstOq66/rqrbd67rU9OztIp5/uUH19+y+QB9C5tTak469qav44n7zt09s6Tmhxg7GyuLg4c/sAsJdNm4wFYAwe3EHeWwD4JCUlpcVA5J07A3T++f313ntNn/MvWhSlBx8sM7m75nk8Hs3JmNNu85XWlWrGzzPabT6gLTx68qNad9U6JUckN3tcdUO1Tn3nVC3esrjNerlx6Y1ye8y7VjJ3br3cbmPfb596qkNWK9+NAwCAzq/73T0EAAAAAAAAAAAAAAAAdFK7dxsNBTO5EaCDqqx06vnnSzV6dJUGDw7Wo4/GKDu7+dCvRYvaPvBkwoTS3/+cnOzQ3/9eql9+qdbKlWGaPj1WPXp07yeWF9cUq8FtcEV5O1iydYlOevMkldSW+LsVAPDaSy/F6N57k/W3vw3WmDGDdOedyVq4MFr5+c0vErZYLAoODm6nLoG2Z7fb1b9//1Ydu2NHgKZN669vv41odP/y5eG6+OIKebxN2gPQraWkpBiqKyws/P3PuRW5ZrXjuyrvSwICApSQkGB+LwAkSXV1LmVlGbvGtN9+LpO7AeAPLQUif/dduKZOTdOGDSEtjnXffTFasqTC7BabtGbXGmWVZrXbfJJ0xQdX6MUfX2zXOQGzpcenK+eGHF176LWyyH9BWCt2rtCsdbNMG2/RIuP/LmeeaTetDwAAAH8iFAwAAAAAAAAAAAAAAADoBKqr3aqoMBYKlpTEbULoutxut7KzSzR1apmSkiy65poYffdduDye1i0Y+PDDKDW0cR7VmDHlmjSpXAsWlCs7266nnorR/vuHte2knUheZZ6/W2jR8tzlOuZ/x3SKXgHgN5mZtXuFY+bnB2rRohjddVeKTj55sP72t4H65z+T9OGHUSoq2nuxXGBg9w6sRNcUEhLSYijPqlWhOvfcNGVmNh+K9/bb0br//tJmjwGAP0tNTTVUl5X1RzjGKQNOMasd35V5XzJo0CBZrVyjAtrK6tU1cjqNvcYOOIDXJtBV2O129enTZ69tbrf04otxuuqqviovb11YjtNp0QUXhCg7u7Yt2tzHnIw57TLPX1354ZV64ccX/DI3YBar1apnTnlGP13+kxLC/BfCe9unt6m2wff3jPJyl77+2tjDCuLiGnT00c0/LAgAAKCz4GoNAAAAAAAAAAAAAAAA0Ans3Ok0XJuczG1C6Hqqq6u1bds2ZWRkqKIiT19/HaqqKu+D84qLA7RsWUQbdLhnIUZ0dLQOOWSg5s6N0oQJUbLbeT3+VWcJ2lpXuE4nzDhBdc46f7cCAK3y0UfNv1/t2BGkefNidfvtvXX88UM0btxA3X9/opYsiZTVGt5OXQLtKzo6Wj179mx034IF0br00n4qLW3dIvl//StGs2eXmdgdgK5sxIgRhup++umn3/9851F3KikiyaSOfFAuqdr7spEjR5reCoA/bNnikN3uNlR7yCGEZwBdSURExO/nPRUVVl1/fR89+2xCqx+k8ZvCwgBNmeKWw2HsvaW1PB6P30LBJOmqD6/S8yuf99v8gFlGJI5Q3k15uvTAS/0y/46KHXri+yd8Hmfhwjo5HMa+Sxs71iGbzbv3OgAAgI6Ku4sAAAAAAAAAAAAAAACATmDnTuOLLpKTvQ9KAjoip9OpvLw8ZWRkaNu2baqu3rMK2WqVxo0rMzzuwoXR5jT4q7CwMKWmpio9PV0pKSkKCAgwdfyuprOEgknSxt0b9epPr/q7DQBola++8u5W8ezsIM2e3UO33tpbISGxbdQV4H+9evVSePgfwXcul/T44wm6++4UOZ2tf9243RZdckmEVq6saos2AXQxo0aNMlT39ddf//7nhPAEzT5ztuzW1oUXtpntxsqOOeYYc/sAsJcjjyzTihUZmj9/ix55ZIcuuaRIRx9doV69HM3WxcQ41acPoWBAV9OrVy9VVETo7LPT9OWXkYbHWbkyTFdfXW5iZ/v6peAXbS3Z2qZztOSaxdfouRXP+bUHwAxWq1Uvj39ZKy5doeig6Haf/6FvH9Kuql0+jfHee8ZrzziDQDAAANB1+PkqMAAAAAAAAAAAAAAAAIDWyMszFgoWEOBWz56EgqHzcrvdKi0tVXFxsRyOphcxTphQppdfjjc0xxdfRKiszKboaJfRNhUYGKgePXooJiZGVivP6/RGZwoFkzpfvwC6r+XLQwzVDRpUp6QkY7VAZ9GnTx9t3bpVZWVO3XZbiuFF8lVVNp1xRqC+/75eycmEaQBo2pFHHqnw8HBVVXkXJPj555+rtLRUMTExe8bpc6QeO+kx3bD0hjbospXWe19isVg0duxY83sB8DuHw6GAAGngwHoNHFivv/3tjxCfigqrtmwJ1pYtwdq8OVhbtgRpy5ZgVVfbNGhQvWy2MD92DqCtHHJIb/XuXaOcHN/OVV59NUaHHlqqyy+PMamzvc3NmNsm43rr2o+ulUceXXvotf5uBfDZyKSRGt5ruL7a/lW7zlvlqNLdn9+tl8e/bKi+rs6tzz4LNlQbEeHS2LHGagEAADoi7jwCAAAAAAAAAAAAAAAAOgGjoWBxcS5ZrTwVGZ1PdXW1tm3bpoyMDOXn5zcbCCZJffs6dOCB1YbmcjqtWrw4yus6q9WqmJgYDRkyRIMGDVKPHj0IBDOgs4VsnTboNH+3AAAt2rChRjt3BhqqPfzwepO7AToeq9WqtLQ0PfZYouFAsN/k5gZq4kSnamuNB8wC6PoCAwMNhWI5HA7NmDFjr21/H/V3TRk2xazWvFMhaav3Zcccc4ySkpJMbwfAH1yupj+LREa6NXJkjc46q0T33JOnN9/cpuXLN2jJkk26997iduwSQHsKCLBq9uwAJSU1f229NW64IVIrVngXbtoaHo9HczLmmD6uUdd9dJ2e/uFpf7cB+OzZFc+2eyDYb15d/ap+3vWzodqPPqpTZaWxh12deGKdgoP5jg4AAHQdfLIBAAAAAAAAAAAAAAAAOoH8fGN1cXEsTEfn4XQ6tXPnTmVkZGjbtm2qrvYu5GvChDLDcy9aFN3qY8PCwpSamqr09HQlJyfLbrcbnhdSXlXnCAULtgfr2VOe1eG9D/d3KwDQoo8+qjNce9xxHhM7AToum82m//wnRMnJvi+Q//HHME2bViWXy1iYM4Du4cILLzRU9/jjj6u+/o/QTovFolfGvaIhPYeY1JkXvpNk4FLTZZddZnorAP7QUph+YywWKTm5QfvvzxJToCtLSgrSzJn1Cgz07VwlIMCjdeuKDL3fNGd90XptKt5k6pi+un7J9Xrq+6f83QZg2Obizbr909v9Nr9HHk3/eLo8Hu+vMc6fb/y65MSJhksBAAA6JK7YAAAAAAAAAAAAAAAAAJ1AQYHFUF18PIvS0bG53W7t3r1bmzdv1saNG1VaWiq329h/tyefXK6gIGO169eHasuWoCb3BwYGKjExUenp6UpNTVVYWJihebCvvMqOHQp2UOJBeuaUZ5R7Y66uOfQaf7cDAK3y9dc2Q3VWq0ennMLvOHQfvXsHa948h8LDfQ9Tzs62a8uWXBO6AtBVjR07VmlpaV7X5eTk6KGHHtprW0RQhOZNmaewgHb8vb1L0krvy1JTUzVlyhTT2wHwh8rKSsO1oaGhJnYCoCM69tgIPfBAmeH6oUNrNWtWpg49tFpZWVmGr983Zs76OaaNZaYblt6gJ5Y/4e82AK+53C5duOBC1Tpr/drHZ9s+04dbPvSqxuXyaMmSpr+na05QkFunnx5iqBYAAKCjIhQMAAAAAAAAAAAAAAAA6ASMhoIlJBh/ojLQlqqrq7Vt2zZlZGRo165dcjgcPo8ZEeHWCSdUGK5ftCh6r5+tVqtiY2M1ZMgQDRo0SD169JDVym13ZuuIoWA9Q3vqhlE36Ocrf9aqy1fp2kOvVY/QHv5uCwBaxeVy64cfjC2CGzq0TnFxgSZ3BHRso0aF66WXKmW1Gj93mjixVC+/nC2ns0IFBQUmdgegK7HZbLrjjjsM1T700ENavnz5XtvS49L1yvhXzGitZfWS5kkykAFy7733ym63m90RgD+prq42XBsZGWliJwA6qptvjtWUKWVe102YUKoZM7KUktIgSXI6ncrJyTGtr7kb5po2ltlu+vgmPb78cX+3AXjl8eWPa3nu8pYPbAc3f3yzGlwNrT7+yy/rtHu3sfOGo46qU0QE398BAICuhU83AAAAAAAAAAAAAAAAQCdQWGjsVp/ERELB0HHU1DQoNzdXGRkZ2rZtm08LFpsyYUKp4dr334+W0ymFhYUpNTVV6enpSkpKYvFyG3K5XdpVtcvfbUiSbBabTht0muZPma+dN+3UE2Of0AEJB/i7LQDw2rp1Ndq1y1iw1xFH1JncDdA5nH12tO6+u8zrOovFo+nT83XffTsVELDn3KuoqEjl5eUmdwigq7jgggs0fPhwr+scDocmTZqkzMzMvbaftd9Zuu7Q68xqr3FOSXMlFXlfOnr0aJ1//vlmdwTgL+rqjH+O57oX0H289lq49tuvplXH2u1u3X33Tt1//04FB+/9PVNVVZWKigx8MPiLjKIMZRRl+DxOW5r+8XT9Z9l//N0G0CoZRRm6+4u7/d3G7zYVb9KLq15s9fHz5hlIIP7VxIl8Hw4AALoeQsEAAAAAAAAAAAAAAACATqCw0Gaorlcvi8mdAN5xOt1auLBckyaVKynJouzsSrndxm/sb8moUdVKSGj9k8clKTzcpalTy/TWW7Xaf/90paamKiwsrI06xJ8VVhfK7Wm7/x5aY2jPofr3if9W7k25ev/s93X60NMVaDMWpgMAHcGSJQ7Dtccdx2dHdF933x2lqVPLWn18aKhLTz+dowsvLJblLy+dHTt2+BTOAaDrstlseuGFF2SzeX+dJz8/X8cee6zWrVu31/bHTn5Mh6UcZlaLe6uX9K6kLd6XRkRE6LXXXpPlr2+SAEzndDoN1REIBnQvYWF2zZkjRUc3/56RkNCgN97YpilTSvc51/lNQUGBzw/9mJsx16f69nLzJzfr0e8e9XcbQLOcbqcuWHCB6l31/m5lL//88p8qrW35YT5ut0cffhhgaA6bzaMzzwwyVAsAANCREQoGAAAAAAAAAAAAAAAAdHAul0fFxcYWaCUlsfAS/rF2bbWuv75U/fo5NXFilObPj1J5uV2LF0e16bw2mzR+fMsLDCwWj0aPrtJzz5UqL8+jd9+N1tixkbLZuK2uPeVV5vll3qigKF0x8gp9f8n3Wn/1et1y5C3qFd7LL70AgNm++cbY50abzaOTTw41uRug87DZrHrjjUiNGtXywvbERIdmzMjSscdWNnlMVlaW4YAOAF3bYYcdpnvuucdQbW5urg4//HC99dZbv28LtAVqzuQ56hna06wW98iX9LKkrd6XWiwWvfLKKxo4cKC5PQHYh9vtNhzAHxREgAbQ3QwZEqqXX66S1eppdP+hh1Zp1qytOuCA2hbHys7O9umcZ07GHMO17e3WT2/VE8uf8HcbQJMe+fYR/Zj3o7/b2EdxbbH+7+v/a/G4n35yKCfH2MNaDj20TgkJBJ0CAICuh7uXAAAAAAAAAAAAAAAAgA6usNAlp9NYuFdSErcIof0UFzv0n/+U6JBDqnXAAWF6+ukY7dy59038CxfGtHkf48aVNbmvX7963XprqTZtqtM334Tr6qtjFBHBYgF/ac9QMIssOrH/iZp5xkzlT8/XC6e9oFEpo2SxEJ4IoOtwudz64YcQQ7X77VerHj2MLb4DuoqgIKvee8+uvn3rmzxm+PAavf12pgYPbvoYaU9AR2ZmpuGQDgBd21133aXJkycbqq2qqtK0adM0duxYrVmzRpKUEpmidye9K6vFhOtAVZKWSHpJ0m5jQzz33HOaMmWK770AaFFtbcvBPU0JCTF27gCgczvzzGjdfHPZPtsvuqhIL76YrR49XK0ax+PxaNu2bYZ62Lh7o9YVrjNU6y+3fXqbNu3e5O82gH38vOtn/eurf/m7jSY9s+IZbS1pPml4zpwGw+OPH891FwAA0DVxxx8AAAAAAAAAAAAAAADQwe3c2boFGI1JTuYWIbQtp9Ot+fPLNHFiuXr3tuvmm2P1449hTR6fkRGizZuD2rSn1FSHhg+v+f3niAiXpk4t05Il5dq6NUCPPBKjgQNZ9NgRtFcoWFpMmrJvyNYn0z7ROfufo5AA/v8H0DVVVVXrgQdydemlRTrggBrZbJ5W1x5xRPMBR0B3kZgYpPnzGxQRse952KmnlunVV7epZ8/WnaM1NDRo+/btZrcIoAuwWq2aOXOmxo8fb3iMpUuX6sADD9TYsWM1e/ZsHd7rcN1/3P3GBnNL2i5poaQnJX0vqfUfI/by1FNP6aqrrjJWDMBrlZWVhmvDwpq+hgega3vwwSidcMKe94/QUJcefzxHN91UILuXz8+or69Xbm6u1/PPy5jndY2/Nbgb9N2O7/zdBrAXh8uhCxZcoAa38VCtttbgbtBtn97W7DHvvx9gePzJk43XAgAAdGQ83hAAAAAAAAAAAAAAAADo4HJzfQkF4xYhtI0NG6r0/PMNmjcvTPn50V7VLloUo5tv3tU2jf3qjDNKFRHh1rnnNujccyMUERHdpvPBmPYKBcspz1FKREq7zAUA/lReXqojjqjWEUdUS5Kqqqz66adQrVwZphUrwrVhQ7A8Hkujtccf3/h2oDs66KBwvfZamc46K0ou157XxnXXFeiyy4pk8fKlUl1drfz8fCUmJrZBpwA6s4CAAM2ePVsTJkzQ0qVLDY+zdOlSLV26VEFBQTryyCM1IHyAtgZslWIkRUgK1p4VZBZJTkkOSZWSKiQVSsqTlC2p1rd/H1mlk64+SX//+999HAiAN2prjb94CQUDui+bzap33gnS1KkVuuGGXerf32F4rLKyMoWHhys6OrrVNXMy5hiez58SwhL83QKwl//7+v/0c8HP/m6jRfM3zNdX2V/pmH7H7LNv0yaHNmww9jCh/fevU1pasK/tAQAAdEjc8QcAAAAAAAAAAAAAAAB0cPn5HkN10dFOBQdzixDM43A4VFBQoMrKSn33XYiefTbV0DgffBClG27YJXsb/OdpsVgUFhamW26J1T33hJg/AUxldijY6N6jtTx3uVyevcMUG9wNenHVi7rqkKtMnQ8AOpqampq9fg4Pd+voo6t09NFVkgpUXm7VqlVhv4aEhWnz5j2/K+12t04+OdwPHQMd15lnRuu++0p0//3RevDBXJ10UoXhsYqLixUSEuLVInkA3UNQUJAWLlyoW2+9VU8//bRPY9XX1+vzzz83qTMv9ZA0Sbr9ptv9Mz/QjdXX1xuqs1gsslqtJncDoDOJiwvUe+/VascO44Fgv8nNzVVISIiCgloO9tlSvKVThBj91Zi0MfrbwL/5uw3gd6vyVunBbx70dxutdtPHN2nlZStltez9+WPOHIekQENjnnaa04TOAAAAOibu+AMAAAAAAAAAAAAAAAA6uLw8Y6FgcXEucYsQfOV2u1VcXKySkhI1NDT8vv3QQ6vVq5dDu3Z5f6N+cXGAli0L/zWgxBxBQUHq0aOHoqOjWdDYieRV+R4KlhyRrAuGX6ALR1yogT0G6uQ3T9YnWZ/sc9yTPzxJKBiALs3tdsvpbH4hXFSUW8cfX6njj6+UJJWW2vTjj2HKzw9UZGSv9mgT6FTuuCNWRx2VrZgY3z+35ubmKigoSCEhBNcC2FtQUJCeeuopjRkzRhdddJEKCwv93ZJ3DpI0VgoNC9WRvY/0dzdAt9PSOUBTAgICTO4EQGcUFRWlmpoaFRcX+zxWVlaWBg8e3OL1+bkZc32eq71YZNGx/Y7V+cPP1/nDz5fFYvF3S4Akqd5ZrwsWXLDPA1I6sp/yf9Jbv7yl84efv9f2RYtshsecMoXPMwAAoOvijj8AAAAAAAAAAAAAAACggysoMFYXH+82txF0K5WVlSoqKlJNTU2j+202ady4Mr38cryh8RcsiPE5FMxmsyk6OlpxcXGy27kdrjPKqzQWChZoC9TEIRN10YiLdFL/k2Sz/rFo5IHjH2g0FGxz8WYVVhUqPtzYf7MA0NFVVlZ6XRMT49JJJ1UoNDS0DToCuoYjj+yjTZs2yeXyfaHtb4vk+ewKoDF/+9vf9Msvv+i2227TzJkzDQf9tAuLpHRJx0j69RTr2H7HKsge5MemgO7Hl/eJ4OBgEzsB0JklJiaqurpadXV1Po3jcrmUnZ2t/v37N3vc3A0dOxTMIouO6nuUpqRP0aT0SeoVTog6Op57v7xX64vW+7sNr/3js39o0tBJCgsMkyTl5Tn144/GPpOkpjo0YgTnHwAAoOvicYgAAAAAAAAAAAAAAABAB7drl7HbfAgFg7ccDod27NihjIwMbd++vclAsN+MH19meK4vv4xQebn3T/+2WCwKDw9XWlqahg4dqsTEREIVOjFvQ8FGJo7Us6c8q/zp+Zp15iyNHTB2r0AwSTok+RD1COnRaP1dX9xluFcA6OjKy8sN10ZERJjYCdC1WK1WpaWlyWKx+DyWx+PR1q1b5XZzrgagcQkJCfrf//6njRs36uKLL+5457tBkkZIulrSZP0eCCZJY9LG+KUloDurqjIeuB8SEmJiJwA6u/79+8tq9X3JeU1NjQqaedJNVmmWfsr/yed52sLoPqP19NinlXtTrr668Ctdc+g1BIKhQ/o+93s9uuxRf7dhSF5lnh5b9tjvP8+ZUy+Px9j1llNPdZjVFgAAQIdEKBgAAAAAAAAAAAAAAADQwRUWGrsZuhdrFdAKbrdbRUVF2rRpkzZv3qzy8vJWhxT06+fQiBHVhuZtaLDqo4+iWn18UFCQkpOTNXToUPXr14+Fi12Ex+Np8Zi40DjdeNiN+uXKX/Tj5T/qmkOvUWxIbLM15+5/bqPb52TMMdQnAHQGLYV5NicmJsbEToCuJzAwUH379jVlLKfTqezsbFPGAtB1paWl6dVXX9XWrVt1//3366CDDvJfM2GSRko6V9ItkiZKitv3MELBgPbnSyhYZGSkiZ0A6OysVqtSU1NNGauoqEiVlZWN7pubMdeUOcxyeMrhemLME9px4w59c9E3um7UdUqKSPJ3W0Czpn88XW5P5w0b//eyf2tnxU5J0sKFxgPYJ0/uYAHKAAAAJiMUDAAAAAAAAAAAAAAAAOjgCgtthuoSE1sO20H3VVlZqczMTGVkZKigoEANDQ2GxpkwocxwDwsXRje732azqUePHhoyZIgGDhyomJgYWa3c9taVHJZyWKPbbRabxg8er/emvqfcm3L1+JjHtX/C/q0e91/H/UsW7buYpKyuTF9mf2m0XQDosNxut5xOp6Faq9Uqu51FdEBLwsPDlZiYaMpYNTU1ysvLM2UsAF1b3759ddddd2nVqlXKzMzUWWed1f5NeCTVSaqU5Gj8kD5RfTSox6B2bAqAJNXV1RmuDQoKMrETAF1BSEiIaec8OTk5jV6n6AgPbRiVPEr/Ofk/2n7Ddi27ZJluOOwGpUSm+LstoFVKaku0bMcyf7fhk5qGGt35+Z0qLXXp22+DDY2RkNCgI4/kswwAAOja+PYWAAAAAAAAAAAAAAAA6OCKioyFgvXqZfzpyuiaHA6HCgoKVFlZKbfbnKeIjxlTrocfTlR9vfdhXevWhWrr1iANGFD/+zaLxaLw8HDFx8crJCTElB7Rcb1w2gvKfitbawvXSpKGxQ3TRSMu0nkHnKeE8ATD40YHR2tY3DCtK1q3z757vrhHX1/0teGxAaAjqqioMFzL71ug9Xr06KHa2lqVlZX5PFZJSYmCg4MVGxvre2MAuqy6ujotXrxYs2bN0ieffKLS0tL2b6JG0vpf//lAUpqkAyUNkfTrpYAxaWNksXAdCmhvDkcTSX0tsNmMXW8G0PX16NFD1dXVPl1nkCSPx6PMzEwNHDjw9wd9ZJdl68e8H81o02sHJx2sKelTNHnYZPWL7ueXHgAzRAVFKcQeolpnrb9b8ckbP7+hvgWXqaHhSEP1p5zikM0WYHJXAAAAHQuhYAAAAAAAAAAAAAAAAEAHVlXlVlWVsUVaycnehzSh63G73dq9e7dKS0vV0NBg+vgREW6dcEKFFi+ONlS/aFG0brqpQEFBQYqLi1NkZOTvi4TQ9SVFJOnnK3/Wht0bFBkUqeSIZNMWkt9y5C26YMEF+2xftmOZnG6n7FZuoQTQdZSXlxuujYyMNLEToOtLSUlRfX29amt9X4Cbl5enoKAghYWFmdAZgK4kMzNTzzzzjF5//XWfQzlM5Za05dd/oiUdLulg6eR3Vkip66T99vNnd0C3YzT0PzAw0OROAHQlKSkp2rJli8/fJzQ0NCg3N1d9+vSRJM3NmGtGe612UOJBvweB9Y/p365zA23FZrXpwRMe1I1Lb/R3Kz57bss/JH0lyfvvhCZN4ntEAADQ9fGJBwAAAAAAAAAAAAAAAOjAcnOdhmuTkrg9qDtbubJKV1xRqnPOKVVhYWGbBIL9ZsKEMq9rbDaPjjuuUieeaNPQoUM1cOBARUdHEwjWDVksFqXHpSslMsW0QDBJOm//8xRkC9pnu8vj0uPLHzdtHgDoCGpqagzXRkdHm9cI0E2kpqbKbjcnYDQ7O7tNP6sD6Fy2bdumadOmadCgQXrqqac6ViDYX5VJ+kjSs1L13J+l/feXoqOlf//bv30B3URdXZ3h2uDgYBM7AdDVWK1WpaWlmXKttqKiQiUlJZLaJxRseMJwPXD8A9p87WatunyVbht9G4Fg6HKuH3W9vrzgS1058kqdkHqC+sf0l81i7AFT/lQc8Y00ZIHXdZGRLp18Mp9lAABA12fxeDwefzcBAAAAAAAAAAAAAAAAoHGffVarE08MMVS7e7dLPXp0vpvAYVxBgUOvvlqlWbOC9csvoZIku92tL77YpOhoV5vN63JJJ588WIWFAS0eO2hQnaZMqdGll4aqb19u2kfbmvDOBC3avGif7X2j+ir7huz2bwhowZo1a3TggQe2+vjVq1drxIgRbdcQOgW3262MjAxDtTbbnnBOAN5raGjQ5s2bZcaSDLvdrkGDBhGQC3Rj9fX1euCBB/TII4/I4XD4ux1DzpD0X0nxkmS1SjffLD3yiH+bArqwoqIiFRQUGKpNSUkhHBhAiyorK7V9+3afx6mutsodYdcRcwab0NW+9ovfT1PSp2jKsCka3LNt5gA6OqfbqdyKXGWVZimrNEvbSrcpq+zX/y3NUlFNkb9bbJwjVPp3keQMbXXJmWdWa86csDZsCgAAoGMw59E0AAAAAAAAAAAAAAAAANrEzp1uQ3WBgW7FxLCgvDtwONyaN69CM2ZY9fnn4XI4Yvfa73RatXhxlM45p6TNerDZpPHjy/TKK3GN7o+JcWr8+CpdcolNo0eHy2IhDAzt48ETHmw0FGx7+XZtL9uuvtF9/dAVAJirrKzMcG1IiLHwWQBSQECA+vXrp23btvk81k8/BejVV0v16KM9TOgMQGezdu1aTZ06VRs2bDB9bLvdrrCwMIWEhMhut6u2tlZV1VWqr6s3fa75kr6XNFfS4W639O9/S2+8Ia1ZI/XqZfp8QHdXWVljuDY8PNzETgB0VREREerZs6d2795teIysrEDdeGMfOUY+JQ0zr7ehPYdq6rCpmjxsstLj0s0bGOik7Fa7+kX3U7/ofjo+9fh99lc5qrStdJu2lW1rNDSs1lnrh64lBdZIN/SVXv9WKm5dqN/pp1vauCkAAICOgVAwAAAAAAAAAAAAAAAAoAPbtctjqC4uzimrNdDkbtCRrFhRpVdeadCCBeEqKopu9tiFC2PaNBRMksaPL90rFMxu9+iYY6p03nlOTZ0aqZCQ5nsE2sKw+GHqFd5Lu6p27bPvjs/u0MxJM/3QFQCYq6KiwnBtZGSkiZ0A3U9YWJiSkpKUl5dneIyPPorSXXcly+GwKimpRDfeGNtyEYAu45133tGll16qmhrj4T6/SUlJ0UknnaSDDz5YI0aMUN++fZWYmCir9S+h8S6XHh2XpFtTC6XdkvIl5UjaIclYNv3v8iQdI2mGpLMkqaBASkyUbr9deugh3wYHsJdbbonWd98ladCgOg0aVKeBA/f8b79+9QoIaLrOYrHIbmdZKYDW6dWrl2pqagx9Vvnkk0jddVeyamps0mkv+tzLoB6DNHXYVE0dNlXD4k1MGAO6gfDAcO2fsL/2T9h/n30ej0eF1YV7wsIaCQ3bUbFDbo+PJwrNNrdbunKE9NmD0g/XS56mH3oVHOzW+PE8eAgAAHQPXL0BAAAAAAAAAAAAAAAAOrD8fGN1cXFteHM2/CY/v16vvlqtWbOCtW5deKvrMjJCtGVLkAYOrG+z3lJTHRo+vEYOh0WTJ9fq0ktD1bt3RJvNB7TWRSMu0kPf7rv4fOGmhX7oBgDMV1tba7g2OjravEaAbio2NlZ1dXUqKfEuhNftlv7733i98EL879tuvTVagwaV69RTo8xuE0AH9Pjjj+vmm2+Wx2MsEF7a87t82rRpuvjiizVixIiWC2prpfh43VxVpdWTpHf2l5T+6746SRsk/Shpp+GW1CDpXEnVki75bePDD0sbN0rvvWd8YAB72bgxUAUFASooCNA33/xxDc5ud6t//3oNHFi/V1hYfLxTFosIBAPgtX79+mnTpk1yuVytOt7plJ5+OkGvv/7rQ0SGvSPFbjM094DYAZo6bKqmDJui/eP3l8ViMTQOgKZZLBYlhCcoITxBh/c+fJ/9DpdDO8p37B0a9qfwsOLaYt+bCKiTxt4kDX1PWvC6VJrW6GHHHFOn8PBQ3+cDAADoBCweX64cAwAAAAAAAAAAAAAAAGhTZ59drXffDfO6bsyYGi1Zwk3RXYHb7VZRUZFKS0t1yy299MEH0YbGufDCIk2fXmBuc38SHByswMCe6tMnus3mAIyocdQo/KFwebTv7ZLvn/W+Tht8mh+6Ahq3Zs0aHXjgga0+fvXq1a0Lf0CX5Xa7lZGRYajWZrNp6NChJncEdF9ZWVmqqalp1bG1tRbdfXeKli7dN/wrJsapb75xaNgwzueAruyRRx7R7bffbrg+IiJC06dP1/Tp0xUe3srQ8NpaKTZWqquTJFUFSqMulTLiGzl2u6RPJe0w3KKskuZIOuPPG08+WVq61PigACRJDQ1uRURI9fXWVtdERjo1cGC9/v73Sp1/fq827A5AV1RfX68tW7a0eFxxsU233tpbK1b8+vmk9zLpguMku6PVc/WP6a8p6VM0db+pGp4wnCAwoIOrqK/QttJtTYaG1bu8fGCRI0z63xdS3iH77Prvf6t15ZXef28OAADQGRHrDgAAAAAAAAAAAAAAAHRgBQXGFjskJPCswM6uvLxcu3fvVm1t7e/bxo0rNRwK9v770br++gLZTbxrzG63Kzo6WvHx8bJaW78IEWhPoYGhOijxIK3KX7XPvvu+vo9QMACdWllZmeHa0FAChwAz9evXT5s3b5bT6Wz2uMJCu66/vo/WrWv8NVhaatfEiU4tX+5Qz56BbdEqAD+bMWOGT4FgJ510kl577TWlpKS0vsjlkhISfg8Ek6RwhzRvtnTIZVJV0F+O7yvpEkmrJC2V1Pocj9+5JZ0r6RtJB/+28eOPpbPOkt591/sBAfxu7doa1de3MhDwVxUVdq1aZZfVauAFDaDbCwoKUkpKinJzc5s85pdfQnTTTX1UUBCwZ0PKcum8sa0KBOsX3U9T0qdoyrApOijxIILAgE4kMihSw3sN1/Bew/fZ5/a4tatq1++hYZklmfq/he/KFb1ZsjTxXXZgtTTpXOmZzXttttk8mjTprycuAAAAXRd3YQEAAAAAAAAAAAAAAAAdWGGhsVt8EhMJBeuM6uvrlZOTo/Xr12vHjh17BYJJ0qhR1UpIaDA0dnFxgJYt826xYGMsFosiIyM1YMAADRkyRL169SIQDB3enUfd2ej2VfmrVOesa3QfAHQG5eXlhmujoqJM7ASA1WrVgAEDml28npERrLPPTmsyEOw3W7cGa9Ikhxoa3Ga3CcDPVq1apcsuu8xw/b333qulS5d6FwgmSQcdJFVW7rN5yG7ptYXN1I2UdLmkWO+m+02dpKmSKv68cdYsac4cYwMCkCT9+KOx64OSdMghhGkAMCY6OlrR0dH7bPd4pNmzY3TBBal/BIL1+0y64AQpaN/PH79JDE/U9MOn64dLf1DW37P0yEmPaGTSSALBgC7EarEqKSJJR/Y5UtOGT9PYkNvlemqj9MR2aevJTRf22CIF7v3+MWpUneLiTHzyEQAAQAfHnVgAAAAAAAAAAAAAAABAB1ZYaDNU16sXiyY6C7fbrV27dmnjxo3asmWLKioq5PE0Hupms0njx5canmvBghjDtcHBwerdu7eGDRumPn36KDg42PBYQHs7fejpCg3YN3zD7XHrwW8e9ENHAGCOvwaIeiMyMtLETgBIkt1uV2pqaqP7Pv00Uhde2F+FhQGtGuvrr8N1xRUVLR8IoNOorKzUlClT5HA4vK61WCx65ZVX9M9//tP7oIwZM6Rffmly9+QM6cblzdT3lHSppF7eTfubLEk3/nXjOedILpexAQFo7VpjdRERLg0YwDU9AMalpKQoMDDw95/r6iy6665k3X9/spzOX5esD3pfuuAkKaCJaxb14dLMRZpW9IseO/kxHZp8KEFgQDcxZ45zzx8qektvLZHef0FyhO17YNFQybH3g44mTOD8AQAAdC+EggEAAAAAAAAAAAAAAAAdlNPpUUmJsSceJyWxgKKjKy8v19atW5WRkaHdu3fL6XS2qm7cuDLDc375ZYTKy1sfNGe32xUXF6f09HQNGDBAUVFRhucG/G3coHGNbn919avt3AkAmMPpdMrtdhuqtdvtslq5lRxoC6GhoUpOTv79Z49HevnlON14Yx/V1nr3unv99Wg98kiJ2S0C8JO7775bWVlZhmqfeOIJXXLJJd4XulzSxRe3eNgjn0hH5jRzQKik8yTFet+CJL0u6bs/b3A6pVGjjA0GQBs2GLtmPGhQnWw2zgMA+KZ///6yWCzKzQ3QtGn9tWjRnx5GEp4vTZ4iWRp/8InyR0hPbpe2jNNjj/bQvHll7dEygA7iww//HJRukVZdIT2/Vso64Y/NtTHSBy/s2f8nU6YEtUuPAAAAHQVXcAAAAAAAAAAAAAAAAIAOqrDQJZfLWLhXUhK3BnVEdXV1ysnJ0fr167Vjxw7V1dV5PUZqqkPDh9cYmr+hwaqPPmo+2MtisSgyMlIDBw7UkCFDlJCQQGgIuoSHTnio0e15lXnatHtTO3cDAL4rKyszXBsSEmJeIwD2ERMTox49eqi+3qI77kjR008nGB7rrrti9N57ZeY1B8Av1q5dq2effdZQ7QUXXKDrr7/e2MSHHLInGKwFAW5p9hwpvqqZg8IlTZVkIIvII2n6XzeuWiUtWuT9YAC0aZOxUIzBgxtM7gRAd2S329W7dz9ddVU/bdz4p+sL9lrp7AlSQBPfe+SPkGZ8KtXuSRl1uy267LJwbdpk7PsOAJ1LRkZ9459hylL3vDc8u0Ga8Yn0VKa0/ei9Dhk+vE79+gXsWwsAANCFcacWAAAAAAAAAAAAAAAA0EHt2OE0XJucbDOxE/jC7XZr165d2rhxo7Zu3aqKigp5PB6fxpwwodRw7cKF0Y1uDwkJUe/evTVs2DD16dNHQUE8cRtdS2pMqvpE9Wl03z8++0c7dwMAvquoqDBcGx0dbV4jABqVmJioTz6J1wcfRPs0jtNp0YUXhmv16uaSegB0dP/85z/lakU411/169dPzz33nLFJHQ5p9epWH55UKc2aK1ndzRyUIOlkY+38IOnjv2688kpjgwHdWHGxQ7m5gYZq99uvuRc4ALReZGSYHnusVlbrb991eKQJF0vJKxsvqEz8NRCsx16bS0vtmjxZqq42/n0YgM5hzpwWXue7h0hZJ0p1MfvsGjeO9wgAAND9EAoGAAAAAAAAAAAAAAAAdFB5ecYXaSUn203sBEaUlZVp69atysjI0O7du+V0mnfD+pgx5QoKMvbfx7p1ocrM3BP4ZbfbFR8fr/T0dKWlpSkqKsq0HoGO6MqRjS84/2jrR+3cCQD4rqys3nBtRESEiZ0AaMott/TQqacaD/D7TUWFXWecEaCCAocJXQFobxkZGXrvvfcM1T722GMKCwszNvG553pdcmy29NBnLRx0sBS27zr9Vnnyrxvy86WiImODAd3Ujz/WGq498ECuGQMwz6RJ0br55rI9P0y8QNr/3cYPdIRKr367TyDYb9auDdWVV1a2TZMAOoxFi4w/0GrKFGOBqAAAAJ0ZoWAAAAAAAAAAAAAAAABAB5WX52n5oEbExDgVGGgxuRu0Rk5One65p0RvvLFNubm5qqura5N5IiPdOv54Y+EC++9fI7c7QgMHDtSQIUMUHx8vq5VbydA9TD98umyWfRee1Dnr9M7ad/zQEQAYU1Hh1JFHDtbZZ/fX448n6Ntvw1VT07rf53a7nd/9QDux2ax6551QHXBAjc9jhYS4tXFjttxu4+HRAPzj5Zdflsfj/TWegw46SJMmTTI+8cKFhspu+U6asLGZA6zSpARjLS2VlPvXjVOnGhsM6KZWr3YZrj344GATOwHQ3bncLh12wZcKur23NOLNxg+qD5deWiWV9W9ynN696zVx4m7l5u7zKQFAF7FjR4NWrw4yVJuWVq/99ycUDAAAdD98mwsAAAAAAAAAAAAAAAB0ULt2GQsFi483vjAM3qutdem110p1wgmVSksL0v33x2rmzNg2n3fChLJWHxsX16DLLy/VihVV+uWXUJ1+ei8FBRm7+R7ozALtgTos5bBG9z383cPt3A0AGPfxx1Wqq7Nq3bpQvf56nK66qp+OPHKopk1L1dNPx+v778NUV9d4SGxoaGg7dwt0bxERdi1YYFGvXg7DY5x0UrneeCNLPXo4lJmZaWJ3ANqay+XSW2+9Zaj2xhtvND7x229LDQ2GSi2S/rdASitp+pi/l0oDDIztljTnrxu/+srASED3tW6dsSWhyckO9exJoAYA31XWV+qp75/SoGcH6Yw5Z6g+uIkwL7dNmj1P2j2kybGOPbZC776bqcGD61VWVqaysrK2aRqAX82Z45DHY+yBVqedZuy8BgAAoLOz+7sBAAAAAAAAAAAAAAAAAI3Lzzd2c3RcnNvkTvBXLpdb335brddec2nRonCVlcXstf+LLyJUVmZTdHTbBbQddliV4uMbVFgY0Oj+wEC3TjyxStOmuXXGGZEKDIxp9Digu/nXsf/SiW+euM/2tQVrVVFXocjgSD90BQDe+fzzfcNjnU6L1qwJ05o1YXr5ZSkgwK0DDqjVoYdW65BDqjR8eK0CAz2Kjo5u/4aBbi41NUSzZ1dozBibamttXtVefnmhrrmmUNZf8z/q6+uVk5OjPn36tEGnAMy2bNky7d692+u6sLAwTZo0yfjEzz9vvFZSdJ00b5Y04krtSQn7i+Qq6TxJ/zQw9keS9oo7c7ulnByJ9zWgVTZtavxaYEsGDaqXRCgYAOO2lW7TMyue0aurX1VFfUXLBUuekDJPbnSXxeLRtdcW6tJLi34/15Gk3NxchYSE8FAToItZuNBYqKkknXkmcRgAAKB7Mv4JCgAAAAAAAAAAAAAAAECbKigwVterF6FgbWX79jrdfXeJhg516NhjIzRjRrTKyva9Gd3ptGrx4qg27cVmk8aNK9tn+/DhNXrwwRLl5Dj14YeROuusaAUGcqsY8JsT+p+gyKB9g7888uhfX/3LDx0BgPeWL295cWxDg1WrVoXpv/+N18UX99cRRwzVbbelKDw8vB06BPBXRx0Vqeefr5DFsm+oX2MCA9166KEduu66wr0WyUtSRUWFCgsL26BLAGZbsmSJobqxY8cqJCTE+MQbNhiv/dXwAunwHY3v+7mXdIbBcb+R1PDXjc89Z3A0oHtxudzautVYUM7QoU6TuwHQHXg8Hn2z/RtNmj1JA54ZoCe+f6J1gWClfaUV1za6KyrKqRde2K7LLy/a51xHkrKysuR28z0X0FWUlLi0bJmxzy+JiQ064ghCAgEAQPfEnV4AAAAAAAAAAAAAAABAB1VQYOz2noSE1i0yR+tUVzv1yiulOu64SqWlBen//i9WW7YEt1i3aFF0m/c2fnypJCk+vkFXXFGqH3+s1po1ofrHP2KVkBDY5vMDndWkoZMa3f7mL2+2cycA4L3S0gatW+d9SEh9vVWSVdbGVtwCaBcXXhijW28tbfG42FinXn11m047rbzJYwoLC1VR0YrF+AD86vvvvzdUd/zxx/s2cVmZb/W/mr688e2rkqT9JfU0MGadpPV/3bh0qYGRgO6nvr5OH3+8Se+8k6n77svVeeft1qhRVYqJaTnwa//926FBAF2Gw+XQmz+/qYNfPlhH/+9ozd8wX26PF0FdHz0pybLP5vT0Ws2alakjjqhqstTlcik7O9vrngF0TPPm1cnpNHY98pRT6mW17vteAgAA0B3s+4hKAAAAAAAAAAAAAAAAAB1CUZHNUF2vXiY30g253W5VVFQoP79Ixx3XTwUFMV6PsX59qLZsCdLAgfVt0OEegwd79MEHJTr55GgFBHjfI9BdPXjCg3p9zev7bC+qKdKqvFUamTTSD10BQOssXVotpzPaUO1RR7UcFgCgbT3wQLQ2by7Xe+9FNbp/4MA6PfvsdiUlNbQ4Vk5OjgYOHKigoCCz2wRgktWrVxuqGzVqlPFJq6oktxehHc0Ymd/49h8T9/zvoZIWGxj3Z0kj/rwhK6vJY93OejVU5ctRXydJCgwKVWBEL1lshKGj+6mqqlJIiEf77Ver/far/X27xyMVF9u1eXOwtmwJ0ubNwdq8OViZmUFqaNgTwjFyZIC/2gbQiRRVF+nFVS/quZXPaVfVLmODeCxSzrH7bD799FLdeWeegoJafrBNTU2NCgoKlJCQYKwHAB3GggXGQ70mTTL2XTkAAEBXQCgYAAAAAAAAAAAAAAAA0EEVFhq70TkxkScmG1VbW6vCwkJVVVXJ49mzMGXkyGotXhxtaLxFi6I1fXqBiR1KVqtVERERSkhIUGBgoAYPNnV4oFvoFd5LA2IHaGvJ1n323fn5nVpy3hI/dAUArfPFFy0vnm3KmDGEZwD+ZrNZ9eabYTr66Br99FPoXvuOPbZCDz+cq7Cw1of5ZGZmavDgwbLZWCgLdDSFhYUqLS01VDt06FDjE3/9tfHav+hbJkXVSuUhe29fOER6fYQ0+GdpsYGPJtl/3VBTs9ePHrdb1bu3qLjapsrqur8cXCGpQpHhweoR6lZozwGyWK1e9+B0O+VwOeRyuxQRFOF1PeAPNX95rfzGYpF69nSqZ88qHXFE1e/bGxqknJw9IWHDhye3V5sAOqG1BWv11A9P6a1f3lK9y7cHnQyJ3U/FEWEq+vVXeECAW3fcka8zz/Tuc1FRUZFCQ0MVEcHvaaCzqqlx64svgg3VRkc7ddJJxmoBAAC6AkLBAAAAAAAAAAAAAAAAgA6ovNylmhpji7qTk71fCNmdOZ1OFRUVqaysTC6Xa5/9EyaUGg4F++CDaF1/fYHsJtypFRoaqri4OBbAACb5+6F/19+X/H2f7Z9v+1xut1tWA4vKAaA9LFsWZKguIaFBBxwQ2vKBANpcWJhdCxY4dfjhDu3cuSes76KLinT99QXyNtvL7XYrMzNTAwYM4PML0MHs2LHDUF1cXJxCQ334nb17t/Hav7D8+s9fua3SxROlqBhJX3g/7s/B0ooeksO255/6ALccGxeq3lWvmsp85ZdVq6a+Vg63Qw3uBjW4G/b6859/dltcstndclqsqnfVy+FyqN756//++nNj29yePwIYe0f21n3H3acLR1xo7C8KaCf19d4F9QQESGlp9RowwKHAwN5t1BWAzsrtceujLR/pyR+e1KdZn5o27vFpR+m0N2o0fnykevZs0BNP7NB++9UaGisnJ0eDBw+W3YwvWQC0uw8+qFNtrbFzm5NOqldAQJjJHQEAAHQenAUBAAAAAAAAAAAAAAAAHdDOnU5JRkPBjNV1J263W2VlZSouLm5xMd2oUdVKSGhQQUGA1/Ps3h2gZcvCdfTRVYb6DAgIUGxsrHr06MECf8Bk1xxyjW76+CY53c69tje4G/TyTy/rioOv8FNnANC0oiKHMjJCDNUedliNbLYokzsCYFTv3sGaN69KY8daddNNu3T66WWGx3I4HNqxY4f69u1rXoMAfLZr1y5Ddb169fJtYi9Dg5ozY7hU1sxHj/KexsZ9r5/03ll/3uKRZk00NpgJdlTs0EULL9KA2AEa3We03/oAWuJ0Ols+qBGE6QD4sypHld5Y84ae+uEpbSnZYvr4o/uM1in7R+m//y3SoEG7FRu778NYWsvj8SgzM1MDBw7kOxKgE5o/32O49owzGosnBgAA6D44AwIAAAAAAAAAAAAAAAA6oJ073YZrU1IIBWtKbW2tsrOztWHDBuXl5bUYCCZJNps0fnyp4TkXLozx6nir1aqoqCgNGjRIgwcPVlxcHItdgDZgtVp1TN9jGt33xPdPtHM3ANA6S5ZUy+02tiDuqKOML8IF0DZGjQrXqlWlPgWC/aayslIFBQW+NwXANDU1NYbqQkKMBYD+Ljrat/pfbeohXX1qCwd5n5++h7Fcoza3aNMif7cANMnlcsnjMRasERwcbHI3ADqjnPIc3frJrer9RG9d+9G1bRIIJun3gM2LL+6hhATfv9toaGhQbm6uz+MAaF8NDR59/HGQodqQELfGjePzCwAA6N64UwwAAAAAAAAAAAAAAADogPLyjIWCBQe7FRXFbUF/5nQ6lZ+frw0bNigzM1NVVVVeL6AbN67M8PxffBGh8vKWg9pCQ0PVt29fpaenq3fv3goMDDQ8J4DWeeD4Bxrdvql4kwqrCtu5GwBo2RdfGAsEk6RTTmEhHdAR9e8fp4iICFPGKioqUnl5uSljAfBdXV2dobqgIGML53/Xv79v9ZLqbdIp50rVLV2asBucoINmlSZFJPm7BaBJVVVVhmtDQ0NN7ARAZ+LxeLR8x3JNnTtV/Z/qr0eXPaqyurI2m69PVB/1juotac9DGdLS0mSxGL+W8ZuKigqVlJT4PA6A9vPZZ7UqLTV2wnDssXUKC+P7bgAA0L3xaQgAAAAAAAAAAAAAAADogPLzjdX17OmU1er7AovOzu12q6SkRFu2bNHGjRtVXFwsl8v4itPUVIeGD68xVNvQYNWSJVGN7gsICFBCQoLS09PVv39/08IAALTOqJRRig2JbXTfPV/c087dAEDLli83FhKSnOxQejpBAEBHZWYo8I4dOwwHEQEwl91ubAF8fX29bxOPHOlT+fIUqdfN0rbGT5UU0vCnH5wGJzEaJtaGbBabTh9yur/bAJpUXV1tuDY8PNzETgB0Bg2uBr2z9h0d9uphOuK1IzR7/Wy5PG2fyjm6z+i9frbb7erTp48pY+fl5am2ttaUsQC0vXnzvHtA059NnGi8FgAAoKsgFAwAAAAAAAAAAAAAAADogPLzjd3sHB/vNrmTzqWmpkbZ2dnasGGD8vLyfF9I+ycTJpQarl24MPr3P1utVkVHR2vQoEEaPHiw4uLiZLVyKxfgL+fsd06j22dlzGrnTgCgefn59dq0KdhQ7ahRLJoFOjKr1aoBAwaYdl6QlZUlp9NoUg8As4SGGgvkNCXsIsj7INFVidKp50hHXCqVhTR+zLHbpPxHpSeWSNG1khoaP65FAQbr2tA5+5+jvtF9/d0G0CRf3huCDLwnAOicimuK9fC3Dyv1qVSdM/8crdi5ol3nH9179D7bIiIi1LNnT1PG37Ztm9zu7v09GNAZuN0eLV5sLPzcbvdo0iRj10ABAAC6Eu4kAwAAAAAAAAAAAAAAADqgXbsshuq6YyhYZaVTL7xQorVrNygrK0tVVVXyeMx/gvSYMeUKDDT291tSYldDQ7j69u2r9PR0paSkKDDQ2M3wAMx133H3Nbq9rK5MX2d/3c7dAEDT1q6tVGKiseSNo492mdwNALNZrValpaWZMpbb7VZmZiaL5QE/MxoKVlBQ4PvkiYmtPnRtvHTGVOngK6TFg5o+LqRBmjlfinJIN3wvFTwm9ck12F8HDAW79chb/d0C0CyHw2Gozmq18kACoBvYULRBV35wpXo/0Vv/+Owf2lm50y99jO6zbyiYJPXq1cvwZ6M/c7vdysrK8nkcAG3r++/rlZdn7EP/4YfXqUcPm8kdAQAAdD5czQEAAAAAAAAAAAAAAAA6oMJCY6FgvXqZH4bVEblcbi1dWqGzzipTcrJFV10Vq2++CWnTOSMj3TrhhIpWHx8S4tLpp5frvffKlJ1t14EH9lNEREQbdgjAiJiQGKXHpTe6754v72nnbgCgaamppVq6dLM++miT7rsvV6edVqb4+NaFhP3tb237OQmAOYKCgtS3b19TxmpoaFBOTo4pYwEwJjIy0lBdYWGhampqfJv8iCNaPGRTD+nsSdLwq6T3hrY85HXfS0mVf/wc6JLOWG6wvw720WTcoHHaL34/f7cBNMvlMhb0y4MJgK7L4/Fo6dalOmXmKUp/Pl0vrnpRtc5av/UTFRSlYfHDmtzfr18/2Wy+B/3U1dUpPz/f53EAtJ25c52GaydMIOAcAABAkuz+bgAAAAAAAAAAAAAAAADAvgoKjC2MSEjo2qFgmzfX6uWX6zRnTqi2b997ce2CBTE6+uiqNp1/woQyffRRdLPHHHJItc4+u14XXhihmJioNu0HgDluOeIWXbTwon22f5vzrZxup+xWbrcE4H8Oh0OSlJLSoJSUMp1+epk8HiknJ1ArVoT9+k+4Skr2fs/q27deAwd2sOQNAE2KiIhQQkKCCgoKfB6rqqpK+fn5SkxMNKEzAN7q06eP4dqNGzfqoIMOMj75k09Kb7/d6K6sGOm+Y6Q3D5Dc1tYPedP3+27baKw7KdpoYdv4x+h/+LsFoFn19fWGa4ODg03sBEBHUNNQo7d+eUtPfv+kNuze4O92fndknyNltTT94cJqtap///7asmWLz3MVFxcrLCzMcAgrgLb1wQcBhuosFo8mTybQFAAAQCIUDAAAAAAAAAAAAAAAAOiQioqMhYIlJZncSAdQUeHUjBmVeuedAC1fHiaPp/FQiy+/jFBZmU3R0a426+Www6oUH9+gwsK9b2ZPTnZo8uRqXXppkIYNC5MU1mY9ADDf+Qecrys/uFL1rr0X2bo8Lj31/VOafsR0P3UGAHvU1dXJ49k3/NVikfr2dahvX4cmTy6VxyNlZQVpxYowrVy5JyjssMNqJQW1f9MADIuLi1NdXZ3Ky8t9Hqu4uFghISGKjo72vTEAXunVq5eCg4NVV1fnde0PP/zgWyhYXJyUmCjl5/++aUek9H9HS68dKDm9vOzUo1qKr953+wqj/UUbLTTf0X2P1uG9D/d3G0CzKisrDdeGhXGdEugqdlbs1HMrn9OLq15USW2Jv9vZx+jeo1s8JigoSCkpKcrNzfV5vpycHA0aNEiBgQQIAR3J+vUObdli7FrkiBH16tOHQFMAAABJ8uJ5DgAAAAAAAAAAAAAAAADag9PpUUmJsVCwxMSucUuQy+XWhx+Wa8qUciUlWXTddTFatixcHo+lyZqGBqs++iiqTfuy2aTTTiuTJIWGunTGGeVauLBM2dl2PfFEjIYNC23T+QG0DavVqpP6n9TovudWPtfO3QDAvkpLS1t1nMUipaXV6+yzS/T44zv09dcbdd99tW3cHYC20Lt3bwUFmRPol5ubq9pa3guA9maxWNS3b19DtZ9//rnvDTzxhCQpP1z6+ynSgL9LLx3sfSCYJO1XJP31iswaSYbjSGKMFprv9iNv93cLQItqamoM10ZERJjYCQB/WLlzpc6df676PdVPD337UIcMBJOk0X1aDgWTpOjoaNNCi7OysuR2u00ZC4A5Zs1yGK4dN85pYicAAACdW9e4AxAAAAAAAAAAAAAAAADoQvLznXK7mw6/ak5ycue+Jai6uloffLBT/fs36LTTojRnTpSqq1u/WnXhwui2a+5XkyeX6cknS7Rzp1vz5kVp/Pho2e2d++8dgPTQCQ81un1b2TbllOe0czcAsLeqqipDdVar1Lt3tLnNAGg3aWlpstmMBUb/2ZYtQZo40aGKChbXAu1t+PDhhuo++ugj1dXV+TR30WnH65axVqVdLz0zSnLYjY+1X+G+2+YZHSxAUpzxXsx0QMIBGjtgrL/bAFrky/uB3e7Dix+A37g9bs1ZP0dHvnakDn3lUL299m053R3383ygLVCHJB/S6uNTUlIUGBjo87y5uRY9/XSxz+MAMM/77xv/7DF1aoCJnQAAAHRu3IkGAAAAAAAAAAAAAAAAdDC5uS7DtcnJvi8Yb29Op1M7d+5URkaGtm3bph49ylVQYOym7/XrQ7V1a5DJHe4RFham1NRUjR07UNdfH6voaG5MB7qS/RL2U6/wXo3uu/OzO9u5GwDYW319vaE6i8WikJAQk7sB0F6sVqvS0tJksRgLjZakr78O13nn9dfHH0dp6tQauVxuEzsE0JLDDz/cUF11dbXmzTMWu1VaW6q7Pr9L/Z/ur8cOc6vWhMsXw/4SCuaS9KbRwZLUYVa03X7k7T69xwLtpaGhwVAdgWBA51TbUKuJ707UlLlTtGzHMn+30yoHJx2sYHuwVzX9+/f36ffwDz+EacqUNE2f3lPz55cZHgeAebZvb9CaNd69F/xm0KB6pae3zXe8AAAAnVEHuYQKAAAAAAAAAAAAAAAA4Dd5ecYWaVssHiUldY6FXm63W8XFxdq8ebM2btyo0tJSud17/r0jItw64YQKw2MvWhRtUpdSYGCgEhMTlZ6ertTUVIWFhZk2NoCO58LhFza6fcGmBe3aBwD8WW1treHawMBAEzsB4A+BgYHq06eP13UejzRjRg9dd11f1dTsCY9esiRSN91UbnaLAJphNBRMkp588kmvjq+or9D9X92v1KdS9cA3D6jKUWV47r/a7y+hYPMkbTc6WG8fmzFJanSqJg+b7O82gBa53W55PB5DtUFBBGsAndHMtTP1/ub3/d2GV0b3Hu11jd1uV79+/byu83ik117rqcsv76fSUrvcbosuvTRcmzbVeD0WAHPNnm3swQaSdOqpxkJQAQAAuipCwQAAAAAAAAAAAAAAAIAOJi/P2CKv2FiXAgKMP1W9PVRXV2vbtm3KyMhQfn6+HA5Ho8dNmFBmeI7334+W02m4XFarVTExMRoyZIgGDRqkHj16yGrlViugO7j76Ltl0b7vo1WOKn24+UM/dAQAUmlpqeHa8PBwEzsB4C8RERHq1atXq49vaLDoX/9K0qOPJsrt3vuzzdNPx+i//y0xu0UATRg5cqRiY2MN1f74449asGBBi8fVNNTo0e8eVf+n+uueL+9Reb354X/Div74c4Oke3wZbKCPzZjk2v2myW7tHOH66N5qaoyH3ISEhJjYCYD2sjp/tb9b8NroPt6HgklSWFiYEhISWn18VZVVN93UW0880Wuvc53SUrsmT5aqq334cgiAzxYtshmunTyZz+YAAAB/xp1qAAAAAAAAAAAAAAAAQAeTn28sFCwuzmVyJ+ZwOp3auXOnMjIytG3bNlVXV7dYM2pUleLjjT0RevfuAC1b5n0ARlhYmFJTU5Wenq7k5GTZ7dx8DnQ3oYGhOrDXgY3uu//r+9u5GwDYo6qqynBtTEyMiZ0A8KeePXsqOjq6xePKymy64oq+mjev6RCiG2+M1iefmB8aBGBfdrtdp59+uuH66dOnNxkIVOes01PfP6X+T/XXrZ/equLaYsPzNCexUoqt/ePnxyVtMjpYuKTevvfkq9igWB0TN15VhYb/TYB248v5QFhYmImdAGgvByY2fn2yIzui9xGGa+Pi4loVap6ZGaSzz07Tp59GNbp/7dpQXXKJ8fdMAL7Zvdul778PNlSblNSgUaOCTO4IAACgcyMUDAAAAAAAAAAAAAAAAOhgdu0yVhcf7za3ER+43W7t3r1bmzdv1saNG1VaWiq3u/X92WzS+PFlhudfuLB1ARiBgYFKTExUenq6UlNTWSgHQHccdUej21fmrVSds66duwEAyeFwGKqzWCwKDja2EA9Ax5SSkqKQkJAm92dlBercc/tr5crmF9TX11t1zjmh2rSp8aAhAOaaPHmy4dqsrCxdd911e21zuBx64ccXNODpAbph6Q0qqC7wtcVm7Vf4x59XSrrHl8HS1SFWs00bME1B1iDl7HapdvdWf7cDNKu2trblg5rAtU6gc7poxEUaO2Csv9totfS4dPUI7eHTGH369Gn2QS1LlkTq7LP7Kzu7+dCgWbOi9Z//lPjUCwBj5s2rk9NpMVR76qn1slqN1QIAAHRVHeAyKgAAAAAAAAAAAAAAAIA/KygwdltPQoL/Q8Gqq6u1bds2ZWRkaNeuXYZDLCRp/PhSw7VffBGh8vLG/x5tNptiY2M1ZMgQDRo0SD169JDVyq1UAPaYlD5JoQGh+2x3e9x6+NuH/dARgO6surracG1QUPMLZQF0TqmpqY0ull+2LEznnZemnJzWvfZ37w7QxIkWlZY2mN0igL848cQT1a9fP8P1r732mp577jk53U79b83/NPjZwbrqw6u0s3KneU0247dQsB2SJkkyfqVH0kjf+/FVmD1MU/pPkbQn1D67qEH1pdn+bQpoRn19vaE6i8XCNU+gk7JZbVp41kJdeuCl/m6lVY7qc5TPY1itVvXv33+f7U6n9OijvXTLLX1UW2tr1Vh33BGtr76q9LknAN5ZsMB4qNekSa17fQMAAHQnXNUBAAAAAAAAAAAAAAAAOpjCQmM3TSckeEzupHUaGhqUm5urjIwMbdu2zafwij9LTXXogANqDPZk1ZIl0XttCw8PV2pqqoYOHaqkpKRmnzoPoHs7deCpjW5/5adX2rkTAN1daanxkNTw8HATOwHQUfy2WN5i+eO88d13Y3X11f1UWendItqNG0M0eXKdnE7/B0wDXZnNZtNNN93k0xjXXXedUi5I0UULL1J2WbY5jbXSsEIpT9JJ2hMMZtgASQmmtOSTKf2nKDIw8vefXS6Xsgvq5Khon5A1wFtOp9NQXUBAgMmdAGhPgbZAvTTuJT0x5glZLR17KfjoPqNNGScwMFC9e/f+/efdu2267LJUzZjR06txHA6rzj03SHl5xkIVAXivutqtr74KNlQbG+vUCScYqwUAAOjKOvaZIAAAAAAAAAAAAAAAANANFRYaexpyYqLxJzB7y+l0a+XKYm3atEmbNm1SWVmZ3G7zF5JPmGA8COOTTyIVGBiopKQkpaenq1+/fgoLCzOxOwBd1UMnPNTo9p2VO7Vp96Z27gZAd+ZL2GpsbKyJnQDoSAIDA9WvXz85ndIDDyTqgQeS5HIZOx/87LMIXXttuckdAvirSy65RD17ehdo8Wcej0cFbxVIX5nYVCsF7ZRGSfL5TMicvBCfBFgDNG3AtH22Nzidyt5VJWd1oR+6AppmNBBMkoKDCdcAOjuLxaIbDrtBH5z9gSKDIlsu8BOzQsEkKSoqSj169NCaNSGaOnWAfvzR2Hc6O3cGaurUBjU0EIAMtIdFi+pUW2sstuLkk+tlt7ffd9wAAACdBaFgAAAAAAAAAAAAAAAAQAfi8XhUVGQsFCwpqe1vmP755ypdd12p+vZ16pRTIlVb29Cm840dW67AwNYv2rBaPRo9ukrPP1+iTz4J1qBBgxQbGyurlVulALReWmyaekf2bnTfHZ/d0c7dAOiu3G63GhqMfdayWCwKDAw0uSMAHUlYWJgqK3tr3rwYn8d68cUYPfVUiQldAWhKaGio7r//ft8H+kLSW5IqfB+qRR5Jy6XLCqVcH4c68cQTdc3frjGjK58MjhysHkE9Gt3ncDQoO79crnqCEtFxfPddrU47baBuuqm3/vvfOH32WYRycgLVmmczhIaGtn2DANrFKQNP0feXfK+0mDR/t7KP5Ihk9Y3qa+qYiYmJ+vLLWBUWBvg0zrffhmv6dH6vA+1h/nyP4dozziAQDAAAoDHc6QYAAAAAAAAAAAAAAAB0IOXlbtXWGgsFS0xsm5umi4sdeuyxEh18cLVGjAjXs8/GKC8vUMXFAVq2LLxN5vxNZKRbxx/f8krX1NR63XZbiTZtqtM334TrqqtiFRFhb9PeAHRtl4+8vNHtH239qJ07AdBd1dTUGK4NDg42sRMAHdVRR0XpP/8xZ5H7LbdEa/FiFswDbenyyy/XqFGjfB9oq6TnJH0lyeH7cI3KlPSSpKVSnY9DhYSE6LbbbtPlQy7XsYnH+t6bD9aVrdOhCw/VI2sekcO9719eXV29cnYWyt1g/HMYYKYff2zQ9u1B+uSTKD3/fIJuuKGvTj11kA47bKjOOae//vnPJM2cGauVK8NUVrb3NeWIiAg/dQ2gLQyNG6ofLv1Bx/Y71t+t7GV0n9GyWMz/buq556I0cmS1z+M880yM3nyz1ISOADSlocGjTz4JMlQbGurSqadyHRMAAKAxhIIBAAAAAAAAAAAAAAAAHcjOnS7DtSkpxsLEGuN0ujVvXpkmTChX79523XJLrFatCtvnuAULYkybsykTJpQ1uj0iwqVzzinT0qXl2rIlQA8/HKsBA0LavB8A3cOtR9wqq2Xf2yxrnbWatW6WHzoC0N2UlhpftEoAANB9XHddjK66yvdF7ikpDlksBaqu9n3hPYDGWa1WvfTSS+aEd9ZL+kLS45I+krTL9yFVI2mVpBclvSkp34QxJd10003q1auXrBarHjzkQfUN72vOwAbVu+v1VuZbGrVglG5fcbsqHHuH0VfX1GtHbp48rgY/dQj8Yd26xpd/1tbatHZtqObNi9XDDyfp4otTddRRQ3XCCYN15ZV99corPRUUZCycA0DH1SO0hz4+72NdflDjDzPwh9F9RrfJuEFBVs2ZY1VcnO+/j//1rxCVlVWa0BWAxnz8cZ3Ky409qOn44+sUGkrcBQAAQGP4lAQAAAAAAAAAAAAAAAB0ILm5xkPBkpN9DwVbs6ZK115bqj59nDrzzGgtWhSl2tqmbzP68ssIlZebF0bWmMMPr1J8/J6FH1arR0cfXaUXXihVXp5HM2dG6+STo2SzcSsUAHMF2gN1WPJhje576NuH2rkbAN1RTU2N4dro6GjzGgHQ4T39dJROOsn4IvcjjqjUW29lqXdvh7Kzs+VwOEzsDsCfHXDAAXrhhRfMG7BO0g+SXpD0hKSFklZK2iGpUpK7mbpCSRmSPpX0mqRHJb0v08LAJOm0007TWWed9fvPEQERevLwJxVi83+ou9Pj1Ic7PtTo90frqm+v0q6aP5LVKqvrtDM3Wx53U3+BQPvYuNG7gI3CwgB9912EVq0Kb6OOAPhbgC1AL5z2gp4a+1SjDzRob20VCiZJqakh+t//amS3ewyPcdBB1XrllWzt3Jkjp9NpYncAfjNvnvHvtidONK8PAACArsbi8XiMnw0BAAAAAAAAAAAAAAAAMNX//lejiy4K9bouJMStmhpjC0AcDodmzizXM8+EafVq7+e+8848nXVWiaG5W+udd3rI7Q7SZZeFqH9//y8cBdA9fJz5sca8NWaf7RZZVPGPCoUHssgW5lqzZo0OPPDAVh+/evVqjRgxou0agt+43W5lZGQYqrVYLBo2bJjJHQHo6MrLnTriiAZlZHh3vnT22cW69dZ82f+UOWKz2TR48GBZrf4PGQC6qrMuPkuzXp/V9hNZJQVKCpBkkeSU1PDrP21s6NChmjFjhoKDg/fZtzR3qW7+4ea2b8JLw2OH656D7tGgqEGSpB6RgeqVMkAW3g/hJz16OFVS4l0wmCRdfnmpXnwxpg06AtCRfJz5sabMmaLy+nK/zB8RGKHS20pls7btg2P+9a8S/fOfsV7XTZu2WzfeuEsBAXt+DggI0MCBAznPAUzkdnuUnOzUrl0BXtcGBLhVUOBRTEzbvocAAAB0Vpy5AAAAAAAAAAAAAAAAAB3Izp1uQ3Vxcd494dztdquoqEibNm3S5s2blZ3tMBQIJkkLF0YbqmuNoKAgJSUl6f77E/TQQ7EEggFoVyennazIwMh9tnvk0b++/JcfOgLQXVRXVxuubSx4A0DXFxVl14IFUlxc65J+bDaP7rwzT3fcsXcgmCS5XC5lZWWZ3yQAbS/brslzJmtW71nSiHaY0C2pTlKlpApJNWqXQLDBgwfrpZdeavJzyZiUMbpo0EVt34iXfi75WZM+naSJH0/UisIVKq5waHfeFn+3hW5q+/Y6Q4FgkjRsmMfkbgB0RCennazvL/1eA2IH+GX+I3of0eaBYJJ0113RGjeuotXHh4S49e9/79Ctt/4RCCZJDQ0Nys3NbYMOge7ru+/qDQWCSdKRR9YRCAYAANAMQsEAAAAAAAAAAAAAAACADmTXLmN18fGuVh1XWVmprKwsZWRkqKCgQA0Ne1aCjhlTrqAgY4Fk69aFKjMzyFBtY2w2m3r06KEhQ4Zo4MCBio2N5cntAPzmjKFnNLp9xs8z2rkTAN1JWVmZ4dqIiAjzGgHQqQwcGKJ33qlt8dwuIsKl//43W2edVdLkMXV1ddqxY4fZLQLdWmZJpg579TDNzZi7Z0XXeEkH+rsr8w0ZMkSvvPKKoqOjmz3u78P+rlFxo9q8n/1j9te7x72r/WL2a3VNZmWmLvnmEp380cmasfYDlezc2IYdAo1bubLOcO3IkcbCOQB0PkN6DtEPl/6g41OPb/e5R/cZ3S7z2GxWvflmqAYObPl9sW/fer39dqZOOaW80f0VFRUqKWn6PAiAd+bM8e6hVX82YQIhpgAAAM3hTjkAAAAAAAAAAAAAAACgA9m1y2KoLj6+6RunHQ6HduzYoYyMDG3fvl01NTX7HBMZ6dbxx7f+Set/tXBhtOFaSbJYLIqIiFBaWpqGDh2qxMRE2e12n8YEADM8cPwDjW4vrCnUmvw17dsMgG6jurracG1sbKyJnQDobE44IVJPPdX4AnhJ6tOnXjNnZurww1t+nykvL1dRUZGZ7QHd2kurXtKuqj+lwVslTZB0oiRjl4M6nJNPPllvvPFGi4FgkmS32vXvUf9WYmhim/Z0yeBLNCx2mN45/h0tHrNYh8cfLksr/8Lza/J184qbNWDGEfr3J3fK7TYWqA8Y8fPPxv57s9s9OuigUJO7AdCRxYbEasm5S3TlyCvbdd72CgWTpKgou2bPdioioukH5Bx/fIXeeSdTAwbUNztWXl6eamtrzW4R6JY+/DDQUJ3F4tHkyeY9cAoAAKArIhQMAAAAAP6fvfsOb6rs3wB+52SnSfdelJZCAWXIUBQEBRQEBBVBRJYTJw7c4uuG1z1QVFRkKDJEEAcoQwRFKFuQ3UUptHQ3bXby+4Of+CIpTU5Oko77c11c78t5zvd5vmqbnnPS5w4RERERERERERERUSNSUiLuV3ri48/eJOZ0OlFSUoKDBw/i0KFDqKqqanDj4ogRlaLWBoDvvguHXcSHQavVaiQnJ6N9+/Zo1aoVtFqt6B6IiPwhMTQRGREZbseeWvdUgLshopbA6XTCLubCCoAgCAxWJSLcdVcEHnyw4pzjPXsa8eWXOWjd2urxXMXFxaipqZGyPaIWq8xU5n6gN4BxAEIC2Y20FAoFHn74YbzxxhvQ6TwPI4pUR+KtS96CShAXJtCQNH0arki84szfU/Qp+LjPx/h12K+4OvlqyGVyj+apsFbg8d9fQdgMA55e9zTsTnHXakTe+Osvz74+/611awu0WnG1RNR0KeVKzBo6C53jOgdkPYWgQM+kngFZ629duugxc+a5H24jCC5MmXISb71VAIPBs0DF3Nxchn0S+WjPHitycsRdx3frZkZSEp9hEhEREZ0PQ8GIiIiIiIiIiIiIiIiIiIiIiBoRsaFgcXGn/7empgZHjx7FX3/9hZKSEthsNo/nuPhiI2JjPT//f506pcTmzXqPzpXL5YiKikJWVhYyMzMRHh4OQeCvMhFR43Vfz/vcHl+bu5abx4hIcn/+acS8eVE4cEADb19iNBqNf5oioibn9dfDMGTIPxvmb7ihHB9+mIewMIfXc+Xn58Nq9TxIjIjcG5I5pP7BdAD3AegGQBaghiTSrVs3LF26FJMmTRJV3zGiI57p+ozEXZ12a7tbIcjOfeYUrgrH6xe/jj+u/QM3pd/kcSiZ0VaHVza+Av0rety58k7UWeukbpnojAMHxIVstG3Ln9lELdXLv76M3cW7A7JWt4Ru0Ck9DwKVyvjxEbj33n8CkCMi7PjwwzzcfnspvHmbyel0Iicnxw8dErUcixeLv+YYNozvqxARERE1hL9JR0RERERERERERERERERERETUiJw6JRdVFxpai3379iE/Px8mk0nUHHI5MGxYpahaAFixIqLeMZlMBoPBgDZt2qB9+/ZISEiAQsFPgCaipuH+nvdDIZz7mmV1WPHpzk+D0BERNWfLl9vx2msJuPHGNrj88iw8+GAKvvwyEkeOqOFynb/WYDAEpkkiavTkcgELF+rQpUsdHnvsBP7znyIoleLnO3LkCMNQiXx0Xfvr8EK/F+o/QQtgGIDbALQOUFM+SE1Nxcsvv4w5c+YgIyPDp7muS7sOo1qPkqiz02K1sRiaOvS852gUGjzd9WlkD8/G3e3vhl7hWeC9xWHB7B2zETojFCMXj8Sp2lNStEx0htXqxNGjalG1HTt6HwBKRE3f94e+xzPr/ROy6U7v1N4BW+vf3norDL17G3HBBXVYtOgoevWqFTWP2WzGiRMnJO6OqOVYuVL8+7yjRvnwgIKIiIiohZC5XA29NUxERERERERERERERERERERERIFgs7mgVgMul8zr2g8+yEOfPkafe8jJUWH48LaiapVKJ9avP4CwsH82ims0GkRHRyM0NBSCNx/TTkTUyPSf2x/r8tadczwrKgv779sfhI6oOdq1axe6du3q8fk7d+5Ely5d/NcQBcXAgTVYs8Z9uFdkpB09etSiZ08jevSoRVqaFbL/uXTMyspi8CoRnaWmxoT8/KOSzKVWq5GZmSnJXEQt2eojqzF++XiU1Jac/8RCAJsAHATQiHZ/ZWVlYdKkSbj66qshl4sLt3fH5rRh4oaJ2FO+R5L5Hu30KMZnjve6btHRRZi1fxbKLGUe18ggQ7+0fpg9bDYyIn0LSCMCgO3ba9G9e4io2vnzK3DLLfV/eAMRNT9Hyo+gw/sdYHPaArbmN6O/wYisEQFb79+Kiy0oLDwCtdr3i6TU1FSEhoZK0BVRy5Gba0N6urhgr6wsC/bvFxd+SkRERNSS8LfsiIiIiIiIiIiIiIiIiIiIiIgaiaIiu6hAMACIjrZL0kN6uhWdOtWJqrXZBKxeHQaFQoHo6Gi0b98ebdq0QXh4OAPBiKjJe+nKl9weP1B2AKV1pQHuhoiaK7vdiexsbb3j5eUKrF4dhhdfTMK117bFgAHt8MQTyVi2LALFxSoGghHROQwGLZKTkyWZy2KxoKCgQJK5iFqyq9tcjd2Td2NA+oDzn5gM4CYADwO4GkCC/3urT2xsLCZMmIAlS5ZgyZIluOaaayQNBAMApaDEO5e+gzhtpM9zhanCMLL1SFG1ozNG45ehv+CtS95Cki7JoxoXXFiftx5t3muDbh93Q/bxbFFrE/1t+3ar6NoePRiyQdSS1Fnr0GN2j3oDwVqFtcI93e+RfN3LUi6TfE5vxMWpkZHh2c/phhQUFMBqFf+6S9QSLV4s/ntmyJDABRgSERERNWX8TTsiIiIiIiIiIiIiIiIiIiIiokbi+HGH6NqYGGlCwQBg+PAKr2uyskx49tly3HFHFLKyshAfHy/55lAiomDqldILkfVsTp+2blqAuyGi5mrz5lpUVXke7FVSosT334fjP/9Jwvffx/ixMyJqysLDwxEdHS3JXNXV1SgpKZFkLqKWLF4fj9W3rMaM/jMglzXw/MQAoBeAuwA8BGAEgM4Awv3Xn1wnoG/fvpg6dSqWLl2KNWvWYOrUqcjKyvLbmoIg4OJ4FZYM/i8Ugm/PlG7OuBk6hc6nOQYkDcCqwavw+eWfo21YW4/rdpzYgZ6f9ETb99rih8M/+NQDtVx79oirMxgcaNNGI20zRNRoOZ1O9JjdA5XmSrfjIcoQ7Jq8C+8PeR8fXPNBw9ccHmoX1Q4xIcF/BhEeHo7w8HBJ5srJyYHT6ZRkLqKWYMUK8REVN97IDzUgIiIi8gRDwYiIiIiIiIiIiIiIiIiIiIiIGonjx8VtOBAEFyIipAsFGzSoCipVw71ERtoxcWIlfv21Bvv3a/H885FISeGmMyJqvm664Ca3xxftWxTgToioufrpJ5vo2v79+avhRFS/+Ph46PV6SeYqKSlBTU2NJHMRtWSCTMDjvR/Hxkkb0SqslWdFYQC6ALgOwIMAngRwG4BhAC4D0AlAOoBYAKEAtABUOL2DTAZAAUADQA8gEkAqgA4ALgZwFYBbADwMXD3zasycORMTJkxAu3btIJPJJPgnrp9MJkOr0GpotWr0SeqKN3o/JHourVyLMRljJOutW0w3fD3gaywfsBwXRV3kcd3h8sMY8uUQJL2RhM93fS5ZP9QyjB9/CnPm5ODJJ4swcmQ5OnWqg07X8AdKtG1rhlzO+wKilmL00tH4q/Qvt2NymRy/3/Y7wjXhAIC7e9yN1besRoQmwud1e6f29nkOqSQnJ0OlUvk8j91uR0FBgQQdETV/xcV2bN0q7v3g5GQrevRQS9wRERERUfPEKFUiIiIiIiIiIiIiIiIiIiIiokbixAlxoWCRkXbIpfmAdwBAaKgTV15ZjVWrws8ZUyhc6NfPiFtusWP06FBoNOeeQ0TUXL3Y70V8kP3BOccrzBXYVLCpUW2II6KmadMmpag6rdaJK6+UJuyHiJqv1NRUHDlyBFar1ee58vPzkZmZCbWam3mJfNUrpRd2Td6FO1feiSV/LfGuWA0g5f//SKi1Pl3aCRuQGlaHEN0/10H3dxqN7OJ9WHDwR6/nmpA1AhFq3wNP/i0jLANz+81FiakEL+54Eb+e/BVONPwsr8hYhEkrJuHh1Q/jscsew2OXPgZBYGgTnZ9OZ0X37lZ071535pjTCRw/rsThwxocOqQ5878FBSo4naeD+9q1Ex8yTERNy/SN07F0/9J6x+dfNx+d4jqddax/en9suX0Lhi0choNlB0Wv3diegaanp+PgwYNwuVw+zWM0GnHq1CnExMRI1BlR8/T11xY4HCGiaocMsUIQfA/yIyIiImoJ+ASRiIiIiIiIiIiIiIiIiIiIiCjI7HY7ysrKcPSoSVR9dLRd4o6A4cMrz/p7hw4mPPdcOXJyLPj5ZwMmTIiARiNhEhkRURMQqYtE++j2bsemrZ8W4G6IqLmxWp3Ytk0nqrZr1zpotbw2I6LzEwQB6enpkoXRHD16FA6HQ5K5iFq6cE04Fo1chI+GfgSNQhPsdpAZmhmwtZLDrTDozn5dkslk+OiKp9E5uq1XcykEOZ7sMRYJYeKC9z0Rq43Fe5e9h9+G/YbhqcOhkCk8qqswV+DJtU9CP12Ph1c/DKvd94BGap7qC+8UBCAlxYYrr6zB5Mmn8MYbx7By5WFs2fIXvvrqCF58sRAjR1oC3C0RBcOPh3/EU+ueqnd8aq+pGHPhGLdjmVGZ+OP2P3BVxlWi129soWAKhQJpaWmSzFVcXIza2lpJ5iJqrpYvl4muveEGPr8kIiIi8pTM5Wv0MRERERERERERERERERERERERec3lcqGmpgaVlZWoqamBy+XC448n44cfwr2eq3fvGsyalS9pfw4HMGZMBnr1MuPWWxW47DKDpPMTETVVn+74FLevvP2c4wpBAdPTJigEzzaEU9P22Wef4bPPPpN8XqPRiN27d3t8/s6dO9GlSxfJ+6DgWLOmCgMHhomqffTRCrz6aoTEHRFRc2U2m3HkyBFJ5lKpVGjTpo1kQWNEBOwt2Yublt6Efaf2Ba2HlVetRJohze/rJIQ5ERViq3c8p6oQ3ReNR4Wl2qP5JmQNxecDnwMAlBi1KKn2XzjY36xOK97d+y4W5SyC2WH2uE4pKHFTx5sw85qZCNWE+rFDamrKy8tRVFQkqjYxMRGRkZESd0REjcnR8qNo/3572Jzuf35emXYl1k5Y2+A8dqcdj6x+BO9ufder9eNC4nDikROQycSHAvnLqVOnUFxc7PM8MpkM7dq1g0LB57xE/1ZT40RMDGCxeP8MICrKjpMn5VAoGt/rBxEREVFjxDsSIiIiIiIiIiIiIiIiIiIiIqIAq66uRlFREex2+5lj+fkqrFkjbgNgaakCLhcg1R4MhUKBmJgI/PmnGnK5VppJiYiaiUldJuGeH+6B1WE967jdacd7W97DQ70eClJnFEgFBQX47bffgt0GNTNr1jhE1/bvzzAeIvKcRqNBSkoKjh075vNcVqsVx44dQ6tWrSTojIgA4ILYC7D1jq14aNVD+HjHxwFfXyWokKJP8fs6saECokIs5z0nPSwZX179Eq75dgpccDU452Pdxp/5/zG6OjhcBpTV1B86JgWVoMLUTlPx8AUPY+7hufjs0KeotFY1WGdz2jD/z/n4Yu8XGJQxCB8N+wjJocl+7ZWahtraWtG1er1ewk6IqLGps9ahx+we9QaCpYal4udxP3s0l0JQ4J3B76BDTAfc9+N9sDvtDRcB6J3au1EGggFATEwMamtrYTQafZrH5XIhJycHbdu2lagzouZj+XITLJYQUbVXX22BQiGuloiIiKgl4ru/REREREREREREREREREREREQBptfrodX+E7ZVUKDCrbe2htUq7td5DhzQYubMWLga3htZL5lMhtDQUGRmZiIrKwtxcXGQy/nrRURE/yYIAga0HuB2bObWmQHuhoiak99+U4mq0+kc6NfPIHE3RNTchYWFITY2VpK5ampqcPJksSRzEdFpOqUOHw37CItHLkaYOiyga2eEZkAuk/t1jUiDEjG6Oo/OHdTqUrx0yd0Nnje8dV90iEw/83eZIEN8SDXC9GrRfXpDEARMajcJG4dtwszLZyDJkORRndPlxA9HfkDKWym47NPLsLdkr587pcbObDaLrlWpxN1TEFHTcPEnF6PCXOF2LEQZgp137oQgePe+zl3d78JPt/yECE2ER+f3Tu3t1fyBlpqaCoVC4fM8VqsVhYWFEnRE1Lx884342uuvb5yBgkRERESNFX9rj4iIiIiIiIiIiIiIiIiIiIgowARBQEpKCgwGA44dU+LWW1ujpETp05wffxyLd9+N8zoYTKvVIiUlBR07dkRqairU6sBslCQiasqmD5ju9nhOZQ4Kq7lZjIi8Z7E4sX27tuET3ejWzQS1mr8WTkTei42NhcHge6jgsWMqXHWVAZs310jQFRH9rxs73oidd+3ExUkXB2zNjNAMv84fplcjIaQaMsHzUIAnuk/EiPR+DZ7zbzJBQHJIJQwhgX3e1TdmCPbe9DNWjV2FdlHtPK77vfB3XDjrQlz4wYX4Ne9XP3ZIjZnNZhNVJ0UIDhE1XjctvQl7T7kPjhRkAjZO2ohIXaSoua9ofQW23rEVWdFZDZ7b2EPBBEFAenp6wyd6oLKyEpWVlZLMRdQcWK0urF2rEVUbEuLANdeIqyUiIiJqqfjuLxERERERERERERERERERERFREPwdDLZwYSKKi30LBPvbJ5/E4K23Gg4GUygUiI2NRYcOHZCRkYGwsDBJ1iciaik6xXVCbEis27Gn1z4d4G6IqDn45RcjTCa5qNrLLrNK3A0RtSQpKSlQqVSi67dt0+Hmm9Px5586jBypRkGBWcLuiAgAWke0xoYJGxCiDAnIem1C2/htboNOjeSQSsgE77a0CTIBcwc+h7bhqW7H+yZdhEviL3Q7JpMLSAkph04b2GCwwnIHehla4cB9B5B9Rza6J3T3uHbvqb3oO7cvWr/TGl//9bUfu6TGxul0wul0iqr15ec5ETVur/72KhbtW1Tv+LwR89A1oatPa7SJbIM/bvsDg9oMqvecEGUIusR38WmdQFCpVEhJSfF5nn37NBg4UImiIosEXRE1fatXm1FdLe75Zf/+Zmi1jLUgIiIi8gavnoiIiIiIiIiIiIiIiIiIiIiIgkQQBHzyiR6DB9dJNuecOTF44434c4LBZDIZQkNDkZmZiaysLMTGxkLwcgMmERH9Y2LniW6Pf3Pgm8A2QkTNws8/20XXXnWVNAGzRNQyCYKANm3aiLo//OabcNxxRxoqKxUAgKIiFYYPd6K2VvxrGhG5d8vyW1Brqw3IWpmhmX6ZV6dVI0VfDplc3POoUJUey4e8Ab1Sd87YtB63n7dWUCjQSl8KjTqwoUnHSh2oPXUI3RO7I/vObOQ8kIMBrQdABplH9XmVeRi5ZCRiX4vF+1vf93O31BiYTCbRtVqtVsJOiKixWH1kNZ5Y80S94w9d8hDGdhoryVphmjCsHLMSD178oNvxAekDoBAUkqzlb2FhYYiKihJdv2xZBMaPT8e2bSEYPdoGm01cYCNRc/L11+K/D667zrPrXyIiIiL6B3+rj4iIiIiIiIiIiIiIiIiIiIgoiFQqGZYv1+Lyy6Xb2Dl3bjReffV0MJhWq0Vqaio6duyI1NRUqNVqydYhImrJpvWd5nYjd421Bj8e/jEIHRFRU3b55RWYMuUkevUyQqPxfIOdweBA794hfuyMiFoCQRCQkZHh8fkOB/DGG3F49tlk2O1nb0vZtUuHsWNr4XBw0zyRVBbtXYSlfy0N2HoZoZ6/HnhKo1ahlb4UgsK3IJH2ka3xw7B3kBASDQBQy1V49bIH0D+lZ4O1cqUKaYZSqFSBC1R1uVzIP2WHqewIAKB1RGv8PP5nlDxaghs73Ai5TO7RPKfqTuG+H+9D6PRQPLv+WdidDF9srmprxT8j1uv1EnZCRI1BbkUuhi0cBhdcbsf7teqHN69+U9I1FYICbw16Cx8P/RhK4Z+fmXqVHs/1e07StfwtISEBGo3GqxqLRYbnnkvEf/6TBKv19L3Opk16PPxwlT9aJGoyHA4XfvxRXMCuSuXEiBF8f5qIiIjIWzKX69+fCUpERERERERERERERERERERERIH23XcmDBumlXTOSZOM+OSTEAgCP32ZiMgfun7UFbtO7jrn+CVJl2Dz7ZsD3xAFzHPPPYfnn38+2G1g586d6NKlS7DbIB/Z7XYcOHDgzN9tNhn+/FOLrVtDsHVrCHbv1p3ZiPpvV15Zg7VrDYFqlYiauZqaGuTn55/3nNpaAY8/nowNG0LPe95jj1Xgv/+NkLI9ohap2FiM1LdSYXVa3Y4LEOCEdCF8OoUOm6/dDEHm/tpDDJVKifTQMihU0gUBWBxWHK0qRIIuGhGa878e/ZvVYkFOVSTs9sAFa8nlcqQn6KAOb3XW8TprHR75+RHM2TkHFofF4/nUcjUmdZmEN656AzqVTup2KYjy8vJgNBpF1Xbo0AGCIN33LhEFl9luRtKbSSg3lbsdTwlNQd6UPL9+3+dV5uHzXZ9DISgwrtM4tPrXz7GmwOl04sCBA3A6G75eOnFCiYceSsG+fe5/ts6bV4Fx43iPQy3Thg1m9OvnXcje3668sg5r1/KalYiIiMhbDAUjIiIiIiIiIiIiIiIiIiIiImoEPv20FrffHiL5vBMm1OLTT3WQyxkMRkQktSX7lmDU0lHnHBdkAkxPmaBSqILQFQXCZ599hs8++0zyeY1GI3bv3u3x+QwFax5KS0tx8uTJesctFhl279Zh69YQZGeHYM8eLez205t+p00rxwsvRAaqVSJqAU6dOoXi4mK3Y0VFStx3XyscPuzZRuBPPy3HrbfyNYrIF5nvZeJI+RG3YyOyRuCJy57ATV/fhLzKPEnWuzDiQnx55ZeSzAUACoUC6WHlUKmlCwSTgtlsRm5VJBwOR8DWVCoVSE8MhdKQeM6Yw+nACxtewFt/vIUaa43Hc8plclzX/jrMGjIL0bpoKdulIDl48CBsNpvXdTKZDB07dvRDR0QULJ1mdcKfJX+6HdMpdch/MJ+v/R4ymUw4evToec/ZvDkEjz2WgspKRb3nGAwO/PqrCV266KVukajRu/9+I2bOFPe1/847RjzwAL9viIiIiLzFUDAiIiIiIiIiIiIiIiIiIiIiokbgpZeMmDbNP78Qfcsttfj8cwaDERH5g+5lHUx20znHn+/3PJ7t+2wQOqKmbNeuXejatavH5zMUrHnIzc1FbW2tx+fX1cmwa5cO2dl63HmnGj16hPqxOyJqiQoKClBdXX3WsV27tJgypRXKy+vfJP9vWq0Tq1bV4vLLDVK3SNQi3PP9PZi1bZbbsdiQWJx4+AQEQUCluRJ3fXcXFu9b7POa16Vdhxe6veDzPAAgl8vROqwCGk3jCgT7W53JiryqMDidzoCtqVap0Do5EorzhLh8kP0Bnv/leZTUlXg8rwwyXNn6SsweNhutI1pL0SoFyb59+yBmu6dSqUS7du380BERBcPNX9+MhXsXuh0TZAK23L4F3RO7B7irpq2srAwnTpw457jLBXz6aTTeey8OTmfD76FlZpqxbZsCoaGe3xcRNXVOpwsZGTbk5Xn/ISiC4EJhoQMJCfyeISIiIvKWEOwGiIiIiIiIiIiIiIiIiIiIiIjo9CeMd+xYh9hYGxQKaT/nb8GCEIwbVweHg58fSEQktSGZQ9wen71jdoA7IaKmymQ6N1jwfHQ6Fy69tBZTphSjWzf/hMoSUcuWmpoKtfqfEJ+VK8Nw662tvQoEAwCTScCoURrk5Hj3OkdEwNqctfUGggkyAb9O/BWCcHpbWLgmHF/d8BVmD5sNrULr07ptQtv4VP83QRDQKrSq0QaCAYBOq0JqaA1kssCF6FusVuQXVcBhqa73nHt63IPiR4ux5MYlSAtP82heF1xYm7sW6e+mo/vH3bGtaJtEHVMgORwOUYFgAKDRaCTuhoiC5Y3f36g3EAwAPrv2MwaCiRAVFYXQ0LND1WtqBDz4YCreeSfeo0AwADh8WINbbqmDwxG4UFGiYNu92yoqEAwAunc3MxCMiIiISCSGghERERERERERERERERERERERNQI33FCDr77Kwdq1B7F9+z6sX78f/ftXSTb/woUhGDuWwWBERFKb3n+62+OF1YU4Wn40wN0QUVNjt9vhdIrbSKpQKM6EgRARSS0jIwMymRzvvhuLp55Kgc0m7vWmuFiJ4cNdqKmxS9whUfNltBpx7VfX1jv+xlVvoF10u7OOyWQy3H7R7ci+IxsdYzqKXluKUDCZTIbU0BrotEqf5/I3vU6B5DBzQNc0mS0oLCqBq4FrwJEdRiJ3Si42TNiAC2Mv9Hj+7Se2o8fsHmg3sx1+PPyjr+1SABmNRtG1Op1Owk6IKFh+PvozHv350XrHH+j5ACZ0mRDAjpqX5ORkKJWnr08OH1ZjzJgMrFsX2kDVuVauDMXLL1dK3B1R47V4sU107bBhDgk7ISIiImpZ+C4wEREREREREREREREREREREVEjYLP98wvVggBERzvw7rsnMHq0dMFgixaF4Kab6mC3MxiMiEgqbaLaIDk02e3YE2ufCHA3RNTUVFRUiK7lxn8i8idBEBAfn4G1a73fJP9ve/fqMHp0HRwOcSGIRC1Nv8/7oc5W53bs8tTL8eAlD9Zb2zG2I7LvyMbkbpNFrS1FKFhymBl6ncLneQIlTAckhgU2uLCm1ozKkwc9OvfytMux5+492Hv3XlyWcpnHaxwqO4RrvrwGyW8mY97ueWJbpQCqra0VXWswGCTshIiCIb8yH0O/HAoX3L9/c3nq5Xhn8DsB7qp5EQQBGRkZ2LjRgLFjM5CfrxY914svRmDVqmoJuyNqvL77Tvy1/ahRKgk7ISIiImpZGApGRERERERERERERERERERERNQI2O2nNx/KZDKEhYUhLS0N7du3wxdfhGL8ePEbwv5t6dIQjB7NYDAiIindcdEdbo9/f+j7AHdCRE1NTU2N6Nrw8HDpGiEiciMqSoVly+wIkyAs58cfQ/H445W+N0XUzD3/y/PYfmK727FQdShWj1vd4BxapRazhs7Cl9e8D4PS86CgUGUoYjQxHp/vTmKYHWFNMLc0MsSBuLDArnmi0gVrdaHH53eM7YhNt27CsYeOYUjmEAgyz7YFHq85jgnLJyDyv5F49bdX4XQyoLGxMplMoms1Go2EnRBRoJntZnT7uBusTqvb8SRDEtZOWBvgrponhUKBXr2ioLW6ghEAAQAASURBVFD49h6Z3S7D+PFa5OaKf+0magqOHLFi715x1xkdOpjRti1DwYiIiIjEYigYEREREREREREREREREREREVEjoFKpkJiYiKysLKSkpECv10Mmk0Eul2HOHB0mTpQuGGzZshCMHFkHm43BYEREUnjisifcbsg22U1Ysm9JEDoioqbCbDaLrtXr9RJ2QkTkXufOesyda4RC4VuITGKiFZdeWoYTJ05I1BlR87PjxA48v+F5t2MyyPDTLT9Bo/B8Q/7lcQOxpP8SdI7s7NH5bULbQCaTeTz/v8WFyRAZ4hBdH2wxIRZEhyoCtp7T6UR5VZ3Xdcmhyfju5u9Q8VgFxncaD6Wg9KiuwlyBx9c8DsMMA6b+NBVWu/vgGQoeq1XcfxNB4BZRoqbukk8uQZmpzO2YVqHFrsm7oBAC9zOquevSRY+ZM6t9nufUKSVGjXLCYmHgJjVfixeLv2YcNsz3gHEiIiKiloxPfIiIiIiIiIiIiIiIiIiIiIiIGoFWrVohMjIScrn8nDFBkOHTT3W47TbpgsFWrAjBDTeYGAxGRCQBlUKFnok93Y69sumVAHdDRE2FzWaD0ylu46hSqeTmfyIKmOHDwzF9eqXo+i5davHll0fRtq0FZWVlKC8vl645ombCarei/7z+cMH9c5onej+Bi5Mv9ng+l9OBmjoHkkKSMKfvHNze7nbIcP7Arzahbbzq+X9FhyoQrTWJrm8s4nRGRBhUAVuvxod/ZaGaUMy9bi6MTxrxcK+HoVPqPKqrs9Xhjc1vQD9djwnLJ6Da7HsoCknD4RAXqqdSBe5rloikd8uyW7C7eLfbMUEmYMPEDYjWRQe4q+Zv/PgI3Htvhc/z1NQI2LEjX4KOiBqnb789931rT914o2fhtURERETkHt8JJiIiIiIiIiIiIiIiIiIiIiJqAgRBho8/1uHOO42SzblypQ4jRphgtTIYjIjIV8/1e87t8d0nd8Nole61m4iaj4oK8ZtPdTrPQh+IiKQydWokbrut0uu6YcMq8MkneYiK+ifopKioCLW10oVeEzUH13x5DSrNlW7HOsV2wiv9vQsbNpXnwG63AwCUghJTLpiCj3p/hGhN/aEiGaEZXq3xt3CDCnE6I2TC+UPHmgKZIENiSCVCQ9QBWc9itcJSWeDTHCqFCm9c9QZqnqjBjP4zEKGJ8KjO5rRh3u55iHg1AsO+HIai6iKf+iDfWCwW0bUajUbCTogokN7c/Ca++POLesc/GfYJeiT1CGBHLctbb4Whd2/xz22HDavA/Pk5MBhqceLECQk7I2ocTp60Iztb3HVGq1ZWdO3K4FIiIiIiXzAUjIiIiIiIiIiIiIiIiIiIiIioiRAEGWbNCsHdd0u3efqHH3QYPtwEs9kp2ZxERC3R1W2uhkFlOOe4Cy68uOHFIHRERI1dTU2N6Nrw8HDpGiEi8tCsWaHo18/z164pU07i5ZePQ60+N4g6Ly/vTGARUUv3QfYHWJu71u2YRqHBhkkbvJ7Tajv3+6tXXC8s7b8Ul8Vdds6YQqbAlYlXer1OaIgaSbqKZhEI9jeZIEeyvhwhusAEg1ktdZLMIwgCHu/9OMofL8fnwz9HoiHRozqny4nvDn+H5LeS0eezPth/ar8k/ZB3fLk3CAkJkbATIgqUtTlrMfWnqfWO39fjPkzqOimAHbU8SqWARYuUSEy0elWnUDjx9NNFePnl49BqT9/rlJWVoaqqyh9tEgXN0qUWOJ3irvOHDLFCaEb3CERERETBwFAwIiIiIiIiIiIiIiIiIiIiIqImRBBkmDlTh/vuE//p5f+2apUO115rZjAYEZGPrsu6zu3xubvnBrgTImoKzGaz6Fpu/CeiYFAqBSxdqkZm5vlfv7RaJ956qwC3314KWT17gF0uF44cOQKnk/eh1LIdLT+KB358oN7xZaOWIVwTLtl6UZoofHDZB3jkwkdgUJ4ONVYJKjzT9RnE6+K9mksuF5CkK4VMrpCsv8ZCkCuQoiuFrL4XsUZuQpcJOP7wcXx/8/fIjMz0qMYFFzYd24QOH3RAp1mdsKlgk5+7pP9VVyc+HM5gODegnIgat4KqAlzz5TVw4dzwXADondIb713zXoC7apkSE9X48ksLVCrP7ktiY22YMycXN91Ufs69zrFjx2C1ehcwRtSYrVgh/lp45Mjmd49AREREFGgyl8vl/q6RiIiIiIiIiIiIiIiIiIiIiIgaLafThUceqcXbb+slm3PAgDp8+60GWi0/a5CISIzC6kKkvJXidmz35N3oFNcpYL3k5uZi9+7dyMvLO/OnsrISdXV1qK2thdlshk6ng8FgOPMnOTkZ7du3R1ZWFtq3b4/Y2NiA9Uun7dq1C127dvX4/J07d6JLly7+a4j8xmq14tChQ6JqlUol2rVrJ3FHRESe27+/Dr17q1Befu4m37g4G957Lx/t23sWfKjVapGRkSF1i0RNgtPpRPJbyThhPOF2/Laut+GTaz8RNXflif0oLHOc9xyT3YScmhwkhyQjTBUmap1wvQpJ+irIhOb1LMnlsKPAGImaWovf12oVo4AhLsuva2Qfz8bd39+N7Se2e1XXOrw1Xr/qdVzf/no/dUZ/O3TokOggmQsuuEDibojIn8x2M1LeSkFpXanb8SRDEvIezINCYKBOIL3xRjmmTo087zk9ehjx6qvHEB1d/zWWQqFA27ZtITSzayNqeaqqHIiNlcFq9f5rOSbGhhMnFJDLm2bALhEREVFjwbtCIiIiIiIiIiIiIiIiIiIiIqImSBBkeOONEAiCEW++KU0w2Jo1OgwZUofvvtNAp+OGBSIibyWHJiM9PB05lTnnjD255kl8P/Z7v62dl5eHb775Bhs2bMAff/yB4uJin+dMS0vDoEGDMGjQIPTv3x96vXRBlEQtXUVFhejakJAQCTshIvJe+/Y6fPFFNa69Vg+b7Z97xwsuqMO77xYgJsbu8VwmkwnHjx9HUlKSP1olatRuXnZzvYFgaeFp+Hjox6LnVinkAM4fCqZVaNExoqPoNQCg0miFXDAgXmeETGgem/5dTieO10YEJBAMAJQqtd/X6JHUA9vu3Iaj5Udx58o7sT5vPVxwNViXW5mLGxbfgNiQWDzX9znc3eNuv/faUk2dGguXC8jMNKNtWzMyM82IjbVD1sC3lULB7aFETc2ln15abyCYVqHFjjt3MBAsCB55JBLZ2ZVYtCjc7fjEiacwZUoxGnrZtdvtKCgoQFpamuQ9EgXSihVmWK3inkEOGmSFXK6UuCMiIiKilkfmcrkafoJHRERERERERERERERERERERESN1mOPGfHaa9IFtfTtW4cffmAwGBGRGG9ufhOP/PTIOcdVchVMT5kgCNK9tpaXl+PTTz/F4sWLsW3bNsnmdUelUuH666/H/fffj0svvdSva7Vku3btQteuXT0+f+fOnejSpYv/GiK/OXLkCMxms6ja1q1bMxiMiBqF996rwAMPRAAABg2qxIsvHodGI26LSkJCAqKioqRsj6hRW7xvMUYvHe12TCkokTclD4mhiaLndznsOHDoMByO8weDSSU2VIZYvbhrm8bE5XThZJ0eZdWehxv6QqVSIrNNJmQS3id6osRYgnt+uAfLDyyHw+X510ioOhQPXfwQnu37rKT3toFWWleKaks1UsNSG0Xwjt3uRGioCyaT/KzjYWH2/w8Is5wJCmvTxgyd7p+ftSEhIWjdunWgWyYikSZ8MwHz9sxzOybIBPx+6++4OPniAHdFf6utteOSS6zYu1d35phO58CLLx7HVVdVezVXXFwcYmJipG6RKGCuu64Wy5eLe/74zTd1GDFC1/CJRERERHReDAUjIiIiIiIiIiIiIiIiIiIiImoGnnjCiP/+V7pgsN69TVi1So2QkKa7wY+IKBjsTju0L2thd567ifyTYZ/gtotu83mNo0eP4u2338acOXNQW1vr83ze6tq1K6ZOnYoxY8ZAJpMFfP3mjKFgLce+ffsg9te4L7jgAom7ISIS7957K+By2XD33SXw9bKAoYfUUpQYS5DydgqsDqvb8Xkj5mFc53E+r1OYfxiVNRaf5/FUQpgDUSGBCdPyl5JaDUqqArfVLjpMhfiUtgFb79/qrHV4ePXD+Hz357A4PP9a0cg1mNR1Et68+k1oFBo/dii9p9Y+hdd/fx02pw3totrh61Ffo2Nsx6D2tGdPLTp39uznn0zmQnKy9UxY2F13AV26xPq5QyKSwrtb3sWUVVPqHZfquSH55sCBOlx6qQoVFQqkpVnwzjsFSE8Xdz3F+xtqqsxmJ2JjXaipkTd88r8YDA6UlMig0fD9ZSIiIiJf8YqKiIiIiIiIiIiIiIiIiIiIiKgZmDFDj6efNko236ZNWlx1lQVGo1OyOYmIWgKFoEDvlN5ux97Y/IZPc1dVVeHhhx9GVlYWZs6cGZRAMOB0ENXYsWNx2WWXYceOHUHpgagps1gsogPBVCqVxN0QEfnmvffC8MAD5T4HggFAXl4erFb3IUlEzUnvOb3rDQQb3m64JIFgABClD2yA74kqOSrrmm5ocHmtIqCBYDKZDBEGdcDWc0en0uHDYR/C+JQRz/R5BnqVZx84YHaYMWvbLBimGzB6yWiU1ZX5uVNpfLX3K0zfNB02pw0AcLDsIAbOH4iTxpNB7Wv7ds9/9rlcMhw7psbatWH48MNYCALDZoiagl/yfsGDqx6sd/yeHvcwEKyRyMrSYfZsI66+ugoLFx4VHQgGnL6/sdubdmAqtUw//mgWFQgGAAMGmBkIRkRERCQRXlURERERERERERERERERERERETUTL72kx7Rp0gWD/f776WCwmhoGgxEReePFK190e3x/6X6U15WLmnPBggVo27Yt3nrrrUazmWzz5s3o0aMH7rnnHphMpmC3Q9RkVFRUiK4NCeGmfyJqXARBQJs2bSCTIBXM5XLh6NGjcDp5D0rN1/0/3I/D5YfdjsXoYrBs1DLJ1tJGtUFsuFKy+TxRWKlCjckR0DWlUFUrQ1GVuOADseLD5VCHtwromvVRCAq8eOWLqHq8Cu8Nfg8xuhiP6uxOOxb/tRgxr8Vg4LyByKvI82+jPnC6nHh+w/PnHD9hPIEbl9wIm8MWhK5O27NHXJ1W60CHDlppmyEiyRVWF2LQgkFwwX3w5KXJl+L9a94PcFd0PjfcEI4PP6yAXu/bfYnL5UJOTo5EXREFzrJl4oNyR4yQrg8iIiKilo6hYEREREREREREREREREREREREzcgLL+jx/PO1ks23ebMWAwdaUFXV9DZ0EhEFS+/U3ojQRLgdm/bLNK/mMhqNGDduHMaNG4eSkhIp2pOU0+nErFmz0KtXL25yI/KQ0Sg+xDU8PFy6RoiIJKJQKNC6dWtJ5nI4HLymoGZrXe46zMye6XZMkAnYMHEDBEHarV4xCa2h1aglnbMhBZUhqDVZA7qmL2rqHCisDuy/oxCdGpEJmQFd0xOCIOC+nveh5NESLBq5CK3CPAstc8GFNblr0Prd1ug5uyd2nNjh50699+3Bb3Gg9IDbsU0FmzD1p6kB7ugf+/eLC6Rr29YChYLbQ4kaM6vdios+uggWh8XteII+ARsmbQhwV+SJ1NRUKBQKn+exWq0oLCyUoCOiwHA4XFi1Sty1sVrtxHXXMbCUiIiISCp86kNERERERERERERERERERERE1Mw8+2wIXnxRfNjEv23ZosXAgVZUVjIYjIjIU6MvGO32+Fd7v/J4jgMHDqB79+5YsGCBVG35ze7du9G9e3f88MMPwW6FqNGzWNxvBvZESEiIhJ0QEUlHp9MhKSlJkrnMZjOOHTsmyVxEjYXRasSwhcPqHX9t4GtoH9Ne8nVlchVS4wxQKpWSz10fl8uF/KowmM3ir3kCpc5kQ0FVCFwuV8DWVKtVSImPgkwQFwQVKKM6jkLeg3lYP2E9OsZ09Lguuygb3T7uhvYz2+Pnoz/7sUPPuVwuTN80/bznvLv1XSzYE5x774MHxQVvtGvXdML3iFqqSz+7FKfqTrkd0yg02HHXDigE34OnSHqCICA9PV2SuSorK1FZWSnJXET+tmGDBaWl4l6X+vQxw2BgdAURERGRVHhlRURERERERERERERERERERETUDD3zjB7Tp9dKNl92thb9+9tQUcFgMCIiT7x4xYtuj5ebyrH52OYG67dt24Y+ffrg4MGDUrfmNxUVFbj22muxaNGiYLdC1GiZzWbRoRMqlUriboiIpBUREYGoqChJ5qqqqsKpU+4DFIiaois+vwJ1tjq3Y71TeuPhXg/7bW2lIR6t47VQKAIXQuV0OpFXHQFLIw4GM5styKsKDWggmFKpRFp8KBS6yICt6at+af2w9569+HPyn+iV3MvjugNlB3DVgquQ8lYKFuwObtD1hvwN2Hp8a4Pn3bHyDuw8sTMAHf2jutqOggJx1/kdOzol7oaIpDRp+SRsP7Hd7ZggE7Bu/DrE6+MD3BV5Q6VSISUlRZK5CgsLfQqJJwqUpUvFvw88YkTgrquJiIiIWgKGghERERERERERERERERERERERNVNPPBGCV181Sjbfjh0aXHmlDeXlDAYjImpItC4aWdFZbseeWffMeWvXr1+PK6+8EqWlpf5oza8cDgduueUWLF26NNitEDVKp05ViK7V6/USdkJE5B8JCQkICQmRZK7i4mLU1NRIMhdRML2w4QVsO7HN7ZhBZcDP43/2ew+qsFSkxaogCIHbSma3O5BXEwVbIwzAsFosyKuOhNMZuFAlhUKOtDgtlIamGQBzQdwF+P2235H/YD4GtxkMQebZ11JhdSHGLR+HqFej8MbvbwT03/nfZmya4dF5ZrsZ1y++HuWmcj939I9t2+rgdMpE1XbuzK2hRI3Ve1vew+e7P693fNaQWeiV4nnQIgVPWFiYZMHHOTk5Qfk5SOQpp9OF779XiqqVy10YOVItcUdERERELRuf/BARERERERERERERERERERERNWOPPqrHG2/USjbfrl2ng8HKyhgMRkTUkIcvedjt8V8LfoXdaXc7tmPHDgwbNqxJB2DY7XaMGTMGK1asCHYrRI3OE09oMWxYJl58MQGrVoWirEzucW1ERIQfOyMikk6rVq2gVIrbSPxv+fn5sFqtksxFFAw7T+zEc78853ZMBhlW37IaGoUmIL1oIjOQFqOATCYugEgMm82GPGM0HLbG831ss1qQVx0Fu939PZk/CIKAtFgV1OGpAVvTX1LDUvHD2B9Q9lgZxl44FgpB4VFduakcU3+eitAZoXjs58fqvSeW2s4TO7H66GqPz8+rzMPNX98MhzMwzz537hT/76FnT62EnRCRVH7N+xVTVk2pd/yubnfhzm53BrAj8lVCQgI0Gt+v1xwOB/Ly8nxviMhPduywoqBAJaq2Z08z4uI8uy4kIiIiIs8wFIyIiIiIiIiIiIiIiIiIiIiIqJl7+OEQvPWWdMFgu3drcMUVNpSWMhiMiOh8but6G1TyczfR2J12vL/1/XOO5+fnY8iQIaitle41u1OnTrj//vsxf/58bN68GUVFRaiurobdbofRaERxcTF27NiBRYsW4amnnkKvXr2gUPi+ecdut2Ps2LH466+/JPinIGo+Nm/WIi9PjcWLo/Doo6no1689rruuDaZPT8DatQZUVbkPCZPJZNBquemfiJoGQRCQkZEhWfDQkSNH4HQ6JZmLKJCsdiv6z+sPF1xuxx+77DH0SukV0J50MW2RGi0PaDCYxWJFnjEaTpstYGvWx2GzIr8mGtYA9iKTydAqRgFNZEbA1gyEcE04Fly/ALVP1uLBix+EVuHZtWqtrRav/f4aQl4OwaQVk2C0Gv3a539/+6/XNauPrsaz65/1Qzfn2rtX3PbO2FgbEhLUEndDRL46Xn0cVy24qt6f/ZckXYIPh34Y4K5ICunp6RAE37fk19XVobi4WIKOiKS3ZIn4a+Rrr+U9OxEREZHUZC6Xy/3dJRERERERERERERERERERERERNSvvvVeLKVN0cLmk2fjZsaMZ69YpEBvLT34mIqrPNV9cgx+P/HjO8YyIDBx54MiZv5tMJvTo0QP79u3zec3o6GjcfffdmDBhAjIyvN94XlJSgi+++AIffPABjhw50nDBeWRlZSE7Oxt6vd6neVqKXbt2oWvXrh6fv3PnTnTp0sV/DZGkcnJMyMg4f1iCTOZCu3Zm9OhRi4svrsVFF9XCYHBCrVYjMzMzQJ0SEUnDZDLh6NGjkswlk6nRsSNfB6lpuWr+Vfg552e3YxfGXog9d+8JcEf/qDyxH4VlgQ171+vUSDVUQJC7D0H1N6fdjryaSNSZLAFdt1WMAoa4rICuGQxOpxP//e2/ePX3V1FprvS4TpAJGJo5FLOGzEJiaKKkPR0pP4J2M9vB6RIXUrFs1DJc1/46SXv6t169jPjjD+/vl/v0MeLXX3mfTdSYWO1WpLydgpLaErfj8fp4HHvoGBQC309pqqS8v2nVqhUMBoMkcxFJpUMHC/bvFxc6euSIFRkZ535AChERERGJ53ssMRERERERERERERERERERERERNQn33x+CmTPrIJNJ8zmC+/Zp0K+fA8XFdknmIyJqjl658hW3x49WHEVRddGZv0+dOtXnQDCNRoMXXngBubm5eOGFF0QFggFAbGwsHnroIezfvx+ffPIJoqOjRfd04MAB3HbbbaLriZqTVavMDZ7jcslw4IAW8+dH4777WqF37/YYMyYdhYXh/m+QiEhiWq0WycnJPs9TXKzAqFHJeOmlcgm6IgqMj7Z9VG8gmEahwa+Tfg1wR2cLT2iPhMjAhpIY6yw4XhsBlzOwYWQA4HQ4UGAMfCBYcpS8RQSCAYAgCHiyz5OoeLwCnwz7BAn6BI/qnC4nvj30LZLfSsblcy7H/lP7Jevp9d9fFx0IBgATlk/AgdIDkvXzby6XC4cOaUTVtm9vk7gbIvJV7zm96w0E08g12H7HdgaCNXFarRYJCZ79fGtIQUEB7Ha+t0aNx8GDVtGBYBdeaGYgGBEREZEfMBSMiIiIiIiIiIiIiIiIiIiIiKgFueeeEMyaVQdBkCYYbP9+Nfr1c+DECW5eICJyp0tCF8TqYt2OPb3+aQDAjz/+iA8++MCndbp164adO3di2rRp0Ov1Ps31N4VCgdtuuw379u3D8OHDRc+zePFiLFy4UJKeiJqyDRtkXtc4nTLs3atDZqbBDx0REflfeHi4TwGj+/ZpcPPNGfjrLy2eey4CS5ZUStcckZ/kVuTi3h/urXd86Y1LEa4JD1xD9YhKzEJsuDKga1YZLThRGwaXU5rnUp5wOZ04XhsBY11gA8ESIhQIT2gf0DUbi9suug1FjxRh5U0rkRmZ6VGNCy5sLNiIDh90QOcPO+O3gt986uFEzQnM2TXHpzlqrDW4btF1qLZU+zRPffLzzSgvFxcQdOGFEjdDRD65/dvbkV2U7XZMBhnWjF+DxNDEAHdF/hAVFYXQ0FCf53G5XPj99zw4HOLDK4mktGSJVXTt0KF8j5iIiIjIHxgKRkRERERERERERERERERERETUwtx1Vwg+/FC6YLADB04HgxUV8Ze+iYjcGd95vNvjy/Yvg8lkwp133unT/DfccAM2btyIrKwsn+apT2xsLL755hs8+eSToud45JFHUF3tn43URE3FH39oRdVlZpqRnKyRuBsiosCJj48XFVr600+hmDgxHSUlp0OLHA4ZbrvNgO3ba6VukUgyTqcTvef0hsPlcDs+qcskDGk7JMBd1S8mMRNRoeqArlleY0NJXUhA1nI5XThRG4oqY2ADwWLDlYhK8s/9WVMytN1QHLr/EP647Q9cFH+Rx3V7iveg95zeyHgnA8v3Lxe19jtb3oHVIT7c4m8HSg9g4vKJcLmkD7ITBCM+/DAPjzxyAsOGVSArywSl0rNwmIsuEhcmRkTSm5U9C5/u/LTe8feveR+XpV4WwI7I35KTk6FU+hasunatAddc0xqvvFIpTVNEPvr2W7no2htvDGzQMBEREVFLIXP544kUERERERERERERERERERERERE1enPm1OGOO7RwOGSSzNemjQW//CJHUhI3pRER/S+j1YjQ6aFw4dxf2ZxQOQFz354reu6xY8di/vz5kMmkeS1vyKuvvorHH39cVO2UKVPw9ttvS9tQM7Nr1y507drV4/N37tyJLl26+K8hkszBg3XIytKJqh0/vhJz54ZL2xARUYA5nU4cPnwYNputwXNdLuDjj2Mwc2ac2/GUFAv++ANITAxskBGRJ8Z8PQZf7f3K7VirsFbIeSAHgiAEuKvzczkdOH4sB5U1gQ3Oig9zITrE99Cm8yk2anGq2rOQJalEhaoQn9wGskb237kxOFx2GHd9dxd+yfvF7f1xfeJC4vBCvxdwZ3fPArWrzFVIfTsV1Rbpgqmn95+OJ3o/Idl8AJCfn4+ampqzjtlsQEGBGocOaXD48N//q0FRkerMOQqFC9XVTmi14sM7iEgamwo24fI5l9f7mnZ719sx+9rZAe6KAsFut+PgwYNeh0ba7cDMmXH49NMYAKdf01eurMGgQaH+aJPII0VFdiQny+Fyef8eQ1qaFUePKiEIgXl/goiIiKgl4dNFIiIiIiIiIiIiIiIiIiIiIqIWatIkHT79tA5yuTSfK3jkiBp9+zpw7FjDm7yJiFoSvUqPTnGdzh0wAgs+XCB63sGDB+Pzzz8PWCAYADz22GOYOnWqqNqZM2fizz//lLgjoqZh1Sqz6Np+/fgZ0ETU9AmCgIyMjAbDkCwWGZ54IrneQDAAOHZMjREj7DCZHFK3SeSTpX8trTcQTCEosOnWTY0uEAwAZIIcSclpMIRoArruySoZKmr99++jtFYZ8ECwcL0G8ckZDASrR2ZUJtZNWIeTj5zEdVnXQS7zLNSquLYYd31/F8JmhOGFX16A03n+/66zts2SNBAMAJ5e9zR+OvqTpHOazefeIyiVQEaGBYMHV+GBB0owc2YBVq8+hN9//wvz5uXgmWeKcNddpxgIRtQIFFUXYeC8gfUGgvVI7MFAsGZMoVAgNTXVq5rycjkmT047EwgGAHa7DBMmaJGba5K6RSKPLVliERUIBgBDh1oZCEZERETkJ3zCSERERERERERERERERERERETUgk2YEII5c+qgUEgTNnH0qBp9+7qQn89gMCKi//Vk7yfPPbgZcJjFhVm0atUKX3zxBRQKhY+deW/GjBno27ev13UOhwMvvviiHzoiavx+/VXcpn2ZzIVrrgmRuBsiouBQKBRIT0+vd7y0VIFbb22NH34Ib3Cu7OwQTJxYA4cjsIE/RPUpMZZg7LKx9Y5/MuwTJIcmB7Aj78jkSqQkJ0KnVQd03eNVSlTXSv99XFErw8mqwG6bM4RokJSSCpnAsKaGxOpjsWz0MlQ+UYnbu94OlVzlUV21pRr/2fAfhEwPwf0/3A+z/dxQLZPNhLf+eEvqluF0OTHm6zHIrciVbE673e7xuQaDE1271mH06HLcf3+FZD0QkTh2px3dZneD2eE+ADw2JBabJm0KcFcUaAaDAdHR0R6d++efWowenYEtW/TnjJWUKDFqlBMWC+9tKDhWrBAf6jVyZODfnyAiIiJqKRgKRkRERERERERERERERERERETUwo0bF4K5c01QKKTZcJCbq0K/fi7k5TEYjIjob6MvGA2tQvvPARuAneLmkslkmD9/PiIiIiTpzVtyuRxffPEFDAaD17Vff/01Dh065IeuiBq3P/7QNnySG+3bmxEX51lIAhFRU6DRaJCSknLO8YMHNRgzJh179ug8nmvx4nA891ylhN0Ridfn8z6wOqxux4ZmDsWELhMC3JH3BKUOrZJioNEE9trjWLUORpN0z5Cq65w4XhXYfwadVo2UpATIPAy3otP0Kj1mXzsbtU/V4sneTyJE6VkYrtluxszsmTBMN2DM0jEorys/M/b5rs9RUlvil37LTeW4fvH1qLPV+TyX0+mEyyXuQxrU6sCG9xHRuXp/1hsnjSfdjqnlauy8cydUCv5MaAni4+Oh09V/D+NyAUuWRGDChNY4ebL+r4lt20Jwzz1V/miR6LwqKhzYtEkjqjY21obevXldQkREROQvDAUjIiIiIiIiIiIiIiIiIiIiIiLcfLMOCxaYoVRKEwyWl3c6GCw3l8FgRER/G9xm8D9/2QtA5D7i8ePHo0+fPpL0JFZSUhKee+45r+ucTidmzJghfUNEjdi+fXUoKhK3GbhXL7PE3RARBV9YWBhiY2PP/H39egPGjTv/Jvn6vPJKBBYsqJCyPSKvPfDjAzhU5j74NkYXg29u+ibAHYkn14QjLT4MKpUyYGu6XC4UVIXCZHIfquaN2jobjlV5Hi4oBY1ajVaJ0RBUngVa0bkUggKv9H8F1U9U4+2r30a0LtqjOrvTjq/2fYXo16Jx9fyrcbT8KF77/TW/9rrr5C5M/m6y6ECvvxmNRtG15wufISL/u3PlndhyfIvbMRlkWDN+DRJDEwPcFQVTWloa5HL5OcfNZhn+858kvPBCEmy2hrfzf/ZZBD76iPc2FFjLl1s8+vp0Z/BgK+RymcQdEREREdHfGApGREREREREREREREREREREREQAgNGjdfjyS+mCwfLzVejb14UjR3zf1ElE1By80v+Vf/6yU9wcarUa06dPl6YhHz3wwANIS0vzum7BggUoLCyUviGiRurHH8UHe/XrJ10fRESNSWxsLPR6A+bMicaUKakwmc7dRO8Jp1OGyZNDsXlzjcQdEnnml7xf8N7W99yOCTIB6yesh0JQBLgr3yj0cUiLD4FCEbi+nU4n8qrDYTGJv24ymazIrw71OazJGyqVEmkJoZBrIwK2ZnMmCAKmXDIFpx49ha9u+AqpYake1bngwk85P6HNe22QW5nr5y6B+Xvm44PsD3yao7a2VnStXq/3aW0iEu+jbR9h9o7Z9Y7PvGYmeqf2DmBH1BgIgoD09PSzjh0/rsT48en45hvvrhEeeigUf/zBexsKnG98yC++4QbGVBARERH5E6+2iIiIiIiIiIiIiIiIiIiIiIjojJEjdfjqKzNUKmmCwY4dU6FfP+DQIQaDERG1i26HJEMSUAvgmLg5JkyYgISEhAbPszlsKKwuhNMlzeu5OwqFAlOnTvW6zmazYd68eX7oiKhx2rhRXNCNXO7CoEEhEndDRNR4pKSkoLBQA5dL5tM8tbVy3HijGgUF4sOEiMQwWo0Y+uXQesf/2/+/6BjbMYAdSUcVmoy0ODXkcnHXMWI4HA7k1UTBavH+e9litiCvOhxOp//uf/5NoVCcDk/TxwVszZZk9AWjkf9gPtaOX4sO0R2C3c45Hlz9IDYVbBJdbzKZRNdqNBrRtUQk3m8Fv+Hu7++ud3xSl0m4p8c9AeyIGhO1Wo3k5GQAwG+/6TF6dAb279d6PY/JJMeYMSqUlvI9NfI/k8mJdevUompDQx24+mpekxARERH5E0PBiIiIiIiIiIiIiIiIiIiIiIjoLNdfr8OiRWao1dJspDx+XIUrrpDh4EFuYiAiur3r7cBBAC5x9VOmTKl3zOF04MfDP2LUklHQT9cj5a0UtJvZDlsKt4hbzAO33norQkNDva6bP3++H7ohanycTifKysT9ynaHDiZER6sk7oiIqPGQywXMnRuKHj1qfZ7r+HEVRo+2w2azS9AZkWeunHslam3uv34vTbkUUy/zPkC3MdFEtEarGAUEIXDbz2x2O/JrYmC3ev4MyWaxIK8mEg6Hw4+dnU0ulyMtTgVVaHLA1myprmx9Jfbduw+7J+/GJUmXBLudM+xOO25cciOKaopE1Vu9+Br/X4IgBPR7kohOO2k8iQHzB8BVzwO9bgnd8NnwzwLcFTU24eHhOHEiBnff3QpVVQrR8+TlqTFmjAUOR+DCTqll+v57M2prxYUADxxohkrlW8A3EREREZ2fzOVyify1EiIiIiIiIiIiIiIiIiIiIiIias5WrjRh1Cg1zGZpNpolJNiwZo0THTqI+9RpIqLmwGw3Q9tJC+z3vrZr167YsWPHOccPlR3CnJ1zMG/PPLcbkpMMScidkgulXCmm5QZNmjQJn3/+udd1W7ZsQc+ePaVvqAnbtWsXunbt6vH5O3fuRJcuXfzXEPmspqYG+fn5KC+XY9u2EGzdGoLs7BDk5GgarL3zzgp89FFEALokIgquoiILevUCCgrE3ytGRdnw7rsF6NbNjszMTAamkN+9/OvLeGb9M27HDCoDiqcWQ6vUBrgr/zCWHET+KTsCuQVNq1EjLbQMcsX572HsVityq6NgERmwJIYgCEiLVUIXnRmwNekfBVUFuGvlXfgp5yc4XcEPS7k05VKsn7AeKrl3Yb579+4VtZ5arUZmJr/2iNxxOp04cuQIDh48iEOHDuHgwYM4fPgwKioqYDQaYTQaUVNTA7PZDKVSCZVKBYPBgKioKERHRyMlJQVpaWlIT0/HBRdcgA4dOkCr1cLutCP1rVScMJ5wu26sLhbHHjoGlYKh3nTaTTdVYtGicJ/nefzxcsyYEel7Q0T1uPnmWixcGCKqdsGCOowdq5O4IyIiIiL6XwwFIyIiIiIiIiIiIiIiIiIiIiKien3/vQkjR0oXDBYfb8PatQwGI6KWTRWugq3K5nXd9OnT8cQTTwAAqi3VWLxvMebsmoPfj/3eYO3B+w6ibVRbr9f0xKpVqzB48GCv6+69917MnDnTDx01XQwFa36OHTuGqqqqc46XliqQnR2CLVtOh4S5C8JZtKgSo0aFB6BLIqLg2769FldcoUFNjdzr2nbtTHjvvQIkJJy+vtLr9UhLS5O4Q6J/7DqxCxd9fBFcOHdLlgwybJy0EZelXhaEzvyn+uR+FJQ6ArpmiE6NVvoyCPUEgznsNuRVR8FktgSsJ5lMhlYxCuhj2wVsTXKv0lyJe7+/F4v/Wgy70x7UXu7pfg/eH/K+x+dbrVYcOnRI1FphYWFISUkRVUvUHOXk5GDNmjVYs2YN1q5di/LycsnmFgQBWVlZKI0sRUlECZAGIOrsc9RyNY48cATJocmSrUtNX22tHZdcYsXevb4FJgmCC19/XYURI8KlaYzof9jtLsTFOVBervC6VqNx4tQpQK9nGDcRERGRPzEUjIiIiIiIiIiIiIiIiIiIiIiIzmvVKhOuv14Fk8n7zdnuxMbasHatCxdcoJJkPiKipqSwsFD0Bt6t2VthjDJizq45WPrXUpjsJo9r/7rnL7SPaS9q3YbU1dUhIiICVqvVq7r4+HgUFRVBJpP5pa+miKFgzc/BgwdhszUcAnjypALZ2Xps3Xo6JKy4WIFTpxwID3cfgkFE1BwtWVKJMWPC4HB4fm1wxRXVmDGjEDqd86zj0dHRiI+Pl7pFItiddsS9Hodyk/vQkUcvfRSvDnw1wF0FRkXRfhwvD2wwmCFEjVR9OWTys8MKnA478msiUVsXuEAwAEiJliMs3j/3VSSO2W5Gh/c7ILcyN6h9zBk+BxO7TPTo3PLychQVFYlaJzExEZGRkaJqyb/MZjN27dqF7du3Y9u2bdi2bRv2798Ph8P71805c+Zg4sSJ0jfZTFRUVGDevHn45JNPsHfv3sAuHgogHUBbABnA+jvXo19av8D2QE3CgQN1uPRSFSoqvA9c+lvfvtV4+eVCdOnSCiEhIRJ2RwT89JMJV1+tFVV71VV1WL3at9A7IiIiImqY+LsJIiIiIiIiIiIiIiIiIiIiIiJqEQYN0mL5chOuu06Fujrfg8FKSpS48kob1qyxolMnBoMRUcuSnZ0tqk6j12DUxlHIq84TVZ9oSBRV5wmdToeePXti06ZNXtWdPHkSe/bsQefOnf3UGVFwOZ1OjwLBACA+3o5hwyoxbFglAKCsTInw8HZ+7I6IqPG58cZwHDxYjmnTPAs7ufXWU5gypRiCcO5YaWkpNBoNwsPDpW2SWryhXw6tNxCsY0zHZhsIBgARie3hcB7AyUp7wNasqbXguCwCSfpqyITTgYEupwOFxsAHgiVGMhCsMTpafjTogWAAMPm7yegU1wkXJVzU4Lm1tbWi19Hr9aJrSToWiwV79uzBtm3bzoSA7du3D3Z74F4fW6Ls7Gy8++67WLp0Kcxmc3CaqAaw6/QfhUqB1/e8jmOjj2HEiBEwGAzB6YkapawsHWbPrsSoUWFwOr37QASZzIV77inBnXeegiAAeXl5aNeuHRQKRgKQdJYtEx/2O2KES8JOiIiIiKg+bt76ICIiIiIiIiIiIiIiIiIiIiIiOttVV2mxYoUVISHif0n8f506pUT//gJ27gzsBk4iomDbv3+/qDpzlFl0IJhOqUOoOlRUrae6du0qqm716tUSd0LUeBiNRtG1KSlKCTshImo6nnkmErfcUnnecxQKJ156qRAPPeQ+EOxvhYWFMJlM0jZILdrH2z/G6qPur181cg1+nfhrgDsKvOjkLESHBTbgvdJoRXGdHi6nCy6nC0W14aiuDezzpLhwBSITGQjWGL36e+MI4rM4LLh+0fUorStt8FxfwoxUKn7AQqDZbDbs2LEDH3/8Me68805069YNBoMBPXv2xD333INPP/0Uu3fvZiCYHx05cgSjRo1Cz549sWDBguAFgv2L3WrH999/j/HjxyM2Nhbbt28PdkvUyNxwQzgefbTCq5rQUDs++CAfkyefOnOv43K5kJOT44cOqaVyOl34/ntx1xRyuQs33KCWuCMiIiIicoehYERERERERERERERERERERERE5JEBA7RYudImWTBYaakCAwfKsX07g8GIqOXIz88XVxgnfs1EQyJkMpn4CTxw4YUXiqpjKBg1Z5WVlaJrDQaDdI0QETUxn34aissucx+sGBFhx6ef5mH48EqP5srJyWFIB0kirzIP93x/T73jS25cgkhdZAA7Cp64pDaIMAQ2CKC02o5SkxbFdXpU1FgDunZ0mAoxyVkBXZM8k1+Zjy///DLYbZyRX5WPMV+Pgd15/p87NptN1PwKhUJUHXnObrdj9+7d+PTTT3H33XejR48e0Ov16NatG+666y7Mnj0bO3bsEP3fkLxTXl6O+++/Hx06dMCSJUuC3c55mc1m1NTUBLsNaoRefjkcAwZ49rXRvr0JixYdRe/e594LWa1WFBYWSt0etVDZ2RYUFooLBbv4YjNiY3lNQkRERBQIvOoiIiIiIiIiIiIiIiIiIiIiIiKPXXGFBt9/b8bQoYDRKPd5vrIyBQYOBH76yYLu3fnJ0kTU/BUUFIgr9CFfINGQKL7YQ5mZmaLqNm3ahNraWoSEhEjcEVHw1dXVia6NiIiQsBMioqZFpRKwbJkKl1xiQW7uP/eJbdqY8d57+UhO9jyIw+Vy4ejRo8jMzIQgCP5ol1oAp9OJ3p/1hsPlPiR9QucJGNpuaIC7Ch6ZICAxuTUcx/JQbTQHbN3iKheAwIb8RRjUiEvKCOia5Lk3N7/ZYABXoK3JWYNn1j2DGQNmuB13Op1wOp2i5lapxIV3kHsOhwN//fUXtm/fjm3btmHbtm3YvXs3zObAva5R/davX4/x48czBImaPLlcwMKFavToYUFeXv3vgQ0fXoFnnimCRuOq95zKykro9XqEh4f7oVNqSZYsEX/9NHy4NB8cRUREREQN4zsaRERERERERERERERERERERETklb59NfjhBxtCQ6X5xe+KCgUGDpRjyxZuuCKi5u/YsWPiCg3i1wxEKFhCQoKoOqvVim3btkncDVHwOZ1O2O3iNtgJggCFgp/9TEQtW2ysCsuW2RAWdvq1tHfvGsyfn+NVINjfbDYb8vPzpW6RWpBx34zD8ZrjbsdSQ1Px2bWfBbij4JPJFUhOSkKIThPsVvwmVK9BYnJryBgo2CiV1pVi9o7ZwW7Drf/+9l98/dfXbsdMJpPoebVarehaOtf8+fPRqVMnTJo0Ce+//z62bNnCQLBGwGaz4fHHH8eAAQMYCEbNRnS0CgsXWqHVnvuemkLhxLRpx/Hii8fPGwj2t8LCQlgsFn+0SS3Id98pRdeOGsUPeCIiIiIKFD6VJCIiIiIiIiIiIiIiIiIiIiIir/XpI20wWGWlAldfrcDmzdx4RUTNW2lFqbhCvfg1E/X+DwVLTBS/xo4dOyTshKhxqK6uFl3Lzf5ERKd16aLH3LlGjB9fivfey4de7xQ9V21tLU6cOCFhd9RSLNu/DF/u/dLtmEJQYOOtGyG00NAoQalFalIstJrmFwwQotMgOSkJMjmDWhur97a8B5NdfMCWv01cMRF/nfrrnONGo1H0nHq9Dw8GiJqAkpIS9O7dG6+++iqcTvHXfUSN0SWXGPDmm2c/K4qLs2Hu3FyMGlUBmczzuXJycvg9QqLt32/BwYPirt87dzYjLU18oBgREREReadlPnUmIiIiIiIiIiIiIiIiIiIiIiKfXXaZBqtW2RAWZpdkvqoqBQYNUuK33xgMRkTNS2ldKd7d8i66ftQVxRXF4ibxYZ99osH/oWC+bE7evn27hJ0QNQ5VVVWiaw0Gg4SdEBE1bcOHh+Oll0xQSJDLU1ZWhvLyct8nohajtK4UY74eU+/4x0M/RmpYagA7anzk6lC0SoyAWqUKdiuS0WrUSE2KhaBkUGtjZbQa8d7W94LdxnkZrUZct+g6VJnPvi8wmcQHmYWEhPjaFlGjlZubi8suuwxbt24NditEfjN5cgQmTaoEAPTsacSiRUfQqZP3PxccDgfy8vKkbY5ajCVLxL+nO2yYNO8HExEREZFnGApGRERERERERERERERERERERESi9eqlwerVdoSHS/OL4NXVclxzjRIbNzIYjIiaNrvTju8PfY+Ri0ci8Y1ETFk1BbtO7gJsIif0IQgjEKFgMpkMKpFBAAwFo+bIl83+4eHh0jVCRNQMpKSkQKPRSDJXUVER6urqJJmLmr8+n/WB1WF1OzYkcwgmdZ0U4I4aJ4UuGmkJeiiVymC34jO1SoVWiRGQq0OD3Qqdx+zts1Fhrgh2Gw06VHYIE5ZPgNPlPHPMYrGImksmk0EQmsZWUKfLedY/M1FDdu3ahUsvvRRHjhwJditEfjdrViimTTuBjz7KQ1SUQ/Q8dXV1KC4W+eET1KJ9+61cdO2oUc0nCJiIiIioKWgaT4KIiIiIiIiIiIiIiIiIiIiIiKjRuvhiDX7+2YHISOmCwYYMUWLDBgaDEVHTc6D0AB7/+XGkvpWKoQuH4uv9X8Pm/J8kMLF7vcTv1QlIKBgAqNVqUXWHDh2C0WiUuBui4HE6nbDbxV0XCYIAhcKHFEAiomYqPT0dcrkPF0T/Izc3V/TrNLUcD616CAfKDrgdi9JGYflNywPbUCOnNCQiLU4j2fdpMCiVCqQl6KHQRQe7FToPq8OKNza/Eew2PLbi4ApM3zj9zN/F/vxprKF7LpcLORU5WLR3Eab+NBV9P++LsBlhkL8gR5cPu2B7EUPA6fx27dqFvn374uTJk8FuhSgg1GoBTz4ZDike/Zw6dQo1NTW+T0QtRmGhDTt2iHuGn5FhwYUXMhSMiIiIKJD4jjEREREREREREREREREREREREfmse3c1fv7ZgquuAsrKfP+1pJoaOYYMAVauNOOKKzQSdEhE5D9V5ios2rcIc3bNwR+Ff5z/ZAHigsHEhokhcKFgFotFVJ3T6cRff/2Fnj17StwRUXBUVVWJrtVqtRJ2QkTUfAiCgIyMDBw+fBgul8unuVwuF44cOYK2bdtCEASJOqTm5Ne8X/H2lrfdjgkyARsmboBC4Jasf1OHt0Ka4yhyiy1wOp3BbscrcrkcaXFaKAN070TifbHnCxyvOR7sNrwybf00XJRwEa5Kv0r0zzCxIdxSO159HNuKtiG7KBvZRdnYVrQN5aZyt+fuLt6NkUtG4sC9B6BWNI7+qXHJz8/HNddcg+rqaknnlcvl6Ny5My699FJkZmYiIyMDrVu3RlhYGEJCQhASEgIAMNYZ0eHtDjhZchIwAqgGUAqgDMAJAJWStkV0hlarRWJiIoqKinyeq6CgAO3atWPAPHlkyRIrXC5xQaNDh9oA8Oc5ERERUSDxKp+IiIiIiIiIiIiIiIiIiIiIiCRx0UX/BIOVlvr+q0m1tXIMHQqsWGHCgAEMyCCixsXpcmJ97nrM2TUHy/Yvg8lu8qxQCXEBX3YRNf8vwZAgvthDLpcLVqtVdH1OTg5DwajZ8CUULCwsTMJOiIiaF5VKhbS0NOTm5vo8l91uR25uLjIyMiTojJqTOmsdrvnymnrHp/efjo6xHQPYUdOijcpAK+ch5JXYfA7wCxRBEJAWq4Q6vFWwW6EGOJwO/Pe3/wa7Da+54MLNy27GutHroIS4IA6dTidxVw0rqys7E/yVXZSN7OPZOGE84dUceZV52HdqHy5KuMhPXVJTVVFRgcGDB+PECe++puqj1WoxfPhw3Hzzzejbty9CQ0MbrBm+bDhO4iQQi9N//odKUGHzmM04vv841q5di59++gn79++XpFciAIiMjITRaPQ5FM/lcuHo0aPIzMxk4DE1aMUKmejakSMZSUFEREQUaLwCIyIiIiIiIiIiIiIiIiIiIiIiyXTtqsbatVYMGGDDqVPiNrn9r7o6Oa69Vo3ly0246ioGgxFR47C9aDvGfTMO+0tFbAYU+5ubFnFloepQ6FV6kYt6zmg0+lSfk5MjUSdEwWcyeRgS6EZ4eLh0jRARNUMhISFITExEUVGRz3OZTCYcP34cSUlJEnRGzcWV865Era3W7Viv5F547LLHAtxR0xMS0xYpzgMoOOVDsnGAyGQytIpRQBvVJtitkAdWHFyBg2UHg92GKJXmSoxYOA5dd6xCh0wBmZlmtG1rQViYZ6nhBoPBr/3VWGqw/cR2ZB/PxrYT25B9PBu5lb6HcAKAThn4QLPGQKVSwWAwoKysLNitNDo2mw3Dhw+XJGQrKSkJTz75JMaNG+dRENjfpvw4BRsLNrodk0GG727+DhdlXISL2lyEYcOGAQDy8/OxdOlSfP3119i8ebPPvRMlJyfj8OHDsNlsPs1js9lQWFiI1NRUiTqj5qi83IHfftOIqk1IsOHSS9USd0REREREDWEoGBERERERERERERERERERERERSapTJxXWrbOif38bSkp8DwYzmQSMGKHGsmUmDBrEYDAiCq46Wx0GfzEYp+pOiZtAJXJhkZlbiYZEkQt658SJEz7VMxSMmgun0wmHw7ON/f8ml8shCILEHRERNT+RkZEwmUyoqKjwea6KigpoNBpERUVJ0Bk1ddM3TseW41vcjulVeqwZtybAHTVdoXFZSHbsR2G5uOuiQEmJkiMkpm2w2yAPuFwuzNg0I9ht+KTAug8FzsewYvoXAGQAgNhYG9q2Nf9/SNjp/01Pt0KpdJ1Vq9GIC/Fwx2w3Y9fJXWcFgB0oPQAXXA0XeylGF4O2Uc3/e0ypVOKCCy5A9+7d0a1bN3Tv3h0XXnghXnnlFTz//PPBbq/ReeaZZ7Bxo/tALk+FhYXhueeew+TJk73+/vh85+d4d+u79Y6/NvA1DMwYeM7xVq1a4ZFHHsEjjzyCI0eO4LPPPsPcuXMlCaullkkQBGRkZODgwYNwuXx7Da6urkZ5eTkiIyMl6o6am2XLzLDbQ0TVDh5sgSD4/n4vEREREXmHoWBERERERERERERERERERERERCS5Cy5QYf16C/r3t+HkSWmCwa6/Xo2lS0245hoGgxFR8PxW8Jv4QDAAMAAoF1HHUDCiJqGyslJ0rVbLaxwiIk8lJSXBYrGgrq7O57lOnDgBjUaDkBBxG6SpedhTvAdPr3u63vEfx/4InUoXwI6avvDE9nC4DuBEhT3YrbiVHClHaHxWsNsgD63PW4/souxgt+G7TgsBhQlY8jXgElBSokRJiRKbNhnOnKJQuJCWZjkTEnbJJSZccIG45WwOG/ad2ofs49nILsrGtqJt+LPkT9idgfm+7J/eH4KseQUfK5VKdOzY8awAsE6dOkGlEpsC37KsW7cOr7/+uk9zDBgwAJ999hlSUlK8rt1WtA23rbyt3vExF4zBI5c+0uA8bdq0wSuvvIIXXngBS5YswVtvveV1L0QAoFAokJqaivz8fJ/nKioqglar5fMlcmv5cvG1N9wgl6wPIiIiIvIcQ8GIiIiIiIiIiIiIiIiIiIiIiMgvOnRQY+1aCwYMsOHECWmCwW64QY0lS0wYOpSbGogoOKJ10b5NECqyrkxcWaBCwQ4fPuxTfW5urkSdEAVXdXW16NqwsDAJOyEiav7S0tJw6NAh2O2+B5scPpyP1NQ2iIxkoEdLZHfaccXcK+CCy+34I70eQe/U3gHuqnmISsqC3XkQp6pswW7lLAkRCoQnMhCsKZmxaUawW5BOh+XAlFbA+peAP28GnGc/N7XbZThyRIMjRzQAgJqaCtx0U8PTOl1OHCo7dCYALLsoG7tO7oLZbvbDP4RnBrQeELS1paBQKNCxY8cz4V/dunVD586doVarg91ak1ReXo7x48fD6XSKqpfJZHjxxRfx1FNPQSaTeV1fWleKvp/3hdPlfv0LYy/Elzd86dWcCoUCY8aMwZgxYyS5JqWWyWAwICYmBqdO+fBBFP8vNzcXWVlZEITmFchIvqmrc2L9eo2o2vBwOwYOFFdLRERERL5hKBgREREREREREREREREREREREflNhw5qrF9vxZVX2lBU5HswmNksYORINb76qg4jRugk6JCIyDtdE7ri+vbXY9n+ZeImEJv5UyKuLFEfmFCwvXv3+lRfXFwsUSdEwVVXVye6lqFgRETeEQQBbdq0wcGDB+FyuQ9z8kRFhRwPPZQKg8GCn35SQKnkBvqWZtiXw1BuKnc71iG6A16/6vUAd9S8xCZlwuE6ivJqS7BbAQDEhCkRldQu2G2QF7YXbcfPOT8Huw1phRcC100ErnwG+P0RYMftgE3v9tSOHc/9GedyuZBXmYdtRdvOBIBtL9qOGmuNnxv3zoD0phMKplAo0KFDh3MCwDQaBqFIZfLkyTh+/LioWqVSic8++wy33HKLqHqH04GuH3VFnc39PXukNhJb79gqau6/KRTcrk3ixcXFoba21qfnSgDgdDqRk5ODNm3aSNQZNQfffWdGXZ2491QHDrRAqQyRuCMiIiIi8gTvMomIiIiIiIiIiIiIiIiIiIiIyK/atVP9fzCYFcePq3yez2IRMHq0BgsX1uH66xkMRkSBN2/EPNRaa7H66GrviyNELloMwAVA5l1ZoiEwoWA7d+70qd5kMsFkMkGr1UrUEVHg2e12OJ1OUbVyuRyCwBAaIiJvKRQKtG7dGjk5OaLqc3LUuPfeVigsPH2vevfdFfjkE7EXbNQUzd4+G6uOrnI7pparsXHSxgB31PzIBAEJyelwFOSgyhjcYLDIUDVikzKC2gN5b/G+xcFuwX/CCoHBDwGDHgaOXQrsvQnIGQCUtsPfDwC6dVPiRM0JZBdlnwkB21a0DaV1pcHtvQFtItugVXirYLdRr/j4eEycOPFMCFjnzp35TMKP1q9fjyVLloiqFQQBixcvxogRI0Sv339efxRWF7odUwpKbLtjGzQKBsBRcKWlpeHgwYNwOBw+zWM2m3HixAkkJCRI1Bk1dcuWiQ/Rvv56L9+QICIiIiLJMBSMiIiIiIiIiIiIiIiIiIiIiIj8rm1bFX755XQw2LFjvgeDWa0CbrpJgy++qMONNzIYjIgCK0QVgm/HfIvx34zHon2LvCuOF7moCcBJAF7u5QpEKJjJZMKWLVt8nqesrAzJyckSdEQUHFVVVaJrdTpezxARiaXT6ZCYmIiioiKv6n77TY+pU1NgNMrPHPv00wi0a1eORx+NlLpNaoTyK/Nx9/d31zu+aOQiROr4tSAFmSBHckorOAsKUFNrDkoPYXoNEpJbQ8Yg1ibneM3xYLfgfzIXkPrb6T8AYIwFbDrAKWDklhqU/nIquP2JMDB9YLBbOK9BgwZh0KBBwW6jRXA6nXjwwQfF1w924q+ovzDcNRwymffhNA+teggb8je4HZNBhpVjVqJ1RGvR/RFJRRAEpKen4/Dhwz7PtWqVGe3b1+CSSwwSdEZNmc3mwk8/qUXVarVODBvGwEQiIiKiYOFTTCIiIiIiIiIiIiIiIiIiIiIiCog2bVRYvx5ITbVKMp/NJuDmmzVYtKhOkvmIiLyhkqvwxfVf4O7u9YcIuBUH8b+9meN9SSBCwTZt2gSLxeLzPGVlZRJ0QxQ81dXVomvDwsIk7ISIqOWJjIxEVFSUx+d/+WUk7rmn1VmBYH976qkIrFhRKWF31Bg5nU70ntMbDpfD7fi4TuMwPGt4gLtq3mRyFVKS4qHTigsl8IVep0FySipkwrnf89T4DWs7LNgtiKYUlNAqtJC55IDLi0J9CRCRB0TloNTU9ALBAGBA+oBgt0CNxOzZs7Fnzx5xxRcD6AE8ve5pjPtmHMx274Il5++ej7e3vF3v+IwBM3B1m6vF9UbkB2q12qcPTXC5gM8/j8Idd6RhzBgVTp2S5v04arrWrjWjokIhqrZfPzNCQhhFQURERBQs4q7iiIiIiIiIiIiIiIiIiIiIiIiIRMjIUGHDBhuuuMKKvDyVz/PZ7QJuuUUDp7MOY8boJOiQiMhzckGO9695HzG6GLzw6wueFSkAxAI4KWLBfQAu864kEKFgixcvlmQehoJRU/fllyokJrrQubMJKpU3O/6B0NBQP3VFRNRyJCQkwGw2o7a2tt5zbDbgv/9NwKJF9QeI2e0yTJigx4YNRnTurPdHq9QITFg+AYXVhW7HUkJT8PnwzwPbUAshqPRolRiN3MJTMFsCE1Kh06qRmhwPmdz351AUHKM6jsLRiqN4c/ObKDOdfd+oEBRQyVVQy9Wn/1ehPuvv7o65PcfXejfnKAUlZDIZAKBz5zrsOVIH9HwPuPg9QFsRjH+VASODDFekXRHsNqgRqKmpwbRp08QVxwD4n2y5L/78AkfKj2D5TcsRr49vsHzHiR2YuGJiveOjO47GY5c9Jq43Ij8KDw+H0WhEZWWlV3W1tQKmTUvCzz+fDp7Py1NjzJgarF6tgFzOYKeW6uuvnaJrR4zw7vkmEREREUmLoWBERERERERERERERERERERERBRQaWlK/PLL6WCw3FxpgsHGj9fCbq/FuHEhEnRIROQ5mUyG5694HlG6KExZNcWzotYQFwpWBKAUQLTnJQmGBBELec5isWDp0qWSzMVQMGrKamrseP75BNhsAtRqJ7p0qUPPnrXo2dOIjh1NUCrrr1UoFBAEbs4kIpJCq1atcPjwYdhstnPGqqoETJ2aij/+aDjoq6pKgeuuU+KPP6yIjWWQUHOz4sAKLPhzgdsxhaDApls38WezH8m1EWgVb0VuUSWsbr5XpaRRq9AqMRqCigF/TZlMJsNTfZ7Ck72fRJmp7EwQl0qugiBr/N+rdrsThw+rAZMO+OV54PdHgYtmA1c8C6iNwW7PL7ondkeENiLYbVAjMHv2bJw6dcr7QgHADQD+dS+95fgW9JjdA9/e9C26JnStt7y8rhyXz7kcTpf7MJwLYi7AVyO/8r4vogBJTk5GXV0drFbPQlRzclR48MFU5OZqzjq+dq0BTz9djhkzIv3RJjVyTqcLP/wg7n5WoXDhhhs0DZ9IRERERH7T+J96ERERERERERERERERERERERFRs9OqlRIbNsiQkWGRZD67XYZJk3SYN69WkvmIiLz1wMUPYP518yGXyRs+ua0PC231/NRIbSQ0Cv9u3Jk3bx4qKyslmctkMkkyD1Ew/PyzETbb6V/NtlgEbNmix3vvxWHcuAxcdll7TJ7cCp9+Go0//9TCbj+7VqfTBaFjIqLmSRAEZGRkQCaTnXU8P1+FW27J8CgQ7G+5uWpcf70VVqv7MAlqmsrqyjB66eh6xz8c8iFSw1ID2FHLpDTEIS1eB4VC4bc1VEolWsWHQc5gomZDJpMhWheNUHUoNApNkwgEA4B9++pgMv3PswKrHvjjIeDVUuDXJ4BTWYCleX3QwYD0AcFugRoBu92Od955R1xxDwDx7ocKqwvRe05vLNu/zO240+lE14+7otbm/r2CCE0Etty+RVxfRAGUnp5+zn2NOz//HIoxYzLOCQT722uvReDrrysl7o6agj/+sKCo6DyfVHAevXqZERXlwXsdREREROQ3TePJFxERERERERERERERERERERERNTspKUps2CBHZqY0wWAOhwy33qrDnDl1ksxHROStWzrdghU3rWg4iCsVgNisrh0AjJ6dmmhIFLmIZ5xOJ1577TXJ5rNarZLNRRRo69a56h0zmeT47TcD3n47HjffnIE+fdrjvvtSMXduFPbv1yA0NCyAnRIRNX8KhQLp6eln/r51awhuvjkdeXlqr+f67Tc9brutWsr2KMj6zOkDi8P9c4jBbQbjtotuC3BHLZcqLAVpsSrI5dJvb1MoFEiL10FpiJN8biJvbd9ucz/gUAPrpgPv7wdmVAEfZwNrpgPFFwD13140CQPTBwa7BWoEli5dioKCAu8LNQD6nv+UOlsdblh8A1769SW4XGd/wwycPxAFVe7XVQpKbL9zO3QqhnNT46dQKJCWllbvuN0OvPlmHB5+OBV1dfWHNzmdMtxxhx4HDvC9s5Zm6VJ7wyfVY/hwhmMTERERBRtDwYiIiIiIiIiIiIiIiIiIiIiIKGiSkhT45Rc52rWTLhjs9tu1mD27VpL5iIi8NaTtEPw87meEqc8T8iMHkCVyATuA9Z6d6u9QsFmzZuHw4cOSzcdQMGrKfv/d86AZo1GODRtC8frrCZg8OQ0Gg8GPnRERtUxarRbJycn45ptw3HVXGqqrFaLnWrAgHC+9VC5hdxQsD69+GPtL97sdi9JG4dsx3wa4I9JEpqNVjBKCIN0WN7lcQFqsCqqwFMnmJPLFnj0enOSSA0XdgU1PALP+BGZvBkxNMzxYq9CiV0qvYLdBjcAbb7whrrA3AA8zu6atn4axy8bCZDMBAB796VGsy1vn9lwZZFhx0wq0jmgtri+iIAgJCUFc3Lkhp2Vlctx1VxrmzInxaJ6KCgVuvBEwGsWHRFHT8913SlF1MpkLN96okrgbIiIiIvIWQ8GIiIiIiIiIiIiIiIiIiIiIiCioEhNPB4NlZUkTDOZ0yjB5sg4ffcRgMCIKjt6pvbFh4gbEhZy7YeuMbj4ssANAYcOn+TMUrKSkBNOmTZN0ToaCUVNVVWXHn39qRNX27FkHuZy/0k1E5A/h4eFISgqB3S7zea7nnovA0qWVvjdFQbMxfyPe+uMtt2OCTMAvE36BQhAfHkfi6aIzkRIlQCbz/XtVJpOhVbQCmsh0CTojksb+/XLvi4ouQYdftqFTXCfpG/KzPq36QKMQd39Ezce2bduwbds27wtVALp7V7Jw70L0/bwv3t/6Pl7f/Hq9573S/xUMzhzsfU9EQRYTEwO9Xn/m77t3azFqVBts3ao/T9W59u7V4fbbjVK3R43Uvn1WHD7s+YcY/K8uXSxITRUXKEZERERE0uE7yEREREREREREREREREREREREFHTx8aeDwdq3ly4Y7O67dfjgAwaDEVFwdI7vjN9u/Q2tw1u7PyEFQLzIyV0AvgZgPv9piXr/hII5nU6MGzcOFRUVks7LUDBqqlavNsJuF/dr2X362CXuhoiI/tett0bgscd8v2ZxOGS48049TpyokaArCrQ6ax2u+fKaesdfvvJlXBB3QQA7on8zxGUhOdK3bW4ymQyp0XLoYtpK1BWRNG68sQz33luMgQOrkJZmgSC4PKq7MC0aGydtRP/W/f3cobQGtB4Q7BaoEVi4cKG4wi4ARGTKZRdl474f76t3fGSHkXii9xPieiJqBFJTUyGXK7BoUSQmTmyNkhJxgU2LFoXj9dfLJe6OGqNFi8Q/ax82jM8riYiIiBoDhoIREREREREREREREREREREREVGjEBd3OhisY8cGUm485HLJcN99Orz3HoPBiCg4MiIz8Nutv+HC2Avdn3CxD5NXAPgGgLP+UxIN/gkFe/bZZ/HTTz9JPi9DwaipWrfOs0397gwapJKwEyIicueVV8IwfHiVT3MYDA68+uoxlJXlw2KRJsyaAqf/vP4wWo1uxy5JuoQhIY1EWEJ7pEYrIAjeb3eTy+VoFaOAIS7LD50RiWe323HJJbWYPPkU3nzzGFauPIwtW/7CV18dwQsvFOKWW0px8cVGREaeG77RoYMToepQ/DD2B9zS6ZYgdC/OgHSGgrV0LpcLixcvFlfsy7OyenSI7oBFNyySfmKiABIEAQkJ6ViwIEp0MP3fnn46HL/8wrDj5m7lSoXo2tGjxYXOEREREZG0xF/RERERERERERERERERERERERERSSw2VoFffpHhyivN+PNPjc/zuVwyPPBACJzOWkyZEiJBh0RE3kkwJGDDxA0YunAofj/2+9mDnQH8BqBU5OQHAawEcC0A2bnD/ggFe+edd/Dyyy9LPi9RU/b772pRdTExNnTurJO4GyIi+je5XMAXX4SgT5867Nzp/etuq1YWzJyZj7S00wGmR48eRbt27SCXy6VulfxgxqYZ+OP4H27H9Eo91o5fG+CO6HxC47OQrs5BwSkbrFabRzUatQqpsRqowlL93B2R92pqzg1d0Whc6NjRfM4HI5SWynHokAaHD2tw6JAGl112+kZfJVdh3oh5SAlNwfRN0wPSt1jRumh0ju8c7DYoyDZt2oTCwkLvC5MAREnbS4QmAtl3ZIsKnCRqbMLDVVi4sAZXXqmAyST+XsRqFTB2rBrZ2RYkJop7pkWNW36+Dbt2iXuPtW1bCzp04NcFERERUWPAO1kiIiIiIiIiIiIiIiIiIiIiImpUoqPlWL9eic6dzQ2f7KEHHwzBm2/WSjYfEZE3IrQR+HnczxjcZvDZAwKA/j5OvhPAMgD2c4ekDgV74YUX8OCDD0o65/9Sq7nZiJqe0lIr/vpLK6r24otNkMv569xERIEQEqLA8uUCkpKsXtVdfLERX3yRcyYQDACcTieOHj0Kp9MpdZsksb3Fe/H0uqfrHf/+5u+hUzGgs7HRRKQjMyMdKVFy6LT13yOE6DRIjVEgIyODgWDUaNXWev48MjragUsvrcWECWV4+eXj6NPnnw84kMlkeKX/K/jgmg8gyBrvPUT/1v0bdX8UGIsWLRJXeIG0fcggw4ZJG/iznpqVSy4x4M03q32ep6hIhWefreE9TTO1eLFFdO2QIZ4F8xIRERGR//EJCxERERERERERERERERERERERNTpRUXKsW6dEly7SBYM98kgIXnvNKNl8RETe0Cl1WHHTCtx84c1nD7QHkO7j5H8C+BxA2dmHE//MA6qqfJwcKCsrw6hRo/Cf//zH57nOR6PR+HV+In9YtaoWDodMVO3ll7tJ8yMiIr9JTdVgyRILdDqHR+ffeGM5Zs3KQ1jYuedbrVYcO3ZM6hZJQnanHf3m9oPT5T7o4KFLHsLlaZcHtinymEyuRFhCe6RnZCIrPRHp8WokR8mREiVHRrwG7TOS0Dq9DULjsiAT5MFul6heZrP4Z5sqleqcY3f3uBvfjP4GWoW4YGJ/W5uzFneuvBPbi7YHuxUKoh9++EFcYQdp+3DBhVtX3Irj1celnZgoyCZPjsCkSZU+zTF2bCnuvbcYeXl5kvREjcu334q/Pr7xRoWEnRARERGRLxgKRkREREREREREREREREREREREjVJk5OlgsIsuki4Y7LHH9Jgxo1ay+YiIvKGUKzH/uvm4r8d9Zw8MB6D2cfJCAB8C2AjAevpQ/NCbgIgIIDMTuOkmYNYsr0LCHA4H5s6di44dO2LJkiU+NtgwhoJRU/TLL+JrBw3y9RufiIi81auXAR9/XANBcNV7jiC48MQTRZg2rQhKZf1z1dTUoKSkxA9dkhSGLxyOMlOZ27Gs6Cy8efWbAe6IxFLoIqGLzkR4QnuEJbSHNroN5NqIYLdF5BGr1SqqTi6vP8zj2nbXYt2EdYjWRYtty29KTaWYvWM2us/uDs1LGnT5sAumrZuGwurCYLfWpB0tP4pv9n+D3Sd3B7uVBhUUFCA3N9f7wngAYZK3g21F29Dzk57YVrRN+smJgmjWrFB07+79e11arRMzZhzDE0+chFLpQl1dHYqLi/3QIQVLaakDf/wh7jl7YqINF1/M55VEREREjQVDwYiIiIiIiIiIiIiIiIiIiIiIqNGKiJBj7Volunc3STbnk0+G4KWXjJLNR0TkDUEm4N3B7+L5fs//czAMwGAJJrcBWAvgHUC3Gih0AnC5gCNHgEWLgHvuAZKSgLvuAnbXv5G0tLQU7777Ltq3b4+JEyd6vTEsNDRUVPsMBaOmaPNmcV+3CQlWdOiglbgbIiLyxNix4XjqqQq3Y3q9A++/n4+xY8shkzU8V0lJCaq8CF2lwPh0x6f44cgPbsfUcjU2TtoY4I6IqCVyOp1wOp2ialUq1XnHL0m+BL/f+jsyIjJEzR8IFocFu4t346WNLyHlrRSETg9Fv8/74YPsD1BnrQt2e03Gx9s/Rvv32+P6xdejy0ddMP6b8TDbpfsQDamtX79eXGFrafv4X0U1Regzpw8W7V3kv0WIAkytFrB4sYCYGJvHNampFixYcBRDhpx9/3Lq1CnU1NRI3SIFyddfm2G3e3Az68Y111ghCOJqiYiIiEh6DAUjIiIiIiIiIiIiIiIiIiIiIqJGLTxcjjVrVOjZU7pgsGnT9HjhBe8/RZ2ISAoymQzP9n0WMwfPhAz/v8mmC4DuEi1QC9RtBjIAdAXwEIAvAWwFcLK2FsaPP4azSxeY+vfHqW3bsHv3bnz99deYNm0a+vTpg8TEREyZMgWHDx/2eukLL7wQt99+u6i2GQpGTU1xsRX794v7ur34YhPkcv4qNxFRsDz3XDhuvPHszfBJSVYsWJCD3r29C5E+duwYzObGG87R0uRX5mPy95PrHV80chGiddEB7IiIWiqLxSK6VqttOEA4MyoTv9/2O3ok9hC9TiDVWGuwIX8D7v3hXoRMD0Hca3G47qvrsOLACtHhac1dSW0JHl79MGzOf0J/5u+Zj6vmX4VyU3kQO6vfL7/8Iq7Qj6FgAGC2m3HT1zfhP+v/A6eLX2/UPLRurcXcuSYoFK4Gz+3XrxoLFx5F27bufzYVFBTAbrdL3SIFwfLl4kO9briBzyqJiIiIGhNenRERERERERERERERERERERERUaMXFibHmjVq9OolXTDYf/4Tgmef9W6zNxGRlO7teS++uP4LKATF6QODAbSRbn4XgF0A3gYwFsDFABIAGADIAejWrUNsjx7o0qULRo4ciZdeegmbNm2CzWarb8rzCg0NxdKlS1FXVye6nqgpqaqqwJNPnsDAgVUID/du4+Tllzv81BUREXlCLhcwd64ePXqcDou+6KJaLFx4FBkZ4gJccnJyuIm+EXA6negzpw/sTvf/LcZeOBbDs4YHuCsiaqlqampE14aEhHh0XmxILNZPWI+hbYeKXitYSupKsPzgcoxYNALKl5RIfycdd668E9uKtgW7tUbjh8M/oNZ27gdbbCzYiN6f9UZ+ZX4Qujo/UaFgMgCtpO7EvRd+fQGjl45GnU3csyuixmbw4FA880xFveMymQv331+Md94pQGho/YF4LpcLR48eZUhjE1db68SGDeI+wCAiwo4BA/ihHURERESNiSLYDRAREREREREREREREREREREREXnCYBDw009qDBpkwm+/aSWZ88UX9XA6jXjpJb0k8xEReWvMhWMQoY3A9Yuuhwkm4EYA8wAcD3Zn3lEoFFiwYAHatm2L0tJSUXMkJCRI3BWRfwlCDcaMMWPMmHI4ncDhw2ps3arH1q0h2L49BDU18nprBw/mJjsiomDTauVYvlyB//znFO6+uwQqlUv0XE6nE0ePHkVmZiYEQZCwS/LGpBWTcKz6mNux5NBkzBsxL8AdEVFLZjKJ/3ADvd7zZ5UhqhB8M/ob3Pv9vfh4x8ei1wwmp8uJ3MpczN4xG7N3zIZKrkJWdBaGth2Kyd0mIyUsJdgtBsWanDX1ju0v3Y9LPr0EP479EV3iuwSuqfMoLS1FXl6e94XRANQiF3UBKAdQ8v9/TgEwAbD8/x87AOX//NEBS8OXYss3W/DyDS/j6j5XIzY2VuTiRI3DM8+EY/v2aqxcefYHLoSF2fHqq4W49FLPPhzHZrOhsLAQqamp/miTAuDbb80wmXSiaq+6ygKFwrNQUiIiIiIKDIaCERERERERERERERERERERERFRk6HXC1i9Wo3Bg03YuFGaYLCXX9bDbjdixgwGgxFRcAxqMwhrxq/BkC+HoBKVwHgAXwHIDXJjHlIoFFi4cCGGDRsGADh16pSoeeLj46Vsi8jvLBbLmf8vCEC7dha0a2fBuHFlcDiAAwc0yM4OwdatemzfrkNd3emQsORkK7KyxG3QIyIiaSUmqvHmmxrk54sPBPubzWZDQUEB0tLSfG+MvPbtwW8xb4/70C+5TI5NkzYxsI2IAspsNouqk8lkkMvrDxh2RyEo8OHQD5Ealopn1j8jal1fdE/sjp/H/YzPdn6GpX8txZ7iPai11Yqez+qwYk/xHuwp3oNXNr4Cg8qALvFdMKrjKEzsMhF6VfN/jutyuc4bCgYAJ40n0WdOH3w96mtclXFVgDqr3969e8UVepsRbwOQA+AggMMAarxf8tjvxzB+4XgAQOvWrXHJJZdg4MCBGD58OCIjI72fkCiI5HIB8+fr0KOHGYcPnw6h79DBhDffLEBSks2ruaqrq1FeXs7vgyZq2TLx97XXXy+TsBMiIiIikgKfZhMRERERERERERERERERERERUZMSEiJg1So1+vatk2zO//5Xj8ce8+zT0omI/OHSlEvx68RfkSCEAWoAYwG0D3ZXDVMoFFiwYAFGjhx55tjJkydFzRMdHS1la0R+ZTab4XLVv9FOLgc6djRj4sQyfPBBPjZt2o8FC45iypSTGDeuMnCNEhFRgwwGA+Li4iSZy2g0iroWIt+U15Vj1JJR9Y5/OPRDtApvFcCOiIgAu90uqk6hUIiqk8lkePryp/H58M+hEMTNIdbA9IEI14Tj4V4P4/fbfofxKSOO3H8Ej176KDrGdIRSUPo0f421BhsLNuL+H++HYboBsa/FYsRXI7Bs/zI4nU6J/ikal70le1FcW9zgeUarEUO+HIK5u+YGoKvz27dvn7hCTzPiqwCsAfAmgIUAdkBUINi/5ebmYuHChbj11lsRFxeHq666CvPnz4fN5l2YElEwhYUpsHixHQaDA9dfX45583K8DgT7W1FREUwmk8Qdkr/ZbC78/LNaVK1O58DQoRqJOyIiIiIiXzEUjIiIiIiIiIiIiIiIiIiIiIiImhydTsAPP2hwxRXSBYO99poeDz9shNMp/pO0iYh8ceHGg/jt7WpklANQABgN4Go02t/2jI+Px9q1azF69Ogzx1wuF/Lz872eKzY2FoLQSP9BidyoqKjw6nylEujc2YTbby/FffeJCwcgIiL/iYmJQWhoqCRzlZaWorKyUpK5yDN9Pu8Di8PidmxQxiDcftHtAe6IiFo6p9N53hDh81GrxQV6/G1Clwn/x959h0dRf20cfrakbApJIKETQugiCigI0psKgoI0sQCCDSv28rO99o5dsCA2lCoIFqQqoChIkd5bqKEE0jabLe8f2JC0nZ1kk/C5rysXZGbO+Z4oye7MZp7VN1d9o6jQqID6+KNbcrfTttWtWFcvdn9Ra29ZK9ejLi26bpGGnjtUiTGJssgS0HqpWamasWmG+k3qp5CnQ1Tn9Tq6/uvrtWzvsoD6liZzt88t8rFur1vDZgzTMz89Y/jfnRnWrl1rrLCwULB0SV9Jel3SYknFmFXkdrs1Z84cDRkyRElJSXr++ed1/Pjx4lsQMFGzZlFasOCo/u//9iksLLCfBTt27Ci3oYvl1Q8/OHX8uLFQ0M6dnYqI4No8AABAacMzNAAAAAAAAAAAAAAAAABlUkSEVd98E65u3cwLBhs9Okp3351JMBiAkrdrlzR8uOoc9WnxOOncA39ubyNpuKT4IM6Wh7Zt22rFihXq0KHDKdv37dsnp9Ppd79q1aqZNRpQIjIyMgzXxsXFmTgJAMAsiYmJAQex/CUlJUXZ2cWYWIG/3ffDfVqfuj7PfRUdFTXzqpklPBEABHa+EBEREfD6F9W9SIuuW6RqUcV/rh1uD9eFtS4s9Lh2ie00vs947Rq1S65HXfqy35e6tP6lquSoFND6Xp9XO9N26sOVH6rVB60U9nSYznn3HD0872HtPr47oN7BNHdH0UPB/vLIgkd086yb5fYGJ4h63bp1xgor5rPdI+lnSW9JWi2phPOJ9u3bp4ceekj169fXhx9+GNTANaCozjsvwZTHEa/Xq+3bt5swEUrK1Kkew7V9+pg3BwAAAMxDKBgAAAAAAAAAAAAAAACAMsvhsGrmzHB1725eMNjrr0fpzjsJBgNQgnw+acQIKT1dklQ1Q1o4Xmq/68/9NSWNlHSxJHNyKgyLi4vTm2++qR9//DHPIK8dO3YY6tugQYNARwNKlMvlMlzrcDhMnAQAYKa6devKZrOZ0mv79u1yu4MTynGmWLx7sV7+5eU891lk0YKhC2S32kt4KgCQMjMzDddGRUWZMkOzqs30y4hf1Di+sSn98tM+sb3C7eF+1ditdg06e5BmXTVLh+8/rOMPHNfoi0frwpoXKjIkMqB5XB6X1hxao+cWP6far9VW9HPR6vBRB73565vKcBkPaytJbq9bP+780VDteyveU9+JfZXpMv5v0KhNmzb5X2SVVCGP7WmSPpT0g6ScQKYKXGpqqq6//nq1atXKePAZUIKSkpJMOadxOp3av3+/CROhuHm9Pn33nbEXDux2r664wr/HcQAAAJQMQsEAAAAAAAAAAAAAAAAAlGnh4VZ9/XW4Lr7YvGCwt96K0m23ZREMBqBkjB0rzZt3yqZYpzT7U6nXX/dT2iS1kXSHpA6SIkp2xNDQUN1www3atGmTbrvttnxvLNu2bZuh/k2aNAlkPKBEZWdny+cz9hwhLCzIyX4AgAJZrVbVrVtXFosl4F4+n0/btm2T1+s1YTL8V5YrSz0+75Hv/me6PKNzqpxTghMBwD+ys7MN14aHmxfMUTu2thYPX6z2ie1N6/lf3ZK7BdyjQngFjWo9SktGLFHGwxnafsd23X/h/To74WyFWEMC6p3hytCi3Yt0x/d3KPq5aFV+qbIu/+JyTV0/tdQ+Rm8/ul2ZucZDvWZtnqXOH3fWocxDJk5VMLfbrdTUVP8LY3T6Xc5bJY2VtC/wucy0fPlytWrVSuPHjw/2KECBrFarkpOTTel15MgRHT9+3JReKD5LluTowAFjj5dt2zpVsaI5wdgAAAAwF6FgAAAAAAAAAAAAAAAAAMq8k8FgDvXsaV4w2LvvRmrkyEyCwQAUr0OHpPvuy3OXwy1Nmyhdu/pfGyMldZF0l6RekhIlBZ5Zka/40FA98sgj2rVrl9577z0lJCQUePyqVasMrXP22WcbqgOC4dixY4Zro6KiTJwEAFAcQkNDlZiYaEqv3Nxc7dq1y5ReOFX3T7srw5WR575W1VvpofYPlfBEAPCPnJwcQ3VWq1VWq7m3fFZ0VNQP1/6gAWcNMLXvX7ondze9Z524Onqh+wtac8sauR51afF1izWs2TDVjqktS4AXQVKzUvX15q/Vf3J/hTwdoqTXkjRixgj9mvKrSdMHbl3quoB7LNu3TBd+eKG2HNliwkSFO3jwoLHw7Lj/fP67pM8lGc/VK1ZZWVm67rrrdMMNN8jj8QR7HCBfYWFhqlmzpim99uzZI5fLZUovFI/Jk92Gay+/nNdAAQAASitCwQAAAAAAAAAAAAAAAACUC6GhFk2f7lDv3uYFg733XpRuuimLYDAAxef996WMvMMMJCnEK42fLo365b87JJ0vabikuyVdKqmxpOjAR6ol6WZJsySl5ObqqREjVLVq1SLVrly50tCaTZo0MVQHBENGAd+zhYmL++8dzwCA0ig6OrrIz38Kk5mZqf3795vSCye9uORF/Zzyc577IkMitWDoghKeCABOZTQsKCQkxORJTgq3h+vL/l/qrtZ3mdq3kqOSzq16rqk989I2sa0+uvwj7Ry1U65HXZrUf5J61e+l+Ij4gPp6fV7tOr5L41aNU+sPWyvsqTCd8+45emjuQ9qVFrxQTzNCwSRp27FtunDchSUSeGb4uc6/c7NXSJopqQxciv/ggw80cOBAgpJQqsXGxio2NtaUXtu3b5fX6zWlF8z3zTehhuosFp8GDgwzeRoAAACYhVAwAAAAAAAAAAAAAAAAAOVGSIhFU6c61KdPpmk9P/ggUiNGEAwGoBh4PNJ77xV6mNUnvTpbenpePgdES2opaZCke6SLekszJI2WNEpSX0kddDJD7CxJyX/+2VpSd0lXSXpK0leStkraLeldncwZC/P5pDFjivwlrV69usjH/sXhcCg5OdnvOiBYjN70a7FYFB4ebvI0AIDiEh8fr5iYGFN6HTp0RKtWpZnS60y37tA6PTTvoXz3f3vVt4oIjSjBiQDgVIGEBBXn+YLVYtWrF7+qVy96VRZZTOnZNbmrrJaSvUXVbrVrQJMBmnnVTKXel6rjDxzX6ItHq22ttooMiQyot8vr0ppDa/T8kueV9HqSop+LVvtx7fX60td1wnnCpK+gcNuPbTet1+Gsw+r8cWd9velr03rmxXAo2F8P2aslFe+Ipps2bZp69eqlnJycYI8C5KtmzZoKDTUWGPVvbrdbu3fvNmEimO2PP1zavt3Y/+MWLXJUo4bd5IkAAABgFkLBAAAAAAAAAAAAAAAAAJQrISEWTZ4cob59zQsGGz8+UsOGZcnjIRgMgIlmzZKKeDOVRdL/FknvzpIshfwoqmaVLtPJQLDRkqZJ+lHSMknrJG37889fJP0g6XNJj0jqI6luXg3HjZOKcIPj1q1blZaWVoSv5lTNmjWT1Zr3r7S6vW7tStulo9lH5fPxMxjBl5WVZbjWjJswAQAlq1atWgEHtGRkWHXHHYm66KJIbdmSbdJkZya3161OH3eS1+fNc/8dre5Qh6QOJTsUAPxHRkaG4drIyMBCrYrirjZ3aWL/iQqzhQXcq1udbiZMFJgK4RU0qvUoLR6+WBkPZ2jnnTv1YNsHdXbC2QqxhgTUO8OVocV7FmvU7FGKeSFGCS8l6LIvLtOU9VPk9rpN+gpOZ/b1j2x3tvpO7Kt3l71rXtPcXGnFCun996Wbb9aBe+811idC0l6VuUCwv8yZM0fXXXddsMcACpScnCyLJfAwyIyMDKWmppowEcw0ebLxMNLLLvOYOAkAAADMRnwrAAAAAAAAAAAAAAAAgHLHbrdo0qQIDR6cqSlTzLmZ7tNPI+XxZOqTTyJkswV+AwUAaNw4v0tuXi5VzJauuULKteV9zLaKAc71X6mp0owZ0sCBBR62YMECQ+3btm+rNQfXaNuxbdp2dNvJP//8+67ju/6+0bZ7cnd9dsVnqhxZ2dA6gBmOHTtmuDY6OtrESQAAJSU5OVmbNm2Sx+P/DdN794botttqa+vWk8Fiffq49fPPbsXEcDuPEX2/7KvDWYfz3NeoUiO93uP1Ep4IAE6XmWn8jQqioqJMnCR/A5oMUNWoqrr8y8t1zGn8HKdbcvBDwf6rdmxtPdftOT3X7TlJ0tKUpXrv9/c0f8d87T6+Wz4ZD9w6nHVYMzfP1MzNM2WRRYkxiepcp7NubHGj2tRqY9aXUCy8Pq9u+fYW7T6+W892fdZYQJDXK333nfTuu9KcOZLrnyCatECGmyTJaC6NVVINSXUkVZFUUVK0pFCdvHs6V1KOpOOSjupkANlOSYcCGfhUX3zxherVq6cnn3zSvKaAiex2u5KSkrRjx46Aex08eFARERElEmKJopk50/i55cCBgYVnAgAAoHjxKgIAAAAAAAAAAAAAAACAcslut+iLLyJktWZq0iRzblCYMCFSXm+mPvuMYDAAJliyxFDZwHVSrFO69CrJnUcw2M7YwMbK088/FxoKNn/+fEOtX97/sl4e83Khx83ZPkePzH9E7/V+z9A6gBkCucE/Li7OxEkAACXFarWqbt262rJli3y+ogeJrFwZoVGjEnX06D+37qxf79CAAen69ttI2e3W4hi33Bq/crxmbZmV574wW5gWDV9UwhMBQN6cTqfh2tDQUBMnKVj72u21ZPgSXfL5Jdp9fLff9XXj6qpOXJ1imMxcrWu2VuuarSVJXq9XX238Sp+s/kS/pPyi1KxUw3198mnX8V0av2q8xq8arxBriBpWaqie9Xvqlpa3qHZsbbO+BFM9v+R5paSn6MPLPlSorYj/3o4fl8aMkcaOlfIJFco2OtASnQzt8lclSS0lNZVU0KX/sD8/KkiqJencP7cfkbRa0jIFMPw/nnrqKbVs2VK9e/cOvBlQDCIjI1WlShUdPHgw4F47d+5Uw4YNZbcTURBsO3fmavXqcEO1jRrlqFGjMJMnAgAAgJl4BQEAAAAAAAAAAAAAAABAuWW3WzRhQoQGDzYe4PFfX34ZqcGDs+R2F/1mcAA4zc6d0pEjhssv2iZ995mkPH4UpcRI283OHvr99wJ3e7wezZ0/1/++Vp28KbOI5myf4/8agIlcLpehOovForAwbrQDgLIqNDRUSUlJRT5+5sxYjRiRdEog2F/mzInWnXceN3G68m/P8T26YdYN+e7//IrPFR8RX4ITAUD+cnNzDdUFI1ylcUJj/TLiFzWr2szv2m7J3cwfqJhZrVb1O6ufZgyeoUP3HVL6Q+l645I31K5WO0WFRgXUO9ebq7Wpa/Xizy8q6fUkRT0bpXErx5k0ubk+++Mz9fy8p447i/B85JtvpLPOkh58MN9AMMlYrpehwihJfSTdKqm1Cg4EK0glqflVzTV27lg9+tijppyv33jjjToSwLU+oLglJCQoKiqwn3WS9NVXMRoxIt2EiRCoSZMM//TVpZcae74CAACAkkMMLwAAAAAAAAAAAAAAAIByzWaz6NNPI2SzZeqzz4zeJXSqyZMj5fVm6ssvI2S3W0zpCeAMU0jIVlF02yH12ShNb3z6vvHNpCcXBLzEP1auVFZOhrYf36ntx7Zr29Ft2nbsz4+j27R93XZ5Dnn871tDUmjRD68SWcX/NQCTZGYaDxklEAwAyr7IyEhVq1ZN+/fvz/cYr1d6880q+uCDhAJ7vfNOnBo2PKo77qho9pjljtfrVbuP2sntdee5f/DZg9XvrH4lPBUA5M3j8eqllxJUp45L9es7VbeuUxERRXtjgdBQP06OTVQ9urp+HPaj+k/q71cQd1kMBfuvqNAo3X7B7br9gtslSbuO79LY5WM1a/MsbTqySS6PsVBoScrMzVTmcfPeqMJs83bMU4fxHfTtVd+qRoUapx+QliaNGiV9/HGR+jlNnS4fTSRdKinCeAuLLOrTqI/uan2X2iW2k8VikS6UBl85WNdcc41WrFhhuPeBAwc0cuRITZo0yfiAQDFLTEzU5s2b5Xbn/dy6IC6XRc8/X02TJ588hznnnKO65x7OZ4Jpxgyb4doBA4iYAAAAKO0sPp+Pt6sEAAAAAAAAAAAAAAAAUO55vT4NH56ljz82JxhMkvr2zdTEiREKCSEYDICfHn5Yeu65gNv8Xk06/6bTt8dkSztek+Jyit7LJ+moQ9pWUdoWd+qfWytK+6MLKP5B0s/+zS5J6iypY9EPf6rzU3qkwyMGFiobVq1apebNmxf5+JUrV6pZs2bFNxBOkZKSorS0NEO1CQkJqlKFUDsAKA/27t2rY8eOnbY9K8uihx+uqXnzYorUJyTEq5kzM3TxxRXMHrFEzN0+Vz/t+kk1K9TU4LMHKzqsoCeLxl03/TqNXz0+z301omto96jdslqtxbI2APhr48YsNW78T2KRxeJTrVouNWjgVP36OX/+6VTNmi7Z/pPjUalSJVWrVq2EJ/5HridXN8y8QR+vLjwEyiKLUu9LVaWISiUwWfD8mvKr3l/xvubtmKfdx3fL6/P612CBpB8NLHy5pKJfGghIzQo19f3V36tJ5Sb/bFy7VurRQ0pJKXKf2yS9bf54//Dz+tF/RYdG6/oW1+u2VrcpOS45z2Oys7N1zTXXaNq0acYXkrRgwQJ16tQpoB5AcXK5XNq8ebNfNQcOhOjuu2tpzZp/HuNCQ7364YdMdexYPOcBKNihQ25Vr26Tx+P/65M1a7q0a1eIrFZe2wQAACjNiHEFAAAAAAAAAAAAAAAAcEawWi0aNy5CNluGxo2LMqXnV19Fqn//TE2ZQjAYAD8dOGBKmxb7pbMPSmv/kzV03CEl3C/12iINWiv13ixFuSSPRUqpcDLoa3vc6eFfx8MNDOGTtM7gF9Ck8EP+bVCTQQYXAgKXmZlpuDYuLs7ESQAAwVSjRg05nU5lZ2f/ve3AgRDdfnuiNm50FLlPbq5VV10VocWLTw2QKQteWvKS7p97/9+fP/3T0/r8is/VvnZ7U9eZtWlWvoFgNotNi65bRCAYgFJl2bIcSf/8TPf5LNq9O0y7d4dp7tx/jgsP96pevVODwq64wpzrlUaF2EL00eUfqVaFWnp60dMFHtuiWotyHwgmSRfUvEAX1LxAkuT1ejV903R9svoT/bznZ6VmpQZ5OnOknEhR23FtNf3K6eqU1En67beTgWBHj/rVx1k8453UQ9IFxkqT45J1R6s7dF3z61QhrOAgVofDocmTJ+vaa6/VhAkTjC0o6aGHHtIvv/xiuB4obqGhoapVq5b27NlTpON//TVS991XS8eOnRpJ4HJZddVVYVq2LEfVq4cVx6gowNSpOfJ4jL0J0qWXumS1hpo8EQAAAMxGKBgAAAAAAAAAAAAAAACAM4bVatH770fKZsvQ+++bc6Pd119Hqm/fTE2bFqHQUILBABSR05zbJS2SktJODwWTJI9NmtHo5Id8UohX8lokj9m5CbslHTdQV01SfNEPb161uepXqm9gISBwXq9Xubm5hmotFotCQ7nRDgDKkzp16mjz5s1yu91as8ahO+5I1OHDIX73OXrUrssvd+uXX1yqVKlsPFak56TrqZ+eOmXbnhN71OnjTnqi4xN6uP3DslltAa9zNOuoBkwZkO/+dy59R3Xi6gS8DgCYac2aoh3ndFq1dm2E1q49GSAWFubVkCHFOFgRWSwWPdXlKdWKqaWR34yU1+fN87juyd1LeLLgs1qtuqLxFbqi8RWSpAxXhj5a9ZEmr5uslQdWKsOVEeQJjTuec1wXf3axPm7xpK68+nkpLc3vHj7zxzqpkwwFgnVK6qRRF4xSrwa9/HpeYrVa9fHHH+vo0aP6/vvv/V9Y0tKlSzV9+nT16dPHUD1QEmJiYpSVlaUjR47ke4zPJ330Ubxef72KvN68X/vaty9UgwZlaP78EIWEENZbkqZPN/56ZL9+gZ+vAQAAoPjxDBsAAAAAAAAAAAAAAADAGcVqtWjMmEjddJN5N2p9802k+vTJlstVbLc/AShvfOb8vJjYRJrVsAgHWqRcWzEEgknSrwbrzvbv8EFNBhlcCAhcZmam4drw8HATJwEAlAZWq1X16tXT4sXRuu66OoYCwf6yZUu4+vfPUW5u3sErpc2K/SuU7ko/bbvX59VjCx9Tt0+7ae+JvQGv03F8RzndeQfpXpR8kW4878aA1wAAs61bZyxko27dnFIVpnLjeTdqxpUzFBESkef+i+peVMITlT5RoVG6vdXt+um6n5T+ULp2jdqlh9s/rHMqn6NQW9kI+vw3l8elwcse1CuN0wwFfBl/JlSAepI6Fv3wUFuohp47VCtvWqkFQxfo8kaXGwoqtdvt+vzzz5WYmOh37V9Gjx5tuBYoKdWqVcv3mlVGhlV33VVLo0dXzTcQ7C+LF0fp7ruNvGMEjMrI8Oqnn4xdb6xUya3OnblWCQAAUBaUnitFAAAAAAAAAAAAAAAAAFBCrFaL3nknUrfeal4w2HffRah372w5nWXjRm4AQWZCSNCiRGlIXxNmCUSapA0Ga5v4d/jAJgMNLgQELi0tzXBtdHS0eYMAAEoNu92uLl0qKzraE3CvhQujNXJk2biRfl3qugL3L9y5UOeOOVffbP7G8BoPzHlAa1PX5rmvoqOivrnaeG8AKE6bNxsLg2rUyGXyJIHr1aCXFgxdoISIhFO2t0tsp05JnYIzVCmWGJOoZ7o8o9UjVyvnkRz9dv1val6tebDH8tu9F0ujLpE8BWcAncb0GDSHpL6SijBHQkSCHu/4uHaN2qXxfcarWdVmAS9fsWJFffrpp4brf/rpJ61fvz7gOYDilpycLKv11KiBbdvCNHhwXc2bF1PkPm+9FadPPz1m9njIx/Tp2XI6jUVEXHxxjux2P3/IAwAAICgIBQMAAAAAAAAAAAAAAABwRrJaLXrjjUjdfrt5wWA//BCh3r2dys4mGAxAIeLjDZe6bNL/dZA6Xie57CbOZMRSST4DdfUkxRb98FY1WqlOXB0DCwHmyMrKMlwbFxdn4iQAgNKkQQOHJkzIUlhY4OeA48bFas6cAyZMVbzWHso7rOvfjmQfUa8veumu7+9SjjvHr/5Ldi/RSz+/lOc+iyyad+082a3BfhIMAKfLzHRrx44wQ7VnnRV4wGRxaFWjlVbdvEq3trxVXet01d2t79aswbNksRAmUpiWNVrqsoaXBXsMQ95oLQ0aIGX78XBreihYN0mRBR9yTpVzNO6ycdp912490ekJVY2qauoIHTp00JAhQwzXjxkzxsRpgOJhtVpVp84/11y//76CBg9O1s6d/j+e3XprBa1aZd7rbcjfV18Zr73iCh7DAQAAygpCwQAAAAAAAAAAAAAAAACcsaxWi157LVJ33WXejQpz50aoVy+CwQAUonlzv0t2xUj/6yJVv1t6oovky+f+nYu2SoP/kKL8y1/w3zFJywzWXujf4YOaDDK4EBA4j8crlyvXUK3ValVISIjJEwEASpPu3WP02mvHA+rhcHg1evRuVat2WIcPHzZpsuJRlFCwv7z262u6cNyF2nJkS5GOd7qd6vF5D/nySZ19svOTalatWZHXB4CStGJFljweY0EbzZqV3ts8q0dX11s939LcIXP1ysWvKCY8JtgjoQRMPUvqPkQ64ija8aaGgiVIapH3Loss6t2gt+YPma9VN63Sdc2vU7g93MzVT/Hcc88pNNTYVzdp0iT5fEaS9IGS5XA4VL16db32WhXdd1+isrNthvqkp9s0cKBdJ064TZ4Q/+Zy+TR3rrGfe5GRHvXsWXw/MwEAAGCu0nu1CAAAAAAAAAAAAAAAAABKgNVq0auvRum++8wLBps/P0I9ezqVlUUwGIB8nHdekQ7zWKRv60u9B0vJd0rPdpCOROZ//CVbpG8mSBOmSYdeksZNkxwuk2b+r7mSPAbqqkpK9q9kwFkDDCwEmGPFiix169ZQDzxQU9OmxWnPnhAV9b7e8HButAOAM8HNN8fpzjuPGaqtUiVXn3yyXV27pkuSDhw4oPT0dDPHM43P59O61HV+1azYv0It3muhz/74rNBju33STemuvL/2ltVb6pEOj/i1NgCUpBUrjIegtGzJeQNKnyWJUtsR0o7Ywo81NRSsraT/5OtFhkTq9la3a9Ntm/T14K/VuU5nWSzGQvj8Ub16dQ0ZMsRQ7cGDB7V8+XKTJwKKR8WKFZWYaCwM7N+2bAnXNddkyePhtbHiMnu2UydOGPt/1bWrUw4H0RIAAABlBc/cAAAAAAAAAAAAAAAAAEDSiy9G6YEHzAsGW7gwQj165Cgzk5sfAOShQQMpOjrf3YcipefbSfXukC69WprVUPIW8luf8ZnSpMmS/c8fOw63dN0f0sGXpZYpJs4uSTsk+ZcH8Y82/h3etlZb1YqpZXAxIHCzZ7t06FCIvv02Vo8/XkM9ezbUxRc30P/+V0MzZsRq//6QfGujC/g+BwCUL6+8EqOePU/4VdO0aZa++GKbGjVynrJ99+7dcrmKK9nVuAMZB3Q0+6jfdRmuDF371bUaNn2YMlx5n3e/8vMrWrJnSZ77IkMiNX/ofL/XBYCStG6dsYCiSpVylZhIKBhKp03xUpvrpRXVCj7OYdaCEZKa/vNp7RNWvdL1BaXcnaI3eryh+pXqm7VSkd15552Ga7/55hsTJwGK1//+F6vevf07n8nLzJkV9MwzaYEPhDxNnWr8Nce+fYs/TBEAAADmIRQMAAAAAAAAAAAAAAAAAP70/PNReugh84LBfvrJoYsvzlFGBsFgAP7DYpFatTplk0/SokTpqn5Szbulh7pJO+OK3nLSJCk6j+yIaJc091OpzZ7ARv5btqSvDNbGSjrbv5JBTQYZXAwwx6JF9tO27d8fqq+/jtMjj9TURRc1VM+e9fXEE9X1zTcxSk395/i4OD++iQEAZZrNZtWXX0bo7LOzinR8jx5pGjduhxIS3Kft8/l82rZtm7ze0nUuufbQ2oDqP179sc577zyt3L/ylO3rD63X/XPvz7du1lWzFBUaFdDaAFDcNmzIPyy4IA0a5Jg8CWCug1FSh+uk7+vlf4xpZ75NJNmkdrukKROlra95dfeeWooNjzVrBb+dffbZOvfccw3Vzpkzx+RpgOJjs1n12WcRatDAWfjBhVixwqIjR/wPE0bBPB6fvvsu1FBtaKhXffqEmTwRAAAAihOhYAAAAAAAAAAAAAAAAADwL88+G6VHHjEvGGzJEocuuihH6eml62ZuAKXA0KGSpBNh0tstpXNGSh2GS180lXJt/rWqmCV12pX//go50nefSa1SApj3L99IOmGwtrskP742iyzqf1Z/g4sBgXO7vfrtt4hCj9uzJ0xTp1bUgw/WUpcujdS7d319/nm87PbTA8UAAOVXdLRdM2ZYVKVKboHH3XLLQb3wQorCw335HuPxeLRt2zazRwzIutR1AffYfGSzWn/YWm/++qZ8Pp/cXrc6fdxJXl/e58y3t7pdnZI6BbwuABS3zZuNBW00blzwYwZQGmSGSr2ukj5qlvf+Siat0y1cWvaetOgjqd8Gye6V9M47JnU3btAgY4H1q1atksfjMXkaoPhUqGDXxIluRUcb+3drt/v04IP79NRTe7V//z5lZ2ebPOGZbfHiHB06ZCyEtF07p2Jj/XzRAQAAAEFFKBgAAAAAAAAAAAAAAAAA/MdTT0XpiScyTev3yy8EgwE43aqODXVT/zBVv0e67VJpbRXjvXptliyFHBOTI83+TDp/r/F1tFDSWoO1tSU18a+kY1JHVYuuZnBBIHC//pqptDT/g7127gxTdnZoMUwEACjtkpMdmjTJKYfj9PO/sDCvXnppt0aOTJWlsCdvknJycrR79+5imNKYtYeMPhE8lcvj0h3f36E+E/uo94TeSs1KzfO4BpUa6I0eb5iyJgAUp337jId0NGmSf0AkUJp4rNLwPtKTHaX//quNN6G/Q9I3i6Tz9/1nx+LF0sGDJqxgXNeuXQ3VZWVlacOGDSZPAxSvZs2i9Pbb/r8jREJCrsaN26Grrz7697nOjh075PXyuphZpkxxG669/HL+PwAAAJQ1hIIBAAAAAAAAAAAAAAAAQB4efzxSTz2VYVq/pUsd6to1R8ePG3uHdQDlg9Pt1CerP1GbD9uo+UcX6L2zc5RpQm5Qlx1FOy7WKf3wqdTivzdYFsUKnQwFM8Ii6RL/ywY1GWRwQcAcP/yQa7i2Sxd+VRsAzlQdOkTrrbeOn7ItISFX48fv0CWX+HeD/YkTJ5SamndoVklbl7rO1H5fb/pa32/7Ps99obZQLRq2yNT1AKC4/PZbtuHa884zFiYGBMvjnaUbe0vuf53yVjKhbztJ+V4iW77chBWMO++881ShQgVDtb///rvJ0wDF79pr43TbbceKfHyLFpmaNGmbmjfPOmW71+vV9u3bzR7vjOT1+jRrlrEXEqxWnwYMCDd5IgAAABQ3XmkGAAAAAAAAAAAAAAAAgHw88kiUnn0207R+y5Y51LVrrtLSCAYDzjRbj27VvT/cqxqv1tDQ6UO1NGWpqf2LGgomSXFOac6nUrP9fizwq6SZ/k71Ly0kVfOvxGaxqV/jfgEsCgRuyRJjN+iHhXnVtWuUydMAAMqS4cPjdP/9J2+kb9w4WxMmbNPZZxsLjTl48KDS09PNHM9vPp9Paw+tLbH1JlwxQZWjKpfYegAQiJiYLI0YkaoOHU6oalVXkeusVp9atHAU42RA8fjgPCn+PmncudIRhzmhYM0L2hnkYC2bzaZzzjnHUO22bdtMngYoGa++GqN27Qp/45xrrz2sDz7Yofh4d577nU6n9u/350I08rJ6tUs7dxoLBTv/fKeqVbObPBEAAACKG8/gAAAAAAAAAAAAAAAAAKAADz0UKZstQw88YE6wx++/h6tLF6fmzZPi4mym9ARQOrm9bs3cNFPvLn9Xc7bPKfhgrwy/1Wv9I1KtE/7VVMyW5n4idRkq/VG1kLnmSPrF2GwnF5N0kf9lXZO7KiEyIYCFgcDk5nr1228RhmqbN89SZCShYABwpnv22RiFhR1Ur16HFRHhC6jXrl27VL9+fYWFhZk0nX92H9+tDFfhoQBmuLLJlep3FuGwAMqOGjUyNGrUP2Fgx49btXVruLZsCdfmzeHasiVMW7aEKzPz1GuBtWu7FB0dnJ/rQKCOO6QRfaXrfdK5eyV9KCmApztNC9oZ5FAwSWratKkWL17sd92ePXuKYRqg+IWEWDVpUohatnRp797Tw6gcDq/+7//2qkeP44X2OnLkiCIiIhQTE1Mco54RJk3KlWTsOUPv3rxREQAAQFlEKBgAAAAAAAAAAAAAAAAAFOL++6Nks2Xq3nsjTem3cmW4Ond2av58qWJFgsGA8mZf+j69//v7en/F+9qbvrdoRZsl/SapjaR6kixFX6/rdv9nlKRK/woGW1sljwMOS5ouKcVYf0kng876ydD9SoOaDApgYSBwS5ZkKj092lBt27auwg8CAJR7NptVjz1WSZs3H5HXG1gomCRt27ZNDRs2lM1W8ueR61LXlcg6VotVV559ZYmsBQBmyc3NPeXzmBivzjsvS+edl/X3Np9P2rcv5M+QsJNhYdWru2U04AMoLXwWaVVNSdGS/Ayt/7f6Be1cs8Z4Y5M0aNDAUF1KSiAX1oDgqlYtTJ9/nq6LLrLL5frnHS2SknI0evRu1auXU+Ree/bskcPhUGjo6QFjKNysWcYjIQYO5L85AABAWWTwPeUAAAAAAAAAAAAAAAAA4Mxyzz2RevXVTNP6rV4drs6dc3XkCO/QDZQHPp9P87bPU/9J/ZU4OlFP/PhE0QPBJMknabukzyW9KWmRpPSilXbZ4fe4f0vIkuZ9Ip116F8bcyT9JGmsAgsEk6TOkmr4XxZiDVHfRn0DXBwIzJw5bsO13brx3s0AgJPsdruSk5NN6eX1erVt2zZ5vV5T+vlj7aG1JbKO1+dVn4l9NOr7UcpxFz1kAACCxev1yucrPPjRYpFq1MhV587puvHGVL388h49+mgACUpAaRMbWHn1gnZmZATW3ATVqlUzVLd3rx/XB4FSqGPHaD37bNrfn3fpckITJmzzKxDsL9u3bw/KuUxZt3WrS2vXhhuqPesspxo0IBQMAACgLCIUDAAAAAAAAAAAAAAAAACK6K67IvX66xmyWAq/0a8o/vgjXJ065erQIeOhIwCC62j2UY3+ZbQavd1I3T7tpqkbpsrjCzDs76ikeZJelfSJpOWSCrj3sfPOwJarnCnN/1hqsEfSEkmvS5ovKTewvqonqa2x0lxvrhq+1VA3zbxJe47vCXAQwJjFi0MM1TkcHnXuHGXyNACAsiw8PFy1atUypZfL5dKePSX//KikQsH+8vqvr6vNh220+cjmEl0XAPyVmWn8TQQcDoeJkwBBFhdYedWCdjqdgTU3gdFQsPT0Iqb+A6XYPfdU1FVXpWnUqAN67bXdio42Fuzldru1e/duk6cr/yZPNn6hvndvXn8EAAAoqwgFAwAAAAAAAAAAAAAAAAA/3HFHlN58M8u0YLC1a8PVubNbBw/yi/lAWeHz+fTb3t903YzrVOPVGrr7h7uLJ6zAJ2m7pFmSXpH0nqS5krZJ+vNeyHMPSPFZxpc4JmmapFsypZ0fSpojKYB+f6smaYAC+k3V1KxUvbfiPSW+lqjqr1TXHd/doYMZB00YDiicy+XV778bu0H/vPOyFRbGr2kDAE4VExOjypUrm9IrPT1dhw4dMqVXUa1LXVei60nSygMr1WJsC326+tMSXxsAiiojo4AU70JER0ebOAlQgvK6NB5AKFiYpAJjuUOMhXabyej3a3Z2tsmTAMExfnyUrr/+iCyWwPpkZGQoNTXVnKHOEF9/bfw644ABwf/5CQAAAGPswR4AAAAAAAAAAAAAAAAAAMqaW2+NlM2WqVtvjZDXG+AdEJLWrw9Xp045WrBAqlqVX+sCSqtMV6a+WPuF3l3+rlbsX1Gyi/sk7fvzY/Gf2+Ilp116TFIDSTUlVZWUICn8zw+vpMw/P9Ik7dDJTLFNkpZIWqO87+MMSKykq3Tyjk6T7M/Yrzd/e1Nv/vamalaoqSubXKmH2j2kihEVzVsE+JeFC9OVmRljqLZtW5fJ0wAAyovKlSsrOztb6enpAfc6dOiQwsLCFBNj7PHKHx6vR+tT1xf7OnnJzM3UkOlDNGf7HL3d821FhxGgA6B0cTqdhmsdDmNBxEBJisuWzt8ntdwrtdx38u8VnNKi2tLcZGlOsrSuigIKBQsv7IBS8L0SHl7olHkiFAzlRUiIXUlJSdqxY0fAvQ4ePKiIiAhFRkaaMFn5duCAW7/9ZuznT+3aLjVvHmryRAAAACgp/PYYAAAAAAAAAAAAAAAAABhw880ng8FuvtmcYLCNG8P+DgarVo1f7QJKk/Wp6zVm+Rh9svoTHc85Huxx/nH4ZLjXU8Ge498ckq6WVIxZDSknUvTyLy/r5V9eVlJskq5uerXuv/B+VQivUHyL4oyzZo1LdrtXbrfV79pu3WzFMBEAoLyoVauWtm7dKpcr8BDJPXv2KCwszHBIRVFtP7ZdTrfx0BszfPrHp1qaslRf9v9SLaq1COosAPBvOTk5huqsVqusVv/PN4DiFOmSWuz/JwCs5V4p+ZiU19XvS7ec/JCkgf2kyZWNr1tornydOsabmyQszFj6fSDBgUBpExkZqSpVqujgwYMB99q5c6caNmwou53XwwoyZUqOvF5j4WmXXuqS1UooGAAAQFnFM2UAAAAAAAAAAAAAAAAAMOiGGyJltWbqppsi5PEEHgy2adM/wWDVq/PrXUAwuTwufbXhK727/F39uOvHYI9TNlSQdK2khJJbcmfaTj2z6Bk9s+gZ1Y2rq6HnDtU9be5RRGhEyQ2BcqlHj1S1b39Iq1ZF6LfforRsWaTWrXMU+ngfFeVRhw7FmIoHACjzrFar6tatq02bNsnr9Qbcb/v27WrQoEGx3ky/LnVdsfX2x5ajW9TmwzZ6sduLuuOCO2SxBH4eDgCBcrvdhuoIQUGwhbqlZgek8/f9EwDW6LBk8/nf6+q10uSBkmySPP7XFxqVev75/jc1mdFAV6NhYkBplZCQoMzMTGVkZATUx+fz/X0ug/zNmGH8nKd/f55rAAAAlGU8mwMAAAAAAAAAAAAAAACAAIwYESm7PVMjRpgTDLZ5c5g6dszR/Pk+1aoVYsKEAPyxK22X3vv9PX248kMdzDwY7HHKjgRJ10iKCaxNiDVENSvU1I60HX7Xbju2TY8tfEyPL3xcDSo10PDmw3XnBXcqzM7Nl/CPx+OR1+tVRIR04YWZuvDCTElSRoZVK1ZEaNmySP32W5Q2bAiXz3fqY//552cpNJRQMABAwWw2m+rWrastW7YE3Mvr9Wrbtm2qX7++rFarCdOdbu2htcXS1wiXx6VRs0dp3o55Gnf5OMVHxAd7JABnMKOBYJIUHh5u4iRAwWwWm5pUbqLzq52vljVaquWibWp638sKNRDglZeLtklhHimniqR9/tc7CzvgvPMMTGUup7PQKfPkcDhMngQIvsTERG3evDmgx0HpZNheSkqKatasadJk5cvx4x799JOx5wsJCbnq0IHr4gAAAGUZoWAAAAAAAAAAAAAAAAAAEKChQyNlsZwMBnO7Aw8G27o1TJ06ubRgQa4SEwkGA0pCamaqbvn2Fk3bME1enzfY45QtiZIGSzLhHsc+jfpo0oBJSnOm6cUlL2rCmgnadXyXXz188mnTkU16YO4DenDugzor4Szd2OJG3dLqFtmt/OosCpeWlpbn9qgorzp0yFCHDhmSDur4cat+/z3yz5CwSG3e7FC7drklOisAoOwKCwtT7dq1tWuXf8918uJy5eqrrw6qX79qJkx2unWp64qlbyBmbp6pc8ecqwlXTFDHpI7BHgfAGerEiROGayMiIkycBDhVg0oN1LJ6S7Ws3lLnVz9fzas1V0TIv/7N5f4ieV42bT2HW0rIllKqy1AoWI4ktwq44bkUhIJlZGQYquN7HeWR1WpVcnKyNm/eHHCvtLQ0RUVFKTY2NvDBypkZM5xyuSIN1V5ySY5sNl5fBAAAKMv4zQYAAAAAAAAAAAAAAAAAMMGQIZGy2bI0bJjDlGCw7dtD1bHjyWCwpCR+cR8oTl6fV50+7qT1qeuDPUrZYpHUTlInSTZzWg5qMkiSFBseq2e7Pqtnuz6rw1mH9dzi5zRx7UTtTd/rVz+ffFqXuk53zr5Td/1wl86pco5uOf8WjWg+Qlar1ZyhUe4U9cb+mBivunRJV5cu6ZKkY8dsqlWrenGOBgAoZ6Kjo1WlShUdPHjQcA+n06LHHquh77+P0bhxxzRsWJyJE5609tBa03uaYV/6PnX5pIse7fCoHunwCAGwAEpcVlaW4doKFSqYOAnOZIkxiX8HgLWs0VItqrVQbHhswUUtWkgVK0pHj5o2R4UcSQbzSX2SDknK84y6Zk2pYUPDc5ll//79huqio6NNngQoHUJDQ1WrVi3t2bMn4F4pKSlyOBwKCwszYbLy46uvjNf27cu1bwAAgLKOZ3QAAAAAAAAAAAAAAAAAYJKrr47Qp59my273mtJv585Qderk044duab0A5C3n/f8TCCYv2IkDZPUVaYFgkWFRqln/Z6nbY+PiNcrF72ilLtTtP+e/bqt5W2qGlXV7/5en1erDqzSjbNuVOjToWr1fit9uvpTeb3m/MxG+ZGdnW2oLi7Oo8REbvYFAPgnISHBcDDM4cN2jRhRR999Fyufz6JbbqmgRYvSTZ0v15OrTYc3mdrTTF6fV//34/+p6yddlXIiJdjjADjDOJ1Ow7WhoaEmToIzReXIyrq0/qV6ouMT+uaqb3Tw3oPaNWqXpgycogfaPaAudboUHggmSWFh0rBhps4W5pZUy3j9vvx23HijVAqC3Y2GgtWsWdPkSYDSIyYmRpUqVTKl1/bt27lO+y9Op1fz5oUbqo2O9qhHD2O1AAAAKD2CfyYMAAAAAAAAAAAAAAAAAOXIlVdG6PPPnQoJMefmhV27TgaDbdvmMqUfgNOF2rgRt8hski6QNFJSbXNbX9bwMjlCHAUeUzWqqt7s+ab237Nfu0bt0g0tblBCRILfa3l8Hi3bt0xDpg9R2DNhavthW01eN5kbzyC3223434Hdbpe1FNyoDAAoexITExUWFuZXzaZN4Ro8OFl//BHx97bsbJsGDgzTjh3GAi7zsuXoFuV6S39Q9U+7flKLsS2049iOYI8C4Azichm7XmezmZSujXItJixGXet01YNtH9TUgVO1e9RuHbjngGZdNUuPd3pcPev3VOXIysYXGDlSslhMmdUnaUecpMqSjGWdamteG0NCpBtuMDyXmbZuzXPCQtWubfIFNKCUqVatmsLDAw+g8ng82rlzZ+ADlRPffedUerqx5wtduzoVHs41SgAAgLKOZ3QAAAAAAAAAAAAAAAAAYLKBAyP0xRdOhYaaEy6ze3eoOnWStmwhGAwoDudVO0+ta7YO7hDhKtW/1WmxWHTllVdq7q9zVW1AtZPzmmxQk0F+HZ8Yk6j3er+nQ/cd0pbbtmjIuUNU0VHR73XdXrd+TvlZA6cMlONZhzp+1FEzN830uw/Kh2PHjhmujYiIKPwgAADyUbdu3SKHxMyfH61rr62jAwdOD7c9cCBUffr4lJ7uNmWutYfWmtKnJKRmpeqO7+8I9hgAzhBer9dwoHBoKOHkyN+N59+ozbdt1tEHjmrukLl6rttzuqLxFaoVU0sWk0K8JEn16kndu5vS6mCUlPZXzntdYz3yfMbRt69UtarBqcy1Zs0aQ3WEguFMkJycbEpQflZWltatO2jCRGXftGk+w7V9+5o4CAAAAIKmFP/6CAAAAAAAAAAAAAAAAACUXf36RejLL50KCzMnGCwlJVSdO0ubNxMMBpjNZrVpyoApOqfKOcEboo6k+yT1lpSsUvMbng6HQ9dee62WL1+uL774Ql3P66r5Q+erSmQVU9eJCYvRxXUvNlxfr1I9fdznYx25/4jW3bJOVza5UjFhMX73cXlc+mn3T7rsy8sU/nS4un3STXO3zTU8F8qe9PR0w7UxMf7/mwMA4C9Wq1V16xacouHzSePGxWvUqERlZ+cfIPbHHxEaPDhLHk/g56NlKRRMktYcNBbYAQD+ysnJMVzrcDgKPwhnrDY126h+pfqyWkrg4tD//ieZEDS2If5fnxgMBVv13w12u/TAA8aamczn8+mPP/4wVNugQQOTpwFKH6vVqjp16gTUw+OR3nijstq0ideqVRkmTVY2eTw+ff99mKHa0FCvLr+8GN7RAwAAACWulPzKCAAAAAAAAAAAAAAAAACUP337Rmjy5BzTgsH27g1V584WbdxIMBhgthoVamjRdYt0Ud2LgjeEQ9J5koboZEDYFZKaSoos+VHOPvtsvf7669q3b58++eQTtWjR4u99jeIbacHQBaocWdm09fo27qswu7Ebnf7rrISz9EX/L5T2YJp+v/F3XdHoCkWHRvvdJ8eTo3k75qn7Z90V8UyEen7eU4t3LzZlRpReTqfTcG10tP//zgAA+LfQ0FDVrl07z30ul0WPPlpDo0dXlc9XeHjHN99U0H33HQ94pnWp6wLuUZLa1GoT7BEAnCECCRSOjAzCiT6Qlw4dpJEjA26zIeFfnyRLMpAztkiS598b7rtP+tf1qGBavXq1jh49aqi2ZcuWJk8DlE4Oh0PVq1c3VJuWZtMtt9TW++9XVnq6TQMH2nX8uNvkCcuOH3/M0eHDdkO1HTo4FROTf4A0AAAAyg5CwQAAAAAAAAAAAAAAAACgGPXu7dDUqTkKDzcnGGzfvhB17mzR+vU5pvQD8I8KYRU0a/AsDW82PNijnAwIO0dSP50MCBspqYekplJElQjTl6tUqZL69++vsWPHavv27VqzZo3uuOMOxcbG5nl844TGmj9kvhIiEvLc769BTQaZ0ue/WlRroamDpurEQyf08/Cf1at+L0WG+H/zdbY7W99t/U7tP2qvqGej1OfLPlq2b1kxTIxgcrvd8nqNPV7b7XZZrfxqNgAgcNHR0apSpcop244etemGG5I0Y0acX71Gj47T2LHHAppn7aG1AdWXpMbxjfV81+eDPQaAM0R2drbhWgKFUaq88IJUp05ALTbG/+uTCEl5Z5wW6ISk3/76pEkT6YknAprJTPPnzzdUFx8frzoB/rcFypKKFSuqQoUKftWsWxeuQYPq6uef/3ls3LIlXNdckyWPx5zX1cqaKVM8hR+Uj8sv95k4CQAAAILJWEwsAAAAAAAAAAAAAAAAAKDILr3UoWnTstWvX5iyswMPDDlwIERduuRq3jyXmjQJNWFCAH8JsYXog8s+UFJskh5b+Fiwx/lHlT8/LpCevfhZXXfWdVq3bp3Wr1+v7du3a9euXUpJSdHhw4d15MgRpaeny+Vyye12Kzw8XFFRUYqOjlZUVJQqVqyoevXqqWHDhn9/1KtXz+9AoyaVm2jekHnq8kkXHc46bPhLq+SopK51uhquL6o2tdpo5lUzJUkLdy7U84uf10+7flK2278buTNzMzVj0wzN2DRDFcIq6OK6F+vRDo+qaZWmxTE2StCxY8ZDUyIizA/rAwCcuRISEuR0OnX8+HFt3Rqm226rrb17jZ373XlnjOrWPa5u3WL8rnW6ndp6dKuhdUtSJUclPdD2Ad3a6lZFhPCYDKBkOJ1OQ3UWi4VAYZQuUVHShx9KXbtKPmNhMhvi/7OhmaSd/veZIqmN3S6NHy+Flp7r3pMmTTJUd8EFF5g8CVD61axZU1u2bFFubm6hx06bFqdnnqkml+v0x8VZsyromWeO6rHHKhbHmKWW1+vTN9+EGKq1Wn3q3z/M5IkAAAAQLISCAQAAAAAAAAAAAAAAAEAJ6NHDoa++ylbfvuYEgx08GKLOnU8GgzVtWnpukALKA4vFokc7PqrasbU14usRcnvdwR7pFF3qdFGFChXUpk0btWnTJqizNK3SVHOvnasun3TR0eyjhnpc0fgKhdiM3ehkVKekTuqU1EmS9P3W7/XSkpe0ZM8S5Xhy/OpzIueEJq+frMnrJys2PFaX1r9Uj3Z4VA3jGxbD1ChuJ06cMFwbFxdn4iQAAEi1atXS2rU+XXNNDWVm2gz3ycmx6qqrIrRkSbbq13fkfZDPJ2VlSU6nZLFI4eFSRIQ2Ht4or89reO3iFhMWo3svvFd3XnCnosOigz0OgDOM223sWoHdzi2dKIU6d5ZGj5ZGjTJUviHhPxsaS/pGUuGZQKf4QtJLY8fKev75huYoDlu3btWvv/5qqLZHjx4mTwOUflarVXXr1tWmTZvkyydoMCfHoueeq6apUwsO/HrqqTi1bHlCPXpUKI5RS6UVK1zavdtYsFerVk5VrZrPOR8AAADKHCLlAQAAAAAAAAAAAAAAAKCEXHyxQzNm5CgiwmNKv9TUEHXpYtWqVf6F2AAomiHnDtHsa2YrJiwm2KP8LSEiQWdXPjvYY5zi3Krnat6QeYoLNxaKNKjJIJMn8s8l9S7RvKHz5HzEqWkDp6ldrXYKsfofUpbmTNPnaz5Xo7cbKf7FeA2fMVw7j+00f+Ayxul2yuVxBXuMInE6nYZrIyMjTZwEAICTunWrqfPPzwq4T2pqiPr0kY4f/zPAZv166aOPpFtvlVq3liIjpagoKT5eqlTp5OexsVo7anDAaxeHqNAoPdL+Ee24c4ce6fAIgWAASpzX68036KQwYWHGgj6AYnfnndJTT/ldlh4q7f1vXk+YTgaD+Wm/pKnRpetx/c033zRce9lll5k4CVB22O12JSYm5rlv374QDR1ap9BAMElyuy0aOtShHTuyzR6x1Jo82c80xX+57LLSG+gMAAAA/xEKBgAAAAAAAAAAAAAAAAAlqHt3h2bOzFVkpDnBYIcP29W9u00rVxIMBhSHLnW6aMnwJapVoVawR5F0ch6LxRLsMU7TrGozzR0yV7HhsX7VVY6srI5JHYtnKAP6Nu6rRcMXyfk/pyZcMUEX1LhAdqvd7z5Hso/oo1Ufqc4bdVTl5Sq6edbNSjmRUgwTl15ur1u3f3u7KjxXQWFPh2n4jOE67jwe7LHy5XK5DN/UHxISIquVX8sGAJgvJMSqKVPCVL++8eDKv6xf79D7b+2Rt1UrqUkTafhw6Z13pF9/lbLzuMn++HGtO7wx4HXN5LA7dN+F92nHnTv0VJenFOcwFkoLAIHKyMgwXBsREWHiJIDJHnlEeuUVv0o2xuezo4WxEZ57/jljhcXgyJEj+uCDDwzVnnfeeapVq3RcTwSCITo6WgkJCads+/nnSA0aVFfr1hX9sTA1NUQDB3qVk3NmBF7NnOn/m1X8ZcAA47UAAAAofXj1GQAAAAAAAAAAAAAAAABKWJcu4Zo1K1dRUeYFg3XrZtPvvxMMBhSHJpWbaOn1S9W8avNgj6KudboGe4R8tajWQnOunaOYsJgi1/Rv3N9Q6FZxs1qtGtx0sJZev1Q5/8vRuMvG6bxq58lmsfnd61DmIY39faxqja6l6q9U153f3alDGYeKYerS5bWlr+mtZW8p15srSfpo1Ue65PNLdCLnRJAny1taWprhWm7qBwAUp/j4UE2f7lXFim7DPex2r55+OkWXXJ6pnbfdVuS6tZUNL2mqUFuo7mh1h7bfuV0vdn9R8RH5pY8AQMnIzMw0XBsVFWXiJEAxuPtuaeZMqVq1Ih2+ISGfHUmSavi//MoVK/XZhM/8LywGjz/+uLKysgzVDhkyxORpgLKnSpUqioiIkNcrffBBvEaOTFJamv/Xgpcvj9TIkaXzmqKZNm1yacOGMEO1Z5/tVL16oSZPBAAAgGAiFAwAAAAAAAAAAAAAAAAAgqBTp3B9802uoqPNCQY7etSu7t1tWraMYDCgOFSPrq4fh/2oS+pdEtQ5utTpEtT1C3N+9fP1w7U/qEJYhSIdP+jsQcU8UeCsVquua36dlt+4XM5HnHqn5zs6p8o5slr8/zXc/Rn79cZvb6jKK1WUODpR98+5X0ezjhbD1MHl9Xn12tLXTtu+NGWpenzeQ+k56SU/VCHS043PFBsba94gAADk4ayzIvTpp5kKCfH6XRsX59aHH+7U5ZenSZKyWrTQvkceKVJtsEPB7Fa7bjrvJm29fate7/G6qkZVDe5AAPCn2bOlWbNitHlzmHJzLX7VhoeHF9NUgIl69ZLWrZOuvbbQQzcWlNXZ3tjyN9x+g46kHTFWbJKVK1dqzJgxhmqjoqI0bNgwcwcCyqikpCSNG1dZr79eVV6vf4+Z//bRR7EaM+aYiZOVPpMnuwzX9uplPEQaAAAApROhYAAAAAAAAAAAAAAAAAAQJB06hOvbb3NVoYI5wWDHjp0MBlu61GlKPwCnig6L1szBM3VDixuCsn7tmNpKjksOytr+aFWjlWZfM1vRodEFHlc9urraJbYroanMYbfaNbLlSK2+ebWyH87W6ItH66z4s2SR/ze07TmxRy/9/JIqvVRJdV6vo8fmP6ZMV2YxTF3yluxeor3pe/Pc9/Oen9VzQk9luDJKeKqCOZ3GHzsjIyNNnAQAgLz17Bmjl15K86umXj2nJkzYphYtsk7ZfnTgQB3t16/A2oxQaWecv1Oaw2qxalizYdp02yaN6TVGtWJqBWcQAMjHxx9H6aGHaqlfv/pq1aqxrriinh58sKY+/DBeixZF6cABu3y+0+usVqusVm7pRBkRFyd98ok0c6bUvHm+h20oKBSsoSQDIaPOo04179Vcbm9wQm4yMzN19dVXy+Mxdt1+6NChqlChaIH5QHlntVp1//0xqlHDeODVX+6+u4KWLi19bzZglpkzbYZrBw4MMXESAAAAlAZcQQIAAAAAAAAAAAAAAACAIGrXLlzffWdeMNjx43ZdfHGIfv6ZYDCgONitdo3tNVbPdnm2xNfuUqeLLBb/w6eCoXXN1vr+mu8VFRqV7zEDzhogq6Xs/iprqD1Uo1qP0rpb1ynrf1l6rutzalCpgaGAsJ1pO/XUoqfUblzZCknLz8R1Ewvcv3j3Yl064dJSE4Lmcrnky+uO/SIICQnhpn4AQIm5886KuvnmY0U6tn37dH366XbVrJl7+k6LRfsee0yZ556bb/36BKNTGmeRRYPPHqz1t6zXR5d/VCYCcQGcmTZvDvv77263VVu2hOubb2L12mtVdcstSerevZHatWukYcPq6Nlnq2nKlDitXu1Qbm5oEKcGDOrVS1qxQvrlF+naa6WwsFN2byjoOYNFUkdjy+5Zskdtbm4jj9ec6+ZF5fP5dOONN2rDhg2G6kNDQ3XPPfeYPBVQtlWvHqbPP89RaKg3oD7Z2TYNHhyqI0cCDxgrbfbvd2v58nBDtUlJLp17Ls8xAAAAyhtegQYAAAAAAAAAAAAAAACAILvwwnDNnp2r2Fi3Kf1OnLCpR48QLV5MMBhQHCwWix5q/5A+v+JzhVhDSmzdrnW6lthaZriw1oX67urvFBkSmef+QU0GlfBExSfcHq4H2z2oTbdt0omHTuiJjk+csSEWHq9HU9ZPKfS4n3b9pN5f9FZWblYJTFWwo0ePGq6NjMz73zcAAMXlzTdj1K1beoHHXHvtYb355i5FRRVw073Vqp0ffihXfHyeu9dWDmRK/13R+Ar9MfIPTeg3QQ3jG5bs4gDgh9RUl/btKzx448QJu37/PVJffFFJ//d/NXTNNXX1/fcVS2BCoJi0bi198omUkiJNnCjdf79yu3XWtrhC6ppIqmNsyeUfLFe3B7vJ6wssSMgf99xzjyZMmGC4/vbbb1edOga/YKAc69gxWs8+mxZQD4vFp54903Tw4HZ5vSX3c6EkTJ7slNdr7A1BevVyyWotG28mAgAAgKIjFAwAAAAAAAAAAAAAAAAASoHWrcP1ww8excWZFwzWs2eIfvqJYDCguFzZ5EpVclQqsfU61+lcYmuZpV1iO3179beKCIk4ZXuPej3UumbrIE1VvKJCo/R4p8e17Y5tOvbAMT3Y9kElxiQGe6wS8+OuH3Uw82CRjl2wc4Eu++IyZedmF/NUBcvIyDBcGxdX2N3PAACYy263avLkcDVqdPrjp93u0+OP79X99x+QzVZ4L19YmLZNniyv3X7avnUJZkxbuEvrX6rfb/xdUwdO1dmVzy6ZRQEgAMuWGT9/adasCD+cgdIuPl4aOFB64QVtnfC23EX5Z91TkpF//j5p4SsL1fWurvL5fAYaFJ3H49Htt9+u0aNHG+5RsWJFPfLIIyZOBZQv99xTUYMGpRmqjY726K23dmnkyFR5vW7t3r3b3OGCbMYM45EP/fuffj4HAACAso9QMAAAAAAAAAAAAAAAAAAoJVq2DNOcOR5VrGhOMFh6uk2XXhqihQsJBgOKQ4fxHXQg80CJrNU4vrGqR1cvkbXM1qF2By27YZkub3i5mlVtpttb3a5P+34qi8US7NGKXWx4rJ7r9px2jdql1PtSdVfru1QjuoZp/b1er2m9zDJx7US/jp+3Y54u//LyoAaD5eTkGK6NjIw0cRIAAIomNjZE06f7FB+f+/e2ChXcGjt2p/r3P+ZXL098vHZ88slp29dWDnjMAnVL7qafh/+sWVfNUotqLYp3MQAw0cqVHsO1rVpFFH4QUIZsOLyhaAcmSLrQ4CJeaeHrC3V+//PldBbPde6DBw+qV69eeuuttwLq8+qrryo2NtacoYBy6sMPo3T22Vl+1TRsmK2JE7eqQ4d/gv0zMjKUmppq9nhBkZbm0aJF4YZqK1fOVbt2YSZPBAAAgNKAUDAAAAAAAAAAAAAAAAAAKEXOOy9Mc+d6FB9vTjBYRoZNvXqFaP58gsEAMw35aoiW7FlSYut1qdOlxNYqDmclnKXpV07XyptW6o0eb6hSRKVgj1Ti4iPi9erFryrl7hTtvWuvbml5i6pGVQ2oZ8v3W6rV+6302erPSkVAWK4nV1M3TPW7bs72Oeo7sa+c7pJ/rHI6nfL5fIZqQ0NDTZ4GAICia9gwQhMmZCkszKukpBxNmLBdrVplGuqV3bSpUp588pRtxRUK1i6xnRYMXaA5185Rm1ptimcRAChG69cbuyWzVq0cxcWFmDwNAjV+/HhZLJZi+fi///s/QzNdd911xTbT+PHjTf3vtyG1iKFgktRBUhXja62YtkI1G9XU/PnzjTf5D4/Ho48++khNmjTR999/H1Cv/v37a+jQoSZNBpRfkZF2TZ4sxcUV7TWw3r2P6dNPt6tWrdzT9h08eFCZmcbOgUqT6dNzlJtr7PlFjx4u2Wzl/803AAAAzkSEggEAAAAAAAAAAAAAAABAKdO8eZjmzfOaFgyWmWlT794hmjMn25R+wJnu6Z+e1qd/fFqia5b1UDCcqnqF6nq759vaf89+7bxzp65vfr0SIhL87uP1ebVs3zJdO/1ahT8TrrYfttWU9VOCFhA2f8d8Hck+Yqh29rbZ6jepn3LcOSZPVbDFi9P144/RSk/3/9eqo6KiimEiAACKrnv3GH367h599tk21a7tCqhXWp8+Onz11ZKkY+HSvgpmTPiPVjVaafY1s/XTsJ/UKamTuc0BoARt2GAsHLhBg8B+TgOl0cYjG4t+cIikgZLCjK93ZNcRde3aVV26dNGMGTOUm3t6SFBRnDhxQh988IGaNGmi4cOH68gRY9cy/lKzZk2NHTs2oB7AmaRRowi9/36GrNb8g/rtdq8eeWSfnnlmrxyO/I/buXOn3G5zXksLlq++MvaGBZLUrx9REQAAAOUVz/QAAAAAAAAAAAAAAAAAoBQ655xQzZ/vVUKCsRub/isry6bLLw/T7NkEgwGBmLh2oh5d8Gi++/s16qeR5480dU2LLAQnlGO1Y2vr/cve16H7Dmn6ldMN98n15urnlJ81YPIAOZ51qNP4Tvpm8zfmDVoEE9dNDKj+2y3fqv/k/iUaDDZ+fIhuu6222rVrrMGDk/Xqq1W0eHGUsrIK/zXruLi4EpgQAICCDfjoWlXbtDTwRhaLDtx/v9JbttS6yoG3+8u5Vc7V11d+raUjluqiuhfJYrGY1xwASpjH49WWLcYSjc46q2wHlgB52ZC6wb+CSpL6BL7uggUL1KdPH9WoUUPXXnutPvzwQ/3+++86fvx4nscfPHhQS5Ys0ejRo3XZZZepatWquuGGG7Rp06aAZ4mOjtbMmTNVsWLFgHsBZ5J+/WJ1333H8txXuXKuPvpohwYNOqrCTh98Pp+2b99eDBOWjOxsr+bNCzdUW6GCRxdfbKwWAAAApZ892AMAAAAAAAAAAAAAAAAAAPLWtGmoFixwqWvXXB08GBJwv+xsq/r2DdPUqdnq0cNhwoTAmWVpylJdNe2qfPefV+08TRk0RT6fT3Vi6+j+ufebsm7zas1V0cGNhWeC2rG1Tenj8rj0464f9eOuHxVuD1e7Wu30YPsH1bVOV1P657fmVxu/CrjPrM2zNHDKQE0eMFmhtlATJivY0qUnb5zzei1auzZCa9dG6KOPEmS3+3T22Vlq2TJTrVplqlmzLIWH+06pdTh4LAUABNmCBdKiRUpatEhbZs9WbvXqgfWzWrV7zBitureTpPSAWjVOlZ78yaYrZn8ra7UA5wKAUmLzZqcyMiIM1TZtavIwQJB5fV5tPLzR/8LGkjpJWhj4DKmpqfrss8/02Wef/b0tIiJCUVFRCgsLU1ZWljIyMpSTUzzh43a7XVOmTFGzZs2KpT9Q3j3zTKx+/z1dc+dG/72tZcsMvfjiHsXHe4rcx+VyKSUlRTVr1iyOMYvVt986lZlp7LlF9+5OhYZGmjwRAAAASovC38IKAAAAAAAAAAAAAAAAABA0TZqEav58r6pWzTWlX3a2VVdcEaZZs7JN6QecKXYf361O4zvJ6/Pmub9GdA0tvX6pJMlisei+tvfpy35fmhJqVJxBTij/nG6n5u6Yq26fdFPks5G69PNLtXj3YtPX+WHbD0pzppnS6+tNX+vKKVcq12POY19+du50atu28Dz3ud0WrVoVqfffr6wbbqijCy9srGHD6uiddypr2bIISWHFOhsAAEXyzjuSTt4cVHfAAFmysgJu6QsN1S9XdzdcX++I9NlUac07Uv81Hlk/+DDgmQCgtFi+3Hiw0HnnBR74D5Qme0/sVWZuprHiTpLamTnNP7KysnTo0CHt2bNHR44cKdZAsI8//lgXXXRRsfQHzgQ2m1VffBGmpKST36fDhqXqvfd2+hUI9pe0tDSlpaWZPGHxmzbNV/hB+ejb12LiJAAAAChtCAUDAAAAAAAAAAAAAAAAgFLurLPCtGCBT9WrmxOO4nRa1b9/mL7+mmAwoCgyXBlqNqaZcjx530QYHRqtNSPXyG61n7J90NmDNPfauYoLjwto/S51ugRUD/wlKzdL3279Vu0/aq/oZ6PV98u+Wr5vuSm9J66baEqfv3y18SsNnjq4WIPBvvuu6I+DublW/f57pN59t7KGD0/W4sXxxTYXAABFsn+/NH3635/aT5xQ8rXXSh7/b6D/r43ZO/2uqZ0mfThD2vC2dPUayfbXve3vvWfKTABQGqxebSy4Izzcq6ZNI0yeBgiuDYc3BNagm6QLTRmlxDkcDn311Ve66qqrgj0KUObFx4dq4sRcvfzybt1zz0HZ7YXX5CclJaXYggCLg9vt0+zZxt54IDzcq8svz/vNDgAAAFA+EAoGAAAAAAAAAAAAAAAAAGVAo0ahWrDApxo1XKb0y8mxasCAMH31VZYp/YDyyuv1qtmYZjrmPJbn/hBriJbdsExxjryDv9rXbq9fRvyiOrF1DK1vt9rVPrG9oVqUf2N7j9VFyRcp3O7/DWAZuRmavmm6Wr7fUjHPx2jg5IFae3CtoTmcbqdmbJxhqLYgUzdM1dXTrpbb6za9tyT9+KPFcG2PHg4TJwEAwIAPPpDcpz5GOjZvVs0HH5R8xkJr/rL66OoiH1v9hPTOLGnzm9LwlZLd+58DUlKkmTMDmgcASosNG4wlldStm6OQEG7lRPmyITXAUDBJukhSV0nGT89LXEJCgmbPnq1evXoFexSg3GjVKkpXXRViSq/t27fL6/3vSUnptGCBU0eOGHtu0aGDU1FRPLcAAAAoz3i2BwAAAAAAAAAAAAAAAABlRIMGoVqwQKpZ05xgMJfLqiuvDNfUqQSDAfnp8kkXbTu2Lc99Fln03dXfqWF8wwJ7NIxvqKXXL1WrGq38Xr91zdaKDI30uw5nhlY1Wmn2tbOV/b9sfXvVt+qc1FmhtlC/+5zIOaHJ6yer6ZimqvhCRV077VptPrK5yPXfbflO6a50v9ctisnrJ+var64tlmCwpUuNBXvVq+dU7dr+B7EBAGCq77/Pc3Ps998rftw4w22nbZ8mj89T6HGVM6TR30tb35BGLpdCCyr54QfD8wBAabJpk//nW5LUqJE51/KA0mTj4Y3mNGov6RpJZSB7u1OnTlq1apXatyfAHzBbtWrVFB4e+PU2j8ejnTt3Bj5QCZg6tfDzrvz06RNYEDQAAABKP0LBAAAAAAAAAAAAAAAAAKAMqV8/VAsXSomJ5gWDDR4crkmTCAYD/mvEjBH6cdeP+e5/r/d76prctUi9KkdW1oKhC3R5w8v9mqFrnaL1B3rU76H5Q+fL+T+npg6cqra12irEGuJ3n2POY/pszWdq+FZDJbyYoBEzRmhX2q4Cayaum2h07CL5cu2XGjp9qDxe4zfK/dfWrdnatSvMUG3r1k7T5gAAwBCPR1q1Kt/dVV97TVGLF/vd9mD2Qb285uUCj4nLlp6fI21/XRq1VHIUJbdz+XK/ZwGA0sbtdqt9+3RdcEGG4uL8Cy0+6yzzzmWA0mLD4Q3mNasr6SZJiea1NFN4eLiefPJJzZs3T9WrVw/2OEC5lZycLKs18OiDrKwsHThwwISJio/X69M33xgLG7XZfOrXz9h1TQAAAJQdhIIBAAAAAAAAAAAAAAAAQBlTt26oFi60KCnJnGCw3Fyrrr46XF98QTAY8JfnFz+vcavG5bv//gvv1/UtrverZ0RIhKYOnKrbW91e5Joudbr4tQZgsVh0ReMrtHj4Yjn/59TnV3yuC2pcILvV7nevw9mHNW7VOCW9nqSqL1fVyG9Gau+Jvacck+nK1MzNM80aP18T1kzQdTOuMy0Y7Ntvsw3XdurkM2UGAAAM27hRyir4/C1x5EiF7NlT5JYen0cP/vag0t3pee4P80hPLJB2vCY9sESKzPVj3j/+kHL9KQCA0icjI0P33HNQH3ywUz/+uFELFmzU2LE7de+9+3XZZcfUuHG2QkK8edY2a8ZtnCh/TA0Fk6RYScMlXSEp2tzWgejTp4/Wr1+vRx991JSwIgD5s1qtqlOnjim9Dh8+rPT0vM9tSoNly3KUkmIsFOyCC5yqXNn/a70AAAAoW3jGBwAAAAAAAAAAAAAAAABlUJ06IVq4MFedOrm0c6exGwf+ze22asgQh7zeLF19dYQJEwJl15T1U/TQvIfy3d+3UV+90P0FQ71tVptev+R11Ymto3t+uEc+5R8u5LA71Lpma0PrANLJG+muanqVrmp6lbxer8avHq+3l72t1QdWy+PzL1zrYOZBjVk+RmOWj1H1qOoa0GSAHm73sBbuWqis3JIJlfz0j09ls9r04WUfymoJ7Ebcn36yGaqzWHzq0YPHSQBAkC1fXughVkl1+/fX5nnz5I2KKvT419e+ruWH8+5bK7KWbsyepPuWdldYToa/00o5OdK6dVKzZv7XAkApkZmZ+fffLRYpPt6t+PgMXXjhPz8X3W5p9+4wbd4cps2bw7Vly8mPli3DgzEyUGyOZh/VocxDxdP8HEmNJC2WtEyS8UxvwywWi3r06KH7779fHTt2LPkBgDOYw+FQ9erVtW/fvoB77d69Ww0bNpTdXvriFCZPdhuuvfxyc940AQAAAKVb6XsWCwAAAAAAAAAAAAAAAAAoktq1Q/Tjj7nq3Nml7dvNCAazaNgwhzyeTA0ZEmnChEDZs2zvMg2aMijf/c2qNtO0QdMCWsNiseiuNncpMSZR13x1jZxuZ57Hta/dXqG2wL+3AelkQNjw5sM1vPlwub1uvff7exqzfIzWpa6T1+f1q9e+jH16/dfX9fqvr8thdxTTxHkbv2q8bBab3uv9XkDBYEuXGpu7QQOnqlcv2a8ZAIDTbN1apMPsWVlKvvpqbZ06VcrnRvgsd5aeW/Wcpu+anuf+RjGNdfavc/Xol9W19uI1+nx2HRmK1tyyhVAwAGWa05n3ufu/2e1ScnKOkpNzdMklJ/7eXqvW2cU5GlDiNh7eWLwLhErqIqm9pDWSfpN0oHiXlKQqVaqof//+uu2229SoUaPiXxBAnipWrKiMjAydOHGi8IML4PP5tG3bNtWvX19Wa2BvMGC2b74JMVw7cGCYiZMAAACgtCpdz2ABAAAAAAAAAAAAAAAAAH5JTAzRwoUW1auXY0o/t9ui4cMjNH58lin9gLIk5USKOozvkG9AUrWoavp1xK+mrdfvrH6aP2S+Kjkq5bm/e3J309YC/s1uteuWlrfoj5F/KPvhbL1y0StqHN9YFln87pXtzi6GCQv24coPNXLWSL/DzP6yfn2W9u41Frh34YXmPN4CABCQrKKfr4Vv365a994r+XynbPf6vJqxa4Z6ze6VbyCYwxahsK8naMqX1SVJE2cn6ck+C4zNnF3yzxkAwEwul8tQXWkLIcGphg0bJp/Pd8Z8DBs2zJT/bhtSN5jSp1AhklpIulnSLZK6S6ojGUsoPZ3NZtM555yj22+/XQsWLNC+ffv01ltvEQgGlAI1a9ZUSIjx4Ky/5ObmKiUlxYSJzLNxo0sbNxoL9jr3XKeSkgL/7wIAAIDSL++3+QAAAAAAAAAAAAAAAAAAlBm1aoXoxx/d6tw5R5s3B/4O4R6PRddf75DHk6kRIyJNmBAo/bJcWWo2ppmcbmee+6NCo/THyD8UajcWJJSfNrXa6JcRv6jnhJ7aenTr39vjI+J1Q4sbTF0LyEuoPVR3t7lbd7e5W9m52Xpt6Wv6aNVH2np0q3zyFd4gSN5b8Z5sVpve7vm2LBb/wsy++84pKcLQup06ld7/JgCAM4jbXeRDvRbJumie3GNf0u7B/ZTpydKSA0s0dedUHcg+UGBt5IK3tHpBs1O2Pf11RzXq8YYGf3eHfzPn5vp3PACUMh6Px1BdaKi51xGA0mDj4Y0lv2jlPz/aSnJJOiDp8J8fqZLSJeX8uc8lyS3JLsVExahCVAXFxcWpdu3aqlOnjurUqaNzzjlHrVq1UlRUVMl/LQAKZbVaVbduXW3atEk+X2DX406cOKGjR4+qYsWKJk0XmEmTciUZe37Qu3fRzwUBAABQthEKBgAAAAAAAAAAAAAAAADlQPXqdi1cKHXpkmP4Hcb/zeOx6MYbI+TxZOrGGwkGQ/nm9XrVbGwzHck+kud+u9Wu367/TfER8cWyfv1K9fXr9b/qhcUvaP7O+aodU1vPdn1WMeExxbIekB9HiEMPtX9ID7V/SBmuDL285GV9+sen2p62Pdij5end5e/KarHqzR5v+hUMtmiRzdB6VqtPPXrwmAgAKH4+n09ZuVk6kXNCJ3JOKN2VfvLPnJN/nohcp/R20okwKT30zz/DTv75323pf58efirN/bTIM1gPnKfD8687bbvXa9ENP92iOi1XqPWy8UX/osICP08FgGBxOvMOEC+K8PBwEycBSocNhzcEd4BQSYl/fhQiLjZOG27doHA734tAWWO325WYmKhdu3YF3Gvfvn1yOBxyOBwmTBaYr782dm1SkgYOJGwUAADgTEEoGAAAAAAAAAAAAAAAAACUE9Wq2bVgwclgsA0bAr/h2uu1aOTIk8FgI0cSgoLyq/un3bXl6JY891lk0azBs9Q4oXGxzlDRUVEvdH+hWNcA/BEVGqUnOj+hJzo/oTRnmp5f/Ly+WPOFdp/YHezRTvH2srdls9j02iWvFSkYzOv1qnPnNFksXv32W6T27Sv6jXSNGzuVkBD8GwcBAKWTz+eT0+3MN8jrr8//3ub6V8jXf45Pd6XL6/Pmv1iYpG7F+MUcryXvuPn57s7MtKn/vjH6pdYfqrVnRdF6RnJOCaDsSk9PN1wbFRVl4iRA6RD0UDA/7Ezbqe+2fKe+jfsGexQABkRHRyshIUGpqakB9fH5pLfeOqI77qiusDCrSdP5b+9et1asMPb6Xd26OWralLBlAACAMwWhYAAAAAAAAAAAAAAAAABQjlStatfChVLnzk6tXx8ecD+v16Jbbz0ZDHbbbdzEjfLnppk3af7O/AMP3rn0HV1c7+ISnAgofWLDY/V8t+f1fLfnlZqZqmcXP6vxq8YrzZkW7NEkSW/89oZsVpteueiVQoPBMjMz1bVrurp2PXlTf0pKiJYti9Rvv0Xpt98idehQSL61F17olEQoGACc6bw+r8YuH6vpm6ZrX/q+U4K/PD5PsMcLiMNdVdnfPCWtHC6p4Bvl9+4NU59zF+inw7UVmZ1WePMmTUyZEQCCISsry3AtoWAob7Jzs7Xj2I5gj+GXooSIAyi9qlSposzMTMOPx1lZVj32WA3Nnh2jDRvSNG5crLkD+mHSpBz5fMZea+vVK1cnE6IBAABwJiAUDAAAAAAAAAAAAAAAAADKmcqV7frxR4s6d3Zq7drAg8F8PovuuCNCXm+G7riDGxlRfrzy8yt6b8V7+e6/u/Xduvn8m0twIqD0S4hM0OiLR2vj4Y36fuv3wR7nb6OXjpbNYtOL3V8s8GbftLS0Uz6vWTNXNWumqW/fNPl80u7dofrtt8g/g8IideTIPyFhnTtzEzEAQHp43sN6YckLwR7DVA5bhCpvvF+7Jj4guYt+DrlidQUN6bZGk+bWkq2gAytUkOrXD3hOAAiWnJwcQ3UWi0V2O7dwonzZcnSLfPIFe4wiqxNbRz3q9Qj2GAAClJSUpE2bNsnj8S+IeceOUN11V6K2bTt5nvPRR7Fq1eqYbr45rjjGLNSMGcavL/bvz3MKAACAMwnP/gAAAAAAAAAAAAAAAACgHIqPt2nhQqlrV6dWrzYnGOzOO6Pk8WTqrruMvYs5UJpM3zhd9865N9/9ver30isXv1KCEwFlx+Gsw5q7fW6wxzjNy7+8LJvVpue6PpdvMFhWVla+9RaLVLu2S7VruzRgwDH5fNKOHWF/h4RddFFEcY0OACgj3F633l3+brDHMFXVsFoK++wn7VqXZKh+2tya+l+fJXp+etv8D2rR4uQDLQCUUbm5uYbqbLYCIxOBMmlD6oZgj1Ak4fZw9WvcTy92f1Fh9rBgjwMgQFarVcnJydqyZUuRa+bNi9b//ldTmZmnPh7ffXcFNWuWrtato80es0BHj3q0ZImx1+uqVcvVhRfyswwAAOBMQigYAAAAAAAAAAAAAAAAAJRTlSrZNH/+yWCwVasCDwaTpLvvjpTbnaH77osypR8QDCv2r1D/Sf3z3d+0clPNuHJGCU4ElC3TNkyT2+sO9hh5emHJC7JZbHq6y9OnBYN5vV6/bua3WKTk5BwlJ+do8OBjqlSpidnjAgDKGI/Xo1yPsWCY0qhmbpSy39moA4cCC758cUYbNbr0PQ375sa8DzjvvID6A0Aweb1e+Xw+Q7VhYYR3oPzZcLj0hoLFhseqd4Pe6tuory6qe5EiQ3lzC6A8CQsLU82aNZWSklLgcW639NZbVfThhwl57s/Otmnw4FD99ptLCQmhxTFqnqZNc8rtNvZzqUePHFmtISZPBAAAgNLMGuwBAAAAAAAAAAAAAAAAAADFp2JFm+bPD1GLFk7Tet5/f5RefDHDtH5ASdqfvl/txrWTx+fJc3+VyCpafsNyWa38iiWQn4nrJgZ7hAI9u/hZPb7w8dO2Z2QYf+xyOByBjAQAKCfC7GG6pN4lwR7DFHaP9O37Gbrzwp8D7uXzWXTL/OFa1GZk3gf07RvwGgAQLJmZmYZrOY9AebTx8MZgj3CK6tHVdcv5t2jOtXN06N5D+qTvJ+rbuC+BYEA5FRsbq9jY2Hz3Hz1q0803J+UbCPaXnTvDNHhwjjwer8kT5m/6dOO1/frZTJsDAAAAZQO/sQIAAAAAAAAAAAAAAAAA5VxcnE3z5oXo/POzTev5wANRevZZgsFQtjjdTp0z5hxlu/P+XogIidCakWsUag8t4cmAsuNgxkEt3Lkw2GMU6qmfntL/Lfy/U7alpaUZ7hcdHR3gRACA8uLpLk/LZin7N2Q/sVBqekh6dHp3XXXJtoD7ZWfb9HnTx5Rdv/6pO849V2rbNuD+ABAsgYQLcx6B8mjD4Q3BHkENKjXQA20f0NIRS7Xnrj16+9K31S25m0JsIcEeDUAJqFmzpkJDT7+Gv2aNQ4MG1dWvv0YVqc+8edF6+OHjZo+Xp6wsrxYsCDdUGxvrVvfuxmoBAABQdhEKBgAAAAAAAAAAAAAAAABngNhYm+bODVWrVuYFg/3vf1F6+mmCwVA2eL1eNR/TXIezDue5326169cRvyohMqGEJwPKlinrp8jr8wZ7jCJ54scn9PRPT//9eVZWluFecXFxZowEACgHzko4Szeff3OwxwjIefukB5b88/lH85qqzfnHDPezWn168MF9uvW2w9r+6adyV6jwz86RIwOYFACCLzvb+LU0h8Nh4iRA8Hm8Hm06vCkoa59f/Xw90+UZrb9lvTbdtknPd3teF9S8QFYLt0kDZ6Lk5GRZLBZJks8nTZ4cp6FD6+jAAf/e8OPll2M1ZUpaMUx4qlmznMrKMhYu3b17jkJCLCZPBAAAgNKOs10AAAAAAAAAAAAAAAAAOEPExNg0d26YWrc2Lxjs0Uej9PjjBIOh9OvxeQ9tPLIxz30WWfT1lV/r7Cpnl/BUQNkzcd3EYI/gl0cXPKrnFj0nr9crt9ttqIfVapXdbjd5MgBAWfZEpycUExYT7DEMCXVLH38l2f+V8Rmam63pe9ooqbbT735RUR69/fYuXX31UVkski8yUtsmT5ZXkipUkK65xrTZASAYXC6XoTqr1Sqrlds3Ub7sOr5LOZ6cElnLZrGpc1JnvXHJG9o9areW3bBMD7d/WI0TGpfI+gBKN7vdrqSkJDmdFj3+eA09+WQN5eb6/7jr9Vp0441R2rjR+JsJFMW0aT7DtVdcQSAYAADAmYhXpwEAAAAAAAAAAAAAAADgDBIdbdWcOWG66KJs/fKLw5SeTz4ZJa83Q089FWVKP8Bst357q37Y/kO++9/o8YZ61O9RghMBZdPeE3u1ePfiYI/ht4fnP6xcV66uqHKFofrw8HCTJypeLo9LIdYQWSzcMAgAxSU+Il6Pd3xcd/9wd7BH8dv/LZSapJ6+vfLBTfrqnKvVscJEnThRtNuNatZ06a23dqlu3VPDQXKrV9eu999XnePHpchIE6YGgOAxGi5MsDDKow2pG0pkHYss2n/3fiVEJZTIegDKpsjISB04UF0zZsQG1OfYMbsGDHDpl1/ciooy//E7N9enH34IM1TrcHjVu3fZujYJAAAAcxA1DwAAAAAAAAAAAAAAAABnmKgoq374IUzt2mWb1vPpp6P00EMZpvUDzPL60tf1zrJ38t1/R6s7dFur20pwIqDsmrx+snzyBXsMQx5f/LjeWPuGodoKFSqYPI0xPp9Px53Hte7QOs3eOlvjVo7Tkz8+qRtn3qien/fUuWPOVaUXKyns6TBVerGS/jfvf3J7jQUYAAAKd2urW1W/Yv1gj+GXVinSvT/nv7/ZH9P0casXZLcX/njfokWmJkzYdlog2F8yW7fW/sGDjY4KAKWC0UAwqeyFCwNFseFwyYSC+eTTDzvyD/gHgL/06hWn++47FnCftWsjdP31xfMa17x5Th07ZixsrGNHpyIjiYMAAAA4ExE3DwAAAAAAAAAAAAAAAABnoKgoq77/Pkw9e2brp58cpvR8/vkoeb0ZeuGFKFP6AYGatWmW7pp9V777e9Trodd7vF6CEwFl28R1E4M9QkDe3/S+Zu6eqVFnj1Knap0UGRJZpLrY2NjiHUyS1+fV4azD2ntir1JOpPz9sTf91M8zczOL1O+Y85ieXfysqkVXI/gQAIpJqC1UL1/0si7/8vJgj1IkYW5p/HTJ7i34uD5zH9EzfZrpgemX5n9Mn2N67LF9CgkpODzsyNGjCnc4FBcXZ2BiAAi+EydOGK6NjCza+QZQlmw8vNGUPtWjq6tPwz7q06iPXv3lVX2/7fvTjhmzbIyubnq1KesBKN+eeSZWv/+errlzowPqM3FirAYPPqTLL69s0mQnTZ1ayElYAfr0KZtv0AAAAIDAEQoGAAAAAAAAAAAAAAAAAGeoyEirvvsuTL16ZWnBgghTer74YpQ8ngy9+GKkrFaLKT0BI/44+If6TOwjn/K+aeas+LM0a/CsEp4KKLt2pe3S0pSlwR4jYAeyD+jBZQ8qzBqm9lXbq2O1jrqoxkWKCMn7cdBqtcpuD+xXrt1etw5kHDgZ8vXv0K/0fz7fm75XLo8roHXy8tXGrwgFA4Bi1LtBb3Wp00Xzd8wP9iiFemq+1Phw0Y69f3ovbey5UR992/CU7RaLT3fffUBDhx6RpYine3v37lVYWJgiIsw55wSAkpSZWbRQ3rxERwcWTAKURhsObzBc26BSA/Vt1Fd9G/VVyxotZbVYJUkWiyXPULBl+5YZXgvAmcVms+qLL8LUsmWOdu4MM9QjPNyrxx7bq7p1jystLdS0Nwnwen369ttQQ7V2u0/9+oWbMgcAAADKHkLBAAAAAAAAAAAAAAAAAOAMFhFh1TffhKt37yzNm2fOTdqvvBIlrzdDL79MMBiC42DGQbX5sI08Pk+e+ytHVNbvN/0uq9VawpMBZdekdZOCPYKpcrw5mrtvrubum6tHf39ULRNa6uZGN+v8hPP/vjFZkhwOR4F9nG6n9qXv+zvo6+/Qr/R/Pt+fsV9en7e4v6Q8xUfEB2VdADhTWCwWjb54tJqPbR60n/VF0XqPdPcv/tWMnX2OtrXep5+WVpIkORwevfBCijp3Tvd7/R07dqhhw4YBB20CQEnLyckxXBsaaiwABCjN9hzf49fx51c/X30a9lHfxn3VOL6xLHmkinZL7qYwW5hyPKd+v+V4cjRn2xx1r9s9oJkBnBni40M1cWKGOnWyKzvb5ldtzZouvfbabjVs6JQkpaSkyOFwKCzMWMDYvy1dmqN9+4wFe7Vu7VR8fMHXJgEAAFB+cTUdAAAAAAAAAAAAAAAAAM5wDodVM2eG67LLsjR3rjnBYKNHR8ntztBrrxEMhpLldDt1zphzlJWbled+h92h1SNXK9xu7EYc4Ew1cd3EYI9QrJalLtOy1GWqHlFdvRJ76fLal6tSWCVleDK0bfu2U0O//gz8SjmRosNZh4M9eoEurX9psEcAgHLvnCrnaETzEXp/xfvBHiVP4bnS+OmSzedfXYjHpalbWqpN8jplZtv05pu71LChsXAcn8+nrVu3qkGDBgTzAihTXC6XoTqbzb8wEqCsSIhM0J4T+QeD2Sw2dajdQX0b9VWfRn1UK6ZWkfq2rNFSi3cvPm376KWjCQUDUGStWkVp9OhjuvnmuCLXdOx4Qs88k6KYmFNDnrdv366GDRsGfP4yZYrbcO1ll+X9picAAAA4M1h8Pp+fl/UBAAAAAAAAAAAAAAAAAOWR0+lVnz5OzZ5tTjCYJN1yS4befJNgMJQMr9erc8aco3Wp6/Lcb7PY9PuNv+vcqueW8GRA0axatUrNmzcv8vErV65Us2bNim+gP209ulX136xf7OvAXJEhkTpw7wFFhUYFexQAKPcOZhxU/TfrK92VHuxRTvPKbOnuX4zXb2jSUwfffEnxCd7CDy5ERESEkpOTA+4DACXB6/Vq/fr1hmodDofq1q1r8kRA8E3fOF19J/Y9ZVu4PVwX1b1IfRv1Ve8GvVUpopLffSesmaCrp1192vao0CilP1T6nl8BKN1GjDimceMKDgazWHy65ZZDuvHGVOWX+2XG+UuDBjnasiXMUO3OnbmqXTskoPUBAABQdvH2GgAAAAAAAAAAAAAAAAAASVJ4uFVff+1Qjx5ZpvV8550o3XJLprxe3r8Sxa/3F73zDQSTpGmDphEIBhgwad2kYI9gSHRotJpWbqrk6GTFh8Ur1Boa7JFKVP+z+hMIBgAlpEpUFf2v/f+CPcZp2u616c6lgfVovO5bNR3zf5Iv8HO6rKws7du3L+A+AFASDh7M0bx50dqzJ1ReP3MRHQ5H8QwFBFmfRn20+LrFurHFjbqj1R2aMmCKDt93WDOunKFhzYYZCgSTpCubXCmbxXba9gxXhlbtXxXg1ADONO++G6OWLTPz3V+hglvvvLNLN9+cfyCYdPL85cCBA4bnWLfOZTgQrFkzJ4FgAAAAZzh7sAcAAAAAAAAAAAAAAAAAAJQeoaEWTZ/uUL9+mZo1K9KUnmPHRsnjydTYsRGyWi2m9AT+a9T3o/Tt1m/z3T/6otG6rOFlJTgRUH5MXDcx2CPkq2pUVdWNq6u6Feue/PNff4+PiNexY8f+Dh/J8eRo8YHF+j7le83dO1dunzvI0xevoecODfYIAHBGubP1nRrz+xjtTNsZ7FEkSQ67Q+Nu/1a2nc9Kc+YE1KvSpElyNmqkYwMGBDzX0aNHFR4erooVKwbcCwCK008/5WjUqNqSJIfDo/r1c1S/vlP16zvVoMHJv8fGevKsjYw055oaUBq1TWyrtoltTe1ptVrVtEpTrTqw6rR9L/78oib0m2DqegDKt9BQqyZNsuqCC3J16NCpwVqNG2fr1Vd3q2bN3CL1Onz4sCIjIxUdHe33HBMnuiQZe5OC3r3L93VLAAAAFI5QMAAAAAAAAAAAAAAAAADAKUJDLZo2LUIDBmRqxgxzbmL84INIeb0Zev/9SILBYLq3f3tbr//6er77bzn/Fo1qM6rkBkK5N27cOI0bN870vhkZGab3DNTGwxv1x8E/gra+3WpX7ZjaeYZ+JcclKzK04MepEydO/P33MFuYutboqq41uirLnaVxm8bph70/aFf6LnnlLe4vpUTVjqmtjkkdgz0GAJxRwu3heqn7SxowOfDgLDM82/VZNWjaSfqhkzRpkvTmm9LixYb71XjySTnr11d2s2YBz7Zv3z6FhYURmgOgVPvjD9/ff8/OtumPPyL0xx8RpxxTuXLunyFh/4SF1amTYyg4BDjTDTt3mEYdGHXa9h+2/VDywwAo85KSHPr44xPq3dsmt9sqSbr88mN65JF9Cg/3FVJ9qt27d6thw4ay2/2LZZg503iMw6BBxsLEAAAAUH5YfD6ff89cAQAAAAAAAAAAAAAAAABnhNxcnwYNytJXX5l3o/bQoZn68MMI2WwEg8Ec3235TpdOuFQ+5f3rkN2Su2nOtXNKeCqUd0888YT+7//+L9hjaOXKlWpmQjBHQd5d9q5u+faWYl0jMiQyz9CvuhXrKjEmUXar8RvoNmzYII/HU+Axh52H9c3ubzRj1wxtObHF8FqlySPtH9FTXZ4K9hgAcMbx+XzqOL6jFu1eFNQ52ie218JhC2W1WE/dsWaN9M470uefS+np/jWtWlXeESO0efBguU24Fclisah+/foKDeVmdwClU58+xzVjRozfdWedla116xzFMBFQvrncLoU/E57nNb6dd+5U7djaQZgKQFn31FNH9eSTsXroof0aMOCYLAZfmgoJCVH9+vVltVoLP1jSrl25SkoKMbRW/fo52rw5zFAtAAAAyg/jr5ADAAAAAAAAAAAAAAAAAMq1kBCLJk2K0ODBmZoyxZxgsI8/jpTHk6nx4wkGQ+DWHlyry768LN9AsIaVGmr21bNLeCqgfMnMzTSlT5XIKqpbsa6S45JPC/+qHFlZFqN35BXA4/EUGggmSfHh8RraYKiG1B+ixQcXa9Qvo+TyukyfpyQNOXdIsEcAgDOSxWLR6ItHq+X7LfN9jlrcIkIiNO7ycacHgklS06bSu+9Kb70lbdgg/f67tHy5tHKldPSolJ0tWa1SeLhUtap03nnS+eef/DM5WVaLRXVzc7V582b5AgwG8/l82rZtmxo2bFjkG+sBoCRt2mQstLBePZckQsEAf4XaQ1WvYj1tOXp6WPcLS17QO5e+E4SpAJR1Dz8cq1atdqpGjayA+uTm5iolJUWJiYlFOn7SpBxJxkLBevXKlUQoGAAAwJmOUDAAAAAAAAAAAAAAAAAAQL7sdou++CJCFkumJk82Jxjss89OBoN9+inBYDAuNTNVrT9sLbfXnef++Ih4rbxpJQEDQIAGNRmkh+c9rFxvboHH2Sw2JcYk/h309VfoV72K9ZQcl6yo0KgSmvgfaWlpfh1vsVjUvmp7zbp4lob8OEQHsg4Uz2DF7MJaF6p+pfrBHgMAzlg1KtRQQmSCDmUeCsr6z3d9XvUq1iv4IJtNOvvskx9Dh/rVPyQkRElJSdqxY0cAU57k8Xi0Y8cO1a1bN+BeAGCmnByvtm0zFsZx1lmFBxMDyNuVZ1+pp3566rTtX2/6mlAwAIbYbFZ17ZqoTZs2BRxsfOLECR09elQVK1Ys9NiZM42/LtG/P/EPAAAAIBQMAAAAAAAAAAAAAAAAAFCIv4LBbLZMffmlOcFgX3xxMhjs888jZLcTDAb/uNwunTPmHGXmZua532F3aPVNq+UIcZTwZED5UyumlhYOW6h7f7hXO9J2KD4i/pTQr7/+rB1TWyG2kGCPe4oTJ04YqqsWUU1f9/9al065VKlZqSZPVfyGnutfuAsAwBxur1sjZ43UuFXj5PV5gzJDx9oddWurW4t9ncjISFWvXl379u0LuFd2drZSUlJUs2ZNEyYDAHOsWpWl3Fxjwcbnnks4OWDU3W3uzjMUbG/6Xh3NOqqKEYUH8QDAf9ntdiUmJmrXrl0B99q3b58cDoccjvxfezhyxKNffjH22kT16rlq3dpYMCkAAADKF0LBAAAAAAAAAAAAAAAAAACFstks+uyzk8Fgn39uTjDYpEmR8noz9cUXBIOh6Lxer1q+31IHMg7kud9msWnx8MWqXqF6CU8GlF8X1rpQP4/4Odhj+O3GGyvJ7a6kli0z1apVpho0cMpaxPvzz6t9nmZfM1udPu6kEznGwsWCIdweroFNBgZ7DAA447z121t6YO4DysrNCtoMkSGRGnf5OFktJRNGU7FiRTmdTh09ejTgXmlpaQoPD1d8fLwJkwFA4FascBmubdmSIA/AqNjwWNWMrqmU9JTT9r269FU93eXpIEwFoDyIjo5WQkKCUlMDfwOAHTt2qFGjRrLmc6Fx6lSn3G5jr6P17OmS1Vq63ngBAAAAwUHsPAAAAAAAAAAAAAAAAACgSGw2iz7+OEJDhmSa1nPKlEgNHJglt9tnWk+Ub30n9dUfh/7Id//kAZPVolqLEpwIQGmUmenWokVRWriwgl56qZoGDKinDh0aadSoWvr884rasiVMvnweeux2u6xWq5pXa65Zg2cp3B5essMHoE+jPooNjw32GABwxvhp50+q+WpN3f7d7UENBJOkF7u/qOS45BJds3r16oqIiDCl1wcfZGv16gxTegFAoP74w1h4fUyMW0lJhIIBgbis0WV5bp+0blIJTwKgvKlSpYop5y9er1fbt2/Pd//06cbfBKdfP6IfAAAAcBLPDAEAAAAAAAAAAAAAAAAARWazWfTRRxG67jrzbtb+6qtI9e+fpdxcgsFQsHt/uFdfb/o63/0vdntRfRv3LcGJAJRWc+dmKCfn1F+VPn7crnnzYvT889V1xRX11alTI91zTy1NnFhR27eH/h0S9u+bA9vXbq+pA6fKbrWX5PiGDT13aLBHAIAzQsqJFLX+oLU6ftxRe9P3BnscdU7qrJvPvzkoayclJcluN/446fVKr71WRQ89VEtXXGFXaqrLxOkAwJiNG439XGvQIEc2G7dsAoF4oO0DeW7fenSrnG5nCU8DoLxJSkqSzWYLuI/T6dT+/ftP256Z6dXChcbeYCAuzq1u3crOmxMAAACgeJWNV6cBAAAAAAAAAAAAAAAAAKWG1WrRBx9EymbL1AcfRJrSc8aMSPXrl6mpUyMUEmL8XdRRfo1dPlav/PJKvvtvaHGD7mt7XwlOhDNZYmKi2rZta3rfjIwMrV692vS+Z6L58wsPmjx61K4ffojRDz/ESJISEnLVsmWmxow59XGoZ/2e+qzvZxo8dbB8Kr0BltWiqql7cvdgjwGUGenp6Xr11Vfl8wX2fZ2UlKRhw4aZMxRKPZfbpeu/vl6frfmsSI8JNotNCZEJOpBxoNhmigqN0rjLx8lqCU4IjdVqVb169bRp0ya/v5+ysqx66KGamj+/giRp+/ZwXXFFhubNsys0lFAdAMGzaVOYobpGjXJNngQ48yTGJKqSo5KOZB85ZbtPPo1ZPkajWo8KzmAAygWr1ark5GRt2bIl4F5HjhxRRESEYmJi/t42c6ZT2dkRBVTl76KLcmS3m/OaGwAAAMo+QsEAAAAAAAAAAAAAAAAAAH6zWi0aOzZCNluGxo6NMqXnzJmR6tMnS1995VBoKMFg+MecbXM08puR+e7vnNRZ7/V+rwQnwplu+PDhGj58uOl9V61apebNm5ve90y0ZEmo3zWpqSH65ZcoVat2egjJoLMH6XjOcd006yYzxisW15xzjWxWW7DHAMqMe++9V++9F/jzh44dOxIKdoZ45edX9MiCR+R0O4t0/MV1L9aX/b/UxsMb1ebDNsU218vdX1ZSbFKx9S8Ku92u5ORkbdu2rcg1Bw6E6PbbE7Vxo+OU7YsXR+mGG47p44/jzB4TAIokNdX1/+zddZiU5eLG8Xtip3a26Fi6BRVsQQmxsMXE4oDdgR14FEUxsNAjNrZityihgIWU0rG7sHRsT9fvD3565LDAzuy7Mxvfz3V5Ke/7xI2wszOz+9yrjRvjfz0hSb16RQ1OAzRMx3U6Tm8venuX668teI1SMADVZrfblZubq3Xr1lV7rcLCQjmdTtlsO547fPRR4sXjQ4fydTEAAAD8Fz82AwAAAAAAAAAAAAAAAACQELPZpOeeS9dVV1UYtuZXX7l0yik++f0cosQOS7cu1Ylvn6iYKj9M06VRF31/4fdJTgWgNisrC2vhQufeB1bi0EO9slor/xbryw68TOOOHledaDVq+P7DUx0BqDOmT5+uF198MdUxUEd8t/o7tXy8pW7+7uYqFYJ1a9xNf1zxh7654BtlO7J1WO5hGtZrWI1kO7rj0brswMtqZO14OZ1O5ebmVmnsn386NWxYx10Kwf7y+us5Gju2yMh4AFBlv/3mS3hu796U9AJGuO2I2yq9vmjLIkWjvG8MoPqys7OVnZ1tyFp5eXmKRqMKhWL67jt7Qmu4XBGddJLDkDwAAACoHygFAwAAAAAAAAAAAAAAAAAkzGw26Zln0nXNNcYVg337rUunnOKnGAwq8hbpkJcOUSgaqvR+I2cjLbh8gcxmvh0SwH9NmVKhcDixx4Ujjgjv8f6t/W7V7f1uT2jtmnRgywPVs1nPVMcA6gSv16tLLrlEsVjlhaPAX/KL83XgxAN17JvHalPFpr2Oz3Zk690z3tWya5Zp3+b77nTv4aMflsNq7AHvDFuGXjr5JZlMJkPXrY7s7Gw1btx4j2O+/jpLI0Z00LZtaXscN3p0jj74oMTAdABQNfPnRxKaZzLFdPDBLoPTAA3Tfs33U4YtY5frkVhEb//5dgoSAaiPcnNzZbPZqr1OOBzW2rVr9d13fpWUWBNaY9Agv1wuvs4BAACA/+LZIQAAAAAAAAAAAAAAAACgWsxmk556Kl033GBcMdh337l00kl++XwUgzVUwXBQ+/5nX1UEK/975bA6tPCKhXLZOHALYGfTpiVe9HPccXs/CDh28FhdceAVCe9RE4bvPzzVEYA644477lBeXl6qY6AW84f9Onvy2er0dCfN2zRvr+PTzGm644g7tP2W7Tqn1zmVjmmb1VY3H36zoTkfP/ZxtctuZ+iaRmjZsqXcbvcu12Mx6dlnm+nWW9soENj7caZIxKSRIzM0b55xrzMBoCpcrqD2398rlyu+crDc3KBycvZceAig6vq361/p9efnPp/kJADqs44dO1a7aDkUMumOOzL0xBN7/mEDe3LaadWKAAAAgHrIFOPH2wAAAAAAAAAAAAAAAAAADBCNxnTLLR6NH7/rAfBEDRrk1RdfOPgJ6Q3QARMP0PxN8yu9ZzaZ9cvFv+jg1gcnORVQsxYsWKA+ffpUefz8+fPVu3fvmgtUR/Xp49WCBfEXBjZpEtKmTRZZLFUoKolGdMHHF+jdRe8mEtFwTqtTJ3Y9UWOPGqsujbukOg5Qa82ePVv9+/dXNGpc8eyAAQM0Y8YMw9ZDaj3w4wMa8+MYBSPBKo0/pespeuuMt+S27f01UEWwQl2f6aqNFRurG1PHdjpW35z/TbUPr9eUaDSqlStXKhQKSZL8fpPuvjtX336bFfda7doF9PPPUsuWdqNjAkCllixZomg0qmhU2rAhTStWOLRypeP//23XmjV2RaO7Pv4efXS5vvsuIwWJgfppat5UHf3G0btct1vs8t/tT0EiAPWVx+NRfn5+QnM3bbJq1Ki2+uMPl0ymmGKx+F+jWa1Rbd4cU6NGloQyAAAAoH6ypjoAAAAAAAAAAAAAAAAAAKB+MJtNevxxt6zWCj3yiDHFYNOnu3TCCV599RXFYA3J0PeG7rYQTJLePeNdCsEAVGr79qAWLXImNPfQQ32yWDKrNNZituj1015XeaBcX678MqH9jOQL+/TBkg/0wZIP1Cqjlf61/79015F3yWWLvxwNqK/8fr9GjhxpaCEY6o/Pl3+ukZ+N1DbvtiqN79W0lz44+wN1a9Ktynu4bW6NHTxWIz4dkWhMSVKmPVMvnfxSrS0EkySz2axOnTppxYoV2rTJrOuvb6tFixL7nLRmjV2nnebRjz+myW7nNSGAmrWjDGzHcwWzWcrNDSk3N6Sjjir/e4zfb1Jenl0rVjh2Kgzr0SOcqthAvTS442DZLXYFIoGdrgciAU1ZNUXHdj42RckA1Dfp6elq3ry5Nm/eHNe8335L1y23tFFR0Y66hkQKwSSpXz+/GjXiPTwAAADsjHfDAQAAAAAAAAAAAAAAAACGGjfOrdtvrzBsvR9+cOm44wLyeChwaAhu//52fbzs493eH3vUWJ3V86wkJgJQl0yZ4lU4nNgBvCOPjO8Qf5olTZPPmqz+7fontF9N2VC+QWNnjZX7Ibf6TOyjd/58hxIkQNLo0aO1YsWKVMdALbNi+wrt95/9dMq7p1SpEKyxs7E+PfdT/XnVn3EVgv3lov0v0gEtD0gk6t+eOO4JtclqU601ksFqtapDh466+eY2CReC/eW339I1fHiZIhE+nwGoWT6fb69jHI6Y9tnHr9NOK9Gtt27Siy8W6IcflumWW/xJSAg0LIe0PqTS60/++mRygwCo95o2bSq3u2o/7CYWk159tYkuvbT934Vg1XHqqbFqrwEAAID6h1IwAAAAAAAAAAAAAAAAAIDhHnrIrbvvNq4YbNYsp449NqCKCg6B12cvz3tZ42aP2+39Eb1H6I4j70hiIgB1zfTpiR+iO+44W9xznGlOfT7s82oXvNSEmGJasGmBzvvoPKWPTdfJb5+sPzb/kepYQErMmTNH48ePT3UM1CIVwQqd9u5p6j6hu/7c8udex9ssNt038D5tu3WbTul2SsL7mk1mPXHcEwnPH9J5iEb0HpHw/GRzOh2aMCEqlytS7bXeey9b999fUv1QALAH5eXlCc/Nzq5akQiAqrvyoCsrvT5z7cwkJwHQELRt21ZW655Lvjwes0aNaqPx41soGk3sBxP8k8kU09ln26u9DgAAAOofSsEAAAAAAAAAAAAAAAAAADVizBi3Ro82rhjsp592FIOVl1MMVh9Ny5+mSz+/dLf3j2x7pF459ZUkJgJQF/30kyOheS1aBLXvvq6E5mbaM/XN+d+oe5PuCc1PBn/Ery9WfqH9n99fzR5tphu/uVEl/pJUxwKSIhgMauTIkYpEql9KhLovGo3qrml3qdG4Rvp0+aeKac9lkiaZdOY+Z6r41mKNHjDakAz92/XXGT3OiHtelj1LL578okym6h88T6a+fTP0/PNlMpkSL+78y/z5Jm3evMWAVABQOZ/Pl/Dc9PR0A5MAkKRzep4ji8myy/WKYIXmbZyXgkQA6jOz2ayOHTvu9n5enl3DhnXUd99lGbbnAQcE1Lr1novIAAAA0DBRCgYAAAAAAAAAAAAAAAAAqDH33efW/fcbVwz2889OHX10QKWllDrUJyu2r9Dxbx6/21KGjjkdNWP4jOSGAlDnlJUFtXatLaG5hx7qk8WS+LdWN01vqikXTFHbrLYJr5GIfZrsI7MpvtxbvVv15K9PqtG4Rur5bE+9NO8lRaMUbqL+GjNmjBYtWpTqGKgFPljygZo82kRjZ45VKBra6/g+Lfpo9XWrNfmsyXLZEiuO3J1HjnlENkt8n7OeOv4ptc5sbWiOZLnwwhzdeWdxtda45prNevDB9dq6dYtKS0sNSgYAOwsGgwnNM5lMMps5qgkYzWw2a7/m+1V679HZjyY5DYCGwGazqW3bXd/fmzIlU8OGdVR+fmI/kGB3TjmFr3UBAACgcrzTBAAAAAAAAAAAAAAAAACoUffc49aYMcYVg/32m1NHHx1USQmHJeqDEn+JDnrhoN0WM+Q4crTwioUcrgWwV15vkX74YanefHO1rr9+kw4/vEIOR9XKrvr3r/7nlDZZbfT9hd+reXrzaq9VFb2a9dKiqxbJc6dHYwaNibuQLKaYlmxboks/v1SOBx069o1j9eu6X2soLZAaCxcu1Lhx41IdAym2aPMi9ZjQQ2dNPkvF/r0XUzVPb65vzv9G8y6fpw45HWokU8ecjrrh0BuqPP7ELifqov0vqpEsyXLffdk688z4y7wcjqgef3ytLr98q0ymHdcKCwvl9/sNTggAUjgcTmheWlqawUkA/GVE7xGVXp+SNyXJSQA0FJmZmWrcuLEkKRyWxo9vrlGj2srrtRi+19ln8xwCAAAAlTPFYrHKf6weAAAAAAAAAAAAAAAAAAAGGjfOo9tvTzdsvQMO8Ov779OUk2P8QQwkRzgaVoenOmhd2bpK79stdi2/ZrnaZbdLcjIgNRYsWKA+ffpUefz8+fPVu3fvmgtUx6xatWqXgpBQyKQ//3Tqt9/S9dtv6Vq40KVgcNeSwSVLvOrRw2VIjoWbFmrgpIEq8ZcYst7uPHrMo7q57807XVtTskb3TLtHnyz/ROXB8oTWzXHk6Ox9ztb9g+5XM3czI6ICKREOh3XIIYdo/vz5VRpvt9sVCATi3mfAgAGaMWNG3PNQ80r9pRr24TB9verrKo13WBy6b9B9urXfrTWcbIeyQJk6P91ZW71b9zgu25GtxVctVquMVknJVZN8vogGDPBrzpyqvS5s1iykp59eo549dy0AM5vN6tq1q6xWq9ExATRQ4XBYy5YtS2huRkaG2rXjvQugJgTDQTkedCimXY9C512XV2MlrgAwb16erryymX77zV0j63fvHtDSpfYaWRsAAAB1Hz82DwAAAAAAAAAAAAAAAACQFLfdlq5HHqkwbL158xw66qiQiooihq2J5Or7ct/dFoKZTWZNHz6dQjAAVVZZmU9aWkwHHODVFVds1SuvFOinn5bq5ZfzdfnlW3TAAR5ZrVG1bh00rBBMkvZvsb++PO9LudKMW/N/mU1mnb/v+btcb5fdTq8PfV1ld5RpygVTdESbI2QxxVeeWewv1sR5E9X88ebq+kxXPfXLUwpHw0ZFB5Jm3LhxVS4EM5lMuvPOO2s4EZIlGo1q1JRRavJokyoVgplk0vn7nq/S20uTVggmSZn2TD1w1AN7HffMkGfqRSGYJDmdFn3yiVVt2uy9gK9HD5/efnt1pYVg0o4/57y8PEWjUaNjAmigKioSf8/K5aq55/5AQ2ez2tSlUZdK7z0y+5EkpwHQkPTs2V7RqKnG1j/xxFCNrQ0AAIC6j1IwAAAAAAAAAAAAAAAAAEDS3HKLW+PHewxbb8GCHcVg27dTDFbXnDP5HM3ZMGe39988/U0d3ubwJCYCUJcFAgHFYrG9jrPbYzrkEI+uuWaLJk3K1+zZS/XCCxsMz9O3TV99dPZHSjOnGb62JB3X6Ti1zGi5xzHHdDpGM0fOlP9uvx4/9nF1yukU9z4ri1bqhm9vkPNBpwa8OkDT8qclGhlIqiVLlmjMmDFVHn/ppZeqf//+NZgIyfLmwjeV80iOxv88vkqFhoe0OkQFNxTozaFvyma1JSHhzi7uc7H2bbbvbu+f0u2USksg67JWrez68MOQ3O7dv4Y75phSTZqUp+bN9/xnGAwGtXbtWqMjAmigPJ7E36/KyMgwMAmA/3Vur3Mrvf7Zis+SnARAQ2K3mzV5slnNmtVMeddZZ1lrZF0AAADUD5SCAQAAAAAAAAAAAAAAAACS6sYb0/Xkkx6ZTHsvb6mKhQsdGjQopG3bKAarK+6Zdo/eX/L+bu/fN/A+Ddt3WBITAajrioqKEprncsW0//41VNzV+Ti9fcbbMpuM/5bt4fsPr/JYq9mqmw6/SauuW6WNozbq0gMuVY4jJ679wtGwflz7owa/PlhZD2dp+MfDtbaUEhbUTtFoVCNHjlQgEKjS+FatWumRRx6p4VSoafM2zlOXZ7rowk8uVFmgbK/jW2e01vTh0/Xrpb+qbVbbJCSsnMVs0RPHPVHpvUbORpp40kSZTKYkp6p5Bx/s1ksvlcts3vU14WWXbdFjjxXK6aza68WKigpt2rTJ6IgAGiCfz5fwXIfDYWASAP/rxsNvrPT6hvINKvIm9n4AAFRF+/ZOTZrkk9VqzNez/pKbG9TBB9sNXRMAAAD1C6VgAAAAAAAAAAAAAAAAAICku/76dD39tNewYrA//3Ro4MCQtmwJG7Ieas6kBZP0wMwHdnv/gn0v0OgBo5OYCEB9UFFRkfDcnJz4CrLiceY+Z+qFk14wdM0se5ZO7X5qQnNbuFvohZNfUNFtRZo9YrYGdxisNHN8pWhlgTK9/sfravdkO7V/sr0emvmQguFgQnmAmjB+/Hj9+uuvVR4/YcIEZWVl1WAi1KTt3u0aPGmwDnzhQK0qWrXX8U6rU08d/5TW3bROA9sPrPmAVTC442Cd0/OcXa4/e8KzauFukYJEyXHOOdm6997iv39ts0X10EOFuvbaLTLHedpp27ZtKikpMTYggAYnFAolNM9isRicBMD/ynZkKzczt9J7j//yeJLTAGhojj8+U/fcU7z3gXE48cSgzOb6VwANAAAA41AKBgAAAAAAAAAAAAAAAABIiWuuSdeECcYVgy1e7NDAgRFt3kwxWG31Y8GPGvHpiN3e75vbV28MfSOJiQDUF8Fg4qVULpfLwCS7uviAi/X4scYdUj6317lyWB3VXqdv2776/qLv5b/Lr+dPfF7dm3SPe401pWt057Q75Rzr1GEvHaYvln9R7VxAdaxcuVKjR1e9XHTo0KE6/fTTazARako0GtW1X12r5o8117SCaXsdbzaZdXGfi1V2R5muO/S6JCSMz2unvaZLD7hUjZ2NtU/TffTm6W/q3F7npjpWjbvnnkY677wSNWoU1ssv5+ukk0oTXmvdunXy+XwGpgPQ0EQikYTmpaXFV7ILIDGndTut0uvvL34/uUEANDj5+SEVFNhkNhvztSxJOuMMSkUBAACwZ6ZYLGbcM1AAAAAAAAAAAAAAAAAAAOI0caJHV13lUjRqzE9F7949oGnTLGrZ0mrIejBGXnGeejzbQ8FI5cU97bLaafV1q2UxcxgGDdeCBQvUp0+fKo+fP3++evfuXXOB6gi/369Vq1YlNNdms6lr164GJ6rcPdPu0QMzH6j2Oj+N/EmHtzncgES7KvIW6b4f7tM7i97RVu/WhNZIT0vXCV1O0INHPagujbsYnBDYvVgspgEDBmjmzJlVGp+dna0lS5aoZcuWkqQZM2Zo0KBBce87YMAAzZgxI+55SNxL817Sjd/eqIpgRZXGH9HmCE0+e7JauFvUcLLqi8ViMpmMeV1UVwQCUf300yo1bZp4wedfTCaTunXrJquV14IA4lOd1xTZ2dnKzc01OBGA/7W2dK3aPdlul+smmeS9y2tIeTYA/NPKlUGNGRPUu++6FAqZDVvX5Ypo40a/MjPTDVsTAAAA9Y9xz0ABAAAAAAAAAAAAAAAAAEjA5Zena+JEr2E/ZX3ZMrsGDoxow4awIeuh+sr8ZTpg4gG7LQTLsmfpjyv+oBAMQEKKi4sTnpuRkWFgkj27f9D9uubga6q1RpdGXXRY7mEGJdpVI1cjPTXkKW25ZYvmXzZfJ3Y5UXaLPa41PCGPJi+ZrK4Tuqr1+Na6e9rd8ga9NZQY+K8JEyZUuRBMkh555JG/C8FQN/yy7he1f7K9Lv380ioVgrXLaqefRv6kmSNn1olCMEkNrhBMkux2s/r1a2/IWrFYTKtXr1Y0GjVkPQANR3l5ecJz3W63gUkA7E7brLZq4mqyy/WYYnpuznMpSASgvlqyJKBzz/Von33S9MYbbkMLwSQpGjUpP3+dQqGQoesCAACgfqEUDAAAAAAAAAAAAAAAAACQcpdckq6XX/bJYjGmGGzFCrsGDIho/XqKwVItHA1r3+f3VWmgtNL7NotN8y+fr0xHZpKTAagvqnOAPycnx8Ake2YymfTUkKd0wX4XJLzG8P2HJ60wpnfL3vrivC/kvdOrN4e+qf2a7yeT4tt7Q/kGPTjzQbkfcqvPxD56b9F7NZQWDV1BQYHuuOOOKo8fMGCALrnkkhpMBCNtqtik/q/21+EvH641pWv2Oj49LV0TT5qoghsKdHibw5OQENVls9nUrl07Q9YKhUJas2bvf08A4J+83sRLbCkFA5LnuE7HVXp90sJJSU4CoD7688+gzjzTo/32s+m999IVDtfMe3B+v1nvv5+hwsJCxWLGfE0MAAAA9Q+lYAAAAAAAAAAAAAAAAACAWuFf/3LplVe8slqNOQSxatWOYrDCQn7aeir1f7W/1paurfSe2WTW1IumqkNOhySnAlCfBIPBhOaZTCY5HA6D0+yZ2WTWK6e8opO7nhz3XJNMunD/C2sg1Z6ZzWadv+/5WnjFQpXdUabb+92ulu6Wca0RU0wLNi3QuR+eK+eDTp36zqlatHlRDSVGQ3TppZfK4/FUaazD4dCLL76YtII9JC4cDeuSzy5R6/GtNXPtzL2Ot5gsuuqgq1Rye4kuO/CyJCSEkTIyMtS8eXND1vJ4PNq4caMhawFoGAKBQELzTCaTrFarwWkA7M5t/W6r9PriLYsVjUaTnAZAfTFvXkCnnebR/vun6cMP0xWJ1Pz7BS+/3FQlJT5t2rSpxvcCAABA3cQ7TgAAAAAAAAAAAAAAAACAWuOii9JlsXj1r385Dfkp7KtX2zVgQFDTp4fUrl2aAQkRjws+ukA/r/t5t/dfO/U1HdH2iCQmAlDf+Hy+hOfabDYDk1RdmiVN75/1vk546wRNL5he5XmDOgxS26y2NZhs79w2tx46+iE9dPRDWr5tue6adpe+XvW1vCFvldfwh/36bMVn+mzFZ2rmaqbz9ztfoweMVrYju+aCo1578cUX9f3331d5/OjRo9WlSxfD9o8EvSpav0zBqFlRY7ptIenVJW/qwd8flS/ir9L4o9ofpffOek9NXE1qOBlqUtOmTeX3+1VaWlrttbZv3y6Hw6GcnBwDkgGo70KhxArlKQQDkmvf5vsqw5ah8mD5TtcjsYje+vOtlBRpA6i7fvnFr/vvj+rrr12S7Ende/PmNH3xRSNdcYVFsViM4nIAAADsgnedAAAAAAAAAAAAAAAAAAC1yvnnu2Q2e3XRRQ6Fw+Zqr5efb9PAgTuKwdq3pxgsWe6bcZ/e+vOt3d6/p/89HNQDUG3FxcUJz3W73QYmiY/D6tCn536qwa8P1pwNc6o0Z/j+w2s4VXy6NemmD87+QJL0ybJPNHbmWM3dOFfRWLTKa2zxbtETvzyhJ395Uj2a9tBNh92kEb1HyGyu/ud/NAzr1q3TzTffXOXx+++/v2655RZDM/hDMW0oDhu6ZkP2+9bfddtvt2mLf0uVxrdJb6OnjnhS/dvso5y09BpOh2Ro06aNAoGA/P6qFcLtyfr162W32+VyuQxIBqC+ikajisUSa/ZMVdEw0JANaDdAX6z8Ypfrz899nvcaAVTJrFl+3XdfVN9/n5rXCTk5YV19tV/XXttMOTmWlGQAAABA7cdXSwEAAAAAAAAAAAAAAAAAtc6wYS69+aZfaWlVLxbZk4ICmwYMiGn16qAh62HP3vrjLf37h3/v9v65vc7V/YPuT14gAPVWRUVFwnNzcnIMTBK/DHuGvj7/a+3TdJ+9jk1PS9fQHkOTkCoxp3U/Tb9d+ps8d3p0/8D71SazTVzzY4ppydYluuTzS+R80Knj3jhOc9ZXrSwNDdvll1+usrKyKo21WCx66aWXZLXys9Vro83ezTpv2nka8eOIKhWCpVvT9eBBD+qr479SF3dXbSwOK6+gUIHigpoPixrXsWNHWSzGHI7Pz89XOExxH4Dd83g8Cc91Op0GJgFQFTcefmOl1+dumJvkJADqmunT/Ro0yKsjj3SkqBAspjvvLNeaNWaNGeOmEAwAAAB7RCkYAAAAAAAAAAAAAAAAAKBWOuccl95+27hisLVrbRo0SFq1imKwmjR77Wxd9MlFu71/SKtD9M4Z7yQxEYD6LBhM7DHdZDLJ4XAYnCZ+jV2NNeWCKWqf3X6P487qeZbcNndyQlWDw+rQPQPu0dob16rg+gKdv+/5yrBlxLVGMBrUlLwpOuSlQ9T4kca68osrtdWztYYSoy57/fXX9dVXX1V5/PXXX6+DDjqoBhMhEcFoUHfMuUPHfH2M/iz+c6/jLSaLLup8kX46+Sed0u6Une75A0Gt2uBR2aZlNRUXSWI2m9WpUyeZTKZqrxWLxbRq1SpFo8a8rgRQ/1SnaDgjI77nugCq76gOR8lh2fX1fCAS0Lervk1BIgC13bff+nTEET4ddZRDM2akogxsh/79fXrwwQxlZFDvAAAAgL3jWSMAAAAAAAAAAAAAAAAAoNY680yX3n3XL5vNmAPchYU2DRworVjRMIrBNlds1k3f3qRhHw7Tm3+8qUiHxPk1AAEAAElEQVQ0UqP7rSlZo8GvD1Y0VvmfV5vMNpp98ewazQCg4fB4PAnPtdvtBiapntaZrfX9hd+rhbvFbscM3394EhMZo112O7059E2V3VGmKRdM0RFtjpDFZIlrjSJfkZ6f+7yaPdZMXZ/pqqd/fVrhaLiGEqMu2bRpk2688cYqj+/QoYPGjBlTg4mQiNdWvKbDPz1cX6z9QjHF9jq+X/N++vGkH3XL/rfIbK78OEwsFtPabWGVbFhqdFwkmc1mU/v27Q1ZKxwOq6CgwJC1ANQ/Pp8v4blOp9PAJACq6pDWh1R6/clfnkxuEAC1VjQa05df+nTYYT4df7xTs2en/nP20KF7f90LAAAA/IVSMAAAAAAAAAAAAAAAAABArTZ0qEuTJwdktxtTDLZ+vU2DBpm0fHn9LgYr9Zdq/+f31xO/PKF3F72rCz++UCe+faLKA+U1sl95oFy9J/ZWIBKo9H6mPVN/XPmHrGZrjewPoOEpLi5OeK7b7TYwSfV1atRJUy6YohxHzi73OmR3UP92/VOQyjjHdDpGM0fOlP9uvx4/9nF1yukU9xori1bq+m+ul/NBpwa+NlAzCmYYHxR1xlVXXaWioqIqj584caJcLlcNJkI8ftr0kwZ+MVCP//m4gtG9Pydv726vD4/+UM8f8bwybZlV2mNdUURF65dVNypSLD09XS1btjRkrc8/t+i55xJ/7gCg/lqwwKTNm62KxdnTYTabd1tSCaBmXXXwVZVen7l2ZpKTAKhtotGYPvrIq4MPDuikk5z69dfkl4G1bh3U8OFbdc4529W8eUiSZDbHdNZZteeHFAAAAKD2M8Vi8b5dBQAAAAAAAAAAAAAAAABA8n3xhU9nnWWX32/MgcuWLUP6/vuo9tmnfh7EGDtzrO6adtcu13u36K0vz/tSrTJaGbZXNBpV52c6K78kv9L7aeY0Lbl6iTo36mzYnkB9tGDBAvXp06fK4+fPn6/evXvXXKBabvny5QqFQgnN7dq1q2w2m8GJqu/Xdb/qhLdPUJHvv2VH317wrY7tdGwKU9WMTRWbdM+0e/TB0g9U4i9JaI1Me6ZO7366HjjqAeVm5hobELXWe++9p3PPPbfK4y+66CJNmjRpr+NmzJihQYMGxZ3noIMO0quvvhr3vIaosKJQo34ZpaWlS6s0PiMtQ/f2uVfHtTku4T2bZ1vVNLd7wvNRO6xfvz7hMtBYTHr55SZ66qkWstmi+uyzCh13XNXK5QA0DO3aBbR2rV1ZWWF16RJQ165+deniV9eufnXuHJDLVXlJvd1uV5cuXZKcFoC0471I+4N2haPhXe7NuXSODmp1UApSAUilaDSmyZN9GjvWrD/+cKQkQ/v2QV122VYNGVIs6///bJRYTFq82KlVqzJ1991NU5ILAAAAdROlYAAAAAAAAAAAAAAAAACAOuOrr3w680y7fD5jisFatAhp6tT6WQzW/9X+mrl2ZqX32mS20Vfnf6VezXoZsteRrxypWYWzKr1nkknThk/TwPYDDdkLqM8oBau6aDSqJUuWJDTXZDKpZ8+eBicyzhbPFr0490V5Qh6dv+/56tms9mY1yuy1s3XvjHv145ofFYomVvTWPqu9LjvwMo06fJRs1tpX+AZjbNu2Tfvss4+2bt1apfFNmzbV0qVL1bhx472OpRSs5vjDft31+136bv13imnvR1isJqv+1fVfunafa2U2V/95f9OsNDVr3UUmA9ZC6qxevVo+ny+uOcGgSffd10qffZbz97VGjcKaNSuoHj1cRkcEUAeVloaVk2NRLGba7Zg2bQK7lIW1aRNUTk6m2rZtm8S0AP7pwIkHat6mebtcP6fnOXr3zHdTkAhAKkQiMb39tlcPP2zRkiWpKQPr3Dmg224L61//csnv96igoGCXMS1atFCTJk2SHw4AAAB1Fl/RAAAAAAAAAAAAAAAAAADUGSec4NRHHwXkdEYNWW/TpjQNGmTWokVBQ9arLTxBj35Z98tu7xeWFarfK/00NW9qtfca/snw3RaCSdLLp7xMIRgAw3k8noTnOhypOSBYVc3Sm+mu/ndp7OCxDaIQTJL6te2n7y/6Xv67/Hr+xOfVvUn3uNcoKC3QndPulHOsU4e/dLi+XPFlDSRFql177bVVLgSTpKeeeqpKhWCoOROXTlTfz/tqyvopVSoEG9hyoGafMlvX97rekEIwSdpaGtKmdasUi0YMWQ+p0aFDB1mt1iqP377doksuab9TIZgkFRVZdeqpZm3fXr9eAwJIzG+/efZYCCZJhYV2TZuWqeefb6ZRo9rq5JO76rDD9tHq1ZlJSgmgMv/q/a9Kr3+X911ygwBIiXA4pldf9WqffYK66KL0lBSCde8e0KRJHi1bZtMll6TLajXJ7XarefPmu4zNzOR5AwAAAOJDKRgAAAAAAAAAAAAAAAAAoE45/ninPvkkIJfLmEP9W7bsKAb744/6cyh81tpZCkVDexxTFijT8W8dr9cXvp7wPg/++OAe599xxB0a0WdEwusDwO6UlJQkPDcjI8O4IDCU2WzW5QddrqVXL9X2W7brukOuUxNXk7jWiMai+mX9LzrpnZPkHuvWuR+cq9VFq2soMZLp008/1bvvvlvl8SeccIKGDRtWg4mwJzM2zNCRnx+pCUsm7PV5qSR1zuysz479TM/0fUYuq8vwPNvLglpfmKdYJGz42kgOs9msTp06yWTac3mPJK1cadf553fS/Pnpu7nv0FlnBRQKGVM2DaDumj8/sfeW/H6zevUy/vMVgKq7/MDLZdKuzwuKfEXKL85PQSIAyRAKxTRxokfduoU0cqRLK1bYk56hVy+/3n7bq0WLbLroonRZLDs/FjVp0mSnEjCHwyGbzZbsmAAAAKjjKAUDAAAAAAAAAAAAAAAAANQ5xx7r1KefBpWebkwx2LZtVg0ebNb8+QFD1ku1qflTqzQuHA1r+CfDdf8P9ysWi8W1x3uL3tPd0+/e7f0z9zlTYwePjWtNAKgqr9eb8Nzs7GzjgqDGNHI10lNDntLWW7Zq7mVzdULnE2S3xHfQ0xPy6L3F76nzM52VOz5X90y7R95g4n93kDolJSW68sorqzze7XbrP//5Tw0mwu7kl+dr6HdDde3P16okWLLX8dm2bD1z+DP6+JiP1SGjQ41mKykPqLCwQNFw/XjO3xClpaWpffv2exzz449uXXBBR61fv+dD99OnZ+jqq0sNTAegLlq8OLHjlS1bBtW0KeUeQCrZrDZ1adyl0nvjZo9LchoANS0YjGnCBI+6dAnpiivSlZeX/M/D++/v1+TJXi1caNewYa5dysD+YjKZ1Lp167+LwP5ZEAYAAABUFaVgAAAAAAAAAAAAAAAAAIA66eijnfrii5DcbuOKwY45xqK5c+t+ScC0/Glxjb93xr26+LOLFYqEqjT+13W/6ryPztvt/QNbHqjJZ02OKwMAVFUkEtXnnzu1das17rkmk+nvA3moOw5oeYC+PP9Lee/06o3T3tB+zfeTSZUfvNyd9eXr9cDMB+R+yK0DJh6g9xa9V0NpURNuuOEGbdy4scrjx44dq7Zt28a1h790Xbyx8A/esFfX/XSdTplyilaWrdzr+DRzmq7e52rNPHmmBrYaWPMB/19ZhV9r1xYqGqxI2p4wVnp6ulq1arXL9VhMev31xrr22nbyei1VWuvFF3P0+ONFRkcEUIcsXZqW0Lxu3er+e0dAfTCs57BKr3++4vMkJwFQU3y+qJ54wqOOHUO69tp0rVmT/Pf1DjrIp08/9WnePLvOPNMls3nv70lZLBa1bdtWZrOZUjAAAAAkhFIwAAAAAAAAAAAAAAAAAECdNXCgQ19+GVJGhjHFYNu37ygG+/33unu4s8hXpHkb58U979UFr+rEt09UWaBsj+PWlq7VgNcGKBqLVnq/dUZr/XLJL3HvDwBVtWCBT7fc0lZHHdVdJ5/cRWPGtNS332aqqGjvBSAOhyMJCVFTzGazLtj/Ai28YqHK7ijTbf1uUwt3i7jWiCmm+Zvm69wPz5XzQadOfedULdq8qIYSwwjffPONJk2aVOXxhx12mK6++uq49vBsXaFNxeF4o0FSNBrV04ueVr/P+mn6xul7HW+SSce0PkazTp6lK3pckYSEu6rw+lVQuFERf0lK9kf1NWrUSI0aNfr716GQSffd10qPPtpS0Wh8pZG3356tzz4rMTghgLogEolq5Up7QnO7d+d5A1Ab3HD4DZVe31C+QUVeij+BuszrjeqRRyrUsWNEN92UrvXrk18GdvjhPn31lU+//ebUKac4q1QG9k8Oh0Nt27aV3Z7Y8w0AAAA0bJSCAQAAAAAAAAAAAAAAAADqtP79Hfrqq5AyM40pBisu3lEM9uuvfkPWS7YfCn5QTLGE5n6X952OfPVIrStbV+l9T9CjPhP7KBCpvDTNbXPrjyv+kNVsTWh/AKiKb77572NQQYFd77/fWDff3FYDBvTQ6ad31kMPtdTUqRkqLd21JCwzMzOZUVGD3Da3Hj76YW0ctVFLr1qqM3qcIVeaK641/GG/PlvxmfZ9fl81f6y5Rk0ZpTL/nssxkVzl5eW67LLLqjzeZrPppZdektlc9aMS5ZuXqWBLSLFYYs+fGrJv132rI784Ui8uf1Hh2N7LUbpnddeXx32p8YeNl8sa38er0by+gArWbVXYuy2lOZC4Vq1ayeVyqaTEossvb6cPP2y090mVCIfNGj7crT/+8BicEEBtV1AQUElJYu9f7LcfzxuA2iDbka02mW0qvffYz48lOQ0AI1RURPXAAxVq3z6i225za9OmtKRn6N/fp+++8+mnn5waMsQpU3xdYDtxu90yVWcBAAAANFiUggEAAAAAAAAAAAAAAAAA6rwjjnDo66+NKwYrKbHquOOs+vnnulcMNjV/arXm/7H5Dx320mFauGnhTtej0aj2f35/FfmKKp2XZk7T75f+rkauxA7jA0BVzZq1+4P7q1Y59PbbjXXDDe105JHdddZZnfTooy30ww8ZKi83KycnJ4lJkSzdm3bXB2d/IM+dHn109kc6qOVBMpvi+1b5LZ4tGv/zeGWPy1av53rplfmvKBqN1lBiVNXNN9+swsLCKo+//fbb1bNnzyqPL924VGu3RSgEi9OK0hU6+duTdfOvN6sstPcivcb2xnq+3/OafPRktXFXXtqQCj5/QPnrixQq35TqKEhQ+/bt9dJLzTVnjrta65SUWHX66RZt3Ro0KBmAuuD33ysvPK+KPn2SX1ACoHKndT+t0uvvL34/uUEAVEtpaUT33luh9u2juucet7ZuTf7n2sGDvfrhB79++MGpo492Jn1/AAAA4J8oBQMAAAAAAAAAAAAAAAAA1At9+zr0zTchZWWFDVmvtNSq449P0+zZdasYbFr+tGqvsb58vY589UhNWT3l72uDXx+s1cWrKx1vkklfn/+1ujXpVu29AWBPIpGofvvNVaWxsZhJy5Y59frrTXTNNe107bXtZLXuvlAM9cPpPU7XnMvmyHOnR/cNvE9tMuMrIIoppsVbF+vizy6Wc6xTx795vOasn1NDabEn06dP14svvljl8T169NBdd91V5fHFG5aqcDuFYPEoC5bpillX6Izvz1BBRcFex9vMNt3U6ybNOGmG+rXoV/MBExAIBJW/oVTB0nWpjoIEmM1mPf10pnr29FV7rbw8h4YODSoYpBASaCgWLEjs4z0tLao+fdINTgMgUbf2u7XS63nFefKH69b7ukBDVFwc0Z13Vqh9+5juv9+t7duT/97dccd5NXu2X99/71L//o6k7w8AAABUhlIwAAAAAAAAAAAAAAAAAEC9cfjhDn37bVjZ2cYUg5WVWTRkSJpmzqwbB8g2lG/Q0m1LDVmrPFiuE98+Ua/Of1WXfHaJZqyZsduxE0+aqMEdBxuyLwDsyW+/eVRUlNjhwMMPDxqcBrWZw+rQ6AGjtfbGtSq4vkDn73u+MmwZca0RjAT17epvdchLh6jxI4111ZdXaZt3Ww0lxj95vV5dcsklVS7sMplMevHFF2Wz2ao0fvv6ZVpfFKlOxAYlGo3q0YWPqv8X/TV78+y9jjfJpBPbnKifT/1ZI7qNSELC6gmGQsrbWKFAcUGqoyABmZlWffqp1KxZqNprWSxRLVuWb0AqAHXBkiWWhOZ17BiQ3c6xTKC2yM3MVVNX012uxxTTs789m4JEAKpi27aIbr65Qu3bSw895FZJSXLLwEymmE46yaM5cwL65huX+valDAwAAAC1C+8+AQAAAAAAAAAAAAAAAADqlUMPdei77yJq1MiYYrDycotOOCFNP/xQ+4vBpudPN3S9cDSskZ+N1MvzX97tmFv63qJLD7zU0H0BYHemTEm88OOoo0wGJkFd0i67nd4c+qbK7ijTtxd8q35t+sliiq8EoshXpP/8/h81fbSpuj7TVc/8+oyi0WgNJcYdd9yhvLy8Ko+/8sor1a9fv72Oi0Wj2rJuuTYWG/M8MVELti/Q2AVj9fCCh7WkeElKs+zN52s+V7/P++n1Va8rEtt7kVqvnF76dsi3eviQh2UzV62krTYIh8PK2+STb/vqVEdBAjp1cur99/1yOBJ/XP7Xv7bqqafWymz2qbCw0MB0AGqr5csT+zzVvTtlw0Btc1yn4yq9/vrC15OcBMDebNoU1g037CgDe/xxt8rKEivpTJTZHNPpp3s0b15Qn3+eroMOsid1fwAAAKCqKAUDAAAAAAAAAAAAAAAAANQ7Bx1k13ffRdS4sTGFDxUVFp14YpqmT6/dxWBT86cmdb/Tup2mR455JKl7AmjYZs5MS2iezRbVMce4DU6DuujYTsdq1shZ8t/t12PHPKaOOR3jXmNl0Upd9811sj9o18DXBmpGwQzjgzZgs2fP1oQJE6o8Pjc3Vw8//PBex8WiUW1ev0pbShIvFzTC1PVTNeKHEXpn9Tt6a/VbGv7DcM3fNj+lmSqzpHiJTvjmBN35+52qCFfsdXwzRzO9fOTLeueod9TS1TIJCY0XiUSUvzkg79YVqY6CBAwYkKEJE0rjnme1xnTffes1atRmWf6/j6C0tFRbt241OCGA2iQQiGr16sRKQHr02HtJJoDkuq3fbZVeX7x1MWXOQC2xfn1YV19doY4dzXrqKbc8nuSWgVksMZ11lkd//BHSRx+lq3dvysAAAABQu1EKBgAAAAAAAAAAAAAAAAColw44wK7vv4+oSRNjisE8HotOOilN33/vM2Q9o8VisaSWgvVu3lsfn/tx0vYDgHA4qjlznAnN7d3bJ7fbanAi1GVWs1Wj+o7S6utWa+OojbqkzyXKdmTHtUY4GtYPa37QoEmDlPVwlkZ8MkLrytbVTOAGwu/3a+TIkXEd3H/uueeUkZGxxzGxaEQbC1drW2mwuhGrZYtvi+6Ze4/Csf8+P/VH/Bo9d7RC0dSWlf2l2F+si3+8WOdMO0eFnsK9jndYHLp9v9s19cSpOqTZIUlIWLOi0agKtoZVsWV5qqMgARdfnKNRo4qqPD4rK6wXXsjX0KHFu9zbvHmzysvLjYwHoBbJz69Qp04BpaXFXxbUuzdHMoHaplfzXsqw7fqaIBKL6M0/30xBIgB/WbMmpMsuq1DnzmY995xbPl9yP49arVGdd55HixaF9P776erZ05bU/QEAAIBE8Q4UAAAAAAAAAAAAAAAAAKDe6t3brmnTomra1JiSBa/XolNOsWvKlNpXDJZXnKe1pWuTslczVzP9esmvSdkLAP7y008elZUlVuzVr19qi4BQu7Vwt9CLp7yo4tuKNXPETB3V/iilmdPiWqMsUKbXFr6mNk+0UYenOujhWQ8rGObvXbxGjx6tFStWVHn82WefrZNPPnmPY2KRoNatzVNReaC68aolFovpvnn3qTy0a8lQQUWB3s97PwWp/isajerB+Q9q4FcD9dvW3/Y63iyzTm93un4+5Wed3+X8JCRMnmg0qjVbwyrbtDTVUZCAceOydfLJZXsd16GDX++8k6eDD/budsyaNWsUCKT2sQNAzcjMrNAHH6zWr78u0ccfr9QjjxTqkku2asCAMrVsuefncAcdZE9SSgDxGNBuQKXXJ/4+MclJAEjS6tVBjRjhUdeuFr34olt+f3IrDdLSoho+3KOlS8N66610de9OGRgAAADqFn7cFQAAAAAAAAAAAAAAAACgXtt3X5umTQtq8OCQtmyJr+CjMj6fWaedZtNHH3l1/PEuAxIaY1r+tKTtZTKZtHjrYvVp2SdpewLAd98lXvA4eDA/SxlVc0TbIzR1+FRFo1FNnDtRT//6tJZtXxbXGgUlBbpj6h26e9rdOrjVwbpnwD06ocsJNZS4/pgzZ47Gjx9f5fE5OTl6+umn9zgmGvKqcN0GlXtSU+rjctgl047//mD1R/px04+7Hfufpf/RWV2HKtuenZxw//Deyvf1wNyx8oZ3X470Twc1PVATjnxaTV1NazjZDuFIVMGgMSW/VRWLxbR2W0S5saXKbtkjqXujeiwWs95+26Ujj/RqwYLKX6/17VuuRx8tVGZmdK/rrV69Wt27d5fZzHMJoD7x+XaUvaelSZ07B9S5c0BDhpT+fb+szKxVqxxaudKhFSvsWrlyx39brTG1b08pGFAbjeo7Sl+s/GKX679v/D0FaYCGa/nyoMaMCem995wKh5NfxGW3R3XRRV7ddZdd7dqlJ31/AAAAwCiUggEAAAAAAAAAAAAAAAAA6r1evWyaPj2gwYND2rTJiGIwi04/3aEPPvDpxBOdBiSsvqn5U5O212bPZvV/rb/eP/N9DekyJGn7AmjYZs1K7PHb6YzqqKPcBqdBfWc2m3XlwVfqyoOvVJG3SP/+4d96Z9E72ubdVuU1IrGIfln/i058+0Slp6XrpK4n6cGjHlSnRp1qMHndFAwGNXLkSEUikSrPefzxx9W8efPd3o8Gy7Vm3WZ5vH4jIsbFZDIpN8uvLNeOMrJ1FZs1du4De5xTGizVpBXj9VT/m5MRUZL088Y/NOzbu7SmfGOVxrfLaKF3jhurw1vu9/9Xymou3D9EIxGt8+SorCL55W7rtkcUjS1Vo1YUg9UlbrdVn3wS1uGHB7Vx485FBMOGbdett26UtYonqqLRqFatWqXOnTtTDAbUI8FgcI/3MzOjOuAArw444L+FmbGYVFKSJoulW03HA5CAge0HymF1yB/e+fl/MBLU1yu/5j1MoIYtWRLQffeF9eGHLkUiyS8DczqjGjHCqzvvdKh1a94HBAAAQN3Hu9EAAAAAAAAAAAAAAAAAgAZhn33smjo1qpYtQ4as5/ebdcYZdn3+uc+Q9aojFotpWv60pO5ZEazQye+crBfnvpjUfQE0TMFgVL//7kpobp8+XjmdFoMToSFp5Gqkp4c8ra23bNXcy+bqhM4nyG6xx7WGJ+TRe4vfU+dnOit3fK5GTx8tb9C794l12NS8qTrohYPU/LHmOuP9M7S+bP1ux44ZM0aLFi2q8tqDBw/WiBEjdns/4itWQeGmlBWCtc3yKOv/H7JisZgunfqgSoMVe5377B+TtayooGYDStrk2aYjP7hEfT8YWaVCsPQ0pyYOulMF//riH4VgyWO2WNTGXaycjOQfLJekDUURbVu3LCV7I3Ht2jk0eXJALteOskGLJaa77tqgO++seiHYX4LBoNatW1cDKQGkSjxFpH8xmaSWLXldAdRmh7Y+tNLrT/36VJKTAA3HH38ENXSoR/vua9P776crEjEldf/09Iiuv75CeXlRPfusW61bx/lkHwAAAKilKAUDAAAAAAAAAAAAAAAAADQY++xj1/TpMbVqZUwxWCBg1lln2fXJJ6kt9Vi0ZZG2ercmfd9ILKLLvrhMd029S7FYLOn7A2g4fvyxXBUViR3AP+IIYx7zAUk6oOUB+vL8L+W906vXT3td+zXbTybFd+B1ffl6jflxjNwPuXXgxAP1/uL3ayht6uQX5+u0907T3I1ztcWzRR8t/Uh9X+mrdWW7luosXLhQ48aNq/LaTqdTEydO3O39cMVm5a/bKq8vkFD26jCbzWqfVa4M138fr15d+pm+WftTleZHYhHdPPvJGkonhaNhXTJ1jFq/eoJmbVyw1/EWk1lX7XuWSi6brst6Da2xXFVhMlvUKr1MjTNTc8B7U0lYmwuXKxaNpmR/JKZfvww9/3yZsrLCeu65Ap17blHCa5WVlWnLli0GpgOQKsFgMOG5dnt8xbAAkuuqg6+q9PqstbOSnASo/+bODeiUU7zq3TtNH3+crmg0uWVgGRkRjRpVoby8mJ580q0WLSgDAwAAQP1CKRgAAAAAAAAAAAAAAAAAoEHp1s2mGTNiys1N/BDoPwUCZp1zjkMffZS6YrBp+dNStrckjZ01Vhd+fKEC4eSXbwBoGCyWcl1wwTZ17eqLe+7gwXzLNIxnNpt14f4XauGVC1V2R5lu7XurWrhbxLVGTDHN2zRP53xwjpwPOnXau6dp8ZbFNZQ4uZ785UlVBCt2ura2dK2OeeMYbfX8t8g0HA5rxIgRCoWqXt533333qVOnTpXeC5VvUN6GEvkDxjzPi4fFYlGHrFKlu9L+vra2fJNunDk+rnW+LJilKWt/MTqeJix8T1kTB+rlJZ8qGtt7sdVRuQdr08gpenbgbbKaa8fhapPZpBauCjXNTM3j+tbSkDatW6VYNJKS/ZGYCy/M0cyZG9S3r6faa23ZskVlZWUGpAKQSuXl5QnPTU9PNzAJAKOd2ePMSp+7ekIe/b7h9xQkAuqfn3/2a8gQrw46yK7PP3cpFktuGVhWVli3316hggLpscfcatasdrxeBQAAAIzGV7gBAAAAAAAAAAAAAAAAAA1Oly42TZ8utWljTGFEMGjWuec6NHlyaorBpuZPTcm+//TWn2/p+LeOV7GvONVRANRDLVqU67bbNunDD1frxx+Xavz4tTr33O3q1Mm/x3np6RENHJiRpJRoqNw2t8YdM04bR23UkquWaGj3oXJanXGt4Q/79enyT9XrP73U/LHmumXKLSrz183imWAkqLcXvV3pvWXblmnIW0NUFtjxexs3bpzmz59f5bUPOOAA3XTTTZXeC5SsVd6GMgWDVS8YM4rValWHrCI5nba/r8ViMV0ydYzKgvEXEd00c7zC0bAh2X5YN1e5rwzRtT8+Km94z4+ZktQpM1e/n/2Gpp7+HzVxZRuSwUgms0nN3T61yErN/tvLglpfmKdYxJg/HyRHz565stlsex9YBWvXrpXfv/ePJQC1l8eTeElgZmamgUkAGM1sNmu/ZvtVeu/R2Y8mOQ1Qv8yc6dcxx3jVt69D33zjSvr+jRqFdc89FSooMOmhh9xq1MiS9AwAAABAMlEKBgAAAAAAAAAAAAAAAABokDp3tumHH0xq186YYrBQyKzzznPovfeSWwwWjob1w5ofkrrn7swomKF+r/RTQUlBqqMAqEei0agikcjfv87JieiYY8p0110b9cknqzR9+jI98kihzjyzSO3aBXaae+CBPtlsfMs0kqdH0x768JwP5b3Lqw/P/lAHtTxIZlN8fwe3eLbosZ8fU/a4bO373L56df6rikajNZTYeF+v/FrbvNt2e3/uxrk6+Z2TNW/hPI0ZM6bK61qtVr300kuyWHY9+Osvylf+Jq9CoeQXNZlMJnXMKpLD4djp+kuLP9F3hb8mtObiojy9uPiTauVaV7FZh74/XAM/vlzrPVv3Oj4zLV2Tjv63Vg3/RAc271GtvZOhSXpArbJSU8xVUh5QYWGBouHA3gejVjCbzerUqZPMZmOeE+Tl5SkcphgOqKsCgcQfv61Wq4FJANSEEX1GVHr9+/zvk5wEqB+mTfNr4ECv+vd36Pvvk18G1qRJWGPGVKigwKz773crO5syMAAAADQMfIUbAAAAAAAAAAAAAAAAANBgdeiQphkzTGrf3phisHDYrAsucOjtt5NXDDZ3w1yVBcqStt/eLN22VIe9dJjmbpib6igA6omSkpI93m/SJKwhQ0p1770b9MUXK/Xdd8s0dmyhTj+9WCed5E9OSKASQ3sM1ZzL5shzp0f/HvBvtclsE9f8mGJatHWRRn42Us6xTh3/5vGas35ODaU1zqSFk/Y65sf8HzX4jMFxlXLcdNNN6tOnzy7XfdtWKn+zP2UFPU5rSDa7fadra8o26qZZT1Rr3dG/PK+SQHnc84LhoC6Yco/avnqSftu8eK/jrSaLbup9voovm66LepyUSNSUaZQeUW62Mc/j41VW4dfawkJFg56U7I/4WSwWderUyZC1otGo8vLy6lRhI4D/CoVCCc2jEAyoGy474DKZZNrlepGvSPnF+SlIBNRN33zjU9++Pg0e7NAPPyS/DKxFi5AeftijggKz7r7brYwMKhEAAADQsPAMGAAAAAAAAAAAAAAAAADQoLVvn6YffjCpQwfjisGGD3fq9deTUxAwLX9aUvaJx2bPZvV/rb++XPFlqqMAqAdKS0vjGt+iRVgnn1yq++9fr0sv5eA+Us9hdejegfdq7Y1rlXddns7rdZ7cNndcawQjQX27+lsd8tIhavxIY1395dXa5t1WQ4kTt927XV+s+GLvA3+WSlaXVHndTp066d///vcu1z1bVyh/S0iRSKTqIQ1mMu98LCMWi+niqWNUEapeSew2f4kemPNyXHMenfe6sl4YqLeWf62YYnsdf3zbw7X1ku/0+JE3ymyum8dLsl0xtc32yWTatfihplV4/Coo3KBIIL7PU0gdu92utm3bGrJWMBjU2rVrDVkLQPJEo9GEC/1sNpvBaQDUBJvVpq6Nu1Z6b9yscUlOA9Qt0WhMn3/u0yGH+DRkiFM//+xMeoZWrUJ6/HGP8vIsuu22dKWn183XqgAAAEB18UwYAAAAAAAAAAAAAAAAANDgtW27oxisU6eAIeuFwyaNHOnSpEk1Xww2NX9qje+RCG/Iq1PePUXP//58qqMAqON8Pl/CczMzMw1MAlRfh5wOeuuMt1R+R7m+Of8b9WvTTxaTJa41inxFeu7359T00abq9kw3PfPrMwmXWxjtnUXvKBQN7XnQdknT41v3hRdekNO582Hk8s3LVLAlVGt+73+ZuOhDTV33myFrPb3wXa0qKdzruG/X/KyWLx+nW2c/LX9k70W33XPa68/z3tXXpz6jbEfdf5zMdJnVLrsiJcVmXl9ABYVbFPYWJX1vJCYzM1PNmjUzZK2Kigpt2rTJkLUAJEd1Xlv873MRALXXsF7DKr3+2YrPkpwEqBui0Zg+/NCrAw8M6JRTnJozJ/mf89q2Derppz3Kz7fqppvS5XRSgQAAAICGjWfEAAAAAAAAAAAAAAAAAABIatMmTT/8YFGXLsYUg0UiJl18sUuvvuo1ZL3K+MN+zS6cXWPrV1c0FtWVX16p27+/XdFY7SrsAFA3hMPhhAt/rFZrSgpigKo6rvNxmjVylvx3+/XYMY+pY07HuNdYUbRC131znewP2jXotUH6seDHGkhadZMWTtrzgJikTyWFq77myJEjddRRR+10rXTjUq3dFlEsFos7Y03KL12vm2c/Zdh6oWhYt85+eo/7HfDu+Tr+s2u1ybt9r+tl2zP03nEPaekFH6hX486G5awN3E6r2meVpeRx3+cPKH/9NoXKNyd9bySmWbNmhhWHbtu2TSUlJYasBaDmlZeXJzzX7XYbmARATbrxsBsrvb6xYqO2ebclOQ1Qe0WjMb37rle9ewd05pkuLVjgSHqGDh2Cev55j1atStO116bLZjMlPQMAAABQG/FVbgAAAAAAAAAAAAAAAAAA/l/r1lb98INF3boZVwx2ySVOvfiix5D1/tfPhT/LH/bXyNpGGjd7nM7/6HwFwsb8fwXQcFSnZMPpdBoXBKhBVrNVo/qO0urrVmvDTRt0cZ+Lle3IjmuNcDSsGWtmaMCkAcp+OFsjPh2hDWUbaibwbizZukS/b/h9z4N+k7S26ms2b95cjz322E7XijcsVeH22lcIFo1FdfG0MfKEfIau+3HedE1ft/P/V2/Qr7O+uk2dXj9N87cu3+saaWar7jxwhLZfMlVndz3G0Hy1icuZpg5ZJbJYLEnfOxAIKn9jiYJl65K+NxLTpk0b2e12Q9Zat26dfD5jP/YB1IzqfKymp6cbmARATcp0ZKpNZptK7z3+0+NJTgPUPpFITK+/7lHPnkENG+bSn38mvwysS5eAXn7ZqxUr0nT55elKS6MMDAAAAPgnSsEAAAAAAAAAAAAAAAAAAPiHli2tmjHDou7djSmwikZNuuIKlyZONL4YbGr+VMPXrCnvLnpXV315VapjAKhjysrKEp6bnZ1tXBAgSVpmtNRLp7yk4tuKNXPETB3V/ihZzda41igNlOq1Ba+p9ROt1eGpDnp41sMKhoM1lPi/Ji2YtOcBxZK+j2/NZ555Rjk5OX//evv6ZVpfFIk/XBL8588PdinvMspNM8crEt3x+x7z20vKeXGQPlg9VTHtvRjt1A4DVHTpND3Y92qZzfX/CInTaVfHzCJZrfF93BghGAwpf0OFAiUFSd8b8TOZTOrUqZNhHxd5eXkKh8OGrAWg5gQCib3XYzKZGsTnUaA+Ob376ZVen7xkcpKTALVHOBzTSy951KNHUMOHp2vZMmNKcuPRvXtAkyZ5tHSpTSNHumS1UgYGAAAAVIZ3ogAAAAAAAAAAAAAAAAAA+B8tWuwoBttnH78h60WjJl15pUvPPWdsMdi0/GmGrlfTXlnwitaWrk11DAB1iN+f+ONwRkaGgUmA5Dui7RGaOnyqAncF9NwJz6lb425xr1FQUqA7pt4h11iX+r7cV1+v/LoGkkrhaFhv/PHGngd9LilU9TVPOeUUnXXWWZKkWDSqLeuWa2Nx7SzcyStdp1tnP11j6y/YtkI3zHxcTV88WqN/fV7B6N7/R+7bqJOWXfChPjnpcbltrhrLVhvZnQ51zCqSzZaW9L1D4bDyNvrkK1qd9L0RP7PZrM6dOxuy1k8/uXTRReWKRKKGrAegZkQiiZWLpqUl/3MKgOq5pd8tlV7PK86TL+RLchogtUKhmJ5/3qOuXUO69NJ0rVyZ/DKwfff16913vVq82KaLLkqXxUIZGAAAALAnlIIBAAAAAAAAAAAAAAAAAFCJ5s2tmj7dql69jCkGi8VMuuYal555xphisLJAmX5b/5shayVTsa841REA1BHhcFjRaGLFGlarVWYz3yqN+sFsNuvKg6/UsmuWafst23XNwdeoibNJXGtEYhH9vO5nnfD2CXKPdWvYB8OUX5xvWMbv877XxoqNux8wV1Je1ddzuV167rnnJO0oBNu8fpW2lMTRKJZMMWnE9/fLGzbmOePuTPjjfW3zl+x1XBNHtj49abz+OP89dctpV6OZajOb3a4Omdtlt9uSvnckElH+poC821YmfW/Ez2azqV276n2svPdeI115ZXu9806Obr211KBkAIwWDocVi8USmmu3J788BUD15Gbmqqmr6S7XY4rp2TnPpiARkHx+f1RPP12hzp1DuvLKdOXnJ//1UZ8+fn34oVcLFth1zjkumc2UgQEAAABVwVe6AQAAAAAAAAAAAAAAAADYjWbNrJo+PU377WdcMdh116XrySerXww2c81MRWIRA1IlT7fG3bRv831THQNAHVFcnHiJoMvlMjAJUHs0cjXSMyc8o623btXcy+ZqSOchslviK6nwhDx6d/G76vh0R+WOz9Xo6aPlr2ah1aSFk3Z/s1TSlPjWCw0KKS+cp1g0oo2Fq7WtNFitfDVpvWeLftwwL9UxZDOn6b5DLtfWS7/XKR36pzpOrZBms6tDxjY5HckvcolGoyrYElLFluVJ3xvxy8jIUPPmzeOeFw5LDz3UUg880EqRyI5yg/Hjc/TiixQhA7VRRUVFwnN5fQHUTcd3Or7S668vfD3JSYDk8vmievxxjzp1iuj6691auzb5ZWCHHOLT55/79Pvvdg0dShkYAAAAEC9KwQAAAAAAAAAAAAAAAAAA2IMmTSyaNi1N++9vTDGYJN14Y7oef7x6xWBT86calCY5+rbpq6/P/1pmE9+6CKBqysvLE56bnZ1tXBCgljqg5QH66vyv5L3Tq0mnTdK+zfaVSfEdsl1fvl5jfhwj14MuHTjxQE1ePDnuHKX+Un2y7JPdD/hCUiCOBdtKoQNCOumdk/TNgi9UVB7P5OTLK12f0v1NMumszker+NLpGn3opSnNUhtZbXa1z9wulzM1xWBrtoZVtmlZ0vdG/Jo2baqsrKwqjy8vN+uaa9rp7bcb73LvuuuyNH164s9jANQMjyfx92EyMjIMTAIgWW7td2ul15dsXaJoNJrkNEDN83iievhhjzp0iOjmm9O1YUNa0jP07evT11/79OuvTp10kpMyMAAAACBBfGcNAAAAAAAAAAAAAAAAAAB70bjxjmKwPn2MKwa7+eZ0PfJIRcLzp+VPMyxLTbFb7Lpo/4v088U/a9aIWeqQ0yHVkQDUIX5/4o+5brfbwCRA7WY2m3XR/hfpjyv/UNkdZbq1761q4W4R1xoxxTRv0zyd/cHZcj7o1Onvnq7FWxZXae77i9+XP7ybj9cFklbGEcQi6WRJJqksUKYLpoxUfnl+HAskXzQWS9neBzTtptUXfaL3hzwsl82Rshy1ncWapvYZRXK7kl8MFovFtHZbWCUblyZ9b8SvTZs2cjj2/rFUWGjTBRd01OzZlZcE+f1mnXuuQ6tW+YyOCKAafL7EPyar8tgAoPbp1byXMu2Zu1yPxCJ64483UpAIqBnl5VGNGVOh9u2juuOOdG3enPwysIEDvZo2za/Zs506/nhn0vcHAAAA6htKwQAAAAAAAAAAAAAAAAAAqIJGjXYUgx14oHHFYLfd5tbDD3vinrfVs1ULNy80LIfROjfqrMeOeUzrb1qvSadN0mG5h8lkMqU6FoA6JBQKKRqNJjQ3LS1NZjPfJo2GyW1za9wx47Rx1EYtuWqJTu9+upzW+A7j+sN+fbL8E/X6Ty+1eKyFbplyi8r8ZbsdP2nhpMpvlEv6Nq6tpf6Smv73l0WBIl028zJt9G6Mc6H6LceeoW9OeUZzz31LHbJapzpOnWC2WtU2o1iZ7uQXg0nSuu0RFW2gGKwu6NixoywWy27v//67S+ed11F5eXsuCNqyJU2nniqVlYWNjgggQaFQKKF5e3pMAFD7DWw3sNLrE+dOTG4QoAaUlER0zz07ysBGj3Zr2zZr0jMcfbRXP/7o1/TpLg0aRIkmAAAAYBS+2g0AAAAAAAAAAAAAAAAAQBVlZ1v0/fdpOvhgn2Fr3nFHuh54oCKuOTMKZhi2v1EsJotO7366plwwRcuvWa5RfUepsatxqmMBqKOKi4sTnutyuQxMAtRdPZr20EfnfCTvXV59cNYHOrDlgTKb4jtCsNmzWY/9/Jiyx2Vr3+f21avzX92psG9V0SrNLpxd+eQvJcXzlKmZpCN2vbzJt0mXzbxM2/3b44ler3XKaqNj2h6a6hh1jtliURt3sbIzbCnZf0NRRNvWL0vJ3qg6s9msTp06VVpq/PHH2br00vYqKala2cKSJU6dfbZX4XBiRacAjBWJRBKaZ7Ol5vMGAGOMOnxUpdfnbpyb5CSAcYqKIrr99gq1bx/TAw+4VVSU/DKwIUO8+vlnv777zqUjj6QMDAAAADAapWAAAAAAAAAAAAAAAAAAAMQhO9ui776z6dBDjSsGu+cet+6/31Pl8VPzpxq2d3W1ymilewfcq4IbCvTROR/pmE7HxF04AgD/q7y8POG52dnZxgUB6okz9jlDv1/2uzx3evTvAf9Wm8w2cc2PKaZFWxdp5Gcj5Rzr1JA3h+j3Db/r9YWvVz5hkaR4uo9Mkk6WZKn8dkFFga6YdYXKgmVx5a4qs9msFm7jntvVtN+3LNFby79OdYw6yWS2qHV6qRpnpKVk/03FYW0uXK5YlJKo2sxms6l9+/Z//zoSkR5/vLlGj85VOBzfa51vv83UDTeUGpwQQLz8fn/Ccx0Oik6Auqx/+/5yWHf9OA5Ggvpq5VcpSAQkbsuWsEaNqlD79tK4cW6Vlia3DMxkiumUUzz6/feAvvrKpcMO43MkAAAAUFP4rhsAAAAAAAAAAAAAAAAAAOKUlWXRd9/ZdfjhxpVH3HtvukaPrqjS2Gn50wzbN1FHdzxaH579oQquL9C/B/5buZm5qY4EoB6pzqH99PR0A5MA9YvD6tC9A+/V2hvXKu+6PJ3X6zy5be641ghGgvpm9Tc6+MWD9eDMB3cd4JEU79n6QyTtpadsWekyXfvTtfKFjS3vslgs6pBVKqd9N41ktdQdPz0rT6juFJnVJiazWS3Sy9U0MzVHaraWhrRp3SqKwWq59PR0tWzZUh6PWTfc0FavvdY04bWefTZHzz5bbGA6APFat65CpaWJfa7n9QVQ9x3W+rBKrz/969NJTgIkZtOmsK67rkIdO5o0frxb5eXJff1qNsd0xhkeLVgQ0qefpuvAA+1J3R8AAABoiCgFAwAAAAAAAAAAAAAAAAAgARkZZk2ZYle/fsaVMYwZ49add+65GKywtFAri1Yatmc8chw5uvGwG7X8muX67sLvNLTHUKVZ0lKSBUD9FQwGFYvFEpqblpYms5lvkQaqokNOB711xlsqv6NcX533lfrm9pXFFN/B4misklKjryV541gkS9JRVRs6b/s83fjLjQpFQ3FssHtWq1UdsorldNoMWS+Z1nu26NF5r6c6Rp1lMpvU3O1Ti6zU7L+9LKgNhasVi4RTEwBV0rhxYy1c2FwzZmRWe62bbsrSt9+WGZAKQCJef92sI47oocGDu+mKK9pp/Pjm+vzzLC1fblcoZNrjXLc7vgJVALXPlQdfWen1WWtnJTkJEJ/CwpCuvLJCHTua9cwzbnk8yS0Ds1pjOuccj/78M6gPPkjXfvvVvdfOAAAAQF1lTXUAAAAAAAAAAAAAAAAAAADqKrfbrG+/tWvIEJ9mznQasuZDD7kVjVbo4YcrP3Q6LX+aIfvE45DWh+jKg67UOT3PkTPNmN8nAOxOcXFxwnPT09MNTAI0HEO6DNGQLkMUjob1xM9P6Pnfn1deSV78C/klLYpzzkmS7FUfPnvzbN0x5w6NO2Rc3CVm/5SWlqb2Gdtld8SxeS3zyLzXdUnP05Trbp7qKHVWk/SAzLJoQ2nyj9cUlwcULSxQ69w2Mlvr7t/D+u6yyxpr7txivfBCTrXWCQbNOu88l2bN8qpHD5dB6QBU1eLFO54zbNmSpi1b0jR7dsbf96zWmNq3D6hrV7+6dPGra1e/unYNqHnzkMxmk6xWjmACdd2ZPc6U1WxVOLpzIasn5NGc9XN0cOuDU5QMqFxBQUgPPhjUG284FQgkv5zSao3q3HN9uueeNHXtynttAAAAQCrwY7AAAAAAAAAAAAAAAAAAAKiG9HSzvvnGrgEDvIatOW6cW7feWlHpvan5Uw3bZ09caS5d0ucSzb1srn695Ff9q/e/KAQDkBTl5eUJz83JqV5hB9DQWc1W3dLvFq2+frXW37heF/e5WNmO7KovEItzw30ldYlzjqRv132rMfPGKBaLd8Md7DabOmbW7UIwSfKFA7rjpwmpjlHnNUqPKDc7mJK9Syv8KiwsVDToScn+qJpnn83S4MGJPz/5S8eOARUVrVUoFDIgFYB4LF9u2+29cNikVasc+uqrbD31VAtdfXV7HXNMN/Xr10P/+Q/Fm0B9YDabtX/z/Su99+hPjyY5DbB7q1YFNXy4R127WvTSS+kKBJJbA2CzRTViRIWWLQvrjTfS1bXr7j9/AgAAAKhZpliiXwUDAAAAAAAAAAAAAAAAAAB/8/miOukkv6ZNcxm25o03Vuixx9JlNpskSbFYTG2eaKP15esN2+N/9WjSQ1cedKUu2v8iZTmyamwfALtasGCB+vTpU+Xx8+fPV+/evWsuUIosXrw44aKfXr16GZwGgCTNWjtLo6eP1sy1MxWOhnc/0CdpXNJi1X0DJA2q/jK/nvWaDmnB4191lXmjKix1Jfw5qDrcLofatWsnkyUt6XujaoqLQzr88LCWL0+sKPmMM4p0110blZYWk9VqVdeuXWU2J7fkAWioQqGoMjKUULHKqFFFeuyxRjWQCkCyPTfnOV391dW7XM9x5KjotqIUJAL+a9myoO6/P6TJk50Kh5P/HNHhiOqii7y66y672rblNQkAAABQG/DuMQAAAAAAAAAAAAAAAAAABnA6zfriC4eOPtpr2JpPPOHWTTd5FI3uKCZYsX1FjRSCpZnTdE7PczRj+Awtvmqxrj30WgrBAKREIBBIuIzFZrMZnAbAX45oe4SmDZ+mwF0BPXvCs3JZjStBRfXdOGt8Soqs6ptMl1ntsipSUtRU4fVr0/r8pO+LqsvJSdMnn8TUuHEornkmU0y33LJR9967QWlpOz5Ow+Gw8vP58waS5c8/vQkVgknSfvuZDE4DIFUu6XOJTNr1Y7rYX6zVRatTkAiQFi0K6qyzPOrVK03vvJOe9EIwpzOqq6+u0OrVUU2c6KYQDAAAAKhFKAUDAAAAAAAAAAAAAAAAAMAgTqdZn3/u0LHHGlcM9tRTbl1//Y5isGn50wxbV5LaZrXVg0c9qMIbC/Xume9qQPsBMpk48Aogdd5/36t//auDnnuumebMcSkYrPpjUnp6eg0mAyBJZrNZJ3U9Sb6wL9VR8A8/bfxD76/8LtUx6gW3y6r2WaUpKQbbXhZU6aalSd8XVde9u0tvveWVzRat0niXK6IJE9booou2639fZvl8Pq1bt64GUgL4X3Pnxlfm908HH2w3MAmAVLJZberWuFul98bNHpfkNGjo5s8P6PTTPdp//zR98EG6IpHkvifvdkd0ww0VysuLasIEt1q1siZ1fwAAAAB7x7N0AAAAAAAAAAAAAAAAAAAM5HCY9fnnTp16qlfffOMyZM0JE9wKhyu0ZeDUaq9lkklDugzRlQddqSGdh8hithiQEACM8d13Js2dm665c9P1n/80k90eVe/eXh1yiEeHHFKhnj19SkurfG5OTk5ywwIN1BsL31BMsVTHwP+49aendUrH/nJaHamOUue5nDZ1UIkKynIUiUSSuvfWcqsym0VlSkEpGarmuOOy9MQTxbr66j0/72jVKqhnnlmjrl0Dux1TUlIip9Opxo0bGx0TwD/8+Wdi89zuiLp25fMqUJ8M23eY7p1x7y7Xv1jxRQrSoCGaMyeg++4L66uvXIrFkl88mZkZ0eWX+3TrrU41aeJO+v4AAAAAqo5SMAAAAAAAAAAAAAAAAAAADGazmfTpp04NHerRl1+mG7Lm8xNdSms2RUqwH6Cpq6ku7nOxLjvwMnXI6WBIJgAw2i+/7HzoPhAw69df3fr1V7ek5nI6IzrggL9Kwjzq3t0n6/9/R7TLZUwRI4Ddi8VimrRwUqpjoBJryzfpiflv686DR6Y6Sr3gdNrVUUXKL2+scDictH39gYC821cpvWnXpO2J+F11VY6WLi3WhAmVF4P17u3Rk0+uVePGey+V27hxo+x2u9xuShmAmrJkSWJHKLt0Cchi4TUGUJ/ccOgNlZaCbazYqG3ebWriapKCVGgIfvrJr/vui2rKFJek5JeBZWeHdfXVfo0a5VRODs87AQAAgLqAHx0CAAAAAAAAAAAAAAAAAEANsNlM+vhjl04+2WvMgh2+V8hcHve0I9seqbeHvq3CGwv10NEPUQgGoNYqLPRr5UrHHsf4fBbNnp2hJ55ooWHDOunII3vommva6vffs5MTEmjgfln3i1YWrUx1DOzG2LmvaqNnW6pj1Bt2p0Mds4pkS0tL6r6lPlNS90NinngiS8cfX7bL9ZNPLtbLLxdUqRDsL2vWrFEwGDQyHoB/WLHCltC8Hj34uATqm0xHptpktqn03mM/PZbkNGgIfvjBr8GDverXz/H/hWDJ1bhxWP/+t0cFBSY98IBbOTmWpGcAAAAAkBhKwQAAAAAAAAAAAAAAAAAAqCFpaSZ9+KFTp53mqd5CVp90xvlVHp5hy9DVB1+tP6/8Uz+O+FHD9h0mu9VevQwAUMO+/toX95yKCot++CFTPl/yD1YCDdFrC15LdQTsgSfk092/PJfqGPWKzW5Xh8ztstsTK5RJRDBMKVhdYLWa9d57LvXs+d/nL9dfv0kPPrheNlssrrVisZhWr16taDRqdEygwSsuDmndusQew/fZh49JoD46vfvplV6fvGRykpOgPvvuO5/69/dp4ECHpk1L/ntWTZuG9MADFSooMOvee9OVlUUZGAAAAFDXUAoGAAAAAAAAAAAAAAAAAEANSkszafJkl844I8FiMFNUGnqhlL5tr0N7t+itiSdN1IZRGzThhAnq1axXYnsCQArMmJF4CcrxxzsNTAKgMr6QT+8tfi/VMbAXry75XPO3Lkt1jHolzW5Xh4xtcjqSU7IbDEeSsg+qLzPTqk8/ldq3D+jJJ9fokku2yZTg05lIJKK8vDxjAwLQnDlexWKJfWD26UOBClAf3dLvlkqv5xfnyxv0JjkN6pNoNKavvvKpb1+fjj3WqZkzk/9eVcuWIT3ySIUKCiy66y633G5qBAAAAIC6imfzAAAAAAAAAAAAAAAAAADUMKvVpHffdemssxIoBjvmFmmfD3d722ax6aL9L9LPF/+seZfN02UHXia3zV2NtACQGj//nNhhyY4d/erQgVIwoKZ9tvwzlQZKUx0DexFTTDfOHK9YLJbqKPWK2WyRJUkncPijq1s6dXJqzhyfBg8ur/Zafr9fhYWFBqQC8JcFCxIvWjz4YF5jAPVRbmaumrqa7nI9ppienfNsChKhrotGY/rkE68OPdSvE090Jvz+VnW0bh3UE094lJdn0S23uOVyUR8AAAAA1HU8qwcAAAAAAAAAAAAAAAAAIAmsVpPeecelc86JoxjskGekvuMrvxeTNHeETly6Uq+c/JoOyz1MJpPJkKwAkGyrV/tUUGBPaO5hh/kNTgOgMpMWTkp1BFTRD+vn6ZO8GamOUW9EwiGtqWikCm8gKfvZ0jjqU9c0aZKtxo0bG7JWaWmptm7dashaAKRFixJ7TG3VKqimTW0GpwFQWwzpPKTS62/88UaSk6Aui0ZjmjzZqwMOCOj00136/ffkl4G1axfUhAke5eWl6YYb0uVw8FoCAAAAqC94dg8AAAAAAAAAAAAAAAAAQJJYLCa99ZZL551XhWKwFgukIddXfi9qkt78Rvr8FX38dlsNG+ZVOBwzNCsAJNM33yRe7DVwII9/QE3bWL5R367+NtUxEIdJS79IdYR6IRwMqKCssTxJKgSTJJs1aVvBQC1btlR6eroha23evFnl5eWGrAU0dKWlktkc/+uFbt2S97gPIPlu7XdrpdcXb12scDSc5DSoayKRmN5+26v99gvo7LNdWrjQkfQMHTsGNXGiRytXpunqq9Nls/HDQgAAAID6hlIwAAAAAAAAAAAAAAAAAACSyGIx6fXXXbrwwr0Ugx3yjGTazcHVz1+UVh/39y8nT07XuedSDAag7vrhh8S/rXnIEKeBSQBU5q0/31I0Fk11DMShsGJzqiPUeeFgQAXlTeTzJ7cYJtMWSep+ME67du2UlpZmyFpr1qxRMBg0ZC2goYpGo3rwwXX69dclevfdVbr//nW68MJtOvTQCjVqtOfSn+7dKQUC6rOezXoq0565y/VoLKo3Fr6RgkSoCyKRmCZN8qhnz6DOP9+lxYuTXwbWrVtAr77q1fLlabrssnSlpVEGBgAAANRX/PwQAAAAAAAAAAAAAAAAAACSzGIx6bXXXLJYPHrttfTKB5l2U7zxw93S/It3ufzhh+k66yyP3n/fxWEgAHXOL78kdpCySxe/cnOTfwgTaEhisZgmLZxUtcFOSf+uyTSJs1tseurIUTqv2/HKsP33+dfXBbN19Yxxyv9jg1TF3+ZO2kkaYVhMw5zQvl+qI9RpwYBfBeVNkl7KZLOlyd2sc1L3hHHMZrM6deqkFStWKBqtfpHiqlWr1L17d5nNiZenAg1ZILCj1NHhiKlnT7969vTvdH/bNotWrnRoxQrH3/9evdquYNCsffeldB2o7wa1H6RPl3+6y/UX572oEX1q4RN8pEw4HNOrr3o1bpxVq1fv5r38GrbPPn7deWdU557rlMXCe/8AAABAQ0ApGAAAAAAAAAAAAAAAAAAAKWA2m/TyyzuKwV5+uZLDRH9cKPV5bedrCy+Qpt+/2zU/+SRdZ57p0QcfUAwGoO5YtsyrwkJXQnP79vVLohQMqEnzN83Xoi2LUh2j2gKRoK6Y8ZBumvWEhnYapIGtD9T7K7/XlMJfUh3NUOlpTl3QbYjuPeTSVEepswL+gArKGisUDiV97ybuqExmS9L3hXGsVqs6duyoVatWVXutaDSqVatWqXPnzhSDAQkoLy/f4/0mTSJq0sSjww/3/H0tHJbWrrWpd+8WNR0PQIrddNhNlZaCzd04NwVpUBsFgzG99JJXjz6apoKC1JSB7b//jjKwM890ymzm/X4AAACgIaEUDAAAAAAAAAAAAAAAAACAFDGbTXrhBZcslgq98IJ755v5R0nvfSD1e1Qyh6Q/z5N+uUHSng//fPZZuk4/3aOPPnLJZuOgEIDa7+uv/ZISKwUbODBmbBgAu5i0YFKqIxjKG/brzeVf683lX6c6yi7sFpsybenKSHMp05auTJtbGTbXP665d/z339fS/3/cX9fcau5qJLvFlurfSp3l9wdUUJajcDic9L2z3A7ltOiY9H1hPIfDoTZt2qiwsLDaawWDQa1bt05t27Y1IBnQsHi93rjnWK1Sx45B5ea69z4YQJ3Wv31/OawO+cP+na4HI0F9tfIrndDlhBQlQ6r5/VFNnOjTY4+lad261JSBHXigX3fdFdWpp1IGBgAAADRUlIIBAAAAAAAAAAAAAAAAAJBCZrNJ//lPuiwWj/7zn/85ZLT0jB3/xOnLL9N12mleffyxQ3a72aCkAFAzfv89scONJlNMQ4ak5nAm0FAEI0G99edbqY5Ru5mkRo6sHeVcaXsq7Prfa+k7FYBl2NJls6Sl+nfToHl9Ia0py1YkEkn63g67Xa1btZDJzHP3+iIrK0s+n0/btm2r9lplZWXasmWLmjVrZkAyoOEIBAIJzTOZTDLzeAw0CIe1Pkwz1szY5fpTvzxFKVgD5PVG9eyzXj35pF0bNqTm/abDDvPpnnuk4493UAYGAAAANHCUggEAAAAAAAAAAAAAAAAAkGJms0kTJrhksVRowgS3IWt+/bVLp5zi1aefOuRwcJgVQO0UjUZ1++3rdfbZ2/Tbb+maM2fHPyUle/825x49/Gre3JmElEDD9dXKr7Tdtz3VMWq1Aa0O0IxLX0h1DFRThS+ktaWZikajSd/b6bCrXascmW3GvA5A7dGiRQsFAgGVl5dXe60tW7bIbncoKyvTgGRAwxAOhxOaZ7Vy5BJoKK4+5OpKS8FmF85OfhikjMcT1ZNPevX003Zt2ZKa5+RHHLGjDOzYY3mfCwAAAMAOvEMFAAAAAAAAAAAAAAAAAEAtYDab9NRT6bJYKvTUU8YcPpoyxaWTT/bqs88ccjopBgNQ+3i9XplMUqdOAXXqFNCwYUWKRqWVK+367Te3fvstXXPnpqu83LLL3MMP90visCRQkyYtnJTqCAnJTMtUM0czmU1mFQWKVBoqVSga2uMcs8mkqGLxb2ZKMCRqjXJvVGtLMxSLJb8QzOW0q13rprI4spO+N5KjTZs2WrVqlYLBYLXWWbjQqQsusOqLL/zKzXUYlA6ov6LRqGKxBD6vS3I4+BgDGoqh3YfKarYqHN25RNAT8mjO+jk6uPXBKUqGZCgri+jJJ/165hm7tm1LTRnYoEFejR5t1sCBvL8FAAAAYGeUggEAAAAAAAAAAAAAAAAAUEuYzSaNH58us7lCTzxhzEGk77936aSTvPr8c4dcLorBANQuxcXFu1wzm6Vu3QLq1i2gCy/crkhEWrbMoTlz0vXbb27NneuS12vRwIHJzws0JNu92/Xlii9THWMnJpnU2NFYzRzN1NzZfMc/ruZq7mj+96+bOZvJad35QHUwEtSPm37Up2s+1YyNMypde1SfC/Toa28k4XeB2qTUY1JhqVNKpBCumtwuu9rmtpTZlpoCAiSH2WxWp06dtHz5ckWjiRXPfflllkaPbq1g0KzTTvNo5syInM5dC1MB/Fd5eXnCc51OilmAhsJsNmv/5vtr7sa5u9x75KdHNPmsySlIhZpWXBzR44/79NxzDhUXp6ckwzHHeHXvvWb16+dKyf4AAAAAaj9KwQAAAAAAAAAAAAAAAAAAqEV2FIO5ZbVW6NFHjSkImDbNpRNO8OqrrygGA1C7eL3evY6xWKSePf3q2dOvf/1ru0IhackSp044oU0SEgIN16ItixSKhpK2n9VkVVNn0/+We/1V/OVqrhbOFmrmaKamzqZKM6fFvbbNYtPRrY/W0a2P1jur39HYBWN3GVNQttGI3wbqkCKPRRtKU3OsJtPtUG5uG5mt9pTsj+SyWCzq2LGjVq1aFde8aFR69tlmeuGFZn9fmzs3XRdcUKr338+QxcJrO2B3PB5PwnMzMjIMTAKgtru4z8WVloJNzZuagjSoSdu3R/TIIz49/7xTZWXJL+Y1mWIaMsSne++16JBDKAMDAAAAsGeUggEAAAAAAAAAAAAAAAAAUAs98ohbZnOFxo0z5oDSDz+4dPzxPn39tV3p6RweB5B60WhUoVD8hUNpaVLv3n7l5NhqIBWAv7jSjDuk7LQ6lZuZq9aZrZWbmavcjNydf52Zq6yQT2u3BBQKhQ3btzLHtj620lKwWevn1ei+qF22eWzaVGpKyd7ZGXa1zm0nkyX+gjvUXQ6HQ23bttXatWurNN7nM+muu3L13XdZu9z76KMs3XNPkcaObWR0TKDe8Pl8Cc+12ylsBBqSSw+8VNd8fY2isehO14v9xVq5faW6NO6SomQwyubNYY0b59eLLzpVUZH8MjCzOaZTTvFq9Gir+vShDAwAAABA1VAKBgAAAAAAAAAAAAAAAABALfXww25ZrRV68EFjDivNnOnUccf59M03drndFIMBSC2Px5PwXIfDYWASAJU5qNVBOrbTsZqyesoex2XZs/4u9srNzFXrjP8Wff1V+pXjyJHJtPcCpg7W9SrYWKFgMP7CwKpq7GisfbL30ZKSJTtd3+grqrE9UXvEojFt9bq0pSy698E1oHGmTS1yO8pktqRkf6RWZmammjVrpi1btuxx3ObNVl13XTstWeLc7ZiHH85Rt27FGj48x+iYQL0QDAYTmmc2m2U2834J0JBYzVZ1bdxVy7Yt2+Xeoz89qhdOfqHae8RiMS3askgri1aqVUYrHZZ7WLXXxN5t2BDWQw/59corTnm9yS8Ds1hiOv10r0aPTtO++6YnfX8AAAAAdRulYAAAAAAAAAAAAAAAAAAA1GIPPOCW2VyhMWOMObg0e7ZTxx7r07ff2pWRwUFXAKlTUlKS8NyMjAzjggColMlk0hfDvtBzc57Tws0L5bA6Ki39ctuMO1xty2itjtqsgk2l8gcSK/OoirbpbXcpBUP9F4vGtMnr1vaycEr2b5qVpmatO8tE2UyD1qxZM/n9fpWVlVV6f/Fih667rp22bEnb4zqxmElXXpmpzp3L1a8fz4uA/xWJRBKaZ7PZDE4CoC4Y1muY7p1x7y7Xv1jxRcJrRqIR/bzuZ3289GN9svwT5RXn/X3vvH3P05unv1ml4mTEb+3akMaODWjSJJf8/uSXgVmtMZ155o4ysB49KAMDAAAAkBhKwQAAAAAAAAAAAAAAAAAAqOXuv98tq9Wje+815hDRzz87dcwxPk2ZYlNmpsWQNQEgXh6PJ+G5jRo1MjAJgN1Js6Tp+sOuT+qe1ozm6mC1qWD9Nvn8gRrZw2l11si6qL1i0Yg2eLJVXF5zZXN70jzbqqa53VKyN2qf3NxcrV69WoHAzo9xU6Zk6q67cuX3V604zuez6Kyz7Pr5Z7/atXPURFSgTgoGE3+st9vtBiYBUFfccOgNlZaCbazYqG3ebWrialKldQLhgKblT9PHyz7Wp8s/1RbPlkrHvf3n2zq357k6udvJ1cqNneXnh/TAAwG9+aZLwWDyy8DS0qIaNsynu+9OU5culIEBAAAAqB5+vAgAAAAAAAAAAAAAAAAAAHXA6NHpGjOmwrD1fv3VqaOPDqqkJGLYmgBQVdFoVOFwOKG5ZrNZVis/GxmozyzOHLVv01zprpop5jCZTDWyLmqnWCSqdRU5KSsEa5VjVdPc7inZG7WT2WxWp06dZDbvONYVi0kTJzbVqFFtq1wI9peNG2069dSoKioSe14F1Efl5eUJz01Pp8QFaIgyHZlqm9W20nuPzn50j3PLA+V6b9F7OveDc9X00aY64e0T9OK8F3dbCPaXZduWJZwXO1u5MqiLLvKoWzeLXnnFrWAwuUfn7faoLr7Yo+XLI5o0KV1dutiSuj8AAACA+olSMAAAAAAAAAAAAAAAAAAA6oi773Zr7FiPYevNmePU0UeHVFxMMRiA5KrOQX2Hw2FgEgC1lcWeqXZtWisj3fiP+ZWlKw1fE7VTNBzS2opslVYEUrJ/biOLGrWmEAy7MpvN6ty5swIBk26/PVcTJjRPeK2FC10aNsyrSCRqYEKg7vJ4En/fJDMz08AkAOqSod2HVnr9gyUf7HJti2eLXpr3kk58+0Q1ebSJzv3wXL23+D2VB6v+XkeWIyvhrNhhyZKAhg3zaJ990vTGG+kKhZJ7ZN7pjOryyyu0cmVEL72Urg4d0pK6PwAAAID6jVIwAAAAAAAAAAAAAAAAAADqkDvuSNe4cRWGrTd3rkODB4dUVEQxGIDkKS0tTXhuRkaGgUkA1GbmNJfatm2rLLdxxWDhaFgrSlcYth5qr0goqDUVjVXuSX4hmMlkUtsmVmW36pH0vVF32Gw2paW106xZ7mqv9cUXmbrttpLqhwLqAb/fn/Bcq9VqYBIAdcktfW+p9Hp+Sb68Qa8KSgr0xM9PqP+r/dXy8Za69PNL9dXKrxSMBBPar0cTnicm6s8/gzrrLI/228+md99NVzhsSur+LldE11xTodWro3r+ebfatKEMDAAAAIDxeJcKAAAAAAAAAAAAAAAAAIA65tZb3bJaPRo1Kt2Q9ebPd+ioo/yaNk1q1MhiyJoAsCderzfhuTk5OQYmAVDbmSw25bZpL/O6fBWXV7/cqaCiQIFo8kuikFyRUFAF5U3k86emEKxdU6vczbolfW/UPfvt59arr5bonHOyql1o8fjjjbTPPkUaObKRQemAuikcDic0j0IwoGFrldlKzVzNtMW7ZafrMcXU+ZnO2lix0dD9ejSlFCxe8+YFdP/9YX32mUuxmC3p+2dkRHTJJT7ddptDzZtXv9QVAAAAAPbEnOoAAAAAAAAAAAAAAAAAAAAgfjfdlK4nnvAYtt7ChQ4NGhTS9u0Rw9YEgMpEo9GED+qbzWYO6wMNkMliVas2ndQ4s/oHv5cWLzUgEWqzcDCg/LLGKSkEM5vN6tAsjUIwxGXo0Gzdf39xtdfp2dOr9u23qKSkpPqhgDoqGo0qGo0mNNdmS37BDIDa5fjOx1d63ehCsCauJmriamLomvXZr7/6deKJXh14oF2ffpquWKx6RarxysyM6LbbKpSfL40f71bz5rwvBQAAAKDmUQoGAAAAAAAAAAAAAAAAAEAddcMN6Xr6aY9Mppgh6/3xh0MDB4a0ZUtiZT0AUBVlZWUJz3U6nQYmAVCXmMxmtcjtrGbZadVaZ2kJpWD1WTDgV15ZY/kDwaTvbbFY1KG5Ta6mXZO+N+q+O+5opOHDSxKef+yxpXr11Xw1axbWunXr5PP5jAsH1CHV+bvPaw2gYQpGgvpm1Te6/PPL9eXKL5OyZ/cm3ZOyT103a5Zfxxzj1WGHOfTVV66k75+TE9bdd1eooEB6+GG3Gje2JD0DAAAAgIaLOmIAAAAAAAAAAAAAAAAAAOqwa69Nl8Xi0TXXuBSLmaq93qJFDg0a5Ne0aVLz5nybIQDjlZaWJjw3MzPTwCQA6hqT2axmud1kNi3TpuLESkyXlS4zOBVqi4A/oILyxgqFQknf22q1qkNzh+w57ZO+N+qPF17IVF5ehWbOdMc174ortujKK7fIbP7vtby8PHXr1k1WK6/p0LCUl5cnPNftju9jD0DdVR4o19ervtbHyz7WVyu/Ulkg8fLyRPRo0iOp+9U106f7df/9Uc2YkfwiMElq0iSsa68N6MYbncrI4HMDAAAAgNTgnV0AAAAAAAAAAAAAAAAAAOq4q65Kl9ns0dVXuxSNVr8YbMkShwYODGj6dKlFC77VEICxvF5vwnOzsrIMTAKgrmrSurvMpqXaUBSJa14sFtOyEkrB6iO/P6CCshyFw4mVxVVHWlqaOrRIly0rN+l7o36x2cz68EObDj/cr9WrHVUYH9WYMet1wgm7Fq7GYjGtWrVKXbt2lfmfbWFAPefz+RKem56ebmASALXNVs9Wfbb8M3287GN9n/e9ApFAyrJQCla5b7/1acwYafZsZ0r2b9YspBtuCOq665x8TgAAAACQcnynDgAAAAAAAAAAAAAAAAAA9cAVV6TLYvHoiiuMKQZbtsz+dzFYy5Z8uyEAY0SjUUUi8ZX4/MVsNstq5fEIwA6NWvWQxbRUhdur/piyzrNO5aHyGkyFVPD6glpTlpPw55fqsNtsat8yQ2kZLZO+N+qnpk1t+uQTr/r3D6u4ePfPexo3Dunpp9dqv/12X4AUDodVUFCgjh071kRUoFYKBBIr+TGZTBToAfVQQUmBPln2iT5e9rFmrZ2laCya6kiSpO5Nuqc6Qq0Rjcb09dd+jRkj/fprasrAWrUK6YYbArr6apdcLsrAAAAAANQOfFUcAAAAAAAAAAAAAAAAAIB64tJL02W1enXppU5FItUvBlu+3K4BA3YUg7VuzbccAqi+0tLShOe6XC4DkwCoD7Ja9pDZtExrt0cUi8X2On5Z6TLDM1RlX9QcjzesNWVZikaTXwjmcNjVvmW2rOlNk7436rdevVx6/fVSnX56hsLhXUuKunXzacKEtWrRIrTXtbxerzZs2KBWrVrVRFSg1vF4orLb45+XlpZmfBgASReLxbRoy6K/i8Dmb5qf6kiV6tG0R6ojpFw0GtOnn/r0wANmzZuXmjKwNm2CGjUqpMsvd8rhcKckAwAAAADsDt+hAwAAAAAAAAAAAAAAAABAPTJihEtms0cXX+wypBhs5cq/isFiatOGQ7IAqqc6pWCZmZkGJgFQX2S06K525uVauy2iaDS6x7FLS5Yavr8/nKZwMCCrLYEGElRLuS+itaVuxWJ7/nOvCS6nXe1aN5XFkZ30vdEwnHRSlsaNK9KoUY12uj5oUJkefnidXK6q/70vKiqSw+FQo0aN9j4YqMMqKsI67LDuatkypK5d/eraNaAuXfzq2tWv3NygLJbdz3U4HMkLCsBwmyo2afzP4/XR0o+0unh1quPskdPqVNustqmOkTLRaEyTJ/s0dqxZf/yRmvL39u2DuvXWkC65xKW0NFtKMgAAAADA3lAKBgAAAAAAAAAAAAAAAABAPTN8eLrMZo9GjnQpHK5+Mdjq1XYNHBjQ9OkhtW1LMRiAxPl8voTnZmdnGxcEQL3ibtZN7c0rtWZrSJHI7otylhYbXwoWiUaUX95E7d3blGanGCxZSr1SYYlLUizpe7tddrXNbSmzzZ30vdGw3HRTIy1fXqwXXsiRJI0cuVXXX79ZZnP8a23YsEF2u13p6ekGpwRqj7lzfQqHM1RYaFdhoV1Tp/73nsMRVefOfnXpElDXrv6/y8JyciKSJKfTmaLUAKpr8ZbFOuLVI1TiL0l1lCrp1qSbzKYEPpnXcZFITG+/7dXDD1u0ZElqysA6dw7ottvC+te/XLJaKQMDAAAAULtRCgYAAAAAAAAAAAAAAAAAQD104YXpsli8Gj7coXC4+gfN8vLsGjAgqOnTQ2rfnmIwAPGLRqOKRCIJzbVYLDIn0oABoMFwNemiDubVKtgSVDhc+WPNstJlu18gW9KA+PcNdQzJ5/crP9pY7TO3y0YxWI0r9lq0viQ1x2Ey3Q7l5raR2cqfM5Lj2WeztHZtmY44okynnlpSrbUKCgrUtWtXpaXxeg7107x5od3e8/vNWrTIpUWLdi6iado0pC5d/PrySz4ugLrqvh/uqzOFYJLUo0mPVEdIqnA4pjfe8Onhhy1asSI15aTduwd0xx1hnX++SxYLz+MBAAAA1A2UggEAAAAAAAAAAAAAAAAAUE+dd55LFotXF1xgTDFYQYFNAwfuKAbr0IEDswDiU1JSkvBcp9NpXBAA9ZajUSd1MK9RwWafQqHwTve2+rZqm3/b7ifnSBoU/55/6A89+sejunW/W5VX2kgdMotkd3DQvKZs86RpU2lqSiKzM+xqndtOJgvPg5E8VqtZn37q1MqVhYrFqrdWLBbT6tWr1bVrV8pWUS8tWmSKe87WrTse07OzeWwH6qrNns2pjhCXhlIKFgrF9MorXj3ySJry8lx7n1ADevb06667ojr7bCdlYAAAAADqHN7BBQAAAAAAAAAAAAAAAACgHjvnHJfeftuvtLSoIeutWWPTgAExrVoVNGQ9AA3HTz/5lJ9vS6jQIisry/hAAOole3Y7dWiZIZtt53KPpSVLa2zPN1e9qVdWvKJwOKy80hz5fDxPMlosGtOWCkfKCsEaZdrVuk1HCsGQEjZbmtq3b2/IWuFwWPn5+YasBdQ2S5cm9hjdrVvA4CQAkum4TselOkJcujfpnuoINSoYjGnCBI+6dAnpiivSlZdnS3qG/ff3a/Jkr/74w65hw1yyWOIvjQQAAACAVKMUDAAAAAAAAAAAAAAAAACAeu7/2Lvv8DiqQ43D3872Illyl2SruBtCMzWmudBMgoPpPbQQiCG0EEIoCSV0QiehB7hgQjEtdDAQMBAMNr3YVm/ukq3tZfb+IUocCbBWo12V3/s8epKcnXPmu1fSemak8+ngg32aNy8ql8uaYrD6epemT5eWLaPwAsCmu/zyQZo9e4Jmzpyoc88dpccfL1R9/aaVhFEKBqArXPklGlNUII/7uw3oX67/skfPecOnN+iJmieUSqVUvX6QwpFEj55vIEmbaa0MB7RqQwatkhYYNsilolFjZTPsOTk/IEl+v1/FxcWWrBWJRNTQ0GDJWkBvsnSpO6N5kyYlLU4CIJvO3OlMTR09NdcxNtnkYZNzHaFHRCKmrr8+pDFjEjrtNL9qa7NfBrbddhE99VREixe7ddBBPhkGZWAAAAAA+i5HrgMAAAAAAAAAAAAAAAAAAICed+CBPj38cFiHH+5RLNb9vyna0ODStGkJLVgQ18SJ2d/kBaBvCYWSWrLEJ0lavdqp554r0HPPFUiSiori2n77kHbYof2jqGjjIh273S7D4G8hA+gaR94IVThcqmlco0g0pi9be7YUTJIuXnyxCl2FmlY8TdWtecpPcI1khaQphcKxnJx7RIFDw0ZNyMm5gf81ePBgRaNRrVu3rttrtba2yuv1asiQIRYkA3Kvri6qtWs9Gc39yU+sKVAHkBtep1fPHfGc9nhgD73f9H6u4/wgw2Zo/ODxuY5hqXDY1C23hHX99W6tWOHPSYaf/jSiCy+U9t7bQxEYAAAAgH6DUjAAAAAAAAAAAAAAAAAAAAaIOXN8evTRiA45xK1otPsFO01NTs2YkdCrr8Y1aRKlFwC+34IFQUWjBZ2+1tzs0tNPu/T004WSpFGj4tphh+C3RWFjx3qzmBRAf2L3Fqp8tKG6xlX6ovWLHj9fKp3S7/7zO921213aesjWWh/MTZEVrFFU6NCQkkm5jgFspLi4WNFoVOFwuNtrNTc3y+12KxAIWJAMyK1Fi6KSMisFmzLFaW0YAFk3yDNILx71ombcN0Mfrfwo13G+19jCsXI73LmOYYlg0NQNN4R1001urV6dm2uJ3XZrLwPbYw+eGwEAAADof/iTWQAAAAAAAAAAAAAAAAAADCD77efVY4/F5PGYlqzX1OTU9Ok2ff45pRcAvt+CBelNPrahwaX58wfrvPNGa+bMSWpuLuzBZAD6O7t7kAYN86sh1JCV88XMmOYunKvlG5Zn5XzoGSVD7BSCodcqLy+Xw+GwZK3a2lrF43FL1gJy6cMPM3vGYbenNWUKZTJAfzDYO1gvH/2yNhu2Wa6jfK9JQ/v+9eX69Sn96U9BlZebuvDCgFavzn6x4syZYb3xRlRvvOGlEAwAAABAv0UpGAAAAAAAAAAAAAAAAAAAA8zPfubVE0/E5PVaUwy2YoVTM2YY+uwzNpMD6NzCha6M5hUUJLXddgGL0wAYaD5euzSr59uQ2KBfv/VrNYebs3pedJ/NZlPpULsKiybnOgrwvQzD0Lhx42Sz2bq9VjqdVmVlpUzTmntDIFc+/9ye0bzy8pj8fmtK9gDk3jD/ML16zKuaMGRCrqN0avLQvnuN2dKS0h//GFR5eVqXXBLQ2rXZf+/ce++wFi6M6pVXfNptN0/Wzw8AAAAA2UQpGAAAAAAAAAAAAAAAAAAAA9A++3j15JPWFYOtXOnU9Ok2ffIJxWAANtbWltSHH3ozmrv99hE5HPzKM4DuWdK8JOvnXBVZpV+/9Wu1xlqzfm5k5ptCsPyRfbesAQOHw+HQmDFjLFkrlUqpqqrKkrWAXPnyy8xKiCdO5BkG0N+MDIzUq8e8qoqCilxH6WDysL53nblmTUrnnBNUebl0xRUBtbZmtwzMZkvr5z8PadGimF54waepUykDAwAAADAw8BNyAAAAAAAAAAAAAAAAAAAGqL328urpp2Py+VKWrLd6tVMzZhj68MOYJesB6B9efjmoRCKzX1veZZeExWkADESLVyzOyXmr26o19+25CifDOTk/Np1hGCof5lTeiEm5jgJsMq/Xq1GjRlmyVjQaVVVVvSVrAdmWSJiqrHRnNHfy5KTFaQD0BqPyR2nBLxdodP7oXEfZyKShfedac8WKpM44I6iKCunaawPasMGe1fMbRlpz5oS0eHFczzzj13bbZfY+DwAAAAB9FaVgAAAAAAAAAAAAAAAAAAAMYHvs4dUzzyTk91tTDLZmjUN77GHX4sUUgwFot2BBOuO5e+/ttDAJgIFqSfOSnJ3743Uf6+x3z1bCpOSwt7Lb7aoY7pJ/+IRcRwG6rKCgQEOGDOn2Ol995db06cM1f35r90MBWfbJJ2HFYpltk9xqK5vFaQD0FuUF5VrwywUqChTlOsq3Jg+dnOsIP6qxMam5c4MaM8bQjTcGFAxmtwzMbk/r4IND+vjjhObP92vrrSkDAwAAADAwUQoGAAAAAAAAAAAAAAAAAMAAN2OGR88+m1AgYE0x2Nq1Du25p13vv08xGADp7bcz28A5ZEhC223ntzgNgIEmnAjrizVf5DTDWyvf0p8++JPMtJnTHOjI4XCoYqRH3qHjch0FyFhRUZH8/syvmV5/PU/HHDNGdXVuHXdcQIsXBy1MB/S8jz+OZzx3++0pmwH6s3GDx2nBLxdouH94rqOoKFCkQZ5BuY7xvWprEzrppKDGjTN0220BRSLZ3X7ucJg64oiQPv00oUce8WvzzV1ZPT8AAAAA9DaUggEAAAAAAAAAAAAAAAAAAO2+u0fPPZdQfr41xWDr1jm01152/ec/UUvWA9A3tbYm9Mknnozm7rhjRHY7v+4MoHs+WflJryjjeqbuGV3/yfW5joH/4nQ6NabIL09hRa6jAN1WVlYmp9PZpTnptHTffUP029+WKhy2S5I2bHDowAOdWrky85IlINt2261VCxd+rvvuq9L55zfpkEPWauutQ/L7f/j5Rl5eSuPHZ3avAqDvmDR0kl45+hUN9g7OeY7eqLIyruOOC2nCBLvuvDOgaDS7z2GcTlO//GVIX3yR1IMP+jVpEmVgAAAAACBJjlwHAAAAAAAAAAAAAAAAAAAAvcOuu3r03HNR7buvtGGDvdvrtbQ4tPfe0gsvRLXTTmy0BQail14KKZksyGjuLrskrQ0DYEBasmJJriN86x/L/qEhniE6dsKxuY4y4LldLpUXBeTMK851FMAShmFo7NixWrp0qUzzx4sQEwmbLr20WE88UdjhtZoat/bfP6jXX3fI7aagFb1fPB5Xfr6pKVPCmjIl/O14Oi01NTm1dKlHy5Z5vv5Pt2pq3DJNm8aPj8lu9+UwOYBs2WLEFnr56Jc18/6Zao225iTD5KGTc3Le77N0aVyXXJLQP//pVTKZ/SIut9vU0UdHdP75LpWX+7N+fgAAAADo7SgFAwAAAAAAAAAAAAAAAAAA39p5Z49eeCGqWbPSWr+++79muH69Q3vvbdPzz0c1dSrFYMBAs2BBOuO5e++d/U2pAPqfJc29pxRMkq775DoNcQ/RfmX75TrKgOXxuFReVCiHf1iuowCWcjgcGjNmjJYvX/6Dx7W02HXmmaX64IPvL+B4992AjjuuVQ88kC+7nWIw9G7JZOdlwjabVFKSUElJQtOnt307HovZVFXlluSWRCkYMFBMKZqiF458QXs+sKfa4m0/PsFik4f1jlKwzz+P6eKLk5o/35eTMjCv19Sxx0Z03nkujR5NGRgAAAAAfB+eygIAAAAAAAAAAAAAAAAAgI389KcevfhiUgUFnW+s7aoNG+yaNcupt96KWrIegL7j7bfdGc0bPjyhrbZigz6A7luyoneVgknSRR9cpDdXvJnrGAOSz+tWRckwCsHQb3k8Ho0ePfp7X6+sdOuII8b+YCHYN+bNK9Bll7VamA6wXiKR6PIctzutyZOj2mmnHggEoFfbcdSOeu7I5+RzZv95w6Shk7J+zv/28cdxHXBASFts4dIjj/iVTNqyen6/P6XTTw+qqsrUbbf5NXq0M6vnBwAAAIC+hlIwAAAAAAAAAAAAAAAAAADQwY47evTSSykVFlpXDLbvvk79+98UgwEDRSwW1667tmnKlJAcDrNLc3fcMSK7nV91BtA9iVRCH6/8ONcxOkimkzr73bP10dqPch1lQAn4PCofXSS7tzDXUYAeNWjQIA0dOrTD+MKFAR111Bg1NLg2ea1LLinUww+3WpgOsFZbW1vGc30+SoiBgWiX0l30zOHPyOPwZPW8k4dOzur5vvHBBzHNnh3W1ls79cQTfplmdsvA8vJSOvvsoKqq0rrhhoBGjnRk9fwAAAAA0Ffxk3IAAAAAAAAAAAAAAAAAANCp7bd36+WXUxo82JpisLY2u372M6dee41iMGAgaG1t0SmnrNZ991Vr4cIvdPvt1TrhhNXacsuw7Pb0D87dbTdr3ncADGxfrvlSsVQs1zE6FUlFNPftuaraUJXrKANCvt+j0tElMlyBXEcBsmLkyJEKBNq/3tNp6cEHB+s3vylTMGjv0jqmadOvfpWn994L9kRMoNtCoVDGc/Py8ixMAqAvmVExQ08c+oRc9k0vyuyOPFeeivOKs3Kub7zzTlSzZoW13XZuPfOMT+l0dsvABg1K6g9/CKqmRrr22oCGD6cMDAAAAAC6glIwAAAAAAAAAAAAAAAAAADwvbbd1q1XXklp6FBrCnqCQbv228+pBQsoBgP6u7a2tm//u8+X1tSpIZ1xxko9+GCV3nrrC916a42OPXa1NtssIptt45KwffZxZzsugH5oyYoluY7wg9bH1+vXb/1aK8Irch2lXysIuDW6tEyG05vrKEBWlZaWymZz6S9/KdKVVxbLNDMrAwkG7TrwQJcaGriHQ+8TjWb+delyZacMCEDvtM+4ffTowY/KYfR8WdXkYZNls2WnlOvNN6Pac8+wpk716IUXfFk5538bPDipCy8MqqbGpiuuCGjw4K4VkgIAAAAA2lEKBgAAAAAAAAAAAAAAAAAAftA227j16qumhg1LWLJeKNReDPbyyxFL1gPQO8Vise99LRAwtdtuQZ199kr985+VevPNL3TjjbU66qg12mWXNm2+efY3rgLofxY3L851hB+1IrJCJ791stbH1+c6Sr80ON+tktIxstmduY4CZJ1hGBozZqwqKz3dXquhwaU5c1KKRFIWJAOsk0hk9pzCbqekBoA0e+JszTtwngxbz261njR0Uo+uL0kLFkQ1bVpYu+3m0SuvZP+ZytChSV16aVA1NYYuuSSgggLeZwEAAACgOygFAwAAAAAAAAAAAAAAAAAAP2rLLV1asCCt4cOtKQYLh+36xS/cevFFisGA/igWiymdTm/y8YMGmZoxo03nnrtCd9/dLJvN1oPpAAwUS1YsyXWETVLZVqkz3z2zS++b+HFDB7lUNGqsbAaFBBi4vF67nnjCrpKSeLfXev99v045ZYNM07QgGdB9pmlm/PXodrstTgOgrzpos4N0//73y6aeew4xeejkHlv7hRcimjo1opkzPXrjjeyXgY0YkdCVV4ZUU2PoggsCystj2zoAAAAAWIG7KwAAAAAAAAAAAAAAAAAAsEl+8pP2YrARI6wpBotEDM2Z49bzz1MMBvQ3LS0tGc/1+/0WJgEwUJlpUx+u+DDXMTbZotWL9OaKN3Mdo98YUeDUyNETZDPYNgOMGuXR/PlxBQKpbq0zdmxUhx66SvX19RYlA7onGo1mPNfr9VqYBEBfd+SWR+qu2Xf12PpWl4KZZlrPPBPRjjtGNGuWV++8k/33tOLihK67LqTqarvOPdcvv5/rbgAAAACwEndZAAAAAAAAAAAAAAAAAABgk22+uUsLFpgqKrKuGOyAA9z6178oBgP6k2AwmPHcgoIC64IAGLCqW6q1IbYh1zG6ZEVkRa4j9AtFhQ4NGzUx1zGAXmWHHQK68842GUY6o/k779ymBx6o0ujRCbW1tWnFCt6vkHvdueegiBjA/zp+m+N127639cjak4ZOsmQd00zr8cfD2nbbmGbP9uq997JfBlZaGtdNN4VUXe3QWWf55fWyTR0AAAAAegJ3WwAAAAAAAAAAAAAAAAAAoEs228ytBQvSKi62phgsGjV00EFuPflk2JL1AOReLBbLeC4b9AFYYXHz4lxH6BJDhrYavFWuY/RpDodDFSNcGlJiTekC0N8cdliBLrqopcvzjjpqjW65pVZ5eea3Y2vWrNH69eutjAd0WTic+TOEQCBgYRIA/cUp25+iv+71V0vXdBpOjR08tltrmGZaDz8c1tZbx3TQQT59+KHHonSbrqIirr/9LaTly5067TS/XC5b1jMAAAAAwEBCKRgAAAAAAAAAAAAAAAAAAOiySZNceu21tEpK4pasF4sZOvRQj+bPpxgM6Oui0ajS6XRGc10ul8VpAAxUS1YsyXWETea1e/WHrf+giQUTcx2lT7Lb7RqS79K40qHyD5uQ6zhAr3bBBQU6/PDWTTrWbk/rwgsbde65K+RwdHy9vr5e0WjU2oBAF2RaRGyz2WQYbKsE0Lkzf3qmrph5hWXrjR8yXg6jk39IN0Eqldb994e0+eZxHX64T598kv0ysPHjY7rrrpCWLnXq5JP9cjopAwMAAACAbMjsThIAAAAAAAAAAAAAAAAAAAx4Eya49Nprcc2cGVd9ffeLfOJxQ4cd5tFDD4V10EE+CxICyIWWlpaM5wYCAQuTABjIensp2FDPEO1WvKt2L95VuxXvqkJPYa4j9SkOIy2n3ZTHkVZgSJkMpzfXkYA+wW43dO+9+aquDurdd7//uisvL6W//rVOO+0U+sH1qqqqNGHCBDk6aw0DelgymcxoHl+vAH7MH3b5g2LJmP78xp+7vdakoZO6PCeZTOu++8K66iqHli3zdztDJiZNium885I68kif7HZ3TjIAAAAAwEDGEywAAAAAAAAAAAAAAAAAAJCx8ePbi8FmzIirrq77xWCJhKEjjvDINMM65BCKwYC+KBgMZjy3sJBSHADdl06ntbh5ca5jbMRus2vn0p2199i9tc+4fbT1yK1l2IxcxwIwALndhp580qWddoqppqZjyUdZWUy33FKr8vL4j65lmqYqKys1fvx4GQbvacge0zSVTqczmuvxeCxOA6A/umj3ixRNRnXlwiu7tc7koZM3+dhEIq277w7r6qudqq7OTRnYFltE9cc/mjrkEK8MgzIwAAAAAMgVSsEAAAAAAAAAAAAAAAAAAEC3jB3r0htvJDR9elw1NdYUgx15pEepVFiHH04xGNDXxOM/XiDRGZvNJq/Xa3EaAANRc7BZq0Krch1DpYNKtc/YfbTPuH00o2KGBnkG5ToSAEiSRoxw6fHHg5o+3a4NG77bXrbjjkFdd12dBg0yN3mtRCKh2tpaVVRU9ERUoFNtbW0Zz+WeA8CmsNlsunzm5Yomo7rhPzdkvM6mlIJFo6buuCOs665zqa4uN2Vg22wT1QUXmNp/f68Mw5aTDAAAAACA71AKBgAAAAAAAAAAAAAAAAAAuq283KnXX28vBquu7n4xWDJp6JhjvEqlQjrqqNxshgPQdZFIROl0OqO5Llf33zsAQJKWNC/JyXk9Do92L9td+4xrLwKbOGSibDY21APonaZMCejee1t16KGDlEzadPDB63TeeU1yOru+VigUUnNzs4qKiqwPCnQiFAplPDcvL8/CJAD6M5vNpr/u/VfFUjH97f2/ZbTGpKGTvve1SMTUbbdF9Ne/utTUFMg0ZrfssENEF14o7buvhzIwAAAAAOhFKAUDAAAAAAAAAAAAAAAAAACWKCv7rhisqsqKYjCbjjvOJ9MM6ZhjKAYD+oKWlpaM5wYCudkAC6D/Wdy8OGvnmjR0kvYZ214CtlvZbvI6vVk7NwB01wEHFOjSS9dp/fqojjhinbrTY7h27Vp5vV4VFBRYlg/4PpFIJOO5brfbwiQA+jubzaZb9r1F0WRU9354b5fnd1YKFgqZuvnmiG64waWVK3PzzHPq1PYysH324f4FAAAAAHojSsEAAAAAAAAAAAAAAAAAAIBlSkud+ve/k5o2Lably7u/0TaZtOn4430yzbCOPdZnQUIAPSkYDGY8t7Cw0MIkAAayJSuWZOU8g9yD9MXcL7JyLgDoKX/4w2AtX75c0Wj312poaJDb7ZbXS8EIelY8Hs9onmEYMgzD4jQA+jvDZujO/e5ULBXTQ588tMnzSgeVyu/6rvSrrc3UDTeEddNNHq1Zk5sysN13D+uiiwzNmMG/1QAAAADQm/EECwAAAAAAAAAAAAAAAAAAWKqkxKE33rBrwoSYJeulUjadcIJXd90VsmQ9AD0n0835NptNHo/H4jQABiqrS8GmjJzS6fj62HqtCq6y9FwAkAtjxoyR3W63ZK2qqiolk0lL1gK+TyqVymiey+WyOAmAgcJu2HXf/vfpwMkHbvKcyUMnS5JaW1O68MKgystNXXRRQGvWOHoq5vfaY4+w/v3vqF5/3acZM3j+AgAAAAC9HaVgAAAAAAAAAAAAAAAAAADAcsXF7cVgkyZZUwxmmjb9+tc+3X47xWBAbxUKZf796Xa7LUwCYCBribSoprWmW2sM9Q3VEVscofv3v18rzl6hD379gcYPHt/psbe9f1u3zgUAvYFhGBo7dqxsNlu310qn01q+fLlM07QgGdBRpkXEkigiBtAtDsOhhw58SPtN2G+Tji8PTNQf/hBUeXlal10W0Lp12S8DmzUrrHfeierll33adVfeAwEAAACgr6AUDAAAAAAAAAAAAAAAAAAA9IiRIx16/XW7Jk+2rhjslFN8+tvfKAYDeqPW1taM5wYCAeuCABjQqlqqujzHsBnaefTOunT6pVr0q0Va+buVevCAB3X0VkdrRGCEJGnf8ft2OveJL57oVl4A6C1cLpfKysosWSuZTKqmpsaStYD/1dbWlvFcn89nYRIAA5HL7tKjBz+qvcfu/aPH/uPaSbrqqoDWr89uGZjNltbs2SG9/35Mzz3n0047UQYGAAAAAH0NpWAAAAAAAAAAAAAAAAAAAKDHjBjRXgy2+eZRS9ZLp22aO9enW26hGAzobUKhzL8vBw8ebGESAANZgadgk44blT9KJ25zoh47+DGt/f1avXX8W7pgtwu0XfF2Mmwdt1qcuv2pna7zxZovuhMXAHqVQCCgoqIiS9YKh8NqamqyZC3gv3XnviM/P9/CJAAGKrfDrfmHztf08uk/eFysYbMsJWpnGGkdeGBIH36Y0FNP+bXttu6snh8AAAAAYJ3s1ksDAAAAAAAAAAAAAAAAAIABZ/hwh15/3aYZM6L65BNPt9dLp2367W99Ms2gfvvbgAUJAVghHo9nNM9ms8nlclmcBsBANXbwWB282cF69PNHNxp32V3avWx37T12b+0zbh9tNmwz2Wy2TV533JBxCrgCCsaDG40nzIReq35N0yt+uBAAAPqKIUOGKBKJqLW1tdtrrVu3Th6PhwJYWOqCC/L07rvDNX58VBMmtH+MHx/ViBFJ/dg/7Q4H2ykBWMPn9Onpw5/WPv+3jxbWL+z8oHTHsuGe4HCkdeCBYV10kUObbebPyjkBAAAAAD2Lp1gAAAAAAAAAAAAAAAAAAKDHDR1q12uvSTNnRvXRR9YUg51+ekCpVEhnnslmNyDXQqFQxnPdbreFSQBAemDOA9q1dFctalqkId4h2nPsntq9bHf5Xd27ZtiuaDu9Xvt6h/HbP7idUjAA/cqoUaMUi8UUiUS6vVZTU5Pcbrf8fu7bYI1PPnFr2TKPli3z6LnnvhvPz09q/PjYt2Vh48dHNX58TH6/KYlCMADWW9Pk1th3H9XCIZMlz/qOB5T9W6rbtcfO73CYOuywiC680KkJE/h3FgAAAAD6E55kAQAAAAAAAAAAAAAAAACArBgyxK4FC9qLwT78sPvFYJJ01ll+JZNBnXNOwJL1AGSmpaUl47l5eXkWJgEAye1w67QdT7N83aO2PKrTUrDXazqOAUBfV1FRoaVLlyqZTHZ7rZqaGk2YMEFOp9OCZBjIkklTy5Z1Xiq8YYNDH3zg0AcfbFyMU1IS14QJUZ14YkiTJmUjJYD+bvnyuC67LKGHHvIqkSiSSp+Wjt+944GTn5DePN/y87tcpo48Mqzzz3dp7FjKwAAAAACgPzJyHQAAAAAAAAAAAAAAAAAAAAwcgwfbtWCBU1OmRC1b8/e/D+iqq0KWrQeg60KhzL8HCwsLLUwCAD3n6C2Plk22DuMrQysVjAdzkAgAeo5hGBo7dqxsto7ve12VTqf10UfVSiZNC5JhIPvqq6hCIXuX5jQ2uvTaa/mKRq0pJwcwcH35ZVxHHBHS5MkO3XefX4nE11u063aV1o7rOKH4A2lQnWXn93hMnXRSUMuWpXTPPQGNHeuybG0AAAAAQO9CKRgAAAAAAAAAAAAAAAAAAMiqwkK7Xn3Vqe22i1i25h/+4Ndf/kIZB5ALqZSpE04o1tVXj9Trr+eprW3Tf0XZZrPJ5WITK4C+weVwaVT+qE5fu+ODO7KcBgB6ntPpVHl5ebfXqatz6eCDyzR37vruh8KAtmhRLOO5227rtDAJgIHk00/jOvjgkH7yE6fmzfMrmfzf5x426cs5nU+e9GS3z+/1mpo7N6jKSlO33x5QaSnvZwAAAADQ31EKBgAAAAAAAAAAAAAAAAAAsq6gwK5XXnFphx2sKwa74IKALr2UYjAg2z76KKyFC/P0wANDddppZdpll8k6/PAx+utfR+ittwIKh7//V5Y9Hk8WkwJA9+01dq9Ox//56T+znAQAssPv96u4uDjj+YsW+XXEEWNUU+PWHXcU6vrr11mYDgPNJ59kNs/rTWnzzX3WhgHQ7y1ZEtOcOSFttZVTjz3mVypl+/6Dv/ieUrCJT2V8/kAgpTPOCKqqytQttwRUXOzIeC0AAAAAQN9CKRgAAAAAAAAAAAAAAAAAAMiJQYPseuUVt376U+uKwS66KKA//YliMCCbXnwxvtH/Nk2bPv3Up3vvHaZTTinXzjtP1lFHjdFNNw3Xu+/6FY1+t4k2Ly8v23EBoFtO3f7UTsc/XvVxlpMAQPYMHjxYgwcP7vK8xx8v1EknlWv9+u9KTH7/+wI9++x6K+NhAPn8c3tG88aPj8nhYCslgE2zaFFMP/95SNtu69KTT/plmj9QBvaNxh2ltqKO44Pqunz+/PyUzjknqOpq6frrAxo5kjIwAAAAABhoeJIFAAAAAAAAAAAAAAAAAAByJi/P0EsvuTV1qnXFYJdcEtCFF1IMBmTLW2/98ObUZNKmjz7y6c47h+tXv6rQ1KmTdeyxFbrzzmEqLCzMUkoAsMbWRVvL4/B0GI8mo1rcvDgHiQAgO4qLi+Xz+Tbp2FRKuuaakfrzn0uUTG5cpJJMGjr6aL8++yzcEzHRz331lTujeRMnJixOAqA/evvtqPbeO6wddnDr2Wf9Sqc3oQzsG2lD+vjIjuPryzZ5iYKCpM47L6iaGunqqwMaOjSzIkQAAAAAQN9HKRgAAAAAAAAAAAAAAAAAAMipQKC9GGyXXawrBrvssoDOO49iMKCnpVKm/vMfb5fmJBKGPvjAr3//O09Op7OHkgFAz9ly+Jadjt/63q1ZTgIA2VVeXi6H44cLYYNBQ6edVqb77x/6vce0tDi0//6G1qyJWx0R/VhbW1K1ta6M5m6+ecriNAD6kzfeiGrmzLB23tmjl17atALMTv37Qmn15O/+d3C49PJVPzptyJCk/vznkGpqbLr88oAKCykDAwAAAICBjlIwAAAAAAAAAAAAAAAAAACQc36/oRdecGu33awrBrvyyoDOPZdiMKAnffBBWGvXZlbsNXVqzOI0AJAdh/7k0E7HX656OctJACC7DMPQuHHjZLPZOn29sdGpo48eozffzPvRtZYv9+iAA+JKJEyrY6KfWrw4ItPs/Gvvx2y1FdsoAXT08ssR7bZbRNOmebRgQTfKwL4Ry5f+9rH08HzpsXnSrV9Izdt+7+HDhiV06aVB1dQY+tOf/Bo0iDIwAAAAAEA7nmYBAAAAAAAAAAAAAAAAAIBewe839Pzzbk2fHrZszauvDujss4MyzbRlawL4zgsvxDOeO2NGZhv6ASDXTtr2pE7HGzY0KJ7M/H0RAPoCh8OhioqKDuNLlvh0xBFjtXy5Z5PXevPNgE46aYOV8dCPffBBIuO5O+zgtTAJgL7MNNN6/vmIpk6NaK+9vHrzTYvfH0yH9OUc6dPDpMjgTg8pKkroqquCqqmx64ILAgoE2OoNAAAAANgYd4oAAAAAAAAAAAAAAAAAAKDX8PkMPfusR3vsYV0x2F//GtDZZ4coBgN6wFtvOTOa53Sa2muvgMVpACA7Aq6ARgZGdhhPK60HPn4gB4kAILt8Pp9GjRr17f9+5pkCnXBCudatc3R5rX/8o0BXXrnOynjopz79NLOtkMOHJ1Rc7LY4DYC+xjTTevLJsHbcMap99/XqnXeyXxZYUhLX9deHVFVl1+9/H5DPxxZvAAAAAEDnuGMEAAAAAAAAAAAAAAAAAAC9itdr6JlnPNpzT+uKwW64IaDTT6cYDLBSMmnqvfcy20S71VYR5eV1vTQCAHqL3ct273ScUjAAA0VBQYGGDBmim24arj/+cZQSicy3qV14YaGeeKLVunDol778MrP7hwkTYhYnAdCXmGZajz4a1pQpMc2Z49P772e/DKysLK5bbgmpqsqpM87wy+NhazcAAAAA4Idx5wgAAAAAAAAAAAAAAAAAAHodj8fQ0097tPfe1hWD3XJLQKedRjEYYJV33glq/frMNubvvHPc4jQAkF0nb3dyp+MfNH2Q5SQAkDtFRUXKy3N2e51k0qZjjw1oyZKgBanQX331lSejeZMnJyxOAqAvSKXSeuihsLbcMqZDDvHpo48yew/pjjFj4rr99pCWLXNq7ly/XC5b1jMAAAAAAPomSsEAAAAAAAAAAAAAAAAAAECv1F4M5tW++1pXDHbbbQH95jcUgwFWePnlZMZzZ8xgIyyAvm1a+TQ5jY5FOMFEUMvWLstBIgDIjauvHqSf/3xDt9fZsMGho482FItRHouOotGoHn98uW6/vVq/+12zZs9u0eTJEblc5o/O3Xxz7v+BgSSVSuu++0L6yU/iOvJInz77LPtlYBMmxHTvvWF99ZVTJ53kl9PJMxAAAAAAQNdk9qe5AAAAAAAAAAAAAAAAAAAAssDlsumJJ7w68MCQ/vUvvyVr3n57QKlUSLff7pNhsCkPyNTChR3LcDaF221q5syAxWkAIPsmD5usj1d+3GH8lvdu0Y2zbsxBIgDIPrvd0Lx5Pu28c1gff+zLeJ2SkrguvbRRlZUJTZo0SYZhWJgSfV1bW5uGDk1q6NCkpk4NfTueTEp1dW4tXerW0qUeLVvW/tHY6Pr2mClT2EIJDATJZFr33hvWVVc5VFlpzTPErtpss6j++EdThx3mld3OM0cAAAAAQOZ4ogUAAAAAAAAAAAAAAAAAAHo1l8um+fN9OvjgkJ56yppNfXfd5VcqFdRdd/kpBgMykEiYWrQos9KHbbYJy++nFAxA3zdn0pxOS8GeW/6cbhSlYAAGjkDAoSefTGjq1LhWrHD9+IT/MWVKSNdfX6fBg1MyTamyslLjxo2Tzca9GtqFw+FOxx0OacyYmMaMiWmffTZ8Ox4MGlq+vL0obMqUEdmKCSAH4vG07rorrGuucaqmJjdlYFtt1V4GdtBBXp4zAgAAAAAswZ9MAAAAAAAAAAAAAAAAAAAAvZ7TadOjj/o0Z07IsjXvvTeg444LK5VKW7YmMFC8+25QbW32jObuvHPc4jQAkBu/2e43nY5XtVTJNM0spwGA3Kqo8OqRR6LyelNdmjd7dovuvLNGgwd/Ny8Wi6m+vt7qiOjDYrFYl44PBExtvXVEhx7aKr/f0UOpAORSNGrqxhtDGjs2oblz/aqp6XopZXdNmRLV/PlhLV7s1iGH+CgEAwAAAABYhlIwAAAAAAAAAAAAAAAAAADQJzidNj3yiE8HHWRdMdj99/v1y19SDAZ01ejR6/Tyy1/q8svrNWdOi0pKNr3oa4892JQPoH8YHhiuwd7BHcbNtKn5X87PQSIAyK1dd83X3/62QTbbj99f2WxpnXnmCl12WaNcro7Hb9iwQatWreqJmOiDEolERvMcDu49gP4mEjF1zTVBjR2b0hln+NXQkP0ysJ12iuhf/4po0SK35syhDAwAAAAAYD2eagEAAAAAAAAAAAAAAAAAgD7D4bBp3jyfDCOkRx7xW7Lmgw/6ZZohPfCAT3Y7m/iATRGJRDRyZEr77bde++23XpLU2OjUe+/5tWiRX++9F9DKlc4O87zelKZPD2Q7LgD0mKmjpupfy/7VYfyeJffooM0OykEiAMitX/6yUF9+uU5XXtmxNPEbXq+pK66o18yZbT+41qpVq+TxeJSfn291TPQhpmkqnc6syNvtdlucBkCuhEKmbropohtucGnVqtw8V9hll4guvFDaay9vTs4PAAAAABg4KAUDAAAAAAAAAAAAAAAAAAB9isNh00MP+WS3hzRvnjXFYPPm+ZVKhfTggz45HBSDAT/ENE2lUqkO4yUlCc2Z06o5c1qVTkv19S69957/24+1a53adtuI3G5KwQD0HydOObHTUrB3Gt7JQRoA6B0uu6xAS5eu1/z5gzq8NmJEQrfcUqtJk6KbtFZdXZ3Gjx9PudMAFgqFMp7r9VLcA/R1bW2mrr8+optvdmvNGmueA3bV9OlhXXSRoWnTeE8BAAAAAGQHpWAAAAAAAAAAAAAAAAAAAKDPsdtteuCB9mKw//s/azYEPvKIX6YZ0rx5FIMBP6S1tfVHj7HZpNLSuEpL4zrooBal01J1tVt2u18SpWAA+o/9Juwnu82uVHrjssTWaKua25pVlFeUo2QAkDt2u6EHHgiotjakDz747n5tyy3DuvHGOg0dmuzSepWVlZo4caLsdrvVUdEHBIPBjOcGAtx7AH1Va2tK110X0a23etTSkpsysD33DOtPfzK0886+nJwfAAAAADBwUQoGAAAAAAAAAAAAAAAAAAD6JLvdpn/8wyfDCOn++63ZHPjYY36lUiE98gjFYPh+99xzj+655x7L1+3OZvds2rBhQ5fn2GzSmDExFRcP6YFEAJA7hmFo7OCxWrp2aYfXbl10qy6bcVkOUgFA7vl8dj3xhF0//WlcjY0uzZrVqksuaZTHk+7yWqZpqrKyUuPGjZNhGD2QFr1ZJBLJeK7X67UwCYBsWLs2pauvjujvf/dqw4bsF/vZbGnNmhXRRRcZ2nFHysAAAAAAALlBKRgAAAAAAAAAAAAAAAAAAOiz7Hab7r3XJ7s9qHvvtWaj4BNP+HXQQSE9+qhPTifFYOiorq5OCxcuzHWMnAmHwxnPLSgosC4IAPQSP5/wc/31nb92GH/qy6coBQMwoI0e7dHjjwc1b946nXDCGtm6cXsVj8dVX1+vsrIy6wKiT4jH4xnNMwyDEjmgD1m5Mqmrrorqzju9CgazXwZmGGntt19YF13k0JQplIEBAAAAAHKLp1oAAAAAAAAAAAAAAAAAAKBPMwyb7rrLrxNPDFm25lNP+XXAAWHF42nL1gT6g2QyKdM0M5prt9vZlA+gX/rtDr/tdPzLtV8qneZaAsDAtuOOAf3xj0a3CsG+0dbWppUrV3Z/IfQpyWQyo3lOp9PiJAB6QlNTUqedFtSYMTZdf31AwaA9q+e329M66KCQPvwwoSef9GvKFHdWzw8AAAAAQGf4qToAAAAAAAAAAAAAAAAAAOjzDMOm22/36de/Dlq25r/+5df++0coBgP+y/r16zOe6/P5LEwCAL1HWUGZ8lx5HcaTZlKvVr2ag0QA0LsMHz5c+fn5lqy1evXqbl2Tom+Jx+MZz/V4PBYmAWC1urqETj45qLFjDd1yS0DhcHbLwByOtA47LKSPP47r0Uf92mILV1bPDwAAAADAD6EUDAAAAAAAAAAAAAAAAAAA9AuGYdNtt/k1d651xWDPP+/T7NkRRaOmZWsCfdmGDRsynjto0CALkwBA77J98fadjt/+we1ZTgIAvdOoUaPkcllTuFJfX69oNGrJWujdgsHM7+/9fr+FSQBYpbo6oRNOCGrCBLtuvz2gaDS725ydTlNHHx3S558nNG+eX5tt5s7q+QEAAAAA2BSUggEAAAAAAAAAAAAAAAAAgH7DMGy66Sa/TjvNumKwF1/0afbsKMVggKRIJJLx3Pz8fAuTAEDvcsxWx3Q6/kbtG1lOAgC9k2EYGjdunAzDmu1sVVVVSiaTlqyF3isUCmU8NxAIWJgEQHctWxbXMceENHGiXffcE1Aslt3tzW63qRNOCOmrr1K6/36/xo+3pqgSAAAAAICeQCkYAAAAAAAAAAAAAAAAAADoVwzDphtu8OvMM60rBnv5ZZ9+/vOoIhGKwTBwJZNJmWZm3wMOh8OyAggA6I2O3PJI2WTrML46vFqt0dbsBwKAXsgwDI0dO9aStUzTVGVlZcbXp+gbotFoxnNdLgp/gN7g889jOvzwkDbbzKkHHvArkcjuswGv19Svfx3UsmUp3XWXXxUVzqyeHwAAAACATPCTdQAAAAAAAAAAAAAAAAAA0O8Yhk3XXuvX2WdbVwz26qs+/exnUYXDbDrHwNTS0pLxXJ/PZ2ESAOh9HIZDpYNKO33tjg/uyHIaAOi93G63ysrKLFkrkUiotrbWkrXQOyUSiYzm2e12i5MA6KpPPonr4IND2nJLlx5+2K9ksmOBbk/y+VI69dSgKitN/f3vAY0eTRkYAAAAAKDvcOQ6AAAAAAAAAAAAAAAAAAAAQE9oLwYLyG4P6uqrA5as+dprPu27b1jPPuuR38/fZh2oSktLtfPOO1u+bjAY1EcffWT5ulZpa2vLeO6gQYMsTAIAvdPeY/fWHYs7FoA9+tmj+v3Ov89BIgDonfLy8jRixAitXLmy22uFQiE1NzerqKjIgmToTUzTlGlmVsrtdrstTgNgUy1eHNMllyT1zDM+maYr6+cPBFL61a8iOvdcj0aMsOZ5IAAAAAAA2WZLp9PpXIcAAAAAAAAAAAAAAAAAAADoSeedF9SVV1q3EXCXXSJ6/nm3AgGKwWCdDz/8UNtss80mH79kyRJtvfXWPRfof3z++ecZb8rfbLPNZBh8vwDo3z5Z+Ym2/PuWHcbddreiF0RzkAgAerf6+nqtX7/ekrVGjRqlgoICS9ZC7xAOh1VVVZXR3CFDhlAUB2TZf/4T1SWXmHruOV9Ozp+fn9Ipp0R0zjleDRliz0kGAAAAAACswk/WAQAAAAAAAAAAAAAAAABAv3fFFQFdcEHQsvXeesurvfaKKRjMrCAJ6GuSyWTGhWAOh4NCMAADwhYjtpDX4e0wHkvFtKhxUQ4SAUDvNnr0aHk8HkvWWrq0UTU1EUvWQu8QDGZ+D+/3+y1MAuCHvPVWVHvuGdZOO3lyUghWWJjUBRcEVVMjXXllgEIwAAAAAEC/wE/XAQAAAAAAAAAAAAAAAADAgHDppQH9+c8hy9Z75x2v9twzprY2isHQ/61bty7juWzIBzCQbD1y607Hb110a3aDAEAfMWbMGNnt3StwWbHCoWOPHaOf/1zasCFpUTLkWjgcznhuIBCwMAmAzrz2WlTTp4e1664evfJK9svAhg5N6uKLQ6qtNXTppQEVFlIGBgAAAADoPygFAwAAAAAAAAAAAAAAAAAAA8af/uTXpZcGLVvv3Xe92mOPmNavT1m2JtAbtbW1ZTy3oKDAuiAA0Msd/pPDOx1/tfrVLCcBgL7BMAyNHTtWNpsto/mffurVEUeM1RdfePXZZ14demhYySTFzf1BLBbLaJ7NZpNhsG0S6CkvvRTRLrtENGOGR6+/nv0ysOHDE7r88pBqagxddJFfeXl8vwMAAAAA+h/udgEAAAAAAAAAAAAAAAAAwIBywQUBXXaZdcVg773n1R57xNXaSjEY+q9oNJrxXL/fb2ESAOjdTtjmhE7HGzY0KJrM/L0UAPozl8ulsrKyLs974YV8HXtshVavdm40dvbZ662MhxxJJpMZzXM4HBYnAWCaaT37bEQ77RTR3nt7tXChN+sZiosTuvrqoKqr7TrvPL/8frZHAwAAAAD6L+56AQAAAAAAAAAAAAAAAADAgHP++QFdeWXIsvXef9+rmTPjammhGAz9TzweVzqdzmiu0+mUYfArywAGDp/Lp6JAUaev/WPJP7IbBgD6kEAgoKKizt8//1c6Lf3tb8N0zjmlisU6XmvedFOh/va3dVZHRBalUqmM70E8Ho/FaYCByzTTeuKJsLbfPqaf/9yr//wn+2Vgo0fHdcMNIVVW2nXOOQH5fDxjAAAAAAD0f9z9AgAAAAAAAAAAAAAAAACAAencc/26+uqgZestXuzVjBkJrVtHMRj6l5aWlozn+nw+C5MAQN8wvXx6p+MPffpQlpMAQN8yZMgQFRQU/OAx0ahN5547SrfdNuIHjzvjjAK99NJ6C9MhmxYtCuuII8boT38q1oMPDtaiRX61tto3aS73IED3mWZajzwS1jbbxHTAAT4tXpz9sr3y8rhuuy2kykqnTj/dL4+H7dAAAAAAgIHDkesAAAAAAAAAAAAAAAAAAAAAuXLOOQE5HCGddZbfkvU+/NCjGTOievVVaciQTduwDPR2wWDm5XmFhYUWJgGAvuGU7U/ptABscfPiHKQBgL5l1KhRisViikQiHV5bvdqh008v1Sef/HjpUzxu6IgjfFq4MKyJEymJ6mvefz+pTz7J6/C5Hj48ofHjo5owIarx42OaMCGqioqYXK70t8cEAoFsxwX6jVQqrYceCuvKK+36/PPcvHeOHRvTH/6Q1LHH+uRwuHKSAQAAAACAXKMUDAAAAAAAAAAAAAAAAAAADGhnnumX3R7UGWf4lU7bur3eRx95NH16VK++mtawYfyqJvq+aDSa8VyfjwIGAAPPLqW7yGV3KZ6KbzQeSoT05eovNWnYpBwlA4C+oaKiQkuXLlUymfx27MsvPTr11DKtXOnc5HXWrnXqF79I6p13Eios3PR5yL1PPul8fNUqp1atcmrhwrxvxxyOtMrLYxo/Pqpttgnr0kvdWUoJ9B/JZFoPPBDRlVfatXSpNcX5XTVpUnsZ2FFH+WS3830MAAAAABjYjFwHAAAAAAAAAAAAAAAAAAAAyLXf/jagm28Oy2ZLW7LeJ594NH16UqtWJX/8YKAXW7curo8/9iiZwZey0+mUYfDrygAGps2Gbdbp+C2LbslyEgDoewzD0NixY2WztZc2v/pqno45ZkyXCsG+8dVXXh18cFTJpGl1TPSgL77Y9M91MmnT8uUePf98gV59dRD3IEAXJBJp3X57SBMnJnT88T4tXZr9Mq7NN4/qoYfC+vRTl375S7/s9u4X9gMAAAAA0NfxhAsAAAAAAAAAAAAAAAAAAEDS3Ll+3XqrdcVgn33m0bRpKa1cSTEY+q6nnw7piCPGatddJ+vUU0t1331D9MUXHpmb0Kng9/t7PiAA9FIHTj6w0/Hnlz+f5SQA0Dc5nU6Vl5dr3rzBOvPMUkUimW+De/XVPJ166noL06GnZVpMNHlywuIkQP8Uj6d1yy0hjR+f0Mkn+1VV5cp6hq22iurRR8P6+GO3Dj/cRxkYAAAAAAD/hVIwAAAAAAAAAAAAAAAAAACAr51yil9//3tYhmFNMdgXX7i1++4pNTdTDIa+6fXX2zflBoN2vfFGvq69tkiHHDJOu+46SaefXqoHHxysZcvcSnfyLVNYWJjltADQe/xmu990Ol7TWqOkyXUBAGwKv9+v3XYLyOns/v3Z7bcX6oYb1lmQCj1t5cq4Vq50ZjR38803ob0YGMCiUVPXXx/SmDEJnXaaX7W12S8D2267iJ56KqLFi9066CCfDIMyMAAAAAAA/helYAAAAAAAAAAAAAAAAAAAAP/lpJP8uv1264rBvvrKrWnTUmpqogAEfc8773g6Hd+wwaEFC/J15ZXFOuCA8Zo2bZLOPnu0/vnPwaqqcimdbi9xAICBarBvsIZ4h3QYN9OmHv3s0RwkAoC+ae+983XddestWeuiiwapqopisN7uP/8JZzx3yhSHhUmA/iMcNnX11UGNGZPSWWf51diY/TKwn/40oueei+g///Fo9mwvZWAAAAAAAPwASsEAAAAAAAAAAAAAAAAAAAD+x4kn+nX33RHZ7dYUgy1d6tbuu6fU2EgxGPqOhoaoli7tvBTsf61b59BLLw3SZZcV6xe/mKDrrivp4XQA0PvtUrpLp+P3fXhflpMAQN926qmF+s1vWrq1xtChCd1+e43C4SaFQiGLkqEnfPihmdE8w0hru+18FqcB+rZg0NRllwVVXp7SuecG1NzszHqG3XaL6OWXI3r7ba9mzaIMDAAAAACATUEpGAAAAAAAAAAAAAAAAAAAQCeOPdane+4Jy+Gwphhs+XK3dtvNVF1dwpL1gJ72wguRjOduv72FQQCgjzpxmxM7HX+38d0sJwGAvu/GGwdpr702ZDR30qSI5s2r0hZbtF/f1tTUKB6PWxkPFvr888y2PJaWxpWf77A4DdA3rV+f0p/+FFR5uakLLwxo9ersl4HNnBnWG29E9cYbXu2xhzfr5wcAAAAAoC+jFAwAAAAAAAAAAAAAAAAAAOB7HHOMX//4R8SyYrCqKpd23z2t2lqKwdD7vf66LeO5s2Z5LEwCAH3TvuP3ld1m7zC+PrZeDRsacpAIAPouh8PQI4/4tNlmXSuunTlzve67r0ojR353D5ZOp1VZWSnTNK2OCQt8+aUro3kTJ8YsTgL0PS0tKf3xj0GVl6d1ySUBrV2b/aK8vfcOa+HCqF55xafdduPZAAAAAAAAmaAUDAAAAAAAAAAAAAAAAAAA4AcceaRPDzwQkcNhzYbxmhqXpk1Lq6aGYjD0bu+8k9nm3fLymMaM8VqcBgD6HsMwNH7I+E5fu/W9W7OcBgD6vkGDHHrqKWnYsE27lzrxxNX661/r5fN1LHlOpVKqqqqyOiK6KZk0tWyZO6O5kyenLE4D9B1r1qT0+98HVV4uXXFFQK2t2S0Ds9nS+vnPQ3rvvZheeMGnqVMpAwMAAAAAoDsoBQMAAAAAAAAAAAAAAAAAAPgRhx3m04MPRuV0WlcMtvvuaVVWxi1ZD7BadXVEVVWZbeL96U8jFqcBgL5r9oTZnY4//dXTWU4CAP3DuHFe/fOfUXk8339v5nSauvzyBp1++koZP7B7LhqNqr6+vgdSIlNffBFROGzPaO6WW1ocBugDVqxI6owzgqqokK65JqANGzL7/smUYaQ1Z05IixfH9cwzfm2/fWalfgAAAAAAYGOUggEAAAAAAAAAAAAAAAAAAGyCQw7x6aGHonK5rCkGq6tzafp0aflyisHQ+7zwQubFXrvvnrYwCQD0bXN3mNvp+Fdrv5JpWnNNAQADzfTpebrxxvWdvjZ4cFJ3312j/fZr3aS11q9fr9WrV1uYDt3xwQeZ3x9PmeK0MAnQuzU2JjV3blBjxhi68caAgsHsloHZ7WkdfHBIH3+c0Pz5fm29NWVgAAAAAABYiVIwAAAAAAAAAAAAAAAAAACATXTQQT49/LB1xWD19S5NmyYtXUoxGHqXN97I/NeMZ83yWpgEAPq20kGlynfndxhPpVN6sfLFHCQCgP7hpJMKdeaZLRuNjRsX1UMPVWqbbcJdWmvlypVqa2uzMh4y9PHHmc3zelPafHOftWGAXqiuLqFf/zqoceMM3XZbQJFIdrcIOxymjjgipE8/TeiRR/zafHNXVs8PAAAAAMBAQSkYAAAAAAAAAAAAAAAAAABAF8yZ49Ojj8bkdltTDNbY6NL06TZ9+SXFYOg93n03s2Kv8eOjKi31WJwGAPq2HUt27HT8zsV3ZjkJAPQv11wzSD/72QZJ0m67bdADD1SppCSR0Vq1tbWKx7kny7X991+jG2+s1amnrtRee61XRUVUhpH+0XkTJsTkcLBVEv1XZWVcxx0X0vjxdt1xR0DRaHa/3p1OU7/8ZUhffJHUgw/6NWkSZWAAAAAAAPQkR64DAAAAAAAAAAAAAAAAAAAA9DWzZ3v1+OMRHXSQ25KNmE1NTs2YkdArr8S02WZuCxICmVu+PKLa2sxKwXbaKSqJUjAA+G+/3PqXernq5Q7jb9a9mYM0ANB/2O2G5s3z6S9/adbhh6+V3d699ZYvX65JkybJMCiXypXBg2OaMSOmGTPavh2LRm2qqnJr6VKPli3zfP2fbq1d6/z2mIkT45J8OUgM9KylS+O65JKE/vlPr5LJ7Bdxud2mjj46ovPPd6m83J/18wMAAAAAMFBRCgYAAAAAAAAAAAAAAAAAAJCBn/3Mq/nzIzrwQLcike5vGm9ubi8Ge/XVuDbfPPsbPYFvPPdcRFJmpWDTpqWtDQMA/cChmx+qo+cfrbQ2fo9cE16jdeF1GuwbnKNkAND35eU59Kc/Faiycm231zJNU5WVlRo/frwFydBVyWSy03GPJ63NNotqs82iG42vXWv/tiRs660pckP/8vnnMV18cVLz5/tyUgbm9Zo69tiIzjvPpdGjKQMDAAAAACDbeNoFAAAAAAAAAAAAAAAAAACQoVmzvHriiZi8XtOS9VaudGrGDJs++SRuyXpAJvz+sHbdtU0+X6pL82y2tGbN8vVQKgDouxyGQ+UF5Z2+9vcP/p7dMADQD3m9Xo0aNcqStWKxmOrq6ixZC10TDAa7dPyQISnttFNIxxyzVnvuyTZJ9A8ffxzXAQeEtMUWLj3yiF/JpC2r5/f7UzrttKAqK03ddptfo0c7s3p+AAAAAADQjqddAAAAAAAAAAAAAAAAAAAA3bD33l499VSsywVK32fVKqdmzDD00UcxS9YDumrHHVt12221euutL/R//1ep009foZ/+NCiP54fL7yZOjKqoyJ2llADQt+wzbp9Oxx/7/LEsJwGA/qmgoEBDhw61ZK0NGzZo1apVlqyFTdfVUrD/lp+fb2ESIPs++CCm2bPD2nprp554wi/TzG4ZWF5eSmedFVRVVVo33RRQUZEjq+cHAAAAAAAboxQMAAAAAAAAAAAAAAAAAACgm/bc06tnnknI77emGGzNGof22MOuJUsoBkN2hUKhb/+70ylttVVEJ564RnfcUaO33/5C991XpblzV2r77YNyuTYuCfvpT/l6BYDvc9oOp3U6/tnqz7KcBAD6r5EjRyoQCFiy1qpVq7RhwwZL1sKmiUajGc91uyknRt/0zjtRzZoV1nbbufXMMz6l09ktAxs0KKk//CGomhrpuusCGj6cMjAAAAAAAHoDSsEAAAAAAAAAAAAAAAAAAAAsMGOGR//6V0KBgHXFYHvuadcHH1C0hOxpaWn53teczrSmTAnr5JNX65572kvC7r67Wr/+9SpNmRLSzJnm984FgIFu8rDJ8jl9Hcbjqbjerns7B4kAoH8qLS2Vy+WyZK26ujrFYtyPZUs8Hs9ont1utzgJ0PPefDOqPfcMa+pUj154oeM1Yk8bPDipCy8MqqbGpiuuCGjwYL6PAAAAAADoTSgFAwAAAAAAAAAAAAAAAAAAsMi0aR49+2xCeXnWFIOtXdteDLZoERvRkR2hUGiTj3W709phh5BOPXWV7ruvWgcfHOjBZADQ920zcptOx//2/t+ynAQA+i/DMDRmzBgZhjXb5iorK5VKWXN/hx9mmpmVDFtVAgdkw4IFUU2bFtZuu3n0yivZLwMbOjSpSy8NqqbG0CWXBFRQQBkYAAAAAAC9EaVgAAAAAAAAAAAAAAAAAAAAFtptN4+eey6h/HxrNo63tDi01152vftu1JL1gO9jmqYSiURGc202G5vxAeBHHLHFEZ2OL6hekOUkANC/ORwOjRkzxpK1TNNUZWVlxoVV2DTRaOb3ux6Px8IkQM944YWIdt45opkzPXrjjeyXgY0YkdCVV4ZUU2PoggsCystjazEAAAAAAL0Zd+4AAAAAAAAAAAAAAAAAAAAW22UXj55/3rpisNZWh/bZx6G336YYDD0nFAplPJeN+ADw447f5vhOx5uCTQrHw1lOAwD9m8fjUWlpqSVrxeNx1dfXW7IWOtfW1pbx3EAgYGESwDqmmdYzz0S0444RzZrl1dtve7Oeobg4oeuuC6m62q5zz/XL72dLMQAAAAAAfQF38AAAAAAAAAAAAAAAAAAAAD1g6lSPXnwxoYKCpCXrrV/v0KxZTi1cSDEYekZra2vGc/Py8qwLAgD9lMfhUUleSaev3fPhPVlOAwD9X35+voYPH27JWuvWBfXyy2stWQsdhcOZl2NSCobexjTTevzxsLbbLqbZs716773sl4GVlsZ1000hVVc7dNZZfnm9bCUGAAAAAKAv4U4eAAAAAAAAAAAAAAAAAACgh+y0k0cvvZRSYaE1xWAbNtg1a5ZTb75JMRis152N+IWFhRYmAYD+a2bFzE7H5306L8tJAGBgGD58eLcLbFta7DrxxHLtv3+B3n67zaJk+G+xWCyjeTabTXa73eI0QGZMM62HHw5r661jOuggn5Ys8WQ9Q0VFXH/7W0jLlzt12ml+uVy2rGcAAAAAAADdRykYAAAAAAAAAAAAAAAAAABAD9p+e7defjmlwYOtKQZra7Nr332deuMNisFgHdM0lUgkMpprGIacTqfFiQCgf/rN9r/pdHxJ85IsJwGAgWP06NFyuVwZza2sdOvww8dq8WK/wmG7Dj7Yrbo67sWslum9iMPhsDgJ0HWpVFr33x/S5pvHdfjhPn3ySfbLwMaPj+muu0JautSpk0/2y+mkDAwAAAAAgL6MUjAAAAAAAAAAAAAAAAAAAIAetu227cVgQ4ZYUwwWDNr1s5859dprbEaHNYLBYMZzPZ7sb3gGgL5qx1E7ym13dxiPJCP6dNWnOUgEAP2fYRgaN26cDKNrW+neeiugo44ao8bG7wrFmppc+sUvTAWD1tzbob2gOJ1OZzTX7e74byqQLclkWnffHdLkyXH98pd+ffll9r8eJ02K6b77QvriC5dOOMEvh4MyMAAAkF319VJzc65TAADQ/1AKBgAAAAAAAAAAAAAAAAAAkAVTprj16qumhg61ZvN4KGTXz3/u1MsvRyxZDwNba2trxnPz8vKsCwIAA8BPhv+k0/Fb37s1y0kAYOAwDENjx47dpGPTaenBBwdr7twyBYP2Dq9/+KFPRx0VUiplWh1zQAqFQhnP9Xq9FiYBNk0ikdbf/x7ShAkJnXiiX8uWZb8MbIstopo3L6zPPnPpmGP8stspAwMAALlxwQVSebl0/PHSpz/Sd59Op5VIJBQOh7V+/Xq1tLRkJSMAAH2RI9cBAAAAAAAAAAAAAAAAAAAABoqttnJpwYK4Zs5MaPVqZ7fXC4ft+sUv3HriiYj23pvN0MhcOBzOeG5hYaGFSQCg/ztos4P0QfMHHcZfqHwhB2kAYOBwu90qKytTbW3t9x6TSEhXXFGsRx8d/INrPfXUIP3hD+t0zTU/fBx+XDAYzHhuIBCwMAnww+LxtG6/Paxrr3Wqrs6fkwzbbBPV+eebmjPHK8OgCAwAAORWU5M0b177fdS997Z/TJ2a0p57JpSfn1J9fVr19TY1NhraYouwTj99hdLp9Lfzhw4dmsP0AAD0bpSCAQAAAAAAAAAAAAAAAAAAZNEWW7j02mvtxWArV3a/GCwSMTRnjluPPx7RrFkUg6HrTNNUMpnMaK5hGHI4+JVkAOiKk7c7Wee9el6H8drWWiXNpBwG76sA0FPy8vI0YsQIrVy5ssNr69fbdfbZo/Wf/2xa0dS11w7WpEktOuEESnK7IxKJZDzX6+UeGD0vEjF1220R/fWvLjU15aYMbIcdIrrwQmnffT2UgQEAgJxIJNKqrU2oujqlmhpTdXVpPfWUS4mEa6Pj3n7brrfftneYn06nNioEs9lsGjJkSI/nBgCgr+InRQAAAAAAAAAAAAAAAAAAAFm2+eYuLVgQ08yZCa1YYU0x2AEHuPXYYxH97GdsikbXtLW1ZTzX4/FYmAQABoYCT4GG+YZpdXj1RuNppTXvk3k6equjc5QMAAaGYcOGKRqNav369d+O1dS4dOqpZaqtdXdprdNOG6Tx49u02255VsccMOLxeEbzDMOQYRgWpwG+EwqZuvnmiG64waWVK3NTBjZ1ansZ2D778KwHAAD0HNNMa+3alKqqkqqpMVVba6quTqqvt6mx0a6mJrtWrnTINF0/vtj3aGzc+GdhgwYNktPZ/Z+PAQDQX1EKBgAAAAAAAAAAAAAAAAAAkAObbebWa6/FNXNmQk1N3d/4EI0aOvBAtx59NKL99mOzKDZda2trxnPz8/OtCwIAA8iupbtq/pfzO4zf99F9lIIBQBaMHj1a0WhUsVhM777r11lnlaqtzd7ldSIRQ4cc4tHbb0c0Zgz3YZlIJpMZzaNAAD2lrc3UDTeEddNNHq1Zk5sysN13D+uiiwzNmMH7CgAA6L5IxFR1dUI1NaZqakzV1aVVX29TQ4OhxkZDTU1ORSIO9WT9SEODS1deOVJHH71WJSUJDR06tMfOBQBAf0ApGAAAAAAAAAAAAAAAAAAAQI5MmuTSa6/FNX26NcVgsZihgw926+GHw9p/f58FCTEQRCKRjOcWFBRYFwQABpCTtj2p01KwRU2LcpAGAAamsWPH6o47GnXqqaOUStkyXmflSqd+8YuE3n47qbw8tut1RTwez3iux+OxMAkgtbamdN11Ed12m0fr1gVykmGPPdrLwHbdlWc6AABg05hmWs3NKVVXJ1VdnVJtbVr19VJ9/TeFXw6tWeOQ5M5xUpsefHCo5s0bot/9rlVXXcX1PAAAP4SnjAAAAAAAAAAAAAAAAAAAADk0YYJLr78e14wZcTU0uLq9Xixm6NBDPZo3L6wDDmATKX6YaZpKJpMZzTUMQw4Hv44MAJnYc8yechgOJc2N34M3xDaodn2tygaV5SgZAAwchmHowANH6JprYqqq6t6G9E8/9enQQzfomWcCstsNixL2f8FgMOO5fr/fwiQYyNatS+nqqyP6+989Wr8+N2Vg++zTXgb205/yHAcAAGysrc1UdXVSVVVJ1damVVeXVn29TQ0Nhpqa7Gpudiged6ivVIeYpk0//WmuC8oAAOj9+sa/7AAAAAAAAAAAAAAAAAAAAP3Y+PEuvfZaXDNnxlVX1/1isHjc0GGHefTgg2EdfDAbSvH9NmzYkPFcr9drYRIAGFgMw9CEIRP0+erPO7x2y39u0TV7XZODVAAw8Awb5tL8+UFNm5ZUa2v3ttq9/HKennmmUfvvP8qidP1fKBTKeG4gkJvyJvQfq1YlddVVUd15p1dtbdn/erLZ0tpvv7Auusihbbfl2Q0AAANRMplWfX1SNTUp1dSYqqkxVV8v1dcbamy0q7nZ/vV9iuvrj75v4sSYZs/mZwsAAPwYSsEAAAAAAAAAAAAAAAAAAAB6gXHjXHr99YRmzIirpqb7mzsSCUNHHOFRKhXWYYexuRSdW79+fcZzBw0aZGESABh4fjHxF52Wgj2z9BlKwQAgi7baKqD77mvVgQfmK5k0MlojPz+pv/61XuPGhdTUZKi4uNjilP1TNBrNeK7L1T9KEZB9K1YkdfnlUd1zj1ehUPbLwAwjrV/8Iqw//9mpLbf0Z/38AAAge9atS6mqKqnq6vbSr7o6qbHRpoYGQ42NDq1a5VAy6ZTkzHXUrDnttKQMw53rGAAA9HqUggEAAAAAAAAAAAAAAAAAAPQSFRVOvf56QtOmWVMMlkwaOvpoj0wzrCOOoBgMHYXD4YznFhQUWBcEAAagU7c/VVe8dUWH8eXrlss0TRlGZsU0AICumz27QFdcsU7nnDO4y3PLy2O65ZZalZXFJUnr1q2Tx+PR4MFdX2ugueSSwUqlpAkToho/Pqrx42Py+cwfnedwsC0SXdfYmNRf/hLTP/7hVSSS/TIwhyOtAw8M66KLHNpsM8rAAADo66JRU7W1SdXUtBd+1damVV9vU0ODTY2NdjU3OxQM2iXZcx211/B6Uzr+eG+uYwAA0Cfw9AsAAAAAAAAAAAAAAAAAAKAXKStz6o03Epo+Pa6qKmuKwX75S6+SyZCOOYZNp/iOaZpKpVIZzbXb7ZTVAEA3FecXq8BToNZo60bjqXRK/1r2L82eODs3wQBggPrd7wbrq69addddBZs8Z8cdg7ruujoNGrRxkVVTU5Pcbrf8fu7Bvk8qZeqppwrU1rZxScKoUXFNmBD9tihswoSoRo+Oy/5fh7lc3b9XxsBRU5PQX/4S1wMPeBWLZf970uEwddhhEV14oVMTJvCeAABAX2Caaa1alVJVVfLbwq/a2rQaG21qaLCrqcmu1asdSqe5Lu2KsrK0vF5K0gAA2BSUggEAAAAAAAAAAAAAAAAAAPQypaVOvf56QjNmxLR8ubvb6yWTNh1/vE/pdEi//CUbUNGutbU147ler9e6IAAwgO1UspNeqHyhw/jdS+6mFAwAcuC22/JVWdmm117L+9FjDz10rc49t1lOZ+ev19TUaMKECXJ+3wEDXGVlTG1tHe8rGhpcamhwacGC/G/HPB5TY8dGNX58TBMmRHXkkRQU48ctXx7XZZcl9NBDXiUS2X8W4nKZOvLIsM4/36WxY3kWAwBAbxIKmaquTqq6OqXaWlN1dWnV1dnU0GCosdGuFSscikYdoo7DWh4PhWAAAGwqrkIAAAAAAAAAAAAAAAAAAAB6odGjnXrjjaSmTYtp2bLuF4OlUjadcIJPqVRIxx/PZlRId95patGiYm2/fUg77BDSsGHJTZ6bn5//4wcBAH7Usdsc22kp2MK6hTlIAwBwOg09+qhbU6dGtXSpp9NjDCOtc89t1uGHr5PN9v1rpdNpVVZWasKECTIMSqz+1/vvxyRtWtlwNGros898+uwznyTp4INDPZgMfd1XX8V1ySUJPfKIV8mkK+vn93hMHXNMWOef71ZpaSDr5wcAYKBLpdJqbGwv/KqpSam2VqqrkxoabGpsNNTU5NC6dQ5J2b9OGOiam3/gBgoAAGyEUjAAAAAAAAAAAAAAAAAAAIBeqrjYoTfekKZPj+mrr6wpBvvVr9qLwX71K4rBBrpnnvFo4cKAHn98sCSpvDymHXYIavvtQ9p++5CGDEl979yCgoIspQSA/u3gyQfrCNsRMtPmRuNrI2u1JrxGQ31Dc5QMAAauIUNcevLJsHbZJfl1WcB3AoGUrr22XjvvHNyktZLJpKqrqzV27NieiNqnffRROqN5LpepLbfctDIxDCyffRbXxRcnNH++T6lU9ks+vF5Txx8f1h//6FFxMWVgAAD0lNbWlKqq2ku/6urSqqtLq77epoYGQ42Ndq1Y4VAy6ZTkzHVU/I+VK6VYTHJ3/8ddAAD0e5SCAQAAAAAAAAAAAAAAAAAA9GJFRQ69/np7MdiXX3Z/p4Rp2nTyye3FYCefTDHYQBWJpLR4sW+jsZoat2pq3HrkkSGSpHHjotphh5B22CGo7bYLa9Cg9pIwu90uwzCynhkA+iPDMFRRUKHKlsoOr9226DZdtPtFOUgFAJg82aeHHtqg2bMDisfbr31HjYrrlltqNXZsrEtrRSIRNTY2qqSkpCei9lmff27PaN64cTG5XJSC4TtLlsR0ySVJPf20T6aZ/TKwQCClE0+M6NxzPRo5kjIwAAC6I5FIq7Y2oerqlGpqzK9Lv2xqbLSpsdGupiaHNmywS8rsWhK519Ag0ZkMAMCPoxQMAAAAAAAAAAAAAAAAAACglxs50qE33pCmT4/q88893V7PNG36zW/ai8HmzqUYbCBasCCoSGTQDx6zfLlHy5d79NBDQ2SzpTVxYlTbbx/SCSfENHlyloICwACw7/h9dfN7N3cYn//FfErBACCH9t47X9dd16LTTivUttuGdP31dSosTGW0VktLizwej4YMGWJxyr7rq68yK2+aMCEuiVIwSIsWxXTxxUk995xP6XT3S9S7Kj8/pV//OqLf/96roUMpAwMA4MeYZlpr1qRUVZVUTY2p2tq06uvTqq+3qaHBrqYmu1atcuSk5BM9a86cpKZOdai0VBo6NNdpAADoGygFAwAAAAAAAAAAAAAAAAAA6AOGD3fojTdsmj49qk8/7X4xWDpt02mn+WSaQZ12GptXB5pXXzW7dHw6bdOXX3r15ZdenXhiWw+lAoCB6bQdTuu0FOzz1Z/nIA0A4L+demqhHI4V2nHHtXI6091aq7m5WR6PR34/xcyRSErV1ZmVOP3kJ5kVs6H/ePvtqC6+2NRLL/kkZb8MrKAgqVNOieqcc7wqLOR5CgAA34hETFVXJ1RTY6qmxlRdXVp1dTY1NBhqajLU1ORUJOIQFRcDy5QpUc2f3/2faQEAMNBwxQQAAAAAAAAAAAAAAAAAANBHDB1q1+uvSzNmRPXxx9YUg/32twGlUiGdcQYb0weShQtdGc3Lz09q6lS+VgDASuOHjJff6VcoEdpoPGEm9EbNG9q9fPccJQMASNJJJw3X0qWtSiaT3V6rpqZG48ePl8uV2fV4f7F4cVjJZF5Gc7fc0rA4DfqKN96I6pJLTC1Y4MvJ+YcMSWru3KjOOsurQYMoAwMADCypVForVqRUVZVUdXVKdXVp1ddL9fWGGhsNNTU5tGaNQ7ko7IT1hg1LqLg4pZISU8mkqZdeyvza54wzKPUFACATlIIBAAAAAAAAAAAAAAAAAAD0IUOG2PXaa+3FYB99ZM1fVz/zTL+SyaB+9zs2tQ4EwWBSH37ozWju9ttH5HBktnkfAPD9ti3aVv+u+3eH8b+//3dKwQAgxwzD0Lhx4/TVV18pnU53a610Oq3KykpNnDhRhjFwy62WLMm8YG2HHay5D0bf8fLLEV16qfTmm5ndx3bXsGEJ/fa3MZ1xhk+BAM9NAAD9U1ubqcrKhGpqUqqtTau2Nq36etvXhV92NTc7FI87RD1F3+fzpVRcnFRJSUqjRqU1enRapaU2lZcbX3845fU6JTklSTvvHMn4XKWlcR1+eG4KXQEA6Ou46gIAAAAAAAAAAAAAAAAAAOhjBg9uLwabOTOqJUus2RB9zjkBmWZQv/89G1z7u1deCSoeL8ho7q67JqwNAwCQJB255ZGdloK9Xvt69sMAADpwOByqqKhQVVVVt9dKpVKqqqrSuHHjLEjWN33ySWbzBg9OqqyMUrCBwDTTevHFqC69VHrnndyUgRUVJXTGGTGdeqpPPh/PSgAAfVcymVZ9fVLV1SlVV7eXfjU0SPX1hhob7Wpqsmv9eockd66jopvs9rRGjEh+Xfplfl34JZWVtRd+jR3rVGGhIcPYtM/1u+9G9fbbmV+LzZ0bl8Phyng+AAADGaVgAAAAAAAAAAAAAAAAAAAAfVBhoV0LFkh77BHVBx9Ysyn63HMDMs2Q/vAHvyXroXd69dV0xnP33NNpYRIAwDeO2eoYnfyvk5XWxu/RK4IrFIwHFXBRRAEAuebz+VRSUqLGxsZurxWNRlVfX6/Ro0dbkKzv+eKLzO4rJkyISuLfxP7MNNP617/ay8Defz83ZWAlJXH97ncJnXyyVx4PX28AgN7NNNNqaTFVVZVUTU1KNTWm6uqkhgabGhoMNTU5tHKlQ6mUUxLPdvu6/PyUiouTGjUqpVGj0ho9Oq2yMpvKygxVVNhVWuqU02nd5/qaa1LdynrKKT5LcgAAMBBRCgYAAAAAAAAAAAAAAAAAANBHFRTY9eqr0l57RfTee9Zslj3vPL+SyaAuuICNr/3V22+7M5pXWJjUDjtQGAcAPcHj8GhU/ijVb6jv8Npdi+/SGTudkf1QAIAOCgsLFY1GtXbt2m6vtX79enk8Hg0bNsyCZH3LV19ldk8yaVLS4iToLUwzrccfj+gvfzH00Ue5KQMrK4vrnHMS+tWvfHK5XDnJAADA/4pGTdXWJlVd3V74VVub/rrwy6bGRruamhwKheyS7LmOim5yOk0VFSVVUpJSSYmp0aPTKi21qazMpooKuyoqHBo0KHuf6+rqhJ5+OvNSr+OOiygvj58zAQCQKUrBAAAAAAAAAAAAAAAAAAAA+rBBg+x65RW39toronfftWbj7IUXBpRKhfSnP1EA1d9s2JDUxx97Mpq7ww5hORz5FicCAHxj5piZ+seH/+gw/s9P/0kpGAD0IkVFRYpGowqFQt1ea+XKlfJ4PMrLy7MgWd/Q3BzTqlWZlYL95CemxWmQa6lUWv/8Z0SXX27os88yL53ojjFj4jr33ISOO84np5MyMABA9phmWitXplRVlVRtbXvh13elX3Y1Ndm1Zo1D6TT/PvUHQ4YkVVyc/Lrwy1RpqVRaalN5uV0VFXYVFztkt/eez/V118WUTDozmut0mjrrrMyu+QEAQDtKwQAAAAAAAAAAAAAAAAAAAPq4vDxDL7/cXgz2zjvWFIP9+c9+JZNBXXopf8m9P3nxxaCSyYKM5u66a9LaMACAjczdfm6npWAfrfwo+2EAAD+orKxMy5YtUyKR6PZatbW1mjBhglyu3lMA0JPi8TZdc81KLV3q0bJlHi1d6lFT06b93z5lCtsh+4tUKq3/+7+wrrzSoS+/zE0Z2IQJMZ13XkpHHeWVwzEwvv8AANkVCpmqrk6qujqlmhrzvwq/DDU22tXc7FAs5hCVD32f12uqqCihkpKURo1Ka/To9NeFX4YqKgyVlzvl8/Wdz3Vra0r335/5z5rmzImotJQ/OgMAQHf0jasGAAAAAAAAAAAAAAAAAAAA/KBAwNBLL7m1zz4RLVxoTTHYZZcFlEoFdfnlFIP1FwsWpDOeu88+bguTAAD+13bF28lj9yiaim40HklG9NGKj7TVyK1ylAwA8L8Mw9DYsWP11VdfKZ3O/Br7G8uXL9ekSZNkGIYF6Xo3my2sffbZoH322fDtWFuboeXLPV8Xhbm/LQwLBu3fHmMYaW23XW7Ko2CdZDKte+8N66qrHKqszE1RxOTJMZ1/fkqHHeaV3W7LSQYAQN+XSqXV0NBe+FVbm1JtrVRXJ9XX29TYaKipyaGWFockiif7OsNIa9iwpIqLUxo1KvVt4VdZmU1lZYbGjHFo2DC7DKP/PD+/5ZaI2toy/7nQ739PjQkAAN3Fv6YAAAAAAAAAAAAAAAAAAAD9RCBg6MUX3Zo1K6I337SmGOyKKwIyzaCuvJJisP7gnXcy25g0dGhCW29tzdcUAOD7bTFiCy1qWtRh/Nb3btUds+/IQSIAwPdxOBwaM2aMKisru71WImHqtttW6tRTiyxI1rtFo9EOY3l5prbZJqxttgl/O5ZOS83Nzm8Lwtatsysvb2g2o8JCiURad94Z1jXXOFVTk5sysC23jOr8800ddJBXhkEZGADgh7W0pFRd/U3pV1p1dWnV1dnU1GSosdGuFSscSiadkpy5jopuystLqbg4qZKSlEaNSn9b+lVebqiiwq6yMqdcroHzuU4k0vrb3zIvONt997C23ZYyXwAAuotSMAAAAAAAAAAAAAAAAAAAgH7E7zf0wgtu/exnYb3+ujUbL666KqBUKqirr/bLZmPjbF8Vj8d16601+uADvxYt8uu99/xaunTTir523DEiuz2/hxMCAA7Z7JBOS8FerHoxB2kAAD/G6/Vq1KhRamhoyHiNYNDQOeeM1ltv5amlZZ0uvHCwhQl7n0QisUnH2WxScXFCxcUJTZvWJofDIYlSsL4mGjV1++0RXXutUw0NuSkDmzIlqgsuMPWLX1AGBgBoF4+nVVubUHV1SjU1purr2wu/Ghpsamy0q6nJobY2uyR7rqOimxyOtEaOTKi4OKWSElOjR6dVVmZTWZlN5eV2VVQ4NHgwn+v/9uCDETU1Zf6zpbPP5noLAAArUAoGAAAAAAAAAAAAAAAAAADQz/h8hp57zqOf/zysBQusKQa79tr2YrBrr/WzibaPam1t1aBBpmbMaNOMGW2SpJYWu95/v70gbNEivyorPZ3O3XXXZDajAsCAddK2J+mcV87pMF6/vl7xZFwuhysHqQAAP6SgoEDRaFRr1qzp8tyGBqdOO61My5e3X4dffHGhJk1q0cEHF1ods1cwTVPpdDqjuW632+I06EmRiKlbbgnrhhvcamrKTRnYTjtFdMEF0qxZHp5jAMAAYppprV6dUnV1UjU1pmpr06qrS6u+3lBjo01NTQ6tWuWQaXJ/3R8UFiZVXJz8uvDL1OjR3xR+GaqosKukxCEHz1I2mWmmdf31RsbzJ02K6Wc/6/xnDAAAoGsoBQMAAAAAAAAAAAAAAAAAAOiHvF5D//qXR7Nnh/XKK9YUg11/fXsx2PXXUwzWF7W1tXUYKyxMac89N2jPPTdIktascWjRou9Kwmpr2zfe7703G6cAIBvyPfka7h+uVaFVG42nldaDnzyo47Y5LkfJAAA/ZOTIkYpGowoGg5s8Z/Fin844o1QtLd9t8UulbDrhhHxVVAS13XaBnoiaU+FwOOO5Xq/XwiToKaGQqZtuiuiGG1xatSo3X8O77BLRhRdKe+3F1wwA9EfhsKmamoSqq03V1Jiqr0+rrs6mhgZDjY12NTc7FIk4RI1C3+d2myoqSqq4OKVRo0yNHp1WWZlUXm5XRYVd5eUOBQJ8rq30yitRffxx5tdQv/1tUoZBmS8AAFbgCgcAAAAAAAAAAAAAAAAAAKCf8noNPfOMR/vvH9aLL1pTDHbTTe3FYDfdRDFYXxONRn/0mKFDk5o1a71mzVovSVqxwqEPP/Rpiy1G9XQ8AMDXdi/bXY9+/miH8Qc+foBSMADoxUpLS7V8+XLF4/EfPfappwr05z8XK5k0OrzW1mbXAQc49e67MRUX968N9V0pTftffr/fwiSwWlubqeuvj+jmm91asyY3n6vp08O66CJD06ZRBgYAfVUqlVZTU1I1NSlVV6dUV5dWXZ1UX2+osdFQc7NDa9Y4JPWva6SByGZLa+jQbwq/Uho1Kq3SUqmszFB5uaExYxwaMcIuw+CPVWTTtdemM547fHhCxx3HdRgAAFahFAwAAAAAAAAAAAAAAAAAAKAf83gMPf20V/vvH9bzz1tTDHbrrQElk0HddhvFYH1FPB5XOt31DT0jRya1334R2e0dywoAAD3j5O1O7rQU7P2m93OQBgCwqQzD0JgxY7R06VKZptnpMaYp3XjjCN1zz7AfXKu+3q399w/pjTcc8nrtPRE3JyKRSMZzKQXrnVpbU7ruuohuvdWjlpbcfI723LO9DGyXXax55gEA6Dnr16dUXZ1UdXVKtbVp1dWlVV9vU2OjocZGu5qbHUoknJKcuY6KbvL5Uiop+ab0K63Ro9MqK7OpvNymigqHysoc8nj4XPcmn34a1yuvZF7qddJJMXk8AQsTAQAwsFEKBgAAAAAAAAAAAAAAAAAA0M+5XDY9+aRXBxwQ0rPPWrNJ9/bbAzLNoP7+d4rB+oJ169ZlPJfN9wCQXTMqZshpOJUwExuNt8XbVNVSpTGFY3KUDADwYxwOh8aMGaPly5d3eC0cNvSHP4zSa6/lb9Jaixb5dcwx6/Xww3n9pqQ3FotlNM9ms8kw+sf/D/qLtWtTuvrqiP7+d682bMh++YPNltasWRFddJGhHXekDAwAeoNEIq26uoRqa81vS7/q621qaLCpocGu5ma71q93SOo/hacDld2e1ogRSRUXJzVqlKlRo9IqLZXKygyVlxsaO9apwkJDhuHOdVR0wdVXJ5ROuzKa6/WaOv30zAvFAABAR5SCAQAAAAAAAAAAAAAAAAAADAAul01PPOHTQQeF9PTT1pQ83XlnezHYHXdQDNbbBYPBjOcWFhZamAQAsCkmDZ2kT1Z90mH85vdu1vV7X5+DRACATeXxeDR69GjV19d/O9bc7NRpp5Xqq6+6tlH+sccG6c9/XqdLLx1sdcycSCaTGc1zOp0WJ0GmVq5M6qqrorrzTq+CwdyUgc2eHdZFFzk0ZQplYACQLaaZVkuLqaqq5NeFX6bq6vR14ZehpiaHVq50KJXKrFAIvcugQUkVF6dUUpLSqFFpjR6dVlmZTeXlhioq7Bo92vn19RnXaP3FihVJPfJI5qVeRx4Z0dCh/HERAACsRCkYAAAAAAAAAAAAAAAAAADAAOF02vTYYz4dckhITz5pzQaNu+8OKJUK6e67fRSD9WKxWCzjuX4/m3kAINv2n7R/p6Vgzy59llIwAOgDBg0apFgsplWrVumjj7w6/fRSrV2bWWnCX/5SqAkTWnT00X27rDfTQjCpvWgNudXcnNTll0d1zz1ehcPZLwOz29OaMyesiy5yaostuEcFAKtFo6ZqapJff6RVW5tWfb1NDQ02NTba1dzsUChkl2TPdVR0k9NpqqgoqZKSlEpKzG8Lv0pLbaqosKuiwqFBgxyihmJgueGGqGKxzK7xDCOt3/2OgjgAAKzG1RgAAAAAAAAAAAAAAAAAAMAA4nTa9OijPh12WEiPP27NRtp//MOvVCqoe+/1y26nGKy3iUajSqfTGc11uVwWpwEAbIrfbP8bXfrvSzuMV7ZUyjRNGYaRg1QAgK4YPny4Pv00oeOPL1I8nvn7djpt08kn52vs2DZNnZpnYcLsamtry3iuz+ezMAm6oq4uocsvj+n++32KRLJfBuZwpHXQQWFdeKFDm21GGRgAZMI001q5MqWqqqRqakzV1Jiqr5caGmxqaLCrqcmuNWscSqddkngW2NcNGZJUSUlSJSWmRo0yVVqq/yr8squoyCG7nc8zvhMOm7rrrsxLeGfNCmviRK7TAACwGqVgAAAAAAAAAAAAAAAAAAAAA4zDYdPDD/t0xBEhPfqoNZs1HnggoFQqpPvv91EM1su0tLRkPNfvZzMPAOTCyMBIFXoK1RLd+D3cTJt68qsndcDkA3KUDADQFbvvXqT999+gRx4p6NY64bBdBx/s1jvvRFVamvmG/VwKhUIZz83L67tlaH1VdXVCl10W04MP+hSLZb8MzOk0ddhhEV14oVPjx3NfCgA/JBg0VV2dVHV1SrW1pmpr06qvt6mhwVBTk13NzQ7FYg5RK9D3eb2mioraS79GjUqrtDSt0lKbysoMVVQYKi93yufjc42uufPOiNauzfx665xz7BamAQAA3+CKDgAAAAAAAAAAAAAAAAAAYAByOGyaN88nuz2khx+2ZoPtQw/5lUqF9OCDFIP1JsFgMOO5hYWFFiYBAHTF1NFT9eyyZzuM37PkHkrBAKCPsNsN3X9/vqqrQ1q0qHv3Xc3NTj38cKPOOmukHI6+ty0wGo1mPNftdluYBD9k2bK4Lr00oYcf9iqRyH4ZmNtt6qijwjr/fLcqKigDA4BUKq2GhvbCr5qa9sKvurq0GhoMNTYaampyqKXFIcmV66joJsNIa/jwpIqLkxo1yvy69MumsjKbyssNjRnj0NChdhmGS3y+YZVUKq2bb8783mK77SLafXevhYkAAMA3+t7TPwAAAAAAAAAAAAAAAAAAAFjCbrfp//6vvRjswQet2Wz7z3+2F4PNm+eTw0ExWG8Qj8cznuvz+SxMAgDoiuO2Pq7TUrC369/OQRoAQKbcbkNPPeXQTjvFVFeXWbmV15vSlVc2aMaMNlVWhjR+/HgZhmFx0p6V6X2J3W63OAk68/nnMV16aVKPPeZTMpn9ohGv19Qxx7SXgY0enf0yMgDIlZaWlKqq2ku/6urSX3/Y1NhoqLHRrpUrnUomnZKcuY6KbsrPT6moKKmSktTXhV/flH4Zqqiwq6zMKZeLzzWya/78iCorM/8ZwJlnpi1MAwAA/hulYAAAAAAAAAAAAAAAAAAAAAOY3W7Tffe1F4Pdf781xWCPPeaXaYb0z39SDJZr0WhU6XRmG3NcruxvBAcAfGfOpDkybIbMtLnReEu0RSuDKzUiMCJHyQAAXVVU5NYTTwQ1bZpDbW1dK7kaOTKum2+u06RJUUlSIpFQXV2dysvLeyBpzzFN88cP6gT3JT3rk0/iuuSShJ54wqdUKrPSuu7w+VI6/viI/vhHj4qKKAMD0L/E42nV1iZUXZ1STY35X4VfNjU22tXU9M11AQWYfZ3DkdbIkQmVlKRUUmKqtDSt0aNtKiuzqaLCrooKhwoL+Vyj97n++sx/flNWFtchh3gtTAMAAP4bpWAAAAAAAAAAAAAAAAAAAAADnN1u0733+mQYIf3jH9YUg82f79fBB4f0yCM+OZ0Ug+VKS0tLxnPz8vIsTAIA6CrDMDS2cKyWrVvW4bXbFt2mi6dfnINUAIBMTZkS0D33tOqwwwYpldq0e6QttwzrxhvrNHRocqPxYDCo5uZmFRUV9URUy0Wj0Yzner0UDfSExYtjuuSSpJ55xifTzH7xWiCQ0q9+FdG553o0YgRlYAD6HtNMa/XqlKqqkv9V+JVWfb2hhgZDTU12rV7tyMl7LKw3eHBSRUVJlZSYGj3aVGmpTWVlUnm5XeXldpWUOORw8LlG3/L221G9807m19pz58b5ugcAoAdRCgYAAAAAAAAAAAAAAAAAAAAZhk133+2T3R7S3XdbUwz25JN+HXRQSI89RjFYrrS1tWU8t7Cw0MIkAIBM/GzCz3TDuzd0GH/iyycoBQOAPuiggwp08cXrdMEFg3/02FmzWnXJJY3yeNKdvr527Vp5vV4VFBRYnNJ63bkv8futuT9Fu//8J6pLLjH13HM+Se6snz8/P6VTTononHO8GjKEMjAAvVc4bKqmJqHqavO/Sr9s3xZ+NTc7FIk4xFb9vs/tNr8u/Epp1ChTo0enVVpqU3m5oYoKu8rLHQoE+Fyj/7nmmlTGcwsKkjrlFJ+FaQAAwP/i6hMAAAAAAAAAAAAAAAAAAACS2ovB7rjDJ7s9qDvusGZz7tNP+zVnTkjz5/vkclEMlm3xeDyjeTabTR6Px+I0AICuOm2H0zotBftyzZfZDwMAsMT55w/WV1+16oEHCr73mFNPXamTTlot24/cQjU0NMjtdsvr9Vob0mLhcDjjuYEAxVFWWLgwqosvNvXyy7kpbygsTGru3KjOOsurwkI+pwByK5VKq6kpqerqlGpqUqqtTau+XqqvN9TYaKipyaG1ax3KRXkirGWzpTVsWFLFxamvS7/SKi2VysuNr0u/HBoxwi7DcOU6KpBVlZVxPfNM5teFxx0X5TodAIAeRikYAAAAAAAAAAAAAAAAAAAAvmUYNv3tb345HEHddps1mzqefdavX/wirCee8MjjMSxZEz+uOxvvXS42wgFAbzCmcIwCroCC8eBG4wkzoVerXtXMMTNzlAwA0B133ZWv6uqg3npr43suj8fUZZc1aO+9N2zyWlVVVZo4caIcjt67VTAajWY0z2azyW63W5xmYHn99aguucTUa6/lpgxs6NCkTjstpjPP9Covj+IIANmxfn1K1dXtpV+1tWnV1aVVX29TQ4Ohpia7mpsdSiSckpy5jopu8vtTKi5Oflv4NXp0WqWltq8Lv+wqK3PI4+FzDfyv665LKJXK7GcATqeps8/mD4oAANDTeu+TPgAAAAAAAAAAAAAAAAAAAOSEYdh0881+GUZQt9xizabdF17wafbssJ5+mmKwbGlpacl4biDAZm0A6C22L95er9W81mH89g9upxQMAPool8vQ/Pku7bRTVFVV7Rvqhw9P6KabarX55l0r0Eqn01q+fLkmTJggw+id91rJZDKjeb256Ky3e+mliC65RFq40JuT8w8fntAZZ8T129965ff7c5IBQP+USKRVV5dQdXVKNTWmamvTamiwff1hV1OTQxs22CVRKtnX2e1pjRiRVElJUiUlpkaNSqu0VN8Wfo0Z41BhoSGbzZ3rqECf0tKS0gMPZF7qdeCBEZWUcH0HAEBP46kYAAAAAAAAAAAAAAAAAAAAOjAMm2680S+HI6gbbrCmIOrll33ab7/2YjCvt3duVu9PQqFQxnMHDx5sYRIAQHccveXRnZaC/bv23zlIAwCwyrBhLs2fH9S0aUkVFSV08821GjEis/KsZDKpmpoajRkzxuKU3WeaptLpdEZz3W5KPrrCNNN6/vmoLrtMevfd3JSBFRcndMYZMc2d65PPR1kEgK4xzbTWrTNVWZlQba2p2lpTdXVSfX174Vdzs10rVzqUSrlyHRUWGDQoqeLilEpKUho92tTo0VJpqU0VFXaVlxv/z959x7dR338cf99pWMNOnJ14OyGDUSBAoIyywi6UQiGUUUaBUjrZHZD2R1sos5QWSqEts5S9wgokQCkbyqZAEhJvZyeOrW3d3e8PxyYhCbFPkiU7r+fjcQ/JJ32/95F0UXTj+z5VVfnk9fok+fJdKjCo3HBDXJGI+2M+F11ERAkAAP2B/3EBAAAAAAAAAAAAAAAAAACwUaZp6NprwzLNiP7wh+wEg82dG9Lhh8f0+OMBhUIEg+VSKpVy1c4wDAbfA0ABOfErJ+r0WafL0fqBKkujS9WeaNeQwJA8VQYAyNQOOxTrkUdWKxRqVSjkLjirWywWU2trq8rKyrJUXXZkElYcCoWyWMngZduOHnssrt/9ztQ77+QnDKyiIqULLujUWWcFFQhkZ/8BgMEnkbBVX59WXZ2l+npbDQ2OmpsNNTcbamnxqLXVq1jMI8mT71KRIZ/PVllZd+iXrcpKR9XVhqqru0K/amu9GjLEK6IOgP7V2enor391v+9/v/1imjqV3+gAAPQHfikDAAAAAAAAAAAAAAAAAABgk7qCwYrl8UR09dXZGdj7/PMhHXZYTE89RTBYrmQy8J5AMAAoLH6vX5VDK9W4pnGDx255+xZdsOcFeagKAJAt++47TM3NUbW1tWXc16pVqxQIBDR8+PDMC8uS555LatasMZo4MaFJkxIaPz4ln693AWjhcDjH1Q1stu3owQfjuuwyUx98kJ9whpqalC68sFNnnBGS3+/PSw0ACoNtO1qyxNKiRWk1NNiqr7fV1CQ1NZlqaTHV0uLVypUeOQ7fFYPByJFplZWl1wZ+2aqslKqrDdXUeDR+vFdjx3rk8fBZA4Xmzjtjam11/xv7/PONLFYDAAC+DKFgAAAAAAAAAAAAAAAAAAAA2KyrriqWaUZ05ZXZCQZ78cWQDjkkpqefDigcJhgs21avXu26bXFxdj5jAED2HDT+IP393b9vMP/+j+8nFAwABoGKigolk0nF4/GM+2ptbVVRUVHBBGrNnevRbbcN6/nb63VUU5PsCQnrmpIaM6ZTxhcyBoLBYD9XOzBYlqN77onr97839fHH+QkDmzAhqZ//PK1TTw3J6yX0BdgSRCK26urSqquzVF9vqaFBamoy1NJiqrXVo8WLvUomvWLo+sAXDFo9gV8VFbYqKx1VVRmqqTFVU2OqttanYJDPGhhobNvRH//ocd1+662TOvTQQBYrAgAAX4Zf2wAAAAAAAAAAAAAAAAAAAOiVK64oltcb0WWXZSc06qWXQjr44Lhmzy5ScTHBYNn0wQedGj3aUCDg9Lnt8OHDc1ARACATP5z2w42Ggn249MM8VAMAyIXa2lrNmzdPlmVl3Fd9fb0mTZokn8+Xhcoy88kn6w9hTKcNffZZQJ99FtDTT38+v6TE0sSJiZ6wsJ13Tmi77dhOXFc67eiuu+K64gqP5s/PTxjYlCldYWAnnRSSx1OUlxoAZF867ai5uSvwq6HBVkODo8ZGR01N5trQL6/a2rySCAEc6EzT0ZgxaY0bZ6miwlob+CVVV5uqrjY1frxXI0d6ZJp8xwODzbPPJvTRR+5Dd3/60zTfDQAA9CPDcZy+H+kHAAAAAAAAAAAAAAAAAADAFuvXv47oN7/JTjCYJO2+e1zPPFOkkpIte8D3e++9p6lTp/b6+e+++6523HHHDeZblq2KirRWrvRq++3j2nXXqKZNi2iHHeLy+7/81GHDMLTtttv2tXQAQD8IXRZSPB3fYP5/z/yvdi7bOQ8VAQCyLZVKacGCBcrGkD+v16tJkybJNPO7nVVRkVJLS99DZE46qU133VWa/YIGoM5OR7fdFtOVV/q0aFF+Anm23TahX/7S1nHHBeXxGHmpAYB7q1dbWrSoO/TLUUODo+ZmQy0tplpaPFq61Kd0mn/bg8GQIZbGjUurosJSRYWzNvTLUE2Nqdpaj6qrffL5+KyBLdGBB8Y0d667YNkxYzrV2OiV38/3BwAA/cW7+acAAAAAAAAAAAAAAAAAAAAAn7v00mJ5vRH96lfZCQZ77bWgDjwwrmee8WvoUE9W+tySffhhTEuWdH02b78d1ttvh3XTTaNVVGRrxx1j2nXXqHbdNaJtt43L51u/bSAQyEPFAIDe2GHMDnq95fUN5t/41o269chb81ARACDb/H6/ampqVFdXl3Ff6XRadXV1mjBhQhYqc2fFCneBYJK07bZ2lqsZeFIpR7fcEtM11/jU0BDOSw077JDQJZfYOvrooEyTEAigEKVSjurrO1VXZ6m+3lZTk6PGRmNt6JdHra1eRSIeSexzG+i8XlvjxqVVVmaposLuCfyqrjZUU+NRba1Xw4bxWQPY0AcfpFwHgknSWWcl5ff7Nv9EAACQNYSCAQAAAAAAAAAAAAAAAAAAoM9mziyWYUQ0c2Z2gsHeeKMrGOzZZ/0qLWXgWiaeeSa10fnJpKk33ijWG28USxqjYNDSTjt1h4RFNWVKXCUlJf1bLACg147b7riNhoLNWTQnD9UAAHIlHA6rrKxMra2tGfcVj8fV0tKi8vLyLFTWd//9b0KSu1CwqVO33KGPiYStm26K69prfWppyU8Y2C67xDVzpnT44QHCwIA8sm1Hy5dbWrQorfp6Ww0NjhobpaYmrQ388mjZMq8cx913LQrL8OFplZWlVV7eFfhVWSlVV2tt4JdH5eVeeTx81gD67qqrOuX2d3koZOknPwlmtyAAALBZW+6eMQAAAAAAAAAAAAAAAAAAAGTkkkuK5fVG9YtfZGeQ8ltvBXXAAQnNmSMNG0YwmFsvvdS7U4TjcY9eeaVEr7zSFQRWWppWU5Ody9IAABk4Y6czdO4z524wv6W9Rcl0UkXeojxUBQDIheHDhyuRSGjVqlUZ97V69WoFAgGNGDEiC5X1zbvvpl233WWXQBYrGRhiMVs33BDTH/9YpMWL8xMGtvvuXWFgBx9MGBjQH2IxW3V1adXVWaqvt9XU5Kix0VBzs6mWFo8WL/YqkfCK4eADXyBga9y4tMrKLFVUdIV+VVcbqqkxVVvrUU2NV+EwnzWA7Fu8OK0HH3Qf6nXSSXGNGJGdi8MAAIDeY8sAAAAAAAAAAAAAAAAAAAAArv3852F5PBFddFF2BoW8/XZA06cnNHeuNHw4wWB9ZVm23njD3QCf6uqUiotDWa4IAJAtxf5ijS0eqyWRJevNd+Tozvfv1Jk7n5mnygAAuVBWVqZEIqFYLJZxX4sXL1YgEFA43L9BUx99ZLpqV16e0ogR/ixXU7giEVt//GNMf/pTkZYvz0/gwte+1hUGduCB7gMjAKzPshy1tKRVX2+pvt5SQ0NX4FdTk6HWVlOtrV6tXOmVtOV83w1WhuFo1KjuwC9LFRWOqqqMntCv8eO9Gj3aI9PkswbQ/667LqFk0t1vTI/H0QUX8N0FAEA+EAoGAAAAAAAAAAAAAAAAAACAjFx4YbE8nqjOPz87A8zffTeg/fdP6PnnCQbrq/fei2vFCnefwx57JCURCgYAhWzf6n117//u3WD+Pz/4J6FgADAI1dTUaP78+Uqn0xn14zjS73/frnPP9fVr2Na8eT5X7aZMSWpLCMlZs8bSH/4Q1403BrRyZX7CwKZPj2nmTFP77EMYGNBXa9ZYWrQorbq6rsCvpiZHTU2GmptNtbR4tHixV+m0T5K770IUjnDYUnl5d+iXo8pKpyfwq7bWo6oqrwIBPmsAhScatfX3vwdctz/ssLgmTuSYAQAA+UAoGAAAAAAAAAAAAAAAAAAAADJ23nlheTxRnXtuSI5jZNzf++8HtN9+CT33nDRyJMFgvTV7dlKSu1Cw/ffP/HMDAOTW93f5/kZDwd5e/HYeqgEA5Jppmtpqq600b948OY7jqo9EwtDMmeWaPbtUL7/coTlzvPL5zCxXuiHLsjV/vrsAgilTMgtBK3SrV1u6+uq4bropoLa2/ISBHXxwTL/6lak99iDkAdiYzk5HDQ2dqq+3VF9vrw39MtTcbKilxaPWVq/a2z2S+nOflSOJfTfZ5vE4GjMmrfLytCoqbFVUOKqqkqqruwK/xo/3atgwU4ZRlO9SAaDPbrklrtWr3V/M5aKLcr/dAAAANo5QMAAAAAAAAAAAAAAAAAAAAGTFT3/aFQz2k59kJxjsgw8C2nffhJ5/3tHo0Zz22hsvv+zuffJ6bR10UH4GowMAem+fmn3kM33qtDvXmx/tjGrBygWaOGJinioDAOSK1+tVbW2tFi1a1Oe2y5d79ZOfVOmjj7qCn158sUTf//5q/eMfw7Jd5gY++yyhjg53gVPbb5/lYgrEihWWrroqrptvDqq9vf+3vwzD0de/HtOvfuXVtGmEgWHLZduOVq2ytXBh59rAL1uNjVJzs6HmZo9aWz1autQr2/bnu9TP7f4H6WuXSd6E9L/jpNnXScmh+a5qQCgtTausLK2yMluVlbYqK6XqakO1tR7V1npUUeGV1+uT5Mt3qQCQVZbl6M9/dv/dtuuuce21VzCLFQEAgL7g7AgAAAAAAAAAAAAAAAAAAABkzY9+FJZpRvWjH2UnGOx//wto332TeuEFacwYTn39Mum0rTfecDewe4cd4hoyJJzligAAubDNqG30/tL3N5j/5zf/rD8d+qc8VAQAyLVQKKTy8nK1tLT0us0nnwT04x9Xa+nS9YMAbr11mCZPXqWLLhqe7TLX89ZbSUnutk923rmAgniyYOnStK64IqG//z2oSKT/w8BM09GRR8Y0c6ZXU6ey3YfBLx63VVf3eeBXQ4OjpiZDzc2mWlpMLV7sVSzmkeTJd6m9M/kx6eDzP/976m1Sqlh6mt/+fr+tcePSKiuzVFFhq7LSUXW1VFVlavx4r2prvSop8Yrh9AC2RA8+GFddnfsg2HPPdbJYDQAA6Cu2YgAAAAAAAAAAAAAAAAAAAJBVP/hBWB5PVD/4QUi2nXkw2CefFPUEg40dy+mvm/Lmm1GtXl3iqu0ee6QkMTgcAAaCo7c+eqOhYE8teCoroWArYys1d9FcNbU3qaa0RkdvfbRMw8y4XwBAZoYNG6ZEIqGVK1du9rnPPVeiX/yiUvH4xr+/L754mCZNatM3v1ma5So/98EH7toVFdn6yleC2S0mT1pb07r88oRuvTWkeLz/w8A8HkdHHx3Tr3/t07bbsr2HwcG2HS1ZYmnRorTq6qy1gV/qCfxqafFqxQqvpKJ8l5o9E5/acN5Of5eevUayBleI4heNHJlWeXla5eX22tAvqbraUG2tR+PHezV2rEemObjfAwBw67rr3B+bqalJ6dhjB8dvcgAABirOigAAAAAAAAAAAAAAAAAAAEDWnXVWWKYZ1fe/n51gsE8//TwYbNw4ToHdmDlzOl23nT49888IANA/fjDtB/r1v3+9wfy6tjpZtiWP6elTf5Zt6c2WNzX7s9mavXC23mp5S46cnscPn3S4Zn17lgyD/ysAIN/GjRunRCKhaDS60ccdR/rHP0bq+uvHfmk/6bShU08t1r//HdGOO+YmrOrjj/v2/1G3CROS8vsHdgBBY2OnLrssqTvvDCmR6P8wMK/X1owZcc2c6dOUKYSBYWDp6LBVV5fWokVpNTbaamiQmpoMNTebam31aPFir1Ipr7ao4dGGs+E8X1wa/ZG0eKf+rydLgkFbZWWd6wR+OaquNlRdbaqmxlRtrU/B4Bb2WQNAlrz8ckJvvOH+N/WPf9wpj4fQRQAA8oktIQAAAAAAAAAAAAAAAAAAAOTEmWeG5fXGdOaZQVlW5kEi8+YVaZ99uoLByss5DfaLXnrJ56pdUZGtAw7o/4HqAAB3RoZGanhwuFbFV60333ZsPfjJgzpu2+M220dLe4ueWfiMnln4jOYsnKPVidWbfO4T85/Q3EVzdeCEAzOuHQCQuerqai1YsECdneuHAqdShi69tEyzZg3rVT9r1nh19NFevf56SqNHZ3/A/yGHtGn48JQWLAho/vyAVq3q3TbclCkpSQMzFGzhwpQuuyylu+8OKZXq/20sn8/WCSfEdcklPm21FWFgKDzptKPm5rTq6izV19uqr7fV1CQ1N5tqaTHV2upVW5tXkn/tBEnS4qkbn1/234INBTNNR2PGpFVWZqmiwlJFhaOqKvUEfo0f79WIER6ZZlG+SwWAQenqqy3XbYcNS+usswbm73EAAAYTzoYAAAAAAAAAAAAAAAAAAABAzpx2WkimGdXpp4eyEgy2YEF3MJijykp3IViDUTpt66233A3U2XHHuMJhBowDwECyV+VemjV/1gbzb3/39o2GgiXTSb3c+LKeWfiMZn82Wx8u+7BPy2tqb3JdKwAgu0zT1IQJEzRv3jw5jiNJWrnSo3PPrdK77/btd31dXUBHHRXRCy945febWavRsiztu2+79t23vWfeihUeLVgQ6AkJmz8/oEWLipRMrr/cbbZxH2CQL/Pnp/Sb33TqvvuCSqf7P8ioqMjWd74T18UX+1VTw7Yd8mfVKkuLFnWFfjU2OmpocNTcbKwN/fJq2TKv0mmfJPbn9EnrtI3PL3tLevt7/VvLWkOGWCorS6u8vCvwq7LSUXW1oZoaUzU1HlVX++Tz8VkDQD589llKTz4Zct3+tNMSCoe5iAgAAPlGKBgAAAAAAAAAAAAAAAAAAABy6pRTwvJ4YjrttKDS6cyDwRYuLNI++6T0wgudqq5mcKEkNTd3aM89Hb35ZlgrV/btPdlzz5QkBo4DwEBy+k6nbzQU7PWW13vuL1y1ULM/m63ZC2fr+brnFeuMuV5eeUm567YAgOzzer0aP368Fi5cqAULivTjH1erpcVdGNWrrxbru99t0z//WZq1+iKRyAbzRo60NHJkVLvvHu2Zl05LjY3+nqCwBQsC2m23zLcZ+8vHHyd16aVpPfxwKC9hYMGgrVNPjesXv/CrspJtOuRWKuWovr5TdXWW6uttNTQ4amoy1NJiqKXFo9ZWryIRjyRPvksdfJZ+RUr7JW9q/fkVr+ZkcV6vrXHj0iors1RZaauiwlFVlaHqakO1tR7V1npVWspnDQCF6pprUrIsd79N/X5b558fyHJFAADADULBAAAAAAAAAAAAAAAAAAAAkHMnnRSSxxPTyScHlE6bGfdXV+fXvvt2BYPV1BAMZhhtuuqqDjmOVFdXpDffDOvNN8P673/DWr36y08Znj49888DANC/Dp94uDyGR5ZjrTe/LdGmUx89VS83vqyFqxdmbXlTx03NWl8AgOwIBoMaObJC++8f1vLlmW0T3X13qSZPXqWZM4dnpbaNhYJtjNcrjR+f0vjxKR18cLskaauttspKDbn0wQcp/d//deqxx0Ky7aJ+X344bOm7343rF78IaNw4wsCQOdt2tGyZpUWL0qqvt9XY6KixUWpqkpqbPWpt9Wj5cq8cp//D7yDJKpKWbiOVv7f+/NEfS6HlUmxUn7obMSKtcePSKi+3VVnpqKrKUXW1oZoaj2pqPCov98rj4bMGgIFo1SpL//xn0HX7Y46Jq6yM35cAABQCQsEAAAAAAAAAAAAAAAAAAADQL44/PiTTjOk73wmoszPzIKr6+q5gsOefT2n8+C17sGIsFpMkGYY0fnxS48cn9e1vr5JtS599VqQ33yzuCQnr6PD0tAsGbe23X3G+ygYAuGSaprYavpXmrZy3wWN3vH9HVpdVVlKm0eHRWe0TAJAdY8eW6sorV+v000vlOEZGfV166TBNntymGTNKM64rkUi4bhsIBDJefq68/XZSl15q6YkngnkJRyopsXTmmXH97GcBjR7Ndhx6Lxq1VV+fVl2dtU7ol6HmZlOtrR4tXuxVIuEVQ44LmMfacJ4h6YTDpb+/vvYPKRCw1wZ+WaqosFVV5aiy0lBNjanaWo9qarwKh/msAWCw+vOfE4pG3Yd6/exnXIAFAIBCwVYbAAAAAAAAAAAAAAAAAAAA+s1xx4Xk8cR0wgnZCQZraPg8GGyrrbbMYDDbtmVZGxkcKsk0pUmTkpo0KamTTlopy5LmzQvorbfCevPNsAIBKRgc0s8VAwDcWhVfpbmL5uqZz55RS3tLvyxzp3E79ctyAADunHbaMM2bt0pXXjk8o34sy9DLLyd16KEdKikpyaivVCrlqp1pZr6NmAuvv57QpZfamj07lJflDx2a1ve/n9BFFwU1fDhhYFifZTlqaekO/LJ6Ar+amgy1tJhqbfVq1SqvpC1zn8mg4YtvfH7Fm/rOjdfo7Kk/Vm2tV6NHe2SafNYAsCVKpRz99a/u/w+YPj2m7bfPz+9dAACwIULBAAAAAAAAAAAAAAAAAAAA0K+OOSYk04zp+OMDSqUyH/Td1OTXfvt1BYNNnLjlDXxsa2vr9XM9HmmbbRLaZpuETjllpYqLiyURCgYAhcqyLb29+G3N/my2Zn82W2+0vCHbsfu1hqljp/br8gAAfXfZZaWaN2+NHn10qKv2Pp+tSy9t0RFHrFFDgzRx4kQVFRW5rmdTocWb4/cX1vbcSy8l9Jvf2Jo7Nz/hCMOHp/XDHyZ03nlBlZYSBralamuztGhRWvX1lhoaHDU2OmpqMtTcbKq11aPFi71Kp32SfPkuFRkqLrZUVpZWebmligpblZVSVZWhqmppxjvLFOnceLt/rfiFTh+3q8aO3ad/CwYAFJQ77ohpyZKw6/bnn29ksRoAAJApQsEAAAAAAAAAAAAAAAAAAADQ744+OqT77ovp298OKJnMPBisudmvffft1PPPpzR5cmENJM+19vZ2122HDCEQDAAKzeKOxXp24bOavXC2nl34rFbFV+W1HkLBAKDweTym/vnPsPbeO6Z33ulbgNXw4Wldf32Ddtwx3jNv4cKFmjx5sjweT59rSSaTfW7TLRAIuG6bTc8/3xUG9uKL+QkDGzkyrZ/+NKGf/jSkkhLCwAazzk5HDQ2dqquzVF9vrxP4ZailxaPWVq/a2z2S+v5vEYXF63U0ZkynysstlZfbqqhwVF1tqLraUG2tR7W1Xg0fvvHP+oOlHyjyxqb3/ViOpRkPztA733tH5UPKc/gqAACFyrYd/fGP7n8vbLttQgcfXBi/xQEAQBdCwQAAAAAAAAAAAAAAAAAAAJAX3/xmSA88ENeMGUVKJDIPBmtt9Wn//Ts1d25SW29dlIUKB4Z4PL75J21CaWlp9goBALiSslJ6telVzf5stmZ/NlvvL30/3yWtZ+o4QsEAYCAIh7169NG0dt89pZaW3gUlT5yY0A03NKisrHO9+bZta+HChdpqq61kmn3bVuvo6OjT89dVXJzfAKzZs+P67W+lV18N5mX5Y8Z06txzU/rRj4IKhwkDG+hs29GKFZYWLUqrocFWQ4OtxkatDf3yaPFij5Yu9cq2t6xg88GqtDStsrK0ysttVVbaqqyUqqtN1dSYqq31qKLCK6/X3Wc9d9HczT5nWXSZjnngGP37lH+ryLvl7BMDAHSZPTuhjz92/xv2pz+1ZJpGFisCAACZIhQMAAAAAAAAAAAAAAAAAAAAeXPEEUE9+GBcxx5bpHg8e8Fgzz2X1DbbDP5BkJZlybIsV209Hk+fB/gDALKjbnWdZn82W88sfEbP1T2nSCqS75I2alhgmKqHVue7DABAL1VWBvTAAx068ECPolHPlz53n33adeWVzQqH7Y0+nkql1NTUpOrqvv0/EIvF+vT8deUjFMy2HT35ZEK/+5305pv5CQMrK+vU+eendPbZQQWD4bzUgL6Lx23V1XWqvt5Wfb2txkZnbeCXqZYWU62tPsXjXjGMd+Dz+22VlaVVVmatDf1yVF3dFfo1frxXtbVeFRfn7rPuTSiYJL3e/LrOfeZc/eXrf8lJHQCAwnXttY7rtuPGdeqUU0JZrAYAAGQDexMAAAAAAAAAAAAAAAAAAACQV1//elAPPxzX0UdnJxhsyRKf9tuvU889l9J22/mzUGHhamtrc902FGKgDwD0t4+WfaSznzxbLze+nO9SemXquKkyDCPfZQAA+mD33Ut0yy1t+s53hsq2N/4dfuqpy3XOOUvl+fLcMHV0dGjp0qUaM2ZMr5efSCT6Uu56vN7+G+5o244eeSSuyy4z9e67+QkDq6xM6cILO3XWWSH5/b681ICNs21HixdbWrQorfp6Sw0NjpqapKam7sAvr1as8Eoa/GHkW4KRI9MqL0+vDfyyVVkpVVcbqqnxaPx4r8aO9cg087N/KWWl9GLDi71+/k3/vUnTyqbptKmn5bAqAEAhee+9pJ5/3v2+/u9/P8VvUQAAChChYAAAAAAAAAAAAAAAAAAAAMi7Qw4J6tFH4zrqKL9isc2MTO+FZct82n//Ts2dm9L22w/eYLD29nbXbYcOHZrFSgAAm5NIJ3TkvUdq0epF+S6l16aOnZrvEgAALpxwQqk+/XSVfvvb4evN93odzZzZqqOPXt3rvpYvX65AINDr7YfOzs4+1fp5bf0z1NG2Hd1/f1yXX27qww/zE5RcW5vSRRd16vTTQ/L5Bu/2aiHr6LBVV5fWokVpNTQ4a0O/jLWBXx4tXuxVKuUVQ3AHvmDQVnl5p8rLLZWXO6qsdNYGfplrJ5+CwcL9rF9vfl2xzlif2pz95Nnafsz22rls5xxVBQAoJFddlZbboNJw2NKPfhTIbkEAACArCnMrFQAAAAAAAAAAAAAAAAAAAFucgw4K6rHH4vrmN/2KRjMPBlu+3Kfp09OaMyepHXd0Nyim0MXjcddthwwZksVKAACb896S9wZUIJgk7TRup3yXAABw6de/LtW8eW26//5SSdLQoWldd12jpk3rW7iMJDU1NamoqEiBwJcHBti2Lcdx3JSroqLcbrNZlqO7747p97/36tNP8xMGttVWSf3852mdckpIXi9hYLmSTjtqakqrrs5SQ4Ot+npbTU1SU5OplhaPWls9WrPGK8m/dsJA5fE4Gj06rbIySxUVliorHVVVSdXVpqqrTU2Y4NPw4aZMc+DuE5q7aG6f2yStpI6+/2i9/b23NTI0MgdVAQAKRUtLWg89FHTd/qST4ho+vDiLFQEAgGwhFAwAAAAAAAAAAAAAAAAAAAAF44ADgnr88YSOOEJZCQZbscKrAw6Qnn02qZ12GriDQDcmnU7L63V3OrDX65VpmlmuCADwZYYUDbwwxqljp+a7BACASx6PqTvvHKK6uqhWrPDohhsaVVWVct3fokWLNGnSpC/dBolGo677Dwbdhxl8mXTa0R13xHTllV4tWBDOyTI2Z8qUpH7xi7ROPDEkj2dwbZfmw6pVlhYt6gr9qq+31dgoNTcbamkx1dLi1dKlXlmWT5Iv36UiQ0OGWCorS6uiwlJFhaOKCkfV1YZqakzV1npUVeWTzze4P2s3oWCS1LimUcc/dLxmnzhbHjPz/WsAgML0hz8klEq5C/XyeBxdcAEBqQAAFCpCwQAAAAAAAAAAAAAAAAAAAFBQ9tsvoCefTOjww6VIJPOBiytXenXggdIzzyS1yy6DZwB2R0eHAoGAq7a5GnAPANi0bUZtoyMnH6nH5j2W71J6JeQLadKISfkuAwCQgaIiU4895lVd3UINGWJn1Jdt21q4cKEmTpy4yYDhTELBiovdhRlsSmeno3/8I6arrvKpri4/YWBf+UpCv/ylrRkzgjLNwbMtmkuJhK2GhnUDvxw1NRlrQ788am31rg0QJ+RooPP5bI0dm1Z5uaWKCluVlY6qqoy1oV8e1dZ6VVq6ZX/WaxJr9GbLm67bz100V5c8f4l+f8Dvs1gVAKBQRCK2br3V3fEBSTr88Ji22io/v5MBAMDmEQoGAAAAAAAAAAAAAAAAAACAgrPPPgE99VRXMFh7e+YDQFet8uqgg6Snn05ot93cD5QpJNFoVKNGjXLVtrS0NLvFAAB65fZv3q69b9tbHy77MN+lbNYOY3aQx9xyQxgAYLAYN65IxcWVamhoyLivzs5ONTY2qqamZqOPx+Nx132HQiHXbdeVSjm6+eaYrrnGp8bG/IQcTJ2a0MUX2zrqqKBM08hLDYXIth0tXWqpri6t+npbDQ2OGhqcdQK/PFq+3CvH8ee7VGTBiBFplZWlVV5uq7LSVmWl1gn88qiszCuPh8/6y7zY8KIsx8qojyteuUK7lO2ib23zrSxVBQAoFDffHFdbm/vfuxdeyD4fAAAKGaFgAAAAAAAAwCAUjUYVDnPlHgAAAAAAAADAwPa1r3UFgx12WHaCwVav9urgg7uCwXbffeAHgyWTSddtS0pKslgJAKC3SgOlmn3SbO3xjz3UsCbzcJZcmjp2ar5LAABkSUlJicaMGaOlS5dm3FckEtGSJUs0duzYDR5zu41iGIZM08yornjc1k03xXXttX61tubnvKldd41r5kzpsMMCW2QYWDRqq64urbo6S/X1tpqaHDU2GmpuNtXS4tHixV4lk14xrHXgCwZtjRvXqbIyWxUVtqqqHFVVGaqpMVVT41FNjVfhMJ91puYsnJOVfk597FRtM2obbT1q66z0BwDIP8tydMMNPtftv/rVuPbcM5jFigAAQLaxRQ0AAAAAAAAMMpZlacmSJZowYUK+SwEAAAAAAAAAIGN77hnQ7NkJHXqoozVrMj/1dc0arw45xNBTTyW0554DOxjMcRxX7bxeb8YD7gEA7pWVlOnZ7zyrPW/dUytiK/JdziZNHUcoGAAMJqNGjVI8Hld7e3vGfa1YsUKBQEClpaXrzU+n06768/ncBxpEo7b+/Oe4rr/eryVL8hMGtsceXWFghxwyeIMVLMtRc3Na9fWW6ustNTRIjY1SU5Oh1lZTra1erVrlleTPd6nIkGE4Gj06rbIySxUVliorHVVWGqqu7gr9Gj/eq1GjPDLNonyXOujNrZublX4iqYiOuu8ovXnmmxpSNCQrfQIA8uv+++Oqrw+5bn/uue6OLQAAgP5DKBgAAAAAAAAwyEQiEcXjcaXTaXm97AIEAAAAAAAAAAx8u+8e0DPPJHTIIVJbW+b7vtvbPTrsMOmJJxL62tcGdjCYG6GQ+8FCAIDsmDRikp464Sntd8d+inZG813ORk0dSygYAAw2VVVVWrBggZLJZMZ9NTc3q6ioSMFgVxCW20AwSQoE+r5d1tFh649/jOlPfwpoxYr8hIHts09Mv/qVqf33H/hhYG1tlhYtSquuzlJDg6OmJkdNTYaam021tHi0ZIlX6bRPkvsANxSGkhJLZWXdoV+OqqocVVV1BX7V1HhUU+OT389nnW/N7c36dMWnWetv3sp5OvXRU/XQjIdkGEbW+gUA5Md117n/Lq+tTelb3xr4v18BABjsGBEIAAAAAAAADDLdV/OMRCIbXI0TAAAAAAAAAICBarfdApozJ6mDD5ZWrcpOMNjXvy49/nhC++yzZQWDcfwAAArDtPJpevi4h/X1f31dadt9kEoueE2vthu9Xb7LAADkwIQJEzRv3jxZlpVxX4sWLdLkyZPl9XrV0dHhup++BBe3tVm69tq4/vKXgFatKna9zEwccEBXGNjXvjYwApdTKUcNDZ2qr7dUX2+rsdFRY6Oh5mZDLS0eLV7sVXu7R5In36UiQ16vozFjOlVebqm83FZlpaPqakNVVYZqaz2qrfVq+HA+64HguUXPZb3PRz59RFe+cqV+vtfPs943AKD/vPRSQm+95T7U6yc/6ZTH489iRQAAIBcIBQMAAAAAAAAGEdu2e06wIxQMAAAAAAAAADDY7LJLkebMSeqgg6SVKzM/Dbajw6PDD5dmzUpov/22nGCw4uL8DJwHAGzooAkH6Y5v3qETHz4x36WsZ9tR26rIW5TvMgAAOWCapiZMmKAFCxbIcZyM+nIcRwsXLtTEiRMVjUZd9zNkyJDNPmfVKktXXRXXX/8a0Jo1+dmmOeSQrjCw3XcvnDAw23a0YoWlRYvSqq+31dDgqKnJUVOToeZmj1pbPVq2zCvbJvhhMBg2LK2ysrTKymxVVtqqqjJUXW2opsZUba1H5eVeeb181oPB3Lq5Oen34ucv1k7jdtJBEw7KSf8AgNy7+mrbddvhw9P63vfcB4oBAID+QygYAAAAAAAAMIhEo1HZdteBvkgkIsdxZBhGnqsCAAAAAAAAACB7dtrp82CwFSsyPxU2EvHoiCOkxx6La/r0wT8YxufzyTTNfJcBAFjHCV85Qcuiy3TuM+fmu5QeU8dNzXcJAIAc8vv9qqqqUkNDQ8Z9dXZ2qqGhQZZlZVTPpixbltaVVyb0t78F1dHR/2FghuHo8MPj+tWvPNpll/4PA4vFbNXXd6q+3lZ9va3GRkeNjYaam021tHi0eLFX8bhXDBUd+Px+e23gl6WKCluVlY6qq6Xqao9qaz2qrfWquJjPekvgOI7mLspNKJjt2Dr+oeP19vfeVk1pTU6WAQDInfnzU3rySffHMU4/PaFQiIuGAAAwELD1DwAAAAAAAAwi7e3tPffT6bSSyaQCgUAeKwIAAAAAAAAAIPumTi3Sc8+ldMABnVq+3Jdxf9GoR9/4hl+PPhrXgQcO7mCwUKj/B7EDADbvnK+eo6WRpbrilSvyXYokaaexO+W7BABAjpWUlGjs2LFasmRJxn1Fo1HXbT0ez0bnL1mS1uWXJ3TrrUFFo/0fXGCajo48MqZf/9qrHXbIzXaUZTlassTSokVp1dVZawO/tDbwy1Rrq3dtGHZRTpaP/jVqVOfawC9LFRWOKiulmhpTNTWmxo/3aswYj0xz0wF52HJ8vPxjLYlk/t28Kaviq/St+7+ll097WUHfBYppeQABAABJREFU4N4PBgCDzTXXpGTb7n4vFBXZOvdcxhUAADBQEAoGAAAAAAAADBKO46wXCiZJkUiEUDAAAAAAAAAAwKC0/fZ+Pf98StOnd2rZssyDwWIxj4480q+HH47pkEMGb3BWaWlpvksAAGzC5dMv19LoUt323m35LkVTx03NdwkAgH4wcuRIJRIJtbW1ZdSPbUs//nGVpk6N6cAD21VRkdImsr424PevH2rQ0pLWZZcldfvtQcXj/R8G5vU6+ta3YvrVr7zaZptwRn11dNhauLBT9fWWGhocNTQ4amoy1NJiqqXFoyVLvEqlvGKY58AXClkqK0urvLw78MtRdbWh6mpTtbUeVVd7FQz6JGW+/wKD39xFc3O+jHcWv6Oznzxbtx15mwzDyPnyAACZW7nS0t13uw9zPPbYuMaNy+z3LQAA6D/sLQIAAAAAAAAGiVgsJsuy1psXiUQ0cuTIPFUEAAAAAAAAAEBubbedXy+8kNT06Z1asiTzgbXxuEdHHx3Qgw/Gddhh7gfXFLJwmEE/AFCoDMPQLUfcouWx5Xpi/hP5q0OGdhizQ96WDwDoXxUVFUokEkokEq7ad3ZKM2eW6z//GaL//GeIrr9+rAIBW1ttldCkSQlNnJhce5vQsGHWBu2Dwa5tr4aGTv3udynddVdQyWT/b7d4vba+/e24Zs70adKkzS8/nXbU1JRWXZ2lujqrJ/CrudlQS4tHra0erVnjlVSU++KRUx6PozFj0iorS6uiwlZFhaOqKvUEfo0f79WwYaZMk88a2TG3LvehYJJ0x/t3aLfy3XT2tLP7ZXkAgMxcf31csZj70NyLLiKcFACAgcRwHMfJdxEAAAAAAAAAMrd48WKtXLlyvXmGYWjrrbeWaZp5qgoAAAAAAAAAgNz7+OOkDjjA1OLF2RnUEgjYeuCBpA4/vH+Dwd577z1NnTq118+/7rpHNX36BBlG757v8/k0efJkl9UBAPpLrDOmA+86UK82vZqX5U8cPlHzfzw/L8sGAOSHbduaN2/eBhck3Jw1azw677xKvflm78IJRo3q1MSJ64eFjR8/Qn/6k1/33BNUKtX/5zj5/bZOPDGmiy/2a8IEvyTJth2tXm1r0aL02sAvW42NUnOzoeZmU62tXi1d6pVl9XJjDAVt6NC0xo2zVFFhqaLCUWWlo+pqoyf0q6rKJ5+Pzxr9o9Pq1PCrhiuSivTL8nymTy+e+qJ2r9y9X5YHAHAnkbBVU2Np6VJ3x0AOOCCmOXNCWa4KAADkEqFgAAAAAAAAwCDgOI7mz5+vzs7ODR6rqalRcbH7qwIBAAAAAAAAADAQzJuX0v77G2ptzU4wWFGRrXvvTeib3+y/gTJ9DQWT3tWoUdtq2rSodt21a6qoSG0yJKy0tFQVFRVZqRUAkFur4qu0921763/L/9fvyz5u2+N07zH39vtyAQD5lUqltGDBAvV2uGFdnV8/+lG1GhuLXC/TMBx5PI7S6f4PAysqsnXAAXHtsYejjg6pqclQc7Oh1laPWlu9ikY9/V4Tss/nszVuXFrl5ZbKy21VVjqqqjJUXW2ottaj2lqvhg7ls0bheKXxFe112179usyykjK9/b23NbZ4bL8uFwDQezffHNX3vx923X727LgOPrh/L4ICAAAyQygYAAAAAAAAMAjE43EtXLhwo4+NHDlSY8dysgYAAAAAAAAAYPCbPz+l/feXWlr8WenP77d1zz0JHX10/wSDuQkFk3Zcb87YsSntumu0JyisrOzzC4rU1tYqHHY/cAgA0L+a25u1xz/2UFN7U78u94rpV+hne/2sX5cJACgM0WhUdXV1m33ea6+Fdf75VeroGIhhSt3DKTeRpowBZcSItMrK0msDv2xVVUlVVYZqajyqrfWorMwrj4fPGgPHpf++VP/34v/1+3K/VvU1PXfyc/J5shO2DwDIHtt2tO22KX36qbsw3q98JaH33iuSafKbCACAgcSb7wIAAAAAAAAAZK69vX2Tj0UikX6sBAAAAAAAAACA/Jk0ya9//zul/fdPqakp82CwVMrUt78d0L/+FdMxx/RPMFimlizxa9Ysv2bNGiZJKi9PabfdItp//w5ttx2BYAAwkFQMqdAzJz2jvW7bS6viq/ptuVPH9SWgEgAwmITDYZWVlam1tXWTz7nvvuH6/e/HybIGaqjAQK17yxMM2ho3Lq3ycksVFbaqqhxVVhqqqTFVW2uqpsanUMgrhsliMJlbNzcvy32p8SVdOOdC/fGQP+Zl+QCATXvqqYQ+/TTouv0559gEggEAMAAZjuM4m38aAAAAAAAAgHxzHEeGsfEDcgsWLFAymdxk28mTJ8vn4wpuAAAAAAAAAIAtw6JFndpvP0eNjZkHg0mSz2frn/9MaMaM3AaDvffee5o6tS9BLO9K2rFXzzz66DV66KGhbsoCAOTZ682va/qd0xXrjPXL8pZdsEyjwqP6ZVkAgMLU0tKi1atXrzcvnZauvnqc/vWvEXmqCoOJaToaPTqtceO6Ar8qK21VVRmqru4O/fJq1CgPARbYonQkOzT8quFK2+m81XD30XfrhK+ckLflAwA2tN9+Mf373+6OTZSVdaq+3iufj99UAAAMNESgAwAAAAAAAAPEmjVr1N7erqFDh6qkpESmaUqSksnklwaCSVI0GlVpaWk/VAkAAAAAAAAAQP6NH+/Tiy92ar/9UqqvzzwYrLPT1IknBmRZMR1/fG6DwXJln32sfJcAAHDpqxVf1YPHPqgj7jlClpPb7/OKIRUEggEAVF5ermQyqVisK5Cyo8PUhRdW6pVXSvJcGQaKkhJLZWVplZdbqqhwVFXlqLKyO/DLo+pqn/x+nyQudAl0e7HhxbwGgknSGbPO0Hajt9P2Y7bPax0AgC7vvJN0HQgmSWefneTC4gAADFCEggEAAAAAAAADRCgUUnNzs9rb22WapoYOHarS0tKek+++TCQSIRQMAAAAAAAAALBFqanpCgbbd9+U6uoyDwZLp02dfHJQ6XRU3/lOOAsV9q/DDgvmuwQAQAYOnXiobj3yVp3y6Ck5Xc7UsVNz2j8AYOCoqanR/PnzVVdn6kc/qtKiRYF8l4QC4fU6Gju2U+XllsrKbFVVOaqqMlRdbai21qPaWq+GDfNI8uS7VGBAmbtobr5LUDwd11H3HaX/nvlfDQsOy3c5ALDFu+qqtKQiV22Liy398IccFwAAYKAiFAwAAAAAAAAYIPx+v4qKipRMJmXbtlavXq3Vq1frxz+uktdbqTPOWK5tt01stG0kEpHjODIMo5+rBgAAAAAAAAAgf6qquoLB9tsvqYUL3Q2cWVc6bei000JynKhOPnngBINVVye11VYM/gGAge7kHU7WsugyXTjnwpwtY6dxO+WsbwBAbti23TNZlqV0Oi3Lsnr+Xvcx27blOE7PvO77juNsMEmS4ziaMWNrRSKEO21Jhg1Lq6wsrfJyW5WVjqqqpKoqQzU1pmprPSov98rrzTx8G8D6CiEUTJIWrV6kEx8+UU+c8IRMw8x3OQCwxWpq6tTDD7vfr3/yyXENG1acxYoAAEB/IhQMAAAAAAAAGECKi4uVTCZ7/l6xwqN//7tEkqG5c4eqpCStr30tou99b5kmTEj1PC+dTiuZTCoQ4IqdAAAAAAAAAIAtS2WlTy++mNZ++yW1YEHmwWCWZei73w3JsmI67bRQFirMva9+NS4p89cOAMi/C/a4QEsjS3XNa9fkpP+pY6fmpF8A2BJ9Mair+/7GArts29arr/r0+usBxeNSPG70TIlE1xSPmz33Ewlz7WRot92i+tOfGnP2OkaO7CQUbBApKrI1blxa5eVWT+hXdfXngV81NV4VF3vF0FOgfy3uWKz/Lf9fvsvo8fRnT+vSf1+qS/e7NN+lAMAW67rrkursdBfq5fU6uuACjgkAADCQsWcGAAAAAAAAGECKi4u1cuXKnr//+c8Rkoyevzs6vHrqqVI99dRQDR1qaZ99OvS97y1TdXWnIpEIoWAAAAAAAAAAgC1SeblX//63tP/+Sc2bl51gsDPOCMqyojrjjHDmBebYPvvY+S4BAJBFVx54pZZGl+quD+7Ket9TxxEKBmDwS6dtdXRY6uiwFInYikRsxWKOIhFb0aijWMxRLCZFo87agC4pFusK6DrvvOXyeBzZti3HceQ4jiStd9+t//xntG66aVif28ViZkbL3ZwhQ9ieGCgMw9HIkWmVlVmqqLBUUeGoqkqqrjZVU2Nq/HivxozxyDT9+S4VwBc8V/dcvkvYwG/+8xtNK5+mwycdnu9SAGCL09Fh69Zb3Z/3f8QRMdXWFv6xCwAAsGmEggEAAAAAAAADSDgclmEYPScRPvVU6SaeaWjNGq9mzRqmWbNKVVpqaf/9Y/rtb21ts01uTwQEAAAAAAAAAKAQlZV1BYPtt19Sn36aeTCYbRs666yQLCuqs84q7ME1hx4ayncJAIAsMg1T//jGP7QitkJPf/Z01vodHhyuyiGVWesPAPoqmbTV0ZFWR4elUMhSIGDJsizZti3btte73z05jrPB7bqTpA3CuubNK9Ixx0yU5Otzjaef3qri4tyEZBUVues3kcjtuUBu60L2hUKWysvTKi+3VF7uqLLSUXW1oZoaU7W1HlVXexUI+ORm3QaQX3MXzc13CRt10sMn6a0z39LEERPzXQoAbFH++teY1qwpdt3+wgs9WawGAADkA6FgAAAAAAAAwABimqZCoZCi0ahWrTK1eHFvTuAy1Nbm1cMPD9HDD0ulpZZOOMHSn/7kk8dj5LxmAAAAAAAAAAAKxdixnweDffJJdoLBzj47JNuO6uyzCzMYbPz4hGpqAvkuAwCQZT6PTw8c+4Cm3zldb7S8kZU+dxq3kwyDY8gA1rduAFc6nZZlfR7UtbHAru5wru771103TM3NXsXjphIJQ4mEoXjcUCJhKh43lUx23U8kTKXTpiS/JOk3v2nWUUe15eQ1BYPO5p+0CYmEmbNQsEDAbShYbr+7AwH37xd6z+NxNGZMWmVlaVVU2KqocFRVJdXUmKqp8Wj8eK+GDTNlmplvywIoLI7jFGwo2JrkGh19/9F67fTXVOx3H04DAOi9dNrRjTf6Xbffffe4dt89mMWKAABAPhAKBgAAAAAAAAwwxcXFikajuv32UZL6flJfW5tHf/mLR48+2qlvfSupU0/1aaedOFkMAAAAAAAAALBlGDOmKxhs+vSEPvoo87AsxzH0wx+GZFlR/ehHhRcMtvvuCUmEggHAYBT2h/XkCU9qr9v20qcrPs24v6ljp2ahKgD9Zd0wrnQ6raVLHTU3O4pGbUWjjqJRR7GYo1hMPVM8bige777tmiZMSOr7318hx3HkOF3hT9232TB3bkjz5/d9QHoyaWathi9yG74ldb13ueI2rCyX75WU2fuFzw0dmlZZmaXycksVFY4qKx1VVxuqrfWottajykqvvF6fpN5cJBLAYDJv5Ty1dLTku4xN+mjZRzpj1hm651v3ECIMAP3gvvviamgIuW5/3nmE+gIAMBgQCgYAAAAAAAAMMMXFxVq6dKmefnpoRv20tvr05z/79Oc/S1tvndRxx6V1yil+1dRwYhkAAAAAAAAAYHAbPdqrF14wNH16Qh98kJ1gsB//OCzLiuqnPy2sYLB992UAEAAMZiNCI/TMSc9oj3/skXGQAKFgQHZ0dtrq6LAUiViKRGxFIt0hXbZ23jkpw/g8zMtxnJ5wr+77696uG9K1uaCum24apb/8ZUyf691tt4jOPNNy9Vp7IxBw93s0kchd6EgmIVeFGFYWjxMKlm8+n62ysu7QL7sn8Ku62lBNjUe1tV4NHeoVwzkBbMzcRXPzXcJm3fe/+7Rr+a46b/fz8l0KAAx6113n/vf9hAlJHXVU30OZAQBA4WEvEgAAAAAAADDABAIBtbV5tWRJ9sK7PvmkSP/3f0W69FJHu+8e1/HH2zrhhICGD/dkbRkAAAAAAAAAABSSkSM9ev55afr0hN5/P/NgMEk655yuYLDzziucYLBDDmEAEAAMdlVDq/TMSc9or9v2UluizXU/O43bKXtFAQXItm2l02lZlrXe1B3Kte79LwZ1rRvS1dzs0cUXlymRMBSPm0okDCWTZs/9zk5Tkilpw/M6Xn31Y5WU5CZgyW34VqEGSuWyrmDQfXBuIlF4oWC5DFCT3K9bg8nIkWmVlaXXBn7ZqqyUqqoM1dZ6NH68V2PHeuTx+PNdJoABaiCEgknSRXMu0k7jdtK+NfvmuxQAGLRefDGht992f7ziJz/plMdTlMWKAABAvhAKBgAAAAAAAAwwhmHo9tvHSsr+CX2OY+jVV4N69VXpggtsHXBAVCedZOib3wwoEMjtSaAAAAAAAAAAAPS3ESM+DwZ7773sBIOdf35YlhXRhRcWZ6W/L/PNb67SokUx/e9/QVnWhscNJk1KqKIiO68LAFDYth29rZ44/gkdcNcBSqQTfW4f9oU1ccTEHFQGfLl1A7m+GNRlWZZeesmj5csNxWKOYjEpHpficWPtfUPxuHrCueJxQ8mkoXjc0BlnrND06e05qbmz09Sbb7oLgU0kzJyFghUVFWqglNu6cneeitfryDQd2XbfX3s8nrv3y234VjJZmMFuA0UwaKusrFNlZbYqKmxVVTmqqjJUU2OunXwKhbxiKCaAXEjbab1Q/0K+y+gVy7E044EZev/772tcybh8lwMAg9LVV1uu244YkdYZZ4SyWA0AAMgn9kQBAAAAAAAAA9ATT+R+IFEyaerJJ8N68klp6NC0vvGNmL7zHY/23z8gjye3J4QCAAAAAAAAANBfhg/vCgY74ICE3nknOwFaF11ULNuO6mc/cxcW0VsnnrhKU6YsUiRi6p13QnrrrbDefLNYn3wSkOMY2n33hCRCwQBgS7Fn1Z66/5j7ddR9R8ly+jaIdIexO8g0uFAUPpdO24rFbLW3pxWJdN2PRBxFIraiUWdtSJejoUMt7bVXXLZty3GcnpAvx3E2Oknque2NX/5ygubNC/a5/mXLcjdkKpOApFwGXQWD7urKfaCU26Cr3J2bYhhdn2Ms5ulz21x+hpkEqNm2ZOaotIEcCmaajkaPTquszFJFhaXKSkeVlYaqq7tCv8aP92rkSI9MsyjfpQLYQv239b9qT+YmyDQXlseW6/o3rtcVB1yR71IAYNCZNy+lp592H+p1xhkJhUK5H2MAAAD6B6FgAAAAAAAAwADT3Oxo6dK+n5SYiTVrvLrrrmLddZdUXp7SMcekdOqpPu24IyfEAQAAAAAAAAAGvmHDPHruOenAA+P673/7HjqxMT//eVjpdEQXX5z7QTjFxbb23juivfeOSFqqNWtMvf12WNttl9tQMgBA4Tli8hH62xF/03dnfbdP7XYau1OOKkK22bYty7LWm9ad1x3KZVnWeiFd6wZ1rXtf6grpuvvuYbr11lFKJAwlEubaoChTmxt6tNtuEW2//dKcvV63gVKFGNwkSYlE7oKu3L5X8XiuQ8HcB13lUiDgKBbre7tchqhlsm4lk4aCQXfrwOa4Xbf6w5AhlsaNS6u83FJFhaOqKkdVVV2BX7W1HlVV+eT3+yT58l0qAGzU3EVz811Cn7235L18lwAAg9LVV3fKtv2u2gYCts45hwuEAAAwmBAKBgAAAAAAAAwwv/tdpyR3B/yyoaXFr+uv9+v666Vttkno299O6+STi1RdzclzAAAAAAAAAICBq7TUo7lz/Tr44LjeeCM7wWCXXFIs245o5szcB4Ota+hQW/vv36FJk8b163IBAIXhtKmnaWl0qX7x3C963WbquKk5rGjw6w7a+mJYV/fkOE5PYNeqVY4eeCCkWEyKxw0lElIsZqy9bygeN9cGc31+P5k0FY+bmj17noYMcR8a9GVSKUNLl/b9uH/hBkoVXviWVJhhZbl8ryT3deV63QoG3daVy3Urk8A5U8GglcVqPpdJXZnwem2NHdsd+GWrstJRZaWh6mpDtbUe1dZ6NWyYR1L/XlwRALJpzqI5+S6hz3Ycu2O+SwCAQWfFCkv/+pf74xIzZsQ1diwXCQEAYDAhFAwAAAAAAAAYYB56qHBOZPv444B+9Svp//7P0e67x3XCCbaOPz6w9oQ7AAAAAAAAAAAGlqFDPZozp0gHHxzXa69lJxjsV78qVjod0aWX9m8wmGEY8vvzd5ERAEB+/WzPn2lpZKn++MYfe/X8qWMHZyiYZdmKx21FIpYiEVsdHV23sZijaLRrisWkaNRRPC7F410BXV/7WlRf+UpCtm3LcZwNJkk9t33V3OzTb39b4aptImHmLBSsqMjd69kSA6W8XkcejyPL6vtrz2UoWFGRu/cqmcx1sJu7dSuZzO265fb9yuVnGAy6D5zr+hwHfijYCSes0FFHxbTLLmNUWemXx8M2DYDBK5KK6LWm1/JdRp/sVbWXZu49M99lAMCgc/31ccXj7o4hGIajiy7i4t4AAAw2hIIBAAAAAAAAA0hHh6M1a3J70qMbtm3olVeCeuUV6bzzbB10UFQnnmjoyCMDCgRye/IoAAAAAAAAAADZVFJi6tlni3TIIXG98kp2gsF+85uuYLDLLuu/YLBAINBvywIAFB7DMHTtwddqaXSp7vnoni99rs/0advR2/ZTZV3SaVuxmK1kMq1QyJJt27IsS5b1+X3btjeYHMfZIKjLtrvCajYW1jVjxgR98klQfR0+U1QU18SJiay93nVlEvqTyzAit6E/uaxJyiRQKnd1GUbX+xWN9v2CafF47s75cLtuJZOmbFsyc/SWDbZ1qxCD3aTcrltu36sujrxeR+l07963xx8fposuMlVR4ZHHU3jnSAFANr3U8JI67c58l/GlKodUalr5NE0rm6a9qvbSnpV7yjD4fgaAbEokbN1yS5Hr9gceGNe224ayWBEAACgEhIIBAAAAAAAAA8iHHybV2VnYg3iSSVOPPx7W449LpaVpfeMbcZ18sqn99gvINDkZBAAAAAAAAABQ+IqLTT3zTJEOPTSul17KTjDY5ZcXy7IiuuKK/gkGKykp6ZflAAAKl2mYuv2bt2tlfKWeXfjsJp83YfgE+T1+SZJt20qn0+uFdG0sqKv7fnco10svFenZZ8NKJAzFYoaSSUPxuKFEwlQ8biiZNBWPm0okuu53heqY2nXXhP7xj/qcvQd+f+EFSrkNSJKkRCKXgVKFGdzkNiQpl++VJBUVOYpG+96ukNetUCiT4KdNcxsoFY/nOhSs8Nb5zD7D3tXVHeRiGMYGk2maMk1zvfumaergg70aPnylfv7zodppp6hOOmmVxo7tVCBgKxCw9cILQ9TRYeqjj4J68slha/t3NHFiQgsXFvU6EEySOjo8+t73ivTKK1yEEMDgN3fR3HyXsJ6RoZGaVtYVANYdBDameEy+ywKAQe+22+Jatizsuv0FF3B+PgAAgxGhYAAAAAAAAMAA8uCD6XyX0CdtbV7deadXd94pVVSkdOyxKZ1yik877OD+akYAAAAAAAAAAPSHcNjU7NlFOuywmF58MZSVPq+8sli2HdFVV+U+GKy0tDTnywAA9I/u4C3LspRIWKqrsxSNOopGbUWjjmIxKRZz1rkvxeNSPN4VzFWS+IdKK45UW/idjfafSqb00UcfZVTjRx8F9a9/lfa5Xa4DpQox9MdtyJWU6zAid8FNuQ7fchtWlutAqUIMUcs0UCoUsrJYzecK8d+hlMlnmJt13jAMBYPSbrtFFQzaCgQcBQKOQiFHwaCjQEAKhaRg0FEoJIVChkIhKRzuajd16ggNHWrK6/XK4/HINLvum2bm72N5ufT3v6/WmjVevfDCUL3xRrFOP32FTj55hQIBR0ce2SZJikRMvfpqiXbaKarFi336+GN321FvvhnWpZeu0m9/Ozzj2gGgkM2ty18oWIm/RLuU7aJdynbpCQGrHlrdEx4JAOgftu3o+uvdR37ssENC06cX9gXHAQCAO4SCAQAAAAAAAAPIE0/48l2Ca83Nfl13nV/XXSdtt11Cxx2X1sknF6mqauC+JgAAAAAAAADA4BYKmXrqqYAOPzymF17ITjDY1VcXy7IiuvrqsEwzd4ECfr8/J30DAD5nWbbicVuRiKVIxFZHR9ft6NGWhg9Py7btnjAv27Z7wr3Wve84zgaTpJ7bL2pu9unQQyf3sdJSKTRbQ345Se3ptg0e7bQ7+9jfhoqK3AVK5Tq4yX0YUe7CEHw+yet1lE73fRmFGFaW+2A3d+tWMlmY61Y8nrt1Kxh0915J3e9XYYWCJZO5DSXZVF3BoK2iIluBgL02jMtWUZGjYLDr7wkTLPn9fhmGIdM0e26/OHUHc3k8nvXudwd1bSqs6/XXc/mq3fnkk5huvXVoz9+xmEd//vMYPfDAMJ1zzlIdeugamaZUXGxr9uz5WrCgSCefPD6jZV55ZakOPbRDe+xRkmn5AFCQlkaW6oOlH/TLsjyGR9PKp3WFf60NAJs0YpJMI7e/lwAAm/fEEwnNmxd03f6cc+ycHWcAAAD5RSgYAAAAAAAAMED8738pLVhQlO8ysuKjjwL66CPp1792tMcecZ1wgq3jjw+otNST79IAAAAAAAAAAFhPKGTqyScD+sY3Ypo7NzvBYH/4Q7FsO6Jrr81NMFggEMh6nwAwkHQHb6XT6Z5ALsuy1rvf/Zx1py8GdV1xxSjNn+9XImEqkTAUjxtKJEwlk2bPfcfx6otDM37+81adeOKqnLw2t+E6io3S7yfdrR9+/PUNHmpPtct27IxCAQoxfEtyHyiV+6ArW5FI34+P5/L9CgbdfYaplCnLkjw5OtxfuOtW4YWouQ12k3IbVpaLf4eGYfTcfnH6YlBX932PxyPDMHpCuv7wBymdjqi42KPiYlMlJR6FQqY8HlPSl31OJZLGuXpNA9UFF6SVSm34nixZ4tfPf16pu+8eoQsvXKKpU2MKhWztsENcZ565XDffPNr1Mjs7TZ16qk/vvptWOMwQSACDz/N1z/fbsnYp20Wvnf5avy0PANB7117rvm15eUonnug+UAwAABQ29ogBAAAAAAAAA8R996Uk+fNdRlbZtqGXXw7q5Zel886zddBBUZ10kqEjjwzK7+eqRQAAAAAAAACAwhAMmnr88a5gsDlzshMM9sc/Fiudjuj667MfDDZkyJCs9gcA2dId1LVuSJdlWWpocDRvnqlo1FEsJsViXbfxuLH2VmtDuAzFYl23iYSh2tqULr54sRzHXeDM5rz3XpHeey/c53a5DP0JBt2/1jHmRO04fEe9t+q99eav6VyjT9o+0bbDtnXdt9uApGQy9+FbbuQ6FKyoyF0oWDyeu7rcBjdJXZ9jKOQ+kOrLFO5nWHiBc65DA5W9ujYW1jVxoqXjjmtTMNj1HRYKOWvvS+GwFAoZCoeNtX8bKi42FQ4bGjLEo/LyST1hXqaZ3fdu+PCsdjdoPfNMu5566su3Lz78MKSTTx6vgw9eo3POWaKKik6dddYyvfJKsT76yP3204IFAZ177mrdcssw130AQKF6o+WNrPQzecRkTSufpmll0zQqPEonPHTCBs9ZsGpBVpYFAMiut99O6j//cR/qdfbZKfl8g2tsAQAA+ByhYAAAAAAAAMAA8fjjg3t3XiJhatassGbNkoYNS+vII5M6+WSP9tmnKOuDoQAAAAAAAAAA6KtAwNQTTwR15JExzZ6dnWCwG24olmVFdMMN2Q0GGzaMQfMAes+ybKVSjjo6LEUiljo6LEWjjiIRuyecKxp1tP/+Mfn9tmy7a3IcZ737X5wk9Tqs6+67R+iaa8b1ufZoNJazQDDJfUhSLkN/iooyC/05tPLQDULBJOnlJS9nFArmNqwslyFXUiaBUrk9Ru123cpliFpmgVKGQtn5ebQBt+9VrtetYLDw1q11g8qKimwVFdkKBBwFg7YCga77n//tKBj8fCor86m42NsTvuXxeGSaZs/U/bfX613vfm+CuqZMkY45JmcvGzlkWbZ+9rPen6/0zDND9fzzJTrppJU688zluvzyZs2YsVVG/y8+/HCxfv7zlRo/foTrPgCgEKXtdJ/bVA2t0rSyrgCwaeXTtPO4nTU0MHS953zn4e/Icqz15q2Kr5JlW/KYfQ+lBQDkzpVXpiUVuWpbUmLphz90HygGAAAK3+AeRQgAAAAAAAAMEg0NnXrvvUDW+/3qV6P69NMitbUV1q7C1au9uv12r26/XaqsTOmYY1I67TS/vvIVrmYEAAAAAAAAAMgfv9/QY48FdfTRUT35ZDgrfd50U1cw2E03hbMSbNMd0ABg4OsO3LIsa71p3XmO4/TM+2JI18bCupYt8+iMM6qVSJhKJIy1t6Ysy5T05QPE58xZqrFj+z5wvTcKNfSnEAOlvF7J67WVTvf9tScSpvYcv+dGH3u0/lGdtfVZrutyG1aW6/Att8FNW2KgVGahYKYka7PPc8NtXclkroPd3NWVTn9el2EY692apinDMHqm7r/XDef6YkiXx+NZ735bW1rhsCmv15TUl/WYUFls6JZb2vT++8P71Kaz09Rtt43So48O0wUXLNHFF6/WzJnuAr323rtdl17aoljMUipVIr+f84YADB7f2f47uvGtGzf5+Ojw6J4AsF3KdtG08mkaHR692X7HFo9VS0fLBvOfW/ScDtrqoIxqBgBkT2Njpx55xH2o1ymnxFVaWpzFigAAQKHhiD8AAAAAAAAwANx/f1KSLyt9DRuW1le/GtEee0S0334JTZs2QY8+GtPddzt69tlgTq9a7UZTk1/XXefXdddJX/lKQscdl9YppxSpoiI77wcAAAAAAAAAAH3h9xt65JGQvvWtmB5/PJSVPm+5pVi2HdXxx7dl3FcgkP2LjABYX3fwVjqd3iCkq/u+bdt6+mmfWlo8isWkeNxQIiHFYobi8a4pmey+b/bcTyRMnXXWcn3rW6tzUrthGFq40N33RC6PI7oP3yrUULBcB0o56ujoe7tEwlRVcZWGFw3XquSq9R5rjjWrLdmm0qJSVzW5fa86O02l011hZ7lQVOQucC6ZLMx1K5dhZW7D+aTcrvPuA+fc17RuWNcXp+6grmOOSWi33WwFg45CISkcNhQMdt0WF5sKhQyFw4ZKSjwqLjZVXOxRKGTK4xklaZTr2jaHn4LIlkgkrd/9zn3IwOrVXllWSL/8ZamefTail17qfV/BoK0LL1ysY45ZrbX/HFVXV6fJkye7rgcACs1uFbvp0eMe1aUvXqpV8VWaMHxCTwjYtPJpqhxS2fObpC+2H7P9RkPBHpv3GKFgAFBA/vCHpNJpd7+3vV5H559flOWKAABAoSEUDAAAAAAAABgAZs368qtyfxmv19bOO8e0++4R7b57RFOmJGSa6z7uaMaMkGbMkNraLN1zT1T/+pepV18NyLZze+Xcvvrww4A+/FD61a8c7bVXXMcfb+v44wMaOtT9+wMAAAAAAAAAQF/5fIYeeiioGTOievTRcFb6/Pvfw2ppyXx/d0lJSRaqAQamVMpWR0dakYitSMRWR4elWMxRJGIrFpNiMVuxmKFo1FE8LpWWWvrGNzpk27Ycx+m5XXeS1HPbVzfeWKt33+37d0RbW+6OfQWD7kN/chmS5DYgKZnM7fFMtyFJ/RFW1tHR9/UkHu8KNSoPlW8QCiZJn7R9ot3H7O6qpkzXLa/X3TqwOe6D3XK7brkNKyvEcD6pa93KlSFDbI0a1alAwFYg4PTcBoNd97tuu4K5um4dBYPS8OGOhg0bJtM05fF4ZBiGPB6PPB6PTNOU1+vt+bs77KsvJkzI0QsGCsRvf9uh1tZhrtvX1iZ10UWl8nhM3X67RzvvnFZb2+aHMm6/fUyXX96s6urUevM7Ozu1ePFijRs3znVNAFBojpxypI6ccmRW+zxg/AF6+rOnN5j/WvNrWV0OAMC9jg5bt90WdN3+yCNjqqnJznEJAABQuAgFAwAAAAAAAArcihWWXn/d3aVchw9P66mn5ikc3vQJxe3t7SotLZUklZZ6dPbZYZ19ttTY2Kk770zqvvu8+uijwrqUrG0b+s9/gvrPf6TzzrN10EFRnXSSoW98Iyi/v7CCzAAAAAAAAAAAg5PPZ+iBB0I67rioHn44OwNwnn56SMZ9DBvmfuA+kAuWZSuVcmQYlhzHUjqdlm3bsixLlmXJcRxZliXbttebukO6NhbU9cWwrnvuGa6rrhqrdNqU5O91bdttF9MBByzNxcuWVJiBUkVFhRn6Ewy6DW7KffiWG4UaKNUd7LbX2L304eoPN3h8eXy565oyCZRKJAyFczSWdbCtW7kMwuvLelVUZKuoqDucy5Zpfh6qZRhGT8jWuve7p+5wrnXndYdzfTG0yzRNbbed9MMf5upVA9iYhoaEbrwxs22T3/wmpqKirm2T8eODuvbaVTr99OGbfL7H4+iss5bpzDOXy7uJEY8rV67U0KFDFQqFMqoNAAazGdvO0PnPnr/B/M9WfZaHagAAG/OXv8TV3u5+R8iFF3IxbQAAtgSEggEAAAAAAAAF7qGHEkqn3R34O+ywti8NBJOktra2nlCwdVVV+XTJJT5dcon0wQcp3X57Svff71dLS+8HUvSHeNzUY4+F9dhjXSFoRx6Z0CmnePW1rxXJNAkIAwAAAAAAAADkjtdr6L77Qjr++KgefDBHaSZ90B2gAfRGd+BWdzhX97SpwC7HcdTW5uimm4YqkTAUj3cdp4nHDSUSxtp55tr7696asixTc+Z8prFjO3PyWjweZ20gWN/kOvTHbQBXLgOlPB7J57PV2VlY75fbALVcBpVJgy9QqruuaaOm6aZPbtrg8cZoY7/X9Hldluv2X8Z9OF9hrlvxeO/XLcMw1rtdN6Rr3dCudcO5/vKXVQoGDYVChsJhQ8XFpoqLTYXDhsJhU0OGeBUOm/J6TUnr1jLB1esBUJh+9rOEolH3FxDcffeIjj9+6Hrzvvvd4XryyTV6+OGhGzy/ujqpyy9v1vbbxzfbd319vaZMmdITRAgAWF/FkAr5PX6lrNR68ztSHUqkEwp4C+sCsQCwpUmnHd14o891+z33jGu33YJZrAgAABQqjvoDAAAAAAAABe7RR92fbLz//u2bfU4sFtvsc7bf3q8//MGva65x9O9/J3THHZZmzSpSW1th7WJctcqr224r1m23SVVVKR17bEqnnebXttsWVpAZAAAAAAAAAGDw8HoN3XNPSB5PVPfdl99gsGCQwUCDQXdY1/Llaa1ZYysadRSJ2IpGuycpFpOiUUfxeNf9eNxYe9/QAQdEtPvuUTmOI9vuCp1xHEeO4y4YZ11r1nh08801rtrmMrzJfaBUbsMk+iP0x41AwFGni3y2ZDJ3dbkNUEunTXV2Sj73Yym/VFGR20Cpwly3uoOuqourN/p4YySTUDD33zG5fL/ch/PlribDMLTVVkmtXh1VMOgoEHAUDDoKBm0FAlIw6CgUkkIhR4GAFApJ4bChUEgaP95UWVmZTNOUx+NZb+oO9srE2Wdn6UUCGLBee61DDzywYXBXb5mmo6uvduTxbPh9dPPNQb3xRmq9CxLOmLFS55+/RKFQ7/4fsW1bzc3Nqqqqcl0jAAx2FSUVWtS2aIP5T8x/Qsdsc0weKgIAdPvXv2JqanJ/HOG88zLfxwsAAAaGwhqxBwAAAAAAAGA90aitF190d2W2YcPS2mmnzQd+2batdDotr3fzuwtN09D++we0//5SImHrscdiuvtu6dlnAzkdBOBGY6Nf117r17XXSjvskNBxx1k6+eQilZezWxQAAAAAAAAAkF1er6G77+4KBvvXv/IXDDZkyJC8LXtLkErZam9PKxq1FYl0HV+prEz3hHhZltVz37btnlCude93h3OtG9K1qbCuU06p1Tvv9H19GjkyoV12cZH41AuBgLtwHSm3gVJu6+oOSMoVtyFJ/REo1dHh6XO73Aa7ZbZu+Xzu23+ZQl233IaVdQfOjQqMUpFRpKSTXO/xD1d96LqmTD7DXL5fXxag5vXaa0O5bBUVdYdy2QoEHI0a1XUM3TAMGYbRE7i17v3uyePxyDCM9cK5vF7ven8bxvqv8aabcvaSAcA1x3G0bNlyfeUrHr3/fshVH8ccs0Z77lm60cdGjvTr5pvX6Bvf8Km01NJvf9usvfeO9HkZ7e3tam9vZ/sHADZh6riphIIBQIH64x/7vk+u28SJSX3zm1wYBACALQWj3wAAAAAAAIACNmtWQvG4u5Ps9t23Q55eHjdctWqVRo8e3af+AwFTxx0X0nHHSatXW/rXv6K65x5Tr74akOPk9iT3vnr//YDef1+aOdPRXnvFdMIJjr797YCGDHF/YBUAAAAAAAAAgHV5PIbuvLMrGOyuu/ITDFZaWpqX5eZTd9CWZVmyLEvpdLonoOuLIV2bCuz6z3+CeuCBoYrHTSUSxtrJ7Pk7mTQVjxtKp01J/p5lb7ttTPfe25iz1+Y+jCiX4Vvugoik3Ib+uH2vcn3RG/d15TpQqvDWrWAws3WruDiLxayjEP8dSpmv84ZhKOgNKtm5fihYc6xZa5JrNLRoaJ/79vsdGYbj6ljx5t6v7mCude+vG9D1xdCu7iAu0zR12GEefeUr7SouNhUOmyou7ppKSrzy+7uXu6njxn1/HwBgIFu+fLkmTIjprrsW6Zlnhui668aqtdW/+YZrhUKWrrii6Euf8/WvD9U11yzVzjuv0vDhlutam5qaNGXKFHl6e3IUAGxBDtnqED30yUMbzH+r5a08VAMA6PbCCwm9+667i4VL0k9+kpZpfvnvbQAAMHgQCgYAAAAAAAAUsIcfdn/y+/Tp7b1+bnt7e59DwdY1bJhHP/xhWD/8odTQ0Kk770zq3nu9+vhj9wcuc8GyDL34Ykgvviidc46tQw6J6sQTDX3jG0H5fIUVZAYAAAAAAAAAGHg8HkO33x6SaUZ1xx39GwxmmmZBDYjvDtzqDueyLEvxuKV33jEVjdqKRh3FYlIs1nUbjxuKx7XO/a5wru7b3/2uRSNHpiVJjuP++MnGNDaG9eyzQ/rcLtehP0VF7l5nLusyTcnvt5VK9X0Z8XjhhZUVanBT7usqvPfL7XslddflPlTky7gNK8v1ZxgMul23Pj8mGrfiG33OL//7S924542b7WvdkC6p6/+hI49sl8fT9b6FQo6Cwa71LRTS2slQKCSFw4ZCIaMnoKu6eoyKiz3yer09YV7ZMnq0NHFi1roDgEHLtm0tX75ckmQY0iGHtGu//Tr0z3+O0N/+NkrR6Oa3Nc4+e41qa4dv9nk/+clIffrpCmXys95xHNXX12vChAnuOwGAQepbW39LZz5+5gbz69vq+78YAECPq692v/9r5Mi0Tj89mMVqAABAoSMUDAAAAAAAAChQnZ2O5sxxdzWfUMjSV78a6fXzk8nk5p/US9XVPs2c6dPMmdK77yZ1xx2deuCBIrW2+rK2jGyIx0098khYjzwijRiR1pFHJnTKKV7ttVeRTJOAMAAAAAAAAACAO6Zp6NZbQ/J4Irr11uJ+W24oFOrV89JpW9GorY6OtCIRW5FIV0BXJGIrFrNVWZlWVVWnLMuS4zg94V7d9x3H6Zlsu2sQU/ffm7NqlUeHHrq1q9e3Zo2hESOyGwbWrVBDf9wHSuX2OEcg4C4ULJksvECpdNpQZ6fky9FhLLfhW7kMUJPcB0olk7lbt4qKMg0Fyw23deX63+G6oYGm6SgYtFVU1HUbCNgKBBwFAraCQUeBgKNgsOuxnXdOKxgMakVihZL2xo8R/2fJf/RW7C0ds/Ux8ng8PVNvwroeeSSrLxMA0I+am5s3+E1fVOTo9NNX6JvfXK2//GW0HnxwuGx74//HjRuX0q9/3bugXY/Ho8rKSjU2NmZUczwe18qVKzVixIiM+gGAwWZYcJiC3qDi6fWDgGPpmNYk1mhoYGieKgOALdfHHyc1e7b7UK8zzkgoGOy/4w0AACD/CAUDAAAAAAAACtSzzya0Zo27g3977RXp09XjHcdRLBbr9YCh3po6tUhTpxbp2msdPf98XHfdZeuxxwJqb9/81UP708qVXt16a7FuvVWqqUnpmGNSOu00n7bZxl0oGwAAAAAAAABgy2aahv72t7A8noj+9rf+GagTj8f16aef9gR0/eY3Y/Xee0ElEqbicVPJpKFEwlwbzGRqU6cR//SnS3TGGatyUqPb4CapMAOlCjW4Kdd1BQKO2tv73i6XIUmZrFuJhCmfz337L+M+2C23n6HboKtcrltuw/mk3L5f2fwMDcPouf3i1B24te797snj8cgwjPXCuf72N69MM6UhQ7wqKjJlGH07/vr0m09/6ePnv3C+DppykMpD5X3qFwAwMKVSKbV/yQ+8ESMszZy5WN/+9ipdc81YvfpqyQbPueSSqEpKhvV6mUOGDNGQIUO+dLm9sXjxYpWUlMjv92fUDwAMNtVDq/Xpyk83mP/QJw/pu1O/m4eKAGDLds01nXIcd+elB4O2zjknkOWKAABAoSMUDAAAAAAAAChQDz9suW47fXrfT5hbtWpV1kPBunk8hg48MKgDD5QSCVuPPhrTP//paM6coKsryedSfb1f11zj1zXXSDvskNDxx1s6+eQijRvH7lQAAAAAAAAAQO+ZpqG//jUsjyeqv/41nPPlWdb6xxWam32aN6/vFx/JZehPIFCYoT9uA5KSydyFXEnu369cBqhJhRmilsm6lUyaKikprFCwQl23cvnv0OdzZJqObLvvrz0ez+z96g7mWvd+d0DXNtsY+tGPVisUkoLBrvCycNhQKKS1t4bCYUPFxWbPFA6bKinxyu/fLqO6vkzJhlksffLAxw986eOrE6v13Vnf1ewTZ/e8NwCAwaupqalXz5s4Mambb27Qyy8X65prxmrhwq5ggu23j+mss4b2ebkVFRX69NNPZduZ/Rarr6/XpEmTMuoDAAabaWXTNhoKNvuz2YSCAUA/W7YsrXvvdX+O/nHHxTVmTO6PMQAAgMLCKDYMOvF4XPPmzct3GQAAAAAAABmxbUezZqUl+frc1uOxNWZMnT79tG8n83u9Xq1YsaLPy3NjyhTpd7+TLrzQ0tNPp/T004Y++KBIUmGdUP7++13TL3/paKedEjr0UOngg4sUDhdWkBkAAAAAAAAAYONWrFihlStX5rWGvfd2tHDhEM2ZU9aLZ/ft/Mdnn12sZNJQUdGGxwQ6O1dL6ntqTGvran36ae7eM58vpc7Ovu9nnz+/RcFgPAcVScuXByW19bldPO7ok08WKld5OdHoMknD+9xuxYqIPv10SfYL6hGRFOhzq4aGZfr0075f2KY3Vq3ySIq5avvRR/UaOzad3YLWamsrkbSsz+3WrEnp008bs1/QWm6/HxYvzu33Q0lJXLbd9Z3m9zsKBGz5fI4CAWedeY78/q5gs0BAKipyZBhJtbQ4PWFe3ZPH49nk3701alRUp5++qlfPTaWkVau6pkK2PLpc/3n9P5t93rOLn9Uv9Usdt91x/VAVACBf4vG4Wlpa+tRm5EjpssukuXOH6P77h+t730voww+L+235G9PQ0KBRo0Zl3A8ADBbb2ttKizec/1r0Nb038b1+rwcAtmQ33BBXPN73C3h0cXT44Z167z1/VmsCAKA3Jk+erGDQ7f9hyJThOI77yyIBBei9997T1KlT810GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyrvvvqsdd9wx32Vssfp+mS0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWUUoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBnhIIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeUYoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBnhIIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeUYoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBnhIIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeUYoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBnhIIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeUYoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBnhuM4Tr6LALIpHo9r3rx5+S5j0Jo3b56+/e1v9/r59957ryZPnpzDioCNO/XUU/X+++9v8vEddthBt99+e/8VBHwB6ygKHesoBgLWUxQqtpuQibPPjuv114Ou2t50U0Jf/Wpgg/kLFy7UxnYBXnLJJV/YhzJW0lcl7S5pN5mmoTfeKJbXu2VcV+B//0tp1qy0nnvOp5UrffkuZ5OGDevUfvt16ogjPNp+e79M08h3STnD//UodKyjKHSsoyhUbDNhoOB7FAMB6ykKHesoCh3r6JZjxYoVWrly5Wafl0g4eu01v156qVQffzxMUr72v86T1PvtJuleSRvfbiorS2jvvSMaPtzW0KFFCgQMBYOfT6FQ961HoZCpQMDcYo4LIHN8j6LQsY5+bnV8tQ648wDZjp31vncq20m3HH6LPKYn630PdqyjGAhYTwcP27a1aNGijPoIhUIqKyvLUkV9U19fr3Q63fP3/PkNuvjiJZJO7HUfO+8c1c03B+XxsM2D/sP3KArF/nfsr9Xx1RvMn/jhRC14dcEm27GOIt/4HkWh23AdNSU9JqnCVX9TpyZ0660bjgcA+opz9DBQ8H994Zs8ebKCQXfj3JA5b74LALItGAxqxx13zHcZWGvy5Ml8HsiL4uLizT7Ouol8Yh1FoWMdxUDAeorBgu0mdItEbL33ntR1MLBvRoxI64wzPPJ6NxygVFJSong8vsH8oqKRkraSdNDaacp6j9u2FIl0aN99S/pcz0C0447SiSdKluXo2WcTuvNOW08+GVBHR2GdvL56tfTww13T+PEpzZiR0qmn+jV5sj/fpWUd/9ej0LGOotCxjmKwYJsJ+cL3KAYC1lMUOtZRFDrWUUiSbTt66aWk/vEPS489FlB7e2HtE+6dyZJ23GDurrtG9Mc/NqqkpGtdLy0tVUWFu4FIwMbwPYpCxzr6ub+/83fZY7MfCCZJ7zjv6IXEC7pgjwty0v9gxjqKgYD1dPBobGyU35/ZuSVTpkyR15ufoYjbbLON5s+fL0n65JOAbrrpQElD+9TH229Lc+as0s9/PjwHFQIbx/coCsX2722vFxte3GB+LBGTXt10O9ZR5Bvfoyh0G66jR0s63HV/v/pVTDvuGMqoJsANztFDvvB/PfDliLYHAAAAAAAACsCjj8aVSLjbXXfwwcmNBoJJ0pAhQyRJliV99FFQt9wySqeeWqsPPnhB0hOSfqIvBoJ1e+qp9EbnD2Yej6FDDw3qnnvCWrLE0B13RHXwwTH5fLk5ST4Tixb5dcUVxZoyxa9ddknommsiWrp0y/vMAAAAAAAAAKCv6us7NXNmRBMndmrffQO6667wAA0E27hDD23TTTc1qKTk833bbW1tWrZsWR6rAgDkywMfP5DT/i9+/mJ9sPSDnC4DAODesmUpffZZLKM+RowYkbdAMEny+/0aM2aM/vGPkTrhhPFqbu5bIFi33/ymVO++G8lydQBQ+Pat3nej89tL2/u3EAAY9M533XLy5KS+8Y1gFmsBAAADHaFgAAAAAAAAQAF45BH3bY8+euOBYJI0bNgwXXxxufbZZ4qOP36C/vznMXr77bAk32b7/fe/M7tC6EAXCpk6+eSwZs8OqbXV0XXXRbXrrvF8l7VRb78d0IUXFquiwtSBB8Z0++0xRaOFF2QGAAAAAAAAAPkSjdr6xz+i2mefuCZM8Op3vyvWokWDbz/4ySev0BVXNMvvdzZ4bNmyZVq9enUeqgIA5MvK2Eo9t+i5nC4jZaV00sMnKZlO5nQ5AAB3fvGLqA4/fKL++tdRisc3fY7RppimqTFjxuSgsr4ZNWqU1qwJKJ12PxwyHjd16qmmUinOqQGwZTl222M3Oj8eLszzIQFgYNpD0lddt/7JT9Iyzb7/XgcAAIMXoWAAAAAAAABAnqVSjubODbhqGw5bOuywTbf1er1audKnNWv6frXOd98NavXqTld1DTYjR3p0zjlhvfFGUPPnp3TJJRFNnFh4J7Wn06bmzg3ptNNCGjPG0YwZUT3xRFzp9IaDvwAAAAAAAABgsLNtRy+8kNBJJ0U1bpyjM84I6z//Ccq2C2dgTTBo64ADolnp64ILFuvCC5fI/JKzg1taWtTR0ZGV5QEACt+jnz4qy7FyvpwPl32omS/MzPlyAAB98957Ed1551DF4x7deOMYHX74JD3+eKnsPmRijR07VuaXbWT0oz/9qVhbbZXIqI8PPgjpoovWZKkiABgYth29rTyGZ4P5aV86D9UAwGB1vuuWo0Z16rvfDWaxFgAAMBgUxh45AAAAAAAAYAv2zDMJtbdveMJFb0yfnlAw+OW7+fbdN+Wq73Ta1FNPZWcg0mAycaJfv/1tsT791K/XX0/oBz+IaMyYwgtPi0Y9euCBsI44Iqjy8rS+//2IXnstIdsmIAwAAAAAAADA4FZX16lLLolowoRO7b9/QHffHVZHh7v98Lmy225x3XBDVK2tjn7wg8z2MXu9tq66qkmnnLKyV89vaGhQIpHZQHoAwMDw4CcP9tuyrnn1Gr1Y/2K/LQ8AsHkXXeQonf78vKJly3z65S8rdPzxE/Tf/4Y2297n82n48OG5LLFPiou9uvXWlDyePqSabcQNN5Tq2WcJBgOwZRlTPGbDmYakmv6uBAAGo60kfdN16+99L6lAgNgPAACwPn4dAAAAAAAAAHn20EPuT1Q76ihjs8857DCf6/6ffdZ100HPNA3ttltAN95YrOZmr554Iq7jjouquDj3V9ruq2XLfLr55mLtsUdAkyen9MtfRjR/vruwOAAAAAAAAAAoRJGIrb/9LaqvfS2uCRO8uuyyYtXX+/Nd1noqKlK64IKIPvkkpddfD+qHPwyrtNSjxYvdX8yhqKhTf/1rgw49tG8D2hcuXKjOzsK74AUAIHtWxVdp7qK5/bY8R45OfvRkrUkQsgIAhWDWrDbNmVOy0cc+/jio004br3PPrVRT06a3myoqKnJVnmtf+9oQnXzy/Iz6sCxDjz6aVDqdzlJVAFD4vjL6Kxt/YOv+rQMABqdz5Da2Ixi09ZOfBLJaDQAAGBwIBQMAAAAAAADyyLIcPf20u0FJfr+tb36zaLPP2223sEaOdDew56WXgq7abWm8XkNf/3pQ994b1pIlhu64I6oDD4zJ683syqS58NlnRfr974s1ebJf06bF9Yc/RLVsGSc5AgAAAAAAABh4bNvRc88ldOKJUY0b5+h73wvr5ZeDcpzNX1CjvwSDto49Nqqnn46rvt6nq68u1pQp6x8X2HrrmH7xi1adeeYy7bJLS5/6P/vst7XbbtE+1+U4jj777DPZduHtxwYAZMdjnz6mtN2/xwEb1zTqp7N/2q/LBABsKJ229YtfbP6corlzh+ob39hK11wzVu3t6w8zDIVCCofDuSoxI2efHZP0oqu2w4al9cc/NugHP1imurq67BYGAAVseu30jT9Q2b91AMDgM1zSaa5bH398TKNHe7NXDgAAGDQIBQMAAAAAAADy6OWXk1q2zOeq7V57JVRa6tns8zweU3vuGXO1jLq6Is2b567tliocNnXyyWE9+2xILS22rr02qmnT4vkua6P++9+gzj8/rPJyUwcdFNOdd0YVizEADAAAAAAAAEBh++yzlH7xi4gmTOjUAQcE9K9/hRWJbH5/eX/affe4/vKXqBYvdnT//WEdckhQHs/Gw8qqqhI64YRV+slPlmnGjI/7tJyysg7XNVqWRTAYAAxiD3z8QF6We8f7d+ihjx/Ky7IBAF1uvLFNH3/cuwsBptOm7rhjpL7+9Um6557h6lx73cGKioocVpgZn8+UdLKkNX1qt/fe7Xr44c80fXrXdlQymdSyZcuyXyAAFKAZ287Y+APD+7cOABh8zpYUctXSNB1deKG7i4sDAIDBj1AwAAAAAAAAII8efND9lZmPPLL3g3SmT3c/oOfxxxOu227pRo/26rzzwnrzzaDmzUvp4osj2mqrZL7L2kA6bWrOnJBOOSWsMWMcffvbUT35ZFzptJPv0gAAAAAAAABAkhSJ2Lr55qj23DOuSZN8uuKKYtXXF9ZgmcrKlC66KKJ581J69dWgzj47rKFDNx9Wlk67P1aQqVQqpfr6+rwtHwCQG6vjqzV30dy8Lf+sJ87S4o7FeVs+AGzJ1qxJ6/LLS/rcrq3Nq8svL9O3vrWVOjqGy+8vrO2tDTVK+lGvnllUlNbMmS264YZGjRy5/vbXsmXLlEhwbhSAwa+6tFo+cyMXsC0SI80BwCXb9qu3v0k35pBD4poypdB/dwMAgHxhUw0AAAAAAADIE9t29MQT7g7kmaajY48N9Pr5hx/e++d+0QsveF23xecmTfLrd78r1rx5fr32WkJnnRXR6NGd+S5rA5GIR/fdF9bhhwdVUZHWD34Q1RtvJGTbBIQBAAAAAAAA6F+27WjOnLiOPz6qsWMdff/7Yb36alCOY+S7tB6hkKXjjovqmWfiqq/36corizVpUt/2/VuWlaPqeicWi6mpqSmvNQAAsmvWvFnqtPN3LHJlfKVOn3W6HIdjjADQ3/7v/zq0bNlGQl96yeuVdtllbBYryqV/Srp/M895Q1ddNVczZqyWsYlNyfr6etm2+wsuAsBAUT6kfMOZhqRJ/V4KAAwKS5bsL8n9b+cLLyTqAwAAbBq/FAAAAAAAAIA8ef/9lOrr3YWC7bJLQuPG9T6sq7Y2qMmT466W9corIXV2cuJbtpimoa9+NaC//rVYLS1ePf54XDNmRBUO53fQ18YsXerTTTeF9dWvBjRlSkozZ0b02WepfJcFAAAAAAAAYJBbsCCln/88otraTh10UFD33htWNOrJd1k9DMPRHnvE9de/RrVkiaF77w3roIOCMk13YWWZBKYYmxrV3kdr1qzRkiVLstIXACD/Hvj4gXyXoKc/e1o3v31zvssAgC3KwoVx3Xzz0Iz6uOyyhHy+gTTk8GxJrRuZn5b0f5L2UllZ5Et7SKfTam3dWB8AMLhMHTt14w8QCgYAfWbbjhYvPt51+512Smjffd1f9BsAAAx+A2kPHQAAAAAAADCo3H+/+yszH3FE3wOk9t474WpZa9Z49dJLX35yHNzxeg0dfnhQ990X1tKlhm67LaYDDojJ6y28K2YvWFCk3/2uWBMn+rXbbnFdd11Uy5en810WAAAAAAAAgEGio8PWTTdFtccecU2a5NeVVxarsdHdhTVypbq6K6xs/vxOvfJKUGedFVZJSean4mYSCjZu3LisBYOtWLFCK1euzEpfAID8aUu06dmFz+a7DEnS+c+er/kr5+e7DADYYlx0UUrxuPttlH326dCxx5Zmr6B+sUrSqV+Yt0DSnpIuVVc42Oa1tbUpEuH8KACD28ETDt74AxX9WwcADAaPPBJXIjHBdftzzim8i0kDAIDCQigYAAAAAAAAkCdPPOF13XbGjL4PhDrooL4PCgoEbO21V4fa2zv63BZ9Ew6bOvXUkObMCam52dI110S1887ugtxy7c03gzrvvLDKy00dckhMd94ZVSxm57ssAAAAAAAAAAOMZTl65pm4jjsuqrFjHf3gB2G99low32WtJxy2dPzxUc2ZE9eiRT79/vfF2mqr7IWVWVZmA3+8Xq9qa2uzVI20ePFitbe3Z60/AED/mzVvljpt9xeoyqZYZ0zfeeQ7SttcbAgAcu0//+nQI48Mcd3e43F09dXZCRzuf3Mk/Wnt/b9K2lHSm33upbGxUbbN+S8ABq9vbfOtjT9Q2q9lAMCg8Ic/uP/tXFWV0vHHh7JYDQAAGIwIBQMAAAAAAADy4LPPUvroo4CrtltvndSkSX0fcHTIIcUqKurNiWvvaPTo2/T3v9fplVc+0U03NWjSpDV9LxSujRnj1fnnh/Xf/wb06acp/fznEY0fn8p3WRvo7DT1zDMhnXJKWGPHOjr++Kiefjouy3LyXRoAAAAAAACAAjZvXkoXXRRRTU2nDjkkqPvvDysW8+S7rB6G4WivveK65Zaoliwx9K9/hXXAAUGZZvYHyCcSmV8cIhQKqaqqKgvVdGlsbFQ8Hs9afwCA/vXAxw/ku4T1vNnypi5/6fJ8lwEAg5pl2brgAlOO436b5dvfXqNp04qzWFV/+5mkgySdLSnmqgfbttXQ0JDNogCgoIwMjVTAu5HzVn2SspeBDwCD3uuvJ/Tqq+4vcPLDH6bk9Q7UQF4AANBfCAUDAAAAAAAA8uCBB9xfmfmII9y1LS72atq0jZ301irpdkknSBotaWeVl/9Zu+0Wld/fFe5k27ZSqcILpdoSTJ7s1+9/X6wFC3x65ZWEzjoropEjC+9K2h0dHt17b1iHHRZURUVaP/pRRG+9lcx3WQAAAAAAAAAKxJo1lm68Mardd49ryhS/rr66WM3NhTXasKYmpV/8IqIFCzr10ktBnXlmWMXFuT3VNpnMzn7UIUOGaNy4cVnpS5IWLVrEcQEAGIDWJNbo2YXP5ruMDfzmxd/orZa38l0GAAxay5Yt03HHrVR5ubvf8CUlln7/e3cXNywcCUlzMu4lGo2qra0t434AoFBVDd1IsLwhaet+LwUABqyrr7Zctx0yxNLZZ4eyWA0AABisCAUDAAAAAAAA8mDWLPe75o491ue67b77plRUZKuk5FVJ50naTlK5pNMk3SNp+Sbbrl692vVykTnTNLTHHgH99a/FWrzYo1mz4jrmmKhCIfcHlnNlyRKfbryxWLvuWqQpU5KaOTOihQsZPAYAAAAAAABsaSzL0VNPxXXssVGNG2foRz8K6/XXg/kuaz3FxZZOPDGq559PaOFCny6/vFgTJvRfWFk2g7dGjBihESNGZKUvx3H02WefKZ0uvItUAAA27fH5jytlFd5xOcux9J1HvqNY58YuYgUAyIRlWVq5coUOPrhdjz22QOedt0TFxX07l+THP25XZeVADwXLnpaWFraFAAxau4zbZeMPbNW/dQDAQFVX16lZs9yHen33u3GVlBDxAQAANo9fDAAAAAAAAEA/W7IkrTffdHciXVVVSjvt5H4w0llnefTKK59oq61+JOk6Sf/rddv29nbXy0V2eb2GjjgiqAceCGvpUkO33hrT9Okxeb1OvkvbwLx5Rfrd74o1caJPX/1qXNdfH9XKlYUXZAYAAAAAAAAgez75JKXzz4+oqiqtr389qAcfDCseL5xTVg3D0d57x/W3v0W1ZImhf/4zrP32C8g0jX6vpbOzM6v9jRs3TkOGDMlKX8uWmfrpT9uUTttZ6Q8AkHsPfPxAvkvYpHkr5+lnc36W7zIAYNBpbm7uuV9U5Oi001boySfn67jjVso0N38eSUVFSr/8ZUkuSxxwHMdRXV1dvssAgJw4bNJhG3+grH/rAICB6tprk0qn3R1L8PlsnXdeUZYrAgAAg1XhnGEBAAAAAAAAbCEefDAp23Z3MPDrX+/MaFBSWVmJiorcBUclk0nXy0XuFBebOu20kObODampydJVV0W0006JfJe1Accx9MYbQZ1zTljjxhk69NCY7rorqnicwWQAAAAAAADAYNDWZunPf45qt93i2mYbv/7wh2K1tvryXdZ6amtTuuSSiBYuTOvFF4M644ywwuH8nkqbTqez3mdVVZWCwWBGfdTX+3XSSeP1l7+M1Pe/vyZLlQEAcqk92a5nPnsm32V8qRveuqHgawSAgSSZTKqjo2OD+cOHW7rkksV66KHPtNdeGz6+rl//Oqpw2JurEgesZDKpZcuW5bsMAMi6oyYftfEHspMxDwCDWlubpTvvdL/v/aij4qqsLKzjJgAA/D979x0eVZW/AfydmmnpEJIQQuhNAQUrCCogTUSqSEdBRNEFUbCArsq6ip3VFQu9CUjvVjq4dJDeQkISCOmZXu79/eFPVzYBkjt3Zm6S9/M8eXY5c8+ZF0kmM/ec8z2kXCwKRkREREREREREFGSrV0sv6tW3r8av51ar1dDppE8m2mw2v56fAis+XouXXrJg/34DTpxwY9IkK+rUcYc6VgkejxqbNpkwdKgZ8fEiBg2yYdMmO3w+aQXriIiIiIiIiIiIKDR8PhHr1zvQt68NiYkqPP+8Gf/5j3/FqOQWHu7DkCE2bNnixNmzOrz9tgV16ihn000gioIBQJ06dSTPBxw5YsTQoXWRkaEHAMycGY0pU/LkjEdERAGw9tRauHzKP+hpxOoRyLXnhjoGEVGlkJ6efsPH69d34YsvLmLGjFTUr1/ygLnbb7djxIjIQMWr8LKzs3mIIhFVOia9CWadueQDWgCmoMchIqpQPvvMgeJi6Wv5J01iMV4iIiIqOxYFIyIiIiIiIiIiCqLCQh+2bTNI6lutmhft24f5nSE8PFxy37w8bvqpKBo31uPddy04e1aHHTucGDXKimrVArO5zB9FRRosWmRG164m1KrlxXPPWbF/PxdUEhERERERERERKdnx4y688IIVyclePPywEcuXm+FwKGdJqlot4v777Zg1y47Ll1WYN8+M9u0NUKulH9oRKD6fLyDjqtVqNGjQABpN+TYobdtmwciRdZCff+3mpKlTY/DFF5wjICJSsu9OfBfqCGWSZc3CmPVjIIo8MIiIyB/FxcVwOksW+ipNmzZWLFt2Fq+/noGYmP+uHZk2zQuNRjmf5ZTowoULEAQh1DGIiGRVN7puyUYVgGZBj0JEVGF4PCK++EL6Ov727e24/Xb/9wEQERFR1cG7dkREREREREREREG0erUTbre023Jdurig0fi/YSkmJkZyX5vN5vfzU3Cp1Sq0aWPAV19ZkJmpwcqVdvTta4PJFJiNZv7IytLhs88saN06DAcOzALwIoCaoY5FREREREREREREAPLzfZg+3Yo77nCgWbMwfPyxBZmZulDHuka9ei5MmWLF+fNe/PKLCSNGmGAyKXupbKCKggG/FwarX78+VKqyzS0sXx6N55+vfd0Cb3/7WxRWriyQMSEREcml2FWMjWc2hjpGmS07vgyLji4KdQwiogotIyOjXNdrtUC/fvlYv/40nnzyKvr1K0CHDhEBSld5eL1eZGVlhToGEZGs7k66u/QH6gU3BxFRRbJggcOvOZEJE5R3aAkREREpm/bmlxAREVU8TzzxBDp27Hjdx5OTk4OYhqgkfo+S0vF7lCoCfp8SUUW1cqX0vr17yzMZaDAY0KtXL9x993UWdgBISEgotd3r9UIQBKjVyt5ERaXT6VR49FETHn0UsFoFLFliw6JFKmzbZoTXq6zJZoejIYD3AbyHpKSzuOWWI7j11tMwmdwA+LueQo/vR0np+D1KROQfvo5SRcDvU1I6fo+S0vF7tGy8XhEbNzoxe7aAjRuNcDotoY5UQkSED716OfHkkxq0aRMGtTos1JHKRRTFgI6v0+lQr149nD179gYZgBkzquPf/65xw7E8HjWGDg3Hxo1FaNuWxQOqOr6OktJVte/RdafXweVzhTpGubzw/Qvo36w/dBplFRkNlqr2PUoVE79Plevq1avwer2S+losAsaNu4KUlDoyp6q88vPzERUVBbPZHOooVMHwdZSU6pGGj+DrA1+XaI9sFIlxb4z788/8HqVQ4+soKYUgiPjkE+lr5xs3dqF7d4OMiYiIKgf+rie6MZUY6NUERFSpHDp0CLfddluZrz948CBatmwZuEBEREREREQKw89NdCNOp4C4OBHFxZpy9w0P9yE7WwWDQZ5iXOfOnYPD4ZDUNzExETExMbLkIGXIyvJi/nwnFi/W4tAh5U466/UCOnRwYvBgoFcvA4xGFqcjIiKqaPiZiYiIiIioYvjtNze++caNJUvCcPmy8gp1qNUi7r/fgaFDRfTrZ4TJVDHvFQqCgOPHj1/TtnHjRkycOLHMY3z77bd47LHHbnpdcXExLl68WKLd6wX+8Y9EfPdd2e/7x8V5sHWrB40bm8rch4iIAqv3kt5YedKPE6pCZM+Te3BX0l2hjkFEVKEIgoATJ074VWDYZDKhbt26MqYKrvLON61atQr16tXz6znVajUaN27MgxSJqFLwCl7o3i55z0+n1sE9xR2CREREyvb99w507myU3P+LL2x4+mkWmKXg4Ro9IqLKgXehiIiIiIiIiIiIgmTjRqekgmAA0KGDU7aCYAAQEREhuW9hYaFsOUgZEhK0mDjRgoMHDTh2zIVJk6xISVHe4h63W42NG00YNMiE+HgRgwfbsHmzAz4fz74gIiIiIiIiIiLyV16eDx9/bEOrVk7ceqsen35qUVxBsAYNXPj73224cMGLn34yYdgwc4UtCAYAXq83aM8VHh6OxMTEa9ocDhXGj08uV0EwAMjO1qF7dzWyslxyRiQiIomsbis2nt0Y6hiS1IyoGeoIREQVTmZmpl8FwQCgVq1aMqWpGGrW9P/3jSAISEtLkyENEVHoadVaRBmiSrR7BA/O550PfiAiIoX74APp77/j4jwYPlx6QTEiIiKquiruSggiIiIiIiIiIqIKZsUK6ROCvXrJGARAdHS05L4Oh0PGJKQ0TZuG4d13LTh3Toft250YOdKG2NjgbUwrq6IiDRYuNKNLFyOSk714/nkrDhzgBjQiIiIiIiIiIqLy8HpFrFplx6OP2pCYqMILL5hx4IAh1LGuERnpxYgRVmzf7sTJk3q88YYZycnKKlYmldPpDOrzxcTEIC4uDgBQUKDBqFF1sGWLtENEzp83oHt3H4qLlXf/mIioqll/ej2c3uD+TpHDuLvGISkiKdQxiIgqFI/Hg4KCAr/GiIqKgk5XOT5TlZVWqy1RJFmK3FwbjhzhYYpEVDk0iGlQavuSY0uCnISISNl++82NH3+UXtTrqadcsh4MTkRERFUH30EQEREREREREREFgc8nYtOmMEl99XoBPXvKuwlLq9VCo9FI6isIAtxut6x5SHnUahXatjXg66/NyMrSYMUKO3r3tsFoFEIdrYTMTB3+9S8LWrUKQ9OmLvz971akpnpCHYuIiIiIiIiIiEixjhxx47nnrEhK8qJXLxNWrzbD5VLOklKNRkTHjnbMnWtDVpYas2ZZ0LatAWq1KtTRZOVyBf+gg7i4OISFRWPo0Do4fNjk11gHD5rQq5cDHo/y7hsTEVUly44vC3WEMkmKSMIDKQ/gqdufwubBm/Fh5w9DHYmIqMJJT0/3q79KpZKlOFZFFBMTA7PZLLn/qVNhePzxeujdO4zFkYmoUmiT3KbU9l9SfwlyEiIiZZs2zQNRlDY3YTL5MG6c9IJiREREVLVpQx2AiIiIiIiIiIioKti61YWcHGmFvdq1cyIy0r+NOaUxmUwoLi6W1DcvLw/x8fEyJyKl0ulU6NXLhF69gOJiAUuW2LBokQrbthnh8ylrE96JE2F4880wvPWWiLvvdmDgQAEDBxoQEyOtCB4REREREREREVFlkZvrw9y5Tsyfr8GhQwYA+lBHKqFhQxcGD/bgiScMqFlT/vviSuPxhOZwgwYNaqJXr3x89JH/B5L89FM4nnoqHzNnRkKtVk5hOSKiqsLmtmHDmQ2hjvGneEs8GsQ0QMPYhmgQ0wANYhugQUwD1IupB5Ou8v9uJyIKJJvNBrvd7tcYcXFxVfp9e+3atXHixAmIoljmPoIAzJsXi+nTa8Dj+f2/3fPPF2D27KgApSQiCo5ejXrhkz2flGj/Lfu34IchIlKorCwvli6VXtRr4EAnYmOlF6YlIiKiqo1FwYiIiIiIiIiIiILgu+98kvv27Fn2hWjlERUVJbkoWHFxMYuCVVHh4WqMHGnGyJFAZqYX8+e7sHixBocP+795TE6iqMLu3Ubs3g1MmCCgUycbBg1SoVcvAwyGqrvAlYiIiIiIiIiIqhavV8SaNQ7MmQNs3myA2628zSdRUV706ePEE09ocffdYVCrw0IdKWhCVRQMAKZNi0RmZgG+/TbKr3EiI73o0CEPFy8WoE6dOvKEIyKiMlt/Zj0cXkdQn7O6qfqfxb7+Wvirfkx9hIeFBzULEVFVcunSJb/6a7VaVK9eXaY0FZNarUZycjIuXrxYpuuzsnR47bWa2LvXck37nDlR6N69AH37RgUgJRFRcLRNbgsVVBBx7frUK7YrIUpERKQ8n3zihMtlufmFpVCrRbz4ok7mRERERFSVsCgYERERERERERFRgAmCiPXrpU3qqdUi+vYNzAao8HDpC7JdLpeMSaiiSkzUYtIkLSZNAo4fd2HOHA+WLdMjNVUf6mjXcLvVWL/ejPXrf9+g1qOHA0OHqvHggwZoNKpQxyMiIiIiIiIiIpLdoUMuzJzpwdKlYcjONoU6TglarYj773dg+HCgTx8DDAZpm2oqOq/XG7Ln1mjUmDcvAlevFuOnn6TNFyQmujFjRirq1HHDZvu9SEFSUpLMSYmI6EYOXz4ctOeqHVkbh54+hChDVNCek4iIfpefn+93UeGaNWvKlKZiCw8PR2RkJAoLC697jSgC69dH4p13ElFcrCn1mmefNaNNGxcSEqpOYWsiqlzUajViTbHIsedc0y6IAg5lHULLhJahCUZEpBB2u4CZM6UfmNytmx2NGinvoBYiIiKqOFgUjIiIiIiIiIiIKMAOHnQjLU3aArA773QiPt4oc6LfqdVq6PV6uN1uSf1tNhvMZk5W0u+aNg3DtGlhePddETt2ODFvnhcrVxqQl6es29CFhVosWKDFggVAYqIHffu6MHy4DrfdxkWaRERERERERERUseXk+DB7tgMLF2px+LABgPLueTVu7MKgQR488YQBiYnKK1YWbL/9poHbbUC1al5ER3uhDfLtVJ1OjZUrjWjXzo5Dh8r379GokQNffHER1av/t7BZQUEB9Ho94uLi5I5KRETXYdJJ/30aERaBBjEN0CC2we//+///P8GSgJRPU0pcX+gqZEEwIqIQEAQBWVlZfo1hMBj8OjywsqlZsyasVit8Pl+JxwoLNXj77URs3hx5wzGys3UYObII69aFQcXz6IiogmpSrQm2p20v0b7sxDIWBSOiKu/rrx3IzZW+Tv6ll0ovLktERERUVsrajUVERERERERERFQJLVvmgdTNV488Isgb5n9YLBbk5eVJ6puXl8eiYFSCWq1Cu3YGtGsHfPGFiLVr7ViwQMSmTUY4HOpQx7tGZqYO06frMH060LSpEwMGeDF0aBhq19aFOhoREREREREREVGZeDwiVq92YM4cEd9/b4THYwl1pBKio73o08eFJ5/U4O67lVmsLFTefbca9uz5/d9MrRYRHe2FXp8f1Azh4VqsX+9D27ZOXLhgKFOfu+6y4pNP0mCxlJzDyM7OhlarRUxMjNxRiYioFKNajcL0/0xHti271MfNOnOJol9//G91U3WorlPFRKvWwit4r2krdhXLnp+IiG7uypUrEAT/1g/VqlVLpjSVg1qtRp06dXD27Nlr2nfvNmPy5CRkZ5dt3ciGDRH4/PN8jB0bHYiYREQB1752+1KLgm1L3RaCNEREyuHziZg+Xfpa4tatHWjXLjCHghMREVHVwaJgREREREREREREAbZ2rfTbcP36BbY4UUxMjOSiYDabTeY0VNnodCr07m1C795AYaEPS5bYsHixCtu3G+HzKeuY1OPHDXj9deCNN0Tce68Djz8uYOBAA6KjeVIXEREREREREREpz4EDLnzzjRfLloUhJ8cU6jglaLUiHnzQgeHDgV69DDAYeMBEaa5e/e/8gSCokJurAxAe9ByJiWFYv96O9u09uHr1xvMS3boVYOrUDOh04nWvyczMhE6nQ3h48P8uRERVTZw5DkeePoJPf/0UGcUZiDfH/1n4q2FsQ8Rb4q9b+OtGIsMikevIvabNJ/qQY89BNVM1ueITEdFNeL1e5Obm3vzCGwgPD0dYGIsz/y+DwYBq1aohJycHTqcKn35aAwsWlP933KuvRqBjRzsaN1beZ3Miopvp16wfpm6fWqL9RM6JEKQhIlKOFSscOH9e+vu78eOvf/+ciIiIqKxYFIyIiIiIiIiIiCiATp924/hxg6S+t9ziRP360vqWlcFggEqlgiiWf/LR6/VCEASo1eoAJKPKJjJSg6eeMuOpp4CMDC/mzXNhyRINDh8O7Pd4eYmiCjt3GrFzJzBhgoBOnWwYPFiFnj0NMBj4vU5ERERERERERKFz5YoXc+c6sWCBFkePGgAob1N306ZODB7sw/DhYUhI4Ibom8nJUc4y3iZNTFi+vAhdu6phs5V+WMLw4VcxfvwVlGVa4OLFi6hfvz4MBmXdAyYiqoxqWGrgnQ7vyDpmYnhiiaJgALAldQv6Nu0r63MREdH1ZWRk+D1GUlKSDEkqp/j4eBw75sDo0Qk4d07aZ5fiYg2GDhWxa5cArZbrSoioYmleozk0Kg18ou+a9jxHHteGElGV9vHH0g8+Tklxo39/o4xpiIiIqKriJzIiIiIiIiIiIqIAWrrULbnvww97ZUxyff5syCkoKJAvCFUZNWtq8corZhw6ZMBvv7kxYYIVycnSf1YCxeVSY906MwYMMCE+XsCwYTb8+KMDgsATvIiIiIiIiIiIKDg8HhFLl9rRrZsdtWqpMWmS5f8LgilHbKwXo0db8euvThw7ZsArr5iRkKCcYldKZbN5UViorP9O990XgXnziqHVCte0q1QiJk7MwoQJZSsI9odz587B4/HInJKIiIKhQUyDUtt/vfRrkJMQEVVdTqcTxcXFfo1RrVo1aDSlF/2l391+exI8HulFHwBg714z/v73AnkCEREFWZw5rkSbCBHb07aHIA0RUejt2uXE7t3Si3o984wbWq1/7y+JiIiIABYFIyIiIiIiIiIiCqi1a6UvrOvfXydjkuuLiIiQ3LewsFDGJFQVNWumxwcfWHDhgg5btjgxYoQVMTHBKYhXHoWFWsybZ0anTkbUru3B+PFWHD7sCnUsIiIiIiIiIiKqpPbtc+Hpp61ITPThscdM2LjRBI9HOUs+tVoBXbrY8e23dmRmajBjhgV33qmsYmVKl56uvIMSAKB37yhMn17w5591OgHTpqVjyJDcco8liiLOnj0LQRBufjERESlKy/iWpbYfzT4a3CBERFXY/Pm5sNulFxNQq9WIiytZ6IWuFR2tw1dfOaHR+HdA3LRpUdi5078ibkREoXBr3K2ltq88uTLISYiIlOH9932S+0ZFeTFmjEnGNERERFSVKWeFCBERERERERERUSWTleXFvn3SNkGlpLjRooVe5kSli46OLtf1hYVqfP99BN58MxFjx8YEKBVVNWq1Cu3bGzBrlgVZWRosW2bHo4/aYDAob7PYpUt6fPKJBS1bhuGWW5yYOtWKtDRPqGMREREREREREVEFd/myF+++a8Mttzhxxx1h+PJLC3JytKGOdY1bbnHi3XdtSE8XsHGjCY89ZoJezxPvpVDyPcUxY2IweXIeLBYfZsy4iC5diiSP5fP5WBiMiKgCujf53lLbz+efD3ISIqKqae9eK8aMSUSPHg2xZk0UpLydTkxMhFrNrYNl0blzJJ55psCvMTweNUaM0MFqVd5BeEREN/JgnQdLbd+ZtjPISYiIQu/cOTfWrpVe1GvECCcsFr4HJyIiInnwXQUREREREREREVGALFvmhCBI2wz18MNuqNXB2Uil1Wqh0Wiu+7jHAxw4YMJnn8Vh0KC6aNeuCSZMSMZ338Xg++8jkJPjDkpOqjr0ehX69jVh5UozLl8WMWOGDe3aOaBW+3cqayAcO2bAlCkW1KmjxX33OfDFFzYUFEg/JYyIiIiIiIiIiKoWt1vEt9/a0aWLHbVqqfHKK2YcOybtsIlAqVbNi9Gjrdi714WjRw2YNMmM+HhlFSuriDIzlV0k6623orFpUxruvNPm91hutxupqan+hyIioqBpU6tNqe1XbFeCnISIqGp66SURPp8K2dk6vPZaEgYMqIe9e8tenECv1yMqKipwASuh99+PxC232P0aw25X49dfM2VKREQUHP2b9S+1/UzemSAnISIKvQ8/9MDnk7Z+X68XMGGCsuZ3iIiIqGJjUTAiIiIiIiIiIqIAWb1a+u23vn2Du6HKZPrvwkFRBNLS9Pj22xg8/3wy7ruvCYYNq4svv4zDkSOmawqdeb0qrF/v/4YgouuJjNRg9Ggztm41IjXVi6lTrWje3BnqWCUIggo7dhjxzDNmJCSo0LOnDUuX2uFyKXtjHxERERERERERhcZ//uPC6NFWJCT48PjjJmzebILXq5wlnTqdgG7d7Fi61I7MTA1mzLCgdeuwUMeqVLKylHcIwl+pVCrcc09t6HQ6Wcaz2+1IS0uTZSwiIgo8g9YAnbrk7wCr2xqCNEREVcuyZQXYujX8mrYTJ4x44om6GDeuFtLS9Dcdo1atWoGKV2mFhakxd64Ag0HaOo9evfKxfPlZ1KhRhKtXr8qcjogocOpE1yn1vX+hqxBuLw+MJaKqIz/fh/nzpRf16t3bgZo1eaAKERERyUc5K0iIiIiIiIiIiIgqkYICH7ZvlzYxGBfnQdu2wd1cFRERjR9/jMBbbyWia9eG6N69If7xj0T88ksEbDbNDfv+8IO0E5GIyqtWLR1ee82Cw4cNOHLEjfHjrahVS3kLj5xONdasMeOxx0xISBAwfLgNv/zihCAoe5MfEREREREREREFVlaWF//4hxVNm7pw111h+OorC/LylLVBpHlzJ957z4r0dAHr15vQr58JOh3vAQfC5cvK/++qVqtRr149qNXyLDcuKirC5cuXZRmLiIgCL8oQVaJNEAVkFmUGPwwRURXh8Qh47bXrrzf66adI9OxZH++/H4/CwtLfp5vNZhiNxkBFrNRuv92CyZMLytUnOtqLTz65iLfeyoDZ/HtBsStXrsDtVt56FiKi60kMTyy1fdO5TUFOQkQUOp995oDVeuM18zcycaKy5nuIiIio4mNRMCIiIiIiIiIiogBYtcoFj0fa7beuXd3QaIK7GSgiwoJ//jMBy5bFICPj5ieK/tWOHVxISMF36616fPSRBampOvz8sxPDh9sQFeUNdawS8vO1mDvXjAcfNCAlxYMXXrDi6FEu/CQiIiIiIiIiqipcLhGLFtnx0EN2JCdrMHmyBSdOBPdQiJupVs2LZ56xYv9+Fw4fNmDiRAtq1ODmlUC7ckX5RcEAQKvVon79+lCp5Mmbk5OD3NxcWcYiIqLAqhlRs9T2rRe3BjkJEVHV8dFHBThz5saHEHq9asybVw3duzfEwoUx8HiufbxWrVoBTFj5vfxyFNq1s5bp2vvuK8aKFWfRoUNxiccuXLggdzQiooBpGd+y1Pa1p9YGNwgRUYi43SJmzJA+d/PAA3bcdpuy5n6IiIio4mNRMCIiIiIiIiIiogBYuVKU3LdPn+DfttNo1Gjb1i6p78WLYTh2TFpfIn+p1So88IABs2ebceWKBkuX2vHIIzYYDEKoo5WQnq7Hxx9b0Ly5Hs2bOzF1qhXp6Z6bdyQiIiIiIiIiogpnzx4nRo2yISHBh0GDTPjhBxO8XuUUgdLpBDz8sA3ffWdHZqYGn39uwe23c8NKMF29qgl1hDLT6/WoU6eObONlZWWhqKhItvGIiCgwGsY0LLX914xfg5yEiKhqyM11Y9q0iDJfX1ioxbvvJqJ37wbYujUcoghER0dDq2WRZ39oNGrMmaNBdPT1D6YzGARMmZKBzz+/iGrVSr/O4/EgKysrUDGJiGT1UL2HSm3ne38iqirmzbMjM1Mnuf+ECcqZ/yEiIqLKg0XBiIiIiIiIiIiIZOZwCPjppxuf2nk9ERE+dO4sra+/Onb0Se67dq1TxiRE0uj1KvTrZ8Lq1WZkZYn4979tuO8+B9Rq6UX6AuXoUQOmTLEgJUWLdu0cmDHDhsJC6T+DREREREREREQUepmZXkydakWTJi7cc48B33xjRn6+sjZjt2jhxLRpVly6JGDtWjP69DFBp+NmlVCoSEXBAMBkMiE5OVm28dLS0uBwOGQbj4iI5NcyoWWp7b9l/xbcIEREVcSUKTbk5ZX/M2RqahjGjq2N995LQEJCQgCSVT116hjxwQfFpT52yy12LFt2Fv3750N1k4/Tubm5sNt50CIRKV/fJn1LbT+ffz7ISYiIgk8QRHz6qfT79U2auNC1a2jW/hMREVHlxqJgREREREREREREMtuwwQmbTdrkYMeOTuj1odmA1aOHCSqVtOJJv/yirI1tRFFRGowZY8a2bUZcuODF229bccstyiteJwgqbN9uxJgxZiQkqPDoozZ8950dbrfyCpkREREREREREVFJTqeABQvs6NTJjtq1NZgyxYKTJ8NCHesacXEejB1rxcGDLhw6ZMBLL1kQF8d7uqF29WrF+zeIiIiQtcjA+fPn4Xa7ZRuPiIjk1bZW21LbUwtSgxuEiKgKOHHCjpkzI/0ao18/DdRqbhWUyxNPRKN378I//6zRiHj66WzMm3ceKSll/xyTmpoKQRACEZGISDZxljgYNCUL2tg8Nljd1hAkIiIKnu+/d+K336QX9Ro3zgu1moevEBERkfwq3ooCIgqp+Ph4vPHGG+W6noiIiIiIqCrh5yYCgBUrpBfz6dVLxiDllJRkQJMmDhw/bix33927zXC7Bej1XFxIypOcrMPkyTpMngwcOeLGnDluLFumx6VL+lBHu4bDocbq1WasXg1ER3vx6KNODB2qRbt2YVwwQERElQY/MxERERFRZSAIIvbscWHmTC9WrDCgoMAU6kgl6PUCunRxYPhwFXr0MEKr1YU6Ev2FzydApQLUahGC4N+9v9jYWJlSlf35PB4PcnJy/B5LFEWcPXsWDRs2hFbLJc1EREpzV827Sm3PtmUHOQkRUeX30kteuN3S19x07FiMnj2j5AukcMGab/rqKyN+/dUNjUbEO+9cQosWjnKPIQgC0tPTUbt2bUkZiIiCpVZkLZzJO1OiffXJ1RjUfFAIEhERBceHH0pf9x8f78Hw4cqbIyLiGj0iospBJYqi9HcqREREREREREREdA2vV0R8vA+5ueXfvGIwCLh6FbBYQldYa8yYfMyYES2p76ZNhejc2b9TS4mCRRBEbNniwty5PqxZE4aCAuVuOEtOdqNvXzdGjNDjlluUVciMiIiIiIiIiKgquXTJi1mzXFi4UIvTp8NCHadUt93mxODBPgwbZkBsrCbUceg6XC4Xzpw5A58PyM/X4upVLXJyfv86ceIUFi/uWOaxDh48iJYtWwYu7HWkpaWhqKjI73E8HhVWr66GyZOrQ6vlwSNEREoTNjUMbp/7mjYVVBDeEEKUiIio8tm8uRBdukhfb6PVCti7146WLS0ypqI/7NmTD7U6CyaTf7/7kpOTERERIVMqIiL5Pf7d4/j22Lcl2gfeMhAL+ywMQSIiosA7csSNFi2kr8t9/XUr3nyT78OJiIgoMDh7TkREREREREREJKNffnFKKggGAO3aOUNaEAwAOndWSe67aRMXflPFoVar8OCDBsyda0ZWlhrffmtHjx52hIUp7/s4LU2Pjz6y4NZb9WjRwol33rEiI8Mb6lhERERERERERFWCwyFg3jwbOna0IyVFgzfeMCuuIFiNGh4895wVR464ceCAAS+8YGZBMIVzOp0AAI0GqFbNiyZNnLjvPit69SpA7975IU5XNsnJyTCZTH6NYbOp8cwztfHmmzUwenShTMmIiEhOMcaYEm0iRFwsvBiCNERElY/PJ+Dll3V+jTF0aCELggXQ3XdHIzbW//sA6enp8Pl8MiQiIgqMbg26ldq+L2tfkJMQEQXPtGkeyX3NZh/+9jejjGmIiIiIrsWiYERERERERERERDJavlz64q1HHxVlTCJNp04WGI3S/g5btyprIxxRWRkMajz2mAlr1piQlSXi889taNPGAbU69D+T/+vIEQNee82C2rU1uP9+O7780obCQi4aJSIiIiIiIiKSkyCI2LHDiREjbIiPFzFsmBk//WSCzyf9UAW5hYUJePRRG1autOPSJS2mT/+9qDxVDG63O9QRZJGSkgKdTloBg5wcLUaMqIM9e34vXjBrVjSmTMmTMx4REcmgZnjNUtu3XNgS3CBERJXU3LkFOHRIerHdyEgv3nnHLGMiKk1KSgpUKv/uCYiiiNTUVHkCEREFQK8mvUptTytMC3ISIqLgyMz04rvvpBf1GjTIgZgYHtBCREREgcOiYERERERERERERDIRBBHr10vbdKXRiOjTJ/RFtcxmLe680y6p75EjRly9Wjk2MlHVFR2twTPPmLFjhxHnz3vx1ltWNGvmDHWsEnw+FbZuNeHpp81ISFChd28bli+3w+NRXiEzIiIiIiIiIqKKIi3Ng7//3YZGjdy47z4D5swxo6hIWRs6WrVy4uOPbcjMFLFypRmPPmqCVqucYmVUNpWlKJharUaDBg2g0ZTv5+TCBT0GD66LEyeu3XA1dWoMvviChcGIiJSkUWyjUtv3Zu4NchIiosrH6/WiZcssvPhiFsLDpR0GNn58EWrUYIHoQNNoNKhVq5bf4zgcDuTm5sqQiIhIfha9BWZdyUKTTq8TOfacECQiIgqsjz92weWSVmpDoxHx4ot8H05ERESBxaJgREREREREREREMtm714VLl6RN8N11lxNxcVqZE0nzwAMeSf1EEdi2zSpzGqLQqV1bhylTLPjtNwMOHnRh3DgratZU3mY9h0ONlSvN6NvXhIQEH5580opt25wQBBYIIyIiIiIiIiK6GbtdwJw5djz4oB116mjx5ptmnD0b+gMc/io+3oNx46w4etSNffsMGDfOzNPnKziPR9p9eCVSq9WoX78+VKqyFac7fNiIoUPrIiOj9PmU55+PwooVBTImJCIif9yecHup7ceyjwU5CRFR5XPp0iXo9SKGDcvF+vWn8fjjudBoyj7Pn5LiwssvRwUuIF0jIiICERERfo+TlZVVaQpFE1HlUyeqTqnty44tC3ISIqLAstkEzJwpfS6oe3c7GjRgUTAiIiIKLBYFIyIiIiIiIiIiksmyZV7JfXv2lHbiZyB07172ScrERDf69s3DRx+lYdu2E2jenKdZUuXUsmUYPv7YgrQ0HX74wYEhQ2yIjJT+Mx8oublazJplQfv2BtSt68FLL1lx/Lgr1LGIiIiIiIiIiBRFEERs2+bEsGE2JCSIGDHChF9+MUEQylbUKBgMBgG9etmwZo0D6elafPyxBbfcwg0mlYXXq7x7i/7Q6XSoV6/eTa/bsiUcI0fWQUHB9Q9J8XrVGDYsHNu3F8kZkYiIJGqb3LbU9tTC1OAGISKqZJxOJ6zW/x68Fx3tw6uvZmHFijNo165s74XfesuOsDBuDQympKQkaDT+F+lOTU31PwwRUQDclXRXqe3fn/s+yEmIiALrq68cyM+Xfpj3Sy/x4BYiIiIKPJUoimU/QoCIiIiIiIiIiIiuq0kTF06elHZq0IULHqSk6GROJI3PJyApyYvLl0tuMDOZfLjzThvuvdeKe++1IjnZDdX/7JO75ZZbgpSUKLScTgGrVjmxYIGIH380wuVS7mLbFi2cGDDAh6FDw5CYKH0hAxERERERERFRRZaa6sHMmS4sXqzDuXPST4APpNatHRgyxIchQ4yIjuamksrq1KlT8Hg8pT528uRJ9OvXr8xjHTx4EC1btpQpmX+Ki4tx8eLFUh/77rtovP12YpmL71Wv7sHWrR40aWKSMyIREZWTV/BC93bJeWyzzgzrq9ZSehARUVmcOXMGLtf1D/jatcuMDz5IwJkzhlIfv+suG3buNEKjUe46hcrKbrfj/Pnzfo8TGxuLhIQEGRIREcln9cnVeHTJoyXaa0fWRuq41KDnISIKBJ9PRP36HqSmSjuI5c47Hfj1V6PMqYiIiIhK4s4fIiIiIiIiIiIiGZw86ZZcEKxFCydSUkpfxBcKGo0abds68N13eqjVIm65xYF77vm9CNitt9qhu0ntMqvVCovFEpywRCFkMKgxYIAJAwYAeXk+LFpkw+LFauzebYAolm1jW7AcPmzA4cPA5Mki7rvPjoEDRQwYYER4OBcIExEREREREVHlZrcLWLLEiblzge3bjRAEZRzO8FeJiR489pgLI0fq0LQpN5JUBT6fL9QRAiI8PByJiYnIzMz8s00UgS++iMMXX8SVa6yrV3Xo3l3Ajh0uJCYqs4gfEVFVoFVrEaYJg8t3beEau8ceokRERBVfYWHhDQuCAcC999qwbNlZrFoVjX/9Kw65uf/9LKtSiXj/fR8LgoWIyWRCbGwscnNz/RonNzcXUVFRMBp5H4CIlKNr/a6ltmcWZ5baTkRUEX33nQOpqdIPoxg/XpQxDREREdH18e4fERERERERERGRDJYu9Uju+/DDXhmTyOOJJzz48MM0bNt2EgsXnsfYsdm4/fabFwQDgPz8/MAHJFKYmBgNxo41Y+dOI86f9+LNN21o0uTGi3hDwedTYcsWE556yowaNYDevW1YscIOj4eLFIiIiIiIiIio8hAEEVu2ODFkiA3x8SKeeMKErVtNEATlFHI3GgX07WvDunUOpKVp8dFHFjRtysJHVYUoVt77cTExMYiL+70AmNcLvPlmYrkLgv3hwoUwdO/uQ3Gx8uZRiIiqklhjbIk2ESLO5J4JQRoioorvr0V0b0SjAfr0ycf69WcwalQ2wsIEAECfPkW4776IQEakm0hISICuLIuobiI1NRWCIMiQiIhIHnqtHpFhkSXaPYIHFwsuhiAREZH8Pv5Y+lxRSoob/fqxqCsREREFB4uCERERERERERERyWDNGo3kvv3762VMIo8HHrDgoYeKEBnpK3dfm80WgEREFUdKig6vv27G8eNh2L/fheeesyIxUXrhwEBxONRYudKMPn1MSEjwYdQoG7Zvd0IQKu+GRCIiIiIiIiKq3C5c8GDyZCvq1/fggQcMWLDAjOJi6fduA+HOOx34179syMwUsWyZGd27G6HRKKdYGQVHZS4KBgBxcXEID4/C+PHJWL48xq+xDh0yoVcvBzwebpQnIgqVWpG1Sm3fenFrkJMQEVV82dnZ8PnKtxbHbBbw/PPZWLv2DHr2zMd77ylvnVFVVKdOHb/H8Pl8uHTpkgxpiIjkUz+mfqntS44tCXISIiL57djhxK+/Si/q9dxzHs7pEBERUdCwKBgREREREREREZGfMjK8OHAgTFLfunXdaN5ceYv1DAYDVCppk5Zer5enWBL9v9tvD8P06RakpWmxebMDgwfbEBFR/mJ7gZabq8U335jRrp0B9ep5MGmSFcePu0Idi4iIiIiIiIjopmw2Ad98Y0O7dg7Uq6fFP/5hwYULyrrnWrOmGxMmWHHihBu//mrE2LFmREUpq1gZBY/X6w11hKCoXTsJt98uz73Qn34Kx/DhRZx7ICIKkUbVGpXavi9jX5CTEBFVbIIg4OrVq5L7JyR48PHHBahbV3oRA5KPXq9HfHy83+MUFRWhuLhYhkRERPJoU6tNqe0/X/g5yEmIiOT3/vvS71lHR3sxejTfixMREVHwsCgYERERERERERGRn5YudUEUpRXQ6t7dLXMa+RiN0icuCwoK5AtCVAloNCo89JAR8+ebcfmyCosW2dGtmx16vfI2saWm6jFtmgXNmoXhttucmDbNiqysqrFRkYiIiIiIiIgqBkEQ8fPPTgwaZEN8vIhRo8zYvt0o+T5tIBiNAvr1s2HDBgcuXtThgw8saNxYWcXKKDRcrqpTjH/atEg8/niB3+Oo1SIaNLDh4sWL/ociIqJyaxXfqtT24znHg5yEiKhiy8jIgCiKfo1Rq1YtmdKQHKpVq+bX+qo/rFlzFU6n8taPEFHV9GjjR0ttP5p9NLhBiIhkdvasG+vXmyT3f+IJJ8xmluYgIiKi4OE7DyIiIiIiIiIiIj+tXi19o1m/floZk8grIiJCct/CwkIZkxBVLkajGo8/bsL69SZkZYmYPt2Ge+5xQKXyb/FvIBw6ZMCkSRYkJ2vQoYMd33xjg9XKhahEREREREREFBpnz7rxyitW1KvnQYcOBixaZIbVqgl1rGvcfbcDn39uQ1aWiKVLzeja1QiNRjnFyij0qlJRMI1GjblzI9ChQ7HkMQwGAZ9+moa+ffNhs9lw6dIlGRMSEVFZ3Ff7vlLbLxawWCMRUVm53W6/19LExMRAq1XuOqOqqnbt2lCppH3ud7tV+PDDGhgypA4mTOBaKyJShva120OFkq9rV6xXQpCGiEg+H3zghs8n7X2bXi/ghRcMMiciIiIiujEWBSMiIiIiIiIiIvJDXp4PO3dKm+SLj/egTZswmRPJJzo6WnJfh8MhYxKiyismRoPnnjNj1y4jzp3z4vXXrWjcWHmbAr1eFX7+2YRRo8yoUUNE3742rFplh8ejvEJmRERERERERFS5WK0CvvrKhrZtHWjYUId337UgNVUf6ljXSEpyY+JEK06edGP3biOeecaMyEhlFSsj5XC73aGOEFQ6nRorVxrRsqW93H2jorz45psLuP/+/xYVKygoQHZ2tpwRiYjoJlrUaFFqe44jJ8hJiIgqrvT0dL/6q1QqxMfHy5SG5KTVapGUlFTufqdPh2HAgHqYM6c6RFGFGTOisGlTUQASEhGVj1qtRowxpkS7T/Thtyu/hSAREZH/8vJ8WLDAKLl/374OJCayQC8REREFF4uCERERERERERER+WHFCie8Xmm32bp2dUGtlnbiUDBoNBpoNNI2rgmCUOU2NhH5q04dHd5804ITJ8Kwb58LY8dakZDgCXWsEux2DZYvN6NXLxMSE3146ikrduxwQhBYIIyIiIiIiIiI5CEIIn74wYHHH7chPl7E6NFm7NxphCgq536qyeRD//42bNrkQGqqDu+9Z0GjRsoqVkbKVBXvnYeHa7F+vQZ16pT9QISaNd2YN+88WrQoeQhJdnY28vLy5IxIREQ3oFarYdCWPCjL7rFDEIQQJCIiqlhsNpvfh+vFx8dDreY2QKWKjIxEeHh4ma4VBGDu3FgMGFAPZ84Y/tKuwqhRBuTlKW+dCBFVPY2rNS61fenxpUFOQkQkj3/9ywmbTfphLpMm6WRMQ0RERFQ2vBtIRERERERERETkh1WrpPft00f65GKwmM1myX25IYdIulatwvCvf1mQnq7Fpk0ODBxoQ0SEL9SxSsjJ0eLrry247z4D6tf34OWXrTh5suptaiQiIiIiIiIieZw548bLL1tRp44HDz1kxLffmv3apBEI99zjwBdf2HD5sgpLlpjRubMRGo1yipWR8nm93lBHCInExDCsX+9D9eo33+DepIkDCxacR50617/XmJmZieLiYjkjEhHRDVQzVSu1/XjO8SAnISKqeNLT0/3qr9VqERsbK1MaCpRatWrdtHBbVpYOo0al4IMPEuDxlLz20iU9Ro+2ByoiEVGZtavdrtT2ralbg5yEiMh/breIGTOkH+rSoYMdzZvzUBgiIiIKPhYFIyIiIiIiIiIikshuF/DLLyVPRC6LyEgvHnpIWt9gio6OltyXm3GI/KfRqNC5sxELF5px+bIKCxbY0bWrHTqd8k5dv3BBj/fes6BJEz1uv92J99+34vLlqrnBkYiIiIiIiIjKrrhYwIwZNtx7rwMNG/5+fyEtTVmbK5KT3Zg0yYrTp93YtcuIp582Izycyy9JmqpaFAwAmjQxYflyB8zm6x+AcM89VsyefQHVqt38v9PFixfhdDrljEhERNeRHJFcavu2i9uCnISIqGLJy8vz+zNAUlKSTGkokNRqNWrXrn3dx9evj0SfPvXxn/9YbjjOd99FYvbsfLnjERGVS9+mfUttP5FzIshJiIj8N2eOHZcv6yT3nzCBB8MQERFRaHBVChERERERERERkUTr1jlht2sk9e3UyQWdTvmThGazWXJfl8slYxIiMhrVGDTIhA0bTMjKEvHpp1bcfbcj1LFKdfCgARMnWlCrlgYdO9oxc6YNVqvyCpkRERERERERUWgIgojNmx147DEb4uNFjBljxu7dxlDHuobZ7MOAATZ8/70DFy7o8O67FjRooKxiZVQx+XzXL4hVFdx3XwTmzSuGVlvyfuHDDxfg888vwmwu+73Ec+fOwePxyBmRiIhK0aR6k1Lb92fuD3ISIqKKQxAEZGVl+TWG0WiExXLjIlKkHGazGTExMde0FRaqMXFiEl5+uRaKi8u2zmzChHBcvMgCyEQUOrcn3A61quT28xx7DgSBa8CIqOIQBBGffiptrT8ANGvmROfOyj8EnIiIiConFgUjIiIiIiIiIiKSaMUKUXLf3r2VXxAM+P0US71e+ka34uJiGdMQ0R9iYzV4/nkLdu824uxZN6ZMsaJRI+UV4vN6VfjpJxNGjjSjRg0R/frZsGaNA16v9NdPIiIiIiIiIqq4Tp92Y9IkK1JSPOjSxYilS82SD14IBJVKRJs2Dnz5pQ2XL6uweLEZnToZoVZXjPu5VDFw4yTQu3cUpk8vuKbtiSeu4h//uASdrnz3DkVRxNmzZ/nflYgowFoltCq1/WTOySAnISKqOC5fvgxR9G9uvFatWjKloWBJTEyETqcDAOzZY0bv3g2wcWNUucbIz9di2DAPfD5+ziGi0Ikzx5VoEyFi16VdIUhDRCTNpk1OHD8uvajXuHE+zhERERFRyLAoGBERERERERERkQQej4jvvw+T1NdoFPDIIxXn1KDw8HDJfQsKCuQLQkSlqldPj7fesuDkyTD85z8uPPusFfHxnlDHKsFu1+C778zo2dOIxEQvRo+2YtcuJwSBBcKIiIiIiIiIKrPCQh/+/W8b7rnHgUaN9Jg2zYL0dOkHEQRCSoobL79sxenTHuzYYcRTT5lhsXB5JQWGv0UBKosxY2IweXIeVCoRL7+cifHjr0At8cfO5/PhzJkzLAxGRBRA7Wq3K7U9rSgtyEmIiCoGr9eLvLw8v8aIiIjw6yA/Cp06dergm2+qYdSoOsjO1kkaY+vWcEybViBvMCKicril+i2ltq88sTLISYiIpPvwQ+n34xMSPBg61CRjGiIiIqLy4aoVIiIiIiIiIiIiCX76yYn8fK2kvu3bO2E2V5xbczExMZL72mw2GZMQ0c3ccUcYPvvMgkuXtNiwwYHHH7chPNwX6lglXL2qw1dfWdCmjQENGnjwyitWnDrlDnUsIiIiIiIiIpKJzydi40YH+ve3ISFBhWefNWPPHmOoY13DYvFh4EAbfvrJiXPndPjnPy2oX5+brSmwWLTqWm+/HYPVq9MxaJB/xRIAwOPxIDU11f9QRERUqibVmpTanmPPCXISIqKKIT093a/+KpUKSUlJMqWhYNPr9WjXzv8DI99+OwoHDlhlSEREVH4P1nmw1PYdaTuCnISISJpDh1z4+WfpRb2eftoNvV4lYyIiIiKi8qk4Ow+JiIiIiIiIiIgUZPly6Rt3Hn1U+qlDoRAWFgaVStqkptfr5SYnohDQaFTo2tWIRYvMuHxZhXnzbOjc2Q6dTnk/j+fP6/HuuxY0bqxH69ZOvP++FVeueEMdi4iIiIiIiIgkOHnSjRdftKJ2bQ+6dTNi2TIzHA7lLFNUqUTcd58DX39tw+XLKixcaMaDDxqgVnNTBwWH283C+P+re/ck6HQ6Wcay2+1IS0uTZSwiIrqWWq2GSVdyI63T6+R8MBHR/3A4HH4fole9enWo1cr5PE3l17t3FJ54It+vMRwONYYPV8Pt5u9aIgq+fk37ldp+Ou90kJMQEUkzbZr0dagWiw/PPed/kVciIiIif/DuIBERERERERERUTkJgogNG/SS+mq1Ivr0qXiThEajUXLfgoIC+YIQUbmZTGoMGWLGpk0mZGaK+PhjG+66yxHqWKXav9+AiRMtSErSoFMnO+bMscNm4+JWIiIiIiIiIiUrKPDhs89+v9/QpIkeH35oQUaGtPungVKnjhuvvWbFuXNebNtmxMiRZpjNXD5JwedyuUIdQXHUajXq1asnW8GDoqIiXL58WZaxiIjoWtVM1UptP3TlUHCDEBEpXHp6ul/9NRoNqlevLlMaCqVPPw1HgwZOv8Y4etSEiRMLZUpERFR29WPrQ6vWlmgvcBbAK/DARyJStowML5Yvl772fdAgB6KjNTImIiIiIio/rmohIiIiIiIiIiIqpz17XMjMlHZq/d13O1GtWsWbJIyIiJDcl0XBiJSjWjUNxo0zY88eI86ccWPyZCsaNFDeRkSvV4UffzRhxAgTatQQ0b+/DWvXOuD1iqGORkREREREREQAfD4R69c70LevDYmJKjz3nBn/+Y/0zRWBEB7uw+DBNvzyixNnz+owdaoFdepIu69LJJedO314+unamDy5Jj75pAYWLozBpk0R2L/fhLQ0Pez2qrmsV6vVon79+lCpVLKMl5OTg9zcXFnGIiKi/6odWbvU9u0Xtwc5CRGRcu3cWYQlS0zw+aSPkZiYKNt7Ywoti0WLWbPc0OmkH4amVotwuTzIy8uTMRkRUdkkWBJKbf/+3PdBTkJEVD4ffuiE2y3tfrtGI+LFF5V1+A0RERFVTSXLNBMREREREREREdENffed9FPOHnnEj1V/IRQdHY3Lly9L6ut0+nfiJREFRv36erz9th5vvili714n5s3zYvnyMFy5oqzNsTabBsuWmbFsGVC9uge9e7swbJgWd90VBrWaC6GJiIiIiIiIgun4cRe++caDJUvCkJmprCJgwO8bZe+7z4GhQ0U89pgRZrM51JGIrnHmDLBzZ/gNrzEYHEFKoyx6vR5169bFuXPnZBkvKysLOp3Or0NPiIjoWk2rNcX2tJIFwA5kHQhBGiIi5fH5BLz0khq7dydh0aJYvPTSZdx5p61cY+j1ekRGRgYoIYVC27YRmDAhD+++G1PuvjVruvHPf17CbbfZkZn5+6GOWi23gxJR8LSo0QLpRekl2tecXINuDbqFIBER0c1ZrQJmzzZI7t+jhx3163N+iYiIiEKvah4pRkRERERERERE5Id166QXzOnfP0zGJMGj0Wig0Wgk9RUEAW63W+ZERCQXtVqFu+4y4PPPLbh0SYv16x147DEbLBblFTG8elWHL7+04N57DWjUyI1XX7Xi9Gm+vhAREREREREFUn6+D9On23DHHQ40axaGjz+2IDNTWUXF69Z1Y/JkK86d82LLFhOeeMIMs5nLI0l5srJufo3TKe1efGVgNBqRnJws23hpaWmw2+2yjUdEVNW1rtm61PaTOSeDnISISJkWLy7E7t0WAMDJk0Y8+WQdPPdcMlJT9WUeQ873w6Qcb70VhTvuKF+BuF698rF8+Vncdtt/P9NcuHBB7mhERDf0UL2HSm3fnbE7yEmIiMruyy8dKCiQXkj1pZeq7j16IiIiUhaueiEiIiIiIiIiIiqHY8fcOHNGWmGvli2dqF1bWZvlysNsln7qUW5uroxJiChQtFoVunUz4ttvzbhyRYW5c2146CE7tFoh1NFKOHs2DP/8pwWNGulxxx0OfPSRDdnZ3lDHIiIiIiIiIqoUfD4Ra9c60Lu3DYmJKvztb2bs22cMdaxrRET4MHSoDVu3OnHmjA5vv21BSkrFvf9KVcOVK1y2ezMRERFISEiQbbwLFy7w4BIiIpncX/v+UtvTi9KDG4SISIFcLgGvv24q0b5lSwR69WqA996LR2HhjYsLWCwWGAyGQEWkENLp1Jg7V1Wmw9miorz45JOLeOutDJjN167VcLlcuHLlSqBiEhGV0K9Zv1Lbz+efD3ISIqKy8flEfPaZ9Lmiu+924N57+Z6ciIiIlIGrC4iIiIiIiIiIiMph6VLpG0d69KjYxWqio6PL3cflUmHPHjOWLxcDkIiIAslkUmPoUDM2bzYhI0PARx/ZcMcdjlDHKtW+fUZMmGBGzZpqPPSQHXPn2mCzKa+QGREREREREZHSHTvmxvjxVtSq5cUjjxixcqUZTqdylhmq1SIeeMCO2bPtyMpSYe5cM9q1M0CtVoU6GlGZZGcr5+dJyWJjY1GtWjVZxhJFEWfPnoXXW7HnaIiIlKB+bH2oUPJ9V54jLwRpiIiUZdq0Aly4UPohg16vCgsWVEO3bg0wf34sPJ7SP8MmJSUFMiKFWJMmJvzjH4U3vKZt22KsXHkWHToUX/eaq1evwul0yh2PiKhU8ZZ4hGlK/n6zuq2wu+0hSEREdGNLlzqQmqqX3H/8eK53JyIiIuVQiaLIdydERERERERERERldPvtThw8KO0EoN9+c6NZM+kTjaEmCAKOHz9+w2tEETh3Lgy7dlmwa5cF+/f/vmmwZk030tJ03JxHVAmcOePG3LluLFmiw9mzpS9qVgKLxYdu3ZwYOlSNzp0N0Gr5+kNERERERERUmrw8H+bNc2LBAg3271fm6ef167swcKAHTz4ZhuRk6Se8E4XanXfasHev+SZXHQJwW5nHPHjwIFq2bOlHKuVKS0tDUVGRLGPt3BmFJ59MhFbLwmxERP6wvGOBzWMr0e6Z4oFWrQ1BIiKi0MvOdqNRIzUKCsr2Oli7tgsvvHAZDzxQDNX/T2PHxsYiISEhgClJCXw+AQ8/bMWmTRHXtBsMAl588TL698/783viRrRaLRo2bAi1mp9viCjwGvyrAc7mnS3Rvqj3Ijx+6+MhSEREdH133unA3r1GSX3r1nXj9GkdNBquNSUiIiJl4J0fIiIiIiIiIiKiMkpL80guCNaggatCFwQDALVaDb2+5N8hN1eD9esj8dprNdGxYyP06tUA77+fgJ07w+F0/n4LMiNDjyNHSi4OJ6KKp0EDPaZOteDUKT1273Zi9Ggr4uI8oY5VgtWqwdKlZjz8sBE1a3rxzDM27NnjhCDwrBQiIiIiIiIir1fEmjUO9OplQ2KiCuPHmxVXECwiwofhw23Yvt2JU6f0ePNNCwuCUYV39SqLpZRHcnIyTCaTX2MIAvDBB/F4+ukkjB5dKFMyIqKqq7q5eqnt+zL3BTkJEZFyvPqqrcwFwQDg4sUw/O1vtfHkkyk4ccIAlUqFGjVqBDAhKYVGo8asWWHXrLFo1syOpUvP4rHHylYQDAC8Xi8yMzMDlJKI6FqtElqV2r7+zPogJyEiurFt25ySC4IBwHPPeVgQjIiIiBSFRcGIiIiIiIiIiIjKaOlSl+S+Dz+svII5UoSHh8PtVuHXX834+OMa6N+/Hu6/vwlefrkW1qyJRnb29TflrVvnDmJSIgo0tVqFu+82YMYMCzIytFi71oH+/W0wm32hjlZCdrYOX3xhxj33GNC4sRuTJ1tx5gxfk4iIiIiIiKjqOXrUjb/9zYakJC969jRi1SozXC7lLCPUaER06GDH3Lk2XL6swuzZZrRta4BazU0YVDnk5LAoWHmlpKSUemBJWbjdKrz8chLmzq0GAJg1KxpTpuTJGY+IqMpJiUwptX3HxR3BDUJEpBCHD1sxd26kpL5791owYEA9uFw1oVYr57M5BVZCQhg++8wGrVbE6NHZmD//POrUKf/6hYKCAlit1gAkJCK6Vtf6XUttZ2FgIlKa998XJPeNifHiqaekFxQjIiIiCgSVKIpiqEMQERERERERERFVBO3a2bF9u7QT6XfudOLeew0yJwq+vDwXatXSwm7XlLtvhw7F+PHH8ACkIiIlsdkEfPedAwsWqLBliwFer3IXL995pwMDBggYPDgM1atzQyYRERERERFVTrm5Psyd68T8+RocOqTMe5QNG7owaJAXI0boUavW9Q8eIKrIioq8iIwsyz2oQwBuK/O4Bw8eRMuWLSWmqhgEQcCpU6fg85X9QAKrVY1x45Lx66+WEo99/nk+nnkmWs6IRERVxtgNY/H53s9LtA+8ZSAW9lkYgkRERKHVuXMRvv8+QnL/bt2KsH699P5UcW3ZcgHVqtn8GkOtVqNx48YsKkdEAVXkLELkeyULYBq0Bjhec4QgERFRSadPu9GkiQ6CIO2QmYkTrXjvvZL3komIiIhCiXd8iIiIiIiIiIiIyiA314fdu6WdAJSY6MHdd4fJnCg0YmLCUK+eS1LfPXtMcLmkn8JERBWD2azGsGFm/PCDCZcuCfjgAxtat1bmArD//MeIF14wo2ZNNTp3tmPePBvsdr5OERERERERUcXn9YpYudKOnj1tSExUYcIEs+IKgkVGevHEE1bs3OnEiRN6vP66mQXBqFK7eFHavXX6faN7/fr1oVKVbUNXdrYWw4fXKbUgGAD87W+RWLGiQMaERERVx5017yy1/VTuqSAnISIKvXXrCv0qCKbXC3j/fR5eVVW1bVurzJ9xrkcQBFy8eFGmREREpYswRMCkK3mYrtPrRK49NwSJiIhK+uADt+SCYGFhAsaNU9YcGhERERHAomBERERERERERERlsny5E16vtMnCbt3cUKv9W8SlJO3aSdu4ZLNp8OOPxTKnISIlq1FDiwkTzNi714hTp9x45RWr5MKCgeTxqPH99yYMG2ZGfLyIxx+3YcMGB3w+MdTRiIiIiIiIiMrl8GE3nnvOipo1vejd24Q1a8xwu5WzTFCjEdGx4++FubOy1Jg504J77zVUqvunRNeTkeELdYQKTafToV69eje97vx5PYYMqYtTp65/0IvXq8bQoeHYvr1IzohERFXC/Sn3l9p+qehScIMQEYWY1yvg5Zf1fo0xYkQhmjYtWWSFqgatVouaNWv6PY7NZkN+fr4MiYiIri8lMqXU9uUnlgc3CBFRKXJzfVi4UNrB3wDQr58DCQks1ktERETKo5zVPkRERERERERERAq2apX0TWl9+lSuDW1duki/rbhpkyBjEiKqSBo21OOddyw4fVqPXbucGD3aiurVPaGOVUJxsQbffmtG9+5GJCV58eyzVuzdq7xCZkRERERERER/yMnx4YMPbGjZ0omWLfX47DMLsrN1oY51jUaNXHj7bSsuXvThhx9MGDLEDKORyxepamFRMP8ZDAbUrl37uo8fOmTE0KF1kZl58+IMNpsGffoYcfy4Xc6IRESVXnJkMlQoOf+d72QxEiKqWj7/vADHjkkvPBAT48XUqWYZE1FFFBUVBYvF4vc4GRkZ8Hq9MiQiIirdnUl3ltq++ezmICchIirp008dsNs1kvqqVCImTlTWnBoRERHRH7iqhoiIiIiIiIiI6CZsNgFbthgk9Y2O9qJjR+mLAJWoU6dwmEzSNi9t2xYmcxoiqmjUahXuuceAGTMsyMzUYs0aB/r2tcFsVt6myMuXdfj3vy24884wNGrkwpQpVpw75w51LCIiIiIiIiJ4PCKWL7ejRw8batZU4aWXzDh8WNo9zECJjvZi5Egbdu1y4vhxPSZPtqBmTZ60TlVXZqYY6giVQnh4OBITE0u0//xzOEaOrIPCwrK/zly9qkP37hpkZvJQACKi8rDoSxYvcfvccHs5h0JEVYPH48Xnn5v8GuOll4pQrdrNi9lS5ZecnAy12v8tnhcuXJAhDRFR6R5u8HCp7QcvHwxyEiKiazmdAr76Svra9A4dHLj1Vr4vJyIiImViUTAiIiIiIiIiIqKbWLvWCYdD2q20hx5yQasteVJyRRYWpsbdd9sl9f3tNyOuXOFicCL6nVarQo8eRixbZsblyyrMmmVHx452aLXK2yB5+nQYpk61oH59Pe6+24FPP7UhN1d5hcyIiIiIiIiocjtwwIVnn7WiZk0v+vY1Yd06M9xu5SwD1GpFdOpkx8KFdmRmqvH112bcc48BanXlukdKJMWVK/w5kEtMTAzi4uL+/PPSpdEYPz4ZLlf5Xw9TU8PQvbsPxcVeOSMSEVVqcea4Utt/zfg1yEmIiELj0qV0zJp1AYMH50ia227QwIkXXoiSPxhVSGq1GrVr1/Z7HJfLhezsbBkSEVFF5nQ6sWfPHnz++ecYMWIEbr31Vmi1WqhUqnJ/zZkz589xuzfsXurzZRRlBOlvJl1qaqqkv39F+SKq6ubMceDKFZ3k/i++yJ8jIiIiUi4eu0dERERERERERHQTK1ZIL07Tu3flnCy8/34Pfv65/P0EQYW1a20YOZKnKhHRtSwWNUaMMGHECODyZS/mz3fi22+1OHDAEOpoJfz6qxG//gq89JKADh3sGDhQRN++RhiNytmETURERERERJVHdrYXc+Y4sXChFkeOGABIP/E8UJo0cWHQIA+eeMKAhARTqOMQKdK99xZDo3Hj6lUtcnL++qWTfDBJVRYXFwe3242pU/X48svSi9OU1aFDJvTqVYwNG8zQ6/lvQUR0M3Wi6uBc/rkS7TvSd+C+2veFIBERUfA4HA7YbDZERQGTJl3GY4/l4cMP47FlS0SZx5g61Qm9Xnnz4BQ6ZrMZUVFRKCgo8Guc7OxsREZGIixMefeOiEh+LpcLR44cwb59+7B//37s27cPx44dg9crf+Fzg9aAiLAIFLmKrml3C26kFaYhOTJZ9uckIroZQRDx6afSS2XceqsTnTrxfTkREREpF4uCERERERERERER3YDHI+KHH6QtlDKZfHj44co5Wfjww3q8/rq0vj/+qMLIkfLmIaLKJT5ei5desuCll4CTJ92YM8eNpUv1uHBBWQUFPR41Nm0yYdMmYOxYH7p3t2HoUBU6dTJCo6mcRSGJiIiIiIgoODweEatWOTBnDvDDDwZ4PJZQRyohJsaLvn2deOIJLe66S5nFyoiU5LbbbGjevKhEuygCdrv6z2Jhhw9n4ZNPgp+vIkpKSoLFkifLWD/9FI6hQwuwcGEENBoWBiMiupFb4m7Bjxd+LNF+KOtQ8MMQEQVZenr6NX9OSXHjX/9Kw6+/mvH++/E4dcp4w/7t2lnRv39UABNSRZWYmAir1ep3MZ8LFy6gYcOGUKv5uYaoMvF4PDh69Cj27dv3ZxGwo0ePwuPxBC1D/ej6OHD5QIn2ZceWYcK9E4KWg4joDxs2OHHy5I3ff9/I+PEC1Gqu8yQiIiLlYlEwIiIiIiIiIiKiG/jhBycKCqRNGD7wgBMmk1nmRMrQvLkJNWu6kZFR/gI927eb4PMJ3FRDRGXSuLEe776rxzvviNi924l587xYscKAnBxlTXEUFWmweLEZixcDCQke9OnjwrBhOrRuzQ3RREREREREVHb797vwzTdefPddGHJyTKGOU4JWK6BDByeGDwd69zZCr1desTIipRIEodR2lQowmwWYzW6kpLhhsdhYFKwc3nsvCpmZBVi8OMrvsQRBwIULF1G/fh3/gxERVWJ31ryz1PbTeaeDnISIKLgKCgrgdrtLfeyuu2xYsuQc1qyJwvTpNZCToytxjUYj4v33A52SKiq1Wo2UlBScPXvWr3G8Xi8yMzORlJQkUzIiCjav14tjx479WQBs3759OHLkyHV/BwXLvbXuLbUo2I/nf2RRMCIKiQ8/FCX3TUz0YPBg6QXFiIiIiIJBWTtmiIiIiIiIiIiIFGb5cp/kvo8+Kl8OpdFo1Gjb1o4lS8pfFCwzU48jR6y47TZuGCSislOrVWjTxoA2bYDPPhOxcaMD8+cL2LDBALtdE+p418jK0uGzz3T47DOgUSMX+vf3YPhwPerWLf9rJhEREREREVV+V654MWeOCwsWaPDbbwYAyisw3ayZE4MH+zB8eBji45VXrIyoIhBF6RuU6Po0GjXmzo1AdnYxfvopXPI4Y8dewVNPXYXTCVy6dIkb6ImIbqB97faltmcUZQQ5CRFR8AiCgMzMzBteo9EAvXoVoHPnIsyaVQ1z51aD0/nfA/Mee6wQd94ZFeCkVJEZDAbExcUhOzvbr3EKCgoQHR0Ns7lyHmZJVJn4fD4cP34c+/fv/7MA2OHDh+F0OkMdrYRHGz+Kz/Z+VqL9aPbREKQhoqruwAEXtmyRPl81ZowLOl3JQr5ERERESsKiYERERERERERERNchCCI2bpS2AU+rFdC7t0HmRMrSsaOIJUvKfn1EhBf33GPDvfdaodUKAFgUjIik0elUeOQRIx55BLBaBSxZYsOiRSps22aE16sKdbxrnDoVhrffDsPUqSLuusuBxx/3YdAgI2JjlVXIjIiIiIiIiILL7RaxcqUDc+YAP/5ogNervE2asbFe9O3rxJNP6nDHHZX7XidRoAmCEOoIlZpOp8bKlUa0a2fHoUPl2wim0Yh4440M9OpV8GdbQUEB9Ho94uLiZE5KRFQ5JEYkQq1SQxCv/f1W4CwITSAioiDIzs4u8/t6k0nA2LHZ6Ns3H9Onx2Ht2mhYLD68+y4/W9PNxcXFobCwEC6Xy69xLl68iMaNG0OtVt/8YiIKmfnz52PEiBGhjlEmD6Q8ABVUEHFt4fvL1sshSkREVdm0aV5IPWQnPNyHsWON8gYiIiIiCgAWBSMiIiIiIiIiIrqOXbtcyMqStiCvTRsnYmKkn0BUEfToYYZaLUIQSi/Ao9WKaNHCjnvvteLee61o0sQBjeaPx3hrkojkYbGo8eSTZjz5JJCV5cX8+U58+60WBw8qa0G1KKqwZ48Re/YAL70koEMHOwYPBnr1MsBo5CJcIiIiIiKiqmLvXhe++caD5csNyM1V3v1DrVZAp05ODB8OPPqoEXo9C/sTycHtdoc6QqUXHq7Fhg0+tGnjwoULZdsMZjQK+OCDNLRrZy3xWHZ2NrRaLWJiYuSOSkRUKVj0FhS5iq5p8wgeOL1OGLTKmqMhIvKXz+dDTk5OufvFx3vwzjsZGDQoFzk5kahVq3oA0lFlVKdOHZw8edKvMQoKgNmzr+LJJ2vIE4qIqjy1Wo1oYzTyHHnXtPtEH45nH0fTuKYhSkZEVU16ugcrVkgv6jVkiANRUZz/IiIiIuXjzjsiIiIiIiIiIqLr+O47r+S+PXuKN7+ogqtRQ49bb7Xj8OH/bl5MSXHhnnt+LwJ2xx02mM2ln5Lq9XohCAJPoyQiWSUkaDFxogUTJwLHj7swb54HS5bokZqqD3W0a7jdamzcaMLGjUBEhA89etgwZIgaHTsaoNGUXmiRiIiIiIiIKq7Ll72YPduFBQs0OH7cAKknlwfSrbc6MXiwF8OGGVCjhvKKlRFVdE6nM9QRqoSEhDCsX2/H/fd7kJ2tu+G10dFefP75Rdx6q+O612RmZkKn0yE8PFzuqEREFV68Ob5EUTAA2Jm2Ex3qdghBIiKiwLl06ZJf/Zs1c6Jx4xR5wlCVoNVqkZiYiMzMTEn99+4149VXayInR4sGDYrRrh0/0xCRPBrFNsLuS7tLtC89vhR/j/t78AMRUZX00UcueDzSinpptSJefFF583REREREpWFRMCIiIiIiIiIioutYt+7GG0auR6US0a+fsgrQBErXrg7ExXlw771W3HOPFTVresrcNz8/H7GxsQFMR0RVWdOmYXj33TC8846IXbucmDvXh1WrwpCTo6ypkaIiDRYuNGPhQiAx0YPevV0YMUKH22/nwhMiIiIiIqKKzO0WsXy5A3PnAj/9ZIDXaw51pBKqVfOiXz8XnnxSi1atDKGOQ1Spud3uUEeoMpo0MWHFimJ06aKG1aop9ZqkJDe+/DIVyck3/3e5ePEi6tevD4OBr5NERH9VN7ouTuedLtG+M51FwYiocnG5XCguLvZrjNjYWGi1ypqnJuWLiYlBYWEhbDZbmfu43Sr8619xmDu3GkTx9wPJnnhCh4MHvQgP5/cgEfnvvuT7Si0KtjV1awjSEFFVVFwsYPZs6fdqe/Swo04d5c3ZEREREZVGHeoARERERERERERESnT0qBvnzkkryHL77S4kJUkrKFbRvPgi8NFH6ejbN79cBcEAoLCwMECpiIj+S61WoW1bA77+2ozMTA1WrLCjTx8bjEYh1NFKyMzU4bPPLGjVKgxNmrjw979bkZpavtdWIiIiIiIiCq09e5wYNcqGhAQfBg40YfNmE7xe5SzT0+kEdO9uw7JldmRmavDvf5vRqhULUxMFGouCBVebNuGYO7cYWm3Je4DNmtkxf/65MhUE+8O5c+fg8fA+HRHRX90Sd0up7YcvHw5yEiKiwEpPT/erv1qtRo0aNWRKQ1VN7dq1oVKpynTt6dNhePzxupgzp/qfBcEA4Nw5A557zhqoiERUxfRt2rfU9uNXjwc5CRFVVTNm2FFYKL3Y6cSJpR8kQURERKREylltREREREREREREpCBLl0rfoPPIIz4ZkyhbdHS05L4Oh0PGJEREN6fTqdCrlwnffWfGlSvA11/b8MADdmg0YqijlXDyZBjefNOCunW1uPdeB/71Lxvy8qrO7xciIiIiIqKKJDPTi6lTrWjSxIV77jHgm2/MyMuTviEhEFq0cGLaNCsuXRKwbp0ZffuaoNOVbVMpEfnP6/WGOkKV07t3FKZPL7imrU2bYsyalYpq1cp3n00URZw9exaCoLyDBoiIQuXupLtLbT+TdybISYiIAqe4uBhOp9OvMeLj46FWc/seSaNWq5GcnHzDawQBmDs3FgMG1MPp08ZSr5k7NwrffVcQgIREVNW0SmgFtark77Wr9qu8b0JEAef1ivjsM73k/vfc48DddxtkTEREREQUWLyrSEREREREREREVIq1a6Vv2uvbV1kb/gJJrVZDq5X29xVFES6XS+ZERERlEx6uxsiRZvz8swlpaT68+64NLVr4t6A7EERRhd27jXj+eTMSElTo3t2OxYvtcDq5kI6IiIiIiCiUnE4BCxfa0amTHbVrazBligUnT4aFOtY1qlf34NlnrThwwIVDhwx46SUL4uKqzr1LIiVhUbDQGDMmBpMn5wEAHnkkH//610WYTNLuq/l8Ppw5c4YbXImI/l/7lPaltmcWZwY5CRFR4GRkZPjVX6fTISYmRqY0VFWFh4cjMjKy1McuX9Zh1KgUfPBBAjyeG28TffZZM7KyuE6LiPyjVqtR3VS9RLsIEb9m/BqCRERUlSxZ4kBamvSiYC+8oLzDY4mIiIhuhEXBiIiIiIiIiIiI/kdqqgeHD0s7CahRIxeaNlXW5r9AM5lMkvvm5eXJmISISJrERC0mTTLj0CEDjh1z4aWXrEhJcQfnydVeoMU84P43gNrbAFx/4YnbrcaGDSYMHGhCjRoihgyx4YcfHPD5uFiFiIiIiIgoGARBxK5dTowcaUNCgoDBg0348UcTvF5VqKP9Sa8X0KOHHcuX25GRocVnn1lw221V634lkRKxKFjovP12DL75JhNTp2ZAp/NvLI/Hg9TUVFlyERFVdNVM1aBRaUq0F7oKQ5CGiEh+V69e9ft9fFJSkkxpqKqrWbNmiUMb16+PRO/e9fGf/1jKNEZ2tg4jR7rg87HQMVFVotfrERsbK+uYzao3K7V9xYkVsj5PKLVv3x6iKFaIL6Kq5OOPpZfFqF/fhV69jDKmISIiIgo8FgUjIiIiIiIiIiL6H0uXSj8VsXt3j4xJKobo6GjJfYuLi2VMQkTkv6ZNwzBtmgXnzumwdasTTz5pQ0xMgDZtqgRgcGeg1zDg/reAEe2Bdv8oU9eiIg0WLDDjoYeMSE724m9/s+LgQZ7qS0REREREFAgZGV68/bYVTZu60aaNATNnmlFQoL15xyBq2dKJDz6wISNDxJo1JvTubYJOp5xiZURVnSBw03UojRgRD73ez4pg/89utyMtLU2WsYiIKrrwsPASbV7BC6vbGoI0RETyEQQB2dnZfo1hMplgNptlSkRVnVqtRkpKCgCgsFCNiROT8PLLtVBcXLJA541s2BCBL75gAU+iykqn0+G2227DqFGjMGPGDOzbtw/FxcUYO3asrM/zQJ0HSm3fnrZd1uchIvqrLVuc2L9f2oHfAPDccx5oNJw3IyIioopFWSuTiIiIiIiIiIiIFGD16vItmPqrfv2q3i03fxYxut1uCIIAtZrnFxCRsqjVKrRrZ0C7dsAXX4hYu9aOBQtEbNpkhMMh02tWvc1A3Z+vbbv/DWDP3wB3yY0015OZqcP06TpMnw40berEY4/5MGyYHrVry7PRkYiIiIiIqCpyOAQsW+bAvHkqbNlihM9nCXWkEuLiPOjf34VRo/Ro3lz6RggiCjwWBQsttVqNevXq4fTp07L8WxQVFSErKwsJCQkypCMiqrjiLfEocBaUaN9+cTu6Nuga/EBERDLJzMyEKIp+jVGrVi2Z0hD9zmAwQKeLQ58+0bhyRfpagFdfjUDHjnY0bmySMR0RBZtOp0OzZs3QunVrtGrVCq1bt0bz5s2h1+sD/tz9mvbDlF+mlGg/nXs64M9NRFXX++9Lv68bG+vFyJF870NEREQVT9XboUhERERERERERHQD2dle/PqrtA10NWu6ceedYTInUj61Wg29Xg+32y2pv81mQ3h42YvfEBEFm06nQu/eJvTuDRQW+rBkiQ2LF6uwfbsRPp8fp8elbCnZphaAiAwgp7GkIY8fN+CNN4C//13EPfc4MHCggIEDDYiOll7wkoiIiIiIqKoQBBG7d7swc6YXK1YYUFgovRh+oISFCejSxYHhw1V4+GEjtFoWhCYiKgutVov69evjzJkzfhd4AIDc3Fzo9XrExsbKkI6IqGKqF10PJ3NOlmjfnb6bRcGIqMLyeDwoKCjwa4yoqCjodPy8TvJr1CgO7dsXYOnSKMljFBdrMHSoiF27BGi1PMSRqCLQarVo1qzZn8W/WrVqhRYtWiAsLDRrVRtVawStWguv4L2mPd+ZD6/ghVbNbetEJK9Tp9zYtMkouf/IkU6YTMo7/IeIiIjoZvjpioiIiIiIiIiI6C+WL3fB55O22U+rXYdOnT5HcXExioqKIIoiwsPD//yqXr06GjdujKZNm6Jp06ZISUmBSuVHMRkFCQ8PR25urqS++fn5LApGRBVGZKQGTz1lxlNPARkZXsyb58KSJRocPiyhoGTM2dLbbXH+hQQgiirs2mXErl3AhAkCOnWyYdAgFR591ACDgQt7iUheeXl5OHHiBI4fP47jx48jLS0NxcXFf365XC5YLJY/3xdHRUWhYcOGaNq0KZo0aYKGDRsG5cRiIiIioutJS/Ng9mw3Fi7U4swZaQcGBNrttzsxeLAPQ4caEBurvGJlRHR9Ho8n1BHo/+n1etStWxfnzp2TZbysrCzodDpERETIMh4RUUXTvEZzrD+zvkT74ezDIUhDRCSP9PR0v/qrVCokJibKlAa4cuUKjh8//uc8TGZmJoqKiv6cg/F4PAgPD0dERATCw8MRExODRo0a/bk2qV69etBoeIBUZTJjhhl79riQlia9GNDevWb8/e95mDo1RsZkRCQHrVaLpk2bligAZjAo6751vCUel4oulWj/8fyP6FK/SwgSEVFl9v77HgiCtHVFBoOA8eOV9RpKRMEhiiJSU1P/XNN48uRJXL169Zp1jSqV6s/P0+Hh4ahRowaaNGny52fqpKSkUP81iKiKY1EwIiIiIiIiIiKiv1i1SnqRrosXP8bFizvKfH1sbCw6d+6Mbt26oUuXLhX6NPnY2FjJRcFsNpvMaYiIgqNmTS1eeUWLV14Bjh1zY/ZsN5Yt0yMtrYwLUEorCuaIBhzyLrx1udRYt86MdeuAyEgvHnnEgaFD1XjwQQPU6spRnJKIgsvr9WLnzp3YsGED1q9fj2PHjvk1nsFgQPv27dG9e3d069YN9erVkykpERER0fXZ7QKWLXNg7lwVtm0zwufThTpSCfHxHjz2mAsjR+pxyy3csEBUUTmdzlBHoL8wGo1ITk5GWlqaLOOlpaWhbt26MJlMsoxHRFSR3J10d6ntZ/OucygKEZHC2e122O12v8aIi4uDWi39kCan04ktW7Zg/fr12LBhA86fP+9XnvDwcHTs2BHdunVDt27dZC1YRqERHa3DV18Vont3PXw+6fP906ZFoWvXYrRpw4MciUIpPj4ew4cP/7MIWIsWLWA0GkMd66aaxzUvtSjY6pOrWRSMiGSVk+PDokXSXxf793egRg0etkNUVeTm5mLTpk3YsGEDNm3ahLy8PL/GS0xMRNeuXdG9e3d07NgR4eH8/EREwcWj4ImqKI/Hg4MHD+Lrr7/G6NGj0bp1a4SFhUGlUpX76+9//3uo/zpV3v333y/p364ifM2ZMyfU/3mJiIiIqIri56aqyWoVsG2b1M112QB2latHbm4uFi1ahMGDByMuLg6PPPIIfv75Z4nPH1p6vV7yokafzwefzydzIiKi4GrWTI8PPrDgwgUdtmxxYsQIK2JivDfoIZZeFCyvfsAyAkBhoRbz55vRqZMRtWt7MH68FYcOuQL6nERUeaSnp2PSpEmoUaMG7r//fkybNs3vgmDA7xtcNm/ejOeffx7169dHq1atMG/ePLjdbhlSU1lxvomIiKoCQRCxbZsTw4fbkJAgYvhwM375xeTXBkq5hYUJ6NXLhjVrHEhP1+KTTyy45RZpp58TkTLws43yREREICEhQbbxLly4wH9nIqqS2tVuV2r75eLLQU5CRCSP9PR0v/prNBpUr15dUt+TJ09izJgxqFatGrp27YrPPvvM74JgAFBcXIyVK1di1KhRqFmzJu6//36sWrUKgiD4PTaVTUpKiuzzHl26RMHne8uvXB7PIbRte4dfObZs2SLPfySiKqxLly6YPXs2xo4di7vvvrtCFAQDgE71OpXavidjj99j+wQffsv+DUt+W4KVJ1bC6rb6PSYRVVyffuqAwyFtfbpKJWLiROUdCkTycTqd2LNnDz7//HOMGDECt956K7RaLdcWVUE//fQTevTogbi4OAwePBiLFi3yuyAYAGRmZmLmzJno3bs3qlWrhsGDB2Pfvn0yJCYiKhttqAMQUeB5vV4cP34c+/bt+/PryJEjcLm40YuIiIiIiAjg5yb6r9WrnXA6pZ7kvhqA9AVzgiBg7dq1WLt2LZo3b46JEydi0KBBkscLBYPBIPnE1Pz8fFSrVk3mREREwadWq9C+vQHt2wNut4g1a+xYuFDEpk1GOJ1/WZxiuQzoS3nNDHBRsL+6dEmPTz7R45NPgGbNnBgwwIuhQ8OQnMyFMER0rWPHjuGtt97CihUr4PXeqOChPA4cOIBhw4Zh0qRJePbZZ/HCCy/AZJL6Pp2IiIgIuHjRg5kzXVi0SIdz56QeChBYrVs7MHiwgCFDDIiJ4YnlRJUJi0UpU2xsLDweD3JycvweSxRFnD17Fg0bNoRWy6XZRFR1RBmioFFp4BOvPQCq0FUYokRERNLl5+fD4/H4NUZSUlK5++zatQtvv/02Nm/eDFEU/Xr+sti6dSu2bt2KunXr4oUXXsDo0aP5HrbCmgqgK4A7y9nPB+A9AH8H4N/3PBFVXf2b9sf4zeNLtJ/LO1eucURRxPn889ibuRd7M/Zib+ZeHMg6AJvH9uc1yZHJ+GHID2gY29Dv3ERUsTidAr78Mkxy/06dHGjWjOuNKguXy4UjR45g37592L9/P/bt24djx44FZS0bKZMoili0aBHee+89HD16NODP53a7sXDhQixcuBBt2rTBa6+9hq5duwb8eYmoauNdO6JKxufz4cSJE3++od23bx8OHz4Mh8MR6mhERERERESKwM9NdCMrV/qzuG6lbDmOHDmCwYMH48svv8S///1v3HLLLbKNHUhRUVGSi4IVFRWxKBgRVTp6vQp9+5rQty9QWOjDt9/asGiRGjt2GCC0nFN6J1doNn4fO2bAlCnAG2+IuPdeBx5/XMDAgQZERWlCkoeIlMFms+HNN9/EJ5984vdGGCkuX76MKVOmYObMmfj000/xyCOPBD0DERERVVx2u4AlS5yYNw/Yts0IQVBeAeSEBA8GDHDhySf1aNbMGOo4RBQgofg8RWUTHx8Pj8eDwkL/i9cIgoB169Lx8MO1odWqb96BiKiSiDREIs+Rd02br9iHtZvXIv1cOo4fP47MzEwUFRWhuLgYxcXF8Hg8CA8PR0REBMLDwxETE4NGjRqhadOmaNq0KerVqweNhvMTRBQ8Pp+A0aOBhx4y4+67bTfvUAqDwYDw8PAyX5+Tk4NJkyZh9uzZQSkG9r/Onz+PsWPH/rk2qW3btkHPQP7yAhgC4CCAsha7OA9gKICdgQpFRFVEYkQi9Bo93L5ri+EXu4vh9Dph0JZ+OEdGUcafBcD2Ze3Dvsx9JT5P/K+0wjRM/nkylvZbKlt+IqoYZs1y4OpV6espX3xRJWMaCiaPx4OjR4/+ud9n//79OHr0KOdb6E9Hjx7FM888gx07doTk+Xfu3Ilu3bqhZ8+emD59OpKTk0OSg4gqPxYFI6rABEHAqVOnrqlqe/DgQcmbb4mIiIiIiCobfm6i8nC7RfzwQ+kLEW6uCMBPcsYBAGzfvh233XYbXnzxRbz99tuKP5kzKioKmZmZkvqyMB8RVXaRkRqMHm3G6NHA8XO5uG3BP+Au7cLYs8GOdg1BUGHHDiN27AAmTBDQqZMdgwcDPXsaEBbGzYxEVcnmzZsxcuRIXLp0KdRRkJqaip49e6JHjx6YOXMmqlevHupIREREpFCCIGLbNhdmzfJh9WoDioqUd/q3wSCge3cHhg9Xo2tXAzQa5RUrIyJ58ZR6ZatVqxY8Ho/f84fr10di8uSaGDKkCN98EwG1mvfSiKhqSLAkIK8oD0gFcOb/v/KBRz6QXuA/PDwcHTt2RLdu3dCtWzckJibKlJaIqHRz5hRi2bJoLFsWjfbti/DCC5dRt26ps7nXVatWrTJfO3/+fIwbNw55eTcughIMR48eRbt27TBixAhMnz4dZnNoDrEiqU4DmADgizJcOwvAOADFgQxERFVIUkQSzuefL9G+5tQa9G/WH7n2XOzL3Pd7EbD/LwSWZc2S9Fzn8s/5G5eIKhhBEDF9uvR18y1aONGhg9R9ARRMXq8Xx44d+7MA2L59+3DkyBG43eX7TEZVg9frxWuvvYaPPvpIEfNvq1evxg8//ICpU6di/PjxoY5DRJWQsncREtGfRFHEmTNnrqlqe+DAAVit1lBHIyIiIiIiUgR+biJ/rV5dgKKiaIm9NwCll3bxm9frxbvvvotff/0VS5cuRbVq1QLyPHJQq9XQarWSJlhEUYTL5UJYWFgAkhERKcsHv70EN65zwnR0ycVyoeJ0qrF2rQlr1wJRUV707OnA0KEa3H9/GNRqnqJHVJm99957ePXVVyEIQqijXGPt2rVo3bo1Vq1ahdtuuy3UcYiIiEhBUlM9mDnThYUL9bhwQZkL/O+804HBgwUMHmxAdDQ32BJVJUrYlEA3lpKSgrNnz0raZCSKwNy5sfjwwwQAwOzZUUhMzMPUqTFyxyQiUpyTJ0/CttIGbAXgkW/c4uJirFy5EitXrgQAtG/fHuPGjcMjjzzCootEJDu73Yc33/xvUfGtWyOwY0c4+vfPwzPPZCMqynfTMcLDw8u03sXr9WLChAmYPn26X5nlJooiZs2ahX379mHVqlWoU6dOqCNRucwA8DCA7td5PAfAUwBWBi0REVUNtyfcXmpRsIk/TMQrP71S6mNSJVgSZBuLiCqGdeucOHXKKLn/+PE+rnFUIJ/Ph+PHj2P//v1/7vs5fPgwnE5nqKNRBXD16lX069cPW7duDXWUa9jtdrzwwgv4z3/+g5kzZ8JkUt7BZURUcbEoGFEFsXXrVjzwwAOhjkFERERERKRY/NxE/khNTcXo0bsADJQ4QuAXTf3yyy+44447sGrVKrRo0SLgzyeVyWRCUVGRpL55eXlISODiDSKq3FafXI3Zh2Zf/4KoNITXPoXii42CF6oMCgq0mDtXi7lzgVq13Ojb143hw/Vo3lwf6mhEJCOHw4ERI0ZgyZIloY5yXWlpaWjTpg1mzZqFAQMGhDoOERERhZDNJmDxYgfmz1djxw4DBEEX6kglJCZ6MGCAC08+qUPTptI3LhBRxebz3byIAIWWWq1G/fr1cerUqXL9ewkC8P778Viw4NoDXf7xjxgkJOTj2WelHkZDRKRsu3btwttvv43NmzdDFMWAP9/WrVuxdetW1K1bFy+88AJGjx4NrZZbYYhIHv/8ZyHS068t6OrzqbB4cSzWrYvC6NHZePzxPOj113+9S0pKuunz5Obmol+/fvjll1/8zhwoR44cwR133IGlS5fiwQcfDHUcKpcnARwFUP1/2jf8/2OXg56IiCovl9eFw1cOI0xdekHMi4UXZX/OjnU7yj4mESnbhx9K71uzphsDB7IojxLNnz8fI0aMCHUMqoAOHTqEnj17Ii0tLdRRruvbb7/FyZMnsWrVKtSuXTvUcYiokuAxKUREREREREREVKWlpqaibdt2yM9vL3EEF4CNcka6rtTUVNx///04ePBgUJ5PipiYmJtfdB3FxcUyJiEiUp5sWzZGrR110+smzV2BpUvteOQRGwwGIQjJyic9XY+PP7agRQs9mjd3YupUK9LTPaGORUR+crlc6NGjh6ILgv3B4XBg4MCBmD37BkUWiYiIqFISBBG//OLE4ME2JCSIGDXKjG3bjBAE5Zz0bTQK6NvXhvXrHUhL0+LDDy1o2rT0zVFEVDUcO6ZHWpoedjuX7CrZH4XBVKqy/U5xu1WYOLFWiYJgfxg3LhLLlxfImJCIKPRycnLw5JNPom3btti0aVNQCoL91fnz5zF27Fjcfvvt2LFjR1Cfm4gqp0uXnPj008jrPl5crMEHHyTg0Ufr48cfI1Day161atWg0Whu+Dx5eXl44IEHFF0Q7A+5ubno2rUrNm/eHOooVC5XADz1lz/bAYwB0B0sCEZE/vAKXhy5cgQzD8zE0+ueRuuvWiP8n+G465u7sPC3hUHL0alup6A9FxGF3r59LmzbJv2wnTFj3NDplDN3SET+2b9/P+6//35FFwT7w6FDh9CuXbsKkZWIKgYej0JERERERERERFVWRkYGOnTogIyMBAA1JY7yI4DgFbMqKCjAQw89hK1bt6Jp06ZBe96yslgskvu63W4IggC1mhujiKjyEUURT619ClftV2967fKTy3Bg9Cvo1w8oKPBh8WIbFi9WY+dOg6I2ugPA0aMGHD0KvPGGiDZtHBg4UMCAAQZERd144TsRKYvH40Hfvn3x008/hTpKmYmiiJEjR8JoNGLAgAGhjkNEREQBdv68BzNnurFokQ6pqYZQxynVXXc5MGSIgEGDDIiKMoc6DhEpyJgxycjJ0QEATCYfqlXzXvNVvboHsbFeVK/++58LCniPPFR0Oh3q1auHs2fP3vC6oiI1xo1Lxt69158T8XrVGDYsHHFxxbjvvnC5oxIRBd38+fMxbtw45OXlhToKjh49inbt2mHEiBGYPn06zGa+/yYiaV55xYni4pvfZ0hPD8P48cm4/XYbJk7MQrNmTgC/F5aNi4u7Yd+ioiJ06dIFR48elSVzMLjdbvTq1QsbN25E+/ZSD1mk4FsFYBaAWwEMBnA6pGmIqOL7x7Z/4NnMZ2H32EOaI94Sj6bVlbdWlogCZ9o0LwBpB+5ERPjw7LPSC4oRkbL89ttv6Ny5MwoLC0MdpczS0tLQoUMHbNu2DQkJCaGOQ0QVHIuCERERERERERFRlZSTk4OOHTvi/PnzAEb5MdJKuSKV2R/Zd+7ciTp16gT9+W8mLCwMLpdLUl+bzYbwcG6OIaLKZ97heVh9anWZrj14+SDO5J5Bg9gGiIrSYMwYM8aMAdLSPJg3z4UlS7T47TdlbYIXBBW2bzdi+3Zg/HgBnTvbMGiQCj17GqHXK6uQGRFdSxRFDBo0COvWrQt1lHITBAFDhgyBxWLBww8/HOo4REREJDOrVcCiRQ7Mn/97kWRR1IU6UglJSW48/rgbTz6pR6NG3GBARCV5PALy8v67VNdu1yAtTYO0tBttaLIGPhhdl8FgQO3atXHx4sVSH79yRYsxY1Jw5szN78/ZbBr07m3A1q12NG1qkjsqEVFQeL1eTJgwAdOnTw91lGuIoohZs2Zh3759WLVqlSLnzYlI2fbvt2Hx4shy9TlwwIwBA+rjkUfy8dxzV9C6dfwND75zOp3o3r079u7d62/coHM4HOjRowd++ukn3HHHHaGOQ2U2FoAHgDfUQYioEjibd/b3l5QQ61i3I1Qqrj0iqirS0jxYuVL6nNvQoQ5ERUk/4JqIlOPs2bPo2LEjcnNzQx2l3P7Ivn37dsTExIQ6DhFVYCwKRkREREREREREVY4oihgyZAhOnjz5/y29JI7kA7AG9erVQ9euXdG6dWu0bNkS1apVQ3R0NDQaDfLz85Gfn4/ffvsN+/btwy+//CLLYr+srCz07dsXu3btQliYtNOQAiU8PFxSUTBBAM6fL0SLFiwKRkSVy8WCi3hu43Pl6rPs+DK8et+r17QlJ+swebIOkycDR464MWeOG8uW6XHpkl7OuH5zOtVYvdqM1auB6GgvevZ0YdgwDdq1C4NazUV6RErzz3/+E8uWLZNlrJiYGHTv3h133nknWrVqhcTERERHR8NkMqGwsBD5+fk4e/Ys9u3bh127duHHH3+Ex+PfKmKv14tBgwbhwIEDqFevnix/DyIiIgodQRDx889OzJolYM0aA2w2c6gjlWA0CujRw4ERI9To1MkAjUZZn8mISFkuXXJBEFg0sKIJDw9HzZo1kZGRcU37uXNhePrp2rh8ueyv/Tk5OnTvLmDnThcSE5U1n0NEdDO5ubno168ffvnll1BHua4jR47gjjvuwNKlS/Hggw+GOg4RVSAvvijA55M2d7lmTTT0ehU6doy64XXPP/88duzYIek5/ldCQgIefvhhtG7dGrfffjtq1KiB6OhohIWFIT8/HwUFBTh58iT27duHbdu2Ydu2bRBF0a/nLC4uRp8+fXDo0CFuYq4wHKEOQEQku451OoY6AhEF0YcfuuH1Spsf1GpFTJjAe7BElYHT6UTfvn1x5coVWcZr3rw5OnbsiNatW6N58+aIiYlBdHQ0RFFEfn4+cnNzceTIEezbtw/ff/89jh8/7vdzHj9+HMOGDcOaNWtY4JSIJGNRMCIiIiIiIiIiqnL++c9/YtOmTf//pyYAGkkaJybmJFavXoG2bdte95r4+HjEx8ejSZMm6NevHwDg1KlTmDlzJj777DM4HNIXYx04cAAvvPACPv/8c8ljBEJMTAxycnLKdO3ly1rs3m3B7t0W7NljQYsWDih4TTkRUbkJooDhq4ej2F1crn5Ljy0tURTsr5o31+Ojj/T44AMRW7Y4MXeuD2vWhKGgQFlTP/n5WsyZo8WcOUBysht9+7oxYoQet9zCTfNESrB9+3a8/vrrfo9zzz33YMKECejRowf0+tJ/vmNjYxEbG4v69eujS5cuAICrV69i0aJFmDZtGjIzMyU/f1FREfr376/IgrlERERUNmfPuvHNN258+60eFy+WsXhOo9VAg42AMxLY+wxQWDugGe+5x4EhQwQMHGhAZKTyipURkTKlp3tDHYEkio6OhsfjQXZ2NgDgwAETxo6tjeJiTbnHSk0NQ/fudmzd6kVEhLLu3xERXU9eXh4eeOABHD16NNRRbio3Nxddu3bFmjVr0Llz51DHIaIK4LvvCrBlS5Tk/gaDgH/+88bzEYsXL8bXX38t+Tn+0LVrVzz//PPo1KkTNJrS34vGxcUhLi4ODRs2xCOPPAIASE9Px9y5c/Hhhx+ioKBA8vOnp6dzEzMREYVUh7odQh2BiIKkuFjAnDkGyf0ffdSOlBTO4RFVBs8//zwOHz7s1xg6nQ4jR47EU089hZYtW173OqPRiMTERNx6660YNGgQAGD//v348ssvMXv2bHi90uf61q1bhw8++AAvvfSS5DGIqGpThzoAERERERERERFRMO3YseN/Ch/0kjzW+PG1b1gQ7HoaNWqEadOm4fTp039OHEj173//G8uWLfNrDLnp9Xqo1aXferTbVdi+3YL33ovHo4/WR6dOjfH660nYuDEK+fla/PqrCQ6HL8iJiYgC59M9n2JL6pZy9zt85TBO5Zy66XVqtQoPPmjA3LlmZGWp8e23dvToYUdYmCAhbWClpenx0UcW3HqrHi1aOPHOO1ZkZHBjLFGo5OTk4PHHH4fPJ/29V1JSEpYsWYJdu3ahT58+1y0Idj3Vq1fH3/72N5w5cwZvvfWWXwW9Dhw4gAkTJkjuT0RERMFXXCxgxgwb2rRxoGFDHd57z4KLF8v4fuKuT4HHHwVafwm0nQaMvBswy3NK8F/VquXGpElWnDrlxq5dRowZY0ZkZPmLwRBR1ZWRwfvdFVlcXByioqLw448RGDUqRVJBsD8cOmRCr14OuN3Ku29HRPS/ioqK0KVLlwpREOwPbrcbvXr1wtatW0MdhYgUzuMR8Npr0gsNAMBTTxWifv3rFzU/ffo0nnrqKb+eo0mTJvjhhx+wYcMGdOnS5boFwa6nVq1amDx5Ms6dO4e//e1vfhX0WrduHT788EPJ/YmIiKRqXK0xkiKSQh2DiILk3/92oKhI+j3YF1/kHB5RZfDtt9/6XWS7e/fuOHbsGP7973/fsCDY9bRq1QpfffUVjh49+ucBqFK9+uqr2L17t19jEFHVxeOmiAgAoNFoEBsb++epdlT5XbhwASkpKaGOQURERERUYfBzU+XgcrkwYsSI/yl8IL0oWP/+5St68L+SkpKwYMECdOrUCWPGjIHD4ZA0zpgxY9ChQwfExMT4lUdORqMRNpsNggCcOmXArl0W7N5twYEDJng81z+rwOHQ4PvvC9CzZ1TwwhIRBcjxq8fxyk+vSO6/7PgyTG43uczXGwxqPPaYCY89BuTn+7B4sQ2LFqmxe7cBgqCsU5uPHDHgyBHg9ddFtG1rx+OPixgwwMDN9URBNH78eGRkZEju36FDByxevBjVq1f3O4vJZMKUKVPQpUsX9O3bF2lpaZLG+fzzz9GvXz+0b9/e70xUNpxvIiKi8hIEET/+6MSsWQLWrjXAbpdwWrdKAO7757Vt4ZeBB94A1s3wO6PJ5EOPHk488YQaHTsaoFb7dw+QiKq2jAwWgKrokpKSkJGRB7fb/3OYf/45HEOHFmDhwghoNDzXmYiUyel0onv37ti7d2+oo5Sbw+FAjx498NNPP+GOO+4IdRwiUqiPPy7A6dPS19dUr+7BW2+F3/CakSNHwmq1Sn6OgQMH4quvvoLZLOG+yf+IiYnBJ598gs6dO2Pw4MHIy8uTNM5rr72Gnj17okGDBn5nopsTRdHvMYqKiiTPuf1VQkICYmNj/R6HiEiKjnU6hjoCEQWJ1yvi8891kvu3aePAXXddv3AvVQ16vR7h4eHIzc0NdRSSKCcnB88884zk/lqtFu+88w5eeuklWfI0btwYGzZswLvvvospU6ZIOoDV6/VixIgROHr0KHQ66a9zRFQ1cUaZqArSaDRo1qwZhg0bhunTp2Pnzp0oLi7Ge++9F+poREREREREisDPTZXXhx9+iLNnz/6lpRaA1pLGatLEhYYN5dkQOGzYMGzduhURERGS+ufm5mLKlCmyZJGLzxeFSZOS8MADjdG/f3188kk8fv3VcsOCYH/YvNn/hW1ERKHm8XkwZOUQuHwuyWMsPbZUct/oaA2eecaMHTuMOH/ei7fesqJZM6fk8QLF51Nh61YTnn7ajIQEFXr1smH5cjs8Hv4uIAqkXbt2YeHChZL7jxgxAps3b5alINhf3XHHHdi/fz9uvfVWyWM8//zzkhbfEBERUWCdPu3GpElWpKR40LmzEUuWmGG3SywKLKoBbSnF9W9dBOilbbhVqUTce68DM2bYcPmyCt9+a8ZDDxmhViurwDIRVTyXL4c6Acnh3XejMHBggSxjnT6tw6lT/m/MJyIKlOeffx47duyQZSxNhAajRo3Cl19+ib179yItLQ3FxcVwu924cuUKTp06hdWrV2PKlClo3749VCr/338XFxejT58+koveEFHllpvrxrRpNy7odTMvv1yMyEjtdR9ftGgRtm/fLnn8119/HQsXLpSlINhfde3aFf/5z3+QlJQkqb/b7ca4ceNkzUSBFRERIXkt2l9lZWXB7XbLkIiIqPw61mVRMKKqYtEiO9LTpa/Lf+EFrjesanQ6HW677TaMGjUKM2bMwL59+1BcXIyxY8eGOhr54dVXX0V+fr6kvmFhYVi7dq1sBcH+oFKp8Morr2DVqlWSi3qdOnUKn3zyiay5iKhquP5dSCKqFNRqNRo3boxWrVqhdevWaNWqFW677TaYTKZQRyMiIiIiIlIEfm6qOi5duoR33nnnf1oflTxejx4eAGH+RLrGHXfcgY0bN6Jz586STgv98ssv8dRTT6FFixayZfJHcnIktm8XUVxc/s2d27b9H3v3Hd9U9f4B/JPRtEm6aEtpSwstLUNA9hAQUEFAQIYMAQFBcA9w7/ETFZXl9qvIliEoU4YMQWTIHrIptLR00L3S7OT3Bw6wLTQnN02aft6vV1/SmzznPpbS3nufc57j54KMiIiq1pSdU3A447BTY/yZ9SdOZ5/GLbVvcWqc+vV98OabPnjzTeDoUSMWLDBjxQoV0tKkaW4pFb1ejtWrtVi9GggJsWDQIAPGjlWia1dfLsQnkpDNZsNTTz0lvMP4yJEj8d1330Eud83+U2FhYdi6dSu6d++OM2fOOBx//PhxfP3115zgRURE5AGKimxYvFiPRYvk2LtXDUDCe5D09kCDbdcf8y0Gmi8DDk+s9DD165swcqQJEyaokJDA3cOJSHpXrnDvXm+gUMgxf34gsrKKsXWreBOJHj0K8eGHl2Gz2XH58mXhhgxERK6ydOlSzJ492/mBEgB0BDRNNfj2tW/LfUt4eDjCw8PRqFEjDBgwAACQmpqKBQsWYMaMGSgoKBA+fWpqKh588EGsXbtWkkZjROQ9Vq/ORWFhhHD8Lbfo8cwzwRW+XlJSgpdeekl4/Jdeegn/93//Jxx/M/Hx8di2bRu6d++OTIEOxhs2bMDPP/+M/v37uyA7coXo6GicPXvW6Q11kpKS0LhxY4myIiKqHLlMjjti73B3GkRURT75RHAzIQCNGhkxaBDrfN7Mx8cHzZo1+2e9T7t27dCiRQuoVJ41B5acc+jQIcyZM0coVqlUYvny5ejTp4/EWf2rf//+WLZsGe6//35YLBaH46dMmYLRo0cjMjLSBdkRkbfibAMiL/L3QvbRo0dj1qxZ+P3331FUVISTJ09i4cKFeOaZZ9ClSxcubCciIiIiohqL900128svvwydTvefo4OExxs2TGyXjxvp3LkzFi5cKBRrtVrxzDPPSJyROJVKjttuKxWKPXXKD2lpRokzIiKqOvsu78MHv/+3EaWYFadWSDLO31q18sWsWf5ISfHBli16jBmjQ1CQ48VpV8vLU2LuXH/ccYcfGjQw44UXSnDyJHcfJpLCnDlzcOTIEaHY2267DQsWLHBZQ7C/hYeHY+PGjQgKChKKf+utt5CXlydxVkRERFQZVqsdmzbpMXy4DhERwBNPaP9qCCaxQw+Xf7xt+Q0HrqXVWjFypA5btuhx8aIPpk71R0ICJ4wTkWtkZ3Oarrfw8ZFj5Uo1WrcWq33cf38uZsxIhZ/f1SbdBQUFuHLlipQpEhE55dy5c3jkkUecGyQMwBgAowE0BHSW/9bnbywmJgZvvPEGLly4gEmTJjnV0Ovnn3/GjBkzhOOJyPvodDp07JiLVavO4667ioTGmDrVBKWy4mv8qVOnIi0tTWjsIUOG4KOPPhKKdUSjRo2wZs0a+PiIzXuaPHmy0OJncg+5XI7Y2FinxzGbzcjIyHA+ISIiB3So2wFBfmJzBoioevn1VwOOHBHfUPrppy3cdNSLKJVKtGzZEg899BC++uor7Nu3D8XFxThy5Ahmz56Nxx57DO3atWNDMC/0zDPPwGazCcXOmjXrn40HXOm+++7DtGnThGKLi4vxyiuvSJwREXk7zjYgqqbkcjkaN26MBx54ADNnzsTOnTtRWFiI06dPY9GiRZg8eTJuv/12aLVad6dKRERERETkFrxvomslJiZi2bJl/zkaAqCb0Hj16pnQpo1rCkmDBw/GU089JRS7c+dO/P777xJnJO7OO81CcXa7DOvWiS2qISJyt1JzKcauHgur3bmddv+2/ORyScb5L7lchp491Vi4UIvMTDmWLi1Fv346+PqKFdRd6dIlFWbM8Efz5iq0amXAhx/qkJ7OieZEIqxWK6ZOnSoUGxwcjGXLlgkvEnFUbGys8M5/+fn5+PLLLyXOiIiIiG7kzBkTXnxRh9hYM+65R40VK7TQ6104Ne3MIEAXVvZ43QNA5MEyh2UyO26/XY9vv9UhM1OGJUu06NlTzQUCRORy2dlKd6dAEgoIUGL9egUaNDA4FPfMM1fw+usZUCiuP56dnc2m1kTkMSZOnIiSkhLheN9WvsAjAOL/PWaz25BW5HhznJCQEHzyySdYv349QkJChHN6/fXXcf78eeF4IvIuly9fBgDExprw6acpmDs3Cbfcoq90fI8exRg4sOLGJIWFhfj888+FcnOmJiKiQ4cOwvWiCxcuYOnSpRJnRK6kVqsRGhrq9Di5ubnQ6yv/b4aIyFk943q6OwUiqiLTponPWQwLs2DCBBdsUERVQqlUokWLFhg/fjy+/PJL/PHHHyguLsbRo0cxZ84cPP744+jQoQN8fX3dnSq52K+//oo9e/YIxTqz/kbE5MmTce+99wrFLl68GElJSRJnRETejLMNiKqJoKAgjBw5Eu3atUPbtm3Rpk0bBAQEuDstIiIiIiIij8H7JrqR6dOnl7NryL0QfTzWr58ZcrnrdpeZPn06Nm3ahMTERIdjP/roI3Tt2tUFWTluwAA/vPaaWOzWrXI89pi0+RARVYWXt7yMc7nnJBvvZPZJnMw6iWbhzSQb87/8/OQYMUKDESOAvDwrlizRYelSOfbu9YPd7lkL5I8d88OxY8Abb9jRtWspRo2yY8QINQICuA8OUWWsWLFCeFLJZ599hvr160uc0Y0NGTIEY8aMwaJFixyO/fzzz/HCCy9ArebEPyIiIlcpLLTi++8NWLRIjn371ACqcDdmqy9wdDzQpZxdeEffA8y8DFh9ERtrwqhRJjz0kArx8bwuIKKql52tuPmbqFqJjPTF+vWl6N7djKysGzfOVijseOedNAwaVFDhe9LT0+Hj48O6JhG51ZIlS5zafOqtt97Cuqh1OJJ5pMxrv136DaNuHSU07j333IP9+/fjjjvu+KeZjyNMJhMmT56M9evXC52fiLxHXl4ezObrN7Zr316HpUsvYN26YHz2WR1kZ1d8badU2jFt2o3rpl9//TWKi4uF8luwYAGCgipuOOYKzz33HNauXYudO3c6HPvxxx9jzJgxLsiKXCUyMhJFRUVl/h04Kjk5GY0bN4Zczvo8Eblezwae0xTMZrPh1KlT2LdvH06dOoWkpCQkJSUhOzsbOp0OOp0OwNVGjH9/BAcHIzo6GjExMYiJiUF8fDzatGmD+Ph4yGSeNR+LyJ1OnTLil1/Ea3gPP2yAWu0vYUbkShERERg3bhzatm2Ldu3aoWXLlpzbRQCu3meKCAsLw3fffSdxNjc3d+5cNGrUCPn5+Q7FWa1WzJgxA1988YWLMiMib8OmYETVROvWrbFkyRJ3p0FEREREROSxeN9EFcnKysKCBQvKeWWw8JhDh7p2EY+vry9mzJiBgQMHOhy7YcMGnDx5Es2aua55TGU1a6ZBTIwRqamO786ze7caVqsNCgUnkRFR9bHlwhZ8cUD6Qu2KUytc2hTsWiEhCjz1lBZPPQUkJ5uxcKEJy5Ypcfq0Z+20ZrXKsGOHBjt2AJMm2dCnjw6jR8tw771q+Phw4hxRRaZNK6dpRiV07NgRo0ePljibyvnwww+xcuXKfybRVlZ2djbmzZuHJ554wkWZERER1UxWqx2//GLAvHk2rF+vhl6vdV8yhyeW3xRMm4Paz3fHnJ6r0a9HHZc29yciupmcHE7T9UZNmmiwalUxeveWo6Sk/JqRWm3FzJmpuP32kpuOd+nSJSQkJMDPz0/qVImIbqqkpAQvvfSScPxLL72E//u//8PZH8+W2xRsf9p+4aZgABAfH49t27ahe/fuyMzMdDh+w4YN+Pnnn9G/f3/hHIioerPZbBX+/FAogEGDCtCrVyHmz6+NefPCYDCUnacyenQhWrcOrvAcRqMRn332mVB+w4cPR7du3YRinSGTyfDpp5+ibdu25Wy0eGMnTpzAhg0b0LdvXxdlR64QFxeHc+ec2+DMarXi8uXLqFevnkRZERGVT+OjwW3Rt7k1h7S0NKxduxZr167Frl27UFJy82c8ZrMZRUVF/3x+9OjRMu8JCgpC69atcccdd6Bfv35o27Ytm4RRjTZ9uhl2u9jcRLXahsmT+Uy1OunTpw/69Onj7jTIwxw/fhy//PKLUOy7776LkJAQiTO6ubCwMLzzzjuYNGmSw7Hz5s3DO++8g7CwMBdkRkTehivqiIiIiIiIiIjIq33xxRcwGAz/OaoB0EtovLAwC7p3d31jlAEDBqBnT8d3OrPb7ZgxY4YLMhLTtateKC4zU4WjR8ViiYjcIV+fj/Frxrtk7OUnl8Nut7tk7BuJjfXBW29pceqULw4dMuKZZ3SIinJu52BX0OvlWLVKiyFDNIiMtGLiRB1+/90Am63qv2ZEnuzXX3/F4cOHhWI/+eQTt01CjYqKwiuvvCIUO2PGDLf8/CQiIvJGp04Z8dxzJahXz4J+/dT48Uct9Ho3Tz3LbQRYym/4la3Zh9cTeyGjJL2KkyIi+ldurgl6vWs3GSH36dw5AAsXFsPHp2wDhZAQC+bOTa5UQ7C/XbhwASaTScoUiYgqZerUqUhLSxOKHTJkCD766CMAQKuIVuW+50TWCdHU/tGoUSOsWbMGPj4+QvGTJ0+GxWJxOg8iqp6uXLly06ZXGo0dTzyRhXXrzmHAgPzrXgsMtGDqVM0N4xcvXoyMjAyHc/P19cXHH3/scJxUWrVqhfHjxWrc06dPlzgbcjWVSoWIiAinx1mxAjh0yLHNfIiIHNWtfjf4Kt23geGePXsQExODJ554Aps2bapUQ7DKKiwsxI4dO/DOO++gffv2iIqKwiOPPIL9+/dLdg6i6iIry4Jly258rX0j99+vR3g4N+Ygqu5E7y+bNWuGRx55ROJsKu+JJ55AkyZNHI4rLS3FV1995YKMiMgbsSkYERERERERERF5LbvdjgULFpTzSh8AaqEx+/QxQqGomoYIr7/+ulDc8uXLodN5xuSrnj3FmzD8/LNRwkyIiFzr6Y1PI61YbNHMzZzOOY2T2SddMnZltWnji08/1SIlRYlfftFj9GgdAgOtbs2pPLm5SsyZo0W3bn6Ijzfj5ZdLcOoUf58QAVd3mBPRs2dP3Habe3fgfeaZZxAYGOhw3MWLF7Fz504XZERERFQzFBRY8fnnOnTooEezZr6YNcsf6elii/BdRWbRVvjan1l/otOcTjiZ5d77KSKquTIyTFCrb9x8gKq3wYOD8dlnhdcdi4kx4vvvL6J5c8c2PrHb7bhw4cJNG1YQEUmpsLAQn3/+uVBsbGws5syZ88/nt9e7vdz3JRUkCY3/Xx06dMDUqVOFYi9cuIClS5dKkgcRVS8WiwW5ubmVfn9EhAXvv5+GZcsS0bbt1Xk3zz5bjIiI8puS/020BjNmzBjUr19fKFYqr776KuRyx5cX7tixA8nJydInRC4VFhYGtVpszlxxsRyvvhqNF16oh7Fj5dDrPW++ABF5j55xjm+oKyWz2VxlG5BlZmZi9uzZ6NixI9q0aYNvv/0WRiPnOlHN8MknBuFNiGQyO158kQ3BiKq74uJi/Pjjj0Kxr776KhQK923Oo1Qq8fLLLwvFzp8/X9pkiMhrsSkYERERERERERF5rZ07dyIlJaWcVwYLj3nffVXTEAwA7rjjDrRp08bhOJ1Oh9WrV0ufkID+/bVQKMQmR2zf7lmLTImIKrLi5Aos/nOxy8/hCRQKGXr1UmPRIi0yM2VYsqQUffuWQqXyvMWKyckqfPyxP5o180Xr1gZ89JEOGRkWd6dF5BalpaXC14fPPfectMkICAwMxIQJE4Riv//+e4mzISIi8m5Wqx0//6zHkCE6REXJ8MwzWhw4ILZQ0FUCAqwYM0aHHTsMqBV842d1qUWpuH3e7fj90u9VlB0R0b8iI43Yv/8U/vjjFH7++RzmzbuIadNS8PLLGXjooWwMGJCPzp2L0aiRHiEhFshkVbPQkKT12GO18OabeQCAZs1KsWjRRcTEmITGslqtOH/+PBuDEVGV+frrr1FcXCwUu2DBAgQFBf3zeYeoDuW+L0uXJTT+f5WYStB3bF90ur2TUPzHH38sSR5EVL1cvnxZKK5ZMwPmzUvCF19cwiuvBN3wvcnJydi9e7fD55DJZHj22WeF8pNSfHw8Bg4c6HCc3W7H4sWurZGTa9SvXx8ymWPz3w4c0GDIkAT8/HMwAODUKTVeeKHIBdkREV11d/zd7k7BLY4cOYJHH30UDRs2xNy5c2G1sgEjeS+93obZs/2E43v31qNpU18JMyIid1i5ciX0esc2WQGAunXrYvjw4S7IyDGjRo1CRESEw3FJSUlCzxKIqOZhUzAiIiIiIiIiIvJa5U8+8wHQX2i8gAAr7rlHvAApYvLkyUJxnjLxrnZtFVq0cLxQAwD792uh07F5CxF5toziDDy2/jGXn2f5qeVVtgNlZanVcowcqcH69RpkZNjx2Wc6dOqk98gFrEeP+uGVV7SIiVHgrrtK8d13OpSUcHEl1RyrV69GSUmJw3FNmjRBnz59XJCR4yZNmiS0U/2PP/7IXXSJiIgq4dQpI557rgT16llw771qrFypFd6Z2xXkcjvuuKMU8+aVIjNThoULtejSVYl8Q/5NYwsMBbh70d348ZTYDsNERKJMpquNobRaG+rXN6Fdu1L06VOE0aNz8eyzV/D++2n45ptL+OmnC/jttzM4dOgktm49gw8/LG+zE/Jk774bgqlTr2Du3GSEhjq3WNNsNiMpKUmizIiIKmY0GvHZZ58JxQ4fPhzdunW77phKqYJKoSrzXp1JV+lxS82lOH7lOH469RM+3PUhJqyZgG7zuiFyRiQCpgag6VdNsbfZXsjkjm/kdeLECWzYsMHhOCKqvgwGg1Bt5G8yGTBkiC/8/G78fGTJkiVCddxevXqhadOmoulJSrQ5mafMTSLHKJVKREdHV+q9JpMMM2fWwYQJccjIuP73/P/+F4xNm9gYjIikF64NR/Pw5u5Ow61SU1MxYcIENG/eHDt27HB3OkQuMXeuHjk5SuH4F1/0nDomEYkTva986qmn4OPj/g3oVSoVnnjiCaFY3lMTUWXwioeIiIiIiIiIiLySyWTCjz+Wt9DvDgDBQmP26GG46WQ/qQ0ZMgRardbhuC1btiA7O9sFGTmue3fHmzCoVDa0bFmKxMRCF2RERCQNu92OCWsnIE+f5/Jznck5gxNZJ1x+HlEhIQo8/bQWe/aoceGCBW+/rUOTJp7XhMdqlWH7dg0efliL8HBg6FAdVq8uhdnseY3MiKQkOoFk9OjRDu8U7ir169dH165dHY4rKCjgYj8iIqIK5OVZ8emnOrRrZ0CzZr6YNcsf6enunzh7rfh4I958swQXL1qwfbsG48ZpoNFcfT6XW5oLOyp3LW+0GjF8xXB8vu9zV6ZLRHSdv5uCVZaPD1CnjgXx8Y7FkWd46aXaCApSSDKWXq9HSgqbwxGRay1evBgZGRkOx/n6+uLjjz8u97UQdUiZY3bYcang0j+fGywGnMo+hTVn1mD6nul4dN2juGvBXYiZFQPtB1q0/F9LDF0xFK9uexVzj87F7ym/I7Mk898BIwF7S7Fn+tOnTxeKI6LqKTU11al4uVyO8PDwm75PtAYzZswYoThX6Nq1K2JjYx2OO336NI4cOSJ9QuRyQUFBCAgIuOF7zp3zxciRDTBvXm3Y7WXrhTabDA8/7IfcXN7DEpG0esT1gFzGpe8AcObMGdx1112YNGkS9HqxzXmJPJHNZsdnn4k3BGvVyoC77qraTb6JSHqZmZn49ddfHY6TyWQYPXq0CzISI3p/v3z5cpjNZomzISJvwzsjIiIiIiIiIiLyStu3b0d+fn45rwwWHnOweKgwjUaDe++91+E4i8WCtWvXuiAjx/XpU7nHkA0bGvDggzn45ptk7N59GrNnJ8Pfv8C1yREROWH24dnYmLixys63/OTyKjuXM+LifPDOO1qcPu2LgweNeOqpEkRGel7hWq+X46eftBg8WIOoKCsefliHXbsMsNnYIIy8S0lJCbZs2SIUO2LECImzcc7IkSOF4lauXClxJkRERNWXxWLH2rV6DB6sQ926MkyerMWhQ541aT4w0IoHH9Rh504Dzp1T4d13/VG/ftlmZdmljjXEt8OOZzY9g5e3vAyb3SZVukREFbJYLEJxntKcmRwjl8sRHx8PuVyaqdlFRUVCzXqIiCpr3rx5QnFjxoxB/fr1y30tOiC63OPj14zH3YvuRuwnsdC8r0Gzr5ph0A+D8OKWF/Ht4W+xPXk7LhddrnwSXQEI/LrcsWMHkpOTHQ8komqnqKgIRqNzGxhFRUXd9Nru7NmzOHXqlMNjq9VqDBw4UDQ1lxCtCbEGU33FxMSU+z1uswELFoRixIh4nDunvuEYly+r8NhjbFJDRNLq2aCnu1PwKHa7HZ999hlatWqF06dPuzsdIkmsWaPHuXO+wvHPPmuVMBsicpc1a9bAanX833OXLl0QHV3+c0h3iI2NxW233eZwXG5uLnbu3OmCjIjIm7ApGBEREREREREReaXyGx/IAIhNqlOpbBg40D0LJEWbH4g2f5DanXcGICCgbMEmJMSCfv0K8P77l7Ft2xmsXJmIF17IROfOJfDzu9qQxWAwVHW6RESVciHvAp775bkqPefyU8tht1evhlVt2/ri88/9kZqqxKZNeowapUNgoOdNysnJUeK777To2tUP8fFmvPJKCc6c4Y7G5B127NghtKNcu3btEB8f74KMxA0dOhRKpeM7hW7dutUF2RAREVUvJ06YMHlyCWJiLBg4UI3Vq7UwGDxn6phCYcddd5ViwQIdMjNlmD//6vW5XF7xSv8sXZbQuT7e8zHGrhoLk5XX/ETkWiILGQBI1lSKqp5SqURCQoJkjd1yc3ORm5sryVhERNdKTk7G7t27HY6TyWR49tlnAQAWmwUX8i5gU+ImfL7vczyz8RmkFaeVG7c9eTu2XtyKS4WXYIcEdY4QIO62OIfD7HY7Fi9e7Pz5icjjpaWV//OoslQqFYKDg2/6PtF5Of369YO/v79QrKtU97lJ5Di5XI7Y2NjrjmVm+uCRR2IxfXokzObK3Zv++GMQ5s0rb+NOIiIxbApWvnPnzqFTp0783UteYeZM8eenMTEmjBqlkTAbInIXb9noFOA9NRG5DmcOEBERERERERGRVyp/4X9HAFFC43XrZkBQkMKpnET17NkTKpXK4bht27Z5RPMYlUqOTp10UKlsuO22Ejz3XCZWrEjE9u1n8OGHlzFgQAHCwy3lxtrtdjYGIyKPY7VZMXb1WOjMuio977ncczh+5XiVnlMqCoUMvXursXixFpmZMnz/fSnuuacUPj42d6dWRnKyCh995I9bblGhTRsDPv64BBkZ5f+eIqoORBti9evXT+JMnBcaGoqOHTs6HJeZmYk///zTBRkRERF5ttxcK2bN0qFNGwNuvVWFTz/1R2amj7vTuk7Dhka8844OFy9asG2bBmPHaqFWV25KW7YuW/i8i/9cjL6L+6LIWCQ8BhHRzbApWM2kUqnQoEEDycbLyMhAURF/XxGRtJYsWSJUR67Xph5eOvoSGn/RGJr3NUj4PAH3LL4Hz2x6Bp/v/xwZJRkuyLZ8jz/1uFAcm4IReb+srCzha/G/xcTEVOp93lSDadGiBaKjox2OO3jwIAoKCqRPiKqERqNBSEgIAGDDhiDcd18C9u1zvGHd888HIClJL3V6RFQDNQxpiHpB9dydhscqLCxE3759MWfOHHenQiRs/34jdu1SC8c/8YQZSqU0mzIQkfvYbDZs375dKNYT76n79u0rFMemYER0M5w5QEREREREREREXic7OxvHj5fXNGWw8JgDB7qvuZZGo0GnTp0cjsvJycGRI0dckJHj3nuvBLt2ncbs2ckYPz4HTZoYUNl1TXl5ea5NjojIQdP3TMee1D1uOffyk8vdcl4pqdVyPPCABhs2aJCRYcenn5bgtts8c4LwkSN+ePllf9Srp0CPHqWYM0eHkhLPa2RGdCOiE0d69vTM3XdF8+IEGiIiqiksFjtWrSrFwIE61K0rw3PPaXHkiJ+707pOUJAF48eXYNcuA86cUeHtt7WoV8/xZmVZuiyn8tiWtA3d5nVDenG6U+MQEVXEZhN7huDj41kNHMlxarUa9evXl2y8lJQUlJaWSjYeEZFoY6xL9S9h/fn1OJd7DmabWeKsKi/YLxiT7p+E2NhYh2NPnz7tMTV0IpKezWZDdrZ4E3EA0Gq1UKtv3qTAarVix44dQufw1BpMjx49HI6xWq349ddfXZANVZWoqCisWFEbL78cg+JisQ0z8/OVGDfOCquVtXQib6KQV/0muj0beObvSE9isVjw8MMPY9GiRe5OhUjItGnim3MGBlrx+OOeVfckIjGHDh0SWiMSHx8v9EzQ1RISEoTyOnLkCHJycqRPiIi8BpuCERERERERERGR19m2bVsFOxuLNQWTy+0YOtTXuaScVN2bHzRtGgS1WqyxWklJicTZEBGJO5Z5DG9uf9Nt519+ankFv+Oqp9BQBZ55xh9796qRmGjCm2+WoHFjo7vTKsNikeHXXzWYOFGLOnXsGDZMh7Vr9bBYvOfvgrxTRkYGTp065XCcv78/Onbs6IKMnFfdr4uJiIhc5fhxE55+ugR161pw330arF2rhdHoOVPDFAo7evYsxYIFOmRkyDF3rj+6dPGDXC6+k7ezTcEA4NiVY+g8pzPO5Jxxeiwiov8SfYajUFT9gkuSXkBAAKKioiQbLykpCSaTSbLxiKjmOnv2rNAzQygBNJY8HSGDmgyCSqHCiBEjhOJXrlwpcUZE5CnS0tKcrqXGxMRU6n0HDhxAYWGhw+M3btwY0dHRDsdVBdZgaq4nnqiFOnWca/i5c6c/PvqoQJqEiMgjjG4xusrPyaZglWO32zF+/Hje21C1k5xsxurVN2/AW5EHH9QjKIjPz4m8wbZt24TiPLXJNiDWaNtutwt/LYioZvCcmV9EREREREREREQS2bNnTzlHmwFoKDRe+/YGREQoncrJWXfeeadQ3N69eyXORIxWqxWONZlMsNm4kyQRuZ/RYsSYVWNgtjk3GdYZiXmJOJp51G3nd6X4eBXefdcfZ874Yv9+I558sgQREe77WlektFSBH3/UYuBANSIjrXj00RLs3m2AzcYGYeR5RK8Fu3TpAh8fH4mzkcZtt90GtdrxCYJ//PGHC7IhIiJyr5wcK2bM0KFVKwNatlThiy/8kZXlWb/DGzc24t13S3DpkhVbtmgwdqwWarU0U9ayS7MlGedS4SV0mdsFu1N2SzIeEREAp55pe+r9GDkuJCQEYWFhkoxlt9uRmJgIi8UiyXhEVHMJN25pBMC9+2j9Y+gtQwEAI0eOFIpn8xoi72QymYSadF2rVq1aUCorNz+o/LlJN3fHHXcIxVWF6j43icTVqaPCV1/pnB7nvfeCcfgwN38k8hbd63fHhNYTqux8MshwZ6zY7yKpKZVKNG/eHCNHjsQbb7yB+fPnY8uWLTh69CjS09NRUFAAvV4Pq9WK0tJS5OXlISUlBfv27cNPP/2E6dOnY/To0bj11lshl7tmGb/VasWoUaNw6NAhl4xP5AozZhhhsYj9m1AqbXj+eQ95MEFETuM99b94T01EN+LelYxEREREREREREQucOTIkXKODhYeb8AAq3gyEmnVqhXkcrnDC4nK/1q4h6+vL4xGo1BsSUkJAgMDJc6IiMgxb21/C39m/enuNLD85HK0jmzt7jRcqn17X7Rv74tPP7Vj82Y9Fi2y4eef/VBc7Fk7/eXkKPHtt/749lugQQMThg0zYfx4FRo3Vrk7NSIA4teC7dq1kzgT6SiVSrRo0QL79u1zKK6goABJSUmIi4tzUWZERERVw2y2Y+1aPRYsAH75xQ8mk3gjdlcJDrZgyBAjJkxQoGNHX8jlrpmgn6XLkmysPH0eei7qiaVDlmJQk0GSjUtENZfos3CATcG8TUREBMxms9MNKoCrzeb27ElC587xUCq5LzQRidm6datYoNj+W5IL8g3C3fF3AwBatGiB6OhoXL582aExDh48iIKCAgQHB7sgQyJyl9TUVKfiZTIZIiMjK/1+b6zB1K1bF3Xq1MGVK1ccijt16hRMJhNUKtZIq7P77gvGQw/lY+7cWsJj6PVyjBsnx4EDNvj68p6FqLqTyWT4ou8XOHblGA6mH3T5+dpFtUMttfjPIGcEBATg9ttvx5133olu3bqhZcuW8PPzq1SsWq2GWq1GrVq1EBMTgw4dOlz3ek5ODjZv3ox169Zh9erVMBgMkuVtNBoxbNgwHD58mPc35PEKC61YuNDxTQD/NniwHvXre15dlIjEeOM9ddu2bYXiPGm9DxF5Hj5dISIiIiIiIiIir2K323Hs2LFyXhFvCjZ8uPsnrWm1WjRp0sThuJSUFOTm5rogI8cFBAQIx+bn50uYCRGR43al7MK0PdPcnQYAYPmp5bDb7e5Oo0ooFDLcc48aS5ZokZkpw8KFOvTuXQofH8eaZFaFixdV+OgjfzRpokLbtgZMm1aCK1cs7k6LarjDhw8LxbVp00biTKTFCTRERFQTHTlixFNPlaBuXQuGDtVg3ToNTCbPmfqlVNpx992l+P77UmRkyPHdd1p06uQHuVzmsnNml2ZLOp7BYsCQ5UPw1YGvJB2XiGomNgWja8XExECj0Tg9zunTfhgyJBYTJxbBavW852NE5PmsVit27NghFtxA0lSEDWwyECrFv/X7Hj16ODyG1WrFr7/+KmVaRORmOp0Oer3eqTEiIiIgl1f+WQtrMP8ym804ceKEC7KhqvbppwFo2FC8WY2vrw39+hUgNTVZuqSIyK38lH74afhPCNOEufxcPRv0dPk5rhUVFYXHH38cmzZtQm5uLjZs2IAXX3wRHTt2rHRDsMoICwvDqFGjsHTpUqSnp+OTTz5BdHS0ZOMnJSVh3Lhxko1H5CpffWVAUZH4hqAvvaSUMBsicqfs7GyHm/wDQGBgIOLj412QkTQaNWoktF7m6NGjNWZOOBE5znNmhhEREREREREREUng/PnzKC4u/s/R+gDEJtU1a2ZAQoL7m4IB4s0Pjh49Km0igkJCQoRjS0tLJcyEiMgxxcZijF01FnZ4RtH1Yv5FHM4Qm2RenWk0cowZo8WmTRqkp9sxa5YOHTs6N7nfVQ4f9sNLL/kjOlqBu+8uxbx5pdDpuFCTqp5oEyxvXJACsCkYERFVP9nZVkybVoKWLQ1o08YXX37pj+xsz2oU06SJEVOmlODSJSs2b9bggQc08POrmilpWbosyce02W14csOTeG3ba5x4S0ROcaYpmErlGTUJklZsbKxTf7d79mgxblwccnJ8sGBBMN56q1DC7Iiopjhw4AAKCwV+foQCCJI8HSHDmg677vOePcUaB2zZskWKdIjIQ4gsJr6WUqlEaGhopd+v1+tx9uxZh8+jUqnQvHlzh+OqEmswNZu/vxLz5pmFNulq0kSPH364gAceyIPBUIq8vDwXZEhE7lAvqB6WDVkGucy1z/6roimYWq3GqFGjsGnTJqSmpuKrr75C7969q6xJf61atTBp0iQkJibi008/RXBwsCTjrlmzBsuXL5dkLCJXMJvt+Oor8X9nXbvq0a6dr4QZEZE7id4/tm7dGjKZ6zYlc5ZcLkerVq0cjisqKsLFixelT4iIvAKbghERERERERERkVcpfyfOQcLj9e9vEY6VWsuWLYXiRHcnlZpKpXJoV9VrWa1WWCye83dBRDXL85ufR1JBkrvTuM7ykzV7IldYmAKTJ2vxxx9qnD9vwhtvlKBhQ/HFtq5isciwdasGDz2kQZ06dgwfrsO6dXpYLGwuQK535coVZGRkOBwXGBiI2NhY6ROSUHW/LiYiIroRs9mOFStK0b+/DnXryvDSS/44fly6HemlUKuWBQ8/XIK9ew04fdoXb7zhj6ioqt+dO1uX7bKxp+6ainFrxsFsNbvsHETk3Uwmk3Cs6HN08mxyuRwJCQlQKBQOx65bF4Qnn4xFaem/sR98UAtffpkvZYpEVAPs2bNHLDBW0jSEBfoG4u4Gd1937M477xQaa+/evVKkREQeIC8vD2azc/fvdevWdej9x44dg9Vqdfg8TZo08fgmwKzBUJcuAXjhhYJKv18ms2PixGwsWXIR8fH/1uzT09M514vIi/Ro0AMf9vjQZeP7Kf3QOaazy8aPi4vDtGnTkJaWhsWLF6N3795ufQbn6+uLZ555BqdOncKgQYMkGfP555+HTqeTZCwiqS1ZUorLl8Wvg597jnPtiLyJ6P2j6P1qVeI9NRFJjTMHiIiIiIiIiIjIq5w6daqco4OFxxs+vGp2AKuMhIQEobiTJ09KnIk4tVotHJufz8UtRFT11p9bj9mHZ7s7jTKWn1oOu52TXQAgIUGFKVP8cfasL/btM+KJJ0pQp47nLdzX6RRYsUKLAQPUiIqy4LHHrjZRsNn490iuIXoNKHrNWZW84bqYiIjovw4dMuKJJ3SIirJi+HAN1q/Xwmz2nKldSqUdvXqVYsmSUqSny/Htt/647Tb3NSszWU3IN7j2WdHCYwvRf2l/FBuLXXoeIvJOogufPXmHc3KeXC5Hw4YNK/33bLcDc+eG4bXXYmCxlI2ZPDkIP/1UIHGWROTNjhw5IhYYJW0eogY2Hghfpe91x+rWrYs6deo4PNapU6ecauJJRJ7BarUJbZByLbVajYCAAIdiyp+bdHOswVB18X//F4z27W/eWKZuXRPmz0/CpElX4ONTtu598eJFV6RHRG7yQucXMLTpUJeM3bVeV/gpXVNziImJQWJiIl544QXUqlXLJecQFRkZiVWrVmHGjBlCjeSvdfnyZbz//vsSZUYkHZvNjlmzxL+/Gzc2YsAA8bnnROR5eE9dFu+piagiVb9FIxEReaTMzEzs27cPR44cQVJSEi5evIjLly+jpKQEOp0ORqMRarX6nw+tVovIyEjExMQgJiYG9evXR4sWLdCyZUv4+XnWLsVERERERFSzJCUl/edIGIDbhcaKjTWhVSvP2aFTtEiQnJwsbSJOCAoKEt6NrKioCLVr15Y4IyKiiuWU5mDC2gnuTqNcyQXJOJRxCO2i2rk7FY8hkwEdOviiQwdffPqpHZs367FwoQ3r1/uhpMS5iXNSy872wTff+OCbb4D4eCOGDzdj3DgVGjXynOsOqv7KXhdXTnWYPBMUFISwsDDk5OQ4FHf58mVYLBYolSyTuwrrTUREjrlyxYL58434/nsFTpzwA+B705iq1rSpAaNHWzFunC8iIzXuTucfOaWOXQeI2nxhM+5YcAfWj1qPCP+IKjknEXkH0aZgcrnnNIQk11AqlYiPj0diYuIN32e1AtOmRWDx4rAK32OxyPHggwEIDy9G166ONbIgoprp8OHDYoGR0uYhqqIGBG3btsWGDRscGstsNuPEiRNo06aNFKkRkZt8+20Bli6thxdeyESDBkahMWJiYhyO8eYajDfMTfJGKSkp2LdvH44dO4aLFy8iKSkJ6enp0Ol00Ol0MJvN19Vf/P39UbduXcTExCA6OhqxsbFo3bo1mjVrBh+fm2+Q6eMjx4IFMnToYK2w1ud3KS4AAQAASURBVD5wYD5eeSUD/v62CscxmUy4cuWKUANPIvI8MpkMcwfMxcmskzidc1rSsXs26CnpeNdyttlWVXjuuefQtGlTDB48GAaDQXiczz//HC+99BKCg4OlS47ISb/+asCxY+JNvZ55xgK53PNqqEQkjvfUZfGemogqwtnOREQ1lMFgwPr167FmzRps3rwZly5dumnM3wWDv505c6bMe5RKJZo2bYqOHTuib9++6NmzJ/z9/SXNnYiIiIiI6EbKFgkGABAr6vfrZ4Jc7jnNOeLj4yGTyWC3l91Z8UZECyeuEBwcjPT0dKFYZyY7EBE5ym6347GfH8MV3RV3p1Kh5SeXsylYBZRKGfr2VaNvX6C01IYff9Rh8WIZfv3VDxaLZy2uvXDBF1On+mLqVKBdOz1GjLBh9Ghf1KnDMh45R/QasGHDhhJn4hoJCQkONwWzWq1ITU1FXFyci7KqeVhvIiJynMlkx6pVeixYAGzZ4geLRevulMoIDbVg6FADJkzwQfv2ntmkMVuXXWXnOpxxGJ3mdMIvo39Bo9BGVXZeIqrerFarUFx1WKRIzvPz80P9+vUrvIcyGmV49dVobNkSdNOxdDoF7rvPD7/9VoqmTT2ngScReR69Xo+zZ886HqgAEC55Og4LUAWgV3yvcl8TaQoGAEeOHGFTMKJqrLjYgilT/JGRocKePf4YNiwPTzyRhVq1Kn8tHhgYCJXK8XlB3lyD0Wq1iIiIQGZmpkNxly9fhtlsrlTDKbq54uJibNq0CWvXrsWWLVtw5crN5y2UlJSgpKTkn89PnTpV5j2+vr649dZb0blzZ/Tr1w/du3eHr2/5TTZuuUWD99/Pw6RJIdcdDw624O2309GzZ1Gl/l+ys7MRFBTEzWCIvESAbwBW3b8K7We3R7GpWLJx725wt2RjVVd9+vTBmjVrMHDgQOG5siUlJfj666/x6quvSpwdkbjp0x2b836t2rXNeOgh8YZiROSZvPmeWrQpmCet9yEiz+JZqx6IiKjKtGzZEv3798fs2bMrtUCjsiwWC44fP47Zs2dj8ODBCAsLQ+/evbFo0SIu3iYiIiIioipR9oH4YOGxhg71rGYcfn5+iIqKcjju74l3nkAul0OpFPu62u123lsSUZVZ/Odi/HT6J3encUPLTy53uFFkTaTRyDF2rBa//KJBWpoNM2fq0L693t1plevgQTVeeEGL6Gg57r67FAsW6KDTVbyzMtGNiE4UadCggcSZuEZ8fLxQHCfQSIv1JiKiyjt40IjHHitBVJQVI0ZosHGjxqMa1iqVNvTpU4ply0qRnq7A//7nj/btPXfX7SxdVpWeL7kgGZ3ndMYfl/+o0vMSUfVls4ndz4s+P6fqJyAgAHXr1i1zvKhIjkcfja1UQ7C/5eT4oF8/BdLTjVKmSERe5tixY2JNK8PgEVvRD2g8AH7K8puJtGzZUmjMw4cPO5MSEbnZe+8VIyPjakMvq1WGZctC0a9fI8yfHwqTSXbTeJlMhujoaKFzswZT1t8bs5A0wsLCMHz4cHz//feVaghWWUajEQcPHsRnn32G3r17IzQ0FIMHD8bq1avLvU548slg9Onzb/OvLl2KsXJlYqUbgv0tOTlZ+D6ZiDxP47DGWDh4oWTjhapD0TJC7Jre2/Tq1Qtz5sxxaozPP/8cJpNJooyInHPypAmbN4s39Xr0USP8/DynnkpEzjOZTMjIyHA4Ti6XIzY2VvqEJBYXFweZ7ObPJP6LcxqJqCK8EiIiqqGq6uGO0WjE5s2bMXbsWNStWxfPPfccLl68WCXnJiIiIiKimsdoNP6nSOAPQGwHsdq1zeja1fMWPkZERDgcY7PZkJKS4oJsxGi1WuHYvLw8CTMhIipfamEqntrwlLvTuKlLhZdwIP2Au9OoVsLDlXj2WS3271fj3DkTXn+9BAkJnrdY0mKRY+tWDcaN0yIiwo7779fh55/1sFjYBI4qLzk5WSguMjJS2kRcROS6GOAEGqmx3kREdGOZmRZMnapD8+YGtG/vi2++8Udurgespr9G8+YGfPihDpcv27Bxowb336+BSuX4JNWqll2aXeXnzNXn4q4Fd2Hd2XVVfm4iqn7YFIwqo1atWggPD//n88xMJR58sAEOHXK8jpKc7Iu+fa0oKrJImSIReZFTp06JBYZIm4eoYU2HVfhaQkKC0JgnT54UTYeI3OzSJQO+/DKwzPHiYgVmzIjEgAENsXlzIG60v1Lt2rUhl4stq2MNpnyswUinquovOp0Oq1evxuDBg1G/fn28/fbb1zUhUyjkmDvXF/XqGfH66+n4+utLqF3b8XsOi8WCtLQ0KVMnIjcb1GQQXrv9NUnG6tGgB+QyLnX/26hRo/Dss88Kx2dkZOCXX36RMCMicdOmmWG3i9Ud1WobJk0SbyhGRJ7p0qVLQjW0sLCwalFDU6lUCAlx/IFqWloam3oSUbl4p0RERFUmLy8Ps2bNQpMmTfDkk08iMzPT3SkREREREZGXSUlJgf26GX33ABBr7HXPPSYoFJ63ANIbJt6JFDr+VlJSImEmRERl2ew2jF8zHoXGQnenUinLTy53dwrVVsOGKrz3nj/OnlVh714DHntMh/Bws7vTKqOkRIHly7W491416ta14IkndPjjDwNsNjYIoxsTXZAier1Z1bzhupjEsN5ERJ7OZLJj2bJS9OlTipgYOV57TYuTJ/3cndZ1wsIseOyxEhw8aMSff/rh5Ze1qFPH8yfQXitLl+WW8+otegz6YRC+PfStW85PRNWDaEMwAPDx8ZEwE6oOwsPDERwcjPPnfTF6dDwSE8WvG44d02DwYD1MJvHvQSLyXsLPxTygKZi/yh+9E3pX+LpoUzDRZ6hE5H4vv2yATqeo8PW0NBWef74exo2Lw4kTZRsJyOVyhIWFCZ277IaFlccaDHmytLQ0vPvuu4iPj8cbb7yBwsKrcyYiI32xd28RRozIg8yJqXSFhYUoLi6WKFsi8gTv3vkuesX3cnqcnnE9JcjGu0ydOhUNGzYUjl+xYoWE2RCJuXLFgh9+EG/qNXJkKcLCKr7mJ6LqydvnNAJiudpsNqSkpLggGyKq7tgUjIiIqpzZbMZXX32FhIQETJkyBRYLdyckIiIiIiJpXLtT4VWDhccaMsQzH52JFjSystyzULI8Wq3jO9z/zWQyObWgiojoZr7c/yW2JW1zdxqVtvzk8v80xCRHyeUy3HabH77+Wou0NCXWrdNj+HAdtFqru1MrIyvLB19/rUWnTn5o0sSEN94owfnz3B2Myid6/VenTh2JM3ENb7guJuew3kREnmbfPgMeeaQEkZFWjBypwS+/aGCxeM7zJR8fG/r2LcXy5aVIT1fg66/90batWDN9T5Cty3bbuW12Gx79+VG8tf0t3o8RUbmcuTZVqVQSZkLVRXR0NA4eDMWVK843hfv11wCMHVsEq5W1FCK6XnVuCnZvo3vhp6y4aaJWqxV6Xnj58mWYzZ63WQgR3diePcVYsSKoUu89fFiLkSPj8eqr0cjM/Pdaq27dupDLxZ7bZGdnCz0PUKlUqFWrltA5qxprMDWbTqfD+++/jwYNGuB///sf7HY7oqJqw8/P+Y0PUlNTOe+LyIso5AosuW8JYoNjnRqnZwM2BfsvX19ffP3118Lxa9euhcnE+UTkXrNmGWAwiF1zy+V2vPgin5UTeaOy630qp7rMaQR4T01E0vKcmWdERFTj6HQ6vPXWW+jYsSNOnjzp7nSIiIiIiMgL5OXlXfOZCkA/oXECA63o08f5iUyuEBkZKRR3/dfG/Xx9xRedctdIInKVAkMBXt76srvTcEhqUSr2pe1zdxpeQ6mUoX9/NX74QYsrV2SYP1+Hnj1LoVR63sTk8+d98f77/mjUSIUOHfSYNUuHrCw2xKGrioqKhBahy2QyhIeHuyAj6XnLdTE5j/UmInKn9HQL3nuvBE2bGnHbbX6YPdsfeXlKd6d1nRYtDPj44xJcvmzD+vUaDBumgY+PzN1pOS1L5/4JsVN2TsHEtRNhtrKJABFdz2g0CseyKVjN9e67wRg1qkCSsbZv1+LQoVRJxiIi7yHcFMwD+tcMazrspu+Jj493eFyr1YrUVP68JKpOrFYbXnxRBpvNsWcbP/8cjHvvbYgvvgiH2eyLoKDKNRUrj2idoTotYGYNhoCrf5+PP/44evXqhdTUVMTGxkImc+65os1mw6VLlyTKkIg8QagmFCuHr7xhE98baVCrAeJqxUmclXfo0aMHunfvLhRbWFiIXbt2SZwRUeWVltowZ474PPw+ffRo0oTPyom8keh9o2ijLXfgPTURSYlNwYiIyO0OHz6Mtm3b4quvvnJ3KkREREREVM3l5uZe89ldAAKFxunRwwCVyjMXR4aEiG3FfP3Xxv0CAgKEYwsKCqRLhIjoGpsSN0Fv0bs7DYctP7nc3Sl4Ja1Wjgcf1GLLFg0uX7Zh+nQd2rXzzO+PAwfUeO45LerWlaN371IsXKhDaannNTKjqiN67RcUFASl0rMamVTEW66LSTqsNxFRVTEYbFiypBS9epWifn0F3nzTH6dPizc/d4Xatc144okSHDpkxLFjfnjxRX+Eh1eP3/GVlV2a7e4UAABzj87FwGUDUWIqcXcqRORBnGkKplarJcyEqhOFQo758wPRs6dzG6PExxuwePFFaDTFbHRDRNdJTk4WCxQv60rCX+WPPgl9bvo+0YWBws3SiMgtfvihCHv2+AvFGgxyLFoUipCQGKdyEK0zhIaGOnXeqsQaDF1r69ataN68OdatW4e6des6PZ5Op0N+fr4EmRGRp2gd2Rrf9P9GKLZnXE+Js/Eur732mnDs3r17JcyEyDFz5uiRkyNem3zxRba/IPJWvKeuGO+piag8vCoiIiKPYDQa8eSTT+KZZ56B1Wp1dzpERERERFRNXb87xmDhcQaLh7qcaDMtT9s5RLTYAQClpaUSZkJE9K9QdfUpGl9rxakVsNnZAMqV6tRR4vnntThwQI2zZ0149dUSxMeLL/B1FYtFjs2bNXjwQS0iIuwYMUKHDRv0sFrt7k6NqpjotZ8zjVurmrdcF5O0WG8iIlex24G9ew2YOFGHqCgbHnhAgy1bNLBYPKepvI+PDf376/Djj6VIS1Piyy/90aaNZzUrk1KWLsvdKfxjY+JG3LngTo/KiYjcy2QyCcdWl0bN5Bo+PnKsXKlG69ZidZA2bXRYsOAiIiLMAIDCwkJcuXJFyhSJqJoyGo3IyMgQCxbrvSOZ/o36Q+1z86aZbApG5P2MRhveeMO5JrpPPlmE+vX9nBqDNZiKsQbjvYqKijBkyBB888038Pd3/uIgLS0NFotFgsyIyFOMbTkWT7Z/0uG4ng3YFOxG7r77btSrV08olk3ByF1sNjs++0z8OXebNgbccYdz1+xE5Ll4T10x3lMTUXnYFIyIiDzK559/jgEDBkCv17s7FSIiIiIiqob+3R1DDmCg0Bi+vjYMGuTcJEJXCgwMFIrztJ1DVCoV5HKxx5NWq5UTw4jIJbrHdkeXmC7uTsNhl4su44/Lf7g7jRqjUSMVPvjAH+fOqbBnjwGPPlqC2rXN7k6rjOJiBX74QYt+/dSoW9eCJ58swYEDntfIjFxD9NpP9FrTHbzluphcg/UmIpJKWpoFU6aUoGlTIzp39sOcOVrk53tWs5aWLQ2YPl2H9HQ71q3TYsgQDXx8PKdZmat4WgOug+kH0XlOZyTmJbo7FSLyAKtX++D552MwdWokvvsuDKtWBWPXLn+cOeOHnBwF2L+WbiQgQIn16xVo0MDgUNzddxfi22+TERR0/eYB2dnZXEhCRMjOzobd7vjmET4qH8jU7r2/GNZ0WKXeJ9oULCvLs+4tiKhi06YVIClJvAF6ZKQJb77p/CJi1mAqxhqMd7Pb7XjllVcwZcoUScZjY04i7zOz90x0julc6ffLIMOdcXe6MKPqTyaTYfjw4UKxbApG7rJqlR6JieLX7c89x81RibwZ76krxntqIiqPZ81SIyIiArBhwwYMHToUq1evho+Pj7vTISIiIiKiaiQ/P/+vP3UCUEdojG7dDAgI0EiWk9S8aecQtVoNnU4nFJufn4/atWtLnBER1XQqhQrrR63H3CNzsSFxAy7kXcClwkuw2T1/osnyk8sdmlhHzpPLZejUyQ+dOgFffGHHxo16LFxow8aNftDpFO5O7zpXrvjgq6988NVXQKNGRgwfbsaDD6qQkKByd2rkIv9eFzuGO+qRN2G9iYhEGQw2/PijAQsWANu3q2G1+rs7pTLCw80YPtyICRN80KpVzdwpO7s0290plHEh/wI6z+mMn0f9jA51O7g7HSJyo2PHlNi8OajC1xUKO0JCLAgLu/bDjObNjWjevAoTJY8VGemL9etL0b27GVlZN7+fGTEiF6+8kgFFBY+k0tPT4ePjU63u+4lIWqLPxCLqROCBLg/gw90fSpxR5Wh9tLgn4Z5KvTcyMlLoHHxeSFQ9ZGWZMHOmcwuA33hDh4CAWk7nwhpMxfgztWaYO3cubDYbnn/+eafGMRqNyMrKQnh4uESZEZG7qRQqrBi2Am2/bYvMksybvr91ZGuEacKqILPqrV+/fpg+fbrDcXl5ecjJyUFYGL/GVLVmzhRvLl6vngn33++5G3sTkfN4T10x3lMTUXnk7k6AiIioPBs2bMCoUaNg5daYRERERETkgNLS0r/+NFh4jEGDHN8huSqJ7hyi1+slzsR5QUEVL4oqT3GxHNu2BeC99yLxySfu3ZGaiLxXkF8Qnu30LLaM2YKLky5C/7oeZ586i/Wj1uPTPp/i6Q5P456Ee9AwpCGUcs/Ze2XFqRXVonmZt1IqZbj3XjVWrNAiM1OGuXNL0bNnKZRKz7uuOHfOF++954+GDVW47TY9PvlEh5wcPof1Nv9eFzumOu2op1aroVQ6/nPYYDC4IBvyVKw3EVFl2Wx27N5twEMPlSAy0oYxYzTYulUDq9Vznj+oVDYMGKDDypWlSEtT4vPP/dGqlfgu29WZ0WJEkbHI3WmUK7s0G3cuuBPrz613dypE5EZXrtx4aq7VKkN2tg9On1bj998DsGpVLcyeHY6NGx17Zk7erUkTDVatMsDf/8b3M5MnZ+K11ypuCPa3S5cueWStiIiqRm5urlBcaGgo/u/O/0PLOi0lzqhy+jXqB7VP5RYDh4SECJ1D9GtDRFXrjTd0yM8Xr822aFGKRx+V5nq7JtRgvGluErnG/Pnz8emnnzo9TlZWFmt3RF4mKiAKK4atqNScqp5xPasgo+qvQ4cOwptgJSUlSZwN0Y398YcBe/aIN/V68kkTlErPqc8SkfR4T10x3lMTUXk8Z7UKERFVqcjISLRu3RoNGzZEfHw84uLiULt2bYSHhyM4OBi+vr7w9fWFzWaDXq+HXq9HdnY20tLSkJqaij///BNHjx7FkSNHUFxc7JIcf/zxR7z88stC3eyJiIiIiKhmMpvNf/1JrCmYQmHH0KGevZjS11csP5PJJHEmzgsODkZ6enqFr1sswMmTauzZ44+9e/1x/Pi/i3FvuUWP99+vqkyJqCZTKVRoFNoIjUIblXnNYrMgpTAFiXmJZT4u5F+AyVp1P3vTi9OxJ3UPbq93e5Wdk8rn7y/H+PEajB8PZGZasGiRAcuWKXH4sJ+7Uytj3z419u0DXnrJhrvuKsUDD9gxZIgaGg33Faru/r0udozotaa7+Pr6wmKxOBRjt9thNpuFJ83S9VhvIqLqLjXVjHnzTFi8WIlz5zzveg0AWrc2YMwYK8aO9UNoqNbd6XiE7NJsd6dwQ6XmUgxcNhDf9P8GE9pMcHc6ROQG2dk36c5UgTp12PCdrte5cwAWLizA/fcHwmy+/nmNUmnHu++m4d57Cyo93sWLF9GwYUOoVCqJMyUiT5eXlycUFxAQAJVChe/v+x7tvm0Ho9UocWY3NqzpsEq/NyAgQOgcol8bIqo6xcUlSEtzrjHAxx9boFBIU/+qCTUYb5qbVF3Vr18frVq1QkJCAhISElC/fv1/6i+BgYH/1F8sFss/9ZfMzEykpaUhJSUFx48fx9GjR3H06FGXNd367rvvEBERgfvvv9+pcZKTk9GoUSPI5axRE3mL2+vdjpm9ZuKZTc/c8H09G7ApWGVoNBo0b94cR44ccTg2OTkZ7du3d0FWROX7+GPxDduCgix4/HGNhNkQkSfiPXXFeE9NROVhUzAiohpALpejZcuWuPPOO3HHHXegQ4cOqFOnTqViFQoFfHx8EBgYiDp16qB58+bXvW42m7Fnzx5s3LgRS5YsQWpqqqS5z5gxA127dsXAgQMlHZeIiIiIiLzT1QfhLQA0EIrv0MGA8HDxHYqqglIp9khPtIDiSnK5HEql8rpGDpcv+/zTBGzfPn8UF5e/eOr0aTVSUgyoV88zF+wSUc2glCvRoFYDNKjVAL3ie133mtVmRVpxGlp83QKFxsIqyedE1gk2BfMwERFKvPiiP158EThzxoT5801YvlyFpCTPWnhpNsvxyy8a/PIL8OSTVvTvr8OYMXL06uUHhYK7L1ZHohNERK813cWZa2M2BXMc601E5C30ehtWrNBjwQIZfvtNDavV834nRESYMWyYEQ8/rMKtt/LZx39l6bLcncJNWe1WTFw3ETmlOXj59pfdnQ4RVbHsbLF7lTp17BJnQt5g8OBgfPZZPh5/vNY/x9RqKz75JBWdO5c4NJbdbseFCxfQqFEjKBRizeuIqHrKzc0VigsMDAQANA9vjqk9puK5zc9JmdYNaXw06Nuwb6Xf/3eujhL92hBR1UlLu4yPPrJg2LA8TJsWiVOnHJvX07dvEXr3FvsZUZ6aUIPxprlJ1YFSqUT79u3/qb+0bdsWISEhlYpVqVRQqVQICgpCREQEWrVqdd3rer0ev/32GzZs2IClS5ciJydH0tw//vhjNGvWrEzdxxEWiwXp6emIjo6WMDMicrenOjyF/en78f3x78t9XS6Tc46TA+Lj44WagqWkpLggG6LyJSWZsW6deFOv8eMNCAjwlzAjIvJEvKeuGO+piag81eenHxEROUSlUuHuu+/GwIEDMWDAgEovynCUj48Punfvju7du+ODDz7A5s2bMXPmTGzZskWyc4wbNw6HDx9GXFycZGMSEREREZF3ulokGCwcP3CgTbpkXES0eYGn7hwil/vj11+t/zQCS0mp/M4o69bp8eSTXBhLRJ5JIVegXlA9lJpLy7wmgwyXn7uMxLzEfz7O553/588lJscW8/0t0Fe6yewkvSZNVPjwQxU++MCOvXsNWLjQgpUr/ZCT41nluuJiBZYu1WLpUiAy0oz77jNi3DgftGtXfXZao5oxeQZw7tpYo+HuopXBehMReQubzY7du42YM8eKVav8UFSkdXdKZfj62nDPPXqMHy9H375+UCo9r1mZp8jWZbs7hUp7dduruL3e7ehSr4u7UyGiKiR6rx8RwaZgVL7HHquF9PQ8TJkSgpAQC776KhnNmhmExrJarUhMTETDhg0hl8slzpSIPFV+fr5QXEBAwD9/nnTbJKw7tw7bk7dLldYN9WvYDxqfyj/DuzZXR+Tl5QnFEVHVyM3N/WejuXbtSrF06QWsXx+MTz6pg6ysmz87UalsmDZN2tpHTajBeNvcJE/k7++Pe+65BwMHDkS/fv0QHBzskvOo1Wr06dMHffr0wfTp07F27Vp8/PHHOHDggCTjm0wmvPTSS1i2bJlwg04AKCgoQK1ataDVet5zWyISI5PJ8E3/b7A3dS8u5F8o87qvwhdqH8/ewNeTNGggtlFycXGxxJkQVWz6dCMsFrHrSB8fG557jnPTiGoC3lNXjPfURFSe6vPTj4iIKqVDhw548MEHMWLEiErvDiIVuVz+T8Fg165deOGFF7Bv3z6nxy0oKMCTTz6JDRs2SJAlERERERF5s6u7Y4g3BRs+XCVdMi4iWtDw1CKB1RqCSZPEGjJs3SrHk09KnBARkYQMFgPMtrI7NwX4BiAqIApRAVHoVr/bda/Z7XZk6bKuaxiWmP9X47Dc8yg0FpZ7rpZ1WmJo06Eu+f8gacnlMnTp4ocuXYAvvrBj40Y9Fi2yYcMGP5SWKtyd3nUyMnzw5Zc++PJLoHFjI4YPN+PBB1WIj/f8a6aaTnTXuOo0eQbwvmtjT8J6ExF5i5QUM+bMMWLJEh8kJnpmY/G2bQ0YPdqKsWP9EBLCRW+VkaXLcncKlWaHHb9c+IVNwYhqEKPRhvx8sXuVqCg2aKKKvftuCMzmHHTrlouYGOd2izebzUhKSkJ8fLxE2RGRpystLbuBSWVc29xDLpNj/qD5aPF1iwprFVIa1nSYQ+8XbUSi1+uF4ojI9Ww2GzIzM687JpcD995bgB49CrFgQRjmzasNvb7i6+hx4wrRtGktSfOqCTUY1l9cQyaT4a677sLYsWMxZMiQKm+ApVKpMHToUAwdOhTr1q3DSy+9hDNnzjg9bmpqKr788ku8+uqrwmNkZSkxa5Ye//ufGj4+vDcm8hYaHw02PbAJDb9o6O5Uqr3Q0FChOJ1OJ3EmROUrKLBi0SLxRn/33adHTAzrpEQ1Ae+pK8Z7aiIqT/X56UdERBXSaDR46KGH8PTTT6NVq1buTgcAcPvtt2PPnj349NNP8cYbbwhPKPjbxo0bsWbNGgwcOFCiDImIiIiIyBvl59cC0FIotkULA+LiPHNx6LW8rUhwyy0axMYakZzs+A5Pu3drYLXaoFBwMhgReaZ9l8tvYFJHW6fCGJlMhjr+dVDHv06ZReN2ux15+rzrGobl6nPRoFYDPNr2UagUbNRU3fj4yDBggBoDBgAlJTb88IMOS5bIsHOnGhaLzN3pXefsWV9MmeKL996zo2NHPUaOtOKBB9QIDfWsRmZ0VU3YUQ/wvmtjd2O9iYi8RWmpDcuXG7BgAbBzpxo2m9gurK4UGWnG/fcbMXGiCs2aef7zKE9TnZqCAUCwX7C7UyCiKpSSYgQgtvgpOpr32HRj778fgvPncyG4ZuY6er0eKSkpqFevnvODEZHHE11s5+t7fQ23XlA9fNn3S4xeNVqKtCqkVqrRt2Ffh2L+m2tl8VkhkefKzMyE3W4v9zWNxo7HH8/GkCH5+PzzOlizJhh2+/W1tZAQC95/X/rGAjWhBsP6i7SCg4MxePBgPPnkk0hISHB3OgCAe++9F7169cK7776Ljz76CFar1anxli1bhkGDBuGWW25xOHbz5kC8+24UCguVCAvLx0cfSdvIj4jcKyE0Ac1rN8eJ7BPXHddb9EgrSkPdwLpuyqx6EW0k6Wx9naiyvvhCj+Jif+H4l16qPtfKROQc3lNXjPfURFQerpYjIvICa9aswZw5czxmgcbf5HI5nn32WezZswexsbFOj/fss8/CaDQ6nxgREREREXmtrKwuN39TBe691yJhJq4jl4s90qtooqQn6NpVbPfl7Gwf7N/PncyIyHPtubyn3ONxwXFC48lkMoRqQtExuiMeaPEA3r7jbXx2z2eYfNtkqH3Ed9ojz+DvL8eECVps26ZBSooVH31UgtatDe5Oqwy7XYY//lBj0iR/REXJ0LdvKRYvLoVeb3N3aiQBmcyzmtHdjDdeG7sT601EVJ3ZbHb89psBY8fqEBlpx/jxGuzYoYHN5jm/2/z8bBg8WId16/RITVVi1ix/NGvGxr4iskuz3Z1CpcUFx+Gh1g+5Ow0iqkKpqeLdmmJiPK+RJXkWuVyOhIQE4fvh/yoqKkJGRoYkYxGRZ5Nysd2oW0dhWNNhzqZ0Q30b9oVW5diid9HFdqIN04jItSwWC/Ly8m76vvBwC6ZMScMPP1xA+/Yl1732wgtFCAvznGcv1akGw/qLtA4cOIBZs2Z5TEOwv/n6+uL999/H5s2bERoa6tRYNpsN06dPdyimuFiO116ri+efr4fCwqu/x2fODMLOncVO5UJEnue+W+4r9/iB9ANVnEn15ecntsGMweB5847I+5jNdnz9tVijbgDo3r0UbdqIxxNRzcB7aiKqqapPS0SqtJ49eyInJ8fdaXi1DRs2ICoqyt1pEP3Dx8ezJ4S1bNkSBw8eRO/evXHo0CHhcZKSkrBo0SJMnDhRwuyIiIioJuJ9k+vxvoncJTe3q3Ds8OGeMxHwRkQnJatUnvv/d/fddixaJBa7YYMZnTpJmw8RkVSOZR4r93jT8KZVnAlVN5GRSrz0kj9eegk4dcqIhQvN+OEHFZKTPev3uckkx8aNGmzcCMjlhQgM3IyQkA3w9z8KmYwTFG7GlfdNonUDi6V6NMr9mzdeG7sT601EVB0lJ5sxZ44RS5aocPGi2IIIV2vfXo/Ro60YM0aNWrXEdnKn62Xpstydwk2FqkMxvtV4vNHtDQT5Bbk7HSKqQmlpVqE4hcKOqCjeq9DNKRQKJCQk4Pz585IsEMnNzYVKpXK6CQAReTYpm4LJZDJ83e9r7ErZhYwS1zQWFGk6JvpsS/RrQ0SulZqa6tD7b7nFgDlzkrF9ewBmzoyAj48dzz8f7JLcakINhvUXaXl6/eWuu+7CgQMH0KNHDyQlJQmPs3//fhw5cgStW7e+6XsPHtTg9dejkZ5+/feMxSLH+PE+OHrUgoAALnsl8hbt67Yv9/iG8xswqMmgqk2mmhJt7iXaTIzIEd9/r0d6ukY4/vnnq0+jHyJyHu+pK8Z7aiIqD5+OeKETJ07gypUr7k7Dq7H4R+S40NBQbNmyBT179sThw4eFx5kxYwYmTJhQrbr6EhERkefhfZPr8b6J3CEtzYKiouZCsWFh2WjRorbEGbmGaJHAkyeY9e/vD6XSBovF8V1Rduxg8YOIPNf5vPPlHu8Q1aGKM6HqrGlTX3z4oS8++MCOPXsMWLDAitWrfZGT41llPpstCAUFw1BQMAzAJQBLACwGcNK9iXkwV9431YTJM4B3XhvTjbHeREQAoNPZ8MMPBixYIMOuXX6w2Tzv53pUlBn332/ExIk+aNpU7e50vE52aba7U6jQnbF34pG2j2Bwk8HwVXJXc6KaKD1drElTaKgFSqXn/U4jz6RSqdCgQQNcuHBBkvEyMjKgVCoRFMRGlkTeSvQ5WnlNwQAgVBOKeQPnoc/iPs6kVS4/mwL9Yu92OK6iXG+G81uIPI9er4dOp3M4TiYD7rqrGF27lsBiqQOVKswF2dWMGgzrLzVPXFwctm/fjjvuuAPJycnC4yxatAht2rSpsIGxySTDF1+EY/78MNjt5ddoLl70w1NPFWDBgmDhPIjIs2h9yt8wZfbh2YgKiMLLXV6G2oe1lBsRuTYCAI1GvFETUWXYbHZ88onjc7//1qSJEf36sXkdUU3Ce+qK8Z6aiMojfqVFRETkoFq1amHjxo2Ijo4WHuPMmTP4+eefJcyKiIiIiIi8xfLlRog+7mra9Jy0ybiQaEHDk3cOqVXLB61b64ViDxzQoKSk+hR5iKhmSStKK/d41/pdqzgT8gZyuQy33+6H2bO1SE9XYOXKUgwZooNabXN3auWoD+BVACcAHAHwAoC6bs2ophG99qtOk2cA77w2pptjvYmoZrLZ7Ni+3YDRo3WIjLRjwgQNdu5Uw2bznOZ+arUNQ4fqsH69HikpSsyc6Y+mTdkUyhWydFnuTuE6YZowvNj5RZx96ix+ffBXjGg+gg3BiGqwzEyx301hYdXrfozcT61Wo379+pKNl5qaitLSUsnGIyLPItr46kaNtnon9MaT7Z8UTalCfc9Y4R8QCjRpAuzfX+k4NgUj8h6pqalOxfv5ydG+vWsaggE1owbD+kvNVL9+fWzcuBGBgYHCY2zZsgVFRUXlvnb+vC9GjWqAefNqV9gQ7G8LFwZjxYoC4TyIyDPY7XZ8c/Ab3LP4ngrf83+//R+af90cG89vrMLMqp/c3FyhODYFI1fbutWA48fFm3pNmmSBXO459V4icj3eU1eM99REVB42BSMioioVHh6OlStXOnVxOn/+fOkSIiIiIiIir7FmjXhR8NZbEyXMxLW8tUjQrZtRKM5olGPTphKJsyEikka+Ib/MMRlkiA4Ub2JCBAA+PjIMHqzBjz9qceUKMHu2DnfeWQqFovwdl92rFYBpAFIAbAMwHoD4RHKqnJqwox7gvdfGdHOsNxHVHElJZrzxRgni48246y4/LF6sRXGxwt1pXadDBz0+/1yH9HQ7VqzQom9fNRQKTl53pWxdtrtTAADcFXcXfhj6Ay4/exkf3/0xGoU2cndKROQBsrLEfgfUrl297sfIMwQEBCAqKkqy8ZKSktgch4iuI5Pd+PeaK66Dh5366w9nzwIdOwIhIcCJEzeNk8vFlsbY7Z74XJ2o5iooKHD6eqRuXdduVFMTajCsv9RcTZo0wcKFC50a48cff0RQUNA/n9tswMKFoRgxIh5nz6orPc5TT2mRkSE2n4yI3Mtut+Nczjl0/K4jHlv/GIzWG/9bvph/EX2X9IX2fS16L+qNyZsm4/2d7+PbQ99i1elV2J2yG+dyzyFfn19jr98vXrwoFBcQECBxJkTXmzZN/N9keLgZ48ZV/tqAiLwD76krxntqIiqP2HYoRERETmjfvj1efvllTJkyRSh+48aN0Ol00Gq1EmdGRERERETVVX6+Fbt3i+40lIq6dTMkzceVRCc/enqRoG9fJWbMEIvdvNmOoUOlzYeIyFkmiwkma9mf2f4qfzdkQ94sIECOiRO1mDgRSE+3YNEiI5YuVeDYMfFdGF1DDuCuvz6+ArAOwPcANgIwuzEv7yR67VfdFv5667UxVQ7rTUTeq6TEhqVL9Vi4UI7du/1gt4tNCnWlunVNGDHChIkTVWjShJPVq1qWLstt566tqY3xrcZjYpuJaBja0G15EJHnysoSa14ZHm6TOBOqKUJCQmAymZCTk+P0WHa7HYmJiWjUqBGUSk4xJ/Imrlpsp/HR4PseX6LTsrthlWC7ej8z0O/cfw7m5wO33gqMHQssWFBhrNks9pyZzwqJPIfNZkN6erpTY/j6+iIw0LWb09SEGgzrLzXbwIEDMWbMGCxatEgo/scff8S0adOg0+lw+TLwxhvR2LfP8XkSWVk+eOihIvz8sw8UCgkuNIjIJUrNpTiZdRLHrxzHn1l/4s+sP7E/bT9KTI5v9FpqKcXmi5ux+eLmCt+jlCsRpglDbU1t1NbWvvrfv/4crg2//ri2NkLUIZDLqv/PkAsXLgjFRUdz40pynRMnTNi2TbxO+uijRvj5cS4lUU3De+qK8Z6aiMrDii0REbnF66+/jqVLlyIxMdHhWL1ej/Xr12P48OEuyIyIiIiIiKqjlSsNsFhEF3Kvhk7n+AQEdykuLhaK8/PztMYg1+va1R/BwRYUFDj+yHLnTs/+fyOimulQxqFyj9fW1q7iTKgmiYpS4uWXlXj5ZeDUKSPmzzdjxQoVkpM9bbKAH4Bhf33kAVgOYDGA3QBq5q6uUhO99hO91nQHk8kkNIHG19fXBdmQu7DeROQ9bDY7tm83Yu5cK9au9UNJiec17FOrbejfX4/x4+Xo1csPCoWnXWPVDKXmUujMuio/b88GPfFIm0cwsMlAqPh3T0Q30KdPAerVMyAnR3nNhw/y8xWw22UVxrEpGDkjIiICZrMZhYWFTo9ls9nw558XcOutDaFUVv9Fs0R0lauagmHqVLR//XW81Q14+06hU1ynTyIQUNEjv4ULgdWrgcOHgfj4Mi+LNgUT/doQkfSysrJgszl3XRwTEyNRNhWrCTUYb52bRJU3c+ZM/Pzzz8jPz3c4NiUlBQcPHkTz5i3Qty+QlCT+fbFpUyC++iofTz9dS3gMIpKG1WbFxfyL1zX/On7lOC7kXYC9Cud5WGwWZJZkIrMks1Lvl8vkCFWHXtcoLFwTft3n1/43VBMKpdyzlt3r9XqcOHFCKDY2NlbaZIiu8fHHZtjtYjUzjcaKSZO48RJRTcR76orxnpqIyuNZdydERFRj+Pr64vXXX8f48eOF4n/++Wcu0iAiIiIion+sXu1M9CoUFTWXKBPXKyoqEoqrVcuzJ0f5+MjRuXMJNmxwfMfW8+f9kJZmQN26LIQQkefYk7qn3OOxQbFVmwjVWE2b+uLjj33x4Yd27NplwMKFVqxa5Yu8PE8rD4YAeOyvj2QASwB8D+C0G3Oq/kSv/USvNd3BW6+LyTGsNxFVf4mJJsyZY8KyZSokJ3vmfX2nTnqMHm3DAw/4ISjI85qV1TTZuuwqO1e4NhwPtXoIE9tMRHxI2aYDRETl6d27EL17l23MZDYD+flKZGcrkZurRHa2D3Jy/v381ltv0nSF6CZiYmJgNptRWlrq1Dh5eQo89VQM2rQpwpw5gVAo2BiMyBuoVGKLdG/YFOzhh4HvvgMAvPY7sL4hsD9a6DT/GHbqJm8oKgIaNQL27wfatq18rjcg+rUhImnZbDbk5OQ4NYa/v3+VLKBlDaZirMF4j7CwMDzzzDP4v//7P6H4n3/+GR06dMD//V8+xo517t/la68FomfPUtxyi8apcYjIcZsvbMbva37H8azjOJl1EnqL3ukx+8T3wdCmQ/H2jreRVpwmQZY3ZrPbkF2ajezSytUWZJChlroWamtqI1x7TfOwchqI1dbWRpgmzOUbiezbt0+4CXJcXJzE2RBdlZFhwfLl4k29Ro0yIDSUdVeimoj31BXjPTURlcfTZv0TEVENMnr0aLz99ttISUlxOHbv3r0uyIiIiIiIiKqj0lIbfv1VdPJQLoCdKCqqJ2VKLiVaJAgJCZE4E+ndeacFGzZU7r116pjRpUsxOnUqQceOOshkQQCiXJofEZEjjmQeKfd409pNqzgTqunkchm6dfNDt27A11/bsW5dKb7/3o5Nm9TQ6z1tUWcsgNf++jiCq83BlgLIcGNO1ZPotV9NmDxTHa6LyTGsNxFVPyUlNixerMfChXLs3esnvIO0K0VHmzBqlAkTJqjQqBF3qfYkWbqsKjmP1keL1GdTXb6Yh4iqt7lz52Lu3LnXHRNtyDRnjhKLFl39mVNSUuJ0blQzxcbGIjExESaTSSg+NdUHjz8ei0uXfPHnnxpEReXhgw94H03kDXx8fITiKmy0NWYM8P33/3yqtAGLVgGtHwVKBS+hfS3AvWcr8UabDWjfHjhw4LrGYGwKRlS9Xb582ekxoqOd7ExYSazBVIw1GO/yzDPPYMaMGUL3qH/XX8aMqYX16wvwww/BwnmUlCjw4IN27N5tg4+Pp9W3ibzb0j+XSroC/aOeH+GFzi9ALpNjeLPheGv7W/hk3yfSnUACdtiRp89Dnj4PZ3Mrc4MCBPkGoXFYY0xsPREPt31Y8pzWr18vFBcQEIA6depInA3RVZ98YoDR6C8UK5fb8eKLYs8piKj64z11xXhPTUTlYVMwIiJyG6VSibFjx+K9995zODYxMRHZ2dmoXbu2CzIjIiIiIqLqZP16A0pLRXcCXAfAiuLiYilTcinRXENDQyXORHr33uuHF18s/zW12ob27UvQuXMJOnUqQVycCTLZv69Xp79DIqoZzuWeK/d4u6h2VZwJ0b98fGS47z4N7rsPKCy04ocfdFi6VIbff1fDapXdfIAq1fqvj2kAfgWwGMBPAPg7vzJEr/2q0zWVN18Xk2NYbyKqHmw2O7ZtM2DuXBvWrfODTud5Oz9rNFbce68B48fL0bOnHxRsBuWRskuzq+Q8OrMO25O2o3dC7yo5HxFVTykpKdi9e7e70yD6h1wuR0JCAs6ePQur1epQ7MmTfnjiiVjk5f07tXzq1BBEReXjqae4Oz1RdSfa+KrcJoOTJ1/XEOxvjXKBGZuBx/sLnQp9EoGAyvY0tNuBDh2Ac+eA+PiKc60ENgUjcj+j0ej04t7Q0FAolVWzRI41mIqxBuNdQkJCMGjQIHxfzu/9m9m3bx9sNhvkcjm+/lqLvXuNSEnxFc7lwAEt3n03D1OmcJE8kQi73e7uFPC/fv/Do+0e/efzAN8AzOozCyHqELy14y03Zua8QmMh9qftx/60/bDDjkfaPiLZ2Ha7HcuXLxeK7dChg2R5EF2rtNSGOXNEN/MG+vYtRaNGnlcrJqKqwXvqivGemojKw/boRETkViNHjhSO/eOPPyTMhIiIiIiIqquVK52ZsLAKAJCfny9NMlVANNfqsHNI48YaNGhgAADIZHY0barHxInZmDs3Cbt2ncaXX6bggQfy0KDB9Q3BAMBsNsNms7khayKi8l0uKn836271u1VxJkTlCwpS4JFHtNi+XYNLl6z44AMdWrY0uDutcsgB9AQwD8AVAMsA3AuAO0beiOi1X2FhYbW5pvLm62JyHOtNRJ7r/HkTXnmlBHFxZvTqpcayZVrodAp3p3WdTp30+PprHTIzZVi2TIvevdVQKDytYSr9LUuXJdlYMsjQO743YgJjyn39ze1vSnYuIiKiqiKXy9GwYUPI/ltIuYHdu/0xfnzcdQ3B/vbss0H48ccCCTMkInfw8xNbrFtmAdv+/cCnn1b4/kcPAvecFzoVhp10MMBmA9q0+edT0cV2ol8bIpJOamqqU/FyuRx16tSRKJubE60zcG4SVUcjRowQiisuLsbJk1d/udeq5YPZsw1QKMTn+HXsWILu3bNQWFgoPAZRTZFbmosdyTvw+b7P8fDah3Hbd7dh6q6pbs2pb0Lf6xqCXevN7m9iUONBVZuQCy08tlDS8bZu3YqUlBSh2M6dO0uaC9HfZs/WIzdXvCHviy96Vq2YiKoW76krxntqIipP1WyDQEREVIGmTZuifv36uHTpksOxZ8+exb333uuCrIiIiIiIqLqwWOzYvFl0F0EdgM0AgMzMTMlycjXRXKvLziFPPVUAi8WMjh1LEBLi2C72xcXFCAoKclFmRESOydeXLerKIENcrTg3ZEN0Y3XrKvHqq0q8+ipw8qQJ8+aZMGtWNmw2T/t+VQO4/6+PXADLAXwPYI87k/JItWrVglwud7jBl9VqRU5ODsLDw12UmXS8/bqYHMN6E5FnKS624fvv9Vi0SI69e9UAVO5OqYx69UwYOdKECRNUaNhQ7e50yAHZumynx4jwj8CE1hMwofUExNWKw7ITyzDyp7INJg+mH0SRoQiBfoFOn5OIiKgqKZVKxMfHIzEx8abvXbs2GG+/XRcWS/lNxCwWOcaNC0CdOsXo2jVA6lSJqIrUqlVLKK6oqOj6A3feecP3ywDMWQPc+gSQq6n8eVQWoP85x/NDUREwZgywaFHZXCtJ9GtDRNIoLi6GweDcpjURERGQy+USZXRzonUGzk2i6qhnz57w9fWF0Wh0OPbs2bO49dZbAQC9egXhySfz8dlnjv3eValsePbZKxg1KhdyOXD58mVotVoolVwSS2S0GHE65zT+vPInjl85jj+z/sSfWX8ivTi97Jsdm4YpuWm9pt3w9S/6foFtSdtQbBJr9OvNPvjgA+HYTp06SZgJ0VVWqx2ffSa+kWO7dnp068baLFFNxnvqivGemojKwycgRETkdl26dBFapJGUlOSCbIiIiIiIqDrZts2AvDzR4uAmAFcnFtaEIkHt2rUlzsQ1Ro2SITtbbFfHgoICNgUjIo9gs9lgsJadvK7xcWAFDJGbNGumwvTpKixalICsrPoARuNqEy5PaxIVCuDxvz6SACz+6+OMO5PyGDKZDKGhocjOdrxpRmZmplc3Basu18XkONabiNzLarVj61YD5s614eef/VBaqnV3SmVotVbce68BDz0kR48efpDLPa9ZGd1cli5LKE4GGXon9MajbR9Fv4b94KP4d8HCiOYjMHHtROjMuuti7LDj7R1vY1afWU7lTERE5A5+fn6IjY1FcnJyua/b7cCcOWH49NOIm46l0ylw331+2LGjFM2a8RknUXUUEhIiFHddo63Bg4HS0pvGRJYA364Dhtxf+fP0vgAEOd5r5Krvvwdeflm4KZjo14aIpJGWluZUvI+PT5X/OxatM+j1ehQVFSEw0PObj7MGQ3/z9fVF27ZtsWeP45s0/bf+8vHHQdi+vRR//lm5e4omTfSYOvUyEhL+vUiw2+1ITk5GQkKCw/kQVVd2ux2XCi+Vaf51NucsrHY3d/uqhJHNR6Jp7aY3fE/dwLr4oMcHeHrj01WUleuMaD5CsrF+/fVX7NixQyhWrVaja9eukuVC9LeVK/W4eFH8+eBzz9klzIaIqiPR+0au9yGimopNwbxQdfqlRkQEAB07dsSSJUscjqtowhIRERHRzfC+ich7/PSTM5MaVv3zp/z8fJhMJqhUnr8YVPRnWP369SXOxDVCQkKEmlcAQGklJqETEVWFo1eOlns8TBNWtYkQOeHKlX+vOUwmO9auLcXixXZs2qSGwVB1u61XThyANwC8gWbNDLj/fgsefNAX9eqJ70zpDerXry90XXXlyhUXZCM9b78uJsex3kTkHmfPmjBnjglLl6pw+bLn7eosk9nRubMBY8faMGqUGv7+ntesjByTXerY9U2kfyQmtJ6ACW0mIDY4tsL3DbllCBYeX1jm+IJjC9gUjIiIqi1/f39ER0fj8uXL1x23WoEPP4zEsmWV33U+J8cH/fvb8PvvBkRH+0mdKhG5WGho5f+9X6u4uPjqH06fBlavrnTcfaeBB48CC1pV7v3DTjqa2X907Yri+fOFQkW/NkTkvJycHFgsFqfGiI6OliibytNoNAgLC0NOTo7DsVeuXPHqpmCswXinjh07CjUF+2/9xddXjvnzbbj9dhv0+orrzTKZHePH5+Cpp7Lg41O2cYjBYEB2djYXzJPXs9vt+Gj3R/jkj09wRVc9avj/JZfJ8Vb3tyr13sfbPY5Fxxdhf9p+F2flOs1qN8OjbR+VZCyj0YjHH39cOP6ee+6Bv7+/JLkQXWvWLJlwbGysCcOHe149mYiqluh9Y3WZ0wiI31PXq1dP4kyIyBt42ox9IiKqgeLj44XiUlJSJM6EiIiIiIiqE5vNjvXrfQWjzQDWX3ekuhQKRIsEsbGx0ibiIj4+PpDLxR5bWq1WpyeMEhFJYXfK7nKP1w/iJGiqnlQqGYYO1WDVKi0yM+343/906NZND7nc83ZvPHnSD2+95Y+4OCVuv12Pr77SIT/f83fHdYW4uDihuOrSSFs0T9GvC3k+1puIqk5hoRVffqlDp056NGmiwrRp/rh82bMarcfGmvDqqyU4f96MXbvUeOQRLfz9OU3KGxgshpu+RwYZ+jbsi9X3r0bKsymYcteUGzYEA4CP7v6o3OP5hnxsu7hNJFUiIiKPEBwcjPDw8H8+NxplePHFGIcagv0tOdkX/fvbUFTEWgxRdRMSEiIUl5+ff/UPI0c6HPvpRqB+wc3fp7IAA846PPz1CgqQv1+seYDo14aInGOz2Zyep6PRaKDVuqcBPGsw5WMNxjtJWX9p08Yfb7xRUGFMVJQJ8+Yl4dlnr5TbEOxvV65cgclkEsqLqLr4+uDXeHXbq9W2IRgAjLp1FJqENanUexVyBb7t/y0UMoWLs3Kdr/t9DR+FNJvXvfrqqzh37pxw/PDhwyXJg+hae/YYsHeveFOvJ54wQaEQbypGRN5BdE1LVlYWbDabtMm4gNVqFWoiXqdOHWg0GhdkRETVHWe7ERGR2zVo0EAo7p8dyIiIiIiIqEbat8+I9HTRAvp2AAXXHbl48aKzKbmc2Wwus5t7ZURERECtrj67KzlT0PhnYjoRkRsdzjxc7vFbwm6p4kyIpBcUpMCjj2rx229qJCdb8N57JWjR4uaNGaqazSbD7t1qPPmkFpGRMgwYUIoffiiFweD5E0OkIjqBpjpcFwPieXJBivdivYnItaxWOzZs0GPYMB0iI2V46ikt/vjDs541+PtbMWqUDtu2GXDhgg8++MAf8fGe1ayMnHdr+K0VvhYVEIU3u72JpElJWD9qPQY2GQilXFmpcSP8I9A0rGm5r7227TWhXImIiDxFeHg4atWqhcJCOR55JBZbtgQJj3XsmAaDBulhMtWcZyxE3iA01PFGgMA1TWGOHXM4NsgILFgFyG6yt0SvC1ff66zMb74RihP92hCRcy5cyIDd7tzmM9HR0RJl4zjWYMqSyWTVZsNCcozU9ZeXXw5G9+5lXxswIB8//ZSItm1LKzV+UlKSUF5E1cXK0yvdnYJTFDIF3ur2lkMxLSNa4rlOz7koI9ca23IsutbvKslYS5cuxaxZs4TjAwMD0b9/f0lyIbrWtGnimzIGB1vw+ONsdkNEgFarRe3atR2Os1gsSE1NdUFG0rp06RKsVsd/XnJOIxFVpHKznoiIiFxItKCu0+kkzoSIiIiIiKqTFSuc2YV8VZkjiYmJ6N69uxNjul5SUlKNKBIEBwejpKREKLaoqEioUEREJKWzOeVvad8mqk0VZ0LkWjExPnj9dR+8/jrw558mzJtnwo8/qpCa6lnNN4xGOdat02DduquTzAYO1GPsWAXuuMMXcrn37kApeg2YmJgocSauIZKnTCZD/fr1XZANeQLWm4hc4/RpE777zoRly3yRnu5ZTcAAQCaz4/bbDRg71oaRI9XQarXuTolcbPJtk7HyzEoczrjajFkuk+OehHvwSNtH0Ldh30o3ASvP691exwMrHyhz/ED6AZSYSuCv8hcem4i8U7169dClS5d/Pi8trdzC5f+Sy+Xw8/P75/OSkhIcE2i+QnQjdevWxYIFvjh82Pnrpe3bAzBmTAGWLAmEQsH9qYmqA9H6qV6vR9HEiQgUPG/3S8Dze4DpXSp+z7BTgoP/R2ZurlAca8tEVa+w0ILu3Wuja1c/PPFEFkJDHZ8HExQUBJXKffUob67BGI1GpKWlORwXERFx3X0NeQ+p6y8KhRzz5inRtq0F+flKBAVZ8Pbb6bj77iKHxjebzUhPT0dUVJRQfkSezk9ZvX+mjm4xGg1DGzoc93b3t7Hi1AokFyRLn5SLBPsF4+OeH0sy1pYtW/DQQw85NcZjjz3GehlJ7sIFE9atE2/qNX68Af7+rLMR0VVxcXHIzs52OC4xMdHj5/6J3vdXt/U+RFR12BSMiIjcTvRBk+hEOiIiIiIi8g7r1/s4Eb2mzJHz5887MV7VqClFgsBA0WnlgMFgkDATIiIxqUXl70bVtZ40O0ISeaJbb1Vh5kwVpk+347ffDFi40IrVq31RUOBZ5ciCAiUWLFBiwQIgJsaEoUNNGDdOhRYtPKuRmRRErwGrw3VxaWkpMjIyHI6LjIzkghQvxnoTkXQKCqxYtMiA77+XY/9+NQDP+z0ZF2fCAw+Y8NBDvoiL87xmZeQ6WpUW+yfux+YLm2G0GtE2si1igmIkGXvUraPw8LqHUWq+/neDHXa8tf0tzOw9U5LzEJH3eOihh65bpHfy5EnY7XaHx/H390dsbOw/nx89ehStW7eWIkWi67z8cghOnSrA4sXBTo+1enUgtm1LR69e0c4nRkQup9FoEBYWhpycHIdjryxeLNwUDADe+xVYnwCcrlPOi3ZgQPn7rDgsUzDO0xcSEnmjt98uQkZGCJYvD8X69cF4+OFsjB6dC1/fyl1Ly2Qy1K1b18VZ3pg312AuXLgAm83mcFx1m5tEleeK+ktcnBozZ+bju++UePfdNISHi20OmpeXh+DgYGg04k1KiDzV0x2exvrz692dhhCFTIE3u70pFKtVafF1v69xz+J7xBM4A8APQKz4EI54/673Uce/vBsex2zatAmDBw92ag6sr68vJk+e7HQuRP81fboZVqtYzVilsuH55zlXh4j+FRcXh/379zscd/78efTo0cMFGUmnpqz3IaKqw+2ZiIjI7UQX4HChNxERERFRzXXqlBHnzvkKRu8FULaBQHXYjfPChQtCcU2aNJE4E9eSy+Xw8RFr+ma326HX6yXOiIjIMbml5e9G3zi0cRVnQlT15HIZ7rzTD/PmaXHligLLl5diwAAd/PwcXzzgaqmpKsya5Y+WLVW49VYD3nuvBKmpZnenJZlbbrlFKI7XxVRdsd5E5Byr1Y716/UYOlSHqCgZnnlG+1dDMM8REGDF6NE6bN9uQGKiD6ZM8UdcnDNN46m6UsgVuKfhPRjUZJBkDcH+dl+T+8o9vuDYAknPQ0TeSaQhGADh5+FEjlIo5Jg3LxC9ehU5NU5AgBWzZycjKqoAqanlb5BARJ5HdGFZppPPTnytwLKVAMr5NamwAcESPZoRbQrGBXdEVSsxUY9vvw3+53OdToFPPonAwIENsWlTICpzSR0eHg653L3L4ViDKYs1GO/lqvrLuHG1MGdOhnBDsL8lJycLNbIj8nS9E3rjiXZPuDsNIQ+2fBDxIfHC8X0S+mBE8xHiCWQAmA9gAYBk8WEqo21kWzza9lGnx5k1axb69+/vdO163LhxiIyMdDofomvl51vx/ffiTb2GDNGjbl3P2lSSiNyL99Rl8Z6aiCrCpmBEROR2og+sRIsLRERERERU/f3wgzPNGlaXe/TEiRNOjFk1/vzzT6G41q1bS5yJ64nuMglc3QWSiMhdbDYb9JayzQnVSrXbJ6cTVTWVSoZhwzRYs0aLjAw7vvpKh65d9ZDLxRZJu9KJE354801/xMYq0a2bHl9/rUNBgdXdaTmlfv36CAkJcTguNzcXmZmiS+iqRk26LqbKY72JSMypU0Y891wJ6tWzoH9/NX76SQu93nOuW+VyO7p3L8XcuaXIyJBh0SIt7rjDD3K5zN2pkZf6qOdH5R7P0+fh16RfqzgbIqpOrFbxe0iVSiVhJkQ35uMjx08/adC2rU4oPiLChEWLLqJNm1IAQGFhIa5cuSJlikTkIrGxsUJxFyU4d4srQGRJ2eN2GWBSSHACiOUpk8mEvy5EJOall0zlPntKS1PhxRfrYcyYBjh+vOJG9QqFArVr13ZlipXSqlUryGSOP586ffq0U/cOVYE1GPovV9Zf4uJihca+ls1mY7Ni8lozes9Ayzot3Z2GQ5RyJd7o9obT43zS+xME+wU7N0gSrjYH+xbAUQDO9SAsQwYZvu73NRRy8ZuazMxM3HfffXjuueecvkYICQnBlClTnBqDqDxffKFHSYn49/lLL7EhGBFdT/T+ket9iKgm8pxZfEREVGPpdGITjDQajcSZEBERERFRdbFunTMFwlXlHj137hyKi4udGNf1Dh06JBTXpk0biTNxPZEGFn8rKSlnRjkRURU5nXO63ONhmrAqzoTIswQHK/D441rs3KlGUpIFU6aUoHlz53Y4dQWbTYbff1fjiSe0iIyUYeBAHVasKIXJ5HmNzCqjVatWQnGi151VpSZdF1Plsd5EVHn5+VZ89lkJ2rfXo1kzX8ya5Y/0dB93p3Wd+Hgj3nijBBcuWLBjhwbjx2ug1XKaE7leVGAUmoSVvwvv69ter+JsiKg6EV0kDbApGFU9f38l1q/3QXy8Y9+3CQkGLFp0EfHxxuuOZ2dnc8MWomogLi5OKC5RovMPOFv2mE0OXKzl/NhGAGkCcREREWwYT1SFfvutGKtXB97wPceOafDAA/F46aXocp9XRUdHuyo9hwQFBQn9XC0tLcWZM2dckJF0WIOh/3Jl/UWlUiEqKkpo/GsVFxejsLDQ6XGIPI2f0g/Lhy2H1kd8g9WqNr7VeMTVErv3uFYd/zr4uOfHEmQEIB1X9xKeBWDTX59L4NG2j6J93fZCsSaTCV988QVuueUWrFpV/pxmR3344Yce0TyVvIvJZMf//ucrHH/nnaVo1Uo8noi8k2gDLE+f0wgAhw8fdjjGz88Pt9xyiwuyISJvwNlyRETkdrm5uUJxXKRBRERERFQzpaSYceSI6MTckwDOl/uK3W7H0aNHRdNyOZPJJLS7SXh4uCSTp6qaRqMR2lUVAMxmM2w2m8QZERFVzq6UXeUejwmMqeJMiDxXvXo+eOMNf/z5px+OHTPh2WdLEB1tcndaZRgMcqxdq8Xw4RpERFgxfrwO27cbYLNVnwZhogswRCanVCXRCT7cUc+7sd5EdGMWix3r1ulx3306REXJMGmSPw4eVLs7resEBloxdqwOv/1mwLlzKkyZ4o/YWM9qVkY1w+u3l9/8a1/aPpSY2IyeiMpnNBpv/qYK+PpyURRVvTp1VFi/3obwcHOl3t+unQ4LFlxERISl3NfT09M9fvMdoppOtClY+dV1xzWs4NHNefG9ov5xAYBIdVj0a0JEjrNabXjxRTns9srNA9m4MRgDBjTEZ5+FQ6e7uvTN19cXAQEBrkzTIazB/Esul6Nly5YuyIY8gavrLyEhIZLUai5fvgyr1er0OESeplFoI3zT/xt3p1EpPnIfvN5Vus01JrSZgNvr3S7ZeNAB+APAtwC+APArgFQI3UyEacLwfo/3HY7Lz8/H559/joSEBDz99NMoKChw/OTl6Nq1KyZOnCjJWETXWriw1KnNpZ5/XmweOBF5t5iYGISFOb7Rck5ODlJTU12QkTSSk5OF7p9atGgBhULhgoyIyBso3Z0AERHRxYsXheI8qahHRERERERVZ8UKEwDRAuONd9Q6dOgQunbtKji2a/35558wmRxvllGdd+L09fWFweDYLvV/Ky4uRlBQkMQZERHd3KGM8idJNw5rXMWZEFUPLVqoMHOmCtOn27FjhwELFlixdq0vCgo8q4yZn6/E/PlKzJ8P1KtnwtChJowfr0Lz5ip3p3ZD3rirns1mw5EjRxyO02g0aNyYP4u9GetNROU7ccKE774z4YcffJGZ6VlNwABALreje3c9HnzQjmHD1NBoqs9u9+S9RrccjUd+fgR6i/6643bY8c6OdzC913Q3ZUZEnkzk+f3fVCrPvrck79W4sQarVhWjTx85iosrXnDSq1chPvjgMnx9b9wo/dKlS4iPj4da7XnXnUQE3HLLLUJxiRKdP0Rf/vGXegJRxUDbDPGxLwjGNWnSRPykROSQhQsLceBALYdijEY5Zs8Ox08/heCFFzLw3HPhLspOTOvWrfHjjz86HHfo0CGMGTPGBRk5LycnB5cuXXI4rlGjRtBq+VzPW1VF/aV+/fo4c+YM7HbxzZnsdjuSk5MRHx8vPAaRO82fPx/jx493dxrXW/PXRyWZYUbsW7GVeu+8efMwbty4G75HLpPj2/7fouX/WsJsq1xT80rLAbDzrw81gDgAMQCiAUTipivvp909DSHqynU4zs3NxebNm7F27VqsXr1aeE5sRSIiIvDDDz8Ib8JLVBGbzY5PPxVvUtO0qQH33CO6CTgRebvWrVtjy5YtDscdOnQIMTGeuUmz6JzL6rzeh4hcz7Nm0xMRUY104YJYOT46OlriTIiIiIiIqDpYs0buRPSNm4L99ttvmDx5shPju86OHTuE4jp06CBtIlUoMDBQeAJEQUEBm4IRkVucyTlT7vE2kSzaEt2IXC7DXXf54a67AKPRjtWrS7F4MbB5sx+MRmeu/6SXknK1kdnMmUCLFgYMH27BuHF+qFvX80qvt912m1Dcrl27YLPZIJd71tceAI4cOYKioiKH49q1a+eR/z8kHdabiP6Vl2fFwoUGLFqkwOHDfgA8r9FIQoIRo0aZMWGCL+rV07g7HaIy7rvlPiz+c3GZ4/OOzmNTMCIql9ksvjCR9yrkTp07B2DhwgIMHx4Is7ns9+Lo0Tl48cVMVPbb9OLFi2jYsCGb3RF5oFatWkEmkzncbOM0ACsA0WXANhnwbVvghbvLf/1MONDuUaBXIvDa70C3S8C1S9mtMsCsAMzy6/9ruubPv5QCKHE8t+yAbLz727swWU0wW80w28zX/ddkq+C41VTmmNlmRrBfMPom9MWb3d+EUu55z4uJ3EWvt+Kdd8Sf/+TlKaHTaeHr6ythVs4TrcH89ttvEmciHdHcqvPcJLq5qqi/KBQKxMTEICUlRehcf9Pr9cjJyUFYWJhT4xCR57il9i145fZXMGXnFNedRA/g1F8fACAHEHrNRy0A/gC0Vz86NOiAQXGDYDKZ4OPjA5PJBL1eD51Oh4yMDFy+fBlJSUk4evQojh49ihMnTsBms7kkdR8fH/z444+IjIx0yfhUs23ebMCJE+LN/ydNskIuZ7M6IirfbbfdJtQU7LfffsOgQYOkT0gCNXG9DxG5HisNRETkdvv27ROKi42NlTYRIiIiIiLyeLm5VuzdK7pr0CUAh2/4jh07dsBqtUKhEN/ZyFW2bt0qFHf33RXMrq4GQkJCkJWVJRSr0+kkzoaIqHJSCsufpHp7zO1VnAlR9eXrK8P992tw//1Afr4VS5fqsGSJHHv3+sFm86zJYseP++H4ceDtt+3o0kWPUaNsGDHCD0FBnnE92aBBA8TGxiI5OdmhuNzcXBw5cgRt27Z1TWJOqInXxVQ5rDdRTWex2LF+vQHz5tmwaZMaRqPW3SmVERhoxX33GTBhggKdO/tCLveshZxE1/qo50flNgXL0+dhR/IO3BF7R9UnRUQezWKxCMXJZJ51n0s106BBwfjii3w89lgw7PZ/vyeffz4DDz6YC0e+Te12Oy5cuIBGjRp5ZL2NqCYLCgpCXFwcLl686FBcKYAzAJo5eD6TAvg1FnjxbuBExM3fvznh6ofMDvhYrx4zKwB7ZX4G/YCr3csctK54HdbtWOd44A0cTD+IzJJMfHPvN5KOS1SdTZ1aiJSUEOH4mBgjXn01UMKMpNGlSxeo1Wro9XqH4o4dO+axTYtYg6HyVFX9JTAwEIGBgUKbA10rMzMTgYGBbFRM5EVe6/oafjj5A87lnquaE9oAZP/1UY792I9ak2tVTS43IJfLMXv2bHTp0sXdqZCXmj7dsabi14qIMGPcOG4MRUQV69GjB6ZMcbzpp+h9a1UQza1nz54SZ0JE3oTbixERkdvt3r1bKC4uLk7iTIiIiIiIyNP99JMBFovoApnVN31HQUEBDh48KDi+65hMJvz+++8OxwUEBKBjx44uyKhqKJVKyCu79fx/2Gw24UVYRETOyCnNKfd4izotqjgTIu9Qq5YCTzyhxa5daly8aMG775agWTODu9Mqw2qVYedONR57TIvISBkGD9bhxx9LYTKJT5CTiuhCDE+dQMMFKVQR1puopjp+3ISnny5BdLQFgwapsWaNFkaj50wHUijs6NGjFAsW6JCZKcO8eVrcfrsfd4Umj1c3sC4ahzYu97XXtr1WxdkQUXVgNpuF4kSfgRNJ7ZFHauGtt/IBAEqlDVOnpmLcOMcagv3NarUiMTERNptN4iyJyFlt2rQRirt26y07gAI/4GRtYHM8MLc1MKUb8Fh/4N6RQJtHgdovAr5vAveMqVxDsGvZZYBJefWjUg3BACDdsXMAAGQAHMytsr7/83sYLJ73HJvIHdLTjfjkkyCnxnj77VJotUqJMpKOr68vbr/d8Y2h7HY7tm3b5oKMnMcFzPRfRqMRhw4dEooVqb9ER0dL0lw4KSnJ6TGIyHP4Kf3wv37/c3caHkUul+O7777Dgw8+6O5UyEsdP27Ctm3iTb0ee8wElYr1YCKqWKdOnaDVOr7Z3YkTJ3DlyhUXZOSc9PR0nDlzxuG4Jk2aICYmxgUZEZG34GwCIiJyq1OnTuHSpUtCsQkJCRJnQ0REREREnm71amcKhKsq9a5NmzY5cQ7X+P3336HT6RyOu+OOO+Dj4+OCjKqORiNeVM7Ly5MwEyKiyik1l5Y55qf04wJPIgnUr++DN9/0x4kTfjhyxIjJk0tQt67J3WmVodfLsXq1FsOGaRAZacVDD5Xgt98MsNnc0yBMdCGGJ14Xl5SUYNeuXQ7HBQcHo127di7IiDwF601U0+TmWjFzpg6tWxvQsqUKX3zhjytXPOv+v1EjI/7v/3RISrJg61YNxo7VQq3mNTFVL692fbXc4/vS9qHUVPbej4hqNtHmR1IsdiaSyjvvhODpp/Pw1VeX0L9/oVNjmc1mLsQn8kCtW7cWivsgHrjrQaDR04D/a0CtV4DmTwK9xwATBgJv3QV80w74uTFwJBLIcXw9nzgdAJEfWaEAVBLn8he5TA6VwkWDE1Uzr76qR3Gx+DVv27Y6jBvnXFMxV/KmGsyFCxeQmJjocNytt96KiAgXdVkkt9u6dSuMRqNQrEj9RS6XIzY2Vuh81zKbzcjIyHB6HCLyHHfG3Ylxrca5Ow2PoFQqMWfOHIwfP97dqZAX+/hjsU0wAECrteLpp/0kzIaIvJFKpUK3bt2EYj3xnnrjxo1CcdzolIhuhrPtiIjIrZYuXSoc27FjRwkzISIiIiIiT6fT2bBjh2iRMAdA5ZoH/PDDD4LncJ1ly5YJxXlDkSA4OFg4tqioSLpEiIgq4ULeBdhRtulPiDrEDdkQebdWrXwxa5Y/UlJ8sGWLHmPG6BAUZHF3WmXk5Skxb54/7rjDDw0amPHCCyU4ebJqG5n16NFDqDHhzp07PW6y/Jo1a2AwGByOu+uuu7jQ3sux3kQ1gcVix8qVpRgwoBRRUTI8/7wWR4961mTqoCALHnqoBLt3G3D6tApvvaVFTIxnNSsjcsSYW8dArVSXOW6z2/DOb+9UfUJE5NGsVqtQnFKplDgTIud88kkwunWT5tmFXq9HSkqKJGMReSqrPh/56adx+dJ5nD93DmfPnsXZs2dxIfE8MlPPoeTKGdgFG0dKrcRUgrq31BWKPaMDtscB50OBUgl6XTW/Atx10flxAABifeIBsS9FpfSK7wW5jEt1iA4fLsGSJc419Jo2zQaFwnP/PYnOy1m9ejVMJs/a+KYmz02iiol+X6jVarRo0UI4NjQ0VCj2Wrm5udDr9U6PQ0SeY9rd0xCqdv7nQ3VWu3ZtbN26FePGjXN3KuTF0tMtWLGibH2ssh54QI+QEM7RIaKbE72f5HofIqpJPPfJKBEReT2LxYJFixYJxcbExCA6OlrijIiIiIiIyJOtW2eAXi/6OGstgMotyDl9+jSOHTsmeB7pmc1mrFy50uE4mUyGe++91wUZVa3AwEDhWNGdKomIRO28tLPc49EBfI5F5CpyuQw9e6qxcKEWmZlyLF1aiv79dfD19YyFdte6dEmFGTP80by5Cq1aGfDhhzqkp7u+kVloaCg6d+7scJzNZsPy5ctdkJE40ckzAwYMkDgT8iSsN5G3O3rUiKefLkHduhYMGaLBunUamEyeM91HobCjZ89SLFyoQ0aGHHPm+KNzZz/I5TJ3p0bkNLlcjkFNBpX72twjc6s2GSLyeHZ72UbxlcGmYORp5HI5EhIShBqMl6eoqMjjmo4TScFm1iMn7QzOJWciLc+KgmIjjCYTzGYzzGYz9AYjcgpNSM624OLFCyjJOuu6XOw2XCm5gsMZh7Hu7Dr87+D/8Oavb2L8mvHotagXmn3VDMEfBiNgagDGHR4HiPzqyQSgcz5XtQn4bANw9H/AtoXAiS+BMceAcvZbqTzR5mINnDjnTbzS5RXXDU5UjaSmZqNJE/GGPAMHFuLOOwMkzEh6rVq1Qr169RyOKygowMaNG12QkTjWYOi/8vPzsXr1aqHYdu3awcdHfMOIyMhIp+L/lpycDJuHNGglIueFacIws/dMd6fhNu3bt8ehQ4fQvXt3d6dCXm7mTINwPVqhsOOFFyToJk5ENYLo/eSWLVuQm5srcTbisrKysH37dofjtFot7rrrLhdkRETehLMJiIjIbRYvXoxLl8S26OrUqZPE2RARERERkadbudKZmcCrHHr34sWL0bJlSyfOJ52NGzciLy/P4bguXbogNjZW+oSqmFwuh4+PD8xms8Oxdrsder0earX4jlVERI44mHGw3OONQxtXcSZENZOfnxwjRmgwYgSQn2/FkiU6LFkix969frDbPasxybFjfjh2DHjjDTu6di3FyJF2jBypRkCAa5q8PPDAA9i1a5fDcYsXL8akSZNckJHjcnJy8Msvvzgcp1arcd9997kgI/IUrDeRN8rJsWLePD0WL1bi2DE/AL7uTqmMJk2MeOABM8aP90Pduhp3p0PkMh/f/TGWnlha5niuPhc7k3eiW2w3N2RFRJ7GarXhzBk/hIWZUauWFQpF5WNVKi6QIs+jUCiQkJCA8+fPCze8u1Zubi58fHwQFhYmQXZE7qfPTcTlXBuMpso1/NcbjEg2AEH684gKD4NCXcuh8+WU5uB09mmkFachrSgNl4suX/3zX5+nF6fDbKtkLVUJoB7EGmklAWguEPcXfyNw8iugXuG/x5plAwtXAQ8eBnqPBawO/A79h4c1BevZoCfa123vmsGJqpHs7GzEx+uwePFFbNwYhE8+qYPMzMpf+/r52TBtmudfK8tkMowcORIfffSRw7GLFy/GwIEDXZCV444fP44TJ044HBcTE4Nu3fhsxFt99tlnKCkpEYqVov4SFxeHc+fOCcfb7cCiRUEICCjAq6+GOJ0PEXmGMS3GYOGxhdiWtM3dqVQZtVqNt99+G88//zw3GCCX0+lsmDvXTzi+X79SNGyolTAjIvJm8fHx6NixI/bt2+dQnMViwQ8//IAnnnjCRZk5ZtmyZbBarQ7HDR48GFotf2YS0Y3xDoCIiNzCaDTivffeE47v1auXhNkQEREREZGnM5vt2LJFdAFsCYAtDkV89913ePvttz3iIfsnn3wiFPfAAw9Im4gbabVaFBQUOBRjNstw9Kgaly8Xo08fNgUjoqpxOvt0ucdbRbaq2kSICLVqKfDkk1o8+SSQnGzGwoUm/PCDAqdOiU9ccwWrVYYdOzTYsQOYPNmGPn10GD1ahnvvVcPHR7pGZsOHD8ekSZNgMpkcijtw4AD27t3rEY2TvvrqK6FGsQMGDEBAQIALMiJPwHoTeROz2Y41a/SYP9+OzZvVMJv93Z1SGbVqWTBkiBETJihw222e2ayMSGrRgdFoFNoI53LLLkB89ddXsfuh3W7Iiog8TVaWGcP+n737jo6qWtsA/kzJZDLpIb0QeugC0kGR3kSqoIA0RS4C0sEu2BBQigIiilIuTZogIAgCgiAiVXoPpPc6JVPOfH/4iXLTJmdqkue3Fmtdz+y9z6OXTE7Z+93P1gIAyGRmBAQYERj47z+Gh/87KOifYx4eZhYFI5elUChQo0YN3LlzxybjJScnw83NDb6+vjYZj8gZzIIJ6Ym3kJpjElUwLyevABpdKiID0uAZVKfU9gaTAS/ufhEbL22EyVz2RWXFqgFxhbRuQ3RRMLkJuLwcqJpb9Oed7wN7NwI9hgMoy2PRzP//U1bBAOz0yPCN9m/YZ2CickQQBKSmpgIApFKgd+8cdOqUi/XrA/H114HQakuvADh2bA5q1y5bEUVnGT58uKiiYDt37kRcXByioqLskKpsxM5NGjp0KCQS19qYh2wjPT0dS5cuFd3fFu9fFAoFwsLCkJSUVOa+qalyvP12BE6e9Ia7u4AuXfLRooXrPXMnorKTSCT4ovcXaPRFIxSYCpwdx+569uyJZcuWoUYNO1U1Jvofq1ZpkZUlfu78zJliqn0TUWU2fPjwMhcFA4DPP/8c48ePd/o9qSAI+Pzzz0X1rUjrfYjIfuyz1TQREVEpPvroI9y+fVtUXzc3N/Tv39/GiYiIiIiIyJUdPKhDdra4+vZubj8DKNvL/6ysLKxZs0bU+WzpwoULOHLkSJn7ubm54dlnn7VDIucICCh9t0azGbh7V4ENGwIwcWJVtGtXF2PG1MCKFa5V+IOIKrb72feLPN4uqp2DkxDRv1Wr5oZ33vHElStKnDtXgMmT8xEeXvbiUvam1Uqxc6cnBg5UISzMhJdeUuPYMR0EoewLDP9XQEAAevToIarvokWLrD6/tQoKCrBixQpRfTl5pmLj+yaqCM6dK8CECfkIDzfh2WdV2LvXEwaD60znkcvN6NZNgw0bNEhMlOKrrzz/vyAYUeXxervXizx+Kv4UNHqNg9MQkSuKi/vnHtNkkiAtzQ3Xrnng+HFv7Nzpj6++Csa8eeGYPr0qRoyogV696qBlywZo3boeMjL4e5Vcl4eHB6Kjo202XlxcHNRqtc3GI3IkQ14iYmPvIiXbKKog2MNxDAbcS9EjJe4GzKaSn1F+/OvHWP/netsWBAOAmiL7XQdgFNf1vSNAdDEFwf7W/Q7wfllfjV8Wl0f0f4NStIpohaeqPWWfwYnKkcTExELflR4eZrz8chr27buFgQMzIZEU/10aFGTA3Lnlp3hPw4YN0bhx4zL3MxqN+Oyzz+yQqGxSUlKwceNGUX35Dqbimj59OrKyskT1DQ4OxlNPPWWTHFWqVIGHR9k2g/zpJx8MGFALJ0/+VQG0oECKUaNk0GptfE1FRE5Tu0ptvP3k28U3iAIQgbIVHHYxPXr0wMmTJ7Fv3z4WBCOHMZnM+OwzN9H9W7bUon17Pu8morIZMmQI5PKyrxO6fv069u3bZ4dEZbN7925Rc9eCg4PRpUsXOyQioorGdWYREhFRpXHmzBl8/PHHovt37tzZogXhRERERERUcWzfLn5SzhNPpIvq9+mnn0Kv14s+ry2IvXd6+umnUaVKFRuncR6VSlXkLi7Z2TLs3++Dd98NR7duddC3bx18/HE4fvnF5+HOsidOqGA0Co6OTESVVKomtcjjj4c/7uAkRFScpk3dsWSJFx48kOPAAS2GD1fDx8f1JoBnZMixerUnOnRQomZNA2bNysfVq9btcjtq1ChR/Xbu3IkbN25YdW5rffvtt0hJSSlzv5CQENHF0Mj18X0TlWcpKUYsWJCPxo11ePxxd6xY4YX0dHHF0O2lXr0CfPBBPh48MOHAARWGDlVBqeQ0I6qcRjw2Akp54UUMglnA3F/mOiEREbmauDhxFVLUahnCwhQ2TkNkW97e3ggPD7fZeLGxsU5//0ZUVjlJ13A7PhtqjXXP5/4tLceAu/diUZD9oNg2R2LLvnmURUIB+IropwMgojZ77Qxg2m+WtX3jONCnLI8ixRYFixHZrxRvPPFGke+1iSoTg8GA7OzsYj8PDDRizpxEbN16B61a5RfZZvbsPPj7iy9G4Axi38GsWrUKGRkZtg1TRosXL0ZBQdl/xzVt2hSNGjWyQyJytt27d2PdunWi+w8YMAAymcxmeaKjoy36/ZqXJ8Wbb0Zg+vSqyMl59Hn71asemD69lAqlRFSuzGw3Ew2CGhT9YS0AYwFMB9AXQEMAng6LJpqPjw/GjBmDP/74Az/++CPatGnj7EhUyWzbpkVsrPjn1dOmWb/pIRFVPkFBQejVq5eovvPmzbNxmrKbP3++qH7Dhg0TVQyNiCofztYjIiKHSk1NxYABA6ya2MMdZYiIiIiIKhdBMOPHH91F9ZXLBSxc+JSoiUb37t1z6o6cJ0+exJYtW0T1nT59uo3TOJ+7uzsMBgnOnFHhs8+C8fzzNfDkk3Uxc2ZV7NgRgOTkol9EZ2bK8dtv3HWeiBxDrS/8feMuc4dcyhe3RK5GJpOgWzcPrF/vieRkCTZu1KBXLw0UCtcrJhobq8DChV5o0MAdTZroMH++GklJZV9w3rdvX9SsWbPM/Uwmk1OvL3NycvDOO++I6jtp0iS4uZWvhUNkGb5vovLIYDDju+/++n0TFSXF7NleuHTJtXZKDggw4uWX83HqlA5Xr7rjzTe9EBbGa1kiqVSKvjF9i/zsmwvfODgNEbmipCRxi528vU3w8uLvWnJ9AQEBCAwMtMlYZrMZt2/fhtEorpgekSOZCnIQf/8W4jJMMJls/9xQqyvAncR8ZCVeg1koPH5N/7I/y7OIBH8tihfjz7J3+Xwf4G7hvgxSM7BuJ1Az04LGyQCK3qulZD4AokX0K0XD4IZ4us7Tth+YqJyJi4uzqF1MjA5ffRWLZcvuo1q1fwpS1a2rxauv+tkpnf28+OKL8PUte8XF3NxcvPvuu3ZIZJl79+5hyZIlovpWxLlJBNy4cQMvvPCCVWPY+v2LXC5HZGRkiW3OnFFh0KBa2L3bv9g2X37phx9/ZGEwoopCIVPgy6e/LLmRF4CmAAYBmAFgPIAeAOrjr/sCF+Dp6Ymnn34aGzZsQHJyMlavXo3mzZs7OxZVUosXiy9yXb26HoMGedgwDRFVJtOmTRPV78SJE9i2bZuN01hu06ZNOHXqVJn7yeVyTJ482Q6JiKgiYlEwIqJ/iY2NhUQiEfVnzpw5zo7v8rKzs9GrVy+LX/YVJTIyEkOGDLFhKiIiIiIiKgtn3DedPFmApCRxC/nbti1As2Y1MXDgQFH933//faSmiplJbB2z2YwpU6aI6tu2bVu0a9fOtoFcwL17AWjfvi5Gj66Br74KxuXLKpjNlr2A3rvXYOd0RETAg5wHMKPwAlB/j+InnRKRa/DwkOL551XYu1eFpCQzPvtMjTZttJBIXG8Hy4sXlXjtNU9ERcnQqZMGX3+tRl6eZQsSpVKp6AUae/fuxf79+0X1tdb777+PtLS0Mvfz8vLCK6+8YodEpeP7Jvvi+yYqb86cKcD48WqEh5swZIgKP/6ogsHgOtN15HIBPXposGmTBklJMnz5pRdatXKtYmVErmBB1wVFHk/XpOPXB786OA0RuZqkJHH9goL47JrKj9DQUFGFLooiCAJu3boNo9H1irMT/U2Tfgt3YpORnVdQemMrCIKAhEwT4h7chVHzaCWs8S3GQyqx0/1jY5H9rgPIsbx5v2tA9ztlO4WfDtixBfAo7ddk2dfb/aUR/iqMZmOvtXvNfv9/EZUTarUaGo3G4vYSCdChQx527LiF119PhJ+fER99VAA3t/L3s+Tj44Nx48aJ6rty5UpcuXLFxoksM3PmTBQUlP13XXR0tFOesR89elT0+5c1a9Y4PG958+DBA/Ts2RO5ueILZ7Vs2RLt27e3Yaq/+Pr6wtvbu9BxvV6CRYtCMGZMdSQmFr2h5N8EQYKXX1YiI0P8hjNE9jRq1CiYzWaL/3x55kvI5sqAOXD4n9cPvV6mrEX9GTVqlNX/zdpVbYdxj1v4+1cCIARAawCDAUwDMBXAEAAdAMQA8INd7hX+zd/fHx06dMBbb72Fo0ePIisrCz/88AOGDh0KDw8WVCLn+fVXHX7/XfzfwYkTDZDJ7PwDREQWKY/3TR06dEDLli1F9Z05cyZ0Op2NE5VOq9Vi9uzZovoOHjwY0dF22LWAiCqk8veklIiokktNTcVnn33mlItUa2RkZKBr1644e/asVeNMnToVbm7iigEQEREREVH5tG2b+J3C+/b9azHBrFmzRPXPzc3Fiy++KPr8Yn388cf4448/RPUV+3LB1bVq5QODQdwL419+KXnSFxGRLRx/cLzI4xHeEQ5OQkTWCAiQYdIkT5w86YE7d4yYM0eNunXtu/BPDJNJgiNHVBg71hMhIcDAgWrs3KmBwVByIbPRo0cjKChI1DnHjRuHzMzM0hva0K+//ip6h/qxY8fC35+FGYvD901830T2lZxsxMcfq9GwoQ4tWrhj5UpPpKfLnR3rEQ0a6DBvnhpxcQJ+/FGF555TQaHgRG2i4lT1rYraAbWL/Oz1Q687OA0RuZqUFHH9AgNNtg1CZGdRUVFQqVRWj2MwAK+/HoIxY3JhMrEwGLkWs8mI1PgbuJtcAL3BccUbc/N1uP0gFfmpNx4eaxbWDFNbT7XPCUP+/09ZCQB+t6yp0gAsPiDiHAAapwCrfiihQT6AS+LGFl0QrQTV/apjSEMWoCeKj48X1c/NDRg6NBM//3wH/fv72TaUA02ZMgUKRdnnp5hMJowYMQJ6vWMLFW3evBnbt28X1XfatGmQy13reaeruHLlCtatWweTqXzd7927dw9PPfUU7t27Z9U49py3FhUVBan0n6Wwt2+7Y+jQGvj22yCLN5aMj1dg3DitvSISOYRRMKLXhl4Yt2ccTGbHf9d4K7wxvY24zcjs4eMuHyPUK1RcZ18A9QB0BPA8gCkA3gDwCjDsw2FYsmQJZs6ciaFDh6Jz584IrxMO+APwAOAGQPb/40gBKACoAPgACATcarqh8zOdMX36dCxatAh79+5FXFwcMjMzcfToUbz//vvo0KED31mTy1i4UPz3ib+/EePGsagdEVlH7Hqf2NhYzJgxw8ZpSjdlyhTRG1qK/XclosqJRcGIiMoZjUaDyZMno2bNmvj888/LxWKNP//8E82bN8eZM2esGicwMBAvv/yyjVIREREREVF5sWePuJfeEokZzz7712S7xx9/HN26dRN5/j1YtGiRqL5inDx5Eu+8846ovg0bNkSfPn1snMg1+PjI8fjjlu8o+29nz6qQmyu+uBwRkSXOJBT97Ku4ReNE5PqqV3fDu+964to1d5w5U4CJE/MRHu64hYCW0mql2LHDEwMGqBAebsLYsWocP66DIBQuEKZUKjF1qriFhA8ePMDo0aOtjWuxjIwMPP/886IWTVjz71lZ8H0T3zeR7en1ZmzerEGPHhpERUnx+uueuHJF6exYj6hSxYhx4/Lxxx8FuHxZidde80RoKBfvEVlqdruiFzWejD8JndH1f5cSkf2kpMhKb1SE4ODytUicCACqVasmqtjF3zQaKSZNisauXf5Yv94Pb76ZbbtwRFbS58TjXuw9pGY75xmg0WhEbKoByXE3IRj/2qhg7lNzUd2vun1O2ERkv7MALHht+8ZxoFq2yHMAGP4nMLG4AmS/ARDzazQU4oqhlWJ2u9mQS3l/TZVbZmYmDFYWU6xdO9xGaZwjLCwMo0aNEtX33LlzDl3EfPv2bdHPyYODg52ywWJ5kZaWhpEjR6JevXpYv349jEbXn690+PBhtGjRwuqCYPXq1UO/fv1sE6oIUqkU1apVgyAA69dXwZAhNXHjRtkLkGzf7otvv82yQ0Ii+7uWdg1hn4bhx9s/Oi3D5FaTUUVVxWnn/19+Sj8s7bHUdgO6AXXq1cHqWasxefJkLFiwABs2bMChQ4eQcCMBWYlZ6PhFR+BNAG8DmAPgHfxVTGwWgGkAJgKGFwz4udnPuND4Al4c/yJ69eqFyMhI2+UksqFbt/TYu1f8RgBjxujg6clyFURknf79+6NevXqi+i5fvhw7duywcaLifffdd1i1apWovr1798Zjjz1m40REVJHxKouIqJxKTEzEq6++isjISLz++uuiK8rakyAIWLp0Kdq0aYPY2Firx5s/fz68vLysD0ZEREREROXGpUt63LnjLqpv06YFiIr6p6DYokWLRO9S+dprr2HPnj2i+pbFrVu3MHDgQNETwpYuXQqJxLKdD8ujDh3E7YpqMEixb1++jdMQET3qStqVIo83CW3i2CBEZBePP+6Ozz/3woMHcuzfr8WwYWr4+Lje4u30dDm+/toTTz6pRM2aBsyenY9r1x69hpo6dSqqVxe3kHD37t14/fXXbRG1RBqNBgMGDEB8fLyo/jNnzkRUVJSNU1VMfN9EZL3Tpwswblw+wsJMeP55FQ4cUMFodJ3pOG5uAnr21GDLFg0SE2VYudILzZuLe9ZCVNmNbjIaSnnhYn+CWcDcX+Y6IRERuYq0NBYFo8pDKpWiVq1akMnK/vc+I0OGMWOq4cQJ74fH5s8PwNKlmbaMSCRKduI13E7IhUZb4OwoSM/R427sfRRkxcJT4Ykvn/7SPidqCkDM7WEBgCMlN6mRCcw8KWLs//HpT0DbB/9zMAvAKZEDtrUyUBFCvUIxsslI2w9MVI4IgoDk5GSrxlAqlfD29i69oYt7//334evrK6rv559/jpUrV9o4UWFpaWl45plnkJeXJ6r/vHnz4OnpaeNUFc+tW7cwYsQIVK9eHR999BHS09OdHamQgoICvP322+jevTsyMjKsHu/zzz+HVGrfZ+MqlQrXroViwYIw6PXizzV9ujfu3dPaMBmR/X126jM0/KIh0jUlf58MqDsAH3b80C4ZfNx9MK3NNLuMbY1n6z+LXrV72Wy85b2Ww11e9M2Sn9IPh0cexuERhxGkCip1rJ/v/YzAhYGYd3yezfIR2donn+hhMombe65QCJg2zbU2yiKi8kkqlWLx4sWi+48aNQp//PGHDRMV7bfffhNdKNvNzQ2ffPKJjRMRUUXnOrMQiYhIlIyMDHz88ceoXr06+vbti61bt7rEbu4nTpxAu3btMGXKFGg0FmwJVop27dph9OjRNkhGRERERETlyXffiSsCBQDPPPPoYpoGDRpg4sSJosYyGAwYNGgQfvrpJ9F5ShMbG4vOnTuLnij57LPPolOnTjZO5Vp69XIrvVEx7Ph/HRERACA2O7bI422j7LDChIicRiaToHt3D/z3v55ITpbgv//VoGdPDdzcBGdHKyQ2VoEFC7xQv74CzZrpsGBBPpKSjFAqlVZNoPn444/x3nvv2TDpo3Q6Hfr27Ytjx46J6l+1alWHFC6raPi+iahskpKM+OgjNerXL0CrVu5YtcoLmZniCpHbS6NGOsyfn4+4OAH79qkweLAKCkXFLSRO5AhSqRR96vQp8rPV51Y7OA0RuRKxRcFCQ20chMhBpFIpateuXaaNah48UOCFF2rgyhVVoc9mzPDH1q3ZNkxIZDmTNgtxsbcRn2mCILjOMz6dTo/biWpkJlxHl+qdMeKxEbY/iRJAc5F9zwBILf7jpfsBpbh9sB6hMAFbtwIh/97/6ScAYupq+gJoYH2m/zW9zfQiiwcTVSYpKSlWf4dWlI0+goODMXeu+MLhr7zyCtasWWO7QP8jMzMTXbp0wbVr10T1b9myJZ+xl1F8fDzefPNNREVFYdiwYdi3b5/ozSJtae/evWjSpAk++OADm+QZOnQoOnfubINkpRsyJBB9+uRaNUZWlhyjRplgMrnO9R9RcfRGPTqv7YzJByZDMBf/d1YulWNtv7XYPmQ7XnviNXSr2c3mWaa2ngp/D3+bj2stiUSC5b2WQ+VW+JlDWQ1pMARdanQptV3H6h2RPD0Zs9vNhkxS8rNBg2DAG4ffQNTiKJxJPGN1RiJbysw0YcMGD9H9n31Wi/Bw13pPTkTlV/fu3dGvXz9RffPy8tC9e3dcuHDBppn+7ezZs+jZsyfy88VtVj9lyhTUrVvXxqmIqKJjUTAiogrCZDJh9+7dGDx4MEJCQjBy5Ehs3boVOTk5DssgCAJ++ukndO/eHe3bt8epU2K34nqUUqnEypUryzSJiIiIiIiIKoYffhD/ovDZZwv3nTNnDoKDg0WNV1BQgD59+mD58uWiMxXnyJEjaNWqFeLi4kT1V6lUlWLXkLZtPREQIG4i2vHjnIhNRPaVok4p8njLiJYOTkJEjuLhIcWwYSrs26dCUpIZS5fmo3VrLSQSs7OjFXL+vBKzZ3uhalUZOnfWID29Czp3LrqghSXeffddvPjiizYvGnX//n088cQTOHTokOgxFi1aBA8P8RMWKzu+byIqXkGBGRs3atC9uwZVq8rw5pueuHat6F3CnSUw0IhXXsnH2bMF+PNPJWbN8kJICCdhE9nSwq4LizyepknDiQcnHJyGiFxFerq437chIa53/0hkKblcjpo1a1rU9vJlD7zwQg3ExRV9/Ww0SjBqlDd++SXPlhGJSqVOu4nbD1KQk+/8wuhFMZvNSMwy4sH9u1jQ/nUEqYJsf5LWAMTUtjQD2AmgiFe3T98Anr5pXax/C88DtmwFZAKASwDE1bEB2kDcv2sJ/JX+GPf4ONsOSlTOGI1GZGRkWDWGt7c33N1d6zmbNSZMmIAGDcRVITSbzRgzZgzeeustmxervHjxIlq1aoU///xTVH+JRIJly5bxGbtIOp0OGzduRO/evREeHo7x48djz549NtkQxVIGgwE7duxA69at8fTTT+P69es2GTcwMBCffvqpTcay1NdfKxEaKn6zUQA4dswL8+dn2yYQkZ1cTL6I0E9DcTj2cIntonyicOfVOw+LCUslUqzvvx6hXrarSO+n9MOU1lNsNp6tVfOrhrlPiS/MCQDeCm8s6r7I4vZSqRQfd/kYidMS0Tqidant43Pj0eKrFnhm0zPQ6B33/U9Uks8/10GtFn+zPGuW+M2eiYiKsmjRIiiV4tZ9ZGVl4cknn8T27dttnArYsmULnnrqKdFz6MLCwvD222/bOBURVQYsCkZUzhw9ehQSicQuf8Tu2DF37ly7ZZozZ45t/wNWErm5uVi3bh0GDx6MwMBAPPnkk3jzzTexe/dupKaWsDWXCEajEceOHcPrr7+O6tWro3v37vjpp59seo4vvvgCDRs2tOmYRERERFRx8b6p4oiNNeDiRXEP9GNiClC/fuEJg76+vlYV9dLr9Zg4cSKGDBmChIQE0eP8Ta1W45133kHXrl2tul/76KOPULVqVavzuDq5XIq2bcVNhrh9W4k7d7Q2TkRE9I98feGdn9ykbnCXV5wJ7ERUvCpVZHj1VS/89psHbt824u2381G3boGzYxViNEpw+LAKL73kiZMnd0Au3wCgK8Sshvvmm2/Qpk0bnD592upcZrMZGzZsQLNmzXDmjPidcfv164eBAwdanYf+wvdNRH85dUqHsWPVCAszYdgwFX76SQWj0XUWvrm5CejdW42tWzVITJRh+XIvNGvGa1Aie4n2i0atgFpFfvb6z687OA0RuYL8fCNyc8UVBQsP5xReKt+USiWqVatWYpvjx70wZkx1ZGaW/HOi0cgwcKASV65wUSzZn9mkR0rcTdxL0cNgELchkSPlqXXISjfj4zazbT+4N4AmIvsmAfifxzfuRmDJfusiFaXDfWDWbgA/iBzAE0AzGwb6f5NaToK3u7ftByYqR2wxdyYyMtIGSVyHXC7H119/Dblc3H2C2WzGhx9+iK5du+LGjRtW5zEYDPjss8/Qpk0b3L59W/Q4kydPRosWLazOQ0BaWhpWrlyJPn36ICAgAN26dcN7772HAwcOIDs726bn0ul0OHDgACZPnoyIiAgMHDgQv//+u83Gl8lk2Lx5M0JDbVd4yBLBwQqsWKGxerOmDz7ww61bhed6ELmC+b/OR9MvmyJLl1Viu2GNhiF2ciyq+j46fzTYMxgbB2yEBLZ5pzWt9TT4Kf1sMpa9TGk9BU1Cm4juP/epuQj3Di9zv2CvYPz20m/44bkfLPpv9MPNHxCwIADLT9t+g2KistDrzVi5UiG6f+fOGjRuLL4/VW5r1qyx2/qauXPFFYkcPXq03TKtWbPGtv8BK7Dq1avjgw8+EN0/Ly8PgwYNwqRJk5CVVfJ1lCUyMjIwfvx4PPfcc8jPF3/vsGLFCnh78zkiEZUdtwMlIqrgjEYjjh8/juPHjz88FhERgTp16iAmJga1a9dGREQEgoODERISgoCAACiVSri7u8Pd3R2CIECr1UKn0yEtLQ0JCQmIi4vDpUuXcOHCBZw7dw65ubl2yz9+/HiMGjXKbuMTEREREZHr+u67AgDidhDq3dsAoOgFsIMGDcIrr7yCFStWWJHtO+zZswdTp07Ff/7znzJPUMzNzcWGDRvw/vvvIykpSXQO4K/CB5MnT7ZqjPKkUycj9uwR13f3bi2mTvWwbSAiIgCp+akQzIV3anb1yXBEZB81arjhvffc8N57wJkzBVi71oBt29yRnOxau2NqtXIAQ///TxKAzQD+C+CcxWNcuHABrVu3xnPPPYeZM2eiadOmZcpgNBrx448/Yu7cuTh79myZ+v6vatWq4dtvv7VqDCoe3zdRZZOYaMQ33+iwYYMbrl8XV7Dc3h57TIdhw4wYOVKJ4GBPZ8chqlRmtZ2Fl/e8XOj4ibgT0Bl1UMpd83uDiOwjLk4PsVNxIyPLXqCZyNV4eXkhMjIS8fHxhT7budMPc+dGwGSybAFyRoYbevcW8OuvOkRG8vcp2UdB9n3Ep+uh1emdHaVMjEYTWvh2Q+fIDvg5/hfbDt4RwGUAYvY4OA0gCMD/14iZdQKoaf1au0LSAHx/wYoBOgOw8TplTzdPvNrqVdsOSlTO6HQ65OXlWTVGYGAgZLKKd13cunVrfPTRR5g1a5boMQ4fPoyGDRvi5ZdfxuTJk1GnTp0y9ddqtdixYwfmzp2LW7duic4BAC1atMD8+fOtGoOKVlBQgIMHD+LgwYMAAIlEgujoaNSpUwd16tRB7dq1ERYWhpCQEISEhMDPz+/h+xeFQgGTyQStVgutVouUlBQkJCTgwYMH+PPPP3HhwgWcP38eWq39NlH86KOP0LlzZ7uNX5L+/f0wZkwWVq/2F9Xf29uEd95JgF6fB0GoB6mUhbvJNeiMOnRe1xkn406W2E4hVWDDwA0YVH9QsW06Vu+Idzq8g7m/iCuO8jd/pT8mt3b9OapyqRyrnl6F1qtbFzmPqySNQxpjUqtJVp3/6ZinkTEzA5P2T8LKMytLzFBgKsDEHydi8anF2PXcLjQIbmDVuYnEWLNGg+Rk8e+Zp093nY20iKhimTZtGo4ePYo9YheNAFi2bBk2btyI119/HaNHj0aVKlXK1D81NRXffPMN5s+fb3Xx5smTJ6Nfv35WjUFElReLghERVUIJCQlISEjAkSNHnB2lRD179sSSJUucHYOIiIiIiJxk1y7xk/6efbbkx16LFi3CqVOncO6c5QUP/pdGo8GHH36IefPmoWPHjujVqxdatGiBxx57DD4+Po+01el0uHLlCs6cOYPDhw9j9+7d0Ol0os/9t8pY+OCZZzwwbZq4vocPyzF1qm3zEBEBwLEHx4o8HuEd4eAkRORqmjd3R/Pm7liyxIyDB7VYt07Anj1K5OW52gKXMABT///PdfxVHGwjgHul9jSbzdi0aRM2bdqEhg0bYuDAgWjZsiUef/xxBAcHQyL5ZxKgyWTCnTt3cObMGZw8eRJbt25Famqq1end3NywZcsW+Pn5WT0WWY7vm6ii0ekEbNumw9q1wNGjHjAavZwdqZCgIAOGDCnAiy+6oUkTFkkgcpYXm76IST9OQoHp0aoJglnA+8fex4edPnRSMiJyhgcPDKL7Vq1q4+okRE7i5+cHvV7/8B7fbAZWrQrCsmUhZR7r/n139O6twfHjRvj4cJo72Y5ZEJCVfAPJ2WYIQtkWh7sKiUSC2Y3exG/Jf0Bj1NhuYC/8VRhsv8j+ewHIgejqwGu/2i7W3zIBdAFwTewAEQDKtpeBRV5+/GVUUZVtMSFRRRMXF2dVf6lUiuDgYBulcT0zZszAsWPHrFrEbDQasWLFCqxYsQKtWrVC37590aJFCzRr1gwBAQGPtDUYDLhx4wbOnDmDY8eOYfv27TbZjMPPzw9btmyBQsH7F0cwm82IjY1FbGwsfvrpJ2fHKdFLL71kVeE7W1i61BvHjulw61bZnpe3apWPDz6IR2ioEWYzEBsbixo1atgpJZHlTsefRtf/dkVuQcnf3zX8auDEiycQ6hVa6phvP/k2frn/C47GHhWda0bbGfBx9ym9oQtoEdECE1tMxGenPytTvxW9VkAutf45hFQqxfJeyzG73Wz03dQXF1IulNj+TtYdNPqiEYY0GIK1/dZCIefvW3IMQTBj6VLxc5caNtShe3e+ryYi+5BIJFi7di2aNGli1bOHzMxMzJw5E2+88QZ69eqFrl27onnz5mjUqBFUKtUjbdVqNf7880+cOXMGBw4cwIEDB2A0Gq39V0GLFi2wYMECq8chosqLb0uJiMgl9ejRAzt37uTLIyIiIiKiSio11Yjffxf3sjAiQo+WLd1LbOPu7o6tW7eiTZs2VhchEAQBP//8M37++eeHxxQKBfz8/CCTyZCdnW2XHRe9vLywdevWSlf4oGZND9SuXfbJXABw8qQKRqMAuZw7OxKRbZ1OOF3k8VoBtRychIhclUwmQY8eHujRA9BoBGzfrsaGDRIcPqyEweBq1yZ1AXzw/39O4K8CYVsBZJTa8/Lly7h8+fLDf5bJZPD19YWHhwdyc3ORl5dnl8SfffYZWrZsaZexqXzj+yYqjSCYcepUAVavNmHHDndkZ6tK7+RgCoWA7t11GDUK6NPHA25ubs6ORFTpSaVS9Inpg21XtxX67OuzX7MoGFElk5YmQCIxw2yWlN74X+RyASEh/L1OFUdwcDAMBgPS07Mwb14YtmwRXyjnzz9V6Ns3DwcOeEKhcLXnJlQeGTXpSEzJRq7a5OwoVgtTheHVBq/i44sf23bgFgDOAkgT2X8X0CJUDqXB+oVy/3YRwCAAt60ZpBeAsv2aLpVUIsXUVtyNiiq33NxcFBQUlN6wBOHh4ZBKK+7v+r8XMbdp0wY3b960erzff/8dv//++8N/lsvl8PPzg0KhQE5ODtRqtdXn+F9yuRzr169H9erVbT42lW9jxozBqlWrnB0Dnp5yfPutFh07Kix656pQCJg6NQVDh2bg318/Go0GmZmZhYrtETnSnCNz8N6x92CGucR2LzV9CV8985XF48qkMmwYsAFNVjZBmqbsF/xVPKpgUstJZe7nTB90+gA7ru9AfG68Re1HNxmNdlXb2TRDVd+qOP+f89hyeQte+uEl5Ovzi21rhhmbr2zG7pu7saL3Cox8bKRNsxAVZf9+Ha5e9RDdf/JkE6RSG99sExH9S0BAALZu3YpOnTpBo7FugwSDwYBdu3Zh165dD48plUr4+fnBbDYjOzvb6mccRQkNDcV3333HeWtEZJWK+/SUiIjKrd69e+P777+Hu3vJi/iJiIiIiKji2r69ACaTuJeFvXvrLXrRWKNGDRw8eNAuk3n+3g09KSnJLgXBPDw8sHv3bjRv3tzmY5cHTzxRtv+m3t4mdOmSgwkTUpCZaf0uqERE/+ty6uUijzcOaezgJERUHqhUUrzwgif271chMdGMxYvVaNXK9teMttEOwBcAkgDsAjAYgOWTAk0mEzIzM5GQkGC3gmDz5s3Df/7zH7uMTeUb3zdRSeLjjXjvPTXq1dOjXTslvvnGE9nZrrWvXpMmOnz6qRoJCWbs3q3CgAEquLlxYjWRq/ik6ydFHk/VpOK3uN8cnIaInKlDh3ycPXsFP/98HZs338by5bGYMycBEyemYMiQDHTpkoPHHtMgIkIPd3fhYb/AQCNkMk7hpYolIiICJ08GW1UQ7G9Hj3pj+PA8mExC6Y2JSpCfegO3H6QjV61zdhSbea7mc2gcYOP3DzIAz8Cq1SXbko3oWqMGbnh6Wh3HAOAzAG0kEusKgrUGEGF1nEIEs4A6y+tg8o+ToTfqbX8ConIgISHBqv5/b7ZX0QUEBODnn39GtWrVbD620WhEeno6EhMT7VIQTCqVYu3atXj66adtPjaVb2PHjsXXX38NicQ1nle3a+eNmTNzSm1Xt64WW7bcwfDhjxYE+1tiYiIMBoMdEhKVLF+fjxarWmDusbklFgRzl7lj93O7y1QQ7G/h3uFY33+9qHwz286Et7u3qL7O4u3ujWU9l1nU1l/pj/ld5tsty5CGQ5A1OwsjHxsJSSnVijUGDUZ9PwoNVjTAvax7dstEBACffFJyAcKShIUZMGKE6222RUQVT6tWrbBr1y67zP3S6XRITk5GSkqKXQqCValSBYcOHbLL8wAiqlw4o4CIiFzKrFmzsHv3bi7QICIiIiKq5L7/XvykoYEDZRa3bdy4MQ4cOAAfHx/R53M0hUKB7du3o2PHjs6O4jTdupX890MmM6NJEzVeeSUF69ffwbFj17B4cRwGD86CRpPtmJBEVKkUNxGrTWQbBychovImMFCGKVM8ceqUB27d0uOtt/JRp47tJ5lYzw1/rQrcAiAZwLcAOsPZr5vffvttvPbaa07NQK6J75uoKFqtgHXr1OjSRYNq1WR4911P3LzpWn9HQkIMmDgxHxcv6nH+vBLTpnkiMNDy5xxE5DjRftGo6V+zyM9eO8TrE6LKxGAwwM0NCA42okEDHZ58Mh8DB2Zh3Lg0vPVWEhYvjsN//3sX+/ffxB9/XMXJk1exa9dNLF0a5+zoRHbx8suBGD482yZjbd3qi02bUmwyFlU+gkGLpAc3EZtqgNFodHYcm5JJZJj7+FzIJTYubh2Fvx75WeHw3btoWFCACUOG4GadOiiy4kYJtAA2yOVo4O2NyQC0ZvGLlBEOoIv47qXRGXX47PRn8JrnhZE7RyKvwD6bIhC5otTUVJhMJqvGiIqKslEa1xcZGYmff/4ZERF2qFJoJxKJBF9++SWGDh3q7CjkQuRyOZYsWYJVq1a5TEGwv82d64sWLYoujieRmDFmTBo2bryLWrVKfg977x6L8JBjHb9/HKGfhOJM0pkS29WtUhcJ0xLQJ6aP6HN1r9Udr7Ur27PrIFUQJrScIPqcztS3bl/0r9u/1HbzOs9DkGeQXbPIpXKs6bcG1ydcR0yVmFLbX027ipqf1cRLu1+CILBYOtnehQsFOHJEfFGv8eMLoFC41rUAEVVcXbp0wbZt2+Dm5ubsKBbz9fXFTz/9hAYNGjg7ChFVACwKRkRELsHLywvfffcd5s+fD2kZJwEQEREREVHFkp8v4Ngxpai+AQFGdOpUtr7NmzfHoUOHEBYWJuqcjuTr64tdu3ahZ8+ezo7iVD17ekGheHSyQ2SkHoMHZ2DJkvs4duwa1q+/h/Hj09CkiRbyf82H12g0Dk5LRJVBsjq5yONtolgUjIgsV6uWAu+/74UbN9xx+nQBXnklHyEhrrgbtQ+AUQAOAYgD8AmApg5NIJVK8eGHH+K9995z6HnJ9fF9E/0vQTDj1191GD1ajdBQM0aO9MTPP6tgMrnOJGV3dwF9+6qxc6cG8fFyfP65Fxo3Vjg7FhFZYGbbmUUePxF3AjqjzsFpiMhZylJoRiIBvL0F1KihR+PGrni/R2Q9mUyKb77xQffuuVaNI5GY8eabiWjSJANxcSyiR2Wjy7qLu7FxyMjVOzuK3dTyqYWX6r5k+4HbAqhj3RBGoxErtmxBzM2baN2iBea99RYOjRyJzGbNAH9/QKUC3N0BpRIGlQqXg4Kw5rHHMOappxDq44PhRiNu5VlZYEsJ4FkANq6bVhSDYMC6P9fBb74f+m3uh9T8VPuflMiJBEFAWlqaVWN4enrCw8PDRonKhxo1auDo0aOoW7eus6OUyt3dHd988w1eeskOv2eo3AoJCcGhQ4cwefJkZ0cpklwuxbp1Enh5PVqwMDxcj2+/vYepU1Pg5lZ6sVG9Xo+UFBYmJseYdXAWnlzzJNSGogva/W1ii4m4NvEaqqiqWH3O9zq+h7ZRbS1uP6vdLHgpvKw+r7N83vNzeCu8i/28RXgLvNTMcb/v6gTWwfWJ1/FVn6/gIS/5WsgMM1afXw3/Bf7YfnW7gxJSZbFggfji6V5eJkycWLmu5YnI+Z5++ml8//338PHxcXaUUkVERODQoUNo1qyZs6MQUQXBWbBEROR0Tz/9NK5cuYJnn33W2VGIiIiIiMgF7N6tg04n7rFV9+4FkMvLvrC3RYsWOHv2LFq3bi3qvI5Qr149nD59Gj169HB2FKfz8ZHjySfz0alTLt56KxH79t3Ejz/exNtvJ6Fz5zz4+BS/O5ogCBVuN3Aicr6idn+XS+XwVHg6IQ0RVQQtWrhj+XIvxMfLsXevFs89py40id01hAOYDuAcgCsA3gBQza5n9PHxwa5du/DGG2/Y9TxU/vB9E/3bgwcGzJmjRt26ejzxhBJr1ngiN1fm7FiPaNZMh8WL1UhMNOP77z3Rr59K1DMNInKesc3Gwl3mXui4yWzCh8c+dEIiInIGk0ncvRqL2FJF5uYmxbZtKjz+eMkLm4vj7i5g8eIHeO65TABATk4OF+aTRcyCgIyE67iTqIWuoOIWBPvb2JixqO5d3baDSgD0A2B9vQEAwO+//443PvgAXdeuRZVz5+CWl4cglQoRVarASyaDQqNBo7Q0jL54Ed8ePYrcXOsKCgL4a4VMfwD+1g9VFoJZwK4buxD6aSg6re2Eu5l3HRuAyEESEhJgNpdeWKckUVFRNkpTvtSqVQu///47+vTp4+woxQoPD8cvv/yCUaNGOTsKuZCRI0fiypUr6NChg7OjlKhuXRU+/DDn4T8/80wWtm+/jccfL9sGkmlpadDpWPCf7Cdbl43GXzTGwpMLS2znIffAT8N/wue9PrfZud1kbtg0cBP8laVfLId4huCVFq/Y7NzOEOETgY86f1TkZxJI8EXvLyCTOv794UvNXkLm7EwMrDew1La5BbkYtHUQmq9qjsTcRAeko4ouIcGIbdvEF/UaNkwLf3/Xeu9ORJVDr1698PvvvyMmJsbZUYrVtm1bnDlzBs2bN3d2FCKqQDirgIiInCYyMhLfffcdfvjhB1StWtXZcYiIiIiIyEXs3Cl+8uCAAeIXz4aFheGXX37B+PHjIZG41iLcZ599FqdOnUKdOlZuy1yBfPVVJpYufYAhQzIRFVW2Sf2ZmZl2SkVElVGmJhMmc+HFn77uvk5IQ0QVjVwuQa9eHti0yRMpKRKsXatGt24ayOXFF0F1nvoAPgRwD8BxAOMABNj0DI899hhOnz6Np59+2qbjUvnG9030N41GwNq1anTqpEH16nLMneuJW7cKF+txptBQAyZPzselS3qcPavElCmeCAjgpGmi8koqleLp2kVfl6w6t8rBaYjIWQRB3P2ZXC63cRIi1+LlJcfevW6oVatsi+l9fIz46qtYdO786EYMaWlpfL9DJTLmp+DB/btIyjJaXaymvFDIFJjbbK7tB1YBGAHAz/ZDG41GpKenIzExEWq1uMKBJfq7qJkT1waaYcaR2COo+XlNtPyqJS4kXXBeGCIby8jQ484d6352/f39K/W18N8bn8yZMwdubm7OjvOIjh074syZM2jVqpWzo5CLqFevHg4fPow1a9agShUbVQy1swkT/DBkSBYWLXqADz9MgJeXuHv22NhY0ff7RCU5dOcQwj8Nx6XUSyW2axzSGMnTk9G1ZlebZ6jqWxVr+q0ptd3sdrOhclPZ/PyONr75eLSKKPy7bXzz8Xg8/HEnJPqLUq7EtsHbcPE/F1HNr1qp7c8mnUXUkihM3T+V309klU8/1cFgEFdaQi43Y+ZMhY0TERFZrm7duvj9998xcGDphTUdSSKRYMKECThy5AhCQ0OdHYeIKhgWBSMiKmf8/PwwcOBA+Pj4ODuKaNHR0VixYgXu3LnD3dqJiIiIiOgRer0ZP/2kFNXX09OE3r3F9f2bQqHAihUrcOLECTRp0sSqsWyhZs2a2LdvH7777rtyfR9oD35+fqL72mSHaSKi//dr3K9FHg/zCnNwEiKq6FQqKUaM8MSBAyokJAhYtEiNFi20zo5VjPYAVgJIAvA9gEEAxF+re3t7Y9GiRTh79qxL7/ZXnvB9E1UUgmDGsWM6jBypRliYGaNGeeLIERUEwXWKfSuVAvr3V2P3bi3i4uRYssQLDRtysjRRRbGg64Iij6eqU/F7/O8OTkNEziC28IyrFQAgsoeQEAX27BEQHGywqH1YmB7r199D06aaIj9PTExEXl5ekZ9R5ZaXfB234jKRpy5bEbqKoGlgU7QNbmv7gX3xV2Ewb9sPbVdPA2hsv+HX9l1bZEGB4vyR+AearmqKBisa4JfYX+wXjMhB3npLjd69a+PrrwOh05X9+ZtEIkFYGN+hSiQSvPvuu7h48SI6duzo7DgICQnBunXrcPjwYf7/YwPR0dHo1asXPDw8nB1FtAYNGmDjxo24fPmyS/wdLQuZTIq1a1Xo2tW6uWFGoxEJCQk2SkX0l0n7JqHrf7tCayz5Hf/MtjNx8T8X4aO033vcZ2KewZRWU4r9PNQrFP9p/h+7nd+RZFIZdg7ZiUbBjR4e61e3Hz7t/qkTU/2jcUhj3Jt8D4u6LYJCVvL7Q8EsYMnvSxD0SRAO3D7goIRUkeTnC/j2W/Fzd55+WoOaNfmem4icy9fXF9u2bcOePXtQo0YNZ8dB06ZN8dtvv2HZsmVQKPgdSUS2x6JgRETljJ+fH7Zt24b09HQcPHgQ06ZNQ+PGjSGRuM7E9qJIJBJ06NABa9euxa1btzB+/Hhe4BIRERERUSE//aRDbq5MVN9OnQrg4WGbx11t2rTBmTNn8PnnnyMqKsomY5ZFYGAg3n//fVy+fBk9e/Z0+PnLA2uKFxQUFNgwCRFVdr8nFL3Iu2ZATQcnIaLKJDhYjqlTPXH6tAdu3tTjzTfzUauWK17jKAD0BbAVQAqA1QA6wdLX1O7u7hgzZgxu3LiBqVOnQiYTd69AhfF9E5V3sbEGvP12PurU0aNDByXWrfMU/TzBXpo312LJEjUSEszYscMTffp4QC537Z8xIiq7GgE1UMO/6MnGrx16zcFpiMjRBEEQ3ZdFwaiyiIlR4fvvdfD2NpXYrk4dLdavv4saNUp+vnH//n1ota5aJJ0cTdCrkfjgFu6nG2Eylfx3zFGkUsctz8jV5+KFoy/gZOpJ+5wgAMAoAIH2Gd6W3N3d0W5SO+Bx+53jyegnMaLJCJx66RTuvnoXnap3ggSW3edfTbuKp9Y+hepLq+P7a9/bLySRHV27psE33/hCo5Fh6dJQPPNMbezb54uy1MgNDQ116Pekq6tXrx4OHz6MjRs3om7dug4/v7e3N6ZNm4YbN27ghRdecPj5K6rq1atj7969yMjIwO7duzF+/HjUrl3b2bFKJZfL0atXL+zcuROXLl3C888/X25/Xt3d3RESEmL1ODk5OSxKTDaRrklH3WV1seyPZSW283TzxLFRx4rdiMLW5nedj+bhzYv87PX2r8PDrfwWN/xfYd5huPCfC7g0/hJiJ8di55CdUMqt24DY1qa2mYqMWRnoWav0+cKZ2kz02NAD7b9pjwxNhgPSUUXx5ZdaZGfLRfefOdO13scTUeXWu3dvXLlyBe+99x4CAx3/ALNq1apYtmwZ/vjjD7RqZfkmAkREZVU+n84QERHc3NzQpUsXfPrpp7h48SJSUlKwZcsWTJgwAU2bNnWJhTESiQRNmjTBe++9h7t37+Lo0aMYMWIEJ7UREREREVGxtm8Xv4Cmf38bBgEgk8kwceJE3L17F5s3b0br1q1te4IiNGzYEF999RXi4uLw1ltvQal0rYkHrkQqlYq+vzSbzdBoit5lnoiorC6nXC7yeONgO25FT0T0L7VrK/DBB164cUOB337TYfx4NYKDDc6OVQQfAGMA/AzgAYCFAB4rsmVISAjeffddPHjwAKtXr+bO9HbE901Unmg0Ar79VoOnntKgZk05PvjAC3fuuDs71iPCwgyYOjUfly/r8ccfHpg82RMBAc7/OSIi+5rRZkaRx48/OA69Ue/gNETkSHq9+J9xFrelyqRNG2+sX58HN7ei3wO2bJmPNWvuISTEaNF4d+/eternjyoGbeYd3IlNQGau6xTK91S5o7Z/FqL9NJDL7Xsv+N9b/0WHPR1wIeOCXc+DKgBeAlDHvqexRnh4OH755Rcc/PQgmoQ2sdt53mj/xsP/Xd2/On4e8TOSpyejX0w/SCWWLcuJzY5F/+/6I+zTMKw+t9peUYnsYsYMI/T6f/6uJyUpMHt2FIYPr4ELF0ovGiKXy1GlShV7Riy3nn/+eVy9ehX79u1Dt27d7L55R/Xq1fHpp58iPj4en376KXx9fe16vsrKw8MDffr0wYoVK3Dz5k3ExcVh7dq1eOmll1C/fn2X2KRFJpOhTZs2D/8+7N27F/369XOJbNYKCgqyyby7uLg4qwqCE/1w4wdELorEjYwbJbZrHtYcKTNS8ET0Ew5KBihkCmwZtAX+Sv9HjjcMboiXH3/ZYTkcRSqRomFwQ0T7RTs7SrG8FF7YN2wfTo45iXDv8FLbn4g7gdBPQ/HOkXcckI7KO5PJjGXLxM+xaN1ai7ZtOaediFyLUqnE22+/jbi4OKxatQoNGjSw+znbtGmDLVu24O7du5gwYYJLzK0joopNYjaXZV8GIiIqL9RqNc6cOYPz58/j4sWLuHjxIq5fv27XXfLc3NxQt25dtGzZEl26dEHnzp0RFBRkt/MREREREVHFYjKZERFhREpK2V86urkJSEkxw9/fvg/Vr127hr1792Lfvn349ddfYTBYV2xBKpWiZcuW6NWrF3r37o1mzZrZKGnlkJCQgKysLFF9/fz8EBkZaeNERFQZNVzREFfSrhQ6vuf5Pehdp7cTEhERAUajGQcO6LBunYB9+5TIz3flySdXAPwX0dEn0b9/M/Tq1QsdOnTgAnkXwfdN5GyCYMaxYwVYvdqEXbuUyMtzve8zpVJA795ajB4tRY8eSshk5X/BFBGVjSAIUH2kQoGpcEGKd558B3M7znVCKiJyhJycHMTFxYnqW716dXh6ehb52YULF9C0aVOLxzp//jyaNGkiKgeRI61alYX//McPZvM/18w9e2bjgw8SoFCUbTq7VCpFTEwMF9xUQmbBhIykW0jJNsFVlkFIJBKE+JhRxUMLifSvgjlGvR4J2kDkqW1btCxBnYDxJ8bjXt49m45bKjOAXwAcA+BCdTE6duyIDRs2PNxU4G7WXTRf1RxZOnHvkIvTLKwZzow9U2yRlLyCPLz646vYcGkDDILlcwj8lf54rf1rmNFmBqRSywqLETnDgQO56NHDp8Q2PXpkY8qUFEREFP0zEB0dDW9vb3vEq3Du37+PvXv3Yu/evThy5IhNnsc/9thjD+cmtWnTht85LiA7Oxt//PEHLly4gAsXLuDixYu4deuWXYvfenh4oH79+mjdujW6dOmCjh07VuiicEajETdu3LD6mtHT0xPVq1e3USqqLMxmM8b+MBarz5dcCFYCCd558h3M6TjHMcGKcCvjFl7d/yqupF5Bu6rtsKDLAkT5RjktD/3jvaPv4f3j78MolF5EPdQrFFuf3Yr2Vds7IBmVR5s2aTB0qEp0/+++0+DZZ8X3JyJylHPnzj1c73P69Gmri/y6ubmhffv26N27N3r37o26devaKCkRkWVYFIyIqBIxm82Ij4/HrVu3cPfuXcTHxyMhIQFJSUnIyMhAdnY2srOzoVarYTAYYDAYYDab4e7uDqVSCaVSCQ8PDwQGBiI8PBxhYWEIDw9HjRo10KhRI9StW5e7shMRERERkWjHjunQoYO4XYQ6dtTg8GHHvmzMy8vD+fPncfXqVVy9ehXXrl1DSkoK8vLyHv4xm83w9vZ++CcwMBB169ZF/fr1Ub9+fTRt2hQBAQEOzV2RaLVa3LlzR1RfNzc3xMTE2DgREVVGVRZUQaY2s9Dx7NnZ8FVW3Am0RFR+qNUCtm3TYsMGCY4cUcJodN2FHi1aaPHccwKGD3dHcLDc2XGoGHzfRI5w754Bq1cXYONGBe7dc80igS1bajF8uIDhw5V2L1JORK5vwJYB2Hl9Z6HjIZ4hSJ6R7IREROQIaWlpSElJEdW3bt26kMuLvu9hUTCqyObOzcScOX+9GxsxIh3TpydDbE0KNzc31K5dm0UtKhFDXhLi09RQa3TOjvKQu0KBSM90eHi4F/rMLJiRpXVDUq7cJgXMFl9ajDU310BwZlWuNKD+6fq4+sdV52UAEBISgoULF+KFF14o9NmPt35E7429YYbtlslsfXYrBtUfVGo7vVGP2YdmY+XZldAZLf976unmiUktJ+H9Tu9DLuVzUXItJpOAxx/X4eLF0ufkKBQChg/PwNixafDy+ue7SqlUolatWvaMWWHpdLqHc5OuXbuGa9euISEh4ZG5SUajEV5eXg/nJgUEBCAmJubh3KQmTZogNDTU2f8qZAFBEBAbG4tbt27h3r17SEhIePj+JTMz8+H7F61WC71eD4PBAIlE8sj7F5VKhaCgIISHhz98B1O7dm00atQItWrVqnRFdbOzsxEfH2/1OBEREfD397dBIqoMkvOT0W51O9zNvltiOx93Hxx64RBaRLRwUDIqjzI1mRjw3QD8cv8Xi9p3rdEV257dBh9lyQVdqfJp2VKLP/7wENW3Rg09bt504+ZYRFTuZGZmPrLe5/r160hPT3/knloikTyy3ickJAT16tV7ZL0Pi5wTkTOxKBgREREREREREbmESZPysWyZl6i+S5aoMXmyp40TUXlw5coV0ZPo69evz4UiRGQ1t/fdCu3IKJPIYHyn9F0aiYgcLSXFiA0bCrBpkxRnzoib7OcIcrmAjh11GD7cjEGDPKBS8ZqNqDJQqwVs2qTFunVS/PqrEmaz600qDg834LnnCvDii26oX7/wgm8iqrzuZN5Brc+LXuB8+qXTXNhFVEElJCQgKytLVN+GDRsW+xmLglFFN25cFnx8dBg5MsPqsTw8PFCzZk0bpCJXl5t8DQlZgMlkcnaUhwK83RDqkQ1pMUUe/1agK0CcOhC6Ar2o81zNuoqJJyciTZdWalsvuRfyjfmizmOJJ6OfxNGRR7F582a89957uH79ut3OVRRvb2+MHTsW77zzDnx9i9+YZe7RuZjzyxybnDOmSgyuvHIFMqnlRVQEQcAHxz/Ap799ityCXIv7ucvcMarJKCzuvhgebq77/JYql5UrszB+fNkK4QQEGDFhQgoGDMiCXA7UqVMHCoVrFv4nooovNjYW+fnWXx+VVNyb6G9br2zFsB3DYBAMJbZrF9UOh0YcglIubhNdqnx+vvszntv+HNI16aW2dZO64YNOH2BWu1kOSEblgTWbdgPA4sVqTJnCOfpEREREzsCiYERERERERERE5BJq1NDj3r2yTwKUSs2IizMhPJyTbiqj27dvQ6cTtxt4ZGQk/Pz8bBuIiCqVfH0+vOcV3gHKX+mPzNmZTkhERGS5mzf1WLNGj+++c8OdO65b2MbLy4TevXUYMUKK7t2V3HmUqIIRBDOOHi3A6tUm7N6tRH6+5QtsHcXDQ0Dv3lqMGSNFt278HiKi4tVYWgP3su8VOt6xWkccHnnYCYmIyN7ELiyWSCRo0KBBsZ+zKBhVdIIg4NatWzAYSl4kbSkfHx9UrVrVJmOR6zEV5CI5OQVZeQXOjvKQTCZDhHc+fMpQyF4wmZCq9UZ6ruVFzYyCEW+ffRt7Huwpta0UUoysMxJTG07F2ONj8Xva7xafx1IyiQznxp1D45DGAACz2Yz9+/djyZIlOHjwoOiNnCxRvXp1TJw4ES+99BJ8fHxKbS+YBfTZ1Af7bu2z+tzf9v0Wo5qMEt1/2elleO+X95CmKb2o29/kUjkG1huIL3p/AX+PshVjIrKl/HwjYmIEJCaKK+hVq5YOa9dmoG3bCBsnIyKynCAIuH79OgRBsGocd3d31K5d20apqKIRBAEv7HwBGy9vLLGdBBJ81PkjvNb+NQclo4pEEAS89vNrWPTbIpjMpd9bVvWtip1DdqJZWDMHpCNX1qePGnv2iCvqVaWKEQ8eSLmZHxEREZGTsCgYERERERERERE53YULBWjaVFwhghYttDh9mrvkVlapqalITU0V1dfLywvVqlWzbSAiqlT2396Pnht6FjpeL7Aerk646oRERERlJwhm/P57AdauNWLHDnekpbk5O1KxQkIMGDiwACNHuqFFC3dIWJeHqNy6c0eP1av12LRJgdhYcYsK7a11ay2GDxcwbJgSfn6uV6yMiFzP8tPLMfHHiYWOyyQyaN7QQCF3ze87IhJP7KYVUqkU9evXL/ZzFgWjysBkMuHGjRtWL8z/W5UqVRAWFmaTsch1aNJvIT5TgF5vmwJytuClckekKg1yhbh32/laI+LzfGE0GktsdyL5BGb8PgP5xtKLT1b3ro4v2n2BCM+/iu48yH+AAQcHoECwbSG1V1u+iqU9lxb52f3797F3717s3bsXR44cgVartfp8jz32GHr16oXevXujTZs2kErLtgA5U5uJ5quaF1m411JRPlG4/eptKGTWX8tvurQJsw7NQnxuvMV9pBIputfsjlV9ViHSJ9LqDERl9dprmZg/P0B0/+rVC3Dtmhvc3VlAgIicS61W49498dcEfwsODkZwcLANElFFEpcTh7bftC31Os9f6Y+jo44+LLJLJFZyfjL6buqL04mnLWrfN6YvNg/aDKVcaedk5Ipu3tSjXj03CIK4CTazZuVj/nwvG6ciIiIiIkuxKBgRERERERERETndG2/kY948cS8N338/H2+9xReOlZXRaMT169dF9S1t4RURUWnmHJ2Dub/MLXS8d+3e2DN0jxMSERFZx2g048cfdVi/XsC+fUqo1a5bBKdOnQIMHmzAyJEK1KrFAhtE5UF+voCNG7VYt06KkyeVMJtdr7JfZKQezz+vx4svKhATw+8WIiobQRDg8ZEH9CZ9oc/mdJiDd5961wmpiMiebty4AYOh7IVq3NzcEBMTU+znLApGlYVer8etW7dgq6nsoaGhCAwMtMlY5FxmkxHpSXeQku06xcAkEglCfUwI8NBDIrXuftZk0CNBG4jc/MJFuzRGDab8NgW/pf5W6jhyiRzTG03H8NrDC332zY1vsPjyYqty/luwZzBuTLwBP6VfqW11Oh3Onz+Pq1ev4tq1a7h27RoSEhKQl5f38I/RaISXlxe8vb3h7e2NgIAAxMTEoH79+qhfvz6aNGmC0NBQq3NfSL6ANqvbQGcsexFPAPisx2eY1GqS1Tn+bf/t/Zj842TczLxpcR8JJGgX1Q5fPfMV6gbWtWkeouLcv69DgwZuVr0nWL8+C8OH+9swFRGRePHx8cjOzrZ6nFq1akGpZGEd+sv6i+sxZvcYGIWSi/52qt4JPw79kRtHkE3tur4LI78fiZyCnFLbKuVKLO6+GP9p/h8HJCNXMnasGl9/7Smqr7u7gHv3BISFyW2cioiIiIgsxaJgRERERERERETkdI0b63DpkrjJMtev67lQt5K7evWq6J3k69atC7mcL6yJSJwBWwZg5/WdhY7PbjcbH3f52AmJiIhsR60WsHWrDhs2AEePesBodL3iPX9r2VKL558XMHy4EoGBrlvIjKgyEgQzfv5Zh2++EfDDD65ZbNDDQ0CfPlqMGSNFly5KyGSu+31HRK6v3+Z+2HVjV6HjoV6hSJqe5IRERGRPYp9Ne3h4oGbNmsV+zqJgVJlotVrcuXPHZuNFRUXB19fXZuOR4+lzExCfpoFGW7hglrMo3RWI9EyHUuluszHNghnZWhmS8twf/i7ZFbsL751/D3qhcJHZ/9UkoAmWt1sOH4VPkZ8bBSOGHhmKa9nXbJJ3Td81GNlkpE3GcrR1F9dh5Pdlzx6kCkLslFio3FR2SAX8Hv87/rP3P7iQfKFM/ZqENsGXT3+JlhEt7ZKL6G/PPZeNLVv8RPdv0yYfx4+rIJNJbReKiMgKgiDg5s2bMBpLLt5UGrlcjjp16kAq5fdbZSYIAgZtHVTknKF/k0qkWNx9MV5t9aqDklFlIwgCJuybgFVnV0FA6c8pawfUxq7ndqFeUD0HpCNny8gwoWpVQKMR947+hRfysW4dN+0mIiIiciY+fSAiIiIiIiIiIqe6c0cvuiBY3boFLAhG8PQUt4sVAGRmZtowCRFVNncyi16sxoUYRFQReHpKMWqUCgcPqhAXZ8LChWo8/rjO2bGKdPq0B6ZO9UR4uAQ9emiwbp0aGo24orFEZBu3bunx2mv5qF7dgG7dPLB5s6fLFQRr00aLFSvUSEoyY8sWT3Tv7sGCYERktYVdFxZ5PDk/GWcSzzg4DRHZm9g9eblRBdE/PDw8EB0dbbPx4uLioFarbTYeOVZ20jXcjs9xqYJgVXzkqOGXZdOCYAAgkUrg7ymgpl821MjH4J8H462zb5VaEMxD5oFPWn2C9R3XF1sQDADkUjnmNJsDmcT6e/E2kW3wwmMvWD2Os4x4bATGNx9f5n5TWk+xW0EwAGgV2Qrnx53H1Veuon1Ue4v7XUi+gFZft0LM5zH46fZPdstHldtvv+Vh61bxRTalUjMWLjSzIBgRuRSpVIpq1apZPY7RaERiYqL1gajcupN5BxGLI0otCBakCsLl8ZdZEIzsSiqV4ounv8DdyXfRKLhRqe1vZd5CgxUNMHzHcBgF64okkutbulQruiCYRGLGrFmcn09ERETkbHzCSkRERERERERETrV1q0F03z59xPelisPPz09039zcXNsFIaJKJzG/6ImeT1R9wsFJiIjsKzRUjhkzPHHmjBLXr/9V6KdGjZIXKDqDwSDFgQMqjBzpidBQM55/Xo0ff9TCZBK3UJ+IyiYvT8DKlWq0batFnToKzJ/vhQcPXGuicFSUHrNn5+PGDT1OnvTA+PGe8PV1rWJlRFS+1a5SG9X8qhX52eyDsx0bhojsTmxRMDc3NxsnISrfvL29ER4ebrPxYmNjode73nMLKp5Jl4342NuIzzBBEFyj0LtcLkc1PzXCvNSQyuxXzPGTSxvQfkd7XMu+VmrbTmGd8Oszv6J7ZHeLxq7vXx8jao+wKp9UIsXyXsshlZTvZSeLuy9Gq4hWFrf3cffBKy1esWOif9QLqofjY44jbmocetbqafF/65uZN9F9Q3dELY7C5sub7ZySKptZsyQQBPHF8wcNykG7dt42TEREZBtKpRLBwcFWjXH3rjsGDPDDlSsaG6Wi8mTV2VWIWRaD5PzkEtv1qtULidMTUS+onoOSUWUX7ReNP8f/if8O+C883UreZNcMMzZc2gC/j/2w4c8NDkpIjqbTCVi1SnyB886dtWjY0LXe9RMRERFVRuX77QwREREREREREZV7u3eLf0T17LNcOEN/LRYRq6DAdXYaJ6LyJ0eXU+iYVCJFkGeQE9IQETlGTIwC8+Z54dYtN/z6qw4vv5yPwEDX20E2L0+GzZs90auXByIjjZg4MR9nzvDaj8jWBMGMAwe0GDJEjdBQM8aP98Rvv3k4O9YjVCoTnntOjQMHtIiNdcPHH3uhTh1OYCYi+5nWelqRx3+5/wv0RhYoIaoojEbx90EsCkZUWEBAAAIDA20yltlsxu3bt636OSXHKciOxe37KcjO1zk7ykM+nu6o5ZcJL5X9ioHdyLqPmmv74q1TK2A0m0ps66fww5on12Bp26VQSMt2Pzu+3nhEekaKzjm8znN4LKi+6P6uwl3ujm2DtyFIZdn7m1eavwI/pZ99Q/2PSJ9I7Bu2D2kz0jCkwRDIJJYVMY/Pjcfz259H8MJgLD+93M4pqTJISUlFnz5ZCAsTd/+qUpnw8cfiiw8QEdlbcHAw3N3L/j1lNgMbNwZg8OCa+OMPL7zwAmAwuEZBW7I/o2BErw29MG7POJhKuH6XSWT48ukvsXfYXsil9rufICrOsEbDkP1aNoY3Gg4JSi7yqjaoMXzncDT+ojHuZ993UEJylDVrtEhJEf8cesYM8UWCiYiIiMh2JGaxW5URERERERERERFZKSXFiIgIGUymsr88jIrSIzbWDVIpXzwScOPGDRgMBlF9a9SoAZVKZeNERFTRaQ1aqD4q/N3h6+6L7NeyHR+IiMiJjEYz9u3TYf16Afv2KaHRWLZgzRliYgoweLABI0cqULMmiwIRiXXzph6rV+uxaZMCcXGu97MkkZjRpo0OI0YIGDrUA97e3DOPiBxHEAR4fOQBvanwAur3nnoPb3d42wmpiMjW1Go17t27J6pv1apV4ePjU+znFy5cQNOmTS0e7/z582jSpImoLESuJi4uDjk5hTdjEEMul6NOnTqQSnk/4Kq0GXcQm6qHyVRyUSxHkUgkCPMxwN/DCImd3kELgoBJxxbii0vbYEbJyzgkkGBQ9UF4q8lbVv09/i3lN7z868tl7uen8MOe7nsQ4ReCqpEhkCrEb9TkKo7cO4Iu67tAMBdfwEMpVyJ2cixCvEIcmKwwjV6DaQem4duL3xZ5b1EcH3cfTG8zHW89Yd3fG6qcBEHAtWvXYDabodNJ8N//VsFXXwWV6Zn/9OmZ+OSTADumJCKyntFoxPXr1y1un5oqxzvvRODEiUevh2bNysL8+f62jkcu5lraNTy55kmka9JLbBfqFYoTo0+gRkANByUjKtm1tGvou7kvbmXeKrWtBBK8/PjLWNFrBe8jKgBBMKNBAz2uXxdXrLdxYx3On3fn/HwiIiIiF8CrcyIiIiIiIiIicppt2wpEFQQDgF699HzhSA95eXmJ7puZmWnDJERUWZyKP1XkcWcvEiEicga5XIJnnvHA1q2eSEmRYPVqDTp31kAud739qW7ccMf773uhdm03tGmjxdKlamRkuMbCUyJXl5srYMUKNdq00SImRoEFC7xcriBYdLQer72Wj5s3DThxwgPjxnmyIBgROZxUKkWPmj2K/OyLM184OA0R2UtBQYHovkql0oZJiCqWqKgom23ksm6dD8aMyYHJVHzxH3IefV4C7qUUuExBMA+lO2r55yDA02S3gmAnEi8idHU3rLi0tdSCYFW9wrGr+y680+wdqxdktwlpg77Rfcvcb0rDKfBV+CJfo8ODhBSYhfL/s9Sxekd83PnjEtu81PQll3jXo1KosLLPSqjfUOO1dq/B083Ton65Bbl49+i78Jrnhan7p0JvtLygGFF8fDzM5r++n5RKM156KR17997CwIGZkEpLf94fGqrHu+8WX/yWiMhVyOVyREREWNT2p598MGBArUIFwQBg0SJfHDuWZ+t45EKWnlqKhl80LLUg2MC6A5EwNYEFwcil1Auqh5uTbmJl75VQykt+HmmGGV+e/RIBCwLw/bXvHROQ7GbfPp3ogmAAMGWKwPn5RERERC6CMx+JiIiIiIiIiMhpvv9e/EvDQYMs34mUKr6AAPE7zarVahsmIaLK4rf434o8Xt2vuoOTEBG5Fi8vKcaMUeHQIRXi4kxYsCAfTZvqnB2rELNZglOnPDBliifCwiTo2VODDRs00GrL/+JGIlsymcz48UctBg9WIzQUmDDBE6dOeTg71iO8vEwYOlSNgwe1uHvXDfPmeaFWLdcqVkZElc/CrguLPJ6Un4RzSeccnIaI7MGaomByudyGSYgqnmrVqkGhEH9NbzYDS5aEYN68cKxd648338y2XTiymeQMLQQXKTIV5CNDDd9suCvFL5gtid6ox4C9M9F++4tI02WX2FYmkWJuy3G4P3o3ukcHQOVhm0wzGs1AgLvl71Mb+jdE/2r9H/5zvlqH3JQbNsnibDPazsCAegOK/EwulWNG2xkOTlQyuVSOeV3mIfe1XMzvMh/+Sn+L+mmNWiz5fQm85nlh9Pejka/Pt3NSKu/0ej1yc3MLHQ8MNGLOnER8991ttG5d8t+jt95Sw9ub17pEVD74+/vD07P4opt5eVK8+WYEpk+vipycor/bjEYpRo92Q16e0V4xyUn0Rj06re2EKQemQDAXf98il8qxrt86bBuyzepivkT2Mq75OGTNzkL/uv1LbZtTkIP+3/VHy69aIjk/2QHpyB4++UT8Bn7h4QYMH+5a8wGIiIiIKjPeaRIRERERERERkVPk5Qk4frzk3aeKExhoRMeO4vpSxeTh4QGJRFyROYPB4DKLDoio/LiYfLHI4w2CGzg4CRGR6woNlWPmTC+cO6fElSsFmD07H9Wq6Z0dqxCDQYr9+1UYPlyF0FAzhg1TY/9+LUwm8RMlicq769f1mDlTjehoA3r18sDWrZ7Qal1niolEYkb79lqsWqVGUpIEGzZ4oksXD+5YTEQuo05gHUT7Rhf52eyDsx2chojswWAwiO7LRaJEJZNKpahVqxZksrJvEGQwAG+9FYHVq4MeHps/PwBLl2baMiJZKT/lOnLznV9E3s1Njup++Qjx0kAis8938847RxDwdWfsvHuk1LZNAusgfvQ+vNNqLABA4a5Edd8shPhaf6/r5+6H1x973aK2EkjwZpM3IZU8+t8kKUcCoQIUlpJIJPi277eIqRJT6LMRjUcg2q/o63hnk0qlmNVuFjJnZ+LrPl8j1CvUon4GwYA1F9fA72M/DNgyAKn5qXZOSuVVXFxciZ/HxBRg1apYLF8ei+rVC3+HN2qkwbhxvvaKR0RkF9HR0UXeo589q8KgQbWwe3fpxTjv3lVi4sTyf41E/7iYfBGhn4biSGzJ1/BRPlG4++pdvPDYCw5KRiSeUq7EjiE7cPbls8W+u/i3PxL/QOSiSMz4aQbn1pYz584V4JdfVKL7jx9fADc3vnMnIiIichWcWUBERERERERERE6xc6cWBQXiHk91714AmYwvHelRSqW4QnFmM5CaWnjHWyKiktzKvFXk8ZbhLR2chIiofKhf3x0ff+yFO3fccPy4DmPH5iMw0PV2zc7NlWHjRk/07OmBqCgjJk3Kx9mzBc6OReQQ2dkmLFumRqtWWtSrp8Ann3giIUHh7FiPqFZNjzffzMetWwYcP+6BsWM94eXFqS9E5Jqmtp5a5PEjsUdgFFzvOoiIysZoFPdzLHZzC6LKRiqVonbt2mX6mVGrpZg4MbrIhfszZvhj69YsW0YkK2Rpy17wzdZ8vdxRyy8Lnio3u4yfrcvFk9vHYsC+mVAbtCW2dZcp8HWnt3H++Y0I9Qx85DOJVIYgTx1q+udBobAua/fI7ugQ2qHUdgOqDUDDgIaFjhuNRuRnxluVwVX4uPtgz9A9qB9U/+Gxx8Mex5IeS5wXqgxebPYikqYnYcfgHajmV82iPiazCTuv70Top6Hosq4L7mXds29IKlfUajW02pK/qwBAIgGefDIf27ffxhtvJMLP759r4gULjJDL+ZyOiMoXqVSKqKioh/+s10uweHEIRo+ujsREy9+PrFvnh61bs+2QkBzt418/RtMvmyJLV/L947BGwxA7ORZRvlEltiNyNc3CmiF2SiwWdl0IhbTk7zmT2YRPf/sUwZ8E49DdQw5KSNZasED8+ydvbxMmTvSwYRoiIiIispbEbDZze2MiIiIiIiIiInK4AQPU2LnTU1Tf7ds1GDBA/E5GVDGlpaUhJSXForbp6XL89psXTp70wm+/eWLMmHwsWFD67o5ERH8L/SQUKerC3zkJUxMQ7hPuhEREROWPwWDGnj1abNhgxr59HtBqXXfBUN26BRg82IBRo9xRvbp9FosSOYPJZMb+/Tp8+63gsj+H3t4mPPOMDi++KEOHDu6QSllIg4jKB0EQoPxQCYNgKPTZBx0/wJtPvumEVERkK2+/nYqrV+WoUsWIoCAjAgONCAoyoEqVv/63h0fRU3Plcjnq1q1b4tgXLlxA06ZNLc5y/vx5NGnSpCzxicoNnU6H27dvl9ouPV2OV16JxrVrxS9cVKlM2LdPgw4dvG0ZkcrILJhw/cZNmEwmp5xfKpUi3FsHXw8BEjvdXy67uAXTf10MvQWFYLtEtcTOXp/AS1H6u2+TQY9kXRVk5elFZ0vWJKPvwb7QGDVFfu7j5oM93ffA373o96YBPu4Ir1pb9Pldjcagwfmk8zDDjLZRbSGVuN5zEUscjT2KCXsn4Gr61TL1axneEl898xUahzS2UzIqL65fvy6q6G1urhSrVgUjM9MNu3f72iEZEZFjxMXF4exZHV57LRI3bogrhhIcbMCFCwLCwtxtnI4cQWfUofO6zjgZd7LEdgqZAhsGbMCg+oMclIzIfvL1+Ri4ZSB+uvuTRe2fjH4SOwfvRIAqwM7JSKy4OANq1pTBYBB3b/vKK/lYvtzLxqmIiIiIyBosCkZERERERERERA6n0wkIDjYjL6/su0B7eZmQliaBUlk+J+SS/RiNRly/fr3Iz3Q6Cc6dUz0sBHbz5qMTuFq0UOP0aXFF6oiocnL/wB1606MLb6QSKUzvOGchExFReZeXJ2DLFi02bpTg2DEPmEyuWfRHIjGjdWsdnn9ewLBhSgQElP2ehsgVXL1agK+/NmDLFnckJrpeoTup1Iz27XUYMULAc895wNOTzwCIqHzqs7EP9tzaU+h4uFc4EqYnOCEREdlKx455OHq0+MJCXl4mBAYa//+P4eH/btvWgGefjSpxbBYFI3qUWq3GvXv3iv38/n0Fxo2rhoQERaljValiwNGjejRsyHdCzqLLvIPbiVqnnFuldEekZxoU7vYp1PAgLxk9d0/C1czi/77+zUfhiU3dPkKv6u3KfJ5cjRkJeZ6iC6tturMJH134qMjP3mryFobUHFJsX3eFArXr1BF1XrK/C0kX8PKel/FH4h9l6tcgqAG+6P0Fnoh+wk7JyJVlZGQgKSnJqjGqVasOLy/+biWi8ksQBPTunY/9+32sGqdHj1zs2eMFmYzvNMqT0/Gn0fW/XZFbkFtiuxr+NXBizAmEeoU6KBmRY/z64Fc8u/VZJOcnl9pWLpXjrSfewrtPveuAZFRWU6fmY8kScUW95HIzbt40cpM8IiIiIhfDomBERERERERERORw33+vQf/+pe92XJS+fdX4/ntOJqSiXbt2DSaTCWYzcOuW+8MiYGfPeqKgoPgJV3K5gNRUE/z9+UKbiEqnN+rh/mHhRUPeCm/kvl7yJEEiIipdYqIR69cXYPNmGS5cUDo7TrEUCgFduugwbBjQv78SHh6c4E+uLSvLhPXrdVi/XoozZ8TtdG9vNWroMXSoHi++6I5q1Xh/RkTl3430G6i7vG6Rn51/+TyahDVxbCAispkGDbS4erXs11RTpmRh8WL/EtuwKBhRYdnZ2YiPjy90/NIlD0yYEI2sLLnFY0VHF+DXX82IjHTdZw4VmSb9Fu4mFzj8vME+UgR55EEis/zvSlm8cXIZ5p9bB8EslNp2aJ0eWNt1DuRS8VkMBQWI1wZBrSn7f0vBLGDE0RG4mHnxkeP1/OphU6dNkEmKL4Lv5iZHTEzR17fkOu5m3sVLP7yEo7FHYYbly4Wq+1XHkh5L8EzMM3ZMR65EEARcu3YN1iwr8/DwQM2aNW2YiojIOR480KFpUzkyM627Xly6NBOvvhpgo1Rkb+8eeRfvH3u/1GumF5u+iK+f+dpBqYic450j72Der/NgFIyltg3zCsP2wdvRJqqNA5KRJfLyBERFCcjJEfd7rH9/NXbs4Nx8IiIiIlfDWclERERERERERORwO3aIn1DYv78Ng1CFk5DgizffjECnTjEYOLA2PvkkDCdPepdYEAwAjEYp9u7Nd1BKIirvziSdKfJ4sGewg5MQEVVM4eFyzJ7tifPnlbhypQCzZuWjWjW9s2MVotdLsW+fCsOGqRAaasbw4Wr89JMWJhP35SLXYTKZ8cMPWgwcqEZ4uASTJ3u6XEEwHx8TXnhBjaNHdbh1yw3vv+/FgmBEVGHEBMagqm/VIj+bfWi2g9MQkS2lp4tbXBUayvsFIjH8/PwQEhLyyLFjx7zw4ovVy1QQDADu33dH794CcnJKX+RKFYkZkEhsPurFtJuI/KYX5p1dU2pBsFBVFfwxeB02dP/AqoJgfxP7byOVSLGg5QJU9fznOjXYIxgLWy4ssSAYlR81Amrg8MjDSJyeiL4xfSGVWLZs6F72PfTd3Bfhn4Zjzfk19g1JLiE5OdmqgmAAEBUVZaM0RETOVbWqEkuX5lk9zptv+uLaNY0NEpE95evz0XxVc7x37L0SC4K5y9yx+7ndLAhGlcJ7Hd9DyvQUPFH1iVLbJuUnoe03bdHzvz2Rr+e8W1ewcqVGdEEwAJg1i88DiIiIiFwRi4IREREREREREZFDmUxm7N+vENVXoRDQrx937abiqVTe2L3bH+npZV9AfvCg7RcCEFHFdDLuZJHHq/lVc2wQIqJKoH59d8yf74U7d9xw7JgOL76oRpUqrrdoNzdXhg0bPNG9uweqVjXi1Vfzce5cgbNjUSV25YoeU6fmIyrKiGee8cCOHZ7Q6VxniohUasZTT2nw7bcaJCVJsG6dJzp0UEIq5X0ZEVU8U1pNKfL44djDMAqud11DRKUzGgVkZopbYBUWxusdIrGCgoLg7+8PANixwx+vvhoNrVbcfc6ff6rQr58Wen3JRZzI9qRS59ybpuaacS/HH/oC2zyvEQQBIw++iyabhyJBnVpiWykkmNF0OBJG/4jmIfWtPneuxozb2f7I14j/dwn3DMeWzluwpPUSLGy1EDu67EC0d3Sp/SwtLkWuIdQrFN8/9z2yZmVhROMRcJNa9g49KT8Jo3ePRpUFVfDpyU8hCPyurIiMRiMyMzOtGsPX1xcKhbj5P0RErmj4cH8MGZJt1Rj5+TLMmGHg708Xdvz+cYR+EoqzSWdLbFe3Sl0kTEtAn5g+DkpG5HwBqgAcG30MB4YdQBWPKqW2339nP6osqIJFvy1yQDoqjtFoxrJl4q/L27TRonVrzs0nIiIickV8K0NERERERERERA517FgB0tLKXrAJAJ54QgdfX+5GRMVr1coTgYEGUX2PH/ewcRoiqqguJF8o8nj9IOsX8xARUdGkUgmeeEKJr7/2RFKSDNu3a9C/vxoeHq43oT4x0Q2ff+6Fxx93R/36BZg7V43YWHHXqERlkZlpwpIlajRvrkPDhgosWeKFpCRx99/2UrNmAd55Jx937xpx5IgKo0apoFJx6goRVWyTW00ucvG9UTBi4YmFTkhERNZKStLDaBRX3Csyku84iKwRERGBGzeq4N13I2AyWVdk7+hRbwwfngeTyfWeLVRk7n7VIJM557tQoy3A7Sw/ZGus+7tz8MEpVPmqM9Zd31tq27r+1XB7xPdY2H6K1QXRBIMBCXneeJCthMlksmosAPBy80LniM7oEdkDvgpfi/p4KlncsjzyUfpgbf+1yH89H6+2fBVKuWWLvTO1mZhxcAZ8PvbBGz+/waLGFUxcXJxV/SUSCSIiImyUhojIdaxc6YWqVcUXX+3VKxtvvplg9fcs2cesg7Pw5JonoTaoS2w3seVEXJt4DVVUpRdFIqqIutXqhtQZqZjaemqpxaH1Jj2m/zQd1ZZUw4WkC44JSI/YskWLBw/EFwWbPt1swzREREREZEucWUlERERERERERA61bZv4iaJ9+/LFI5VMJpOiXTuNqL737rnj+nVxfYmocrmZcbPI483Dmzs4CRFR5eTmJsGAASrs2OGJ5GTgyy/VeOopDWQy17tfuHbNHXPmeKJGDTnatdNi2TI1MjOtX7RJ9Dej0Yzdu7Xo31+N8HAJpk71xNmzrrWLr4+PCSNHqnHsmA43byowd64XoqNdq1gZEZE9SaVSdKvZrcjPlv+x3MFpiMgWHjwQX/Q3KorXQUTW6tcvBMOHZ9tkrK1bfbF0abpNxiLLSKQyeHk477tQEATEZysQl+sDk0Ffpr4avQ49dk1Ct10Tka3PK7Gtm1SORe2n4trwbajua33RHK1Wj9s5/sjKK1tmW/NSsChUeaaQK7C051KoX1fj3Q7vwlvhbVE/tUGNeb/Og9dHXhi/Zzx0Rp2dk5K9abVaqNUlF0MpTVBQkNXFDomIXJGfnxxffaUr83tHb28TFiyIw/z58fDxEZCXl4ecnBw7paSyytZlo/EXjbHwZMmbNHjIPXDwhYP4vOfnDkpG5LqkUikWdV+EuClxeDzs8VLb38+5j6armmLgloG8Z3CwxYvFX5fXqlWA/v25oTIRERGRq+ITWCIiIiIiIiIichhBMGPvXnG7EUmlZgwa5G7jRFQRdekifkf3PXs4GYGIShefG1/k8SeqPuHgJERE5OMjxcsve+LIERUePDBh3jw1HnvM9a7pzGYJTp70wKRJnggPl+Dpp9XYvFkDnU78tStVbpcu6TF5shqRkUb07euB77/3REGB60wBkcnM6NRJg7Vr1UhOlmDNGk888YQSUqnE2dGIiJxiYdeiF5sl5CXgz5Q/HZyGiKwVHy++0G9kpLh3JET0D5lMim++8UH37rlWj9W/fxY6dUpFXFycDZKRpfw9nF9YKie/ALez/aHWWFbocf21vajydWccePBbqW3bhDZC8osHMLXpMGtjwiyYkKZ2x50sb+j14otS2oJcLodXQKRTM5BtSKVSzHlqDnJey8FnPT5DoCrQon4FpgKsPLsS3vO88fz255Gty7ZvULIba3/vyWQyBAcH2ygNEZHr6dbNFxMmZFvcvlWrfOzYcQs9ez5aBCw+Ph5Go/OvfSu7g3cOIvzTcFxKvVRiu8YhjZE8PRldanRxUDKi8iHcJxxnXj6Dbc9ug4+7T6ntd1zfgYD5Afj63NcOSEdHj+qs2jRs0iQD3+ETERERuTCJ2Wx2ve2SiYiIiIiIiIioQjp7tgDNm4sr7NWqlRanTnE3Iird/fs6VKsm7iV3z5652Lev9IkLRFS5KT9QosBU8MgxCSQQ3mVhFyIiV3Hlih5r1hiwdasb7t933UX3vr5GPPNMAV54QYpOnZSQyTjZkoqXkWHC2rU6rF8vw4UL4if22lPt2gUYNsyI0aMVqFrVzdlxiIhcStXFVRGXW3jhdfca3bH/hf1OSEREYi1enIlp0wLK3M/f34jMTHmp7S5cuICmTZtaPO758+fRpEmTMuchKu/y84146qkCnD3rKar/uHGpmDAhFZL/vxUPDAxEaGioDRNSSR7cu41ctWsUdg/ykSLYQw2JrHCx7TRNFnr98CrOpF4rdRyVXIlvOr+DIXW62SSXvkCHeE0wNNqC0hs7QFQVGXzD6jk7BtnJhksbMPvgbCTkJVjcRyqRokfNHljVZxUifCLsmI5sKTs7G/HxRW+AZKmoqCj4+vraKBERkWsqKBDQooUOly6pim2jUAiYMiUFw4ZlQFrMvi1KpRK1atWyU0oqzaR9k7Dsj2UltpFAgpltZ2J+1/kOSkVUfgmCgP/s/Q++Pvc1zCi9NEGdKnXww3M/oE5gHQekq5x699Zg377if1eVJDDQiPv3pVCpXGfzMSIiIiJ6FK/UiIiIiIiIiIjIYbZuFb97cZ8+JhsmoYosOlqJmBitqL4nT6pgMLCoDxEVzySYChUEAwCVm7jJNUREZB8NGiiwcKEn7t51w9GjOowZk4+AANfbiTsnR4716z3RrZsHoqMNmDIlHxcuuMZCT3INRqMZO3dq0LevGuHhEkyf7ulyBcF8fY0YPTofv/6qw/XrCrz7ricLghERFWFyq8lFHv859mcYBde7TiGi4iUniyvmGxjIn3UiW/LykmPvXjfUqlW2wlJSqRlvv52AiRP/KQgGAOnp6cjMzLRxSipOaKAHpMVVTnCwtFwBd3P8UKB79JnMx2e+Rfg3PSwqCPZM9SeRMfaQzQqC5aiB21n+LlMQzEulhE9IjLNjkB0NazQM8dPisW/oPtQOqG1RH8EsYN/tfYhaHIUnv30SN9Nv2jklWUsQBCQmJlo1hru7OwuCEVGl4O4uxZo1Ajw8ip5HFhOjxebNd/DCC8UXBAMAnU6HtLQ0O6Wk4qRr0lF3Wd1SC4J5unni2OhjLAhGZCGpVIpVfVbhzqt30CCoQantb2bcRN3ldTFy50i+B7GD69f12L9f/GbbL76oY0EwIiIiIhfHqzUiIiIiIiIiInKYH36Qi+47eLDChkmoonvySXE7i+fkyHH8eL6N0xBRRXIh+UKRx4M8gxwbhIiILCKVStChgxKrV3shKUmGbds06NdPXewEfmdKSFBg6VIvNG3qjgYNdHj//Xzcvy++sDKVbxcv6jFpUj4iIowYMECF3bs9ode7zhQPmcyMLl00WLdOjaQkKb75xgvt2ikhlYorkEFEVBlMbj0ZbtLCRRONghGfnvzUCYmISKyUFHHXPEFBXPhGZGshIQrs2SMgONiy+2d3dwGLFz/A4MFZRX6emJiIvLw8W0akYii8I1A9RAGZTObsKAAAra4Ad7L9kKWR4WbmfdRa2w+v/7YcRnPJG1cFuPvgSP+V2PX0Iijl1hfxNhn1iM/zRlyOOwTBNZ5feamUqBoZAomLFHEj++pZuyduTrqJk2NO4rGQxyzqY4YZxx8cR8zyGDT7shn+SPjDzilJrLS0NKu/W6KiomyUhojI9TVr5oW33sp+5JhEYsbo0WnYuPEuate2rIBrSkoK9Hq9HRJSUXbf2I3IRZG4kXGjxHYtwlsgZUYK2ldt76BkRBVHdf/quPzKZaztt7bUjTTNMGPdn+vgP98fmy9vdlDCsjGbzbicehmbL29GbHass+NYbOFCAwRB3LNqpVLA1KmutRkZERERERXGNzNEREREREREROQQN2/qcfWquBeIDRroULs2i4KR5bp1E78Qfd8+LswiouKdiDtR5PFo32gHJyEiorJSKCQYOFCFnTs9kZRkxsqVajz5pBZSqdnZ0Qq5elWJd97xQo0acrRvr8WKFWpkZZW8CJXKv/R0Ez75RI0mTXRo0kSBZcu8kJpauHiMM8XEFOC99/Jx/74JBw+q8MILnvDw4NQTIiJLyKVydKnRpcjPlv2xzMFpiMgaqanirn+CgnhNT2QPMTEqfP+9Dt7eJf+M+foa8fXX99CpU8lFv+7fvw+tVmvLiFQMjyq1UCPUA25urnHvazQaMeHoAtTdMAh3cuNLbCuBBGPr90PaS4fwVGRzm5xfo9XjdlYAsvNcp2CEj5cSVaMiIFV4OzsKOVibqDa48J8LuDL+CtpGtbW43/nk82j5dUvELIvBobuH7JjQMXRGcZuRuSJBEJCWlmbVGF5eXlAqWTiAiCqX2bP90KHDX/cQ4eF6fPPNPUyblgKFomzvF+/du2ePePQvZrMZL+1+CX0390WBqfiCbRJI8G6Hd3F67Gl4KjwdmJCo4hnx2AhkzcrC8w2fhwQlz9nN1+fj+e3Po8nKJniQ88BBCUtnNpsx46cZaPRFIzy//XnU/Kwmvjn/jbNjlSo93YRNmzxE9x8yRIuQEPEbfRMRERGRY3BmJhEREREREREROcR334mfvPz00yzSRGXTo4cX3N3F7XB77Ji7jdMQUUVyPul8kcfrBdZzcBIiIrKGr68M48Z54pdfPHD/vgkffqhG48aut8BLECQ4ccIDEyZ4IixMgmee0WDLFg10OnHXuuR6DAYztm/XoE8fDSIiJJg50xMXL7rWwjo/PyNefFGNkyd1uHpVgbff9kJEBCcIExGJsbDrwiKPx+fG43LKZQenISKx0tJkovqFhPA6nshe2rTxxvr1eXBzK/rnLDxcj3Xr7qJJE8uKfd29exd6vesUZqrI3P2roVbVYPh6Off93MWMi+i4ryM23dkEM0ou8BDtHYZLQzdjVee3IJVavxzDbDIiNd8Dd7O8YTAYrB7PFiQSCcIDZIiqWgNSN/GLjKn8qx9cHyfGnMD9KffRo2aPUhf6/+1mxk10Xd8V0UuiseXyFjuntL1bGbfQ/pv28PjQAxGLIrD7xm5nR7JafHzJxQ4tERkZaYMkRETli0wmxZo1cjz3XAa2bbuN5s01osYxGAxITEy0cTrn0hl1EMyu8awjOT8ZtT6rhdXnV5fYzsfdB7+/9DvmPDXHMcGIKgGFXIGNAzfi0vhLqBVQq9T2F1MuovrS6nhl7ysQBOd/h2y6vAmLTi16+M+CWcDYH8biXNI5J6Yq3dKlWmi14p5JSCRmzJrF9/1ERERE5QGLghERERERERERkUP88IO4RTIAMHiwa+wOTeWHl5ccLVqUfRKWXC7AzU2ATseFHkRUtBsZN4o8/nj44w5OQkREthIZKccbb/xViOnSJT2mTctHVJTrXQ8WFEjxww8qPPecCmFhAkaOVOPwYR0EoWw7kZNrOHeuABMm5CMiwohBg1TYs0cFvd51pnDI5WZ07arBhg0aJCVJ8fXXnmjTRgmp1LKFn0REVLQGwQ0Q5RNV5GczD850cBoiEistTdyCqeBgXrsT2VPfvn5YtiwHEsmjP2sxMVqsX38XNWpYfq9vNptx+/ZtmEwmW8ekIsg8/BFVrTYiq8hsUmSrLPSCHtNOTcPwo8ORWZBZYluZRIp3W7yM2FE/oEGVmrY5f0EB7uYGIDXX+Quh/6ZUKlAr3BMB4fUgcfD/H+S6qvpWxY/Df0T6zHQ8W/9ZyCSWzf94kPMAz21/DsELg7HijxV2TmkbBcYC9NnUByfiTgAAEvMS0W9zP/x460cnJxNPr9cjNzfXqjGqVKkCuZyFA4iocqpWzQOLFxvg7W3dNVtmZibUarWNUjmPwWTAmF1j4D/fHz7zfDDr4CyYBOfdO229shVVF1fF3ey7JbZrF9UOKTNS0CKihYOSEVUuDYIb4NakW1jeazmUspI3wRLMAr448wWqLKyCH2784KCEheXocjD9p+mFjgtmAS//8DKMgmtuaK3TCfjyS/HF1bt21aJ+fW6eTERERFQe8C0NERERERERERHZXVKSEWfOlPyStzjVqunRpInCxomoMnjqKcsWd9SoocPw4elYvjwWJ05cw5df3kdOTpad0xFReRWXE1fk8SeqPuHgJEREZA8NGyrw6adeiI11w5EjOowapYa/v+tN9MzOlmPdOk907qxEdLQB06bl488/Xa+QGT0qNdWIBQvy8dhjOjz+uDtWrPBCWpprFcGuV68A77+fj/v3TfjpJxWGDlVBqeTUEiIiW5rUclKRxw/dO+SyC0yI6FHPPpuJIUMy0KVLDh57TIOICD3c3UtfGBwe7oBwRJXcyy/74913/3nH06pVPtasuYfg4LL/jhUEAbdv34YguE6xporOL6weakX4QOXhmIWphxMP44kfnsDBhIOltm0UUAsPRu3FnNYv2+TcZsGMLLUEt7P8oNUW2GRMWwj0VaBGtWi4+1dzdhRyUQGqAHz37HfIfS0XY5uNhUJm2VyONE0aJuybAN+PffHhsQ9d+rt13cV1hTYJMsOMYTuG4W5WycVGXNWmTWnQ6cQX+5dKpQgJCbFhIiKi8ic0NBQKhfVzGO/fv+/SvwctMf2n6fj2wrfQGXVQG9RYeHIhph2Y5vAcgiBg2PZhGLxtMAyCodh2UkjxceeP8euYX6GUi5vDSkSWe6XFK8iYlYG+MX1LbZuty8Yzm59B669bIzU/1QHpHvXOkXeQnJ9c5Gdnk85i2ellDk5kmW++0Vo1z2DGDG4ERkRERFReSMxmM7ceIyIiIiIiIiIiu/rss3xMnuwlqu+ECflYtkxcX6rcfvstD23behc67udnRJs2+Q//hIYWXgji7u6O2rVrOyImEZUzqg9V0Bq1hY6b3jZBKmXBDCKiikivN2PXLi02bDDjwAEP6HSu+33fsKEOQ4YYMWKEO6pWda1iU5WVwWDG999rsWYNcPCgEgaD6/398fc3YtAgHcaMkaN1ay6GICKyN6NghMeHHkUWAJvfZT5mtZvlhFREZCmj0Yjr168XOm42A/n5UqSlyZGR4Yb0dDnS0uRIT//7jxvmzDGgWzf/Us9x4cIFNG3a1OJM58+fR5MmTcryr0FU4Y0bl4X4eAk++CABbm7WTZX38PBAzZo1bZSMLGE2GZGWdAep2cUv7LdGvj4fE3+biLPpZ0ttq5Aq8MZjb2BQzUEI9TEhwEMPidS6xbMmgx6J2kDk5LtOMTC5XI7IAAm8gmOcHYXKGaNgxJs/v4llfyyDxqCxuJ+H3APjm4/HvM7zoJC7ziZxRsGIusvq4k7WnSI/bxLaBCfHnISHm4eDk4l38WI+mjdXITDQiMmTU9CrVw7K+kozPDwcAQEB9glIRFSO6PV63Lx50+pxvL29ER0dbYNEjncn8w5ilsXAZDYV+mznkJ3oV7efQ3I8yHmA9t+0R1xu0Rv7/c1f6Y+jo46icUhjh+QiokedSTyDAVsGlPqzCgAyiQzT20zHvM7zHDIH70LyBTy+6nEI5uILNXq6eeLqhKuo6lvV7nksJQhm1K+vx40b4gqqP/aYDufOuUNq5bMNIiIiInIMFgUjIiIiIiIiIiK769xZg8OHVaL6Hjmiw1NPcVEylZ3JJCAszISsLBmaNtWgbdu/ioDVq6ezaJJrw4YN7R+SiMoVQRAge19W6LjKTQX1G2onJCIiIkfLzjZh82YdNm6U4sQJJQTBNSdKSqVmtG2rw9ChAp5/Xgk/v8K/v8i+zp4twNdfG7FtmzvS0+XOjlOIXG5G585ajBwJ9O+vhFLpesXKiIgqsp7/7Yn9d/YXOh7pE4m4qaUvjiEi58nPz0dsbKyovtHR0fD2LryRxf9iUTAi6xmNAm7dugWTyTZFpXx8fFC1qussAK0sNOm3EJ8hQG+wXXGwLXe2YP6f82EQSh+zZVBLfN72c6jk/7zn9la5I0KVBrlC3OJbtcaI+HxfGIyFC8Q6i4+XEhEhVSDzKL1wJVFxBEHAgpMLMP/EfGTrsi3u5yZ1w/DGw/FZz8/gpXD+ZnGbL2/G89ufL7HNyMdG4tu+30Iicc1nw/+rW7c8HDz4zzVoo0YazJyZjKZNLSvi5ubmhpgYFgwkIvpbZmYmEhMTrR4nKioKvr6+NkjkWKN3jcaaC2uK/MxP6YcL4y4g2s++Bc/WXVyHF3e/WOSmC//WuXpn7Bu6z6UKkBJVVvN/nY+3j7xt0b14kCoIWwZtQcfqHe2WRzALaPdNO5yKP1Vq2z51+mDXc7tc5vp/924t+vYVX6R4zRo1Ro70tGEiIiIiIrInFgUjIiIiIiIiIiK7ys42IThYAoOh7AuMg4IMSEqSQyZzjZepVP7s2hWLsDANVKrid/MqTvXq1eHpyZffRPSPyymX0Whlo0LHo3yi8GDqAyckIiIiZ4qLM2Dt2gJs2SLH5cuuW8hYqRTQrZsWw4dL0LevBxQK3l/ZS0qKEWvWFOC//5W57N+J+vV1GD7chFGj3BEW5nrFyoiIKovi7i8B4NL4S2gYzGL1RK4qIyMDSUlJovrWqVMHCkXpC1FZFIzINkwmE27cuAFBKPs7oqJUqVIFYWFhNhmLLGcqyEVycgqy8gqsGidFk4L/nPgPbufeLrWtp9wT81vMR4fwDkV+LpPJEOmTB28Py4uwCyYTUrXeSM81WdzH3qRSKcL8JPALjYHEkh2ViCz01dmv8PaRt5GiTrG4j0wiQ9+Yvviyz5cIVAXaMV3xzGYzmnzZBH+m/Flq25W9V2Jc83EOSGWd3buz0bevX5GfdeuWgylTkhEVVXJhBs6bICIq7O7du9BoLCuuWByJRIKYmBjI5eXnXc2tjFuot7weTObir2lbR7bGsVHH4CZzs/n5BUHAoK2DsPP6zhLbSSVSLO6+GK+2etXmGYhIvFxdLgZ+NxCH7h2yqP1T1Z7CziE74af0s3mW1edW46UfXrK4/bZnt2Fg/YE2zyHGk09qcfy4uKJgERF63LvnBjc3zhkhIiIiKi/49oaIiIiIiIiIiOzq++8LRBUEA4CePfUsCEZWadFCIaogGPDXzo5ERP92/MHxIo9X9a3q4CREROQKoqLc8NZbXrh0SYmLF/WYOjUfkZF6Z8cqRKeTYvduTwwerEJoqAmjR6tx5IgOgsD9w2xBrzdjyxYNevbUIDJSitde83S5gmBVqhgxblw+Tp8uwJUrSrz+uicLghEROVnDkIaI8I4o8rPZB2c7OA0RlYVeL/6avzwt9CWqCGQyGWrVqgWJxDbvGjMyMpCenm6TschyMncfRETXRlQVGWQyce+cP7v8Gbr92M2igmA9I3vi1z6/FlsQDPir4Nz9LBUS87wgGI2ljlmg1eFujr9LFQTzULqjZrgX/MPrsSAY2dzYx8cieUYytj27DdG+0Rb1MZlN2HF9B4IXBqPr+q64n33fzikL23drn0UFwQBg0o+T8Hv873ZOZB2jUcDrr7sX+/lPP/mib9/aWLQoBHl5RX8PqFQqFgQjIipCtWrVrL7PMJvNuH/f8b/vrPH+sfdLLAgGAKfiT+HNw2/a/Nx3Mu8gYnFEqQXBglRBuDz+MguCEbkgH6UPDo44iF9G/oIQz5BS2x+NPYqghUH44NgHNs2RocnA7ENlew8z6cdJyNHl2DSHGGfOFIguCAYAEyYYWBCMiIiIqJzhGxwiIiIiIiIiIrKrnTvFLzQfOJCPr8g6AQEBovuq1WobJiGiiuBc0rkij9cNrOvgJERE5GoaN1Zg0SIv3L/vhp9/1mHkSDX8/EpfFOpoWVlyrFnjiU6dlKhWzYBp0/Jx6ZLrFTIrD/74owDjxuUjPNyE555TYf9+FYxG17mHlcsF9OypwebNGiQmyrBypRdatCh+ESAREVlu1KhRkEgkVv9JmJ4AzEGhP/uG77PJ+GL+zJkzx1n/WYnKDYPBILqvlEVXiBxOoVCgRo0aNhsvOTkZOTnOXwRaGfmG1UOtSD94qiy/t72ZcxNd9nXBVze+goCSNxGq4l4FG5/aiAWtFkAutayIY2aeAXdy/KHVFhT5uVkwI1Mtw+1sP+h0RbdxhiBfN9SoXg3uftzwhOxrYP2BiJ0Si59H/Ix6gfUs6mOGGYfuHkK1pdXQ5us2uJxy2c4p//+8ZjM+PP6hxe0NggGDtg5CmjrNjqmss3x5Nq5eLblggMEgxbffBqF37zrYsiUA/1vnMDIy0o4JiYjKL6lUiqpVrb+W0mq15abw8I30G9hwaYNFbReeXIh9t/bZ7Nyrzq5CzLIYJOcnl9iud+3eSJyeiHpBll13EJFzPFntSSTPSMYbT7wBmURWYlujYMTbR95G5KJImxXlff3n15GhzShTn6T8JLzx8xs2Ob81FiwQPwfFx8eEV15xrc3NiIiIiKh0nGFARERERERERER2o9UK+PlncS8RfXxM6NGDLyDJOkqlUvTOjEajEYJQ8gIBIqpcrqdfL/J4s7BmDk5CRESuSiqVoFMnJdas8URysgxbtmjQp48G7u6ud10ZF6fA4sVeaNxYgcaNdfjww3wkJLheITNXkpxsxLx5ajRooEPLlu5YtcoLGRmWLRR2lIYNdfj4YzXi4wXs26fCkCEqKBTc7ZeIiIjIVoz/WynBQiwIRuQ8Hh4eiI6Ottl4cXFx3FjGSdy8w1GtWg2E+stLfP8nCALePvM2Bh4aiBRtSoljSiDBC7VewOFeh9GoSqMyZyoo0ONuti/S1QqY//Ve0ajX40GeLxJz5DCbxW+iZUtubm6oEaJASFQMJDI3Z8ehSqRT9U64OuEqzr58Fs3Dmlvc71TCKTRa2QiNvmiEXx/8aseEwLH7x/Bb/G9l6hOfG4/ntj8Ho+B6z1Rzcoz46CNvi9tnZcnxwQfhGDiwFo4f9wIA+Pr6QqFQ2CsiEVG55+3tDR8fH6vHSU5Ohl7v+hv4vHfsPQhmy993jtg5AvG58Vad0ygY0WtDL4zbMw4ms6nYdjKJDKueXoU9Q/dYXOCXiJzvw04fInlGMtpGti21bUJeAlqvbo3eG3pDo9eIPuep+FP46txXovp+ceYL/BZXtnsGW7p/34CdO0su+luSESO08PUtuQgbEREREbkezjIgIiIiIiIiIiK72bdPB7Va3EvEzp11XLhMNqFUii8ul52dbbsgRFTuPch9UOTx9lXbOzgJERGVB+7uEgwerMLu3SokJZmxfLka7dtrIZW6xkLQf7t0SYm33vJC1aoydOigxcqVauTkFD+5vjLR683YtEmDHj00iIqS4o03PHH1qmsVsA4MNGL8eDXOnCnApUtKzJ7tiZAQLnogIiIisgcWBSMqn7y9vREeHm6z8WJjY8vFwv2KSCKVITCiLmqEKuFeRLGa31N/xxN7nsD3978vdaxor2js7b4Xsx6bZdX3tNlsRnKOBLG5fjAUFCBfY8TtbH/kqQtEj2lrfl7uqBUdAlVQHWdHoUqsWVgz/PHyH7g96Taein4KElg2H+Ry6mU88e0TqPlZTfxw4we7ZJv36zxR/Q7fO4y3Dr9l4zTWmzMnD6mpZS/+d/euEq+8Ug3z5oUhIiLCDsmIiCqWyMhIyGTWF1i5d++eDdLYz7W0a9h0aVOZ+mRoMzB0+1DRxTOvpV1D2Kdh+PH2jyW2C/MKw82JNzH28bGizkNEzhWoCsSJF09g39B98Ff6l9p+3+19CFgQgM9+/6zM5zIKRryy9xUxMQEAZpjx8p6XYTAZRI9hjU8/LYDRKO7ZhVwuYPp0dxsnIiIiIiJH4CwDIiIiIiIi+j/27ju+qaoPA/iT0SRtuvduKW3ZKAqCCIgoAoIgICioKIoIKoICDlDBiSAiuFFEQUSQJTJERfbee7VQ6N67TZp13z94QaErvblpOp7v59OP9uaec37w+ia5957zHCIiu1mzRvxi94EDJSyEGjVbdmUsKCiQsBIiqu+yS7MrPN7ar3UtV0JERPWNl5cCzz+vxc6dzkhIMOG994rRqpXe0WWVY7HIsGOHM8aO1SIoSIaHHirBypWlMBjqXpCZve3bp8ezz5YgKMiM4cNd8OefLqIn2dqDk5MFffuW4NdfS5GaqsBXX2lx++2cyEtERERkb2azuPBcKRYJE5FtvL294efnJ0lfgiAgPj5edFBgfXU++zze3PImJv45EfuS9zm0FmefpmgaGQxv96vXwnqTHmN3jcWonaNQaCyssq1SpsTENhOxvtd6hLmGSVZTSWkZ4vI8cTlfW2f+25DL5QjzUSA0MgYKjaejyyECADT1boqtT21F6sRU9I/tD7nMuntul/Iuof+y/gj+JBiLji2SrJ7DqYfx58U/RbefuXsmVp9dLVk9trp4UYf58z1s6uOhhxQMtSUisoJcLkdkZKTN/RiNRqSlpdlekJ28u+NdCKj5s8KdiTvxzrZ3atxu3r55aP1160rn6FwzuPlgJL+cjCjvqBqPQUR1S5+YPsienI2X7nip2uuDMnMZxm8aj6h5UTiZcdLqMb4++DWOph+1qc5TmacwZ+8cm/oQo6jIgkWLnEW3f+ghHSIjax4aTERERESOx7u0RERERERERERkFyaTgE2bxC1IVqsteOgh8Q8wif7Ly6v6HcQqo9PpJKyEiOozi8WCUmNpueMapYaT4omIqEbCw53w5puuOHVKg2PHDJgwoRghIQZHl1WOTifH2rVaDBnigqAgM55+uhjbt+thsTTcgLDUVBPef78YLVqU4c47NViwQIvcXKWjy7pB27Z6zJpVjORkC9avv/q/j5OTzNFlERERETUaFotFVDulsm59ryRqrAICAuDhYVtQyjUWiwXx8fGi3xfqm2Ppx9Dp+074YOcHmLNvDrr+0BVrzq5xaE1ylSuCw2OwL+8PdFnfBbsydlXbpo1XG2zttxVPxT5ll5rq0n8PLs5qRId6wCOohaNLIapQoGsg1g5bi7xX8/BEmyeglFv3fSmtOA1PrX0KPrN88OneT23+/92MXTNsag8AT/32FM5nn7e5Hym8+qoBOp34Z5fduhVjyBBP6QoiImrgnJ2d4ePjY3M/OTk5KCmpe/PUTmeexvJTy0W3/2DnB9h8abNV5xpMBvRY1AMT/pwAi1D557tSrsTihxZj5SMrOV+HqAGRy+WY12cerky4gtsCb6v2/IT8BLT9pi2GrhgKg6nq+Rbpxel4c+ubktT5zvZ3cCnvkiR9Weurr3QoLBS/6cSkSdywgoiIiKi+4lUvERERERERERHZxbZteuTkiFvk0q2bHm5uvHVF0lAqlVAoxD3UtlgsMBjqXkADEdW+i3kXKzzu42z75E4iImq8brlFhU8/dUViohM2b9bjiSdK4OFhcnRZ5eTmKvHDD67o3l2DJk2MmDSpGKdPN4zvyXq9BT//XIqePUsREaHAW2+54tw5cQHX9uLnZ8QLLxTjyJEyHD+uweTJrvD3Z6gEERERkSMIgriQXIaCEdUdYWFh0Gq1kvS1b58KY8fmw2yuO0FQ9mCymPDUb08hX59/w7Gnf38a6cXpDqsruzQbd3x3B57d8irKzGVVnqtRaDDzjplY2mMpPFWetVOgAwV4OqFJZBOo3EMcXQpRtdw17lg8aDGK3ijCi3e8CI1CY1W7XF0uXvnrFXjM9MCbW96EyVLz+6rnss9h9dnVNW53syJDEQb9OgjFhmKb+7LFjh1FWLPGXXR7hULA7NkSFkRE1EgEBQXByclJdHujEfjsM3/06WOGyVS3ri3e2f4OBIjfMEiAgMdXP17tdcPx9OMI/CQQWy9vrfK8MPcwXHrpEp645QnRNRFR3RbqHorDzx3GiiEr4KZyq/b8FWdWwHOmJ74/8n2l50z6axIKywolqU9n0mHshrGi7xPXlMkk4MsvxX/G3HWXDh07WneNRURERER1D1dWEhERERERERGRXaxcaRbd9qGHaudhKTUeLi4uotvm5uZKWAkR1Vc7ruyo8Hioe2gtV0JERA2RXC7DvfdqsHixFunpcvzySyn69SuFWl23Jv4DQGKiCp984orWrVW49VY9ZswoQUpK3Qsyq4rFImDPHj1GjSpBUJAFjz/ugs2bXWAyyRxd2nUqlQX9+pVg5cpSpKQo8cUXrmjXrm6FlRERERE1NhaL+O/nKpVKwkqIyFYRERE2///yr7/cMXp0JL791htTp+ZLU1gdNf/QfBzPOF7ueL4+Hy/98ZIDKgI+3v0xgj4JwsHUg9Wee3fg3djZbyceCHugFipzLJXKCU0D1fALbQaZgoGUVL9olBp83udzlEwpwVvd3oKrytWqdsWGYnyw8wO4fuiKFza8AL1Jb/WYM3fPtCno5L/OZJ3BqN9H1Vo4wM3MZgsmTZJDEMTf43z00QJ06GDd3zsREd2oSZMmotpduqTC4483xXff+WPnTld88EG+tIXZ4ETGCaw4s8LmfjJKMvD46sdhtlQ8n/SjXR+h3fx2yNPnVdnPY20ew+XxlxHmEWZzTURU9z3c8mHkvpaLkbeOhAxVf8fVmXQYtW4UWnzZAvG58Te8tu3yNvx88mdJa/vr4l/45dQvkvZZmaVLS5GUJP4e1sSJnI9PREREVJ8xFIyIiIiIiIiIiCRnsQjYuFHcQ0iFQsDDD3OhM0nL09NTdNuioiLpCiGieutw2uEKjzfzaVbLlRARUUOn0cjx6KMuWLfOBWlpAr74ogSdO+sgk9W9yZrHj2swZYoWEREKdO9eim+/LUFRUd0LMrsmJcWE994rRsuWBtx1lwbff69Ffn7dWiB7yy16zJ5dgpQUAevWaTF4sAucnOpOWBkRERFRY2YwGES3Vav53IOoLpHL5YiOjoZCoRDV/uefvTFpUhiMxqtT8WfO9Ma8eQ1zk5mskiy8ufXNSl9fcWYF1p5bW2v1XMy9iJjPY/Dq5ldhslQdUu7u5I7vu36PL+76AhqlppYqdBwvNzWiI4Ph7Bvj6FKIbCKXy/HuPe+i4LUCzO01Fz7OPla1KzOX4atDX8FthhseW/UY8vX5VZ6fWJCIJSeWSFDxv5afXo65++ZK2qe1fvmlAAcPakW3d3MzY8aMhv9eSURkLyqVCkFBQVafLwjAL79445FHonHmjPP14zNmeOLAgWJ7lFhj72x/R7K+/kn4Bx/t+uiGY3qTHnd9fxfe+OeNKkM6VQoVVgxZgSWDlkAu53JoosZEKVdi4YCFiBsXhxa+Lao9/1z2OcR+HouRa0fCZDHBYDbg+Q3P26W2CZsmIFdn/3tBc+eKu3cFALGxZRgwwLn6E4mIiIiozuJVMBERERERERERSe7wYYPonYnuuEMPf/+6tSib6j83NzfRbcvKyiSshIjqq7NZZys83i6oXS1XQkREjYmXlwIvvKDF7t3OuHTJhHfeKUHLlnpHl1WO2SzD9u0ueO45LQICgEGDSrBqVSmMxson8BcWFsJsrnhHcCnpdBYsXlyC++4rRUSEAm+/7Yrz5+tWIIO/vxEvvliM48cNOHZMg4kTtfD1FT+5l4iIiIjsQ68X/12coWBEdY9cLkdMTAxkMuuDmC0WYM6cAHz0UTAE4cZ2kyZ5YfnyfImrdLzXN79ebbDO8xufR4G+wK51WCwWTNg0ATGfxyA+N77Kc2WQYeQtT+LM8P24w/8Ou9ZVFygUCoT7KhESEQO5SvwzUaK6Ri6XY3yn8ch+NRs/PfQTQtxCrGpnspiw9NRS+MzyQb+l/ZBamFrhebP3zK42XFCMyX9Pxo4rOyTvtypmsxktWqRiwoR0aLXi7rmOG1eIsDCGghER2cLHxwfOztWHr2RmKjF2bAQ+/DAYev2Ny3vLyuQYOVIBnc7+z9Cqciz9GFafXS1pn29vexs7r+wEABxIPoCA2QHYk7ynyjZRXlG4MuEKHm75sKS1EFH90tS7Kc68cAYL+y+Es7Lq91kBAn489iO8Z3pj5G8jcTa74jl/tsoqzcKrf79ql76v2bJFj6NHxX9HHzfOBLmcG5ARERER1WcMBSMiIiIiIiIiIsmtWGEU3XbAAIuElRBdJZfLoVKJC6oDgJKSEgmrIaL66ErBlQqP3xV2Vy1XQkREjVVkpBPefluL06c1OHKkDOPHFyM4WPy1l73odHKsWaPFww+7ICjIjGeeKcaOHXpYLMJN5+kQFxeH/Px8CELl4WH/JQgCMjIyYLFUfd1osQjYvVuPp58uRlCQBU8+qcU//7jAbK47E17Vagv69y/B6tWlSElR4vPPXdG2rfhrFiIiIiKyP4PBILotQ8GI6ialUommTZtada7RKMPUqaH44Qe/Cl83mWQYOdIN27YVSVmiQ+1P3o+FxxZWe15qUSre+OcNu9YRPCcY8/bPg4Cq7yGEe4TjxJgTWPjQjwiJbI5IPyWUyoa7IZXWRYPoUE+4BzZ3dClEdvX4LY8j+ZVkbBi+AdHe0Va1sQgWbIjbgNBPQ3H3j3cjLifu+muZJZn47sh3dqnVLJgxdMVQpBZVHEZmD8nJyVCrBTzzTDY2bLiAoUNzIJdbd88VAEJDDZgyhaGCRERSiIyMrDJ4+O+/3TFoUDR27678fffMGWdMnFhoj/KsNn3bdMn7tAgWDFs1DK/+9So6fd8JhWVV/xlHtRuFiy9dRKBroOS1EFH9NLLdSOS/lo8hLYdUe26RoQhLTy21az3fH/3eroHAH38sfj69r68JzzxTfVAlEREREdVtDAUjIiIiIiIiIiLJrVvnJLrtkCHi2xJVxdXVVXTb3NxcCSshovooqzSrwuPtgtrVciVERERAu3ZqzJ3risREJf78U4fHHy+Bu7tjdwyvSE6OEgsXuuLuuzVo2tSIV18txpkzZQAAZ2dnmEwmJCcnIyEhAXq9vsq+LBYLUlJSkJWVhbKysgrPSUw04p13StC8uQFdumjwww+uKCioWwt/27XTY86cEqSkCFi7VouBA12gVNadsDIiIiIiqpwtoWByOafrEtVVGo0GTZo0qfKckhI5XnghAuvXe1Z5nk6nwODBzjh5sv5vNmO2mPHCxhesPv/rQ19jV+IuSWswWUwYumIoOn3fCRklGVWeq5Ap8Fa3t3BlwhW0Dmh9/bhrQHNEh/nAXauRtDZHk8lkCPRSIjKyCZzcghxdDlGteSDmAcSNi8Pup3ejbUBbq9oIELDjyg7EfhGL2+ffjkOphzBv3zzoTVXfj7RFRkkGhqwYAoNZ/PdHa5WVlaGo6N9ASh8fM956Kw2rVsXjrrusC6qcNq0EWm3duo9KRFRfKRQKhIaGljteXCzH1KkheOWVcKueXc2f74mNGwvsUWK1Dqcextrza+3Sd0pRCj7e+3GVYb9qhRrrHl2H7/rbJ8CTiOo3lVKFX4f8ipNjTiLKK8rR5WD0utEoM1U8f8EWZ86U4c8/xYd6PfusHs7OvCdNREREVN/xGx0REREREREREUnq/HkDzp0Tt+N927Z6REWpJK6I6Cpvb2/RbUtK6v/iDSKyTYmh/PuAWqGGUs4J8kRE5DgKhQz33++Mn37SIj1dhqVLS/HAA6VQqcTvGGsvly+r8PHHrmjVSo1bb9Xjyy9lyM1VAABKS0sRHx+PtLQ0mM3lw83MZjMSExORn58PANDpdNdfKy21YNGiEvToUYqoKCWmT9ciLk7cNam9BAYaMX58MU6cMODIEQ1eflkLHx+Fo8siIiIiohoymUyi2slkDIElquu0Wm2FC/cBIDtbiZEjm2DvXus2n8nNVaJfPyWSkuwXNlMbFhxZgMNph2vU5tl1z0oWsvP7+d/hPdMbK86sqPbcNv5tkDghEe/e826Fryu1fgiLiEKwt6JBvCer1So0DdLAN6Q5ZHLeX6DGqXNYZxwfcxynxp5C59DOVrc7kn4EHb7rgI92f2TH6q7ak7QHk/+abPdxkpKSKjweHV2Gb765gq+/voymTSt/b77ttlKMHOlhr/KIiBolDw8PuLm5Xf/98GEXPPxwNH7/3cvqPiwWGUaPdkZ2tv0DJm82ffv0Wh/zmuY+zZH6Sir6NevnsBqIqH5oHdAaF1+6iHm950GtcNz8gPM55/HRLumvLz7+2ARBEHcPw9nZggkTGlY4OhEREVFjxZUqREREREREREQkqV9/NQAQF+zVt6+4BTVE1tBoNJDJZBCEyncarIzJZILFYoFczn0WiBqjK/lXKtyl1MvZ+gmbRERE9ubsLMewYS4YNgzIzTXj559L8MsvcuzbpxE9WdRejh/X4PhxDRSK5ujcuRh9++bjnnsKAeSgoKAAgYGB8PDwgEwmg9FoxJUrV6DX/7twrbRUh9On9fj+ezPWrNGgsFDruD9MJdRqC/r00WHkSDkeeEADpdLJ0SUREZEDbd26Fd27d6/2vJ6Le2JzwuZyxyM8InB5wuUq257IOIFvD3+LJSeWoKCswKq6nOROKHuzrEGEYxDVBqPRKKod7ysT1Q+enp4wGo3IyMi4fuzyZRXGjIlESkrNnn0mJqrRt28pdu40wcOj/k3XzynNwZQtU2rc7lz2OXy488NKw7msUagvxIBlA7DtyrZqz1UpVPi8z+cYffvoas+VyeXwDm4BrctlJGcbodOXia7RkbzdVQgMDIFcVffuhRA5Qiv/Vtj9zG4kFiTi2d+fxd+X/q7wmd7NLELtbKrw2YHP0DG0I4a3GW6X/ouKim64b1qRLl2K0alTPFav9sKXXwYgN/fGz6WZM41QKFzsUh8RUWMWFhaGEyfO4Ysv/LBwoa+oZ3UpKSo891wBVq2qvU1WD6QcwPoL62ttvP968Y4X8Xmfzx0yNhHVXy91fAmj2o3C0JVDsSFug0Nq+HDXh3ik9SNo7ttckv4yM01YvtxZdPtHHy2Fv7914fZEREREVLdxpgEREREREREREUnq99/F70Y8dCgXSZN9aTTid7/Kz8+XrhAiqld2XtlZ4fEQt5BaroSIiMg63t4KjBunxZ49zrh40YTp00vQvHndW+xqNsuwc6cbXn89DN27N8cbb4Ri2zYNLl9ORkJCAgoLC3Hp0qXrC9syM5VYuNAXd9/tg27dNFi0SIvCQvHXoPZw++16zJ1bgtRUAWvWaNG/vzOUSgatEBGRdWb2nFnh8SsFV3Ah50K54yWGEvxw9Ad0WtAJt3xzC748+KXVgWAA4Kf1YyAYUQ2YzWZR7RgKRlR/+Pn5wcvr6mYQx48744knomocCHbNyZMuGDBAB4OhdoJnpDR1y1Tk6nJFtf1o10c4lXlKVNtvD38L/9n+VgWCdY/ojqxJWVYFgv2X2jMSUU0i4OdRe8EKUlAqFYjwUyI4PJaBYEQVCPcIx59P/InMyZl4uOXDUMjqzj3DUb+PwomME3bpOyUlxarzlEpg6NA8rF9/ASNHZsHJ6epnU//+BbjvPg+71EZE1NjJ5XK4uTXBr79627R5z+rVHli4ME/Cyqo2fdv0WhvrGmelM/5+4m8GghGRaC4qF6wfvh4HRh2Am8qt1sc3mA0Ys36MqA2LKzJ3rh46nbh7yjKZgEmTOBefiIiIqKHgTAMiIiIiIiIiIpJMSooJhw+LC11q0sSAW29VS1wR0Y3c3d1Fty0osH5BJRE1LAdTD1Z4PNYntpYrISIiqrkmTZwwbZoWZ8+qcehQGV58sRjBwUZHl1WOTqfA+vWeGDs2Evfe2xzTprlj48YsFBWZsGmTO8aOjUDPns3w6aeBuHRJfNivPQQFGTFhQjFOnTLg0CENxo/Xwtu77iw8JCKi+uO2oNsQ5BpU4WuT/558/d+Ppx/HCxteQPCcYDz9+9PYn7Jf1Hh+Ln6i2hE1VhaLuGAfpVIpcSVEZE8hISHIyfHEqFFNkJ9v2/9/t293w/DhRTCb608w2OHUw/j28Lei2xstRoz6fRTMFuuDFFMKU9D267Z4bv1zKDNXHWrupnLD2kfXYutTW+GuEffcT6ZQISAsFk38neBUD96j3bQaRId6wy2guaNLIarzfF18sWLIChS8XoBn2j0DlcLxAYA6kw6Dfx2MfH2+pP1mZWXBZDLVqI2bmwWvvJKB33+PQ9+++Zg1i2EBRET21LSpM2b2vNeuAAEAAElEQVTNKrS5n0mT3JCQoJOgoqrtTdqLP+L/sPs4/+WudkfaK2m4L+q+Wh2XiBomL2cvGMwGh4y9/cp2/HDsB5v70eks+O478fMhevXSoWVLzsUnIiIiaigYCkZERERERERERJJZsaJM9M52ffs65kEsNS7XdncXQ6ez/+QqIqqbzmSdqfD4rYG31m4hRERENrr9djU+/9wViYlKbNqkw2OPlcDd3fpFurUlN1eJJUt8MWxYU9xxR0tMnhyOXbvcYLGI30ldahqNBQMHlmDdOh2SkpT49FNXtGrl+EWGRERU/41pP6bC43/E/YHvDn+Hjgs64tb5t+KrQ1+hsMy2RYX+Wn+b2hM1NgwFI2o8unQJxtChti/eB4BVqzwwfXquJH3Zm0Ww4IWNL0CAYFM/+1P246uDX1l17ttb30bE3AiczDxZ7bmPtHoEua/lon+z/jbVd43WvxmiIwLg4Vq3wsevkclkCPJWIjwiCkrXAEeXQ1SvaFVaLOi/AMVvFGNS50lwcXJxaD3xufEYsWYELII0IZEWiwWZmZmi24eGGvHZZ7lo1syxfy9ERI3BmDFeePBB264t8vKUePJJs93Dhqdvn27X/itSWFaIxScW1/q4RNTwCIKAFze+WG3YuD1N+msSMkvEf08HgO+/1yE7W/z95MmTGRtBRERE1JDw2x0REREREREREUlm7VrxC7SHDOGiGLI/pVIJhUIhqq3FYoHBwPA6osbocsHlCo93Dutcu4UQERFJRKGQoVcvZyxZokV6ugxLlpSiT59SODnZdzGBGGKDp+2lQwcdPvusBKmpAlav1qJfP2coFHWrRiIiqt9ev+t1KGTl718ZLUaMXj8aB1IOSDaWn9ZPsr6IqHIqFcNjieobhUKOBQvc0auX7cFgbduW4v77s5CUlCRBZfb147EfsT9lvyR9vfHPG0gsSKz09VMZpxD+aTje2/EezELVgeX+Wn/se2Yflj28DEq5tM+UFc5eCA2PQoiPAnJ53VlaoVGr0DTYBT7BzSGrQ3UR1TdOCid83PNjFL1ehIdbPOzQWtZdWIePdn0kSV+pqakQBNsCHMPCwiSphYiIqrdggQaBgbbNOdu50xW//54lUUXl7U7cjb8u/mW3/qsy6e9JOJx62CFjE1HDsfrsavx58U+H1pCnz8Mrf74iur3FIuDzz8Xf92jXTo8ePepm8DkRERERicMnREREREREREREJIm8PDN27xb3MDEgwIi77lJLXBFRxVxcarbbbUmJHNu3u2HGjCCsW1dsp6qIqC6rbAe/O4LvqOVKiIiIpOfsLMdjj7lg40YXpKUJmDevBJ066SCT2baorCEJDjbi5ZeLcfp0GQ4ccMa4cVp4eYkLGyYiIqqOSqlCl/AutTKWv4t/rYxD1BAYjUbRbZ2cnCSshIhqi5OTHCtXuqBDhxLRfdx9dyEWLEiAl5cZBQUFSE9Pl7BCaeXp8vD65tcl66/EWIKxG8aWC62xWCwY9fsotP2mLZIKqw5Kk0GGCR0nIO2VNHQM7ShZbeXGkcvhFdQC0SFucHF2/DNrXw8VoiLDoPFq4uhSiBoOGXAq65Sjq8CbW960OXDFaDQiPz/fpj48PT35HZWIqBb5+6vw9delop+9BQQYsWBBAmJislBUVCRxdVdN2zbNLv1aw2A24JGVj6CwzPZQZiJqnIoNxZjw5wRHlwEA+Pnkz/j74t+i2q5dq8OFC+LvS0yYUHXoOhERERHVPwwFIyIiIiIiIiIiSaxerYfRKO52U58+BigUMokrIqqYl5dXla+bzcCpU8749ls/PPVUE3Tp0gIvvhiBpUt9sGYNb6kSNUbFhvKBgCqFCiqlygHVEBER2Y+PjwIvvaTF3r3OiI834a23itG8eZmjy3IIZ2cLHn64BBs26JCYqMScOa5o2dLxC4OJiKhhO5J2BGPWj8HB1IO1Mp6/lqFgRNbKy9MjKckJOl3Nn2Wo1fweSVRfuboqsX69E6Kj9TVuO3hwLubOTYSz878L/7Ozs5GbmytliZJ5e+vbyCrNkrTPjXEbsezUsuu/b0nYAt+PffH90e8hoOpAhBjvGMSNi8OnvT+FXF47z+dUHmFoEhkJf0/HBOUolUpE+jshMCwWcidnh9RA1FD9du43nMs+5+gyIEDA8FXDcSX/iug+kpKqDlSsjkwmQ3BwsE19EBFRzT30kCeefjq/xu369MnHqlVx6NjxalhxYmIiLBaLpLXtuLID/yT8I2mfNXUx7yJGrxtdLlSYiMga725/F8mFyY4u47oxG8ag1Fha43affCJ+Hn1YmAHDh9dsw2QiIiIiqvuUji6AiIiIiIiIiIgaht9+E9928GAGLVHtcXV1LXcsLc0Je/e6Ys8eV+zbp0VBQcW3Tnft4gR8osYmvTgdFqH8hEpPjWftF0NERFSLoqKc8O67Tnj3XeDQoTIsWmTEypVqpKc7ZmFsbenYUYfHH7fg8cc18PTUOrocIiJqBIrKivDLqV/w7eFvcTjtcK2O7af1q9XxiOqzAwcsePDBZgAAV1czfH1N//8xXv93P78bj3l6miGXMxSMqL7z91dh40YdunY1IiPDumvi55/PwJgxWZBVsJYzNTUVTk5OcHNzk7hS8Y6nH8dXh76yS98vbXoJXSO6Ysz6MdgQt6Ha85VyJT7o8QFevetVu9RTHZnCCf6hzeCqiUNSjgVGo7FWxnV31SDY3xtKF+9aGY+oMREEAR/u/NDRZVyXo8vB4F8HY9fTu6BRamrUtqSkBKWlNQ8X+C9/f/9aC1skIqIbzZvnhh079IiLq/79383NjDffTMUDDxTccFwQBFy+fBlRUVGS1TVt2zTJ+rLF8tPL0aNJD4y+fbSjSyGieuR05ml8uu9TR5dxg0t5l/De9vcw474ZVrfZv1+P3bvFz09+4QUjlNzglIiIiKjBYSgYERERERERERHZrLTUgi1bajZZ8Rp3dzPuv19cWyIx5HI5jEY19u51wp49V4PAEhKs+2/wyhU1Tp8uRatW3FGLqLHYcWVHhceD3biDNhERNR7t26vRvr0ac+cK+PtvHRYvtmD9eg2KihSOLk0SISEGPPqoAaNGqdC8OYOAiYiodhxOPYxvD3+LpaeWothQ7JAa/LX+DhmXqD5KTf03NL64WIHiYgUuX6467EupFBAaasClSw07WJeoMYiJccZvvxXh/vvlVV4Ly+UC3n47FYMH51XZ35UrV9C0aVM4Ozv+GlQQBLz4x4sVbo4hhezSbETOjYRZMFd7bofgDtj42Eb4uvjapZaacPGNQbRbAdLSM5FfVGa3ceRyOYI8ZfAMjIKMIT1EdrH50uZaD2CuzuG0wxi3cRy+6/9djdolJyfbNK5SqYSfH8OhiYgcRatV4scfdejeXQWjsfLvfh07FuP991MQGFhxQG1paSlyc3Ph7W17oOzWhK3Ydnmbzf1IZfym8egU2gltA9o6uhQiqgcEQcDzG5+HyWJydCnlzN47G8PbDEebgDbWnT+7+vsmlXF3N+P55x1/j4mIiIiIpMcnR0REREREREREZLMNG/QoLRW3GPz++/VQqSrYJpvIjvbt88ELL0Ti5599rQ4Eu2bdOr2dqiKiuuhgysEKj8d4x9RyJURERI6nUMjQu7czli7VIj1dhp9+KkWvXqVwcrLPwmF7cna2YMiQEvzxhw5Xrjhh9mxXNG/OnXOJiMi+CssKMf/QfNz+7e1o/117fHvkW4cFggGAnwsXgxNZKy1NqHEbk0kGsxmQyfgMhKgh6NTJDT//XASVquJrYI3Ggs8+S6w2EOyaS5cuwWAwSFmiKEtOLMGuxF12HaO6QDBnpTOWDFqCA88eqBOBYNco1B4IjYhBmI8CcjsEdjlr1Gga7Aqv4BYMBCOyow93fejoEiq04OgCLDiywOrz8/LyYDRWHA5jrZCQEJvaExGR7Tp3dsOrr+ZX+JpKZcHkyWn49tvLlQaCXZOammrz54IgCJi2bZpNfUhNb9LjkZWPOPSeKRHVHz+f/LnSDT8dzWQxYfT60VaFsF++bMRvv4nfqPjJJ3Vwc+N9BSIiIqKGiN/yiIiIiIiIiIjIZqtX13wxzDUDB3IxDNW+Bx90gUwm7r/brVuVEldDRHXZqcxTFR6/JeCWWq6EiIiobnFxkePxx12waZMLUlMFfPppCTp21Dm6rGrdeacOX35ZgrQ0Ab/+qkXv3s5QKHhdSkRE9nUu6xye/f1ZBH8SjDEbxuBI2hFHlwQA8Nf6O7oEonojPV3cd0Zf36qDcIiofnnwQU98+WVBuWdMnp4mfP99Au6+u8jqvgRBQHx8PMxmx71PFJYVYvLfkx02PgA8EP0Acl/LxWNtHnNoHVXxCGqB6DAPaJ3VkvXp5+GEqCYRUHuGS9YnEZW3N2kvtl3e5ugyKvXixhdxKPVQtedZLBakpaXZNJZGo4Gbm5tNfRARkTSmT/fEHXeU3HAsNlaHZcsuYsSIHFibF5uQkGBTHVsStmBn4k6b+rCHc9nn8OLGFx1dBhHVcfn6fEz8a6Kjy6jSvuR9mH9ofrXnffJJGUwmcfeflUoLJk2S7n4FEREREdUtDAUjIiIiIiIiIiKbmEwC/vpL3ANFjcaC/v01EldEVL3QUA1atNCLart3rxYGQ/W7dxFRw5CQX/Ekyk5hnWq5EiIiorrL11eBCRO02LfPGXFxBrz5ZjFiY8scXdZ1YWEGvPpqMc6fN2DPHmc8/7wWHh4KR5dFRESNyNgNY7Hg6AKUGEuqP7kW+Wn9HF0CUb2RmSluuq2/v0niSojI0UaN8sL06XnXfw8JMeCnny6hbduaB2VbLBbEx8fDYnHMc6fp26YjoyTDIWN7abyw+YnN2PDYBmiUdf95scotBJGRTRDgqYRMJj5c3MlJiSb+KgSENYNMoZKwQiKqyIxdMxxdQpXKzGUY/OtgZJdmV3leRkaGzZ8VYWFhNrUnIiLpKJVyLFokg5ubGTKZgJEjs/DLL5cQE1OzZ2sGgwHp6emiahAEAW9ve1tU29qw6PgiLDq2yNFlEFEd9taWt5BZkunoMqr1+j+vI7UotdLXCwrMWLzYWXT/AwfqEB7uJLo9EREREdVtDAUjIiIiIiIiIiKb/POPHrm5SlFt775bD1dX3qIix+jWTVwoWFGRAlu3Wr/TOxHVb5UtiOoc2rmWKyEiIqofoqNVeO89V5w/r8aBA2V4/vliBAQYHVKLVmvGd99dwu7dmZgxwwWxsVxsS0REdI1aoYabys3RZRDVG5mZ4kJl/fy4wQRRQ/T229547rk8tGihw5IllxAZaRDdl9FoREJCxZtT2NOpzFP4bP9ntT4uAIy8dSSyJ2fj3qh7HTK+WDKFEn6hzREVoIZKVfMFtx6uGkSHB0DrH2uH6ojoZiczTmLdhXWOLqNaiQWJGL5qOMwWc4Wvm0wm5OTk2DSGm5sb1Gpxm/0REZF9NG/ugrlzC/D99wl45ZUMqFSCqH6ys7Oh19d8Dtzfl/7GnqQ9osasLc9vfB5ns846ugwiqoOOpB3BV4e+cnQZViksK8T4TeMrff2rr/QoLBS/odmrr4qbv09ERERE9QNXXBIRERERERERkU1Wrap4YqI1HnpI3GQWIin06iV+F+9Nm7iQi6ixKCorHwLoJHeCs5P4HfqIiIgaiw4d1PjyS1ckJirwyCP5tT7+7NlJ6NSpFAUF+Th37hzy82u/BiIiorrKT+sHmUz8/TGixiY7W9zCrIAA3ksmaqi+/NIDP/+cBF9fk8196XQ6XLlyRYKqrCMIAsb9MQ5mQfxzXrFifWIxv998yOX1dxmDs280opuEIdBLCYWi+s8HjUaNSH8nhEVGQ+HsVQsVEhEAfLT7I0eXYLW/L/2NadumVfhaSkqKzf2Hhoba3AcREUnvqac80bmz7RvrJCQkwGKx/v6DIAh4e+vbNo9rb6XGUgxdORQ6o87RpRBRHWIRLBi7YSwsQv2577ryzEqsv7C+3HGjUcCXX9Y8dPyarl11aN+e4b9EREREDVn9fZpGREREREREREQOZ7EI2LBB3ANFpVLAww9rJK6IyHo9e7rC2VncYoft2/kgnagxyC3NrXBRlIfGwwHVEBER1U8WiwXPP1+A5cs9a3XcHj0K0aVL8Q11JCcnIy4uDgaDoVZrISIiqov8tf6OLoGoXsnKUopqFxgocSFEVGcoFHK0bdvUqlAoaxQVFSEtLU2Svqqz/PRybLu8rVbGutmFnAv4ZO8nDhlbSnInF/iGNEdsZCBCvBXwdFNDpXKCk5MSTk5KOGvU8PVQIcJPiaZRUXD1b+bokokalYu5F7Hs1DJHl1EjH+z8AL+f//2GY3q9HkVF5TcwqglfX1/JPquIiEhacrkcTZo0sbkfs9lcoxDJTfGbsD9lv83j1oZTmacwYdMER5dBRHXIgiMLcCDlgKPLqLEXNr6AYkPxDceWLi1FSopKdJ+TJtlaFRERERHVdQwFIyIiIiIiIiIi0fbvL0Nqqrhdijp21MPXlxMPyXG0WiXuuKNUVNsTJ5yRlcUgAaKGbseVHRUeD3INquVKiIiI6ieTyYQLFy6gadOSWh1Xrbbg1VcrXkhdVlaGCxcuIDk5uUa7phMRETU0DAUjsp7RaEFenrhQsJAQTtMlasgUCgWaNm0KmUwmSX85OTnIysqSpK/KFBuKMfGviXYdozrTt01HXE6cQ2uQisLZC17BLRAaEYPY2GZo1qw5mjVrjqbRMQgMi4VbQHPI5HwmTlTbZu2eBYtQ/+79PbHmiRveH5OSkmzqTy6Xw9+f135ERHWZSqVCQECAzf0UFBRYFSQpCAKmbZtm83i16dsj39a7sE8iso+skiy8vvl1R5chSmJBIt7e+vb13y0WAZ9+Kv5+QfPmZejXjxtzExERETV0nG1ARERERERERESirVhhEt12wACzhJUQiXPPPUZR7cxmGdavr91gAyKqfZXtjBrtHV3LlRAREdU/BoMBFy5cgMlkwoMP5mPChPRaG/vZZ7MQElL1d/38/HycO3cO+fn5tVMUERFRHePn4ufoEojqjaSkMlgs4gJ/QkIYBEPU0KlUKkRFRUnWX0ZGBgoKCiTr72bvbX8PqUWpduvfGmXmMjy77tl6GdhDRHVfalEqfjz+o6PLEKWwrBCDfx2MEkMJDh0qxsqVzrBlX4Pg4GDI5Vw2RkRU1/n5+UGjsT3YJTExsdoNcTbEbcDB1IM2j1XbRq8bjfjceEeXQUQO9vrm15Gnz3N0GaLN2z8Ph1MPAwD++UeP48fFv/ePG2eCXC5NSD0RERER1V28u0tERERERERERKJt2OAkuu2QIWoJKyESp18/8f8dbt7MB+pEDd2pzFMVHm/r37aWKyEiIqpfSktLERcXd8PCg6efzsawYTl2HzssrAxPPZVt1bkWiwXJycmIi4uDwWCwc2VERER1i7/W39ElENUbycniN0gJC1NKWAkR1VXOzs6IiIiQrL+kpCSUlEi/Oc257HOYs2+O5P2Ksf3Kdiw8utDRZRBRAzRn7xwYzPX3Xt/JzJMYvX40Jk6yYMqUUAwb1hSHDrnUuB+VSgVPT0/pCyQiIruIjIyETGbbXDRBEHDlypUqX5+2bZpNYzhKkaEIz6571tFlEJEDncw4iYXH6vd9BItgwej1o2GymDB7tiC6H39/I55+2lnCyoiIiIiormIoGBERERERERERiXLmTBkuXBAXqHTLLXpERooPFCOSyq23OiMwUNyE4F27+FCdqKG7lHepwuMdQzvWciVERET1R0FBAS5dugRBuHESq0wGvPZaGnr2LLDr+K+/nga1umYTaMvKynDhwgUkJydXu4M6ERFRQ+Hn4ufoEojqjZQUs6h2crmA0FBukELUWLi5uSE4OFiy/i5fvoyysjLJ+hMEAeP+GAeTRXzQodQm/TUJaUVpji6DiBqQnNIcfHPoG0eXYbOlJ5dih+ZtAMCZM84YOTIKL78chqQkldV9hIaG2qs8IiKyA6VSiZCQEJv7KSkpQW5uboWv/X7+dxxJO2LzGI6y7fI2JOQlOLoMInKQ38795ugSJHEk7Qimrv0Uf/8tfv7x6NFl0GgYD0FERETUGPBbHxERERERERERibJ8uVF02wcfrDuTzalxUyjk6NJFZ/X5fn5G9O+fh48+SsLixZdQXFxsx+qIyNHSS9IrPH5X2F21XAkREVH9kJOTg6SkpEpfVyiAGTOScdttJXYZ/557CtGtm/jv6Pn5+Th79izy8/OlK4qIiKiO8tf6O7oEonojJUVccKyXlwlOTpymS9SYeHt7w89PmuBNQRBw8eJFmEzSPFddfXY1Nl/aLElfUikoK8C4P8Y5ugwiakC+OPAFSoz2ufdY6zrNA57uDPifBABs3uyB/v2jMXt2IAoLq/6OqdVq4eLiUhtVEhGRhDw9PeHq6mpzP6mpqeWuIyyCBdO2TbO5b0dTKawPyCSihsVd7e7oEiQz+9hbENwrn1dRFWdnC8aP54bGRERERI0FZxsQEREREREREZEo69YpRbd95JG6OTlDEAQUlRXhcv5lHE49jL8u/oVfTv6Cbw59g03xm6AzWh8eRfXHffdVvqBLrbbgrruKMGlSGlavjsM//5zHBx+koG/fAvj4mJGXl1eLlRJRbSvQF5Q7ppQr4a5pOJOMiIiIpJKWloa0tLRqz1OrBXz22RVER+slHV+ttuC116ofvzqCICA5ORlxcXEoKyuToDIiIqK6yU8rTWAJUWOQkSGunZ8fN0ghaowCAgLg4eEhSV8WiwXx8fGwWMSFE15TaizFy3++LElNUlt1dhXWnF3j6DKIqAEoNhRj3v55ji5DOjIA4XuB59sCw/oDoftgMsmxaJEv+vaNxdKl3jBWspdfWFhYrZZKRETSCQ8Ph1xu+5LfhISEG37/7dxvOJ5x3OZ+HalvTF8EuwU7ugwicpCHWz7cYN4DLPIy4JmOgKLmcyaGDy+Fr6/CDlURERERUV0kfuUmERERERERERE1WomJRhw9qin/gnsy4HsOyGoBFIVU2DY6ugytW6vtXCFgNBuRo8tBTmkOcnW51//9hn/+599zdbnIKc2B0VLJrEkA7YPb44/H/oCvi6/d66fa8+CDLhg7VoAgyAAAzZvrcOedxbjzzmLcdlsp1Gqh0rYlJQ1kl2EiKqdQXwizYC53vCHtOkhERCSVxMREFBYWWn2+h4cFX399BY89FoXMTCdJanjmmSyEhFR+PVdTZWVliIuLg4eHB0JCQiRZgEFERFSX+Gv9HV0CUb3x7LM5GDgwHdnZSmRnO/3/n//+ZGX9eyw//99pub6+5e8tEVHjEBYWBpPJJMlzpKQkGRYsyMXMmd5QKMRdm36480MkFSbZXIu9vLDxBdzT5B54ajwdXQoR1WN/xv+JPH0D3dSr2bqrP0VBwD8fIP/YU5gxIxjLlnlj0qR0dO1aDNnV6Q7w8vKCUsmlYkRE9ZVcLkdERES5UK+aKisrQ2ZmJvz9/WERLJi+bbo0BTpAE88mGN5mOCZ1ngTZtQ88Imp0QtxDsP2p7fjq4FfYm7wXWSVZyCrNQmGZ9fMU6hT3dODlCGDVUiDhXquayOUCJk+um5tyExEREZF98E4vERERERERERHV2IoVBgA3LdzuMgPo8RYg//8il/j7gUNjgQv9AMu/t6H69TMCsD4UTBAEFJYVVhjqdS3I6+aAr5zSHBQZimz/g97kUOohzD80H1O7TZW8b3Kc4GA1nnsuExERZejUqbhGC7VMJhMsFgsDAogaoN1Juys8HqgNrOVKiIiI6i6LxYKEhATodLoatw0MNOKbby7jySejUFRk6062Ah59NNfGPipWUFCAwsJChISEwNPT0y5jEBFRw9chpAMO4qCjy7gBQ8GIrGexmOHuboG7uwFRUYYqzzUaZcjJuRoQ5uysBOBaO0USUZ0TERGB+Ph4GAxVv29U5fx5NZ5/PhKZmU5QKPIwc6ZXjfuIy4nDx3s+Fl1DbUgrTsPrm1/HN/2+cXQpRFSPJRYkOroE+3NLAx56Gug0D9j6LhLOP4gXXohEp07FmDQpDc2bGxAUFOToKomIyEZarRaenp7Iz8+3qZ/MzEy4u7tj3cV1OJl5Upri7Mjb2Rtt/NugjX8btA1oizYBbdDKrxXc1G6OLo2I6oho72jM6TXnhmNlpjJkl2YjqzQLmSWZ18PCrv/zv/9eklW3goRdM4En7wNOPgr89QlQFFzl6b1769CsmUstFUdEREREdQFDwYiIiIiIiIiIqMbWrr0pAMn/JHDflBuPRf919acgFDjyLHD4WUDng+4PZuFU5uVyAV//Dff6b9hXri4XJoup9v5w1TidddrRJZAdTJ5cjNLSUlFt8/Pz4e3tLXFFRORo+5L3VXg8yiuqlishIiKqmywWC+Li4mA0GkX3ERNThnnzruC55yJhNNYsaNfV1YywMAMyMpQYMCAfGo1FdB3VEQQBycnJyMrKQlhYODQa64OuiYiIAODDHh9iSdESLDq+6OqBUgApANIA5P3/pwCA4f8/JgAKXN2X4dqPKwD3//94AAgAEIia7L9wAz8XP5F/GqLGx2Kx/rumk5OAwEAjAgONcHZ2tmNVRFTXyeVyREdH4/z58zCbrd+Q5poDB7QYPz4cxcVXg7RnzfJCcHAuxo+3/pmUIAgYv2k8DGbxwWS1Zf7h+RjeZji6RXRzdClEVE/d3/R+R5dQewKPA8MGABltgF2vYt/RBzHkCT9s+jMbvqVZMFlMMFlMMAvm6/9+/ZjlxmPWnGPzeVW09XHxwcDmAzG01VBH/60SEdUpwcHBKC4uhslk27zJU2cuYfre6dIUJRGVQoUWvi3QJqAN2vpfDf9q498GwW7BkMlkji6PiOoZtVKNEPcQhLiHWHW+0Wy8HiJWLkDspiCxzJJM5OpyIUCw7x+izTIgdgPwz4fAgRcAVPxeOHkyNy8mIiIiamwYCkZERERERERERDWSk2PG3r2aGw/6VxGU5ZEM3DMN6D4NkAEP7QSw064l2lVr/9aOLoHswN3dXXQoWEFBAUPBiBqgExknKjzeJqBNLVdCRERU9xgMBly8eFHUouabdehQihkzkjF5chgGDSrAqlWe5c5xcTGjRQs9WrXSoWVLHVq10iE83AC5HLBYAHktzX3NyTGib18Bo0bl4pVXPKFUctItERFZSQBGuI/AmRNncHD7QSDHijam///o/v97RW1kALwBhACIAdAUgBWbxLs4uUCr0lpTORGhZqFg/+Xk5CRxJURU38jlcsTExOD8+fMQBOsXkG7a5I4pU0LLBWhPmuSFwMB8PPKIp1X9rLuwDn/E/1GTkh1q9LrRODbmGDRKTfUnExHdpJV/K/w86GeM3zQe2aXZlZ6nkCngpHCCk9yp3D9VClXNXrOl7U2vvfGqAXt2eQIBR4A2vwBR26r/QwecBAY/AQAQAPTaAmCLFH+btWvZqWVILkzGK3e+4uhSiIjqDLlcjiZNmiAuLk50H8eOOeOlhVuQd/cZCSurmQiPiHLhX7E+sXBS8J4JETmGk8IJQW5BCHILsup8s8WMHF1OlQFimSWZ13/PLs2GRRBxP1ldBDwwDnAqAXa/Vu7l22/Xo3t33i8hIiIiamwYCkZERERERERERDWyapUeJtNNC8ZSb6++YQPYxE0hU2DELSMcXQbZgZeXF9LT00W11el01Z9E1AiZTCbEx8fjzJkzOHv2LBISEpCamorU1FRkZWVBp9NBp9PBYDBArVbD2dkZGo0Gbm5uCAoKQnBwMIKDgxEdHY22bduiTZs2cHV1rbX6L+ZdrPB4x5COtVaDWMnJyTh9+jTOnz+P1NRUpKWlIT09HYWFhdDr9dDr9TAYDFAqldBoNNBoNHBxcUFAQACCgoIQGBiIqKgotGrVCjExMVzASkREN9DpdLh06VKNFjNXp1evQsTEpKFv30C0aKGHm5v5evhXy5Y6REYaKg3+unZcoVBAoVDAYDBIVtfNvvrKH3FxGrz2mgZLlpRi7lwTevRwt9t4RETUcPTt29c+n1ECroaF5QA4gav3YMMAtAbQFkAl60P8XPykr4WogRIbCAYwFIyIrlIqlWjatCni4+OtOn/xYh98/HHFC1NNJhlGjnRDQEARund3q7IfnVGHCZsm1LRchzqfcx4f7PgA7/V4z9GlEFE9NbzNcAxrPQwpRSmQQVZhEJdcVveC/v/8swB7fvW4+ktqe+DoaCDgONDlI6D1sgYx36Y6c/bOwcudXoZM1gj+sEREVlKr1fD390dmZmaN2hmNwDff+OPbVfnAC2PsU9xNPNQe5cK/Wvu3hofGo1bGJyKyF4VcAX+tP/y1/ladbxEsyNPllQsQ23ogGcuPbwACTwDyKjZfu3MOsPtV3HwR8PLL4u9TExEREVH9xVAwIiIiIiIiIiKqkd9+q2ACXm4MsPlD4N6pgEy6heF1zYPNHkSoe6ijyyA7uBYgYDZX8bC9EhaLBQaDASqVyg6VEdUfSUlJ2LVrF/bv34/9+/fj6NGjKCsrs6rttYCwa86fP1/uHJlMhqZNm+Kee+5Bz5490aNHD/j4+EhW/83SitMqPN41vKvdxhTDZDLhwIED2LZtG7Zu3YqDBw+ioKBAsv6dnJzQqlUrdOvWDd27d8fdd98Nb29vyfonIqL6paioCFeuXJG8Xy8vL/TvHwwAWLv2MsxmU437sFgsaNGiBXJzc5GWliZpaBkAxMWpsXTpv989Tp50wX33CRg6NB9z5jgjOFgt6XhERNSw2DO08gYCgMT///wNoA2AOwAE3niatYtXiOjqvRexeM+YiK7RaDRo0qQJEhISKj3HYgE++SQQixf7VtmXTqfA4MHO2LatBG3aaCs9b9buWUjIr3y8uuqj3R9haKuhaBPQxtGlEFE9JZPJ6tW8DrPZgtdfryBMNuMWYNUvwLZpwMPDgMDjDXo+jt6kd3QJRER1kr+/PwoKCqyef5OQoMIbb4TitGUT8NxjgFzaEBmlXInmvs3RNqAt2vhfDf9qG9AWoe6hDHYkIgIgl8nh4+IDHxcfNPdtfv34opd0wN73AE0+cM9bQIevKn6PVhUDCiNg/vfecni4AY884lwL1RMRERFRXcNQMCIiIiIiIiIislpJiQXbtmkqfnHXG0B8H+COL4A2SwEnXcXn1WNj2491dAlkR1qtFoWFhaLa5ubmIjAwsPoTieo4U2k2ykpyYTCaYbLI4KQQoHJSQu0WAIXa/YZzCwsLsXnzZmzevBn//PMPLly4YNfaBEFAfHw84uPj8d1330Eul+Oee+7BiBEjMGjQILi6uko6XoG+fLCWQqaAt4vjA7EEQcDOnTvxyy+/YMWKFcjJybHbWEajEceOHcOxY8fw2WefQalU4t5778Wjjz6KgQMHwsODu7oSETUWubm5SE1Nlbxff39/+Pv/G0zi7KxBcXFxjfsRBAEGgwHe3t7w9PREcnKy6O/35fsGPvggGGaz7KbjMixf7olNm0x4441cTJzoCaVSLsmYRERENjMCOPL/n9YAegD4/yWtn9bPYWUR1TfWLrqtCEPBiOi/tFotQkNDkZycXO41g0GGN98MwR9/eFrVV26uEv36mbFrlx5hYeWf3SbkJeCj3R/ZWrJDmCwmjFo3Cnue3gOFXOHocoiI7G7BggIcO+ZV+Qk5zYH5RwH3JKDzbOD2bwGnhhegdU+TexgmQ0RUiSZNmuD8+fNVbogjCMDy5d6YPdcTZd1eAzp+YfO4Ye5haBPwb/BXG/82aObbDCoF73cQEdXEvn167N37/1AvvSfwx+fAsZFA37FA6IEbTz476IZAMAB48UUDlEq+9xIRERE1RjJB6u1xiYiIiIiIiIiowVq2rBTDhrlUf6ImH7hlMXDH54BPvN3rqg1NvZriwrgLkMu4wLuhKioqwpUrV0S1VavViImJkbgiotohWCwozY5HbqkMhSWGCicRyuVyeLo6QVeYjb92HsPatWuxdetWGAwGB1RcnlarxciRIzF58mSEh4fb3F+poRTaGdpyxz01nsh7Lc/m/sXS6/X46aefMHv2bLuHsFnD1dUVTz/9NF5++WVERkY6uhwiIrKjjIwMZGVlSd5vaGgoPD09bziWlZWFjIwMUf0FBgbC19f3+u96vR6JiYk2f2fZsMEDr78eVu15rVuX4tNPjbjvPoZmEhE1ZE899RQWLVrk6DJqTg6gA4B7gafueAo/DPjB0RUR1QvZ2dlIT08X1bZZs2ZwcnKqcbtjx46hXbt2Vp9/9OhR3HrrrTUeh4gc4+br3qIiOV5+ORz799d844vWrUuxa5cKHh437hP+0LKHsPb8WptrdaSvHvgKYztwwyYiatiMRhPatjXi3Dln6xtpM4A7PwXumgXIGs5ysIPPHkT74PaOLoOIqM7Kz8+vMGAYALKylHjrrRDsztwODHgGcM2sUd9uKrdy4V+t/VvDy7mK0EoiIrLaoEElWLOm/FxEyCxAu4VXf9xSgLi+wJ9zANO/AfAeHiYkJ8vh6sq560RERESNkbL6U4iIiIiIiIiIiK5avdrKCYV6T2D/S8D+cUC3d4F7pgP1fEPPMe3HMBCsgdNqK3jobqWysjIJKyGqPRZDMVLT0pBfVHlQRm5uLv766y9s3LgRx44dq3LnUUcpKSnBF198gfnz5+OJJ57Au+++i5CQENH97U3eW+HxAG2A6D5tYbFY8P333+Ott94SHZJiD8XFxfjss8/w5Zdf4sknn8SHH36IgADH/B0REZH9JCUloaCgQPJ+IyMj4epafsGzu7u76M+7kpKSG0LBNBoNYmNjkZubi7S0NFHfY4qL5fjkk0Crzj11ygX33y9gyJB8zJnjjJAQdY3HIyIishsLgP0ALgAG37oR8k1UHxiNRtFtxQSCEVHD5+fnB6PRiNzcXGRmKjF2bAQuXKhBGMx/nDrlgv79i/H33y5Qqa4+x/wj7o96HwgGAD8e/5GhYETU4KWkJGP+fB2++sofK1d6w2y2YmJNSQCw+SPgxDDguQ6AQvz31bqiV9NeDAQjIqqGp6cn8vLyUFJScsPxzZvd8db8RBS3nwD0/LPqTgRAXuaDh265F7eH3II2/m3QJqANIjwiIJPV88mdRER1VEKCEevWVbIZtyAHjoy6+lOJkSP1Fc6rICIiIqLGgaFgRERERERERERkFaNRwN9/13RBswzYMQ1OxU1h7P+EXeqqDWqFGiNvHenoMsjO5HI5VCoVDAZxiyKLiorg5uYmcVVE9mMoTEZiRin0ZeX/mzcYDNiyZQt+++037N+/HyaTyQEV1pzRaMTChQuxYsUKTJ8+HS+99BKUypo/CtmXvK/C4008m9haYo3t378fzz//PI4cOVLrY1vLbDZj4cKFWLlyJaZNm4YJEyZALmeQJhFRfWc2W7B4cSbaty+AlOsAZDIZmjZtCo1GU+HrarX4IC29Xl/hcW9vb3h6eiIlJaXGAWdff+2PrCzrwxwEQYZff/XEn3+a8NpruZg0yRNOTvxcJCKiOiQP+GXSL4jKjcK7777LBX9E1RB7v5iIqCrBwcHIyDDh8ccDkZamsqmvHTtcMXx4AZYvd4NJMOKlTS9JVKVj6Yw6R5dARGRXer0excXF8PYG3nwzDcOG5eKTTwKxc6eVcw4yb8Frob9iVtogCKh7mzrVxNSuUx1dAhE1QusvrMevp39FWnEalHJl5T+yKl6TK+GkcKq6vYgfJ3nFfXoHeiMvPg8yQQZdsRMmf3URexSfAY9uqf4PnNYWWLkclpzmcB2RjymLPO3+d0xERMDs2WUwmcRtHuHkZMErr3AjMiIiIqLGjKFgRERERERERERklb//1iM/X9wu1T0DB+GuHomYuqV+TuR7pPUj8HHxcXQZVAvc3NyQk5Mjqm1eXh5DwajeMBQmIyGtBEbjjTtHX7hwAWvWrMH69euRn5/vmOIkUFRUhIkTJ2LJkiVYvnw5YmJiatT+eMbxCo+39m8tRXlWsVgsmDlzJt5+++16E8pWWFiIiRMnYsOGDfjpp58QHBzs6JKIiEgkg8GCESMKsXx5IMaPB0aNypakX4VCgZiYmGpDO5VKpajPv5u/2/yXXC5HWFgY/Pz8kJiYaFW4Q3y8Gj//LO5asKBAiSlTvCEIyRgzxgXe3t6i+iEiIrIHwSLg/fffx7lz57B48WI4O4u770vUGIi9L8PAdCKqTtu2obj//kIsWmRbKBgArFrlgcmTc+E78BvE58ZLUJ3jDWk5xNElEBHZVVJS0g2/N21ahq++uoI9e1zx8ceBiI+veFOFazp2LMEHz/SH+5736+1cHADoFtENXSO6OroMImpkFh9fjCd/e9LRZdjO2qkwuycD/3wAWK6G0ixe7Il+/fIxZIin3UojIiIgP9+Mn34S//xl0CAdwsK0ElZERERERPUNZx0QEREREREREZFVVq2yiG770EMC3ujyBp697VkJK6o9Y9uPdXQJVEtsWahfWloqYSVE9mMoTKkwEAwAnnnmGSxZsqReB4L919GjR9G+fXusWLGiRu3icuMqPN4hpIMUZVWrqKgIDzzwAKZMmVJvAsH+a8uWLbjllluwZ88eR5dCREQiFBaa0KdPCZYv9wQAzJsXiLVrPW3uV6VSoVmzZtUGggGARlP1greqVBf2pdFoEBsbi+DgYMhkskrPEwTgww+DYDZXfk51YmL0eOCBfKSmpuLChQvQ6/Wi+yIiIrKHlStXolu3bqJD8okaA4aCEZG9KBRyLFjgjt69C23uy9fXiMjbD+OtLW9JUJljhbqHYtrd0zC1W/0NuCEiqk5BQQHKysoqfK1z52KsWBGPadNS4O1d8XdRmUzAxx9boFDI8XqX19Evtp89y7WrqV35fk9EtW/O3jmOLqF2mJ2AnzcAf8+6Hgh2zYsvapGWVvFnERERSeOLL3QoKlKIbv/qq9XPrSAiIiKiho3fCImIiIiIiIiIqFoWi4A//hC3S7VSacHgwRrIZDJ81fcrJBUmYVP8JokrtJ9bA29Fx5COji6DaolarYZMJoMgCDVuazKZYLFYuNiL6rSrgWDFFQaCNVSFhYUYOnQo3nnnHbz99ttWtUktSq3weLeIblKWVqHMzEz06dMHR44csftY9pSdnY377rsPy5cvx4MPPujocoiIyEqpqWXo29eMY8fcbjg+fXoIfHxM6NKlWFS/Li4uiIyMtPq7slarRXGxuLEKCgrg5+dX7Xne3t7w9PRESkoKCgoKyr3+xx8eOHjQVVQN10yZkoprGWgGgwHx8fHw8PBASEgIrxuIiKjOOHToEHr16oUtW7bA3d3d0eVUKy4nDr+d+w2pRanoE9MHPaN6Vhn0SWQri0XchinWhOESESmVcqxY4YIePUpw8KBWVB+RkWWY8PFaTDr7OCwQv8mTvSlkCgS6BiLEPQSh7qEIcQu5+uN+9Z+h7qEIdguGViXu74GIqD5JTa34WeQ1SiXw8MN56N27AN9/74fFi31gMPx7P3Hw4EJ07eoBAJDL5Fj80GLc/u3tSMhPsGvdUmsf3B49o3o6ugwiaoT0pkawiUtu06uBYDnNKnw5M9MJTz9diPXrnaBQ8JkVEZHUjEYBX3+tFt3+7rtLcdttLhJWRERERET1EWcdEBERERERERFRtfbuLUNamkZU286dy+Dt7QwAUMqV+PXhX9Htx244ln5MwgrtZ2z7sVxU1sg4OzujtLRUVNv8/Hx4e3tLXBGRNAxFjS8Q7L+mTZuG/Px8zJlT/Y6v+br8csfkMjkCXQPtUNm/cnJy0K1bN5w/f96u49QWnU6HgQMHYvXq1ejfv7+jyyEiomqcOVOKvn0VuHy5/MRSk0mGV14Jww8/JKBVq5otlPDw8EBYWFiN22RkZNSozTU1+S4vl8sRFhYGPz8/JCYmwmAwAABKSuSYPdu2z/1+/fLRvn35WgoKClBYWIigoCBeOxARUZ1x+PBh9O3bF3/++SdcXOreIhOdUYfVZ1fjuyPfYfuV7dePz90/F7N7zsbEzhMdWB01dAwFIyJ7c3VVYv16C7p00SMurmbPY1vflokWL0zCy6eXQEDNN7yRitZJezXo6/8BXzeHfYW4hyBAGwCFXOGwGomI6orMzEyYzWarznV1tWD8+AwMGZKLuXMD8McfnnB2NmPmzBs39fNy9sKqoatw5/d3osxcZo+y7WJq16mcj0NEDtGjSQ+cz2kY8zJuIMiA00OBnVOAjLbVnr5pkzu+/DIXL73E51VERFJbskSH1FTxz1smTeL3ZCIiIiJiKBgREREREREREVlh5UqT6LYDBty4YMZN7YYNwzeg44KOSC5MtrU0u3JXu2N4m+GOLoNqmYeHB0PBqMExFqUiIbXxBoJd8+mnn0Imk+GTTz6p9ByDyQCDxVDuuKvK1Z6lQa/Xo3///g0mEOwas9mMYcOGYcuWLejYsaOjyyEiokrs3FmEQYM0yM52qvQcnU6B55+PxJIllxAWVv6zsiK+vr4IDKx5uJZKpar+pEro9TXf3V2j0SA2Nha5ublIS0vD11/7Iyur8r+L6mi1ZrzySnqlrwuCgNTUVGRnZyM8PBwajbgQbiIiqj98fX1x6623IjY2FtHR0YiKioK/vz/8/Pzg7e0NtVoNtfrqjvE6nQ46nQ45OTn48+ifmLJmCnSpOiAdQBoAnX1q3LVrF0aMGIGVK1faZwARTmScwIIjC7DkxBLk6fMqPOetrW9hQqcJDBkhuxEEcSE7DAUjoprw91dhwwYdunY1IiPDuuvR5kO/Q3q7qTiVlGXX2gK0AeXCvkLdQ28I/nJXuzPUhYjIChaLBVlZNX/fDg42YtasZDz2WA4yMtwRFeVX7px2Qe3wVd+v8Mzvz0hRqt219m+N/s24qRAROcbEOydi/uH5sAjigsDrHAHAsSeBXVOAnNgaNf3xRzWefroErq5a+9RGRNQIWSwC5s6Vi27fvHkZHniAcwiIiIiIiKFgRERERERERERkhfXrxS2GlskEDBlSfjF3sFswNg7fiC4/dEFhWaGt5dnNiLYj7B4CQ3WPp6cn0tLSRLUVE0BAZG9XA8GKGn0g2DVz5sxBdHQ0xo4dW+HrB1IPVHjcX+tvz7IwevRo7NmzR9I+IyIicM899+CWW25Bq1atEBwcjMDAQDg7O0Oj0cBoNEKv1yM7Oxupqam4cOECTpw4gZ07d+LYsWOiF73erLS0FP3798fJkyfh72/fv0ciIqq5Vavy8eSTbigpqT5IIzdXiTFjIvDTT5fg7W2u8tzg4GCbAnOdnJxEfX+x5TuPt7c3PD090bp1Pjw8TCgoEDel4oUXMuHnV324tsFgQHx8PDw8PBASEgK5XPzEYCIiqltatGiBe+65B/fccw/uuOMOhIeHW93Wzc0Nbm5u8Pf3R4sWLXB/z/vRe0lvJBUmARYAqQDiAZwCkC1t3atWrcK8efMwfvx4aTuugaKyIiw7tQwLji7AgZSKr9H/S2fSIbMkE0FuQbVQHTU2Fov4xcG2BN0SUeMUE+OM334rwv33y1FUVMU1uswMn8l34pzLQaBM/HhqhfrfsK////PmsK8gtyCoFHw/IyKSSkpKik3P3265RYfmzSMqff3pdk9jT9IefH/0e9Fj1JYpXaZALuP9UCJyjKbeTTGs9TD8fPJnR5diO0EG/LIauPBQjZuOGJGNl17KQGKiDM2bN+dzKiIiifz9tx4nTjiLbj9+vAlyuVrCioiIiIiovmIoGBERERERERERVenUKQPi48U9XGzXrgxhYRXvVtQmoA1WD12N3j/3hslS/WJpRxjTfoyjSyAHUCgUUCgUMJurDjmoiMVigcFg4IIvqjOMRalISCuCwUGBYDKZDNHR0ejQoQNiY2MRGRmJyMhIhIaGQqvVwtXVFS4uLjAYDNDpdMjMzERSUhLOnz+Pw4cPY9euXYiLi5O8rnHjxqFZs2bo0aNHudf2JFUczBXpESl5HdesXLkSP/30kyR9BQQEYOTIkRgxYgRatGhR5blqtRpqtRoeHh5o2rQpunbtev21rKwsLFu2DAsWLMCJEydsriszMxOjR4/Gb7/9ZnNfREQknS++yMPLL3vAZLJ+kn9iohovvBCB779PgItLxQvYIiIi4ObmZlNt1wIsxbDlO7lcLsekSd4YPrwMr7xSjF9/9YAgyKxuHx2tx7BhOTUas6CgAIWFhQgKCrIpSI2IiBxHoVDg7rvvxoABAzBgwABERFS+SLumWvq1xN5n9uKBpQ/gRMYJIBRXf7oDSASwD8AZyYbD5MmTceedd+KOO+6QrtNqCIKA/Sn7seDIAiw7tQwlxpIatffUeNqnMGr0ysrEp+3wHjERidGpkxuWLi3A4MFuMBgquFaXmRH2Rg8kqQ5W25eHkwdaebVCs6BmCPcMvyHsK8Q9BD7OPpDJrL/eJSIi2xgMBhQUFNjUh7e3N5TKqpeBfd7ncxxJO4Kj6UdtGsueor2jMbTVUEeXQUSN3Btd3mgQoWDze/+AD3/sgys1aBMQYMQHHySjY8er9+AsFgGJiYmIjIy0S41ERI3N7Nnig4ADAox46inxgWJERERE1LAwFIyIiIiIiIiIiKq0fLkBgLjFK/37Vx2qdG/UvVjw4AI8tfYpUf3bU7eIbmjl38rRZZCDaLVaFBYWimqbk5ODoKAgiSsiqrnrgWCG2gsEk8lkaNGiBbrf3Q0DB/RFh05d4eHhUW07jUYDjUYDLy8vNGvWDPfdd9/11+Li4q6HUyUmJkpSp9lsxsiRI3Hy5Em4u7vf8Nqx9GMVtmnp11KSsW+Wk5ODMWNsD6H08PDA9OnT8dxzz8HZ2faJQX5+fhg3bhzGjRuHdevW4bXXXsPZs2dt6nPt2rVYunQphg8fbnN9RERkG7PZgjffzMdHH4kLoDp1ygWTJoVj3rwrcHL697hMJkNUVJQkn0UuLi4oKioS1bagoAB+fn42jR8crMayZWqMHl2I8eOVOHXKxap2U6emopp1eRUSBAGpqanIzs5GeHg4NJqKA7aJiKhuadWqFUaMGIHHH38cwcHBdhsnxD0EO57agYHLB2Lr5a3/vhD+/58MAH8DiLd9LKPRiFGjRuHIkSPVLja3VU5pDpacWIIFRxfgVOYpUX24qdzg7MQFMmQftoSC8fscEYnVr58HvvwyD6NHe94QUi1XmtD6zaE4gR1Vtu8f3h+T2k6Cl9rraju5HM2aNYNCobBr3UREVLWkpCSb2stkMgQGBlZ7nrOTM1YOXYnbv70d+fp8m8a0l9fveh0KOT+XiMixWvm3wsDmA7Hm3BpHlyLa2PZjMbrTk2jyXQH69FHBbK4+9LdPn3xMnZoKDw/LDceLi4uRn58PT09PO1VLRNQ4nDxpwD//iH9mMXp0GTQaVwkrIiIiIqL6zPrtfomIiIiIiIiIqFFat078wq8hQ6pv++StT2La3dNEj2EvY9uPdXQJ5EBeXl6i24oNLiCSkrEordYCwZRKJe666y68//772LZtG5YvX46xz7+ApjHN4OZs+2TumJgYvPXWW0hISMCPP/6IJk2aSFA1kJiYiFdeeaXc8Qs5Fyo8v0NwB0nGvdlHH32EnJwcm/ro3bs3zp49iwkTJkgSwnKzBx98EMeOHcPUqVMhk1U/ibQqb775JgwGg0SVERGRGGazBc88Uyg6EOyanTvd8N57IRD+v8mtXC5HTEyMZJ9F1gSLVqakpESSGgCgRw93HD2qwcyZufD0NFV5bt+++WjfvtSm8QwGA+Lj45GYmAiLxVJ9AyIiqnVOTk4YMmQItm/fjlOnTuHVV1+1ayDYNR4aD/zx2B8Y1npY+RcDADwOYCAACT6KT548iS+//NL2jipgESzYkrAFw1YNQ/CcYEz4c4LoQDAACHANkLA6ohvZEgqmUonbbIWICABGjfLC9Ol513/XuBhw23sP4wQqDywIdgnG/C7z8UGHD64HggGAxWJBfHw8rzGJiByopKQEOp3Opj4CAwMhl1u3BCzKKwo/DfzJpvHsJcw9DE/c8oSjyyAiAgBM7TrV0SWIdkfIHfi016cAgJ49PfDii/lVnu/mZsbMmUmYNSu5XCDYNSkpKTCZqn4WRkREVZs1y3hDyHtNuLiYMX48N0EhIiIion8xFIyIiIiIiIiIiCp1+bIRx4+L280+NrYMLVuqrTp32t3T8OQtT4oaxx78tf4Y1GKQo8sgB9JqtaLbGgwGLqwgh7oaCFZo90CwVq1aYerUqfjnn3/wzTffYMCAAfD2/jdcpKS0DFeS02AxFEsynlwux5NPPokzZ85g8uTJUChsDxxbuHAhjh49esOxlKKUCs/tGtHV5vFulpaWZvMi61deeQUbNmxAUFCQRFVVTKVS4f3338fatWttCntJSEjAggULJKyMiIhqwmQy4cKFCzCbpZnQv2aNF7780h9OTk5o1qyZpMEHtvSl1+slqwMAlEo5Xn3VG6dPmzFsWD5kMqHcOVqtGRMnpks2ZmFhIc6ePYvc3FzJ+iQiIml89dVX+PXXX9GtW7daH1utVGPJoCWYdOekik+4BcBzAAJtH2vatGnIysqyvaP/SytKw4ydMxD7eSzuXXwvlp1aBoPZ9tDoAC1Dwch+bAk2tzawgYioMm+/7Y3Rz+XCNeYAnN8Ix6GytZWe2y2wG9b0XIPOAZ0rfN1oNCIhIcFepRIRUTWSkpJsaq9UKuHj41OjNv1i+9XJsJtX73oVKgUDdImobrg9+Hb0atrL0WXUmI+zD1YMWQG18t+5mbNmeaBt24o3rrnjjmKsXh2PBx4oqLJfQRBw+fJlKUslImpU0tJMWLFC/Ly6xx7TwcfH9jmRRERERNRwcNYBERERERERERFVasWKMtFt+/a1PoxGJpPh2we/xb1N7hU9npR8nX2RXZLt6DLIgeRyuagQAqMROHLEBQkJFU+yIrI3Y1G6XQPB1Go1+vfvj6VLl2LZsmV49NFHbwgCu5nUwWAAoNFoMGvWLEz/fjpg48Z4giCg4/COuPP7O/HEmifwzrZ3kF1a/v1fBhkiPCNsG6wCX3/9tU27gk+ePBmffPJJrS4yffDBB7Fu3Tqo1dYFf1bkiy++kLAiIiKylsFguB4INnlyOu6/v+qJ/9Yym1WIjo6RJLDzZk5OTqLa2WsX8+BgNZYu9cTmzUVo0+bG7/zPP58JPz9pxxUEAampqbhw4YLkQWdERCSe2M8nqchlcnx8/8f4tNenkKGC3eY9ATwNIMa2cQoKCjBv3jyb+jBZTFh/YT0GLBuAsE/DMGXLFFzMu2hbYTcJcGUoGNmP2O+VMlkF/98kIrKSIAg4nn4cb255E1tb3Ynixzoiz5xR6fkTWk3Al3d9CRelS5X96nQ6XLlyRepyiYioGrm5uTbfrwwNDRXV7p3u79SZeTjA1VDnZ9o94+gyiIhuUBcDFKsigwxLBy9FuEf4DcdVKjl+/NECZ2fLf45ZMHlyGr777jICA62bR6TX6yXdKICIqDGZO1ePsjJx8/jkcgGTJjE8l4iIiIhuxFAwIiIiIiIiIiKq1Nq14hd1DxmirNH5KoUKq4auQmv/1qLHlMqZ7DMI+TQErb9qjVVnVjm6HHIQNze3as8RBCAxUYVly7zx0kvh6Nq1BZ58Mgq//GKohQqJbmQsysBlOwWCeXl54YUXXsA///yDDz74AG3atLG67dVgsHRYDCWS1tTl7i7AswDcbevHeM6Iffv3YcmJJZi+fTpMlvKT8hUyBd7a8hYWHVuE3Ym7kVGcAUEQbBpXEAQsWrRIdPv+/ftj5syZNtUg1r333otvvvlGdPuzZ89i7969ElZERETVKS0tRVxcHCyWqwsB5HLgww+T0b69+M9nmUzAW2/l4rvvPKFQ2GfqgUajEd3WYLDfd/IePdxx5IgGM2fmwtPThOhoPYYNy7HbeAaDAfHx8UhMTLz+vyEREdGEThOw7OFlUCkqWCSiAvAIgGjbxvj6669RUlLz7wsJeQl4a8tbiJwbiQd/eRC/n/8dZsFsWzGVCNAyFIzsR2x4Q20GuBNRwyAIAo6kHcGUf6Yg9otY3Dr/Vnyw8wPE5V6ost1b7d7CM82tD1cpKipCWlqareUSEZGVLBaLze+7zs7OcHV1FdVWIVfgl8G/INRdXKiY1CbeORHOTjbu+kREJLGuEV3RNbyro8uw2rv3vIv7m95f4Wvt2rni7bfzAQCxsTosW3YRI0bkoKa3KTIyMuz6nI2IqCEqLbVgwQLx8xseeKAUsbEMBSMiIiKiG8kEW1etEBERERERERFRg5SdbUZQkBwmU813tA8ONiIpSQm5vOZtkwqS0HFBR6QV150J6e5qdzze9nHM6DED7hob02eo3igrK0NcXFy544WFchw44Io9e67+pKSUfxB/771F2Ly5+lAxIqlcDQQrQJmNk/K6du2K/Pz8678HBARgxIgRGDJkCJydbZugrXXRICI0CHKV1qZ+rik1lsL/Y3+UZJQACwEU29DZ7QAerFkTV5Uror2jr/54Rf/7797RCHILglxW9azKbdu24Z577hFVro+PD86fPw8fHx9R7aUydOhQrFixQlTbl156CfPmzZO4IiIiqkhBQQGSkpIqfK2wUI4nn4xCfHzNJqc6OVnw+ecFeO45LylKrFR2djbS09NFtQ0ICICfn5/EFZWXllaGY8fSERZWZPexAOCff9zRrJknevfmtSkREV21/fJ2DFg2AAVlBeVfNAD4HkCG+P4/++wzjBs3rtrzykxlWHt+Lb478h02X9osfsAamn73dEzrPq3WxiPbHE8/jo1xG+Gp8cTgloPhr/V3dElVOnfunKhgMJVKhdjYWNHjHjt2DO3atbP6/KNHj+LWW28VPR4ROYYgCDiUeggrz6zEyrMrcSnvUo3av93ubQyJGiJq7Nq6ZiYiauxSU1ORm5trUx+xsbFQqWwLB9iXvA/dfugGo0X6zaWs5aZyQ8orKXBTcx4FEdU9f8b/id4/93Z0GdXqG9MXvw/7vcr5KGazBTNmpOOBB/KgUolfNuzk5IRmzZqJbk9E1NjMnVuCl18WPy9y+3Y9unUTHypGRERERA0TQ8GIiIiIiIiIiKhC33xTgrFjxT2gfPbZYnz7rbidSgHgaNpRdPuxG4oNtiS8SE8GGTqGdMTH93+MLuFdHF0O1YLTp0/DaBRw6pQz9uxxw549rjh50hkWS9WBd1qtGTk5MqjVNdxqkUgEU1EGEiQIBAP+DQXz9vbG6NGjMXToUDg5OUlQ5VVSB4MNWzUMy04tA5IB/ADALLIjNYBJACT6ozorndHUu2mFgWFhHmGQy+SYOnUqPvzwQ1H9f/311xgzZow0xdogLS0NUVFR0Ov1NW7bqlUrnDp1yg5VERHRf+Xk5CAtrerA5fR0JR5/vCkyMqz7IHR1NWPx4iIMHOgpQYVVMxgMuHDhgqi2rq6uiIyMlLagKuTl5SE1NRX2nIKRn69Av34xKChQYtCgAnz6qRrh4ZwYTEREwKnMU+i9pDdSilLKv5gHYD6Aml+6AQBuu+02HD58uNLXz2SdwfdHvsfiE4uRXZotbhAbfN33a4xp7/hrZKre2nNrMXTlUBjMV+9huanc8H6P9/FChxegkCscXF3Fxo7NQnGxDL6+Jvj5meDra4KvrxG+viZ4epohr+T2r4uLC6KiokSPy1AwooZLEAQcSDmAFWdWYOWZlbhScEVUPw+EPYCZd8y0qZawsDB4eHjY1AcREVXOZDLh3LlzNvXh7u6O8PBwSer54sAXGPdH9YHP9tTEswnm9Z6HB5vVcLcmIiI7EwQBHb7rgMNpld8Dc7RIz0gcGX0EXs7Vb9ij1+sRHx9v85je3t4IDg62uR8ioobObBYQG2vEpUviwnw7dNDhwAHbNmwlIiIiooaJoWBERERERERERFSh3r1L8eefLqLabtqkQ69etj2g3BS/Cf2W9oNZEJvwYl9+Ln4Y034M3uz6JlRK23Zlpbpr7twMvPWWL4qLa74obf36AvTty8UUZF9SBoIBQO/evTFgwAA8+eSTcHER9xlQHVcXDcLDgiF3sr3/NWfXYNCvg67+sgfAXzZ0NhRAS5tLqlaUVxQ+7PEh5o2eh71799a4fWBgIC5fvgy1Wm2H6mruxRdfxJdffimqbXp6OgICAiSuiIiIrklLS0NOTo5V58bHqzFiRBSKiqr+3uvvb8SaNXp07uwmRYlWOX36tKigLaVSiebNm9uhospZLBakpqYiPz/fLv2/804wVq70vv67m5sZkyYV4PXXPaFSMZCYiKixSypIQp+f++B01unyLx4B8Lv4vi9evHhDwFGJoQQrzqzAd0e+w56kPeI7lsDqoasxsMVAh9ZA1rn1m1txPON4ueO3Bd2G+f3mo31wewdUVbXQUANSUiq+/69UCvD2Nv0/MMz4/8Cwqz+9egFdu4pfNMtQMKKGxSJYsD95//UgsKTCJJv6U8qU2DdgH9QK2+8RN2nSBFqtNJt4EBHRjRISElBSUiK6vUwmQ4sWLSCvLIm2hgRBwGOrH8Mvp36RpD9bhLiF4OOeH2NYm2GOLoWI6Lob5p/UMWqFGnue2YPbgm6zuk16ejqys20P8Oc1AxFR9VasKMXQoeLnQi5dWophw+wzV5OIiIiI6jfOCiUiIiIiIiIionKKiy3Yvl0jqq23twn33iuu7X/1ju6Nr/t+bXM/NSGDzOpzs0qz8N6O9+DyoQt6/dQLpzMrWGxH9V5MjEZUIBgAbNpkkbgaohuZijOQkC5dIBgArFixAmPHjrVbIBgAFJfqkZiUCoux1Oa+ekf3hqvK9eovnQAE2tBZgs3lWOVS3iU8vupxHDx0UFT7J554os4EggHAqFGjRLc9duyYdIUQEdENEhMTrQ4EA4Do6DJ8/vkVqFSVf4eNitJj+3ZjrQaCAVfDvawhCEBqqhM2b3bHvHkBmDzZli8G4sjlcoSGhiImJkbyz+tTp5yxatWNu78XFSkwbZo32rYtwx9/FEo6HhER1T9hHmHY9fQu3B1xd/kX2wEIF9/3ypUrIQgCDqcexpj1YxD0SRBGrh3p8EAwAAhwZdh0fVBqLK0wEAwAjqQdwR3f3YFxG8ehQF9Qy5VVzmy2IDu78u+iJpMMmZlOOHPGGdu3u2PVKm/Mn++PDz4Ixvnztm2aQkT1n0WwYFfiLoz/YzzCPw1H54Wd8em+T20OBAOAQbGDJAkEA4DLly+jrKxMkr6IiOhfOp3OpkAwAPDz85MsEAy4GjL27YPfoqVfLeySVI2UohQMXz0c/h/7Y/6h+Y4uh4gIADCg+QC08mvl6DIq9OUDX9YoEAy4uuGcSmX7RqdXrlyBxcI5cEREVZkzx/q55zeLjDRg6FDeTyYiIiKiijEUjIiIiIiIiIiIyvn9dz30enG3ju6/vwxKpfgHnP/17O3PYkqXKZL0VR2VQoWLL13E+I7j4aH2sLqdWTDjr0t/ofXXrRExNwKf7/+cE2EakPvuc4NWaxbVdseOuhPaQw2PqSQTCWkFKCuTLhAMANzcaifk42owWIrNwWDOTs7o36z/1V/kAO6xobPLNpVSI6ZcE0xGk6i2gwcPlrga29x6662IiYkR1TYuLk7iaoiIyGKx4OLFiygsrHlA1O23l+Kjj5IhkwnlXmvXrhS7dsnQvHnt706r0ZQPnRYEID3dCf/844bPPvPHmDERuPvu5ujVqxlefjkcCxb4Yf16T6SmOmZhs1qtRkxMDEJDQyGT2X59bLEAH3wQBEGouK/z553xwAPuGDiwAFeu6G0ej4iI6i9PjSc2Pb4JQ1oOufEFGWy6Zv72l29x27e3of137TH/8HwUGYpsqlNKAVqGgtUHGcUZVb4uQMAXB79A8y+bY/mp5RCE8t9Ja1turgllZeKek4SEcGouUWNktpix/fJ2jNs4DqFzQtH1h6747MBnSClKkXScJ257An5+fpL0JQgCLl68CJNJ3P1qIiKqWFKSbSGQCoUCvr6+ElXzL1eVK1YNXfXvpksOllWahTEbxsBrphdm7Z7FuTZE5FBymRxvdHnD0WWU80y7Z/DMbc+IahsZGWnz+BaLxebPNSKihmzPHj327RMf6vXii0YoFNLMuSciIiKihoczD4iIiIiIiIiIqJw1a8QvuBk0SNqHk+/3eB/D2wyXtM+KPNzyYTTxaoK5veci//V8rH10LdoGtK1RH4kFiXhp00tw+dAFQ1cMRXJhsp2qpdqiVsvRqZO40KJTp5yRni5tYBMR8P9AsNR8yQPBaltxaRkSk1NhMeps6mdoy6H//tIMgNj58VkAaitDI0dcMxcXF9x+++3S1iKBbt26iWrHUDAiImlZLBbExcVBpxP/2dqzZyFefz3tpmNF2L5dhaAgx4TearWuyMhQYssWN3zxhT/Gjo1A9+7N0bNnM0yYEIHvvvPH7t1uyMtTlmu7a5dt3zNs5enpiRYtWsDT09Omflav9sKpU9UHsv32mwfatHHCO+/kwmDgAjoiosZKo9Rg2cPLcGfonTe+0ARAmLg+L566iGMpx2wtzS4CXBkKVh9klFQdCnZNenE6Hl31KHr/3BvxufF2rqpqiYlG0W1DQ8t/NyWihslkMWFrwlY8v+F5hMwJQfdF3fHFwS+QVpxWbVsxPNQe6BnVEwEBATZfa15jsVgQHx/PIBYiIokUFBTAYLDtOW5wcDDkcvss92ru2xwL+y+0S99i5evz8drm1+D+kTve3vI2P5OIyGEeaf0IoryiHF3Gde0C2+HzPp+Lbq9SqRAcHGxzHUVFRSgoKLC5HyKihujjj8VtOgwAnp4mPPec+EAxIiIiImr4GApGREREREREREQ3MBgE/PWXRlRbFxcz+vYV17YyMpkMC/svxN0Rd0va782eb//8Db/3b9Yfx8ccR8bEDDzR9gk4K61/8FpmLsOKMysQ9mkYWnzZAstPLZe6XKpF3buLW/xlsciwbl2JxNVQY2cqyWoQgWDXFJfokZicYlMwWK/oXnBTuf174BYbCsq1oW0NuBvcRbVr27YtlMq6t6hUbFBZTo7IdDQiIirHYDDg/PnzMBrFBxdcM3x4Lp55JgsA8Nhj+diwQQs3N8d9/igU7ujZsxnGj4/A/Pn+2LXLDbm51tVz6JD4wGupyOVyhIaGIjY2Fmp1zYPV8vMVmDvX+rCToiIFpk/3Rps2BmzYwAUaRESNlVwmx7antkGjuOlebTuRHZoApNtalfS0Tlq4qlwdXQZZIaPYulCwa/66+Bdaf9Ua7+94H2WmMjtVVbWkJPHfrSMiHBOoS0S1w2QxYfOlzRizfgyCPwlGj8U98PWhr60OQLTFQ80fglp59T0mNDQUWq1Wkn6LisyYMSMLZjNDWIiIbGE2W/DiiyYcPCj+/VmlUsHDw0PCqsob0moIXu70sl3HAAAnuRPe7f4ufJx9rDq/xFiC93a+B+0MLSZsmgCDqWE8Eyei+kMpV+L1u153dBkAAE+NJ1YOXQlnJ9vCYry9veHiUv3GM9VJTk6GyWSyuR8iooYkPt6AdevEv8eOHKmHqytjHoiIiIiocvy2SEREREREREREN/jrLz0KCxWi2vbooYeLi/S3nNRKNdY8sgbNfZtL3jcAtPFvg85hnSt8zd/VH4sHLkbxG8VY8OACNPVqWqO+z2Wfw6OrHoXbDDeMWTcG+fp8CSqm2tS3r0p0282bZRJWQo2dqSQLl1PzGkwg2DXFJXok2RAMplFqMKD5gH8PxNpQTC1lVD0a+6iodlFRdWdH2v8SW1dxcbHElRARNU56vR5xcXEwm8XvQHuz8eMz8N13GVi0yB1OTo6dVuDl5YQmTcQFQRw7VnfCNFUqFWJiYhAaGgq53Pq/088+C0BBQc3/HBcuaNCvnweeeioXer2+xu2JiKj+UylUeKnjSzcebAFA3K1fINnWiqQX4Gp9cCY5lpignDJzGd7a+hZu+eYWbE3YaoeqqpaaKi5g1tXVDHf3uvM9lIikYTQb8dfFv/Ds788icHYgev7UE/MPz0dWaVat1vFIq0du+D0iIgIqlfjnWMDVMOpnn22CN98MwJQpDJcmIrLFL78UYMkSHzz9dBOMHx+OK1dq/h4dHh5uh8rKm3nfTNwVdpddx3jylifx1t1vIfvVbPz40I8Icg2yqp3epMe8/fPgOsMVo34fhVJDqV3rJCL6rxG3jICfi5+jy8CSgUsQ5SXNHJHIyEjIZLbNYRMEAVeuXJGkHiKihmL2bAPMZnHvryqVBRMnSrsJNxERERE1PAwFIyIiIiIiIiKiG6xaJX4H6Icekq6Om3k5e2Hj8I0I0Eq/0Gts+7HVTnyRy+V45rZnEP9SPC68eAH9YvrBSe5k9RjFhmLMPzIf3jO90eHbDtiSsMXWsqmWtG3rgpAQcSFMu3a5cFd1koSpNBuXU/Ogb2CBYNcU2RgMNrTl0H9/8QcgdqPUfJHtauDZ255FpDZSVFt/f39pi5FIQIC4z+aSkhKJKyEianyKiooQHx8PQRAXWFAZLy9PjBoVAIWibkwpaNNGXCjY6dNqiSuxnaenJ5o3bw5PT89qzz19WoOVK71sGi8qSof4+HgkJibCYuG1CRFRY/Ps7c/eeMAZQKjIzrJtrUZ69rhXTPaRXpwuuu35nPPosbgHRqwZgcySTAmrqlpamrjv2L6+JokrISJHMZgN+CPuDzyz9hkEfhKIXkt6YcHRBcjR1dLuEjfx0njh3qh7bzgml8sRHR0NpVJcGGFKihOeeCIKx4+7AABmzfLC3Lm5NtdKRNQYlZVZ8PbbLtd/37LFHQ89FIOZMwNRUGDdfVZXV1doNLUTDOCkcMKvQ36Fv9Y+zx/lMjle6/La9d+fvOVJpE5MxeqhqxHhEWFVH0aLEd8f/R7uH7lj2Mph3ISPiOxuS8IW3PrNrbUe/nuzN7u+ib6xfSXrTy6XSxI6qdPpkJ1dB28SEhE5QF6eGT//LHaSIjB4sA4hIdxcgoiIiIiqVjdm8BIRERERERERUZ1gNgv44w9xu0k7OVkwaJB9Jyc28WqC9cPXw8XJpfqTreSqcsXjbR+vUZsYnxisG74OpVNLMePeGVbvZgoAAgQcSjuEexffC99ZvpjyzxToTfqalk21SKGQo0sXcTvPpqaqcOIEd60l25hKs3E5JbfBBoJdcz0YzFTz0I/7m94Pd7X71V9kAMRu2ioub8RqUV5RmNNrDsxms6j2Li7Sff5JSavVimqnUCgkroSIqHHJzc21y47c/v7+CA0VmxZiH+3aifvsTE1VITm57l1vyeVyhIaGIjY2Fmp1xcFlFgvwwQfBEATxO7e3bVuKhx7KAwAUFhbi7NmzyMlxzOJ1IiJyjGjvaIS5h914UOz6v3xbq5FegCtDweqLjOIMm/v46cRPaP5Fc3x3+DtYBPuHnWZkiPse5ufHUDCi+qzMVIb1F9bjqd+eQsDsADyw9AEsPLYQuTrHB2UNbD4QKkX557jXgsHk8potCzh3ToPHH4/C5cs3XpdOnuyF5cvzbSmViKhRmjUrHwkJN76nmkwyLFnii759Y/Hzz94wGqvuo7bvywa7BWP5w8shl0m/tOzR1o8i2ju63PGBLQbi8oTL2PzEZsT6xFrVl1kwY9npZfCZ5YP+v/SX5PqCiOi/1p5biybzmuDexffiXM45h9bSM6onpnefLnm/bm5ucHd3t7mf9PR0GAwNe/4SEZE1vvhCh+Ji8XPfXn2VgWBEREREVD2GghERERERERER0XW7d5chI8NJVNu77tLDy8v+4R7tg9tj2eBlkk1KfLzN43BTu4lqq5Qr8XqX15E6MRUHRh1At/BuNaorR5eDGbtmwPVDV9y76F4cSzsmqg6yv/vuE0S3Xb+eE6FIPFNpLi6n5NV6IJhMJoOPe+1PPCkq0SMpKanGwWBqpRoPNX/o3wNeIguw41+zDDIsemgRXFWucHYWt0ugTCY+FMSeBEHce2RdDTkjIqoPMjIykJqaKnm/oaGh8Pf3l7xfW3XoIP5ac/fuuhcKdo1KpUJMTAxCQ0PLLd5es8YLJ0+K/6yUyQRMmZKK/3YrCALS0tJw/vx56PV19++FiIikE58bj7SitBsPhojsLN/WaqQXoGUoWH2RUSLNov08fR5Grx+NLgu74ETGCUn6rExmprhnEH5+4gJtichx9CY9fj//O55Y8wT8Z/vjwV8exKLji5Cvz3d0aTcY2mpopa8plUo0bdrU6r727dPiqaeaIDu7/HNhk0mGkSPdsG1bkag6iYgao8xMA+bMqTxopaBAiY8+CsagQTHYutUNFT1a8/b2hlJZ+89nu0d2x4x7Z0je75QuU6p8/d6oe3H+xfPY+/RetPVva1WfFsGCdRfWIeiTINy3+D5cyZd+0wwialyWHF+C4E+C8dDyh3A5/7Kjy0GYexiWDl4Khdw+czBDQ0Ml2bwtISFBgmqIiOovg0HA119XvPmXNe65pxS33iq+PRERERE1HgwFIyIiIiIiIiKi61asEL+D/YAB4kOTaurBZg/is96fSdLX2A5jJemnQ0gHbB+5HUWvF2HSnZPgpbE+kcYsmLHl8ha0+7Ydwj4Nw5y9c2CxWCSpi6Tx4INayOXi/hvftk1c0B7R1UCwHOjLahaQZSuZTIYIj2IEuZYg2EP854JYYoPBhrQc8u8v4jK3gGp257bF5M6T0SW8CwCI3n21pKREypIkU1paKqqdn5+fxJUQETUOSUlJyMrKkrzfiIgIeHp6St6vFO66S/z38YMH6/61laenJ5o3b37977+gQIG5c20LORkyJBetWlUc/GU0GhEfH48rV67w2pOIqAETBAGj142GSbjp2t5bZIcFNpckOYPZgEJ9oaPLICtIFQp2zd7kvbht/m2Y/NdklBjsc78kK0vcIll/f36/IqoPdEYd1pxdg8dWPwb/j/0xYNkALDmxBIVldfNzxcfZBz2a9KjyHLVajSZNmlTb18aNHhg7NgIlJZW/z+l0Cgwe7Izjx4trXCsRUWM0ZUoJ8vOrD/S6fFmNl16KwKhRkTh3TnP9uEwmQ2BgoD1LrNLkzpNv3IDJRgObD0Qr/1ZWndsprBOOjz2Ok2NO4o7gO6xqI0DAPwn/IHJeJO76/i6czTprS7lE1Ah9ceAL+M7yxRO/PYG04rTqG9QCJ7kTVgxZAV8XX7uNIZfLERkZaXM/RqMRJ05Ie6+HiKg+Wby4FGlp4ucFT5pUNzcGJSIiIqK6h6FgRERERERERER03YYNKlHtZDIBQ4bU7q5FL9zxAibdOcmmPu4KuwttA6zbcdRaLioXfHz/x8h9LRcbh29Eu8B2kMH6B7jJhcmY+NdEOH/ojEHLB3Fn0zoiIECFNm10NWrj4mJG9+6F6N69gAvtqcbMujxcTs12WCCYq8vVSeveWjOCPcy1WgNwNRgsOSkJgtlgdZueUT3hofa4+ovYOTd22ny7jX8bvHvPu9d/Dw0NFdVPZmamVCVJKj09XVS7sLAwiSshImrYzGYLNmxIQUGBtIkcMpkM0dHRcHNzk7RfKXl4KBEVJe570bFj9SOkVy6XIzQ0FLGxsTh82BOFheJ3avf0NOGll6r/3lBUVISzZ88iJydH9FhERFR3fXXwK2y9vLX8C54iOzQAqL19Iazyw7Ef4DHTA7J3ZFC9p4LHRx4ImxOGtl+3xb2L78UTq5/A1C1T8f2R77ErcRdyS3MdXXKjlVEs/UJRs2DG7L2z0fKrlvj9/O+S95+VJe5GUUAA7wUT1WU5pTl4bt1z8PvYD4N+HYSlJ5eiyFDk6LKqNajFIDgpqr++1Wq1Vd5/XrTIB6+9FgaTqfolBLm5SvTv74SkpIoDp4mI6Krjx4uxaJFHjdocOOCKoUOb4u23Q5CVpURQUBDkcsct75LJZPhxwI+I9o6WpL+pXafWuE3rgNbY/+x+xI+Lx90Rd1s9z2ZP8h60/Kolbpt/Gw6lHqrxuETUeFgsFnyw4wN4fOSBcX+MQ46ubj0bmdd7HjqGdrT7OM7OzvDx8RHdvrRUjunTg9Gtmw8uXqzZXDoioobAYhEwd674Z/ktW+rRu7em+hOJiIiIiGC35S1ERERERERERFTfHDtWhoQEccFet9+uR0iIs8QVVW9mz5m4UnAFK86sENV+bPuxEld0oz4xfdAnpg+yS7Px6t+v4tfTv6LEWGJVW4PZgDXn1mDNuTWI9YnFW13fwuO3PG7Xeqlq3bqV4fhxl0pfl8kEtG6tw513FqNz52K0bVsKp/+vz8jLs21CFTUuZl0eElKyoddbH4glhZsDwa7x1poAAKkF4ieziFFYokdSYiLCwsMhU1QfWqlWqvFQ84ew6PgiwChyUHHZmFVykjvhp4E/Qa389zO2SZMmovq6dOmSVGVJKiEhQVS75s2bS1wJEVHDZTBYMGJEIVauDMbnnxvRtWuxJP0qFApER0fDyanuB2e1bl2G+PiaT449fbp2A6xtpVKp8NJLQWjXrhDjxytx9Gjl1yCVmTAhAx5WBrsKgoC0tDRkZ2cjPDwczs61f21PRETSEgQBn+//HOP/HF/h6/c1uw+7nHdBrxMR8GGEXa6dpWC0GGEsM6KwrBDJRclVnuskd4JGqYGb2g1eGi/4af0Q7BqMMI8wRHlGIcYnBi39WiLANaCWqm/4MkqkDwW7JrEgEQOWDcCAZgPwWZ/PEO4RLkm/2dniptcGBUkyPBHZgUWwoMfiHjiRccLRpdTY0FZDrT7X09MTRqMRGRn/vvdaLMDs2YH46SffGo2bmKjGAw+UYudOIzw96/69AyIiR3j1VYtVYYs3EwQZ1qzxgsUix2+/1SxUzB48NB5YNXQVOi3oBJ1JfMhLr6a9cHvw7aLbN/Vuim1PbUNqYSpGrRuFTfGbIFiRUH00/Sg6fNcBLXxb4Ju+36BbZDfRNVDt+PHHHzFy5EhHl1EnbN26Fd27d3d0GQ2WyWLC1H+m4ouDX6DUWGp1Ow+1B17s8CLm7Jtj0/uiNR5v+zjGtB9j1zH+KygoCIWFhTAaaza55tgxZ0yZEoqkpKvP3p58Uo9t2yxQKh0XbElEVNv+/FOP06fFP1MfP94Mudz6jaaJiIiIqHFjKBgREREREREREQEAfv3VCEDcYun+/a1bbCw1uUyOxQMXI6UoBXuS9tSora+LLx5u+bCdKis/1sIBC7FwwEIsPr4Y7+94H3G5cVa3v5BzAU/89gTGbBiDoa2GYlbPWfB1qdmkfbJd795yfP75jceCggzo3LkYd95ZjE6dSipdeF9QUMBQMLKKWZeHyynZ0OvLanVcmUyGcI+ScoFg13hrTRAApDkiGCwpEWFh1gWDDW019GoomIh1zQDssrD5vXvewy2Bt9xwLDY2Fi4uLigttX7CKQCcOHECJpMJSmXderxz6JC4Xbdvv138ggAiosaksNCEgQN12LLFEwAwcWI4Fi5MQOvWti1AUKlUiI6OhlxePybq33qrGb/9VvN26ekqJCbqER5ev3bb7drVHQcPWvDFF7l47z035ORYt/i6TZtSDByYV+PxjEYjLl68CDc3N4SFhdWb/y6IiOhG57PPY9wf4/D3pb8rfN1Z6Yz5D85Hx4kdG1woWE0YLUYYDUYUGYqQWpQKZFV+rlKuvBogproaIOar9UWQaxDCPMLQxLMJYn1i0cK3BYJcg/j5WQm9SY/CskK7j7P2/Fr8felvvNP9HYzvOB5OCvHhNTqdGXl5YkPB+N8BUV21K3FXvQwE83XxRffI7jVq4+fnB6PRiNzcXBgMMkydGoJNmzxFjX/qlAsGDCjG338roFLxPY6I6L/Wry/AX3+JD/RSqSz48MO6E7rYNqAtvun3DZ787UnRfbzZ7U1Jagl2D8bGxzYitzQXz61/DmvOrYFZqH5u0tnss7h70d2I8orCZ70/Q9/YvpLUQ0T1j96kxyt/voKFRxeizGz9HBxfF1+80/0dPN/heQCAzqTDnH1z7FUmWvu3xjd9v4FMVrsBMU2aNMGFCxesOtdoBObP98d33/nBYvm3zt27XfHBB7mYNs3bXmUSEdU5n3xSfWBtZQIDjXjqqZpvCkZEREREjVfdWjVCREREREREREQOs369+FtFQ4c6biWYRqnB2kfXovP3nWsUtPX0rU9DrRQXgmaLEbeMwIhbRiAhLwGv/PkKNsZthMFisKptibEEPxz7AT8e+xHtAtvhw3s/RK/oXnaumK659143+Psb0bKlDnfeWYzOnYsREWGANXOydDr77hhJDcO1QDCdgwLB3FyqDvzy0ZoAyJBWULuLfgqLrQ8Guy/qPnhqPJFflC9uMIk34b4r7C5M6jyp3HG5XI727dtjx44dNeqvtLQUhw8fRseOHaUqURI1/XMAQFhYGJo0aWKHaoiIGpbU1DL07WvGsWNu14/pdHK88EIEfvrpEsLDrbuWuJmLiwsiIyPrVXBFp07ir1l3765/oWAAoFDIMX68N4YPN2Dy5Hz89JPHDYstbiaTCZg6NRW2/M9aVFSEs2fPIiAgAL6+DKMmIqovSgwleH/H+/hk7ycwWoyVnvfuPe8iyisKGo3Iz0WTyALrMZPFhGJDMYoNxUgrTgOyKz9XIVNcDRBTu8FT7flvgJh7GCI9IxHjE4MWvi0Q5t64AjgzijNqbaxSYykm/z0ZP534Cd/0/QZ3ht0pqp/i4jKMHFmC7GwlsrKckJ2tRHa2Evn51X8nDQ2t3VB9IrKeIIhftOlIg1sMhlJe82vi4OBgFBcb8cwzPjhwwNWmGnbscMXw4QVYvtwNCkXj+QwjIqqKyWTB66/bNldm5MgCtGzpJVFF0hhxywjsSdqD+Yfn17htt4hu6BLeRdJ6vF28sWLoChQbivHChhfwy6lfqrzuveZS3iX0+6UfQtxCMLvnbDza5lFJ6yKiuqtQX4gXN76IX07/ApPF+ptZwW7BmHXfLDzW9rEbjk/sPBFfHPwCBrO4Z3JVcVe7Y/XQ1dCqtJL3XR2VSoWgoCCkpaVVeV5CggpTpoTi1KmKQ2xmzPBEnz7FuOMO2645iIjqgxMnDPjnH/GhXmPGGKBS1Z1QYCIiIiKq+xgKRkREREREREREuHjRgJMnxS0Ea968DM2a1X641n/5uvhi42Mbcef3dyK7tIpVWf8ngwzPtX+uFiqrXBOvJljz6BpYLBZ8uu9TfLrvU6QUpVjVVoCAI+lH0Pvn3vB29sYz7Z7Bu/e8C42y/i1yr0/Uajm2br0ASw0mjF0jCALKysqgVjv2/ytUd9X1QLBrfLRGAE51NhhMpVBhYPOB+CH9B3EDSbh5qdZJi0UPLYJCXvHfba9evUSFaa1cubJOhYIdO3YM8fHxNW7Xp08fO1RDRNSwnDlTir59Fbh8ufyk0txcJcaMuRoM5uNjrlG/Hh4eCAsLk6rMWnPnnS5QKASYzTXfKf3gQQHDhtmhqFri56fCjz+qMGpUIcaPV+LIkYonGj/8cB5atdLbPJ4gCEhPT0dOTg7Cw8Ph7Oxsc59ERGQfgiBg5ZmVeOWvV5BcmFzluTLIMKHTBACAXi/y84KzDatkFswoMZagxFiC9OJ0IKfycxUyBdRKNVxVrlcDxFyuBoiFeoReDRDzvhogFulZv4JcK5JRUnuhYNecyDiBzgs7Y/RtozHjvhnwdq7ZTR+FQo9XXilft9EoQ06O8v9hYcrrYWHXwsNycpQID+eiLqK66q7wu9DGvw1OZp50dCk1MrTVUNFtmzYNQ8uWhThwwPY6Vq3ywIQJefj887oVXkNE5ChffZWP06fFP1z09jbh/fdrPwTGGnN7z8XhtMM4lHqoRu2mdp1qp4oAV5UrFg1chPkPzsekvyZhwZEFKDNX/2w9pSgFw1YPw0ubXsL7Pd7H6NtH261GInKs7NJsjF43GmvPr4VFsFjdrolnE8ztPRf9m/Wv8PVgt2A8fevT+ObwN1KVet2PA35EjE+M5P1ay8fHB/n5+RVudikIwK+/emP27EDo9ZXfmyork+OppxQ4fNgMZ2cGpRNRwzZrlhGAuGBgrdaMceM4x5uIiIiIakYm1Ndtj4iIiIiIiIiISDIffVSCN94QN9lw8uRizJpVN3Z625e8D/csugd6U9WL2vpE98HGxzbWUlXWO5p2FBP/mogdV3bALNRsYb9cJsf/2Lvr+KauNg7gv1jd3UsNt+IMH+6yMWy4Dxg2ZAMGGxswbBsw3N1h2HB3t5ZSd/cmbRq5ef9g2wujktzcJJXn+/nweUdyn3Oet0Cb3JzzO628WmFlp5Vo5NZIRx2S2NhY5Obmsqq1t7eHq6srxx2RisCggWA2EliyWJSXIdF/MBgAWFmYwNPTGzxB8Zsr99zag2Gth7GbYBYAjtbeb+qxqcRF5UFBQahdu7bG47q4uCA6OrrMhAxOmjQJ69ev17ju+vXraNOmjQ46IoSQiuHWrTz062eC9PSSAwVq1crH9u3RMDNTb3ODg4MDXFxcuGjRIKpWlSIsrPSFskZGDKpVk6JmzQLUqlWApk0L0amTnx461D2lksG6ddlYvNgSGRn///thba3AmTNhsLHR7L2kOiwtLeHp6VnuA0kIIaSiCUkPwZS/puBy5GW1rve380fYlDAAgJmZWZGb/Ur1Hdjud+EcDzxUs6+G7MJsiGViSBVSKFiE+ZcHAp4AxgJjmBuZw9rEGg6mDnCxcIGH1d8BYvYBqG5fHb52vhDyy15y2+m3p9HrYNEba/XB0cwRqzqtwpd1vwSPp17AbHJyMtLTSz+ApCg1a9bU+nXT8+fPERgYqPb1z549Q/369bWak5DKIiQ9BO12tXsX3lgOOJk7IXFGYrGHT6hDoWDQs6cY589badWLSMRgyZJ4DBjAK5dh44QQwqXcXAWqVlUhJYV9IOzSpZmYO5fDE4s4Fp0djYabGyKzIFOt6xu7NcaDMQ/Ufs2tLQWjwPyr87H24Vrky/PVrrMxscG8lvMwo/kMut9pYDt37sTIkSMN3UaZcO3aNbRt29bQbZRbsTmxGHtqLC5FXoIK6m+Tre5QHRu6b0DbKm1LvTYqKwoBawM0Xs9XklmfzMLyjss5G48tpVKJkJAQvL/FOD1diAUL3HH7tqXa40ycmIX16ylAmBBScSUmKuDjw4dMxu415PjxYmzcWDbW2hNCCCGEkPKj7K0AIYQQQgghhBBCCCF6d+oU+4Vu/fuXnVPvm3k0w75++/D54c9LXOQzsdFEPXalvkDXQFwdfhVShRQ/XP8BW55uQUZBhlq1jIrBjZgbaLylMdws3TC16VTMaD6jTG4CK89sbW1Zh4Ll5eVRKBj5iFKaXe4CwQDA3lwOQP/BYLliKeLjYuBRQjBY/hv1F31/wBqcBYJ1C+iGsQ3GlnhNrVq10KhRIzx+rNkJ28nJydi+fTsmTjT8z7LExERs375d47qAgAC0bt1aBx0RQkjFcOxYNoYPt4REUvrP6aAgM8yY4Ym1a2MgKuWtmZubG+zsyu4mM3XUqVP4USiYSPR+ANi7//Xzk5b69SivBAI+pk61w+DBMsyenY09e6yhVPIwbVqKTgLBgHfvZd68eQNnZ2c4ODjoZA5CCCHqE8vEWHxjMX69/yvkjFztuvou9QEA+fn57ALBAKAM/Xz1svbCm8lvPno8WZyMoNQghGWGITIrEnE5cUgSJyFNkoYsaRbEMjEKFAXlKkBMqVIiX5GPfEU+0vLTEI7wYq/l8/j/DxAztoa9qT1cLFzgbuWOKjZV4Gfrh+oO1VHVvipEJYSucylFkqKXeYqTlp+GYSeHYcfzHdjQfQOqOVQrtUYuV//f1n9RsAAhZVt1h+q4Ouwq2u1qZ/DvT+r4vMbnWgWCAYBQyMfRo2Zo106CR4/Y3QS3sFDi999j0aSJBDk5gEgkKteh44QQoq3jx9ORnu7Muj4gQIoZM2y4a0gHqthUwb5++9BtXze1QnbmtZqnt0AwABDyhVjWYRmWfLoES28vxfK7y5FbWPpajmxpNmZdnoUfbvyA6c2nY1GbRfQanpBy6m36W4w5NQa3425rVBfoEojNPTdrdOimj60PhtQdgt0vdmvaZpHaeLfBkvZLOBlLWwKBAB4eHoiLiwMAXLliiUWL3JGdrdmaw02bbNCjRw66dbPWRZuEEGJwq1dLIZOxC/USCFT45psycuIKIYQQQggpV3iq92O8CSGEEEIIIYQQQkilk5KigLu7AEql5ovzPD1liI4Wgc/X38I+dfx671fMuDijyOe8rL0Q+XWk1gvo9eVy5GV8e/lbPEl6otFphgAg4ovQ1b8rVndeDT87Px11WLmoVCoEBQWxrq9ZsyYtKCX/UkqzER2fZphAMOt8WJpp/3cxXSJCsp6DwQDA2sIYHp5VigwG69q1K86fP6/5oPUB9NG2M8DO1A6vJ76Gq2XpIYC7du3CiBEjNJ7D3t4eb9++hb29PYsOudO/f38cPXpU47pt27Zh1KhROuiIEELKv3XrsjB9ujUUCs1+vvbqlYWffkpAcXuuvL29YWmp/mneZdUvv2Rg926zvwPAClCzZgECAgohEpX+XsnPzw+mpqZ66FK/7t7Nw9q1cnz7bSL081ZDBDMzL/j6VryvJSGElHUqlQqHgw5j5sWZSMhL0Lh+atOp+K3LbwgKCkLt2rU1rjcxM4HTz06IzYnVuFYXmrg3wYMxD7QaI02ShuC0YIRmhCIyKxKxObEfBIjlyfJQIC/QKHytPOHz+DASGMFcZA4rYyvYm9rD2cIZHpYe8Lbxhp/duwCxavbVYCw0Zj3PTzd/woJrCzjsnD0jgRHmtJiDb1t+C1NR8a9noqKiIJFINB6fx+OhVq1a2rQIAHj+/DkCAwPVvv7Zs2eoX7++1vMSUpkEpwWj3a52SJWkGrqVEl0ffh1tqrThZKzUVBlatmQ+CtsujZOTHOvXR6NatQ8/y6gI4eOEEMJGQUEBIiIiEBlphNWrXXDjhpXGYxw6lI0vvrDhvjkdWHR9EX648UOJ19R2qo0XE16AzzPsWoi1D9bihxs/qH34HgCYCE0wodEE/NL+FxgJKahBn3bu3ImRI0caug2DEwgEiI2NhZubm6FbKTeeJj3FuNPj8CTpiUZ1n3h8gq29tqKGYw1W84akh6DmHzU1Xr/3X64Wrng6/ilcLMpWyO7btzGYO9cKJ0/ash7D3V2G588BBwf6fkoIqVgkEgaengyystgd0tyrlwR//snRaaWEEEIIIaRSoVAwQgghhBBCCCGEkErujz8kmDyZ3YeN48eLsXEju5OPdEmlUmHa+WlY83DNR8/91O4nzGs9zwBdaSczPxNzr8zFgdcHIJaJNa73s/XDvFbzMLzecAql0lJoaChkMhmr2ooSxkC0p5RmIzohDQUF+g8E87TOhxUHgWD/SJcYITlH/+GQ1hYm8PD0/iAYLC0tDR4eHuz+jfbBu2AwLR3+/DD61+qv1rUKhQJVq1ZFVFSUxvP06tULJ0+e1OuJ2+9ju0g7ICAAwcHBEArZLZIihJCKSqlk8P33OViyhP1C+7FjU/H11x9uZubxePD19a0wYViZmZlITExkVevo6AhnZ2eOOyobGIZBUlISsrKydD7Xrl32WL/eCTNm5GD+fBsYG9P7S0II0YfgtGBM+WsKrkZdZT3GLx1+wewWs3Hq1Cn07t1b4/pq1arhycsnWHxzMVbdWwUFo2DdCxd6Vu2JU4NO6W2+zPxMvEl/g7cZb98FiGXHIlGciFRJ6rsAscL/B4hpuzm0LOKB9y5AzMgcVkZWsDO1g7OFM9wt3d8FiNn6oZpDNVS3rw4zI7MPaqecm4J1j9YZqPOi+dn6YX339ejk16nI58PCwlBYqPl9O4FAgBo12G0ufh+FghGiH8FpwWi7sy3S8tMM3UqRXCxcED89ntODjsLDC9CqlQDJyept0vf1lWLjxhi4uhYdkEmfexFCKqP/rhe4d88cK1e6IDRUvXuwrVqJcfNm2VtnUxwlo0T3/d1xIeJCsdfs77cfg+oM0mNXJdv1fBfmXpmLZHGy2jVGfCMMqzcMv3f5/aP3NEQ3KBTsne7du+PMmTOGbqNcuBl9ExPPTkRwerDaNTzw0MG3A7b22govay+te+h/pD+OBmt+cNo/hHwhrg+/jhZeLbTuhWsKBYM2bfJx9652P6P69cvBsWPWHHVFCCFlw+rVEsycyT7U69YtKVq21CyknRBCCCGEEIBCwQghhBBCCCGEEEIqvY4d83H5MrsFbZcuFaBDh7K5uVzJKDHo2CAcCT7y72M1HGrg0dhHMDcq3ycuHXh1AD/e+BEhGSEa15oKTdG/Zn+s6LgCThZOOuiu4ktKSkJGhvony77PysoKXl7aLzIj5ZuyMAcx8anIrwCBYP9IFxshOddQwWBVwBO8C5j64YcfsGjRIs0H4gOYCUDLHw9D6gzB3n57Nao5evQo+vdXL0Tsv2bNmoXly5ezqtXGlStX0L17d1abYy9duoQOHTrooCtCCCm/FAoGY8fmYudOG63Hmj8/EQMGZAIA+Hw+/P39YWRUcU7jVigUCAnR/H0QAJibm8PHx4fjjsoWmUyG2NhYSKVSnYyfmipEz54ByM9/tyHd31+KFSuk6NPHRifzEUIIAfIK8/DDjR/w+4PftQ7h2tt3L4bUHYJ58+ZhyZIlGtd37twZ58+fBwC8SnmFiWcn4k7cHa160saYwDHY0muLweYvSa40998AsYjMCMTmxCIhLwGpklRkFmQiT5aHfHk+5MqKHSBmKjKFlbEVcgtzkS3NNnRbRRpYeyBWd1oNV0vXDx4PCQmBQqH5vzkjIyNUrVpV674oFIwQ/QlKDUK7Xe3KZDDY5MaTsbbbWs7HffhQjA4dTJGXV3LYWGCgBGvXxsLaWlnidX5+fhUmjJwQQkqTnZ2N+Pj4jx5XKoGTJ22xdq0TMjJERVS+IxCocPeuBE2alJ9QMABIz09Hw80NEZsT+9FzAXYBeDPpDachllw5/uY4ZlyYgZicGLVrhHwhPq/xOTb02AAbExvdNUcoFOxvx44dQ79+/QzdRpl2Luwcpvw1BZFZkWrX8Hl89KraC5t6bOJ0fdyzpGdosLkB6/pfO/+Kac2mcdYP18LDC9CwoQi5udod8rZ1axZGj2Z/EBIhhJQlSqUK/v5yREezW3fRtGkB7t+n+yaEEEIIIYQdCgUjhBBCCCGEEEIIqcTy8hg4OgKFhZoHxDg4KJCcLIBAoP8QGHWpVCrseL4Dt2Nvw8PKA5MaT4KzhbOh2+JMbE4sZl6ciVNvT0GmlJVe8B/1nOvhp3Y/oUe1HjroruKSyWQIDQ1lVSsQCFCjRg2OOyLlSUUMBPtHusQYyTk6G75Y1hbG8PD0gUyhhJeXF1JTUzUfpCqAwdr14W7pjlcTX8HWVPOFjd27d8e5c+dYzTtjxgysWLECfL7u/mzfd/r0aQwYMAAFBQUa144fPx4bN27UQVeEEFJ+KRQKBAeHY+xYDzx8qP1GMB5PhV9/jUWXLlL4+/tDICh7G7G0FRQUBDbLHCrTa/GcnBwkJCSAYRhOx5092wN//WXz0ePdu+fi999F8POjxcyEEMIVlUqFg68P4ptL3yAxL5GTMa8Nv4a2Vdqibdu2uHHjhsb1EyZMwIYNG/79PaNisOPZDsy+PBuZBZmc9KiJ+a3mY/Gni/U+L9fEMjFC0kM+DBDLTUCKJAWZBZnILcxFvjwfMqWsQgaIlQVWxlZY8ukSTGg04d8gA7avOc3MzODr66t1TxQKRoh+vU59jXa72iE9P93QrXzg1shbaOnVUidjnz2bg379LCGTFX1f+dNPc/HLL3EwMSn9eyGPx0NAQECFCiUnhJCiMAyDkJCQEu+5SSR8bNvmgN27HYpchzN4cDb27bPRYZe68yjhEVruaPnR2pQdvXdgRP0RhmlKTZciLmHyuckIzVR/nQefx0ePgB7Y0nMLHbinIxQKBjg4OCAxMREiUfFhgpXZgVcHMOvSLCTkJahdI+QLMaDWAKzvth5WJlY66av7/u44F6b5+o4van2Bg58dBI9XdtdaAsCmTVmYMEG7QC8bGwWePpXDx4c+NyKElH+HDuVj4EB2B28DwMGD+RgwgH09IYQQQgip3CgUjBBCCCGEEEIIIaQS271bguHDzVnVDhkiwd697GoJtxiGwbpH67Dy7krE5cZpXG9jYoMR9UZg8aeLYWFUvk6kNZTg4GDWG+xr1KhRIcMZSOmUhbmIiU/ReyAYAHhZF8DKXPehUYYKBrOxMMHBIycwa/ZsdgP0B1BLux4ufnkRHf06sqpNTU1FvXr1kJyczKq+S5cu2LFjB1xcXFjVq0Mmk2Hx4sX4+eefWW2KbdCgAe7cuQMTExMddEcIIeWTTCZDeHg4GIZBXh4fI0b4IDRU+8XxEydmYt06G70FRupbaGgoZDLNQ5EBoHbt2hx3U3YxDIPk5GRkZnIT0vLokTlGjfIp9nkzMyWmTcvF999bw9i4Yv7dI4QQfQlKDcLkvybjevR1TscNnRwKR4EjnJ2dWf0sXblyJWbOnPnR42mSNMy6NAu7Xuziok21re26FpObTNbrnIYmVUgRkvYuQCw8MxwxOTH/BohlFGS8CxCT5aNQWUgBYiw0dmuMjT02ooFrA7x+/ZrVGFZWVvDy8tK6FwoFI0T/XqW8Qrtd7ZBRkGHoVgAAbpZuiJseBz5Pd++vtm3LwtixNlCpPgwlGDAgA99+mwRNPsri8/moVq0aff5FCKnQkpOTkZ6uXoBkUpIIv/3mjHPnbP59zMJCieBgOTw9y+9nZceCj2H4yeGQyCUAgBH1R2B7r+1lPuDmH/fi7mH8mfF4lfpK7RoeePjU51Ns67UN3jbeOuyu8qFQMGDatGn49ddfDd1GmbPx8UZ8f+17pOWnqV1jJDDCqPqj8GuXX2Ei1O332btxd9FiewuNaqo7VMfDMQ9haWypo6641bt3Dk6dsmZdLxQyWLUqEZMnu1XYzysJIZVH06YFePiQ3ToOHx8ZwsJEZfrwbUIIIYQQUrZRKBghhBBCCCGEEEJIJdavnwQnTrAL9jp2LB/9+tHpRWXN65TXmHFxBq5GXYVSpdSols/j4xOPT7Cy00o09Wiqow4N4236Wxx8fRBWxlYYXn847EzttBovMjIS+fn5rGpdXFzg4OCg1fyk/DFoIJiNFFZm+ltYkiYxRoqeg8EyMzPRs0cP5OblaV5sDeBrAFrsVZrceDLWdlvLfgAA9+7dQ6dOnSAWi1nV29jYYOHChRg/fjxMTbk9bfXMmTOYPXs23rx5w6q+du3auHbtGn3vI4SQ9+Tn5yMqKuqDoMXUVCG+/NIXSUlGrMddsCATP/6o3Wvdsi42Nha5ubmsav38/Dj/OVnWyWQyxMbGQiqVsh5DLgf69/dHRETpG2n8/KRYsUKKvn1tWM9HCCGVVW5hLn64/gN+f/C7xvf11CH+VoyDew5izJgxrOpv3bqFli1bFvv89ejrmHh2IkLSQ9i2qJHDnx9G/1r99TJXeSRTyBCaEYqQjJB3AWLZMYjPjf83QCxHmgOJXAKZUgZGxe7wg4qIz+NjcuPJGOQyCBYizQ/QcHBw4CS0nULBCDGMlykv8emuT8tEMNjUplPxW5ffdD7P4sWZ+P77/99H+PrrFIwZkwY22S4ikQgBAQG06Z8QUiEplUpWn5O9fGmKFStc8Py5OebOzcTSpeX/3m1CbgKeJD2Bt7U36rnUM3Q7rLxMeYkxp8bgUeIjjeo+8fwE23puQ3XH6jrqrHKhUDDg5cuXqFOnjqHbKBMYhsGKuyuw9PZS5BSqv+DEVGiKyU0mY0n7JRDyhTrs8EPtdrVTO9DfXGSOh2MfoqZjTd02xaG0NBnq1QOrzyz9/aVYujQe1atLOQtPJ4QQQ7l9W4pWrdiHTa5eLcH06XT4NiGEEEIIYY9CwQghhBBCCCGEEEIqKamUgZOTCnl5mqegWFgokZbGg4kJLeouq2QKGX669RM2Pt6o0cmJ/3CxcMGkxpMwt+VcvS6a0oUrkVfQcU9HqPDuVqibpRsufHkBtZ1qsx4zMzMTiYmJrGrNzMzg6+vLem5S/lSmQLB/6DsY7IcffsDRo0fZFXcH0Jj93FXtq+LZ+GcwE2kflHn9+nV069YNBQUFrMdwdnbGqFGjMHToUNSoUYP1OGlpaTh06BC2bNmCly9fsh6nRo0auH79OpycnFiPQQghFU1ubi5iY2OLfC4y0hhDh/ogN1ez1+AiEYM1a3IwYYItFy2Wadq8FucqpKE8ysnJQUJCAhhG89CPXbvssXKlq0Y13brl4vffRfD3r1whbIQQwoZKpcL+V/vxzaVvkCxO1skc1sbWyJ6bjRYtWuDu3bsa14tEIuTm5sLEpOTNLzKlDCvvrsTim4shVbAPpFTHjRE30Nq7tU7nqCwUjAJhGWEISX8XIBadE42E3AQki5P/DRATy8QoVBZWmgAxEV+E1i6t0d2rO+yN7d/9MrGHudAcvBKSctzc3GBnp33Qgy5DwWRKGXKkOcgpzEG2NBs50hxYGVuhjnMdmAjZb3AjpKJ4kfwCn+7+FJkFmQbt486oO/jE8xO9zDVxYha2bLHBokUJ6NMnW6uxTExM4O/vz01jhBBShmhzUIFKBVy9aonRo91hYVG+115UNBGZERh9ajRuxtz8dz2JOhq4NMCWXlvQwLWBDrsj5UXDhg3x9OlTjesaNWqER480C6ariBSMAguvLcTvD36HRC5Ru87K2ArfNP8G81rNM0go7eXIy+i4p6Na1x787CAG1B6g4464d/JkNvr1s4ZKpf6ao6FD0zF1agqMjf//PdXb2xuWlpa6aJEQQnSud28JTp1iF+plZ6dAbCwf5ua0zp4QQgghhLBHoWCEEEIIIYQQQgghldTJk/no25ddgEnv3hKcPEmnF5UXN6JvYM7lOXiY8FCjhYwAIOQL0cm3E1Z3Xo1qDtV01KHuKBkl/Nb4ISYn5oPHPa08cX/MfbhZurEal2EYBAcHs6rl8XioVasWq1pS/jCyPETHJRskEMzTRgprAwSC/SNNYoKUHN1/BPHw4UOMGTMGrD7usAAwDQDL9fcCngB3R99FE/cm7AYowsWLF9GrVy8UFmr/d6ZKlSpo27Yt6tevj5o1a8Ld3R3Ozs4wMzODiYkJ5HI5CgoKkJGRgYSEBISFheHFixe4ffs2nj17xu5r+p5GjRrh1KlTcHXVLESEEEIqsoyMDCQlJZV4zbNnZhg7tgoKC9VbHGphocTu3Xno29eGgw7LPoVCgZCQEFa1lT2gl2EYJCcnIzNT/c3tqalC9OoVAIlE80BxMzMlpk7NxfffW1OoOCGEFONVyitM/msybsbc1Ok8NR1rYn2t9Wjbti2r+iZNmuDBgwdqXx+ZFYlJ5ybhfPh5VvOpI2RSSLm8X1neKRgForKi8Cb9zbsAsexoxOfGI1mcjPT89HcBYnIxChWFUKqUhm6XczzwYCGyQHfP7phaeyosRBYfPO/j4wNzc+0/O9E0FOynQz/BporNu5Cvf8K+CnOQI8358DFpDgoURYfRe1p54szgM6jrXFfr/gkp754nP0f73e0NFgzmYeWBmGkx4PP08z5KqWRw+nQs/P3FnIxnaWkJb29vTsYihJCyoLCwEGFhYVqNYW9vT5+XlWEJuQkYe3oszoef12hNTQ2HGtjYfSNaV6HA6srq5cuXqFevHqva9evXY+LEiRx3VH7IFDLMvDQTW55sQaFS/bUR9qb2WNhmIaY0naLD7kqnUqnQbFszPEx4WOJ1U5tOxW9dftNPUzowdmw2tm61KfU6Jyc5fv45Hs2afRzsxuPxUKNGDYOEtxFCiDbCwmSoUUMEpZLd+suZM8VYudKi9AsJIYQQQggpAYWCEUIIIYQQQgghhFRSw4ZJsGcPu80pO3dKMHw4hYKVN7nSXHx75VvsebkHebI8jet9bHwwp8UcjG0wttws1Dn19hR6H+xd5HP1Xerj5oibsDRmdxphSEgIFAoFq9qAgAAYGxuzqiXlByPLQ0xcMiQGCQQrhDW73EdOpUpMkKrDYDCxWIzPPvsMiYmJ7AboDUD9/ZUfWdB6AX5s9yP7AYpx//59DB48GFFRUZyPrQ98Ph/ffPMNfvrpJ4hEIkO3QwghZUZSUhIyMjLUuvbKFUvMmOEFhil5gamTkxwnTkjxySeV64TtoKAgVuGVAoEANWrU0EFH5YtMJkNsbCykUmmp186Z44Fz52xYz+XkJMfp0+Hw8XGAo6Mj63EIIaSiyZHmYOH1hVj3cJ1egpM6+nZE4dZC3LzJLnxs/vz5WLx4sUY1KpUKR4OPYur5qUgSlxyKykbWnCzYmNhwPi7hDsMwOBN6Br0PFX1/trwzEZigb5W+GOQ3CD6WPgCA6tWrQygsPn1eqpD+G85VUnBXZEgkzs08p34z4wFwkDHRwrMFbo+6rf1AhFQAz5Keof3u9siSZul97hnNZmBV51V6nZNhGLx9+xZKJTevSyj8hhBSkYSHh6t1H604fD4f1atXLzdrLCqz9Px0TDg9ASffntTovbqvrS/Wdl2LbgHddNgdKYumTp2KNWvWaFxnYmKCpKQk2NjYcN9UGSeWiTHl3BTse7UPckaudp2rhSuWtl+K4fWH67A7zZS0Jg0APvH8BNeGX4ORwEiPXXFLIlEgMFCBsDCTYq/p2jUb8+YlwtqaKfaayn5oDyGkfBo/XozNm9mFehkbM4iMZODmxvKkUkIIIYQQQv5GoWCEEEIIIYQQQgghlZBSqYKrqwJpaZoHdRgZMUhNVcHaWqCDzoi+HA0+ioXXFyI4LVjjWhOhCfpV74dVnVfBxcJFB91xp+u+rjgffr7Y57v4d8HpQach5Gv+4XtcXBxycnJY9UWbISo+RiZGTHwSJPmVNxDsH7oMBps/fz7+/PNPdsUeAEYDYHeYHxq4NsD90fchEugm9Co3NxcTJ07E/v37dTK+rnh5eWHHjh349NNPDd0KIYSUKbGxscjNzdWo5tAhO/z0k1uxz/v6SnH2LIPq1cvQD349CQ0NhUwmY1Vbs2ZN2oD3t5ycHCQkJIBhit6o8eiRGUaN0m6TxooVsejS5d3ffZFIBE9PT5iZVb6/s4QQ8g+VSoW9L/di1qVZSJGk6G3eFhktcGftHdb1L1++RJ06dVjV5hbmYsHVBVj3aB0YVfGbAzVhJDCCdJ4UPB7LN/VEb86GnkWPAz0M3YbOOZk4wd/KH018miBPlvdRyNc//y1TqvkaNgnAJg0a4CgUTMAToHB+IQR8+vyHEAB4mvQUHXZ30Hsw2P3R99HUo6le5wQAuVyO0NBQViHcRXF2dqZwaEJIuZeXl4eYmBitxnBzc4OdnR1HHRF9EMvEmHR2Eva/3g8Fo/5BcR5WHljZcSUG1B6gw+5IWSGTyeDm5qb2YTDvGzRoULlbB6CtzPxMjDszDidDNAvd87b2xq+df0XfGn112B07jIpBvY318Dr19UfPOZk74em4p3C3cjdAZ9y6ezcPbduaQy7/8LM1S0sl5s1LRPfu6q2do5+HhJDyJDNTCS8vQCJhd590yBAJ9u6lg7cJIYQQQoj2aKUrIYQQQgghhBBCSCV082Yhq0AwAGjVSkqBYBXA5zU/R9BXQUiYnoCBtQbCRFD8iX7/JVVIsf/1friuckXdDXXxZwjLQB4di8yKxIXwCyVecz78PL46+xWrDQ62trZsW0NeXh7rWlL2USDYh5zMpXCy4n6T7unTp9kHgvEAdAPrQDBjgTH29N2js0AwALCyssK+fftw4MAB+Pn56Wwernh5eWH9+vUICwujQDBCCHkPwzCIiIjQOBAMAAYMyMTYsalFPhcYmI/bt3mVMhAMAExNTVnXSqVSDjsp36ytrVG9evUiN2HI5cCSJcWH0qmjaVMxOnf+/999uVyOyMhIREdHQ6lUf9MPIYRUFC+SX6D1ztYYdnKYXgPBkAU83fmUdXn16tVZB4IBgJWxFX7v+jsejnmIRm6NWI/zPmdzZwoEKyf0+nfdgFKlqbibehe/PfgN255tw7E3x3A58jIeJz5GWGYYUiWp6geCGZC/nT8FghHyngauDXBp6CVYGVvpbU4vay80cW+it/neJxKJOL0XnZKSwvpwHUIIKSsSEhK0qheJRBSAUg5ZGFlgV99dyPs2D181+grGAmO16uJz4zHw2EA4r3DG5iebddwlMbQ///yTVSAYAIwaNYrjbsqu+Nx4dN3bFQ4rHHDszTG1A8Gq2VfD5aGXET0tukwGggEAn8fH/Fbzi3z84GcHK0QgGAB88oklZs/O/uCxJk3EOH48XO1AMABITEyEXC7nuDtCCNGNtWulrAPBAGD2bN2tKSSEEEIIIZULhYIRQgghhBBCCCGEVEJHj6p/kuV/9e7NzenQpGxws3LDgc8PQPKdBOu7rUcV6yoa1b9KfYU+h/rAepk1ppybglyp5mEHurLp8SaoUPrf1y1Pt2DZ7WUaj29hYcGmLQDvTgxlGIZ1PSm7DBoIZi0rc4Fg/3CykMLJiruPJN6+fYsff/yR/QBNAWiRcbGswzLUdKzJfgANDBw4EG/fvsWuXbtQtWpVvcypicDAQGzevBnh4eGYOHEijIyMDN0SIYSUGQzDICwsDAUFBazHmDIlFb17Z33wWMeOebhxwwiuruptRKqILC0tWdeyCWiryPh8Ptzc3FC1atUPwtYOHLBHeLj64dH/JRSq8O23SSgqr0UsFiMkJARpaWmsxyeEkPIkW5qNr//6Gg02N8Dt2Nv6nVwO4BBQkMf+9ciQIUM4aaWhW0PcH30fa7uuhaUR+5/lAOBs4cxJT0T3UsSVIxSsohhWb5ihWyCkzLExsUGhQn/3+7+o+YVBgy9NTEzg7e3N2XhxcXGQSCScjUcIIfqUlpYGhYL92hoA8PDw4KgbYggmQhP80f0PiL8TY/Yns2EmVO/D+NT8VIw/Mx62v9hi1d1VtDakgtq+fTurOm9vb7Rv357jbsqeiMwItNnZBl6/euF8xHm11m8BQD3nerg/+j5CJoegvW/Z/zp9UesLjGsw7t/fGwuMsb3XdrTzaWfArri3aJENmjSRQCRi8M03SdiyJRouLpoHfEVFRemgO0II4ZZMpsLGjezXv7Vvn4+6dWn9HCGEEEII4QZPpVLRLk5CCCGEEEIIIYSQSoRhVPD1lSMmRvMPHfl8FeLjlXB1FeqgM1JWvEl7gxkXZuBy1GUoGM0WufLAQzOPZljecTlaerXUUYelkyqk8FjtgYwC9U/l3NdvHwbXGazRPGFhYSgsZLcZxNvbW+Mwg+jsaFyMuIjYnFh4WnliRP0RMBZW3jCIsoaRSf4OBJPqfW5Paxmszcv+7f5UsSlSc7Vb9JyXl4eBAwciNjaW3QCOAMYBYHkgXzvbBrg85RH4PP2fu6JUKnH69GkcOXIEZ8+eRU6O+qeucoXP56NFixbo27cv+vXrx+kGMUIIqUhkMhkiIiKgVKp34nlJ5HJgyhRv3LljicGDs7FzpxVEosp9/pdCoUBISAirWjMzM/j6+nLcUcWRk5ODV6+S0aWLv1anH48YkYaZM0sPAREKhfDy8oKZWRlNtyWEEC0wKgZ7XuzB7MuzkSpJ1X8DCgAHAYSzH8LMzAwxMTFwcHDgqisAQGJeImZcmIFDQYdY1XcP6I4zg89w2hPRjal/TcWah2sM3YZGqllXQyOHRqhvVx9ipRgZ0gykS9PxIvMFInIjIGNkum8iCcAmDa4fD8BVuymNBcaImx4HR3NH7QYipAKJyIxAnQ11UKBgH66pqYdjHqKxe2O9zVeczMxMJCYmcjIWj8eDv78/jI3p8yxCSPnBMAzevHkDbbZb0X3IiodhGCy5vQQr7q5AbqH6h09YGFlgRrMZWNhmIfj8yn1vv6JISEiAl5cXq8C3hQsXYtGiRdw3VUa8THmJMafG4FHiI43qmrk3w9ZeW1HLqZaOOtOtF8kvEJYZhoauDeFj62PodnTi7dt8BAUloGpV7UKTHRwc4OLiwlFXhBDCvc2bJRg/3px1/V9/FaBLF9PSLySEEEIIIUQNFApGCCGEEEIIIYQQUsk8eVKIRo3YLbpu2rQA9+/Th5WVhYJRYMmtJVj/aD1SJKVv5v4vJzMnTGw0Ed+1+g5GQv2efLX35V4MPTFUoxojgREuDb2E1t6t1a5JTk5Genq6pu0BAKysrODl5VXiNbmFubgefR0XIy7iYsRFhGWGffB8U/emuD3qNoR8CuozNEMGgnnYyGBjVn5u9aeITZHGMhhMqVRiypQpuHXrFrvJ+QDGAHBjV24lBV5tALy6DgQOHGA3CEfkcjkOHjyIuXPncrY5Sx18Ph8NGzZEx44d0b17dzRv3hw8Hk9v8xNCSHkglUoRERGh1Yax/8rP5+PqVUfMmmUPgYA2DQFAUFAQq6+xQCBAjRo1dNBRxaFUMtiyJQcLF1ogNVXzJFUnJzlOnQqDubn6r/ksLCzg6ekJgYB9EBkhhOjKDz/8gGnTpsHa2lrtmufJzzHp3CTcjburw85KIANwBEBYaReWbMqUKVizRneBThfCL+Crc18hMitSo7pR9UdhW+9tOuqKcGng0YGsw9/0ycHMAcPrDceYBmPApDLFbuyWM3JcTbyK/RH78TT9qe4aMkAo2PB6w7Gzz07tBiGkAgnLCEO9jfX0GgjmY+ODiK8jysz91tTUVKSmchNsyufzUbVqVQiF9HkWIaR8iI+PR3Z2tlZjVKtWDSIRy1OKSJm39sFa/HDjB40OqjMVmmJCowlY1n6Z3tfQEG79/PPPmD9/vsZ1PB4PkZGRqFKlCvdNGdid2DuYcHYCXqe+VruGBx7aVWmHrb22VtggrYomMTERmZmZWo/j7+8PExMTDjoihBBuMYwKdeoUIjiY3feo2rWlePHCGHx+2bi3QwghhBBCyj8KBSOEEEIIIYQQQgipZObOFeOXXyxY1f70kxjz5rGrJeXbndg7mH1pNu7F34MKmt1SFPKFaO/THqs6rdLbiY4ttrdgtenSxsQGd0fdRQ1H9UICZDIZQkNDNZ4HKDqMQMko8STpyb8hYPfi70HBKEoc52j/o/is5meseiDcUClliImJhZgCwdSiYlRIzTdjFQy2ZMkSHNAmjOtTAOrn/n1k5wlg+Iu/f1O1KhAUBOh5E1NoaCgOHjyIEydO4MWLF5wGzrDh7e2NwYMHY8KECaUGHRJCSGWQl5eHmJgYzse1sbGBh4cH5+OWZ6GhoZDJZKxqa9asCT6fwtVKk5Ehw7ffSrBjhw0UCvUXLi9fHoeuXXM0no/H48HJyQmOjo4a1xJCiC7xeDzY2NhgxowZ+Prrr0sMB8sqyMKCawuw4fEGMCp2gdhaywZwEECydsMYGRkhNDQU3t7eHDRVvAJ5AZbcWoJf7vwCOSNXq+bblt9iSfslOu2LcKPdrna4Hn3d0G0UiQceOvp1xJjAMehdvTeMBO825asbPhuSHYJ5j+YhNJfd/eESGSAU7PHYx2jo1lC7QQipIN6mv0X9TfUhVej3nv+cFnOwrMMyvc5ZGi5Ccf4hFApRtWpVej9OCCnzFAoFQkJCtBrD2toanp6eHHVEyrJdz3dh7pW5SBar/ybcSGCE4XWH47cuv8HMyEyH3RFdCQgIQHh4uMZ1n376Ka5cuaKDjgznfPh5TPlrCsIz1f968Hl8dPPvhi29tsDFwkWH3RGuqVQqhIaGQi5X7x5ecQQCAapVq0bvDQghZc7ZswXo0YP9wdlbtkgwZow5hx0RQgghhJDKjt45E0IIIYQQQgghhFQyZ86wDy/54gs6qbKyauHVAndG30Hut7n4usnXsDYufvPjfykYBS5EXEDtDbVR5bcqWP9oPRhGd5siX6a8ZBUIBgDZ0mx0298NKeIUta43MjJivUBJoVBCLlciJjsGW55sQf8j/eG4whFNtzbFgmsLcCv2VqmBYAA0WlxKdCM5IbpSBILly6U4HXUTl2MfIE8mYT0Oj8+Dk1k+HK00+7ezb98+rQLBXOu6Aq1Yl6PPG2DYi/ceCA0FfH0BlmEkmpDL5Th48CCaN2+OatWqYeHChXj+/LnBA8EAICYmBkuXLoWvry+++OILBAUFGbolQggxmMzMTJ0Egjk5OVEgWBFMTdkvxi0oKOCwk4rL3t4Imzfb4s4dCZo2Ve/1X5MmYnTponkgGPBuM0lKSgpCQkIgkbB/vUkIIbqQnZ2N77//Hh4eHpg0adJHG8QZFYPtz7aj2rpq+OPRH4YLBHuJd0FCHNwumjNnjs4DwQDAVGSKxZ8uxsuJL9G2Slu1apzNnXXbFOGMuvdZ9cnd0h0LWi9A5NRIXPjyAvrX6v9vIBgAte+3VLepjmMdj+ELny901arefOL5CQWCEfI3dQLBvmn+DSyNLDmf+4taZe/7iYeHB8zNudnMKpcrsG1bEpRKA71OIoQQNcXGxmpVz+Px4O7uzlE3pKwbXn84kmYm4Wj/o/CyVu8AJZlShi3PtsD6F2sMOTYEOVJ291OJYdy4cYNVIBgAjBo1iuNuDOdw0GF4/eqFrvu6qh0IJuAJMLDWQGTMzsDpwacpEKwc4vF48PHx0XocpVKJhIQEDjoihBBurVrFfi2em5scw4ZR4CshhBBCCOEWT1UWdowQQgghhBBCCCGEEL0IC5OhalV2wV61aknx+rUJxx2R8uzPkD+x4NoCvEp9pXGtscAYfar3wcpOK+FhxW3AwcQzE7HxyUatxmjk1gjXh1+HuVHpGx2ioqLU3rCemSnAjXvA2aDneCm5DdvGF5FYyG6x4D9ODzqNHlV7aDUGYS83+Q1i05V6n9fDWgYbc/3d3g/KiED7k18hJT8DAGDEF6GdRyP09m2Dnj6t4GGh+WZcFaNCar450nJL//rdvHkTX3/9NZRKdl9rNzc3fLfhO0x+NplVvZMYeL0ecMwv4smAACAkBNDBCaYMw2DPnj1YuHChTkJmdIHP52P48OH45Zdf4OjoaOh2CCFEb1JTU5Gamsr5uO7u7rC1teV83IogOzsb8fHxrGodHBzg4kKbTTShVDLYsiUHCxdaIDVVVOQ1QqEKR46Ew9+/kJM5LSws4OnpCYFAwMl4hBDCFo/HK/Kxdu3a4csvv4RfCz/MuTUH9+PvG6C7v6UAuARAu9tM//L19UVQUBBMTPR7P1ilUmHvy72YeXEm0vLTir3uwGcHMLD2QD12RtiyX26PzIJMQ7cBAU+AntV6YkzgGHTx7wIBv+jXFwqF4qPQv9IwKgazHszCxYSLXLT6ThLeBfypazwAV/bT0b8pQt55k/YGDTY1gFRZfCDY+m7rMbHxRNyLu4dOeztBLBNzMrefrR/CpoQV+brD0BiGQXh4OGRaHJChUAA//eSGY8fsMHNmJlautOOwQ0II4U5+fj4iIyO1GsPZ2Zk+I6vELkVcwqRzkxCWGaZ2DZ/HR4+qPbClxxY4WTjpsDvCheHDh2P37t0a11lbWyMpKUmrA0/Kgq1Pt2Le1XlIlaj/mZgR3wjD6g3D711+h5kRhaVUBGlpaUhJ0T4I3tvbG5aW3AcuE0IIG8+fFyIw0Jh1/Y8/irFggQWHHRFCCCGEEEKhYIQQQgghhBBCCCGVys8/izF/PrsPHefMEWPZMvrAknwsWZyMWRdn4dibYyhQFGhcX8OhBha1XcTJCei5hblwW+UGiVy9kK6S9KzaEycGnCh2g9g/MjMzkZiYWORzMhkPT54a48zTSNxLuYs0q2uA511AoNC6v38kzkiEq6UWO74IayqGQVh4GGQyuV7ndbeWwVaPgWAA8OmJCbgW/7jY5xs61UAvn9bo5dMa9Ryqqr1xScWokJJvjvQSgsFev36NUaNGoaBA8+8vAGBkZITdu3ejRs0a6HCuA9KkxW8qLs6fB4Beb0u4oEcP4PRpVv0V58mTJxgzZgyeP3/O6bj64uDggDVr1mDQoEGGboUQQnQuPj4e2dnZnI9LC+FLplQq8ebNG1a1ZmZm8PX15bijyiEzU4Zvv5Vg+3YbKBQfvuYbPjwd33yTzPmctJGSEGJopb7HFQKo+vcvfwD6vIUaC+ABgCDuhuTxeLhw4QI6duzI3aAayizIxNzLc7Hl6ZYin4+dFgtPa089d0U0JVfKYfQTu0NKuOJn64cxDcZgRP0RcLEoPRRWIpEgKipK7fFPnDiBEydOgOEziGgVAbENN+FA+gwFc7N0Q/TUaIgERQe/ElJZBKcGo8HmBihUFh9yvLH7RoxvNP7f39+Nu4vOeztzEgz2bctvsaT9Eq3H0RWGYRAaGgqFQvPPtwoKeJg92xPXr1v9+9iqVZmYMYOCwQghZc/bt28hl7P/7FcgEKBGjRocdkTKqzuxdzDx7ESNDtnjgYf2Pu2xrfc2eFl76bA73VCpVHiU+AiZBZlo7NYY9mb2hm6Jc3l5eXBxcUF+flGniZWs5+CeOL7nOIR8oQ460y2GYfDr/V/x862fkSXNUrvORGiCiY0mYln7ZTASGvb+AOFeeHg4pNLiA5XVwePxUKNGDfB1cAgfIYRoavBgCQ4cKP0Q4aJYWCgRGwvY2tJhV4QQQgghhFsUCkYIIYQQQgghhBBSiTRrVoAHD9idOPj4cSEaNmR/ChKp+BiGwfbn27H09lJEZml+eq6lkSWG1BmCpR2WwsbEhlUP6x+tx6Rzk1jVFmVS40lY23VtiZs/GYZBcHAwAEClAiIjjXH+XjYuRz1EFO8GlN5XALNMznp6n6uFKxJnFh1IRnRPnPoW0akVPxAMAFy3dUZyfoZa13pZuvwbENbGvSGMStlQWFIwWGRkJEaMGIGsLPUXlv7Xjz/+iL59+wIAlj1fhn0R+zSqH/UU2HZKjQvPnQO6dmXR4YcYhsHChQuxdOlSKJXFh6WxZWZmBjMzM5iamkIul6OgoABisVgncwHA+PHjsWbNGhgZ0SJfQkjFo1QyePAgHlZWuZyOy+Px4OfnBxMTE07HrYiCgoLAZskDbc7T3qNHYnz9NXD//rvkGycnOU6dCoO5OaOT+YRCITw9PWFuzm4hNiGEaEPd4Ot/uQHwBuDx9y9rDpth8C4sKBzAKwDpHI79t4ULF2LRokXcD8zC3bi7mHBmwgebqKc2nYrfuvxmuKaI2hJyE+Dxq4fe5zUWGOOzmp9hTOAYtKnSBnye+htLSzoAoijr16/Hhg0b3v3GHMBYADYatVs0PYaC/dj2Ryxos4BdMSEVRFBqEBpublhiINimHpswruG4jx6/E3sHnfd21vqwmufjn6OeSz2txtA1hUKB0NBQMIz67/uysgSYPNkbL1+affC4QKDC3r05GDjQhuMuCSGEvaysLCQkJGg1Bh30QP7rZcpLjDk1Bo8SH2lU18KzBbb12oZqDtV01Bm3FIwCfQ72wdmwswAABzMHHPviGFp7tzZwZ9zasmULxo37+DWhWsYCVWpVwa2Rt+Bhpf/3ymwwDINFNxbh1/u/ahSEa2FkgZnNZuL7Nt9T2FMFplAo8PbtW1af073P3NwcPj4+HHVFCCHsJCQo4OPDh1zO7ufWhAlibNhAh24TQgghhBDuUSgYIYQQQgghhBBCSCWRlKSAh4cADKPhJjYA3t4yREaKwOdrXksqp7CMMMy4MAPnI85DwWh2ajgPPDRya4RlHZbhU59P1a5TqVSou7EuXqe+1rTdEq3suBIzP5lZ4jXb9gRj6+WXeCG+jQK3y4DDW057KE6Pqj1wetBpvcxFPhYfE4bsvOI3CXHN3VoOWx2FLJSm+p7P8DY7RuM6KyNzdPX+BL1926CrdwvYGBe9CL6oYLDExEQMGzYMKSkprPueNGkSJkyY8O/vn6U/w7Abw9Sur5IFvNgIWKnzx2xpCWRmAkL2J/tmZGRgwIABuHLlCusx/iESidCyZUu0aNECDRs2RLVq1eDp6QkLi48XICmVSiQlJSEmJgbPnj3DkydPcOnSJa03PvyjZcuWOHPmDKytudwJTwghhiWTMRg2LBcXL1pg9+5IVKki42RcgUAAf39/iEQlh2qSd8LCwlBYyO71WM2aNWkzipaUSgbbtuVgwQILzJyZjG7dcnQ+p4WFBTw8PCDU4jUXIYRoSuNQsP8yB2D/3i+rvx+zAGAGQAhA8Pf/AoAcgAJAAYDcv3+lAUgGkPj34zrSvXt3nD59Wvv/zxySK+W4GHERT5OeopFbI3Tx71Km+iPFe5r0FA03N9TbfLWdamNsg7H4su6XsDO1YzVGeHgKEhMzYWOjhDovFT8IBQMAJwCjAWh7voqeQsGMBEaInRYLZwtnzYsJqSBep7xGoy2NSgwE29JzC8Y0GFPs87djb6PL3i6sg8Gq2ldFyKSQcvHzrbCwEGFhYWpdGx8vwsSJVRAdXfQ3RVNTJc6ckeDTT624bJEQQlhhGAYhISEaBR/+l7GxMQICAjjsilQkYRlhGHNqDG7F3oIK6m/ja+DaAFt6bkED1wY67E57S28txXdXv/vgMRsTGzwZ9wS+tr4G6op7zZs3x/379zUvdATw9/mGbbzb4PqI61y2xTmZQoY5l+dg45ONkCqkatfZmthifuv5mNZ0Gn3+UklkZ2cjPj5e63Hc3NxgZ8fuXg4hhHBhxgwxfv2VXaiXUKhCSIgcfn50YCYhhBBCCOEehYIRQgghhBBCCCGEVBJr10rw9dfmrGq/+kqMP/6gU4yI5hSMAivurMDah2uRJE7SuN7BzAHjGo7DwtYLYSQs+UPz27G30WpHK7atluhI/yP4vObn//5eySjxLPkZLkZcxMWIi7gdcxdKyHUyd0kWtlmIRW0X6X1e8k5EeBgKpPoJBXO3kcPWzDCBYADw2blZOB5xTasxhHwBWrs1QG/fNuhZpRV8rN0/eP5dMJgF0nMVSE9Px/DhwxEbG8t6vi+//BJz5sz54DFGxaDjXx2RWpBaaj1PBVzbCbTRJAutd2/g5EmN+vxHQkICOnXqhODgYFb1/2jevDkmTJiA3r17ax3C9fTpU2zfvh179+5FTo52IR+BgYG4dOkS7O3ttRqHEELKgtxcBfr2LcDVq+/CLt3dZdi7NxIODpqF4f6XkZER/P39aaOEBuLi4lj/jPLx8YG5Obv3yORD2dlypKfHQirVYUrN3woLeZg2zQtTpijxxRc2Op+PEEIADkLByokGDRrg6tWrFOhMOPNX2F/otr+bTucwF5ljUO1BGNNgDJq4N9H63+uSJZmYN88OQqEKdnYKODgo4Ogoh4OD4t9fjo5y2Nsr4OiowLFjf2DLlrUfDuIPYDAAbV7W6ykU7Mu6X2JP3z2aFxJSQagTCLa151aMbjC61LFuxdxC131dWQWDzW81H4s/XaxxnaFIJBJERUWVeM2bNyb46itvpKeXHHpuZ6fA1atS1KtHn0MTQgxr27Ys7N0rwMyZyawPgAgICICxsbbpsKSii8+Nx9hTY3Eh4oJG4WA1HWpiU89NaOnVUofdsSOWiVHltyrIKMj46LlAl0DcGXUHpiJTA3TGrTdv3qBmzZrsijsB+OT/v70x4gZae7fmpC8u5cvy8fX5r7HnxR7IGPW/FzqbO+PnT39W63UzqXiio6MhFou1Hqd69ep0IAwhxCDEYgaengyys9l9D+rTR4ITJ2jdASGEEEII0Q0KBSOEEEIIIYQQQgipJDp0yMeVK2asaq9elaJdOxOOOyKVzYP4B5h1aRbuxN0Bo9Is3EjAE6BdlXZY1XkV6jrXLfKawccG48DrA1y0+hFjgTEOfHYAWdIsXIy4iMuRl4tc0KhvpwaeQs9qPQ3dRqX15s0bKJVKnc/jbqOArZnu5ynJ9/c3YvGjrZyOWcfeH71926CXT2s0dKoBPo8PFaPCmwQ5en8+DOHh4azH7t27NxYvXlzkRtBfXvyCveF7Sx1j5l1g5UUNJ+bzgbw8wEyzn7dJSUlo2bIlIiMjNZzw/1q2bIlly5ahRYsWrMcoTl5eHlatWoVVq1ZptZizefPmuHLlCkxNy/+ib0JI5ZWYWIju3ZV4/vzD7/U1ahRgx44omJuzC/E0MzNDlSpVKBBMQ5qcQJ6RIUBQkCmCg00RFGSKsWMVGDyYTh3nUl5eHuLi4sAwuguz3bDBEevXOwMAOnbMw5o1AlSvzu5eByGEqKsyhII1aNAAly9fhq2traFbIRXIzuc7MfLPkToZu6l7U4xpMAYDag2ApbElZ+NOnZqFNWs0/XeQBeASgAH/f6gJAG3y0PQUCvZwzEM0dm+seSEpM6RSKZ4/f44nT57g8ePHePz4Mev71jt27MCIESO4b7KMepnyEo23NIZMWXzYwfZe2zEyUP3vYzeib6Db/m7Il+dr1suEl6jjXEejGkMr6f343bvmmD7dC/n5ArXG8vQsxO3bKnh50WfRhBDDyM9Xonp1BeLijCEUqjBwYAYmTEiDtbX6P08tLS3h7e2twy5JRZOen47xp8fjz7d/QqlS/++an60f1nZdi64BXXXYnWZW31uNmRdnFvv86MDR2NqL27UGhjBr1iysXLlS80I+gJkA3ssK6eTXCRe+vMBVa1rLlmZjwpkJOBp8VKO/j55WnljdefUHhyySyodhGISEhGj92ZCxsTECAgI46ooQQtS3YoUYs2ezDyu/c0eKTz6hexqEEEIIIUQ3KBSMEEIIIYQQQgghpBLIzlbC2ZkHmUzzDeaOjnIkJQkhEFT8zW9EP/Jl+VhwbQG2P9+ObGm2xvWeVp6Y0XwGvm7y9b+hCamSVHis9oCckXPcbdmWMCMBbpZuhm6j0goODtZp4AEACAQC+FplwtjUsAtHDoVexMAL3+lsfDdzR/T0aYX2Do3x0+QdePk6lPVYHTt2xIoVKyAQFL3h6HnGcwy9PrTEMWqlAo83AyYKFg1MmQKsWaP25bm5uWjdujVevHjBYrJ3mwxWr16NMWPGsKrXRFxcHEaOHIkrV66wHuPzzz/HkSNHOOyKEEL0Jzg4H927CxAdbVzk8598kod162IhEmn2Eby1tTU8PT25aLHSYRgGwcHBHz2emSlAcPD/A8CCg02QnGz0wTXjx2dh40YKPuEawzBISUlBRgb3Icrx8SL06ROAwsL/39swMWEwaVI2fvjBCubmdII8IUQ3KnooWOPGjXHhwgUKBCOc++X2L5h7ZS5n49ma2GJo3aEY3WB0sQdHaGvgwGwcOmTDovIUgN4fPtQVQFOWjeghFKype1PcH3NfsyJiUIWFhXj58iUeP378bwhYUFAQFAo2NzE/VplCwZ4nPUfTbU1LDATb2XsnhtcfrvHY16Ovo/v+7moHg1V3qI7gr4LL5euNtLQ0pKSkfPDYmTPWWLDAAwqFZv9/atUqwK1bQtjairhskRBC1LJgQSZ++unDwwOsrBSYMCENAwdmqnW/t0aNGsV+NklISXKluZj812QceH0ACkb913UeVh5Y2WklBtQaUPrFOiRVSOH7uy+SxEklXre151aMbjBaT11xT6FQwMPD46PXPmqpDmDgxw+XhZDmZHEyxpwag7/C/9LocMcAuwCs7boWnf0767A7Up5IJBJERUVpPY6TkxOcnJw46IgQQtSjVKrg7y9HdLRR6RcXoXnzAty9S4djEkIIIYQQ3aFjhgkhhBBCCCGEEEIqgT//lLIKBAOALl1kFAhGOGVmZIZVnVcha04Wzg4+i/ou9TWqj8uNw/QL02G6xBSfH/4csTmx2P5se6ULBHO1cKVAMAMTiXQfOqBUKhGVZ49CaaHO5ypJLXtfnY6fKEnDpifH8cWX32oVCNayZUv88ssvJS66r2tXF04mxS8iFCqBPcdZBoIBwK5dGl0+atQo1oFg/v7+ePLkiV4CwQDA09MTly5dwvfff896jKNHj2LdunUcdkUIIfpx61Ye2rQRFRsIBgB371pi4UI3aHIsl4ODAwWCaYHP5yM3V4i7dy2wdasDpk/3ROfOVdGmTQ1MnFgFa9c64+pVq48CwQDg1SvaaKwLfD4frq6uqFatGkxNuV0A/csvrh8EggGAVMrHqlV2qFVLiUOHsjmdjxBCKoNhw4bh5s2bFAhGdCJZnMzJOO2qtMO+fvuQODMRv3f9XWeBYACQlsY2yKGIDfAXAIRp041uTWkyxdAtkBLI5XI8ffoUmzdvxrhx49CwYUNYWlqiSZMm+Oqrr7Bt2za8ePGCs0CwyuR50nM03Vp8IBgPPOzus5tVIBgAtK3SFmcGnYGpUL33QwNqDSiXgWAA4OjoCDu7dyE6KhWwfbsDvv3WU+NAMAAICjJF796FKCzU7UEshBDyX/HxUvz+u/VHj+fmCrF8uSv69PHHlSuWJd7zdXBwoEAwwpqViRV2992NvG/zMLHRRBgLiv8M4n3xufEYeHQgnFc6Y+vTrTrusng7nu0oNRAMACadm4RnSc/00JFunD17ll0gGAAEFv3wkttL2DekpaisKHy661O4rXLD2bCzageC1XGqgzuj7iB0SigFgpEPmJubc3J/8c2bDMTHSznoiBBC1HP4cAHrQDAAmD5dswPjCCGEEEII0RRPpdJkSTIhhBBCCCGEEEIIKY/69JHgzz/NWdWeOJGPPn3MOO6IkA+lSdIw+9JsHA4+rPbp6e8T8UWVLhSsR9UeOD3otKHbqNRiosKRJ9HPYjShUAgfq0wYm6i3CJhrMqUc5htbQsEodTOBHMBeADHsh2jSpAn++OMPmJiYlHrt1HtTcTXxapHP/XQFmHeLfR8AgJMngd69S71s/fr1mDRpEqspAgMDcenSJdjb27Oq19bWrVsxbtw4sPmYydjYGK9evUJAQIAOOiOEEO4dO5aN4cMtIZGot7Fr9Og0TJtW+uYQV1dXg30fr0i+/DIb+/bZaFxnZaVAZiYfAgGdpaZLeXl5iIuLA8Not7H75k0LTJpUpdTrOnTIw5o1AtSoQfcxCCHcKa9BHSURiURYuXIlvv76a0O3QiqwwccG48DrA6xqnc2dMbL+SIwKHIUAe/3dP6hTJx+vX7N5HfEDgEUfP2wMYBQAZw2HSwKwSYPrxwNwVf9yZ3NnxE6PhZGA/YY3wh2FQoGgoCA8fvz4318vX76ETFZ0aJWu7NixAyNGjNDrnPr2NOkpmm1tVuznSTzwsKfvHgypO0Trua5GXUWP/T1QoCgo8brXE1+jllMtreczpOjoGMyfb459+xy0HqtfvxwcPmxJ79UJIXozbFg29uyxKfW6xo3F+OabZNSs+eFnw3w+H9WrVwefT9+3CDcUjALfXfkO6x6uK/V1xPtsTWwxv/V8TGs6TW9/H+VKOQLWBiAmR70P+X1sfPBk3BPYmpa/YPLevXvj1KlTmhdaAJgBoJg/klcTX6G2U21tWtPI65TXGHN6DB4kPNCorolbE2zptUWnId2k/GMYBqGhoazDq69ft8TChe4IDCzAhQvm9J6AEKIXjRsX4PFjdgdd+frKEBoqokO3CSGEEEKITtG7Y0IIIYQQQgghhJAKTiplcOVK6QEpRbG0VKJLF3a1hGjC0dwRO/rsgOQ7CXb23okAO802elW2QDAAaOja0NAtVHqWxvr7e6dQKBCVa4dCaaHe5nyfkUCEAGsv3QyuAHAAWgWC1atXD2vXrlUrEAwAqlpXLfJxu3xgzh32ffxr165SL4mPj8ecOXNYDV+1alVcuHDBoEEyY8aMwerVq1nVFhYWsg5DI4QQffvjjywMHGildiAYAGzb5oj9++1KvMbLy4sCwTgSGMgubCo3V4g3b+i0cV2ztLRE9erVtfr7XljIw9Klbmpde/myJRo0MME332RCImG38YQQQiq65s2b4+nTpxQIRnQuRVJ6UO77+Dw+ugd0x4kBJxA3PQ5LOyzVayAYAKSnC1nVeXkZoUWLFh//atQCDUMbQlQo4rhT7UxoNIECwQxEqVTi1atX2LlzJyZPnoxmzZrB0tIS9evXx5gxY7Bx40Y8fvxY74FglcHjxMelB4L14yYQDAA+9fkUpwedhomw+HvWtRxrlftAMADw9PSESMTu++d/HT9ujalTczgZixBCSvPkiQT791urde2jRxYYONAP8+e7IzX1/9/z3NzcKBCMcErIF2J5x+UQfyvGj21/hKWRpVp1WdIszLw4E9a/WGPRtUVaH9Kgjv2v9qsdCAYAUdlRGHZyGBiV7nvjUkpKCs6dO8euuB5K3Lm59PZSduNq6H7cfdTbUA91NtZROxCMBx7aeLdB+JRwPBj7gALBSKn4fD58fHw0rsvP52PRIjdMmeKNzEwhrlyxxG+/ZXPfICGE/MfNm1LWgWAA8PXXcgoEI4QQQgghOkd3nwkhhBBCCCGEEEIquHPnpBCL1d/A/r4OHaQwMaFbSES/htcfjtApoYj8OhJ9qvWBiF+2NkyVFRQKZnjW9u56XeRt6GCwWva+3A+qAHAIQCT7ITz8PbB67WqYmZmpXWNrUvQC/3k3ASEXa5BfvCj1khkzZkAsFms8tJmZGY4fPw5HR0c2nXFq2rRpGDp0KKvaS5cu4fz58xx3RAgh3FGpVJg/PxOTJ9tCodD85/2yZa64dMnqo8d5PB78/PxgZfXxc4Sd5s3Zv1+4e9cwr6sqGz6fD1dXV1SvXh2mppovrN6xwwHx8eqHVkilfKxaZYeaNZU4eDBb4/kIIaSisrOzwx9//IE7d+6gdu3ahm6HVAI5UvVCXbytvfFj2x8RPTUaZwafQZ/qfSAS6P+esFLJsA4FW7RoAm7fvl3kr8eXH+PWV7dKDAbSJyFfiPENxxu6jUprz549qFu3LkaOHIk//vgDDx48gFRKYcW69ijhET7Z9kmJgWD7+u3DkDrcBIL9o71v+xKDwb6o9QWn8xmKQMDHli1W6NIll5Px8vMViI2N42QsQggpyTffMFAq1d/Er1Lx8OeftujRoyo2bHCEXG4EGxsb3TVIKjU+n48FbRYge042fuv8G+xMSz6I5B9imRg/3PwBFkstMPPCTMiVujnoTMkoseT2Eo3rzoSewbLby3TQke7s3r0bCgXLAygCS3764OuDCM8MZze2Gq5EXkG1ddXQfHtzvEx9qVYNn8dHN/9uiJ8ej+sjrsPPzk9n/ZGKx9jYGE5OTmpf/+KFKfr398OxYx9+j/v+e2u8eiXhuj1CCPnAihVK1rX29gqMHcs+UIwQQgghhBB10Y5OQgghhBBCCCGEkAru+HEV69o+fbjrgxBN+dj64MTAE5DOk2J5h+Vwt3Q3dEtlSkM3CgUzNIGxFews2W0UZMuQwWC17DgOBVMCOAIgTIsxnID4fvHodr0bJt+ZjGNRx5AuTS+1LDXpeZGPd47Qopf3xceX+PTLly9x9OhRVkOvWLECtWrVYlWrCxs2bIC3tzer2sWLF3PcDSGEcEOhYDB6dA5+/lm9TTZFUal4mDvXA0+e/D+0ks/nIyAggFUoEileo0bmMDFhl+r55AnHzZASCYVC+Pn5wdvbGwKBeuHl8fEibN3KLgw1NtYYgwbZYNWqBEgktHmEEMLe0KFD4eDgYOg2WHN0dMTSpUsRHR2Nr776CjwenVxP9KOkjcMivgj9a/bHhS8vIHJqJBa0WQBPa089dvexlBQ5q0BgAHB3L7muqUdT7Oqzi9XYXPO29oa5yNzQbRCiNw8THqLF9hYlBoId+OwABtUZpJP5O/h2wKmBp2AsMP7gcUsjS4wKHKWTOQ1BKOTj6FEzNG7M/r0Xj6fC3LmJmDEjBbm5OUhOTuawQ0II+dDRo9m4ft2SVW1BAR/btzvCwsKwr19J5cDn8zG12VRkzM7A9l7b4WLholZdgaIAq++vhsVSC4w/PR4F8gJO+zr25hhCM0JZ1S64tgCXIy9z2o8u7dixg12hJ4BSbicxKga/3P6F3fglOPHmBKr8VgUd9nRQ+89JwBPg85qfI+2bNJwdchZuVm6c90UqBycnJxgbG5d4jVwOrFvnhGHDfBEb+/G1+fkCDB/Og1zOxal+hBDysdBQGc6dU/8A0v8aPVoKMzOKZyCEEEIIIbpHrzoJIYQQQgghhBBCKjCFQoULF0peZFEcY2MGffvSZnVieHw+H7NazEL8jHg8HvsYbau0BZ9XuW9tuli4wM2SFuCVBU6u3jA1Yfd9li1DBYPV4vIEWAbAMQBvtRjDHsAwAGZAIVOIG8k3sOjpIrQ72w5Drg3B1pCtCM8Nh0r1YTimhREQ8uBCkUP6ZmnRz/tkMqCEDUtLliz5qC911KtXDxMmTNCmM86Zm5tjxYoVrGrv3r2Lhw8fctwRIYRoR6FQ4NGjcFy8yH4B6D9kMj6mTPFGeLgxRCIRqlWrBiMjIw66JO8zMuKjWjUpq9qXL0Ucd0PUYWlpiWrVqsHe3r7Ua5cvd0VhIfv3fx4eMrRtm42oqChERUVBoVCwHosQUnnt3r0bKSkpuHPnDubNm4cmTZqoHW5oUK5A4zGNER0djblz58LSkt2Gd0LYmt9qPsxEH76urmZfDSs7rkT8jHgc7n8Ynfw6lZl7vbGxMta1np6lv678otYXWNzO8AHpEVkRsPnFBi23t8TjxMeGbocQnXoQ/6DUQLCDnx/EgNoDdNpHR7+OuDLsCmo61gTwLpzvwGcH4GHlodN59c3cXIgzZ0QICND8PbpIxGDFijgMGZL572Pp6enIyMjgskVCCAEAyOUM5s0z0WqMsWNzEBBA62mIfo0MHImkmUk40v8IvKy91KqRKWXY/HQzrJZZYcixIciV5mrdh0qlws+3fmZdz6gYDDo2CHE5cVr3omv37t3Dmzdv2BUHqnfZrhe7OPta7Hq+C66rXNHvcD/E5MSoVSPiizCy/khkz83Gkf5HYGfG/sAcQv7h4+NT7MEEUVFGGDbMF5s2OYFhij+84NkzM3z7bbaOOiSEVHYrVshL/B5UEmNjBtOna/d+ghBCCCGEEHXxVGx2nRBCCCGEEEIIIYSQcuHy5QJ07MhuIWKHDvm4dEn7jfCE6IJUIcX8K/Ox+v5qqFD5bnF2D+iOM4PPGLoN8jdZbgIiEnKhVCr1Oq9IKISPdSaMSjlhkyvBmZGote8L7QdiABwH8FqLMWwAjARgXfqllkJL2JnYwc7YDgXKAkRlhKCwiL3bbrlAwmotevqv48eBvn0/ejg9PR3u7u6QyTTfaHrq1Cn07NmTi+4416BBAzx79kzjunHjxmHTpk066IgQQjQnk8kQHh4OhmEQFWWEoUN9kZMj1HrcmTMzsHy5Lfj8shF2UBENG5aNPXtsNK6ztFQiK4sHgYD+bAxFoVAgNjYW+fn5Hz1386YFJk2qotX4f/wRjdatxR885uTkBCcnJ63GJYSQnJwc3LhxAzdu3MDdu3fx7NkzFBbqN7y7SA4AqgGoB8AJmNNiDpZ1WGbgpkhlFpUVhd0vdkMkEKGVVyu09GpZ7KZQQzt6NBv9+9uwqhWLFTA3L/29g0qlwvCTw7Hn5Z6SL0wCoMntkvEAXDW4/j2eVp6Y23IuJjScQO9Z9GDnzp0YOXKkodso0o4dOzBixAhDt8GZe3H30HpnayiYooOBeeDhcP/D+Lzm53rrSaVSoVBZCCFfCCFf+/sNZVV4eAFatRIgOVm9YHRLSyV+/z0GjRt//L4QALy8vGBlZcVli4SQSm758kzMmcM+9MbRUY6wMB6srSvu93JSPlwIv4Apf01BWGaY2jV8Hh89q/bE5h6b4WTB7h7p6ben0etgL1a172vq3hQ3R96EkeD/rxnkeYnIy81FnkyIgkI5/tnxKBQIYGECWBgzMLf3AV+onzUSY8eOxdatWzUvFAH4BoCabX7d5Gv83vV3zecBwDAM1j5cix9v/ojMgszSC/5mIjTBuAbjsKLjChgJ6UAbwr3s7GzEx8f/+3uVCjh82A4rV7pAKlXv/oNQqMKlS2K0bUuHHRBCuJORoYSXF5Cfz+7wl6FDJdi925zjrgghhBBCCCkafYJPCCGEEEIIIYQQUoEdPco+oKZPn8oXtETKDxOhCRq5N6qUgWAA0NC1oaFbIO8xsnKHj7MxBAJ2C0XYkisUiMq1g0xPm44DrL0g0najEgPgJLQLBLMCMBxqBYIBQJ4iDzHiGDzLeIaQ7KIDwQAgzwjcfkfJLfqU5f3797MKBPP390f37t217Upnpk+fzqruyJEjeg/UI4SQouTn5yMsLAwMwwAAfHxkWLcuBiYmjFbjLliQiZUr7WlzvY4FBrL7c8rLE+D166I3HRP9EAqF8PX1hbe39wevpwsLeVi2jGWyxd/ats39KBAMAFJTUxESEgKJRKLV+ISQys3a2hq9evXCqlWrcO/ePeTk5ODevXv4448/MG7cODRp0gSWljrerMbDuxCwOgB6A5gOYDKAjgD+3tfrbumu2x4IKYWPrQ8Wtl2I71p9h1bercpsIBgAJCaye01pZaVeIBgA8Hg8bOm5Ba28WrGaSxficuMw6dwkWCy1wKg/RyEzX/1N5ISUVXdi75QaCHak/xG9BoIB774HmAhNKnQgGAD4+5vizz9lsLIq+uv/PicnOXbtiiw2EAwAYmNjUVBQwGWLhJBKLCNDhuXLtXuvNnduHgWCkTKhs39nhE4Jxe2Rt1HbsbZaNYyKwZ9v/4TLKhd02tMJsTmxGs2pUqnw862f2bT7kQcJDzDzwsx3fckkSIl7i9DYLCRmKZAnkUKhUEKpfPerUCZDRq4MMWkKRETGQJz6lpMeSpKfn49Dhw6xK64FtQPBAGDL0y1IlaRqNAXDMPjx+o+w+cUG0y5MUzsQzFxkjvmt5kPyrQS/d/2dAsGIztjY2MDc/F1oTnq6EF995Y2ffnJTOxAMABQKHkaNMkJeXunvLQghRF2//17AOhCMx1Nh9mwRxx0RQgghhBBSPFp5TAghhBBCCCGEEFJBMYwK586xW7gjEKjw+ef6OVWRELbWP1pv6BYMpqEbhYKVNSZ2vvBxNtJ/MJhcf8FgIoEQVW282A+gAnAKwEstmrDAu0AwWy3GKEaeCbChMYcDSqVFPvznn3+yGm7o0KFlOlDm888/h5mZmcZ1WVlZePDggQ46IoQQ9eXm5iIyMhIq1YfxkPXrF2D58jjw+ZrHRopEDNavz8SPP9px1SYpQfPm7Bfe3rsn57ATwpalpSWqVasGBwcHAMDOnQ6Ii2N/X8LYmMGcOUnFPq9QKBAVFYWoqCgoFLSZhBCiPWNjYzRr1gxfffUVNm3ahAcPHiA3NxdJSUm4ceMGNm/djHaj2oHfmA9UA+AJwBHv3ucaAxDiXcgX/v5vk7+fswHgCqAqgIYA2gLoA2AcgO/wLgTsMwCBKDI8292KQsEIUVdS8S8dSuToqNlrCWOhMY4POA4/Wz92E+pIgaIAO57vgMMKBzTf2hz34u4ZuiVCWLkTewdtd7UtMRDs2BfH8FnNz/TbWCXTpIkF9u+XwMio+MBFf38p9u2LREBA6Z9vREZGsjpsgxBC/uv77yXIyGB/L7FGjQJ8/bUNdw0RwoEWXi3w6qtXeDbuGRq5NlKrRgUVLkVegvdv3mi5vSXepqsXsnU16ioeJHD32e66R+uw4+5qhEXFIy1H/tHnNEUplMkQnSpHfEwYGJnuDn44cuQI8vLy2BXX1+zyAkUBfr33q1rXKhgFvrn4DSyWWmDhjYXIk6nXo42JDZZ3WI7cublY/OniMr32gFQc3t7eePTIAn37+uP2bXahnFFRxpg06eMDYAghhA2plMGmTew/g27fvgC1a1OgJiGEEEII0R+6g0MIIYQQQgghhBBSQT15IkNcHLsPH5s0kcLZmU42JWXX69TXuBV7y9BtGExDVwoFK4tM7PwqfDBYLTuWmxVVAE4DeK7F5GYAhgGw12KMUkzvDDx15Wiwv088fZ9EIsHt27dZDdevXz9tO9IpU1NTdOnShVXt1atXOe6GEELUl5GRgdjY2GKfb9cuD/PnJ2o0poWFEocO5WLiRAoE05eGDc1halr8RuOSPHnCK/0iohd8Ph8uLi6oXr06jIxEEInY/ZkCwOjRafDwKD3wTSKRICQkBCkpKaznIoSQkri4uKB169YYO3osrm67ipdnXqL5rObAaACTAHwD4FsA8wEsBLDo7/+e+/dz0wCMBzAYQE+8CwWrD8ANgBr72N0tKRSMEHWlprJ7XejgoNS8xswBZwafgY2JDas5dUkFFe4n3Mcn2z+B+2p3/Hb/NzAM+9dlhOjT7djbaLOzTYmBYMcHHEffGn313Fnl1L27NdavzwGP93G4R4MGEuzcGQkXF/WCulUqFcLDwynUmRCiFbFYgshI7e4FLllSCKGQtmGRsqm+a308GvcIoZND0cqrFXhQ7+/7nbg7qP5HdTTa3AjPkp6VeO1Pt37iotUPTLo6H28y3mhcl51XiKjYRMjzNPsMR13bt29nV2gHoIrmZX88+gNZBVnFPl8gL8D40+NhvsQcq+6tQoGiQK1xHc0csan7JmTNycKsFrMoDIzoFZ/PR6NGjpDJtPv5u2ePDQ4fzuamKUJIpbZzZwFSU9mHBM+aRWsLCCGEEEKIftGdHEIIIYQQQgghhJAK6sgR9RZRF6VXL9rgQcq2jY83GroFg3GxcIGbpZuh2yDFMGwwmL3Og8Fq2ftqXqQCcBbAUy0mNsG7QDAnLcZQg0wIdBsMZLM/EPD/7D9OL3v69ClkMpnGQzk6OqJ27docNKVb7dq1Y1X3+PFjjjshhBD1JCUlISkpqdTr+vfPwoQJqWqN6eQkx/nz+ejb10bL7ogmRCI+qleXsqp9+ZL9ol+iG0KhEKtW2eHBg3y0aqX56e/u7jKMHJmuUU1aWhpCQkIgkUg0no8QQjRRy6kWTg48CT5PP8v23K0oFIwQdaWmsruf5+SkeSgYAFR3qI6j/Y9CyNf9AS1CvhAvJ7zE0DpDYSIwUbsuMS8R0y9Mh/kScww7MQzp+Zq9xiL6Z2RkBPsi7ktWBrdibqHtzrZQqor+N8nn8XFy4En0qd5Hv41VcqNH2+LHHz8Mt+jYMQebN0fD2lqzz6MZhkFERAQFFRJCWEtIiMeKFfHYujUK1aqpF6bzvvbt89Cnjw33jRHCsQD7ANwceROx02PR2a+z2uFgT5KeoMHmBqi1vhZux3580NXduLu4Hn2d426BAmUBpt+bDrFc83vBBdJCRCTkIj89jNOeIiIicOsWy4MK67Mry5PlYd3DdR89niPNwZBjQ2C1zAqbn26GTKneegMPKw8c+OwAUmelYlyjceyaIoQDdeqY44cfcrQeZ/JkcyQm6v6wREJIxcUwKvz+O/t7sXXrStGhg/r3VgkhhBBCCOEChYIRQgghhBBCCCGEVFCnT7Pf2Ny/P22KJmWXWCbG7he7Dd2GwTR0bQgej04cK8tM7PxQxSDBYPK/g8HYBWKoo5Ydi1CwcwC0yXwyBjAUgIsWY/xNpAQaJwAjngHd3xZ9TYol4PYNcMH3XZ4Za0UEZD19yi4ZrWnTptp0ojds+3zx4gXHnRBCSOliY2ORkZGh9vVffZWKfv0yS7zG11eKGzfkaNHCUtv2CAt16mgevAkAwcEmUChoQ3FZFBhogWvXzLBjRxbc3NT/8/322ySYmGj+Sk6hUCAqKgpRUVFQKBQa1xNCiLp67O8BRqX7nz088OBs7qzzeQipKBYvjselS29x4EAE1qyJwfffJ+Crr1LwxRcZaNcuF3Xr5sPNTQaR6MN/v2xDwQCgvW97bOi+QdvWS9WvRj/Uca6D3f12Q/KdBL91/g3uluqHBkqVUux5uQdOK5zQZEuTIgMCiP6JRCIEBgZi7Nix2LhxIx4/foy8vDxMnjzZ0K3p3Y3oG2i3q13JgWADTqJXtV567owAwPz5dpg48V0w2KBBGVixIg7GxuzuvsvlckRGRnLZHiGkksjMzIRc/u5gvaZNJTh0KAI//hgPBwf1DtsTClVYsYI+oyfli4eVB85/eR6ps1LRt3pftQPKg9OC0WpHK/iv8cdfYX/9+/jPt37WVauIFkfj+yffQ6VieV83RYbspDec9bN9+3ZWvYAH1qFgAPDbg98glr0LR0sVp6L3gd6wW26H/a/3Q8God8/az9YPZwefRdz0OAysPZB9M4RwaPp0G7Rvn6fVGGlpIowaVQilkj7TI4Swc/asFCEh7E8KnTaNAZ9P7wkIIYQQQoh+6f6IMUIIIYQQQgghhBCid2/fylh/eFmnjhR+fnSaESm79r/ajzyZdguFyrOGrg0N3QJRg6mdH6qoIhCdKoNSyX5joKbeBYM5wMcqHUbG3H8vr2Xnp1nBXwAeaTGhEYAvAai/R7FINgXAhjPAF8EA/++1uyoAvQcBp6t9fH2BCOgyDPgkFlh0HegQCTXPT/6bhQVg8vHX/+3bYpLISlGzZk1WdfrGts+4uDgolUq9B+kRQionhmEQFRWFgoICjep4PGDBgkSkpYlw69bHoV+Bgfk4e1YAV1czrlolGmrQgMFuNbKDBQIVfH0LUatWAWrVKkDNmgWQSJxgbU1hbmWRQMDHiBG26NdPgXnzsrBpkzXk8uI3r7Vpk4s2bbR7vyiRSBASEgJHR0c4O1OYDiGEW/te7cOjRG3eKKvP2cIZIgEd/kCIukQiFVxc5HBxKTkYQqUCcnP5SE8XIT1diCpVjADYsp53TIMxeJv+FivvrWQ9RmmmNJny73/z+XxMbTYVU5tNxb24e5hxYQYeJDyASo14fBVUeJT4CK12tIKLhQtmNpuJGc1ngM+n84l1TSQSoVatWmjUqBEaNmyIRo0aoW7dujAyMjJ0a/+6F3cPsy/PRnR2NJp5NMOqTqvgZe2l83mvR19Hh90dSgwE+3PAn+hRrYfOeyHFW7vWGnXrxqNFi2xoe+6NVCpFTEwMvL29uWmOEFLhMQyD5OTkDx4TCIC+fbPRuXMuduxwwM6dDpBKi39N8+WXOQgMtNFxp4TohoOZA44POI5caS4mn5uMA0EH1AqYisiKQLf93eBp5YlJjSfhXNg5nfZ5KeES9oTvwbCAYRrXqlQqxGcoIVWEwtndDzw++8+dGYbBbnU+bCiKHwAr1lMjsyATy24vw/34+7gadVWt92n/qOVYCxt7bERLr5bsGyBERwQCPnbsECEwUI6MDPb3K9PSBIiISEbVqm4cdkcIqSxWrWJ/PKibmxxffmnKYTeEEEIIIYSohz6JJ4QQQgghhBBCCKmADh+Wsa7t0UO9kwUJMQSVSoX1j9Ybug2DauhWtkLBCuQF+OX2L2i2tRl6HeiFRwn62dhaHpja+6GKkwgCgX5vxf8TDCYrlHI+tr+NB4z4ai7QuwDggRaTiQAMBuCpxRgABr4Con8DBgb9PxAMeBfytfMkYCcpvvauF9BpGNByFHDJF+ovufXxKfLhuLg4dUf4QHnZ3GRubg57e3uN65RKJZKSknTQESGEfIhhGISFhWkcCPYPoRBYuTIWderkf/B4x455uHHDCK6u7E+VJdr75JOPN8Pz+Sr4+0vRq1cWvv02EXv2RODevWAcPx6OxYsTMHBgJurWLYBEUnlDh8sLKysh1q61xcOH+WjdWlzkNUZGDObM4e41RVpaGt68eQOxuOj5CCFEU1KFFGNPjS3yOT6Pj8G1B3M6n7ullgnbhFQyKpV6d354PMDamoGfXyGaNpWgRg0t020ALOuwDL2r9dZ6nKIEugSihWeLIp9r7tkc98bcQ/qsdIysPxKmQvU3tiWLkzHr8iyYLTHD4GODkSpO5arlSk8oFKJevXoYNWoU1q9fjwcPHiAvLw/Pnj3Dli1bMGHCBDRq1KhMBYKliFPQ40AP3I69jfjceBwNPorm25ojLCNMp/NejbpaaiDY6UGnKRCsDBAI+Bg3zg1CITcHQ+Tl5SExMZGTsQghFV9KSgoYhinyOTMzBpMmpeL06TD07JlV5DVWVgosXUqHQZDyz8rECrv77Ubet3mY0HACjATqvZ6My43D3CtzddzdO6tfrcaT9Ces69NzZIiNiYJSms16jAsXLiA+Pp5dcSDraf/1862fcSXqitqBYA1dG+LZuGd4/dVrCgQjZZqnpwl++43d5y1CIYNp05KxfXsUZLJMSCQlLPQhhJAiPH1aiBs32L+mnzixECKR9veBCSGEEEII0RSFghFCCCGEEEIIIYRUQKdOsV9Q/cUX7E9jI0TX7sffx4uUF4Zuw6AaupadULDXqa/ReEtjzL0yFw8SHuB06Gm02N4CIekhhm6tzDC190cVRyODBYPJCwu1GiciOw7rXhzC4PPzUHf/QDhu7QgZIy+98CKAe1pMLAQwEEAV9kOYyYBtfwL7jwHWxXwZ7AqANWocaKxxOFijRkU+/N9TyNXl4uLCqs4Q2PaamZnJcSeEEPIhuVyOt2/fQi5X4+dYCczMVFi3LgZeXu9+uAwenI2zZ81haSnkok2ihfr1zVCrVj569szC3LmJ2L07EvfuBePEiXD8/HMCBg/ORP36BTA1/fgneX5+fhEjkrKofn0LXL1qhp07s+Du/mEg+ujR6fD01O7f+H8plUpER0cjKioKCgWFqBNCtPP54c9RoCg6nHReq3nY99k+XBt+DQF2AZzM525FoWCEqEubn/MikfafqQj4Auzrtw+BLhzsIP+PKU2mgMcrecOanZkdtvfeDvG3YvzR7Q94Wqmf0l+oLMSB1wfgvMoZDTc3xLWoa9q2XKkIhULUrVsXI0eOxB9//IH79+8jLy8Pz58/x7Zt2zBx4kQ0adIExsZlO4R64+ONyCz48P5eYl4i2u5qq7NgsCuRV9BpT6cSA8HODDqDbgHddDI/0Ryfz4e/v3+p35PUlZmZibS0NE7GIoRUXAqFAhkZGaVe5+Iix5IlCTh4MBwNGnwYNDJ9eh5cXMpOGCch2jIRmmBDjw2QfCfBN82/0SgcWNeUKiVmPZiFdGk66zHyJFJExqVClhPLqn779u3sJjYFUI1dqaZ44KGVVyuETg7F43GPUd+1vn4mJkRLX35pi0GDsjWq8fOTYv/+SIwenQ7B30tiY2Jiig38JISQoixfzv7+r6WlEpMnl53XS4QQQgghpHLhqdQ93owQQgghhBBCCCGElAsJCQp4egqgUmm+oNrHR4bISFrMSMquYSeGYc/LPYZuw2CczZ2RNDOJsw0TbKlUKmx6sgnTL0yHVCH96Pmvm3yN37v+boDOyq6C9HBEpcr0vijNSCSCj1UGRKVsGovNS8Zf0XdwJ+kFXmWEIzYvGdkyMRgVi34vA7jNrl8AgADAAABV2Q9RLxk4eBSorsZaYYYHGM0HlBrkaTaPAxZdBzpGAEX+awwOBmrU+OjhWrVqITg4WP2J/nbu3Dl07dpV4zpDaNKkCR49eqRx3f3799G0aVMddEQIIYBUKkVERAS4/Gg8Lk6EO3cc8MMPtnoP/yTFCw4OZvV6i8/no2bNmjroiOhSXp4C8+blYdMmazg6KnDyZBhMTHS7BMbR0RHOzs46nYMQUjFdj76OdrvaFfmcp5UnYqf/f6OqVCHF4huLsfzucigY9htVJjScgA09NrCuJ6QykUgkiIqKYlXr5eUFKysrTvpIyE1Ak61NkBiaCGzSoHA8ANePH7Y3tUfc9DiYijTftPYo4RGmX5iOu3F3oSo9Iv8DzubOmNpsKuZ8Mgd8Pr1fet/58+dx6NAhNGzYEI0aNUK9evVgasrtpsJFixbhhx9+0Lhux44dGDFihMZ1KpUKtdbXwpv0N0U+727pjusjrsPfzl/jsYtzKeISuuzrUuz9az6Pj3ODz6Gzf2fO5iTckUqlCA8P52w8Dw8P2NjYcDYeIaRiiY6Ohlgs1qhGpQIuX7bC6tUuEApVCAkRwdiYXtOQiothGPx06yesvLsSebI8Q7cDAGjk0AhbWm2BkM/+QBaBQABPez4snNRP6srIyICbmxtkMlnpF/9XUwA6/kifBx46+XXC1l5b4WHlodvJCNGRnBwF6tVTIiam9PDrL79Mx7RpKTA2/vi+hIWFBapUqaKDDgkhFU1cnBx+fgLI5exe00+aJMa6dRYcd0UIIYQQQoh66M40IYQQQgghhBBCSAVz5Eghq0AwAOjencWiJkL0JCM/A4eDDhu6DYNq6NbQ4IFgWQVZ6H+kPyaenVhkIBgAPE56rOeuyj5TB3/4OBnpfROcTC5HVJ495IXv/qzixSnYGnQSIy4tRMODQ+CwpT0E65rAe2cPTLi+FHvensPz9FBkFuayCwS7Cu0CwfgAPodWgWBTHgD3t6oXCAYAfBXQNEGzOe55Ap2HAi1GAxf98OG2yCpVigwEA95tdmLDuJRQt7LExMSEVR2rhdWEEKKGvLw8hIeHcxoIBgB16pjjp5/sKRCsjDEyYhdyzTAMnSheDllaCrFmjS0ePszHihWJOg8EA4C0tDTs3h2DV68kOp+LEFJxMAyDzw5/VuRzPPBwbvC5Dx4zEZrg5/Y/48m4J2ji3oT1vO5W7qxrCalsCgsLWddyed/G3codpwedhomQ3f2V/xrbYCyrQDAAaOzeGLdH3UbmnEyMbTAWZiIztWtTJCn47sp3MF1iii+OfIHE3ERWPVREXbp0wY4dOzB58mQ0a9aM80AwQwhKCyo2EAwAEvIS0G5XO0RkRnAy38Xwi6UGgp0fcp4CwcowExMTeHt7czZefHw8JBJ6j0YI+ZhUKtU4EAwAeDygY8dc/PlnGPbty6VAMFLh8fl8fN/me2TPycavnX+FnamdoVvC4/THWBO0RqsxlEololPlyEgMUbtm79697D+3DmRXpg4BT4B+1fshdVYqzn95ngLBSLlmbS3Eli1SCATFf6bj5CTH5s1RmDMnuchAMAAQi8XIzs7WUZeEkIpk9epC1oFgQqEKM2eWn3V7hBBCCCGk4qG704QQQgghhBBCCCEVzJ9/sg8M6t+f/QmLhOjajuc7UKhkvzmrImjo2tCg89+OvY16G+vh2JtjJV4XlBrEefBGRfAuGEykl2CwdGk6TkafxILHC9D3r35w3tUTwnVN4LmjO8Ze/Qm7Qs7iadpbZEhz2IV/FeUagJta1PMA9ANQdJ5WqezzgVP7gTV/ASYKzWrrprCbs8hwsLlzi71eKGT3c1abjan6VlBQwKquImyAJISUPZmZmYiJieF8XCcnJ3h40IaLskibnye0gbj8qlfPAgMGeMHBwUHnc0kkfMya5YZGjUwxdWoW8vI0fOFJCKmUJpydgMyCzCKfG15/OGo71y7yubrOdXF31F381vk3mIvMNZ7X3ZJCwQhRlzZh5SKRiMNOgAauDbCk/RKtxxHwBJjYeKLW49iY2GBzz83Im5uHTT02wdta/SAfmVKGI8FH4P6rOwI3BuJSxCWt+yFljzqHucTnxqPdrnaIzIrUaq7z4efRdX/XYu9pC3gCXPzyIjr6ddRqHqJ7lpaWcHNz42y86OjocnUfnRCiH3FxcVrVm5jw0KyZPUfdEFL28fl8TGs2DRmzM7C151Y4mzsbtJ8doTtwJeGK1uMkZSqQGBsGlbL09307duxgN4krABd2pSUR8AQYVncYsuZk4diAY3Aw0/09cEL0oWNHa0yenF3kc126ZOP48XA0b17653YJCQlQKOhzGkJI8fLyGOzYwf4Ahp498+Hjw+39X0IIIYQQQjRBoWCEEEIIIYQQQgghFUhWlhJ37rD7ANPZWY4WLehEI1I2MSoGGx9vNHQbBmeoUDAlo8TiG4vRZmcbxOWWvng6pzAHiXmJeuis/DF1CEAVDoPBsqRZOB1zGj88+QGDrg5CmzNtUP94fbQ72w4LnizAyZiTCM4ORlZhFpRchX8V5SaAG1rU8wD0AVD0PuhStYkGXmwAeoayq6/HMhTsH/+Gg43l42IHn2JD8czMzFiNzzZoyxDy8/NZ1bH92hBCSHFSU1ORmMj96xF3d3c4OTlxPi7hhpWVFevavLw8Djsh+sbn8+Hi4oLq1avr9HXFxo2OSE0VQSbjY80aW9SowWD37iydzUcIKf+CUoOw9enWIp+zMbHBtp7bSqwX8AWY2mwqgr4KQreAbhrN7W5FoWCEqEubUDBdHADQzqed1mP0qd4HXtZeHHTzDp/Px7iG4xA9LRpPxz1Fa6/W4PPU///+POU5Ou3tBKcVTlh8YzEUDG3arQhUKpVaoWAAEJcbh3a72iEqK4rVXH+F/YXu+7uXGAh2YegFtPdtz2p8on92dnac3WNRqVSIiIigQABCyL9yc3O1Dgt0c3PTy2FPhJRFoxuMxuNxjyHkG/ZwyfmP5yMmT/vDXzJzCxEdEwNFfnqx1zx58gQvXrxgN0Egy8ZKsavvLuzquwuWxpa6mYAQA1q+3Bp16/5/fYmlpRLLlsVh+fJ4WFsr1RpDpVIhOjpaRx0SQiqCDRvykZPD/vXM7NkCDrshhBBCCCFEc3SHmhBCCCGEEEIIIaQCOX5cCrmc3S2frl1lEAh4HHdECDcuRVxCRFaEodswuIZu+g8FS8hNQIc9HfD99e+L3WxTlKC0IB12Vb6ZsQgGy5Zl41zcOfz49EcMuTYEbc+0Rf3j9dH6bGt89/g7HI0+itdZr5FZmAmlSr3FcWwJef9Z7HIbwFUtB+0JoJ7mZXwV8ONV4MouwF2LHI96yexr33fPnUHnvZ3RYnsLXIy4+FE4GNuAipQULVPL9Cg5md0Xk0LBCCFcio+PR2pqKufjent7w9bWlvNxCXfMzc1Z17INtiRli1AohK+vL7y9vSEQcLtIOyLCGHv3OnzwWEKCEYYPt0Xbtnl48ULM6XyEkIqh+/7uUKHo4OjDnx9W+96At403zgw6g/399sPRzFGtGndLCgUjRF1sQ2R4vLL7mcqUJlN0NnagayBujLyBrNlZmNhoIsxF6r8OT8tPw/fXv4fZz2bod6gf4nJKP4SClF2vUl/hbcZbta+PzYlF211tEZ0drdE858LOoceBHiUGgl0cehHtfSgQrLxxcnKCjY0NJ2MxDIPw8HAwjA4PSCGElBsJCQla1RsZGXH2/YmQ8mrl3ZUGD/MVK8SYfn86ChTaH6IlyS9ERFwGpJlFh9Ru376d3cACAHXY91WSFXdWFHsgGSHlnZERHzt3MjA1ZdC4sRjHjoWje/ccaHqrRSqVIi0tTTdNEkLKNYVChT/+MGJd/8knBWjWjN0h3YQQQgghhHCFQsEIIYQQQgghhBBCKpCTJ9nXfvYZ3SoiZdeGxxsM3YLBOZk76X0z56m3p1B3Y11cj76ucW1QKoWClaS4YDCxTIwLcRfw87OfMfTaULQ70w6BxwPR6nQrzHk4B0eijuBl5ktkFGboJfzLydQWTZxrYWzNPtjT8Uekjb4M+eQHqO9Q9d1FdwFc1nKi7gAaaF7mJTfFze3AgpuAQMt1sLU5zo25F38Pnfd2xifbP8GF8Av/LtS1srJiNV55OdlULBYjMzOTVa2dnR3H3RBCKiOlksGrV9HIzs7mdFwejwd/f39YWtJJ7GUdn8/XKHj1fTKZjONuiCFZWlqiRo0acHBwKP1iNahUwJIlrlAoit6NcuOGJZo0McOUKVnIzTXsRjlCSNnx440fEZMTU+Rznf06o6NfR43G4/F4GFRnEN5MeoMR9UeUer2bpZtG4xNSmbENBeM6hJQrdZ3rorV3a53PY2VihfXd10P8nRjbe22Hj42P2rVyRo4TISfg9ZsX6m6oi7/C/tJhp0RXDr0+pHFNbE4s2u5UPxjszNsz6HmgZ4mBYJeHXcanPp9q3AspGzw8PLQK+X6fQqHAmTNxUCopGIyQyiw1NRVKpXafo3p6enLUDSHlU6okFZufbDZ0GwCAsNwwLH62mJNwLLlcjsjkAuQmh3zwuFQqxYEDB9gNWh2AqdatFelFygucCzunm8EJKQMCAy1w8mQqtm6NhqurnPU4KSkp9DkfIeQjhw4VIDaWfSjYjBkUzEkIIYQQQgxPaOgGCCGEEEIIIYQQQgg38vMZXL3K7lQiKyslOnWiE41I2RSXE4fToacN3YbBNXJrBJ6mxyGyJFVIMfvSbKx9uJb1GEFpFApWErFMjEtpr3H57Uk8SAxCrDgWWYVZUKj0HyAg4PFhZ2wFbys31HMIQCu3+ujs1Rwu5sUHKNSy98PzM6HARS0n7wKgseZlfQTVsX1ZCGylWs7/N0sZ4JcJRHCcS3U//j667OuCZh7NsKjNItYbCN68ecNtYzoSFMTu372trS3rwDRCCPmHXM5g+PBcPH/ujO3b82Fhwc3mT4FAAH9/f4hEIk7GI7pnZGQEqVTzFwkMw4BhGNahYqRscnFxgYODA2JjY5Gfn896nAsXrPDwoUWJ18hkfKxbZ4sTJ2T46acsDB1qDYGA/j4RUlkli5Px440fi3zORGiC418cZz22vZk9dvTegSF1hmD8mfGIzIr86BofGx/YmNiwnoOQyoZtaERZDQWb0mSK3u4l/2Nk4EiMDByJVymvMPX8VNyIuVFsiNN/vUp9hW77u8He1B5fNf4K37f5HkI+LW8u61QqFQ4HH2ZVG5MTg3a72uH68OvwtvEu9rpTb0+h76G+JQaCXR12Fa2r6D4Ej+iWt7c3wsPDtd7If/iwLX7+2Q3Tp2dh5Uo6iIKQyohhGKSlpWk1hrm5OUxNdZTwQ0g58dv931CgKDB0G/86HXsa9e3r4wvfL7Qei2EYxKYzcFaEwMGtKnh8Pk6cOIGsrCx2AwZq3VKJfr71M7oFdNP7ezxC9KVDBye8fZuldaBnVFQUqlWrxlFXhJCKYPVq9p/T+vsXom9fek9ACCGEEEIMjz41J4QQQgghhBBCCKkgzp6VIj/fjFVtp05SGBlxcwIzIVzb8nSL2puHKrKGrg3Vuq5AXoBbsbcQlRUFV0tX9KjaA3ye+gscQtJDMPDoQLxIecG2VQAUCvaPfFk+LkddxvXo63ia9BThmeFIy0+DTKn/Eyr54MPKyAqupq4IsA5AE+fGGFK1NqrYaR5UlXMzDzivZUMdATTTrMRYYIxVbRbhq09mgbfaEZCyXJhbhHrJ3IeC/eOfcDDPDHahYA8ePOC4I924f/8+q7oqVapw2wghpNLJzVWgX78CXLliAwCYPt0L69fHQCTS7uRWIyMj+Pv7U0hUOWNmZsYqFAwAJBIJLC0tOe6IGJpQKISvry/EYjHi4uI03lgikfCxYoWr2tcnJBhh5EgjbN8uxpo1QP36JYeJEUIqpm77ukGpKvr7zcbuG2FmxO4+7vs6+HbAq4mvsOj6Iqy+t/qD+ea2nEubRQnRAMOwu/8sFJa9Jbi2JrYYXGewweav41wHV4dfhVgmxndXvsPO5zuRJ8tTqzajIAOLby7G0ttL0S2gG9Z0WVNiYFR5lFWQBXMjcxgJjAzditaeJz9HeGY46/ro7Oh3wWAjrsPL2uuj50+9PYU+B/tAhaLf2wt4Alwbfg2tvFux7oGUHXw+H/7+/ggNDYVCofnhKSoV8McfTti0yQkAsGqVHdzcMjFjBgWDEVLZJCQkQKXS7r4w20N+CKkosgqysO7hOkO38ZFlL5ahpk1N1Larzcl4KdkKSBURcHdzw/bt29kNYgXAl5N2inUv/h6uR19HO592up2IEAPh8/nw8fFBeDj795cAIJfLkZiYCDc3N446I4SUZ9evS/H0KfuDsr/+WgE+35jDjgghhBBCCGGn7K1IIIQQQgghhBBCCCGsHD/OfmFj3760QYyUTSqVCluebjF0G2VCw6m/APIjQPPmwJIlgIsLgHdfo5cpL3Ex4iIuRl7ErZhbKFQW/lvXwbcDLnx5odRgMJVKhR3Pd2DKX1OQL8/Xut/gtGCoVKpKswFVqpDiWtQ1XI26iidJTxCeGY5USeoHfxb6wgcfliJLuJq5wt/aH4H2gWjh3ALu5u4fXStnjKCQpUNopP4ilvXbjuDsxjvaNfkpgBaalQRY++NQzw0I9Ovw7oGXL4GqVYECbk4orpsCHK/JyVDFiuPFsapLTU1FUFAQatWqxXFH3Lp27RqrOl9fHa+UJoRUaImJhejeXYnnz/8f5HT/vgUWLHDHkiXxYJvnZWZmhipVqlAgWDlkaWmJzMxMVrW5ubkUClaBWVhYoEaNGkhJSUFaWpradZs2OSI1VaTxfLduWaBJEwbTpmVgyRLrMhkaQgjRjR3PduBZ8rMin2vg0gDD6w/nbC4zkRmWd1yOYfWGYdfzXciWZqN39d7oUbUHZ3MQUhmwDY4oiz/fxzQYAzOR9sGD2rIwssCarmuwpusa7H2xF4tuLEJEVoRatQpGgVNvT+HU21Oo6VgTS9svRa9qvXTcsW7ly/Mx9MRQnHhzAiqoMLnxZKzotAImQvabEw3tcNBhrceIyo56Fww2/Do8rf8fwHLizQl8dvizYgPBhHwhrg2/hpZeLbXugZQd7weDaRLWKJcDixe748QJ2w8enz3bFq6u2Rg0yIbjTgkhZZVMJkNOTo5WY9ja2pbJ13iE6NO6h+vUDvbVJzkjx4wHM3D408OwMbbhZMwccSGi7z/G1atX2Q1QH4AePkb6+dbPFApGKjQTExM4ODggPT1dq3EyMzNhbW0Nc3M6HJeQym7FCvaHEDs4KDBmjCmH3RBCCCGEEMIe3a0mhBBCCCGEEEIIqQAUChUuXmR3KpGJCYNevcrvpgNSsSWLk5EsTjZ0G0WyNbGFnakd7M3sYW9qD3sze4Smh+Jh4kOdzNcwRgbkhgAhIUg+sgOXWrvjYmd/XJKFIEWSUmzd5cjLOBp8FF/U+qLYa3KkOZhwdgIOvj7IWb+5hbmIz43/YCNPRSBTyHAj5gauRl3F48THCMsMQ4okBVKFVO+98MCDhcjiXfiX1f/Dvzwt1P+aF8pkiMp1gI+VesFgm3cdx+Q5y7U7YbsNgNaalQzwG4CNXX6EjUPV/z/o4QE8ewYEBnISDFav+H9G3HFhX3r8+PEyHQomFotx4cIFVrWNGjXiuBtCSGXx5k0+unfnIyrq4w3vZ8/awMlJjhkzNP8Gb2VlBS8vLy5aJAagzUL/Ao7CRknZ5uzsDHt7e8TFxUEikZR4bWSkMfbscWA9l1zOh0olQ0hICBwcHODk5ERhg4RUcPmyfHx19qsinxPwBDg75KxO5q3tVBsrOq3QydiEVHSaBM/8l0ikeXCoLvF5fHzVuOjvQYb0Zb0v8WW9L/Em7Q2mnp+KK1FXwKjU+7oHpwWj98HesDWxxYRGE7CozSIYCY103DH3pp+fjuNvjv/7+3WP1iGjIAP7+u0rlwdrqFQqHA7WPhQMACKzItF2V1vcGHEDHlYeagWCXR9+HS28NDx1gpQLQqEQfn5+CA8PV+tziPx8Hr75xgu3bn0c8K1U8jB6tBUcHXPQoYO1LtolhJQxcXHsDuf5B4/Hg6urK0fdEFI+iWVi/PbgN0O3Uayk/CTMfTQXf7T4AwKegJMxDx46zP59YX1OWijVlagreBD/AE09mupnQkIMwMXFBbm5uZDJZFqNExMTg+rVq9NnMYRUYiEhMpw/zz7Ua/RoKUxNLTjsiBBCCCGEEPYoFIwQQgghhBBCCCGkArhyRYrMTHYfYrZpI4WFheFPjSekKBZGFjAXmUMiL3mjtjZMhCb/hnr98792Jh+Gff33f21NbCHgf7zAUKVSYcypMdj+fDunPTqKgWAH4PemwEU/4KULACQAWQlq1UdnRxf73MOEhxh4dCCisqM46fV9QWlB5TYUTMEocDPmJq5EXcHjhMcIzQxFijgFBQr9B0XwwIO50BwuZi7ws/JDfbv6aOHSAj6WPpyMr24w2I59pzDxm2XaBYK1BKDBAbaWIkv81PgnTGjSB0bWRYSzVKsGhIQAdesCWp78XU8f+YMOAEwAsMiQ27t3L+bPn19mNwkeOnQIUim7cLxmzZpx3A0hpDK4dSsXn31mirS04jfh79jhCGdnOYYMyVR7XAcHB7i4aJHiSAyOz+eDz+ez2sSj7UYDUn4IhUL4+PhALBYjLi4OSqXyo2tUKmDJElcoFOxff/n7SzF4cAYAID09HVlZWfDw8ICl5ccb1gkhFUPfQ30hVRb93mhR20VwsaDXGYSUNdq8BjQyKlvhVL2q9UIVmyqGbqNYNRxr4OLQi8iX5WP+tfnY9mwbcgtz1arNkmZh6e2lWHF3BTr7dcaarmvga+ur4465kZiXWORnBgdeH0BV+6pY1HaR/pvS0pOkJ4jMiuRsvMisSLTd2RazP5mNCWcnlBgIdnPETTT3bM7Z3KTsMTY2RpUqVRAVVfLnVpmZAkya5I3Xr4v/nLuggI8BA8xx5YoY9evThl5CKjKJRKJ14L+LiwsFiJBKb9PjTcgsUP8zFUO4k3IHm99sxsSaE7UeS6VS4fBxlmG3VQDYad2C2n6+9TNODTqlvwkJMQAfHx+8fftWqzEYhkFcXBy8vb056ooQUt6sWCEDw7C7b2tiwmD6dDpkmxBCCCGElB0UCkYIIYQQQgghhBBSARw79vHmVXX16aNFuAshOmZpbIkFrRdg7pW5pV7LAw+2prZFB3n9E/ZlavfR82Yi7kLxeDweNvXchBRJCs6GneVs3AwzoPMw9vVFbThlVAxW3l2JeVfnQcEotOiueEGpQeji30UnY3NFwShwL+4eLkdexsOEhwjNCEWSOMlg4V+WxpZwM3OCl7kv6tnWwyfOn8Df2l/ncxfKZIjKc4CPZdHBYLsPncXY6T+zPyEXAJoB6KD+5YH2gVjRfAVa+gUUHQj2Dy8vIDUV6N0bOH+edXveOYBlIZBXfC6a9ngAPACEa14aGhqKc+fOoXv37lx3pTWVSoVff/2VVa1AIEDjxo057ogQUtEdP56NYcMsIZGUfgr8L7+4wsFBgc6dS99o7urqCnt7ey5aJAZmbGzMahMgwzBgGIY2/1UiFhYWqFGjBlJSUpCWlvbBcxcuWOHBA+02jX/3XRJE72UXKpVKxMTEwMzMDF5eXhAKadkOIRXJxfCLuBh5scjnqthUwfzW8/XcESFEHYWFhaxrjY11eSNJc1OaTDF0C2oxMzLD6s6rsbrzahx6fQgLri1AWGaYWrUKRoGzYWdxNuwsqttXx0+f/oTPan6m4461s/HxxmLvwf9w4wcE2AVgSN0heu5KO4eDWAYnlCAiKwLjz44v9nkhX4jbI2+jqUdTzucmZY+5uTk8PDwQHx9f5PNxcUaYMMEbsbGlfx/OzBSiVy8Rbt+WwsuLNvYSUlEV9/1CXUKhkO4Nk0pPqpBi5b2Vhm5DLRvebEAduzpo6dJSq3Eu3ryI9OR0dsWBWk2tsdOhp/Ey5SXqOtfV78SE6JFIJIKbmxsSExO1GicvLw85OTmwtrbmqDNCSHmRnq7EgQPs1wMPGFAAZ2dzDjsihBBCCCFEO7S6kBBCCCGEEEIIIaScYxgVzp5lt/FEKFTh889p8bO60tPTER4ejvDwcMTHxyM+Ph4JCQlIT09HdnY2srKyIBaLIZPJIJPJALzbFGRiYgITExNYW1vD2dkZLi4ucHFxQdWqVVGzZk3UrFkTjo6OBv5/V3bNaTkHTT2a4kb0DcgZedGhX2b2sDa2hoBfejCErgn5Qhz6/BA+3f0pHiY85GRMRstMgkZujT74fbI4GcNODMOlyEvaDVyKoLQgnY6vCYZh8CDhAS5FXsLDhId4m/EWSXlJkMglBunH0sgS7lbuqOlQE808mqGzf2fUdqz9bwCFJC0UMWkK7UK4NFRYKEMUHOBjmQGh0f9Pyzt4/AJGf70YSuX/2Lvv8Ciq/Q3g78629N47JIQEUIodUEBEpXcQFISAvSAXlWu79oqigiIIBrCABEGkiFJsCAqCIBBKEkoK6b1t3/39wc+CbEh2drYkeT/Pw3NlZ845X73J7s7MOe8RH0CJqwG0MB9OBhnuTrkbD172IDpF+UEdcIlAsD+pVMDWrcDmzcBttwENtv//KliAy0uA3S0Yzi6JEBUKBgD/+9//MHjwYLcLKvnkk0+QmSnu971fv37w9uZkKiJquUWLqjBrlj+Mxpa9F1osMjzxRAyCgs7iqqsamzwvLi4Ofn5+UpVJLubp6SkqFAwA6uvr+bPQDoWHhyM4OBj5+floaGhAY6OAefMi7epz8OBqXHWV9e+ljY2NOHHiBEJCQhAWFuZ23++IyHZmsxkT1020ekwGGb6e/LWTKyKilrInFMzDw32er0zrMQ0DEga4ugybTew2ERO7TUR2RTYe3vowtp/eDpOlZfchT1ScwLi14+Cv9sfdV9yNFwa8AA+F+/x/AgA6ow5LDiy55DlpG9OQEJCAPnF9nFSVfSwWi0NCwS5FISiwe/puXB1ztVPHJdcKCAiAwWBASUnJBa9nZnrg/vsTUFnZ8mUQ+flqDBmiwa5dBgQGKptvQEStSmVlJQwGg119REdHS1QNUeuVfjAdxfXFri6jRSyw4L+//RcZN2YgyjtKVB8GswEvr3hZXAFqAKnimtrjlV2v4PNxnzt/YCInCgoKQnV1NRobm36u2xIFBQXw9vbm5ixE7cy772qg0Yjb9Ekms+Dxx/meQURERETuhd9QiYiIiIiIiIhaub17dSgsFLfI4ZprtAgJ8ZS4otavoaEBBw8exB9//IEjR47g8OHDOH78OKqrq23uq7Gx8a9JKoWFhTh+/LjV86KiotCvXz/ccMMNuPHGG5GcnGzPv0Kb0z+hP/on9Hd1GS3mrfLGZnUa+lTsQ7aLNxT2Vnqjc3Dnv/7+bc63mLphKkobSh0+titCwcxmMw4UHcC2U9uw79w+HC8/jsK6QpeFf/mofBDlG4XUkFRcE30NBiUOQq+IXs0u+vcOTUY8snC21ACLxeKkav8MBgv+Kxjsi407MPX+Z2E0GsV32gvA4JadGuYRhteufg3XRV6HDhFeLQsE+6dhw4DKSuCBB4DVq20OB+te7IRQsC4AvhXX9Pfff8fSpUtxzz33SFqSPaqrq/Hf//5XdPvx48dLWA0RtXVPP12Jl18OsrmdwSBg1qx4rFhxGsnJFy74l8lk6NixIzw9eV3Ulvj6+qKyslJU27q6OoaCtVMKhQIdOnRAQ0MDFiyoRWmp+IXiXl4mPPpo8wvoysvLUVVVhZiYGPj6+ooej4hcL21jGqq11VaP3d3rbqSGumClKBG1iD0BEnK56zepAIDXbnoN/xn2H8hkMleXIlqn4E7YesdWaI1a/O/7/2Hp70ubfF/9txpdDebtmYf5v8zHoI6D8O7gd5Ec7B7PWDIyM5q9F6836TFqzSjsnbkXHQM7Oqky8X4r/A25NblOG08pKLE7bTeuir7KaWOS+wgNDYXBYPjrGn/3bh/Mnh0Ljcb299/MTE+MHFmP7dvlUKsZzEzUVpjNZhQVFdnVh6enJ+/LULtnMBnw+u7XXV2GTWr0NfjP3v/g434fQyVXNd/gX+btm4eqQ1XiBu8GwPYh7ZaRmYEXBrzgNtc7RI6SkJCA48eP2zVfymKxIDc3F4mJiRJWRkTuTKs1Y8kScRtsA8CgQRp06eIlYUVERERERPZjKBgRERERERERUSu3dq34oJaRI1u223pbd/LkSezatQu//vor9u3bh2PHjsFkcu5/m8LCQqxevRqrV68GAHTr1g0TJkzAbbfdhk6dOjm1FjESEhKQm+u8RSDuql+/fvjhhx+ATz9F6NR78W0A0HsGUOzCOcQ9InpALsihN+nx1M6n8OYvbzpt7GNlx2CxWByyGM1sNuNQySFsO7UNewv24nj5cZyrO4d6fb3kY7WEt9IbUb5R6BzcGdfEXINBHQfhqqirmg3/umSfoclIsJzE2TKjS4LBMvduweS7n4HBYEcgWA8AwwG04EegX0Q/vHjliwj1DkWHCE/bA8H+pFIBS5ee//Pxx8BLLwHZ2S1qenmJuCFt4g8gBkCBuOZz5sxBv379kJKSImVVoqWlpYlebCGXyzF69GiJKyKitshoNOPuu2uxfLntgWB/qquT4777PU3g4AABAABJREFUEvDZZ6cREXF+0b8gCEhKSoJK5YKVG+RQ3t7eottqNBoJK6HWyNvbG0884Y24uCo88YQX8vNtnzx+//2lCAtr2fdok8mE3NxceHl5IS4ujrvWE7VCh0sO4+M/PrZ6LMgzCIuGLnJyRURkC7GhYO4UwHVL0i1QysUHmroTD4UH3hj0Bt4Y9AbWHVuHp79/GifKT7SorcliwjenvkHn9zqjU1AnvDjgRUzsNtHBFV/awn0LW3ReeWM5hq0ahj0z9iDAI8CxRdkpIzPDaWMpBAX2zNiDK6OudNqY5H6ioqJgMBjw2WdyPPtsNIxG8e+/u3b5YPLkGmRk+EIuZzAYUVtw9myx3c9RY2NjJaqGqPX69PCnyKvJc3UZNsusysTrf7yOZ3o9Y1O7bQXbsHrDakDsVIieItvZyQILXvv5NaSPTHdNAUROIggC4uLi7J6LqNFoUF5ejpCQEIkqIyJ3lp6uQVmZ+HkCjz3mPvd7iYiIiIj+xJmERERERERERESt3JYt4hd6jB8vflek1uzkyZPYsWMHvv/+e+zatQulpZfepd0Vjh49iqNHj+LZZ5/FrbfeitmzZ2PQoEGuLota4uuvgalTAQBeBuDBfcBz/QGj7ZuWS+KKyCuQU5mDSesmYX/hfqeOXa+vR15NHuID4kX3YTabcazsGL499S1+KfgFx8qO4VzdOdTp6mCB84Ky/uSl9EKkTyQ6B3fG1dFX46aON+GamGugEBxzu907rDPicRK5Tg4G+/HHn/Dgg0+IXhQJALgMwAg0GwimFJSYc9kcTE6cDKVS+f+BYOJ/Zi4wder5P0YjsGXL+T/79gG5uYBOB5hMgCAAcjkQEIDuHWIB/CrN2JfSC6JDwRoaGjBmzBjs2rULwcHBkpZlq+effx5ffvml6PajR49GeHi4hBURUVtkNBqxfXseVq9OsLuv0lIl7r03HitXnkZIiByJiYkM32mjBEGAIAgwm802t9Xr9Q6oiFqj228PxMiRRjz7bBXef98fOl3LFownJmoxeXKFzeM1NjbixIkTCA4ORnh4uF0Bw0TkXENXDW3yHsW6Cev4+0zk5oxGcavA3SkUrK0a22UsxnYZi1OVpzDrm1n49tS3MJpb9v9XdmU2blt3G+7efDdm9JyBlwa8BC+Vl4MrvtDegr34rfC3Fp9/vPw4JqydgC2Tt7htyJvZYnZqKFiMXwxi/GKcNh65r/j4eOTkVNsVCPan9ev98fDDVXj//UAJKiMiV6qrM6J//2D07avGffeVIjDQ9o3f/Pz8uGkEtXsmswmv/vyqq8sQLeNMBroHd8eI+BEtOv9M3Rk8c+AZ4KDIAUNxfhMwF/nk8Cd4tt+zds3DIWoNfH194efnh9raWrv6KS4u5uc9UTtgNluwYIH4uR/du2tx440eElZERERERCQNznAmIiIiIiIiImrFjh3TIStLXLBX9+5aJCS0r4eYaWlp2LFjB/Lz811dSotZLBZs3boVW7duRc+ePfHWW29hwIABri6LmmA2GrBz9ihsG2jBtkTgUKSrKwJ0+gb0XNIT9fp6l4yfWZbZ4smIx8uO49tT32JP/h4cKzuGgtoC1OpqXRL+5anwRIRPBJKDk3FV1FUY2HEg+sb1dVj416X4ODkYbP/+/Xj44Yeh0+nEd9IVwGgAzax7TvBJwBvXvIHUgFQoFAp0iPCQLhDsnxQKYOTI838uoZu+HrJX/Rz/M3c5gO8AiPy1PH78OK7tfy32/rgXQUFBUlbWYvPnz8dzzz1nVx+PPfaYNMUQUZul1+uRk5OD2Fgz3nwzH7NmxcFksm/x56lTHti5MwRPPx3CgI42Tq1WQ6PR2NzObDbDbDbz54MAAD4+Crz1ViBmzGjEww+bsHOnb7NtnnyyCEo7MhwqKipQXV2NmJgY+Po2Px4RudbT3z2Nglrrqc/DOg1D/4T+zi2IiGxmMtkeHgEAcrmLdoFohxKDErF58mbojXo89+NzWLx/Maq0VS1qW6urxdu/vo13976LGxNuxILBC5Aamurgis9bsG+BzW22n96Oh7Y+hA+GfuCWwXN7C/Yiv9Z5z9jOVp/FgJUD8MOdPyDch5sLtHcffuiHkpJafP21n919HTqkwOnTeejYMU6CyojIVV56qQ75+YFYvVqNzZsDcM89pZg0qRIqVcue88lkMsTEMHyS6ItjXyC7MtvVZdjlhd9fQOeAzujs3/mS5zUaG/HIL4+g8VwjUChysB4i20nEaDZi3p55eG/Ie64thMgJYmJicPLkSdH3bgDAYgFWry7GnXfyuz9RW7ZxowYnT4rfEGD2bBMEwf3uxRERERERcRYrEREREREREVErlpEhbgd7ABg+XHzb1mr58uWtKhDs3w4ePIgbb7wRI0eORF5enqvLISt2F+zBTZMNeKOvewSCAcCSQx+5LBAMAI6WHr3oteyKbCzcuxCTvpiEyz+4HIGvB0J4XkCXRV0w+9vZWHtsLTLLMlGjq3F4OJOHwgPx/vEY1HEQnuj7BHZM2QHdUzo0PtWI07NO45s7vsGLN76I/gn9XRII9iefsM6ID1U4fCHYH3/8gQceeEBUgMZfUgCMQbNPIEbFj8KagWv+DgQL94A6IEH8uBLwUfkgMSjR8QMpAFxrXxc5R3MQ2zUW+4/ul6SkljKbzZg9ezbmzJljVz/9+/fH1VdfLVFVRNQWNTY2Ijs7G2azGQDQr18dnnlG7AqNvz39dCX+978wBj61A15e4if91tXVSVgJtQVdunhhxw5frFpVjbi4psNzBw+uxtVXN9g9nslkQm5uLk6dOgWjsf3dvyFqLQpqC/Daz69ZPeal9MLaCWudXBERiSF2YalCwT15nU2lUOGVga+gcm4lNkzcgC4hXVrc1mwxY8eZHeiyqAuSFiTh0z8+dWClQHF9MdZmivscWHJgCd759R1pC5JIRmaG08c8UX4CA1YOQEl9idPHJveiUAjIyPCy+5pr+PAqvPdeHhoba1FcXCxRdUTkbLm5Wrz//t8hgXV1crz5ZiRGjUrCjh1+aMk+S6GhobxPTO2e2WLGy7tednUZdtOZdZjy/RSUNpY2eY7JbMKU76fgdN1p4KDIgQQA3UW2ldCy35ehuJ7fY6jtEwQBCQkJottXVMjx8MNxmDYtDkuWtCxcnIhap/nzxc+pjInRY/Jk8XMLiIiIiIgciXewiYiIiIiIiIhasU2bxO9EP2GCSsJKyJk2btyIyy+/HJ9+6thFK2Q7s6sLcEPrj6/HHevvQI/FPRD0ehDkL8iR/F4yHv7mYXye+TmOlB5Btbba4eFfarkacX5xuDHhRjze+3F8c/s30DylgeYpDc4+chbbpmzDKwNfwcCOA6FSuOf7o6ODwTIzM3HfffehsbFRfCfJAMYDuMTHk7fCG69f/TpevPJFeCm8oFDIzweCBSaIH1dC3cOdNIv3GgAB9nXRWNyI6665DitWrJCgoObl5OTg+uuvxzvvvGNXP3K5HG+//bY0RRFRm1RbW4vTp0/D8q+VW2PHVuH++8UtAlYqzVi0qBIvvhgkRYnUCvj6+opuy1AwasqkSQHIzJRjzpxKeHhceAXo5WXCnDnSLsTSaDQ4ceIEioqK/gpJJCL3MeSzITBZrIcJLRu+DB4KDydXRERiiP2MZSiYa41MGYnMBzJxdtZZjOw80qYNHU5VncKUDVPg96ofHt76MBr1dtwPbcKS/UtgMBtEt5+zbQ42ndwkYUX2M1vMWHvMNYGXx8uP48aPb0RpQ9MhD9Q+eHsrsHmzEp06aUW1nzmzDC+/fA5K5fl7TuXl5aioqJCyRCJykrlztWhouPiBZH6+GrNnx2HatA7IzGz6mkwQBISEhDiyRKJWYXPWZhwpPeLqMiShMWkwaOsgLDuxDPWGvzfOM1lM2Jq/Ff0290NWbRZgAnBY5CCdAPhIUa19dCYd5v8y39VlEDmFp6cngoODbW7344++GDOmE3744XyI6OOP+yInx44NEonIbe3fr8OuXZ6i299/vwFKpWM3aiUiIiIiEktm+fdMaiIiIiIiIiIiahXy8w2Ij1fAYrH9YWRiog45OWoHVOXeHBWk40pTp07F0qVLoVK5NsQoISEBubm5Lq3BLcQDmO7qIto3tVyNUO9QJAUmoVdULwyIH4AbO9wIL1Xb2c2tvvQkcsuMFwWl2Oupp57Cxo0bJe2zNZr29jSsqFnhnMGyAKySpqt+/frhtddew7XXXitNh/9QVVWF119/HQsWLIBGY/8kyYcffhjvvvuuBJURUVtUUVGBoqKiJo9bLMDzz0dh3bqWh3v5+Jjw8cd1GD06QIIKqbUwm804duyYqLZqtRqdOnWSuCJqa44fb8TDD5uwY8f5ALo5c4owbZrjFpPL5XLExMTYFXhHRNL5cP+HuGfLPVaPXR11NfbetdfJFRGRWJMnV8DPz4TQUCNCQgwIDjb+/z8boVY3ff8tKCgIUVFRDqnp0KFD6NmzZ4vPP3jwIHr06OGQWloLg8mAl356Ce//9j4qNLZ9JxNkAvrF98OCWxegW3g3u2vRm/SIfycexfX2BcZ6K73xc9rP6BHRw6Z2zz33HJ5//nmbx1u+fDmmTZvW5PHdebvRd3lfm/uVUtfQrvj+zu8R6h3q0jrI9XJyNLjhBjmKilr2fFQms+C//y3C5MmVVo/HxcXBz89PyhKJyIH27KnD9df7wGxufv7HiBFVeOihEkREGC94PTY2Fv7+/o4qkajV6JPeB3vy97i6DMn5Kn0xseNEhKhDsPr0auTW/2M+0zEAGSI7vg1AigQFSsBH5YOC2QXw9+B7GbUPWVlZ0Ov1zZ7X2Chg3rwIfPHFxc+Se/eux48/ekGhEBxRIhG5yIQJDVi71ltUWz8/E/LyAH9/8Rt0ExERERE5ErcqIyIiIiIiIiJqpdau1cNiUYpqO2yYAUD7CwVriz7++GPk5eXhyy+/REBAgKvLIa5DcRqVXIVQr1AkBiaiV2Qv9E/oj4EdB8JH5QbbsjqYT1hnxFtOILfcJHkwGAGJQYlAjZMGSwbQDcBR+7v68ccfcd1116Fv37645557MGLECLsWMVksFuzbtw/p6en47LPP0NDQYH+RABITE/Hiiy9K0hcRtT3FxcUoLy+/5DkyGfD004WoqFD8tbPzpYSFGbBunQZ9+wZIVCW1FoIgQBAEmM3mZs+tqxNw/Lgnjh3zQGamJywWGb75xglFUquWmuqF7duBNWuqsXixgNtvd1wgGACYTCbk5uZCrfZEWFg8/P055YfIVep0dXj4m4etHlMICmy5fYuTKyIisWprjVi9OrjJ476+JoSEGBAaakRw8PmgsD8Dw8aNc+1GHXQhpVyJ5wc8j+cHPI+vs7/Gf3f8F0dKj7Sordlixvdnv8dliy9Dh4AOeOaGZzC9p/jdP7449oXdgWAA0GBowLBVw7Dvrn2I8nVMAJ0t1mSucXUJyCzLxI0f34jvpn7HYLB2LinJE199VY+bbhJQW3vpayOVyozXXivAoEG1TZ6Tl5eHxMREeHp6Sl0qEUnMZDLjscdkLQoEA4CNGwOxbZs/pk0rx/Tp5fDyMkOlUjEQjAhAg74Bvxb86uoyHKLOUIdlJ5dZP3hQZKfeANxoL5F6fT32ntuLmxNvdnUpRE6RkJCArKysS55z+LAnnngiBnl51ufF7tnjg5dfrsSzz7Z88ykicm+5uQZ8+aX4a/mpUzXw92/7802JiIiIqPXiDEEiIiIiIiIiolbqq6/E71g2bhxvC7UlP/zwA2644Qb8+OOPCAwMdHU57VtPVxfQ9igFJUK8QtAxsCN6RvRE/4T+GNRxEPw82veO7T7hKYjDCeQxGExySUFJwBknDjgcQAmAMmm6+/nnn/Hzzz9DqVTihhtuQJ8+fdCrVy+kpKQgJiYG3t4X74xoMplQVFSEs2fP4uDBg/jtt9+wfft2FBfbv3jxn7y8vLB+/Xq7wsqIqO3Ky8tDbW3TizP/SaEA3ngjHzNndsDhw15NntexoxZbtpiRksL3nfZKrVZDo9Fc8Fp9vYDjxz1w7JgnMjM9ceyYJ3Jz1f9qZ4Zeb4ZKxZ3CqXkTJwZg7Fgj8vO9JQtSvZRVqzyweLEZL7xQhbQ0f8jl/DklcraRn4+EzqSzeuzlG19GiFeIkysiIrHy8vS41DTaujo56urkOGPlXtHNNzv+c5/EGdJpCIZ0GoKC2gLM2joLm7I2wWA2tKjtmeozSNuYhoe2PoQp3afgjZvegK/a16bxF+5bKKZsq87VncOI1SPw47Qf4a26+L6es5jMJnxx7AuXjf9PR0uPYuDHA/Hdnd/xM7edu+oqH6xeXYMxY3yh01m/LvL1NWHhwlxccUVjs/2dPn0anTp1gkrF0Ecid7ZmTS327AmwqY1WK2Dx4jCsWxeIOXOKMWsWgyWJAEBTcQoqQQWtSevqUpynFkCOyLbdAcglrIWIbKJSqRAZGYmioqKLjhkMwNKlYfjww1CYTJcODn311QAMHlyPq69mCBBRW/DWWzoYjeJ+nxUKMx59lJtrExEREZF74+pPIiIiIiIiIqJWqLLShD17xD2MjIw0oHdvPshsa44cOYJhw4Zh+/bt8PJqOhiBHCgMQLSri2i9FIICIV4h6BDQAT0ieqBffD/cnHgzAj0ZdNcUXwaDOUS4dzj81H6o1bUsmMZuagC3AVgKQML51gaDATt37sTOnTsveN3Hxweenp7w8PCA0WiERqNBXV0dTCaTdINbIZPJsGzZMlx++eUOHYeIWh+z2YyzZ8+isbH5xZn/5OlpwXvv5WLq1I44e/bi65uePRuxZYsckZH8btyeyeVeOHBA9lf4V2amJ3JzVbBYLr0gQKcT8NtvdejTx7bF/9R+KRQKdOjQAQ0NDcjPz4fRaHTIODU1crzzTjiqqxW4+24Vli+vx8KFMlxxhesCIojam80nN+P7s99bPZYUlITH+zzu5IqIyB4FBeI/s2NjlRJWQo4Q4xeDdRPXwWg24tVdr2LhvoUoa2xZMn+DoQGL9y/Ghwc+RN/Yvnj31nfRI7JHs+1+O/cbfi341c7KL3Sg6ACmbpiKtePXQpC5JhB2d/5uFNVfvPDaVY6UHsHAjwdi59SdDAZr54YM8ceiRVW4664AmM0XXuuHhxuwePFZJCVZD3P9N4vFgpycHCQnJ0Oh4BILInek05nx9NOeotuXlSlRUeEDDw8PCasiap2qi46jpFKO8R3G45OcT1xdjvP8AUDs1Ao32ySwS2gXDEgY4OoyiJwqODgY1dXVF2wIdPasCk88EYOjR1v2TFinE3DnnXL8/rsJnp5M+iNqzWpqTFi5Uvz1wahRGsTH8xkrEREREbk3PrEiIiIiIiIiImqF1q3TwmgU9zBy8GA9BIGLVdqiPXv2YOrUqfjiC/fYrb3dcbMJgO5KISgQ5Bl0PvwrvAeuT7getyTewoU7IjEYTHoymQyXh1+On/N+dt6gwQCmAvgYkgaDWVNfX4/6+nrHDvIvMpkMS5YswaRJk5w6LhG5P7PZjOzsbBgMBlHtAwNNWLz4LO64oyPKy/++xrnppjqsX+8JX18+Dm/vGhv9MW1apKi2v/xiQJ8+EhdEbZ63tzdSUlJQWlqK0tJSyftfuDAM1dV/v7f98osPrr3WjLS0Krz2mg8CA3m/h8iRjGYjbv/ydqvHZJDh68lfO7kiIrJXQYG4kHS12ozgYF5vtBYKQYFn+j2DZ/o9g22ntmHu9rk4VHKoRW3NFjN+yvsJPT/siXj/eDx5/ZOY2XMmBMF6ONfCfQslrPxv64+vx5M7n8RrN73mkP6bk5GZ4ZJxL+VwyWHc9PFN2Dl1J4K9gl1dDrlQWlogiooq8fTTQX+9lpSkxQcfnEVEhG3hj2azGadOnUKnTp2a/D0nIteZN68aZ84ENX9iEyIj9XjmGW4CQO2bxWxCyblTKK85fy302OWPIcE3AXtK9qDeUA+FoIBcJv/7j3D+fxUyBeSCHAKEC85RCAoIMuGCcy5o///nyGVyCDLhr3PUCjUivBrhqVZDIZw/RyGTQy4IUPx/G4Ug/8dr///3//9zvt/zx40mI5Zm/oBFR1biXOO5S/77y/6QwSIiFSyxSyKeGPMETBYTjGYjTBbT+X+2GGEyn/9ni8wCf28zBK9gGM3Gv/4YTIYL/m71j6WZ4//4I5fJcVXUVXjqhqeglPN+MLU/CQkJOHHiBMxmC9auDcSbb0ZCo7Htu/uJE56YPbsKixdzo0qi1uyDD7SorRUf6vXoowwGJCIiIiL3x1kJRERERERERESt0IYNsuZPasLYsZzALFZ4eDi6du2Kjh07IiEhAfHx8YiIiEBISAhCQkLg4+MDtVoNtVoNs9kMnU4HrVaLsrIylJWVITc3F1lZWTh69Cj27t2LwsJCyWtct24dPvzwQ9x9992S902XIAC43NVFuK/EwEQ8c8MzuDXpVoT7hLu6nDaHwWDS6x7e3bmhYAAQBeBOnA8G0zRzbisiCAIWL16Mu+66y9WlEJGbMRgMyMnJgckkbhH+n6KjDVi0KBfTp3dAQ4MckydXY8UKPyiVvO4hoHNnD/j7G1FTY/vUiIMH+TNE4oWFhSEoKAgFBQWSBbJmZnogI+Piha9Go4APPwzEV18Z8MILVZgxwx9yOX9+iRxh6pdTUaurtXrsgaseQKfgTk6uiIjsVVQk7l5aSIgRcrlK4mrIGW5OvBk3J96MwtpCPPLtI/jq5FfQm/Qtaptbk4t7Nt+D2d/Oxu3dbse8m+fB38P/r+OlDaVYk7nGUaXj9d2vo1NQJ8zoNcNhY1hjMpvwxTH33Izmj5I/cNMn54PBgjzFh8RQ6/fUU0EoLKzCokWBuOKKBixYkAs/P7OovgwGA06fPo2kpCSJqyQie5SW6jF/vp9dfTz9dAN8fRn+Qe2XSVuNgqJy1DX8/f1XJpNhQscJmNBxgtPq8PZSI9arDAqVWrI+n7x6DO7pMgwfHv0Bzx94Hjqz7qJzRstG48vyL0X1f8f4O3BN2DXNnieTyRAdJCAgMlXUOETUPLlcjpiYWIwfb8H27f7NN2jChx8GYPjwGgwdKr4PInIdo9GCRYvEh2P27avBNdd4SlgREREREZFjMBSMiIiIiIiIiKiVaWgw4/vvPUS1DQgwYtAgcW3bm6SkJFx11VW48sorceWVV6Jbt24ICmr5ggJBEKBQKODt7Y3g4GCkpKTg+uuvv+CcnJwcbNy4ERkZGdi7d69ktc+ePRsDBw5EYmKiZH1SMzoDEL/pWJvnp/bDnT3udHUZbZpveAriLCeQV8FgMClcHu6ilL9IAHcBWAOgxDUlSCkwMBCrVq3Crbfe6upSiMjNaLVanDp1SrLPrNRULd5+Ow9ZWf547bUAhuHQX+RyAd26NWL3bh+b2x45wpAHso9CoUBCQgIaGhqQn58Po9Eoui+zGXjllShYLE2HxJeUKHHPPYFYvrwe770nwxVX8CKVSEr7C/dj9dHVVo+FeoXi3VvfdXJFRCSF4mJxG7CEhhoB8PtiaxblF4WM8Rkwm814Y88bePvXt1HaUNqito2GRiw9uBTLDi5D79jeePvWt3FV1FX48MCHLQ4YE+veLfeiY2BHDOgwwKHj/NOuvF0oaXDfm5WHig/hpo9vwo6pOxgM1s4tWOCPsLASDBtWDrXavntOWq0Wubm5iI+Pl6g6IrLX0083oKpKfKBX9+6NuOcehn5Q+6WvyUNuqRY6nWO/rzYnyFeJSK9qyOTSBYL9KdhHhdk9+uHbgmvxY9GPFxwTIMD8u7jAUE9PzxY/77ZYLCioMEFrzEJ4dCJkglzUmER0af7+fujTpxLbt4vvw2KR4Z57PHHokB4hIbzHQ9TarFrViPx88c9C//Mfzq8kIiIiotaBs6GJiIiIiIiIiFqZzZu10GjE3dYZNEgHpVLcIpe2rlu3bnjwwQexdu1alJSUIDs7G6tWrcJ//vMf3HDDDTYFgrVUUlIS/vOf/+DXX3/FoUOHMGnSJAiC/bfsGhsb8d///leCClvu7NmzsFgsrfrPxo0bxf8H6Cndf8u26Hj5cZjMJleX0eb5RqQgLlgOmYzv8/bqHt7ddYMHAZgJwIUlSKFXr17Yv38/A8GI6CJ1dXXIycmRPMRy8GAl5s0LYiAYXeSyywyi2p086QGdTtwiIaJ/8vb2RkpKCsLCwkT3sWFDIA4f9mrRub/+6oNrr/XEPfdUoapK3M8/EV1sxOoRTR776ravJLmnR0TOV1oq7nc3JIT3OtsKQRDw377/RcmjJdg5dSd6RfZqcVsLLNidvxtXL70aMfNj8OaeNx1Y6XlGsxFjM8YiqyLL4WP9ac3RNU4bS6yDxQcx6JNBqNJUuboUciG5XMAzz4TCy0ua72V1dXUoLCyUpC8iss+RIw1YscK+QK/XXzfy3jG1W/WlJ3GqsMHlgWBR/iZE+dZD5sDfRQ8PNXxVF2/OYNaZsW3bNlF9Dho0CD4+tm08Ul6jR17uGZh0NaLGJKLmPfVUAHr3rrerj3PnVLjnHo1EFRGRM739tvjgzeRkHUaO9JSwGiIiIiIix+FdbSIiIiIiIiKiVmb9evGL58eMYVDMnwICAjB+/Hh89NFHOHfuHI4cOYKFCxdi3Lhxdi3UFat79+5YtWoVfv/9d1xxxRV29/fFF1/g119/laCy9iM9PV1cQx8ASZKW0uZojVqcqT7j6jLaBd+IFMSGMBjMXt3CukEGF/43VAIYDeB2wCfctgnGrubt7Y158+Zh79696Nixo6vLISI3U1lZidzcXMn7DQsLQ0xMjOT9Uttw5ZXi2un1Avbta5C2GGrXwsLCkJKSYvMCspoaOd55J9ymNkajgA8/DERKCrBkSRVMJgbcEdnj8e2Po6i+yOqx0SmjcV3sdU6uiIikUloqbvFYWBhDwdqiGzvciAN3H0DRnCJM6jYJarm6xW3P1Z1DjZMW/FdpqzB01VBUNFZI2/GMGUBwMHDttcB//gP88AOMZiPWHV8n7TgO8nvR7wwGIwiCgKSkJMmekVRWVqKsrEySvohIvFOnSpGUpBPdfsiQWtxyi5+EFRG1HhWFJ3C21ACTyXXXMHK5HAmB9QjyvjisyxG0JisbJWQCGo244J9Ro0aJalfXoMXpvBLoa/JFtSeiS1MoBKxcKYefn33vLevX++Ojj3gdSdSafPedFocOeYhu//DDRggC51YSERERUevAUDAiIiIiIiIiolbEYLBg27aWL0L4J09PM4YPF/8gtC2IiYnB/fffj23btqG0tBQZGRlIS0tDVFSUq0v7S/fu3bF37148+uijdvf15puO35W+rSgtLcWWLVtEtVV3Be+0tkBmaaarS2g3/MJTEBvMYDB7eKu8kRTk2rQ/D4UHPprzEUrPlOKFF15AUFCQS+tpjkKhwNSpU3Hs2DE8+uijUCgUri6JiNxMaWkpCgsLJe83KirKJaG+1Hr07i3uGhoAfvnFyuIhIjsoFAokJCSgQ4cOLf6+tHBhGKqqxH23Ki1VYu5cX/z2WxZqa2tF9UHU3uVW5+KtX96yesxb6Y3Px37u5IqISErl5eJCwcLDxW/eQu4vwicCq8auQuOTjXhz0JuI8IlwdUkXyanMwZiMMdAZxQekXMRsBiorgb17gbffBgYMwI+d1ShrbD2BSAeKDuDODXe6ugxyMaVSicTERMn6KykpQXV1tWT9EZFtKioqkJTUgM8/P4WXXipAWJht9+tUKjPmzeMzK2p/LGYTCvOyUVTpnCCupqjVKiQGVMHHU+m0MQ+UHb/4xYPi+oqNjcWVYnceAaDT6XGqsB4NpVmi+yCipiUleeKNN+rs6sPb24TKynrRwYFE5Hzz5onfDCkkxIi0NE8JqyEiIiIiciwuVSMiIiIiIiIiakV27NCiulrchMX+/bXw9m7ft4Py8/Px/vvvY9CgQVAqnTfhzFZyuRzz5s3D+++/b1c/GzduRElJiURVtW2ffPIJDAZxC/4/ygfUrp1H2SpkljEUzJn8IlIQGywwGMwO3SO6u2zslJAU7Ju5D2k90+Dp6YlnnnkGubm5ePPNNxETE+Oyuqzx8vLCfffdh+zsbKxcuRJxcXGuLomI3FBBQQFKS0sl7zc+Pt7tQxPJ9ZKTPRAYKO4L+6FD7fsamhzH29sbKSkpCA8Pv+R5x455ICPDvve5WbNK4ONjRF5eHk6dOgW9Xm9Xf0TtzeDPBsNssb7AZOWolVApVE6uiIikVFYm7nlLRARDwdoDQRAwp/ccFM0pwq7pu3BV1FWQwX3ut/6U+xPu2XwPLBbH/TxmpIhfZOkqm7I2cZMSgoeHB+Lj4yXrr6CgAA0NDZL1R0QtYzabUVxcDAAQBGDkyGps2pSF++8vgadnyz6jpk2rQZcuXo4sk8jtWMxmFBecQmWthAGyIvh6q9HRvxIqtfiNO2yVW1uEKt2/AoLKAeSL62/kyJF2z7kwmUzILTdCU3HKrn6IyLp77gnEiBE1otr26tWAL77IweDBNTh79izM5tZ3DUzU3hw7psO334oP9brrLi08PTkHgIiIiIhaD357JSIiIiIiIiJqRdatEz/xYNQoLlJpbe6//3689NJLotsbDAZ8+umnElbUdi1fvlxUuz7+/ri9EFi1DpDxV+ySGArmfH4RqYgNljMYTKTLwy53ybh3XH4HfrvrN1wWftkFr/v4+GDOnDnIzc3F9u3bMW3aNPj5+bmkRrlcjptuugkrV65ESUkJFi1ahISEBJfUQkTuzWQyIzv7DKqrqyXtVyaTISkpCb6+vpL2S22TXC6ga1etqLaHDztvsRK1T6GhoUhNTYWPj89Fx8xm4OWXo2CxiP8+37VrI8aMqfrr7xqNBllZWSgqKuLiFqIWWLh3IY6XH7d6rHdMb4ztMtbJFRGRlAwGMyorxYWCRUbyflt70zeuL/bdtQ+lj5ViymVT4CH3cHVJAICVf6zEaz+/duGLP/4oSd9GAVjXRZKunK7BwPAmAnx9fREVFSVZf2fPnoVO59pwFaL2pri4+KLwSy8vC+67rwybNmVh5MgqyC7xkD4oyIiXX/Z2dJlEbqe8MAsVta7dGCDUT44432rIFc7dsPH131de/OJBcX0JgoCRI0faV9D/M5vNyC3TQ1+TJ0l/RHShZcs8ERnZ8vc9hcKMWbOKkZ5+BjEx5zcRNZlMKCgocFSJRCSRefOMop+denqa8cgj7nFPj4iIiIiopWQWR24RRUREREREREREkjGbLYiNNaKw0PYJUwqFBcXFZgQHyx1QGTmSxWLB4MGD8e2334pqP2jQIGzbtk3iqtqWvXv34tprrxXV9qPLLkPakSMAgPevAh4cKmVlbUv38O44dO8hV5fRLtUWn0BeudEpY8nlAhJCVfAMSXLKeI608eRGjPxcmkm+LeGh8MD7Q97H9B7TWxzkZjAY8Ouvv+K7777Dd999hwMHDqChQfoFb3K5HCkpKejfvz8GDhyIAQMGICAgQPJxiKhtMRjMmDatFlVVwGuvFUCQaLsquVyOpKQkKJXOXUhCrdsDD1Rh0aJAm9splWbU1Fjg6clraXK8xsZG5OXlwWg8/939yy8D8L//xYjuTyazYNWq0+jWTWP1uCAIiImJcVnQLJG7q9ZWI3xeOPTmixeTKQUlSh8rRYBHgPMLIyLJ5OVpER8vbhHY99/XoX9/x4UUHzp0CD179mzx+QcPHkSPHj0cVg9dzGw2Y+G+hXj151dR0lDi6nKwdvxajPO5GrjpJjyXnY3nRfSxHMC0f/x9WyJwyxRp6nOm1JBUHL7vMBSCuNA/antKS0tRWloqSV+CICA5ORkKBX++iBzNaDTixIkTzZ537JgH5s2LxP79F4d/vfJKJZ54IsgR5RG5LW3VaeSca3TZ+DKZDNH+OgR4OX+pYkF9CRJXjoLebPj7RTOA+QDqbe+vT58+WLx4sVTlAQB8vDyQ0LH1z6UgckdffVWN0aP9mw0LSkzU4tVXC5Caan1Dofj4eG5MReSmSkuNSEgQoNGIm3wyfXo90tMv3qiJiIiIiMid8YkUEREREREREVEr8csvOhQWilugct11WgQHe0pcETmDTCbDokWLkJqaCr3e9p08d+3aBa1WCw8P7nDVlPT0dFHtvL29MaFbN+D/Q8Ee+A045we8er2U1bUdJ8pPwGg2ciGOC/hFpCAOx5FXbnLoOILQdgLBgPNBds6SEpyCjPEZuCz8MpvaKZVKXH/99bj++uvx7LPPwmKx4PTp0zh69CiOHTuGgoICFBUVoaioCKWlpWhoaIBWq4VOp4Ner4dcLoeHhwfUajU8PT0RFBSEyMhIREZGIioqCsnJybjsssuQmprKzxEiskldnRGjR2uwc2cAACAszIhHHy22u1+VSoWkpCQIUiWMUbtx5ZXi2hkMAvbtq0O/fpz8T47n5eWFlJQUlJWVITu7HG+/HWFXf2PGVDUZCAacD7LIy8uDp6cnYmNjoVKp7BqPqK0Zvnq41UAwAJg3aB4DwYjagNxcPQBx9ztiYniPs70TBAGzrp2FRkMjnvzuSVeXgynrbkfcMhOuzpPuHnBGV8m6cppbk27F+0Pe53MIukBYWBj0ej2qq6vt7stsNiMnJwfJycm8P0XkYPn5+S06r0sXLdLTz+C773wxf34E8vLUAICkJC3mzAlwYIVE7qm8xrFzAi5FoVAgzrcKXp6uuc/4xoGPLwwEA4BsiAoEA4BRo0bZW9JF6hu10JTntJk5FUTuZOTIAMycWYWlS5veJOiOO8oxa1YJPDyaDi7My8tDamoqv+8TuaF33tFCoxEX6iWTWfDoo9x4joiIiIhaHz71JCIiIiIiIiJqJb74wii67ciRZgkrIWfr2LEjpk+fjiVLltjcVqvV4uDBg7juuuscUFnrp9Fo8Pnnn4tqO2HCBPj07w+sXv3Xay/vBAp9gZU9pKmvLdGZdDhVeQqdQzq7upR2yS8iFbE4jnwHBYMJgoAOYW0nEAwA4vzj4K/2R42uxuFjdQruZHMgmDUymQyJiYlITEzEyJEjJaiMiMh2RUU6DBliwqFDf4corVwZgrAwA6ZOrRDdr5eXFxISEjgBm0Tp3Vstuu0vvxjQr5+ExRA1IzQ0FD4+Qbj77hosWOAPjUZucx/+/kbMmlXSonM1Gg2ysrIQFBSEiIgIvs8SAfjy+Jf4Oe9nq8c6B3fGrGtnObkiInIEtdqACRMqUF6uRHm5AuXlCpSVKWAwXPqzUCazIDZW/PdLajuMZiMW7V/k6jIAAFqzHiMmAPuWApDgdqZBANan2t+PM/SJ7YNxXcZhbOpYxPrHurocclMxMTEwGAxoaGiwuy+j0Yg9e87iuusSIJfz+onIETQajU2/rzIZMHBgHW64oR6rVwdh8eIwvPSSFioVN7yh9kVfdw7V9TqXjO3poUacdxmUatdcKxU1lOPDzC8vPnBQXH/+/v648cYb7SuqCWX1QFyIQ7omavfeftsXP/6oRVbWhd8BwsIMePHFAvTu3fz3C4vFgrNnz6Jjx46OKpOIRNBozFi6VPz3+1tu0aBLFy8JKyIiIiIicg6GghERERERERERtRKbN4vbpUgms2D8eNfswkjSufvuu0WFggHAyZMnGQrWhC+++AK1tbWi2k6fPh3o3v2C12QAlm4ESr2BrZ0kKLCNySzLZCiYC/lHpAKW48ivkDYY7HwgmLJNBYIB5wO2Lg+/HLvydjl8rE1Zm7D84HJM7znd4WMRETnS8eONGDpUjjNnLp5MOW9eJEJDjRg82PbVyX5+foiLi5OiRGqnkpI8EBRkRGVl81Mk4uN16NJFg65dNejSRYvu3Y0AghxfJNE/eHrK8dprQZgxQ4OHHzbgm2/8bGr/8MMlCAy07Xt/ZWUlqqurER0dDX9/f5vaErUleqMeUzdMtXpMkAnYevtWJ1dERI4SFaXBM89UX/CaxQLU1gp/BYWVlSlQUaFAWdnfwWF6vQxqtbdriia3suHEBhTUFri6jL+U+ADDJgNDPwRg5y3gnR2BKk9JypKcDDL0jeuL8V3GY0zqGET7Rbu6JGol4uPjcerUKeh09oWlHDzohQcfjMPMmTV4661Aiaojon/Kz88X1U6ptGDq1AqMH1+Lq67iM2lqfxrrxc19sZe/jxrRXhUQFK4LT573+8fQmfQXvtgAIEtcf0OGDIFK5Zi5dg0ag0P6JSLA21uB5cs16N9f9Vfo+y231OCZZwrh79/yC+XGxkZUVlYiKIjPB4ncxUcfaVBeLv6e7OOPM9SbiIiIiFonhoIREREREREREbUCR4/qkZMjbvJUjx46xMVxB9TWrlevXoiNjRU1AfbkyZMOqKhtSE9PF9WuU6dOuP7668//xdMT0Gj+OqY0AxlrgQF3AvtdvBZFYQISqoGcYNfW8afM0kyMSR3j6jLaNf/IVADSBYMJgoCEMCU8Q9pmCl738O5OCQUDgLs3343+Cf3RIbCDU8YjIpLarl21GDvWE2VlTYcZP/VUNIKDjbj66uZ3Yf5TSEgIIiIipCiR2jG5XEDXro3YtcvngtdjY3Xo0kWLrl3Ph4ClpGjg52e+4ByZTObMUoku0KmTJ7Zu9cS6ddV4/HEPnD7d/P2dLl00GDu2StR4ZrMZ+fn5KCsrQ1xcnMMWvhG5s9vX3456fb3VY49c+wiv2YjaEKPReNFrMhng72+Gv78OiYnWQ2POfz/s6uDqqDVYuG+hq0u4yJFwQJMK4Kh9/WS42Y+4IBNwQ/wNGJc6DmNSxyDSN9LVJVErJAgCEhMTkZWVZfUzoCV27vTF3Lmx0OkEzJ8fiKioSsyZw6AAIilVV1dDr9c3f+IldO7Mzwlqn3RGAXanw9oo3B8I8ayBTBC30aUUShorsPjouosP/AHAfPHLLTF69Gi7aroUk8kEk6YKck+GixI5Qu/evpg7txLvvuuPJ58sxNChNRDzqK+wsBC+vr5QKl33/kZE55nNFixYID4KoWdPLQYM4Bx6IiIiImqdGApGRERERERERNQKrFmjByBuIebw4eImNZP7GTBgAD7++GOb2xUVFTmgmtbv9OnT+PHHH0W1nT59+t9/SUgAjh+/4LiPHtiyCuiT5tpALqMcqPYAdqwEjoYBG6/wwY/hGpgszp0I+qfMskyXjEsXkioY7M9AMK82GggGAJeHXy55n7F+scivvTjg0Wg2ok96HxTMLoAgcHdCImpd1q+vxtSpvmhokF/yPINBwKxZcVix4gw6d9Y2229kZCSCg90k3ZRavf79tfDwMP0VAJaaqoG/f/MrgiwWC4xGIxQKTq8g1xk7NgBDhpjwwgvnF7JoNNbfb2UyC55+uhDyS78dN0ur1SIrKwtBQUGIiIjg91NqN/YW7MUXx7+weizCJwLzbprn5IqIyJHEBsLwc5EA4HDJYfyU+5Ory7DK3mcSejnwZYo0tdhDkAnon9Af47uMx+iU0Qj3CXd1SdQGCIKApKQkZGVlwWy2LSVkzZogvPJKJMzmvxMF5s4NRGRkNSZPDpC4UqL2yWw2o7Cw0K4+1Go1/Pz8JKqIqHXRm+QADE4ZSyaTIda/EX5eAgDXbqzx1sFPoTFaCXU+KK6/lJQUpKam2ldUM3QN5fBiKBiRwzz7bAAGDsxBSIh9QaNnzpxBcnKyRFURkVgbNmiQne0luv0jj7hmriwRERERkRQ4O4GIiIiIiIiIqBXYtEn84uOJE7lbWVvRpUsXUe3q6+slrqRtWL58OSwWi83t5HI57rzzzr9fePBBq+eFNQDffAqEufg/f7k3MHMEMDET2HnN+yh7rAyfjfkME7tOhJ/auROiGQrmPvwjUxEbLIdMzHaYOP970NYDwQCge0R3yfryUHhg2fBlOPPwGUT5Rlk9p6i+CGPXjpVsTCIiZ/jgg0pMnOjXbCDYn+rr5bjvvngUFl76OiUuLo6BYCSp++83Yv78fMyYUY5rr21oUSDYn+rq6hxYGVHLeHrK8eqrQTh8WI8hQ2qtnjNmTBUuu0wj2ZiVlZU4ceIEampqJOuTyF2ZzWaM+HxEk8c33raRQUBEbQxDwcgeC/cudHUJDrO9I1Dt6Zqx5TI5BnUchCXDlqB4TjF2Tt2Je6+8l4FgJCmFQoHExMQWPx+xWIAFC8Lw0ktRFwSCAYDJJMPMmX7YsYPXTERSKC0ttTmw799iY2Mlqoao9ZHJbJ//IpbFYoHO4gmL2XljWlOmqcL7h9defKAAQJm4PkeNGmVPSS0i43UlkUMpFAKuuira7n70ej2Ki4slqIiI7DF/vvgA0thYPSZPFh8oRkRERETkaryLRERERERERETk5s6eNeCPPzxEtU1O1qFLF7XEFZGrJCQkiGrHBewXM5vNWLlypai2t9xyC6Ki/hHoc//9gIf139HEKuDrzwAfK5uSOtPZQGDIFBlqJ45CoGcgJl82GZ+P+xxlj5Vh2x3b8OBVDyLWz/ETpE+Wn4TB5Jydaal5/pGp6BiuglJpW/Ckp4caidG+bT4QDAC6hXWDTIKdjZODk7F35l7M6DUDcrkce9L2QCFY/+++4cQGLD+43O4xiYic4ZlnKnH//UEwGm177FxWpsR998WjpubiIDGZTIbExET4+Tk3vJTaPnt+phi0TO4kKckTW7b4Yf36anTsqP3rdT8/I2bNKpF8PLPZjPz8fOTk5ECv10veP5G7+M+2/6C0odTqsYldJ+Kq6KucXBEROZrYwAmFQvwmLtQ2VDRW4NMjn7q6DIfJ6Orc8RSCArck3oJlw5eh+NFibJuyDXdfcTdCvUOdWwi1K2q1ukXPXQ0G4JlnorF0aViT52g0AiZO9MahQ7x3QGQPs9mM8vJyu/rw8fGBRxPP7YnaA5XcvlA9W5XUAOfq/WA2um4OyNsHV6HRqL34wEFx/SmVSgwdOtS+olpA7dP0dwsikoa3tzeCgoLs7qe8vBxarZX3GSJyir17tdi9W3x6/QMPGKBQ2D/3j4iIiIjIVRgKRkRERERERETk5tauFZ8mNHQow3faEl9fX1HtLBbX7szpjrZv3478/HxRbdPS0i5+cfToJs+/ogj4+EtRQ0nqYLgFYzPGQm/6exG3Sq7CoMRBWDhkIXIfycXBew7i+f7Po1dkL4fUYDAbkFOZ45C+SRzPkE5IjA1BsJ8KQjO70SoUCoQFKNEhPgYqvxgnVehaXkovdAq2L/xs8mWTsf+u/bg8/PK/XosPiMeyEcuabHPXprtwpuqMXeMSETmS0WhGWlo1XnpJ/ETq06c98NBDcdBq/56AKQgCOnXqBE9P8ZM6iZpiz4JAjUYjYSVE0hg9OgCZmUo89VQlvLxMmDWrBIGBJoeNp9VqkZWVhcLCQtEhKkTu6lTlKSzYu8DqMV+VLz4d03aDX4jaM4aCkVgfHfwIWmvBA22ATg5sSHH8OEpBiSGdhiB9RDpKHi3BN3d8gxm9ZiDEK8TxgxP9P29vb8TENP2so7FRwMMPx+OrrwKb7auyUoHhw1XIzW2b7w1EzlBQUGB3H5f6nSZqD9RODgUDgOp6Pc7UBsOgc/5OeZXaGiw8vObiAwYAR8X1OWDAAAQEBNhTVrMUCgUElbj5X0Rkm6ioKCiVSrv7OXPmDJ+LELnIm2+Kf/bp52fC/fdz7gkRERERtW4MBSMiIiIiIiIicnNffSUX3Xb8eC5OaUvUarWodgxVuFh6erqodiEhIRg+fPjFB+bPB2RN7ygW4CZrAHac3oG0r9Jgtlw8UUkmk6FHRA/8r9//cODuA8ifnY9FQxbhlsRboBTsnyD1p8yyTMn6ImkovEIQGZeMlKRYRAfJEeyngq+3Bzw91PDz9kCIvwqxIXJ07tQRYTGdISjb13tK9/Duotp5KDywdPhSfDr6U/iqL57Ue2f3OzE2ZazVtiaLCb3Te3NSIRG5JaPRiM8+K8Dy5QF293XwoDfmzo2FyXR+9/Xk5GSoVCr7iySyQhAEyOXirq8NBgZuk3vy8JDjpZeCcPiwDrfdVu+UMUtKKjFhQg327KlzynhEzjD4s8GwwHqo/qdjPoVC4D1WIvobr1naN5PZhEW/LXJ1GQ6zLRGoFZ+nfEkquQrDkodh5aiVKHm0BFsmb8H0ntMR5Ck+cJzIXgEBAQgPD7/o9YoKOdLSEvDzzy0P7CgoUGHoUAuqqngPgchWer0etbW1dvURHBzM8FZq97z9w5vdCMwRNFodTtUEQaPRN3+yhN499DnqDY0XHzgGQGRG2ehLbAgoFT8v8fMAich2HTp0sLsPk8mEc+fOSVANEdni7FkDNmzwEt1+2jQNfH0ZoUBERERErRu/0RIRERERERERubHychP27hU3+z4qyoBrrhEXIkXuqb5e3ALfwMDmd7BuTyorK/HVV1+Janv77bdbX/QVEQFMndpkuwNRooZziM+OfIa52+c2e16MXwzuu+o+fHPHNyh/vBxrx6/FHZffgUAP+36eMksZCuauBJUvAqNSERmXjPgOSUhM6oS4DkmIiE2Gf0QqZPL2ueBRTChYcnAy9s7ci5m9ZkJ2icDAjPEZiPK1/gZRXF+MsRnWQ8OIiFxFr9cjKysLV1xRiwcfLJGkz+++88OuXcHo1KkTF22Rw4kNWrZYLDAajRJXQySdxEQvdOnSGeHh4Zf8/imF1auDsW5dIG64wQfTp1ejrMy5i/2IpPbWnreQXZlt9Vi/+H4Y0XmEkysiImewJ/RVqZRuAwVqfTZlbUJuTa6ry3CYNd2k7U8tV2Nk55H4dPSnKH20FJsmbcLU7lMR6MnnVuQ+QkNDERT0dzhdXp4KU6Z0RGam7QuPMzM9MWKEDjodN/wgskVeXp5d7QVBsBrwR9TeKLyCEOjjmucsRqMRp6v9UN3g2HuTf6rW1eHdP1ZbP3hQXJ/h4eHo3bu3+KJaKMTfQSm8RGSVSqWS5HtCTU0N6uq4WQqRM731lg5Go7jvFkqlGXPmcP48EREREbV+DAUjIiIiIiIiInJjX3yhFf1Qc+hQHQTBOZOtyDlKS0tFtYuNjZW4ktbts88+g04nblvQtLS0pg+uWAEEB1s9dCBS1HAO8+Yvb+KdX99p8fl+aj+M6zIOn4z+BKWPleKHO3/A7Gtno2NgR5vHzqrMsrkNkStdHn65TedPvmwy9t+1v0XtBEHAnrQ9UAjWJ2dvOLkByw8ut2l8IiJH0Wg0yM7Ohtl8flHj3XeXYfz4Srv7ffrpSjz4YKRLdq+n9sfLS/xOwrW1tRJWQuQYoaGhSE1Nha+vr0P6LytTYNGiMACAySTDihUB6NJFhgULKmEycdE7tT6VjZX4787/Wj2mkquw8baNTq6IiJxFq9WKbis2aJbahgV7F7i6BIfRC0BGF/v78TAAo48Dq276AGWPlWHDbRtw++W3w9/D3/7OiRwkKioKvr6+OHrUE1OmdER+vvj3+p9/9sFtt9XxGomoherq6uz6bgYAERERvL9M9P9CAn0dvmlAUywWCwpqVCip94LF7NjPwYV/rEGN3srGilUAzorrc8SIEQ5/L/H3VUPlzzlcRM4WGhoKDw/7A/ny8vL+elZORI5VXW3Cxx97im4/apQGcXHc3IGIiIiIWj/e+SYiIiIiIiIicmMbNoifqDV2rFzCSsgdZGWJC1Pq1KmTxJW0bunp6aLaXXHFFbj88mZCfrZssfrygShRQzrU7G9nY83RNTa3UwgK9Evoh/m3zEfOQznIvD8Tr9z4Cq6NuRYyNP+e5aP0EVMukct0j+jeovM8FB5YOnwpPh39KXzVLQ9hiA+Ix7IRy5o8ftemu3Cm6kyL+yMicoTa2lqcOnUKFovlr9dkMuCppwoxYIC4oCSFwoxFiyrx4otBUpVJ1Cx/f/GL0OvrrSwwInJDgiAgPj4eiYmJUCqlnew+f34EGhouvN9UXq7ErFlBuOYaDfbsqZN0PCJHG7pqKIxmo9Vjb9/yNvw8/JxcERE5i16vF92WoWDt19HSo/j+7PeuLsNhVncDDNb3LmiWpwEYlwmsWQuUzQPWrwEmbS+26T4pkavFx8fjhx+CUFkp8hfhHzZs8MdDD9VIUBVR23fu3Dm72iuVSgQF8R4z0Z+UvpGICXLtUsGyWhPy6gJgMhoc0n+tvh5vH1pl/eBB8f2OHj1afOMWUKtViAoLcegYRNS0hIQEu0MTLRYLcnNzJaqIiC7l/fc1qK0VPwf+8cftv7YnIiIiInIHDAUjIiIiIiIiInJT9fVm/PijuB3KgoKMGDjQ/t3NyL3s2bNHVLsrrrhC4kpar0OHDuHQoUOi2qalpTV/0jXXAA8+eMFLNWogO1jUkA43dcNUfHfmO9HtZTIZuoR2wRPXP4FfZvyCwjmFWDp8KYYnD4eH4uL3IBlkmNJ9ij0lEzldrF8sAjwCLnlOcnAy9s7ci5m9ZoqaRHhn9zsxNmWs1WMmiwm903tzt1EicpmKigrk5eVZPSaXA6+/no/u3Rtt6tPb24Q1a2px331crEXO5ekpfjdhrVYrYSVEjufp6YnOnTsjPDzc7oUuALB/vxc2bw5o8viBA9644QYfTJ9ejbIy8UErRM6y5uga/HruV6vHuoZ2xf1X3e/kiojImewJBVMouKCsvXpv33uuLsGhfuhg2/neemDiUWBtBlD2BrB2LTAhE/D589frp58kr5HI0d57zx9DhogLwP+3TZu8kZmZL0lfRG1VeXk5jEbrQc0tFRMTI1E1RG2Hf2QqIoNce91S16DD6Zog6HU6yft+//BaVOmsfF6bARwS16csXgZlsLQbLPyTUqlAQoQv5J6BDhuDiC5NoVAgOjra7n4aGhpQWVkpQUVE1BSDwYIPPlCJbn/DDRpceSU3diAiIiKitoGhYEREREREREREbmrjRi20WnG3b26+WQeFwv4Fn+Q+qqqqsG/fPpvbBQUFITU11QEVtU4fffSRqHYeHh6YNGlSy05euBD4xw6iv0eKGtIp9CY9Rn0+Cn8U/yFJfxE+EZjZayY2TtqI8sfKsWHiBqT1SEOvyF7oE9sHG27bgL5xfSUZi8hZZDIZuod3b/L4pG6TsP+u/bg8/HK7xskYn4Eo3yirx4rrizEmY4xd/RMRiVFcXIyioqJLnuPpacF77+WiQ4eWBSaFhhqwdWsDxowJkKBCItvJ5eJ2FDYYDBJXQuQcoaGhSE1Nha+vr+g+jEbglVesf1f9J5NJhhUrApCaKsOCBZUwmRhsS+5Jb9QjbaP18HdBJuDr2792ckVE5Gz2fLcTBE67bY+qNFX45PAnri7D5Xx0wKQjwPrPgdJ5wOdfAOOOAd7WfqWOHXN6fUT2UigEZGR44eqrG+zqp2vXRnzyySlYLDUoLi6WqDqitsVsNqOkpMSuPry8vODt7S1RRURtS3BUisuDwXQ6PU5VB6Kh0b7wv3+q1zfirYOfWj94GoDIbE9LTwuWnVwmuq5LUatU6BDhBaWvG08eImonAgIC4OPjY3c/hYWFdgebElHTVq1qxLlz4kPB5syRsBgiIiIiIhfj7AQiIiIiIiIiIjf15ZcW0W3HjGEgWFvzySefiJpMcsstt3CR0v/T6XRYtWqVqLajRo1CYKANO3auXw+MHAkAOND8ummXqtPXYfBng3G2+qyk/XqrvDEyZSQ+GvkRDtx9AD+n/YwRnUdIOgaRs0y+bPJFr6nlanw47EN8NuYz+KrFByz8SRAE7EnbA4VgfXL2Vye/QvrBdLvHISJqqby8PJSXl7fo3IAAExYvzkVo6KUX1nfooMOPPxpw/fV+UpRIJIqHh4eodhaLhRP8qdUSBAHx8fFITEyEUqm0uf3nnwcjO7vlvzsVFUrMmhWEa67RYPfuOpvHI3K0CV9MQKOh0eqxuX3mIs4/zskVEZGzif1ex3vt7Vf6wfQmPzvaOl8tcMcfwIbVQNk8YNU6YPQJwKu5bL2yMqfURyQ1b28FNm9WIjm5ZQH4/9anTx3S088iJMQEACgvL0dFRYWUJRK1CYWFhbBYxM+JAYCYmBiJqiFqm4KjUpAQphS9UYYUTCYTzlR7o7JBmho+OPoFKrQ11g8eFNmpCkAXYN2ZdShqvPRGObby9fZAx7gwqHivichtxMXFSXJ/58yZMxJUQ0T/ZjZb8Pbb4r83pKToMGyYuPkARERERETuiDMUiIiIiIiIiIjckF5vwbZt4h5MenmZMHQoH2q2JTqdDvPnzxfV9rbbbpO4mtZrw4YNqKysFNU2LS1NzIDAzJk40Ao2+yyqL8Ktn96KikYuSiCy5s7ud2Jmz5l//f2a6Guwd+Ze3HXFXZDJpAvijA+IR/qIpoO/7t50N05VnpJsPCIia8xmM06fPo3aWtu2U4+KMmDRolx4e5usHu/RoxG7dwOpqV5SlEkkmpeX+J9BW38viNyNp6cnOnfujIiIiBZ/jy0vV+D998NEjXfggDf69fPB4sVF0Ov1ovogktqu3F346uRXVo9F+0bjlYGvOLkiInIFhoKRLUxmE97/7X1Xl+F0vlpg1drzQWCffAmMPAl42PKrYzYDBQUOq4/IkUJDVfj6awsiI227jhkxogoLF+bCy8t8wetFRUW8p0D0D7W1Rpw+bV+IuL+/P1QqlUQVEbVdPmGd0THSG2oX/74U1ihQWOcDi8nc/MlNaDRoMe/3T5o4COCEyI67AVABRosRH574UGQnFwvxVyEuLgFyjwDJ+iQi+/25iYq9cnIs2LixSoKKiOifdu7U4o8/xM9/f/hhIwSBm2oTERERUdvBGQpERERERERERG5o2zYtamvF7XZ0441aeHnxtk9b8sYbbyA3N9fmdlFRURg6dKgDKmqd0tObDtq5lLi4OAwcOFDcoEuX4sBV0eLaOtnJipMYv3a83TsyE7VFaoUaS0csRflj5Tj98Gn8OvNXdI/o7pCxpnSfgnGp46weM1lM6Lu8L8xm8ZOliYguxWw2IycnB42NjaLap6Ro8c47eVAoLnyfGjiwDj/9pEJkpFqKMons4ufnJ7ptfX29hJUQuU5ISAhSU1Ph6+vb7Lnz54ejvl78jtxBQUb07FmFrKwsnDt3jt9lyaXMZjNGrxnd5PHNkzY7sRoiciWTyXqYcXPkcvGfidR6bc3ZijPVZ1xdhlPdkgOUvglMygTU4n5dzisvl6wmImdLTPTEV1/p4efXsjS8u+4qxUsvnYNSaf14Xl6e6HtuRG3Ns8/WYdiwZKxYEQy93vYF+zKZDNHRreMZPJE7UAfEoWNcGHy9XbvBZGWdAWfrAmDU60S1X3J0Hco0TQTwHAEg9ntrz7//ccPZDShosC/YViaTISZIjojYZMjkCrv6IiLH8Pb2RmBgoKi2Fguwbl0gxo5NRFqaD/LztRJXR9S+vfmm+LmrYWEGTJ/uKWE1RERERESux9WhRERERERERERuaN068QskR42Srg5yvd27d+OFF14Q1fbRRx/lIqX/l5+fjx07dohqO23aNAiCuFupNdoaZGvPiWrrCt+f/R7fnfnO1WUQua1gr2B0COzg8HHWjFuDKN8oq8eK64sxJmOMw2sgovbHYDDg5MmT0Ov1dvVz7bUNePnlv7//TJpUja1bveHry4UP5B48PcVPBNZqObGf2g5BEBAfH4/ExEQom1i1fuCAFzZtErcw5k+PPloMb+/z97mqqqpw4sQJVFdX29UnkVgPbn0QFZoKq8emXDYFPSJ7OLcgInIZsSGVCgWva9qjn3J/cnUJTnVrNrDhc8CjZTlIl8ZgZWrlrrrKB6tXN0CtbvpzQyaz4KmnCvHww6WQNZNtdObMGbvvvRG1djk5GixZ4o+6OjneeisSI0Z0wrZtfrBl36qwsDDRz++J2iu5RwDi4hIQ4q9yaR0NjTqcrgm2+V67xqjFG79/3PQJB0UWFAIg9u+/Gi1GfHjiQ5Gdnb9m7BCuQkBUqug+iMg5IiMjbb7PU1Ehx6xZcXjuuWhoNHJUVCgxfboBJhM3QyGSQmamHtu3i3+Wf/fdOnh48DqBiIiIiNoWfsMlIiIiIiIiInIzJpMFW7eKm4SlVJoxZoxrd3Yk6Rw5cgQjRoyA0Wj7youYmBjce++9DqiqdVqxYoWohV4ymQzTpk0TPe7BYrEzD12nuL7Y1SUQtXuCIGBP2h4oBOsTEL86+RU++v0jJ1dFRG2ZVqtFVlYWTCax26hfaMiQGjz6aBHmzKnEJ5/4QankY2lyL2LDHAwGg8SVELmep6cnOnfujIiICMj+sYLdaAReftl6UG1LXXllAwYPrrngNbPZjIKCAmRnZ3MxPDnVyfKTWLx/sdVj/mp/pI9Kd3JFRORKFltSJ/6BoWDtkyBz/TWtt9IbUXVAahlwXf754K7bjgD37Afm/gy8sgNYtBn4bB0w6Yh9Y72xXaJAMADw8pKoIyLXGTLEHx98UANBuPizQ6Uy4+2383DbbZUt6stisSAnJ0fUs1+itmLuXD00mr8/W8+dU2HOnDjceWcHHDnSfACAXC5HaGioI0skarNkcgUiYpMREyS/4D6gs+kNBpyuDkRdY8vn8CzL3IDiRutB7ygCIHaaS4+LX9qYuxF59Xk2d+XpoUZitD+8QjqJLIaInEkQBHTo0PJNAX/6yQdjxnTC99/7XfD6zp2+ePvtaomrI2qf3njDAItF3HcUT08zZs0SHyhGREREROSuOEOBiIiIiIiIiMjN7N6tQ0mJuGCvPn20CAzkBPu2YPv27ZgwYQKqq6tFtV+4cCE8PfmQGzg/wX7FihWi2vbv39+mCUD/dqDwgOi2rqCWq3Fd7HWuLoOIAMQHxCN9RDqmbphq9fg9m+9B/4T+SAxKdHJlRNTW1NXVITc3V/J+Z80yISYmSPJ+iaSgVqtFLcC1WCwwGo0Mg6A2KSQkBEFBQcjPz0ddXR3WrAlCdrb44Hm53IInnyxEU+sLdTodsrKyEBAQgKioKAiC68M2qG0b8tkQWGA9BGj12NVNhjITUdsjZvOIP6nVagkrodZieo/pWPTbItTp60S1VwgKBHgEwF/tD38P/7/++YL//cfr/z7HT+0HpVwJ+PkBdc3XkCWqyr8t6wW8+42dnfwpMFCijohca/r0QBQWVuLpp/++1+XnZ8TChXno1avRpr7MZjNOnTqFTp068TqI2p0ff6zDl1/6WT128KA3Jk9OxNCh1Zg1qwSRkdbD+WNiYhxZIlG7EBCVCpUqG3nlJpcFVZrNZuRWeyLcAoR4aiETmg4A0Rp1eO3AyqY7E7tXnwCg+8UvmywmLDm+BC9f9XKLu/L38UB0VCQElbfIYojIFdRqNcLCwlBaWtrkOY2NMrz5ZiTWrm36ufezz/rjllsacNllfA8gEqukxIiMDPHznSdP1iAkhL+DRERERNT2cDYTEREREREREZGbWbtW/ISrkSPF7W5P7qOxsRFPP/003n33XdGLk+644w6MGjVK2sJasR9++AGnT58W1TYtLc2usQ8UtZ5QsDDvMCwcvBAdAzu6uhQi+n9Tuk/BxpMb8cXxLy46ZrKY0Ce9Dwr/U8iFQ0QkWmVlJQoLCyXvNywsDGFhYZL3SyQVb29vNDQ0iGpbW1uLoCAG3lHbJAgC4uPjodFokJentauv22+vQKdOumbPq66uRm1tLaKiohAQEGDXmERNeXXXqzhdbf3e0E0dbsLgToOdXBERuZJO1/znU1NUKpWElVBr0TmkM/bM2IN3f30X2ZXZ8FH5nA/uUgdcHPLl4X9R0JenwhOyppJSbREW1qJQMHt91BN46TvAV29nRzIZYMemK0Tu5qmnglBYWIVFiwIREaHH4sW5SEwU95liMBhw+vRpJCUlSVwlkfsymcx47DEBFsulPxO3bAnAjh1+mDq1HDNmlMPb++85E2q1Gr6+vo4ulahd8ArphER1IfJKGqDRir9GsldJDaAz+SHKqxKCQmn1nOXHN6Gwocx6B0YAR0QOngSgibeUzXmbMTNlJjr4Nv99NjxAiZCojpDxmT1RqxQWFoaamhqr94sOH/bEE0/EIC/v0iHxjY1yTJ0qw969ZqhUfC8gEuPtt7XQan1EtRUECx57zPr3CCIiIiKi1k5msVi4UpSIiIiIiIiIyI107KjHmTO2LyyRySzIzzchOpo58K1RfX090tPT8eqrr6K4uFh0P926dcOvv/4Kb2/uevWnKVOm4NNPP7W5nb+/P4qKiuDpKX4Hss7vdUZWRZbo9o7WLawbbu54M25OvBk3xN8AT6X4f1cicgyz2Yy4d+Jwru6c1eMjOo/AV7d95eSqiKgtKC0tveSux2JFRUUxMIncnlarRU5Ojqi2fn5+iIuLk7giIve0eXMN/vMfNbKzPWxqFxJiwKZN2fDxsS3sXK1WIz4+noErJKnS+lJEvx0No/nijRjUcjXKHy+Hj0rcQhMiap2qq6tRUFAgqm1iYqJd94tb6tChQ+jZs2eLzz948CB69OjhuILIPYwfD3xx8eYB//YcgOfF9D8SwP//2I0+BqzPENPJPwQHA+XldnZC5F5MJjNmz67EyJHlCA8Xv9HXn3x9fREfHy9BZUTub8WKKkyfHmhTm5AQAx56qBQjR1ZBLgeSkpLg4WHbPQoiujSzvgHnCotQU2/fBgH28vRQI867DEr1hcE7epMBSR+PQn59ifWGRwE0/xXZuokAUps+PCR2CF6/+vUmjwuCgJggAX4RKSILICJ3YTQacfLkSfy5zNpgAJYuDcOHH4bCZGp5yPecOZV4800+JyeyVWOjGXFxZlRUiJv7PmRII7Zs8ZK4KiIiIiIi98DoaSIiIiIiIiIiN/LHH+ICwQDgiiu0DARrZTQaDbZs2YK77roLUVFRmDVrll2BYLGxsdi6dSsDwf6htrYW69atE9X2tttus2uBV62u1u0CwZSCEhO7TsSKkStw7j/ncOS+I3jrlrdwS9ItDAQjclOCIGDPjD1QCNY/4zee3Ihlvy9zclVE1NoVFBQ4JBAsPj6egWDUKtizeFCj0UhYCZF7GzbMH0ePqvDss1Xw8TG1uN2cOcU2B4IBgE6nQ1ZWFgoKCmA2296eyJohq4ZYDQQDgPeHvM9AMKJ2SK/Xi26r/tcCdSKnGjTIaUN92QV4pS9g167TKQxHoLZHLhfwzjtBiIqSZk/2uro6FBYWStIXkTvTaEx49lnbF+mXlyvx7LPRmDAhEdXVgQwEI3IAQeWNmLiOCA9QurQOjVaHUzVB0GguvF5beXxz04FgAHBQ5IDeAJIvfcrW/K04VXvK6jGlUomOEZ4MBCNqIxQKBaKjowEAubkq3HlnR3zwQZhNgWAA8O67gfjhhzpHlEjUpi1b1ig6EAwAHn+cMQlERERE1Hbx2y4RERERERERkRvJyDCIbjtiRMsXZ5Jz6PV61NfX49y5c/jjjz/wzTff4L333sNDDz2Ea6+9FgEBARg2bBiWLVuGujr7JoR06NAB33//PWJiYiSqvm1YvXq16EX7aWlpdo39e9HvdrV3BIPZAIPZgDsuvwNRvlGuLoeIWijOPw7LRyxv8vi9m+/FqUrrE5KJiP7JZDLj9OkzqK6ulrRfmUyGpKQk+Pr6StovkSMpFOImFhuN1oNliNoqlUrAc88F4vBhPUaOrGn2/CuuaMDQoc2fdynV1dU4ceKE5J9X1P58+senOFB0wOqx7uHdMaPXDCdXRETuwJ5QMEHglFtyoXHjnDrcUzcBaSMBvVxkB336SFoPkbsQBAFJSUmQyWwLCGhKZWUlysrKJOmLyF29+moN8vLEh6tqNAJ69gyXsCIi+ieZICA0pjPiQuQuveYxGo04Xe2H6obzn7EGkxGvHGj6GTlqAJwWOdjlAJr5nmuBBYuOLbrodW9PNRJjg+ER1EHk4ETkjgICAnD2bCDGj0/CkSO2h5kCgNEoQ1qaCrW1fJZI1FImkwULFogPJ73iCi369WN4MBERERG1XZyhQERERERERETkRjZtEjuzHhg/XiVhJfRP+/fvh0wms/mPWq2Gr68vYmJi0KNHDwwePBgPPfQQ3nvvPezdu9euxUf/dM0112D37t1ITEyUpL+2JD09XVS7rl274uqrr7Zr7AOF1hedutr64+sx65tZsFik2cWciJzjju53YHyX8VaPmSwm9EnvA7PZ7OSqiKg1MRjMmDq1FosWSTshUi6XIzk5GR4enGhJrYtaLW4hosViYTAYtUsdOnhiwwZ/bN5cg+RkrdVz5HILnnqqEFKsjTebzSgoKEB2drZk90+ofWnUN+LuzXdbPSaXyfH15K+dXBERuYuqKiN0Ots/rKQKfyESLSgICAx06pAregI3TwEqPUU0vtv65zBRW6BUKiV9LltSUsJQZGqziop0ePddP7v6ePbZRnh7iwv4J6KW84tIRccIDyiV4oM57GWxWFBQo0JJvRc+ObEFZ2sLmz75EACx0156tuy0bee24WTNyb/+HuSnRkJCPBReISIHJiJ3dsstkUhJsf78o6XOnFHjwQfrJaqIqO378ksNTp0SHyA8ezbnyhERERFR28ZQMCIiIiIiIiIiN3H6tAFHjohbSJ+SokNKCkPB2htBEDBr1iz89NNPiIyMdHU5bufYsWPYt2+fqLbTp0+3e/wDRe4ZCgYA7//2Pl77+TVXl0FENvp87OeI9o22eqykoQSj14x2ckVE1FrU1RkxeHADVq0KwFtvRWLLFn9J+lWpVOjcubNLF4gQieXt7d2i83Q6GQ4f9sTnnwfhmWeiMWZMErZvb3BwdUTua+hQfxw5osJzz1XCx8d0wbFJkyrQqZNO0vF0Oh2ysrJQUFDAEFyyybi146Axaqwee/r6pxHlF+XkiojIXcybF4Arr+yK3r1TMXJkEmbMSMDcuTGYNy8CK1YEY9Mmf/zyizdyctSorpbjz70VBIHTbckNzJjh9CF/TACunQlkB9nQKCkJ4EY21MZ5eHggPj5esv4KCgrQ0MD7DdT2PPGEBrW14gO9rriiAdOmSXM/m4ia5xHUEYkxQfDyFB/OIYWiah1e+G1l0ydYcD4UTIxoAGEtP/2DYx8AACKDFIiK6wSZnPPziNoqpVLAxx9b4OVlav7kS/jkkwBkZFRLUxRRGzd/vviNGOLj9Zg4UUySPRERERFR68HtMoiIiIiIiIiI3ERGhh6AuMX0w4YZAbh2QhY512WXXYbFixejd+/eri7FbX300Uei2imVSkyZMsXu8d05FAwAnvzuSUT6RmJaj2muLoWIWkgQBOyZsQeJCxJhNBsvOr4xayOW/b4MM3vNdEF1ROSuiop0GDLEhEOHfP967emnoxEcbMS114pfaOjl5YWEhAQujKdWy8/PD6WlpRe8ptfLkJXlgcxMTxw7dv5/T53ygNF44WTkX39txODBzqyWyL2oVAKefTYI06Zp8cgj9diwwR8hIQbcf39p841Fqq6uRk1NDaKjoxEQEOCwcaht2Hl6J7bmbLV6LM4/Ds8NeM65BRGRWykrO38NU1cnR12dHKdPX/p8hcKMkBAjxo+vxYIFTiiQ6FJefBGYPx9wclhqdvD5YLD1a4B+uS1o8PTTDq+JyB34+voiOjoa586dk6S/M2fOoFOnTlCr+dyf2obff6/HZ5/ZF+j1xhsmyOW8B03kTArvUCTE+6GoMA9VtdJuANBSWwu2Ircur+kTzgKoEtl5T9tO31m4E9WyLHSLGiNyQCJqTbp188YLL1Ti0UdtSca+2IMPeqNvXx2iovjdnqgpv/6qxS+/iA/1euABPRQKhnUSERERUdvGu+NERERERERERG5i40bxt2rGj2f2e3uRnJyMlStX4tChQwwEuwSDwYBPP/1UVNuhQ4ciLMyGbUGtqNXVIqsiy64+nGHmxpnYmm19kSwRuac4/zisGLmiyeP3br4XpypPOa8gInJrx483ok8f4NAhrwteNxoFPPJIHE6c8BDVr5+fHzp27MhAMGrVPDw8kJWlRkZGIJ57LgoTJiTimmu6YNKkRLz0UhTWrw/CyZOeFwWCAcChQ3IXVEzkfuLjPfDll/7YsqUGL7xQCF9fx4ZTWCwWFBQUYNOmXBQX6x06FrVeZrMZ49eOt3pMBhm2TNri5IqIyN2Ultr2PMVoFFBcrIJez++A5AY8PIDrr3fJ0JVewKCpwMruzZzo5QXceadTaiJyB4GBgXY/V/ynU6dOwWi8eFMQotbosccsVu+ttdTIkTW48UY/CSsiopYSFGpEx3VCZKDz56OZLCZ8ePzDS590UGTnCgDdbG/2xuEVIgckotbokUcCMHBgnV19dO/eiNzcXJidHOpN1Jq88YZJdFt/fyPuu8+r+ROJiIiIiFo5ztImIiIiIiIiInIDJSVG7NsnbkF+TIweV17J3Y7aMqVSieHDh2PTpk04ceIEpk6dygCGZmzevBmlpaWi2qalpdk9/sEisTMQnctkMWHc2nH47dxvri6FiGxw++W3Y0KXCVaPmSwm9Envw4mFRIRdu2rRr58SZ85Y3324oUGO++6Lx7lzSpv6DQkJQVxcnBQlErnc4sURePHFaKxbF4Tjx60HgFlz9Ch39Sb6pyFD/HHPPbHw83P8Ql2dToYHHohAly4C3nyzEkYjv/fShe7efDeqtFVWj03vMR3dwkWs/CSiNqWsTFy4V2SkReJKiERasgSQiQ9YsYdBDkwbDTx9I2BuqoTHH3dqTUTuICwsDAEBAZL0ZTabkZOTw3v81OqVlpbhpptqEBZmENXew8OMefM4D4bI1YKjU5AQpoRc7ryQ5G0F23C2/uylTwoH0E/En2EAREzP25S1ifNqiNoRuVzA8uVKBAfb/j3G29uEl14qwPz5+fD11aOoqMgBFRK1fmfOGLBpk/hQr7Q0LXx8OIeaiIiIiNo+fuslIiIiIiIiInID69bpYDKJm8A/dKgeguCayf/kOIIgYMyYMVi+fDmKioqwceNGDBs2DDIXLfRobdLT00W1i4iIwODBg+0ev6nFp+6o0dCIoauGIrsi29WlEJENVo9djRjfGKvHShpKMGrNKOcWRERuZf36agwZ4o2ysksHfpWXK3HvvQmorm7ZYo7IyEhERERIUSKRW+jRwyiq3ZkzalRWilvQSNRWCYKAuLg4JCUlQaVy3KLdFStCkJ+vRlWVAo89FoQrrtDixx/rHDYetS5HS44i/aD1e0KBHoFYOnypkysiIndUXq4Q1S4igvfmyU107gw88ohLS3j5BuC2cYDm379OiYnAs8+6pCYiV4uJiYG3t7ckfRmNRhw+fAomE4PBqHUym80oKyvF8OHV2Lw5Cw88UAJPT9t+nu+6qwadOnk6qEIisoVPWGd0jPSG2oH3/P5ktpix5PiS5k/sA2CAiD89xNf27A/8nkvUnsTGemDBggab2vTq1YAvvsjByJHVf2V5V1VVoaHBtn6I2oM339S1eMOuf1MqzZg9m5t4EREREVH7wFAwIiIiIiIiIiI3sGGD+MUkY8c6bzdGch6z2Yzt27cjIyMDn3zyCfLy8lxdUqtRXFyMb775RlTbKVOmQKEQtyjsnzoFdYIMl/69TglJQe+Y3naPJYWyxjLc8uktKKkvcXUpRNRCgiBg94zdUAjW37M2ZW3C0gNc8E7UHn3wQSUmTvRDfX3LrhPOnlXjwQfjodFc+rtLXFwcgoODpSiRyG1ceaW4a3GLRYbduxslroaobfDw8EBycjKioqIkDzY/d06JpUtDL3jt8GEvDBjgg9tvr0ZRkU7S8aj1Gbp6KCywWD22dvxaCAKnyhG1d5WVBmg04p6pREfzPYTcyPz5QIz1DQOcZW1XYMA0oOTPDCRBAHbudGVJRC4XHx8Ptdr+hcklJQqMHx+Lxx+vkaAqIucrLCyExXL+2szT04J77y3D5s1ZGDWqCjKZ9Wu2fwoNNeD5530cXSYR2UAdEIeOcWHw9fZw6Dg7zu3AqbpTDh1DrK05W/FL/i+uLoOInGjy5ABMmlTd7HkKhRmzZhUjPf0MYmIu3lQoNzcXZjMDf4n+VFVlwscfiw8AHjNGg9jYS2+QR0RERETUVnCWAhERERERERGRi9XVmfHTT+ImTQUHGzFggGMnXJHr1NXVYevWrZg9ezbi4+PRu3dvfPzxx9Bqta4uza2tXLkSRqNRVNu0tDRJauga1hX/6/e/C4LBgjyDMKHrBCwbvgy5j+Ti+APHEekbKcl4UjhTfQZDVg1Bna7O1aUQUQvF+cdhxcgVTR6/b8t9OFXpnpOmicgxnnmmEvffHwSj0bbHwH/84YXHH4+Fta9QMpkMiYmJ8PPzk6hKIvfRt6/4ycb79pkkrISo7QkKCkJqaqqknx9vvBEJne7izziLRYZVqwLQtasc8+ZVwmjk4pr26PkfnkdejfVQ/cFJgzGw40AnV0RE7ig3V3yAZHQ0N2ghN7NjByBxCKut9sYA19wFHA0D8MwzQHy8S+shcjVBEJCYmGjXBkQ5OWrccUdH5OR4YP78QLz1VqWEFRI5nsFgQHV19UWvh4UZ8eKL57BmzSlcdVX9JfuYO7cOgYFc5E/kbuQeAYiLS0CIv8oh/ZstZiw5scQhfUvl2R+edXUJRORkH3zgg/j4pu8ndeyoxapVpzFzZjnkTdw6MpvN3BCW6B/ef1/T4k3urHn8cfs3/SUiIiIiai0YCkZERERERERE5GIbNmisLmhsiVtu0UGhcO2Ef3KeX375BXfeeSdiY2Mxb948aDQaV5fklpYvXy6q3XXXXYeUlBTJ6niu/3PIvD8TmyZtwm93/YbSR0uxZtwazOg1A3H+cQCAA0UHJBtPCr8X/Y5xa8dBb9K7uhQiaqHbL78dE7pMsHrMZDGhd3pv7jhK1A4YjWakpVXjpZeCRPfxww9+ePnlKFgsf78mCAI6deoET0/xwUlE7iwqSo3oaHHffQ8d4mRjouYIgoC4uDgkJSVBpbJvseCuXT747rtLB4xVVSnw+ONBuOIKLX74gYHX7UlhbSFe/OlFq8c8FZ5YN2GdkysiIndVUCA+2DUhQS1hJUQS6NwZWLHC1VUgNwDofY8C39xxratLIXILgiAgKSkJgmD78/8DB7wwdWpHFBf/ff00d24gVq2qlrBCIsfKz8+/5PHUVC0++ugsFizItRqwkZKiwcMPBzioOiKyl0yuQERsMmKC5JBJHFD7feH3yKrJkrRPqW0/vR27cne5ugwiciJ/fwWWLtVCLrdcdOyOO8qxZs0ppKY2v8FrfX291eBUovbGYLDggw/E32ft378RvXrxPi0RERERtR8MBSMiIiIiIiIicrEvvxTfdswYBoK1R+Xl5Xj88ceRmJiIjIwMV5fjVnbv3o2TJ0+KapuWliZxNUBqaCqGJQ/DlVFXQi5cuLtZRWMFzlaflXxMe207tQ0zNs6A2cIQIaLWYvXY1YjxjbF6rLShFCM/H+nkiojImYxGI+bNK8Hy5QF29/XFF0FYsiQUAKBUKpGcnGx3iAuRu+vWrfmJ+tYcPcrJxkQt5eHhgeTkZERFRYlaLKjXy/Daa5EtPv/wYS/ceKMPJk+uRlHRxQuMqe0ZsmoITBbrQT8fDvsQnkoGnBLReYWF4u55enqaEBiolLgaIglMnQosWODqKlAnN2LoqqFY9NsiV5dC5BYUCgUSExNtuv7ZscMPd9+dgLq6C58nmkwyzJzph+3ba6Quk0hyDQ0NaGxsbPY8mQwYMKAOX36Zg7lzi+DnZ/zr2Msv66BUcpkTkbsLiEpFh3AVFAppNs+wWCxYcmKJJH052rM/POvqEojIyQYN8sdDD1X/9fewMAOWLDmDuXOL4eFxcVhYU86dOwej0dj8iURt2KefalBYKP4+65w5nDNPRERERO0L75YTEREREREREbmQXm/Bzp0eotp6e5swZIi4ttQ2FBUVYeLEiRg5ciQqKytdXY5bSE9PF9XO29sbEydOlLiaS/u96HenjmeLTw9/iid2POHqMoiohQRBwJ4Ze6AQrE+63py9GR8e+NDJVRGRM+j1emRlZWHIkAoMHCjNwsD33w/HiRP+6NSpk2SLOYjcWY8e4ibfnz2rRnm5XuJqiNq2oKAgpKamws/Pz6Z2K1aEIC/PtiA+i0WG1asD0KWLHPPnV8BsZvB1W/XR7x/hj5I/rB67IvIK3NH9DidXRETurLCw5Qs1/ykkhAs2yY099BCQnn4+YcWFzBYzHvj6ATzyzSMwma2HdRK1J2q1GgkJCS06d/XqIPznP7HQ660v7dBoBEyc6I1Dh+olrJBIegUFBTadr1RacMcdFfj662zccUc5brmlFmPGBDimOCKSnFdIJyRG+8HTw/4NNH4q/gnHq49LUJXjfX/2e3x/5ntXl0FETvb66/64/PJG3HJLDdavz0Hv3g0292GxWHD27FnpiyNqJcxmC95+W3ykQUqKjnPmiYiIiKjdYSgYEREREREREZELffONFrW18uZPtGLgQC08PXl7h4CNGzeiZ8+e2L9/v6tLcamGhgZkZGSIajtu3Dj4+vpKXNGlHSg64NTxbPXGnjewYO8CV5dBRC0U6x+LlaNWNnn8/i33I6cix4kVEZGjaTQaZGdnw2w2Qy4HXnutAD172j75+N+efroS48bFQhB4rUHtw1VXif9Z3727UcJKiNoHQRAQFxeHpKQkqFSqZs8vLFRi6dJQ0eNVVyuQnW3C8ePHUVVVJbofck/1+no8+PWDVo8pBAW+nvy1kysiIndXUiIuNCk0lAFH5OamTwd27waCglxdCd7d+y5Gfj4Sdbo6V5dC5HLe3t6IjY1t8rjFArz7bjheeSUKFsulP6OqqhQYPlyF3Fyt1GUSSaKyshIGg0FUW39/E+bOLUZGhmsDLonIdkrfKHSIi4K/j/iADovFgsXHF0tYleM9+8OzsFjEhU4TUeukUgnYutWEefPy4e8v/j6RVqtFWVmZhJURtR7bt2tx5Ij47wyPPGKEIPCagYiIiIjaF87kJiIiIiIiIiJyoXXrzKLbjh7Nh5vOcuWVV8Jisdj0R6/Xo7a2FqWlpcjMzMR3332HlStXYu7cuRg+fDhCQ8UvaLUmLy8P/fv3x/bt2yXttzXJyMhAfb24HbKnT58ucTXNc/dQMAB45JtHkJEpLmiNiJxv8mWTMbHrRKvHTBYT+izvA5OZi1iJ2oLa2lqcOnXqggUHHh4WLFyYh44dxS0MVCjMWLSoEi++6PoFxETO1Levl+i2v/0m/pqeqL3z8PBAcnIyoqKiIJM1fY/rjTcioNWKn94UHa3HjBllsFgsOHfuHLKysqDT6UT3R+5l9OejoTVZ/+7zQv8XEOYT5uSKiMjdlZaK+0wJDTVKXAmRA1x3HVBRAVx2masrwZbsLei7vC/ya/JdXQqRy/n7+yM8PPyi1w0G4Omno7FsWcufGRcUqDBkiAVVVeKCl4gcxWw2o7i42K4+PDw84Ofn3E28iEgagsobMXEdER6gFNV+d8luHK06KnFVjrUrbxd2ntnp6jKIyMmionwREOBvdz8lJSXQ6/USVETUurz5pvhAzfBwA6ZPF/9cn4iIiIiotWIoGBERERERERGRi5hMFmzdqhLVVqUyY9QotcQVkZSUSiV8fX0RGhqKLl26YMCAAZg6dSpee+01bNy48a+wsHnz5uHKK6+UZMyGhgYMGzYM3377rST9tTbp6emi2iUmJuKGG26QuJrmHSh0/1AwCyyY8uUU/HD2B1eXQkQttGrMKsT4xVg9VtpQipGfj3RyRUQktYqKCuTl5Vk95u9vwuLFuQgLs21hoLe3CWvW1OK++xgIRu1PeLgKsbHiAoIOHlRIXA1R+xMUFITU1FT4+flddOznn32wc6d9C2zmzi2Ch8ffiwz0ej2ys7ORn58Ps5nBfq3ZtznfYseZHVaPdQjogCeuf8LJFRFRa1BWJhfVLiyMnxnUiowZ4+oKAACHSw7j6mVXY3/hfleXQuRyoaGhCAr6+75bQ4OABx+Mx8aNgTb3deyYJ0aM0EGn42cTuY+SkhK7r7FjY2MlqoaIXEEmCAiN6Yy4EAUEoeVLFS0WCz44/oEDK3Oc/33/vws27yGi9iE6Ohpyubj7S/905swZCaohaj2OHNFj505P0e3vvlsHlYobaRMRERFR+8NQMCIiIiIiIiIiF9m1S4eyMnG7JPbtq0VAgP2TC8i1unTpgkcffRS//fYbjh49irS0NKjV9oW96fV6jBs3Dvv3t69FFtnZ2fj5559FtZ0+fTpkMudOGKjUVOJMdeuY3KM36XHnhjuhM4oLSiAi5xIEAXvS9kAhWA8p2ZK9BUv2L3FyVUQkleLiYhQVFV3ynMhIAxYtOgsfH1OL+gwNNWDr1gaMGRMgQYVErVO3buK+6x49yrBuIikIgoC4uDgkJSVBpTofoK/Xy/Dqq5F29Xv99XXo37/O6rGamhocP34clZWVdo1B1v1a8CuW7F+CQ8WHHLI40mg2YuIXE60ek0GGrbdvlXxMImobSkvFhboyFIxInOL6Ytyw/AasP77e1aUQuVxUVBR8fX1RXi5HWloH7NnjK7qvn3/2wcSJdTCZ+PlErmc0GlFRUWFXH76+vnbPkyAi9+AXkYKOEWoolS2bD7e3bC8OVx52cFWO8UvBL/j+7PeuLoOInEwQBHTo0MHufgwGAwoLCyWoiKh1eOMNAywWcXN0vbxMmDVLfKAYEREREVFrxlAwIiIiIiIiIiIX+eILo+i2I0dygm9b07VrV3z00Uc4fvw4xti5i3t9fT1Gjx5t9+Tb1iQ9PV1UO0EQcOedd0pcTfN+L/rd6WPaI68mD3vP7XV1GUTUQrH+sVg5amWTxx/4+gFkV2Q7sSIikkJeXh7Ky8tbdG7nzjq8+24elMpLXzd06KDFjz8acP31flKUSNRqde/esuvzsDAD+vevxQMPlOD9989i5crT0Ov1Dq6OqP3w8PBAcnIyoqKisHFjIPLyxC8IVqnMeOKJIlwqA9xisaCwsBBZWVnQ6RiELZXHtz+O6z66DvduuRc9l/TEsNXDkFeTJ+kYaRvSUKOrsXrsnivuQeeQzpKOR0RtR3r6aWzYkI1ly87g1Vfz8eijRbjzznIMHVqNa66pR2KiFn5+F383jLQvp5KoXdMYNRibMRZv7H7DIWGhRK1JfHw8Nm0Kw7Fj9i9m/uorfzz0kPXvxETOdO7cObv7iImJkaASInIXHkGJSIwJgpdn8/f2viv8zgkVOc6O0ztcXQIRuYCHhwdCQkLs7qeyshINDQ0SVETk3oqKjFi7Vvx18O23axAczE20iYiIiKh9ErftGRERERERERER2cVstmDLFpWotoJgwfjxHhJXRO6iQ4cOWLduHdavX4+ZM2eiqqpKVD8FBQW48847sXnzZokrdD8mkwkff/yxqLY333yzSyYZHyg84PQx7eWv9nd1CURkg8mXTcbGkxuxJnPNRcdMFhP6pvfFuTnnoBD4qIjI3ZnNZpw9exaNjY02tbv66ga88koBHnsszurxHj0asWWLHFFRXlKUSdSqXX31xfuphYQY0LWr5q8/XbpoERJycUBETU0NQkNDnVEmUbsRFBSEp54yQ6WqxOuv+6G21vbvrNOnlyM2tmWhfXq9HtnZ2fD390d0dDQEgXssipVTmYN5e+Zd8NrX2V+jy/td8PKNL+PBqx+EXLBv4cahokP45MgnVo8Fewbj/SHv29U/EbVdZrMZ/v5m+PvrkJh46TBIvV6GigoFysoUKC9XoG9fbydVSdR2zd0xF1kVWVg0dBFUcnHPSInagtdfD8SJE7X4+mv7Q/pXrvTD1KnncO210RJURmQ7rVaLuro6u/oICQmBXM4F/kRtjcI7FAnxfigqzENVbdPXX3UG+95DXC3QI9DVJRCRi0RERKC2ttbuzYNyc3ORkpLC5xLUpr3zjhY6nY+otoJgwaOP8j4SEREREbVfvFokIiIiIiIiInKBQ4f0OHtW3IPKK6/UIjKSAR5t3ZgxY3Do0CGkpqaK7mPLli34/PPPJazKPX3zzTcoLCwU1TYtLU3ialpmf9F+l4wr1qiUUege0d3VZRCRjVaNWYVYv1irx0obSzHq81HOLYiIbGY2m5GTk2NzINifbr21Fo8/XnTR6wMH1uGnn1SIimp+l3ai9qBvXy9cf30d7r23FAsX5mLnzhP4/vuTeO+9PNx3XxluuKHeaiAYANG/n0R0aUqlgCefDEJmphHjx9fY1DYqSo8ZM8psHrOmpgbHjx9HZWWlzW3pvO/PfG/19QZDAx759hH0Tu+NIyVH7Bpj2OphTR77cuKXXDxFRE3S6S4dBPZPKpUFkZEGXH65BjfeWIeOHflMhkgKHx38CLd+eiuqNOI2xCFqCxQKARkZXrj66ga7+gkKMiI9/Qx8fKpQVHTx/T8iZ8jPz7ervSAICAsLk6gaInI3gkKN6LhOiAxs+npqcMxgJ1YkrVi/WEy+bLKryyAiF+rQoYPdfZjNZru/UxG5s4YGM5YtE78J9pAhjUhOZigYEREREbVfnKlAREREREREROQCGRkGAOIW4A8fbpK2GHJbcXFx+Pnnn3HzzTfjwIEDovqYPXs2hg8fDm9vb4mrcx/p6emi2gUFBWHEiBESV9MyBwrF/f/pTHKZHNfEXIM7LrsDd11xl6vLISIRBEHA7rTdSFyQCIPZcNHxLdlbsGT/Etxz5T0uqI6ImmMwGJCTkwOTyb7v/1OmVKCkRImVK0MAAJMmVWPlSj8olQzMIPpTaKgKixZliWqr1WolroaI/ikmxgMZGR7Ytq0Gs2ercOyYZ7Nt5s4tgqenRdR4FosFhYWFKC8vR1xcHDw8xC9UaI/O1Z275PF95/ah14e9MLfPXDx9w9PwUNj23/fJnU82OcaI5BG4Pv56m/ojovbFllCwf1OrGahMJJXvz36Paz+6Flsmb0FSUJKryyFyCW9vBTZvNqNvXy2ysmy/5oiL02Hx4rOIjT1/37+iogIqlQrBwcFSl0rUpNraWru+XwFAVFQUg52J2oHg6BSolSeRX2GCyWS+4NgNkTfg5Stfxqc5n+JM3RnIIINMJoMAATKZDDLIIMgECLLz7xWCTIAAAZABAs6//u82FdoK1BvrL6oj3DscMX4x58+V/d32r39u4etyQY7u4d2R1jMN0X7RTvlvSETuSalUIioqSvRmpn+qq6tDTU0N/P39JaqMyH0sXapBZaX4ucuPPy6XsBoiIiIiotZHZrFYxM2CIyIiIiIiIiIi0bp10yIzU9yiwpMn9dz5qJ0pKSnBddddhzNnzohqP2/ePDz66KMSV+UeysvLER0dDb1eb3Pbhx56CAsWLHBAVZdWqalE8BvuOSm/Y2BH3NzxZtyceDMGdBiAAI8AV5dERBJYfWQ1Jq+3vkuxXCbH8QeOo1NwJydXRUSXotVqcerUKUj1KNdsBp54IgapqWa8/noA5HIutCL6t5MnT8JguDhEsyW6desmcTVEZI3BYMabb1bj9df9UFNjfR/Evn3rsGhRLmQyacb09/dHdHQ0Fym30F0b78Kyg8tadG5ycDI+HPYh+iX0a9H5BbUFiH8nHmaL+aJjXkovVDxeYXPIGBG1L6WlpSgtLRXVtkuXLk79LDh06BB69uzZ4vMPHjyIHj16OK4gktyKFSswffp0V5fhPCMB/OtHOsgzCBsmbmCoJ7Vrp05pcP31chQVtfzZ/2WXNeK993IRFHTxRgJxcXHw8/OTskSiJh0/ftyuDS1UKhWSk5MlrIiI3J2uOg95pVroRMzvscXLh5/D59nrLnr9v33/i1cHvurQsYmofTp9+jQaGxvt6kMmk6Fz585QKKw/+yBqjUwmC5KTDTh9Wtx896uu0mDfvuY3CyIiIiIiass4Y42IiIiIiIiIyMmys/WiA8G6dNEyEKwdCg8Px7p166BUKkW1f/PNN0WFZrUGn3zyieh/t7S0NImraZllv7dscawz+Kn9MDplND4Y+gFyHsrBqYdP4YNhH2B06mgGghG1IZMum4Tbut1m9ZjJYkLf9L4wmo1OroqImlJXV4ecnBzJAsEAQBCAxYvr8eabQQwEI2qCh4f4IJm2er1F5G6USgFPPBGEo0eNmDChGjKZ5V/HzXjiiSLJAsEAoKamBsePH0dlZaV0nbZhhfWFLT43qyIL/Vf2x10b70KVpqrZ8wd/OthqIBgApI9IZyAYETVLp9OJbstwSCLpVWoqMfDjgfjkj09cXQqRyyQmemLjRgP8/Fp2f/6GG2qxbNkZq4FgAJCXl2d3GAFRS5SWltoVCAYAsbGxElVDRK2FOiAOHePC4OvtmHs4MpkMMUFyePsEWD1uNlu/r0REZK+EhATI7HwwYbFYkJubK1FFRO5h3TqN6EAwAJg9W7o5M0RERERErRVnKhAREREREREROVlGhvjFwsOHM7CjverZsyeeeuopUW1LSkqwceNGiStyD8uXLxfVrmfPnujRo4e0xTTDYDLgyZ1PYu6OuU4d958EmYDrYq7Ds/2exe603ah4vALrJ67HvVfei8SgRJfVRUSO99nozxDrZ32BRWljKUauHunkiojImsrKSodM9g0LC0NsbIzk/RK1JV5eXqLb1tTUSFgJETUnJsYDa9YEYNu2WnTtqvnr9enTyxEXJ31In8ViQWFhIbKysqDVaiXvvy05V3vO5jbLDi5Dl0Vd8MWxL5oMRf3gtw9wtOyo1WPXRF+Did0m2jwuEbU/RqO45yv2LuokoqYZzAZM3TAVz3z3TJPhn0Rt3ZVXemPNmkao1Zf+HRg9ugrvvpsHL69LL4o+c+YMw8vJocxmM8rKyuzqw9vbG56enhJVREStidwjAHFxCQjxl3ZDTIVCgQ7hKgREpUKQWV8qye+bROQogiAgLi7O7n40Gg3Ky8slqIjIPbz9tvj7qgkJekyYwGsGIiIiIiKGghEREREREREROdmmTXLRbcePV0pYCbU2jz32GCIjI0W1XbFihbTFuIHffvsNR44cEdU2LS1N4mou7UzVGVy//Hq8+vOrTh0XAKK9ojG+w3i8d/17qHi8Antm7MFz/Z9D79jeUAgKp9dDRK4hCAL2zNgDpWD9u8TXOV9jyf4lTq6KiP6ptLQUhYWFkvcbFRWFsLAwyfslamv8/f1Ft21oaJCwEiJqqZtu8sfBg2q8+molUlM1mDnTvkXJzdHr9cjJyUFeXj4MBi4itOZcne2hYABQXF+M8WvHY9SaUSioLbjgWK22Fo98+4jVdgpBga8nfy1qTCJqf8SGggkCp9kSOdpLu17C5HWToTFomj+ZqA269VY/fPBBDQTBeuDXvfeW4vnnz0HRgsd6FosFOTk5oj/3iJpz7ty5JgOdWyo21vomNkTUPsjkCkTEJiMmSC5JCLOnhxqJ0X7wCukEAJDLrM/LYygYETmSr68v/Pz87OrDaATeeMOA0lKG/FLrt2ePFr/+Kj7U68EHDZDLuVkDERERERFnKxAREREREREROVFRkRG//eYhqm18vB49e0q7UyK1Ll5eXnj00UdFtf3uu++g0bStxRTp6emi2qnVakyePFniapr2+dHP0WNJD+w9t9cp43krvHFj1I14qsdT2HLLFmy9dSv+1+t/6B/eHwEeAU6pgYjcU4xfDFaOWtnk8Qe+fgDZFdlOrIiI/lRQUIDS0lLJ+42Pj0dQUJDk/RK1RSqV+OttrVYrYSVEZAulUsB//xuE338X4O/vnDD9jAwLevTQ4dtva5wyXmuhM+pQ3lhuVx8bT25El/e7YNFvi/5aqDny85HQm6wvgnpt4GsI8uJ3HSJqGZPJJKqdXC5+oxciark1mWtw48c3oqS+xNWlELnE9OmBePHFqgteEwQL/ve/c3jggVLYkpliNpuRk5MDs5nhJyQtvV6Pmhr7roUDAwOhaEnCHRG1eQFRqegQrrLrPcHfxwMd4qKg9I366zVBZn2ppMki7pqQiKilYmJiRN9Hys9XYdq0jpg3LxJ33dW25nhS+zRvnvjP3YAAI+65R3ygGBERERFRW8JQMCIiIiIiIiIiJ/riCx3MZnG7Fw0dqocgcOej9m7KlClQKm1f5KrRaPDTTz85oCLX0Gq1+Pzzz0W1HTlypFPCMRr0DUj7Kg2T1k1Cra7WYeMIEHB50OW4N/VefNzvY+wavgvvXvcubku8DXE+cX/trGqxWNDQ0OCwOoiodZh02STc1u02q8dMFhP6pPeB0Wx0clVE7ZfZbMaZM2dQXV0tab8ymQxJSUnw9fWVtF+itk7MtRYAGI387CRyNQ8PNZKTkxEdHf3XdbAjNDYKmDcvEseOeeLWW/0xblwN8vMZDAgAhXWFkvRTp6/DA18/gOuXX4/39r2HH3J/sHpep6BOmNN7jiRjElH7IDYYhaEVRM7za8GvuGbZNcgszXR1KUQu8eSTQXjggfPBYGq1Ge+8k4fx46uaaWWd0WjE6dOnGQxGklq3rgw6nfhrbplMhsjISAkrIqLWziukExKj/eDjZdsGmzKZDBGBCsTEdYSg8r7gWFOhYH8G0BMROYogCEhISLCpjcUCrF8fiHHjEvHHH14AgI0b/bFkibjrACJ3kJOjx6ZNXqLbp6Vp4ePD6AMiIiIiIoChYERERERERERETvXVV+InSI4bx4UnBISGhuLGG28U1Xbv3r0SV+M669atEx2ekZaWJm0xVhwqPoQrPrwCyw8td9gYwepgzL92Pn4a/hM+G/AZHujyAHqG9IRSaDrIoKqKE4aICPhs9GeI9Yu1eqyssQwjV490ckVE7ZPBYMa0abXYvl3a4BK5XI7k5GT8H3v3HR5Vlb8B/J07JZkkk957o4kFccWKuAqCioAUuzQboghYsK3uWtYGIiqKigJSLCACIiqKqChgW0DUECCQhJDeM0lmMuXe3x/8UDE3yeTOnZlM8n6ex2eXe+ac+93ClHPPeU9gYOc2UBAR3Pp709LSomIlRKRUREQE+vXrh7CwMI+M/9prMaio+PN399q1YejfX48nn6yB3d6zNxaqFQp23I6iHZjx6QzZNg00+PT6T1W9HxF1fwwFI/IPhfWFOHfJudict9nXpRD5xIsvhmHKlBq8+WY+/vlPs1tjWa1WFBUVqVQZ9XT79jVj8uQEjB7dC599FgpJ6vwYcXFxEARuYSKiE+lNiUhLz0RKlNal31+m4ED0SglHdFJfaGTeUxgKRkS+ZDQaER0d7dJra2q0mDkzFf/+dxKam7UntM2ZY0JensUTJRJ53Lx5NjidytbBGAwi7rmHa12IiIiIiI7jjDoRERERERERkZfU1Tnx7bfKHlbGxNhxwQUBKldE/kppKNiuXbtUrsR3lixZoqhfSkoKhg0bpnI1f5IkCS/98BLOevMs7K/e77H7AEC6KR3DkoYhzOD6RuempiYPVkRE/kIQBOy4aUebIYKf5H2C1356zctVEfUsZrMDl17ahBUrwjF7dgpyctRZ1GgwGNCnTx/o9W2HhBJR24KDgxX3bWhoULESInKHIAhISUlBr169EBCg3nza4cMGrFjRejOP2azFI49EYsCAFmzeXK/a/fxNsbnYa/eaMWgGsiKzvHY/IvJ/SgPBAPD3FZEPNLQ04PJ3Lseinxb5uhQir9NqBbz5ZjjOOMOmynhmsxklJeoG+FLPdN99DthsAoqLDbjvvlTceGMm9u41utxfp9O5HJBBRD2PRhAQltAPfXplIiPWgJgwA4KDAhBkPPZPaEggEiO16J0agbSMbBhCk9ocq63wQafk9FT5REQniI+Ph8FgaPc127aF4More+Grr0Jl2xsadJg0yQmHg4GG5F9qapxYudL13wl/N26cBYmJPKSBiIiIiOg4hoIREREREREREXnJhg1W2GzKpmNGjLBBq1V2chJ1P+ecc46ifgcPHlS5Et8oKCjAV199pajvpEmTPHb6cGVTJa549wrM/GwmbE51Fuq3R6fp/OIHu93u1gY4Iuo+kkOTsfzK5W223/npnThQfcCLFRH1HKWlLbjgAhu+/NIEAGhu1mL69DQcPereRvOgoCBkZ2d77LsOUU8QGiq/8N4VDOAl6noCAgLQq1cvJCUlQaNxb15NkoCnn06Ew9H2ODk5RowYEYbx4+tRVGR1637+qLjBO6Fg0cZovDD8Ba/ci4i6D4fDobhvR5s4icgznJIT0z+ZjtmfzYZTZIAD9SyCIKBXr15u/445rqamBpWVlaqMRT3T5s312LTpxHmzX34JwvXXZ2HOnGSUlHQ8t52U1HaADxHRcRqtAcGxvRGX0hsZmb2QmXXsn9T0bEQm9ms3DOw4QSP/nEwSJbXLJSJqU3p6uuz15mYNHn88EXfckY6amvbX/u3YEYL//rdO/eKIPGjhQiuamrSK+8+Zw0AwIiIiIqK/4opwIiIiIiIiIiIvWbdOed+xYxkIRn/Kzs5W1K+oqEjlSnxj6dKlkKTOL9bTaDSYMmWKByoCtuZvxWmvnYZNBzd5ZHw5Wo2yxRMNDQ0qV0JE/uqak6/BdSdfJ9vmlJw4f8n5cIjKN80SUWv79jXjvPOAPXuCTrheXa3HtGnpqK1V9vkeGhqKzMxMBoIRuclgMCjecGu19rwAICJ/ERERgX79+iEsLEzxGJ9/Horvvw9x6bVr14ahf389nnyyBnZ7zwnmLjZ7JxQMGmDjgY3euRcRdRstLS2K+zIUjMi3FvywALM3z/Z1GURep9PpkJWVpdp45eXlqKurU2086jmcThEPPNB26Nenn4Zj1KheeOmlWDQ1yc9PBwYGwmQyeapEIqITtLWWRpR6zjwdEfmewWBAQkLCCdf27jXiqquysWZNpMvjPP10OH78sVHt8og8wmaT8NpryudSL7qoGQMGBKhYERERERGR/+OqcCIiIiIiIiIiL7BaRXz5ZaCiviaTEyNGKOtL3VNCQoKijUhmsxnNzc0eqMh7JEnC22+/rajvBRdcgMzMTFXrsTvteOjLhzB0+VCUNpaqOnZH2jrdtCNc8E9Ef7XiyhVIDUuVbatsrsSod0d5uSKi7uvbbxswZIge+fnyixgLCwNw551paG7uXCBRdHQ0UlPl/x4TUefpdMpOH3Y4GKRJ1JUJgoCUlBT06tULAQGd21DQ3Cxg7tyEjl/4F2azFo88EonTTmvB5s09I5zbW6FgVc1VGPP+GIxfPR6lZu/OxRCR/3InFMxoNKpYCREp8fKPLyOvJs/XZRB5XWBgINLS0lQb7+jRo2hqalJtPOoZFi+ub3XIxd+1tAhYvDgWl1/eCx98EAGn88R2zl8TkTe1tZbGKTllrxMReUpUVBSMRiMcDuDVV2MxcWImCgs793yipUXApElaWCx8D6Oub/nyZpSWth0o3JF77uHh2UREREREf8dQMCIiIiIiIiIiL/jkEysaG+VPIuzI0KFWBAZyGodOFBISoqifv4eCbdmyBYWFhYr6Tp06VdVa8mvzccGyC/D0d09DgqTq2K7QCcrCCvz9/wNEpC5BELB96nboBflFWZ/mfYpFPy3yclVE3c+HH9bhssuCUVnZ/gLIvXuDMGdOClzNFkpISEB8fLwKFRLRcYGBykO53QmbICLvCAgIQK9evZCcnAyNxrXNBW+8EYPycmWbGPbtM2LcuGD87395sFqtisbwFyXmEq/eb+2+tej3Sj+88b83IEqiV+9NRP7HZrMp7qs0NJaI1HW04aivSyDyCZPJhKSkJNXGy8/P5/wFuayx0YEnngh2+fXV1Xo89lgSJkzIxs6dx/qFhoYqOvCMiEiptkLBRHD+iIi8Lz09HU8+mYRFi2LhdCoLPMrNNWL27J5x+Aj5L1GUsGCBsjXyAHDSSVYenk1EREREJIOrFYiIiIiIiIiIvODDD5UHBo0Zo14d1H0EBQWhpqam0/38fQPqkiVLFPULDQ3F+PHjVavj/d/ex60f34qGFt8tuOlMKFh9vRbffx+MnTtD8NNPwdizx46ICOWnshFR95IcmozlVy7HtWuvlW2f8ekMXJRxEfpE9/FyZUTdw6JFNbjrrnA4HK4F/X7zTSiefDIR//53CdrLKklNTUVoaKhKVRLRcSEhITCbzYr61tfXIzY2VuWKiMgTwsPDERoaipKSEtTV1bX5uvx8A95+O8qte02bVoGAACvy8vIQGhqK5ORkCEL3OwCguKHY6/esb6nHbR/fhlW/rsIbI9/gbxYiapPdbvd1CUQnmDx5MiZPnuzTGsa+Pxbrctf5tAZXRQRGYFDSIF+XQeQzERERsNvtqKioUGW8Q4cOoXfv3gy+pA49+WQDSkoiO93v4MFA3HprBq67rhorVkR4oDIiorZpNfKBJAyVJyJf0Gq1mDNHj48/FtHSovy5wBtvhOOKK+px+eVhKlZHpJ7Nm634/Xej4v6zZjkhCMqC84iIiIiIurPut8KMiIiIiIiIiKiLcTgkbN4coKhvQICIK69U/qCUui+l4V7+fApvXV0d1q9fr6jv1VdfjaCgILdraLI14eaPbsY1a6/xaSAYABh0bf9vabdr8PPPQXjppVhce20mBg/ui3vvTcXatZE4ciQAmzY1erFSIvIH15x8Da475TrZNqfkxOClg+EQHV6uisj/PfJIDaZPj3Q5EOy4tWsj8dprMbJtGo0GmZmZDAQj8hB3/m41NTWpWAkReZogCEhOTkavXr0QENB67k6SgKefTuz05/hfZWZacf311X/8uaGhAfv27UN1dXU7vfyPJEkoNns/FOy4bYXbcNprp+G/2/4Lm9PmszqIqOtyOJTNaXTHEEei4+pb6n1dgkviQ+Kx7up1CNK7/4yHyJ/FxsYiPDxclbFEUUReXh5EkeEo1LbCQisWLnQvdOLSSwV+nyIirxM08u87/NwjIl8ZNCgEDz5Y59YYkqTBbbcZUVXF+W/qmp5/XvnB2fHxdkyaxHkfIiIiIiI5nGEnIiIiIiIiIvKwb75pQVWVslN2Bw+2wmTiFA61pnSzeXBwsMqVeM+qVasUh6FNnTrV7fvvKduDM944A2/tfsvtsdRgDPgzMFCSgIICA955JxIzZqTi/PP7YsqUTCxeHIvffguCJJ14itoXX/BUNSJqbcWYFUgNS5Vtq2yuxKh3R3m5IiL/5XCIuOmmWjz5ZKTiMV59NQ4ffBBxwjVBENCrVy9Vwk6JSJ5er4dGo+z7cktLi8rVEJE3BAQEoFevXkhOTj7h7/8XX4Ri584Qt8Z+6KFS6PUnXpMkCaWlpdi/f7/ieY6uptZaC6vDt/9ZWpwt+NdX/8IZb5yBH47+4NNaiKjrYSgYUWt11jpfl9CuU2JPwRsj38Chuw5hSPoQX5dD1CUkJyer9qzX4XDgwIE8OJ0MSCF5999vRVOTVnH/c85pxLXXuhcqRkSkRJuhYBI/84jIdx5+OBznnuveIZ7FxQbcdptFpYqI1LN3rw1ffql8Dcu0aTYYDFzPSkREREQkhysWiIiIiIiIiIg87IMPnIr7jhmj/PQk6r4aGhpgsXR+gYdGo/HrAIklS5Yo6tevXz+cffbZiu8rSRJe+uElnPXmWdhfvV/xOGoLDAjEt9+G4D//ScSIEb1xxRW98fTTifj661A0N7e/QPvbb43tthNRzyQIAnZM3QG9oJdt/zTvU7z606terorI/zgcDtx3XzWWLIno+MUdeOKJRHzzjQnAsaCi3r17w2AwuD0uEbVPp1MW7K00bIKIuobw8HD069cP4eHhaG7WYO7ceLfGGzGiDmed1Xaou91uR15eHo4cOQJR9O9NiSXmEl+X8IffKn7DOW+dg7s+vQvmFrOvyyGiLkLp+6zS74VE/qArhoJpNVqM6zcOX0/6Gr9M+wW3nHELgvT++1yLyBPS0tIQEBDg9jgtLRrcdVcc7ruvXoWqqLvZudOMNWuUB3ppNBLmzpWg1XK7EhF5n1aQXy/DUDAi8iWdTsDbb2sRGqr8WWJ0tB1Dh9aitLRUxcqI3Pfss3bFfYODnZgxI1DFaoiIiIiIuhfOshMREREREREReZAoSti0ST5YoyNarYTx491f0Evdz8GDBxX1M5lM0Gj880StvXv3YteuXYr6TpkyRfF9q5qrMOq9UZj52UzYnDbF43iCXqvH5s0RWLs2EiUlnQsHyc8PQG5us4cqIyJ/lhSahBVXrmiz/a5P78L+qq4TkEjU1dhsNhw4cADjx1ciO9vq9niiqMG996agqioEvXr14oZ0Ii8xGpWH6Fqt7v/dJyLfEQQBycnJyMrqhaFDmyEIygL7jUYn7rmnzKXXNjQ0YN++faiurlZ0r66guKHY1yWcQIKEl398Gf1f7Y9NBzb5uhwi6gIYCkbUWlcKBYsOisaD5z+I/Jn5+OCqDzAkfYjfPs8i8jRBEJCVleXWZ1R9vYBbb03HF1+E4YUXIjBvXo2KFVJ3MGeOBqKo/H14/PgGnHeeScWKiIhcp4H8+xdDwYjI17KzjZg7V9lBFhdfXI8PP8zD4MGNqK6uVnSgLJEnlJQ48MEHyp+t33CDBZGR7R+AS0RERETUkzEUjIiIiIiIiIjIg/73PxuKijoX1nPcoEFWxMVxwwm19ttvvynql5GRoXIl3vPWW28p6qfT6TBx4kRFfbfmb8Wpi07Fxwc+VtTf07QaLYYOVb5oceNGhhUQkbyrT74a159yvWybU3Ji8NLBcIjKTy8l6q4sFgsOHjwIURQRFiZi0aJCxMYqPxH1uHvvrcOFF6ZDEPhol8hbQkJCFPdtaGhQsRIi8pWoKANWrAjH1183YsCAzodq3357JeLjXf/OLEkSSktLsX//fr8MFyw2d61QsOOKGoow8t2RuHbttShvLPd1OUTkQ5KkLOSRoWDUXUmShHprva/LwMCEgVg6eimKZhfhqYufQkpYiq9LIvILgiAgOztb0XxhWZkekyZlYteu4D+uPfBABFaurFWzRPJjq1fX4bvvlM+NBQU58eyzytbIEBGpQSvIB4uIYCgYEfnerbdGYNQo13+PBwU58cQTR/HCC0WIiHD+cb2goEBxCD6RmubPt8JmU7aWRauVcO+9/O1ARERERNQerhwnIiIiIiIiIvKgNWuUhwCMGsWH9iTv66+/VtQvOztb3UK8xGazYdWqVYr6XnbZZYiLi+tUH7vTjoe/fBhDlw9FaWOpovt6g07Q4YorlJ+ytnUrN7QRUduWj1mO1LBU2bbK5kpc8c4VXq6IqGtraGjAoUOHTthoHh9vx2uvFcBkcrbTs206nYhXXqnFE09EqlUmEbkoNDRUcd+mpiYVKyEiXxs82ISffgrE88/XIDLStZCvjAwrbrihWtH97HY78vLycOTIEb/a0FPc0DVDwY5777f30O+Vfli6e6niYCAi8l/uvJ8aDNyURt1Tk70JTknZfIW7dIIO15x8DbZP3Y6fb/kZkwdMRqAu0Ce1EPkznU6HrKwsaDQal/scOBCA66/PxKFDJ/6dczo1uPXWMHzxhe/DAsm3RFFEZmYJZswoh9Go7HPi9tvrkZGh/Bk2EZG7BI38VknOCRFRV/Hmm0YkJNg6fN3ppzdh7do8jBlTh79/7Xc6nTh69KiHKiRyTVOTiCVLlM/pXH55M7KzOf9KRERERNQehoIREREREREREXnQxo16xX0nTFDel7ovURTxxRdfKOrrr6FgGzZsQHW1ss20U6dO7dTrS82lGLJsCJ767ilI6NoLAnWCDmlpgejb16Ko/86dQbDb/WeDMRF5lyAI2DF1B/SC/PeRzw59hld/etXLVRF1TdXV1Thy5IhsW69eLXjxxULo9Z37zA0OduL99xswfXqEGiUSUSfpdDqXNtU6HMD+/QFYty4cTz6ZgOuuy8Sdd0Z5oUIi8iadTsDdd0di3z4RN9xQB0Fof77goYdKode7N6fQ0NCAffv2KZ4P8bZic9cOBQOAWmstpn40FY9+9aivSyEiLysutmLu3HgsXRqNjRvDsHNnMPLyAlBXp0VHe8IDAgK8UySRl9VZ67x+z7jgODx6waMonFWId8e9i3NTzu1UmBERtRYQEID09HSXXvvTT0GYPDkTFRXyc/4Wi4Crrw7G7t2NKlZI/ubo0aMIDBRx662V+OSTgxg3rgYajeu/b+Pjbfj3v5WH7RMRqUGr0cpe91UoLhHR38XEGLBoUXOb37N0OgkzZ5Zh6dJ8JCe3fShxQ0MDzGazp8ok6tDrr1tQW6v8YNr77pP/zCYiIiIioj8p/8ZNRERERERERETt2r/fhtxcZRtGTjnFiqwsnopNrW3ZsgXFxco2Wg4cOFDlarxjyZIlivrFxsbi8ssvd/n1dqcdY94fgx+Lf1R0P287vpDxggusyM3t/GnL9fU6bNvWgIsv5sJsIpKXFJqEFVeuwDVrr5Ftn/HpDFyUfhH6xvT1cmVEXUdZWRmqqqrafc2ZZzbj6aeP4r77UiBJHW92jYmxY+1aCwYPDlepSiJSQq/Xw2b785RuhwPIzw/A778bkZNjxO+/G7F/fyBaWk48i62iou3F+UTk32JjDVixwoBbbzXjrru02LMnqNVrhg+vx9lnN6lyP0mSUFpaiqqqKqSmpsJo7Pxvf28pMZf4ugSXPfntk5hx1gzEBsf6uhQi8pKDBx1Yvjxatk2nExEd7UBMjANRUcf+NTragehoO6KjHZg6laFg1D3VW+u9dq+zk8/GnWfeiQn9J8CgNXjtvkQ9RXBwMFJSUlBUVNTmazZvDsWDDybDbm//PPnaWh1GjTLgu++sSEvjWoWexmazoaGh4Y8/R0c78J//lODaa2swd248fvghpMMx/vWvJphMPOiCiHxLK8gHjEgdpUITEXnR6NHhuPnmWixefOJ3p8xMK55++ihOOsnq0jhHjhxBv379IAjtf9cnUpvTKeHll5UffH3WWRacf37Xfe5FRERERNRVMBSMiIiIiIiIiMhDVq+2AVC2uH3kSIe6xVC3sWjRIsV9L7zwQvUK8ZLi4mJ88cUXivreeOON0OlcnwLNrcr1m0AwANAJx/6zXXKJBm+8oWyMTz914OKLVSyKiLqdq0++GhsPbMSqX1e1ahMlEYOXDUbpPaV/vCcR9SRFRUWor3dtE+3w4Q2oqirFM88ktvu6jAwrNm0S0a8fQzuJfK25OQiffBKEnJxA/P67Ebm5RlitHS+oLy/Xo7CQm2eJurPBg0346ScRL79cgyefDEVNzbHvwkajE/feW6r6/ex2Ow4dOgSTyYSUlJQuubmn2KwswN5XDtUcYigYUQ9SXOxss83hEFBWZkBZWetnOVqthOnTuWmcuqc6a51X7hMWEIadN+30yr2IerKwsDDYbDaUl5e3alu1KhLPPpvg0mEFAHD0qAGXXWbBt9/aEBnJIL+epK1guT59rFi8uADbtpkwb148CgrkQ1NPOaUZt90W5skSiYhcIkB+7kyURC9XQkTUvhdeMOGbb6w4cODYM8Xrr6/CrFnlCAx0fT5KkiQUFBQgMzPTU2USyVqzxoKCgtaH57hq9mzOuxIRERERuaLrrRIjIiIiIiIiIuomPvpI/uRBV0yYoPwEJeq+fvrpJ6xfv15R3379+iE21v82Oy5btgxOZ9ubttozderUTr3eKSm7j68cD+AZPjwEAQHKFi9u2ya/aJuI6K+Wj1mOtLA02baq5iqMfGeklysi8i1RFHH48GGXA8GOu/76GkyZUtlm+4ABzfjuOw369VO+cJKI1FNebsLDDydj1apo7NkT7FIg2HHbt7t2ejcR+S+dTsDs2ZHYt0/EjTfWQRAk3HZbJeLjPRf0bzabsW/fPlRVVXnsHkoVN/hPKFh4YDgGJgz0dRlE5EUlJco2mEVFOaDTcYktdU/eCgWrb6nHpwc/9cq9iHq6mJgYREVF/fFnUQTmz4/DM88kuhwIdlxOjhGjR9vQ0sLwlJ6iqakJFoulzXaNBhgyxIwPPzyIBx4oQVhY69++zz3H705E1DW0FajPUDAi6mqCg3VYutSO5GQbXn+9AA88UNapQLDjmpubUVNT44EKidr2wgud+535VxkZNowfb1SxGiIiIiKi7ouz7kREREREREREHlBc7MD//heoqG96ug0DBjCoh07kdDpx1113Ke4/YsQIFavxnmXLlinqd9ZZZ+Gkk07qVJ/T4k7DWUlnKbqfL2iFY8GDISE6nHlms6Ixdu82orrapmZZRNQNCYKAHVN3QC/Ih5ZuPrQZr/z4iperIvINURSRl5eH5mZln72zZpXj8svrWl2/+GIztm0zIDGRvwOIuopzzw2GVqssQOKnn3iyMVFPERtrwPLl4fjmGzMmTfL8phtJklBSUoYZM6pw+HDbG7a9ye60o6KpwtdluCQ8MBybrtuEAB2/cxH1JOXlyjaoRUd7LuiRyNfqWzoXdN6RwamDER8SL9t2/5b7Vb0XEbUtISEBJpMJdrsGDz2UjKVLYxSP9d13Ibj6ajOcTgao9ARFRUUuvU6vP3b4xaZNBzBxYhV0umP//xgxogEjRoR6skQiIpdpNfKHeEoS5+2JqOs591wTvv66FOee2+jWOCUlJbDb7SpVRdS+776z4scflYd6zZhhh1arPFSMiIiIiKgnYSgYEREREREREZEHrFnT0ukTd48bOdIGDZ930t888cQT+P777xX3nzhxoorVeMc333yDvLw8RX2nTp3a6T4ajQaf3/g5rj/lemjQ9f8S6gTdH//+wguVBXs5HAI++aRJrZKIqBtLDE3EqrGr2my/67O7sK9ynxcrIvI+u92O/fv3w2ZTHqgpCMATTxTj7LP/XNR7zTV1+PTTYJhMunZ6EpG3mUw6ZGW1KOq7dy//PhP1NOefH4pTT+2LiIgIj99rw4ZwLFwYjVNPNeCRR2rQ0uLbTfqljaWQ0PU3VU4dMBUH7jyAc1PO9XUpRORlSkPBYmIYCkbdV521zu0xAnWBuOn0m7D7tt3YNmUbFgxfIPu6Xyt+xdGGo27fj4hck5aWhk8+icGmTeFuj7VhQxjuvFPdEEHqeqqrq+FwdO57T1iYiPvuK8OGDXkYPrwe8+ZxLoyIuo7jB+z9nSgx6JKIuqaMjBQIgvvbvPPz81Wohqhjc+c6FfeNjHTg1luVB4oREREREfU0DAUjIiIiIiIiIvKADRuUBwqNH88Fk3Si9957D48//rji/qeddhoGDBigXkFesmTJEkX9goKCcM011yjqGxoQipVjV+KXab9gdJ/Risbwlr+Ggl12mV7RGFqthN9/5+Y2InLNhP4TcMMpN8i2iZKIC5ZdAIfI9xTqnqxWKw4cOACnU/nixuP0egkvvHAE/fpZcM89NVi5MhR6PR/bEnVFp5yiLBTst98CVa6EiPyBIAhISkpC7969ERjomfeB+noBL7wQDwBoatLiyScjccopNnz0UZ1H7ueKEnOJz+7tioEJA7Hzpp14a/RbiAmO8XU5ROQDFRXyG8I7EhPDDePUfbkTCpYWloZnhz6Lo7OP4s1Rb2JA/AAAwNUnX43QgFDZPrM+m6X4fkTUefffH42RIxtUGeu11yLwySelqoxFXY8oiigrK1PcPzXVhldeqUL//kEqVkVE5B5BI//MjaFgRNRVCYKAtLQ0t8ex2WxufbcjcsXBgzZs2qT8+//UqVYEB3N9DBERERGRq/jtmYiIiIiIiIhIZbW1TmzfrmzjX2ysHeefH6ByRT1XcXExZs6cicrKSl+XotiHH36IiRMnQpIkxWPcdtttKlbkHWazGWvXrlXUd9y4cQgNld944qpT4k7B+mvW48ebf8QlWZe4NZanaDV/bmYbNCgYMTF2l/olJ9tw1VXVWLCgENu27cMNN5R7qkQi6obeHvM20sLkFyNWNVdh5DsjvVwRkeeZzWbk5eW59X3s70JCRGzcWI158yKh1fKRLVFXNWCAsiDAigo9Dh+2qFwNEfkLg8GA7OxsJCcnQxDU/ZxfuDAOtbUnHihw8GAgRo8Ox6hRDT557yluKPb6PV0RERiBRZcvwo83/4izk8/2dTlE5EOVlcpCweLiuGGcuq96a32n+1yUcRHWXb0Oh+46hDnnzUFUUFSr10wdMFW270f7P+JhAkRepNMJWL06GGef3ejmOBKeeqoIqanVKC1lMFh3VFZW5va8d0pKikrVEBGp469raf6KoWBE1JUFBwcjMjLS7XGqqqpgtVpVqIhI3rx5Njidyg7NDggQcffdPFyLiIiIiKgzuMKciIiIiIiIiEhl69a1wG5XNu1y6aU2aLXKHphSa3a7HS+99BKysrLw+OOPo66uztcldcpzzz2H8ePHw253LexJTmpqKm666SYVq/KO9957D01NTYr6TpkyRbU6zkw6E5tv2IxvJn+D81PPV21cNeiEPzcBa7UCzjuvWfZ1ISFOXHxxPR55pBiffHIAn356AI88UoqLLzYjNPTYokel/10TUc8jCAJ2TN0BvaCXbd98aDMW/rjQy1UReU5tbS0KCwtVHzc2NhZZWcmqj0tE6jrrLGUBEgCwfTsX3BP1dOHh4ejbty8iIiJUGW/fvkCsXt32pqCNG0Nx6qkGPPJIDVpavLfJsdjctULBNNDgloG34MCMA5j2j2nQCsrfy4moe6iq0nX8IhlxceoFQxN1NfUtroWCBemDMO2Mafjt9t/w5cQvMabvmHY/W/970X8haFo/I7WLdjz73bOK6yWizjMatdi40YA+fZQFBwcFOfHKKwW44opj7xfV1dWorq5Ws0TyMYfDgZqaGrfGCAsLg8FgUKkiIiJ1yH0fBRgKRkRdX2JiIvR6+bU4nZGfnw9R5Hseqa+62omVK42K+48fb0FCgrK5WiIiIiKinoqhYEREREREREREKlu/XnnfceM4XeMJZrMZ//73v5GSkoK77roLhw8f9nVJ7Tpy5AiGDRuG+++/3+2TeR999FG/XIi7ZMkSRf0yMzNx4YUXqlsMgAvSLsC2ydvw2fWf4R+J/1B9fCX+GgoGAEOHHlvMIwgSTjutGbffXoEVKw7h22/3YcGCIlx1VS1SUmyyY7m74JuIepbE0ESsGruqzfaZn83Evsp9XqyIyDMqKipQXKx+yEViYiJiY2NVH5eI1HfOOcHQ6ZT9Jvv5Z5WLISK/JAgCkpKS0Lt3bwQGKj/9XBSB//43EaLY/mECTU1aPPlkJE4+2YYNG1wL+3BXcUPXCQX7R+I/8P3N3+ONK95AdFC0r8shoi7A6RRRWalso1liIg9woe4r0ZTYbntWRBbmXzIfxXcXY9HIRegf29+lcYMMQfhn+j9l21764aVO10lE7omONuCTT4DERPnng22JirJj2bJ8nHvuiYcKlZaWoqGhQc0SyYeKiorc6q/RaJCUlKRSNURE6tFq5ENsJTD4mYi6voyMDLfHcDqdHlnnQPTSSxY0Nys/iGXOHPdD74iIiIiIehruMiUiIiIiIiIiUpHFImLr1gBFfUNDnRg+XPnmQOpYY2MjXn75ZfTq1QvDhw/HqlWr0Nzc7Ouy/lBXV4eHH34YJ510ErZs2eL2eAMGDMCkSZNUqMy7cnNz8f333yvqO3nyZGg0ntmspdFoMDx7OH68+Uesu3odTo492SP3cdXfQ8HGjDHihReO4Ntv92HlysOYPr0CAwZYoHNhz1tTU1PHLyIi+osJ/SfgxlNvlG0TJREXLL0ADtHh5aqI1HP06FFUVFSoPm5aWhoiIyNVH5eIPCMkRIfsbKuivnv38pRjIvqTwWBAdnY2UlJSIAidX661YUM4fvklyOXX5+UFYsyYMIwc2YBDhyydvl9nFJt9v7ko0hiJ10e+ju9v+h6Dkgb5uhwi6kKqqx2w2ZQtk01KUr7BjairG3/SeATrg1tdH541HB9f+zEOzDiA2efMRnhgeKfHfnHEi7LXK5orsDV/a6fHIyL3ZGYa8dFHdoSFuTZfn57egpUrD6NfP/n5kCNHjnSp5+ukjMVicfv5cExMjKLft0REnqYV5H/LiZLo5UqIiDrPYDAgLi7O7XHq6+thNptVqIjoGJtNwhtvKFsbDwBDhzbj1FP973BjIiIiIiJf4yw8EREREREREZGKNm2yoqlJ2UaRYcOsMBh48rw3iKKIzz//HDfccAPi4uJw7bXXYsWKFaisrPRJPb///jtmzJiB9PR0PPXUU6oENAUEBGDFihXQuZII1cW89dZbivoJgoDJkyerW4wMjUaDMX3HYM9te/DO2HfQK7KXx+8p5+8LGZOSAjFsmBmhoZ1fyOhwOCCKXABJRJ2zbPQypIely7ZVWaowctVI7xZEpAJRFJGfn4+6ujpVx9VoNMjOzobJZFJ1XCLyvFNOsSnq99tvDP0motbCwsLQt29fREREuNynvl7AggXxiu63aVMoTj3VgBUryj32u7/EXOKRcV2hgQa3nXEbDtx5ALeecWubmz6JqOcqLFT2XQ4AUlL8b26dyFUnxZyEzTdsxqg+o3BeynmYffZs5N6Ri89u+AyX974cgkb58vL+sf2RGZ4p23bf5/cpHpeIlDvjjGC8914zAgLa/01w6qnNWL78MJKT7e2+Lj8/Hzab8s9Y8r2ioiK3+mu1WsTGxqpUDRGRutoKLGQoGBH5i5iYGAQGuv+c8ciRI1wPSKpZtqwZZWV6xf3vuYdr44mIiIiIlGAoGBERERERERGRij78UFLc98or+dDTFxobG/Hee+9h4sSJiIuLw5lnnonZs2fjvffeQ0FBgUfu2dTUhK+//hoPPvgg+vfvj5NPPhkLFy5EfX29avd4/PHHcfLJJ6s2nrc4HA6sWLFCUd+hQ4ciJSVF5YraphW0uPaUa5FzRw7evOJNpIaleu3eAKATWm9Kc2dBkNrhJ0TU/QmCgB037YBekF/0tfnwZiz8caGXqyJSzm4XMX16HXJz1d3QptVq0bt3b1UW7hKR9w0Y4FTUr6pKj0OHLCpXQ0TdgSAISEpKcvn7wcKFcaipUR5Mo9NJSE+vwb59+zwSiF9sLlZ9TFcMShqEH2/5Ea+NfA1RQVE+qYGIur6jRx2K+6akGFSshKjrOS/1PGy4ZgO+m/od5g+fjz7RfVQb+9Ehj8pe31W2C2WNZardh4hcN2JEKF5/vR6CIL+eYciQBrz5Zj4iIjqeB5EkCXl5eXA4lH/Oku/U1dW5HeqWmJioUjVEROrTauRD4yVJ+Zo+IiJvS09Ph0bj3npiSZJQWFioUkXUk4mihAULlD+nOvlkKy65hOtliIiIiIiU4FFmREREREREREQqcTgkbN4coKhvYKCI0aP50NPXJEnCzz//jJ9//vmPa5GRkejTpw/69OmD3r17Izk5GbGxsYiLi0N0dDSMRiMCAgIQGBgIQRBgs9lgs9lgsVhQVVWFyspKlJaWIi8vDwcPHsSvv/6KX3/9FU6nso3lrrj66qtx333+edr6pk2bUF5erqjv1KlTVa7GNTpBh5sG3oQbTr0Bi3ctxr+/+jdqrDVeue/fhYaGwmJRFjxQX1+PyMhId8sioh4mwZSAd8a9gwlrJsi2z/xsJi7OuBj9Yvp5uTKizjGbHRg71oItWyLx6afBWLHiMCIj3f++ptfr0atXrzZPJSeiru/ss5Uvq9ixw4qsLKOK1RBRd2IwGJCdnY36+noUFxdDFMVWr8nNDcTq1e79Vp85sxwREU5IElBeXo6amhqkpqbCaHT//UmSJBQ3eDcULMoYhWeGPoOpp0+FoOF3LCJqX0mJsk3fISFOhIZyeS2RUpMGTMIdn9yBJntTq7a7N9+Nd8a944OqiGjSpAiUlNTgoYdO/I0xblwN/vWvEug68dEniiLy8vLQu3dvzn36EVEUUVJS4tYYAQEBCAsLU6kiIiL1tRUKJqL13BsRUVel0+mQlJSEo0ePujVOU1MTampquCaQ3PLpp1bs26f8mdKsWU4IAg/NJiIiIiJSgqsWiIiIiIiIiIhUsnWrFTU1yh58DhliRUhIkMoVkRpqamqwc+dO7Ny509eluGTIkCF4++233T4pzleWLFmiqF9ERATGjBmjbjGdFKALwJ2D7sSL37/olVAwuYWMERERikPVlIaJERGNP2k8bjz1RqzYu6JVmyiJGLx0MMruLZMNMyTqCkpLW3D55U7s3m0CABw5EoA77kjDW2/lIyhI+anhQUFBSE9P56Y4Ij931llB0OlEOBzt/10OC3Ogf38LTjrJ+v//akFWlh5AhHcKJSK/FRYWBpPJhLKyMtTU/DmfIIrAf/+bAFFUPsfTr58F48bVnnDNbrfj0KFDMJlMSElJceu7SkNLg2zYhydooMG0f0zDkxc9iUgjNzARkWuio1tw2WV1qK7WobJSh6oqHRoaOp6fiI52AJDfSE5Erpl42kQs+nlRq+sf7vsQoihyvoTIRx58MBIlJbVYuPDYfMX06eWYNq0SSh4tOxwOHD58GJmZmfw77ScqKytlA6k7IyUlRaVqiIg8o61QMElS/syPiMgXwsPDUVdXh8bGRrfGKSkpQWhoKHSdSQEm+ovnn1f+GZqYaMfEiVwbT0RERESkFH/JERERERERERGpZO1ap+K+o0dz4RG5b9CgQVi/fj0CAgJ8XYoi5eXl+OSTTxT1ve6667rEf+7NeZuRV5vnlXvJhevodDpotVo4nZ1/PxJFETabDQaDQY3yiKiHWTZ6Gb4t/BYF9QWt2qot1bh81eXYfONm7xdG1IHc3GZcfrmAw4dPXIT4229BuPfeVLz0UiGUrI0NDQ1FamqqSlUSkS8FB+vQu7cFOTl/hoCbTM4/gr+O/2tSkr3VBlqbzb1NlkTUcwiCgMTERERHR+PIkSOwWq346KNw7NkT7Na4Dz9cAm0bmTZmsxn79u1DbGwsYmJiFI1fYi5xozrXnZV0Fl657BWckXiGV+5HRN3HP/7RhP79q0641tKiOSEk7Ni/16OqSvfHP8nJdgC+n28m8mfPDXsOr//vdYjSib+LWpwteOH7F3DPuff4qDIiWrAgDJWVdejbtwnjx9d23KEdVqsVRUVFSEtLU6k68hRRFFFZWenWGCEhIQgMDFSpIiIizxA08kGVf/9eSkTkD1JTU5Gbm+tWsOvvvwdiyZI6zJ8frWJl1FPs3t2Cr75SHuo1bVoL9Hq9ihUREREREfUsDAUjIiIiIiIiIlKBKErYtElZkI5WK2HcOG4uIfdcfvnlWL16NYKC/PdUreXLl8PhcCjqO3XqVJWrUebWj2+VvW7QGiBAgNVpVe1ecqFgABAUFASz2axozJqaGsTHx7tTFhH1UIIgYMdNO5C2IA120d6q/fPDn2Phjwtx56A7fVAdkbzt280YOzYQFRXyCxC//daExx9PwmOPFbcK+mlPdHQ0P0+JupnRo80466zG/w8BsyI52ebS+4LT6YQoihAE+U1IRER/ZzAYkJ2djfr6enz3nXtjjR1bg9NOs7T7GkmSUF5ejpqaGqSkpHR6XqnYXOxOiR2KDorGs0OfxeQBk9vc0ElE1B65+eaAAAmJiXYkJraevzju2Ea1MA9WRtT9hRhCcH7K+dh2ZFurtud3Ps9QMCIf0moFvPNOKPbvL4WCc4ZaMZvNKCkpQWJiovuDkcccPXrU7TGSk5NVqISIyLO0gnxCviTxwE4i8j+CICAtLQ35+fmd7utwAEuWxGDRolg4HBoMHFiLG26I8ECV1J0995wDSg9PCAlx4s47jR2/kIiIiIiI2sTVUkREREREREREKvjxxxYUFysLBTvrLCtiY5ndTspNmzYN69ev9+tAMABYunSpon6nnXYaBg4cqHI1nfdBzgc4Un9Etm3esHnIn5WPuwbdBYNW2XvF37W1kDEiQvniHaVhYkREAJBgSsC7495ts33mZzORU5njxYqI2rZuXR1GjAhqMxDsz9dF4JVXYl0eNyEhgYFgRN3Q7be34O67yzFiRANSUlwLBDvOalUvGJiIeo6wsDBs2mTCwoW1iIlpO7SmLSaTEzNnlrv8ervdjsOHD6OwsBCiKLrcr7jBM6FggkbAHWfegQN3HsDU06cyEIyIFHMqTDrRauXnXomoc14Y8YLs9dLGUmw/st3L1RDRXwmCgF69ekHTmUmOdtTU1KCyslKVsUh9NpsNDQ0Nbo0RFRUFnY7rWoio62trLY0ouT7nRUTUlQQHB3d6PWBRkR5TpmTg5Zfj4HAc+84/a1YIior43JJcV1zswNq1ykO9brzRiogIzrMSEREREbmDK6aIiIiIiIiIiFSwZk3r0+ZdNXq0CsfvUo8UGRmJtWvXYtGiRX6/AHfnzp3Yt2+for5Tp05VuRplZnw6Q/Z6lDEKM86agfiQeLx46Ys4OOMgbhl4C7Qa9xY86AT5/81DQkIUj9nS0qK4LxERAIw7aRwmnjpRtk2URFyw9AI4ROXfm4jU8Nprtbj66lA0Nrr2Wfz667FYvbrjRbapqamIiopytzwi6oJMJpPivu5uuCSinkurFXDHHRHIyZEwdWottFrJ5b533VWOyMjOzzmazWbs27fP5c38xWb1Q8HOST4HP9/yMxZethARRuXB50REACBJrr93/pW/z7cTdRUDEwYiNSxVtu2ez+/xcjVE9Hc6nQ5ZWVmqjVdeXo66ujrVxiP1HDkif7CVqwRBQFxcnErVEBF5VltrcSQo+31IRNQVJCQkuDRfJUnAunXhGD8+G3v2BJ/QVl2tx5QpdjidDEkk1zz/vBV2u7IIAp1Owj33tH9IHxERERERdYyhYEREREREREREKti0SfnDy6uuClCxEuopRo4cib1792Ls2LG+LkUVS5YsUdTPYDDg+uuvV7mazlu6eynKGstk2+ZdMu+EP6eGpeKNK95A7p25uP6U66GBshO42woFEwQBBoNB0ZgA0NTUpLgvEREALB29FOnh6bJt1ZZqXL7qcu8WRPQXjzxSg9tvj+j0wsX//jcRW7fKhwJpNBpkZmYiNDRUjRKJqAtyJ3i3ublZxUqIqCeKjjbgrbci8N13jTjzzI5/s/frZ8GECTWK7ydJEsrLy7F///4O38OKG9QLBYsJisHS0Uvx3dTvcHrC6aqNS0Q9m9JQML2eG9aI1PLQ+Q/JXv+x+EfUNCv/zkJE6ggMDER6erpq4x09epTPGruYX35pxNq1AVD4tQgAEB8fD0Hg1iMi8g9aQT4UTJQYgkNE/ksQBGRkZLT7mpoaLWbNSsWjjyajuVn+vfDLL0144YU6D1RI3U1jo4ilSwMV9x85shlZWcrXsBIRERER0TGcmSciIiIiIiIiclNOTgv271cW7HXaaVakp3NziacEBAQgODi44xf6kdNOOw1btmzBxo0bkZSU5OtyVNHc3IzVq1cr6jtq1ChERUWpXFHn3ffFfbLX40PiMXnAZNm27MhsrBy7Er/e/ivG9ut8uFtbp5sC7oUW1NRwEw4RuUcQBOy8aScMgvzirs8Pf46Xf3jZy1VRT+dwiLj55lo8+WSkov6iqMGcOSnYs8d4wnVBENCrVy8EBQWpUSYRdVE6nQ4ajbIw35aWFpWrIaKe6uyzTdi504hXX61BTIy9zdc99FAJtG1PGbjMbrfj8OHDKCgogNPplH1NSWOJ2/cRNAJmDJqBAzMOYPKAyRA0XM5GROpo673LFe4cukBEJ7pl4C0w6oytrkuQcM/n9/igIiL6u5CQECQnJ6s2Xn5+PudDupD77pPwwAMpuOGGzFbz267Q6/WIjFQ2r05E5AtCG1sllYZGExF1FQEBAYiLi5Nt27YtBGPHZmPr1o4PMnv00TDs3csgX2rfokXNqKuTP7TWFffdp8KDKiIiIiIiYigYEREREREREZG71qxxKO57xRXK+1LHEhISUFlZiTVr1mDChAl+HdZw5pln4p133sGuXbtw8cUX+7ocVa1ZswYNDQ2K+k6dOlXlajrv5R9eRrWlWrZt4aULO+zfP7Y/1l61Fj/f8jMuzb7U5fvqhLYXXbizMJundxORGuJD4vHOuHfabJ+1eRZ+r/jdixVRT+ZwOHDzzXV4660It8ZpaRFw551pOHz42OZwnU6H3r17c7M4UQ+h1ysL9HY6nRBFUeVqiKin0moF3H57JPbtk3DzzXXQ6U7czDhmTC0GDLCoes/Gxkbk5uaisrKyVVtxQ7FbY5+fej523boLL136EsIDw90ai4jo76xWq+K+/J1HpB5BEHDtydfKtr33+3v8vUTURYSHhyM2Nla18Q4dOgSHg2shfO2jj+rwxRcmAMDevUG48cYs3HtvCoqLXZ/nUjMwjojIG7SCfAiJCH7vJCL/FxMTg4CAPw8wbm7W4IknEnDHHemornbtO57FosWkSRrYbHxfJHkOh4RXX1U+P3rOORace26gihUREREREfVcDAUjIiIiIiIiInLTRx8pP9Hoqqu4scTTjEYjxo8fj9WrV6OqqgobN27EtGnTkJKS4uvSOhQUFIRrrrkG27dvx48//ohrr70WgtD9pvSWLFmiqF9SUhIuueQSlavpHFEU8a+v/iXblhqWinEnjXN5rDMSz8An13+Cb6d8iyFpQzp8fYAuoM22wMBAaDQal+/9Vw6Hg5twiEgV404ah4mnTpRtEyURQ5YNgUPkpiDyLJvNhgMHDmDMmGqYTE63x6uv1+H229Nhtwehd+/e0OmUn4xKRP7FaDQq7muxqBvQQ0QUFWXA4sXh2L69CYMGHQv3NpmcmDWrzCP3kyQJ5eXlyM3NRXNz8x/Xi83KQsHiguOwfMxybJu8DafFn6ZWmUREJ2hpaVHc96+bK4nIffMumQcNWj+zsDqsWPTzIh9URERyYmNjERHh3sEKx4miiLy8PD5z9CGHQ8SDD7b+TrN5cxhGjeqFF16Ig9nc/toDo9GI4OBgT5VIROQRbR2wJ0mS7HUiIn+TkZEBjUaDX3814qqrsrF6dVSnx9izJwgPPVSnfnHULaxebUFBgfK17bNn8zOXiIiIiEgt3W8HIRERERERERGRFxUV2bF7t7LNIVlZLTjlFIaCeZPRaMTIkSOxaNEiHDlyBDk5OVi4cCHGjh2LqKjOL47whNDQUFx11VVYvXo1Kisr8e677+Lcc8/1dVkec+jQIXz77beK+k6aNAlarfJQPjU8/d3TaGhpkG17Y+QbisY8P/V8fDXpK3xx4xcYlDRI9jU6QYczEs5od5zAQOWnrdXV1SnuS0T0V0tHL0V6eLpsW7WlGpetusy7BVGPYrFYcPDgQYiiiOzsFrz8ciEMBvc3oU2d2ojTT8/slmGtRNQ2k8mkuK/ZbFaxEiKiPw0aFIIdO4x49dVaPPhgKaKi3A9BbY/D4cDhw4fx3XdFMDe1oKyxcyFkWo0WM8+aif137seNp92oONCciMgVNptNcV+Dgc9uiNQUYYzA2clny7Y9s/0ZL1dDRO1JSkpCSEiIKmM5HA4Gg/nQK6/UISdHPuTeZhOwZEkMRo7sjdWrI+Bo4/wWfzhojYjo7wSN/PM7UeLnERF1DzqdDgEByZg6NQOFhcqD7V98MQJffcVnmNTaCy8of3aTldWCsWOVH7ZFREREREQn4tHVRERERERERERuWLPGBknSK+o7cqQdAE+b96V+/fqhX79+uOOOOyBJEg4ePIgff/wRP/74I3bv3o2cnBzU1NR47P4ajQYpKSn4xz/+gcGDB2Pw4MEYMGCAz4OuvKm6uhqPPvqoor5Tp05VuZrOEUURT333lGxbr8heGJ49XPHYGo0GQzOH4uKMi7HxwEY88tUj2Fu+94/2BcMXwBTQfihBaGgoLBaLovvX19cjMjJSUV8ior8SBAE7b9qJtAVpsDlbb8b94vAXePmHlzHjrBk+qI66s4aGBhw5cuSEa2ec0YxnnjmKe+5JgSR1fhGjTifixRfrMX06PyOJeiJ3QsGam5tVrISI6ERarYDbb4+AzRaMoqIWxXMBrnI4gJtuikazrhjiVa5vphycOhgLL1uIU+NO9WB1RER/stvtivsyBJpIffOHz8c5b53T6vrRhqP4qfgnnJl0pg+qIiI5qampOHToEFpaWtwaR5KAV18NhSDUY/78CJWqI1fU1zvw1FMdz2XV1OjwxBNJePfdKNx7bxnOO6/xj7awsDAGpRKRX9IK8muuJEheroSIyHOys8Nw5521mDdP+fdsh0ODm24yYM8eB0JDuc2cjtm2zYqff1Ye6jVjhgNaLdfFExERERGphb/WiIiIiIiIiIjcsGGD8o0h48dzaqYr0Wg06N27N3r37o0bbrjhj+ulpaXYt28f8vPzceTIERw5cgRlZWWorq5GdXU16urq0NLSApvNBofD8f8nsQX88U9ISAhiY2MRFxeHuLg4xMfHIzMzE/369UOfPn0QHBzsw//Uvjdo0CAMGjTI12Uo8uCXD6LZLr+5f8noJarcQ6PRYFSfURjZeyR+OPoDfq/8HeelnId+Mf067BsREYHy8nJF9/X0BmIi6lniQ+Lxzrh3MH71eNn2WZtn4aKMi9A/tr+XK6PuqqamBiUlJbJtw4Y14IEHSvH004mdGjM42Inly80YO5ab14h6Kq1WC41GA0nq/MYhdzfREhG5wmAwICsrCw0NDTh69ChE0fXArs54//1IHDhgBHrluPT6+JB4zBs2D9edch00GuWnyxMRdZbD4VDUj+9VRJ5xdvLZSDQlosTces7m7s1349up3/qgKiKSIwgCsrKycODAAcWfp04n8PTTCXj//SgAQEJCDe67j4cteMt//mNGRYXrc9l5eYGYNi0d551nxr33lqFXLxuSkpI8WCERkedoNfKhYKLkmbkyIiJfeeqpMHz5ZTN27w5SPEZ+fgDuuKMOK1aEq1cY+bW5c52K+0ZFOXDLLcoDxYiIiIiIqDXuPCUiIiIiIiIiUqimxokdO5SdaJSQYMe55/I0JH+QkJCAhIQEX5dBXYzNYcOLP7wo23ZK7Ck4P/V8Ve8naASck3IOzkk5x+U+Op0OWq0WTmfnF2qIogibzcbTn4lINeP6jcPk0yZj2S/LWrWJkoghy4ag7N4y6AQ+uiL3lJWVoaqqqt3XXHddDSoq9HjrrRiXxoyJsWPtWgsGDw5XoUIi8mcGg0FRwJfT6YQoihAE5cHiRESuCg0NRd++fVFeXo7q6mpVx66q0mLhwrhjf7jo4XZfq9VocddZd+E/F/4HoQGhqtZBROQKu92uqB+/sxF5zn3n3ofZm2e3ur69aDsarA0IDeR3BqKuQhAEZGdn48CBA50OHLZaNXjggWR8+WXYH9cefDACCQm1uOEGHrrgaYcOWfD662Edv1DG9u0m7NwZgm+/reV3IiLyW22Fgik58IOIqCvT6wWsWAEMGuREc7P8e58rVq4Mx+jRtRg/nt/Ve7r9+2345BPlIXM332xFUFCIihURERERERFn6omIiIiIiIiIFFq71gqHQ9n0yqWXtkAQeNo8kb+a/flstDjlwwCWj1nu5WraFhSkfJFGTU2NipUQEQFvjXoLGeEZsm3VlmpcuvJSL1dE3U1RUVGHgWDHzZxZjiuuqO3wdenpLfjmGzsGD+amVCICjEblJxtbLBYVKyEiap8gCEhISEDv3r3deu/6uxdeiEdjoxbo/TGQsLfN1w1JG4I90/Zg/vD5DAQjIp/pbIDJcVqt8k2URNS+uwbdhQBt60OTJEiY88UcH1RERO3R6XTIzs6GRuP6uob6ei1uvTX9hEAwAHA6NbjlljB8/nm92mXS38yZY4PFonyb0PnnN+HccyNVrIiIyLu0QhuhYGAoGBF1P/37B+Hxx937jn311dVITS1RdDASdS/z5tkhisrWtQcGipg1K1DlioiIiIiIiKFgREREREREREQKrV+vPNRr3DhuKiHyV822Ziz+32LZtjMTz8SAhAHeLagdERHKT/Azm80qVkJEdCyYYMdNO2DQGmTbt+RvwYvfv+jlqqg7EEURhw8fRn2964tdNRrgsceKce65bX/eDRjQjO3bgX79lIdsElH3EhKi/GTjhoYGFSshInKNwWBAVlYWUlNTIQjuLRPbvTsIH30UARjMwOW3y79I0gAfLoPh3Q3Q1WS6dT8iInc5nU5F/XQ6ncqVENFxgiBg/EnjZdtW/rrSy9UQkSsMBgPS09Ndem1pqR4TJ2Zg9+5g2XarVcA11wRj165GFSukv9q2zYx165QHM2u1EubNU7EgIiIfaDMUTGIoGBF1T7NmhWPo0M6v84uKsuOVVwrwr3+VIihIQn5+vuKQffJ/VVVOrFql/JCZCRMsiI/nvCoRERERkdoYCkZEREREREREpEBTk4ivvlJ2qlF4uAPDhvFEJCJ/Nf2T6bCLdtm2FVeu8HI17VMSWmC1arBjRzBefln5gnEiorbEh8Tj3XHvttl+9+d34/eK371YEfk7URSRl5eH5ubmTvfV64H584vQr5+lVdvFF5uxbZsBiYkBapRJRN1EaKjy78hK3qeIiNQSGhqKvn37IioqSlF/hwP4738Tjv3h0hlA2NHWLxIBvL0F2DsJX3wehoEDAzFnTi2amhzKCycicoPSDd8MBSPyrPmXzIcGrQ9earI34a1db/mgIiLqSHBwMFJSUtp9zf79AbjhhkwcPtz+OojaWh1GjTIgP7/1nCy5x+kUce+9AiRJ+eF211xTjzPPVB6KT0TUFWg18qFgosSgGyLqnrRaAUuX6hEVJb+eUc5FFzXgww/zcMEFfwb2OhwOlJaWeqJE8gMvvmiBxaIsbkCjkTBnjl7lioiIiIiICGAoGBERERERERGRIh9/bFX8AHTYsBbo9coXYhKR7zRYG7Byr/xp9YNTB6NPdB8vV9Q+QRBgMBjafY0kAQcOBODtt6Nw221pOP/8frjttgy8/HIcfv+dwQVEpL6x/cZi8mmTZdtEScQFyy6AQ2RwAHXMbrdj//79sNlsiscIDhbx6quFSEr6c4xrrqnDp58Gw2TiRnAiOpEgCNBolP2eb2lpUbkaIqLOEQQBCQkJ6NOnD4zGzp32/v77kdi/3wj02QAMeFv+RTvvBQou+uOPFouAuXMj0L+/E6tX17lRORFR54mi8s3eHc2nEpF7YkNiMTBhoGzbk98+6eVqiMhVYWFhiIuLk2378cdgTJ6ciYoK1zaBFxcbMHIkUF2tfF6XWluxoh4//RSsuL/J5MTTT/NwOyLyfzqBz/eIqOdJTg7ESy81dfi6oCAnHn/8KBYsOILISGer9traWjQ1dTwOdS9Wq4g33lB+YN7QoRacfDLnVImIiIiIPIGhYERERERERERECnz4obIT5gFg7FgGghH5q5s+uglOqfWCGA00WDlWPizM10wmU6trVVVabNwYhocfTsJFF/XBuHG9MG9eAnbsMKGl5c9p440brd4slYh6kLdGvYXMiEzZthpLDS5deamXKyJ/Y7VaceDAATidrT+XOys62oHXXy9AZKQD99xTg5UrQ6HX8zEqEclTGhIhiqJb4RRERGrR6/XIyspCWloaBKHj7zxVVVq88sr/b/6/5D5AbmqzNgP4+jHZ/oWFAdi40YHc3FxuJiIir7Hb7Yr7MhSMyPPmXTJP9npBXQH2lu/1cjVE5KqYmBhERUWdcO2zz0IxbVoaGhu1nRorJ8eI0aNtsFjcn98lwOFwYu5c9wK9ZsxoQEoKQ8GIyP8JGvn5LlHi/DwRdW/XXReO666ra7P99NOb8MEHebjyyjq0dwZSYWEhn2n2MMuWWVwOeZZz771cE09ERERE5ClczU5ERERERERE1El2u4TPP1d2KpLRKOKKK7iQksgfVTVX4cPcD2XbLsm6BKlhqV6uyDURERFoadFg585gzJ8fh/Hjs/DPf/bDQw+l4KOPIlBV1faCjq++4gmqROQZgiBgx9QdMGjlN9puyd+CF79/0ctVkb8wm83Iy8uDJCkP6v27tDQbvv66AvPmRUKr5SNUImqb0WhU3Le5uVnFSoiI3GMymdC3b99Wm/r/bsGCeJjNWkBnAcLz5V+08XXAHiTbFB1tx/TpFXA4HMjPz0d+fj4cDoe75RMRtaulpUVx34AAZc9/iMh1F6ZfiLjgONm2WZ/N8m4xRNQpCQkJfxxItHx5FO67LxV2u7L51O3bQ3DttY1wOhk44K7i4qN45ZUCTJhQA0Ho/Lx5crINDz3U+qApIiJ/pNXIB1VKUO+5IhFRV7VoUQjS00+cF9PpJNx1VzmWLs1HSkrHQfqiKOLIkSOeKpG6GFGU8OKLyteInnqqFUOHck08EREREZGncEU7EREREREREVEnbdliRV2dsoegF15oRXAwp2SI/NHEdRNlTw4VNAKWj1nug4pcExgYiJtvzsCtt2Zg6dIY7N/veojBzp3BsNm4EJ+IPCMuJA7vjXuvzfa7P78bv1X85sWKyB/U1taisLBQ9XFjY2NxyimJqo9LRN3P8Y2vSpjNZhUrISJynyAISEhIQJ8+fWRDD/fsMWLDhohjf8j8EtDKhHnVpgOHh7V5j7vvLoPJ9OfcQlNTE3Jzc1FRUeFu+UREbWIoGFHXN+vsWbLXvyn8Bo22Ru8WQ0SdkpaWhp07ozB3boLbY23YEIY77qhXoaqeq6WlBWazGdHRTjz6aAnWrMnDOed07n303/9uQnAwD4siou5BJ8i/n6l52BARUVcVGqrD4sVW6HTH3vMyM61YteoQbrmlElr5zERZjY2NqKur80yR1KVs2mRFbq7y+dDZs0UIgkbFioiIiIiI6K+4A5WIiIiIiIiIqJPWrlUekDNmDBcYEfmjovoifJb3mWzb6D6jERsS6+WKOufss5VtgjObtfjqKwYXEJHnXNnvSkwZMEW2TZREDFk2BHZnxyeVUs9QUVGB4uJi1cdNTExEbGzX/iwnoq7DnVCw5uZmFSshIlKPXq9HVlYW0tLSIAjHlpM5ncB///uX0NQ+G+Q7f/V4m+MOHNiEkSPlN/hXVFQgNzcXTU1NiusmImqL3a58LkGnYyAGkTfMOXcODFpDq+uiJOKhLx/yQUVE1BlTpsRh5MgGVcZ6/fUIvP02Q4OVKioqOuHPvXu34PXXC/DqqwXIzLR22H/gwGZMmRLmqfKIiLxOK8in3jAUjIh6iqFDw3DXXXW47rpqvP/+IZx0UsffCeUUFxfD4ZA5KIS6leefV/75mJhox/XXu35ALRERERERdR5DwYiIiIiIiIiIOkEUJXz6aesF6q7Q6SSMGxeockVE5A0T102EhNYLILQaLZaMXuKDijpn+HDlp7F99pnyIEQiIle8ecWbyIzIlG2rsdTg0lWXerki6oqOHj2Kigr1N4alpaUhMjJS9XGJqPsSBOGPwJzOamlRFtZLROQtJpMJffv2RVRUFNavj0Bu7v9v5tA4gb7rW3dw6oADV8iOpdVKeOihEmjamZJwOBzIz89Hfn4+NxcRkaqUhoJp2nvTIiJVCYKA0X1Gy7Yt27PMu8UQUafpdAJWrw7G2Wc3uj3WDTdU4fTTK1BaWqpCZT2L2WyG1do65EGjAQYPbsTatXn4179KEBHR9u+tZ5+1Q6vltiIi6j7aDAWTWfNDRNRdPfdcGB56qAyBgcrf+yRJQkFBgXpFUZfzv/+14JtvghT3v/32Fuj1nE8lIiIiIvIkzt4TEREREREREXXCzp0tKCnRK+p7zjlWREXJLzwioq7rYPVBfF34tWzbtSdfi/DAcK/Wo8SwYSEwGp2K+n7zTYDK1RARnUgQBOyYugMGrXzw6pf5X2LB9wu8WxR1GaIoIj8/H3V1daqOq9FokJ2dDZPJpOq4RNQz6PXK5gUcDhFOJ0N3iahrEwQBCQkJmDUrDrffXgudTgROXQ4EV7V+ccGFgDVcdpxrr61Gnz6uhSE2NTUhNzfXIyGwRNQzMRSMyD8sGL5A9rrZZsaqX1d5txgi6jSjUYuNGw3o08eieIx77inFnDllEASguroa1dXVKlbY/RUXF7fbrtMBV19dg02bDmDKlEro9SfOS40aVY+hQ8M8WSIRkdfpBJ3sdYaCEVFPotUKSE1NdXscq9WKyspKFSqirui555Qf1mIyOXHnnUYVqyEiIiIiIjkMBSMiIiIiIiIi6oQPPlD+EHT0aG78JfJHN667Ufa6TtDh9ZGve7kaZYKDdRg0qFlR3717jaistKlcERHRieJC4vDeuPfabL/n83vwW/lvXqyIugK7XcSDD1ajslL5pjI5Wq0WvXv3RmBgoKrjElHPYTR2vMBZFIHCQgM++SQM8+bFY8qUDJx7bj/8+quy7+VERN4WFqbDq69GYN1X+6AZfZv8i/aPlr0cFWXH9OmdD/iqqKhAbm4umpqaOt2XiOivGhtFSAr2e2u1PNiFyJsSQxNxWtxpsm3/+fo/3i2GiBSJjjbgk0+AxMTOPUvU6UQ880wRJk+uxl8zOUtLS1FfX69yld1TZWUlHA7X1q+YTCLuvrscGzYcxLBhx/77DQwU8dxzyoLviYi6Mq1G/nedKHHdHhH1LCaTCWFh7gfAlpeXo6XFtQNAyH8UFdmxbp3yUK+JEy0ID+dcKhERERGRp8nH3xMRERERERERkayPP1a2KFKjkTBhgkHlaojI0/aW78UPxT/Itt18+s0IMgR5uSLl/vlPO775pvP9nE4NPv64CVOm8D2MiDzryn5XYsqAKVi6Z2mrNlESMeTtISi9uxQGHd+PegKz2YGxYy3YsiUG27cH4uWXC6FXYX+SXq9Hr169IAg8O4mIlDOZTKirq/vjz5IEHD1qwO+/ByInx4jffzciJ8eIxsbWC6F37rRjwADv1UpE5I7ihmLM+HkkJMEu/4KS02Uv33NPOUwmZRstHQ4H8vPzERwcjJSUFOh0XN5GRJ03bVoSdu0yIjragehoB6KiHIiJcfz/n+2Ijv7rnx3Q648liDEUjMj7nh36LEasGtHqel5NHvZV7kO/mH4+qIqIOiMz04iNGxtx0UUC6us7/v4eHOzEggVHcPbZ8mHARUVF0Ov1CAryn+ew3iaKIioqOh/EnJJix/z5Rdi1qxolJSb06RPjgeqIiHyrrVAwSUlyNBGRn0tKSkJjYyOcTqdb4xQUFKB3797Q/DXRl/za/PktsNtDFPXV6STcc0+AyhUREREREZEcrpoiIiIiIiIiInLRb7/ZkJen7EHmgAEtSE0NVLkiIvK0G9fdKHs9QBuAF0e86OVq3DNyZAD+8x9lfbds0WDKFFXLISKS9daot/BN4Tc4XHu4VVuNpQaXvXMZtkzc4oPKyJtKS1tw+eVO7N5tAgBs327CY48l4YkniuHOGtOgoCCkp6czEIyI3GYymbB1qwl79gQhJ+dYAJjZ7FqAxK5dXCxPRP6hvLEcFy+/GAX1BW2/yFjX6tLAgU0YObL19c5qampCbm4uYmNjERsb6/Z4RNSzVFZqYbcLKC01oLS043DxsLBj4WCzZ5uRne2FAonoD8OzhyM6KBpVzVWt2mZ9Ngubb9zsg6qIqLMGDgzB++83YPToELS0tD3/Gh1tx6JFhejb19ruePn5+ejVqxcMBh4SIqekpMStcJuBA5tx7bUpKlZERNR16AT5rZISGApGRD2PIAjIyMhAXl6eW+PY7XaUlpYiMTFRpcrIl8xmEUuWGBX3v+KKZmRkBKtYERERERERtYUr3omIiIiIiIiIXPT++zbFfa+4wqFiJUTkDTuLdmJv+V7ZthmDZsCg869F6AMGGBEfr+x97NtvlS8CISLqDI1Gg51Td8KglX+P/TL/Syz4foF3iyKvys1txvnnS9i9O+iE6xs2RODll5WHQYSGhiIzM5OBYESkCkEQsGxZDJYujcEPP4S4HAgGAL/8ovdgZURE6qix1GDYimHYX72//RfG5JzwR0GQ8NBDpW4Fuf5dRUUFcnNz0dTUpN6gRNTtVVV17rzc+nodDh0KhNPp+vc6IlLPnWfeKXv9y/wvYXW0HxxERF3H8OGheP31egiCfOhKenoLVq483GEgGABIkoS8vDw4HFxn8Xd2ux11dXVujREeHg69nnNURNQ9tfUs0J0wRSIifxYYGIjo6Gi3x6mpqeE8fTexaFEzGhqUz4POmcM5VCIiIiIib+GqdyIiIiIiIiIiF23c2LlNJH911VX+FR5ERMCUDVNkrxt1Rjw79FkvV+M+rVbA+edbFPUtKgrA3r1c1ENE3hEbEov3x73fZvs9n9+D38p/82JF5C3bt5sxZIgehw8HyrYvXhyL99+P7PS4UVFRSE1Ndbc8IqITnHKKssDdnJxAOByiytUQEamn3lqP4SuH49eKXzt87XljdiMh4c/3w2uvrUafPuoHdzgcDuTn5yM/P5+hAETUocZGBxoalD3PSUrikloiX3j4goehF1qH0zglJx7Z+ogPKiIipSZNisCTT9a2un7aac1YseIwkpLsLo8liiLy8vIgipxH+auioiK3+ms0GiQmJqpUDRGR/5DAUDAi6rni4+NhMLi/hrmwsJDfz/2cwyHhlVeU/3/h3HMtOPts+TU9RERERESkPq5gICIiIiIiIiJyQUGBHb/8ouxBZq9eLejfn6FgRP7ki0NfYH/1ftm2B85/oM2TRbu6oUOVL8r5+OMWFSshImrfmH5jMHXAVNk2URIx5O0hsDmUhbFQ17RuXR1GjAhCRUXrDaB/9dRTCfjyS5PL4yYkJCAhIcHd8oiIWhk4UNl366YmLfbubVa5GiIidTTaGnHZO5fh55KfXXq9PeIQcnMFTJ9ei/h4G6ZPr/BofU1NTcjNzUV5eblH70NE/q2oSPl8QVKSVsVKiMhVOkGHy3tdLtu2eNdiL1dDRO568MFI3Hnnn8FgF17YgMWL8xEe7uz0WA6HA4cPH2bwwP9rbm5Gc7N780qxsbF++6ybiMgdksRQMCLq2TIyMtweQxRFt0NqybfefbcZR44oX89+9938PCUiIiIi8ibO5hMRERERERERuWDNGuVhOCNHun7aLRF1Dbd+fKvsdZPBhH8N/peXq1HPFVcEQaNxfWFGeLgDl15ah8cfP4rBg6s9WBkRUWtvjnoTWRFZsm01lhpcuupSL1dEnvLaa7W4+upQNDZ2vPlaFDW4//4U7N4d1OFrU1NTERUVpUaJREStnHOO8sXSO3dynoCIuh6L3YLR743GjqIdLvfJqcyByaTFK69EYO/eFkREaDxY4Z/Wr7fg4ovN+P13hiwSUWtHjij/rpWWxgNeiHzlxUtflL1e31KPD3I+8HI1ROSuBQvCMG5cPSZMqMELLxyB0ah847jVasWRI0dUrM5/uRvAoNPpEBMTo1I1RET+RQJDTIioZ9Pr9UhMTHR7HLPZjPr6ehUqIl9YsED5oQjZ2S248kqjitUQEREREVFHGApGREREREREROSCDRuUPwgdP16nYiVE5Gnr9q1DQV2BbNvj/3zcr09OTkwMQP/+ljbbdToRZ57ZiJkzy/Dee3n45ptcPPfcUVx5ZR0iIlp4CjcReZVGo8GOqTtg0MpvyN1asBXzd873clWktkceqcHtt0fAbnf987WlRcCdd6bi8OEA2XaNRoPMzEyEhoaqVSYRUSunnx4Eo9GpqO+uXSoXQ0TkJpvThvFrxmNr/tZO9Wu0NeJow1EAQEyMCX369EF0dLQnSvyDzabB008nYOtWE844IxCzZtXCbHZ49J5E5F9KSpTNYer1ImJj9SpXQ0SuSg1LRf+Y/rJtj2x9xMvVEJG7tFoB775rwn/+Uw6dCsslGhsbUVJS4v5Afqy2thZ2u3tB80lJSSpVQ0TkfySJoWBERJGRkQgK6vgAto4cPXoUDgfn5f3N119bsWtXoOL+d93lgCB453AYIiIiIiI6xn93rxEREREREREReUlVlRM//KDsQWhioh1nny0fVkBEXdMdn9whez0yMBKzzp7l3WI84IILWk74c0aGFddfX4VXXinA9u25WLKkADffXIX+/a34e/5ZXV2d9wolIgIQGxKL98e932b7fV/ch9/Kf/NiRaQWh0PEzTfX4sknIxX1b2jQYdq0NFRUnLijTBAE9OrVS5WFrERE7dHrBZx0klVR37175QMviYh8wSE6cO3aa/HJwU8U9c+pzPnj3wuCgPj4ePTt29dj38eWL49CYeGx+daWFgEvvhiBk04SsWJFrUfuR0T+p7RU2Ubv6GgHtFouqSXypacufkr2em51Lg7VHPJyNUTkLr1eQO/evaDRqLNpvKamBpWVlaqM5W9EUURpaalbYwQGBsJkMqlUERERERH5q/T0dLe/o0uShMLCQpUqIm+ZO1f5gbDR0Q7cfLNRxWqIiIiIiMgVXMFARERERERERNSBDz6wwuFQ9hD8sstsPBmJyI+s+GUFShvlF1Q/N+w5L1fjGVdcocHw4fV47LFifP75fnz0UR4eeKAMF1zQiKCg9hd+1NfXe6lKIqI/jek3BjcNuEm2TZREDHl7CGwOm5erInc4HA5cc00D3norwq1xSksNuP32NJjNxx556nQ69O7dGwYDw3aIyDtOOcWuqF9OTiAcDuWLromI1OIUnZi0fhI+3Peh4jH2Ve1rdU2n0yEzMxNpaWnQarXulHiC0lI9Xn89ttX1o0cNmDgxAhddZMavvzapdj8i8k9lZcqeyURHO1SuhIg6a1SfUYgIlJ8vmvnZTC9XQ0Rq0Ol0yMrKUm288vLyHnmIUXl5OUTRvbmklJQUlaohIvJPkqQsQJqIqLsRBAGpqalujWG1avDoo+FYt65OnaLI43JzbfjsM+WhXjffbIXRyDgCIiIiIiJv47dwIiIiIiIiIqIOrF+vPNRr3DhOvxD5k7s/v1v2elxwHG4aKB9I42+GDTNh3rwijB1bi4SEzoUYWCwWD1VFRNS+xaMWIytCfuNQjaUGl6661MsVkVI2mw0HDhzA4MH1EAT3F98fOGDErFmp0OkC0bt3b+h0OhWqJCJyzRlnKHsfa27W4pdf+N2aiHxLkiRM+3ga3vn1HbfGyanMabPNZDKhT58+iI6Odusex82dGw+rte351q++MuEf/zBi5sxamM0M9yHqqcrLlT3TiYlxqlwJESkx7R/TZK9vPrSZBwMQ+anAwECkp6erNt7Ro0fR1NRzwoAdDgeqq6vdGsNkMiEgIEClioiI/JMEhoIRER1nMpkQGhqqqG9OTiCuuioL77wThenTg1BRwd/q/mDuXBtEUdm8aWCgiFmzAlWuiIiIiIiIXMFdqURERERERERE7WhsFPHNN8oeZkZEODB0KB+EEvmLV396FVXNVbJtL176oper8RytVgutVquoryiKsNm4kIeIvE+j0WDH1B0waA2y7VsLtmL+zvleroo6y2Kx4ODBgxBFERdfbMZDD5WqMu6wYTb06ZMFQeCjTyLyrnPOkf9ccsWOHfxeTUS+I0kSZn02C2/uftPtsdoLBQMAQRAQHx+Pvn37IigoSPF9duwIwRdfhHX4OptNwEsvRaBfPxHLl9cqvh8R+a/KSmVznwwFI+oa/jPkP9AJrUPfHaIDj217zAcVEZEaQkJCkJycrNp4+fn5sFqtqo3XlRUXF7s9hpr/3RMR+SuGghERnSg5OblTawidTmDx4hhcf30W8vOPrYsuKzPg5pt7xvdyf1ZR4cC77yp/PnP11RbExfGAPiIiIiIiX+DKeCIiIiIiIiKidnz0kRVWq7IplEsuaYFOp+xkJSLyLlEU8dCXD8m2pYSm4Or+V3u5Is8KDg5W3LempkbFSoiIXBcbEos1E9a02X7fF/fht/LfvFgRdYbZbMahQ4cgSX8uuL/66hrcckuF4jF1OhELF9biyScjodHwezcRed9ppxkRFKQsPGLXLr5vEZFvSJKEB798EC/9+JIq4+VU5pzwHa8tOp0OmZmZSEtL63RYuc2mwdNPJ3SqT3GxAZMmReCf/zTj11+bOtWXiPxbRYWyDWpxcdwgTtQVGHQGXJJ5iWzbaz+/5uVqiEhN4eHhiI2NVW28Q4cOweFwqDZeV2S1WmE2m90aIzo6WvGBUURE3Ykr81dERD2JIAhIT0936bVFRXpMmZKBl16Kg8Nx4jPOjRtD8dprPKCjK3vpJSssFmXr4DUaCXPmMBCMiIiIiMhXGApGRERERERERNSOdeuULwgaO5YbfIn8xXM7nkN9S71s22sju98mk4iICMV93V14TkTkjlF9RuGm02+SbRMlEUOWDYHNYfNyVdSRmpoaFBYWyrbNmFGBUaM6v0A0ONiJ995rwB13KP9MIyJyl04n4KSTlJ1+vX8/F08TkW88ue1JPLv9WdXGq7XWoryp3OXXm0wm9OnTB9HR0S73Wb48CgUFAUrKw9dfm3DeeYH45Zf8bh8YQETHVFUp+54VH88N4kRdxUuXyoeX1lhq8PH+j71cDRGpKTY21q3nlH8lSRIOHjwIURRVGa8rKioqcqu/IAiqBrEREfkLDVqv2ZPA33xERH9nNBrbnauXJGDdunCMH5+N3bvbPoR0zpxQHDxo8USJ5CarVcQbbyh7vgIAl1xiwUknKe9PRERERETuYSgYEREREREREVEb7HYJn38eqKhvUJATI0cq60tE3iWKIp7c9qRsW1ZEFi7rdZmXK/K84OC2F+l0pKWlRcVKiIg6781RbyIrIku2rcZagxGrRni5ImpPWVkZSkpK2mzXaID//KcY553neuhkdLQdn37ajHHjwlWokIjIPaee2nEYpdHoxMCBTbjhhio8/XQRNmw4gNdeK+jWm1aJqGt6fsfzePTrR1UfN6cyp1OvFwQB8fHx6Nu3L4KCgtp9bWmpHm+84d4m9muvrYZW24Tc3FyUlZVBkrgJlKi7cjhEVFcrCwVLSOBBL0RdRVZkFvpE9ZFte/DLB71cDRGpLSkpCSEhIaqM5XQ6kZeX1y3nWMxms9vPZRMTEyEI3DJERAQAzAQjIpIXHx8Pg8HQ6npNjRazZ6fg0UeT0dysbXcMs1mLiROdcDi63/dyf7dkiQWVlXrF/e+9l3OmRERERES+xBl+IiIiIiIiIqI2fP65FQ0N7T/Mbss//2lFUBCnXoj8wSNfPYIme5Ns29LRS71cjXcIgiC7mMdVZrPrwS1ERJ6wY+oOGLTy72NfFXyF53c87+WKSE5RURGqqqo6fJ1eD8yfX4STTur45Nj09BZ8840dgweb1CiRiMhtZ5xx4p+NRhGnn96E66+vwlNPHcWGDQexc+c+vP12Pu6/vwwjR9YjM9MGQQAaGxt9UzQR9Uiv/vQq7v3iXo+M3dlQsON0Oh0yMzORlpYGrVZ+Hnbu3HhYLMrnWRMTbbj55so//lxVVYXc3FzObRB1Uw6HHZs2HcCqVYewYEEhHnmkGNOmVWD8+BpceGEDTj65GXFxduh0rXeDJyXxmQ5RV/LkRfKHufxW+RuO1B/xcjVEpLbU1FQEBASoMtaWLQY8+GCdKmN1JXff3YLdu9sPUW6PwWBAeHi4egUREfk5ialgRERtSk9PP+HP27aFYOzYbHz5ZZjLY3z/fQieeKJO3cLILaIo4aWXlB2gAACnnWbFRRfxcGwiIiIiIl9S/o2eiIiIiIiIiKibW7vWqbjvmDHq1UFEnuMQHZj//XzZtv4x/TE4bbCXK/Iek8mE6upqRX1ra2thMjGMhYh8JzYkFmsmrMHo90bLts/ZMgfDsobh1LhTvVwZAYAoiigoKEBzc7PLfYKCRLzySgEmTsxEUZH8ZrABA5qxaZMWiYnKN0IREaltyBA9rruuGiedZEH//hZkZLSgjVybVsxmM0JDQz1bIBERgGV7luGOT+7w2PhKQ8GOM5lM6NevH8rKyk4Ild2xIxhffOH6piM5c+aUwmg8cdOn0+lEYWEhgoKCkJqaCp2OS+iIuouWFisSE+1ITLS3+zpRBOrrtaiq0qGyUofqaj1OOinCS1USkSvGnzQeYQFhqG+pb9U267NZ+PDqD31QFRGpRRAEZGVl4cCBA3A4HIrHWbcuHI89lgSnU4OoqBrMmROpYpW+s2ZNHd58MxpvvhmNSy6px6xZZUhJaf/7zd8lJyd7qDoiIv/EUDAiorYZDAYkJCTg0KEyzJ8fj/ffj1I0zjPPhOOyyxpx1lkhKldISnz0kQX79ytfX3P33U4IgkbFioiIiIiIqLM0kiRxVouIiIiIiIiI6G9EUUJSkgNlZfpO99XpRJSXS4iMdHEXMBH5zF2f3oWXf3xZtu3nW37GGYlneLki72lpacHBgwcV9dXpdOjbt6/KFRERdd4tH92CN3e/KdsWERiBsnvKYNAZvFxVzyaKIvLy8mCz2RT1P3LEgBtvzERNzYnBDBddZMa6dUaEhjKwgYi6FlEUkZOjLAwnMDAQ2dnZKldERHSi9357D9d/eD1ESfTYPYakDcHXk79WZSyHw4EjR46grs6CceOyUVAgHxjrivPOM2PRokJoOtizEh0djdjYWAiCoPheRNQ1VFZWory8XFHfvn37djokcMmSJViyZImi+7WnsbERv/zyi8uv3717NwYMGKB6HUS+ds/n92D+ztYHu+gFPZofboZO4DwRkb9zOBw4cOAARLFzv1ckCXjjjRgsXBj3xzWtVsLSpXW48Ub/Dvq020X072/DwYOBf1zT60XccEM1brmlEiZTx/9dBQcHIyMjw5NlEhF1adrHta3mwoL1wWh8qNFHFRER+YcHH6zGM88oCwQ7rm9fC3btMsBo5PppX7vgAgu+/daoqG9ysg35+XrodAwFIyIiIiLyJT4NJSIiIiIiIiKSsX17C8rKAjt+oYzzzrMiMlL56UpE5B1WhxWv/fyabNsZCWd060AwAAgICIBGo4GScyMcDgdEUeRmWSLyucWjFuPrwq+RV5PXqq3WWosRq0Zg66StPqisZ3I4HDh48CCcTqfiMVJTbXjllUJMnZoBi+XY58zVV9dh+fJQGAz83CGirkcQBAiC0OnNqwAUBygSEblqQ+4G3PDhDR4NBAOAnEpl4YhydDodMjMzUVDQiIwMm+JQML1exIMPlnYYCAYAVVVVqK2tRXJyMkwmk6L7EVHX4M73q84GggHAkSNHsH37dsX3JKL2/fei/+LF71+EUzpxrsku2vHUt0/h0SGP+qgyIlKLTqdDdnY2Dh486PIzS6cTeOqpBKxeHfW36xrcemsY4uLqccklYZ4o1yteeKEOBw9GnnDNbhewdGkM1q+PwPTpFRg/vgbtfXVJSUnxcJVERERE1B09+mg4PvrIgpwcZUFSAJCba8SsWbV4/XX/Duv1dz/91KI4EAwApk+3Q8dDGImIiIiIfI4r54mIiIiIiIiIZKxZ41Dcd/TozgfsEJH3Td80HXbRLtu24soVXq7GN4xG5Qs/amtrVayEiEi5HVN3IEArHxTwVcFXeH7H816uqGeyWq3Yv3+/W4Fgx518sgXPP38EOp2E2bNrsWoVA8GIqGsLCFAWWCOKoqIwMSIiV2zO24yrPriqVYiGJ1Q2V6KyqVLVMdPTQ7B1qwnLl9ciObnzIT+TJ1chLc31fk6nE4WFhTh8+DAcDuVzw0TkW3a7/HxvRzSuJAgSkdcF6gJxUcZFsm0Lf1zo5WqIyFMMBgPS09Ndeq3VqsHs2amtAsH+bBdw9dXB2LWrUcUKvae62obnnms7qLi2Vof//jcR48ZlY9u2EMjlqIWHhysKOyUi6u4kcD0fEVFHjEYtli1zIiDAveeXixeHY+PGepWqIiWee075c47QUCemT1d2qDYREREREamLq+eJiIiIiIiIiGRs2qTshCONRsJVVynbDExE3tNgbcDyX5bLtp2Xch76xfTzckW+ERam/JTs+nou3CGiriEmOAarJ6xus33OljnYW77XozU4RScqmiogye3A6QHMZjPy8vJU/c8/eHAjtm4tw/z5EdBq+UiTiLq2oKAgxX3NZrOKlRARHfN1wdcY8/4Y2JydD9NSal/VPo+Me+ONEdi3T8CsWbUub0RKSLDhlluUhZQ1NzcjNzcXZWVlDG4k8kNKQ/0YCkbUdb044kXZ65XNlfji0BderoaIPCU4OBgpKSntvqauTotbbknHV1+FdvA6HUaNMiA/36JmiV7xyCNNqK7Wd/i6w4cDcccd6bjttnQcOPDn+hSNRoPExERPlkhE5Bc0aP0br6c+xyUi6qwzzwzBgw/WuTWGJGlwxx2BaG723jMK+lNhoR3r1ys/LHbiRAvCwrQqVkREREREREpxBT0RERERERER0d/s3WvD4cPKQsEGDmxBUhJPXSXq6m7ZeAuckrPVdQ00WDV2lQ8q8o2IiAjFfa1Wq4qVEBG5Z1SfUbhl4C2ybaIk4sJlF8Lm8Mxiw+W/LEfWS1mImxeHxPmJPW4zYm1tLQoLC1UfNzY2FoMHJ6g+LhGRJ4SEhCju29jYqGIlRETAzqKdGPnOSFgd3v3dnlOZ47GxQ0J0eOGFCPz8swX//GfHYYr3318Ko9G9jZ5VVVXYv38/wxuJ/IzT2XrO1xVaLTe5EXVV/WL6ISsiS7ZtzpY5Xq6GiDwpLCwM8fHxsm0lJXpMnJiBPXuCXRqruNiAkSOB6mr/CSHYt68Zb73VuQOddu4MwYQJ2XjssURUVWkRFxcHQeAWISIiIiJyz8MPh+O885Q/w0xLa8Gzzx5FUVG+ilWRq55/vgUOh7LfBTqdiHvv5cHYRERERERdBWf8iYiIiIiIiIj+ZvVq5QtDR41StuGEiLynqrkKH+z7QLZtaOZQpIWnebki3xEEATqdsiBDURRhs/nPQnoi6v7euOINZEdmy7bVWmsxfOVwVe/XZGvC5PWTMWn9JBTWHwvFKmssw4Q1E9DQ0qDqvbqqiooKFBcXqz5uYmIiYmNjVR+XiMhTgoNd25Aqp7m5WcVKiKin21W6C5euuhRN9iav39uToWDHnXxyMLZuNWHFilokJ8vPSZx3nhkXXaROkJfT6URhYSEOHz4Mh8OhyphE5FlKQ8GUzpESkXf8e8i/Za/vKduDssYyL1dDRJ4UHR2NqKioE67t3x+IG27IRH5+YKfGyskxYvRoGywW/1jDMWeOAzZb57f3iKIGH3wQiXnzEhEdHe2ByoiIugcJ7gXIExH1JDqdgLff1iIsrPPz4lddVY3Vq/NwyikW2O12lJaWeqBCakt9vRNvv21U3H/MGAvS0vQqVkRERERERO5gKBgRERERERER0d9s3Kh888dVV/FhKFFXN3n9ZIiS2Oq6Bhosv3K5DyryraCgIMV9q6urVayEiMh9O6buQIBW/sTKrwu/xvM7nlflPjmVORj05iC8/cvbrdrqW+qxcf9GVe7TlR09ehQVFRWqj5uWlobIyEjVxyUi8iRBECAIypZf2O12lashop7q94rfccmKS1DfUu+T+3sjFOy4G26IwL59AmbPrkVAwJ9zPDqdiAceKIVGo+79mpubkZubi7KyMohi6zklIuo6JEnZJm+GghF1bTeediNCDCGybbM+m+XdYojI4xISEmAymQAAP/wQjEmTMlBZqWwdxvbtIbj22kY4nV37e/znn9fj449DFffX6UQ88YRWxYqIiPybRmZySOnvRSKiniory4i5c10/gCMqyo5XXinAI4+UIijoz/fc6upqWCwWT5RIMhYtsqKhQflvgzlzOE9KRERERNSVMBSMiIiIiIiIiOgv8vPt2Lu3cyfMHte3bwv69jWoXBERqam4oRifHPxEtm1Un1GID4n3ckW+FxERobiv2ez6wh8iIm+ICY7Bmglr2myfs2UO9pbvdeseb+95G2cuPrPd0IM9ZXvcukdXJooiCgoKUFdXp+q4Go0G2dnZf2z2IiLyNwEB8qGUHRFFkQEzROS2A9UHcPHyi1Ft8V14976qfV69X0iIDvPnR2DXLisuvvjY/MSUKVVIT7d57J5VVVXYv38/50OIujClm7z1eh74QtTVTTptkuz1dbnr+JuKqBtKS0vD4cNhmDYtDU1N7oVdbdgQhunTfROe7AqnU8T997v3XeTGGxtw+uny4YlERERERErdcksERo/u+Lv0P//ZgA8/zMMFFzTKthcUFPC3uxc4HBJefVX5b4vzz7fgzDOVPfMmIiIiIiLPYGwvEREREREREdFfrF5tA6Dsoejll9sB8IEoUVc2cd1ESGi9MUzQCFg2Zpn3C+oCgoODFfe12WwQRRGCwPMniKjruKLPFbhl4C1YvGtxqzZREnHhsgtRdk8ZDLrOhbk22Zpw56d3YtmeZR2+dm+Fe8FjXZXdLmLBggqMGNEImQO2FdNqtcjOzuYmbCLya0FBQYpPuTabzQgLC1O5IiLqKQrqCnDx8otR3lTu0zpKzCWos9YhPDDcq/c96aQgbNkCvP9+HTIyKj1+P6fTiYKCQmzaFIfbb49AWBiX3xF1FQ6HQ3Ffpb9HU1NTcd555ym+b1saGxvxyy+/qD4ukT97ZugzWPTzIojSiZuIbU4b5u2chznnzfFRZUTkKZddloRLL23Exo2hbo/1xhsR6NevCrNmRatQmbrefLMee/YoP8QpLMyBp58OUrEiIiL/p0HrB5lya4WIiKhjixcb8dNPNpSUtF5jExTkxAMPlGLMmLp215A4nU4cPXoUqampHqyU3nmnGUVFyteC3n03PyuJiIiIiLoarkoiIiIiIiIiIvqLDRuUB9tMmMCpFqKu7FDNIWwt2Crbdk3/a7y+abWrEAQBBoMBNptNUf+mpiaYTCaVqyIics8bV7yBrwu+xsGag63aaq21GL5yOL6a/JXL4+VU5mDCmgnIqcxx6fW/lHW/jbtmswNjx1qwZUs8DhzQYuZMdUIn9Ho9evXqxYBJIvJ7JpMJ1dXVivoyFIyIlCpuKMZFb1+Eow1HfV0KAGBf5T6ck3KOT+599dXhcDhCUFRUhKamJo/ea8uWUDz4YAxeesmGJ56oxeTJYdBq+X2WyNdaWloU9w0IUHbgy9SpUzF16lTF923Lnj17cPrpp6s+LpE/CzGEYHDqYHxT+E2rthe+f4GhYETdkE4n4P33g3HxxY3YuTPErbHOOqsRZ51VgdJSOxISElSq0H2NjQ488YTyTfsAMHt2A+LiIlWqiIiIiIjoRDExBixaVIcxY/SQpD+TvwYMaMJTTx1FSordpXEaGhpgNpu5ztCDXnhBq7hv794tGD3aqGI1RERERESkBq5GIiIiIiIiIiL6f+XlDvz4Y6CivsnJNpx5prJNI0TkHTeuu1H2uk7Q4fUrXvdyNV2LO4ttamtrVayEiEg9O27agQCt/Pezrwu/xvM7nndpnOW/LMeZi890ORAMAMqbylHeqE5oVldQWtqCIUNs2LLl2OfFm2/G4J133N9kZDQaGQhGRN1GUFCQ4r4Wi0XFSoiopyhvLMfFyy9Gfl2+r0v5Q2e+M3uCTqdDRkYGMjIyoNN55gCH5mYNnnsuHgBQWmrAzTdH4MILm7FrV6NH7kdErnMnFCwwUNmzISLyrhdHvCh7vayxDNsKtnm5GiLyBqNRi48+MqBvX+VzJ5deWodFiwphMomorq5GVVWVihW6Z+3aKpSW6hX3T09vwQMPhKtXEBFRN6GBptU1SZJ8UAkRUfcwalQ4brmlDgCg00mYMaMcS5fmuxwIdtyRI0fgdDo9UCFt3WrFnj3K5zjvussBQWj9+UlERERERL7FFfZERERERERERP9v7doWOJ3KHmpefrmND0SJurDfyn/DzqM7ZdumnDYFIQb3Tpf2d5GRyoJdRBHIze3c4h4iIm+JDorGmglr2myfs2UO9pbvbbO92d6MqRumYtL6SWi2N3f6/u2N7U9yc5tx/vkSdu8+MezmmWcS8MUXoYrHDQ0NRVZWFgPBiKjbEARB8XuazWZTuRoi6u5qLDUYtmIY9lfv93UpJ/B1KNhxwcHB6Nu3L2JjY1Ufe/HiWJSVGU649t13ITj77CDcfnst6usdqt+TiFzjTiiYp4IEiUhdp8WfhrSwNNm2e7+418vVEJG3REcb8MknQFJS5+dPJk2qwjPPHIVe/2cQTFlZGerr69UsURGr1YozzqjC2rV5OO88s6IxHnusGQEBnGMnImqFS/iIiFQ3f74Jw4fXY+XKQ7j11koomU6TJAmFhYXqF0eYO1dU3Dc62oGpU40qVkNERERERGrhEwAiIiIiIiIiov+3fr3yFUHjxmlVrISI1Hbj+htlrxu0Biy8bKGXq+l6AgICoNG49h5YVqbHunXhuO++ZAwZ0hdjx6ajpUX5ohIiIk+6os8VuGXgLbJtoiRiyLIhsDlabyTKqczBoMWDsHTPUsX3/qX8F8V9u4rt280YMkSPw4dbnyYqSRo88EAy/ve/IJme7YuKikJqaqoaJRIRdSkBAQGK+kmSBFHkd2oick29tR7DVw7HrxW/+rqUVnKqukYo2HGxsbHo27cvgoODVRmvoMCAZcuiZNvsdgGvvRaBvn1FvPlmLZxOvq8TeZvdrvzwAgZWE/mPhwc/LHv955KfUdVc5eVqiMhbMjKM+OgjG8LDXQ/hve++Utx7bxnkPuaLiorQ1NSkYoWdV1RUBADIzm7Ba68VYtGiAmRlWV3uf9ZZTbj++jBPlUdE5Nc0MqlgEiSZVxIRkauCg3V4/32gf3/Xv7PKaW5uRk1NjUpVEQDk5LRg82bloV633mqF0cj5USIiIiKirojf1ImIiIiIiIiIAJjNIrZtax124IqoKAf++U9lfYnI8344+gP2lO2RbbvjzDtg0Bm8W1AXZTTKLwxpbhawbVsInnkmHqNHZ2PYsD549NFkfPZZOOrqdGhq0mLLFmWnVxMRecMbV7yBXpG9ZNvqrHW4ZOUlJ1xb/stynLn4TPxe+btb991bvtet/r62fn0dRowIQkWFvs3X2GwCZsxIQ16e6yE4CQkJSEhIUKNEIqIuJyio80GJxzU0NKhYCRF1V022Jlz+zuX4ueRnX5ciK6eya4WCAYBOp0NGRgYyMjKg0+kUjyNJwNNPJ8DhaH+5XVmZAbfcEoELLmjGrl2Niu9HRJ3ncLgeEvJXrh6WQERdw02n34QgfevfXhIk3L35bh9URETeMnBgCN57rwmBge0H8Or1IubOPYKJE6vbfV1BQQFsttaHhnhDfX09WlpaTrh2/vmN+OCDPDzySDEiI9v/XqPRSJg7V4RWy+1AREREROQ9YWFhMJlMbo9TUlLis+/i3dHcuQ5IkrI5TqNRxMyZXP9ORERERNRV8SkAERERERERERGA9estaGlRNlUyfHgLdDpuGiHqqiZvmCx7PVAXiOeGPefdYrqwsLBjJ0mLIvD774F4881oTJ2ajvPO64s77kjHqlXROHxYfgHIZ5+1v/ieiMjXdty0AwFa+eCqbwq/wdztc9Fsb8bUDVMxaf0kNNub3b7nL+W/uD2Gr7z2Wi2uuioUjY3aDl9rNmsxbVo6yso6DlhITU1FVFSUGiUSEXVJoaGhivs2NjI4hojaZ7FbMOq9UdhetN3XpbTpSP0RmFu6ZnB4cHAw+vbti9jYWEX9v/wyFDt2uL7ZaceOEJx1VhCmTatFfb2yoCIi6hyloWBabce/fYmo6xAEAdeffL1s25qcNRBFPq8g6s6GDw/D66/XQxAk2faQECdee60QI0Z0HL4uSRLy8vIUf4dwR0lJiex1nQ646qpafPzxAUydWgm9Xv49bezYBgwe7H4YAxFRdyUX/ixJ8p8dRETUOSkpKRAE97elFxQUuF8Mobzcgffflz8M1hXXXNOM2FjlB6oQEREREZFnMRSMiIiIiIiIiAjAunXK+44dy0Awoq5qa/5W5FblyrbNOXcOdAIXNBwXERGBxx5LxJAhfXHNNdl48cV4/PRTCByOjqeRt22TD9ohIuoqooOisfaqtW2237/lfpy66FQs3bNUtXvuq9wHm9P/TjZ99NEa3H57BOx21x8jlpfrcfvt6WhokO+j0WiQmZnpVlgOEZE/MBqVL7i2WCwqVkJE3Y3NacP4NeOxNX+rr0vpUFvzMF1FbGws+vbti+DgYJf7NDdr8Nxz8Z2+l8Mh4PXXI9Cnj4SPPqpiSAmRhzmdTkX9GApG5H+eu+Q5aND6+azVYcXCnxb6oCIi8qaJEyPw1FO1ra7HxtqxbNlhDBrU5PJYoos50aQAAQAASURBVCgiLy/Pq9/VKyoqOvzeYjKJmD27HB99dBDDh9ef0GY0OvHccwZPlkhERERE1CZBEJCenu72ODabDWVlZe4X1MMtWGCFxaIsJkCjkXDvvXqVKyIiIiIiIjUxFIyIiIiIiIiIejybTcKXXwYq6hsc7MRllynrS0Sed/NHN8teDzGE4N9D/u3laro2QRBQW6tHXV3ng9J++82I0tIWD1RFRKSey3tfjtvOuE22TYKEQ7WHVL2fXbR3+UCEv3I4RNx8cy2eeCJSUf+8vEDMnJkGm+3EDZmCIKBXr14ICgpSo0wioi5NEATFoRI2m/8FSRKRd0iShOs/vB6fHPzE16W4JKcyx9cldEin0yEjIwMZGRnQ6TqeB3nzzRiUlirfdN/QICAoqAq5ubkwm82KxyGi9ikN83DlfYCIupbwwHCck3yObNtz25/zcjVE5Av33x+Ju+76MxgsM9OKlSsPo0+fzj+vdDgcOHTokFeCwURRRGVlpcuvT062Y968IqxYcQinnNIMALj99gZkZioPpici6gnkAmSJiEg9QUFBiIxUtrbkr6qqqmC1WlWoqGeyWES8+aby9esjRlhw0kk8DJaIiIiIqCtjKBgRERERERER9XiffWZFQ4OyTbsXX2yF0cgpFqKu6KP9HyG/Ll+27d8X/BuCwL+7f3fhhXZF/URRg48/bla5GiIi9b028jX0juzttfv9UvaL1+7lDrvdiSuvbMRbb0W4Nc7PPwfjoYeScXzvlE6nQ+/evWEwKA9QICLyNwEByhZOS5IEp9OpcjVE1B2s3bcWH+R84OsyXOYPoWDHBQcHo2/fvoiNjW3zNYWFBixbFu3WfW67rRLx8Q6IoojCwkIcOnQIdruyORgiapskSYr6MRSMyD8tGLFA9nqxuRg/HP3Bu8UQkU/Mnx+GCRPqcfrpTVi+PB8JCcq/Y7e0tODIkSMqVievuLhY0XeWAQMsWLnyMObOPYJ//9vkgcqIiLoXjaZ1KJgEZb8ZiYhIXmJiIvR6vdvj5OfneyWgtzt66y0LqqqUz23edx/XzxIRERERdXX81k5EREREREREPd7q1cofKF95JU8WJOqqpm+aLns9PDAc9553r5er8Q8jRyoPbdmyhe+HROQftt+0HQatd0Kq9pbv9cp93GGz2XDw4H4kJ6tz+urmzWGYOzceAQGB6N27NzdXE1GPYzQaFfc1m80qVkJE3cXXBV/7uoROyanyn1Cw42JjY9G3b1+EhISccF2SgKefToDdrnyJXXp6CyZOrD7hmsViwf79+1FaWsrNTkQqcefvkhqbF4nI+85MOhNJpiTZtrs33+3laojIF7RaAStXmvDWW0UIC3M/aL2xsRHFxcUqVCbPZrOhvr5ecX9BAK67TofQUM65ExEREVHXkJGR4fYYTqfTo9/DuytRlPDSS8p/G5x+uhX//GegihUREREREZEnMBSMiIiIiIiIiHo0p1PChx8qe7BpMIgYMyZA5YqISA2rfl2FYrP8YpFnhz7r5Wr8xymnBCEpyaao73ffBcHp5EZWIur6Pj34KTTwTpDhL+W/eOU+SlksFhw8eBCiKGL69AqMHVujyripqVpkZmZCEPgokoh6ntDQUEX9JAmorGQoGBG1lmhK9HUJnZJT6X+hYACg0+mQnp6OjIyMP4Jtt241Yft2k1vjPvRQCfR6Sbaturoaubm5DIUkUoHNpmxOEwACAvich8hf3X/e/bLXdx7diTprnXeLISKfMBgEnHJKNjQadeb8a2trUVlZqcpYf1dUVORWf41Gg/j4eJWqISLq3tp7FixJEkRJhEN0wOa0ocXRAovdgiZbExptjWhoaUCdtQ61llpUN1ejsqkSFU0VKGssQ4m5BMUNxaixqPNMlYjI3xkMBsTFxbk9Tn19PefJO2n9egsOHlQ+rzl7tvvBykRERERE5Hk8JoSIiIiIiIiIerTXX7fBYlH2YDQ724bwcJ6URNQVzf5stuz1mKAY3HrGrV6uxn9otQLOP78Z779v6HTfkhIDfvmlEQMHhnigMiIi9zXbmzHjkxlYsmeJ1+7ZlUPBzGYzCgsL//izRgM88kgJKiv1+PZbZcEHOp2IBQvqcccdEWqVSUTkd4xGY4evkSSgokKH33834vffjcjJOfbPsGGNeO89LxRJRH5lxqAZWLF3BXKrcn1dikvya/PRbG9GkD7I16UoEhwcjL59+6KiogKrV3f8nt6eYcPqcc45Te2+RhRFFBYWwmg0IjU1FXq93q17EvVULS0tivsyFIzIf91x5h2Ys2UOrA7rCdclSLjv8/uweNRiH1VGRN6k0+mQlZWFvLw8VcYrLy+HXq9HeHi4KuMBQFNTEywWi1tjxMfH8yAOIuqWnKIT83bMw8YDG1FtqYYoiX8Ed4mSCAl/+fcuXm+yt56PESURmsfUOzjq1LhT8e64d3FSzEmqjUlE5I9iYmJQX18Pq9Xa8YvbceTIEfTr14/feV00f77yz7TUVBuuvdY/n+EQEREREfU0DAUjIiIiIiIioh6ruRl4+GHlm6xycgJxxRVNWLw4APHxnGYh6ipe//l1VDbLn+D84ogXvVyN/xk2TML77yvru2mTDQMHqlsPEZEacqtyMWHNBPxW8ZtX71vRVIHyxnLEhbh/MqqaampqUFJS0uq6TgfMm3cEN9+cgV9/7dwCwOBgJ95+24xx4xgIRkQ9myAI0Gq1cDr/PF25okKHnJzjAWCB+P13I6qrW89H/PorAymIqDVTgAm7b9uNxf9bjA/2fYDvjnwHURJ9XVabJEjYX7Ufpyec7utS3BIbG4vPP3fg8cdr8fLLYbBYOrcRyWgUMWdOmcuvt1gs2L9/P6KiohAXF8eNT0SdtHevA+++G4voaDuiox2IiXEgOvrYP3q91G5fhoIR+S9BEHDVSVdh+d7lrdre+e0dvD7ydX6mEvUQgYGBSE9PR0FBgSrjHT16FHq9HsHBwaqN5w6dToeoqChVaiEi6mpmb56Nl3982ddldNre8r0YvnI4CmYWQCtofV0OEZFPpaenY//+/ZCk9ufh2iNJEgoLC5GRkaFiZd3TDz9YsX278kNNpk+3Q6fr/KGxRERERETkfRrJnV9aRERERERERER+bOZMCS+95P4JgFFRDrz8Mk9OIuoKJElC5HORqLPWtWpLMiXh6N3uLbjuCSoqbEhI0EMUO//+eNFFZnz5pckDVRERKbdy70pM+3ia7InQ3rD5hs24JOsSn9xbTllZGaqqqtp9TU2NFhMnZqKw0LWN0dHRdnz4oRWDB/MzgIgIAL74ogjr1xv+CAKrrHQtkFynE1FfLyEoiBuIiKhtVc1V+PjAx9iwfwM2522GxWHxdUmtrLxyJa4/9Xpfl6Ga/fubMXOmA5s3h7rcZ+bMMtx8c/vfu9siCAKSk5MRGur6/Yh6ugULajF7tnxIdVjYsZCwqKjjYWH2PwLDEhPtuPHGTC9X27E9e/bg9NNdD1fcvXs3BgwY4LmCiLqwquYqxM6NhYTWy+FfH/k6bj3jVh9URUS+UldX53YA119lZ2cjMDDQrTHaOqSjM9LT0xESEuLWGEREXZHNaUPUc1FotDX6uhTFdt+2GwPiB/i6DCIin6uvr0dRUZHb4yQmJiIyMlKFirqv8eObsHatsgDj0FAnjh7VwGRiiDoRERERkT/gN3ciIiIi+j/27js+ijr/H/hryvZkd1NJQq8BQUHFL4r97IoFC+qdCtj1hwXE3s7zxC5nRe/s7ewVPfvZxYaClNAhQAhpW7Kb3exO+f3BJRizSXYn25K8no/HPDQz8/nM2yRmp3w+ryEiIuqTPv8cSQkEA4D6ehl//rMdp5wSRH29mpQ+iciYe769J2YgGAAsOGZBeovpoYqLzdh1V2MTihctsqO5WUtyRURExjRFm3DuO+fizDfPzFggGAAsqV6SsWP/0ebNm7sMBAOA/HwVCxZsRH6+0uW+Q4Y044svogwEIyL6nS1bcvDII/3w+efOuAPBAEBRRPzwQ1MKKyOi3qDQXogZE2bgzVPfRN1VdXj7tLcxc8JMFNoLM11aq5V1KzNdQlKVl9vxwQdOvPKKF0OGNHe5/5AhzZg+vd7w8TRNQ2VlJdatW4dIJGK4H6K+pLq643fj+nwy1q614vvvc7BwoRtPP12Ee+4pxTXXDMStt5alsUoiSoVCeyEmlk2MuW3eV/PSXA0RZZrb7UZxcXHS+lu3bh0Upev75B3RNA3btm3rVg02m42BYETUa0mCBF3v+HquJxjoHJjpEoiIsoLL5er2eeu33zpw1FFm+HzGz8F7u40bo3j7beMvsJ45M8RAMCIiIiKiHoRn70RERERERETU5zQ2AjNnJr/f115zYOxYDW++yQm8RJmgaRpu+eKWmNuG5Q3DseXHprminuuAA7qe4BpLU5OEjz9uTHI1RESJq6irwKTHJ+GJX57IdClYWrM00yVA0zSsX78ePp8v7jYDB0bxyCMbYbd3HHo7fnwTvvkG2GUX4wMOiYh6o/32sxpuu2hRNImVEFFvZzfZcVz5cXjy+CdRfUU1vpzxJebsPQfD8oZltK4VtSsyevxUOeUUN1askHH11Q2w2To+T7722iqYTN2f0BoKhbB69WpUVVVB0xjCTtSZ6mpjQ2GLijjBkKg3uO+I+2Ku3+TbhF+3/ZreYogo44qLi5GXl5eUvnRdx5o1awyfj1dXV3c77GbgQIbNEFHvJYkSjhhxRKbLMOyI4UegwF6Q6TKIiLLGoEGDIIqJ36cLhwXccUcJLrhgKH74IQcXXhhIQXW9w733NkNRjL0Q22TSMGeOJckVERERERFRKjEUjIiIiIiIiIj6nNdeAzZuTE3f27ebcOKJdpx5ZhBeb8cTw4go+f76+V8RjAZjbnv82MfTXE3PduSRid86tlg07LtvI5qaOCiHiDLrhaUvYOI/J2JZzbJMlwIAWFK9JKPH1zQNa9euRVNT4sG1Y8eGMX/+Zshy+0lLf/pTI7780oyyMg4YJCL6o2HDLCgoMBbu9csvHMZBRMZIooT9B++Pe4+4F2svWYvfLvoNfz/475hYNjHttfTWUDAAsNkk3HFHPpYsieDII/3tth92mA+TJ8e+P2VUQ0MDKioq4Pe3Px4R7VBbazQUjM9xiHqD/Qbth5KckpjbLv/w8vQWQ0RZoX///sjJyUlKX6qqYu3atQkHgymKgoaGhm4d2+l0wmw2d6sPIqJsd9MBN2W6BMNuOrDn1k5ElAqiKGLw4MEJtVmxwopTTx2OF14obF330ktuPP+8J9nl9Xher4pnnrEZbj91agiDBpmSWBEREREREaUaR5MSERERERERUZ8zcybw8MPG3uQar+efd2DXXVV88EEopcchoh0UTcHd390dc9uYwjE4eOjBaa6oZzvkkFzk5HQ9Ia68PISZM2vxz39uwDffrMSjj27C2LHe1BdIRBRDU7QJ575zLs5484wOQyIzYWXdSkTUSEaOrSgKVq1ahUjE+PEnTw7gllu2tll36qle/Oc/DjidcndLJCLqlSRJxNixzYbaLlvGsEUi6j5BEDCueByuP+B6/Hjej9g8ezMePvphHDL0kLQcf23DWjQrxv4O9hQjR9rwn/848eqrXgwduuO/1WbTcOWV1Sk5nqZpqKysxLp167p1fk/UW9XUSIba9euX2mdFRJQ+c/aeE3P9V5VfIRDhy0yI+qJBgwbBYknOfZbVq4FbbkkslGDLli3dOqYgCBgwYEC3+iAi6gnGl4zHybucnOkyEnbI0EMweeDkTJdBRJR1HA4H8vLyutxPVYHHHy/EX/4yDOvXW9ttv/zyHGzeHE5FiT3Www+H0Nho7D4oAFx1Fcf4EBERERH1NAwFIyIiIiIiIqI+KRpN/W2RLVvMOOooG847L4hAgBNLiFLpyo+uRFiJPQjkmROeSXM1PZ/FImLSpKZ26wsKojj2WA/mzduM//63Aq+9tg5z5mzHPvsEYbHoAABd19Hc3Lsn/hJR9qmoq8CkxyfhiV+eyHQp7SiagpW1K9N+3HA4jFWrVkFVuw557Mpxx3lx2WU7wg1mz/bghRecMJv5mJGIqDPjx0cNtVu92oJAQElyNUTU1w1wDsDFe12MM3Y9Iy3HU3UVaxrWpOVYmXbyyW4sXy7jmmsacMkl21Faauzvf7xCoRBWr16NFSu2QVV5z5moRV2dsQlt/frpSa6EiDLlin2ugEVqH/6j6Rqu/uTqDFRERJkmiiKGDx8OWe7exPelS20488xh+NvfCnDnnQ1xtQmHwwgEuhdIWFRUBFHkfXgi6htuPvBmCBAyXUZCbjrwpkyXQESUtUpLSzs9D9+yxYSzzx6K++8vgaLEPuetrzdh5swo74P/TzSqY8ECs+H2BxwQwp578uVUREREREQ9DZ8SEBEREREREVGfNG4ccPLJgN2e+gkfjz/uwK67Kvj8c761iigVwkoYj/z4SMxtu5fsjr3675XminqHgw+OwmLRMHlyI+bO3YbXX1+D//53FebN24pjj/WhsLDjoIKGhvgGxBMRJcMLS1/AxH9OxLKaZZkupUNLti9J6/EaGxuxdu1a6HryznXPOacOb7yxHffdlwdJ4iNGIqKu7LmnsXaKIuL779sH9BIRJcO/Fv8r5voh7iEoyy1L6rFW1K5Ian/ZzGaTcPvt+bj5Zle3AwfioWnAGWc4MXlyCIsWNab8eEQ9gdFQsNLSJBdCRBkjiiKmjp4ac9uzS55NczVElC1EUcSIESMMh2t98UUuzjlnKLzeHeca112Xh+ee83TZrrKy0tDxWkiShMLCwm71QUTUk4wrHodTx52a6TLiduDgA3HA4AMyXQYRUdYSRRFDhw5tt17XgbfecuPkk0dg8WJHl/18+mku5s/3pqDCnufFF5uwdavxULArrkhiMURERERElDYcsU9EREREREREfdIhhwCvvgrU1Ql45x3g5JM1yHLqAsI2bjTjkEMsuOSSAEIhvrmKKJkuef8SRLRIzG3PTuVED6POOceEr79eicce24Tp0+sxalQzhDhfzNrYyAmpRJR6oWgI571zHs548wwEo8FMl9OppduXpu1YXq8XmzZtSnq/xcVFmDq1X9L7JSLqrfbbz2q47fffdxzAS0TUHT9v+znm+meOfwabZ2/G9+d+j+v2uw67FO3S7WP1pVCwFna7HaNHj0a/fv0gxHsTxYB333Xjl18c+OEHB/bfPwfnnutBfX3se2NEfYHfryAQkAy1LS3lEFqi3mT+kfNjrg9EAgwGI+rDZFnGiBEjEj5Hf/31PFx66SCEwzvPFzRNwPnnu/Dhh74O2/l8PkQi3Ts/LysrMxxkRkTUU9184M0QhZ7xt++mA2/KdAlERFnPYrGgX7+dY0w8HgmzZw/EjTcOQDAY/728m292YenSQCpK7DE0Tcf8+cbufwLA6NHNmDLF+LNrIiIiIiLKnJ5xt4yIiIiIiIiIKEVsNuDYY4FXXxURDAKzZoVgMqUmtEvTBDz0UA4mTIjiu+/CKTkGUV8TiATw9JKnY26bPGAyxhWPS29BvUhJSS6sVmNhiZFIBJrGAEQiSh1VU3Hyqyfj8V8ez3QpcVmyfUlajlNTU4MtW7Ykvd+ysrI2gzWJiKhrw4fbUFgYNdT2l1+MD+omIurIJ+s/QbPa3G69VbbigCEHQBRE/F///8Nth9yG5Rcvx+pZq3H3YXdjv0H7QUDiAVd9MRSsRVFREUaPHo2cnJyk9+33i7jvvpLWrxVFwBNP5GHMGAGPPOKBqvJ+DPU9mza1/9sWr0GD5CRWQkSZVpJTgt1Ldo+57ZYvbklzNUSUTcxmM4YMGRLXvroOLFhQhL/+tT80rf21UDgs4rTTHFi8uH0wgaZp2Lp1a7drdblc3eqDiKgnGl04Gn/e9c+ZLqNL+w7cFwcPOTjTZRAR9QhFRUWwWq346qscnHjiCHz6aeLnuU1NEqZPFxGJ9N17359+GsaSJcZDvS69VIEopu5FJkRERERElDoMBSMiIiIiIiIi+h+zWcCDD9qwfLmCvfcOpew4q1dbcMABFlx9dQCRiLHAHSLa4fx3z4eiKTG3PX/i82mupvexWCyG2waDwSRWQkTU1ifrP8H7a97PdBlxW1K9BLqe2vO+rVu3oqamJun9Dh48GPn5+Unvl4ioLxg3zlgg+LJl5iRXQkQE3L/o/pjr9yrbK+b6kQUjMXfyXHw18ytUz63G48c+jmNHHQurHN/EEx19+76nJEkYMmQIhg0bBpPJlLR+H3mkGA0N7UOMamtN+H//Lw/77BPCd981Ju14RD3B5s2x7w/HY+BAnncR9TZ3H3Z3zPXrPeuxvGZ5mqshomzicDgwcODATvdRFOCWW8rwyCOdvyTD65Vx3HFmrF/fdlzJSy/5cdll/VFZafwcY9CgQYbbEhH1dDcdcBMkIbtfmnHTgTdBEBisQkQUrwEDhuC++0pQV2f8Pvmvv9px3XXe5BXVw9xzj/HnLcXFUcycaUtiNURERERElE4MBSMiIiIiIiIi+oORI834+msr7rgjCKs1NW+XUhQBd92Vgz33bMbixcbfYk/UlzU0NeDl5S/H3PanIX/C0Lyhaa6o98nNzTXc1uPxJLESIqK2Nvk2ZbqEhNQ21WJ7cHtK+tY0DRs3bkz6311BEDBixIhufRYQEfV148dHDbVbu9aKQMB4uAURUSxfVn4Zc/0FEy/osm2xoxjn7HEO3jn9HdRdWYc3pr2Bs8afhXxbx+Gx+w3cz3CtvYndbkd5eTn69evX7Qmjq1ZZ8e9/F3S6z48/OrD//jk4+2wv6uoi3ToeUU9RVWXsOY7VqiE/v33IHhH1bIcMOwRF9qKY2y7/4PL0FkNEWcflcqGkpCTmtlBIwOzZg/D66/G9JGPrVjOOOQat593NzRpuuMGGTz5x4fjjR+Duu0vg9yc2XScnJwdWa3xBzEREvdHIgpE4c/yZmS6jQ5P6T8Jhww7LdBlERD2K1SrjiSeikOXujcW+//48fPaZP0lV9RzLl0fw8cfGQ73OP78ZVitjBIiIiIiIeiqezRMRERERERERxSBJAq6+2oGfflKwxx6hrhsYtGyZFXvvbcLNNwegKMbf5kTUF818ZyY0vf1gEQECnpv6XAYq6n3y8+Mb9B5LMBhMYiVERG0dPvxwCOhZb2BeUr0k6X1GoxpeeKEKgUAgqf1KkoSRI0dy8hERUTftuaexzypB0LFkCc+niSh5ltcsh7+5/WQZSZBw+tjTE+rLYXZg6pipeOaEZ7B97nb8d/p/cfmkyzHEPaS1z3N3Pxez/m9WMkrvNYqKijB69GjDobu6Dtx2Wyk0revPFlUV8NRTbowZI+ChhzxQ1dS8+IIoW1RVGXu2UlCgQJI4hJaoN7p00qUx13+28TM0RZrSXA0RZZvCwkIUFLQN2/V4JJx77lB8/rkzob4qKmw47rgIQiEVd93lxYYNFgCAooh49tlCHHPMKLz4Yj6icebGDxgwIKHjExH1RjcecCMkQcp0GTHddOBN3Q59JyLqiw44IBezZ/u61YeiCDjnHAv8/r71YqW77opC14199thsGi67zHigGBERERERZR5HNBARERERERERdWLsWDO+/96Km24KwGRKzeSpaFTE3/6Wg0mTmrF8eSQlxyDqbaoD1Xh31bsxtx0z8hiUOcvSXFHvZDabIYrGbiOrqgpVVZNcERHRDkPcQ/DqKa/CYXJkupS4Ld2+NKn9NTYqOOaYIKZP748PPkhsolJnTCYTRo0aBbPZnLQ+iYj6qn337TpcUZY17LJLCCef3ICbb96KV15Zi++/X4mBA7s3MJ6I6Pfu+e6emOt3KdrF8HU/AMiijIOGHIT5R87H+kvXo/6qetReWYt/HfcvSGJ2Tt7MJEmSMHjwYAwbNgwmkymhtu++68YvvyR2/VNXZ8Ill+Rh771D+O67xoTaEvUk27cbmxRXVNS3JhAS9SXX7HcNTGL7z1pN13DDf2/IQEVElG1KS0vhdO64r75liwlnnTUMS5faDfX13Xc5OPHEAO67r/19eq9Xxu23l+HEE0fiiy9yoXeSZZqfnw9Zlg3VQETUmwzLG4aZE2Zmuox29izdE0eNOCrTZRAR9Vi33ebCHnt0L6h740YLbrvNk6SKsl91tYJXXjEe6vXnP4dQWMhnNUREREREPRlDwYiIiIiIiIiIuiDLAm65JQeLFkUxblw4ZcdZvNiKiRNl3HFHEKpq7M32RH3FmW+cCR3t/z8RBRHPnPBMBirqvazWroMMOuLx9J1BOESUfiftchI2XLYBV02+CnaTsck66bRk+5Kk9bVtWzMOOiiCjz/Oha4LuO66Afjxx+4HpNlsNowcORKSxEGBRETJMGyYDcXF0davZVnHmDEhnHRSA268cSteemlHANjLL6/DzTdX4eSTPRgzJgyTSUc4nLr7D0TU9/xnzX9irj9jtzOSdgxBEJBvy0eeLS9pffZWdrsd5eXl6NevHwSh6zAjv1/EvfeWGD7eTz85cPfdCtauXYtIhC+loN5n8OAwDjrIj7Fjm9CvXxSyHN/zlaIivtCAqLeSRRnHjjo25rYnfnkizdUQUbYaNGgQPJ4cnHnmMGzcaOlWXx984ILX23Gg18aNFsyaNRjnnz8Eq1a1P5YgCCgpMX7OT0TU21x/wPUxQ14z6aYDb4rrPg4REcVmMol49lnA4TB2T06SdFx88Xacfvp21NTUJLm67PSPf4QRDhuLABBFHVdemV2fpURERERElDhB1zt73wgREREREREREf1eJKLjppuCuPdeBxQldQN99tknhKefljBqlDllxyDqqTZ4NmDYA8Nibjt17Kl46eSX0lxR79bQ0ICqqipDbe12O4YNi/2zIiJKptpgLe759h489ONDaIp2782iqTKueBx+u+i3bvdTUdGEY44RsX5929DG3FwVTz+9HqNGNRvq1+l0YtCgQd2uj4iI2rrhhu0QBBVjx4YwcmQYFkt8QzQEQcDYsWNTXB0R9QU1gRr0u7dfzG3Ba4Owm7M/YLc30zQNmzdvRmNjY4f73HFHCV54odDwMXJzVbz77moUFOyYbJWXl4fS0lKIIt8nSr3DypUroao7JxNqGuDzSairk1FbK6O+3oTaWhl1dW2XQw9twj//mZ/Byjv266+/Yvfdd497/19++QUTJkxIXUFEPdAW/xYMnD8w5raXT34Z08ZOS3NFRJSNFEXDSSc14p13XGk7pijqmDrVg1mzalBYqAAAysrKkJ+fneclRESZctHCi/Doz49mugwAwPh+4/HLBb8wFIyIKAnuu68BV1yR2Lnv4MHNuP32Ldh111DrupEjR8Ji6V64bzZratIwaJCG+vqOw4c7c8wxQSxc2P2XCxIRERERUWYxFIyIiIiIiIiIyIDvvgtjxgwBq1en7qGy3a5i3rwwLrnEDlHkoCKiFvs9uR++2fxNu/WSIMF7jRc55pwMVNV7aZqGFStWGGrLIAMiSrdsDgeTRRmBawOwyMbPH7/9thFTp1pRUxP7bZ7FxVG88MJ6lJREE+q3oKAApaWlhusiIqKObdiwAcFg0FDb0aNHQ5aNDfQmImpx9cdX465v72q3foh7CDZctiEDFVEsoVAIlZWViEbbnsuvWmXFtGnDoWnG7w9fd10VTj+9oc06URTRv39/uFzpCz8gSpXly5fDyDBYh8OBoUOHpqCi7mMoGFFy7LZgN/xW0z6kf1TBKKyatSoDFRFRNgqFVBx6aAjffpveZ8x2u4pzz63D2Wf7MH78qLQem4ioJ9js24wRD45ARI1kuhS8Pu11nDjmxEyXQUTUK6iqhiOPDOKTT3Lj2n/atHpccUU17Pa29/9kWcaoUaN67csvHngggMsuM36N8vnnYRx4oLXrHYmIiIiIKKv1ziseIiIiIiIiIqIU22cfK3791YRLLglAFFOTud7UJOHyyx045JAQNm5MLNiBqLdaXrM8ZiAYAEwfP52BYCkgiqLhIAJd19Hc3JzkioiIOlbkKMKdh92JjZdtxFWTr4LdZM90Sa0UTcHKupWG27/1lhdHHGHvMBAMAGpqTLjwwsHw+eJ/BFhaWspAMCKiFHI4jL+B2e/3J7ESIuqrXl/5esz1U0dPTXMl1BmbzYby8nL069cPgrAjAEzXgXnzSrsVCDZ6dAjTpjW0W69pGjZv3oy1a9ciEsn85Fqi7jD6XlyGrxL1fnccekfM9avrV2NN/Zo0V0NE2cpmk/DOO2aMGRNK63GbmiQ8+mgRTKYBaT0uEVFPMdA1EBfseUGmy8C44nE4YfQJmS6DiKjXkCQRTz1lQmFh52OiCwqiePjhjbjxxm3tAsEAQFEUVFVVparMjFJVHQ880PHYoK7suScDwYiIiIiIeguGghERERERERERGWSziXjggRx89lkzhgxJ3cSpzz+3Y/x4EY89FoSmpSaAjKinOOuts2KuN4tmPHzMw2mupu/oTpBBQ0P7iadERKn2+3Cwq/e9Gg6T8b9jybR0+1JD7R57zINp05wIBKQu9123zopLLx2M5uaugwMGDhyIgoICQzUREVF8nE6n4baBQCCJlRBRXxRWwljvWR9z29x95qa5GopHUVERxowZg9zcXCxc6Mbixd27lrn++ipInVxGhMNhrF69Glu3boWmad06FlEmdOf31mw2J7ESIspGR488Gvm2/JjbLvvgsqQcQ9d1fLbhM/zljb9g3CPjMO3VaVhRuyIpfRNR+hQUmPHee0D//ukNzJ0504dddsmel5sQEWWba/a7BlY5s6EmNx5wI0SB0y+JiJJpwAArHngg2OH2gw/244031uKAAzp/Vur1ehEMdtxPT/XmmyGsW2cx3H7OHN7rJyIiIiLqLXhXioiIiIiIiIiomw480IrffpNx3nkBCEJqQrv8fgkXXujA0UeHUFWlpOQYRNnup6qfsHjb4pjbLpx4YcYHAvZmeXl5hts2NjYmsRIiosQUOYpwx6F3YMNlG7IiHGxJ9ZKE29x8cwMuusiNaDT+x3qLFztwzTUDoKqxtwuCgGHDhsHlciVcDxERJcZqNX6dEg6Hk1gJEfVFj/70KHS0v19ZZC9CmbMsAxVRPERRxODBg3HqqQU49li/4X6OP96DCRNCce3r8XhQUVEBn89n+HhEmRCJGA/usFiMT6wjop7j4okXx1z/0bqPEFGM/w0JRAJ49KdHMW7BOBzy7CF48bcXsbx2OV5d8SqOeP4INIT4whSinmboUBveeScCtzs94zHsdhVDh+p4/nkPPvzQj8WLA9i8OYxIhBP4iYhalOWW4aKJF2Xs+GMKx+CkMSdl7PhERL3Z6ae78ec/e9uss9tV/O1vW3D//ZXIz+9gwMsfbNq0qde98OK++7p+CWBHBg+OYNo0WxKrISIiIiKiTGIoGBERERERERFREuTkiPjnP3Pw/vthDBiQurfHfvihHePGAc8+2/vebkXUlelvTo+53ipbce8R96a5mr4lJyfHcNtIJNLrBt4QUc+TLeFgS7bHHwqmKBrOO8+Lv/0tH7qe+IC/Tz5x4Y47SqH/IQNCFEWMHDkSdrs94T6JiMgYWZYNtYtGo0muhIj6mmeXPBtz/eHDD09zJWTEsGE2vPOOE2+95cXIkYkFRebmqpg9uzqhNpqmYfPmzVi7dm23gpaI0qk7IaoMBSPqG2484EbIYvtrMlVXcfPnNyfc37qGdZjz4RwMuG8ALnrvIqyoXdFuny3+Lfhy05eG6iWizNpjjxy89FIQVmvXzzbt9vhCCjrS1CThmmvyceaZeTjySCf23DMHgwZZYbGIyM1Vcfnl1Vi+fDlWrFiBiooKrF69GuvWrcPGjRuxefNmVFdXo66uDj6fD01NTVAUhc9kiahXunrfq2GTMxNucv3+10MSpYwcm4ioL1iwIAdDhjQDACZMCOK119Zi6lQvhASGyGiahsrKyhRVmH7ffRfGd98Z/9z7f/8vAlk2HipGRERERETZhaFgRERERERERERJdOSRNvz2m4QzzkhdaJfHI2P6dAemTg2ipiY9b6klyrQvNn6BFXXtJ1YAwBX7XBFzQgclV3cmyQWDDDIkouyQ6XCwJduXQP9jSlcMoZCKqVMDePxxd7eO99JLBXjiicLWr2VZxqhRo2A2m7vVLxERJcboubSu61AUXvcTkTGapuG3mt9ibpu7z9w0V0Pdcfzxbvz2mxk33tgAhyO+4IFZs7ajoMBYSEE4HMbq1auxdetWhgpQ1utOgB1DwYj6BrNsxpHDj4y57bGfH4urD03X8MHaDzDlxSkY+eBIzF80H75mX6dttjVuS7hWIsocVVXh9XqxZcsWDB9ei7vv3gxRjH0vXxB07L+/H01NqQuJCQQkiOKOe0OapkFRFEQiEYRCIQQCAfh8PtTV1aG6uhqbN2/G+vXrUVFRgRUrVmDZsmWtYWIrV67EqlWrsHbtWmzYsAGVlZWoqqrCtm01+PRTP5YuDWL79ggUhef9RJS9+uX0w6z/m5X2447MH4lTx52a9uMSEfUlTqeMxx9vxiWXbMdTT23AwIHGXpgUCATg9XqTW1yG3H238fBht1vBRRfxBYFERERERL0JZ8oRERERERERESWZ2y3hueccOOmkJlx0kQnV1aaUHOettxz45psoHn64Caecwge51Lud8845Mdc7TA787aC/pbmavik3NxfNzc2G2no8HuTm5ia5IiIi41rCwa7Y5wrc+929eOiHhxCMpj7AsK6pDtWBapTmlna4TyQSwZo1axEIDEjKMe+/vwTFxQqmTQtj2LBhEEW+M4iIKN0cDofhoFy/34/8/PwkV0REfcEbFW9A0doHC+aYczChdEL6C6JusVhE/O1v+ZgxI4TZsyN45x1Xh/uWl4cwbVpDt4/p8Xjg8/lQVlYGt9vd7f6IUqE7oWC8PibqOx446gEsXLOw3XpP2IO3K97G8aOPj9nO3+zH078+jYd/fBir61cndEy31W2kVCJKA78/guZmH5qamhAOh6EoSruXeRx0UBg33liFW27p32a9yaThttu24NNPOz4fTxaXy3gYgK7rrf9NqqoiGm0brlBfL+HQQ8e0fi0IOnJzFbhcKlwuFW63Bpdrx5KXpyMvT0d+PlBQIODggzW4XCaYzWbIsgxZ5pQkIkq9KydfiUd+fCQtz3NbXL//9XxBIRFRGhxyiBPDhtWju+8c3bp1K3Jycnr0+emGDVG8+67xseAzZ4aRk5OTxIqIiIiIiCjTeu4VDhERERERERFRljvhBDv231/FhRcG8dprjpQco7bWhGnTTDj11CAWLLAiLy91b6MlypSFqxZinWddzG03HnAjJ2+lSX5+Purq6gy1NRqAQESUai3hYHMnz8W9396LB394MOWDyZdsX9JhKFgoFML69eshijruumszzj13KJYu7X74azBox7BhZfzMJCLKEKfTiZqaGkNtA4EAQ8GIyJBHfnwk5vp9B+6b5koomYYNs+Htt2145x0v5s61Ys0aa7t9rr9+G5I170nTNGzZsgW1tbUYPHgwzGZzcjomShJFaR9+GA9BEJJcCRFls6F5QzG6cDQq6irabbvu0+vahYJV1FXgoR8ewjNLnkEgEjB0TIaCEWWeqmpYvTqM779vxq+/AsuWyVi50gKrVcPbb2/vsv3JJ3tQU2PCggXFAIDcXBX3378Je+3VhKOO8uPEEz24++4SrF3b/pw8GZxO46FgXfH52o4r0XUBfr8Mv1/G5s2dt/300woUF7c/BxMEAYIgQBRFiKIISZJal5bwMJPJ1LrIssxnFkQUtyJHES6ddClu//r2tBxvWN4w/HnXP6flWEREBAwePBgrV65sF9abCF3XsXHjRowYMSKJlaXXPfc0Q1GMvYTaZNIwe7YlyRUREREREVGmMRSMiIiIiIiIiCiFCgokvPqqAy+91IRZs8yor0/N7ZiXX3bgq6+ieOyxCKZMsaXkGESZctH7F8Vc77K4cOXkK9NcTd9lNpshiiI0TUu4raqqUFUVksTgQiLKToX2Qtx+6O24YvIVKQ8HW7p9KY4ccWS79Y2Njdi0aVPr1zabjoce2oSzzhqGjRuNDdyTZQ3z5/swaxbDZIiIMslqNT45NBQKJbESIupLFm1ZFHP9pZMuTXMllArHHefGkUdquO22Btx3nwuBgPS/9R7svntT0o/X3NyM1atXw+12o6yMgcOUPYyGgvF3mKjv+fvBf8fJr57cbv2KuhXY5N2EAc4BeH/N+3jwhwfx8fqPu308l9XV7T6IKH7hsIqffgrip58ULFkiYvlyEyoqrGhstANo++INUdQRCgmw2boOHLjoohrU1Mj46qtcLFiwEaNGNbdumzw5gNdeW4s338zDgw/2Q0NDcseCuFypCwXz+40/s+0orEzXdei6nvCz5JYwMUEQ8M03Ofj661zk5enIy9NRUCAgP19AQYGAoiIJxcUyiovNMJl4LkfUF12xzxV46IeH0BhpTPmxrtvvOpgkY6EsRESUOFEUMWjQoDZjZowIh8Oora1FUVFRkipLH49HxbPPGh/7fdJJIQwcmJqXVxMRERERUeYwFIyIiIiIiIiIKA1OO82Ogw5ScN55QSxcmJoHr1VVJhx7rAkzZgTxwAM25OZyICT1fC8vexlb/Ftibpt3yDxO3kozm82GYNBYSI7H40FhYWGSKyIiSq50hIMt2b6k3bqGhgZUVVW1W5+Xp2LBgo0488xhqKtLbOC5w6Hi6acbcfLJeYZrJSKi5JFl2VBohdGgCyLq2xZtXoSQ0j5U0CSacPTIozNQEaWC2SzillvyMWNGCLNnR/DZZzmYPbs6pcf0er3w+/0oKyuD2+1O6bGI4sFQMCKK10m7nAS31Q1v2Ntu2zEvHoOQEsJ6z/qkHc9tdSetLyJqKxKJwO/3Y/36Ztx5Zw5WrjRj7VoLolFnXO01TcCaNVbstlvXQeyCANxwQxU8HhlFRe3POyQJOPlkD4480ocnnijC008XQFGSc56RjaFgVqsGq7XrMLVEtISJAcAPP1jwzDPuLtvk5qpwOlW4XCrcbhUTJ4Yxa5YHkiS1LrIsQ5ZlmEwmmM1mmEwmyDKnTxH1ZAX2Aly+9+W49ctbU3qcwa7BOHP8mSk9BhERtZebmwuXywWfz9etfrZv3w6n0wmLxdjL9zLl4YdDCARyDLe/6iqe6xIRERER9UY80yciIiIiIiIiSpOSEhnvvivjqaeaMHu2GT5fam7NPP20A599FsETT6g49FDjb44iygaXfnBpzPWF9kJcvNfFaa6GXC6X4VAwv9/PUDAi6jFSGQ62dPvSNl9XV1ejrq6uw/0HDIjikUc2YcaMoWhqim+iTmFhFG+8Ecb++7u7UyoRESWRxWIxFFqh6zqi0ShMpsTCIYmob7v3u3tjrt+9ZPc0V0LpMHSoDW+9ZUNFRQNUVYOe3Dn67WiahoUL6/HRR8A999hRXGxO7QGJOqFpmqF2DIQg6pvO2+M83P3t3e3WL69dnvRjMRSMqPs0TUMoFEJjYyNCoRCam5vb3FuJRCS88UZ/Q31XVMQXCgYAsoyYgWAtdB1YvNgOk0nHrbduxRdf5OKDD9yG6vq9VIaCGR2r4nSmriYg/rCyxkYJjY0Stm7d8bXDoaK5uTnu4wiCAEEQIIoiRFHsMEysZZEkGZLEUFmibDB779l44PsH4GvuXmBMZ67d71qYJd7rICLKhP79+yMYDHb7pUkbN27EyJEje8yLAaJRHQsWGA8xO+igJuy+uz2JFRERERERUbbgyAYiIiIiIiIiojSbOdOOQw+N4uyzm/DJJ6l5EFtZacbhh+u48MIg7rnHBru9ZzzcJvq9xxc/jppgTcxt8w+fn+ZqCADcbjeqqqri3t/vF/HDDzn49tsceDwyPv44hcUREaVAKsLBKuoq0Kw0wyJbsHnz5rjecjpmTBjz51fi//2/IVAUodN9hwxpxsKFKsaOze1WnURElFwOh6NbAbsFBQVJroiIerNPN3wac/05e5yT5koonUaPzoemubFlyxb4/f6UHUdVgdtuK0NFhQ3vvafghhsacMklbsgy70FT+jEUjIgScdOBN+He7+6Fphv725EIl8WV8mMQ9SaapqGxsRGBQAChUAiRSKTLz3m3W0VJSQTV1YkHt6xaZTVaaitVBT7+2In1663Yb79GXHzxjufaU6b4cMYZ9bj77lIsWWJ8PIjT2b0ghM74fPGFb/1RtoSC/VGidem6Dl3X4z6XPProkQgEJLhcKlwuFU6nBrd7x5KXpyMvD8jL01FQIKCoSEJhoYSiIgklJWaYzbxOIkqmPFse5uwzBzd/fnNK+h/gHIAZE2akpG8iIuqaKIoYMmQI1q5d261+otEoqqurUVZWlqTKUuu555pQVeUw3P6KKzofR0RERERERD0XRzYQEREREREREWXAwIEmfPihjEcfDeLqq60IBIwNbuyMrgtYsMCBjz5qxlNP6dh//+4PbCVKp6s+virm+rLcMpwx/ow0V0PAjoE3six3+DY+RQGWLbPh229z8e23OfjtNxs0bcegE0HQsWVLGAMG8G8REfU8vw8Hu++7+/DgDw8iEAkY6kvRFCzbvgx5zXloamqKu93kyUHceusWXHvtwA73GT++CQsXihgwgG8AJSLKNk6nEzU1sUOPuxIIBBgKRkRx2+DZAE/Y0269KIiYOWFmBiqidBJFEYMGDUIoFEJlZSWi0WjSj/HKK/moqLABABoaZMyZk49nn23CAw+o2H9/hhNTz2A2Jx4eQkQ9V11THR5f/DgW/LQgLYFgsijDbuL9OaKORCIRNDY2IhgMIhwOIxqNQtd1Q32NHh02FArWcj5rRDQq4L33XNi2zYRDD/XjyCPbB/KOHx/Cc8+tx/33F+OJJ4oTPobJpMFmM/Y9iYfRUDCXK7WhYNkaVubxyAgEJHg8iU2/+sc/NuGQQxoBAIIgQBAEiKIIURQhSVLrYjKZIMsyTCYTTCYTzGZz635E1N5lky7DPxb9I+b9r+66Zt9rYJEtSe+XiIjiZ7VaUVRUhNra2m7109DQAJfLBYfDeNhWOmiajn/8w/j48TFjmnH00RyPSURERETUWzEUjIiIiIiIiIgoQ0RRwMUXO3DEERHMmBHB118bH3jamXXrLDj4YB2XXhrAvHl2WK0cOEjZ777v7utwAN8jRz+S5mro9xwOB3w+X+vXmzeb8e23Ofj22xz88IOjw5BDXRewcGEIF17IQShE1HMV2gsx75B5mLPPnG6Fg33y2yc4ZsAxCbebMsWH2loT7ruvpN22gw9uxFtv2eB08vEfEVE2slqNnweHw+EkVkJEvd3d394dc/3I/JEwSaY0V0OZYrPZUF5ejvr6elRXVxsOWfij+noJDz7Yr936X3+146CDdJx+uhf33mtHv34MXKLU607oncnEv4dEfcEv237Bgz88iBd/exHNanPajuu2uiEIQtqOR5StVFVDTU0YotiIpqYmNDc3d/jiIaPKy8P4/HNnwu3WrLFCVQHJwNz7SETAxIlBDBjQ+bmIIAAjRxr72+N0qkjln5HeFgqWyrqiURh+yd/v69J1HbquQ9MSC6dsCRNrCRRrCRKrqzPjp59syM8XUVgooqhIQr9+JhQUyJBljgmi3s1ldWHu5Lm4/rPrk9pvaU4pztnjnKT2SURExvTr1w8+nw+RSKRb/WzatAmjR4/O6rDVjz8O47ffjI8dv+wyBaLIQEsiIiIiot6KswKIiIiIiIiIiDJs+HAzvvhCxz/+EcQNN9gQCiX/AbSqCpg/PwcffNCMZ54B9tqLD4Epe2mahr9+/teY24a4h+D40centyBqIy8vH2+8of0vCCwXW7bEP8nzk09EXHhhCosjIkqT7oaDfbn1S0OhYAAwY0Ydtm+X8cILha3rpk3z4rnnnDCbs3cgIxERAbIsG5r8muwJs0TUu7276t2Y608be1qaK6FsUFBQgLy8PGzZsgV+v7/b/f3jHyVobIw9IV7TBLzwghv/+Y+C665rwGWXuTkZnVKqO8GpFgufkRD1VlE1ijdWvoEHf3gQ32z+JiM1uCyujByXKJMiEQ2LFwfx008KliwRsGyZjIoKK0pLBbzySm3KjjtmTMhQu1BIRGWlGUOHJh4y4HBocDjiC3bKxpArAPD7s7Mun8/Y9KZU1tXR9U88nM7u19USJgYAqqq2BuMuWiTi0kvz2+0vCDqcTgVOpwqXS4XbrcHl0uB2a8jL09Gvn4YZM0KQZRkmkwkmkwlmsxmyLEOWOb2Meo5L/u8SzF80H3VNdUnr8+p9r4ZV5kvuiIiyxdChQ7Fq1apu9aFpGjZv3ozBgwcnqarku+ce4y/06Ncvipkz7UmshoiIiIiIsg3v2hIRERERERERZQFRFDBnjgNHHx3B9OkqfvjB+JufOrNypQWTJ2u48soAbrnFAZOJb6mm7HPrl7eiMdIYc9vjxz6e5mroj3JyHLjvPhmVlYlPnPv6aztUVYMkcUIoEfUORsPBPq76GLdpt0EWE39UJwjAVVdVo7bWhI8+cmH2bA/uvtvFv61ERD2A1WpFIBB/iGQLXdcRiURgNscfyEtEfZMv7MOWxi0xt12+z+XpLYayhiiKGDRoEMLhMDZt2tQ6iTxRv/5qw1tv5XW5X0ODjLlz8/Hcc024/34VBx6Ya+h4RF2JRBIP8WjBUDCi3md7YDv++fM/8ejPj6KqsSqjtbit7owenyjVPJ4ovv8+hJ9+UrB0qYQVK8xYs8aCSKT9eV8wKCIaBUym1NRSXm48JHTVKquhULBEZGsomPG6Uhtcn43fL6M1Aamtq6NgN10X4PPJ8PlkbN7cfntJSQQnnLCt074FQYAgCBBFEaIoQpKk1qUlPKwlUMxkMkGWZYgin1FReuVacnHV5Ktw1SdXJaW/fo5+OG/P85LSFxERJYfJZEJZWRmqqrp3jd/Y2AifzweXK/sCvH/7LYJPPjEe6nXBBc0wm1N0sUVERERERFmBoWBERERERERERFlk9Ggzvv1Wx+23B/D3v9vR3Jz8gXOKIuL223Pw/vthPPusiN1246Riyh6KpuDOb+6Mua28oByHDDskzRVRLPvtF8KLLyY+cW77dhMWLw5gr71yUlAVEVHmtISDXbHPFbjvu/vwwA8PdBoOFtWieGTFI7h03KWGjieKwLx5WzBtWgTnnFNktGwiIkozh8NhKBQMAPx+PwoLC5NcERH1Nvcvuj/m+v65/RlOQbBarSgvL0d9fT2qq6uh63rcbVUVmDevLKHjLVlix5/+pOO007y47z47+vXjfWhKru6EgplSlUxCRGn3w9Yf8OAPD+KV5a8goqY23CdePO+i3kLTNDQ3N6OxsRErVjTjzjtdWLnSgspKM3TdGVcf0aiI9estKC9vTkmN/ftHkZOjIhBIPLiposKGI4/0p6CqnToKbupKqkPBjNbldGpJrmQnVQUCAWPjY/piKJjRupzOrmvSdR26rkPTEvt5C4KAhx4qRkWFFS6XBrdbR17ejiU/X0BBwY6lqEhCcbGM4mIzTCaGiZFxF+91Me757h7UBGu63deVk6+E3WQ8lIWIiFIjPz8fXq8XTU1N3epn8+YtsFodsFiyazr9XXdFARi7b263q7j00tS8fJqIiIiIiLJHdl3FEBERERERERERJEnADTfk4PjjIzjzTA1LllhTcpwlS6z4v//TcMMNAVx7rQOSJKTkOESJuOaTaxBSQjG3PXX8U2muhjpy2GE6XnzRWNuFCyPYa6/k1kNElC0K7AW47ZDbMGefObjvu/tw//f3IxgNxtz3X6v+hT0L98S+JfsaOtaAAYXYc08GghER9SROpxPbt2831DYYDDIUjIi69O/l/465fsqoKWmuhLJZQUEB8vLysGXLFvj98YUgvPpqPlauTHyCkaYJePFFNz76KIqvv96KkSNLIYqc9E3JEY1GDbcVBD4PIerJmpVmvLriVTz4w4P4YesPmS6nHZfVlekSiBKmaRoCgQACgQBCoRAikQhUdWd4kKrK+OCDgYb6XrXKlrJQMEEAysvD+PlnR8JtKypSMw7j94480ochQyLw+yX4fG0Xv3/H4vVKiETaniPHE9zUHUYDpVwuJcmV7BQISNB1Y+doqQzfMhqgZrFosFrjD2JOlPGfYeq+V7qu49dfbVi0KP4XhOXmqnA6VUyfXo+//MUDSZIgiiIkSWpdZFmGLMswmUwwm80wmUyQZU6FI8BhduCafa/BnI/mdKufQnshLpx4YZKqIiKiZBsyZAhWrlyZ0Esufs/nk3DrrWUYMKARjz+el+TqjNu2TcGrrxoP9frLX0IoKOCLWYmIiIiIejveCSUiIiIiIiIiylK77mrGjz/quOWWAO680w5FSf5kqeZmETfemIN33gnh6adF7LKLJenHIIpXRIngwR8ejLltfL/x2GfgPmmuiDoyZYoDkqRDVRMfmP3558bebkdE1JO0hIOdOfJMXPHxFXh/y/sx97vmx2vw2qGvoZ+tX0L9l5WVIT8/PxmlEhFRGlksxq+5w+FwEishot5I0RSsrl8dc9uVk69MczWU7URRxKBBgxAOh1FZWYlIJNLhvg0NEh54ILFrlj864ggfolEPVq70on///nC73d3qjwgwHgrGYDqinquqsQqP/vQoHvv5MdQEazJdTofcFnemSyDqlKIo8Pv9CAaDCIVCiEajXU6wLy5WkJenwONJfPpJRYUVxx1ntNqujR4dMhQKtmpVYqFggiDAZDLBZrPB4XDA6XRi/fr1nZ5Ljx8fwvjxsV+IBQCDBw9Gbm4uGhsVbN8eRU2NgtraHSFJbrcbqqpCURSoqgpN06BpGnRdNxyI0MJooFQqw8qM1gRkZ12pDN8Cek9djY0SGhslhMNC6+94IgRBgCAIEEWxwzAxUTShutqM4mIZ+fkyJInXA73JhRMvxF3f3oXqQLXhPubuMxcOc+KfI0RElB4t97I3bdqUcNvvvnPghhsGoKbGBEHQMWWKFyec4E5+kQbMnx9Gc7OxUC9J0jF3LsdgEhERERH1BQwFIyIiIiIiIiLKYiaTgL//PQfHH9+M6dOBlStTE9r14482TJyo4dZbg5g92w5RNPYGVqLuuPQ/lyKixh40/ezUZ9NcDXWmsNCM8eObsHixPeG2P/5oRzCowOHg7Wki6t22bt0Kxa/gzkl3Ynz+eNy+9PZ2+3gjXpzx3zPw7uHvwirHNwGpZZIQERH1TLIsQ1GUhNvV1akoL09BQUTUazz969PQ9PaTZ/OseRiePzwDFVFPYLVaMWrUKDQ0NGDbtm0xwwXuv78fGhuNT9DPz1dw8cU7glt0XceWLVtQW1uLQYMGdSswk0hVjQUaMBSMqGd69KdHcdkHl3X4HCmbuK3uTJdA1CoUCqGxsRFNTU1obm42HKopCEB5eRiLFiU+aT3R8K1ElZcbC1KvqzOhrk5GYWH7+zSSJMFsNsNmsyE3NxcOhyPmOURpaamhcIIW27ZtQ25uLnJzZeTmyhgxIrH2mqYhEokgGo0iGo1CUZTWRVXV1qUlTGzHP4GmJmPnQ6kMlOpOKFgq6/L7sy9ADTBeV6pDwdJdV0tIXmdhYnV1Eg4+eAyAHQEaTqcCp1OFy6XC5dLgdu9Y8vJ05OUBeXk6CgoEFBVJ2HNPATk5JpjNZl5HZCmbyYbr9rsOl35wqaH2+bZ8XLzXxUmuioiIki03Nxculws+ny+u/cNhAfff3w/PP1/Yuk7XBVx0kR2TJ0dQXJzZQK1gUMMTTxi/Tjr66BBGjUp83CYREREREfU8nHVFRERERERERNQD7LWXBYsXa7juugAeeMABVU1+aFcoJGLuXAfeeiuEp5+WMHw43yRF6dMUacITvz4Rc9uk/pOwW7/d0lwRdeXAA5sNhYKFQiI++siPqVPdyS+KiCgLaJqGyspKBAKB1nV/HvlnrG1ci1c3vNpu/+pQNS74+gI8deBTEIWOJxQIgoBhw4bBZrOlpG4iIkoPq9Xa5jMiFq9XwooVNixfbsOKFVYsX25DdbUJNTURFBbyWp2IYnticez7KgcPOTjNlVBPlJ+fD7fbjS1btsDv97euX7LEhjfeyO9W33PmVMPpbDtBu7m5GWvWrIHL5UL//v05uZoMMRoKJknGAyeIKDOW1yzHRe9dlOky4uayujJdAvVB0aiGLVuaYLXuCACLRCKGPys7MmZMyFAoWEWFFbq+I1gsFUaPNhYKJgg6Nmwwo6Rkx/0au92O3NzchO7B5+bmGg6AB4BIJIKmpibY7cYm9IuiCKvVCqs1sUCBpiYNHk8EtbUKamtV1NaqqK/X0dCgw+MR4PEAHo8In0+E1yvC55Pg80nIy8u+UDBZ1mCzdRwI1V0+n7EpV6kOBTP6/crWulwuY/8PxcPv3/kzVFUBHo8Mjye+n+tnn1WgqKhtbYIgQBAEiKIIURQhSVLrYjKZWkMFTaadYWK85k2t8/Y8D3d+cye2Nm5NuO2cvecg18KXMRER9QT9+/dHIBDo8jpn5Uorrr12ANata3+OXF1txrnn+vHOO5l93vqvf4XQ0OAw3P7KK3luQURERETUVzAUjIiIiIiIiIioh7BaRdx3Xw5OPDGMGTMErFtnSclxvv7ahgkTVNxxRxAXXWSHKKZodC7R75y/8HwoWuyBni+c+EKaq6F4HHGEiPnzjbX98EMdU6cmtx4iomwQjWr45JNKDBzYPuzlqvFXYWnDUqzyrWq3bXH9Yty15C5cPf5qCDFmRkmShOHDh8NsZhAMEVFP53A42oSC+XxSa/DXihU7lq1bY/+9/+abJhx/PD8LiCi2xdWLY66fs8+cNFdCPZUoihg0aBDC4TAqKysRCkVw221l3epz992DOPZYb4fbfT4f/H4/+vfvD7fb3a1jUd8TiWgwku8lyxw2S9TTfLL+k0yXkBC31Z3pEqiX8/sVfP99ED//rOK330QsX27G6tVWlJcLeO65+pQdt7zcWPiW3y+jutqE0tJokivaYfjwZsiyDkXpeFyDxaJh1Kgwdtklgl131TBxooxJk2xwu4d1+/glJSXYsmWL4fZVVVUYMWJEt+tIhCSJKCw0o7DQjDFjEmk5AoqiIBqNtlkURYGqqq2Lpmmti67rcfVsPExKTVngHNC9ulLJ78++uqJRIBDIvrAyoz9DIHZduq5D13VoWmJhdC1hYi2BYj/9lIPFi+3Iy9NRUADk54soLNyxlJSYUVAgQ5YZ+BEPq2zF9ftfj4vfvzihdm6rG7P+b1aKqiIiomQTRRFDhgzBunXrYm5XVeCppwrx8MPFUJSOP0PffdeJRx/14MIL81JVaqdUVceDDxq/P7nXXiHsvz9fJkhERERE1FdwdAMRERERERERUQ+z335WLF2q4corA1iwwAFdT/4Ix0BAwqxZDrz1VhOefNKEgQNNST8GUQtv2IuXlr0Uc9tBgw/C8Pzhaa6I4nHwwbnIzVXR2Jj4INqvvkrsbdVERD1BY6OCk04K4bvvBuLppze0myBllay4d9K9OO6j46Ch/USBF9a9AJfFhYvGXNRmvclkwogRIyAZmelMRERZx+l04Y47VCxbtiMAbMuW+EO+fvxRw/HHp7A4Iuqx/rPmP4iokXbrbbIN+w7aNwMVUU9mtVoxatQorFjh6VY/oqjj+uu3QexiDrOu69iyZQtqa2sxaNAgWCypeRkG9T6HHjoK0aiAoiIFBQUKiooUFBZGUViotC47tkXhdGqtYREmE593EPU0Q9xDMl1CQhgKRslUWRnGokVhLF6sYdkyGStXmrFxowWa5mq376pVVmgaujz/Mmr0aGOhYACwcqU1ZaFgZrOOYcPCWL16x8T4vDwFY8aEMXZsFBMmAHvtZcL48XaYzXYA9qQf3+12Y9u2bVBVY6FG4XAYzc3NPeY8WJZlyLIMmy2xIAJN0xCNRhGJRFqDxFoWVVUxeLCAE07wwecT4fVK8PlE+P0SvF6p01CHVIdvZWsomNG6Uhm+ZWTcQItsDAWz2TRYLPGF2sWjJUwMAFRVxRdfmPCvf3UcRiIIOnJzFbhcKlwuFW63BqdTwx57hDFzZgCSJEGSJMiyDJPJ1Gbpi0HIZ+9+Nu745g5U+irjbnPZpMvgsrb/PCUiouxls9lQWFiIurq6Nuu3bDHh+usHYPFiR1z9XHWVE4ccEsLIkekP13r99RDWrzd+XTJnTvLOT4iIiIiIKPv1vTt9RERERERERES9gN0u4uGHczB1agjnnith06b4JxEn4pNP7Nh1VwXz5zdh5szkD5AlAoCZb8+Eqrcf5ClAwHMnPpeBiigeZrOIffbx46OPnAm3XbnSis2bwxg4kOFgRNQ7bN8ewdFHK1i8OBcAcNFFg/H88+tRVtZ2ktPg3MG4aJeL8PCKh2P288iKR1AbqsWNu98IQRBgs9kwdOhQiKmaxUVERGlnsZjx6qt52Lw58Ymev/7KIR5EFNuDPzwYc/2k/pPSXAn1JrvskoclSzTceWcD7rrLlfAE71NPbWgXltyZ5uZmrFmzBi6XC/379+d1EHUqEtFQXy9D1wX4fDLWru18f7NZaw0Ku+eeMAYMSE+dRJQcx5YfiyOGH4EP132Y6VLi4rIwXIISp2kagsEgAoEAlixRMG9eHioqLKittQKI73laKCRh82YzBg9uHxicDIMHN8Ni0dDcnPh52qpVVvzpT40pqGpHSNXcuX44HM2YNMmCIUMskKSclByrI8XFxdi2bZvh9lu3bsWwYcOSWFH2EUURFoulw/CzoUOB005rv15VNQQCCqqrI6ipUVBXp6GhQUd9vY6GBsBmU2E2m6FpGjRNaxO8lAy9LRQslXX5/cZDwbKxrlQGlQFd/wx1XYDfL8Pvl7F588710aiOU0+tiesYgiBAEASIoghRFFuDxFrCxP4YKCbLco+9FrfIFtyw/w04f+H5ce2fa87FZZMuS3FVRESUCiUlJfD7/YhEItB14O233bjjjlIEg/F/5jc2SjjrLBVffaVBltP72Td/vvGXQA8ZEsEpp6Q/yIyIiIiIiDKHI0aJiIiIiIiIiHqwQw+14bffNFx2WQBPPZWaga0+n4yzz5bx+utBPP64BSUlvKVEybM9sB1vV7wdc9tRI47CACdnZ2Wzgw9W8NFHxtp+8UUQZ5zBUDAi6vkqKpowZYqIdet2BqjW1ppw4YWD8dxzG9pNZLhwzIVQNAWPVTwWs79XN7yKj7Z+hEvGX4JZB8zqsYPviYioY7vu2mwoFGzZssTbEFHf8FXlVzHXXzjxwjRXQr2NySTihhvyMX16GLNnB/D66/GFnOTnK5g1a7uhY/p8Pvj9fpSVlSEvL89QH9T7bdnSDF2PfwJcJCKiqsqMqiozLJbUTu4nouQTBRFvnPoGpr81Ha+teC3T5XTJbXVnugTKcoqiwO/3IxgMIhwOIxqNQtO01u26bsZXXw001PfKldaUhYLJMjByZBjLliX+MrGKiu5PXBcEASaTCVarFQ6HA7m5uTCbd7w8bfTobnffLQUFBdi+fXubn2MimpqaEIlEWv97aCdJEuFyiXC5ZJSXd7RXUcy1qqoiGo22WRRFgaIoUFUVqqq2hom1BIr9kdFAqVSGXKkqEg5tbpHKuowGlQHZWVfqQ8GMjb1K5HvVEpKXyN+madOGIxwW4XKpcLlUuN0a3G4deXk63G4dBQVC61JUJKG4WEZxsRkmU+afZ86YMAO3f307Nng3dLnvpZMuRZ6N9xyIiHqqIUOG4Pvv1+GWW8rw6afGgrkXLcrBrbc24JZb8pNcXce++SaMRYuMXxvNmhWFJPGagYiIiIioL+EMTiIiIiIiIiKiHi43V8STT+bgxBNDuOACGVVVppQc5733HBg3TsGDDzbh9NMTH+hLFMtZb54FHe0H14qCiGemPpOBiigRxx5rxbXXxrdvaWkEkycHMHlyAJMmBVFUJAEoSGl9RESp9u23jZg61YqamvbnXxs2WDFr1iD8618bYbW2/aybNXYWTKIJD614KGa/vogPf//x77j9p9tx9MijMWPCDEwZNQVmDu4jIuoVxo9X8f77ibfbtMmC2toIior4eUBEOy3dvhSBSKDdekmQcMoup2SgIuqNBg604rXXrPjwQx/mzDFjxYrOJy7Nnl0Np9NYIAKwY+Ly1q1bUVtbi8GDB8NiYTAmtbV5s2K47YABHDZL1BPZTXa8fPLLuOGzG3D717dnupxOMRSMfi8cDqOxsRFNTU0Ih8NQFCVm8NDv9e8fgcOhIhhMPMhm1SobjjzSb7TcLpWXGwsFW7UqsRcFiaIIs9kMm82GnJwc5ObmZv0LNAoLC1FTU2O4/bZt2zB48OAkVkSSJEGSJFitif3+aZoGRVEQjUaxYIGCrVu9qK/XUV+vw+MBvF4BHo8In0+E1yvC75fg80nweiVEIjt+T10u4+erXQkEJOi6YKhtNoZvmc1au+doyWS0rlR+r4DsDJwDgE2bzGhqSry2hx7ahAMPbIQgCBAEAZIkQRTF1v8PJUmCLMuQZRkmkwlmsxkmkwmynLzrM5Nkwo0H3Iiz3zm70/0cJgdm7z07acclIqL0M5vNCAb747//ze1WP3fc4cZRRzVi772710+87r7b+Od4Xp6CCy7oftgyERERERH1LBzdQERERERERETUS0yZYsOyZSouvjiIl15ypOQY9fUy/vxnGW+8EcSjj1pRUGD8TZ9Em7yb8PH6j2NuO3HMiSi0F6a5IkrU2LF2DB7cjE2b2k/MtNlUTJoUxD777AgCGzw4AuF3Y5MjkR1vXs72AfxERB156y0vzjwzF4FAx+dDv/7qwNVXD8R991VC+sNu548+H76ID8+tfa7D9qqu4t3V7+Ld1e+iwFaA08edjhkTZmCP0j0gCMYmfBARUebttZfxv+Fff92EqVMZCkZEO93zzT0x1+9avCuvuSnpjjjChV9/1XDXXQ246y4n/P72ww8nTAjiuOO8STleJBLBmjVr4HK50L9/f/5OU6utW41NoBNFHQMHMmSOqKcSBRHzDpmHkfkjccHCCxDVopkuKSaX1ZXpEigDNE1DMBhEIBBAKBRCc3MzVNXo59WO8K3FixN/5l9RkVj4UaLGjAkbard1qxl+vxgzOFaWZVgsFtjtduTm5sJqtfbI877CwkLU1tZ2GfrWkcbGRiiKktSAHDKmJZTObDZj8uTE2jY2KqipicJkyoHdboGiKFAUBaqqtv5T0zRomgZd1w39vhgNuQKyMxTM6VSRykdexkPBUhfsBmRnWFk0KhgKBAOAnJwddbX8XmtaYkHhLWFioii2CxPz+cyoqLCgqEhCYaGE4mIZ+fkyJKn9Z8WZ48/EvK/nYW3D2g6PNev/ZqHAzhfYERH1dEce6cQFF3iwYEGe4T4iEREzZ8pYvFiFzZbasdBr10awcKHxlzHPnBlGTk5OEisiIiIiIqKegE8MiIiIiIiIiIh6kbw8Cf/+twMnndSEiy82obbWlJLjvPaaA199FcWCBc2YOtX4g2rq285880zoaD/IVRIkPHHsExmoiIzYb78QNm2yQBB0jB0bag0BGz8+BJOp80HMgUAATqczTZUSESXPY495cMklLkSjXU9M+uwzJ26/vRTXX7+tzaQGQRAwd7e5+KL6C1QGKrvspz5Uj4d+fAgP/fgQxhWPw4zxM/CX3f6CkpyS7vynEBFRBuy3n/Hr6B9+0DB1ahKLIaIe74N1H8Rcf+b4M9NcCfUVJpOI66/Px1lnhTFnThCvvbYz+EQUdVx//TYkO8PB5/PB7/ejtLQU+fn5ye2ceqSqqsQmmLfIy1NgMqXmuQkRpc/M3WdiaN5QnPjyifCEPZkupx231Z3pEijFAgEFmzcHkZPjRzgcRjQaTTj8pCtGQ8FWrUptKFh5echQO5NJQ2WlBXvsocJqtcLhcCA3Nxdmc+8JPhdFEfn5+aivrzfcx7Zt2zBw4MAkVkXplpsrIzdXBmBLqJ2maYhEIohGo4hGo61hYi1BYi2LpmlQVRFDhjTD75fg90tQlPgTtVIZKOX3Z1/IFZCd4VtA90LUUsXnM34x393vV2dhYp99lovLLuvXZp0k6XA6FbhcKlwuFU6nBrd7xzKs31yszbkw5nHMkhlz9pnTrVqJiCh73HuvE198EcKKFYmde/1eRYUNl1/uwWOPGQ8Xi8c990Sgqsauf8xmDVdckdprPSIiIiIiyk4MBSMiIiIiIiIi6oVOPtmOAw5QcOGFQbz5ZuKDheOxfbsJJ55owl/+EsRDD1nhdqf2TVnUu6ysXYmvKr+Kue3M3c6E08qgqJ5i+nQFEyZUYu+9g3C7Exvo6fF4GApGRD3OzTc34NZb86Dr8U+yePnlAvTrp+C882rbrBcFEQ/u8yCO//j4hGpYVrMMcz+ei6s/uRpHjjgSMybMwLGjjoVFtiTUDxERZUZRkRmDBzdj06bE/24vXcphHkS007bGbahtqm23XoCAi/e6OAMVUV8ycKAVr75qxUcf+TB7thkrVtgwbVoDRo8Op+R4uq6jqqoKdXV1GDRoEKxWToLqy6qrjbUrKlIAMBSMqDc4aMhBWHTuIhzz4jFY27A20+W0EiDAaeFzj95k27ZmfPddCL/8ouG33ySsWGHBhg0W7LmnhMcf96XsuEbPqWprTairk1BYmJrQmFGjmiEIeqf3x51OBaNHN2Ps2CjGj9cwcaIJEyc6YLEMT0lN2aRfv36GQ8EUBXj1VR2zZmkwm5OcsktZTxRFWK3WuK5zxowBjj12x7+rqgavN4qaGgW1tSpqa1U0NOior9fh8QjweACPR4TXK6KxUYTd3vlLvbrD5zN23zLV4VtGw8pSGb4FZGeImtGagNTWFStATVUFeDwyPJ4Yv3fCucC1cwBzU7tNexftjZoNNahBDQRBgCAIEEURoihCkqTWxWQyQZIkmM1mmEwmmM3m1v2IiCh72GwSnn5axf77a2huNv43+oUXnJg9ux6jRxcksbqdGhpUPP+88eCyk08OoawsNePAiYiIiIgou3G0KBERERERERFRL1VcLOONN2Q8+2wQl19uiT0QKgleeMGBzz+P4PHHIzjySOMPrqlvOevNs2KuN4kmLJiyIM3VUHcceKATpaXGZuE1NbUfhElElK0URcNFF/nx+OP5hto/8EA/FBVFccIJ3jbrR7hHYETeCKz1JD55UdVVvLfmPby35j3kWfPw513/jOnjp2Ni2UQIQvyhZURElH7jxhkLBfvtNwZAEtFO9353b8z1Q91DYZUZmETpcfjhLvz6q4b58xuw777bU368SCSCtWvXYsmSYkybVgiTiRNy+6Lt24393FMVkEJEmTGqYBQWnbMIJ75yIr7c9GWmywEA5FpyIQr8bOqJVFVDRUUY338fxq+/Cli2TMbKlRZUV1sAtL8Wr6iwQteBVN2GLS8PGW67erUNhYWBJFazk92uYfDgCDZu3PE96d8/gjFjmjFunIIJE4BJkywYOdIKSeqbE9ZFUYTL5YLPF39gXHOzgLffduOpp4qwZYsZFosH/+//5aWwSupNJElEQYEZBQVmjBkTT4uxrf+mKAqi0WibRVEUqKraumia1rroeueBYn6/sc+/vhi+papAY2P21dWdULBU/hwTrkuXgM17A8M/a7dp2tBpO3fTdei6Dk3TEuq+JUzsyScLsH69FXl5GtxuIC9PR0EBUFAgIj9fQFGRhJISMwoKZMgyzw+JiFJlr71ycO21DfjrX42N5dl11ybMm7cFihJBJJILs9mc5AqBhx4KIxg0fo101VWMASAiIiIi6qt4NUBERERERERE1MuddZYDhx6q4JxzmvDBB/aUHGPrVjOOOgo499wg5s+3ISeHg5moY4u3LcZP236Kue2CPS/gpNUepuWNqIkOlAQAVVWhKApkmbeqiSi7hUIqpk0LYuFCd7f6+etf+6OgQMH++++YkCXLMkaMGIHjNh+H+xbd162+PWEPHv7xYTz848PYpWgXzBg/A2fsdgZKc0u71S8REaXGhAkK3nsv8XabN1uwfXsE/folf0A6EfU8b6x8I+b6E8ecmOZKqK8zmURcdVU+wmE7KisrEYlEUnq8775z4Pzzi3H77SHMnx/BYYe5Uno8yj41NcaeQRQXMxSMqLcpsBfgozM+wgULL8AzS57JdDlwW92ZLoHioCgKAoEAAoEAfvpJx2235WPVKisaG+0A4nue7vPJ2L7dhJKSaEpqHDGiGZKkQ1UTTx2rqLBi8uTkh4IJggCTyYSbb/YiL8+Cffaxo7jYDID3KH6vtLQ0rlCwYFDEK6/k49lnC1BXZ2pdf//9NlxwgcYAGUo5WZYhyzJstsRe/qdpGqLRKCKRSGuQmKIoOOooDcXFHni9AjweAT6fCK9Xgt8vwueT4PVKUJT2v9epDgXz+YwFXaWyLqOBYADgdCpJrKQtn8/YuA2rVYPF0nloXHcY+hluPDhmKFietfuhiy1hYl9/7cD33+d0ub8g6MjNVeByqXC5VJx2mhcnn9wIURQhSVLrIssyTCZTm4VjaYiI4nP99W58/HEA33zT9d/lFpKk44ILanDuubUw/e90fMOGDSgvL09qbZGIjkcfNX7N9Kc/NWH8+NSM+yYiIiIiouzHu0NERERERERERH1AWZmM996T8PjjQVx5pbVbb3fszOOPO/DJJxE89ZSGgw5isBPFNv3N6THXWyQL5h85P83VUDLYbDYEg0FDbT0eD4qKipJcERFR8kQiEfzyy3osXz6k232pqoArrhiEJ5/cgIkTdQwbNgyiKOKYUcd0OxTs91bUrsBVn1yFaz69BkeOOBLTx0/HceXHMXiTiCiL7LWX8YmdX3/dhJNO4oRbor6uKdKEjd6NMbddMfmK9BZD9D9WqxWjRo1CQ0MDtm3bBl1P/qTgaFTAvHllAIDly2044ggrTjnFi3vvtWLAAF7z9BW1tcaGvhYXJ/5iAyLKfhbZgqeOfwqjCkbh+s+uz2gtDAXLPpFIBD6fD01NTQiHw1AU5Q/nKBb89JPDUN8VFdaUhYJZLDqGDm3G2rWJn99UVHT/nEgURZjNZlitVuTk5CA3NxeStGOMwahR3e6+V5NlGbm5uWhsbIy53eOR8MILBXjxxYKYwUBr1ljx7397cOaZ3Q+uIUoFURRhsVhgsVjarP/LX3YsHVFVDYGAgurqCGprFdTVaaiv11FYGEFOTg5UVYWqqtA0DZqmtQYvdZfRUDCXK3WhYEZrAgCXK3XXNNkYoAbA2Bg3PfY1o6Yn7/sXb126LsDvl+H3y9i8GfB4fIhGEzt/EAQBgiBAFMWYYWItgWKSZEIkYoLbLUOSGC5JRH2HLIt45hkJe+6pxBVyOWhQM26/fQt22y3UZn00GsW2bdtQWpq8l+89+2wTtm0zds0JAFdckXhQNBERERER9R4MBSMiIiIiIiIi6iNEUcD55ztwxBFRzJjRjM8/T83bozZuNOOQQ3RcfHEAd91lh83GQUa009eVX2NZ7bKY22bvPRuyyFuWPZHL5TIcCub3+xkKRkRZKxQKYf369XA6dTz66CacccYw1NaautmniNWr3Zg2LQ+iuOM8ab9B+yHXnIvGSOxJQkZpuob317yP99e8D7fVjdPHnY4ZE2Zgr7K9IAgcOEhElEn77mv8mvzHHzWcdFISiyGiHmnBTwugo/3k2GJHMUpySjJQEdFO+fn5cLvd2Lp1K3w+X1L7fvbZAmzcuHPyua4LeOUVNz78UMHVVzdg7lw3TCbek+7tjIaClZQkP6iOiLKDIAi4bv/rMCJ/BKa/NR1hJZyROlwWV0aOS4CmaQiFQmhsbERTUxMikQgURemy3ZAhzTCbNUQiiZ8/VFRYcdBByb2n+3tjxoTSEgomyzLMZjPsdjtyc3Nhs9la712TMWVlZVi1alWbddXVJjzzTAFefz0foVDn399777Xgz3/WGOhCvYokiXC5RLhcMsrLE2urqiqi0WibRVEUKIrSLkysJVAMADQNMcP34pGtoWBOZ9efbUYZfcFkKr9XgMHvlx77OWgyw8vTGTjXEpKnaZ2HmtXVyTj44NGQZR1OpwKXS21d3G4NbreOvLwdS0GBgPx8AQUFAoqKJIwcKcNuN/McgIh6rOHDbbj7bg/OP7/zcN1TTmnA3LnbYLfH/kyor6+H2+2GzWbrdk2apuMf/zD+uT92bBhHHskXYRARERER9WWcYUdERERERERE1McMHmzCp5/KeOihAK67zoZg0PhD545omoCHHsrBRx8146mndEyezAfTtMPZb58dc73dZMdtf7otzdVQsrjdblRVVRlqGw5nZmIOEVFXGhsbsWnTptavy8qieOSRTZgxY6jh8ydZ1jB/vg+zZhW0WW+WzDh8+OF4feXr3aq5M96wFwt+WoAFPy3AmMIxmDFhBs7Y7QyU5Zal7JhERNSxwkIzhgxpbhNqEg9R1FFdnaKiiKhHeW7pczHXHzn8yDRXQhSbKIoYOHAgioqKUFlZiUgk0u0+q6tlPPZY7HB5n0/Gddfl4/nnQ5g/P4LDD2coS2+lqhrq640NfS0tZUA2UW83bew0DHYNxnEvHYeaYE3aj++2utN+zL5IVVU0NjYiEAggHA4jEol0GZLREVkGRo4MY/nyxMO7V61K7TPw8vIw3n038XYbN1rQ1CS0m+QuCAJkWYbVaoXdbofT6YTFkth9CYqPyWSCw+FAMBjExo1mPPlkEd591wVFiS9oZckSOxYu9OH443lOSwQAkiRBkiRYrYn93VVVDdXVUdTUKKitVVFXp6K+Xkd9vY6GBsDrFeDxiPD5WhYJPp8Er1eC05l9oWAmkwabLXVBx0brSuX3CthxvZ8wMfY9CFVPXq1GQ9TS8bulKAIaGmQ0NMT/vfvvfytQWLgzdE4QBAiCAEmSIIpi6/+HkiRBlmXIsgyTyQSz2QyTyQRZ5hRVIsq8887Lw3vv+fD22+3Po/PzFfztb1tx4IFdBztv3LgR5eXl3Q5K/PDDMJYvNx4udtllKkSR9zOJiIiIiPoy3nEhIiIiIiIiIuqDRFHApZfm4KijIpg+PYLvvuv+W61iWb3aggMP1DFnTgC33uqA2cwH1H3ZB2s/wJqGNTG3Xb//9XzbZA8miiJkWY7rjet/pOs6wuFwwgN4iYhSqaGhIWbY4ejRYdx/fyUuvHBw3JN3WtjtKp55phEnnxz7raTHjDwmpaFgv7eybiWu/uRqXPvptTh8+OGYMX4Gjh99PKwy/xYTEaXTrrt2HgomCDqGDWvG2LEh7LJLCGPHhjBqVPh/k3rz01coEWUdTdOwrGZZzG1XTr4yzdUQdc5qtWLUqFFoaGjAtm3boOvGJzDfc08pQqHOJ92uWGHDEUfYcMopPtx3nwUDBvA6p7fxehWEQmZDbfv35z1oor5g0oBJ+P7c7zHlxSlYXrs8rcdmKFjy1dZGsGVLAPn5jWhubkY0Gu3W+UQso0cbCwWrqEjNM/YWo0cbe7GO3a6hutqKXXbRYbVakZOTg5ycHIZ1pFlZWRlOP70Jb73lhq4nPk7i7rslHH98Cgoj6kMkSURRkRlFRYlfP0SjQxCNRhCNRhGNRqEoChRFgaqqrf/UNA2apkHX9YQ+m4yGSblcKoQUDrsyGgrmcqU2FMzvN3AdV/pLzNU1oeSExkajQCCQfd8voz9DoH1YWcvvdaLBqy1hYqIotoaJLV1qw8qVVhQUCCgoEFBUJKGwUEJxsYz8fBmSxGt1Ikqef/3Lhh9/jKCqaufn/0EH+fHXv25FQUF8f4NVVcWWLVswaNCgbtVy773Gr11LSqKYPj3x61QiIiIiIupd+GSHiIiIiIiIiKgPGznSjK++0nHPPUH89a82hMPJH2SjKALuuisH778fxjPPCNhjD75tuK+6YOEFMdc7LU5cs+81aa6Gks3hcMDn8xlq29DQgLKysiRXRERkTHV1Nerq6jrcPmlSELfdthVXXz0w7j4LC6N4/fUwDjjA3eE+R408KpEyk0LTNXyw9gN8sPYDuCwunDbuNMyYMAOT+k+CkMpZBUREBAAYP17Bu+/u+HdB0DFkSDPGjg23BoCNHh2G3R57wk1zczMsFl5fE/VVr6x4BarefvJKrjkX4/qNy0BFRF3Lz8+H2+3G1q1bDd1D+u47Bz780BX3/q++6sKHHyq4+uoGXHmlGyYTJ5j2Fps2RQAYDQUzPkGaiHqWIe4h+Obsb3Dqa6fiw3Ufpu24Lkv8n1XUlqpqWLMmjO+/b8avvwLLlslYudKCrVvNOOAAGQ8/3JiyY5eXGwvf2rLFjMZGEbm5iYVlxCueukpKIhgzphljxyqYMAH4v/8zY8wYG2R5eEpqovhZLBbk5zcZCgQDgG++ycHnnzfioINyk1wZEcXDZJJhMiU+5U7TNEQi7cPEWoLEVFVFURFw4IGN8PkkeL0S/H4JPp8EVe3878UfQ5uSLVtDwXw+A1MfHbGf9ZY5kjMupbExeeFbyWT0Z2izqTCbkxO6GitM7P33nXj88dgvOpEkHU6nAqdThculwuXS4HZrcLk07LZbBNOmhSDLMmRZhslkal3MZjNfPklEMRUVmbFggRcnnGCC1arhmmuqMXWqJ+FgTb/fj8bGRuTmGjsf//XXZnz6qfFQr4suisBsNhluT0REREREvQNDwYiIiIiIiIiI+jhJEnD11Q5MmRLBWWdpWLzYmpLjLFtmxd57a7j22gBuvNEBWWbQRF/y2orXUOmrjLnt73/6Owdq9QL5+fmGQ8ECgUCSqyEiMmbz5s1x/S07+mgfamtl3HNPaZf7DhnSjIULVYwd2/lAwZKcEuxVthd+rPox7nqTydfsw2M/P4bHfn4M5QXlmDFhBs7c7Uz0d/bPSD1ERH3B0UeLCIe3YezYEMaMCcPhiH8Ssd/vR1FRUQqrI6JstuCnBTHX7z9o/zRXQpQYURQxcOBAFBcXY9OmTYhEInG1i0YF3H5719dff+T3y7j++ny88EIIjz0WwX77MailNygpCeONN7ahtlZGfb0JtbUy6up2LrW1JtTXyzEnaQ8ezFBVor7EZXVh4Z8X4rL/XIZHfnokLcd0W91pOU5P19ys4eefg/jxxyiWLhWwfLkZFRUW+Hx2AO0nTVdU2FJaz+jRxkLBAGDVKismTmxKYjU7ud0qSkoiqK42Q5J0DBvWjDFjmrHrrip2313E3nvb0L+/BUbDMin1rr3Wimef1RCNGnsWfvvtOg46KLk1EVFqiaIIq9UKq7XjsVcjRgBnn912napq8HqjqKlRUFurorZWRX29jvp6HV6vAI8HyM1VIMsyNE1rDV5KJr/faCiYktQ6/ijxoCsdyF/bbq0syNg1f9cM1bRTKkPUjP8MMxc4p6oCPB4ZHk/7Ka6HH+7DUUfVdNm/IAgQBAGiKEIURUiS1Lq0BIqZzeY2YWIcp0bUux13nBu33lqDPfbwYuDA+O5Bx1JZWYnRo0dDkhL/+3r33QoAY/ciHQ4Vs2alZhw3ERERERH1LAwFIyIiIiIiIiIiAMDYsWZ8/72Ov/89gHnz7IYHpnYmGhXxt7/lYOHCEJ59VsLYsRyg3Fdc8p9LYq4vsBXgkv+LvY16FofDYbhtJBKBpmkcdEdEGaNpGjZu3Iimpvgnb02fXo/t20147rnCDvcZP74JCxeKGDAgvrd/HjPymIyFgv3eqvpVuPbTa3Hdp9fhsOGHYcb4GThh9AmwmVI7+Y6IqK+ZONGB3NwthtoGg0GGghH1YT9s/SHm+ksnXZrmSoiMsVgsGDVqFDweD6qqqrqcyPzccwXYsMH4JKjVqy3wejdj9ertGDRoUKeTsyn7CUIUI0c2Y+TI5k73C4UE1Ne3hIWZ0NAgIS+PwddEfY0synjo6IdQXliO2R/OhqbHH8ZsBEPB2otEImhsbEQwGMRXXwmYN68Qa9ZYEI12/hKF36up2fF3PD8/NYEVo0ZlXyiYKIowmUy45x4v+ve3YeJEG3JyrAB4HtOTDB9uw4knevHyy25D7T/+OBc//xzEnnsafw5LRD2DJIkoKDCjoMCMMWM627P9PWFFURCNRtssiqJAVdXWRdO01qWja3CjgVJOZ+rOr1QVMQOfO+XeBORua7d6r6K9IAnGw7x+L1tDwYzW5XRmLhSsM/F+r1pC8jQtsd/F884bgkhEhMulwuXSkJenty4FBUB+voiCAgFFRRJKSswoKJAhyxzXRNRTXH11PlatqkV3MjR1XcemTZswbNiwhNpVVSl47TXj42vOOCOE/Pwcw+2JiIiIiKj3YCgYERERERERERG1kmUBf/1rDo47rhnTp+tYtiw1g4oXL7Zh4kQNN98cxJVX2iFJQkqOQ9nhqV+eQnWgOua2ew+/N83VUCpZLBY0N3c+Ga8jjY2NcLlcSa6IiKhrmqZh7dq1iEQSfzvo3LnVqK2V8cEH7nbbDj64EW+9ZYPTGf/juGNGHYO/fvHXhOtIFR06Plr3ET5a9xGcFidOG3saZkyYgb0H7A1B4PkbEVF3mUwmCILQZRBKLOGw8QnLRNSzfbXpK4SV9n8DzJIZR4w4IgMVERmXl5cHl8uFrVu3wufzxdynulrGo492Lwhzxox6DBkSQSQCrF27Fk6nEwMGDGBAfQ8V7/W7zaZjwIAoBgyIAgj9by1DwYj6IkEQcOmkSzEsbxhOe+00BKPBlB3LZe27zzk0TUM4HEZjYyOamprQ3NwMRVHa7CPLVqxYYWxi9KpVVuyzT2p+dg6HhkGDmlFZaUm4bUVF91+kIEkSLBYLbDYbcnJy4HA4Ws9TRo7sdveUYddeK+PVV3VoWuL31HVdwLx5Cl5/PQWFEVGvIcsyZFmGzZbYZ5KmaYhGo4hEIohGo7j11mZs2dKM+nodHo8Aj0eA1yvA5xPh9Urw+UT4/RK8XgmKsvN62uVSOjlK9yQcCAYAA7+JuXqPwj26Wc1ORgPULBYNVms30mm6kOrwLaOMfr9SXdeSJTaEQvHXJgg6nE4Fd9+9GZMnN0EUxdZFkqTWRZZlmEymNosscwovUbrJsowBAwZg8+bN3eqnqakJDQ0NyM/Pj7vNvfeGEYkYC/WSJB1z5/Jly0REREREtAPvKBARERERERERUTt77GHBzz/ruOmmAO691wFFSX7oQzgs4tprHXjnnRCeflrCqFF8kN1bzf14bsz1pTmlmD5hepqroVTKzc01HArm9XoZCkZEaacoCtasWQNVNTagWBSB227bivp6GT/+uHNA37RpXjz3nBNmc2ITzPco3QP9HP2wPbjdUD2p5G/245+L/4l/Lv4nRuaPxIwJM3DmbmdioGtgpksjIurRZFlGNBpNuN0fJ1YTUd8xf9H8mOv3KEnexEaidBJFEQMHDkRxcTEqKyvb3Vu6557ShCZo/lFJSQTnnVfTZp3f78fKlStRWlqa0GQuyg5Gz4MYAkdEU0ZNwTdnf4Mp/56CLf4tKTmG2+pOSb/ZRtM0NDY2IhgMoqmpCZFIBJqmddlu+PBmSJIOVU382XMqQ8EAoLw8bCgUbNWq+F+yJQgCZFmG1WqF3W5Hbm4urNbUvKSLssf48Tk46ig/3nvPaaj9O+84UVHRhNGj7UmujIj6OlEUYbFYYLHs+Pw77rj42qmqhkBAQXV1BLW1CvLzLcjLK4CiKFBVtXXRNA2apkHXdUMvxgAMhknte0fM1bsX7G6ohliyNXyrt9XldKaurmhUSPh+k64L8PlkWCw7fqdbftcTIQgCBEHoMEwsGDRh2zYLiookFBXJcLtlSBLvZxAZ5XK54PV60djY2K1+qqqqkJOTA7O56zHOwaCGp54yfp03ZUoTRoxwGG5PRERERES9C0PBiIiIiIiIiIgoJrNZwB135OD448OYOVPAqlWJD4KOx3ff2bD77irmzQvikkvsEMXkB5BR5ty/6H40hBpibnvwqAfTXA2lWn5+Purq6gy1bWpqSnI1RESdC4fDWLduneFB6C3MZh3331+J6dOHYc0aK2bP9uDuu12GBueKgoijRx6Np359qls1pdqahjW4/rPrccNnN+DQYYfinsPvwW79dst0WUREPZLVajUUCgbs+Czj5GGivue/G/8bc/25e5yb5kqIkstisWDkyJHweDyoqqqCrutYtMiBDz/sXoj8VVdVw25vf92n6zqqqqpQV1eHQYMG8TO1B2EoGBF1x/iS8fjh3B9w7L+Pxc/bfk56/70xFCwSibQGgIXDYUSjUcP3VK1WHUOHNmPt2sQ/d1eutBk6ZrxGjw7j448TP+9Yu9aCaFSAydT2eyKKIkwmE6xWKxwOB5xOJ2SZUzf6qmuvFfDee8baKoqA22+P4JlnGApGRNlBkkS4XCJcLhnl5Ym1VVUV0Wi0zaIoSptAsZYwMU3TEAqJcLsV+P0SNC2O8WRDPwP6LYu5adf8XRMrthOGwsqQ2pArwHhdqQ4Fy8a6fD7j9wi6U1dLSF5HgbqffpqLyy8vbP1alnU4nQpcLrV1cbs1uN063G4deXk6CgoE9OsHHHKIDpPJBJPJBLPZzPsgRP8zcOBAVFRUxBVk3ZmNGzdi1KhRXe732GMheDzGQ72uvNL4CzKIiIiIiKj34ZMlIiIiIiIiIiLq1D77WPHLLxquvjqAhx92xDfIKkFNTRIuv9yBt95qwlNPmTBkiCnpx6D00zQNN31+U8xtg12DcdIuJ6W5Ikq1lkFlRgbRqKoKRVE4IYKI0iIQCGDjxo1J6y83V8OCBRuxbFkRLrusoFt9HTPymKwPBWuhQ8fH6z/GXv/aCz+d9xN27Ze8wfRERH1FTk6O4bdT+/1+BpgQ9TFrG9bCG/a2Wy8KIqZPmJ7+gohSIC8vDy6XC1u3bsWCBfnd6mvy5EYceqi/030ikQjWrl0Lp9OJAQMGcMJkD2B0Ah/vOxJRi9LcUnwx4wuc+eaZeLPizaT27bJ0L8wyk1RVw6ZNzaira0JRkR/Nzc2Ggxg7U14eNhQKtmpVaq9/R48OGWrndquoq7Ng2DABdrsdOTk5cDgcPKegNvbdNxcHHtiIL77ITbitzabCZoswHJ6IegVJkiBJUtx/z8aOBU46CVAUDR5PFDU1CmprVdTWqqiv11Ffr8PjAbxeAZuDm/Dp8KlQOxjWJgvJuyb0+Yz1lepQMJ8vO8PKjNblciX/XLSF32/89yGV368/BqgpioCGBhkNDZ3XW1YWwYcfro65TRAECIIAURRb/x9sWWRZhizLrUFiJpOJ90+o1xFFEUOGDMH69eu71U8kEkF1dTVKSko63EdVdTz4oPGxz5MmhbDvvqkNxCYiIiIiop6FV+lERERERERERNQlm03EAw/k4KSTwpgxQ8TGjeaUHOfzz+0YP17FXXcFcd55dohi8gPIKH3mfT0P/ubYk+7+eew/01wNpYvNZkMwGDTU1uPxoKioKMkVERG15fV6sWXLlqT3O25cHg45pHuBYABw2PDDYBJNiGrRJFSVHhE1god/fBiPTnk006UQEfU4LpcL27ZtM9TW6Hk3EfVcd39zd8z15QXlkEUOA6PeQxRFDBw4EAsXNuOKK7x46SUXdD2xe8WyrOHaa7dBiLOZ3+/HypUrUVpaivz87oWRUWoxFIyIksFhduC1aa/h2k+uxV3f3pW0ft1Wd9L6SqVoVMOvvzbhxx+jWLIEWLbMhIoKKxoabDjssAjuuy9115ujR4fw3nvuhNtt2GBBOCzAatWTXxSA0aPDnW4XRR1DhjRjzJgIxo1TsMceIiZNsmLwYCuAESmpiXqXa67R8cUX8e/vcin4y1/q8ec/N8DlUlFVFcCwYcNSVyARURaTZRFFRWYUFcUer+Zv9mPvx/8Mta7jYPA6cx32KNoDiqJAUZTWF9epqgpN06BpGnRdh653fa5hPOQqteFbfwyUilcq64pGgUAg+8LKjP4MgfSGgsWrs59hy++1pmkJhf7+Pkzs3//Ow9atZrjdOvLzgYICAfn5AoqKJBQVSSgulpGfL0OSGIxL2clutyM/Px8NDQ3d6qeurg4ulws2W+zgrldfDWHjRrvh/ufMSc31LhERERER9Vwc5UBERERERERERHE78EArfvtNw5w5ATz+uCPhiVjx8PslXHihA2++2YQnnzSjrIy3sHoiTdNw+9e3x9w2Kn8UDh9+eJoronRxuVyGwwn8fj9DwYgopWpqalBTU5P0fsvKypI2adxpcWL/wfvjsw2fJaW/dFG01L2pmYioN5NlGYIgxDXR6I+am5tTUBERZbOFaxbGXH/6uNPTXAlRepSWWvDiixacf34jLrtMwtKl8U+omj69HkOGRBI6nq7rqKqqQl1dHQYNGgSr1ZpoyZQGRs6bAIaCEVF7oiDizsPuxKiCUbjwvQuTcn8rG0PBPJ4ofvghhJ9+UvDbbyJWrDBjzRorwuGcmPtXVKT286+8vPPwrY5omoC1a60YNy6U5Ip2KCpSkJ+voKFBhs2mYdSoMHbZJYJdd9Ww554S9t7bAafTCoDnB2TMkUc6MXFiED/95Oh0v+LiKKZPr8PJJ3tgt+8MQ21qakIkEoHZnJoXuBER9VSqpuL010/HyrqVne63uH4xDh8T/1glTdMQiUQQjUYRjUZbw8QURcF++ymQZS+8XgE+nwifT4LXK8Hv37EoSuzxdKkOBTMadJXKkKvGRuPhW6n8fhn9XtlsGiyW1IX2ZNPP8PdhYh984MAPP8S+fmghSTqcTgVOpwqXS4XLpeGkk3w4+ugmSJIESZIgyzJkWYbJZGpdzGYzRJFhYpR6ZWVlaGxsRDTavRf0bdy4EeXl5TF/b+fPNz6eeujQCE46KXbYGBERERER9V0c5UBERERERERERAnJyRHxz3/m4KSTQjj3XAlbtqRm0OmHH9oxbpyCf/wjiLPO6nxgLGWfaz+9Fk3Rppjbnjz+yTRXQ+nkdrtRVVVlqG04bGwiCBFRPLZu3QqPx5P0fgcPHozc3Nyk9nnMyGN6XCjY9PHTM10CEVGPJcuyoQHoibzRnYh6voamBlQ1xr7evmzSZWmuhii9DjooFz//rOEf/2jAvHlOeDydD3ssKYng/PONB0JHIhGsXbsWTqcTAwYM4MTELKJpWtc7dYABGkTUkXP2OAdD84bipFdOgjfs7VZfLqsrOUUZFAqF0NjYiKamJnz8sYR584qxaZMZuu6Mu4/Nmy0IBETk5Bj/m9uZ0aONPwuqqEhNKJgkSTCbzXj0US+GDbNht91sMJnsAOIPJCWKx9y5UZx2WuxtgwY14+yz63DssV6YzbHDRqqqqjBkyJDUFUhE1ANd88k1eH/N+13u9+WmL3HNftfE3a8oirBarTEDwy+6aMcSi6pq8HqjqKlRUFuroq5ORX29jvp6HYMGRWCz2aCqKjRNg6ZprcFLyWA0UCqV4Vt+f+8KBUtlgBqQvXXF83NUVQEej9zmvt2kSY0JveBGEAQIggBRFCGKYmuY2O8Dxcxm8/8Cxcz/24f37Sh+Q4cOxerVq7vVh6qq2Lp1KwYOHNhm/VdfhfHDD8ZDvS65JApJ4v1LIiIiIiJqi6FgRERERERERERkyBFH2LBsmYpLLgnguec6fxOcUR6PjOnTZbz5ZhCPPWZBcTFvZ/UEESWC+7+/P+a2XYt3xb6D9k1zRZROoihClmVDAQW6riMcDsccVElEZJSmaaisrEQgEEhqv4IgYNiwYbDZkv+mzimjpuCKj65Ier+pcu/h92L/wftnugwioh7LZrMZfis1z5+J+o5/fP+PmOsHOAfAaY0/5IGop5JlEXPn5uMvf2nG3LkB/PvfLui6EHPfK6+sht3e/Qm1fr8fK1euRElJCQoKCrrdH3VfIhNJ/4ihYETUmT8N/RMWnbMIx7x4DNZ51hnqwybbYE7TBF5N0xAMBtHY2IhQKIRIJAJVbRsEYDbbsXGjxVD/q1dbsccesV/+0115eSr69Yti+3ZTwm0rKrp//WsymWCxWGC325Gbm9vm/u7w4d3unqhTJ5/sxJgxIaxcufP3rrw8hHPPrcVhh/khdZG3EQgEoCgKZJnjJoiIAOCZX5/BPd/dE9e+32z+BqqmQhKNh1TFQ5JEFBSYUVBgxpgxibVVFAXRaLTNoigKVFVtXVrCxFoCxVqoKtDYmH2hYEZDroDUBl0ZD1BL7ctafD5jn/Gp/BkC6QucawnJiycUvqZGxpFHjoLLFYXLpcLl0uByqXC7NbjdOvLydiwFBUBBgYiCAgGFhRJKSswoLJQZJtZHmc1m9OvXD9u3b+9WPz6fD263u80LBO++23iwdn6+gvPPT/7YIyIiIiIi6vn4NICIiIiIiIiIiAxzuSQ8+2wOTjyxCRddZEJ1deKDt+Px1lsOfPNNFA8/3IRTTuEbmbPd7A9no1mNPTnr2ROeTXM1lAkOhwM+n89Q24aGBpSVlSW5IiLqq6JRDT//vBE5OcmdwCZJEoYPH56yCcWjCkZhRP4IrG1Ym5L+k0UURPzr2H/h7N3PznQpREQ9Wk5ODvx+v6G2fr+foWBEfcTLy1+Ouf648uPSXAlRZpWWWvDCCxacf34jLrtMwpIlbe8X77NPAIcdZuxzNRZd17Ft2zbU1dVh8ODB/NzNsO6EgvFnR0RdKS8sx6JzF+HEl0/EV5VfJdzebXUnvyjsCIfw+/0IBoMIh8OIRCJtAiA6Ul4eNnzMiorUhYIBwOjRIUOhYKtWxf+3XBAEmEwmWK1W5OTkIDc3FyZTap5lE8VLkkRcfnkYF1xgwx57BHHuubXYb78AhNhZtzFVVVVh0KBBqSuSiKiH+Hbztzh/4flx7+9v9mPp9qXYvXT3FFbVPbIsQ5blhF9KpWkaIpEofvkliNpaFfX1euvi9QrweHYsPp8Ir1eCzyfC75fg9UpQFDErQ8HMZg1Wa/cD3zvi92dfgBqQvvCtRBmtK5XBbn6/hGhURF2diLq6xM7zP/98JQoKdtQmCAJEUWxdJElqXWRZhslkarMwnLXnKyoqgs/nQzhs/JoZACorKzFmzBiIoog1ayJ4/33joV7nnBOGw5GaFzMTEREREVHPxqtQIiIiIiIiIiLqthNOsGP//VVceGEQr73mSMkxamtNmDbNhFNPDWLBAivy8lL75kYypinShH8t/lfMbXuV7YUJpRPSWxBlRH5+fsKhYJGIgF9+saOxEbj88tTURUR9SyCg4KSTmrB6dX8899x6uN3JGXBqMpkwYsQISFJqz0WOGXkM7v/+/pQeozvMkhkvnvgiTtrlpEyXQkTU4zmdTlRVVRlqGwwGk1wNEWWjiBLBmvo1MbddNfmqNFdDlB0OPDAXP/2k4f77G3DbbU54PDJkWcO111YlFKoQr2g0irVr18LpdGLAgAEQRTH5B6EudScULFXB3kTUuxTaC/HxmR/jvHfPw3NLn0uorcvq6vbxw+Ew/H4/mpqa0NzcDEVR4goAiyUnR8PAgc3YvNmScNtEwreMKC8P44svnAm3W7XKClUF/nhrVhRFWCwW2Gw25OTkICcnh5/VlLVmznTBbl+HCRNChtr7/X5omsbfcSLq0yp9lZj68lRE1EhC7b7c9GVWh4IZJYoirFYLxo9P7LxPVTUEAgqAUuh6FNFoFIqiQFEUqKraumiaBk3ToOt6wuem3Qm5SsX9nRbZGHIFZGcoWDQqoKkp++oy+r0C2v4cdV1v/V1PhCAIbQLFWoLEVq2yorLSgvx8AUVFEoqKJBQXy3C7ZUgSz9+yxZAhQ7Bq1SrD19vAjt+dFSs2Ydy4objnnghU1di9R4tFw+zZfJkBERERUSyrVgEuF1BSkulKiDKHoWBERERERERERJQUBQUSXn3VgZdeasIll5hRV5eaW08vv+zAV19F8dhjEUyZYvztWpQaF713EaJaNOa2F058Ic3VUKY4HA4IgtDpwBldB9avt+Dbb3Pw7bc5+PlnB0IhEYWFUVxyicaBUETULdu3R3DMMVH8/POOiWWzZg3Gv/61ATZb994mbLPZMHTo0LRMtsnmUDCHyYG3TnsLhw47NNOlEBH1CrIsd3n+3JHuBGMQUc/x5K9PQkf7vxH5tnwMdg/OQEVE2UGWRVxxRT7OOCOCK67wwm6PYOjQxCYEJ8rv92PlypUoKChBSUlBSo9F7UUixn++DM4gonhZZAueOeEZjCoYhRv/e2Pc7dxWd9z7KoqG335rQjDYhNLSRkQikYQnocdj9OiwoVCwiorUPoMdPTpsqF1RkQK/34IBA2Q4HA7k5ubCYrHwbzz1KCaTiIMOssDrNRYKBgDV1dUoKytLYlVERD1HMBLE8S8dj5pgTcJtv6r8CpftfVkKquqZJEmEyyXCyPRSVVURjUbbLH8MFNM0Dbm5wG67NcHnk+DzSfD7JWha12lfqQyTArIzfAsA/P7sq8vnM36unY2hYHa7CpOp+8dvCcnTNK3N+ldeceDJJ/Pa7S/LOpxOBS6X2rq43Rrcbh15eTrGjlVw9NFRyLIMWZZhMplgMplgNpt5vZMCsixjwIAB2Lx5s6H2ug68954Ld95Ziscf9+H553MM13LKKSGUlqbmRcxEREREPd2sWcCXXwJnnAHMmQOMHZvpiojSj6FgRERERERERESUVKedZsdBByk4//wg3n03NQ+rq6pMOPZYE2bMCOKBB2zIzeXAh2zgD/vxwm+xg78OGHQARhaMTHNFlEkWiwXhcNtJHR6PhEWLclqDwGpq2o+yqqsz4fvvGzF5cm66SiWiXmbVqiYcc4yIdet2nocsWWLHVVcNxPz5lZANPh1zOp0YNGhQkqrs2gGDD4DD5EAwGkzbMeORZ83Df/7yH0waMCnTpRAR9Somk8lQyIWiKCmohoiyzZO/PBlz/SFDD0lzJUTZqV8/M55/3gyPx4tt28R2k/GSTdN0nHKKGQUFPtx/vwWDB1tTejzayei5jyB0PeGYiOj3BEHADQfcgJH5IzH9reloVrsOZO4oFKyxUcH33wfx888qli4VsWKFGatWWRAK5WDKFAW33248GKgr5eVhfPyxK+F2a9ZYEI0iKZPlY+kqFMxs1jByZDN22SWCXXdVseeeEiZNsqGgwAKAzxup5ystLYXX6zXc3uPxoKSkhAERRNTnaLqG6W9Nx6/Vvxpq/+WmL6HrOq8Rk0CSJEiSBKu183si5eU7JnG3UBQNHk8UNTUKamtV1NaqaGjQUV+vo6EB8HoFeL0iCgqiEEWxNXgp2bIxfAswXpfTmbq6/H7j04+zMRQsUz9DRRHQ0CCjoSH29/OII3zYe+/tnfYtCAIEQYAoiq3/D7YsscLEZKODY/oIl8sFr9eLxsbGhNr5fCL+/vcyfPCBGwBw7rkONDUZ+30EgKuuStGFNxEREVEPoKo6VHXnPxVl59dLlwKffLLjnPbJJ3cs+++v4qyzNEycqEPT2rYZNkyD243Wa0ir1QpJMn6eRpQteGVHRERERERERERJV1Ii4513ZDz1VBNmzzbD50vNbainn3bgs88ieOIJFYcemto3VlPXzn7nbKh6+4EzAgQ8d+JzGaiIMik3NxeNjc349Vd7awjYypVW6HrXgyv/858oJk9OQ5FE1Ot8+20jpk61xgwd/PxzJ+bNK8ONN1Yh0XHeBQUFKC0tTVKV8bHIFhw2/DC8VfFWWo/bmdKcUnx05kcYVzwu06UQEfU6VqvVUCgYAIRCIdhsvCYm6q00TetwouMV+1yR3mKIslxenhsulxNVVVXdClnoymef5eLrr3cE2n/6qYq5cxtw7bVumM0MZUg1o6FgDMwgIqNOHXcqBrkG4fiXjkdtU22n++aYcrB5cxiLFoWxeLGGZctkrFxpxoYNFmha7GCuiorUBkt2Fb7VkWhUxIYNFowa1XUYmhH9+0fgcKgIBiW43QpGjw5j3DgF48frmDhRxh57OGA22wDwWpd6J0mS/vcsNbEAgha6rqOmpgYlJSVJroyIKLvd8vkteH3l64bb1zbVYlX9KowuHJ3EqigRsiyiqMiMoiJzHHsXtvlKURREo1FEIhFEo1EoigJFUaCqaus/NU2DpmldhokZDZRKZfiWogCNjdkXdOX3G7+nktqwsuz7XgHdCSvr+p5Xy++1pmkJ3SMTBAGzZw+Epglwu7X/LTry84GCAgEFBQKKiqT/LTLy82VIUt+4lzZw4EBUVFTE/ZKJ775z4IYbBrQZk+T1Gh8bfeihTdh1V7vh9kRERJRcmqZD09BhSNXvv1aUln11qKrQ+vXO/dHa1x/Xxfpa04TW9Ttr2FlLy3ZNQ4x9hf/t07K/8L/ALKG1vt/32fLvbfdvv05VAV3v+Osdtfyxfdt/b7tu5zZdF6CqAoCWwdzxDer+6isJX30V+5z7oYc24cADd9xvlSQJo0aNSsJvBVHmMRSMiIiIiIiIiIhSZuZMOw49NIqzz27CJ5+k5uF1ZaUZhx+u44ILArj3Xjvs9r4xIMGIpmgTftz6I0bkj0B/Z/+k9l0TqMGbFW/G3HbE8CMwyDUoqcej7JeTk4+DDiow9MbIzz+PZ/AfEVFbb7/txZln5nY6UPbVV/NRXBzFhRd2PoHv90pLS1FQUJCMEhN2zMhjsiYUbFjeMHx85scYljcs06UQEfVKOTk58Pv9htr6/X6GghH1Yu+teQ9RLdpuvd1kx6QBkzJQEVF2E0URAwYMQHFxMTZt2oTm5uSGmYRCAu68c2dodCAg4a9/zceLL4Zx773NmDIldugLJYeqGpu4ybdAE1F37DNwH3x/7veY8u8pWFG7osP93vpiLV471Qog/qCvDRssCIcFWK0dBxZ0R3l5yHDbVatsKQkFk2UZFosF//63D6NH2zBsmAWSlJP04xBlu/79+6OiosJw+/r6ehQXFzP8lIj6jFeWv4K/ffm3bvfz1aavGArWQ8myDFmWE34eomlaa5BYS5jYFVeEsGlTGF6vAI9HgNcrwOsV4fNJ8Hol+P07FkVpOzE9lYFSRgPBAMDpNBaiHg+jL4O12TRYLKm5zgGyM9gNyM6wMl3X8fXXOQiF4jtvlCQdTqcCl0vF3/5WhYkTwxBFEaIoQpIkSJLU+v+jyWRqXcxmc487NxVFEYMHD8aGDRs63S8cFnD//f3w/POFne6XqCuuSPCNhkRE1OfsCHZCzMCp34dUxQqT6iikqm0fO/tpGxjVNuiq7f5oDZxqCbNqCaRSFLT+U9d3ft02pOqP4VOxQ6piBVLtDKH6YyjV7wOoOgqp+mMgVds2O/b7/WczP6d7mt8/Rs7Ly+PzYeo1GApGREREREREREQpNXCgCR9+KOPRR4O4+morAoHk31zVdQGPPpqDjz9uxlNP6dh//9S+Vbsn+mLjF5jy7ykIRAIAgMOHH46/H/x37NV/r6T0P+PtGdD09m9MEwURz5zwTFKOQT2Lw2FCeXkQP/6Y+G3oH3+0IxBQkJPDW9hEFJ9//tODWbNciEa7HmD48MP90K9fFFOnervcd+DAgXC5Mjeh++iRR2fs2L+3a/Gu+PCMD1GaW9r1zkREZIjT6URVVZWhtk1NTUmuhoiyyUM/PBRz/d79905zJUQ9i9lsxsiRI+H1elFVVQVNa3/v0ojHHy/Ctm3tA+1Xr7bi2GOtOP54H+bPN2PoUAZ2poLRn6Ms8z4jERmnKAryhDy8csQruPCTC/F19dex98vdmHDfqipg3ToLxo4Nd7PK2Pr1U5CXp8DjSfzvYEWFFccea/zYgiDAZDLBarXC4XAgNzcXZvPOz9ChQ433TdQbyLIMh8OBYDBoqL2u66ivr0dRUVGSKyMiyj4/V/2MGW/NSEpfX1Z+ifP2PC8pfVHPIIoirFYr/j979x0W1ZW/AfydO73RuyCKIohGYzfNmHVTjZtmyqap6b1tetkkm2x6Mb1XU3/pvTdN7JrYECwoIEgfYPrMnTu/P1hUZICZyxTK+3keHsO995zz1egwc+8579Hp9s4nnD+/53Y+n4TmZi/q6kTU1/tQX+/DsGEqxMfHw+fz7fmSJAmSJMHv98Pvlx+CJTfkCohsoJTcuszmwRe+Bcj/84pkXW63IuhAMKDtc6rFovrf50j/nr/roVAoFFAoFJ3CxPYNFPN6NbDbNUhPV8NoFKBUxiZQzGg0IjExERaLJeD5zZt1uOWWbGzfHt45yQcc4MJRR3GeMxH1P/sGUe0bMBXo+/bAKUlSdAitCjWkat/AqY7BUXtDpvYGTu39tfuQqs4BVPuHX7UHRe17rOuQqs7fdw6l6hhktbdvxZ5+24+1h1b5/e3BVAyoIurJxx8noqDAhexsMWYbQRNFAmc6EBERERERERFRxAmCApddZsTRR3swf74Hv/8emQVR27drccQRflx1lQ333WeATte/dh6LFMkv4YyPztgTCAYA32//Ht9v/x4nFp6I/8z8Dw5IP0B2/xUtFfh227cBz51YcCLSTGmy+6b+bcYMN1atMobczu0W8O23rZg7NyH8RRHRgHP33U24++7EfSZABNNmCJKTRcyYYQt4XqFQYNiwYTAaQ38NC6cscxYmZEzAnzV/xqyG6dnT8dWZXyFJnxSzGoiIBgOVSgWFQiFrwYjLFZnF40TUN/xR+UfA45dNuSzKlRD1TwkJCXvCN5ubm3vVV3m5Bq+9ltLtNZ99Fo+ffvLhuuuacNttCdBoeI86nBgKRkSR5na70draCofDAZfLBVEUO3xOe+qgp3D76tvxVeVXnRvrm4G0DUBdaM/cSkr0EQsFUyiAggIXli83hdy2tDT4xcmCIECj0UCv18NkMsFsNkMQ+DOQqCdDhgzBli1bZLevr69nKBgRDXi7rbtxwnsnwCk6w9Lf4vLFYemHBj6lUkBysgbJyRqMHh1aW1EU4fV6O3yJohgwTKw9UMxmU0Kh8Ic076FdXwwF66vhW3FxfTOsLJJ1ya0JkP//sT0kr7t7eT/9ZMY11+QCADQaCXFxXsTH+xAfL+35NTHRv+crKUmB5GQF0tMVmDRJgFarhUqlCstnz8zMTFitVoiiuOeYzwe89loKnnkmDaIY/s+3V1/tgyAw4IWotySpYxBVMCFV7eFR+4ZW7R8EFVxIVcegq67O7w2M2rfGfcOj9p5vC4TaN+hq//CqrgKo9h7rLrQqUEhVewjVviFVe8/vva4tpEqBveFUfA0jor7lt9/i8PvvZtxzTzNuuUUd63KIwoYzHYiIiIiIiIiIKGpGjNDgt9/8WLjQjttv14e0A1mwfD4FHn/chG++cePNN4EpU7RhH6O/2dq4FTW2moDnPi35FJ+VfIYzxp6Bu2fejfzk/JD7P/eTc+FH54XrSoUSr53wWsj90cBx3HEqPPqovLbff+/H3LnhrYeIBhZRlHDZZS146aXQw6p8PgWuv34oXnllBw44oOMEckEQMHLkSGg0mnCV2ivHjzo+ZqFgR+YdiU9O/wRGTWzD0YiIBgu1Wg2PxxNyu1B35yai/mPt7rWwe+2djqsEFU4qPCkGFRH1T4IgIDs7G2lpaSgvL4fb7Q65D78feOCBTHi9Pd/TttmU+M9/kvDuuy48+qgLc+YkyKia9ic3EAxoe59FRLQvSZLgcDhgtVrhdDrhdruD+mylElS4f8r92Ny8GWXWss4XTH0a+PKFkGopKQk+fEuOwkKnrFCwkhId/P62YLF9qVQqaLVa6PV6mM1m6PV6BoARydQepud0ygu6kSQJFosFiYmJYa6MiKhvcIkunPT+SaiyVoWtz4qWCpQ3lyM3ITdsfRLtT6VSQaVSQa8PfuPUsWOBU06R0NDgQW2tFw0NPjQ2+vd8WSwKWCwKNDcr0NIioLlZiZYWAQ6HAJ0u9A1ngtV3Q8HkLYsejGFlcmsCgLg4seeLZNr3/6HHI6ChQUBDQ8/38LKyPPjuu87BugqFAoIg7PlSKpV7vlQqFdRqdYevfTcREAQBw4cPx9atWwEAVVVq3HprNtaujcxcmawsL8491xCRvin22gKn0Clwav/Qqn1Dp9pDl7oKqdr/+71BU/sGRXUMuuo+pKrtV79/bzhV+6+dQ6sUnQKzOvav2DP2/gFUgUKr9m2/t29Fh+s6B1Pt/e/9z0kSA6qIiGgvn0+BI4/k+ywaWBgKRkREREREREREUSUIClx3nRHHHefBvHk+rFwZ/OSXUJSUaHHwwRJuuMGGu+82Qq0evA/8Ai0e3Zcffry78V3836b/w7zx8/Dvw/8d9OS3rY1b8Vv5bwHPnTn2TMTp4kKulwaOww4zISFBRHNz6LeiFy+O7CIYIurfnE4fTj/dji++kL/QxekUcPnluVi0qAy5uW0BLCqVCiNHjuww+S/WZufPxj2L74n6uHOL5uKtk96CVsWAVSKiaNHpdLJCwQDA6XSGtLiEiPqHR5cGTtoelzaOwQtEMmg0GuTn56O5uRnV1dUhhUz98osZv/9uDmm8rVt1+Mc/dPjHP1qwcKEGw4fzZ3VviKL8RYh9JfibiGLDbhexZo0TPp8d2dlWeL3eXgUNKhQKPDb9MZz4w4mdT457C/jxAcAV/H3L0tLIPg8pKHCF3EalkpCZ6YXbrUNamgYGgwFxcXF8PSWKgKysLGzfvl12+9raWoaCEdGA5Pf7ceEXF2JF1Yqw972kYglDwahPUqsFZGZqkZkZ2jN6SSqCJElwu93wer3wer0QRRGiKMLn8+35kiQJkiTB7/fD7w8uSEx+KFjkwqSAvhm+5fUCdnvfC1FrbZUfChYfL/+zc0/CHTjn9/v3/F0PhUKh6BAoduedGfj88wR4PJF7BnPppe6obmKwfyhVMN+3h0Z1FUrVU0jVvoFTHcOk9gZX7Q182nusu5CqQAFU+4dftYdR7X8scEiVokP7fQOofD4F/P7OQVZ+f+cQq/1Dqvx+hlQRERHFymGHOTF5Mp/J08DSd1Y0EBERERERERHRoFJYqMHSpX7cf78N995rgNsd/ofooijg/vtN+PprF958U8C4cYNzorooBTfJxuf34dW/XsWi9Ytw8aSLcethtyLTnNltm7M/PjvgcZWgwvPHPx9yrTSwqNUCDj7Yhq+/Dj0crrRUjx07nFwsSUSdeDwe/PJLBX75ZXiv+7JYVLj44mF4663tGDJEhREjRvS5cIUpQ6Yg1ZCKekd91Ma8YMIFeP7456EU5E8OJSKi0JlMJrS2tobczmYTUF5uRWEh3zsTDTTfl30f8Pi548+NciVEA0tCQgLi4uKwe/duWCyWHq93OhV48MHu75N25/PP4yFJzXj66Trk5OT0uc+d/YXb7ZbdVqtl4DXRYFFT48by5U6sWSNhwwYlNm/WoqxMC1E045RTvLjrLvmvJfsaETcC01KnYUX9fiEVGgdwxL+Bb54Kuq/SUh0kCYjUj4fCwu5DwcxmHwoLXRgzxotx4yRMnqzC5MnG/wVPj4xMUUS0h16vh1arlf1eRxRFtLa2Ii6Om3UR0cDy0B8P4a31b0Wk78Xli3H2uMDznYj6o/YwIzmbn/l8vj1BYoECxQ480Au7vRXNzQJaWgS0tCjR2qpES4sSktR14E0kQ66A8AdKhUPvwrciV5fcPyu93ge1OrjwODn6SrBbe0hee3j44sWmiAaCKZV+fP+9gB9/dMgOqWoPoQp0bN82bf+twN5wKoZUERER0cD2r39F7v0rUawwFIyIiIiIiIiIiGJGqVTg9ttNOOEED845R8K6dZHZCXvdOh2mTpVw++023HKLEUrl4Hq4HWwoWDuv5MXTq57GK3++giumXoGbDrkJyYbkTtf9tfsvrKxeGbCPCydeCIPGIKteGliOOELE11/La/vFF05cdRWDDYhoL6fTibKyMgwd6scTT1Tgkkty4fX2bjJeVZUGa9akYMaM5D65MFtQCDg2/1i8ue7NqIx3WtFpeHHOi1AoBtf7JSKiviAuLg7V1dXdXuNwCNi8WYdNm/QoLtZj0yY9yss1uOKKZjz5ZJQKJaKo2NW6Cw2Ohk7HFVDg4skXx6AiooFFEAQMGTIEqampqKiogMvVdWDKK6+korpa/oYTer2Eq66qhdXqxebNm5Geno6UlBTZ/Q1W3f0/6olOF5lnD0QUOz6fhNJSF1ascOOvv4BNm1TYvFmL6motgMBBgCUl4X0t+OeIf3YOBQOACa+GFArmcCixa5cGQ4d6wljdXsOGuaHRSPB4BGRleTB6tBtjxoiYMAGYNk2LUaN0UCqNERmbiIKTmZmJnTt3ym6/e/duhoIR0YDyRekXuOWnWyLW/5KKJRHrm6i/USqVUCqVXd47uemmwO1EUYLF4kVdnYj6eh/q631oavKjsdGPpiZg1CgXNBoNJEmCJEl7gpfCRW4AF0PBghfpYLe++P8QaAsdq6uLXP8+nwJLlnBeLRHFWN4PwLDfgPrRQMlJgJevS0TU/2VkeDFnDted0MDDUDAiIiIiIiIiIoq5Aw7QYNUqP+6+24YHHzRAFMMfyOF2C7jjDhM+/9yJ118XUFQUeEHAQBRqKFg7p+jEw0sfxvOrn8e106/FdQddh3hd/J7z8z6dF7CdVqnFwqMXyhqTBp45c3S44QZ5bX/+WYmrrgpvPUTUf1mtVpSXl+/5fupUO+67bxduuGGo7D5VKgmPPdaMK69MDUeJETM7f3bUQsE+LvkYa3avweSsyVEZj4iI9lKpVFAoFHsWRTgcCpSW6v8XANYWBLZjhxZ+f+fgxvXrOf2DaKB5ZOkjAY/nJeZBp2K4DVG4aDQajBw5Es3NzaiuroYkSR3OV1Zq8NprvQvwuvDCemRmegEAfr8fNTU1aGxsxNChQ6HXc2JysLxer+y2KhXfKxH1Zz6fD1arFTabDS6XC++/r8eDD2bAajUACH7B2tatOogiEK6XhJlZM2FQGeAQHR1PaBxAfDnQkht0XyUlurCHgikUCqhUKpjNOnz5ZQvGjTMiPV0DQH7QJRFFhslkglqtlv1+x+v1wm63w2hkwB8R9X8b6zbizI/PhB/hCw/aX0lDCersdUgzpkVsDKKBTqUSkJqqQWpq6J8vRFGE1+uFx+OB1+uFKIoQRRE+n2/Pr92Fifl8gNXa9wKl5IZvAW1BVJHSV0PB+mpdVivvIxLRADfjXuBvd+z9vmwW8PZXgG/wrKsgooFp1iwJgsDNkGng4ScUIiIiIiIiIiLqE9RqBe6914QTTnBj3jxg8+bIPFxatUqPyZMl3HOPHddeaxgUN359Uu8mQlg9Vvxn8X/w1MqncOMhN+LKqVdiXc06rK9bH/D6q6ZdBY2KCwqoTUGBAXl5LpSVhb5g+fffDfD5JCiV4Q8KJKL+pampCdXV1Z2OH3NMK+rqduPhhzND7tNg8OGNN6yYOzcpHCVG1FEjjoJSoYTPH9nJjUBbmOihrx6KDZduQH5yfsTHIyKijlavjsPHH5tQXKxHWZkWkhTcZ9aNG3V870w0wHxa8mnA43OL5ka3EKJBIiEhAXFxcdi9ezcsFgsAwO8H7r8/Ex6P/J+vubluzJvX0Om41+vF9u3bYTabkZOTA0Hgz/Ce/PGHgJUrk5GaKiIlRURKihcpKSLMZgmKgX+bn2jQ8Hg8aG1thd1uh9vthtfr7bQAPC5OLWsBuMcjYOdOLUaOdIelVqVCiUkpk7CkZknnk8N+A9adG3RfJSU6HHVUq+xaBEGARqOBTqeDyWSCyWTqEIiYG3w+GRHFSEZGBiorK2W3r66uRn4+7+kTUf9Wb6/HnHfnwOaxRXysJeVLcErRKREfh4g6U6lUUKlUIYflS5IEj8cDl8uL775rQWOjf8+XxaKAxaJAS4sCzc0CWlqUaG5WorVViZYWJXy+tptHkQyUam2VF3Kl1UrQ6SIXhCi3rsEaCtbayvu0RDSAqe1toWD7yvsJGP4LsO2Y2NRERBQmBx+sjnUJRBHBUDAiIiIiIiIiIupTpkzRYu1aCbfdZsMTTxj3TMgIJ6dTwPXXG/Hpp068/roSI0YM7AArURLD0o/FZcEtP92ChcsXQvJLAa/Rq/R4YNYDYRmPBo7DDpMXCtbYqMby5VYccog5AlURUX9RU1ODhobOC6jbnXtuI+rq1HjjjZSg+0xJ8eKjj1yYMSMhDBVGXoIuAYcOPRS/lf8WlfHcPjcmvDAB267ahgxTRlTGJCKiNtXVRnz+eWLI7Rob1dixw4mRI0NbQEFEfZPdY0d5S3nAc/866F9RroZo8BAEAUOGDEFqaioqKirwzTdqLFnSu/tSt9yyGxpN14v6rFYrNm/ejPT0dKSkBP+5djD64QctXnqp8/skrVZCSoqI5GQRqane/wWG7f0aNsyLsWNjUDARdUuSJDidTlitVjidTrjdbohicM+zCgtdssfdvFkXtlAwAJifP7+LULBfQwoFKy0N/hmKUqmEVquFXq9HXFwc9Ho9wyWJBoD4+Hjs3r076NfC/bndbrhcLuh0oT+TJSLqCzw+D+Z+MBc7m3dGZbwlFQwFI+pvBEGATqeDTqfDUUcF387nk9Dc7EVdnYikpBQIgheiKEIURfh8vj1fkiRBkiT4/f5O4dTBaGmRt1S7r4ZvxcVFOnyr79Xl8SjgdMqri4ioX0jbCKgC3BtNX8dQMCLq97iRJg1UDAUjIiIiIiIiIqI+R6cT8OijJpx0kgvz5yuwfbs2IuP8/rseBx7owwMP2HHppQYIQvgDyPqCcIWCtau113Z57uZDb+bCA+rkqKOAN94I/nqz2Yfp02046CAbjEYJAEPBiAaryspKtLS09HjdddfVoK5OhW++Sejx2mHD3PjySx/GjOlfry2z82eHPRRMq9TC4/PAj84TWu1eO4qeKcLOq3ciThcX1nGJiKhr06fLn8bx++8uhoIRDRBPr3w64PEMUwZSjalRroZo8NFoNBg5ciQmT7Zi4kQH1q41yOrn739vwSGH2Hq8zu/3o6amBo2NjRg6dCj0ev48D6SuLvB9Z7dbQFWVBlVVgTf/OO64Vhx/fCQrI6KeSJIEq9UKm80Gp9MJj8cDSQq8+UwwMjK8iIsT0doa+uen0lI95szp+X5jsMYnj4dG0MAjeTqeyA3tPl5JSefXfoVCAZVKBZ1OB4PBgLi4OGi1kXlmSkR9Q1paGqqrq2W3r6qqwogRI8JYERFRdPj9flzx9RVYXL44amNGcywiii2lUkBysgbJyRoAod3nE0URXq+3w1dXYWIqlR85OW60tChhtSrh9wc3F7Wvhm9FOqysL9YltyYion5D7Qx8XFJHtw4iogjwRfbtK1HMMBSMiIiIiIiIiIj6rEMP1WH9egk33GDDc88Zg54oEQqbTYkrrjDi008dePVVNXJyBt6DLZ8/One4TWoTbj/s9qiMRf3L7NkmqFQSRDHwwj2l0o/x4x046KC2ILAxY5xQqdrPcbIN0WAkSRJ27twJh8MR1PWCANx7bxWamlRYscLU5XXjxzvw5ZcCsrPlLeiOpdmjZuPGH28MW3/x2nh8deZXaHI24YT3TggYDGZxWTD62dHYftV26FS6sI1NRERdmzrV0O175+6sWQPMnx/+mogo+t7a8FbA48eOPDbKlRANbgcdZMbKlRKeeaYJ//mPGY2Nwd871ukk3HhjTUjjeb1ebN++HWazGTk5Odx8YT91dfLuE6amyg8eIqLQ1dd7sGKFEzqdHUOH2uD1euH3d77v1BsKBTB6tKvb+4BdKSkJ7z0urVKLcUnjsLphdccTSWVAXDnQmttjH0ajD9nZXvj9OiQkaGE2m2EymaBScZo/0WCTlJSEmpoa2cGJS5cqEBfnQWpq4LBUIqK+6umVT+OltS9Fdcy/av5Ci6sF8br4qI5LRP2LSqWCSqUKKsR/9Gjghhva/tvrldDQ4EFtrRcNDT40Nvr3fDU3K2CxtH21tAjIyPBCoVCE/bNzu5YWeffUIh1WJreu+PjwbpC7L7k1ERH1GypX4OMi5wUSUf/HUDAaqPi0kIiIiIiIiIiI+jSDQcAzz5hw0klOXHCBEuXlkZnA+uOPBhxwgIjHH3dgwYL+FxTSHVGK3ESIfZm0Jnxa+ilOKjwJCkX4A9yo/4qPV2HiRDtWrjTuOTZ0qBsHHWTDwQfbMGWKHWZz4MntPp8Poihy8QvRICJJErZt2waPxxNSO43Gj4ULKzB//nCUlnaekHnEEVZ8+qkecXH98/VkdMpoDE8Yjh3NO3rdV7oxHd+d/R3GZ4wHALx24muY/+n8gNdWW6sx7rlxKLm8hAvSiYiiwGhUYdQoJ4qLe15csL916wZeyDXRYCRJEjbXbw547oaDb4hyNUSkVAq46qok/POfHtx4YzMWLYqHz9fzvc8LL6xHZqZX1phWqxWbN29GWloaUlNTZfUxEDU0yPs8n5HBUDCiSPD5JJSVubF8uQt//gls3KjC5s1a7NqlAaDBmWeKuOWWpoiNX1AgLxSstFQHv78tWCxcDkw+sHMoGACcchbw2u8dDqWleTF6tAtjx4o48EBgyhQ1xowxQKUyABgZvqKIqN9KTU1FbW1t0Nf7/cDSpSa89FIq1qwx4oYbLHjoIYaCEVH/8cP2H3DNd9dEfVw//FhauRTH5jOEn4jCT60WkJmpRWamNsgWSQDang9IkgS32w2v1wuv1wtRFCGKInw+356v9uv8fn+PYWKtrXLDtyKXquD1tm3mK0ckw8oYCkZEA57KGfi4N/T5KUREfY3MfRaI+rz+ueqBiIiIiIiIiIgGnb//XY8NGyRcfbUNr70W+iT/YLS0qHDeeSp89JEdL7+sRUbGwLh9Fq1QsBpbDU75v1MwMXMi7j3iXhwz8hiGg9Eexx3nQlyciIMOsuGgg2zIyQl+UaTFYuECSKJBQhRFbN26FT6ZWzaZTBKefbYc55yTh+rqvYteTjutGYsWxUGj6b+hVgqFArPzZ+PpVU/3qp9hCcPwwzk/YGTS3kWG88bPQ6OjEf/6/l8B22xt2oqpL0/FygtWMhiMiCgKDjjALSsUbNMmHXw+CUolX6uJ+rO3N7wNn7/z++E4bRxGp46OQUVEBACpqRq89poGF15oxdVXC1i92tjltUOHujF/fkOvxvP7/aitrUVTUxNycnJgMAysjSzkqK+XGwrGe9REveXxSFi71o6VK71Yv16BTZvUKCnRoblZDyDwZ5eSEl1EayosdMlq19ysQm2tChkZ4Xt2lqhJDHwi9w8cOO8FHDfkNEyYoMC0aTrk5OgAMNCZiLqWnJyMurq6HsMdfD7gxx/j8Morqdi8ee9r8SuvmHH77WK/3SCFiAaXLY1bcNqHp0Hyx2bl7uLyxQwFI6I+RRAECIIga/NMn8+3J0hs30Cx+fMdKC93w2JRoKVFQHOzgJYWAS0tSrS0KNHaqoQkdb5/FsnwLatVfvhWJMPK5AaoERH1G6ou7qmKkb2XSzTYKZV+KBR+KJWAILR9LwiAILQf23tu3//ee13bfyuVbRueKJX7n9t7vqtj+/66b/9KpeJ/fSk69aFSdWzTfk6lUvyvTkWHc/ufb/sV+13TsY3PB5x2mhotLfLuZR59tAOffmrY0x/RQMQ7/URERERERERE1G+YzQJefdWEU05x4qKLVKiujsyk+a++MmLsWBFPPeXAP//Z/xdb+aTITYQIZO3utTjuneNwSM4huPdv92LmsJlRHZ/6pquvVuKUUypltW1tbWUoGNEg4HK5sH379h4XuvQkLU3Ec8/txLnn5qGlRYVrr7Xg4YfjB0RAyuxRvQsFK0otwvdnf48hcUM6nbvuoOvQ4GjA/b/fH7Dtmt1rcMzbx+D7c76XPT4REQVnwgQJ778ferumJhW2bXOgoKD/f44lGsxeXPNiwOMzhs6IciVEFMjBB5uxfLmE556z4O67TWho6HyP+pZbdkOj6d1n23ZerxdlZWUwm83IyckZtEHNTqcPzc3yprtmZTEUjCgUHo8HVqsVdrsdLpcLb7xhxiOPpMPjMYfUT2mpDpLUtgAkEgoKnLLblpbqkZFhDVstXn/Xm6BsGnElFp5TiMOHHR628YhoYBMEAUlJSWhsbAx43utV4Msv4/Hqq6nYuVPb6XxTkwoLFzbh3/9OinSpRES9YnFaMOfdOWh2NceshsUVi2M2NhFRuCmVSiiVSuh0HYNd/hV4b7g9RFGCxeJFXZ2I+nof6ut9aGz0Y8wYBYxGI3w+HyRJ2vPl9/t7Pa+nN+FbkQwFa2lhkgQRDXBDlgc+rrZHtw6KqfZwqr0hVfuGTe09tn8YVfuxwIFVgUOrOn4fqM3+YVWdQ6z2Dabq2K49xEqxp9+Ox/Zev7ePjoFU+4dWBQqxaj+2f9CVSqXodL79+47hVwoA7V+0vyeftMsOBAOAm28WoGOuIQ1wDAUjIiIiIiIiIqJ+Z/ZsPTZu9OGyy+x47z1jRMZobFThzDNV+PhjO55/Xofk5P77wF+UwrfbeSj+qPwDR7xxBP6e93fce8S9mJY9LSZ1UN8QFxcnu63L1cXuVEQ0YNhsNuzcuTNs/eXlefD00+XYvTsRN9wwcBa+zBw2Ewa1AQ6vI+S2U7Km4JuzvkGyIbnLa+6bdR8aHA14ae1LAc//UPYD/vnhP/Hu3HdDHp+IiII3fbr8AOw//nAzFIyon1tVvSrg8WumXxPdQoioS0qlgCuuSMQZZ3hw443NePPNePh8bRO5//a3Vhx6qC3sY1qtVmzevBlpaWmDMjy/stIDQC+r7ZAh/ffePlEkSZIEt9u9JwDM7XZDFDs/T0pM9MLjCT3Zy25XoqpKg5wcTzjK7WT4cDfUagleb+i1lZTocPjh8kPBlEoltFot9Ho9TCYTdpfs7vJar+TFSe+fhOUXLMeo5FGyxySiwSU9PR1NTU0dwhYcDgU+/jgJr7+egtra7u8dPf+8CTfdJEGrHZyBskTU94mSiDM+OgNbGrfEtI5VVavg9DqhV8v7vElENBCoVAJSUzVITdXsdyaxx7aiKMLr9cLj8cDr9UIURYiiCJ/Pt+fXQGFivQnfiotjKBgRkTx+4IAudqcb8wHw5wXRLWcfewOo9g+k2jcgqvOx/QOrAh/vGDgVKMRq/8CpjqFQe4Ot2oOlVKquvt8bGtU2VscAqr0BVfuHWO0fdNX19/sHULX9vjuGUfUUWiUI7eFUDKmi2JIkP556Sn7c0aRJLsycyUQwGvgYCkZERERERERERP1SYqIS775rxCmnOHDZZWrU18tfNN2dDz80YskSL557zo2TTuqfC6tjFQrW7seyH/Fj2Y+YM2oO7jniHozPGB/Teig2BEGAWq2G1+sNua3f74fT6YRez4mYRANRc3Mzdu3aFfZ+jzzShPT0gRMIBgA6lQ6zhs/CF1u+CKnd34b/DZ+e/inMWnOP174450U0OBrwScknAc+/t+k9pBhS8NRxT4VUAxERBW/qVIPsxe1r1gDnnReBoogoKn7Z8QvcPnen41qlFrPyZsWgIiLqTkqKBq++qsGFF1px9dUCNmzQ48Ybuw6G6S2/34/a2lo0NTUhJycHBkP/vF8tR2WlF3JDwYYOjcyzA6L+RJIk2Gw22Gw2OJ1OuN1uSJIUVNvCQvmbdpSU6CIWCqZWAyNHurF5c+ivDaWlwS0SUSgUUKlU0Gq1MBgMiIuLgy7AlvPLdy3vth+Ly4LZ78zG8vOXdxvYT0TUThAExMfHo7m5GS0tAt59Nxlvv52M5ubglv/s3q3Bc89ZcM01PQc5EBHFwg3f34Dvt38f6zLglbxYUbUCM4fNjHUpRET9kkqlgkqlCnlOX0GBhMMPd6GuTkR9vQ9NTX40NrZ9WSwKNDe3fwloaVGipUVAS4sKLpcCOp2/5wFkYigYEbVrC6UKFDbVMbRq3/MKxf4hU50DqLoKpNr/mn1DpDoHVCn2CYLat469IVX7f69SKVDq/xavuWsD/n41+b/j6dfqYFCbOoVYtQdJ9RRa1R501VZf14FU+7dp+z0ypIpoMPrkEye2bZP/vPvaa4N7zkXU3zEUjIiIiIiIiIiI+rW5cw2YMUPEJZfY8cknxoiMUVurxsknq3HWWXY8/bQOCQn96+F/rEPB2n2x5Qt8seULnDbmNNw9824UphTGuiSKMqPRiObmZlltm5qaMGTIkPAWREQxV1dXh7q6urD3m5WVhaSkgRUI1m52/uyQQsFOLDwR757yLnSq4HfE+vj0j3H464djcfnigOefXvU0UgwpuHPmnUH3SUREwdPrlSgocGDjxtAnPq1fz9ALov5s4fKFAY9Pzpoc3UKIKCQHHWTGsmUSlixpQEpK6IH4ofJ6vfjmmyqsXp2Mf/87Hnp9/7pfLUdVlU9WO5XKj8xMTZirIerbvF4vrFYrbDYbXC4XvF4v/H75C2ZzcjzQ631wOkN/rSkp0eHII1tlj92TwkKXrFCwkpLO98kUCgU0Gg10Oh2MRiPi4uKgUvU8zb7aWo3ylvIer9vWtA0nvX8SfjjnB2hV2pBrJqLBJysrC088ocSzz6bB4Qj9NfjJJw244goJKlXoofNERJH08tqXsXDFwliXscfi8sUMBSMiijK1WkB2tg7Z2aG18/kk+Hyj4PV693yJoghRFOHz+fZ8SZIESZLg9/tDuifS2jrw77NS/9UW/tQxkKpj8FTHMKpAIVUdrwkmtCpQm84hVYKg6DCOStU2dueAqn1DrNqCrfYPkmrvd28fwQVSdRVStTc8a9++On6/f2iVILTdKxxIAVU+yYcJL9wNdDFN0+N3wDX6fVw47croFkZEg9qjj8p/nR061IPTT+dm8zQ4MBSMiIiIiIiIiIj6vbQ0FT7+WIVFi+y45hotmpoic9vr7beN+PVXD15+2Y1jjpG/K0W0+fzyFkxFyv9t+j98WPwhzh1/Lv49498Ynjg81iVRlCQlJckOBbPZbOEthohirqqqChaLJez95ubmwmw2h73fvuK4/OOCvnb+gfPx0pyXoBJCf2/0y7m/YMKLE7C+dn3A83f9dheSDcm4YuoVIfdNREQ9O+AAj6xQsE2bdPD5JCiVXPBJ1B/9Vv5bwOMXTrwwypUQUaiUSgEzZ6bB40lARUUFXC5XxMby+4H77svC2rVGvP++Gw8/bMUppyREbLy+oLpaXqBRUpIIlYqhqTQw+f1+7NzpwooVbiQl2TF0qBWiGP5NYpRKYNQoN9atC/3zSWlp8CH1chQWOgEkhtQmJcWLYcO8UKv1iIszwGQywWg0QhDkfYZaVrks6GuXVCzBhV9ciDdOfON/CwuJiLomCAJMJq2sQDAA2LFDizfesOD880N7nSQiiqQl5Utw2VeXxbqMDpZULIl1CUREFCSlUoBSqYFGE/omAKIodggTa2pqgtvt7nDN8OFuHHKIFS0tSrS0KNHcrITVqsRACgYKF4VibzhVW/hUx+87BlDte2z/4KmOQVb7BkgFDqTqHEDVMaCqY/+dQ6k6h1S1B1PtGx61d5z2gKq2MfcPqdo3SCrQ94ECqBQKf4cwqkDX7P+9ILQHVPHvIsnz1vq3sKFuQ7fXPLrsUVw65VJZ8wyJiEK1fLkLy5bJD/W6/HIPVCpuDEWDA38yExERERERERHRgHHOOUbMmiXi/PMd+PbbyIR2VVVpcOyxGlxwgR2PP66HydT3F1qLUvgXgfSW5Jfw+l+v4+31b+OCiRfg9hm3I8ucFeuyKMIMBgMUCkVIO/C183q9kCRJ9sIcIuo7JElCRUVF2MP+FAoF8vLyoNcP7N2fcuJzMC59XJdhXe2umXYNHj36UQgKea+bgiBgzUVrMOqpUdjRvCPgNVd+cyWS9cn45wH/lDUGERF1bcIECe++G3o7k8mHqio3hg41hr8oIoqo0oZStLhbOh0XFALOGndWDCoiIjk0Gg1GjhyJlpYWVFVVQZKksI/x5ZfxWLu27Wf9jh1azJ2rxTHHtOLJJ9XIzx+Yn4lra+UtdkpNFQEwFIz6P69Xwvr1Tqxc6cZffylQXKzG5s1aNDbqAeixYIEX110XuWdBhYVOWaFgJSWRfU0qLOw6gFGh8CM314OiIjfGjvVh4kQFpk7VYvhwPdpeF0xhqWFp5dKQrl+0fhFGJY/C7TNuD8v4RDSwXXttHJ58UpS9Kdrjj+swfz7D44mob9jZvBMn/9/J8EreWJfSwdLKpfD6vFAr+dmRiGggU6lUUKlU0Gq12LlzZ6dAMAA488wmnHlmU4dj27dr8M9/joDTKS+sd38zZrRi1Cg3BMEPrVYFg0HTRWhVe/CVAh1DsfaGVHUMsdp7TbChVe1BV+3hV10HUnVs0xa41X6/liFVRH2dS3Thjl/u6PG68pZyfLDpA84DJKKoeOghn+y28fEiLr00MmvFiPoihoIREREREREREdGAkpWlwldfKfHyy3bccIMOra3heRi/v5dfNuLHHz147TUJM2dGdqfz3uqLoWDtvJIXz61+Dq/99Roun3I57v3bvdCp+vafJ/WOVquFy9X1Qp3utLa2IiEhIbwFEVFUeb0SSkrKoFDIex3oiiAIGDlypKzdQPuj2fmzuw0Fu+eIe3DbYbdBoejd5DuVoMLGSzci78k81NprA15z1sdnIUmfhKNHHt2rsYiIqKPp03tegDRkiAdjxjhRVOTEmDFOjB7tRHy8BLU6GQBDwYj6m4eXPhzw+OiU0dyRmagfio+Ph9lsRk1NDZqamnpuECSrVcCjj2Z0Ov7tt3EYP96Hq65qwp13xkOvj8x98VjpXSgYUf/S2ipi+XI71qzxYf16AZs3a7Bliw5OpxFdvc+PZfhWd2pr1bBYlEhMlL+4ozujRrXVpdVKGDXKhaIiD8aNkzBpkhLTpxsRH68FoI3I2O2W7VoWcps7frkDI5NG4oyxZ0SgIiIaSOLiVFiwoAmPPpokq/2mTXp88kkz5s5NCG9hREQhsrqt+Me7/0CDoyHWpXTi8DqwdvdaTMueFutSiIgowlwuF8rKykLayGHECA/uvbcK//rX0LDU4HQqcd99gM8nwedzIi3NDLWawZREFDlPrXgKla2VQV378NKHccbYM3o955CIqDs7dnjxxRfyQ70WLHDBbA7Pxi9E/QG3/CAiIiIiIiIiogFHEBS46CIj1q+XMHOmI2Lj7NypwaxZWlx5pQ1OZ/ATBaLNJ0VmsUU4uUQXHl32KI59+1hI/r77Z0m9FxcXJ7ttc3Nz+Aohoqiz2UQcf7wNV16ZBjGMa3LVajUKCgoGTSAYABw/6vguzz197NO4fcbtYZucY9AYUHxZMeK18QHP++HH7HdmY2XVyrCMR0REbaZONUKj2fvZKCvLgyOPbMHVV9fghRd2YMmSzfj22y149NFKnH9+A6ZPtyM+vu16hyNyn4OJKHK+2vpVwONnHXBWlCshonARBAFZWVkYNWoU9PrwBPY8+2waGhsDLxJzOpV48MEkjBkj4qOPmsMyXl9RVycv5Cwtre/fG6fBzeVyoa6uDjt37kRpaSmuvroWiYlKHH10PG69NQnvvZeAdesMcDq7n+5dWqqD3x+5OuWGggFttYWbUqmEXq/H0KEJWLvWhtZWYP16A957LwG33pqEo4+OR3x85ENV3aIba3avkdV2/qfzsbRyaZgrIqKB6MYbTTCZ5L+nefhhBgwQUWxJfglnf3I2NtRtiHUpXVpSsSTWJRARUYQ1NTVh27ZtIQWCtTvqqFbMmxeeYMtVq4yoqtIjIyMDQ4YMYSAYEUWUxWnBfb/fF/T1f9b8iZ92/BTBioiIgEcecUMU5c1vVqslXHddZDeDIeprGApGREREREREREQDVm6uGj/9pMcTT9hgNEZm8Y8kKfD00yYceKAXS5fKXxQRSaIUxuSVCPt1569YVhn6rurUfyQlydvJGmC4AVF/VlvrwcyZbnz/fRx++y0O996bFZaFinq9Hvn5+VAq5S0O7q8Oyj4Ihw09rMMxpUKJt056C5dPvTzs4yUZkrDxso3QqwIvYvf5fTjstcNQ0lAS9rGJiAYrrVbA7bfvxvPP78TixZvx3Xdb8NhjlbjgggYcfLAdCQldf8b1eDxRrJSIwqHB0YAaW03Ac1dOuzLK1RBRuGk0GowYMQJDhw6FIMifsrllixbvvpvc43U7dmgxd24Cjj22FVu3OmWP15fk5zsxZYoNw4a5YTYHf68/LS2CKUlEIZAkCVarFbt378b27duxefNmbNy4Edu2bUNdXR1sNhu8Xi/S072QpNAXQjQ1qVBfH7kQrJEjXRAEef+eSkp6FwqmUqlgNBqRlpaGESNGoKioCKNHj8aIESOQlZWFCRNM0GhiMx1+7e618Pjkff5y+9w48b0TUWYpC3NVRDTQpKVpcNZZrbLbr1xpxHfftYSxIiKi0Nz+8+34vPTzWJfRrcXli2NdAhERRYgkSaisrER1dXWv+rnmmhpMmmQPS00vvOANSz9ERD25//f70exqDqnNQ388FJliiIgANDf7sGiR/M20Tj7ZiZwchqrS4BL5bZCIiIiIiIiIiIhiSBAUuOoqE4491oN58zxYtkz+TeTubNmixeGH+3HddTbcc48RGo283SsioT+FggGA1WONdQkUQSqVCoIgyNp1T5IkiKIIlYq3ton6k9JSB2bPFrB9u3HPsY8+SkJ6uheXXlovu9+4uDgMHTo0HCX2OwqFAu+e8i6u/+F6/FHxB4bGD8UDf38Ahw49NGJjZsdlY81Fa3Dg8wfCI3Ve7OjxeTDpxUkovaIU2XHZEauDiGgwOeMMB9xud8jtfD4fJEnqVegIEUXX48seD3h8aPxQmDSmKFdDRJESFxeHwsJC1NbWorGxMaS2fj/w3/9mwecL/r7zt9/GYfx4H666qgl33hkPvb7/Bmpffnldh++dTgUaG1VoaFChoUGNhoa2QKTGxrZf248NGRL6PUii3hJFEa2trbDb7XC5XPB6vUHfDy8okB/kV1KiQ1qaTXb77uh0fgwf7sb27aEHfJWUBPdcTqFQQK1WQ6fTwWQywWQyQaPRhDxeNC2tXNqr9vWOesx+ZzaWnb8MCbqE8BRFRAPSLbfo8frrEtxuefd6HnpIwNFHh7koIqIgvLPhHdz/+/2xLqNHv1f8DskvQVDwnjoR0UAiiiK2b98Or7f3IVwqFfDII5U47bQRqK/vXRDFRx+Z8MQTUsxCzolocKhoqcCTK54Mud0PZT/gr5q/cGDGgeEviogGvaefdsJqlT8H5sYbuYaEBh/+rSciIiIiIiIiokEhP1+DJUv8eOQRO+66Sw+XK/wP1EVRgYceMuHrr1144w0FJk7Uhn0MOfpTKFiGKQNTh0yNdRkUYQaDATabvMVJTU1NSEtLC3NFRBQpy5ZZceKJOtTVdZ4Q9+yz6UhLE3HKKZaQ+01OTkZmZmY4Suy3hsQNwbunvBvVMUenjsbiBYtxyKuHwOf3dTrv8Dow9tmx2HH1DiTqE6NaGxHRQKTX62WFggGA0+mE0Wjs+UIi6hP+r/j/Ah4/seDE6BZCRBEnCAIyMzORnJyMyspKOJ3BBQB99VU81q4N/We706nEgw8m4YMPXPjppyYMG5Yach+xFihMSa/3Izvbi+xsL4Cu/wxTUlIiWBkR4HK5YLVaYbfb4Xa7IYoi/H6/7P7y8jxQqyV4vaE/wyot1WPGjMiEggFAQYFLVihYaWnnNoIgQKvVQq/Xw2g0wmw298tQ42W7lvW6j5KGEsz9v7n45qxvoFZyd3siCiw3V4e5c5vx9tsJIbdVKPxQKiU0NrYgOTk+/MUREXVhZdVKnPfZebEuIygWlwWb6jbhgPQDYl0KERGFidVqRUVFRa/u0+wvJUXEI49U4tprh+Lhh6249lozWltDX6JfX6/Ge+9ZcO65nFdDRJFz5693wu2TN9/k4aUP4+2T3w5zRUQ02Hm9fjz3nPz1VYcf7sDEiYYwVkTUP/S/J6hEREREREREREQyKZUK3HSTEatXi5g40RWxcTZu1GH6dDX+/W8bRDF8kwrkChTa0RdlmDLw+RmfI0mfFOtSKMISEhJkt21tbQ1fIUQUUZ991oyjjzYEDARrd889WfjtN3NI/WZkZAz6QLBYmpY9DV/88wsooAh4vsXdgtHPjIbD44hyZUREA4/ZHNrPyH3xfTNR/+EW3djetD3guesPvj7K1RBRtGg0GowYMQJDhw7tMQjHZhPw6KMZvRpv7FgnbLZalJSUwG6396qvaBNF+ZteaDSaMFZCg5koSvjrLxteesmCb7+txObNm7Fx40Zs27YNtbW1sNls8Hq9vV5oqlb7MXKkvIVaJSWhB3aForAw9OdqOTlu5Od7YDAYkZqairy8PBQVFaGoqAgjRoxAVlYW4uPj+2UgmN/vx9LKpWHp66cdP+Gyry4L60JlIhp4br1VA6Uy+NcJlcqPE0+04NNPt+KxxyrR0FATweqIiDqS/BIWfLZAdghBLCwuXxzrEoiIKExqampQXl4ekc/ZkyY5sXmzG+edl4gTTpAXzj59ug0KBZ/lElHkbKjdgDf+ekN2+/c3vo/y5vIwVkREBLz1lhPV1fI3R7n++sBzlokGuv73FJWIiIiIiIiIiKiXxozRYMUKLe66yw6NRorIGF6vgHvuMWHqVDc2bfJEZIxgiZL8RVPRclz+cVh/yXpMGTIl1qVQFMTFxclu63b3n0mjRIPZiy9acOqpcbBald1e5/MpcP31OVi/Xh9Uvzk5OUhJSQlHidQLx+Yfi0UnL+ryfK29Fgc8d0C/eA9CRNSX9SYUzOFgOCNRf/HimhfhR+eFKcn6ZOTE58SgIiKKpri4OBQWFiI5ObnLa559Ng0NDfInSJtMPlx7bVsIhCiK2LFjB3bu3Amfr39sJuFyyd/gQ6uVv9s0DV42m4hffrHioYeacPbZzZg40YH4eD8mTDDhoosS8emn2oj++ykokPd3vrQ00qFgzi7PqdUSioqcmDu3BXff3YQvv2xBfb0HFRVafP11HPLyhiM9PR0Gg6FfBoAFUtFSgd223WHr7+U/X8YjSx8JW39ENPAUFRlw/PE9BwfodBLOOqsBX3+9BffcU4W8vLa5Cl6vt9+FwxJR/7WuZh2K64tjXUZIFlcwFIyIqL+TJAllZWVoaGiISP8ajQYFBQVISzMCAC68MPh7HGlpXlx8cR2++aYUL720ExMmWOF0dn2vhYioN27+6eaAz5+D5fP78Pjyx8NYERENdpLkx8KF8p8PFRa6cdxxkX0ORtRXqWJdABERERERERERUSyoVArceacR//iHG+ee68fGjZG5SfznnzpMnizhzjvtuOEGA5TK6O9Q0ZcDOdSCGg8d+RCunnY1FAru3jFYCIIAtVoNr9cbclu/3w+n0wm9PrgAISKKvrvvbsLddyfC7w/udd3lEnD55blYtKgMw4YFDtJUKBQYNmwYjEZjOEulXjjrgLPQ5GjCVd9eFfB8WXMZJr04CX9e9OeAWexJRBRtgiBAoVDI2sWaYbpE/ccb6wLv0nxk3pFRroSIYkUQBGRmZiI5ORmVlZUdFoNt3arFO+90HRgWjCuuqEVKSscAI5vNhs2bNyMtLQ1paWm96j/SevO+hqFg1JOqKjeWL3fizz8lbNigxObNWpSVaeHzdR3QG53wrcSQ21VUaGC3CzAaI7MZTntYWXy8iMJCN8aM8WDcOD+mTFFj0iQjtFo9gMFz335p5dKw93nTjzdhRNIInDz65LD3TUQDw623KvHZZ4HPmc0+nHFGI84+uxFJSYHDK6urq5Gfnx/BComI2sRp5W8UFytLypfA7/dz7hIRUT/lcrlQVlYGSYrMfZH4+HhkZ2d3+Dlx2GFxGDPGiU2bAt8PUan8mDmzFSefbMHBB9ug3G9fxdraWgwbNiwi9RLR4PXrzl/x9dave93PS2tfwh0z7kCyoXfPqIiIAOCHH1xBbx4dyNVXixAEPvelwYkz8ImIiIiIiIiIaFCbMEGLNWu0uOkmG1Qq+bvidMflEnDLLUYcdpgLW7YEDjuJJJ8UuR3reyM/KR/LL1iOa6Zfw0l1g1Bvgn2amprCWAkRhYsoSrjoIgvuuisp6ECwds3NKlxyyTA0NHTez0YQBOTn5zMQrA+6ctqVuHPGnV2eX1+7HrPenBXFioiIBh6NRiOrnSRJEZv0TkThI0kS1tWuC3juXwf/K8rVEFGsaTQajBgxAkOHDoUgCPD7gf/+Nws+n/x7p6NGOXH66V3fS6urq0NJSQnsdrvsMSJNzsYC7VQq7ptLbSRJgs1mw+7du1FWVobNmzfjvPPqkZ2txdy5Cfjvf5Pw+efx2LpV1+O/uZKSyIaCtYdvhcrvV2DLlvDXplKpYDQaMWpUIkpLHWhsFLB8uRGvvJKIq69OwsEHm6HVDr7p6Mt2LQt7n374cfbHZ2NV1aqw901EA8PUqSbMmmXtcCw52YtrrqnB99+X4qqr6roMBAPawlb3DaAlIoqUEUkjcMbYM2JdRkh223Zju2V7rMsgIiIZfvihBZ99titiz0azs7ORk5MTcI7rmWd2fn89fLgL//rXbvz4Ywkef7wShx3WORAMaNu4gc9ziSic/H4/bvrxprD05fA68Nzq58LSFxHRI4/IX6eVlubF/PmDZ1Maov0NvqewRERERERERERE+9FoFHjgARMWL3ajoMAdsXGWLdNjwgQlnnjCDkmKTABZIKIkRm2sYM0/cD7WXrwWEzMnxroUipGkpCTZbW02WxgrIaJwcDp9OPlkG156KVF2H1VVGlx2WS7s9r2Pr1QqFUaNGiU7EIUi764j7sJlUy7r8vyv5b/ilPdPiWJFREQDi14vf1KTw+EIYyVEFAmflX4W8L6NUW3E5KzJMaiIiPqCuLg4FBYWwu1ORWVl7z4P33bbbvSUiyWKInbs2IGdO3dCFPvevWS5oWDciGLwEkURzc3N2LVrF7Zu3Yri4mIUFxdj586daGxshMPhgM/nQ3a2vE1camo0aG4OsJIzTOSGggG9CyxTKBTQaDSIi4tDRkYGRo0ahbFjx6KwsBDDhw//3zEDlEpOPQeApZVLI9KvU3TiH+/9AxUtFRHpn4j6v5tuagsNGDLEg9tuq8a3327B+ec3wGQKLkyguro6kuUREe3xxolv4LnZz+HQoYdCq9TGupygLC5fHOsSiIgoBD6fhPvua8Ls2WZcd93QsN+vUSqVyM/PR0JCQpfXXHihCTqdBL1ewoknWvDmm2X47LNtmD+/EcnJPW/my81RiSicPiz+ECurVoatv6dWPgWnl+HiRNQ7Gzd68NNP8ue/XXyxGzodn03R4MW//URERERERERERP9z0EE6/PmnGldeaYMgRCa0y+FQ4pprjJg1y4mdO+UtZgpVXwoFM2vMePvkt/HaCa/BpDHFuhyKIYPBIHthntfr5S55RH2Ix+PBu+9W4ssvzb3ua/NmPa69dii8XgW0Wi1GjRoFVU+rlynmnjnuGZxadGqX5z8u+RiXfHFJFCsiIho4zGb5P1+tVmsYKyGiSHhm1TMBjx+cc3CUKyGivkYQBEyenI6SEuCiiyxQqUK/X/2Pf1gwcWLwIaE2mw0lJSWoq6sLeaxIkhtUxlCwwcHtdqO+vh7l5eUoLS3Fpk2bUFJSgl27dqG5uRlut7vLe8mFhfLDt0pL5Ydv9cRsljBkiLzAsmDrEgQBOp0OiYmJyM7OxujRozFmzBiMGjUKQ4cORUpKCkP6u2H32PFXzV8R67/GVoPj3zkere7WiI1BRP3XkUfG44UXyvHFF1twxhlN0OlCe5/odDrh8cj7OUNEFAqNUoNLJl+CJQuWoOXmFiw9byke+vtDOKHgBKQYUmJdXkBLKpbEugQiIgpSa6uIU06x4rbbkuD1Cqiu1uDmm7Ph6zmHKygGgwEFBQXQarsPtkxN1eD553fh559LcM89VZgwwYFQbks2Njb2slIiojZenxe3/nxrWPuss9fhzXVvhrVPIhp8HnrIC79f3nNbg8GHq6+WHyhGNBAwFIyIiIiIiIiIiGgfer2AJ5804eef3Rg+PHKTYX/91YDx4wW88IIdkhSZALJ2fSUUbOqQqfjrkr9w5gFnxroU6iN6mjTTndZWLoYh6gucTie2bt2KqVNtuOmm3WHpc9kyE/78MwUjRoyAIPBRVn/xf6f+H2YNn9Xl+RfWvoDbfr4tihUREQ0MvQkFcziCDwEhothYtmtZwOOXT7k8ypUQUV+VmKjGCy8kYvlyBw46yBZ0O5PJh2uvrZE1Zl1dHUpKSmC322W1Dze5oWBKpTLMlVAsSZIEu92OmpoalJWVoaSkBBs3bsTWrVtRW1sLq9UKr9cLvz/45y35+S7ZG8SUlEQuFAwACgudstoFqkulUsFoNCIlJQXDhw9HUVERioqKMHLkSAwZMgQJCQn89xKi1dWr4fOHaZVxFzbUbcAZH57RZ57xEVHfctJJBqjV8ttXVVWFrxgioiBoVVoclHMQbjjkBnx6xqeova4GK0/7GvdMvgcnDTsJw0zDYl0iAGBx+eJYl0BEREFYt86GKVNEfPZZfIfjf/xhxvPPp/W6/7S0NOTl5QU9Z2n2bANMJnkbnHq9Xob2ElFYvLT2JWxr2hb2fh9Z9gh8UmTvhRLRwLV7t4j/+z/5oV5nnulCcjKfYdHgxpUUREREREREREREARx+uA4bNqhw0UU2KBSRCe1qbVXikkuMOO44J6qrIzepP9ILE4Jx0yE34fcFvyMvMS/WpVAfEhcXJ6udJAE7djAUjCjWrFYrtm/fvmex5VlnNWHBgvpe9alS+fHEE00477x0BoL1Q9+f/T0mZkzs8vx9S+7DwuULo1cQEdEAIAiC7J+Jbrc7zNUQUTitqloFh7dzeJ9aUGPOqDkxqIiI+rJJk4xYssSAF16wID3d2+P1l19eh5QU+feFRVHEjh07sGPHDtmhXOHi88n7fTDkqP9yOn1YssSKxx5rwjffVKC4uBjFxcXYsWMHGhoa4HA4wvL3Uq/3IzdX3nvm0tJIh4K5QrpepfKjoMCJsWM9MJvNSE9Px6hRozB27FgUFhZi+PDhyMjIgNFo5D23MFhauTQq43yz7Rtc++21URmLiPqX5ORkKBQK2e3tdnvM3+MR0eDltuxEeXkZ9L4cnJh7Iv4z6T/44ugv8Nvxv+GJg57AglELcGDygVALvUg/lKnMUoaqVgYnEhH1ZW++acFhh+mxZUvgezPPP5+GxYtNsvpWKBQYPnw40tJCCxZLSkqSNV67mhp5mzsQEbWzuq24+7e7I9L3tqZt+Kz0s4j0TUQD38KFLrjd8p5LCYIfN9wQ/XsDRH2NKtYFEBERERERERER9VVGo4AXXjDh5JOduOACJXbt0kRknO++M2DsWBELF9px7rnGsPcfy13E043pWHTSIhw54siY1UB9V1JSEurq6oK6tq5OhWXLTFi61ITly00YNcqFZcsiXCARdampqQnV1dWdjl9zTS3q6tT46quEkPs0GHx4/XUrTj21d5PlKHYEQcCKC1dg9DOju9x58NrvrkWSPgnnjj83ytUREfVfarVaVsCXJEmQJImL/on6qEeXPRrw+Lj0cfx3S0QBKZUCLrooEaee6sXNN1vw6qvxEMXOrxf5+S6ccUZjWMa02+0oKSlBWlpayIvhwqU9jDxUKhWnx/YHdXUeLFvmwNq1EjZsUKK4WIPt27UQRTMA4OqrPbjgAili4xcWurBjR+gBXyUl8nc1D0Z3oWBmsw+FhS4UFXkxbpyEKVPUmDhRD6NRD0APICGitRGwbFf0Hk48vepp5Cfn46ppV0VtTCLq+wRBQHJyMhoaGmT3UV1djaFDh4axKiKi7kleB+prKtHQKgb8nJekTcLfsv6Gv2X9DQDg9rlRbCnG2sa1WF2/Gr/X/h6VOpdULMEZY8+IylhERBQ8r1fCNde04NlnE3u89uabc/D++9uQk9Pz5grtNBoN8vLyZN1TFAQBJpMJNpst5LZA26aMRES98diyx1BnD24uthwP/vEgTio8qVcB5UQ0+DgcEl5+Wf4mO8cd58CoUeFfW0XU33DWAxERERERERERUQ+OPlqPjRt9uPJKGxYtkreLWE8sFhXmzVPhk0/seOEFLdLSwnfrLlahYMeMPAZvnPgG0oyxWSxGfZ9KpYIgCJCkzou6nE4F1q41YunStiCwbds6PhRas8aA1lYRcXG8zU0UbTU1NV0uNBEE4J57qtDYqMLy5cH/zExO9uLjj12YMSMhTFVSrKgEFTZcugF5T+Rht213wGvmfzofSbokHF9wfJSrIyLqnwwGg6xQMKAtyMNsNoe5IiIKhx/Lfgx4/LwJ50W5EiLqbxIT1XjhhURcfLENV14JLF3a8fP3bbdVI9x5WHV1dWhqakJOTg6MxuhOvpYbCqZWc+fovsTnk7B1qwsrVrjx55/Axo0qlJRoUVWlAdD1hiyRDt8qKHDhm29Cb7djhxZutwJarby/nz1pDwXLzPRg9Gg3xowRceCBwLRpWhQW6qBUchFErPj9/qiGggFtIft5iXk4fhTvpRHRXmlpaWhsbJT9Xqm1tRU+nw9KpTLMlRERdWarLUF1iwIeT/DhLFqlFhNSJmBCygSY1eaohYItLl/MUDAioj5m1y4XTj9dxNKlPQeCAYDVqsR11w3FokVl0Ol6fr8cHx+P7OzsXoXdpKenyw4F8/v9aG5uRkJCguzxiWjwqrXV4uGlD0d0jJVVK7GkYglm5M6I6DhENLC8+KITTU3yn2fdcAPvWxIBALeVJCIiIiIiIiIiCkJ8vBJvvmnCJ584kJER/CS1UH36qRFjx/rxwQeOsPXp8/vC1lcw1IIajx31GL468ysGglGPDAYDAECSgJISHV57LQUXXjgMhx46GpdcMgxvvpnSKRAMALxeAV9/LW8iDRHJV1lZ2ePO82q1H48/XoHCQmdQfebmuvHbb17MmMHAkoFCp9Kh+PJiJOoCT8j0w48T3z8Rf1T8EeXKiIj6J5NJfjg1d5Ym6pvKm8vR6GzsdFwBBS6YcEEMKiKi/mjiRBMWLzbgxRctSE9vu2c9Z44FkyaF797yvkRRxI4dO7Bjxw6IYnQ2oujNOBpN10FTFFmSJKGlpQVVVVXYtm0biouL8c9/NmP0aAPmz0/EE08k4qefzP8LBOteaan8HcSDMXq0S1Y7UVRg+3ZtWGtRKBRQq9Uwm80YNy4J1dVuVFdr8NNPZjz5ZCLOOy8RY8YYoFRy6ncsbWvahgZH9/dHw03ySzjjwzPwV81fUR2XiPo2QRB6HRqwe3fgjT2IiMLFa61F5c5t2FkvhhQItr9fq38NePyY7GOwcPpCzMufh3FJ46BS9D4he0nFkl73QURE4fPDDy2YMkXotDFCT0pK9Pjvf7PQU4ZudnY2cnJyehUIBgB6vR6qXuzUUF9f36vxiWjw+s9v/4Hda4/4OJEOHiOigcXn8+Opp+Rv4DRlihMzZkT2GSFRfxHm/eCIiIiIiIiIiIgGthNPNOCww3y45BI7PvwwMjux19ercdppapx+uh3PPadDYmLvdrkQpegs0AKAkUkj8d4p72FS1qSojUn9m0KRgJtvTsCyZSY0NYV2y/r774EzuEErUVRIkoSdO3fC4QhuYbHJJOHZZ8txzjl53S7wHDfOga++EpCdbQhXqdRHJOgSsPHSjRj19KiAE498fh+OeOMI/HnxnxiTNiYGFRIR9R9ms/zgTKczuJBOIoquR5Y9EvD4yKSR0KgYYkNEwVMqBVx4YSJOO03E7bc34ZRT6iI+pt1uR0lJCRobM3H44ckRHcvtdstuy1Cw6PB4PLBarbDb7XC5XPB6vfAHWG05fLi8/5fl5Ro4HAIMBqm3pQY0apT898ulpToUFckLFRMEAWq1Gnq9HiaTCSaTqVcLRyl6llYujcm4dq8dx79zPFZeuBJZ5qyY1EBEfU9mZiYsFovs9s3NzcjKyoIgMHCSiMLL7xPRVLsNtc0SJKn37+WLm4sDHv9H7j9wWMZhmDVkFgDA5XNhk2UT/mz8E382/Im/Gv9Cq7c1pLEsTvmvq0REFD4+n4QHH2zGnXcmQBTlvV/99NNEjB/vwNy5nV/blUol8vLyoNWGL/Q9MTFRdriX2+2GKIq8P0REIdnauBUvrn0xKmN9ueVLbKrbxHl+RBSUjz92oqxM/rzwa6/tIdmVaBDh3XsiIiIiIiIiIqIQJScr8cEHRrz7rgMpKZEL3Hr/fSPGjpXw5Ze9W8QdrVCweePnYe1FaxkIRiEZMiROViAYACxZwh1giKJBkiRs27Yt6ECwdqmpIp57bicSEgL/HJo504olSzTIzua/5YEqKy4Lf178J7TKwJMovZIXU16agoqWiihXRkTUvwiCIHtxZm+CNIgocj4r+Szg8VPHnBrlSohooIiPV+Gpp5IwadIQKJW922QiGOvW6TFzZjL+/ncriotDu18Qit68l9HpeL8hnCRJgt1uR01NDXbs2IGSkhJs3LgRW7Zswe7du9Ha2gqPxxMwEAwACgvlPefw+xXYsiV8izP3l5LiQ2qqV1bbzZv1QV2nVCphMBiQnJyM3NxcFBUVoaioCPn5+cjOzkZCQgIXfPYjy3Yti9nYVdYqzHl3DuyezgH8RDQ4CYKAuLi4XvVRW1sbpmqIiNo4G7ejbMcO7G4SwxIIJkkSmtxNnY4roMAhaYd0OKZT6jApZRIuKLgAzxzyDJbMWYJPj/wUd028C6eOPBEjEvJ6HG98xvhe10xERL0jiiKKi7fhzTf1sgPB2t13XyY2bux4D8dgMKCgoCCsgWAAkJqa2qv2dXWR3/CBiAaW236+Laobh3e18RUR0f4ee0whu+2wYR6cdlpwz+CIBgOGghEREREREREREcl0xhkGbNgAzJkTucn31dVqzJmjx4IFdlit8ibLRfqBn0ljwlsnvYXXT3wdZq05omPRwKNSCTjkEHkLB7dt02Hbtt6F5hFR90RRRGlpKTwej6z2w4d78PTT5dDpOv4MO+20Znz3nRFxcVzwONDlJ+fj9/N+h1IReFG6U3TigOcOQIOjIcqVERH1LxqNRlY7SZLCsvCKiMKn1dWKytbKgOf+Nf1fUa6GiAYas9mMgoICJCcnR2wMnw/473+zAAA//WTGxIk6/OtfFths4b8PLfd+BACo1eowVjK4SJKElpYWVFVVYdu2bSguLkZxcTF27NiBhoYG2O12iGJo/78LClyy6yktjezEf7m1lZZ2DJ5TKBRQq9Uwm81IT0/HyJEjMXbsWIwePRp5eXnIzMyE2WyWHfhLfcPSyqUxHX/t7rU46+Oz4JN8Ma2DiPqOrKysXrVvamrivSMiCgufuwW7K7Zg+24nnK7wbVbxR90f8KNz+HCSNqnH99aCQsCIuBE4Zfgp+Pf4e/DVMV9j67mL8dFpH+Ha6ddi6pCpUAl7n1cXJBfg8aMfD1vtREQUOqvVitLSUigUHjz+eCXM5t59/vV6BVx3XQ4slrY5K2lpacjLy4vI/RlBEKDXy7+P1dzcHL5iiGjAW1m1Eh8UfxDVMd9e/zaqWquiOiYR9T9Ll7qwfLn890SXXeaBUik/VIxooOGTZSIiIiIiIiIiol7IyFDh88+NePVVB+LjIxe+9frrRowdK+LHH0MPQIrkwoApWVPw18V/4axxZ0VsDBr4Zs2S/2/n888ZCkYUKS6XC6WlpfD5evdzZPx4Jx56qBKC0DZZ++qrLXjnnThoNHxMNVhMzpqM787+DoIi8P/zVncrip4pgsMjLySSiGgw6M0Ecrs9ckHWRBS6p1Y+FfB4pikTSYakKFdDRAORIAjIzMxEYWEhDAZD2Pv/8MMkbN68972J2y3gsccSUVTkw7vvNod1LK/XK7stg5eC09DgwVdfteA//2nCN9/sxKZNm1BcXIzKykpYLBa4XK6wBIXExUkYMkReyNvmzbqeL+qFwsLQQsEMBh8mTHBg0iQ34uPjMWTIEBQWFmLMmDEoKChAbm4uUlNTodNFtm6KvlZ3KzbWbYx1Gfis9DPc9ONNsS6DiPoIlUoFk8kku73f70dDAzftICL5/JKE1prN2LpjNxpb5Qc7d+X7Xd8HPF6UUBRyX16vFy57Iibrx+HBg2/AigtWoOXmFiw/fzmWnb8M6y9dj1HJo3pbMhERyVRTU4Py8nL4/W3zi3JyPLj//l297nf3bg1eeCENw4cPR1paWq/7605v+pckCTabLYzVENFA5ff7ceMPN0Z9XK/kxRMrnoj6uETUvzz8sPw55wkJIi69NPzPt4n6M856ICIiIiIiIiIiCoMFCwzYsMGPv/89cmEWFRUaHHWUDpdcYoPDEfwiHFGKTFjZjQffiN/P+x0jkkZEpH8aPObMkR9w8PPPqp4vIqKQ2Ww2bNu2bc9Eu9464ggr7rijGg880ISFCxOhVPIR1WAzK28W3jvlvS7P1zvqUfRsUcTetxAR9Xdms1l2W6vVGsZKiKi33tnwTsDjs/NnR7kSIhroVCoV8vLykJubC6VSGZY+LRYlnnwy8MK2ykotzjwzAX//uxXFxeG5Ty43FEyh4O7R+/P5JGzb5sRbb1lw/fVNOOaYVgwd6kZqqgbHHx+PO+9Mwi+/aMN2LyiQgoLQwrfalZZGNlyroKDrjSfS0ryYMcOGSy+14IUXLFi71oaWFgXWrjXgxReTkJOTg8TERKhUvE89GKzYtQJ+RO7fSCgeXfYoXlj9QqzLIKI+Iisrq1ftGQpGRHJ5WnehorwMFQ0+iGJknvGtbVgb8PjMrJmy+2y1ubC10oLGqhLoBQ2mZU/D9Ozp0Cg1svskIiL5JElCWVlZwPelhx9uxYUX1vWq/5NPbsFzz8XDaDT2qp9gmM3mXm1WUFfXu98rEQ0O32z7Br+V/xaTsZ9f/TxaXC0xGZuI+r7t2z344gv5oV4LFrhgMnF+OdG++BSaiIiIiIiIiIgoTHJy1PjuOxWef96Om2/WwWoNz0Krffn9Crzwggk//ujGa6/5cdhhPS+GCXe4RroxHW+e9CaOGnFUWPulwSsvT4/8fBe2bg19cdfSpQaIogSVig+AiMKlubkZu3b1fqfN/V16qQrp6Ulh75f6j1PHnIrnnM/h0q8uDXi+vKUcE56fgHWXrOvVJEkiooHIZDLJbutwRC68mohCI0oiShpLAp678ZDo7+ZMRIOD2WxGQUEB6urqeh348MQT6Wht7X7a6U8/mTFxooTLLrPgP/8xw2SSP01V7qLycIWg9Vcej4S//nJg1Sov1q0DNm5Uo6REB4tFD6DrDRoiHb5VWOjEzz/Hhdxu61YdRBGIVO5WYaELguDHsGFujB7twdixIiZOFDB9ug5Dh+oAqCMzMPU7y3Yti3UJHVz+9eUYnjicz+uICBqNBgaDQfY9IEmS0NTUhKQkPsMhouD4fR407C5DXYsvosHCAFDtqA54/Ljs43rVryRJ2G2RYHHuwJAEBfQpI3vVHxERyeNyuVBWVgZJ6nqT3Msvr8PGjQYsWxba81K1WsI99zTjhhsSIQjR20QgISEBTU1Nsto6HA5IksQ5M0TUJZ/kw00/3hSz8a0eK15c8yJuOOSGmNVARH3Xww974PPJC9zWaCT861+RfVZJ1B/xkwEREREREREREVEYCYICl11mxJ9/+nDooV3vLt9b27drccQRWlx3nQ0uV9cTIgDA5/eFbdyjRxyNdZes4wIDCrsZM+T9e7FYVPjjD3uYqyEavOrq6iISCJaVlYX09PSw90v9zyWTL8G9R9zb5fmN9Rtx+OuHR7EiIqL+QRAEWZO/3W4FSgLnDxFRDCxatwiSv/N9nHhtPPKT82NQERENFoIgICMjA4WFhTAY5O3OvH69Hh99FFxQhNst4PHHE1FU5MPbb1tkjQeg28WA3VEoorfIry9oaWlBRUUFtmzZgk2bNuGkk1oxbZoJV1yRiJdeSsSyZSZYLD0napWURHaifUGBS1Y7t1tAebk2rLUIggCtVov4+HhMn54Ci8WH7dt1+PLLODzwQBJOOy3hf4FgRHstrVwa6xI68Pl9OPWDU7GpblOsSyGiPiArK6tX7Wtra8NUCRENdI76LdhWthO1zWLEA8HKWssg+juHRRtVRpg08jfS2JfL5cb2GheqK7bA52oOS59ERBScpqYmbNu2rcd7gEol8OCDlcjM9ATdd2amB999Z8dNNyVFNRAMANLS0nrVvr6+PkyVENFA9Nb6t7CxbmNMa1i4YiHcojumNRBR32Ox+PD2211vTtSTU05xYsiQCO0QRNSPMRSMiIiIiIiIiIgoAkaM0OC333R49FE79Hp5C5d64vMp8PjjJkyY4MWqVV0/XBOlzhPkQqUW1HjkyEfw9VlfI93EUBcKv6OOkj/55ptvvGGshGjwqqqqQl1dXdj7zc3N5e7y1MFtM27DNdOu6fL875W/44R3T4heQURE/YRG0/1Oih6PAps26fB//5eIu+7KwmmnjcD06UU4/fThEMXIfC6lgcnlcmH58uV45plnsGDBAhxwwAFQqVRQKBQhf73++uux/u30KS+vfXnvN80AigH8BGjf1SIlJUXWn/GwYcNi85shon5JpVIhLy8Pubm5UCqVQbfz+YD//jf0oInKSi3OPjsRs2ZZsXmzI+T2Pp+8DS/khKn2Z/X19WhtbYXH44Hf70d+vrzwrbIyHTyeyC2SLCyUVxfQu8AypVIJvV6P5ORk5ObmoqioCEVFRcjPz0dOTg5SUpIQF8dFBtQ9yS9h+a7lsS6jk1Z3K2a/Mxu1Nob5EA12Op0OWq38EE2fz4eWlpYwVkREA43oaEJV+VaU1XrgdgcfytIbX1R8EfB4njkv7GM1tXqwdWcNWnZvhl9mQDUREQVHkiRUVlaiuro66DaJiT489lgl1OqeX6MPOcSGVav8OOIIc2/KlE2lUvXqvbnFIn+TBSIa2FyiC3f8ckesy0C1tRrvbHgn1mUQUR/z9NNO2GzBP3/e34038lkdUSD8l0FERERERERERBQhgqDAddcZcdxxHsyb58PKlfJ3vuhOSYkWBx8s4YYbbLj7biPU6o6LdnobCjYyaSTePeVdTM6a3Kt+iLpz7LEmaDQSPJ7QF+z9+qv8STRE1DbZrqKiAjabLaz9KhQK5OXlQa+PzM8/6t8eP+Zx1Dvq8faGtwOe/3zL5zjvs/Pw6gmvRrkyIqK+y2AwwOVqC1LwehXYulWL4mI9Nm3So7hYjy1btBDFzu+nRVGJdevsmDTJGO2SqR9wu91Yv349Vq9ejTVr1mD16tXYtGkTRLH3AeO0V1VVFVavXo0Vi1YAVQCqAeyTjVOH8IfzEhF1x2w2o6CgAHV1dWhoaOjx+o8+SkRxsfzP97/+asLGjduh0ymRk5MDlSq4qat+v1/WeD2FqfZ1Ui8XoMsN3xJFBbZv12L0aPnhXd3JzPQiLk5Ea2voU5dLS3WYPbvnoBK1Wg2tVguDwQCz2cz7UhQ2m+s3o8XdN8NyylvKccJ7J+CXeb9Ar+bfeaLBLCsrCzt27JDdvqamBvHx8WGsiIgGAr8kobm2FDXN8oOb5VpeFziU9aC0gyIyniiKqGwETM4yZCVroIkfGpFxiIgGM1EUsX37dni9oW8COnasEzffvBv33DOky2uuvNKCRx+Nh1od200DUlNTsWvXLlltRVGEy+WCTic/JJ+IBqanVjyFytbKWJcBAHhk2SOYd+A8CIrBtUkLEQXm8fjx3HPy13MccYQDBx5oCGNFRAMHQ8GIiIiIiIiIiIgirLBQg6VL/bj/fhvuvdcAtzv8D8BEUcD995vw9dcuvPmmgHHj9i566k0o2DnjzsEzxz0DszY2u6bR4GE2qzBpkg3LlplCbrt2rR4tLSLi43nLmyhUoiihrGw7PB53WPsVBAEjR47s94twKbLeOvktNDoa8e32bwOef+2v15BqSMWDRz4Y5cqIiPomhcKMe+5pCwIrLdXB6w3+s+WyZR6GghG8Xi82bNiA1atX7wkB27Bhg6yFF9S1mpqaPX/G7X/ONTU1sS6LiKgTQRCQkZGBlJQUVFRUwOFwBLzOYlHiiSfSezXWaac1YfRoF+x2oKSkBKmpqUhP775Pn0+C3w8oFN1eFlB/uh8hiiJaW1tht9vhdDrh9XpRVlbWqz7lhoIBQEmJLmKhYApFW20rV4Z+D7ikpGPQkUKhgFqthl6vh9FoRFxcXNBhc0RyLNu1LNYldGtF1QrM+3Qe3pv7HhfiEQ1iRqMRGo0GHo9HVvvycgCwoaAg9J/VRDQwuS07UW3xwu6IbhhYuzJr4M9G/8j9R0THtTlc2Op0I81aiuSMYRBU3KiOiCgcrFYrKioqZG8EAACnnmrBunUGfP55YofjZrMPzz9vxZlnJnbRMroSEhJQVVUl+/daU1ODYcOGhbcoIurXmpxNuO/3+2Jdxh7F9cX4euvXOH7U8bEuhYj6gDffdGD3bvnz0q6/XsYDYaJBgk/AiYiIiIiIiIiIokCpVOD220044QQPzjlHwrp1kdnFa906HaZOlXD77TbccosRSqUCPin0yXkmjQnPHvcszhl/TgSqJArs8MM9WBbiuhq1WsLEiQ5s2eLClCkpkSmMaICy2UTMnevA8OHxuPzyurD1q1arMXLkSCiVyrD1SQPXN2d/g2kvTcPK6pUBzz+09CGkGFJwwyE3RLkyIqK+JzXViK++MsBuD/1n7Jo1nDw12IiiiE2bNnUIp1q/fr3shcEUWF1dHdasWdPhz7m6ujrWZRERhUSlUiEvLw9WqxW7du2Cz9fxfvITT6SjtVX+VNOkJBFXXFHb4Vh9fT2ampqQk5MDkylw6ERtrRdTphQhJUVEcrKI1FQvUlLEPV+pqSJSUtqOJSWJUKv3ttVq++aC7fJyF5Yvd+HPPyUcfngzcnICB7H1VtufmReNjeqeL95PaWlknl20KygILRQsKUlEUZEL06a5kZSUBJPJBJPJBEFg6BFF19LKpbEuoUcfFH+A/J/z8d9Z/411KUQUQ5mZmShvS/cK2vbtWrz6agq+/joBp5zSgvfei1BxRNRvSF4H6msq0dAq9iq4pTdaPa1wiJ0/M6kFNXLNuREf3+/3o7bZi2ZHObISAWPqqIiPSUQ0kNXU1KChoaHX/SgUwO23V6O0VIfS0rYQ+cJCJz74wI+xYxN63X84mc1mtLa2ymprs9kgSRLvgRHRHg/8/gCaXc2xLqODh/54iKFgRARJ8mPhQvnzxYuKXDjmmMg+nyTqzxgKRkREREREREREFEUHHKDBqlV+/Oc/NjzwgAGiGP6H9m63gDvuMOHzz514/XUBoiSG1H5y1mS8e8q7GJk0Muy1EXXnuONUeOCBnq8bOdKFgw6y4eCDbZg0yQ693g+dTgeAoWBEwaqt9WD2bC/WrIkDEIfUVC9OO83S6371ej2GDx/OSWkUkmXnL0PRs0UobSwNeP7GH29Ekj4J5088P8qVERH1LSqVgKIiO1atCn1nxQ0bQg+EoP7D5/OhuLi4QzjVunXr4HK5Yl3agNLY2IjVq1d3+HOurKyMdVlERGFjNptRUFCAurq6PQv0NmzQ4+OPE3vV7zXX1CA+Xup03OfzYefOnTAYDBg6dChUqo7TWcvLPXC7taiq0qCqStPtGAqFH4mJvj3hYe+9JyApqVdl94ooSli/3oFVq7z46y9g40Y1Skq0aGjQAWib1K7ROCMWCgYAhYUu/PFH6O8BS0r0Eahmr8LCwO9PFAo/cnM9KCx044ADfJgwQYFp07TIzdVCqTQBCD5IjCgSlu0KcUeTGLnv9/swMmkkFkxYEOtSiChGzGYzVCoVRLHnOQIbN+rx8ssp+Omn+D3HPv44Dtu3OzFiRGTfExBR32WrLUF1iwIejzemdXxd+XXA40MMQ6Jah9vjwY5aIMGxFRkpCVAZU6M6PhFRfydJEnbu3AmHI3z3wfR6Px5/vBKnnz4CRx5pw+uvG2E2972l8hkZGSGHgvn9QHGxDh9/nIgFC6w45pj4nhsR0YBX0VKBJ1c8GesyOllSsQTLdy3H9OzpsS6FiGLou+9c2LRJ/r3Eq6/2QRC42SVRV/reJx0iIiIiIiIiIqIBTq1W4J57TPjHP9yYNw/YvFkbkXFWrdJj8mQJpps9Qbe5/qDr8d9Z/4VG2f0iK6JIOOggE5KTvWhs7LhYLSlJxPTpbSFg06fbkJ7eeRK72+2OVplE/V5pqQOzZwvYvn1voMh//5uFlBQRf/ubVXa/cXFxGDp0aDhKpEFGEASsv2Q9Rjw1ArtadwW85sIvLkSKIQUnFJ4Q5eqIiPqWceM8skLBiot18HolqNUM7hyIFi1ahAULuOg/0iZNmoTy8vJYl0FEFFGCICAjIwMpKSmoqKjAI4+kw++XPwl73DgHTjihudtrHA4HSkpKkJKSgoyMjD3Hq6p8QY/j9yvQ1KRCU5MKW7fqkJQU2kYZvdHaKmLFCjvWrPFhwwYBxcUalJZq4XR2H2LVFr7V+4D2rrSFgplDbldaqoMkAZHKey8ocEKrlZCf70JRkQcHHCBh8mQVpk3TIzFRCyAyz0uIeqPJ2YSShpJYlxG0y76+DMflH4d0U3qsSyGiGMnIyMCuXYHvtfv9wMqVRrz0UipWrOj8fsXrFXD//W68/DJDwYgGG6+1FjWNVrTYovd5qju/7v414PEJyROiW8j/NFvdsDoakBHfgISMAii4SRYRUY9cLhfKysogSZ03DOitnBwPvv++FlOnZvbZEAmNRgO1Wg2vt+egzZYWJb78Mh6ffJKI0tK29+JebwuOOSbSVRJRf/DvX/4Nt69vzpF+eOnD+Oi0j2JdBhHF0KOP+mW3zcjwYv58QxirIRp4GApGREREREREREQUI1OmaLF2rYTbbrPhiSeM8PnCPznB6RTgdNQBPczZTTOm4c0T38TRI48Oew1EwVKpBBxyiBXffGPGxIkOHHRQWxBYQYGrx0Vofr8fDocDBgMfDBF1Z9kyK048UYe6uo7he5KkwI035uDll3fgwAOdIfebnJyMzMzMcJVJg5BGpcGmSzch78k8NDobO533w4+T/+9k/HLuL5gxbEYMKiQi6hsmTgReeSX0dk6nEn/+acPUqd2HUxAREREBgEqlQl5eHl591Yarr7bit99CD5dSKPy47bbqoMOlGhoaYLFYkJOTA5PJhKoqeYsF4+JEGI2RmRrrcrnQ2toKh8MBt9sNURRxxRU5+PXX+JD7Ki3VRaDCvQoLQ7+/AwA2mxJVVWrk5PS8WDFYgiBAq9VCr9dj1iwTWlsBjcYAgPdyqX9Yvmt5rEsIiUt04ePNH+PSKZfGuhQiipGEhATs3r0bPt/ekFVJAn75xYxXXknFhg3d/wx+5x0z7rnHjcxMhnUSDQZ+n4immm2obZEiEtoiV0lz4FDWY7Jjl47i8/lQ1QRYnNuRlaSELjEvZrUQEfV1TU1NqK6ujlj/2dnZSEhIiFj/4ZKcnIyampqA5yQJWLXKiI8+SsRPP8XB4+l4I/Xbb81oaPAgJYUb/BINZhtqN+DNdW/GuowufbL5E2xp3IJRyaNiXQoRxcD69R789JP8532XXOKBRqPu+UKiQYyhYERERERERERERDGk0wl49FETTjrJhfnzFdi+PcwTawUR0DV3e8lRI47CGye+gQxTRnjHJpLh3/924LbbdsFgCH3XmKamJoaCEXXjs8+acc45ZlityoDn3W4BV1yRizffLENenifofjMyMpCSkhKuMmkQi9PFofiyYox4agRsHlun85JfwqxFs7DmojUYlz4uBhUSEcXeQQfJnwi1bJkHU6eGsRgiIiIa8MaPN+HnnyW89ZYFt95qRFVV8AvQTjutCUVFrpDG8/l82LlzJwwGA3bvDj1oCwBSU0X0dmqsJEmw2+2w2WxwOp1wu90dQjX2VVjowq+/xoU8xpYtOvh8gDLwbZpeKygI7c9+X6WletmhYCqVClqtFgaDAWazGTqdDkKwyXBEfdTSyqWxLiFkJg0DoYkGu5SUFNTW1sLrBb79NgGvvJKC7duDCyV1OpV46KFWPP44Q8GIBjpn4zZUW/xwusRYl9KBKIlocjd1Oq6AAtPTpsegoo4cTje2VQEpti1IS8+CwPdeRER7SJKEqqoqtLS0RKR/pVKJvLw8aLX9471qUlJSp1Cw2loVPvssEZ98kohdu7q+3+p0Cnj5ZRtuvjkp0mUSUR928083w4/Q51NHix9+PLbsMTx//POxLoWIYuChh7wA5AWYGo0+XHllZDdRIhoI+KSdiIiIiIiIiIioDzj0UB3Wr1fjsstsUCjC+PDugLeBLvpTCSo8fOTD+OasbxgIRn1GUVGCrEAwALDb7WGuhmjgePFFC049Na7LQLB2LS0qXHrpMNTXB7d4Nicnh4FgFFZppjSsv2Q9dMrAD/tFScS0l6dhh2VHlCsjIuobDjjAALM5cCBFT9au5RQRIiIiCp0gCDj33ERs3izgqqss0GikHtskJoq48so62WM6HA7s3i3vHmFKSmiL2UVRhMViQWVlJbZu3Yri4mIUFxejvLwcjY2NcDgcXQaCAUBhoVNWnS6XgPJyeZPkgzF0qAd6fc//rwIpKel5Ar5CoYBGo0FcXBwyMzMxatQojB07FoWFhRg+fDjS09NhMBgYCEYDwrJdy2JdQkhGJo3E3KK5sS6DiGIsOTkZv/wSjzlzRuHWW7ODDgRr99prZlgs8kJCiajv87lbsLtiC7bvdsHpcse6nE7+qPkjYPBBii6lT33GaGjxYOuOKlhrS2JdChFRn9DaKuKjjyojFghmMBhQUFDQbwLBgLZ7qyaTCV4v8NNPZlx++VAcdVQBnnoqvdtAsHZvv82gDKLB7Nedv+LrrV/Huowevf7X66i11ca6DCKKsupqER98oJfd/qyznEhKitDuSUQDSN+5E0ZERERERERERDTIGQwCnnnGhO+/dyE319P7DpUeYOZdgc95dbgl9Wdcf/D1EBS8TUh9h16vh0KhkNXW6/VCkuQtdCMayO6+uwmXXJIArze41/vqag0uvTQXNlvX1ysUCgwfPhzx8fHhKpNoj+GJw7Hs/GVQCYHD6VyiC+OeH4c6m/wF5kRE/ZVKJWD0aJesths2RC50goiIiAY+s1mFJ55IxMqVDsycae322muuqUV8vLwg03bBBpbvLyWl63FdLhfq6+tRXl6O0tJSbNq0CSUlJaiqqkJLSwvcbnfI9xcLCuS9NwOAkhL5E+V7olQC+fnyaist7bjYUBAE6HQ6JCYmIicnB0VFRRgzZgxGjRqFoUOHIjk5GRoN32vSwCRKIlbsWhHrMoJSkFyAGw++EcvPXw69OnKvL0TUPwiCgPh4E6qq5P2MbmlR4bHHun/PR0T9j1+S0FqzGVt37EZjaxjmJUWAIAhYUvdtwHNFCUVRrqZnXq8X5fUiKnZug9e6O9blEBHFzLp1NkyZImLBgmzs2BH++0RpaWnIy8vrU+GQwYqLS8cxxxTgmmtysXhxHCQp+LmRGzca8McffF9ONBj5/X7c+MONsS4jKG6fG0+tfCrWZRBRlD32mAsej7z3ZkqlH9dfz2eLRMHof5+AiIiIiIiIiIiIBri//12PDRtUWLDA1ruOJrwCJO7sfFwSgKc2455LD8Pxx9tRUyP2bhyiMNPp5O9w19raGsZKiPo3UZRw0UUW3HVXEvz+0ML2Skv1uOaaofB6O7cTBAH5+fkwGo3hKpWokwMzD8QP5/zQZXipzWND0bNFaHXxdZ+IBp/x4+Ut1iop0cHjYYguERER9c748Sb88osZb7xhwZAhnd+XjBvnwIknWno9TmOjvFCwtDQRoihh3TobXn7ZgiuusOC777Zh48aN2LZtG2pra2G1WuH1euH3+3td55AhXpjN8gLQSkrk3wcNRmGhM6Trs7M9OPJIK2bO9CAlJQXDhw9HUVERioqKMHLkSAwZMgTx8fH9cvElkVwb6zbC7rXHuoyARqeMxqWTL8V7p7x9T5zbAAEAAElEQVSH6uuqUXJFCR488kEkG5JjXRoR9RFnnhkvOyQUAF580Qy7nXMJiAYKT+suVJSXoaLBB1Hsm/+2E0wajEpqxuqGvwKeP2XkwVCr1dEtKkitNhe2VlrQWFUCv69v/vkSEUXKm29acNhhemzZooPdrsR11w2FwyFvU9D9tW9amJaWFpb+YiEpSY8xY3rzvrx3my8QUf/0YfGHWFW9KtZlBO3ZVc/C5unlugci6jfsdgmvvir/Oefs2Q7k5zMUjCgYfDJPRERERERERETUB5nNAl591YQvv3QiK8sbegcqJzDj3sDnfr0baB0GAPjqKyPGjgXefdchv1iiMIuLi5Pdtrm5OXyFEPVjTqcPJ59sw0svJcruY8UKE26/fQikfbJDVCoVRo0aBY2GD2Mp8mYOm4kPT/0QCgSeLNrobMSY58bAI/bNncyJiCJl4kR57ZxOAWvW9M3F7ERERNT/nHtuIjZvFnD11RZoNG03DxQKP269tRrhyIyqr5cXCvb992YkJPhx4IEmXHhhIp55JhGrV0cufEuhAAoK5C3qKy2NbChYV3WpVBJGj3bi5JNbcNddTfj88xbU1XlQWanB99+bceedKcjIyIDRaGQAGA16SyuXxrqEPcamjcXlUy7HB6d+gNrra1F8eTGenf0sTh97OjLNmbEuj4j6IJVKwNVXhxYSuq+6OjWeeYYbcxD1d36fB/W7SrC1sgVWu/xAkkjSaNQYlmhHdpwVKo0WFdaagNctGHMs8hObkRKnjHKFwZEkCbstIrbv2AFnw7ZYl0NEFHFer4TLL7dg3rxEWK17X5u3bdPhrruGoLd5/BqNBgUFBQNi08J58+QHRn72mQk2GwMniQYTr8+LW3++NdZlhMTisuCVta/EugwiipIXXnDCYpH3LBcAbrihb36uJ+qL+LSeiIiIiIiIiIioD5s9W4+NGwWccUaIC7cnvArEVXc+bk8Bll/d4VBjowpnnmnAqafa0djIXcUo9hIT5YcYORwMuCPyeDx45JFafPGF/IC9dl9/nYDHH08HAGi1WowaNQoqlfwHuUShOmn0SXhxzotdnt/Vugvjnx8Pad/0OiKiAe6gg9Sy2y5fLiN0mgY9jUaD5OTkWJcx4GVmMsiBiPofs1mFhQsTsXq1E0ccYcWppzZhzJjeLzJ3uRSorJQXSF5VpYHd3nEieUlJZMO3CgvlhW2UlOh7vTiyO4WFLsTFiZg61Y4FC5qxcGETfv/ditZWP4qL9fjoo3jceWcS5syJR2oqA+CJAlm2a1lMxlVAgfHp43HV1Kvw0Wkfof6Gemy4dAOePu5pzC2aizRjWkzqIqL+58IL45GdLX9jjWeeMcLr5f13ov7KUb8F28p2orZZhD+SHz5kUigUSIsTMDKxGSZ92zPojY3b4ZU6B5/EaUwwaQwQVCpkmBwYmdQKg14b7ZKD4nK5sb3GheqKLfC5mmNdDhFRROza5cLMmQ48+2zgeX7ffJOAd95Jkt1/fHw88vPzB8wcpX/+Mx6pqfKe07a0qLBoEcN6iQaTl9a+hG1N/S9k9rHlj8Hr45wUooHO5/Pjqafkz12bNs2JQw+N7LNbooGEoWBERERERERERER9XGKiEu++a8QHHziCnxiQ92Pg47/fAnjMAU99+KERY8ZI+OQThipRbKlUKiiV8naAkSQJosid8Wjwcjqd2Lp1K048sQlz5ljC0ufrr6dix44kjBgxAoLAR0sUfRdMvAAP/v3BLs+XNJbg4FcPjmJFRESxNXasAWZz6IHOqaleWK18r0zdU6vVmDBhAi688EI8//zzWL16NaxWK6644opYlzag6BJ0mD17Nu688058/vnnqK6uRnV1gHB3IqJ+4oADjPj5ZzMefTQ87zVqatQQxfDdgygtjezE8oICeUFoTU0qNDSEd2GjSqWC0WhESkoK5szJQFOTgBUrjHj11QRcfXUSDjnEDL2eu28TBWtp5dKojKOAAhMyJuDa6dfi09M/RcONDfjrkr/wxLFP4OTRJyPFkBKVOoho4NFoBFx6qU12+4oKLV55pSWMFRFRNPglCQ1VJSir9cDtlh8MGElGgxYjE1uQZnJCUO79XLSo5KuA149JGt7he51Oi+HxLRiS4JU9vyTSmlo92F5RC3fzzliXQkQUVj/80IIpUwQsXWrq9rpHHsnEX3/pQ+4/OzsbOTk5UCgUckvsczQaASefLP99+aJFDPQnGkweXfZorEuQpaKlAh8UfxDrMogowj780ImdO+W/N7n22r4XWk7Ulw2MmGQiIiIiIiIiIqJBYO5cA2bMEHHJJXZ88omx+4u9Ac63ZgGrLu22WW2tGiefrMZZZ9nx9NM6JCT0zYlzNPAZDAZYrVZZbZuampCWlhbmioj6PqvVivLycgCAQgHcfXcVGhtVWLo0cBhkMFQqPx55xII5c7LCVSaRLDceciMaHA14eOnDAc+vqFqBY986Ft+c/U2UKyMiij6lUsCYMTYsX971RPvkZC/GjHGiqMj1v1+dSEsT/xfwyffK1EatVmPMmDGYPHkyJk2ahMmTJ2PcuHHQaLiwIKyMALIAZP7v1yxg2fXLcGDmgTEti4goErKz05GRkYzKykrY7XZZfTz4YAa+/TY+rHWVlOjh97fdL4mEwkJ5oWAAUFKiQ2qq/AWBAJCcnIxRo0bxZzhRmNXaalFmKYvKWAfnHIzfz/s9KmMR0eBz1VVxePxxLxoa1LLaL1yow4UXSlAquXEMUX/glyRUV26HpY9uEKFSKZFhciJe54JC0HY6/9OuVQHbHZUzvdMxhaBAokGCWdWMGlcymm19LwDN4/Fie7UPud4tMKaOinU5RES94vNJePDBZtx1VwK83p7fG4qiAv/611C8//42pKT0vOGRUqlEXl4etNrOPx8GgosvVuOFF+S1XbbMhE2bHBgzxhDeooioz2l0NEbtnmQkPLz0YZx5wJmxLoOIIuixx+Q/cB0+3IO5c0MPjSUazBgKRkRERERERERE1I+kpanw8ccqLFpkxzXXaNHU1MUtvlWXAaM/BtTOtu8lJfDlC4AY3E30t9824tdfPXjpJQ+OPZY33in6EhISZIeCtba2MhSMBp2mpiZUV1d3OKZWA489VokFC4Zj8+bQX8sNBh9ef70Vp56aFK4yiXrloSMfQr2jHq//9XrA899u/xbnfnwu3jz5zegWRkQUA+PGebF8edt/JyWJKCpy7gn/GjOmLQAsUOiFJEmQJOl/4WA0mKhUKowZM2ZP+NekSZMwfvz4AbuwIlbS0tIwadIkTJo0Ce40Nx7e8TCwX66NSWNiIBgRDWgqlQrDhw+H3W5HZWUlRDG0heh1dWrZgRVdsVqVqK5WY8gQb1j7bTdihBsqlQRRDP09VmmpDocd1rtQsMTERAaCEUXAsl3LwtaXUqHEpKxJyE/Kx9sb3u50flP9prCNRUS0P5NJhQsuaMIDD8h73qNUAiUljRgzJjXMlRFRJDRWb+mzgWBJZjXSdU1QqjUAAi8iLrXsDHj8nMLjuuxXpdEgW2NFosqLakcS3J6+FQ4mSRIqG30YqauFypwe63KIiGRpbRUxb54dn34a2nvKujo1brwxBy++uBOqblazGwwGDBs2bEA/w5wwwYQpU+xYtaqHDYG78Pzzbjz1FEPBiAa6JH0ShpiHoMpaFetSZPmr5i9YnBYk6hNjXQoRRcDvv7uwcqX8tUVXXOGFUslnmkShYCgYERERERERERFRP3TOOUbMmiXi/PMd+PbbAA/6Kw8GXlsMjH8TUDuA9WcDO2eGNEZVlQbHHQdccIEdjz+uh8k0cCdcUN9jNptlt3W73WGshKjvq6mpQUNDQ8BzRqOEZ58tx9ln56GqKvgHqcnJXnz8sQszZnByBvUtr53wGhrsDfhy65cBzy/asAjJhmQ8fszjUa6MiCi6Tj9dRFFROcaMcSE93RswAKwrVqsV8fHxPV9I/ZZKpUJRUVGnADCdThfr0gaU1NRUTJw4cc+f8eTJk5GTk7Pn/N/e+FunQDAAOCTnkChWSUQUG36/H2q1GllZWWhoaIDD4Qi67ZgxTnz/ffjfq5SU6CIWCqZW+zFypBslJaFPgt+/jUql4s9soj7iz91/ym6rElSYkjUFh+cejpnDZuLgnINh1rY993h/0/sQpY5BHc2uZjS7mpGgS+hNyUREXbr+ehOeecYHq1UZdJupU204//x6HHSQHQqFAIChYER9nbNxO2pbfLEuoxOdVoMsQxMMejWArp9ZN7laYPM6Ox3XKtUYkZAToEVHRoMaI7TNaHQZUdfa9tm0rxBFHyrrrRhmTIViAAfeENHAtG6dDaefrkRpqbx7dqtWmfDkk+m47rragOfT0tIGzQagZ53llh0K9sEHJjz2mAS1mj9HiAYyhUKBV/7xCv7x3j/g8fWtsNtgCAqh071PIho4Hn5Y/j2HxEQRF18sP1CMaLBiKBgREREREREREVE/lZWlwldfKfHyy3bccIMOra37TeCtntz21Usvv2zEjz968NprEmbO5GIkig5BEKBWq+H1hr5Qz+/3w263w2iUN4GGqD+prKxES0tLt9ekpIh44YWdOOecPFgsPT8ays1146uvfBgzRn44H1EkfXHmFzjklUOwdNfSgOcXrliIFEMKbptxW5QrIyKKnmnTDEhLCzxxvicMBRt4MjIyMH/+/D3BVOPHj4dez4l04fa3v/0NmZmZmDRpEiZNmoTc3Nxur1++a3nA41dNuyoS5RER9TkOhwP19fUhB/gXFXVeAB4OpaV6zJpljUjfAFBQ4Ao6FEyl8iMvz43Ro92YMcOL9PR0xMXFQavVAgBcLlfE6iSi4ClCSF9WC2pMy56Gw3MPx+G5h+PgnINh1AR+RjEsYRi2NW3rdHzRukW4ctqVsuslIupOcrIG8+ZZ8PTTPW8GM3NmKy64oB7jx+99XyZJEhobG5GcnBzJMomol+qt/j4VhCUIAtLMPiTrLFAo1T1e/3bptwGPD48bEvyYSiVSjS7Eq9yodqbC5ug7m8rZHS44G7fBkDoq1qUQEQWtpqYGt96qQ2mpqVf9vPZaKsaNc+Lvf2/dc0yhUGDYsGGDao7fggVxuOOO0MJ62+XluVFa6sTYsQzrJRrojh55NHZduws/lv2IBkcDnKITLtEFl+iC09v23+3HujvXfswpOiH5pajUfvqY05Fq5OsU0UC0dasHX31lkN3+vPNcMBp7956SaDBiKBgREREREREREVE/JggKXHSREUcf7cWCBW788ov8G+3d2blTg1mz/LjsMhseesgAvZ67jVHkmUwmWCwWWW0tFsugmjBEg48kSdi5cyccDkdQ1+fmevD00+W44ILhcDq7fg0fN86Br74SkJ0dmZ8nROGyZMESHPDcAShuKA54/vZfbkeKIQUXT744ypUREUVHbwKfnM7IBG1Q7BxzzDE45phjYl3GgPfqq68Gfe2yymVwip3/rakFNY7LPy6cZRER9UkKhQIJCQmIj4+H1WpFfX19UO9BvF7gq68iE166cqUBl10Wka4BAIWFLnz2WefjRqMPhYUuFBV5MW6chClT1Jg8WQ+jUQeAm3AQ9WWnFp2K/y75L0RJ7HROo9RgevZ0HJ57OGYOm4np2dNhUAd3T/Xw3MMDhoJ9WvIpQ8GIKKJuukmPV16RAj4nUir9OOaYFpx/fj3y8wMH6NTV1TEUjKgPE221sNr7TgCW2ahFpq4OGq0OwS5f/HLnkoDHD8s8MOTxNVotctUtaNUosNtmhCh2fk8XC00OBfgknoj6g33nJd16q4D16w3YtUvTqz5vv30IRoxwYfhwDzQaDfLy8qBSDa4l7nFxKsyZ04x33kkI6vr0dC9OOsmCE0+0YMgQ7//+vBi2QzQYpBpT8c8D/hm2/hR3d94AwaAy4Od5P3cfOubd51w3QWR6tR5/G/Y33HjIjWGrmYj6lkce8cDnk/d+UKORcN11fC5KJMfg+sREREREREREREQ0QOXmqvHjjyo8/bQNt96qh90e+k5iPZEkBZ5+2oTvv3fjtdf8OPhg3pinyEpKSpIdCma328NcDVHfIUkStm3bBo/HE1K7ceOceOSRClx1VS58vs6TPGbOtOKzz/SIi+PjI+r7BEHAnxf/ifyn81HRUhHwmku/uhTJhmTMLZob5eqIiCJPEAQIggBJCn0311DfQxBR6B5b9ljA4xMyJkS5EiKi2FIoFIiLi4PZbIbdbkd9fX2X9+38fuCuu4bg888TAfgBdL530Rtr1phw0UXDcMcd1cjJCf/7oYICJzIyPBg92o0xY0QceCAwdaoGo0froVJx8wKi/mhM2hh8dsZnuP3n29HgaMDIpJE4PPdwHD7scEwbMg16tbyw5vkHzscrf77S6fifNX/2tmQiom5lZ+tw+unNeP31hD3HNBoJJ55owfz5DcjJ8Xbb3ufzobm5GQkJCd1eR0Sx0draBL/fH+syoFarkGm0Is7gRqhByH/VlwY8fkbB0bJqUQgKxBsAk8aCWmcSmqzdv85FQ6vdC78kQSFwM0Yi6rtcLhfKysr2PIeMj5fw+OMVOPvsPLjd8l+/7HYlbropB99+24CcnGwoFOG9/9dfXHSREu+80/V5lUrCEUdYcfLJFhx0kA3KfaYCi6IIl8sFnY5zd4mo97QqLaZlT4t1GUTUDzQ1+fD22/I3sDz1VCeysvi8lEgOruogIiIiIiIiIiIaIARBgauuMuHYYz2YN8+DZcvk33jvzpYtWhx+uB/XXmvDvfcaodEMzskZFHl6vR4KhULWxFWv1wtJkiBwIiUNMKIoYuvWrfD5fLLaz5hhwx13VOOuu4Z0OH7aac1YtCgOGg3/zVD/oVFpUHxZMYY/MRz1jvpO5/3w4/QPT8f3Z3+PWXmzYlAhEVFkabVaOJ3OkNv5/X6+VyaKsJ92/BTw+PkTzo9yJUREfYNCoYDJZILJZILD4UB9fT2sVmuHa554Iv1/gWBAuAPB2v31lx5xcWJY+lIoFFCpVNDpdDAYDDjjDDMWLNAAkLdDNhH1TcflH4fj8o8La5+HDj0USoUSPn/He7wWlwU2jw0mjSms4xER7evWW7V46y0JGo0fp5/ehHPOaURqavDvj2praxkKRtRHeXxKAPKeIYdLSpwKadpmCGp1yG1FSUS9s/OmcQIUmJk1qVd1KVUaZJltSFR5UOVIhssdu40zJEmCz14PlTk9ZjUQEXWnqakJ1dXVnY4XFrpw++3VuOOObNl9Z2V58MwzIoYOzelNif3eYYcZUVjoRElJx/m9eXkunHyyBXPmNCMpqeuf6bW1tcjNzY10mUQ0gHS12ZxaCP19OxENTk895YLdLj/U68Yb+XpDJBdneBIREREREREREQ0w+fkaLFmiw4MP2qDXB36Q11uiqMDDD5swcaIba9e6IzIGEYBe7WrX0tISxkqIYs/lcqG0tFR2IFi7U06x4LLLavd8f/XVTXjnHQaCUf9k1BhRfHkx4rRxAc9LfgnHvH0MVlevjnJlRESRZzAYZLdtbW0NYyVEtK8dlh2wuAIsYFQIWDBhQQwqIiLqWwwGA3JzczFy5EjEx8cDAN5+OwmvvJIa8bEPP9yK+PjQ75kLggCtVov4+HhkZ2ejsLAQY8aMQUFBAXJzc5Gamgq9Xv59TCIafHITAi/eXbRuUZQrIaLBJj9fj6ee2o3vvy/FddfVhhQIBrRtzLR/uCsR9Q1eX+w29NPrtRiZ1IoMk11WIBgAfL3zDwTaLi7DmBK2DS70eg1GJDYjMz62m2Z43Lw/T0R9jyRJqKysDBgI1u7EE5sxd26TrP4PPdSGVav8OOIIs9wSBwxBEHDmmW0bP+n1Ppx8chMWLdqOTz/dhnnzGrsNBAMAm83WZcAPEVEgDtER8LhayZAeIuqZx+PH88/L3xRp1iwHxo3jpkpEcnF1BxERERERERER0QCkVCpw440mrFolYuJEV8TG2bRJh+nT1fj3v20QxUDT84h6Jy4ucMhLMJqbm8NXCFGM2e12bNu2DX5/eF5rL7mkHqef3ogHHmjCwoVJUCr5yIj6rxRDCtZfsh46VeAF2KIk4tBXD8XWxq1RroyIKLJ6816ZizeJIufhpQ8HPJ6flM+J1URE+9DpdMjJycHixRl48MHMqIyZl9fzBhdKpRIGgwHJycnIzc1FUVERioqKkJ+fj5ycHCQkJEClUkWhWiIayGbkzgh4/OPNH0e5EiIajM46K05WUGq73bt3h7EaIgoXnz/6oWBKpYCseBF58c3Q6bS96uv/tv0Y8PjktNG96nd/CkGJZKMX+YkWxJl6V7Ncvd0EjIgo3ERRxNatW4PagPOWW3Zj7NjA4TJdufJKC37+2YCsrNi87vZFF11kwl13VeGXX0px993VOPBAJxRB/ij3+/2cF0lEIWlyBg501CgZ0kNEPXv9dQdqauTPdbn++jAWQzQIcYUHERERERERERHRADZmjAYrVmhx1112aDSR2R3M6xVwzz0mTJ3qxqZNnoiMQYNXYmKi7LZOpzOMlRDFTnNzM3bs2BHWPhUKYOFCL266KSms/RLFSm5CLlZdsApqIfDkA7fPjQkvTECNrSbKlRERRY5er5fd1uWKXHg0UX/h9/uxqW4TNtRugMcXvvsZX5R+EfD4GWPOCNsYREQDxSefNOOaa5Lgj9Li9V27el7gYjQaMXToUGRmZsJsNkMQOM2WiMLvnHHnBDy+tmZtlCshosHIbDb3KuTU4/HA4QgtCIKIBp4Ekwb5ic1IMvqgCMPnpmW71wc8fkLezF73HYhaq8PQuFbkJjqgVjPIn4gGL6vVitLSUni93qCu12j8eOyxSiQkiP/P3n2HR1HtbwB/d7Zks9lN7yQESAIkAooCKoKKqCiCooiABURFBUUF2712sWEBr15EEUQuihXFhghIUZAiTXpJI4H0nk2yffb3Bz9UzCZkZ2d3k+z7eR6fe52Zc+arhs3smXPec8ZrDQYHli6twdtvR0Ct5hjb38XFaTBuXD1CQqTN6a2oqJC5IiLqyOrMdS6PMxSMiM5EFJ146y2l5Pa9eplx5ZXS57cREUPBiIiIiIiIiIiIOjyVSoFnnw3B1q029OrlvYXfu3dr0a+fCrNmNcDhcHrtPhRYVCoVlEppL5NEUWz1hCWitqq8vBwnTpyQvd/ExETEx8fL3i+RP/WK64X1E9dDULh+Bdpga0DmO5nNTnQiImpvBEGQ/KxstTLQmQJbvbUely25DL3e7YU+7/VBzOsxGP/VeHy+/3PUWaQ/K9Saa3HC6Pr5/aELH5LcLxFRR7RxYx0mTDDAZvPFNFYnRoyoxpAhxjNeWVdXh8OHD+PYsWN8ZiIir7k05VIoFU2/z1WZqtBoZdAOEXmfp++IioqKZKqEiNobjUaNLhENSAo1QqUJkq3fAqPrjX3Gpl0h2z1cMQQrkR5Rg+hQ6YuciYjaq5KSEuTn58PpdG+uZ0KCDa++egIKRfPtevY0YfNmC26+OdzDKjuuyEjpGzlarVaOXRJRq9VYalweD1LJ9zxPRB3TypVmHDyoldz+wQcdEATfbA5F1FExFIyIiIiIiIiIiChA9O0bhJ07g/D44/VQqbwT2mU2C/j3v0MweLAZR49y0gHJQ6fTSW5bVVUlYyVEvlVYWIjS0lLZ+01JSfFoYhlRW3ZR54vw7dhvoYDriQTV5mpkvJMBs917QalERL4UFCRtkqbT6YTD4ZC5GqL2Y+YvM7Hh2IY//77OUofP9n+GcV+NQ/Rr0bjq46vw7vZ3UVhX6Fa/b219y+XxToZOCNeGe1AxEVHHcvBgI0aPDkZ9vW8WXV93XQ1eeaUQl1/e+uDH+vp6HD16FLm5ubBYLF6sjogCkSAISA5Ldnnu430f+7gaIgpE4eHhksPmAcBsNvMZiSjAKBQKxIYKSIuogT5YJWvf+yqyYHc2Ha8O0+gRogmW9V6uCCoV4vWNSIusgy6YwQhE1PGJoojc3FxUVFRI7mPgwHrcd1+Zy3M33FCL339Xo1cv6XP+AkFUVJRH7b0xp4yIOqbmNsUKUvLZl4haNnu29DVHCQk2TJjA50EiTzEUjIiIiIiIiIiIKIBoNArMmqXHr79a0KOH9ybpbtkSjL59lXjrrQaIoncCyChwhIeHu3V9fb2AdesMeOmlBLzxBndzpfZHFEUcO3YM1dXVsvarUCiQmpoKg8Ega79Ebc2IHiOweNTiZs8X1Rehz7t9IIqi74oiIvISTwJ0jUajjJUQtS+7inc1e84m2rAqZxWm/jgVSW8mYcCCAXh548s4UHYATmfLYxyfHvjU5fER3Ud4VC8RUUdy4oQZ11yjRHm52if3UyicuPPOcsntGxsbkZWVhezsbJhMJhkrI6JANzh5sMvjXx/62seVEFGgio2N9ah9YaF7QdpE1H6F6IKQFlGLWL0JglLeQDAAWHL4R5fHz4rqJvu9WqLVBqFrWC06hds8Ck4kImrLzGYzDh8+jMbGRo/7mjy5HJdc8lfQjFotYtasKnz5ZSgMBvl/X3Q0giAgJCREcvu6utZvgEBEgc1ocT03RKvS+rgSImpP/vjDgvXrpc9LmzLFAo3G9ea+RNR6/GZFREREREREREQUgC68UIvdu0X861/1mDs3BKIo/4B7Y6MSDz0Ugm++acSHH6rRpYtvFnlRx3OmACOHAzhwIBibN+uxZYsee/bo4HCc/Jnu2tWC11/3RZVE8hBFETk5ObLvri4IAtLS0qDRaGTtl6itmnD2BFQ0VuDh1Q+7PJ9VlYUBCwfg97t+hyBwHyUiar8MBoPkXbyNRqPbAbxEHYU7E5y3F23H9qLteHLdk0iLTMN1Pa7DqJ6jcGHShVAKfy0OtIt2HK086rKPRwc+6nHNREQdQW2tHddcI+LYMd/tCn3FFXXo2tXqcT9msxk5OTnQaDRITEyEXq+XoToiCmS3nX0bPtr3UZPjO4t3+qEaIgpEUVFRKC0tlbyBRmNjI6xWK989EXVgSqUSCQYTwrRmKISgJucrKmuQnXsc2XnHcaKoDCeKSlFYXI6KqhrU1BpRXWNEfUMjrDYbrFY7ACAoSA1tUBC0QRqEheoRFxuJPaajgBpAFICY//8rBBiWfIEv/3EBAApBgQidCIOqBiWWKNQYPf8+SUTUVlRVVaGoqEi2/gQBeOmlExg3Lg0OB7B0qQVDhkTK1n8giIuLQ25urqS2TqcTtbW1CAsLk7kqIupoai21Lo8Hq4J9XAkRtSevvWYH0HQsoDX0egfuv5+fMURyYCgYERERERERERFRgAoOFvDWW3rccIMZkyYJyMvzzmTdDRt0OPtsB157rQGTJ+sgCNzxg9wjCALUajVsNtufxwoL1diyRY/Nm/XYti0EdXWuh7vz8oJw+HAjevb03UJDIqnq6+246aZGDBumwdCh8oWCqdVqpKWlcTdjCjgzLpyBisYKvLLpFZfndxbvxLClw7DmtjU+royISD7BwdInUJlMJhkrIWpfMmMysSJrhdvtsquyMXvLbMzeMhsxuhiM7D4So3qOwuXdLsfSfUshOpsupA7XhiM1MlWOsomI2jVRFHHrrQ3Yu9e3i9Tuuqtc1v6sViuOHTsGtVqN+Ph4LrojIsmGdh0KQSE0eYasaKyA2W52K8iWiEiq6OholJWVSW5fXFyMlJQUGSsiorbEoFMiXOdEQ4MZu/cdwZ79R7HvUDb2HsjGoaN5qKk1ut1nY6MDjY1mAEBRSTkOHc1r5ubAzksP472Dy3DZ4P7onubbzxqVRoMERSVqjC1vYkdE1B6IoojCwkLU1roOhfFEWJiI9947jnPOSUKnTvzMdJdOp4NSqYTD4ZDUvry8nOOTRHRG9dZ6l8eD1QzsISLXCgvtWLZM+mfELbeYEBHBDZaI5MBQMCIiIiIiIiIiogB3ySVa7NsnYsaMeixYEAKnU/7Qrro6Je69NwTLlzdi0SINEhM5NEnuUasNWLPGhs2b9diyRY9jx1q/88z335sZCkZtXmmpFddcY8POnaFYt06PBQuOoW/fRo/7DQ4ORteuXSEIggxVErU/Lw99GRWNFViwa4HL8z/n/ozxy8bj0xs/9XFlRETyEARB8kTxv4fuEgWazJhMj/sobyzHoj8WYdEfi6BT6xCkdP09dWiXoR7fi4iovRNFEdnZ2bjjDgV+/12HsjK1T+47eLARGRlmr/Rts9lw/PhxFBcXw2CIQ6dOEV65DxF1XIIgICk0CQW1BU3OfbrvU0zqO8kPVRFRoImOjkZ5eTmcTqek9kajEXa7HSoV3/8TdSR5eXnYtWsXDh/ajwP7/sDBI3mSw0okMwLfff8rvvv+VwBAr4xU3DTqCoy7/kqkp3b2bS1ERO2Y3W5HTk6O194L6nQ6XH11F85L8kBERAQqKioktTWbzXweJ6IzMlpch/nq1JxXTUSuzZ5ths0mLdRLpXLi0Uc1MldEFLj4TYuIiIiIiIiIiIgQEiJg/nw9Vq40IynJ6rX7rFqlQ69ewJIlDV67B3VMSmUkpk1LwaefRrkVCAYA69Zx0gu1bUeONGLQIBE7d4YAACwWAfff3xm5ue79rP9TaGgoUlNTOfGOAt77I9/H9T2vb/b8Zwc+w7Qfp/mwIiIieQUFSXtmcDqdsNvtMldD1D7IEQr2d422RlSbq12em37hdFnvRUTUHh07dgxWqxXp6RYsXZqLbt28E9T1T5Mnl3v9Hna7Hddeq8GgQfX49tsaOByi1+9JRB3HoORBLo8vO7jMx5UQUaASBAEREZ6FmxYXF8tUDRH5S15eHj799FPMmDEDl1xyCa699lo899xz+OzzZdh3MNv3gWAu7D+Ug2deeQ89zh+N4WMfwJr1W/1dEhFRm2c0GnHkyBGvBYLFxsaiW7dunJfkodjYWI/al5d7fwyUiNq3BpvrOfsMBSMiV+rrRXz4oVZy+xEjGpGaylAwIrnw2xYRERERERERERH9adiwYOzfr8Rtt3kvtKu6WoWJE0MwalQDysq4AJ1aJyVFi549TZLabtmig83GxXjUNm3ZYsTFF6uRnX36C9S6OhXuvTcFZWXSQu2ioqLQuTN3SCY65euxX+OSlEuaPT93+1w8v+F5H1ZERCQfnU76RM36+noZKyFqP3pG9/TZvab+OBXPrn8Wu4p3wel0+uy+RERtRUFBARobG//8+/h4G5YsyUPfvt7dOOKccxrQt2/jmS/00M6dOuzaFYLfftNj1Khw9O9vxiefMByMiFrnlj63uDy+vWi7jyshokAWHx/vUfva2lqIIp99iNqjp59+GldccQWuvfZavPzyy1izZg2qqqr8XVaLnE4nVv68GVfeeD/OHXIL1m/c4e+SiIjapO3by5Gfn++V9xIKhQJdu3b1OMyKThIEAcHBwZLb19TUyFcMEXVIzYWChahDfFwJEbUH771nQk2N9A3ZH31UKWM1RMRQMCIiIiIiIiIiIjpNWJgSS5aEYPnyRsTHe2eXOAD49tsQ9OrlxJdfen9hFnUMF19sltSutlaFX34xylwNkee+/bYGw4bpUFamdnm+uFiDKVNSYDS69zonPj4eCQkJcpRI1KGsm7AOfeL6NHv+uV+ew9zf5/qwIiIieYSGhkpuazTyOZkCU2hQKJJCk3xyr72lezHz15k47/3zkPKfFEz7cRrW5q6FzeG9MRcioraiuLgYdXV1TY6HhTnw/vvHMGRI03NyGTnSe33/3cKFMaf9/e7dOtxySzh69bLg/feruVkBEbXoqtSrICiajv+WN5bDYrf4oSIiCkSCICAsLMyjPkpKSmSqhoh86ZtvvmnXf3537z2Cy0bdi+tumYGCE+33n4OISE42m4j77qvGwIHR2L5d/rAXjUaDHj16ICSEQTJy8iRgzeFwoKHBuxswEFH71mBtJhRMw89yIjqdw+HEO++4ntPeGhdeaMLAgdozX0hErcZQMCIiIiIiIiIiInJp1Cgd9u8XcOON3pswUF6uxk036TBuXAOqqx1euw91DFdeqZDc9qef+PNFbcuCBdUYMyYURmPLOyIdPRqMhx7qDKu1dT//ycnJiI6OlqNEog5HEATsvHsnuoZ3bfaaaSun4dN9n/qwKiIiz2m10idTmUwmGSshal8yYzJ9fs/jdccxd/tcXP7R5Yh9Ixa3fn0rvjzwJYwWBvQRUcdTWVmJysrKZs9rtU7MmVOAG2+s8sr9RdGAlJQUaDQar/QPAAcParFpk8HlucOHg3HPPRHo3t2GOXOqYLEwHIyImhIEAZ0MnVye++LAFz6uhogCmaebzVRXV0MU+bxDRP7x3U+/os/gcfj4ix/9XQoRkV+dOGHGpZc2Yt68CNjtCjzySDJKS1Wy9R8WFob09HSoVPL1SScZDAYIgvTl/qWlpTJWQ0QdTaPN9ebdeo3ex5UQUVv3xRcmHDsm/d3q9OlOGashIoChYERERERERERERNSCqCglvvwyBJ9+2ojoaLvX7vP55yHo1UvEDz9wQTo1b9gwPbRaaZPJf/klSOZqiKR7/vkq3HNPOGy21r2m+f13PZ58shNaWkuhUCjQtWtXj3dyJ+roVIIK+6fsR1xIXLPX3PL1LViVvcqHVREReUYQBCiVLQeNNsdms8lcDVH7kRnt+1Cwv6sx12DpvqW4adlNiH49GsOXDvdrPUREcqqtrUVxcfEZr1OpgGeeKcLUqfIvWtu1S4DBYED37t3RtWtXj4JUm7NwYcwZrzl2LAgPPxyJrl3teOGFKhiN3htnJ6L2aWDyQJfHGQpGRL6kUqlgMLgOO20Np9OJ8vJyGSsiInJPbV09bpvyDCZOfRZWK8e9iSjwrFlTi/79BWze/FfAS1WVCo88kgybTfpGnKckJSUhOTkZCoXnfZFroaGhkts2NjYypJeImtVcKJhBI30cgIg6pjlzpD/rdetmxQ03BMtYDREBDAUjIiIiIiIiIiKiVhg3Tod9+4CRI12/GJRDUZEaI0cGY9KkBhiNnKBATen1KvTrJ+1n8I8/dKistMpcEZF77HYR99xTjeeei4TT6d6L059+Csfs2fEuzwmCgPT0dISEhMhRJlGHp9PocHDqQYQFuQ7Rc8KJaz65BtsLt/u4MiIi6YKCpIXgOp1O2O0MpqDAlBnj31Cwv7M6rFiZvdLfZRARyaKhoQHHjx9v9fUKBTBlSjmefbYQgiDf7tF79qj//P8hISFIS0tDWloadDqdLP3n5gbh559bv1CvuFiDZ56JRNeuTvzrX1UcqySiP93c62aXx7cXcWyKiHwrMTHRo/aVlZUMIiAiv1vy+QoMG3M/amqN/i6FiMgnHA4RL79cheHDDSgp0TQ5/8cfIZg9u/lN085EqVQiPT0d4eHhHlRJrREf73peWGtVVFTIVAkRdTRmu9nlcb1G7/I4EQWmX381Y8cO6aFe06bZoFQyQJZIbgwFIyIiIiIiIiIiolaJj1fhu+90+PDDRoSHe2/R+OLFIejVy441a0xeuwe1X5deKm2xnN2uwI8/NshcDVHrmUwOjB5txPvvR0juY8mSaPzvf1GnHVOpVOjevTs0mqYT+4ioeZG6SOyfuh/BKteTGBxOBwZ9OAiHyw/7uDIiImmkhFvY7UBWVhBycrg4igJTWwoFIyLqKCwWC44dOyap7Y03VuPNNwsAyBMMVlSkRknJ6ePYWq0W3bp1Q/fu3T0OV//gg2i3Q98BoLJSjddei8DmzceQm5sLi8XiUR1E1P6N6D4CCjT9PCltKIXVzgBBIvIdtVrt0TOS0Qjs2VMjX0FERBJt2LQTF4+YjOqaOn+XQkTkVXV1dowebcSTT0bCbm9+qfjSpdH48UfXm6a1RKfToUePHpI3JyL3qFQqj+Z/VVVVyVgNEXUkJrvr+fihQa3f+ISIOr7XX3dIbhsVZcfdd0sPFCOi5jEUjIiIiIiIiIiIiNxy++067N3rxOWXN3rtHgUFGgwbpsW999ajsZG7CdNfhg9XS267ejV3nyH/sFqteOSRKnz3nfsT7P7pjTcSsHLlyX6CgoLQvXt3qFQqj/slCkRJoUnYefdOaATXkyqtDivOW3AeTtSd8HFlRETuCwtr+TnD4QBycoLw3XfheOWVBNx2W1dceGEmbrghHcuWyRO8QdTeZMRk+LsEIqIOxW63IycnB06n9GeL889vAFwE40i1ZYvrMB2NRoOuXbuiZ8+eMBgMbvdbWKjGihXhkuu68so6dO1qRWNjI7KyspCdnQ2TiZtkEAUqQRCQaEh0ee6rQ1/5uBoiCnSJia4/j1pSU6PEO+/E4soru+OBB7iJDRG1DfsOZmPE+IfQ2Gj2dylERF6xZ089+ve349tvWzcX6bnnOiErq/XhXrGxsejWrRsEgUvQfSkmJkZyW7vdDrOZv/eIqCmL3fXmJAwFI6JTjh614scf3d+Q8pQ77zRDp+NzI5E3cJUIERERERERERERuS05WY1Vq1R4770G/OtfWhiNStnv4XQqMH++Hj//bMGHHzoxeLBW9ntQ+zNgQAhiYmwoL3c/HGzTJu5AQ75nMpmQm5uLiRMV+OWXEBw4IP2l6SlPPdUJF10EXHBBJ06+I/JQRkwGfp30Ky5adBEczqY7nTXaGtFrXi/kPZiHiOAIP1RIRNQ6wcF/Pes6HEB+fhAOHNDi4MFgHDwYjEOHtDCZXH9v271b/u9zRO1BZHAk4vXxKKkv8XcpRETtniiKyM7Ohih6tsFDVZW8zyW//y7i+uubP69SqZCSkgK73Y7i4mLU1ta2qt8PP4yGwyE9vOzYsXswYcLRJscVCgU0Gg0DwogC0IXJF2LZwWVNjn9x4AuM7z3eDxURUaAKCgqCVqttVZhAaakK//tfNJYti/hz3GnTJj02bDDi0kvdD14lIpLb5t/3YsLUZ7Bs8Wv+LoWISFZLllTj/vtD3ZqzaTIJmDGjMz79NAd6ffNjeAqFAl26dEFISIgcpZKbwsLCUFRUJHnjhdLSUqSkpMhcFRG1d82FgoUFeb7JLRF1DK+/boMoSgv7DwoS8dBDXOdD5C0MBSMiIiIiIiIiIiJJBEGBqVNDMGyYFbffbvVa4FJOThCGDHHigQfq8fLLOmi1DMAJZEqlgEGDjFi+3P2X0fn5GmRnNyItzfNQJqLWMBqNyM/PBwDodE68804+brutG44fb/3Om/+kUjnx2ms1GDgwWa4yiQLe+Unn4/vx3+OaT66BE00nVtZaapHxTgZyH8iFTsPfIUTUdn37bSSWLw/DoUNaNDa2fhHA/v3SJnURdQSZMZkMBSMi8tCpQDC73e5xXzU18k5p3b27dWPJKpUKycnJ6NSpE0pKSlBdXd3swrvychWWL/ckNPoHHDnyuQftiagjGnfWOJehYFsLt/qhGiIKdJ06dUJOTk6z5/PzNfjww2h8+2047Pamz1uzZjlx6aVeLJCI2o4QALEAIgCEAwgDoAeg+/+/NDi5clEJwAnAAcAOoAFAI4AaAJUAygAUAjDKX+JX36/D+//7GndPvEH+zomIfMxmE/HQQ7WYN0/a2NSxY0F4+ulOmDPnOBQu8u41Gg26desGlYrLzv1FEAQYDAbU1dW51c7pBA4cCMYvvwRj7lwRSiXn2BLRXyyOZkLBtAwFIyKgstKBTz6RHup1000mJCQwUJbIW/hkT0RERERERERERB5JTdXgl1+0mD27AcHBze8i5wmHQ4E339Sjb18btm93/XKSAsfQoa3/OYuNtWHUqGq89tpxbNhwGEFBlV6sjOgvVVVVfwaCnRIV5cD8+fmIjJS2SFanc+CTT2rw4IORcpRIRH9zdfrV+OiGj5o9X9pQit7v9oZd9HyROxGRt5SXB2PnzhC3AsEAIDtbC6ORn28UmDKjM/1dAhFRu5efnw+r1SpLXzU1aln6OWXvXvf6EwQBiYmJyMjIQHR0NBQuVkd+9FEUrFZPpt6+7EFbIuqorut5HRRo+plTWl/K8Sgi8rng4GBoNE1D5A8f1uKRR5Jx7bXp+OqrSJeBYACwerUBu3bVe7tMIvKxyMRQoBeAKwHcDuAxAI8CmAjgWgAXAzgbQCqABJwMCAsGoMbJ1YtKnAwJ0wGIAZDy/9dfBmAcgIcBTPv//jvJW/v0p+YgJ++EvJ0SEfmY2WzGzJmlkgPBTvn55zAsXhzd5HhYWBjS09MZCNYGxMXFtframholli6NxOjRaRg/PhXvvReLn3/2QsomEbVrVofrdzjh2nDfFkJEbdJbb5ncnmt2ikLhxGOPyft+l4hOx1AwIiIiIiIiIiIi8pggKDBjRgh27bJjwACT1+5z+HAQBg5U44kn6mGzOb12H2rbRo4MbvacViti0CAjHnusGN98k4Wffz6CF14oxNVX1yIy0oGGhgYfVkqBqrS0FEVFRS7PJSdbMW/eMQQHO9zqMyrKhh9/bMSYMZ5N7iOi5t3S+xa8fdXbzZ7PrcnFee+fB1H0TggqEZGn+vWT1s7hUGDLFj4nU2DKjGEoGBGRJ44fPy7beJtSqYQoyhuEXlysRlGR+2E6giAgPj4eGRkZiIuLgyCcnGpbW6vE5597UuN6AFs8aE9EHZVKUCFeH9/kuBNOLD+03A8VEVGgS0hI+PP/79ypw5QpKRgzJg2rVoVBFJuGGP6d06nASy+59x6MiNqetLQ03D7xVnz54SyUHl6NZStfA24EMBBAF5wM95Jb1P/3PxnAvTgZQtbyR06rNDaa8a+Z//W8IyIiP6mqqkJ2djZuuKEKfft6Phb3n//EYfv2kD//PikpCcnJyS4D8sn3goKCoFY3H64hisCWLSF47LEkXHZZD8yalYisLO2f5xcu9EWVRNSeNBcKFqYN83ElRNTWmM0i5s8Pktx+6FATevVqurkAEcmHoWBEREREREREREQkm549Ndi8WYsXXqhHUJB3AjPsdgGvvKJH//4W7N3r+kUldWydO2uRkfFX+FxGhgl33FGOhQvz8Ntvh/Duu/m47bZKpKZa8M+5Sna7nWEu5FXHjx9HeXl5i9ecdZYZs2cfh1LZunDDlBQL1q+34pJLDHKUSEQtmHb+NDx78bPNnt9buhdDlwz1YUVERK130UXaM1/UjG3buFCTAhNDwYiIpCspKUFtba0sfSkUCqSnp6OiQv6Fh1u2SB9DFgQBMTExyMzMRGJiIjZvDpW8U/ZJL3vQlog6uguSLnB5/LP9n/m4EiIiwGAw4MgRPSZO7Irbb++GTZvce0f13XehOHy40UvVEZE3GAwGXHnllZg5cybWrl2L5cuX44Xnn8aN116O2JhInB/XC2pB5buC4nEyhOweAAlnuLYVln23Flu37/O8IyIiHxJFEcePH/9zY0K12ok33jiOqCibh/0q8Mgjyaiu1iA9PR3h4eEyVEtyioxsujFBSYka770Xg+HDu+Puu7ti5cpw2GxNIwJWrNCjqsqznxEi6lhsouvPBK1K+hwTIuoYFi82oays+TDSM3n0UYbKEnkbQ8GIiIiIiIiIiIhIVkqlAk89pcf27XacfbbZa/fZs0eLAQNUeOGFetjtrQvWoY5jypRazJp1HBs2HMIXX+Rg+vRSnH9+AzSaM/8s1NTUeL9ACjiiKCIvL6/Vi2EHD67Hc88VnvG6Pn0asWmTE717h5zxWiKSx3NDnsPU/lObPb8hfwNGfz7ahxUREbVO167BiI2VNsH7jz88Cbcgar8YCkZEJE1lZSUqKipk6y81NRUqlQrl5fKP827fLs8GAZGRkXj00U7YtMmIa66pgyC4W+vvAH6WpRYi6pjG9hrr8vjWwq0+roSI6KS4uCjs2iXt/ZTdrsArr3CDL6K2Li4uDmPHjsX8+fPxyy+/YPbs2bj++usRGxvb5FqdWot+sX4YS4sHMBnAQM+7euOdjzzvhIjIR+x2O7KysprMQ4qNteP111u/EWFzbrnFiAsuSENQUJBH/ZB3REVFAQBsNgXWrAnFlCkpGDasO955Jw6FhZoW25pMSixaZPRFmUTUTthFu79LIKI2SBSdeOst6eHfffqYcfnlDBck8jYfRvQTERERERERERFRIOndW4Pt252YObMes2bpYLfLv0eBxSLgmWf0+P57ExYvFpCZyUkqgWLcOCVKS6UtPKytrXW5mx6RVKIoIjs7G1are4sbRo2qQXm5Gm+/Hefy/KWXGvHNN8EIC+PrHCJfe2f4OyhvKMeXB790ef7rw1/j3u/vxXsj3/NxZURELevd24y1a93fwXHfPn6XosAUExKDaF00KhrlC7YhIuro6urqUFxcLFt/Xbt2hVZ7csJ4RYX8u0nv2iXvuPRFFxnwww/A7t31uPXWvTh4sB+AlhfinfSyrHX8nSjKE3xGRP41OmM0FFDAidMXdhcbi2EX7VAJHCduj+x2O7Kzs3Hw4EEcOnQIeXl5KCoqQlFREcrLy2EymWAymWC1WhEUFITg4GBotVoYDAYkJCQgMTERiYmJSEtLQ58+fdC7d2/o9Xp//2NRgBg0yIBLLjHil18Mktp/8UUoXnzRjORkLg4kaqt+/tm94OKLE/tiS8leL1XTAgHAlQDCAfwovZvvfvoVpWWViIuNkqcuIiIvMRqNKCgogNPpOvirf/9GPPRQCWbPTnC7b4PBgffeM+LmmyM8LZO8SBAE7N4dhYceikFVlfvjAUuXavHII14ojIjaJZuj6eZyCsj/PoaI2pcVK8w4fDhYcvuHHhIhCPwsIfI2vh0kIiIiIiIiIiIir1GrFXjhBT2uvdaCiROBQ4e8s9B8+/Zg9Osn4vnn6/HwwyF8wRAAIiIiUFpaKqmtyWSSuRoKZKd25nQ4HJLa33VXOUpLVfj889MnHo8ZU4uPPzZAo5E/UJGIWueLMV/g8iWXY23eWpfn5++aj6iQKLx02Us+royIqHl9+tix1vXHVotycoJQV2dHaCinkVDgyYzJxK/5v/q7DCKidqGxsREFBQWy9ZeUlISQkJA//76yUv5x3b173Q9MbY2+ffUYM2Y1nn9+LICHAdwNQNfM1fsBfOeVOgAgNzcX0dHRSExMhErF5zmi9kolqBCnj0NJfclpx51w4vsj3+P6jOv9VBm54/jx49i0aRO2bduGbdu2Yffu3bBYLK1qeyog7JQjR440uUahUCA1NRVDhgzBFVdcgcsuuwxRUQw2Ie957DERv/wira3ZLGDWLBPeeYehYEQdxcWd+uLVXf/zXwEDAJgBrJPW3Gaz4+MvV+Lh+26VsyoiIlmVlJSgouLMG5lMnFiJvXt1WLMmrNV99+xpwpdfOtGrV7gHFZKvXHBBOGpqlJLa/vGHDr//Xo8BAxgqTUSAw9l0bqug4LxUokA3e7brANrWSEy04dZbpQeKEVHr8e0/EREREREREREReV3//kHYtUvEk0/W4623QuBwyL+4y2QS8Nhjenz3nQmLFyuRmqqR/R7UdqhUKiiVSklBTKIowmq1QqPhzwh5xmw2Iycnp9mdOVtDoQD+/e9ilJersW5dKADggQeqMWdOGJRKTrwg8rfVt65G/wX9satkl8vzL298GTG6GDx0wUOy3M9utyM7OxsHDx7EoUOHkJeXh6KiIhQVFaG8vPzPhYFWqxVBQUEIDg6GVquFwWBAQkICEhMTkZiYiLS0NPTp0we9e/eGXs9Jnn9ns9mQl5eHrKws5Ofn48SJEzhx4gRKSkpQXV2N6upq1NbWwmw2w2q1wmazQa1WQ6vVQqvVIjg4GLGxsYiLi0N8fDySk5ORmZmJzMxMpKenQ632TuAAUWv17y/tu5YoKrBlSyOGDQuVuSKiti8zmqFgREStUVZmxfTpJjz4oACdTvS4v7i4OISHh592rKJC/rGQ0lI1jh+3ITlZ/mf1zp0746KLUgAsg8WyBidOjEZZ2RiIouG061JSPkVk5Dmt7rexsdFlEExL6urq8MwzOsTHC3jkET2iozn2SdQeDeg0AN8daRoi+On+TxkK1kbV1dXh559/xs8//4y1a9fi6NGjXr2f0+lEdnY2srOzsWDBAgiCgCFDhmDChAm44YYbOBZIshs+PAznndeAnTtDznyxCx99FIrnn7fy2YSogxiYcDYUUMAJ6e/HPTYYQD6AHGnNV63bwlAwImqTRFHEsWPH0NjY2KrrFQpg5sxCZGVpcezYmTdqveGGWixeHAKDgUvK24v09GBcdFE9Nm6U9j1v/nwbBgyQuSgiapccIkPBiOh0u3ZZ8MsvzW12dGZTplg4T5LIR/gNjoiIiIiIiIiIiHxCqxUwe7Ye119vxqRJCmRnn3kyihSbNgXjnHMcmDWrAVOm6CAI8geQUdug0+lgNBolta2qqkJ8fLzMFVEgaWhoQF5enix9KZXAq68ex5QpXXDjjRY8/nikLP0SkecEQcC2yduQ8U4GsquyXV4zfdV0RAZHYsLZE9zu//jx49i0aRO2bduGbdu2Yffu3bBYLK1qeyog7BRXC8YVCgVSU1MxZMgQXHHFFbjssssQFRXldp3tVU5ODnbv3o19+/Zh79692L9/P/Ly8twOFbVarbBarairqwMA5Ofnu7xOrVajX79+uOSSS3DxxRfj0ksvRXAwd8Qj37roIq3ktlu32jFsmIzFELUTmTGZ/i6BiKjNq6+345prbNixIwp79wbjnXfyERnpflj/KZGRkYiJiWlyvLraO4tQtm71TijYHXfcgTvuuOO0Y2VlVrz2WhUWLQpFdbUKSUlWfPPNeKhU41vd7+HDhzFmzBi3ajlxQo2PP46Cw6HAvHkO3H57Nf71Lx0SE70zDk9E3nHTWTe5DAXbfHyzH6qh5hQWFuK7777Dt99+i/Xr18NqtfqtFlEUsXbtWqxduxZTp07FpEmT8Oijj6Jz585+q4k6nkcesWF86x9lTmM0KvHGG7WYNYvvvog6gvAgA86OTscfFd4NwWyRAsA1AN4BIOFr6catf8BstkCr5XclImo7zGYzcnNzIYruBfHr9SLefLMAN9/cDSaT0uU1arWIF16owaOPRnAeZTs0caINGzdKa7t8uQFz5zoQHOz6Z4OIAofobPr7RSnws4EokL32mh2AtO/FBoMD99/POZFEvsIYTyIiIiIiIiIiIvKpQYO02LNHjalT66FQeGf30Pp6Je6/PwRXXmlCQYHNK/cg/4uIiJDcVmqYGBEA1NTUyBYIdopW68S33xoZCEbUBqkEFfZN2YcEfUKz19z+ze344cgPZ+yrrq4OX3/9NaZOnYoePXqgc+fOuPnmm/HWW29h69atrQ4Eay2n04ns7GwsWLAAN910E2JjY3H55ZdjyZIlqK+vl/Ve/lZfX4/Vq1fj2WefxdVXX43o6GikpaVhzJgxmDlzJr755htkZ2e7HQjmDpvNhi1btmDWrFkYPnw4YmJiMG7cOHz99dd+XRxKgaVzZy3i46X9vP3xByd9UmBiKBgRUctsNhGjRzdix44QAMD+/TpMmNANx49LC9kyGAxITEx0ea6qyjvPIzt2uLeg0hOxsRq88UYk8vKAZ56pwgMPlELlg+17Fy+OhsNxcmGn0ajEf/8bgbQ0Fe66qxo5OaYztCaitmJMhutAwCJjkduLw0le5eXlmDdvHgYNGoTk5GRMnToVq1atalNjPg0NDZg7dy7S0tJw5513orCw0N8lUQcxZkwoMjKkP08sXGiA0WiXsSIi8qfBiX39XQIQCeAcaU3NZgt272u60Q4Rkb9UVVUhOztb8ne+tDQLZs50/eyfmGjFqlUNePzxSAaCtVM33xyKyEhpz9LV1Sp8/HGdzBURUXvkMhRMwfkhRIHq+HEbvv5aeqjXbbeZEB7OzxAiX2EoGBEREREREREREfmcTifgnXf0WL3ajJQU702WX7tWhz59FPjww0av3YP8R6/XS24rd+gKBY7y8nKcOHFC9n4TExORmBgve79EJA+tSouD9x1EhNZ1IKUTToz6fBR+K/itybnCwkK8++67uOqqqxATE4PRo0fj3XffxdGjvt9FXRRFrF27FhMnTkR8fDymTZuGgoICn9chh4aGBqxcuRIPP/ww+vfvj/DwcAwbNgwzZ87ETz/9hMrKSn+XiIaGBnz++ecYPXo0UlJSMHPmTJSXl/u7LAoAvXpJe9bdv1/aDpBE7V1bCQXrn9jf3yUQETXhcIiYNKkOq1eHnnY8Pz8It93WDYcOad3qLzg4GCkpKS7PWSwijEbvTCDftcv3U2XDwlR4/vlITJ+egLCwMK/eq7paieXLm35fNZmU+OCDCGRkBOHmm2tw4ADHyYnaOo1Kg9iQ2CbHnXBiRdYKP1QU2CwWC7744gtcffXVSExMxH333YfffvsNTqd3Nj2Si81mw6JFi5CRkYE5c+bAbmcYE3lGqRTw0ENmD9oDv/3GcVGijuLiTm0gFAwAzpPe9EhWvnx1EBFJJIoijh8/jqKiIo/7uuqqOtx6a8VpxwYNqsf27U4MGWLwuH/yn+BgJW64QfqGb0uWSNvYgYg6FieajmWpBB/sZkJEbdKcORbYbNLenapUTjzyCOeXEfkSQ8GIiIiIiIiIiIjIby6/PBj79qkwaZL0iQtnUlurwh136DBiRANKSjjpvSMRBAEajUZy+4aGBhmroUBQWFiI0tJS2ftNSUlBZGSk7P0SkbzCteHYP2U/QtQhLs87nA4M+d8QHCg7gPLycsybNw+DBg1CcnIypk6dilWrVsFq9V4YqrsaGhowd+5cpKWl4c4770Rhoevdg9ua1atX49JLL0VkZCSGDx+OOXPmYMeOHXA4HP4urUUlJSV49tln0blzZzz++OOoq+OOvOQ9Z59tc7uNweBAXJwNViu/M1HgidfHI1wb7tca+sT1wU+3/uTXGoiIXHn88RosXRru8lxlpRqTJnXF1q2uvyP9k1qtRteuXZs9X1rqvWf6vXv9t/hNpVIhOTkZmZmZiIyMhEKhkP0e338fBqu1+enANpuATz8Nx9lnB2PUqFr8/rv3xuOJyHPNhcV+su8TH1cSuPbt24eHHnoInTp1wtixY/HTTz+1y2Ato9GIhx9+GAMGDEBWVpa/y6F2btKkMHTp4l4QfefOFjz3XCFWrjyKpKRKiKLopeqIyJcGJ7aRULBEAKFnvMqlI9kMBSMi/7Lb7cjKykJtba1sfc6YUYK+fU/OhZs2rRrr1umQmMjAho7g3nulj23+9lsIDh/mRgFE1JRaYGggUSAyGkV8+KF7mz793ciRjejalZ8fRL7EUDAiIiIiIiIiIiLyK4NBwKJFevzwgwmJie4vXm+tFStC0KsX8OmnnOTQkej1esltq6qqZKyEOjJRFHHs2DFUV1fL2q9CoUBqaioMBu7KSdReJIYmYvc9uxGkdDF51g7Y9trQZ1AfJCYm4r777sNvv/0Gp7Ppbottic1mw6JFi5CRkYE5c+a0+QWOmzdvxi+//NKmAtbcYTab8dprryEtLQ0LFy70dznUQfXv3/JUEIPBgfPPr8ekSeV4/fUC/PjjEfz22yG8914+jEb5Fh8QtRcKhQKZMZl+u3/P6J5Yc9saRAYzKJiI2pbZs6swe3bLn00NDUpMmZKClSvDWrxOqVQiLS0NgtD8c0ppqfdCIsrK1MjP997Yc2sIgoDExERkZGQgOjpa1nCw1atb/vd/isOhwLffhuH88/W48kojNmwwylYDEclnTOYYl8d/O/6bjysJXEOGDMFbb72FyspKf5cii927d6Nfv3748ssv/V0KtWNqtYD77mvdhks9epjw+usF+O67LIweXQ2N5uQYeUlJiTdLJCIfidNFoXt4Z3+XcVLzudMtKi6tkLcOIiI3GI1GHDlyBDabvGNVajXwxhvH8cknNXj77Qio1Vw63lGcd14I+vaVNufV6VTgvffcC/cloo7Fanc9v0qtZKgPUSB6991G1NaqJLd/7DGljNUQUWvwmx0RERERERERERG1CddcE4z9+wWMH9+6ycRSVFaqcPPNOowZ04DKSofX7kO+ExkpfdF0Q4P3ftao4xBFEbm5uaivr5e1X0EQkJ6ejuDgYFn7JSLvS49Kx6Y7NkGp+P8JDqUAVgKYDWAZIGaJbT5YyxWj0YiHH34YAwYMQFZWlr/L6fDKy8sxefJkXHPNNSgtLfV3OdTBXHTRXzs6hoQ40L9/PW6/vRyvvXYcK1YcxaZNh7Bw4THMmFGKq66qQ3KyDacyKfiMTIEqM9o/oWDdIrrh59t+RmxIrF/uT0TUnI8/rsbjj0e06lq7XcBjjyXjo4+iXJ4/FYquVLY8SbyszHuhYACwdat/Q8FOEQQB8fHxyMjIQFxcXItBaa1lsbg/AX/NGgOGDDFg2bI8VFRwQTxRWzK211iXxwuNhRBF735WUsdVV1eHm266CTNnzvR3KdSO3XdfGOLimn+mOvfcBsybdwxffpmDq66qwz8f/6qrq/k5RtRBXJx4rr9LOClGWrP6Bm4mSET+UVJSgvz8fK9sLKZQKHD++ckYPz5c9r7J/265xSypnULhREEB+BxOFMBqzDUujzMUjCjw2O1OvPOORnL7gQNNuOAC7ZkvJCJZMRSMiIiIiIiIiIiI2oyICCU++SQEX37ZiJgY7y3SWrYsBGedJWL5ck70a++0Wi0UpxIM3GS32znhhVpUX2/H2LF12L9f3sl4arUaPXr0gEYj/eUqEflXv8R+WHXrKggKAVgMYBsAk5+Lksnu3bvRr18/fPnll/4uJSD8+OOP6N27NzZu3OjvUqgDSUrSYs6cAnz//VFs3nwIixYdw8MPl+Lqq2vRubMVLeVOmEwd5MOMyE0ZMRk+v2dyaDLWTliLTqGdfH5vIqKWrF5di8mTw+BwuDfm9tprCZgzJw7/HG5LTU1t1RhIWZn8iyH/bvv2tjUOKAgCYmJikJmZicTExDOGpnlD796N6NGjASUlJTh48CDKyso4XkrUBmhVWsTomiZciE4Rq3JW+aEi6kieffZZzJgxw99lUDsVHKzE3XcbmxwfNMiIxYtz8b//5WHw4Ho09+rW6XSirKzMy1USkS9c3Kmvv0s4KVxaM2M95woRkW+d2pDQW8HsGo0GPXr0QEhIiFf6J/+74w4DQkJavwluQoIVU6eW4qefjmLmzEJUVlZ6sToiasuqzdUujwcpg3xcCRH52+efm1BQIH3e+owZ3n2XS0SuMRSMiIiIiIiIiIiI2pwbb9Rh/34Frr++wWv3KC1V44YbdLj11gbU1LR+wgS1PVqt9F1nampq5CuEOpSyMisuu8yCZcvCce+9XVBSopKl3+DgYKSnp/tloScRyWtot6H4bPRn/i7DK+rq6nDTTTdh5syZ/i4lIJSXl+OKK67A559/7u9SqAO5+upGdOnScgCYK3a73TsFEbVxmTGZPr1fvD4eayesRZfwLj69LxHRmezaVY+xY0NgNkubWvrhhzF48skk2GwnkyBSUlJaPXZXXu7dMKrdu9vudNnIyEhkZGQgOTkZarXaZ/e9667yP0M7RFFEWVkZDh06hOLiYoaDEflZv8R+Lo8v3bfUx5VQR/Tmm2/i4Ycf9ncZ1E49/HAowsPtUCicGDasFl98kY13383Heee1LmCnsrKSzxlEHcDgxDYSCiZxLbPTyYXMROQ7FRVmHD58GI2N3gkkDAsLQ3p6OlQqeeY1UdsUEaHGNdc0Dej9O5VKxJVX1mL+/GNYufIopkwpR2LiyY15GQpGFLjqLHUuj2uU3NCWKNDMmSP9XWlamgXXXx8sYzVE1Fptd5YDERERERERERERBbTYWBW+/joES5Y0IDLSewvTly4NQa9eDqxcafLaPci7QkNDJbetra2VsRLqKLKyTLjoIhHbt5/cQbO0VI0pU7qgrs6z1yoGgwGpqakQ3E3nIKI2a8xZYxCi6bi77T777LOYMWOGv8sICBaLBePHj8fChQv9XQp1EFKDc51OJ2w2m8zVELV9vgwFiwqOws+3/Yz0qHSf3ZOIqDVyckwYOVKDmhrPFhD+8EM4Hn88CUlJSTAYDK1uV1bm0W3PaO9eDUSxbS/8DgsLQ48ePZCQkOD1e6WlmXHppU0XEjqdTlRWVuLQoUM4ceIEQzuI/GR0xmiXxzcVbPJxJdRRzZkzB++++66/y6B2KCxMhTfeqMD332fhjTeOIyPD7Fb7U88aRNS+pRgSkKyP83cZgMSvr8HaIHnrICJqxpo1tejdW8BXX0mf29aSpKQkJCcnQ3Eq9Z06tLvucv3fOS3NjEcfLcbatUcwe/ZxDBxYj3/uVWm322GxWHxQJRG1Nc2FggWp+ExMFEg2bDBj1y7pm7BPm2aDIPCZk8gfuOqEiIiIiIiIiIiI2rTbbgvBvn3AVVd5Z7c8ACgs1GD48GBMntyA+noucmpvIiIiJLc1mRgGR6fbutWIwYNVyM4+/eVndrYWDz6YAotF2kvNqKgopKSkyFEiEbUxWpX0yRLtwZtvvomHH37Y32UEBKfTiXvvvRdff/21v0uhDkCn00luW1fnelIoUUeWHJoMvUbv9fuEBYVhzW1rcFbsWV6/FxGRO0wmK0aOBIqKPN8ZXqVy4s47nQgPD3erXUWFdyeSV1SoUFDgvc0n5BQS4v3w6bvuKkdLufVOpxM1NTU4ePAgCgoKYLe3j393RB3F+F7jXR4/XnecYX3tkEKhQHp6Om6++WY899xzWLx4MTZs2IDs7GwUFxfDaDTC4XDAZDKhqqoKhw8fxpo1azB37lxMmjQJ6eneCRSeNm0a1q1b55W+qWO77bZIpKRYJbcvLy+XsRoi8geFQoGLO53r7zIAiR9FEeHeCechIjrF4RDx8stVGD7cgJISDV56KRGHDsk3r0CpVCI9Pd3t8Tdq3y67zID09JOhvDqdA6NHV+Hjj3Pw9dfZmDChEpGRjhbbl5SU+KJMImpjasw1Lo9rlR17vhsRne7116W/V4iOtuOuu6TPQyMiz3i2pRsRERERERERERGRDyQmqrBihRIffNCARx7Roq5OeeZGEixcGIKff7biww9FXHopX3i2FyqVCkqlEg5HyxNbXBFFEVarFRqN5wseqf37/vsa3HKLAUaj68+YHTtC8MQTSXj99eMtLpr8p/j4eERHR8tUJRGR782ZMwdpaWmYMmWKv0vp8BwOB26++WZs2rQJ/fr183c51I6FhYWhrKxMUtv6+npERUXJXBFRG1ZRAcXOnciwhmE76r12G71Gj59u/Ql9E/p67R5ERFLY7Xbk5WVj8mQ9/vWvJFitnu01+8Yb1Rg7NtLtdpWVHt22VbZutaFLF7X3b9TGJSVZMWxYbauvr6urQ11dHfR6PRITEzmWSuQDOo0OUcFRqDSd/uEoOkWsy1uHy1Mv91Nl1BoKhQLnnnsuhg0bhqFDh+K8885DWFjYGdtptVpotVpERESgR48euPzyv/47Z2Vl4bPPPsPChQtRUFAgS50OhwOTJk3Cvn37EBrKcBRqPY1Gg+DgYMmbL4miiOrqao82fiIi/xuceA6WHlnp1xo0ZjWssLndLrlTnBeqISI6qa7OjgkTGvDtt3+Nj1ksAqZP74zPP89GWJhnQc86nQ5dunSB4M7EJeoQlEoB06cbUVFRgWHD6qDTufezVF9fD1EU+bNDFGDqra7ff3f0TTCJ6C+HD1vx00/BktvfeacZOp33N9kjItcYCkZERERERERERETtgiAoMHlyCK680oZJkyxYv947O44cO6bB0KFOTJ1aj9de0yE4mJMg2gOdTgej0SipbVVVFeLj42WuiNqbBQuqcf/9YWdc+Lp6dRhiYmx4/PESKBRn7jc5OblVi32IiE5RKBRIS0tD//790b17d3Tp0gVdunRBUlISQkJCoNfrodPpYLVaYTKZUFZWhuPHj+PIkSPYuXMnNm3ahKysLNnrmjZtGnr06IHLLrtM9r59SaPRoEePHujZsydSUlKQkpKCzp07Izo6GtHR0YiIiIBWq0VQUBBUKhWsViusVitqa2tRXl6OkpISZGVl4ejRo9i+fTv27NkDq1XiVvTNsFgsuPnmm7F7926EhITI2jcFjqCgIMltzWazjJUQtVEnTgDz5wNLlwJ5eQCAzFHA9nO8czutSosfxv+AC5Iu8M4NiIgkEkUR2dnZEEURV1xRh4iIY3jggZRmA9PP5F//qsKDD7ofCAYAlZXeH4f9/XcR48Z5/TZt3p13lkMlYfZwfX09jh49Cp1Oh06dOnn0zElEZ3ZewnlYnbu6yfGP9n3EULA2SKVSYejQoRg/fjyGDx+OmJgYWftPT0/H008/jSeffBIfffQRnn/+eeT9/3cZTxQUFGDGjBlYuHChDFVSIElMTEROTo7k9qWlpQwFI2rnLk48198l4Gr9QHyLX9xul94t2QvVEBEBe/bU46abVDh6tOk8ocJCDf7972TMnZvv1kaEfxcbG4vY2FgPq6T27I47QiXPB3E6naipqUFkpLTxWyJqn+osdS6PB6ulBwQRUfvy+utWiKK0DX+0WhHTpzNEkMifGApGRERERERERERE7UpKiho//6zC3Ln1eOKJYDQ0SFug1hJRVGDuXD1Wr7bgww+dGDiQLzPauoiICMmhYEajkaFgAe7556vw/PMRcDpbkfIFYOnSaMTF2TFpUkWz1ygUCnTp0oVhLkR0RgqFAueeey6GDRuGoUOH4rzzzmtVmKBWq4VWq0VERAR69OiByy//azFoVlYWPvvsMyxcuBAFBQWy1OlwODBp0iTs27cPoaGhsvTpbXq9Hueeey769++P/v3745xzzkFqaipUbqx+P/XvOTQ0FMnJTReJmM1mrF27Ft9++y2++OIL1NbWylJ7VlYWHn74Ybz33nuy9EeBSaVSwW63u91OShuidmPdOmDuXOC77wCH47RTmeXeuaVGqcE3Y7/BJV0u8c4NiIgkEkURubm5p/3u79evEYsX52LKlC4oK1O71d/tt9fgxRfDJdfji1Cw3bu5AURsrA3XXlvjUR+NjY3IysqCVqtFp06dEBzMxUNE3jA6c7TLULCN+Rv9UA01p1+/fpg0aRLGjBkjexCYK4IgYOLEiRg7diyeeeYZzJkzB45/fLdx16JFi3Dfffehb9++MlVJgSA4OBhBQUGwWCyS2tvtdtTV1bWbsWYiaqpnRBdEa8NRYa7xy/1fvGAKfvzxN0ltzzsnQ+ZqiIiAJUuqcf/9oS2G7W/caMD778fg3nvdeyHBOUh0yqnNzaS+z62oqGAoGFGAqbfWuzzOUDCiwFBR4cCnn+oktx871oS4OD6DEvkTZzgQERERERERERFRuyMICjzwgB67dztw4YUmr93n6NEgXHJJEB57rB5Wq9Nr9yHP6fV6yW2lTlan9s9uF3HPPdV47rnIVgeCnTJnTjy+/951aI8gCEhPT+dkPCJqlqAUMGzYMCxevBilpaXYsWMHXnrpJVx22WWtCgQ7k/T0dDz99NPIy8vD4sWL0bVrVxmqBgoKCjBjxgxZ+vKG0NBQjBw5Eq+//jp+//131NTU4JdffsEbb7yBsWPHokePHm4FgrWGVqvFNddcg/fffx9FRUWYP38+OnfuLEvfCxYswL59+2TpiwKTVist3NjpdMJqtcpcDZGflZcDN90EDB0KLF/eJBAM8E4omFKhxBc3foFhacPk75yIyEMFBQUwm81NjnfvbsHHH+eiW7em55ozfHgdFiwIhVIpfUpqVZX8mz/80759GohixxvnjY21tfra22+vgEYjz78Ds9mMnJwcZGVloaGhQZY+iegvt/S+xeXxgtoCiKLo42ro77RaLSZOnIht27Zh+/btmDp1qk8Cwf5Zw2uvvYbVq1cjKirKo76cTieefvppmSqjQJKQkOBR++LiYpkqISJ/UCgUGJzon0DJcelXYkrajfh91wG320ZGhCGjuzzvzYiIAMBmE3HffdWYODGixUCwU+bNi8Vvv7V+nptGo0GPHj04B4n+5Ml3QKvVCput9WOJRNT+NRcKplNLDwkiovbjrbdMMJmkvb9VKJx47DF551oSkfsYCkZERERERERERETtVnq6Bhs3avHqq/UIDvbOAgi7XYHXX9fj3HMt2LWL4VFtlSAI0Gg0ktvX17t+8U0dl8nkwOjRRrz/foTkPp55JgmbN58+6U6lUqF79+4e/TwSUQeWCGA4IM4QMeblMZg4caJXFwwKgoCJEyfi4MGDePTRR6FUer7IftGiRdi9e7cM1cmjb9+++Pe//41ffvkFlZWV+O677/DII4+gf//+svzzukOn0+Huu+9GVlYWXnzxRY9/F4iiiEcffVSm6igQebI4oK6uTsZKiPxs2TLgrLOAL79s8TK5Q8EEhYClNyzFdT2vk7djIiIZFBYWtjgelpBgw5IleTjnnDMHPZ1/fgO++EIHlUr6dFRRdKKmxvvP75WVKuTldbxFbz/8oMTcudVIS2s5yC0iwo7Ro6tkv7/FYkFeXh6OHDnC50giGYVoQhAZHNnkuMPpwK8Fv/qhIoqOjsbMmTNRWFiIxYsXY8CAAf4uCZdddhm2bduG5ORkj/pZsWIFduzYIVNVFCj0ej3UarXk9jabjcGiRO3cxZ18HwrWLzYTiy5/Bh9/sRJ2e9Pg/zMZdtkFEAQupyQieZw4YcallzZi3rzWzz1yOhV4/PEkFBae+TkqLCwM6enpsm98Re2bp8HQpaWlMlVCRO1Bc6FgIWqGTRJ1dGaziPnzgyS3v+IKEzIzpbcnInlwFIuIiIiIiIiIiIjaNaVSgcce02P7djvOPbflRU+eOHBAiwsuUOOZZ+phtzu9dh+SzmAwuN3GZlNgxw4d1q/nhPNAYrVaMXFiHb77Lsyjfux2BaZP74xDh7QAgKCgIHTv3p2T8YjodCoAZwO4C8DdAAYACAEmfz8Z3x7+1iclaLVavPbaa1i9erXHE0SdTieefvppmSpzn1qtxmWXXYa3334bBQUF2LVrF15++WVcfPHFbebzV6PR4Mknn8T27duRkpLiUV+rVq3Cvn37ZKqMAk1YmPRnHS7IpA7BbgfuuAMYMwYoP3PiV0oNECxjTswH136Asb3GytchEZFMysrKUF1dfcbrwsIcWLDgGIYMaT7kqUcPE374QY2QEM+exaurRdjtCo/6aK1t2+w+uY8vqdUC7rsvAocOafDhh9Xo1avR5XW33loJnc57Y9s2mw0FBQV4881C/PKL0Wv3IQokfeNdB20s2bPEx5UEtqSkJMyZMwf5+fl4+umnERnZNKzNn1JTU7FhwwYkJCR41M+CBQtkqogCSXx8vEfti4qKZKqEiPxhcKJvQ8ESQqLxzTVvQHAImPPuUkl9jLv+SpmrIqJAtWZNLfr3F7B5s97ttrW1KsyY0RkWS/PjYUlJSUhOToZC4ZsxM2o/BEHg5lBE1GqNNtfvCxgKRtTxLVpkQnm59ED/Rx/lcyhRW8BQMCIiIiIiIiIiIuoQzjpLg23bgvDccw3QaESv3MNmE/DCC3oMGGDB/v1Wr9yDpIuIOPOui04ncOyYBp98Eolp0zpj0KCemDSpG/77X50PKqS2wGQyISsrC5MmlSEqyvMV/42NSkydmgLAgNTUVO4qTER/io6OxpPPPImIJyOA6wEknX7eCSdu+OIG/HrsV5/VdNlll2Hbtm1ITk72qJ8VK1Zgx44dMlXlnieffBJr167FtGnTPP7n8LY+ffrg999/x1lnneVRP++//75MFVGg0Wg0ktuazd4LXCbyCYsFGD0a+PDDVjdROoGeFfLc/h3dGNx+zu3ydEZEJKPq6mqUlZW1+nqt1ok5cwpw441VTc516mTFjz8C0dHSnzlOKSlxeNxHa23f7p2x47ZApRJw++0R+OMPLb78sgYDBvwV9BoS4sC4cZVer6G+XsCzz8bj0ksNGDy4Ht9/X+P1exJ1ZDdk3ODy+K/5vhtPCmSxsbF46623kJOTg+nTp0Ona7vvkrp164bly5cjKChIch+ff/45TCaTjFVRIAgLC4NSqZTc3mKxcByKqB07OzodBh+FCWiVQfhm+BvopI/Fa/9dgvzjxW73kRgfg2uuHOSF6ogokIiiiJ9/LsY11xhQUiJ9XOzgwWC88krTYF+lUon09HSEh4d7UCV1dLGxsZLbiqLIYDCiANJgc70hnF7jfqglEbUfoujE229L39Tp7LPNuOwyrYwVEZFUXJlCREREREREREREHYZKpcCzz4Zg61Ybevf23uTh3bu16N9fhVmzGuBwOL12H3KPVqt1uTtiba0Sq1eH4rnnEnHVVd0xcmR3vPJKIjZsCEVj48lJ6lu36mC1dtwFgXSS0WhETk4OnE4nkpNtmDcvHzqdZ4tOVSonnnrKiF69UhgIRkQATu7YO2fOHOTn5+PF51/E4UcONzuRSnSKGPrRUOwp2eOz+lJTU7FhwwYkJDSdYOyOBQsWyFRRxxYbG4s1a9Z4FGC2dOlS2O12GauiQKJSSZvgZbN5Hp5K5DcOBzBuHPDdd243zSz3/PZvrAKmPvYlwFBHImpjjEYjCgsL3W6nUgHPPFOEqVNL/zwWEWHHd99Z0a1bsCy1lZb6blxu9+6OP36jVAq48cZwbNsWgp9+qsOllxoxfnwVQkO9/+/5888jYTSeHHPdtEmPa68Nx3nnNeKzz2rgcHD8lchdt/a+1eXxYzXHfFtIgAkNDcVzzz2HnJwcPPDAAx6FbvvS+eefj5deekly+9raWqxcuVLGiihQxMXFedReyjMqEbUNKkGFixLO9sm9Fl3+NAbE98Jv2/7AzNelvaN65P5bPQoyJCKy2+3IyspCXFwlrrjC81Clr76KxPLl4X/+vU6nQ48ePTwK+6XAEBIS4tHvtPJyGV6IEVG7YLK5DoBnKBhRx/b992YcOSL9mXL6dAcEoemaDCLyvY4/u4GIiIiIiIiIiIgCTt++QdixIwiPP14Plco7oV1ms4B//zsEgwebcfSo1Sv3IPcFBwfDZgN27dJh7txY3HJLN1x8cU88/HBnfPVVJIqKXC/cMBqVWL++3sfVki9VVVUhPz//tGOZmWa8+eZxyZ8TOp0DS5fW4sEHI+UokYjaudjYWLz11lvIycnB9OnTodPpTh7Xx2LvvXuhVbreOc0u2nHBBxcgrzrPZ7V269YNy5cv92gy8eeffw6TyfXEMTpdQkICli5dKjk8srq6Gr///rvMVVGg0Gql79potfJ7DrVT998PfPONpKaehoLNXAc8vOX//2bKFOD77z3rkIhIJiaTqcm4iDsUCmDKlHI8+2wh9HoHPv+8AeeeK9+CkbIy34VF7d2rgSgGzkYPw4aFYv16A159VQ21Wu3Ve5nNCixZEt3k+K5dOowfH44+fSxYuLAadjvDwYhaK1QbinBteJPjDqcDmwo2+b6gALF79248++yz0Ovb3+LIhx56CH379pXcft26dTJWQ4EiMjLSo41zTCYTx6GI2rHBied4/R5P9rsD47tfhX0Hs3HtLQ/Dbnd/46+kxDjce/toL1RHRIHCaDTiyJEjsNlsUCiAZ58tRFqa55uWvvRSIg4d0iI2NhbdunXjhoTUauHh4ZLbmkwmOByebaRJRO1Do63R5XFDkMHHlRCRL82eLb1tp05W3HyzTr5iiMgj/IZIREREREREREREHZJGo8CsWXr8+qsFPXpYvHafLVuC0bevEm+91RBQi8naqsLCCAwenIGJE7th/vxY7N2rgyi2bqealSs50aWjKi0tRVFRkctzAwfWY+ZM93cgj4y048cfG3HTTeEeVkdE7V1oaCiee+455OTk4IEHHoBG0zSAsmtEV2y5cwtUgsplH2a7GWe/dzbK6su8Xe6fzj//fLz00kuS29fW1mLlypUyVtSxDR48GJMmTZLcfvXq1TJWQ4EkJCREctva2loZKyHykZUrgffek9zck1CwxzcBT/36twOiCEyeDFRWSu+UiEgGVqsVubm5svR1443V2L69CldcESZLf6f4MhSsulqFnBybz+7XVkRGhqNHjx5ISUlx+b1VDl9/HYGqKtffewHg4MFgTJ4cge7dbfjPf6pgsTAcjKg1+sa7Dnha8scSH1cSOMLC5P0950tKpRLPP/+85PYbNmyQrxgKKDExMR61b+49HhG1fRd3Oter/Y/qdilmXnAv1qzfiotHTEZVtbRx6//OehTBwdI30SCiwFZSUoL8/Hw4nX/NDdTpnHjzzQLo9Z7NN+va1YKMjETExsZ6WiYFGE9/ZsrKfDc/hYj8x2x3HWBp0DAUjKij2rHDgo0bgyW3v+8+G9Tq1q29ICLvYygYERERERERERERdWgXXqjF7t1qPPhgPQTBO6FdjY1KPPRQCIYONeHYscBbUNaWnHdeKESJa8l+/TVI3mKoTTh+/DjKy1te2T9yZA0efLCk1X2mpFiwYYMFl1zCiRFEBOzevRvPPvss9Hp9i9edk3AO1ty2BoLC9Stao9WIzHmZMFqM3ijTpYceegh9+7peWNoa69atk7Gaju+5556DUqmU1HbLli0yV0OBwpOFzI2NrneMJWqzamtPhnB5QGoo2LRtwCs/A02mRZaWAtOmeVQTEZEnHA4HsrOzT1uw6Inw8HD07OlZ4IMrZxi6kd3WrYE7hmswGNC9e3d07doVQUHyjYfabAp8+GF0q67NywvC9OmR6NbNjhdfrEJ9vV22Oog6olE9Rrk8viF/g0/roPZj5MiR6Nmzp6S2Bw4cQF1dncwVUSCIioqCQiF9sWB9fT3sdj4TELUrR48Cs2ah/4xXEOSl/df6RKVj/kVP4JGn/4OrbnoANbXS3qHdOuZqjLrmUnmLI6KAIIoicnNzUVFR4fJ8ly5WvPjiCcn933BDLX7/XY1evXSS+6DApVQqodVKD7ysqamRrxgiarOaCwULDQr1cSVE5CuvvSZ9jC001IGpUxmoTdSWMBSMiIiIiIiIiIiIOrzgYAH/+Y8e69ZZ0LWr1Wv32bBBh7PPFjB/fgNE0TsBZNQynU6JAQOkhRfs3RuM8nLv/XyQb4miiLy8PNTWtm6n4DvvrMD48ZVnvK5370Zs3OhE794hnpZIRB2EO4E7l3a5FMvGLIOiaWQIAKDSVInMeZmw2n3z+0ipVOL555+X3H7Dhg3yFRMAkpKSMHz4cEltjxw5InM1FCg0Go3ktmaz68mhRG3W9OlAYaFHXXSrBjRuzo+8ayfwn59cBIKd8umnwPLlHtVFRCSFKIrIzs6GKDVB/x/0ej2SkpJk6eufpIaCKRTSxmC3b+fYbUhICNLT05GWlobgYOm7hZ/yww9hKClx79mzqEiDp5+ORNeuTvz0UyGsVo7NErky4ZwJLo/n1eT5uBJqTyZMcP1z0xpZWVkyVkKBQhAEREZGetRHUVGRTNUQkddYrcCPPwKTJgHjbwa+XIagrByc74Wg52ghHNeXX4qzB47Hm+9+Ivm7ba+MVLw3+wmZqyOiQGA2m3H48OEzbqIzdKgRkya590GoVouYNasKX34ZCoNB5UmZFOBiY2Mlt3U4HGhoaJCxGiJqi8wO1/M+wrTSN5gjorYrP9+G5culv/ebMMGEsDBpm54SkXcwFIyIiIiIiIiIiIgCxiWXaLFvnwp3310vecHYmdTVKXHvvSEYPtyEoiLuZuwPQ4bYJLVzOBT44QdOdOkITi16dWfikkIBPP54Ma64ovkQsUsvNWLjRg2Sk7kLEhFJd33G9Xh/5PvNnj9RdwJnv3e2bAv3z2TkyJHo2bOnpLYHDhxAXV2dzBV1bKNGjZLUrqCgACaTSd5iKGCo1WpJ7Ww2ac/VRH6xZw/w4Yced6MSgR5nzgr+0817gfd+AIQzDTFMnw746Hc7EdEpubm5sv0+DwoKQufOnWXpy5XKymajFVsUFuaQ1O6PPzh19hStVovU1FR0794dISHSQvAdDmDRohjJNQgCEBtbg6NHjyI3NxcWi0VyX0QdUbg2HGFBTRfp2UU7tp3Y5oeKqD0YMWKE5LYMBSOp4uLioFBIe64DgLq6Op+NixNR69Q12FHRoIHTYQd+/x244Qbg6WeAvftOu+7iUpluaANwFFB8r0Djq2Y8P3MBSkrdGKz7h+ROcVj5+dsICXF/QbTVYsHxhmjJ9yai9q2qqsqtsP0HHijFgAH1rbo2MdGKVasa8PjjkRAE6c9ORAAQGhoKQZA+1llWViZjNUTUFjW3MWVoUKiPKyEiX5g92wK7XdqzgUol4uGHg2SuiIg8xZkNREREREREREREFFBCQgTMn6/HypVmJCW5ftkph1WrdOjVC1iyhCFTvjZihPQXUj//zMlW7Z3dbseRI0dgtbr/51upBF555QTOPbfpn9sbb6zFqlUhCAvjDp1E5Lm7zr0Lr17+arPnD1cexsBFA31Wz4QJEyS35SJB9wwZMkRSO6fTidJSuVbVUKDRaqUHmkp5piLyi3feka2rzPLWXXfDQeB/3wDK1mSO5+cDK1Z4UhYRkVvy8/NhNrve/d1dKpUKqampHi0uOxOpoWBxcdJCwfbu1UAUvbNpRHul0WjQtWtX9OzZEwaDwa22a9aE4tgx6WOykyZVQKM5+d+jsbERWVlZyMnJYTAy0d+cHXe2y+OL/1js20Ko3ejVqxciIyMltT127Ji8xVDAEAQBYWFNQwxby+EAduxgKAFRWyKKIkpqFcipiUBjbj5QXOLyuotdH27KDsACoA5ACYAsANsA/AhgAYBZAD4BnDudaGzw7Dtt15ROWP/tfCR1inOrnehwoLxBi6yqMNQ3MrCYKNCIoojjx4+jqKjIrXYqFfDqq8cRG9tyQP+gQfXYvt2JIUPcG3shaom7Y3l/19DQwGBeog7O4nD9TBuuDfdtIUTkdXV1Iv73P/dDsU8ZNcqELl2kbTxJRN7DUDAiIiIiIiIiIiIKSMOGBWP/fiVuu817oV3V1SpMnBiCUaMaUFZm99p96HTnnBOM+Hhp4QUbN0p/GUb+ZzabceTIETgc0haEAkBQkBNvv52P1NS/Jhk/8EA1PvvMAI2Gr1WISD6PXfQYHh34aLPntxVuw9UfX+2TWkaMGCG5LUPB3NOlSxcEB0t73qivb93u0kT/pNPpJLetra2VsRIKRF8c+AIf7/0Ye0r2wGL30iK62lrgk09k6641oWDDjwKffgWo3FknMW+e5JqIiNxRVFQEo9EoS1+CICAtLc2rgWAAUFkprf8uXaSNudbWqpCd3fIizUClUqmQkpKCnj17tirUw+kEFi6MkXy/iAg7brihqslxk8mEnJwcZGVloaGBG28QXdfzOpfH1x1b5+NKqL1QKBTIzMyU1Laurk7maiiQJCYmut3GZlNg+fJwjBqVjvHjw2G3M5SAqK0xW6zIvfhWFK3eC0f37thhARTH/vrryi0AnmvFXy8CeAXAHADvAVgKYCWA3wEUApD+mv8055/XC7/9+AFSuya51a7BZENOTThKa51wOhkkTRRo7HY7srKyJL8bi452YPbsAqiaeXEwbVo11q3TITFRerA6kSvx8fEeta+srJSpEiJqi6wO13Opw4PCfVsIEXndvHkm1NUpJbd/5BHpbYnIe7h6hYiIiIiIiIiIiAJWWJgSS5aEYPnyRsTHe28R2LffhqBXLye+/LLRa/egvyiVAgYNMklqe/x4EPbsYeBGe9TQ0IDs7GxZJueGhYl47718JCZaMWtWFd56KwJKJV+pEJH8XrviNdx+zu3Nnv8p5ydM+HqC1+vo1asXIiMjJbU9duyYvMV0cAqFAikpKZLayhXsQIGnNWEOzWEAA3lqZdZK3Lb8Npwz/xzoX9Gj17xeuPmrm/HKxlew4ugKFNQWeP4M/7//ATL+rGacIRTsslxg2ReAxt1FiqtWAbm5kusiImqN8vJyVFU1DViSQqFQIC0tDSqVSpb+WiI1FCwzU/rvkK1bGQrWEpVKheTkZGRmZiIyMhIKhcLldRs36nHkiPSNFm67rRI6XfP/HS0WC/Ly8nDkyBGG1FBAu/3s210ez6vO820h1K6kpqZKasdgevKEIAgIDQ1t1bWNjQp8/HEUrr66O555JgnHjgUhN1eLJUsYUk/UVlVZFMh66xsYn37R36W4JAgCHrxnPH79YQES4qNb3c5utaDQaEBetR4Wi7QN6IiofTMajThy5AhsNs/Gi845x4RHHy057ZjB4MDSpTV4++0IqNWce0TyU6vV0Gg0ktvLNZ5MRG2TTXT9u02v0fu4EiLyJrvdiXnz1JLbDxpkwvnna2WsiIjkwm+RREREREREREREFPBGjdJh/34BN97ovQXv5eVq3HSTDuPGNaCqSqbtTalZl18ufQfpFSs4ybO9qampQV6evIuf4uNt2LSpCo8/Li0kh4iotT687kOMSB/R7PmP9n2E6T9N92oNCoUCmZmZktpyUbb7DAaDpHbclZ6kkjIJ3OkECgo02LLFdfgDkRR20Y4D5Qfw6f5P8cS6JzDi0xFI+U8KIl6NwOAPB+O+Ffdh/o752Hx8M+osbvx++eILWets6Rv7wALg28+AYLuEjp1O4MsvpZZFRHRGNTU1KC0tla2/bt26ebSYzB3V1dJ2nj77bAWCgqSNA27fzufr1hAEAYmJicjIyEB0dPRp4WBOJ/D++7GS+9brHRg7trJV19psNhQUFODw4cOoqamRfE+i9ipSF4nQoKYhOzbRhp1FO/1QEbUHERERkto1NnKTI/JMYmJii+drawXMnx+Dq67qgVdfTUBp6ekLFufM0cLhkP6ul4i8y253oCwyzd9lNNE7Mw0bVyzAf15+GBpN6xZCO0UnqhuUyKqOQLWR80SIAlVJSQny8/Nlexc7fnwVhg+vAQD07GnC5s0W3HxzuCx9EzUnOrr1YZj/ZLPZYLFYZKyGiNoSm8N1KJggMGKEqCP55JNGHD8u/b3ujBl8b0rUVnl/CzciIiIiIiIiIiKidiAqSokvvwzBZ581Yto0DSoqvDN8+vnnIfj1Vxvef9+KESOCvXIPAkaO1GHKFCecTvdDDNavV+OJJ7xQFHlFeXm5rAteT0lMTERkJAPBiMg3vr/5e1z0wUXYfGKzy/P/2fYfROui8eTFT3rl/qKtEcmJ0iaJ1tfXy1xNx2IzFsForIXVoYTVLsAuOuF0SlvQVllRjtycLJkr7DjUSiBIJSJIKcIQlQyBu5qeRq1WN7u7udMJnDihxsGDwThwIBgHD578y2hUIinJivHjfVwsBZxaSy02FWzCpoJNpx3vEt4FfeL6oHds7z//Nz0qHSrhb9/XHQ5g925Z69kT5/p4uAn4cSmg92R94I4dHjQmImrevn0NWLjQgrvuAhQyZHp27twZwcG+GbtsbBTR2CgtFCwhQUBGhhV//OH+ztW7d0u7Z6ASBAHx8fGIjY1FZWUlysvLsW1bMPbs0Unuc/z4SoSGuvf9yG6348SJEyguLkZsbCyioqIk35+ovekT2webjm9qcvzDPz7EeYnn+aEiautCQkIktQsKCpK5Ego0KpUKISEhaGg4fUOuigoVliyJwhdfRKKhoflnsQMHgrF8eQ1uvDHcy5USUUfQPbUznpxxB269abhbwQZmswVFphg0mixoeZsAIuqoRFHEsWPHZA/FVSiAZ58tRJcuDsyaFQaDgUu4yfvCw8NRXFzsdrid0wns2xeMfftqMH58My/IiKhds4tNd7tSgJvDEXU0b74p/b1n9+4WXHcd17QQtVX8RklERERERERERET0N+PG6TBkiB2TJzfi+++lL2hqSXGxGiNHqnH77Q14++1gGAzccUluiYlBOOusRuzf7/5/w61bdbBaRWg0/O/S1hUVFaGqqkr2flNSUmAwGGTvl4ioJRsnbUTvd3vjYMVBl+efWv8UonXRuKffPbLd02GqRmVlGarqRSglBijJPUm6ozBX5aKizoGa+lM76v61oKS+vsF1ozPQBGn/f3EKnYmy5jgi9QKiIiOhConxdzltglarhc1mg9MJFBWp/wz/Ovm/WtTVuZ4+cuKEBqWlVsTFSd9NkkiqYzXHcKzmGL478t2fx4KUQciMyfwrLMwcit5CI+IA2aYur+jp+vjKj4AwTz+Gd+70sAMioqYKCswYMUKFgoI45Odr8OyzhVCrpfeXmJiI0NBQ+Qo8g5ISOwBpzxqxsQLOOceOP/5wv+2+fRqIohOCwMUv7hAEATExMYiJiUFlZS0uucSIX35xfxxNqxVxyy2VkutwOBwoLi5GaWkpoqOjER0d7VYAAFF7NLLHSJehYGvz1vqhGmoPpI7b6fUMWifPderUCUePHgVwMox+8eJoLF8eAau1db+vX39djRtv9GaFRB2PUuFeCEh7plarcNXQC3H3hBtwzZWDoHAjHVu021FuDkWFUQun0z/vXFRKhlQT+ZvZbEZubi5EUdpmTmeSkBCKuXMj3fp8IvKEIAjQ6/UwGo2tur66WokffgjH119HIDtbi/R0M266SYRSyfE1oo7GZSgYfz8RdSjr1pklbaB0yrRpdggCN4ogaqsYCkZERERERERERET0D3FxKnz3nQqLFzdi+nQNamq8M5S6eHEI1q2zYuFCB664gjusyO3iiy1uhYKFhDhw/vkNGDiwHuXlWnTqFOnF6sgToiiioKAA9fX1svarUCjQrVs3BAfzzyMR+Z4gCNh9z26kz01HQW2By2umrJiCKF0Ubsz0fDWUuSoHx8pssNtPTv6S+tkXFMQJIf9UWXQYxVVNJ9WdIiXQUhAExMbGelJWQHE4HCivdaC6oQIp0TUIjk73d0l+V1VlwP33R+LgwWC3v99s3NiIG29kKBi1DRaHBbtLdmN3ye6/Dj4CxDQAvUuBPqVA77KT/5tZDuhs7vWfGwHsc7ERemYpcEGRZ7UDAPLygKoqIJLfN4lIHtXVNlxzjYiCgpNjYN9+G4HKShVmzy6ATuf+gvCYmBhE+vgzqrRU+uLL+Hgl+vWzY/Fi99vW1Slx5IgFGRn8TiPV4MFh2LAB2LjRiFmznFi50gCns3WLiUaPrkJUlOPMF56BKIooKytDeXk5IiMjERcXx3Aw6rBuP/t2PP7z402O51Tl+KEaag9qamokteOmKSQHjUaDmho9Xn01HCtXhsHhcG/B8e+/h2D16lpceWWYlyokahtO1J3A9FXT8Wv+r9Br9BjUeRAuSbkEl3a5FF3Du7q1WF+j7NihYIIgYNTwSzBy2MUYedVgREWGu92HsdGBooZw2GxuDhrKTB0c7tf7EwW6qqoqFBXJMeDvWlJSEsLDw73WP1Fz4uLiWgwFE0Vg69YQfP11JNatM8Bm+2sMLStLiw0b6jB0qO82iyAi3xCdTd/BCAqOoRN1JK+/Lv1da3S0HXfeyTnzRG0ZQ8GIiIiIiIiIiIiImnH77ToMHWrDHXc04uefWx8u5Y6CAg2GDXPi7rvrMWeODjodX7bKZdgwBebNa/68IDjRq5cJAwfWY+DAevTq1Qi1+uQ5i0UHgIu02yJRFJGbmwuz2Sxrv4IgIC0tDRoNAy+IyH80Kg0OTD2Abm91Q3ljeZPzTjgxdtlYrL51NYZ2Gyr5PvVlR1BQ4Tht52Opn6t6vV5yHR2NU3SgtDAHFbXNB4I1NjairKzM7b4TEhKgPvWgQq1mtzuQWyoi2X4YofE9/V2OX3XurMeWLepWhzT83fbtTtzoeRYhkVeVhwDrup386xRBBNKqTg8K610KdK0BhH+skbQogV9TgGcvdd3/DYdlLHbfPuCSS2TskIgClcUi4tprLdi///Rn8k2bDLjrrq6YOzcfkZGtD10KCwtDXJyLZEQvkxoKJghOREcrccEF0qfBbtvmQEaG5Ob0/wYPNmDwYGDXrnq8/LID334bCru9+edOlUrE7bdXylqD0+lEZWUlqqqqEB4ejoSEBIaDUYcTq4+FQWOA0Xr6Al+baMOekj04O/5sP1VGbZXUoIPk5GSZK6FAlZwcjzVrNG4Hgp3y2msCrrxS5qKI2hCn04lbv74Vv+T/AgAoayhDbnUuluxZAgBICk3CJSmX/BkSlhaZ1mJImEbpeehuWyaKItZs+B0mswU1dUbcMOIydE6Kb1Vbm8WCYksM6uotAPwbCCYIApTBUX6tgShQORwiTpwohNFY65X+lUolunXrxk21yG+0Wi1UKtWfG8OdUlKixvLl4fjmmwgUFTU/L27BAhFDpU9DIaI2yuFs+j1BqVD6oRIi8oaDBy1YtUp6qNfkyWYEB3P+J1FbxjfeRERERERERERERC1ITlZj1apgvPNOAwwG70yidDoVmD9fjz59bNi4Ud6go0B2xRUG6HSn/zfr1MmKG2+swpw5Bfj110NYujQX991Xhr59/woEA6QHo5B31dfbcffd1Sgttcrar1qtRo8ePRgIRkRtgl6jx8H7DsKgMbg8LzpFXLX0Kuwo2iGp/4byo8gvt58WCAagxR1jW2IwuK4zEJ0MBGv5d9Qff/whqe/MzExJ7ejkwqqCCjvqS+VM9Gl/oqI06NJF2jPUnj2cEErtkygAR6OBZWcBzw4Brh8HpD0IhP4buOAuYPQY4IpbgYF3ANGPAVdOALZ0dt3XdUdkLEzi71wior9zOESMHWvEpk2uJ2nv26fDhAndcOJE64JlQ0JC/BYAUl7uPPNFLoSFOaBSKdCnjwZarbRgsR07pO+cTU2de64ey5aFYd8+E267rQZBQa7//V57bQ3i472zEN/pdKK6uhoHDx7EunVFqK9vPrSZqD3qHdvb5fFFuxf5uBJqD3bv3i2pXXp6usyVUKBKSdFi9Og6ye3XrjVgyxZ+h6aOq7Sh9M9AMFdO1J3A0n1LcfcPd6P73O7oNKcTxn81HvN3zMfhisNwOk//LhUaEd9iaFhHYKxvwMqfN2P6k3OQcvYIDLzqDiz57AeYzRaX1ztFByob1MiqDv//QDD/Cw9RQ8EAYyKfq6uzY/RoI156yTuBXTqdDj169GAgGPldZOTJTVBtNgVWrw7Fvfem4Moru2PevLgWA8EA4IcfDKhtYQM0ImqfRGfTcXqlwDkgRB3F66/bJW0QCQDBwSIeekgrc0VEJDeOIhERERERERERERGdgSAoMHVqCP74w4HBgxu9dp+cnCAMGRKEGTPqYTZzQZqngoOVuOyyegwZUocnnyzCihVHsXLlUTz7bBGuuKIOYWHN/zsWRRFWq7zBU+SZsjIrLrvMgg8+iMIDD6TAYpFnQnNwcDDS09OhVHKiAxG1HdG6aOybsg9aletJF3bRjkGLBiGrMsutfi01BSiocDRZKAIA5eXlkmr1V3BAW1NVdOiMgWAA8Ntvv0nq/9xzz5XUjv5SUCnCXJXn7zL8qlcvaYue9u/nBDDqWBo0wLYk4OuzgJ/TTgaB1be0TscJhMmZG80QaiKSwX331eLbb8NavCY/Pwi33dYNhw61/Ls8KCgIKSkpcpbnlrIyaaFgkZEnNwNQqxXIzJQ2jrdrF8eDvKFnTx2WLAnHkSNW3HNPNUJC/tq4QRCcuOOOCq/X4HAAd9wRha5dnXjiiSpUVnKslzqGEd1HuDz+c97PPq6E2roTJ06grKxMUluGgpGcnnxSA6VS2vMeAMyaxXfm1HEp4N777uL6Yny2/zPcu+JeZLyTgYTZCRi7bCzmbZ+HA2UHIGjDEaYPrE2wtmzfi4n3PYfkPtfg9f8ugcn017ibyWRFbk0EimuFJhvl+FOEnks5iXxtz5569O9vx7ffhmHBglisXy/vplexsbHo1q0bBAb+URsQHR2NRYuiMXRoDzz8cGf89puh1UEhDQ1KLFokPdSXiNomV3PEVAqVHyohIrmVldnx+efBktuPG9eI2Fh+HhC1dfymSURERERERERERNRK3bppsGFDMGbPbkBwsHcmDTocCrz5ph59+9rw++9cKOypd96pxdtvF2DcuCp07myFOxvjVlVVea8wcktWlgmDBonYvj0EALBrVwj+/e8kOBxnaHgGBoMBqampnJhHRG1SSngKtt+1HWpB7fK8xWFB3/l9UVJf0qr+7I0VyC8zwdHMh+e+g/sk1ZmWmiqpXUdiLD2Moqoz/1Ky2WxYsWKFpHsMGjRIUjv6iyiKyC+3wGYs9XcpfnPOOdJ2di4s1KCoSFqgGFGHoADuHQFIX8L8D2rXv9uJiFrr+eerMH9+RKuurahQY9Kkrti6NcTleZVK5fexkQqJ+VCRkX+Nz0p9ztm/XwNRlO0Tnv4hJUWL996LQG6uAzNmVCM83I5hw2qRkuL9gK41a0KRnx+Eigo1XnklEt26CXjwwWoUF/O5ltq3SX0nuTyeXZXt40qorfvpp58ktUtJSUFMTIzM1VAgy8zUYcQI6cECK1aE4sAB723aReRPsSGxSDQkSm5f2lCKLw58gft+vA+93u2FuDfi8MCmB/Bpzqc4WnsUorPtBGF5W0VlDR577m2knjcKn321EsVGPXKqDTCZ29bzf6hei+Aovlcj8qUlS6oxeHAwjh79KzT/ySeTUFDgeYiiQqFA165dERsb63FfRHIRBAEORxCqq6UFfCxd2tIuOkTUHjldvOVWKRkCRNQR/Oc/ZphM0t7xKhROPPII564QtQdc5UJERERERERERETkBkFQYMaMEOzaZceAASav3efw4SBcdJEG//53PWw2LkyTKiKidQskXTEajTJWQlJt3WrE4MEqZGVpTzu+Zk0YXn01AS42MmuVqKgopKSkyFAhEZH39IrrhXUT10FQuH6t22BrQOY7magzt7yoSrSZUFBcDavV5vL8iv0rUFctbWFWuF4pqV1HYa7KxfHK1i2sWb58OSorK92+R0ZGBrp06eJ2O2rKZrOjoLQOorXe36X4xfnnS//zummT9777ELUH67oBi8+RqTOt9szXEBE1Y/78ajz/vHvjXQ0NSkyZkoKVK8NOOy4IAtLS0vwell5R4UaK/99ERf01KNSvn7Q+jEYlDh/2fkBVoIuN1WD27AgcOwY8/7z3x1ydTmDBgtMDberqVHj77QikpakweXINcnP5fEvtU7w+Hnq1vslxq8OKA2UH/FARtVVfffWVpHZDhgyRuRIi4N//lj4m5XAo8PLLfF6jjkmhUGBg8kDZ+itvLMfy7J/w8h8vY/TPo3HxDxfjwS0P4uOsj3G45nBAhIQVl1Zg/N1P4+bb70Vtba2/yzmNWq1Gp7gof5dBFDBsNhH33VeNiRMjYDSe/ixiNCoxfXoyTCZp40kAoNFo0KNHD4SEuA7iJ/Kne+8NgkIhbULdzp0h2LUrMN+lE3VEouj6O4BKYCgYUXtnMolYsED63JNhw0zIzGQYKFF7wFAwIiIiIiIiIiIiIgl69tRg82YtXnihHkFB3pk8abcLmDVLj379LNizp23tYNpeeDL5ymLhv3N/++GHWlx5pQ6lpa53I/r00ygsWhTtdr/x8fFISEjwtDwiIp8Y1HkQvhn7DRRwPSm52lyNjHkZMNvNLs87RRGFRSfQaHL9e231idV44tMnJNWWmJgIp8qA6qJDktq3dzZjCfLLrc1Oovu76upqzJs3T9J9Ro8eLakduWYyW3CisAROh93fpfjcwIE6yRPAd+xgUDEFkGZ+3O8ZAWRJz53+S9euMnRCRIFo+fIaTJsWBqfT/QWLdruAxx5LxkcfnVyArFAokJaWBpXK/ws/pIaCRUf/9YF9/vnS/zm2bAm850J/CQtToX//ZPTs2RNhYWFnbiDRr78acPRosMtzjY1KLFwYjoyMINxySw0OHmz0Wh1E3nJW7Fkujy/avcjHlVBbVV5ejnXr1klqe+mll8pbDBGA88/XY+hQ6cGgy5aFIi+PgZ7UMQ1Mki8U7J9qrbVYV7QOr+59FWPWjsGg7wdh2uZp+N/R/+FA9QE4nA6v3dvfNmzYgDFjxuDAgbYRmqpSqdA5WgllsByDi0R0JsePm3HJJY2YN6/5P3NHjwbjxRcTJW1EGBYWhvT09DYxrkbkSkaGDgMHNkhuP3++683miKj9qbO63iBSo9T4uBIiktsHH5hQUSH9efSxxxgzRNRe8E8rERERERERERERkURKpQJPPaXH9u12nH226yAOOezdq8X556vxwgv1sNu5GN8dgiBAo5H+AttolD5BnTyzcGE1Ro82NNmx85/+8594fP99eKv7TU5ORnS0+0FiRET+NLLHSHw46sNmzxcZi9Dn3T4uw6nKi7JQa3QdCPZV3ld4dNujEA9KCzjt37//yftXi2goOyKpj/ZKtBpRUGqEzXbmAAFRFPHUU0+hsrLS7ftER0fjuuuuk1IitaCuwYySwlx/l+FzERFqdOsmLfj2jz+4sIE6NoUTGH0AWLwc2LYA0LpY72BTARnTgM/PajY37MxCQ4H0dE9KJaIAtXFjHSZMMMBm82zK52uvJWDhwmh06dLFozEzOVVVeR4K1qePBsHB0r7XMPzU91QqFZKTk5GZmYnIyEgoFNJ+BlxxOoH3348543VWq4BPPglHnz7BGDWqFtu318tWA5G3DU8f7vL4mtw1Pq6E2qp58+bBarW63U6tVuOaa67xQkVEwOOPS99kSxCA1atr5CuGqA25MPlCn93LaDNiQ/EGvLHvDYxbNw6DvhuE+367Dx8e+RD7qvbBLrY+MPmss87Cvn37XP41evFo4Dk0+Svt9TRs2bIFv/zyC7755ht8tOR/eH/CNXg8FBgZDMTIvMKxuLgYkyZNwubNm+Xt2E3B2iCkdgpDcFSaX+sgChRr1tRiwAABW7boz3jtd99F4Msv3QvrS0pKQnJysqxjGUTecNtt0oO9li0zwGLxzia5RORbteZal8c1Qtt4P0RE0oiiE2+/LX0eV9++ZgwZopWxIiLyJoaCEREREREREREREXmod28Ntm8PwlNP1UOl8s6ECItFwDPP6DFwoBkHD0pbyB+oDAaD5LbV1dUyVkKtNXNmFe6+OxxWa+teYzzzTCds3tzyhD6FQoGuXbsiLCxMjhKJiHxu4tkTMfvK2c2ez6rKwoCFA04LBqsuPoSyGteTPT888iGe2/UcxAYRyJNW06lQMKfTiYJKByzVx6R11M44HXYcLyyFyXzmZzKn04mZM2fi119/lXSvyZMnQ6vlJBxvqKyzorLosL/L8LlevaR9l9i/P0jmSojajt6lQM0rwLIvgYl7gAFFwMz1rq91CMC4McDQicCBM+eNNNW3L8DFQkTkpry8BoweHYz6+paD01vDYHBg3LgQhISEyFCZPCorpU1j/Xvmu0qlwFlnSQ0/9fzfK0kjCAISExORkZGB6OhoWRbU7tgRgr17da2+3uFQ4Ntvw3D++SEYNqwOe/e6XiRF1Jbc0fcOl8ePVh71cSXUFlksFsybN09S26uuuoqbqpDXXHFFGM4/v8GtNgaDA5Mnl2HVqiO46KJKSWF3RG1d3/i+CFL6Z+y13l6PX0t+xZz9c3Dz+psx6PtBuHfTvVh4ZCH2VO6BTZQWJnKi4YTL429d9Bb0ej0iIyORmpqKc/qeiwsfnYUHduzF8sHdUdYZOJAIvB4B9JMpo8BkMuH+++/Hb7/9Jk+HblAoFIgNV6NrShLUhgSf358o0DgcIl5+uQrDhxtQUtL6D5FXXknA3r3BZ7xOqVQiPT0d4eHhHlRJ5Du33mpAeHjrAz//rqpKhU8+4RgZUUdQY65xeVyjYigYUXv2zTcmZGVJH0t46CGHjNUQkbcxFIyIiIiIiIiIiIhIBmq1Ai+8oMeWLTZkZHgvtGv79mD066fC66/XQxSdXrtPRxIZGSm5bWNjo4yV0Jk4HCLuvbcazz4bCaez9YsA7XYFpk9PxsGDrkNTBEFAWlpam1rwSkQkxYwLZ+Dfg/7d7PmdxTtx1dKrAAANZUdQVNU0rNTpdOI/+/+DOfvnnDywHYCEeR4qlQoXX3zxn3/vcIg4VmaBvaHM/c7amZLCXBgbzGe8zmQy4ZFHHsFXX30l6T4ZGRkYO3aspLbUOsVVdhhLAisYrG9faRO7ios1OH78zD/3RO3NbXuAXfOB0H+sK56+FdC38NV+fVfg7CnAjGFAnTtzLc87T1KdRBS4zGYz6uvzMGqU58H1QUEiPv20HhdcID1A3xuqqqSFcsXGnj52dM450jZr2L9fA4eD46z+JAgC4uPjkZGRgbi4OAiC9KnN778vJbUTcDoV2LhRj5qaIhw6dAiVlZWSayDytqTQJISom451WxwWHKk44oeKqC2ZO3cuysqkjc/ddtttMldDdLpHH21dwFBUlA0PPVSC1auP4IEHyhAZeXI8q7Cw0JvlEflFkCoI5yW2jfGiBnsDfiv9DW/tfwu3brgVF313Ee7eeDcWHF6A3RW7WxUSZhNt2Fu1t8nxeG08Ohs6u2xTZVEg661vUPPBp8jQAI+EAdsTgf2JwB16wNPINJvNhhkzZuDAgQMe9tR6ep0WaZ0MiE3qAUF95rAhIvJMXZ0do0cb8eSTkbDb3RtTsNsFzJjRucXxKZ1Ohx49eiAoiBvoUPsREqLCqFH1ktv/738qGashIn+pNbsO+PNXMDERyWPOHOmb7CQnW3Hzza3fXIeI/I+hYEREREREREREREQy6tcvCLt2qTFjRj2USu8sJjOZlHjsMT0uvtiM7GzuiHwmQUFBUCikvQCz2+0QRWkLCsk9ZrMDo0cbMX9+hKT2jY1KTJnSBcePq087rlKp0L17d07OI6IO4+WhL2PyuZObPb8mdw1u+uRaFFQ64HSe/izicDowc/dMfHDkg5MH7DgZCibBoEGDEBFx+me2zWZDfkktRFvHDdWsLDyMyrozP3/t3LkTY8aMwerVqyXdR6vV4sUXX4RSKS0ggVrveJUIU1WOv8vwmQEDpE/g/u03hoJRx3L/NmDxN4DKxVc+lQjc3HT94mkcAvDmhUD3acBHfYBWjQBcdpmESokoUNntduTk5EChAB54oAxPPlkEhULaeKMgOPHuu7W45powmav0jN3uRG2ttGfemJjTx/v69ZNWQ329EocOtS6ggrxLEATExMQgMzMTiYmJbn8f2rcvGFu36iXff/ToKkRGOuBwOFBcXIyDBw+irKyM48PUJmVEZ7g8/sHuD3xcCbUl5eXleOGFFyS1TUlJwfXXXy9zRUSnGzUqFL16NT923KmTFU8+WYSffjqKO++sgF5/+u/ghoYG2O12b5dJ5HMDkwb6uwSXTA4TtpRtwdsH3saEXyZg4HcDcdevd+G9Q+9hR/kOWB1/vSuxi3YcqjmEuQfmwuQwNenrvJiWg8/sdgdOxPZC/s9HYBlzEwDgLA3wQTRwqBNwg4frlRsbG/Hggw+ipqbGs47OQKVSIjlKiZQu3RAU7joEjYjkVVFhxAUX2PDtt9LHvEpL1Xj88WQ4XOyrExsbi27dunkUYE7kL3ffLX2uwcaNemRnN/2dTkTtS52lzuVxhoIRtV/btpnx22/Sw6fvu88GlUp6qBgR+R6/jRIRERERERERERHJTKsVMHu2Hhs2WJCWZvHafX77LRh9+yrxzjsNEEXvBJB1FMHB0l+AVVdXy1gJuWK1WnHddQ0eTdIDgKoqFaZM6fLnDp5BQUHo3r07VCruXkhEHcv7I9/H9T2bX6T3Zdb3eGHni6cds4k2PP7741iWt+yvg78DaJBWw4gRI1weN5ksKCwsglN0MWu6nTOWHEZxdcuLzg4cOIAHHngAt99+O/Lz8yXf66mnnkL37t0lt6fWE0UR+WU22IxF/i7FJwYO1EEQ3PvuEBwsom/fBlitDAWjjuPpX4C3VwIt/XG4qpV5gaV6YMINwOA7gD/iW7gwJQW4+mq36iSiwCWKIrKysk4L+h03rgqzZx+HRuN+QNELL1Rj0iRpQezeVFHhgChKm3geF3f69Nfzz5c+/rNlC0PB2prIyEhkZGQgKSmp1WN7CxbESL6fSiVi4sSK046JooiysjIcOnQIxcXFDAejNmV4+nCXx1fnSAsnp47hqaeeQm1traS2jz/+ON+lkNcplQJmzGj67jw11YyXXz6O778/inHjqqDVNv9lvagoMMbwKLBcmHyhv0toFbPDjG3l2/DOwXcw6ddJ6P9Nfwz8biAGfz8YF353IW5aexMWHV3ksm2luRI1lpoz3qPeZEX2xGdQ9v1miJEnv8N2VQNLH70d8+b+F6GhoZLrLy0txZNPPim5/ZlEhgYhPSUeYQkZUDA8iMgnSkpKUFKSj0suMXrc19aterzzTuyff69QKNC1a1fExsa20IqobbvwQgP69JG2oZvTCfzwg+d/tojIv2qtrseJgtXS51MTkX+98Yb0OZmhoQ5Mnco//0TtDUeZiIiIiIiIiIiIiLxk0CAt9uxRY+rUeigU3gntqq9X4v77Q3DllSYUFHDxWnPCwqSHTUldQEGtYzKZkJWVhdGjK6FSef7nJD8/CNOmpUCr1SM1NZW7dRJRh/X12K9xccrFzZ7/NOdTzDs4DwDQaG/EtM3TsOrEqr8uaADwi7R7ayI1GDp0aLPna+vNKC1sZZJKO2GqzMHxKtcLwPPz87FkyRKMHTsW48aNw/r16z2619SpU3Hdddd51Ae5x263I7+kAY5mdkntSMLCVEhNbT64WKsVcfbZjbj55kq8+OIJLF+ehS1bDmLJkjwMGFDju0KJvGjOT8DM9cCZImg6ubnW4bfOwHl3A/cPB6q1Li645x6A30+IqBVEUUR2djYcjqaTuq+4og7z5x+DwdD6Cd/TplXjiSci5SxRNiUl0ieux8ae/pnaq5cGOp20/nbu5IYLbVV4eDh69uyJlJQUaDSaZq/LygrC+vXSAwKuu64G8fGuQ6CdTicqKytx6NAhFBYWMhyM2oQ7zr3D5fEjlUd8XAm1FevXr8eCBQsktU1ISMAdd7j+mSKS2223hSE19WTwfO/ejXjrrXx8/XU2Ro6shVp95vZ1dXUun5OJ2rMLk9pHKNg/iRBhtBlRY62B2dHyhhJby7fi6p+uxvuH30ejveVwEqfTiTIYkP3pFhjfeBulP25HzphHMPiSS7Fs2TJ069ZNcs2//vorVq5cKbm9K9qgIHSLD0Ji53Qog9teGDdRRySKInJzc1FRcTLc+957y3DRRZ6HFy1YEIv16w3QaDTo0aMHQkJCPO6TyN9uucW9TZ8SE62YOrUUq1YdxeWXl3EcjKidq7fUuzyuVbl6mU1Ebd2xYzZ8841OcvuJE00wGDhnhai94XYuRERERERERERERF6k0wl45x09rr/ehLvuUiI/v/mFS55Yu1aHPn3smDOnAZMm6aBQnGl5c2CJiIhAcXGxpLYmk0nmaugUo9GI/Px8AMDAgQ2YOfMEnngi2aM+VSon7rjDjLS0LjJUSETUtq2fsB593++LvaV7XZ5/99C70Cq1WF+8Hn9U/nH6yXUAms8FapH9QjvMTjP00Dd7TUWtFRrlIUQmZki7SRvhcDjQUHkMB3PLUVlZierqahQWFqKgoABZWVnYs2cPysrKZLvfPffcgylTpsjWH7We2WLBiaIydO6sg0LZsadSnHWWBVlZWgQFiejRw4zMTBMyM0046ywTunWzQNXMP77d7jokgai9EERgwffAHbtbd32ShJxAUQDeGQB8fhbwytqT9xKcADQa4K673O+QiALSsWPHYLVamz3fr18jFi/OxZQpXVBW1nJywpgxtXjzTelh+d5WViZ9UVlCwukPLSqVAmedZcX27e7vcL17t1JyHeQbBoMBBoMBDQ0NKCoqgsVy+hfahQtjJPctCE7ccUfFGa9zOp2orq5GdXU1QkNDkZiYCFVzD89EXpYSlgKdWodG2+mhGma7GTlVOUiNTPVTZeQPdXV1mDRpEpxOaSGXL7/8MoKCgmSuisg1lUrAiy/Wo6GhGAMGNEDKK+3i4mIkJSXJXxyRnyQYEtAlvAuO1RzzdyleVW+vx38P/Bf/PfBfaAQNIjQR0Cg10AgaqAU1NEoNVILqr78/9b9bf4ZaUP/518B/D4TxFSPKc8sl1THr1VnodUEvhIaE/tmnSqFye46NIAiIDRUQldAFCmUrUg2JSBZmsxm5ubmnBRUplcCsWScwdmwqioqkz8tTq0XYbHqkp3fmvDvqMO68U4/nnnPAZGp+/FOtFjF0aB2uv74aF1zQcNr+NpWVlYiJkT7uRkT+ZbS6Ds0MVrv/HoWI/G/2bAvsdmnfP1UqEY88wjFgovaIb6OJiIiIiIiIiIiIfODyy4Oxb5+Ihx6qx6JFzQdoeKK2VoU771Th668bsHBhEOLjOQR8iiAIUKlUkoIMnE4nrFYrNBrvBLoFqqqqKhQVFZ12bOTIWpSXq/Hmm/GS+gwOduDDD40YOzZSjhKJiNo8QRCw8+6d6P7f7siryXN5zZv732x6MA/ATok31QNiXxFbyrbgik5XtHhpUZUDGtUR6GN7SLyZvEaMGIEVK1b4uwyX1Go1/vWvf+Gmm27ydykBzdhgRnFhLhI7d/d3KV51330NuPXWcnTrZobazbliZrMZWi13jaX2R2MHPvkKGH2o9W3i6gGlCDgkbJRaEQJMvhZ4/zzgnRVA/1F3AVw0QUStUFBQgMbGxjNe1727BR9/nIt7701Bbq7r381Dhhjx8ccGKJVtd8fn0lJpoWA6nQM6XdOFbH37OrB9u/v97d+vgcPhhFLJBZ9tXUhICNLT02E2m1FYWAiTyYTjxzX46Sfp4XfDhtWic+fmg/hcqaurQ11dHQwGAxISEjh2TH6REZ2BncVNB3gW7l6IV4a+4oeKyF8efPDBPzdgcdcFF1yAiRMnylwRUctuuikSBw+WSG5fU1ODxMRECELbfc4lctfA5IEdPhTs76yiFaXmUukd3ABgIYAa95tWVVZh+AvDgYv+OqaA4rQgMrVSDbXiZFDZ34+HqELQP6Y/7j37DnSNC4fakCj9n4GI3OZqntEp4eEOzJlTgAkTusFqdf8ZISHBiqVLLRgyJMrTMonalKgoDYYPr8VXXzUdO0tLM2P06GqMGFGD8HCHy/ZVVVUMBSNqx+ot9S6P61Q6H1dCRJ6qqXFgyRLpgX7XX29C584hMlZERL7CUXAiIiIiIiIiIiIiHzEYBHzwgR4//GBCYqLNa/dZsSIEvXoBn3xy5gWEgUSnk/4iu7KyUsZKqLS0tNmJepMmVeCWWyrc7jMy0o4ff2zE2LHhHlZHRNS+qAQVNl7/JaKCWjlB2QzgGw9uOBSACvi1+NdWXV5Q4YC5ynVgGZ2UnJyMxYsXMxCsjaiqs6Ky8LC/y/Cqc8/VokcP9wPBgJPhB0Ttjc4K/PCJe4FgAKB0AgmuN09ute2dgPMnA5Mva0BFo/vfc4gosBQXF7v1uzYhwYYlS/JwzjkNTc6dc04jvvkmGBpN254iWiHxozEiwvUitX79pIV6NTYqceCA98ZrSX5arRapqano3r07iopCYTC4/plojbvuKpfc1mg04ujRo8jLy4PFYpHcD5EUw9KGuTy+KnuVjyshf/roo4+wePFiSW0FQcDcuXOhUDAUk3xLEASEhoZ61EdpqQdhQkRt0MCkgf4uoX3RAxgL6asiNwP4235yTjhhFa2ot9ej2lqNMlMZChsLkWfMw9Hao9hfvR+7K3djU+kmvLn/TTy07TGo9Ame/3MQUauIoojjx483O8/olLPOMuOJJ4rd7n/QoHrs2OHEkCEGqSUStWmTJ//1nU+nc2D06Cp88kkOvv46G7feWtlsIBgA2Gw2WK3uhekTUdvRYGv6/ggAQtQMBiJqb+bNM6OurumGSa312GPcaJ6oveKfXiIiIvo/9u47zIlqDQP4m0nbJNt7L7CwgHRBQKkCUhUpgtKRIoggKkix00QREERUmnTpgjSRXgQEpPctbGF7L+nJ5P6xgnI3u5tMJtn2/Z6HuzKZc84Hl91MZs55DyGEEEIIIYQQB+vVS4Zbt4yYOFGJX36xz8PV7GwRhgwRYfduJX76yQleXtwfBFUXHh4enEMMCgsLERBAkzr5kJSUhPz8/FJfFwiAadPSkJEhxpEjJXcpNCc0VIv9+w1o1Igm6BFCap6ijPvILZBiz0t70ONQDxQZzO/y+MTvAEr/MVy2YABNi//zTNoZsCYWjKDsFRcsyyIhU4ta4nSIXfw4Dlw9icViDB06FG+//TacnJwquhzyH6m5BoiFd+HqX7+iS7ELV1fXchdOlEapND9plFQO69atw6hRoyq6jKft/eeXPfQB0KzsU9zVwMHNQJtH3IYIKgQe/f/HkiWw6r3UBGA11mM11nMrohwJCQl2W8QfFhaG+Ph4u/RNCHlaVlYWp1B6NzcjVq2Kx7RpITh5sjhYISJCgwMHhHB1rfzTQzMyTJzaeXmxZo+3bs0h9fQfFy7o0bixhHN7UjEkEglGj/ZHv356LF6cg59+ckFmpuX/Djp2LEDduraHeSmVSkRHR0MmkyEwMBAyGffd2gmx1JhmYzD/zPwSx+9lVe+ga/KvGzdu4K233uLc/t1338Wzzz7LY0WEWC4wMNCm8PmcnBz4+fmBYSp3CC4hlmoT0qaiS7CJUCBE16CuaO7dHE29miLSJRJn089i2e1liCmIsc+gAQDaAzjJoa0SwH0Az3Ab+lDMIdzPvo963vW4dUAIsZjBYEBsbCz0esvC3Pv3z8X163L8+quHRedPmpSLRYvcIBbTNQWpvrp0ccbLL+ehZcsidOtWALnc/L3V0qSlpSE0NNRO1RFC7KlIZ34OmUJCoWCEVCV6vQkrVnB/Btq+vRotWtBzK0KqKvq0SgghhBBCCCGEEEIIIRXAw0OILVsU2LFDBR8fyyYucbFrlwLPPMPi119VdhujqlAouD/I1ul0YFnrJsSQp7Esi4cPH5YZCPaYUAh8+eUjtGhRfuhEo0YqnD1rQqNGNFGBEFLzaHIeIjGreNdWd4k79nTdAwlTxiL26wCucRxMAKDnP18BZGuzcTfvrkVN9XoDEtMLwJYy2aymEYvF6NOnD/bt24f333+fAsEqqaRsFuosOy1WqmAikYhzgJBWa3tgAiGO4lcEnFrHPRAMAIK5r08mhBCL5efnIy0tjXN7JycTlixJxIABOfD11ePAARaBgVIeK7SfrCxu1ySlhYI1aCCGQmHk1Ofly9wCykjl4OEhxpw5nnj4UID583MQFKSzqN3YsZm81qFWqxEbG4vo6GgK1CV2F+ERAZmo5EIetUGN+Nx4xxdEHCo/Px/9+/eHWq3m1L5BgwaYP79kqBwhjiISieDs7My5vclkQlZWFo8VEVKxGvs1hlwsr+gyOHk17FX83fdvLGy1EG/UfgP13etDLBSjU2An7OyyE/NazCv72ZUtngfA9UfJNduGLtQW2tYBIaRchYWFuH//vsWBYI/NmpWC+vXLvk52cTFi8+Y8LFvmQYFgpNoTChl8910++vbNszoQDCj+XjSZ6N4pIVWRSm9+3rhcUjU/exBSU23ZokJyMvfP1R98wGMxhBCHo0+shBBCCCGEEEIIIYQQUoEGDJDj1i0B+va13wKh9HQx+vWTY+hQJfLyuC2Kqw4YhoFEwv2hGC3i4o5lWcTExFj1dyiVmrB0aQIiIzWlntOhQyHOnJEgJITCVAghNY+hMB0JmdqnQivji+LBlPYIOA3APhsGbAUg8OlDp1NPW9xcrdHiUXIaTGzNvRYJCgrC+PHjcfjwYcydOxdBQUEVXRIpg8lkQkKWHrqC5IouxS7EYm47SBoMBp4rIcQ+wgoYnF0LNE63rZ8gCgUjhNiZUqlEUlKSzf2IRMCnn6bgzBk16tevOos5srO5tfPyMr8ITSgUoGFDy8Kg/t/Vq0JuxZBKRaEQYeZMT8TFibB0aQ5q1y793mKrVkVo3JhbmE55tFotHj58iPv37yMnh8ICiP1EeUeZPb7m6hoHV0IcyWg0YvDgwYiJ4RZmLhaLsXHjRgqqJxUuMDCw/JPKQKFgpDoRMSI8F/RcRZdhFSkjxYKWCzCnxRwIBeY/TwkFQrwS9gpO9DoBhcgOm3xJUBwMxsVDABz37/NT+KFZQDOOAxNCLJGWloaEhAROQUROTiYsXpwIV1fzz7Tq1VPj3DktBg92t7FKQqoOPz8/zm1NJpNFm4ASQiqf0kLBnCXcQ7oJIY7FsiYsWcL9GWa9elr07k33gQmpykQVXQAhhBBCCCGEEEIIIYTUdL6+IuzeLcLGjUpMmSJFTo59bt1u3qzAyZM6rFqlQ48eJXePrwlcXFyQzXG1YW5uLlxcXHiuqPozGAyIjo6G0Wh9CIyrK4sffojH0KG1kZ7+dHDFgAH52LzZBRIJ7X9CCKl5WF0REtILoNf/O5H5WPIxTLs4DXrWzAoGDYDtALhm+fgA6Fzy8Km0U5jQYILF3RQoNUhPjoV/SF2OhVQ9QUFB6NmzJ9q3b48mTZpAIBA89bpIJIKrTFBKa2KOCQLkFnILerCWwWBEQroStSR5EDq5O2RMR3FycoJOx+3vUa1WQyarmZ8nSNVQ37s+jnT+BkFrBgOwbZFCEGV4EELsSKvVIj4+nrf+AgL84e3tylt/jpCVxe2+TmmhYADQtKkRf/1lfZ+3b0thMJggEtH1eXUgkTCYPNkTb7/NYsOGXCxa5IQ7d56+hh07NtPudej1evTuLYCrawFmzRKgfXu6v0z41a12N1xLu1bi+KGYQ5jz4hzHF0QcYsqUKTh48CDn9p9//jmaN2/OY0WEcCORSCCXy6FSmV+kXB6WZZGTkwNPT0+eKyOkYjwf/DxOxp+s6DIs4ivzxbI2y/CMxzMWne8qccX6juvx+rHXYTDxvPFEEwBHAbDlnfh/DAASAERaP+SnHT6FiKElmYTYA8uyiI+P53x98FhwsB4LFjzCxIlhMJn+vdfTr18+1q1TwMWFvodJzeLk5ASRSMR5A6jMzEy4u7vzWxQhxO5KCwVzkdB9akKqimPHNLh+nfscrUmTDGAYKY8VEUIcjT69EkIIIYQQQgghhBBCSCUxbJgCnTsbMHq0Cr//LrfLGMnJEvTsCYwZo8SSJTI4O9esQCVPT0/OoWC2TjiriTQaDWJjYznt3PmYv78BP/4Yj+HDa6GwsHi3o8mTc7F4sRuEwpr175cQQgDAxBrxKDkNao32ybE98Xvw2d+fgTW34oEFsAtADscBGQB9AYhLvnQ79zayNFnwdvK2uLusfB0kzD14BtXjWFDVkpycjGPHjqGgoABKpRLPPfccxOLiv0yGYRDmkgOZjCbeWMuJESM13zHXAVqtDkkpWQgLU0AgNPONUEU5OzujoKCAU9uCggIKBSOV1rMBz+L3ob/DW+4NnDwJdOsGZGRw7i+Y27cJIYSUy2Aw2HzP5L+8vLzg7W35dXllkZ3NLYDLx6f011q2FOCnn6zvU61mcPOmFs2a0fV5dSISMXjzTQ+MGMFi9+48LFwoxqVLCjRurMJzzyntPv6NGzKcP+8MADh8GGjXrggzZhjRs6eb3ccmNcPoZqPx1Z9flTh+N+tuBVRDHGHZsmVYvnw55/bdu3fHzJkzeayIENsEBgYiJiaGc/v09HQKBSPVRpuQNhVdgkWaeDbBt22+terZEABEuUXh/Ubv4+sbX/NbkAJABIBYDm0fwepQsFoetTCm+RgOgxFCyqPRaBAXFweWtTblz7x27YowfnwmfvjBF2Ixizlz8jBtmgcYhgLhSc3k6emJDI7PzLRaLQwGA0QiiiQgpCrRGDRmj1MoGCFVxzffcH+W7Ourx5tv0vwuQqo6Wi1DCCGEEEIIIYQQQgghlUhgoAgHDsiwcqUSrq5Gu42zerUCjRoZcOKE+Ye+1ZVUKoVAwG1yl8Fg4G3iWU2gVCoRExPDy+LWyEgtvvsuATIZiwULcrB0qQcFghFCaqz05FgUKP99/94YvRGf/P2J+UAwAPgdQLQNA3YEEFj6y2fSzljdZUquAYXp9ziXVNXExcVh27ZtGD9+PDp27Ih58+YhNjYWIa5FFAjGkZdCDy9Xx004LlJpkJIcD1M1uhZ0dXXl3Layh+Um5Sdh843NOBp3lLegFVI1dAjrgOMjjhcHggFA06bAxYtAp06c+wyiUDBCiB2wLIuYmBje7jO5uroiICCAl74cLTdXyKldWaFgrVtzD3L96y8D57akchMKGbz2mjsuXlTg4MECzJiRAY63ia2yatXT/1jPnHFGr15uaNlSiW3b8mA0Vp/PGKRi1PGqAyehU4njKr0KifmJFVARsacDBw7g/fff59w+LCwMmzdv5vycjBB7cHJyglTK/R6p0WhEfn4+jxUR4ngG1oBf7/6KDdc3VHQp5XrzCnAqtjFC3ct4cFSGIZFD8Lzv8zxXheJQMC5SrW8yt9NcSIQSjgMSQkqTk5PD6/2yx8aPz0D//jk4fFiJ6dM9KRCM1Gi2biqRnp7OUyWEEEdRG9Rmj7tKuc8XIYQ4zu3bOhw5wj3Ua9w4LZycaK49IVUdfRcTQgghhBBCCCGEEEJIJcMwAowdq8CNGyw6dbLfgvv4eAm6dJFi0qQiqNU1Z/GRTMbtAZnJBKSm5vJcTfWUl5eHhw8f8trns8+qcPFiFqZPp92+CSE1V07yPWTl6wAAJpMJ393+ruwd1S8AuGjDgJEA2pV9CpdQMABIymahzuGybXvVVlBQgK1bt+LVV1/FoFHv4e9rdyu6pCrLX14AF4XjQtVyC7TITnngsPHsTSQScV4ErNFU3mDh7y9+j7rL62Lor0PRdWNXvLL1FbCmmvNZpybrXbc3Dg05VHICc1gYcOwYsGIF4Oxsdb/BFApGCOHZ40Awg4Gf8CmZTIbQ0FBe+nI0ljUhJ4dbKJivb+lTX+vVE8PFhdtmC5cvc2pGqpgePVzxxhvhCA4Ohkhkv7DhBw+kOHnS/OKqy5cVeP11dzRurMWaNbkwGOialXBX17uu2eNrr651cCXEni5duoRBgwbBaOT2HieVSrFz5054etIzFlL5BAZyCxd6LC0tjadKCHGMpPwkfHn2S3Ra1wneX3tDPEeMftv7YcedHRVdWqmELLD0ELD6N8Bt6UZE1IlCUGY0hELrPtMxAgZzW8yFu8Sd3wJDOLbLse70Jn5NMKjhII6DEULMYVkWSUlJSElJsUv/YrEQmzcr0KmTi136J6QqYRgGcrmcc3sK4yWk6tEatGaPUygYIVXD11/rYTJxm9slk7F4913ugWKEkMqDQsEIIYQQQgghhBBCCCGkkgoLE+PoURmWLi2CQsFtkn95WFaA5cud0bSpHufOVd7F/Xxyc3Oz+NysLCH273fDRx8FoXPnKHz5Jd1WL09mZiYePXrEe7+BgYFo2NCX934JIaSqKEy/h5Tc4uAA1sRi/rX5WHlvZekNHgA4bMOAbgD6AShnXsm59HPQs3qru2dZFgkZeugLOWzDXk0cOnoOLToPw+BxHyEj08qVJwQCRogQeTZkTo4LBkvLMyA/tfoEuYnFYk7tuC5AtieTyYQvTn6Bdw69A43h3881+x/sx5abWyqwMuIIgxsNxu6BuyETlzKhUSAAJkwAbt4E+vcHrFisGFjIU5GEEPKPhIQE6HQ6XvqSSCSIiIjgpa+KUFTEQqvldq+trFAwoVCAhg25/R1fvcotpIxUTe7u7qhXrx7CwsIgkUh473/1ap9yz7lzR4YxYzwQFaXD0qU50GopHIxY76VaL5k9fij6kIMrIfZy9+5d9OzZE0qlknMfK1asQIsWLXisihD+KBQKm96L9Xo9ioqKeKyIEP6wLIvDMYcx5rcxqP99fTjNdULot6GYdWwWTiacRLY6u6JLLJeHGji8EZj817+PjAQAPF7shzpjBsNDat0CZR+ZD7549gt+i+SaeWlltsmXnb8EI6A5I4TwxWAwIDo62m5BQ3K5HFFRUZBKHfcskZDKzs/Pj3NblmVRWEgPzgipSv47d+K/3Jwsn0NNCKkY6ekGbN/OPdRr8GA1vL3puSch1QHdiSKEEEIIIYQQQgghhJBKjGEEmDzZGVevGtGmjdpu4zx4IEWHDlJ8+GERdDqT3capDDw8PEp9TasV4MIFBRYv9sNrr9VGp071MXNmCH77zQOZmWKcOUMTxcqSkpKC9PR03vsNCwuj3esJITWaOicWSdnFC4P1rB4zL83E1ritpTdIBrADANe3dCGAgQAs2CRWaVDiStYVTsMYDAYkpBXBqC3g1L66+GXXYdRv8xq27zlS0aVUOYxYjFDnTIjFIoeN+SiHhSor2mHj2ZNMxn3ymFptv88m1mJNLN47/B4+P/W52dd/ufWLYwsiDvV2i7exse9GiIUWhNyFhwM7dwLx8cDHHwP+/uU2kRkAL5XNZRJCCAAgKSnJpjCP/xIKhYiMjATDVN0poGlp3ING/fzK/nM3a8at77t3JdDrq/e9UVKSi4sL6tati4iICN4WCicmSnD4sOULq+LinDBliidq1zZg/vwcFBUZeKmD1AxvNnvT7PHbmbcdXAmxh4SEBLz00kvIysri3Mfs2bPx5pvm/50QUlkEBATY1D4lJYWnSgixTaYyE99e+BbdNnaD/zf+EM0Rofvm7lhzdQ3uZd2D1qit6BKt8kwGcGkl0Pmh+ddF564hqG5DRJzcDakV4X4vBr6I1yJe46lKAC4ofrZlLd0/vyzQPqw9ukd25zAIIcScwsJC3L9/H3q99ZtPWcLX1xe1atWq0vfOCLEHhUJh0/dFRkYGj9UQQuxNx5q/2HWTUigYIZXdkiUaaDTc3rMZxoRp07htFEkIqXzoUy0hhBBCCCGEEEIIIYRUAXXqSHDmjBO++qoIMhlrlzEMBgEWLnRG8+ZaXLlStSajWoNhGIhExcERJhMQHS3F+vVeGD8+DG3b1sfYsRH4+Wcf3LtXMiTh1i0ZUlOr798NVyzLIj4+Hjk5Obz2KxAIULt2bbi4uPDaLyGEVCX6wlQkZOjBsiw0Rg2mnJ+Cg0kHS2+QCWAzAFvmT/cCEGT56afTTnMeSqPV4lFKBkzGmr3gOSc3H4NGz8S7M7+BwVCz/y6sJZZIEeaS47BJ/SaTCQmZBujykxwynj0pFArObe21a7u1DKwBo38bjaV/LS31nGNxx6DU8RPAUlllFGXgo+MfYeaxmRVdikP1rtsby3suByOw8vs/OBiYMwdITAQOHgS++AJ4+WUgMNDs6UE1O7uSEMKTtLQ03t4/BQIB6tSpU+UXNaanc7/H6edX9mrvFi24/d2o1Qxu3LBwRTipdhQKBerUqYPIyEibAnQBYO1ab7CswOp2yckSfPSRJ44ceYiEhAS7LY4m1Ut9n/qQCksG2in1SqQUUEhOVZaWloYuXbrg0aNHnPt499138cknn/BYFSH24eLi8uT5LRc6na5ShdiTmoFlWZxNPIt3Dr6DJj80gWK+Ar7f+OK9w+/hj7g/kK5Mh4nz7i0V75V7wPnVQO3c8s9VTPoMtVu3hJ8+FwKBZdfBUxtPRbhzuG1F/pflmWRPs/CSe0HnBRb/2QghZduwIRejRunBsvz/jBQIBIiIiICvry/vfRNSXbi7u3Nuq1arwbL2mbtKCOGfzmj+eYe7k7tjCyGEWEWlYrF6tRPn9t27qxEVxfVDMiGksnHcdrmEEEIIIYQQQgghhBBCbCIUCvDhh87o3VuL4cNN+Ptv7g98ynL7thNat2YxY0YRPv1UAZGo+k1sTEtzxZIlMpw/74zMTMt3w2FZAfbvV2Hs2JILbGoqlmURFxcHjUbDa78MwyAyMhISK3YUJoSQ6saoLUBCWhEMBgMK9YV459w7uJJ1pfQGeQA2AlDZMGgnAM2ta3I69TSmNZ7GechCpQZpyXEICK3LuQ9L7N+//8l/q7Ki8TBdB5Op9MnmJpMJWq0WOp0OKpUKmZmZyM7ORkJCAmJjY3H//n3cv38fRqORtxqXrdyK+MQUbFvzJZyc6HrDUk5OUoS6FiI+j3vIlTWMRiMS0tWoJcmFUObhkDHtwdXVFSkp3BaIq1S2/KDhh9agxRu73sCv934t+zyjFscfHsfLUS87qDLH+DPxTyz7axlOxJ9Apiqz+GBhxdbkaP0b9LdtIZ5YDPToUfzrscxMIDcX0GgAhgFkMgT/ORE3Hh62vWBCSI116FA+7t3ToWtXfvqrXbu2TYEJlUVGBrfFYyKRCZ6eZYd+tWpVdmhYWf76y4Bnn6Vr8ZrMyckJtWvXhk6nQ3JyMpRK6wJm09JE2LvXnfP4nToVoE4dLQoLtbh//z4UCgUCAwMhldK/S1K6Op51cCvzVonja6+txcftP66AioitsrOz0bVrV8TExHDuY+TIkViyZAmPVRFiX/7+/jaF4KWkpKB27do8VkTI0/I1+dh2exv23d+HK2lXkFaUBtZUPUMxPj4FfHESYKzI62FyC+DTvD3chvdByqdfo0hdduCyXCTHV899hSEnhsBg4mGzFDEALtmAFgzdJ6oP2oS04dA5IeS/9HoW776bjx9+KH62Vru2FsOGZfPWv0QiQa1atarFfTNC7MnX19emjT8zMjLg7+/PY0WEEHuhUDBCqqbVq1XIznbm3P7DD6v2xlKEkKfRdzQhhBBCCCGEEEIIIYRUMQ0aSHHhghSff66ERGKfSaZ6PYM5c5zx3HNa3LpV9mTNqsjd3RW//eZhVSDYY0ePVr+QNK6KigyYNSsTSiW/gWBisRhRUVEUCEYIqdFMRgMepWRAo9UiW5ON0adHlx0IVghgA4ACGwZtBaCD9c3ii+KRWJRow8BAdoEO2cn3bOrDUrr8RCRkGsoMBAOKd5J2cnKCq6sr/P390ahRI3Ts2BEjRozA7NmzsW3bNpw9exbLly/HK6+8AhcXF17q++3303hlyPvQ6Szcnp4AAJzlIgS68bBwyEJanQ6JqVlgDVqHjck3kUjEOVBJq63YP3eRrgi9f+ldbiDYYweiD9i5IvvTGrRYcWkF2qxuA6e5Tmj7c1tsv7P930Awwg8fH6BuXaBxY6BhQ6B2bQR5hFZ0VYSQKuzSpSK8/roCH3wQgl9+8bS5v4iICDg52WejAEfLyLBidfl/uLsbwTBlX8PUqyeBqyu38N7Ll7nVRaofiUSCiIgIREVFWfV5b/16bxgM3Kdnjx379PWdUqlEdHQ0YmNjoVZzSTkgNUGX2l3MHj/woOp/FqqJ8vPz8dJLL+HWrZJBb5YaMGAAVq9ebVuQMiEO5u7uDobh/h6qVquh01Wf59p5mjwYWMfd7yQlXU29iml/TEOLlS3g8qUL3L9yx1v738L+6P1IKUzhLRBMKBAi2DUYr0a9irWvrMWLES/y0i8XMpEM27uuxJykSKsCwf5LsmEvwiKjEBJ3pdxgngYeDTDpmUncBvp/XL9dysmUFkCAeS/O49g5IeSxR4806NBB9SQQDAAWLfLH33/Leenfzc0NderUoUAwQiwgEolsusecm5vLYzWEEHvSG83POxILrZ83TQhxDKPRhGXLuH+PPvusBh06VI9nyYSQYvQplxBCCCGEEEIIIYQQQqogkUiAzz5T4JVXtBgxwoSbN+3zAOfqVSe0bMnis8+UmDZNDqGweiweaNRIjqAgHZKTrQ+dOntWDqORhVBYs/fdyMjQoXdvPS5d8kN8vAgffZQKPtaWyGQyRERE2DTpnxBCqoO05DgUKnVIVaVi3JlxiC+KL/1kFYCNALhv5go0BdCde/PTqacxtM5QGwoAUnMNEAvvwtW/vk39lMWozkVCugZGI7eAgP/n7OyMDh06oEOHDtBqtdi/fz82btyI2NhYm/o9cvIvjJj4GbasnEeLN63gqTBCZ5Iiq4Cf/3/Lo1RpkZKciKCQ2hBU0WsXsVjMabGk0WgEy7IVcs2Wo85Bry29cOHRBYvb7H+wHyaTqcp9Pz3MfYglF5Zg34N9SMhLgAnlrMRr9s+vMgS5BKFb7W6Y0noKGvk14q1Wc1gTi8BFgUhXpvPSn5gRY0v/LRjQYAAv/Vkq2DX46QPvOXT4UkmEEkx7fhpmtp0JhURR0eUQQsyIiVHjlVckKCgonqY5f34gMjNFmDQpg9M9lODgYCgU1ef7PSuL2wpzT08jypv6yjACNGyow7lzMqv7v3aNptWSp4nFYoSFhcFgMCA1NRX5+fmlnpuTI8TOndwDAFu3LkKjRuaDv9RqNWJjYyGVShEYGFitfh4Q241uOhrfXvi2xPFbmdxDpUjFKCoqQo8ePXDlShmbA5SjR48e2LJlC4TCclJOCKmEfHx8kJ7O/T7C9eupaNkyjMeKHO9O5h28c/AdnIg/AYlQgjmd5mDa89Oq3H2tqkalU2HX3V3Ye38vLqVcQnJBMowm+9xnVogVqONVBx3DOuL1hq+jVXCrp15PzE/E8YfH7TJ2WULdQrH39b1o6t8UONIVaNcOePSIU18CAG59RsD5mUhk7NqJbH3p70kj647En+l/4mLmRW6FP8Y1E7CcKSPDmwzHM77PcOycEAIAR47kY/hwGdLSnJ86bjQKMHVqCLZvj4WPD/cgzODgYLi7u9tYJSE1i4+PD5KSkji1NRqNUKvVkMmsv/dKCHEsCpompOr59Vc1YmO5B+e+9559NpsnhFScqjkrlRBCCCGEEEIIIYQQQggAoFkzKS5flmL69CKIRBy3ai2HRsNg5kwF2rXT4MGD6rG7slDIoG1bFae2KSkSXL/OrW11ER2tRtu2LC5dKl54tm2bF1av9rG5XxcXF9SuXZsCwQghNV528j1kF+gQVxCHYSeHlR0IpkFxIFiGDQM2APAKildpcHQ67bQNBfwrKZuFOiuGl77+H2vQIjE1C1oOAUiWkEql6N+/P3bv3o0vvvgCXl5eNvW3dfcf+HrZep6qqzn85EVwdZY6bLy8Qi0yU6IdNh7fbJmsrdFoeKzEMqmFqeiwroNVgWAAkFyYjOvp1+1UFX9YlsX++/vRa3MvuC9wR61ltfDdxe8QnxdffiBYKcSMGM38m+GrLl+hcGYhHr3/CGv6rLF7IBgAMAIGver04qUvmUiGfW/sc3ggGFAcpFYZ6Yw6zDszD/W/r49dd3bBZLLPPQFCCDcZGTr07ClAWtrTq4tXrfLFp58GQW9+c/ZS+fn5VbvFjRkcP8N4eVk2mb15c24L+O/ckUCvp5+ppCSRSISQkBA0aNAAHh4eZoM5Nm3ygkbD/d7muHGZ5Z6j1Wrx8OFD3L9/H4WFhZzHItVLQ7+GkAhLJloU6YqQUWTLTSPiSGq1Gr1798b58+c599GpUyfs2rULYrGYx8oIcRwvLy+rw69MJuCvvxQYOzYcL70UhLy8qrvoed/9fWi9ujVOxJ8AUPzZf/rR6RUSEFXd3c+6j0+Of4Ln1zwP9wXuUHypwPA9w7Hr7i4k5ifyFggmgAD+zv7oEdkD3/f8HtnTslE0qwhX37qKJd2XlAgEA4A2IW14Gdsa7ULb4dLYS8WBYAAQHg6cPg3Urm1Tv8LbMQio1xS1d6+BTGo+fYsRMJjXYh5cxa7cB9IA4PqtX8ZbpkQowRcdv+DYMSHEaGQxf34OevVyKXGP7LGsLDGmTg2x+l4ZAAiFQtSpU6fa3TMjxBHc3NxsCp21JciXEOI45kLBBLZMDiOE2N3ixdy/R0NDdRg0iEI7CaluaFUNIYQQQgghhBBCCCGEVHESiQALFjjj9GktoqK0dhvn/HkZmjUT4ttvlWDZqr8wrmtX7n+G/furRzgaFxcuFKJdOxGio52eOr5smR/27HHn3K+XlxfCwqr2zt2EEMKHgrR7SM014JHyEUaeGol0dRmTKbUANgFItWHASAD9YfOT48tZl6Ey2B6aaTKZkJBlgK4w2ea+nuqXZZGSnAilitu1UpYmC9eyr0HPlj8jnWEY9OvXD2eO70PfXp04jffYx/N/wPlLN2zqo6YRMAyC5TmQOTkuGCwjT4+81LsOG49PLi4unNsWFBTwWEn5HuY+RLuf2+FWxi1O7fc/2M9zRfwo0BTgyzNfosmPTSCdJ8XLW1/GwZiDyNfmc+7T3ckdL9d9GYeGHIL2Yy2uvHUFH77wIZwlzjxWbpledW0PBXOTuuHIsCPoFtmNh4qsF+RaOUPBHksqSMKAHQPw0qaXcDezav4sIqS6KSoyoFcvfYl7J4/t2eOBd98Ng0pl2aRuT09P+PjYHsZe2WRlcZvUbmkoWIsW3PrXahlcu1Zz7/2R8jEMg6CgINSvXx/e3t5PFlAWFjLYupV7OHSTJiq0aKG0+Hy9Xo+EhATcu3cPeXl5nMcl1UekR6TZ42uvrXVwJYQLrVaLPn364NSpU5z7aNOmDX777TebAsAJqWgMw1i82QLLAsePu2Do0FoYMyYCFy44Iy9PhEWLHHvPig8mkwnzz8xHn619UKgrGfq56sqqCqiq+tAZdNh1ZxeG7h6KyGWRkMyRoN739TD3zFycf3Tepvtw/89J5IRnfJ7B+GfH4/jw4zB8YkDqB6k4OOQg3m75NjzlnuX20SqolUMX6o9rPg5Hhx+Fr8L36RciIoCzZ4GuXW0eQ/bZt6jVqBECilLNbhDmL/fHp80/5T5ADsd2UpS5Yc7bLd5GmDvNYSCEi4ICAwYMKMRHH3lCry/7QfSVKwp8+62/Vf3L5XJERUVBKnXc80BCqhtXV+6BnEVFRWBZy+7TEkIqjrmwY0ZA0SKEVFYXLmhw/jz3e7vvvKODSETBf4RUN/TOTQghhBBCCCGEEEIIIdVEmzZOuHpVjHffLQLD2Ce0S6US4r33FHjxRTXi4zls01iJvPyygvPf08mTNXOH9f378/HSS3Kkp5v/83/+eRDOnrU+aMDPzw8BAQG2lkcIIVWeOisGSdnFE7K+uv4VcnW5pZ+sB7AFwCMbBgwHMAiA0IY+HpfD6nE+/bztHQEwGAxISFPCqMnjpT8AyEyJRl6hdYFgJpMJFzMuYuyZseh0oBOGnRyGjvs74lr2tXLbujlLUS9QhN0bFuLrzydz3mXXYDBi3HvzYDBw3eK+ZmJEIoQ5Z0Isdtw1W3IOC2XmA4eNxxdnZ+4hUSqV7UGAlrqTeQdtf26L2NxYzn0ciD7AY0W2uZZ6DSP3jETgokC4feWGWcdn4Ub6DbM79VpCAAFqedTClNZTED8lHrnTc/HbG7+he2R3m3b55kPXWl0hZrh/L/oqfHFy5Em8EPoCj1VZJ9g1uMLGtsbRuKNovrI5jsUdq+hSCKnR9HoW/furcPmyoszzzpxxwZgxEcjNLfti3MXFBYGBgXyWWGlkZ3MNBbPsvNatub///PUXXX+T8jEMA39/f9SvXx9+fn44ccINhYXcP2CPG5cBLpduBoMBjx49wt27d5Gdnc15fFL1da7V2ezxfQ/2ObgSYi2dTof+/fvjyJEjnPto3rw5Dh06ZNPnfEIqC19f3zLvZxgMwL59bujfPxLvvhuGGzfkT72+cqULVKqSC58rK5VehTd2vYGPjn8EE8w/uz6XdM7BVVVtCXkJmHd6Hjr83AFeX3tBOk+KATsGYPPNzYjNjbVo8w9LCCCAj9wHnSM6Y2HXhUh+Lxnqj9S49fYt/ND7B3SK6GQ2AKs8bk5uaOjbkJcayyJiRFjRcwV+evknSIQS8yf5+wN//AH89BNgwwYTACDQ6uDV5iXUmT4Rbk6iEq93C+6GV8Ne5dZ5Bsei3Et/yVnijFntZnHsmJCa7fr1Ijz3nB579rhZ3GbDBm8cPmxZQJGvry9q1arF6WcsIeRffn5+NrXPyeGaykkIcRQjW/KzsVDAwyQxQohdfP019/tZbm4GTJggL/9EQkiVQ598CSGEEEIIIYQQQgghpBqRyRh8+60zjh/XIiJCZ7dxTp2So0kTBj/9pATL2ieAzN58fSVo3FjNqe1ff8mh0dSs3e5Wr85F//4uZS5sMxoFeP/9ENy6ZflORSEhIfDx8eGjREIIqdJ0hclIyDLAZCp+X72ff7/0kw0AfgGQYMOAwQDeAMBjZtKZtDO89aXV6pCUkgWT0fbFOXmpd5GRZ3k/rInFiZQTGHpyKEafGY0LGReevFagL8AHf33w5P8nc+ROUgTJsyH4ZyL6tEnDsXbZp5yDeW7djcWylVs5ta3JRBIpwlyyHbYgwGQyITHLCG1eokPG44tIJOL8b1OrtS5oj6tLyZfQ/uf2SClMsamfvx79hQwl19VhtjGwBmy4vgEd13WEYr4CzVY2w/rr65FalMq5TyeRE54PeR4re6+E5iMNYifHYkm3JQhzC+Oxctu5SF3QMbwjp7ahbqE4M+oMmvo35bUmawW5BFXo+NbQGDQY/dvoMt+nCCH2YzSyGDWqAH/8YdkCxps35Rg+vBYePTJ/US6TyRAWVrl+rvMpO5vbdZq3t2U/4+rUEcPVldvk+cuXOTUjNRTDMPDx8cGsWUE4cCAf7dsXWd1HVJQa7dpZ3+6/jEYjUlNTcefOHWRkZIBla9b9awK82fRNs8dvpt90cCXEGgaDAQMHDsSBA9yDrBs2bIg//vgDbm6Why4QUpkxDAMPD48SxzUaAbZu9UTv3nUxa1YIYmKczLbPyBDj++/z7V0mLxLzE9F2bVtsu72tzPOSCpLwqMCWHUKqL5ZlcSj6EEbvHY36y+vDaa4TwpeG4+MTH+N04mnkqPkLq5AIJajrVRcjm47E/jf2Q/eJDhnTMnB0+FFMfX4qAl35C3RuE9yGt77M8ZJ54ciwI5jQcoJlDcaNA27dAnr2tHls8f6TCKlTH2HXT5bY2GNGkxkIUYRY32k8x2I8S39papup8FHQPAZCrLVxYy7atZPh/n3L5w099umnQYiLk5b6ukAgQEREBHx9fW0pkRDyD4lEYtMmWxROT0jlx5pK3iOmUE1CKqeHD/XYt497qNeoURo4O9P3NyHVEX1nE0IIIYQQQgghhBBCSDXUoYMTbt4UYdy4IggE9lkMXFAgxPjxCvTsqUZKisEuY9hb+/bcggxUKiGOHCnkuZrKa/bsHIwb5w6drvzHCmq1EBMnhiEpqZTdhP/xeLIeLVIhhBDAqMlDQpoSBsO/76e1XWqbP9kAYBuAOBsGDAAwFEDpc6o5OZN2htcQkiKVBinJ8TDZsJBZmfEAyTmWtTewBhxIPID+R/tj8vnJuJFzw+x5GeoMJKuSzb4mFosR6pwFRvT05NmRg1/GV59Nsq74//hq2QaoVBrO7WsqJycpQt0KOIdeWctoNCIhQw2DyvxCM9bE4mLyRfwe8zsKtAUOqckSXCd7G41GuwcNnIw/iRc3vIhste2Tyk0w4VD0IR6qskxqYSqmH5mOqOVRkM6VYsSeETiVcAoqvYpzn74KXwxuOBjnR5+H+iM1/nzzT4x9diwkorKvvSta77q9rW4T5RWFs6POoq5XXTtUZB13J3fIxVVnR9WE/ATka6vG4mdCqpvp0/OwebO7VW3i46UYNqwW7t17OtBALBYjIiKCx+oqn5wcbtNXfXwsu7ZjGAEaN+a2acK1a6WH4hNSlp493XDqlDNOnSpE9+4FFt+bHzMmE3x9bGFZFhkZGbh79y5SU1MpHKwGaRrQFGKm5Oe7Ql0hslRZFVARKY/RaMTgwYOxd+9ezn3UrVsXR48ehZeXF4+VEVLx/P39n/x3URGDNWu80b17XcybF4jk5PLvg3z/vQJ6feV+DzybeBYtV7XE1bSrFp1/Pum8nSuqGtKL0rHk/BJ03dAVfgv9IJojQs8tPbH22lrcy74HrZG/jQw8ZZ5oF9oOszvORtzkOGg/1uL+O/fxc5+f0atuL4gYEW9j/b/nQ563W9+NfBvh0thL1gf5h4YCBw4At28DEycCrpYFYpvFMHDZfBB1Ht6Hj5v4yT18hViBBc8tgFBgxWcyFkAsxzpKCQXzkfvg/Tbvc+yUkJqJZVl88EEOhg/3KHOzwbKoVEJMmRICpbLkPSOJRIKoqCgoFApbSyWE/Ie3tzendiYTcPmyCJmZ9tu0lhBiO3OhYPb8HEMI4e6bb7QwGLg9KBKLWbz/Ps8TQQkhlQaFghFCCCGEEEIIIYQQQkg1pVAw+OknZxw6pEFwsP0mYBw+LEfDhsCGDUq7jWEv3bpxv01++HDlnkjOB6ORxfjxufjsM0+YTJY/bMzJEeGtt8KQnW1+oh/DMIiMjKTJeoQQAsBk1CMpJRNa7dPv1e83eh+B8v/bVd4IYAeAaBsG9AUwDIBTeSdaL0OTgXv593jtM7dAi+zUB5zaavMSkJhtLDeoTGvUYnvcdrz8x8uYcWkGYgpiyu1bz+pLHBMKGYQ7Z0EkMb8obdqk4RjwSmfLiv8/GZk5WL1xD6e2NZ2zTIxAV8dNRtbp9EhMzQarVz91XKVX4aWNL6HV6lbosbkHAhcF4uPjHyNPk+ew2kojk1m/W3tGhggnT7rg0SN1+SdztO/+PnTf1B1FuiLe+jwQfYC3vsw5GX8SA7YPgPfX3ghcHIivz32NB9kPzE62tYRQIEQDnwb4rMNnyJqWhfSp6djcfzNaB7fmuXL76lWnl1XnNw9ojjOjziDELcROFVlHIBAgyCWoosuwWF2vunB3cq/oMgipcRYtysGiRaWsJi5HVpYYI0dG4K+/iu+TCIVCREZGVvvd2nNyuC0Q9fW1/B5Vs2ZGTmPcvSuBTmefjRZIzdC+vQsOHXLF5ctK9OuXD5Go9H9P4eFadO3Kf2iwyWRCdnY27t69i+TkZAoHqyFqe5gPmf/56s8OroSUx2g0YtiwYdixYwfnPiIiInDs2DH4+fnxWBkhlQPDMBAK3bFsmS9eeikK337rj+xsy4PtExKkWLu28gZmr/p7FV5c/yIylBkWtzn/qOaFgrEsi9PxpzHxwEQ0/qEx5PPk8F/kj/f/eB9HHx5FhioDJvBz3S5mxKjlXguvN3wd2wdsh/YjLbI/zMbpUafxSYdPEOHh2NDmNiFt7NJvv/r9cG70Odv+PA0aAMuXA8nJwOrVwIgRwDPPAMJyPuMFBQGvvALMmQNERwMHD4Lp/gr8QqJQO1AOF0Xxg6vGno0xof4Ey+uJA8B1P7cA84dfe+Y1uEhdOHZKSM2j0Whw7949eHvbPm/s4UMnfPppEP77eNfNzQ116tSBSEQhJoTwzcPDw6rzc3OF2LDBC/36RWLo0Nr46Sf+nuMSQvhn7vMShYIRUvnk5hqxYYP1c7ce69dPjZAQbhtCEkIqP4GJz62aCSGEEEIIIYQQQgghhFRK+flGTJqkwcaN9g1h6tNHiZUrpfD1rRoPjrVaFt7eJhQVWb8IsVEjFW7ckNuhqspBq2UxaFAh9u5149zHM8+osHZtPOTyfxeciUQiREZG0mQ9QggBYGJZpCbFIqfQ/M71Rfoi7E3Yi70Je3E35y6wE8AdGwb0AjAKgLMNfZTjnQbv4K36b/Heb4iXEG4B9S0+36DKQtyjbOh0JcO7HlMZVNgRtwPro9cjU5NpVT0Hux1EiPO/YTUCgQDhbkVQyMt+f8vKzkOD519DZlauVeMBwDP1auHWn9utbkeKpRfJkFnguEXwbi5SBIfUhuCfMI+lF5ZiyuEpJc5zd3LH9BemY3KryZCLK+baMi8vD48ePSr19awsEe7cccLt2zLcvi3DnTsyZGYWTyZbsyYXb75p3WRxS2y6sQkj94yE0cQtyKM0rlJXZE7LhERoPrzPWhqDBqv+XoWNNzbievp16Iy2B9C5SFzQOrg1xj07Dv3q9as2gTD1v6+Pe1nlB0e2C22HfW/sg5sT988h9vDi+hdxIv5ERZdRLjepG46POI7mAc0ruhRCapRNm3IxcqQ7jEZuuzc/JhKx+O67JIweHQixuHpP3NbpTJBKuf197d+vRq9elk2M37BBiREjuN0PvXBBg1at7JCmbIFr166hWbNmFp9/9epVNG3a1H4FEZvdvavCvHk67NjhCp3u6eu72bMfoW/fPLvX8P33vggJEWHyZFc4O9O92epq4oGJWHF5RYnj7ULb4fSo0xVQETGHZVmMHDkSGzdu5NxHcHAwTp8+jYgIx4bUEOJIRUUGRESYkJXF7do4KkqN27elEAorz70VvVGP9w+/j+WXllvdtlVQK1wYc8EOVVUeeZo8bL25Ffuj9+Nq6lWkKdM4h+2Xx1Xqivre9dE5ojMGNxqMZ3yfscs4XJlMJvgs9EG2Opu3Pj/v8Dk+6fAJGIGdvidUKuDateKwMLUaYFnAyQlwdweaNgX8/cvtQpuXgOwCLQrURgw5MhRXsq+UP+5WAFz3q5mKUp+ZNfBugE39NqFZgOWfzQipiXJycpCSkvLk93PnBmDbNi+b+502LRXDh2cjODgY7u7uNvdHCCldfHw8iopKD/cyGoELF5yxe7cHjh93gcHw77VE/fpq3LnDPcSEEGJfgi9KPofxlnsjc5p1c6QIIfY1d24RPvmE+4TOv//WonlzKY8VEUIqEwoFI4QQQgghhBBCCCGEkBpkzx4VJkwQIy3NfgsLvb0NWLFCh9deqxqBWV26FOLYMet2eRWJWDz7rArHjomhUFS/B2kajQ5du+pw9qztqTFt2xZi2bIEiMWAVCpF7dq1q02wASGE2Cor+R7Scg3lnmc0GvHO1Hdw9uhZ7oO5ozgQzM4ZK409G2Nzp8289ysQCBDhJ4Hcu06557J6NeITH0GlNh+2lqfNw5bYLdgcsxkF+gJO9RzpcQT+8n8XsAS56eChsOzR+5IfNuP9j5dwGvfS0Q1o0awBp7Y1nYk14VGRG/KLzP+7sAdfdzF8g6MAAK/teA077+ws9Vx/Z3983O5jjH12LG+BVZYyGo24e/cuACA7W/gk+Ovx14yM0j87TJiQixUr+A0F+/7i93jn0Du89vlfx4Yfw4sRL3JuH50djSUXluBA9AEk5SeZ3V3XWiGuIegZ2RPvtn4X9X0sD0CsSqb9MQ3fnP+mzHN61umJHa/tqLCAvLIM+3UYNt3YVNFllOmVqFfwfc/vEewaXNGlEFKjnDyZjx49XKDR2H6vIyREizNnTAgLq5ggKkd69EjPecfqixe1aNnSsvtx0dE61K3L7dpq6dIiTJ5sx0TlMlAoWPX18KEaCxZosGmTK1QqIQICdDhw4AHsnQOYliZGjx51YDAw8PHRY9y4QnzwgQs8PKp3AGFNdCnlEp5b9VyJ465SV+TPyK+Aisj/M5lMGD16NH7++WfOffj7++P06dOoU6f8+2SEVHUzZ+ZgwQJPzu23bMnDG2+481eQDbJV2Xhtx2ucQ8fFjBgFMwvgJKo+nxcup1zGLzd/wcn4k3iQ/QBF+tLDKGwhFAgR6BKIFoEt0CeqD/o36A9nScVc61vj5V9exv4H+23uRyFWYEPfDehXvx8PVTnOw5w4NP2pKQp0haWflAxgFccBvAFYcBu6TXAb/NL/F4S5h3EciJDqiWVZJCcnIz//6c8ZOp0Ao0ZF2LzJYseOhTh0SAInp+o3J4uQykaj0SAmJqbE8ZQUMfbs8cCePe5ITS39HuupU4Vo3966uZeEEPvTGDSQzSsZ2hfgHICUD1LMtCCEVAS93oTwcANSUrg9r+nYUYUTJyrfHBtCCH9oqydCCCGEEEIIIYQQQgipQV59VY527YyYMEGJHTsUdhkjK0uEgQNFGDRIiRUrnODpKbTLOHzp1EmPY8fKPy8iQoPnny/C888XoUULFeRyFgUFXlAoAuxfpAOp1WrExcWhdWtPXkLBzp51wZw5QVi8OB+hoaEUCEYIIf/IT7uLtFxjueexLItPPvnEtkAwVwAjYPdAMAC4mXMTOdoceEq5L9Qyx2QyISHTgNriR5C4lR52YvpnArq5QLAMdQY2RG/A9rjtUBvVNtUjYv591O7jylgcCAYAb7/5Gr78dh0ys3KtHvfAkbMUCsaRgBEgSJEDvdGz1MA4vmXk6SFh7sI9sD6UOmWZ56YVpeGdQ+/gm/Pf4IuOX2BIoyEQMo65jhYKhfj2Wz8cOOCGtDTrQjNu3OAvRMBkMmHemXn45MQnvPVpzv4H+60KBWNZFnvv78VPf/+Ec0nnUFjWIjQLSYQSNPJthCGNhuCtZ9+CXFL9J+j1rtu7zFCw1xu+jvWvrnd4KJ6lgl0qb9CWr8IXy3ssx4AGAyAQlNztmRBiP4WFhZDLH6Fly1CcOWPboidPTwP27dMjLKzyL0znQ3o6y7mtn5/l95Zq1xbD3d2AvDzrp8pevkw/Uwn/IiJk+OknGWbP1uGrrwrg6am0eyAYAKxb5wWDofh7JzNTjHnzPLF8uQGjRuVi+nQ5/P1pkXV10TKwJUSMCAb26RD6Am0BclQ58JTze7+GWMdkMuGtt96yKRDMx8cHx44do0AwUmNMneqM7783orCQ232yRYvEeOMNnovi4Gb6TfTZ2gcP8x5y7kPP6vF3yt94IfQFHitzHJVOhR13duC3+7/hcsplJBcmw2gq/xkJFwqxAnW96qJjeEe80fANtAxqaZdx7O354OdtDgULdw/H3tf3orFfY56qcpwIz1r4ofePGLJ7iPkTWACHbBgg0rLTzj86j4ilEegR2QMb+m6Al9zLhkEJqR4MBgNiY2Oh1+tLvCaRmLBoURIGDqyN3FxuS5cnTcrFokVuEItpfhEhjuDk5ASRSASDwQCdToDjx13w668eOH/eGSZT+fdIV640on17BxRKCLFKnibP7PHK+jyekJpq0yY1UlK4zxn64AN6nklIdUefjAkhhBBCCCGEEEIIIaSG8fISYvt2BX75RQVvb0P5DTjatk2Bhg1Z7NtnW+iGvfXubf4ht5ubAd265eOLL5Lxxx/38dtvMZgxIw3t2xdBLi9euFhYaHsgQGVSWFiI2NhYmEwmDB+ejaFDs2zuUyQyoUMHE8LDwykQjBBC/qHKisaj7PIXwZtMJnz22WfYt28f98GcURwI5sG9C2uYYMLZNBsCzMpgNBqRkK6CUV16mFZGcjTyizRPHUsqSsIXV75A99+7Y330epsDwQBAJCiexO7mLIWvXGVVW6lUgsH9u3Ma9/dj5zm1I8UYoQihikxIJA5Ydf+P5FwWyoz70Bl1Fp0fnxePEXtGoPGPjfHr3V9hMlkeOGcLlUpsdSAYANy+7QSjkXuox2MmkwlT/5hq90AwADgQfaDcc/I0eZh9ajYarWgEyVwJ+m3vh8Oxh20KBPOUeaJvvb44OuwotB9rcXncZbzX5r0aEQgGAM+HPA93J3ezr41/djw29d1UqScgB7kGVXQJZr3Z9E3cnXgXrz3zGgWCEeJgarUaCQkJkMtNWLo0Aa++an3g62MymRG7dqnRpEnNCAQDbA0FszwQgmEEaNy45AJVS1y/Xrk3OiBVm5+fBIsXe2D6dD+4uNgWKlie7Gwhdu0qGQSVny/Ct996oHZtEd56Kxfx8ZX7Pj6xXC33WmaPb7ixwcGVkP8ymUx4++23sWrVKs59eHh44MiRI2jQgALjSc3h5SXB8OEFnNv//bcCBw7k81iR9X69+yvarGljUyDYY+eSzvFQkWPczbyLj45/hDar28BtgRsUXyowcu9I7L63G4kFibwFgjECBgHOAehVpxdW9FyBnA9zUDSrCFfeuoLF3RZX2UAwoPh+mi06hnfEpbGXqmQg2GODGw3G4EaDzb94CsAjGzpvYvmpJphwMOYgfL/xxbDdw6AxaMpvREg1VVhYiPv375sNBHvM31+Pr79OAsNY94zLxcWIzZvzsGyZBwWCEeJgYrEnvvrKH507R2HatFCcO+diUSAYAPz2mwsKC+03B5UQwk1uKXOrKvMzeUJqGpY1YckS7te99epp0bOnE48VEUIqI/p0TAghhBBCCCGEEEIIITXU66/LcesW8PLL1gVZWCM1VYxXXpFh5EglCgrss9OvrZo0cUZwsA4ikQktWigxeXI6fvklFqdO3cM33yShX79cBASYn8ym0+nAsraHIFQGOTk5SEhIePJ7gQCYNi0N3bpxnygvkxmxaVM+3n235KIzQgipqXT5j5CQaSg36MdkMuGLL77Anj17uA8mBzAcgIM3LT+ddtpufWt1OiSmZoE1aEu8lptyF5n5/75nP8h/gA8vfojeh3tj58Od0LPcwgDMETEiyGVSBClyIGCsD2F5ve9LnMa9evM+9HqaUGsLkUSKMOdsCIWOCXkwmUxIzDZCq7UuTOpO5h30294PrVa3wtG4o3YPB2vWjNs1bV6eCPfv27YAysgaMea3MVh8YbFN/VjqQfYDPMh+UOL45ZTLGLp7KPy/8YfHVx747ORnuJV5i/MCRQEEiPSMxNQ2U/HovUfI/jAbuwftRudanW39I1RJYqEYM16YUeL4zLYzsaLXCgiZyh28EuRSuULBannUwtFhR7Gmzxp4yujzFiGOptPpEBcX9+T3YjEwe3Yyxo7NsLovkciEdesK0bGjfUOBKpvMTG7XHi4uRkil1k17bdaM23v53bsSaDTV474fqbzEYjHCwsJQr149uLm52WWMTZu8odGU/n2jUgmxcqUH6tWTYujQPNy9a7/nBcQxOoV3Mnt8z709ji2EPGXSpEn48ccfObd3c3PDH3/8gSZNrEgwIaSamDFDBpmM+3XZ119XzD0H1sRi9qnZ6Le9H5R6JS99nn9UOTeN0Bl02HF7BwbvGozay2pDMkeCBisaYP6Z+biQfAEFWu7Bbv9PJpKhoW9DTGgxASdHnIT+Yz1SPkjB/sH7MaHlBHjIHLRDigO0CGwBoYDbv9+JLSfij6F/wFvuzXNVjvd9z+8R5hb29MGbKA4F48oPQMDThx5vBlMW1sRi081NcP3SFR8c/qDazBUhxFJpaWlISEiw6JlV69ZKTJqUbnHf9eqpce6cFoMHu9tQISGEq5AQb/zxhxvy8sp/P/x/hYVCrF9fvTZWJaQ6KO1zmFQodXAlhJDSHDmiwc2b3EO93n3XAIbDvEVCSNVCoWCEEEIIIYQQQgghhBBSg/n5ifDbb3L8/LMK7u72C5hYv16BRo2MOHJEbbcxbPHDD6k4e/Yufv75IcaOzUTDhmpYmhOhVPIzibsipaenIyUlpcRxhgHmz3+Eli2LrO7T09OAgwdVGDTInYcKCSGkejCqc5GQroLRWPaidJPJhLlz52LXrl2cxxLJRRCNFAG+nLvg7Fz6OV4DuP6fUqVFSnIiTP9ZbFGUcR8pucW/v559HZPOTUL/o/1xKOkQWPC/KEMulSFUkQlGaP2kWABo0aw+XJwVVrfTanW4fS+W05jkX1InKUJd8yEQOGZilNHIokir49T2UsoldN3YFZ03dMaFRxd4ruxfrVuLObc9d65kSJ+ltAYtBu0chLXX1nLug4sDDw7AwBqw5soatFvbDvJ5crRc1RKbb25GutLyRSr/TyaSoV1oO/zc52foPtEhelI0Fr60EEGulStQqqK83+Z9fNP1GzTybYTngp7Djtd2YH7n+Q77XrRFsGtwRZcAAGAEDKY9Pw03J9yssQFzhFQ0g8GAmJiYEosfBQJg8uQMfPRRCgQCy8M8Fy3KxcCB7jxXWfllZHALPPX0tD7gq2VLbtNk9XoGV69yu4YjxFoikQghISFo0KABPDw8eLs+KihgsHWrZQGiWi2DzZvd0bixDP375+PKFevvCZPKYUTTEWaPX0+/7uBKyGNTpkzB999/z7m9s7MzDh06hBYtWvBYFSFVR3CwEwYO5B4qdfq0M86ccWxIQZGuCAN3DMRnJz/jtd9zSefsvnmAJRLyEjD39Fy0/7k9vL72gnSeFAN3DsQvt35BXG4cb88HBBDAR+6DLhFd8E3Xb5D6QSpUH6lwc8JNrOi1Ah3CO4Bhqu+yOIVEgab+Ta1qI2JE+Kn3T1jecznEwpL3fJOTk/Huu+8iMzOTpyrtz93JHRv7bgQj+Of/6zsAfrWxUzNvqcdHHMfXXb6GQlz+sxs9q8fiC4vhssAFX//5tY3FEFL5sSyLuLg4ZGVlWdVu9OgsdOpU/nt4v375uHhRjIYN5VxLJITYSCJhMGAA93tBGzZIeKyGEMKHPE2e2eNSEYWCEVJZfPMN93s8fn56jBwp47EaQkhlVX3vfhJCCCGEEEIIIYQQQgix2MiRcty4YUKXLiq7jZGYKEG3bk4YP74IKlXl2jG1RQspFApuNeXm5vJcjWMlJSWVOelXIjHh228TUaeOxuI+Q0O1OHlSi44dXfgokRBCqgWTUYfE1CxodeUvKp8/fz62b9/OeSwXFxdsWrsJ9947iu87TMdzfs9w7ouLQn0hrmVfs+sYeYVaZKVEAwC0ufFIyDTgz7Q/Mfr0aAw9ORQnU0/adfzarvkQSbhPlBOJRGjZrAGnttFxSZzHJf9SyMQIcuMeZmUtWxfCnYg/gTZr2qDP1j64mX6Tp6r+9dxzCkgk3K6HL1/mNqZSp8QrW1/BrrvcAxC5+uj4R5DMkWDMvjE4m3QWagP38GJ/Z38MazwMl8dehuojFU6POo2RTUdCxHALDazOxEIxPnj+A9yYcAN/jfkLAxoMqOiSLFYZgt2a+jfFxTEX8XXXryEX0+IoQioCy7KIiYkBy5b+nvn66zlYtCjJovfVWbNyMXmyZWE91Q3X9eceHtZfr7Ruzf09+a+/rA8hI8QWDMMgKCgI9evXh7e3t83hYFu3eqGoyMLdL/5hMAiwe7cbWrRQYNeuh8jLy7OpBuJ4bULamP08kqfJK3UxILGfDz74AEuXLuXcXi6XY//+/WjTpg2PVRFS9cyaJYVIxP358r59jtu4Kj4vHi+sfcEu97zSlemIz4vnvd+yGFgDDjw4gFF7RyFqeRSc5johfGk4PjnxCc4knkGOOoe3saRCKaK8ojCq6SgcHHwQ+k/0yJiWgSPDj+CD5z+Av7M/b2NVFW2CLf/57yP3wfHhxzHu2XGlnqPX67Fs2TLUrl0bs2fPrjLXeu3C2mFW21nAWQDbAZv2gnED0OzpQ73q9EK7sHaY9sI0FMwowNQ2UyFhyg83UelVmH50Ory+8sL6a+ttKIqQykuj0eDevXtQqayfTyYQAPPmPUJoqPnncWIxiwULcrBjhytcXOiZCiEVbfx47sFely4pcO0aBcwTUpkU6syHYzuJnBxcCSHEnJs3dTh2jHuo17hxWjg5UVQQITUBfacTQgghhBBCCCGEEEIIAQCEhIhx+LAMK1Yo4eJinwVvJpMAP/3kjMaN9ThzxvKQKXvz9OS+AFOpVPJYieOwLIuHDx8iPz+/3HNdXVn88EM8/P3LD7Jp2FCFs2dNaNSo/B10CSGkpjCxLFIeJUCpKj+A6KuvvsLWrVs5jyWXy7FixQp0aNMEtT2d8Xbj1/DXwPW4PWQ7Pmw+HAEKb859W+NM2hm7j5Gep0du4iWsurIfg44Nwltn38LFzIt2HxcA5DLbw1giawVzapeUnGbz2KSYu9wEX1fbFtlbysAaeOnnt/u/ocmPTTB091DE5sTy0icASKUM6tXjdn1+86bY6ja56ly8tOkl/BH7B6cxbaU2qGECtx03hQIhGvk2wpxOc5A7PRepH6RiQ98NeDbwWZ6rJJWJn8IPQoF1gRp8cRI5YUHnBbg45iL9OyOkArEsi7i4OBgM5b+nd+1agJ9+ii/z/tqoUXmYPduNzxKrlKwsbu28va1f+R0RIYanJ7drsb//5tSMEJsxDAN/f3/Ur18fvr6+YBjrp3urVAJs2uTFuYZ69TSoW1eJR48e4e7du8jOzubcF3G8cPdws8c3Xt/o2EJquA8//BCLFy/m3N7JyQl79+5Fhw4deKyKkKqpbl0Z+vQxv6C5NEKhCb165WH37mgMH56BwkLr2nNxKv4UWq5qiRvpN+w2xrmkc3brGwDSitKw6NwidNnQBb4LfSGZI0HvX3pj3bV1eJD9AFojfxsteMo80T60PeZ2mov4d+Oh+ViDe+/cw9o+a9GjTg8ImYq5F1OZPB/yvEXnNfVvisvjLqNdWDuLzi8sLMRnn32GkJAQTJ48GXFxcbaUaXeJiYk4P/88cJSHzjoA+E/2kAACzO88/8nvGYbBwpcWIn9mPkY0GQFGUP61eI4mByP3jkTw4mAcij7EQ5GEVA45OTnlBuSXx8WFxeLFiXByerqPgAAdDh9WYvp0TzCMY57VEULK1qiRAq1acZ8H+dNPtm2SRQjhV6GWQsEIqcy+/loPk4nbdbBcbsS773IPFCOEVC0UCkYIIYQQQgghhBBCCCHkCYYRYMIEBa5fZ9Gunf12TI6NlaJTJynee68IGo0t27jyQyKRcFpYBQBGoxFGo31C1OyFZVnExMRYFWjm52fAjz8mwNW19EWU7dsX4exZCUJCaOIAIYT8V1ZKNHILy18os3DhQmzatInzODKZDMuXL0f7F1rBT/705K4GnrXw1QuTkThyPw6+vBSD6nSFVMh9p9fynE49bbe+AUDP6rEvYTda7noDk85Owu3c23Yd77/EjAgCge2T08NDAjm1S8ughdh88pGr4e5iv++Fx/gKBQMAE0zYfHMz6n1fDxP2T0ByQTIv/TZsWH4ArDm3bjnBaLT8mj69KB0d13e0+wJGPrlKXdG9dnfsGbQHuo91uDHhBj5u/zHcndwrujTiIEJGiACXAIeP2zG8I26Mv4HpbadDLLQ+gI8Qwp/ExERoNJYHaLZoocK6dXHw9S25EKpnzwKsXOkKobDmTt/MyuL2Z/fysj7Uk2EEaNyY23XOtWsUQkAqFsMw8PX1RYMGDRAQEACh0PJ/k7t2eSI3V1T+iaUYMyYTjz/6Go1GpKam4s6dO8jIyLBpQThxjA5h5kOk9tzb49hCarBZs2Zh4cKFnNtLJBLs2rULXbp04bEqQqq2WbOEEAjKvx6USFgMHJiNffseYMGCR6hTp/jefGpqql3r+/Hyj+iysQuyVBwTcC3E5z01lmVxMv4kJhyYgEYrGkE+T46ARQGYemQqjj08hkxVJudg/f8nZsSo5VELgxsOxs7XdkL7kRbZH2bj1KhT+Kj9RwhzD+NlnOqmTUibcs8Z+MxAnB11FqFuoVb3X1RUhO+++w516tRBt27dsHnzZqhUKi6l2kVeXh4++ugjNGjQAMeOHbO9Q38ATZ4+NLjRYDT2a1ziVCeRE9a9ug6ZUzPRq04vCFD+c6HkwmT03NIT9ZbXw6XkS7bXS0gFYVkWSUlJSElJ4aW/qCgtPv3032dZL7xQhEuXTOjUyYWX/gkh/Bk+nNt9VADYtcsZOh3dMyKksijQFpg9LhNRkBAhFS011YAdO7h/Lw4ZooaXFz3DJKSm4P60lxBCCCGEEEIIIYQQQki1FREhxsmTInz7rRIffyyDWs3/IkWjUYBvv3XG779rsW6dCa1aVWyQlEwmsyok679yc3Ph7e3Nc0X2YTAYEB0dzSnIrHZtLb77LhFjx4ZDp3v630T//vnYssUFEknNXdBKCCHm5KfeRXpe+T9zFy9ejA0bNnAeRyqVYunSpWjfri2CFTkQMOYfBYsYEXqEv4Ae4S8gV1OAbdF/YN3d/fgr/Rbnsc2JLYxFsjIZQYogXvvVGDX4Nf5XrHuwDikqfiaiW0tcyt+ttZwV3Cb3qFSWh1GQ8gkYAQLledAbPaBUlR/ex5XBxF8o2JM+WQN+/PtHrLu+Du+0fAcz2s6Al9yLc3/Nm7PYssX6dgUFIty9q0LDhvJyz03IS0CXjV0QkxPDoULHEUCAULdQ9KrbC++1eg+RXpEVXRKpBIJdg/Go4JFDxnKTuuGbl77B6GajeQmiJITYJjk5GUVFRVa3q1tXi02b4jB+fBji4orve7VuXYTt2+UQiWr2/ZPsbG4/27y9uQUSNGvG4uRJ69vduyeBWs1CJqvZ/3+RysHLywteXl7Iy8tDWloaDIbSP2PodAKsW8f9fnV4uBadO5dcNMayLDIyMpCZmQkvLy/4+vpy3myD2NfIpiOx5uqaEsevpl2tgGpqnk8++QRffvkl5/YikQjbtm1Dz549eayKkKqveXNndOtWgN9/dzX7ulxuxKBBORg2LBs+PiXfJ3U6HVQqFeTy8u9hWUNn1OHdQ+/ix79/5LXf0px/dJ5z2xxVDrbe3ooDDw7gatpVpCvTwZrsE9zgJnVDfe/66FyrM4Y0GoL6PvXtMk51F+YWhgDnAKQWmQ+1m/fiPMxsO9Pm+0csy+KPP/7AH3/8AWdnZ/Tu3Rs9e/ZE9+7d4ePjY1PfXNy+fRs//vgjNm7ciPz8fH46FQLo+8/Xf4gZMWZ3ml1mM0+5J/YP3o+EvAQM3j3YomC++9n38dzq59AysCV+6f8LanvWtq12QhzIYDAgNjYWen3JoHtbvPxyPm7elMPbm8GiRW4Qi+mzJCGV0fDhLpg504CCAuvnRGRmirFtWy6GDfOwQ2WEEGsV6cw/15KL+f1MTAix3rffaqDVOnNqyzAmTJ1q/80vCSGVB4WCEUIIIYQQQgghhBBCCDGLYQR4/30FevbUYcQIIy5etM8OUffuSdG2LYupU4swe7YCYnHFLHh2c3PjHApWUFBQJULBNBoNYmNjYTJx39G5eXMVvvrqEd5/PwQmU/H/V5Mm5WLJEjcIhTRpjxBC/kuV+QCPcspfULN06VL8/PPPnMcRi8VYvHgx2rdvjzDnTDAiqUXtPJxcMb7RAIxvNAD3cuKx/t5+bLh3ACnKTM61/NeZtDN4vfbrvPRVpC/Ctrht2BC9ATnaHF765IqvUDC5nFsgqkbLfXdeYh4jFCJUkYU4gxe0Ovv8/RpY/kPBHtMYNPjm/DdYeWUlpraZiimtp8BFav3u6m3aiDnXcO6cttxQsLuZd9F1Y1ckFyaXeV5FkQqlaOLXBMOaDMOY5mPgJKrY0GJS+QS58Bt0WZoXI17Epr6bEOAS4JDxCCFly8jIQG5uLuf2AQF6bNjwEO+8EwqNhsG+fRIoFDRtMyeH2z0kHx9u9w1btuQ2nsHA4MoVDV54ga4LSOXh7u4Od3d3FBYWIiUlxexC7X373JGRwf36fvToTAjL2GTeZDIhKysL2dnZcHd3R0BAAIWDVTJtQ9tCKBDCaHo6qD5Xk4siXRGcJdwWHJHyff7555g7dy7n9kKhEJs3b8arr77KX1GEVCMzZwrw++9PH3N3N2DIkGy88UY23NzKvh+fkpKCyEj+wt8zlZkYsGMATiec5q3P8lxPv27xz/JLyZew5dYWnIo/hQfZD6DUc3sWXh6hQIgg1yC0DGyJPlF90L9+f8gltNCcDwKBAK83fB1LLix56rizxBmb+23GK1Gv8D5mUVERtm7diq1bt0IgEODZZ59F27Zt0apVK7Ru3Rrh4eG8j6lUKnHp0iUcPnwYv/32G+7cucP7GOgEwO/pQ289+xZqedSyqHmYexj+fPNPXE+7jqG7h+JWZvmb7VxKuYTI7yLxUq2XsLHvRvg6+3IonBDHKSwsRGJiok1zisqyZIkRfn7cN7chhNifs7MIr7ySh02b3Dm1X79ehGHD+K2JEMJNqaFg9FmNkAqlVLJYvZr7c8eePVWoW1fBY0WEkMqOZpcQQgghhBBCCCGEEEIIKVO9ehKcO2fCl18WYe5cObRa/hf3GAwMFixwxsGDGmzYIECTJpaFmfDJ3d0dKSkpnNqq1Wqeq+GfUqnEw4cPeemrS5cCzJyZigULAjB3bi5mzvTkpV9CCKlOtHmJSMgyljtp+rvvvsPq1as5jyMSibBw4UJ07NgRYS7ZEEm4vYfW8wzHl8+/g7mtJ+Bo0kWsu7sPe+JOQWPUcq7tROohm0PBcrQ52ByzGb/E/oJCfaFNffGFr1AwjYZb+JREzH1hNymdUCxBmEsWYvM8YDQay29gJb2J3x3VzSnQFuDTk59i2cVlmNV2Fia0nGBVsFWLFgo4ObHQaKy/3v/773JeT/kb3Td3R5Yqy+q+7clV6oqXar+ESS0noX14+4ouh1Rywa7BDhnnTuYd+Cn8yj+REGJ3OTk5yMjIsLkfNzcjVq2Kh49PLXh7087NAJCdzTUUjNt4rVtzv4b+6y8jXniBc3NC7MbFxQVRUVFQKpVISUmBVlv8+d1gANas4b6BRUCADr165Vl0rslkQm5uLnJzc+Hm5oaAgACIRDQ1vbIIcw9DXG5cieMbr2/EhJYTKqCi6m/evHn44osvOLdnGAbr1q3DwIEDeayKkOqlfXsXtG1bhLNnneHnp8fIkVno1y8Hcrll4SUajQZarRZSqe3Poq+nXUefrX2QkJ9gc1/WYE0sLiVfQqeITk8dL9IVYcftHdj3YB8up1xGSmFKiXBIvjhLnBHlFYWO4R3xRsM38Gzgs3YZhxSb2XYm/kr+C+eSzgEAmvg1weZ+m/GM7zN2H9tkMuHy5cu4fPnyk2Oenp6IiopCVFQU6tati+DgYPj6+sLPzw/e3t6QyWSQSqVwcnICwzDQ6XTQ6XRQq9XIyspCZmYmUlNTERMTg+joaNy8eRM3b960y335J54B8H+f6xRiBT5u/7HVXTXxb4Kbb9/E8YfH8ebeNy36GfBH3B8IWByAgQ0GYs0rayiIgVRKaWlpyMqyzzMcgUCA8PBwKBQUXkBIVTBuHINNm7i1PX1agdRUNQIC7LP5LCHEcqWFQsvFdC1KSEVatUqNnBzu18UffljGji6EkGqJnrwSQgghhBBCCCGEEEIIKZdQKMDHHzujTx8dhg1jcf06911qynLjhhNatWLx0UdFmDlTAZFIYJdxzGEYBiKRCAaDweq2JpOJtwnk9pCXl4dHjx7x2ucbb+SgWzcx2rfnuBqTEEKqMYMqBwkZ6nIXMKxYsQIrV67kPI5QKMSXX36Jzp07I9StEE5Otr8PCRkhuoW1QbewNsjTFmJ79BGsu7sf59NuWN3XufQrgCgHMFgfHpmmSsP66PXY+XAnNEaN1e3tSSzk5zG7UsUtVFShoAm09iKRShHmmo+HeS6874JuYK2/xuQqS5WF9/94H4svLMZnHT7DyKYjIbIgzE4iYRAVpcL169ZPAr1xo/SgjdMJp9F7S28U6ipHsN9/TX5uMua8OKeiyyBVRJBLkEPGSStKw/Sj07HwpYUOGY8QYl5hYSHn8HhzoqJC4eJC13EAwLIm5OZym7Du48PtXmFYmAje3gZkZVl/LV9e+CkhFU2hUKBOnTpQq9VISUnBrl0SJCVxvz8walQWuGRR5+fnIz8/Hy4uLggMDISYAq0rXPuw9mZDwXbf3U2hYHbw1Vdf4eOPrQ8WeUwgEGDVqlUYOnQoj1URUj198okBf/31CL1750Mstv4eXnJyMmrVqmVTDTvv7MSIPSOg0qts6oerc0nn4KPwweabm3E87jjuZd9DgbbALmMxAgb+zv5o7t8cvev2xqCGg+Du5G6XsYh5PgofnB55GtfTr8PAGtAysCUEAsfNo/h/OTk5OH/+PM6fP19hNVglDEBfAP/3V/Ze6/fg58w9mP/FiBcRPyUe225tw6RDk5CpyizzfNbEYuvtrdh5dyfGPzseS7ovsei+PSH2xrIs4uPjoVLZ5z1NIpGgVq1aFCBNSBXSrp0rGjRQ484dy+9nBwXp8OqruXj11TxotVIA4XarjxBimdI+rzqLnR1cCSHkMaPRhO++4/7spGVLNdq1o+fNhNQ03LZbI4QQQgghhBBCCCGEEFIjNWokwaVLUnz8cRFEItYuY2i1DD791Blt2mhw547WLmOUxpZdKXNycnishD+ZmZm8B4IBQGBgIAWCEUKIGaxejcTUbOh0+jLPW7lyJX744QfO4zAMgzlz5qB79+4IcjPAWcb/RGp3qQvGNeyHc6+txb2hOzHz2VEItnKBxIDDw+Eks3xxSnxhPD79+1P0+L0HNsVsqnSBYAAg5mmRRmo6t922nSkUzK7kMjGC3fj/d+fIULDHHhU8wth9Y9Hg+wbYdmsbWFP51++NGumsGkMkMqF+fTWiojRg2ZL9H3hwAN02dauUgWAAsD96f0WXQKqQIFf+Q8EE/78a8R+LLyzGw9yHvI9HCLGMWq1GQkICb/0FBgbCxcWFt/6qurw8FgYDt6mrfn7c2jGMAI0bW3ed89i1a7TjNqkaZDIZateujREj/DBlSi7c3Kz/DOLlpUffvrk21VFYWIj79+/j4cOH0Om4fd8RfgxrPMzsNqGETAABAABJREFU8StpVxxcSfW3aNEizJgxw6Y+VqxYgTfffJOnigip3rp0cUX//gWcAsEAQKVSQa8v+/59aVgTi09PfIrXdrxWYYFgAPDJiU/Q6IdGWHB2AS6mXOQ1EEwmkqGRbyNMbDkRZ0adgf5jPZLfT8a+wfvwVou3KBCsgggZIZoHNMdzQc9VaCBYlRME4HUA//dYx0vmhanPT+VliEENByFjWga+7fYtnCXlBywYWAOWX1oO1y9dMe/0PLP31QlxlEePNHjzzVzk5XHbyKg8bm5uqFOnDgWCEVIFDRlS/s8FsZhFjx55WLnyIQ4efIDx4zPh769HUVERvb8RUgkodUqzxxUS7nOkCSG22bVLjbg4Cef2773H7waXhJCqgULBCCGEEEIIIYQQQgghhFhFLBZgzhxnnD+vR/369gvtunxZhhYtxFi4sAgs65gHWR4eHpzbFhZWvqCDlJQUpKen895vWFgYPD09ee+XEEKqOhPLIiU5GSp12e+Pa9aswXfffcd5HIFAgM8//xwvv/wyfFwZeCiMnPuyVJRHOOY/PxHxI37DH32WY3Dd7nASSsttdz8vATPPvwuptOzJ3vfy7mHqX1Pxyh+v4Nf4X2EwOT5AyVJ8hYLFPOQW2unqQhP07M1NDvi58dtnRf6bjs6Jxuu7XsezK5/FweiDMJlKv7Zu3rz0CdpCoQlRUWr065eDjz9OwS+/xOLChTvYvj0WU6emQal8elLpLzd/wavbXoXGUPnC/R67lnYNyQXJFV0GqSKCXYN560vEiDCr7Sxs7rfZ7OusiUX3zd15G48QYjmdToe4uDje+vP19aV7KP8nLY37dZGvL/cpr02bcluI9uCBBCoVLWIjVYefnwRLlnjg4UMTPvooBz4+loeeDB+eDScnfu7FK5VKPHjwALGxsdBoKu9nguqsY1hHCAUlgw1z1DlQ6SouyKa6Wbp0KaZOtS1UZOnSpRg/fjxPFRFS/TEMAy8vL5v6SElJsbpNobYQ/bf3x5zTc2wamw8m8PN+LYAAvgpfvFTrJSzptgTpH6RD9ZEKNybcwPKey9E2tC0YhpadkSqqDoARAMzsszKr3Sy4OfH7EODd1u8if3o+ZradCakFz8/UBjU+PvExPL/2xKq/V/FaCyGWOHIkHy1bMli/3gtff+3Pe//BwcEICQmhIENCqqixY53h5GT+nmidOhrMmJGC48fv4+uvH6FNGyX+/5IxN9e20HlCiO3UBvPhfi4S2sSGkIqyZAn3a+PwcB0GDqSNRAmpiejuLCGEEEIIIYQQQgghhBBOWrSQ4soVMd5/vwhCoX1Cu9RqBh9+6Iz27TWIidHZZYz/cnYuf+fW0uh0ukqzyx3LsoiPj0dOTg6v/QoEAtSuXRsuLjQxgBBCzMlMiUZeUdkLXdevX49vv/3WpnE+/vhj9O3bF27OUvjKHbuIU8gI0TW0NTZ3m4u00YexstNHeCGgSZltdsYew1dXpkMsLhmmdSXrCiacnYDXjr2Gw48O87aYyZ4kjJiXfm7djeXULiI0iJfxSdm8ZRp4uHDfnfH/GdiKD7q7lnYNvbb0Qvt17XEm4YzZc9q0Kf73LRSaUKeOBq++mouPPkrB5s3FAWA7d8biiy9SMGhQDho2VEMq/fd7tqio6Ml//3j5RwzZPaRS/LnLcyD6QEWXQKqIIBd+fv62CGyBy2MvY17neXij0RtoG9LW7HkPsh9g0blFvIxJCLGM0WhETExMmQGa1nB3d4evry8vfVUnGRnc/379/UuG21jquee4TZc1GBj8/bf970sSwjcPDzHmzvVEXJwA8+blICio7H/HLi5GDBrE7/1kAFCr1YiJiUF0dHSJIGFiXwzDIMQtxOxrm25ucnA11dOKFSswZcoUm/pYuHAhJk+ezE9BhNQgPj4+NoWMFBYWwmCw/L5VXG4cnl/7PPbc28N5zMpAKpSinlc9jG42Gr8P+R2GTwxIn5qOw8MOY0rrKfB1ps8vpJpoAeB1AGZu8Qe7BuPtlm/bZViGYTC/83wUzCjAmGZjzAa0/r98bT7G7R+HgEUB+O3eb3api5D/MhpZzJ+fg169XJCWVvxNsm2bF/btc+elf6FQiDp16sDdnZ/+CCEVw8dHgm7d/t0gVaEw4rXXcvDLL7HYtSsGQ4bkwN299M3rsrKyHFEmIaQMKr35+WQuUpr7S0hFOHdOgwsXuId6vfOOHkIhBe4SUhPxs4UxIYQQQgghhBBCCCGEkBrJyYnBokXO6NtXg1GjBIiJKX/HUy7+/FOGZs2MWLBAiQkT5GAY+z3Ykkql0Gq1nNoqlcoKD8xiWRZxcXHQaMoOpbEWwzCIjIyERMJfOAYhhFQneSl3kZFX+qRHANi0aRO++eYbm8aZMWMGBg4cCLlMiiB5NgQ8BVRx4SZ1xtiGfTG2YV88yE3A5NPf4HDiebPnrrn3GzY+OARPqReEAiH0Rj2yddkwmsr+O6uMxIztj9kTklIRn5jCqW1krWCbxyflEzACBMrzoTe6o0jF7drwvypTONbZxLNov649ukd2x7wX56F5QPMnrz37rAIbN8YiKkoDmcy6wA6VqnhS6YKzCzDz2Exea7an/Q/2Y9yz4yq6DFIFBLnaFgomE8kw98W5mNxqMkT/eS/ZP3g/fL/xhc5YMqhjxrEZGNV0FDzlnjaNTQgpH8uyiImJ4S3w3dnZGcHBdN1mTno6t79jiYSFqyv3fXBbt+b+2enCBQPatePcnJAK5ewswqxZnpg6lcWPP+Zg2TI5YmOdSpw3ZEg2FAr7bXqh1Wrx8OFD/PmnB1q2dEPz5tw36CCWaxfSDvF58SWO7767mz4H2WjVqlV45513bOpj7ty5mDp1Kk8VEVKzMAwDDw8PmzZISk1NRUiI+fDE/zr+8Dhe2/EactT8h2fam5fMCw19G6Jb7W4Y0ngIQt1CK7okQuxLBuBlAA1KP+WLjl/ASVTyephPEpEEq15ZhYUvLcSoPaOw9/7ecjfFSStKQ59tfRDpGYn1fdbj+dDn7VojqZkKCgwYMUKJPXtK3m+ePTsQdeuqERXF/ZmYXC5HeHg4GIb7/RtCSOXx5psmJCUp0a9fLrp2zYdcbvmzY71eD51OR/MMCalAGoP5+cMuEgoFI6QiLFzIfY6ku7sBb73FPVCMEFK1CUx8bWtHCCGEEEIIIYQQQgghpEZTqVh8+KEKK1YoYDLZL7Src2cV1q4VIzTUPiEoaWlpnHerc3V1RWhoxU2mLioyYO3aNLz4Yh6v/YrFYkRGRkIoLH8nW0IIqYnU2TGIS9OirEevW7duxbx582wa54MPPsDIkSMhkYhRyzUHoko4gXJ3zHG89vsMsCb7LSSuDBgBAwEEYASCJ18ZAfPkl/DxL4aBUCCEUMBAxAghEgghZIQoPKdE8rZM6wcWAJ/tGQtnuRxOQgmcRNLir//8t0woLf76zy+5yOnJL5lISpPwOTDqdYgr8IJWWzKsx1KsiUWT3U14rIpfrzV4DbM7zUY973oAgDt37nAKRBEIBNiQsgFfn/ua7xLtSi6WI2taFmRimkBHyuf9tTey1dlWt+taqyt+7P0jannUMvv6iksrMPHgRLOvtQpqhQtjLlg9JiHEOjExMbwFrEulUtSuXZuuvUqxfLkSkyYprG7n56dHWppt9wN9ffXIzLS+j9dfV+KXX6yvmatr166hWbNmFp9/9epVNG3a1H4FkWrFYGCxYUMeFi2S4c6d4mtgmcyIP/54AHd3+wZ3q1QCdOsWhfx8Ibp1K8TMmQK0b0+L0OzpSOwRvLTppRLHveXeyJzG4b4EAQD8/PPPGD16dJn3Asvz6aef4osvvuCxKkJqHpZlcefOHZv6aNCgQanX7SaTCd9f+h5Tfp9SJTa3EDNihLqFonVwa/Sr3w+96/SGRFT5niGQihUfH4+IiIiKLsMu/Jr7Ib1jOuBa+jn1vevjxoQbTwX2O8KjgkcYunsoTiWcsrhNc//m2NJ/C6K8o+xYGalJrl8vwqBBQty/X/qzkJAQLbZujYWrq/XPiHx9feHr62tLiYSQSsbW6203NzeLQngJIfbx3KrncCnlUonjBwcfRI86PSqgIkJqrpgYHerVE8No5La24r33irB4MW20QkhN5di7WIQQQgghhBBCCCGEEEKqLbmcwfLlznj1VTXGjBEiIcE+k4yPHZOjcWMDFi1SYtQoORiG3wAyT09PzqFgSqWS11qskZGhQ+/eely6FIzZs4G+ffN46VcmkyEiIoIWshJCSClMRj2Sc9kyFwHu3LkT8+fPt2mcSZMmYeTIkRAKhQhzzoZIIrWpP3vpF/kiVr34EUYfm1PRpdjV49AzI9e1n39ybOcFfHF1FcfGTyuOMysOcnoScCZgigPOUBxqxjD/CTgTCJ+EnIkEwuKQM0YIMSOCiBFB/ORX8TGJUFz8lRFDIiz+KhWJIWEkkArF/4SZSSEVPQ41kzw59jjgTCb+J+BMKIVM5ARniQxykZNDF+wIxRKEOWcizugJg4Hb4j8Da+C5Kn7tuLMDu+7uwsgmI/FZx88gkUisDkUxmoyY8/cc7IrfZacq7UelV+Fk/Ema+EosEuwabFUomIeTB5Z0W4LhTYZDICj9s+vbLd/GiksrcDvzdonX/kr+C5tvbsaQRkM41UwIKV9CQgJvgWAikYgCwcqRkcHtItrT0/bg4caN9Th2zPpQsGvXaKotqT5EIgZvvumJESNY7NqVh4ULxXjmGbXdA8EAYOdOT+TlFX8//f67K37/HWjfvgjTpxvRs6eb3ceviTpHdAYjYEqEt2epsqAxaOAkcqqgyqquTZs2YcyYMTYFgs2YMYMCwQjhAcMwcHNzQ35+Puc+0tLSEBgYWOK4zqjDxAMTsfrqaltKtCtGwKBVUCt0qdUFQxoNoeAgYhGpVAqFQlGh8xr41qRJEyxatAiNWzdG4x8bI60ordRz5704z+GBYEDxPcWTI0/idsZtDNk9BNfTr5fb5kraFdT7vh46hXfClv5b4O/s74BKSXW1cWMuJk50RWFh2RsBJiVJ8dFHwVi6NBGW3toSCAQIDw+HQuG4MHVCiGMwDANnZ2cUFRVxal9QUMBzRYQQa2gM5p97uUrLSNElhNjFN9/oYDRyW1MhkbD44AO6j09ITUYzFQghhBBCCCGEEEIIIYTwqksXGW7eZDFlShHWrrXPzjT5+SKMGSPCr78qsXq1FP7+/N3ulkgkYBgGLGv9QkOj0QiDwQCRyLG336Oj1ejVS4Do6OJJdl98EQQvLwPat+c2KecxFxcXhIWF8VEiIYRUW9lpsdBoSg/8+fXXXzF79mybFgqOHz8e48aNg0AgQKhLPqROlTMQ7LE3G/TB3xl3seLmzooupXJKA/CIY9tw/sowwQQTADz+t8n9n2iFEvzzvwKBAMzjrwIBBCgOOBMKGDCC/4SbMcInIWciRggh82/Imfg/IWcSRgyxUPQk2IwxMdAZ5RAJRBALi8PNnvolLP4lZaTFX4VSSBkpnIROJRZfV0asicXaa2ux6eYmDKs3DMPCh8HLyavcdiqDCqdTT2PutbnI13FfgFnR9j/YT6FgxCJBrkEWLdoDgNcbvo5vu30LP2c/i84/NOQQwpeGm/2ZMfa3sehfvz+FNhBiB6tW5cDLS4e6dW3vi2EYREZGUiBYObKyuAX88xEK1rw5i2PHrG8XEyOBUslCoaD/b0n1IRQyGDjQHQMHAmlpGuTmCmE02i8YTKcTYP167xLHT592xunTQMuWSkydqkf//q4QCul7jS8MwyDYNRiJ+YklXvvl5i8Y1WxUBVRVdW3duhUjR47k9Pzosffeew9ffvklj1URUrMFBATYFAqWm5sLf3//p67h04vS0X97f/yZxHVnB8dgTSwODjkIdyf3ii6FVCEBAQHIzMzEgQMHsH37dhw4cAAqlaqiy+KkZcuWeO+99zBo0KAn38Pr+qxD983dzZ7/XNBzeLXeqw6ssKRnfJ/BtfHXcDbxLEbsGYG43Lhy25yIP4HARYHoV78ffu7zM1ykLg6olFQXej2LKVPysWKFh8VtTp50xdq13hgzpvzNFCUSCWrVquXwOVKEEMfx8/PjHApmMpmQl5cHd3d3fosihFhEZ9SZPe7mRJszEOJIOTlGbNok49y+f381goIogJeQmow+cRNCCCGEEEIIIYQQQgjhnYsLgzVrnNGvnxrjxomQkiK2yzgHDijQsKEBy5apMHiwnLd+ZTIZ591xc3Nz4ePjw1st5blwoRCvvuqE9PR//46NRgGmTg3FmjUP0aiRmlO/Xl5eCAgI4KtMQgiplkwsi+yi0he079u3D59//rlNgWCjR4/GxIkTAQBBbloo5PZ5T+Wbi5gmo5SKQwjBE+F8FVF9mP75X5PJBPbfA4QjnVGHNbfXYMOdDWgf0B5DI4fCQ+oBkaA4LE3EiJCtyca17Gs4nXYalzIvQcean0xaleyP3o/lpuUQCLiFlJCaI9gluPxzXIPxQ68f0Ltub6v6DnELwYy2MzD/zPwSr6kNavTf1h8Hhhywqk9CSNl27MjD22+7QyZzw9KlCWjZkvtCaIFAgMjISFoEaYGs8teUmuXtbXsoWMuW3IKGDAYBLl/WokMHCmck1ZO/vxf8/b2Ql5eHtLQ0GAylh59z9dtv7sjIKP2exqVLCgwaBDzzjBrvv6/B8OFuEIkoHIwPbUPaYkv+lhLHd97ZSaFgVti9ezeGDRtmU3jeO++8g8WLF/NYFSFEJBLBxcUFhYWFnNqbTCZkZmbCz6840PtK6hX02doHjwq47urgWBceXUD3SPMBSISURiaTYcCAARgwYADUajWOHTuGAwcO4MCBA0hKSqro8sokl8vxyiuvYNKkSXj++edLvN4tshumtJqCb//6tsRrCzovqDT3f9uGtkXs5FjsurMLEw9ORLoyvczzTTBh191d2Ht/L0Y3G41l3ZdBIpI4qFpSVT16pMGgQQacO2d5INhj333nh4YN1WjduvR5U25ubggODq4031eEEPuQyWQQiUSc7xVlZmZSKBghFURr1Jo9TsHShDjW8uUaKJXc51F++CE9eyakpqOnpYQQQgghhBBCCCGEEELsplcvGW7dYvDGG9wCtiyRnS3CkCFyDBigRHY298UY/+Xmxn03rIKCAl5qsMT+/fl46SX5U4Fgj6nVDCZODENCgvWTQf38/CgQjBBCLKDNT4Berzf72qFDh/DJJ5+AZbkvXB82bBimTJkCAPB1ZeAurzppRwcT/jR7vIFHBJ7xrAVfmScEqIGTxO8DiObYlgFQi8daCCmD3qTHsZRjGHV6FF498ip6/9Eb3X/vji4Hu2DQ8UH48vqX+DP9z2oRCAYAifmJuJ15u6LLIFVAiFtIqa8JIMDElhNx++3bVgeCPTbvxXkIcTU/xsGYgzgWZ0uyJCHkv06dKsTIkS4wGBgUFgoxfnw4jhxx5dxfrVq1IJHQglxLZGdz+xzg7W3756HWrbmHLF+8yH9IEiGVjbu7O+rVq4ewsDCIxfyFkhsMwJo1lm2kcfu2DKNHe6BePR2WLcuBTmd7IGBNN6TxELPHL6VcsrnvPE0e9t3fhw+PfIi39r2FNVfWwMjy85ymMvntt9/w+uuv2xSYN3bsWCxbtozHqgghjwUGBtrUPjs7GyzLYtutbWi7tm2VCQQDgPNJ5yu6BFLFyWQy9O7dGz/88AMSExNx584dLF++HP369YOXl1dFlwcAcHV1xcCBA7F9+3ZkZmbil19+MRsI9tiXXb7EixEvPnVs0nOT0Cmik71LtVr/Bv2RNjUN3/f8Hq6S8u9JGFgDfvr7J7gtcMOnJz616Rkkqd6OHs1Hy5YMzp1z5tSeZQX48MMQpKWZ/1wYHByMkJAQCgQjpIawJdRLq9XaJXyeEFI+vdH8fDYPJ+sDQwkh3Oh0Jvz4I/fnxy++qELTplIeKyKEVEUCky3bUhNCCCGEEEIIIYQQQgghFtq1S4UJE8TIzORvMdH/8/PT44cf9OjbV25TPyzL4s6dO5zaCgQCPPPMMzaNb4nVq3MxcaIbdLqy9/8IDtZh48ZYeHtbthAnJCTEplA0QgipSbKS7yEtt+QExqNHj2LatGk2TW584403MGvWLACAu7MUQc75EDBVY2J1UmEaQteVDENp4l0X197Y8uT3BtaAdbd/w6cXf0aqKtWRJdpEKGAgFUrAmliwJhNYsDCZTDAB/3wt5RF8EYAfAHDNSo0C8AbHtoSQcn3Z+UvMaDujossgldyV1Ct4duWzJY7X966PVS+vwguhL9g8xq30W2j8Y2Oz7yceTh7ImpYFhqF9IAmxxY0bSnTqJEVOztM7KwsEJsycmYo33sixqr/Q0FC4unIPFKtpmjbV4Pp1J6vbTZ9ehAULuC1m/S9/f73ZgP3yDByoxLZt3Hfytsa1a9fQrFkzi8+/evUqmjZtar+CSI2lVCqRkpICrVZrUz8HDrhhxozSw1XLEhSkw/r12ejQwQcikaj8BqQElmUhnisGayoZGqH+SA0nkeU/k3PUOTidcBqn4k/hVMIpXEu7VuK6dWTTkfi5z882111Z/P777+jTpw90Ou6h2CNHjsTatWspNIFUKVmqLDzMfQg3Jzf4KnzhJnWr1P+G4+LioFKpOLVlTSxWxq3E99e+57kq++tSqwuODDtS0WWQaspkMiE6OhoXL17ExYsXcfXqVdy5cwc5OdZ9ZraGQCBASEgIWrRogXbt2qFdu3Zo2rQphEKhVf3ojXpsuL4BtzNvo11oO/Sp1weMoHLfT2NZFrNPzcZXf34FjVFjURtXiSu+7PIl3m75tp2rI1UFy7JITk7GiRN6jB4dAYPBtvfuxo1V+Pnnh5BIiq/5hUIhatWqBamUggkIqUlsmUcJAJ6enjYH+RJCrOe70BeZqswSx42fGOlZMyEOsnq1EmPHcn+2eOCAGj17ynisiBBSFVEoGCGEEEIIIYQQQgghhBCHycgwYPx4LX791b4L6IYMUWL5cie4u1s3OfS/7t27xznMJTIyEk5O1i9utNTs2Tn4/HMPmEyWTeBr0ECNn39+CLm89J1iBQIBwsPDoVA4ZnEjIYRUB2lJD5CV//SCwBMnTuD999+3KRCsf//++OyzzyAQCKCQSRHmmgvGygUPFanvganYE3eyxPGZz47C/OcnljheqCrEl3//gZX3ViJbk+2ACm3Tt1Yn7O610KJzWZaFjtUhPS8PfQa+j+vXH3Aet/PU5xD4rDd0Rj10rAE6Vg89a4DeaCj+yuqhZ43QswYYWCMMJiOMrBEG1gijyQijiYWR/eeriQX75KsJJvzz1WQCi+KvKD3ejJBq6YWQF3D2zbMVXQap5EwmEz458QnmnZkHAJAKpZj+wnTMajcLUhF/C6He3Psmfr5mPkihuoUsEOJoiYkatGsnQGJi6d+zY8dmYNKkDFiSeRAYGAhPT08eK6z+QkN1SEqyflfsb75R4oMPbL9v1bWrCkePWr+hQFSUFvfuOWbRK4WCkcpGrVYjJSUFarXa6rYsC/TvH4mYGG73y7289Dh8+AGkUhNcXFwQGBgIsdh+G49UV6FLQpFUkFTi+PpX12N4k+GltstSZeF0wmmcjD+JUwmncDP9pkV3CxKmJCDULdSmmiuDY8eOoXfv3tBoLAvmMGfIkCHYsGEDLbYkVYaBNeC939/D8kvLnzouZsTwVfjCR+EDX4Vv8X/LS/7349cVYoVDQ8S0Wi2io6MtPj9Pm4cbOTfwV8Zf2Ba3DVrWtgDMiuIicUHu9FwImarz/IBUfampqbh79y4ePnyIxMREJCYmIi0tDdnZ2cjOzkZeXh60Wi10Oh0MBgNEIhGkUumTX87OzvD19YWfnx/8/Pzg7++PWrVqoX79+oiKiqrx8xX0Rj0m/z4Zq6+shoG17Fmjr8IXK3quQP8G/e1cHanMDAYDYmNjodfrAQAbN3rh668DbO530KBsfPxxKuRyOcLDw+m6lpAaKjY2ltN9IQBgGAYNGjTguSJCSHk8v/JEria3xHHTZzQTiBBHYFkTGjfW4vZtbs9GGjTQ4OZNKZgqsoksIcR+KBSMEEIIIYQQQgghhBBCiMNt3KjElClS5OSI7DZGUJAOq1YZ0aMHt11ykpKSkJ+fb/H5KhWDy5flOHfOGT17Mhg8mP8FoUYji4kT8/HTTx5Wt33hhUJ8910CzK2XYhgGtWvXpt08CSHESv8fCnb27FlMnjz5yWRrLvr06YM5c+Y8WTAV5KaDh6LqPNI9FP8neu571+xrp/utQrugkgvbWaMJyRo/pGanYlPMJvx8/2cUGYr+PeEsAB8AUfap2VoDI7tiW48vLT6/oKAIrw6bihNnL3MeMyjAFw+v/gax2H7XTuXRG/VQGTRQ6jVQGzRQG7VQG7RQ67VQG7XQGLTQGLXQGHXQGHT/fNVCayz+b61RDx2rg9agh47VQ2f8N9hMZ/wn4OyfUDMdqy8ONnsccPY45MxkhJFl/w05M7Fg2X++Pgk2exx0VhxuRvFmxFKMgEHG1Ax4yb0quhRSBcTnxSM6Oxqtg1vDRerCe/8sy8J7obfZidoCCHBt/DU09mvM+7iEVHe5uXq0a2fA7dvl3yt69dVcfPppstn7KI/5+PjAz8+PxwprBmdnI5RK60ML1q9XYvhw2xeHz5hRhK++cra6nVBoQl6eCc7O9l/8SqFgpLLSarVISUmBUqm0uM3x4y54990wzmO+/34aRo3KeuqYQqFAUFAQJBLrAwZrqtd3vo5tt7eVON67Tm/sG7zvye8zlBk4FX8KpxJO4WT8SdzOvM1pvJsTbqKhb0PO9VYGp0+fRo8ePaBSqTj3MXDgQGzZsgXCKhT2T8iO2zswcOdAm/uRiWQWhYg9PsdJZPtmSzExMaWG+OmMOqyLXoejyUeRpclCpibT5vEqi+vjr9M9AkKqoSJdEUbtHYVdd3ZZ/Iwjwj0C6/qsQ/vw9naujlQ2hYWFSExMxH+XCZtMwIcfBuP3391t6tvFxYg//8xFo0beNlZJCKnKCgsLkZCQwLl9eHg4nJ2tvydLSE1iMpkQnxcPtUENJ5ETZCJZ8VexDFKh1OrgbdcvXVGoK3zqmAACsJ+VvrEwIYQ/hw6p0bMnt/ULAPDTT0qMG1ezQ7MJIcUqbsYwIYQQQgghhBBCCCGEkBpr2DAFOnc2YPRoFX7/XW6XMZKTJejZExgzRoklS2RWL9jz9PQsMxSMZYG7d51w/rwzzp1zxtWrchgMxWOo1fkYPNim8kvQalkMGlSIvXutDwQDgD//dMHnnwdh7txk/Hd+gEgkQmRkJEQiemRACCG2uHDhAqZMmWJTIFivXr0we/bspyZypRRI4cQUQCar/Atdz6VeR/9DH5b6eoiL+cCEDIMf8vPzIRfJMa7eOAyqNQhr76/Fltgt0Bg1QCaAowBCAbwIINwOxVtBLLT8PfNhQjJeHvwebt+Ls2nMT6aOrtBAMAAQC8VwE4rhZofwG0diWRYagw5KgxoqgwYqg6Y43MxQHGz2b8CZuWCz4nCzIq0a2WoGWqMWelYPPauHgTUUfzUZiv/bpP8n1MwAtVGNhCLuk6QrM3eJO9oHtEcH/w5o49cGcpEcBcICZCADN9Jv4GbGTdxIv4G43LhKH87Gmlj8HvM7hjQeUtGlkCog3D0c4e7hduufYRjsHLgTnTd0LvGaCSb02tILSe8l2W18QqojrZbFK69ocfu2ZQuP9uzxQHa2CN98kwi5vOR7mJubGwWCcaBWs5wCwQDA15efMK4WLbj1YzQKcOmSFp062R5YQUhVJZVKERERAZ1Oh9TUVBQWFpZ5vskErFrlw3k8V1cDBg7MKXFcqVTiwYMHkMlkCAoKgpMTfV+WZ3CjwWZDwS4kX8C2W9twMv4kTiWcwt2suzaPJRQIEeEeYXM/FenChQvo1auXTYFgffv2xebNmykQjFQ5J+NP8tKP2qBGQn4CEvItuyfmInF5OkRMXnqgmLfcG2JhyfTewMBAxMU9fR82vjAeux7uwta4rcX3mquhc0nnKBSMkGrIWeKMHa/tQFpRGobsGoLj8cfLbfMw7yE6rO+Axn6NsbnvZjT0qxohrTE5MbicchlN/Zuinne9ii6nyklLS0NWVlaJ4wIB8MUXKXjwwAlxcdw+M9Wrp8aOHSY0bEiBYITUdC4uLmAYBizLLUwoIyODQsEIKcPV1Kt4ddurSMxPLPUcqVAKmVj2VGDY49Cw/w8RcxI6QaU3f19r3bV1Jc9/3JeZYyKG5hUTwsWiRdznSPn76zFypH3WVhBCqh6B6b8R4IQQQgghhBBCCCGEEEKIA7GsCWvWqDB1qhMKCuy3MCI8XIe1a1mrF+3dunXrqd+npYlw/rwzzp93xoULzsjNNf/A29dXj5QUIYRCfhYr5ufr0KuXDn/+afvkmDFjMvHuu+kAihdx1a5dGwzDT52EEFLT5KfdRVKWEZcvX8bbb78NtVrNua9u3brhq6++MrtQUCQSopZbLiRSqS3l2tXNrBi03z0WedrSFwTv7/0tekW0fepYts4LqVlFZs/PVGfip3s/Yfvi7TBd+89j7UAAbQA0AFAB6ypH1n8ZP3f5rNzzVq7fjamfLkVhkdKm8SLCgnD/r10VHgpGiul1WsTle0KvN1jc5l7ePbx27DU7VmUfbhI3NPFsgkjXyCdhZ2nqNKQoUxAgD8DrtV9Ha9/WYARPX0s6OTkhMjLyqWNFuiLczrj9JCTs8dccdckF/hXp9Yav45f+v1R0GYQ80XtLbxyIPmD2tZltZ2J+5/kOroiQqsloZNG/fyH27nWzum2jRip8/30CPDyMT44pFApERFTtsJOKEh+vR0REyQAHS1y5okWzZrZ/JkpONiA4mNu19YIFSkyfbv9dua9du4ZmzZpZfP7Vq1fRtGlT+xVESCkMBgNSU1NL3Vzj/HkFxo3j/vNywoQMvP12RrnnSaVSBAYGQqGw//dnVcWyLERzRA4Ja24e0Bx/j/vb7uPYy99//43OnTuXuWlMeXr37o3du3dDLOb2nkdIRfrm3DeYdmRaRZdRLg8nD7MhYlACUkhxO+82bufcxo3cGxVdqt0NbzIc619dX9FlEELs7H7WfQzZPQR/p1p+ndUutB229N+CYNdgO1ZmmwVnF2DmsZn//r7zAkxvO70CK6o6WJZFfHx8uUG2cXESvPFGbahU1j1U7dcvH+vWKeDiQs8nCSHFUlJSkJPD/dlugwYNaI4iIWawJhYRSyPKDASrSCJGZDYwzFfhi5frvox3nnunxJwRQmq6Gzd0aNKE+wawn3+uxGef0fMOQkgx+lROCCGEEEIIIYQQQgghpMIwjABjxyrw0kt6jBqlxYkT9tnZJj5egi5dTHj77SJ8/bUcMpllD6FZ1gl//inCuXPFQWCxsZaFimVkiPH330V47jnbQ7w0Gg0SE2Ph6hpkc18AsHq1D3x99Rg7VofQ0FCabEMIITZwdg/AjeMHMXHiRJsCwTp37owFCxaYDQQDAIPBiIQib9RisiEUc58wYi8P85PR7bd3ygwEA4BrWfefCgXL1zkjLbv0wCwfmQ8+bvYxsgOzcfTa0X9fSAGwC8AfABoBaALAz5Y/gXXE5eyCefz0Jcya+z3++vtWmedZauHnkykQrJJgDQYkFvlAr9da1c7AWh4gVhn0ieqDmW1nwqXAhdNuzzqdrsQxZ4kzWgW3QqvgVk+OmUwmpBalFoeEpd/EjYzir3cy70DP6m36M3D1e8zvMLAG2u2WVBo7B+6E19deZndy/urPrzC+xXiEuoVWQGWEVC1vv52PvXs9OLW9eVOO4cNr4Ycf4hEcrIdUKkVYWBjPFdYcaWlGANwCUvz8+EkEDgoSISBAj9RU6+u4fJmXEgipNkQiEUJCQhAUFITU1FTk5eXhv3tVr17tw7lvmcyIIUOyLTpXq9Xi4cOHkEgkCAgIgIuLC+dxq5uk/CScSjiFk/EnwQgYGE3G8hvZ6Png5+0+hj199913NgWCAcD+/fshkVS+e3jWOHHiBDp27FjRZZAKMKDBAHx45EOHhAjaIleTi1xNLu5n36/oUircuaRzFV0CIcQBoryjcHncZZxPOo8Re0YgOie63DZnEs8gdEkoXol6BeteXQd3J3f7F2qFs4lnnwoEA4AZx2agjlcd9Kvfr4Kqqho0Gg3i4uIseoZTq5YOc+Yk44MPLLuPLBazmDMnD9OmeYBhBLaWSgipRnx9fW0KBcvKyoKvry+PFRFSPcTkxFTaQDCgeL5Lka4IRbqSGz4ejTuKh7kPsaT7kgqojJDK66uv9AC43R9WKIyYNMm6DdAJIdUbrfQhhBBCCCGEEEIIIYQQUuHCwsQ4elSGpUuLoFDYZ1EKywqwfLkzmjbV49w5jUVtrlzxwttvh2PTJm+LA8Ee27+/ZBiCtQoLCxETEwOBwIS5c5PRqlXJB+vWEolM8PV1Qnh4OAWCEUKIja7djsX48ePL3YG5LB06dMDChQshEpUdQKPV6pCo9IbJaH1Ajz2lq7LRde9EpCqzyj33eta/CxSUOhFS80xPLRYujVxUSmhoIYBzAH7459cJAEkA7PxXZC4UTK3WYP0v+9Gm2yh07juBt0CwwQO6o/8rnXnpi9jGxBqRpPSEWmNdIBgAGEyVPxSMETAY0mgIbk64iT2v70Gr4FacFzCzLGvRQhSBQIBAl0B0j+yOaS9Mw8a+G3Ft/DUoZylxa8ItbOm3BTNemIFedXohxDWEUy3WytPk0UJKUqk4iZyw9pW1Zl9jTSx6bOrh4IoIqXo+/zwHK1dyCwR7LD5eimHDaiEpSYbatWvT/RQbZGZyC5cQCEzw9eUnFAwAGjXiFkB64wYFhxJiDsMwCAoKQv369eHl5QWBQIBr12S4eJH7phmDBuXAzc26ZwU6nQ4JCQm4d+8e8vLyOI9dlcXnxWP9tfV4c++bqLW0FkK/DcWwX4dhzdU1DgkEA4A2IW0cMg4hxD7C3cPRLbJbRZfhcAwYwFQ1g09icmKQqcys6DIIIQ7SJqQNHkx6gL2v70WAc0C555tgwt77e+H9tTdG7x0NncH2eSx8MJlMmHF0htnXxu4bi+SCZAdXVHXk5OQgJibGqk1dXnqpACNGlP8sNzBQh8OHlZg+3ZMCwQghJYhEIkilUs7tbQkUI6Q6C3ULhVDA3/MPR1t1ZRV0xspxjUlIZZCSYsDOnTLO7YcOVcPTs+r+TCCE8I9mKBBCCCGEEEIIIYQQQgipFBhGgMmTndGjhw4jRuhw/jz3h2JlefBAig4dTHjvvSLMnauARFL6RLbevRUQCk0wGq2f7HbypG27wOfk5CAlJeXJ7yUSE779NhEjR0bgf+zdd3QU1d8G8Gdrsum9kU5CQu8dFBARBBFREKQjWFBRqoq9oaCiYhcpFhBEfkhvovSq9J6QkEp6z26y9f2DVxRJyO7sbEl4PudwNDtz7/2isDs7c+9zL14U9t9GpTJgyZJyjBjhZ1VtRER0zaeffory8nKr+ti9ezfatWsnUkUOMg5ATN2nnSi4BADQ6k3ILneDXm95uFKtcv//124Aqv+vJxxAIwBhABTiDfV3KNjl1EzsOXAMG7btxfZdh1BZqRFvEABhIYH4bN5sUfsk4XLUXiivFPZnVmcUFjphD0qZEhPbTMSs7rMQ6xt7wzE3NzdUVZkXpvtfFRUV8PLyEtRWIVOgeVBzNA9qjpEtR15/vaSqBKdzT+N03mmcyj2F03mncTr3NMq11r0P/9eOyztwR9QdovZJZI2HWzyMjw99jENZh246dq7gHD478hme7vS0Ayojcn6LFxfjzTetCwT7W2SkDj16RDEQzEq5ucISfL29DXUGKVuiXTsjtm+3vF1yshLl5UZ4evLPAVFNpFIpQkNDERwcjMzMErRvX4m//nK3uB+l0oixYwsF16HX65GZmYmrV68iODgYfn4N8364yWRCakkqdl3Zhd1pu7H7ym6klaY5uix0i+jm6BKIyEqPtXsMW5O3OroMm4rxjMGdIXcioKoj/lzbF3s2xwPQA6HH0O7BLQjudAT70veJft/JVg5mHsTghMGOLoOI7GhwwmAMThiMb499i1k7ZqGkquSW5xtMBiw5sQTLTy/HtK7T8E7vdxx6j2NT0ibsz9hf47EiTRHG/ToO28dsh1TC799/MxqNyMrKQmlpqaD2zz2XgzNnVLV+R+vRowKrVikQFuZpTZlE1MAFBgYiMzNTUFu9Xo+qqiq4ulq2MStRQ+cqd8Ww5sOw8sxKR5ciiN6oh9HkXBtcEjnSggVV0GqFbZgik5kwc6Z1aw+IqOFhKBgREREREREREREROZX4eCX27jXhww8r8PrrbtBoxJ/kp9dL8P77Hti8uQrffy9Bu3Y172IXEKBE69ZqHDvmZvEYR4+6obJSD3d3y2/F5+bmIj//5h2dPTyM+OKLNIwZE4vsbMse/Pn56bFmjQa9evlYXA8REZEYkksyUKZRo1AbjurqStsNpAFw7v9/AYAUgA+AAAD+AHwBePz/L3cALrj25Fz2//80AjD8/68qAJUA1ABKABQC6zfsxoq0rcgvKLbZb8HdXYV1P34IXx9hoUokrsJKBQrL9ILb643C29qKh9IDT7R/AtO7TkeoZ2iN53h6egresbm8vFxwKFhtfFx90DOqJ3pG9bz+mslkQlpp2rWQsNzTOJV37Z8XCy8KnnhaXGW7v9tEQm16ZBNCPgypMWRw+rbpGN1qNHxcfexfGJETy8/PR6NGRYiMdENaWs33fcwVF1eFzZvl8PTkdEtrFRQIa+frK+6Cko4dhd1vNBolOHy4Cn372mYzA6KGQiqV4p57/HDPPcDGjaWYN0+GffvMXwTzwAPFCAy0/nuUwWBAdnY2cnJyEBgYCH9//3od7mgymZBclIzdabuvB4FllglbiGsrIR4hiPKOcnQZRGSlQU0GIcQjBDkVOY4uRVQtfVtiaPRQ9Avvh6TTIfj2y0As2/fv4BMFkNUZ5xd1xK8ztQhtJMfxq8evBS+m7cbetL0orRYWxGJrBzMYCkZ0u5rUbhImtpmId/e9i3f2vgON/tYb2FQbqvHevvfw2ZHP8Hbvt/Fsl2ftVOk/DEYDXtz54i3P2Zm6Ex8d/Agzus2wU1XOTa/X4/Lly9DphG9CI5cDH3yQgeHDGyM//8bdlJ55phgffugNhaL+fl8iIvvw8fFBVlYWTCaToPY5OTmIjo4WtygiC+j1eiQnJ+PcuXM4f/48UlNTkZ2djezsbOTn50Oj0UCj0UCr1cLFxQUqlQqurq7w9PREaGgowsLCEBYWhri4OLRq1QotW7aEh4ew8J9/m9VtVr0NBesb2xeucob9EQFAZaURS5YI//swcKAacXGWb7RCRA0bZ6kQERERERERERERkdORySSYPdsDgwZVY+xYE/76yzYPjc+edUWXLka88EIFXn3VHXK55KZz7ryzWlAoWFWVFNu3l+GBB3wsapeRkXHLnT2DgvT48ssrGDs2FqWl5t3mj4ysxsaNerRsyR09iYjIcUww4fecAsS5+Np3YCOAov//JYJUZIvTUS1kMhlWffsuOrRtZtNxyDzlGgOulloXJKI3OU8omJ/KD892fhZPd3oafiq/W57r7i58oplGc+uFR2KRSCSI9olGtE/0DQsfq/RVOJ9//lpYWN7p6/80ZzFrv8b9bFkykSB+bn6Y13cepm+fftMxnVGHQSsGYd/EfQ6ojMg5lZSUIDc3F+HhwPffp+Dpp6Nw+rTl93YAIDhYh40bjQgO5oIGMeTlCVss5u9vELWOrl2F77J99KgRffuKWAxRAzdokDcGDQJ27y7H3Lkm7NjhCZPp5vvwf5PJTBg/XmCCYC2MRiNyc3ORl5cHf39/BAUF1ZtwsCp9FZafWo6dqTux68ouXK246uiSbqlbRDdIJLX//yWi+kEhU2Bim4mYu2+uo0sRxbCYYXg49mE08U7A3r0eeOaNQBw7Vvt9L41GinnzNPjsM190bNQRHRt1xMxuM2EwGnAy9yR2X7kWErYnbY/ThMsfyDzg6BKIyIGkUileuuMlPN/jeczYNgNf/vlljZsL/FuFtgLPbXsOb+99G5/2/xQjWo6wU7XAitMrcCbvTJ3nvbjzRdwVexfahLSxfVFOrLy8HOnp6YIDeP4tIECPDz7IwKOPxkCvl8DT04CvvirHI4/Y+dktEdVrnp6eKCsrE9S2oqICRqOx3tyXofovIyMD+/btw+HDh3H48GEcP34c1dXVZrX9OyDsbxcvXrzpHIlEgsaNG6N37964++670adPH/j7+1tcZ7vQdrgr5i7sTN1pcVtHe6v3W44ugchpfP21BsXFwudazZolE7EaImooJCYx7ggQEREREREREREREdmIXm/CO++oMXeuClqt7SaEtG1bhe+/l6JFixsXBW7fXop77vEW1Ofjjxfjq6/MmzxnNBqRlpaGyspKs84/cUKFSZNiUF196/8mLVqosXmzFBERXLxKRCS28ePH47vvvnN0GY43DkCMeae+0vYVDI8dblH3L730EtavX295XfWQXC7D4k9ewdgRgxxdCgHQaKqRWuoDo9FoVT9/ZP+BqQenilSVMGGeYZjRdQYea/8YPJTm71R77tw5Qb9/qVSKZs2cL9guvzL/n5Cw3NM4lXcKZ/POQqPXQC6V46WeL+G1O1/jInZyWomfJeJi4c0TzgFg9bDVeKjZQ3auiMj5VFZWIjU19YbX1GoJZs6MxN69loWle3oasGOHBp07W7/LO10zdmwlfvjB8snw99yjxtatwoLdatOokQ7Z2QqL2z34YCV++cW2u3SfOHECbdu2Nfv848ePo02bNrYriEhER49W4J13DNi40QsGw83X3YMHF+Odd7JsWoNEIkFFRQDatg2EUum8i1AzyzLRfUl3pJemO7oUs71/9/uY2W2mo8uwCu/3XfPHH3+gV69eji6DHCi1OBWxC2MdXYZVVDIVVvVZhUj3GOzY4YVvvw3ExYsqs9p6ehqQkmJAQEDtYbJGkxGnc09jd9q1kLDdV3ajUFMoVvkWUclVKH2hFAqZ5de3RNTwqLVqTNowCavOroLRZN79/UjvSCwZvAR3xd5l09qq9dVI/DwRV0qumHV+04Cm+POxP+GmEPeeQH2Rk5ODggJxQ5MB4Icf/LF+vQ9WrzahRYvb878tEQmn1Wpx6dIlwe1DQ0MFhSYRmaOsrAy//fYbfvvtN+zcudOqP6tCSKVS9O7dG2PHjsXQoUPh4WH+86VtydvQf3l/G1ZXh48A1L6X8W3jzjvvxK5duxxdBtVDBoMJcXE6XLkibGOizp01OHTIvPtWRHR7cd4nmUREREREREREREREAORyCV57zR2HDunQsmWVzcY5ftwVHTvK8e67lTAY/tlPo3dvT3h6GgT1uXeveUFcRqMRycnJZgeCAUCbNhrMm5cBqbT2vT/uuKMCe/cqGAhGRERO40LJBUeX4LTc3Fyx7scPGQjmJHTVVUgr97M6EAwA9Ca9CBUJ09i3Mb4Z9A1SpqZgetfpFgWCAYCLi4ugcY1Goyj/7cQW6B6IPjF98FyX57D4/sU4Ovkoyl8sR86MHFS8WIHXe73OQDByattGb4NUUvN0r/G/jodWr7VzRUTOpaqq6qZAMABwczPhk0/ScP/9xWb35eJixE8/VTAQTGSFhcI+Z/39xd/7tlUrnaB2J0/KRa6E6PbSsaMHfv3VG6dOafDIIyVQKv/53iCRmPDoo+IveP8vg8GEUaO80bixHu+9V4TKSsd9Z7uVl35/qV4FggFAt4huji6BiEQS4xuDfo37OboMwXxdfbF16HYc29EOgwfHY9asSLMDwQCgvFyGDz6ouOU5UokUrUNaY2rnqVgzfA3yZuXh9JOn8dmAz/BQs4cQ6BZo7W/DbBq9BidzT9ptPCJybm5KN6x4cAWuTr+KfrHmvZenl6aj7w990eKLFjhx9YTNavv6r6/NDgQDgPMF5zFr+yyb1eOsjEYjUlJSbBIIBgATJ5bjzz8VDAQjIkGUSiUUCmFhtCYTcPx4mcgV0e0uKysLX375Jfr374/AwEA8+OCD+PLLL+0eCAZc+wzfuXMnxo0bh5CQEDzzzDNITzfv/l6/xv3QKriVjSskIlv55ReN4EAwAJg2TfxnoUTUMDAUjIiIiIiIiIiIiIjqhbZtXfDnny54/vkKyOW2efhVVSXFnDnu6NGjCpcuXVtMrVBI0bWr+WFd/3bunAoZGbcOMtPr9bh06RK0WssXb991Vzleeim7xmMPPliKHTvc4OPDHaGJiMh5XCy96OgSnFKj0CD88etXuPfuHo4uhQAYdFqkVQRCrxdnYbjOKCxwwhotg1pixdAVuPD0BUxuPxkucmHhXiqV8F0oKypuvXDSWcikMgR7BAv+b0RkT1E+UZjRdUaNxyp1lRj+y3A7V0TkPPR6PS5fvlzrcYUCeOutLEyenFdnX1KpCV9+WYqBA73FLJEgPBQsIED8e4Ht2wsLML18WYnSUmEbCBDRP5o1c8Py5T44f74akycXw83NgL59yxAbW23zsf/4wxOXL7siM1OJF1/0Q2ysCa+8UoTSUucKB0suSnZ0CRZRSBVoF9rO0WUQkYgea/eYo0sQxFXuig0jN6B7QjesXOmH9HRh93wWL/ZERYX5nw1SiRQtglrgqU5PYfWw1cidmYtzU87hi3u/wMPNH0aIR4igOsx1IOOATfsnovonyCMI28ZsQ/IzyegU1smsNmfzz6LtN23RfXF3pJWkiVpPeXU53t7ztsXtvvjzC2y8tFHUWpxZVVUVLly4ALVabZP+vb290aRJPNzdGXpORML5+flZdH5RkQzffeePIUPiMHhwFPLzuckNWSc/Px9ffPEFevTogYiICEyZMgXbtm0TNAfXViorK/HZZ58hLi4Ojz76KLKysm55vkQiwexus+1UHRGJbcEC4RsQxsRo8dBDwudnEVHDxlAwIiIiIiIiIiIiIqo3lEoJ3nvPA3v3ViMhwXaLgw4dUqFtWxk+/rgSRqMJvXsLXwy0YYOm1mPV1dW4dOmSVYETw4cX47HHblzQ+swzxVi1yhNKJR8DEBGRc0kqTYLBxAX0//bgfX1wau9P6NS+haNLIQAmgx6ZlQGoqhZvsqjeaL+F5V3Du2LDyA04+cRJjGw5EnKpdYs6PD09BbctLy+3amwiqtn8u+cj1CO0xmPrLq7Dnit77FwRkeMZjUYkJSXBZLp1cJREAkydmoc5c7IhkdR+7ltvFWPCBF+xyyQAhYXC7lUFBopcCIAOHYTVYjJJcOSI8ywsIqrvYmNV+OYbXyQn6/Hqq6U2H89kAhYtuvFNJS9Pgbff9kN0NDBjRjHy8pzj73j3iO6OLsEi7cPaw1Xu6ugyiEhEgxMGI9g92NFlWEQqkeKnB39C98jukMmkeO65W2/edCsFBQosXFgmuL1EIkHTwKZ4suOTWPnQSmRPz8aFpy7g60Ff45GWjyDMM0xw3zU5mHlQ1P6IqOFo7NcYhycfxpFJR5Don2hWmwOZBxDzSQwGLh+IInWRKHV8dOgj5KvzBbWduG4icipyRKnDmRUVFSE5ORlGo7Ag87qEh4cjIiICEonwwAIiIgDw9/ev8xyDAdi3zwPTp0fgrrsS8MEHoUhJcYVGI8W339aPzaXIuVRXV+Pnn3/GgAEDEBYWhqeeegr79++v89mQo+l0OixZsgRNmzbFggULbjlXeHjz4YjwirBjdUQkhn37qnDkiPBQr2ee0UEm4zU6EdWMq4GIiIiIiIiIiIiIqN7p0sUVx48r8OyzFZBKbfNQX62WYdo0d/Tpo0G7dgrB/ezcWfOt+MrKSiQlJYkyme/pp/MwZEgxpFIT5s4twsKFvpDJ+AiAiIicj8agQUZFhqPLcAoB/j5YvPAV/LJsPvx8vR1dDgEwGU24qvZBuVrc8Fl7hIL1a9wPu8btwv6J+zGoySDRFnS4u7tb3Ka0VIaDB92xY4coJRBRDTY+srHWY0N/HmqzRWNEzshoNCI5ORkGg/nBsyNHFuGDDzKgUNz8d+WZZ4oxZ46fmCXSvxQXywS1CwwUfyJ8165KwW0PH2bQMZHYQkNd0KNHJJo0aWJVOHFdDh50x9mzbjUeKymRY8ECX8TGyvDEE8VISxMeJCOG2d1nI8o7yqE1WKJreFdHl0BEIlPIFJjQZoKjy7DIZwM+w5DEIdd/njjRG1FRwu/1ffGFB7Racb5jSyQSJAQk4LH2j2H50OXInJaJpGeS8O1932J0q9FWL/w+lHlIlDqJqOHq2Kgjzj99Hpsf2Yxwr/A6zzfBhM3JmxH4QSDGrh2LKr3w6+P8ynx8cOAD4e3V+ZiwboLTh34IZTAYsWBBIc6dy7VJ/zKZDPHx8fDx8bFJ/0R0+5FKpfDw8KjxWFaWAp9/HoT+/ZvgySejsWOHN/T6G+cxrljBUHEy3+nTp/Hcc8+hUaNGePjhh7F161arNuF1lPLycsyYMQOdOnVCUlJSjecoZApM7zrdzpURkbXef1/4c0M/Pz0ee0x4oBgRNXxcEURERERERERERERE9ZJKJcXHH3vg99+rEROjtdk4u3e7YdgwN/j76wS137fPDQbDjZPFS0pKkJqaKkZ5AACJBHj11Sz8739FePFFLlwlIiLndrH0okXnN7QJ6i4uSsx8egyS//wVE0fd7+hy6F8KNUoUlQu75rsVvck2E1IlkGBo06E4Ovkoto3ehjuj7xR9d3epVAqptPapJWVlUhw65I4lSwIwY0YEBgxogh49muKxx2LwySe+otZCRP9oF9oOY1qOqfFYoaYQT2560s4VETnOlStXoNVafl+oX78yfP31FXh6/jNJe9iwUnz0EcNabcVgMKGkRFgoWFCQ+KFgwcFyNGok7J7isWPcrZvIVpRKJaKiopCYmAgvLy/R+1+0KKjOcyorZfj6a18kJCgxZkwJLlxQi16HOQLcArDpkU3wchH/v4MtdIvo5ugSiMgGJrWb5OgSzDanxxw82fHG78MKhRRPPVUpuM+sLCW++abU2tJqJJFIEOcXh0fbPYofHvgBac+lIWVqCpYMXoJxrcch2ifaov6q9eJudEBEDdeA+AHImJaBZfcvg5+q7vklRpMRP5z6AV7vemHG9hmCNiSYu3cuyrXlQsq9bmvyVnx25DOr+nBGZWV6PPRQOWbM8McLL4TDgtx7s7i5uSEhIQEuLi7idkxEt73g4ODr/67VSrB1qxceeywaAwY0wVdfBSEnp/ZNGc6cccP+/dZ9LtDto3fv3vjkk09QWFjo6FJEcfz4cXTo0AGrV6+u8fikdpPg68q5FkT1RVKSFps21bwRiTkmTKiCuzsjf4iodnyHICIiIiIiIiIiIqJ67c47XXH6tByPPVYBicQ2u4KWlclQWKgw+/yAAB3uu68Yc+dmYNWqy6isrLh+LD8/H5mZmaLXGBUVhvvv9xe9XyIiIrFdLLEsFGzWrFlYt24dpkyZgsaNG9uoKtvzcHfD05OG48KhX/D+G8/C26vmnXPJMcoqjcgptc0UCp1R3KAxmUSGca3H4eyUs1gzfA06hHUQtf//+nuhSHm5FEeOuGPZMn/MmhWOgQPj0b17M0yeHIOPPgrB9u3eyMz8Z3L3hQuu0GotXxxEROZZMmQJvF1qDi9adGwRzuadtXNFRPaXnp4OtVp4UEvHjmosW5aCoCAdevcux48/ekIm45RKWyksNMBgEBamFRRkm/8vrVsLC289edL8+4REJIxcLkdkZCSaNWsGX19fUQKQjx93w59/upt9fnW1FD/+6IOWLVV48MFSXLpUUXcjkTUPao6fH/oZMomwUEV76hre1dElEJENNPZrjL6xfR1dRp3GtR6Ht/u8XeOxp5/2RlCQ8Ptzn3yigl5v+3tcEokEMb4xmNB2ApYNWYbUZ1Nx5dkr+G7Id5jYZiIa+9763vid0XfavEYialjGtRmHwtmFmNd3HtwUdS9i1xl1WHBwATzf88T8/fPNHietJA1f/PmFNaVeN2vHLJzJOyNKX87g5MkKdOqkw6+/XrvPu3+/J776qu4gY3MFBQUhNjb2lpu/EBEJpVKpkJnpinnzQtCnTwJmzYrEwYMeMJnMu4fzzTcipyAS1SNlZWUYPnw43nzzzZuOeSg98GQHbgDlKM2aNXN0CVTPfPCBVvDzTxcXI6ZPdxW5IiJqaCQmk8k2K6SIiIiIiIiIiIiIiOxs2zYNJk2S3RBGYA8uLka0b1+Jbt0q0LVrBeLjq/HvNUqenp6IiopCdnY2ioqKRB8/KioKnp6eovdLRES3Nn78eHz33XeOLsPxxgGIMf/0O0LuwOfdPxc83JUrV7Bnzx7s2bMHf/31F/R6YQv57aVpkxhMGnM/Hh09hEFgTkqj0SKlxAu2mj7x3aXv8MHpD6zux1XuikltJ2Fmt5mI8okSoTLzbNxYgGee8cSVK5bvIn/gQDm6duV1KpGtbEvehv7L+9d4LMo7Cleeu2Lfgojs6OrVq6LtCp+bq0THjrHw8pKL0h/V7PRpLVq1EnbPLilJi7g48e/3vfJKBd5+2/JrdInEhKIiI3x8bBPSc+LECbRt29bs848fP442bdrYpBYiZ2E0GpGbm4uioiLB392mTInC3r3Cvp8olUZs3XoJoaFASEgIfHx8BPUj1Fd/foUnNznvYsBI70ikPZfm6DKIyEZWn12N4b8Md3QZtbqn8T3YMHIDFLLag1tffbUIb73lJ3iMZcuKMW6cr+D2Ysksy8TuK7uxO203dl3ZhaSiJADA3bF347sh3yHUM9TBFRJRfWU0GjHrt1n49PCnZm904qfyw0f3fISxrcfe8rwJ6yZg2YllIlR5Tcugljgy+Qhc5fV78fz33xfj6ae9UF5+872Fzz+/gjvuEB5KLJFIEB0dDXd380ORiYiE+O67YowfL+w62dtbj8xMwMOD9+Xp1gICAkR7HuSMpk2bhgULFtzwWk5FDqI/jka1odp+hXwEoNR+wzmro0ePokMH227MRw1HYaEBkZGAWi3seeGoUZX48UdesxPRrTHmm4iIiIiIiIiIiIgajHvuUeHMGRnGjq20+ViennqMHFmAr79Oxb595/H112kYN64QTZrcGAgGAGq1GmlpaaIHgkkkEjRu3JiBYEREVK9cKL1gVfvo6GiMHTsW3377Lf788yjWv+iNGfcC7aIBqbCN90TXqnk8Xn/+MZzZvwrnDq7G9CmjGQjmpLTVVUgr97FZIBgA6E3WBdd5Kj3xQvcXcOXZK/j03k/tGggGAFFRKkGBYABw8KB5i4eISJh74u7BPbH31HgsrTQNr//xun0LIrKTgoIC0RaASCQS9OgRxUAwO8jJMQhuGxJim/8/nToJm6RvMklw+LBW5GqI6FakUilCQ0PRtGlTBAUFQSq1bAr8+fOuggPBAOCBB4oRGKiHXq9HZmYmzp8/b5MNQGrzRIcnML3LdLuNZ6mu4V0dXQIR2dD9ifcj0C3Q0WXUqH1oe/wy/JdbBoIBwIwZXvDxEX6Pbu3aa4E5jhbuFY5RrUbhm/u+waVnLqH4+WLkz8rHttHbGAhGRFaRSqX4sN+HKHuxDGNbjYVUUvf1dpGmCON+HYeIjyKwJWlLjeeczTuL709+L2qtp/NO48XfXhS1T3vS6Yx46qlrYZM1BYIBwIsvhiMz89afbbVRKpVISEhgIBgR2cXIkd4ICBD2PLi0VI4ffigXuSKi+uejjz7CjBkzbngtxCME41qPc1BFt68WLVowEIws8umnVYIDwQBg9mxh1/xEdHuRmGw5s5WIiIiIiIiIiIiIyEF+/VWNJ59UICfHdg/NAgJ0eOONLKt26BRKKpUiLi4OSqXS7mMTEZHlKvMu4kq+3qbBQ/+mVCoQ61UIudKyIJ8CTQl6rpmEC8VXbFPY/9s7aC98XHys6kOhUCAqZy5cs/5ZTFCuAf5MAY6kXPvnqQzgci5gsOF6LXd3FZonxKJ759bo2aUtenRpg8AAYbvhkn0Z9FqklPqjutq2gQ5fn/8an537zOJ2AW4BmNZlGqZ0nAIfVx/xCzOTwWCEn58RZWWWh3GMGlWCH3/0Eb8oIrpOrVXD/31/VOmrbjomk8iQ/lw6wrzCHFAZkW2UlpYiIyNDtP5iYmK4SNJOVqxQY9QoN4vbqVRGqNW22f+2oMCAwEBhk/XffLMCr7xim+DfEydOoG3btmaff/z4cbRp08YmtRA5s8LCQuTl5cFgqDt0cMaMCGzf7i1oHJnMhE2bLqFRo5sXuUqlUgQGBsLf39/ioDJLGYwGDP15KNZfXG/TcYT4pP8nmNp5qqPLICIben7H85h/YL6jy7hBjE8MDj56EMEewWadP21aMT7+2LL7tm3bVmLSpHz07FmBkJBgBAY6ZzgaEZHYitRFGLN2DLYkb4EJ5j3bTPRPxA9Df0CHsH+CFIasHIJ1F9fZpMato7binriaN0xwVpmZVXj4YT0OHKj7fkLTphp8/30KXF3Nf7bs7e2N8PBwSP67kyERkQ09/ngxvvlG2PyIrl0rzHpPpNtbQECAaBvFOLMvvvgCTz755PWfLxVeQuJniWZfi1ntIwCl9hnKWS1YsADTpk1zdBlUT2i1JkRF6QWvUejbV40dOyx/bkpEtx+GghERERERERERERFRg1VYaMCTT1Zh9WrbLu584IFizJp1FZ6eNyaOVFdLcOmSK1q21Ig6nkKhQFxcHGQy4TsMERGR/RVfPY+swroXqorFTeWCaK8iSGXmBfmUaytx19oncTTvnI0rA77t+S06B3UW3F4mkyFC9zs8zjxd57nVOuDiVSApB0grANILgYxCoKAcKKwAiiqAympAq7/2CwDkckAvA4wyAHIAKgDugKsnMCUMiGp2JxK7DENifDQiGgVzcn09ZDIYkVbugwp1tc3H+vzc5/jq/Fdmnx/hFYGZ3WZiUrtJcFM4xwSwbt0qcPCg5ROyW7dW48QJ5/g9EDVk35/8HuN+rXm36JZBLXHqyVN2rojINiorK5GamipafxEREfD2FhYQQ5b7+ONKTJtm+T26sDAdsrJsF/ofGalFRobloftDhlRi7Vrb3HNkKBiRZUpKSpCTkwO9Xl/j8ZQUJYYMiYfJJOy7++DBxXjnnaxbniORSODv74+goCCbhoNVaivRc2lPHM85brMxhDgy6Qg6Nuro6DKIyIaSCpPQ5LMmji7jugC3AByYeADx/vFmt8nJ0aJxYxnU6rqfr3bvXo7Jk/PRvr36+mtSqRTNmjUTVC8RUX2VVpKGkWtG4mDmQbPbdArrhBUPrkBeZR66Lelms9pCPEJw6olTCHSvH4GNO3aUYuxYFXJyzL8HMWRIMd58MwvmPIYMDw+Hj4+P8AKJiAQ6frwC7doJD/Y6c0aN5s35PJlqJ3YomEQiQVxcHDp27IgmTZogOjoa0dHRCA8Ph7u7Ozw8PODm5gatVguNRoO8vDxkZGTg4sWL+Ouvv7Bv3z4kJSWJVs/fZDIZtm/fjj59+lx/beiqoVh7Ya3oY9XoNg8FUygUyMrKYhg4me2bbyrx+OPCnxNu2aJB//4qESsioobK8m1ciYiIiIiIiIiIiIjqCX9/GX7+2R0rV6rxzDNKFBTY5rb42rW+OHjQHW++mYWuXSsBAGVlUjz7bBTOnFHh229T0bq1OMFgrq6uiI2NtenCIiIisg3f0KbQ6i8iv1Rnl/HUmmpkyfwQ7lEKifTWs8WrDVoM3TzLLoFgAHCh5ILgUDCJRIIQ13x4HK87EAwAXBRAq8hrvyyhNwHflwGflgJnqoH2rsC3QUALFwDYAzQdCISEWFw/OZ7JaEK22tsugWAAoDfWvDD9v5r4N8EL3V/AqFajoJRZHkxhSy1b6nDQ/DU/11244Aqt1gilkteuRLY0tvVYLDy8EH9d/eumY6fzTuPrP7/G4x0ed0BlROKprq7GlStXROsvJCSEgWB2lp8vbP9aPz8DANuFgrVurRMUCnbihO1qIiLL+Pj4wMfHB2VlZbh69Sp0uhvvuyxZEig4EEwiMeHRR/PrPM9kMqGgoACFhYXw9fVFSEiITe7huyvdsWHkBnT+tjOyym8dVGYvKrkKbULaOLoMIrKxxr6NkeifiAuFFxxdCtwUbtg4cqNFgWAAEBKixCOPlODbb31qPC6RmHD33WWYNCkfTZtW3XTcaDSipKSEgStEdFuJ8onCgUcP4MTVExi9djTO5p+ts82R7COI+zQOvq6+Nq0tpyIHkzdMxtqH1zr15j0GgxHz5pXg9dd9oNNZ9h3h11990bq1Gg89VFzrOTKZDLGxsXBxcbG2VCIiQdq29UCHDpX4809hwShffVWNTz9lKBjZjkQiQbt27XDPPffgrrvuQvv27c16PuTq6gpXV1f4+voiISEBffv2vX4sKSkJK1euxLfffov09HRR6jQYDJgwYQJOnz4NLy8vAMCsbrPsFwp2m7vvvvsYCEZmMxpN+OQT4Zt6t2hRhX79XEWsiIgaMs66JCIiIiIiIiIiIqIGb8QIN5w5A9x3n7rukwXKyVHiscdi8PbboUhNVWDcuFj8+ac7qqqkePLJKFy5Yn2wg6enJ+Li4hgIRkRUjwU1ioe3p/0mZZdWVCNPfesJlAajAWO2v4rfMo7YqSrgUuklwW2DfBTwPXiniNXUTC4BJnoDxyOBqjjgUMTfgWAAYAJOvQKUnLF5HSS+Ao0risu1dhsv3OvW4XFtQ9ri54d+xrkp5zCh7QSnCwQDgA4dhLWrrpbi6NFKcYshohptGbUFcmnNQdhTt05FWVWZnSsiEo9er8fly5dhMgkLlfovf39/BAQEiNIXma+gQFg7f3+juIX8R9u2wv5cXbmiRFGRQeRqiMgaXl5eSEhIQExMzPUF8dnZCmza5CO4z759yxAba/73R5PJhKKiIpw7dw4ZGRnQ680LibZEI69G2PjIRrgrhC22FVuHsA5QyBiUSNRQpZWkYfjq4XB/190pAsFkEhl+fuhndA4XtuHEiy+6QKG48fpSLjdi6NAirF+fhA8/zKgxEOxvOTk5gsYlIqrv2oS2wZkpZ/DbmN8Q6W3eLjzFVbUHWYll3cV1WHRskc3HEaqsTI+HHirHSy/5WRwI9re5c0Nx9mzNgQFubm5ISEhgIBgROdzo0cI341q92gM6nW3vAdPtRy6X45577sGyZcuQm5uLP//8E++88w769OkjyoYx8fHxeOWVV5Camoply5YhJiZGhKqB9PR0TJ8+/frPXSO6okdkD1H6rtM0AK/f/Ev2hgzn88/DZDI5/a/169cL/u1PnDjR6v+EdPvYsqUK584JD/V69lkDpHVs8EpE9DeuGiIiIiIiIiIiIiKi20JwsBzr17th6VI1fHzEX4jzt1Wr/PHAA02QnPzPA7/ycjkefzwaBQU1L9A2h7+/P6KiosQokYiIHEgilaJRWDjcVPabnJ1fZkRxZc2Phk0mE57aPQ+rk3+zWz0AcKFU2AIyP18vBO5OELmauslqmodjrAaOTQfU2Xavh4QrVQO5pfYbT+XqgpHtHqpxsXbPyJ7YMmoL/nrsLwxrPgwyqfBdJG2te3fh71kHD+pErISIahPoHoh3+rxT4zGtQYvBKwfbuSIicRiNRiQnJ8NoFGdRkJeXF0JDQ0XpiyyTny9scru/vzhhcLXp3Fn4Ndjhw/YLmiUi87m7uyM+Ph6NGzdGSooXlErhnyGTJ+cLbltaWooLFy4gLS1N9HCwNiFtsPKhlZBKHL8UoFtEN0eXQEQiMxqN+ObPbxC3MA7Rn0Rj9bnVqNLXHpRlT18N+goDmwwU3D42VoWhQ6+FZqtURoweXYAtWy7hjTeyER1d97WdXq9HWRlDt4no9nVX7F1Iey4NK4auQICbcwSuP7f1OVwocHxw5X+Vl5fjwIEU7NzpYVU/Op0U06dHoqTkxvsXQUFBiI2N5aaCROQUJkzwgoeHsA0UcnMV+OUXXmOTODp06IDPP/8c2dnZ2Lp1K8aNG4fAwECbjSeVSjFu3DicO3cOs2bNgkxm/ZyPJUuW4Pjx49d/nt1tttV9WuPRto8iMSDRoTWYa8mSJYLahYaGon///iJXQw3Zhx8Kf3YZFqbD2LG33uCViOjf+K2fiIiIiIiIiIiIiG4r48e74dQpE/r2VdtsDIPh5kWO2dlKTJkShYoKy2/NBwcHc8EqEVEDIlWoEBnqD6VSYbcxs8uUqNDcvAD1lUNf4usz/7NbHX9LKUuBzmhZUJCXlydCdjtZQKa2CDj2HKArd3QlZAa1RofMUuE7NVpKoZAjMtgLTUJaY8PIDegZ2RONPBvhwaYPYu+EvdgzYQ/6x/WHROL8uz8mJLjC21vYIvbjxzk1hcheZnefjTi/uBqP7U7bjfUXhe+OTOQIfweCiRWkolKpEBkZKUpfZLmiImHXPAEBtg0F69JFKbjtkSPihNURkW2oVCo88UQokpP1mDq1GF5eln2e9OhRjqZNrQ/BKS8vx4ULF5CamgqtVrwwwUFNBmFBvwWi9SdU1/Cuji6BiESSWpyKh1Y9BLe5bnh80+O4XHzZ0SXd4PU7X8ekdpOs7uellxR4/PE8bNt2Ec8/n4OQEMs+H3JycqyugYiovhvZciTyZ+Xjo3s+qnFTFHvS6DUY9b9R0BqcJ7g7JycHaWlpCA/XYu7cTKv7y85W4oUXwmEwABKJBDExMQgKChKhUiIicXh5yTF4sPA5E8uW8XkyCefq6opx48bh8OHDOHr0KKZMmWLTILDaapg/fz62b98Of39/q/oymUx45ZVXrv88sMlAh4VyuSnc8Hqv1x0ytqXy8vKwadMmQW3Hjh0rSqAb3R6OH6/GH38ID/V64olqKJXOP0+MiJwHr5SJiIiIiIiIiIiI6LYTEaHAtm0qfPFFJTw9he1SJ8T58ypMmxYJnc78B3oRERF2n6RARES2J3fzQ1SQym6TikwmE9JLPVFVVX39tY9PrMA7fwrbJdFaepMel8vMX1SmUqkQdqy3cz7grkgBTjwPGMUJqyDb0FZXI63MGyaTbUMl/iaVShEV6AKFZzAAoHdMb+yZsAeZ0zPxy/Bf0COyh13qEItMJkWLFsIWw58+LTxog4gst+WRLZCg5u+co/43Clq98yyOI6rLhx8WIj9fnPs2SqUSMTExovRFwhQWCruaDwgQuZD/8PeXISpK2HvjsWMiF0NENhEa6oJPPvFFSooRc+YUIyDAvJDyyZPzRa2jsrISly5dwuXLl1FVZX3YGABM7TwVT3V8SpS+hOoawVAwovrMaDTii6NfoPHCxohdGIs1F9ag2lBdd0M7m9R2El6981VR+mrZ0h3TphXD11fYdw2tVovKykpRaiEiqu+e6/Icyl4owwvdX4BS5rhnAceuHsOrf4jzOWENo9GIlJQUFBQUXH+tV69yTJ6cZ3Xf+/d7Yv9+XyQkJMDd3bFBbERENZk82fK5L+HhWjzzTC5mz84W7V4J3T4CAgLw5ptvIisrC8uWLUOnTp0cXRL69OmDw4cPIyIiwqp+Nm3ahD///BMAIJVIMavbLDHKs9i0LtMQ6lk/NjP+4YcfoNNZtjnl3yZOnChyNdSQzZ8vfH6gh4cBTz+tErEaIrodOOWcaSIiIiIiIiIiIiIiW5NKJXjySXecPGlEz54au4176JAHXn21EYzGW5/39+6e3t7e9imMiIjszsUnEpEBMkgk9tn9zWg0Iq3cH3ptNX64sAnT9i6wy7i1uVh60azzlEolwtPnQK5OtXFFVig8ApydC9gpcIosY9BpkVYeAIPBfmGwkQEyuPo1rOCRli2FTaC8eNEV1dV1XPwSkWji/OMwtfPUGo9VaCswau0oO1dEJMy8eUWYPTsQY8fG4OpVhVV9yWQyxMXFQSrldElHKioSFogcGGj770utWwu7zjl50ro/m0RkX/7+Srzzji9SUyV4++0ihIXVHgjYvn0l2rVT26QOjUaD5ORkJCUlobzculAZiUSCj/t/jAFxA0SqzjKNfRsjyD3IIWMTkXUuF13GAysfgGquCk9tfgopxSmOLqlWg5oMwpeDvhT1PnpISIhV7bOzs0WqhIio/pNKpXi377sof6EcXcMdFxg7f/98/JH6h8PGr6qqwoULF6BW3/w94qmn8tClS4XgvpVKI+bNK8KUKY0gl8utKZOIyGZ69nRHQkLdczCVSiPuvbcE336bik2bLuGxx/IRHKxHbm6uHaqkhiA8PBwLFixAWloaXnnlFfj5+Tm6pBs0btwYu3btQmiodWFaixYtuv7vo1qOQqiHfcO5AtwCMLv7bLuOaY2lS5cKate9e3c0adJE5GqoocrK0mPNGuGhXmPGVMHX1z4byBJRw8FZLkRERERERERERER0W4uJUWDXLld8+GElVCr7hBVs3OiDjz8OrvW4VCpFXFwcd/ckIroNuAc2QSM/+z221el0WHbxDCb89qbdxqzNhZILdZ4jk8kQqt4Al6s/26EiK2WtB1KWOboK+g+jwYD0ygBUa2tf7C22MD8ZPIIS7DaevXToIKydVivFkSPWLXQnIsss6LcAwe41f+f85dwvOJhx0M4VEVnmu++KMWeOLwAgJcUVo0fH4tIlF0F9SSQSxMfHMxDMCRQXC5vkHhRk+1Cwdu2EtUtLU6Kw0H7Bs0QkDg8POV56yQ8pKXJ8/HERYmKqbzpn8uR8m9dRXV2NwYMNeOihUhw7JjwgQC6VY+VDK9EyqKWI1ZmnW0Q3u49JRMIZjUZ8evhTxHwSg7hP4/DrxV+hNZh/z0wqkaJnZE+8dudrNqzyRp0bdcbKB1dCLhU3AMXb2xsymfBFmNXV1aiqqhKxIiKi+k9n1Dk0ZNIEE8asHYMiTZHdxy4qKkJycjKMtewOKJMB8+ZlICTE8mdVYWFabN1aidmznSvwhIjov2QyKR55pPZQsIQEDV54IRu//34R8+ZlonPnSvz7tn1FRUWt76NEABAUFIRPPvkEly9fxrRp0+Dm5ubokmoVGxuLtWvXwsVF2LMtAFi1ahU0mmt/p1zkLni287NilWeWV+54BV4uXnYdU6jDhw/j7NmzgtpOnDhR5GqoIfvwwyrodMKeOcvlJsyYwc2GiMhynOlCRERERERERERERLc9qVSC6dPdceyYHp061b1jnRiWLg3E66+H4r9zWeRyOZo0aWLVhAAiIqpffEKbIsjHPpM+/ir4C0/vmQqDyfEL1y+VXrrlcYlEglBlBjzPzbRTRSJI+hy4ut3RVdD/MxlNyK70QaX65gXethLgrYRfWFO7jWdP3bpZdn0qkZgQE1OFQYNKUF3NUDAie5JKpdgwckOtx+9feT8XVghQVFSE/fv3Y9GiRZg2bRoefPBB9OvXD127dkWLFi0QHx+Ptm3b4o477sDAgQMxatQovPHGG1i9ejXOnDkDrR0DKuuzzZtL8fjj3jAa/wmCystTYPz4WBw9avkCj8aNG0MuFzdAgCxXUWGERiNsuqo9QsE6dRI+lfbQIf7dJqqvXFykePZZP1y6pMCiRcVo1uzas4FmzTTo1k14SJe5zp1zxa5dXlizxhsdO7pj4MAy7N1bJqgvLxcvbHxkY63BsLbCUDCi+uFSwSXc/9P9UM1VYerWqbhScsWi9kFuQZjTcw4q51Riz4Q9eKHHC/BX+dum2H+J94vHhpEb4K60zSZKwcHWvWdmZ2eLVAkRUcPwyeFPkFuZ69Aassqz8PjGx2EymewyntFoREZGhlmfCX5+Bnz4YQbkcvPvy/boUYGjR03o3dvTmjKJiOzm8cc9oFT+8z7n4WHA8OGFWLkyGatXX8aoUUXw9q55rorJZEJJSYmdKqX6xMvLC6+//jouX76MqVOnQqlUOroks3Tu3BnvvPOO4PalpaXYsmXL9Z8f7/A4PJX2uSaI8YnB4+0ft8tYYliyZImgdu7u7hg+fLjI1VBDVVFhxNKlroLbDxqkRuPG9eP9i4ici8Rkr7scRERERERERERERET1gMFgwrvvVuLtt91QXW37vTVCQ7V47rlc3HNPKdzcXNC4cWNIpdzTg4jodmMyGpGVcRkl5bYLL7pYchET9kxAua7cZmNYwlvpjb2D9kIiqXmRf7CvDIG7m9m5KhFIlUDHLwDfNo6u5LaXV+mKvFL7TYnw8nBFRGQMJFKZ3ca0J4PBiMBAI4qLaw5WiY6uRrNmGjRvrkGzZho0bVoFd/drk75dXFwQHx9vz3KJCMCIX0Zg1dlVNR57uuPT+PTeT+1cUf2i1+uxf/9+bN68GZs2bRK8w/TfXF1dceedd2LgwIG499570bhxY5EqbTiOHKnA3Xe7oqys5s8apdKI997LxN13mxeYEhMTA3d32wQIkGWSk7WIjxc20f3UKS1atrTtJPmiIgP8/YVdw73ySgXefNND1HpOnDiBtm3bmn3+8ePH0aZNG1FrILodGQxG/PJLGaqqStC+ve1DwaZPj8COHd43vX7nneV48UUT7rnHy+I+j2YdxZ3L7oRGb5/NT048fgKtQ1rbZSwisozRaMTCIwvx8aGPkVaaZnF7qUSKnpE98e5d76JrRNebjs/YNgMLDi0Qo9QaBbkH4eCjBxHrG2uzMQDg3LlzVoVmN2nSpN4sSCcisqVCdSFiF8airFpYyK3Ylt6/FOPbjLfpGHq9HpcvX4ZOp7Oo3c8/++KttxrVed4zzxTjww+9oVBw/hAR1S/33VeGq1dlGDq0GHffXQqVyvzn9UqlEk2aNLFhdVQflZaWwtv75nto9YHBYEDHjh1x/PhxQe2feuopfPbZZ9d/nrV9Fj44+IFY5dVqxdAVGNlypM3HEYNGo0FISAjKyiy/Dp0wYYLgQDG6/bz/fgVmzxb+PHD//ip06yY8VIyIbl8MBSMiIiIiIiIiIiIiqsHp01qMGWPEyZP2eQgXGVmNp56qxDPPeEOlaphBEkREdGsmgxZX0tJQqRY/GCyjIgNjd49FQVWB6H1bY8eAHQhxC7npdX9fL4TujnJARSJReANdlgHuEY6u5LZVopYgs8R+C/JUKhfERIRBqmzYwSM9e1Zg3z4PREX9OwCsComJGnh61r6AUiKRoHnz5naslIgAQG/Uw2+eH8q1NweCSiDB+afOIyEgwQGVObeMjAx89tln+Pbbb1FUVGSzcdq1a4dnn30WI0aM4CJyAElJGtxxhww5Obf+byGRmDBnzlWMGHHr/zfh4eHw8fG56fVevXph9+7d1pTqtJYuXYrx48c7uowa7d9fhR49hN1jy83VIyio5qA4McXEaHHliuV/FwcNqsSGDeJeAzIUjMjxCgsLkZeXB4PBYJP+U1JcMGRIHEymmoPSAaBjx0rMnq3DAw94QSYzPwjgf+f/hwd/flCMMm9JKVOi9PlSuCq4kInImVwouIBZ22dh2+Vt0BktCykBgGD3YDzW/jHM6TkHrvLa/35fKLiApp83tabUWrkr3LF7/G60D2tvk/7/LS8vD3l5eYLbe3h4IDo6WryCiIjqKXsFVJjLQ+mB448fR5xfnE36Ly8vR3p6OoQsyzWZgJdfboT1631rPO7pacBXX5XjkUd8rKySiMgxsrPzUVSUK7g9g3epodmwYQMGDx4sqG3z5s1x5syZ6z9nlmUi5pMY6I16scq7SbvQdjg6+SikkvoRTPrDDz9g7Nixgtru2bMHPXv2FLkiaogMBhPi4nSCniMCQNeuGhw4oBK5KiK6XdSPT2QiIiIiIiIiIiIiIjtr2VKJo0dd8PLLFZDLhe8Qba70dBc8/7wfYmKMePvtQuj1tntwT0REzkkiUyIyNAAuIk9wzNfk47F9jzldIBgAXCy9eNNrXl5eCK7PgWAAoCsF/noW0JY6upLbUqVGh6xSF7uNp1AoEBXi3eADwQDg7beLsH//OWzcmIT58zMxblwhOnasvGUgGACYTCabLaYnotrJpXKsGLqixmMmmHDvinvtXJFzO3v2LB5++GHExsZi/vz5Ng0EA4Bjx45h3LhxiIqKwttvvw21Wm3T8ZxZbq4WAwdK6gwEAwCTSYJ33gnDwoVBqG3dZXBwcI2BYOQ4ubnC7q3JZCb4+9snPL91a8tDMwDg5EmFyJUQkTPw9/dH06ZNER4eDrlc/GDCxYsDbhkIBgBHj7pj2DAftG1bhWXLiqHXm/deOrTpUMzrO0+MMm9Ja9Bi4E8DoTVobT4WEd2awWjAhwc+RNTHUWj6eVNsTNpoUSCYTCJD7+jeODLpCHJm5uDN3m/eMhAMABIDEnFH1B3Wln4TuVSONcPX2CUQDAACAgIgkdz6/fhWKioq+EyXiG57mWWZ+PTIp44u4wYV2gqM/t9o6AzCvuvfSk5ODtLS0gQFggGARAK8/HI2mjTR3HQsMVGDAweqGQhGRPVaSIi/Ve1zc4UHihE5o/vuuw+JiYmC2p49exZlZWXXfw73CseolqPEKq1G8/rOqzeBYACwZMkSQe3i4+MZCEZm+/lnjeBAMACYNk3YdwciIoChYEREREREREREREREtVIoJHjrLQ8cPKhDs2ZVdhkzN1eBEyckuHDhAlJTU6HVckENEdHtRKbyRVSwCjKZOAvfy7RleGL/E8iszBSlP7FdKLlww89ubm5odLR7w3iQrU4Hjs8CjPwst6fqqmqkl3kLXoxhKZlMiuggF8jdg+wynqMlJCjh5SUs1KO8vFzkaojIHIMSBqFPdJ8aj6UUp2Du3rl2rsj5VFZWYvbs2Wjbti1+/vlnuy/ozsnJwSuvvILmzZtj/fr1dh3bGVRU6DFwoA5JSbcOHfivRYuC8NprjfDf/11+fn4IDAwUsUISQ36+sGszHx8DZDLhIQ2WaN9eWI0ZGUrk5zMIgqih8vHxQWJiIiIjI6FQiBMCmJWlwKZNPmaff/q0GyZM8EWzZlp8/nkxtNq6v5PN6jYLk9pOsqJK8/ye+jtmbJth83GIqGZn885i4PKBUL2jwswdM5Femm5R+xCPELx+5+tQz1Hj93G/o2Ojjha1f6zdYxadb47Fgxfjnrh7RO+3NlKpFH5+flb1kZ2dLVI1RET10xu73kC1odrRZdzkcNZhvLXnLdH6MxqNSElJQUGB9ZswqVQmfPxxBjw9/9lMZejQUhw5okCLFm5W909E5EhSqRTu7sI30/p3ABJRQzF27FjBbZOSkm74eWa3mdaWU6t+jfuhb2xfm/UvtpSUFOzevVtQ2wkTJohcDTVkCxYIf1YZG6vF0KEqEashottNg5hLTURERERERERERERkS4mJOvz442U88UQeZDLbBkxIpSY8+ui1SYSVlZW4dOkSUlJSUFVln1AyIiJyPKV3BKIC5ZBIrFv8rtFr8MyBZ3Cp9JJIlYnvYunF6/+uVCoRfnkqZNXOGWAmSPEx4MxbgJ0Cqm53em010ir8YTAY6j5ZBBKJBBH+Mrj4RttlPGfg6ekpuC1DwYgcZ93IdXCRudR47NU/XkVORY6dK3Ie27ZtQ2JiIt5//33odDqH1nLlyhXcf//9GDx4MPLz8x1ai73odEYMHarBX38JWyC0dq0vnn02Emr1tetmT09PhIWFiVkiiURoKJifn32u6wCgUyfhwcyHDjn2/YOIbM/LywsJCQmIiYmBi0vN11XmWro0AAaD5fd8kpJc8fTTvtiwIQUZGRm3DDKVSCT4YuAX6BNTczismD47+hmWn1pu83GI6Bq9UY/5++cj4qMItPiyBTYnb4bOaP61iEwiw10xd+Ho5KO4OuMqXuv1GpRypaBaHmz2IHxdfQW1rcncPnMxtrXwhdJCBQcHW9W+rKwMRqOwEH0iovruQsEFLDmxxNFl1Oqdve9gX/o+q/upqqrChQsXoFarRajqmogILebOzYSLixHvvVeEX37xhqenXLT+iYgcyZprbJPJhNLSUhGrIXK8QYMGCW7731CwFkEtcG/8vdaWVKN5fefZpF9bWbp0qaANA2UyGcaNG2eDiqgh2rOnCn/+KTzUa+pUnd02QCKihomhYEREREREREREREREdXBzc0NkZAiee64Yy5dfRuPGtgvo6t+/FBER2hteU6vVSE5ORnJysqiTDImIyHm5BcQj3E/441ydUYeZh2fiWOExEasS38WSa6FgMpkMjcp/hjJ/k4MrsoHsLcDlRY6uosEzGvRIrwyEVmu/QIYwXyk8ghLsNp4zUKmET3TTaDQiVkJElvBQeuDzez+v8ZjBZMDA5QPtXJFzmDdvHu69915kZjpXIOmGDRvQoUMHHD9+3NGl2JTBYMT48WXYsUN44CQA7NnjhcmTY2AwuCEqKkqk6khseXnC2vn52S9coXNnJSQSYeFlR47YL7yMiBzL3d0d8fHxaNy4saDvR/n5cqxdKzxAp2fPciQkVKG0tBQXLlxAWlpareFgCpkCvwz7BYkBiYLHM9djGx/D6dzTNh+H6HZ2Ovc0Bvw4AKp3VHj+t+eRWWbZ95hQj1C81fstqOeo8dvY39AhrIPVNbnKXTGutTiLaKd0mIIXerwgSl+Wkkql8PHxsaqPq1evilMMEVE98/LvL8Noct5gRKPJiNH/G43SKuHhMkVFRUhOTrZJAGSvXuU4caIczz/vByv3iiIicipubm6QyYRvwnC7bJxCt48WLVrAz89PUNsrV67c9NrsbrOtrOhmo1qOQpuQNqL3aytGoxHfffedoLb33HMPNxkis73/vvBngP7+ekyeLHyeFRERwFAwIiIiIiIiIiIiIqI6SaVS+Pv7o0mTJujXzx//+186JkzIF7xQ8FYmTap9UktVVRVSUlJw6dIllJeXiz42ERE5F+/QpgjxsXxHaKPJiFf/ehV7cvbYoCpxZVRmQK1XI0x+Ge4XX3F0ObaT/A2QvdnRVTRYJqMJWZV+UGuq7TZmoLcCvmFN7Taes5BKpYIncOt09gtsI6KbPdru0Vonch/LOYalx5fatyAH0mg0GDFiBF544QWbLOYTQ3p6Orp3746VK1c6uhSbeeGFEqxY4SNKX9HROjRvHi1KX2QbhYXCVrb6+4t/7602Pj4yxMQIu145doxTcYluNyqVCo0bN0Z8fDzc3NzMbvfDD/7QaoW/Z0yefOPzg/Lycly4cAGpqanQarU3ne+r8sWmRzYhwC1A8JjmUOvUGPrzUKvCFojoZnqjHu/ufRfhC8LR6qtW2Hp5K/TGmoMAayKXynF37N04/thxZM/Ixst3vAylXClqjZPbT7a6jyGJQ7BwwEJIHJiGEhoaalX7kpISp/1+SURkK0ezjmLN+TWOLqNOaaVpeGrzUxa3MxqNyMjIQHZ2tg2qurZhUnx8PBITvW3SPxGRo/n6Cg9Fr6qqqjUEnag+kkgkaNasmaC2ZWVlN712R9Qd6BjW0dqyrlPKlHi7z9ui9WcPO3bsQEZGhqC2EydOFLkaaqguXtRi82bz7///16OPVsHNjc8Qicg6fBchIiIiIiIiIiIiIjKTRCKBr68vWraMx0cfKbF8eQZcXcWb4N27dxni4+sOs9BqtUhLS8PFixdRWspFNkREDZl/WBP4erlY1GZF8gpsTN9oo4rEZYIJBfpL8D56n6NLsb3TbwJFfzm6igYpT+2G0gr7BYJ5e7ogqFG83cZzNi4ulr0n/c1kMnHyNpGDbRm1BTJJzcF+UzZNQaW20s4V2V91dTXuu+8+rFq1ytGl1Emj0eCRRx7B0qUNL7AtMzMTiYmlcHcXvrPy37p3r8DKlR6QyzkV0pkVFAgLeAgIsF8oGAC0bi0sFOzkScvDnImoYXBxcUFsbCyaNGkCDw+PW55bWirDqlV+gsfq0KESbduqazxWWVmJS5cu4fLly6iqqrrhWKxvLNaNWAcXmbDvcuZKLkrG+HXjYTLZ972bqCE6mXMS9/xwD1TvqDDn9znIKs+yqH0jz0aY22cuNC9psH3MdrQJbWObQgE0C2yGHpE9BLfvFtENK4augEwqLIReLDKZDF5eXoLbm0wm5OXliVgREZHze3Hni44uwWzLTy/H8lPLzT5fr9cjKSnJZvNx3NzckJCQIPh5CxFRfRAUFGRV+/z82jdWJaqPGjduLKhdRUXFTa9JJBLM7j7b2pKue6rjU4j2iRatP3tYsmSJoHYBAQG4777bYI4aieKDD3QwGoU943RxMWLaNFeRKyKi2xFnwhARERERERERERERWUgikcDb2xsjRkTgk0+E7TZVk8mTLZvMotPpkJGRgQsXLqCoqEi0OoiIyHlIpFKENYqGh5v5k0SWJtWv4Ii0I2McXYJ9mPTA8VlAxRVHV9KgFFdKkF8mXkhrXdxULmgUFg6J9PadbuHmJnwXzPLychErISJLhXiE4LU7X6vxWJWhCkNWDrFvQXam0+nw0EMPYefOnY4uxWwmkwmTJk3CypUrHV2KaHJzc1FSUoLOnSuxbFkqAgKEhTABQLNmGqxf7wKVyrEBAlS3oiJhE+b9/e0bLNOunbDxsrKUyM1l+CnR7UypVCI6OhqJiYm1hsqsWOEHtVr4Z5Y5zw80Gg2Sk5ORlJSEysp/Al+7RXTD0vttf7/o1wu/Yv7++TYfh6gh0hl0eGfPO2i0oBHafN0G21O2Q280//pCLpXjnsb34OQTJ5E5PRMv9nwRcql9gksfa/eYoHaJAYnYMHIDVAqVyBUJExYWZlX7wsJCGI32u09JRORIOy7vwM7U+nOPDQCmbJ6CKyVX6jzv5MkKbN+eCp1O+D2rWwkKCkJsbCykt/FzJiK6PUilUqhUwq/1S0pKxCuGyAn4+voKaqdW17xJwAOJD6Cxr7CgsX/zcvHCnJ5zrO7HnoqKirBu3TpBbUeNGgWlUilyRdQQFRQYsHy58M+x4cM1CAnhpkJEZD3ePSAiIiIiIiIiIiIiEkgikWDgQAVat675wbslunSpQMuWGkFt9Xo9srOzce7cOeTn53PCORFRAyORKRARFgAXF/MmJVUbqm1ckbhO1q9yraMrA/56FtAWO7qSBqFCo0N2mf12UVcqFYgM9YXUSRYqOkptC9zNUdMutkRkX6/c+UqtOz3/lvobNidttm9BdmIymTBq1Chs3LjR0aVYzGg0YsyYMfWy9v8qKipCfv4/gSaJiVX44YcUREVZfkEYEVGNzZsl8PNTiFki2UhhobAQnKAgYWFiQnXqJDys5+BBrYiVEFF9JZfLERkZiWbNmsHHxwcSybX3scpKKX780V9wv82bq9G1q/nfp6qrq5GamopLly5dD2ce2XIk3uz1puAazDXn9zn4PfV3m49D1FAcu3oMfb/vC9U7Krz8x8vILs+2qH24Vzjm9Z0HzUsabB29Fa2CW9mo0to91Owh+Lj6WNQm1CMUW0dthZ/KzzZFCSCXy+Hu7i64vclkQmFhoYgVERE5J6PJiBd3vujoMixWVl2G0f8bfcvQzR9+KEbPnio8+2wE1Gpx70lIJBLExMQgKChI1H6JiJyZNe95BoPhhsBzovpO6PdNF5ea58TIpDLM6DrDmpIAAC90fwEBbgFW92NPy5cvR3W1sMlmEydOFLkaaqg++UQDjUZYFI9EYsLs2XyGTUTiYCgYEREREREREREREZEVvLw8MXlyft0n1kGMPoxGI3Jzc3H+/Hnk5OQwHIyIqAGRufogKsQdcnndO8gNihhkh4rEc+J2WzuvyQKOzQDqWXibs6muqkZ6qRdMJpNdxpPJZIgKUkFezyZD2oKrq6vgthqNsBBcIhLX1lFbIUHNi9pGrhl5y4Vx9dW7776L1atXi9KXn58fxowZg08//RQHDhzAlStXUFpaCp1Oh4KCAiQlJWHLli146623MGDAACgU1k/41ev1GDVqFC5fvizC78AxysvLkZ19c8BBeLgO33+fgpYtzQ9c9/PTY8MGHaKihH8mkX0VFQmbqhoYKHIhdejcWQmJRNj15dGjvA9HRP+QSqUIDw9H06ZN4e/vj+3bvVFWVvc9ndpMnpwPiYBMAq1Wi7S0NFy8eBGlpaV4+Y6XMabVGMF1mMNoMmLELyOQWZZp03GI6jOtXos3d72J0A9D0f6b9tiZuhMGk8Hs9gqpAgPiBuD0E6eRMS0Ds7vPhlwq/D3GWiqFCmNbjTX7fE+lJ7aM2oIonygbViVMo0aNrGqflVUgUiVERM5rzbk1+OvqX44uQ5D9Gfvx3r73bnpdpzPiqaeKMXasL8rLZUhOdsUbbzSCWI+glEolEhISrAqfJCKqjzw9PSGVCo8xyM3NFbEaIsdSq4VtPOzh4VHrsfFtxiPQTfiDlDDPMDzb5VnB7R1lyZIlgtq1b98erVrZP0yd6p+qKiO++Ub4JpV9+2rQooV5m78SEdWFoWBERERERERERERERFZwc3PDHXeUIz6+SnAfcrkRrVsLe+hfE5PJhIKCApw/fx7Z2dkMByMiaiCUno0QFSCHpI5VoFNbTMWEJhPgKqsfIQmnqwGDfXKdnEfJKeD064CJn9FC6LVaXCn3t9s1jkQiQWSADC4+kXYZz9lJpVLIZDJBbXU6ncjVEJEQCQEJeKLDEzUeK6suw7i14+xckW3t3bsXr776qtX9dO3aFb/88guuXr2K77//Hk8//TS6du2KqKgoeHl5QS6Xw9/fH3Fxcejfvz9efvllbN68GVlZWfj4448RFhZm1fhlZWUYPny44J2vHUmj0SAtLa3W435+Bnz7bSp69iyvsy+VyoA1azRo3br2RRDkXHQ6E8rKhF07BAXZd4qrt7cMjRsLSy0+dozTcYnoZlKpFKGhoZgzJxQrVpSgbVvLnwM0blyF3r3r/oy8FZ1Oh4yMDFy4cAHzesxDz8ieVvVXl3x1PoatHgat4XZLgie6taNZR9Hnuz5wm+uG13a/hpyKHIvaR3hF4IO7P4D6JTU2j9qMFsEtbFSp5Sa3n2zWeQqpAmsfXovWIa1tXJEwSqUSKpXK4nZlZVJ8800g+vSJx44dpTaojIjIOegMOrz0+0uOLsMqr+96HYczD1//OTOzCr16qfHFF743nLd5sw9++snP6vG8vb3RpEkTszZ+IiJqiLy8vAS3VavVnPdIDUZJSYmgdp6enrUeUylUeKbTMwIrAt7o9QbcFG6C2zvCiRMncOLECUFtJ06cKG4x1GAtW6ZBXp7wjb9mzhSwwwcRUS04C4GIiIiIiIiIiIiIyAoymQweHu6YNClfcB96vRQbNviIV9T/M5lMKCoqwrlz55CRkQGt1vxdxomIyDmpAuIQ4X/rBfVucjdMbzkd++7bh697fI3RcaMR5RFlpwotpzYBybdBTpAJgNEl6J9fxSdhvPwjjHo9f1nwy6DTIq0ywK7hUo38pHAPbGK38eoDFxdhO2KaTCbo9XqRqyEiIT4b8BkC3AJqPLbizAr8mf2nnSuyjYKCAowcORIGg/Dvw+Hh4Vi1ahUOHDiABx98EEqlZbv6BgYG4tlnn0VSUhLefPNNwe+hAHDs2DHMmDFDcHtH0Gq1SElJqfM8NzcTPvkkDfffX1zrOXK5CcuWlaNXr9oXQJDzyc83wGQSNvk9KMj+k+ZbtxZ2rXLqlPDFAUTU8MlkUowc6YNjx9ywfn0pevSoMLvto4/mQyrSjH+DwYDC3EK81+Y9xHjHiNNpLQ5lHsKMbfXruoXIFqr11Xjtj9cQ8kEIOn3bCX9c+QMGk/nfTxRSBQbGD8S5KeeQPi0dM7rNgFzqfKEiLYJaoFtEtzrPWzZkGe6KvcsOFQnXqFEjs88tKJDjo4+C0a9fAj79NBjFxXLMm8dlWkTUcC09sRRJRUmOLsMqBpMBo/43CuXV5dixoxQdO0px4EDN4fPvvx+CEycsD4v8W3h4OCIiIgS3JyJqCEJCQqxqX1BQIFIlRI6VnZ0tqF1d1xJTOk4RFOzVNKApxrcZL6gmR1q8eLGgdq6urhg5cqTI1VBDZDSa8Mknwu+9tWpVhb5968dGrkRUP0hMJtPttucyEREREREREREREZGo8vPzkZWVi/vua4LMTMsWB/8tIqIa69cnwVabg1686IKnn47C449XYvp0T3h5Od+CASIiMl9h1gVcLbZssXp6RTr25uzF3py9OJp/FFqj1kbVWW5VCDC8gWU7GOVeKG21FOUuzaHVS1Ct1YGP5+ufIB8FgsITHF2G08nJyRE8ATssLAx+fn4iV0REQuxP348eS3vUeCzEIwRZ07IgFSuBwkHGjBmDH3/8UXD7u+66Cz/99BMCAwNFq+no0aN46KGHkJ6eLriPXbt24c477xStJlvR6/W4dOkSjEaj2W1MJuDTT4OwaFHQTccWLizGM8/4WlVTr169sHv3bovapKamIjo62qpxb2fHjlWjfXthYXipqTpER9s3bOvddysxZ467oLbZ2XqEhlp/z+3EiRNo27at2ecfP34cbdq0sXpcIrKvP/4ox7vvAjt21H5DpFEjLTZuvGST5wZXyq9g1B+jUKYrE7/zf/nxgR8xqtUom45B5IwOZx7G8789j33p+ywKAftblHcUnuvyHKZ2mlpvvpd9d+I7jF83vtbj79/9PmZ2m2m/gqyQlJSE6urqWo9nZiqwbFkA1q71hVZ78/+fQ4cq0LlzzQEzRET1VbW+GrELY5FdLizQwtnESHog8+3d0Olu/TkbFKTDqlXJCAgw//NcJpMhNjbWqs0BiIgakkuXLkGrFTY/RS6XIzExUeSKiOwvODgYeXl5Frfbv38/unW7dQj31C1T8emRTy3qd92IdRicMNjiehypuroaYWFhKCoqsrjtiBEj8NNPP9mgKmpoNmzQYPBg4cHAS5aoMWGC5UF9RES1qR9PB4iIiIiIiIiIiIiInJiHhwfkcmDSJMsfNv8tI8MFO3Z4i1jVjRYvDkROjhJvvOGL6Ghg1qxi5Oc7TxgMERFZxr9RIvy8LAuijPSIxKi4Ufiqx1c4cP8BLLrzG4yIHYFGbo1sVKX5TtS+vqreMUmVKOj0Oy61OowsfROUVepQVa1lIFg95OPpgsCweEeX4ZS8vYVft1ZUVIhYCRFZo3tkdwxNHFrjsZyKHMzcUT8Wa9fmwIEDWL58ueD2EyZMwLZt20QNBAOAjh074q+//kLLli0F9zF16lQYDJYHC9iT0WhEcnKyRYFgACCRAFOn5mHOnGxIJP9cP82ZY30gGDlGXp5lfwb+LThYJmIl5unYUfi02oMHea+NiMzXu7cntm/3xOHDFbj//lLIZDffN5g4Md9mG4lEe0bj464fQy6x7QYij218DGfyzth0DCJnUaWvwsu/v4zgD4LRZXEX7E7bbVEgmFKqxOAmg3HhqQu48twVPNfluXoTCAYAw5oPg7dLzfeMnuv8HGZ0nWHnioQLCwur8fXkZBe8+GI4Bg1qglWr/GsMBAOAd9917u9rRERCHMo81GACwQAg1bQPukfbAr6Xb3leXp4Cs2dHQG/mXk1ubm5ISEhgIBgR0b8EBAQIbqvX61FVVSViNUT2l5mZKSgQDADi4+ueszK963TIJOY/T+ke0R33NblPUD2O9OuvvwoKBAOAiRMnilwNNVQffih8fl9YmA6jRwsPFCMiqkn9eUJAREREREREREREROSkXF1d4eXlhenT/REYqBPcz+LFAbBFXkhamhLbtv0zCb+4WI4PPvBFbKwMU6YUIyODE2eIiOqj0Eax8HR3FdTW39MHXQK64qW2L2FL/y1Y3289ZrWahS5BXWy+GLQmJxtIKJjRJRQZnU4hpyoQenNXB5BTcndzQVijSEjq0cJLe1KphE9i46RtIufy04M/wV3hXuOxTw59gpSiFDtXJA6j0Yinn35acCjnyJEj8e2330Ims00gUUBAAH777TfBu9ufOnUKX375pchVicdoNCIlJcWq66GRI4vwwQcZUCiMmDChBG+95SNegWRXQkPBPDwMUKnsfy3WubMLpFJh7x1HjwoPQCOi21enTh749VdvnDypwciRJVAorr2XBAbqcP/9JTYdu2NgR8yIf8umY6h1agxdNRSlVaU2HYfIkQ5kHMAdS++A+1x3vLP3HeRVWrbQN9onGgv7L4TmJQ3WjVyHhIAEG1VqW24KN0zvOv2m14c3H44P7/kQEonEAVUJ4+7uDoVCcf3nU6dUmDo1Eg88EI+NG31gMNz697JxoxfOnlXbukwiIrsq15Y7ugTxhZwCnk4E7n0K8Mip9bSjRz2wcGFwnd0FBQUhNja2XoV6EhHZg4+Pj1XfB3Jzc0Wshsj+tm7dKqhdVFSUWZsXRftEY1jzYWb3O//u+fXqO/rflixZIqhdZGQk7rrrLpGroYbor7+qsXu3m+D2Tz5ZDYWi/v3dIiLnxjsMRERERERERERERERWkkgkiIiIgKenAk89pRXcz8WLKuzd6yFiZdcsWRIAo/HmB40VFTJ8+aUvmjRRYvz4EiQlaUQfm4iIbEcikyM8LAiuluw0bTLBx1OJisp/3vMlEgliPGMwNn4sFvVchP2D92Nh14UYFjMMAa7Cd2y1xEnhH59Ow+DRDKmtd6FMLTwglJyDi1KJyNAASOXcxf1WhAbl6HT8O0LkTJRyJX4c+mONx4wwov/y/nauSByLFy/G8ePHBbXt0qULvvvuO5sv3gsKCsKWLVvg7e1d98k1ePXVVwXvhm1r6enpooRA9utXhjVr0vDNN16QSjmBur7KyxMWsOXraxC5EvN4ekoRFyfsC8qxY5ySS0TCNW/uhhUrfHD+fDUmTSrB44/nw8XFBruI/Efu9keBPS/ZdIykoiRMWDdBcGArkTPS6DR48bcXEfR+ELov6Y696XthNJkfEKqUKTEkYQguPX0Jqc+m4pnOzzSIAJE5PedgaqepUMlVcFe4Y3a32fh+yPeQSurf7y0kJASHDrlj0qRojBrVGH/84WV2W4NBgrlzG8BNbyKif+kV3QuhHqGOLkN8Mj3Q6QvguUhgxGDApaTG05YuDcTOnZ41HpNIJIiJiUFQUJANCyUiqr+kUik8PWt+DzVHRUUFjEZuyED115o1awS16927t9nnzuo2y6zzHkh8AN0iugmqx5EyMjLw22+/CWo7fvz4BnHPhWxv/nzhG155ehrw9NPCN1gkIqoNP8GIiIiIiIiIiIiIiETw985Zzz7rCi8v4YsWv/227p29LJGTo8D69T63PKeqSorvvvNBs2YuGD68FCdOVIhaAxER2Y7MxQtRIR6Qy+Vmne/vJUFJ+a0XI7nJ3dA7rDdebfcqeoeYP8HMGll6oMAxa/5FYZR7Ia35WmiquNCrvpPJZIgKVkGm8nV0KU7P1dVVUDuTyQS9XvhEOiIS35DEIegZ2bPGY0lFSXh///t2rsg6BoMB7777rqC2Pj4+WLlyJRQKhchV1Sw6OhqLFy8W1La4uBiff/65yBVZLysrCxUV4txXkEqlGDAgAnI5pznWZwUFwtr5+TlukVerVsKuVU6fts97BxE1bI0bq7BokQ9eftkfbm5uNh2rtFSGVav8gD/eBM48bNOx1l5Yi/cP1K/rSqKa7Evfhx5LesDjXQ+8t/895KvzLWof6xOLz+/9HJo5GqwdsRbx/vE2qtQx5FI5PhnwCcpfLEfFnArMu3seXOpp8L63tzdWrgzA4cPCNnT65RcvpKZyQyYiajg8lB74Y9wfGJwwGL6uvnCR1c/391rJdUDiBmBmGBB4usZTXnopHFeuKG94TalUIiEhAe7u7vaokoio3goODhbc1mg0ISurRLxiiOwoPz8fv//+u6C2vXr1MvvcdqHt0De27y3PkUlkmHvXXEG1ONqyZcsEhQNKJBKMHz9e/IKowcnI0GHtWuGhXmPHauDjI2xzRSKiWzFvZjgREREREREREREREZnFx0eGSZMqsGCBsAnix4+749w5fzRvXgSTyWR1PcuW+UOvN2/xrF4vxerV3lizxoR77y3DnDkSdO0qfJc+IiKyD4VnKKKC1EjNMd5yApS/WzUKyy2boL8vb1+NrzfzaYb8qnzkV1m26O1WTlYDd9l2ratNmABkdzwIdSUDweo7iUSCqEA5lN4Rji6lXnBzc0NlZaWgtmVlZfDz8xO5IiKyxsaRGxH4QSC0hps/z+b8PgcT2k5AgFuAAyqz3OrVq5Gamiqo7cKFCxEVFSVyRbf24IMPYsyYMfjhhx8sbvvpp59i5syZUKmcY9fhvLw8FBcXi9KXRCJBXFyc2eG35LzyBX5l8Pd3XChYhw7AL79Y3u7qVQWys/UIC+OfWyKynouLC2JjY6HVapGdnS1a6Oa/LV/uD43m/xcq/boUiNoNeOaIPs7fXtz5IjqGdUTvGPuE0BOJRa1V443db2Dx8cUo1BRa3N5F5oKB8QMx/+75aOzX2AYVOh+ZtGEsgpw924idO4W11WqleO+9Knz9tXN8XyMiEkNCQALWjVh3/WeTyQS9UY9qQzW0Bi2q9f//T0P1Df/+32O1/VzrMYH9myBgzo1CA0y8A1i6B8hrecOhykoZpk2LxPLll+HmZoK3tzciIvhMiYjIHC4uLlAoFNDpdGa3KSyUYcMGH/zvf77o0KEaP/9swwKJbOSLL76AVmv5fCKFQoGBAwda1GZWt1n4LeW3Wo8/2vZRJAYkWlyLo5lMJixbtkxQ2169eiEmJkbcgqhBWrCgGjqdsHn/crkJM2Y0sNBkInIanHlARERERERERERERCSy2bNd8eWXRmg05oVx/dcXX3jj99+DUVBQgIKCAkE7XAHXJsasWWN52ILRKMHGjV4oLKzAkiUXEBQUxNAGIiInp/JrjAjdBaTl1/yZ4aOsRJHGA7Bg8rvWqEWOuuaFoIt6LoKnwhMXSy9iX84+7M3ZixOFJ2CE8IX7J+ppKFh+l4MoqXRcYAGJJ9xPCreAeEeXUW94eXkhX2DKR0VFBa8viZyMl6sXPr7nY0zZPOWmY3qjHgOXD8ThyYcdUJnl3n//fUHtOnfujNGjR4tcjXnee+89/O9//7M4bDE/Px9Lly7FlCk3/3+zt6KiIuTl5YnWX2xsLJRKpWj9keMUFkoEtfP3tz4sX6hOnYSHWBw8qMWDD3JqLhGJR6lUIjo6Gnq9HtnZ2SgrKxOl38pKKZYv/9f3MpdywLVElL5rYzQZMWLNCBx77BgaeTWy6VhEYth1ZRfm7JyDw1mHYTRZfv+vsW9jzOo2C5PbTYZUKuyZITlWv37e6Ny5EocPuwtqv3y5F956S4ugIH63IaKGSSKRQCFTQCFTOLqUmxQWFiIjKwNaoxY6ow46ow4bt7jiw5VXgC4LgciDtTdWlQAT7gBWbAQyut9wKDnZFZ9+GoxPP5XDx8fHlr8FIqIGx8/PD7m5ubc8x2AA9u/3wNq1vti1ywt6/bX7y7m5ChQX6+Dr63yfOUS1qa6uxhdffCGobf/+/REQYNmGTXfH3o0QjxDkVNw810smkeH1Xq8LqsXRdu3ahZSUFEFtJ06cKHI11BCVlxuxZInwUPf77lMjJkbYvSMiorrwyQIRERERERERERERkciCg+UYM0YtuP3u3W44fFiLoKAgJCYmIiQkRNBigeXL/VFVJfxRwOTJ+dcXGp07dw75+fmCA8qIiMj2PIMTEep38+Jzd5kGFUYvmEyWLapfd2VdjTto+7n4wUvpBYlEgkSfRExKnITven2HPfftwfud3sf9Ufcj0MXL4vqTzd8Q1mmUtF2NPLWwXQLJuQT7yOEd2tTRZdQrKpXwCXFVVVUiVkJEYnmy45NoEdiixmNHso9g+enldq7Icr///juOHTsmqO3HH38MiURYeJG1wsLC8MILLwhq++GHH1p8nSe28vJyZGdni9ZfVFSUVZ8z5FwKCoTdmwoMdNyf644dlZDJhI1/9CjvnRGRbcjlckRGRqJZs2aihA/8/LMfysr+dR+py0eAwvbf1fIq8zBs9TBoDVqbj0UkRKW2EjO3z4T/fH/0/q43DmYetCgQzEXmgoeaPYTUqalInpqMxzs8zkCwem7mTOE3risrZZg/v0LEaoiIqC5GoxEZGRm4evUq5FI53ORu8FZ6I8A1AOMf8MBDzfoBSw4A3+8AstvX3pGqBBh3F9Dyxxte7tGjAvPmeTIQjIhIAH9//1qPZWYq8OmnQbjnngQ89VQ0fvvN+3ogGACo1TIsXlxujzKJRPPZZ58J3lBnzJgxFreRSCToF9uvxmMdwjog1DNUUC2OtmTJEkHtvL298eCDD4pcDTVEX36pRlmZ8A2DZs8W3paIqC58ukBEREREREREREREZAMvvOACuVz4IsC5cw0AAKlUioCAADRr1gxhYWGQy28Oe6lJWZkUP/1U+0SaurRpU4kOHSqv/2w0GpGbm4vz588jJyeH4WBERE7KPywR/l7K6z8rUA293Bt6vcHivjamb6zx9U6BnWp83Vvpjf4R/bG498vIiSjD0QjgTT+giytgTryGdz17el2Z8A6yjAyRagh8vVwQENbE0WXUS+Zem/6XTlcPUwCJbhNbRm+BTFLzpNXJ6ydDrRUegG0PS5cuFdSub9++6NKli8jVWGbq1Knw8rI8WDUlJQV79uyxQUXm0Wg0SEtLE62/sLAweHp6itYfOV5RkbAL/VusD7M5Dw8p4uKEhdX89Vc9+2JDRPWOVCpFeHg4mjVrBn9/f0GhptXVEnz33b/eaF1LgE6fi1dkHQ5mHsSMbTPsNh6ROXam7ESXb7vA610vfHjwQxRpiixqH+8Xj0X3LYJ6jhqrh61GtG+0bQolu3vgAS+0aCH8u/CSJV4oK9OLWBEREdVGr9cjKSkJpaWltZ7zwgtX0by5GkjpCyw6AmxeCBhqedYhrwaGjgGmhwE93sWI5/Zg504VwsJcbPQ7ICJq2KRSKdzd3a//XF0twebN3pg0KRoDBiTgm2+CkJurqLX98uWu9iiTSBT5+fl46623BLWNiorCAw88IKht39i+Nb7+aNtHBfXnaGVlZVizZo2gtiNGjOAmRFQnvd6Ezz9X1n1iLbp106BLF34+EZHtcPYBEREREREREREREZENxMQoMGyYRnD7TZvccObMjYsP/fz8kJiYiIiICCgUtU+AAYBVq/xRUSF896HJk/NR01oik8mEgoICnD9/HtnZ2QwHIyJyQiHhjeHl7gqYdFC6eaG6Wthi9nMl52p8fUTsiFrbBPq5w39/R0glQAdX4BV/4GAEkBcL/BgMjPIE/Gt4Su0uAR73FlSmQ1Q3egTpbg/AZDI5uhSykoebK8IaRUMi5fQJIVxcLFv4olZLcPy4G374wY+LIYmcVLhXOOb0nFPjMY1eg4dWP2TnisynVqvx66+/Cmo7ffp0cYsRwMvLC48+KmxC/o8//ihyNebRarVISUkRrb+goCD4+fmJ1h85B6GhYEFBlofciKl1a2HXKqdP3/qeHRGRWKRSKUJDQ9G0aVMEBQVBasH32rVrfVFY+K/3q06fAS7lNqiydp8d/QzLTy03v8GuXcD06UCXLoCfHyCXA1IpIJFc+6dcfi1RsmtXYMYMYN8+AEBZdRmWn1qO9RfXo1Jbeesx6LZToa3AtK3T4DfPD31/6IvDWYdhhPnPvVzlrni4+cO48twVXHrmEia1m2TR30WqH2QyKaZNqxbcvrhYjo8+KhOxIiIiqkl5eTkuXrxY56YkLi4mLFiQAW9vPWCSAkeeAT69BBTH1NxAAsDrKtB3Dlb63ImYzyLx6LpHsebcGpRW1R4+RkRENQsKCsLFiy54991Q9OmTgOefj8Dhwx5mtT1xwg1HjlTYuEIicbz88su3DCq9leeff17wBm16Y83PNgLdAwX152g//fQTNBph87AnTpwocjXUEK1apUF6uvBQsOnTOXeQiGxLYuIsZSIiIiIiIiIiIiIimzh7VotWrRQwGoUtYhwxohI//eRe6/GKigpkZ2dDq70x7EWtlqB//wQUFwubGJCQoMHq1ZdrDAWribe3N8LCwiCTCQ8hIyIicRmqynA1JwclFcICwS6VXMKDOx+86XWFVIFjDxyrsY2flwph++Lqrs0EHK0CtqiBs1rASwrM9AGa1ZNNtfXe7ZAStwLaOhYVkPNzcVEiNiIIMlcfR5dSb+Xl5SEvL6/GYxqNBBcvuuLsWRXOnbv2KyXF5fq18ZYtZejf38ue5RKRBSI/ikRGWUaNx3aM2VHrLtOOtGLFCowaNcridomJiTh37hwk5n4JtqG0tDTExsZaHMDt4+ODnJwci8MarWEwGHDx4kXRwsJ9fHwQHh4uSl+30qtXL+zevduiNqmpqYiOjrZNQQ2c0WiCq6sJOp3l4RirVqkxfLibDaoyz/vvV2D2bPMWo/1XeroOERHCw8FOnDiBtm3bmn3+8ePH0aZNG8HjEVHDUVBQgPz8fBgMhlrP0emAQYOaIDv7/xc6KSqBaVGAW6GdqvyHm8INhycdRougFjWfkJ4OTJsGbNwIaC2/x3UhVIFukyQoll1r2yKoBTY9sgmR3pHWlE0NwI7LO/Dy7y/jaPZRmGD5cpom/k3wfPfnMb71eIaA3Sb0eiMSErRISXEV1L55czVOnnThs1QiIhvJyclBQUGBRW0OHPDAE09EwWT6/3uC7rnA6P5A6Amz+5BL5egW0Q33xt2LAfED0DKopVPcYyQicnZ33lmBPXuE3XudOLEYixf7ilwRkbj++OMP3HXXXYI2GgwNDUVqaqrgZ35fHv0SUzZPuen1LaO2oH9cf0F9OlLnzp1x5MgRi9s1b94cZ86csUFF1NC0b1+FY8eE3e+Ji6vGxYtKSKX8DkBEtsMnEERERERERERERERENtK8uRL33itslyoA+OUXFVJTaw8c8fDwQJMmTRAbGwtX138eSv7vf36CA8EAYNKkfLMDwQCgtLQU58+fR3p6OvT6mncaIyIi+yoqyBYcCAYAPyb/WOPr8V7xNb7u5aZAyL4Es/qWSYAuKuANf+CXUGBJcP0JBDMqApCe8BMDwRoAuVyGqGB3BoJZycvrWqhXVZUEJ0+q8NNPfnj55UZ44IE4dOnSDGPGNMZ774Vh/XpfJCe73hCWe/gwrxuJnNnmRzZDgpq/GA5bPUy0ICgxLV++XFC70aNHO81ivaioKPTs2dPidiUlJdi8ebMNKqqZXm/EvHl50GrF+XPg4eFhl0Awsr+yMqOgQDAACApy7PTWTp2E31s7dIjfF4jIMQICAtC0aVM0atQIcnnN72ObN/v8EwgGAO0XOSQQDADUOjWGrhqK0qrSGw/s2QM0bQpERQH/+5+gQDATgFH36a4HggHAmbwzeGDlAyjSFKGsukzQwkyqv8qqyvDslmfhO88X/X7shyPZRywKBFPJVRjRfATSn0vHxacvYmLbiQwEu43I5VJMnaq2uF1YmBYvvZSNZctScfXqVRtURkR0ezMajUhJSbE4EAwAunWrwJQp/9r0pDIYWLYLKGhidh96ox570vbghZ0voPVXrRHxUQQmr5+M/53/H8qqyyyuiYjodjF2rPD7p2vXekKjqT0MncjRysrKMGHCBMH3nebOnWvVJkB/Xf2rxtdLqkoE9+ko586dExQIBgATJkwQuRpqiHbtEh4IBgBTp+oZCEZENicx8WkWEREREREREREREZHNHDpUha5dhT80nDy5At98Y97OeFVVVcjKykb//mFIThY2ZnR0NX79NQnWbFTt4eGBsLAwKJXKuk8mIiLRlV49j4xC6yZB9t3cF7ma3Jten9FiBsYnjL/hNZWrEjEne0Fa3bAXNZkgQ2bXMyitZJBRfSeRSBAb7AJVQJyjS2kQ7rijHAcOeMBgsGyi2/33l+LXX71tVBURiWHS+klYfHxxjcfGtR6HZUOW2begW6ioqICfnx90AoI7k5OT0bhxYxtUJczXX3+NJ554wuJ2o0ePxg8//GCDim42aVIxFi/2Ra9eZZg/PwMqlfApiC4uLmjcuLHdAhV69eqF3bt3W9QmNTUV0dHRtimogbtwQYumTYXdHzp7thrNHJgeXFlphI+PBHq95ZP5Z82qwPz55t3Pq8mJEyfQtm1bs88/fvw42rRpI3g8Imq4ysrKcPXq1evXSAYDMGRIPK5c+f/3V1k18Gws4JXtwCqBOL843Bt/L/QGHfTbt0KXlgq9FNBJce2fMlj8s1oBlNbxmCTYPRhTO0/Fiz1edJqQWHtLKU7BlE1TcDT7KJr4N8EHd3+A7pHdHV2WqLYmb8Urv7+Cv67+ZVEI2N8S/RPxYs8XMbrlaIaA3eaqq42IjdXfGKxYi9jYKkyaVID+/UugUPzzerNmzfjniIhIJFVVVUhJSbFq8wKjEXjmmUjs2eP1z4uKCuBFH0Bq3bNWuVSOHpE9cG/cvRgQPwDNA5vfttecRET/pdEYEB5uQlGRsI0ZvvmmGJMn+4pcFZE4JkyYgGXLlglq26VLFxw4cEDQNUNKcQqmb5uOdRfX1XhcKVNiTo85mN19NlQKlaD67G3GjBlYsGCBxe0UCgUyMzMRFBRkg6qoIRk4UI3Nm90EtQ0I0CM9XQqVivd5iMi2GApGRERERERERERERGRjvXursWuXsAeHKpURKSlGhISYPwmmoECLDz6owKJFXhZPnnnzzUw88ECJhVXWzM3NDWFhYXB1FR6KRkREllEXJCE1Vyt4x0kAqNJXoeO6jjUeOzT4ENwV7td/VijkiE2ZBEXxfsHj1Re5XY4iX83PtIYgMkAGr5Cmji6jwbj77nL89punxe0aN64SHGRLRPZhNBoR+EEgijRFNR4//thxtAltY9+iarFx40bcd999Frfr0KEDjh49aoOKhCssLERISAj0esuCSENCQnD1qu1DWl9+uQjvvON3/ec2bSrx2Wfp8Pa2fKGkXC5HkyZN7LoonqFg9rV7dxV69RL2eV9YaICfnxWp9SJo2rQaFy5YHkx2111q/PabsHuBAEPBiEh8FRUVuHr1KjZscMGMGZH/HGi3CBj8mOMKcxLfDfkOY1uPdXQZdpdSnIKui7sirzLv+mv+Kn+cfvI0Qj1DHViZ9UqqSvDS7y9h+anlKK0utbi9m8INDyQ+gPl95yPMK8wGFVJ99dZbRXj1Vb9aj7doocakSfno3bscNX3N8ff3R2ho/f77RUTkDIqKipCdLU6wbWmpFCNGxCEz81roY1iYFne++QJ+yvxIlP7/FuEVgQFxAzAgfgDuirkLni6WP1chImpI/t58RIgePSqwd6/wTRmIbOWHH37A2LHC7jFJpVIcOXIE7du3r/Nck8mESl0lijXFyCrLwrv73sWWpC3QmerePCnYPRiPtnsUY1qOgZ+bH3xdfaGQKepsZ286nQ7h4eHIy8ur++T/GDJkCNauXWuDqqghuXBBi+bNFTAahQX3Pv98Bd57j59FRGR7wmJ0iYiIiIiIiIiIiIjIbHPmSLBrl7C2Go0U8+ersWCB+Q8PAwKUeO89P8yZo8fHHxfhyy89kJNT967VISFaDBpk+eKI2qjVaiQnJ8PV1RVhYWFwcxO+GJKIiOqmLc1AWr7eqkAwAPjflf/V+HqAa8ANgWBSqRRR+R/cFoFgxe1/ZSBYAxHiI4dXSKKjy2hQWrfW4bffLG+XmuqCkhI9fHw4dYXIWUmlUqwZvga9v+td4/FBPw1C5vRMO1dVs9+EvBEBGDhwoMiVWM/f3x+dO3fG/v2WXWPl5OTg9OnTaNmypY0qAz7/vPiGQDAAOHHCHWPHxuCrr9IQGlr3YoO/SaVSxMXF2TUQjOwvL88oqJ1cboSPj+P/bLRpoxcUCnbqlPMtoCGi25uHhwfi4+MxZIgG584VY8UKL2iqTUCP9xxdmlNYe2HtbRcKll+Zj/4/9r8hEAwACjWF+Pzo53i7z9sOqsw6Gy9uxGu7XsPxnOMwwfJ7pE0DmmJOjzkY3Xq0DaqjhuC557zw8cf6mzZl6ty5ApMm5aNz50pIbrGWtKioCMHBwfweREQkkNFoRFZWFkpLxZvX4u1txEcfpWP06Fh07KjGqlUKaFyfwk+fihsKllGWgW+OfYNvjn0DhVSBnlE9r4WExQ1As8BmkNzqA4SIqAF64gkFFi8W1nb/fndcuKBGYiLnIpLzOHXqFB5//HHB7YdNGIarnlfx/cnvUawpRnFVMYo0Rf/889+vaYqhM5r/TO7fcitzMXfvXMzdO/f6ax5KD/ip/OCnuhYS9t9/91Xd/Jqfyg8eSg+bXcNs3LhRUCAYAEycOFHkaqghev99LYzGuufV18TV1Yhp0ziPkIjsgzMriYiIiIiIiIiIiIhs7O67VejQQYM//1QJar94sQqvvmqAj4/MonZeXnK8+qofZs0y4IsvivDZZ+64cqX2hYwTJhRAobAuSKYmVVVVSElJgVKpRGhoKDw9ueMpEZHYDJpipOVqYDAYrO5rU8amGl/vEtTlhp8jq7fBNV3gLM16pKLp+8jSNXZ0GSQCPy8X+Ifx/6XYOnYUtojRaJRg//5KDBzoLXJFRCSmXtG9MCh+EDYmbbzpWFZ5Fl747QW819fxYRI7duwQ1K5v374iVyKOvn37WhwKBlz772CrULDVq0vw3HM1v2enpLhi9OhYfPnlFTRpUl1nXxKJBHFxcZDLOX2xocvLE3afyc/PAKnU8cFa7dqZsHKl5e3y8xVIS9MhKsrxvwcion+LjVXh229VePPNakxY8D22e6Y4uiSnEOYR5ugS7KpSW4lBPw1CUlFSjceXHF+C1+58DQpZ/fgcK1IX4aXfX8KKMytQVl1mcXt3hTsebPog5t09DyEeITaokBoST085Hn20GO+/7wsA6NOnDJMm5aNlS41Z7U0mEwoKChAUFGTLMomIGiS9Xo/Lly9DpxMWgHEriYlV+PnnbAwYEAaFQgqgMe6MuhO703aLPhYA6Iw6/J76O35P/R2zdsxCpHckBsQNwL3x96JPTB94KM3fNJCIqL7q0MEDbduqcfy45cFeJpMEX39djY8+YigYOZ7BaEB6bjoGPzAYGo153w1vEgisClmFVT+tErc4M1VoK1ChrUB6abpF7eRSOXxdfWsNDbvh3///nL/PV8puHca0ZMkSQb+XkJAQDBgwQFBbun3k5xvw00/CP0MefliD4GD3uk8kIhIBZ9UQEREREREREREREdnB88+bMGyYsLZlZTJ89FEF3nhD2MQ/lUqGGTP8MHWqEUuWFOOjj1xx8eKNAWV+fnoMHVosrEAzabVaHDuWiY8+CsPzz0vRtSvDwYiIxGDUVyP9agGqtVpR+rtYcrHG1x+JfeT6v4cpUuFxaroo4zmzqoiJSHe5FzAaHV0KWcnT3RWhjaIgkQoLsKLade8ufPfLw4cNGDhQxGKIyCZWD18N//n+UOvUNx17/8D7eLLDk4jyiXJAZddcvXoV586ds7idh4cHOnfubIOKrNe3b1+88cYbFrfbsWMHpk8X/xpt9+5yjB/vCb2+9s/RvDwFxo+PxcKFaejQ4eY/K/8WGxsLpVLYzstUv+TnCw0Fc47r7y5dhE+xPXSIoWBE5LxCQhXIiv0EyHd0Jc7hwUty4Db5bqo36jFizQgcyTpS6zlXK65iU9ImDEkcYr/CBFh/cT1e2/UaTuachAmWX3M0D2yOl3q+hJEtR9qgOmrIZs1yR0pKEUaPLkRcXN2hyP/FUDAiIsuVl5cjPT0dJpP4m9wBQFBQEFq0uPG9eWLbiTYLBfuv9NJ0fP3X1/j6r6+hlCnRM7In7o2/FwPiBiAxIBESicQudRAR2duoUVWCQsEA4Oef3fH++0bI5Xz+T+Iory5HkaYIxVXFKNYUX//3Ik3RDT//97VSTSnwEwCh2ftSAA8AEPlxggQSBLkHIbcyV9yO/0Vv1CNfnY98teU3GT2UHjeHhrle+6dCrcDmLZsF1TRmzBhuSkR1+uQTDTQaYfPxJRITZs/mnzEish++4xARERERERERERER2cHQoSokJlbjwgUXQe2/+MIVzz9vhJub8IksCoUUjz/ui0mTjPjpp2J8+KELTpy4NrFm7NgCuLraZgLlv/34YwDWrfPGunXAXXeV4/nnjbj7bm+bj0tE1FCZjEZkZ6WjUm354qOanC0+i2rjzX0ppUq09G8JAAhwq4bfocGijOfM9L7dkBY0G0Yb7DhO9qVydUF4WBAkMoYy2EJ4uCvCwrTIzrY83OXkSZkNKiIisbnKXbH0/qV4+JeHbzpmNBkxYPkAnHvK8lAusRw8eFBQu+7du0OhcM7Phi5dukClUlm8o/ihQ4dEr+XkyQoMHaqCWl33e3Z5uQyPPx6N997LxN13l9V4TmRkJFQqVY3HqOEpKBDWzllCwTp0UEIuN94yEK82R44Y8fDNb5tERE5hw8UNOJt/1tFlOI296xaiT5cRQNeuji7FpkwmE6ZsmoKNlzbWee43f33jlKFgReoivLDzBaw8sxLl2nKL27sr3DGs+TC8d9d7CPYItkGFdDsIDFRi/vwSqAXekzcajSgqKoKfn5/IlRERNUw5OTkoEHqDoQ4SiQTR0dFwd3e/6diDTR/E05ufFnTNYQ2tQYudqTuxM3UnZmyfgSjvqOsBYX1i+sBdeXOtRET11cSJnnjtNQMqKy1/ZpydrcTatSUYNsxH/MLotrLm3Bq8uutVnMsX+KxzK4AkKwroBSDMivY16BPTBwv7L0SzwGZYdXYVZm6fiazyLHEHsVKFtgIV2gpklGXcfHAfAIOwfidOnGhVXdTwVVUZ8c03wubxA0C/fho0ayYs0JKISAhG4BIRERERERERERER2YFUKsHs2QKfVAMoKJDjq68sWwxcG5lMitGjffHnn65Yu7YEd91VhocfLhKl71spK5Ni5cp/Jrjv3OmJfv280a1bBdauLYHB4BwLPomI6pP87CSUlIsTCAYAy5OX1/h6gncCAMDLXY7gQ51FG89ZGV1CkRa/FDoGgtV7nu6uiIkMgczFy9GlNGjNmwt7Hzp92lXkSojIVoY3H46u4TWHJJwvOI+FhxfauaJ/HD9+XFC7Dh06iFyJeORyOVq1amVxu5KSEqSmpopWR3p6FQYPVqCoyPy9R7VaKWbMiLjh+//fwsLC4OXFz+TbSX6+RFC7gADnuEekUknRpIlWUNsTJzg9l4ick8lkwjt733F0GU7ljV7A1qf6OboMm3tz95tYdGyRWeduTd6KtJI0G1dkvrXn16L1V60R8H4AFh1bZHE4R8ugllj10CpUzKnA0vuXMhCMrBYWZt2K7by8PJEqISJquHQ6I37/Pd1mgWBKpRIJCQk1BoIBgLvSHQ83d3zad1ppGr7880sMXjkYfvP90O+Hfvjo4Ee4WHARJpPtN/4jIrIlX18FBg60PHwxIqIaU6fmIjTUNp8RdPs4dvUYRqwZITwQ7BCAI1YUEAegpxXta/D5gM/x25jf0DyoOSQSCUa0GIGLT19Er+he4g5kS8Ie/aJr165ITEwUtxZqcJYs0SA/X/jGYTNnCnv2SUQkFGcdEBERERERERERERHZyZgxKkRFCVtICAAffaSATifepD6ZTIohQ3zw229eaNIkBHK5+Yt8hVi50h8VFTfv7HfwoAeGDvVBhw5V+OGHYoaDERGZqeTqeeSViBtadSjvUI2vD4wYCJWrEuHH7oRE6HaM9YQJMmS2+wOaKuGf2eR4EokEAd5KREZGQ6r0dHQ5DV6bNnpB7a5cUaKwkH/XiOqLjSM3QiGteYLszO0zUVJVYt+C/t+xY8cEtWvXrp3IlYirffv2gtoJDUn7r+JiHe6914T0dMt3SjaZJHjnnTAsXBiEv9cmBgYGws/v5qAwatiKioRNjPf3d55FrW3aCPv+c+qUEkaj8/w+iIj+tjN1J45mH3V0GU7FJAFG3V2BK+OHOLoUm/n22Ld4fffrZp9vggmLjy+2XUFmKFAXYNL6SfB81xNDfx6KU7mnYIL5n60eSg882vZR5M7IxaknT2F48+E2rJZuN66urnBxsfy70t/0ej1KS0tFrIiIqGHJzKxCr15qDBsWhtxc8eexeHt7o0mTJnXOkZnQdoLoY1tDa9BiR8oOTN8+HYmfJ6LxwsZ4evPT2HRpE9Q6taPLIyISZNIk8+4hK5VGDBxYgsWLU7FxYxImT86Hj08VqqvF20SPbj+bLm2C3ihsrgMuAdhmxeDeAIYCEDFf6MuBX2JKpymQSG7s1F3pjt/H/o7uEd3FG8xW0gEUCms6ceJEUUuhhsdoNGHhQuHfL1q3rkKfPtz8kIjsi6FgRERERERERERERER2IpdLMG2a8PCWzEwlli2zzUQ+Pz8/JCYmIiIiAgqF8F2QaqNWS/DDD/63POfECTeMHeuLZs20+OqrYuh0DAcjIqpNZd4lZBWJ+z6p1quRX5Vf47HhTYYj6uJoSKvzRB3TGeV2PYKySnHD1sh+FHI5Ar0VSIgOREhEE0hktg09pWs6dhQ2U9VkkuDAAY3I1RCRrfi5+eH9u9+v8ZjOqMPA5QPtXNE1QkOwGApWu+pqIwYPrsbZsyqr+lm0KAivvdYIXl7eCA4Otrouqn8KCoRNUQ0MFLkQKwj8q4iCAjnS0gQuJiIisqG5e+c6ugSnVOQGPOSyDlX7djm6FNFtvLQRT2x8wuJ2i48vFr4w1gq/nPsFrb5shcD3A7H4+GJUaCssat8quBV+GfYLyl8sx7eDv0WQR5CNKqXbXVhYmFXtc3JyRKqEiKhh2bGjFB07SnHggAeKiuSYOTMCOp14aRnh4eGIiIgw69yu4V2R4J8g2thiSy1JxedHP8egnwbBb54f+v/YH58c+gRJhUmOLo2IyGx9+ngiPr6q1uOJiRrMmZON33+/gPfey0SnTpWQ/uu2M6+ryRqB7gIfRmQBWA1YkF1+IxmA4QDcBLavwb3x9+Lx9o/XelwikeDnYT/D28VbvEFtQeBjTnd3dzz88MPi1kINzvr1Gly8KDzkfdo0A6RSEZP8iIjMwNmvRERERERERERERER29NhjKsydq0NenrDgrQ8+kGPiRBNkMts8WPT29oa3tzfKy8tx9epVaLVaUfpds8YPJSXmPZa4dMkVTz7pivfeq8bTT1fiqae8oVLJRKmDiKghqC5JQ3qhASaT0NllNfsl5ZcaXw9WBaNZwQLIS4+KOp4zKuqwGQWVSruN5+7mBn83cT5rb2sSQKFQwMUjCFKlp6OruS117y48NObIEQPuu0/EYojIpp7t8iy++usrXCi4cNOxA5kH8PPZnzG8+XC71ZObm4urV69a3M7LywvR0dHiFySi1q1bC2p37Ngxq8Y1GIx4+OFy7NsnzqKAmBggMtK8hZbU8BQVCQsFCwgQuRArdO4s/J7UoUM6xMSIH75PRCTUwYyD+OPKH44uw2n9FQZMXTQU3/QocnQpojmceRjDVw+HwWSwuG12eTY2J23G4ITBNqjsRnkVeXh+5/NYfXY1KnWVFrf3VHpiRIsRmHvXXAS4OdGFBDVo7u7uUCgU0OmEbTCh0+lQUVEBDw8PkSsjIqqfDAYj5s0rweuv+0Cn++d+wokT7vjww2C88IJ1oS8ymQyxsbFwcTE/BEAikWBi24l4/rfnrRrbHqoN1dh2eRu2Xd6G57Y9h7tj78ai+xYhyifK0aUREd2STCbFiBFqvPWW6/XXPD0NuPfeEgwdWoxmzWoPDAOAiooKGI1GSKXC7kXT7e2BxAcwa8csywLJ8wEsB2DNXoMDATSyov1/eCo98dXAryCR3HpOcZhnGD7s9yEmbZgk3uBi0gI4K6zpQw89BE9PzheiW1uwQPi8+/BwLR55RMQkPyIiMzEUjIiIiIiIiIiIiIjIjlQqKZ55Ro1XXhG2IPDSJRf88osaDz9s24eLnp6e8PT0hFqtRnZ2Nqqqbj3B5la0WgmWLbN8EUZamgtmzXLBL79U4OefixAWFga5nI82iOj2plcXIC2vCgaD5Qv56rI5Y3ONr/cLiIBL1o+ij+dsypsvRLbWfoEVLi4uiIyKgkzG4Euq/8LCXNCokRZZWZaH6p04wes7ovpm66itiF0YC6PJeNOxCesm4P6E++EiF77DriXOnhU2MzwuLk7kSsQntEah/03+duVKKhIS3ABYHwr2yCMlmD/fyXccJ5sqLhZ2rRsU5Dy7bLdrp4RcboReb/misqNHjRg50gZFEREJNHffXEeX4PQWxRajyx8LMLH3dEeXYrWkwiQM+mkQNHqN4D6++esbm4aCrTqzCm/teQtn8y2/hpVAgtYhrfH6na/j/sT7bVAdUd1CQ0ORnp4uuP3Vq1cRHx8vYkVERPVTWZke48ZV4tdf/Wo8vnx5AFq10uDee0sF9e/m5obo6GhBgTFjWo3BnJ1zBIWsOtKOlB2YsG4Cdo7dWWdACBGRoz32mBvmzTOiVSsNhg4tQt++ZVCpzNskz2QyoaSkBH5+NX+GEN1KsEcwXrnjFfMDQEsA/ABAbcWgvQG0s6J9DebfPR8R3ubNd5rYdiJWnFmB31N/F7cIMZzFtWAwASZMmCBqKdTwHD1ajb17hW94OGWKDgqF/TYaJSL6G2dWEhERERERERERERHZ2TPPqPDBB3qUlgq7Tf/ee1IMG2aCVGr7iXtubm6Ii4tDVVUVsrOzoVZbPqNh/Xof5OUJC0EDgEGDSlBWVoaysjJ4eHggLCwMSiUfrhLR7ceo0yD9ajG0Wmu2m6xdUllSja9Px582Gc+ZVEU9jgzFXYDx5nATW5DL5YhiIBg1MC1aVFkUChYWpkXz5hp06FABwMt2hRGR6KJ8ojCz60zMPzD/pmNqnRrDVw/HupHr7FJLamqqoHb1IRTM29sbAQEBKCgosKhdZmYm9Hq9oFDttLQ0aDQajBmj+T/27js6iupvA/izNZtN74VUeigCSlVAQQEBBQQVROkiKoogIAr+FAuKFEFURGkKIk1RUKodFVGQIhgChJBCQuqmJ5ut7x++Fswm2Z2dbcnzOcej2Zl775dgNrMz9z4XoaEGzJ/fTFAQEgAMGFCO99/3h0wmrL07y83NxS+//IKTJ0/i8uXLSEtLw5UrV1BRUYHKykrU1NTA29v77398fHwQFRWF2NhYxMbGIj4+Htdddx06deoElUrl6j+Ow2i1JpSXCw0Fc5//b7y9pWjbVouzZ23/uzp50n3+HEREp3NP44sLX7i6DI/w6Hdz0bntLbg+SuQVmk6UV5GH27fcjsIq264l/2t/6n5klmYiLiBOpMqA3IpczPtyHj459wkq9ZU2t/f38sfYDmOxqP8iBKu56Jtcy9/fH3K5HAaDQVD7mpoaVFdXw9tb+KJUIiJPd/p0BUaPluH8+fqD5RcubIbWrbVo2bLGpv7Dw8MRHh4uuL4ovygMbjXYI6+lv03/FjXGGqjkjff+ExE1DjExKnzzzUUEBNj2Hv+XwsJChoKRYE/0eALrTqzDRY3lOVN/KwewCUCZHYP1AHCzHe0t6BvfFw/d8JDV50skEqy9cy06rO5gV5C8Q5wU1qxFixbo27evuLVQo7NkiQGAsI3N/P2NePRRXlMTkWswFIyIiIiIiIiIiIiIyMkCAmSYNq0CS5b4Cmp/6pQKBw9WY/Bg500QV6lUaN68OXQ6HXJyclBRUWFVO4MBWL8+TPC4UVE6DB1a8vfXFRUVuHDhAtRqNaKjoxv14lkion8zm0zIzs5GVbWwSZANOVl4EjpT7e0WvSVA50b+VqsPuQUZITNhErhwy1YSiQRxcXEMuKRGp3NnAw4etHwsMvLPALD27bVo164a7dpVIyjI+PdxnS6MPxNEHua1Aa/hwzMfIqc8p9axPRf24Pv073Fzgsiz2i0QGgrWqlUrkStxjJYtW9ocCmY0GpGVlYXExESb2l29ehXl5eV/fz14cCmCgw144ok4VFbaFux0ww2V2LXLGwpF4whE0mq12Lt3L3bv3o1Dhw4hIyOjwTaVlZWorPwn5CIlJaXWOXK5HO3atUOPHj0wZMgQ3HbbbfD1FXavyB3l5xsBCPt/wJ1CwQCgc2cjzp61vd3vvythMjkn2J+IqCGv/viqq0vwGDVSE0btGIXfHvoNwd6et6i4QleBoR8NRVpxmt19mcwmbDi5AQtvWWh3X1vObMGiw4twrvCczW0lkKBLZBe8cMsLuKPNHXbXQiSmiIgIZGdnC26fk5ODFi1aiFgREZHn2Ly5GNOn+1sVKl5dLcWsWXHYuvUSfH0b3uRHIpEgISEBPj4+dtc5qfMkjwwFC/AKgFTiXvdYiIjq0qpVAPLz8wW11el00Ov1UCiEb1pKTZeX3Atv3P4Ghnw0pO6TqgBsBqCxY6DOAG63o70FKrkKa+9ca/Pv++ZBzfFy/5cx+9BscQuyRxGATGFNJ02aBImEz2GobhkZenz2mfD59uPHVyMgoPE8wyUiz8JP9URERERERERERERELjB7tgpqtbHhE+vwqovW7yiVSiQkJKBt27bw9/dv8PyDBwNw5YrwgIdJkwphab5OVVUVUlNTkZqaiqqqKsH9ExF5ivzsiyit0Dqs/21p2yy+fr2wDfI8hskrBhnN34XeSYFgABAbGwu1Wu208YicpWvXP6egRETo0a9fGR57LA+rV6fju+/O4csvL2DlyixMnVqAm26quCYQDADKyuzZTpeIXGXvfXvrPDZyx0iYTA0vzrOX0FCw5s2bi1yJYwhdGG7r96WgoABFRUW1Xu/RoxLvv38ZoaF6q/tq2VKLvXsV8PVtPPuVdurUCXfccQfWrl1rVSCYtQwGA37//XesXbsWd911F0JDQzFo0CBs3rwZWq3jrv2dJS9P+HtAZKRtQXSOdsMNwtppNHJcvmz9zw8RkaNcKLqAHX/scHUZHiW9JB3jPh0Hk9nx17Ri0hv1uHvH3fjt6m+i9bn+5HoYTMLuneWU5eCBXQ/A5xUfPLDrAZsDwQK8AvBot0ehmafBb9N+YyAYuaWgoCBIpcKXZlVXV0Onq71hBxFRY6bXmzB9ejHGjw+yKhDsL+npXvjf/5rBbK7/PKVSiTZt2ogSCAYAd7S+A6HqUFH6cqYFfRZAKeOGLETkGUJD7XufzcvLE6kSaooGtxqMO1rXcc9Biz8DwYRl1v2pHYBhAETOrXrhlhfQOqS1oLZP9HgC3Zt1F7cge5wU1kwqlWLChAni1kKNzvLlNTAYhN27kctNmDOnkU+gJCK3xlAwIiIiIiIiIiIiIiIXCA+XY/x44Qs8f/jBGz/95LoFonK5HHFxcUhKSkJgYKDFc0wmYN26MMFjhITocdddxfWeo9VqkZaWhgsXLqC8vFzwWERE7qw45xwKSh27kPyX/F8svj7Oz6HDupRZqkRWl6+grXHegqvIyEirQjWJPNHAgWp8++05fPXVeaxalYlp0wrQp08FQkIaDsKtrKx0QoVEJLbOUZ0x/rrxFo9pqjV4eO/DDq8hPT1dULuoqChxC3GQyMhIQe1sCQUrKSmpd7FM27ZabN6chvj4mgb7iojQY+9eEyIiGtdiQ2ct0K+pqcGhQ4cwfvx4NGvWDE8++STS0tKcMrYj2BMKFhbmXqFgPXoIr+foUecFEBMR1eW1H1+DGQ0kJ1At+y7uw8uHX3Z1GVYzm82Y+vlUHLx0UNR+r5RdwYHUA1afbzKZsOn0JiS9lYRmK5phy5ktqNJbv7mLBBLcEHUD9o3dh5KnS/D2kLcRqAoUUDmR84SFCX8eCgDZ2dkiVUJE5P6uXNHilluqsHp1kKD2X30VgPffrzs4JiAgAK1bt4ZcLl5gvVKmxLjrxonWnzNM7DwRc26c4+oyiIisJpVK7Qpz5CZUZK8Vg1bUDtOsAfAhgKt2dNwSwCiInuhxfdT1eLLXk4Lby6QyrB+2HgqphR17nc0E4LSwpgMHDkRMTIyo5VDjUlpqxAcfeAtuP2JENeLj3eDnhIiaLIaCERERERERERERERG5yNNPK6FQCF8guWiR63eol8lkiImJQbt27RASEgKJ5J/tzL77zg+pqSrBfY8fXwSVyrqFSjqdDhkZGTh//jxKS0sFj0lE5G4q8s8jp9ix7/flunIU1RTVel0CYFIjzq/K7fEryqscG7b2b8HBwQgJCXHaeETO5u+vRGhowwFglmi1rgu7JSL7bBy+sc4F+utOrMPZ/LMOHV9oKJjQsC1nc3QoWGVlJa5cudLgeTExemzalIaOHesOc/D3N2DPnhq0bq22uk6qm0ajwYoVK9C2bVtMnz4dubm5ri7JZvn5wj7H+PsboVRKGj7Ribp0EX4P79gx19+/I6KmLbM0E5t+3+TqMjzWwu8W2hSI5Ur/+/Z/+OD0Bw7p+73f3mvwnCtlVzD2k7HwfdUXEz6bgJSiFJvGCFQF4vHuj6NkXgmOP3Qcg1sNFloukdP99xmprSorK2EwMEyWiBo/jUaDBx+swZEjvnb1s3JlBI4dqx0cExMTg9jYWLv6rsukzpMc0q8jDGszDGvvXGvX7yYiIlcIDw8X3NZkMnFDUbJLy+CWmN1r9j8v6AF8BKDhx2h1SwAwGoDI+6DIpXJsGLYBcql9Iagdwjtgfp/5IlVlh1QAAn98J0+eLGop1Pi8844WZWXCfwifekq8sGEiIiEYCkZERERERERERERE5CLx8Qrce2+14PYHDnjj9991IlYknFQqRVRUFJKSkhAWFgaJRIp164Tviu3nZ8S992psbqfX65GVlYWUlBRoNLa3JyJyJzXF6cgsNMJsti4gUajtadstvh4rB5SN9IlyUfcvUVQp8qy7evj6+iIqKoqT76nRUyiE7Y6p1zsvoI+IxCWVSrHj7h0Wj5lhxtCPhjp0/Pz8fEHtIiIiRK7EMYSGglnzfdFqtVaHhwFAcLAR69ZdRu/etWfle3mZsHVrJbp3t29BJ9Wm1+uxevVqtGzZEi+99JJHBQUUFAhrFxwsLGTUkVQqKZKShN2DO3nSeZ87iIgseff4uzCYPOf3h7sxw4z7d92P9JJ0V5dSr3eOvYNFPyxyWP97L+7FlbLaq2BNJhM2ntyINm+1QeyKWGw9uxXVBuufe0kgQbfobjhw/wEUzyvGqsGr4K9qxLsUUKMllUrt3hAiOztbpGqIiNyPyWRCVlYWcnJyMHfuVQQH23d9ajJJMGdOLPLy/lygL5PJ0KpVKwQGBopQrWUdIzqia3RXh/Uvlr7xfbFt1Da7Q0KIiFzBx8cHMpnw+6lCnxkR/WV+n/lo5tcMMADYCiDDjs5iANwHQNgUinrNu2keOkV2EqWvZ3o/g/Zh7UXpS7CTwpoFBwdj2LBh4tZCjYrBYMbq1cJ/CHv3rka3bl4iVkREZLtGOoWbiIiIiIiIiIiIiMgzzJ8vh1QqLOzFbJbg5ZfdK0BBKpUiIiICbdu2xYsv6nDjjRWC+rn//iL4+poE12EwGJCTk4Pk5GQUFBTAZBLeFxGRKxgq85GeX+OU96+DVw5afH1wVDuHj+0KZR3X4KpWWMCGECqVCrGxsQwEoybBy0v4ZDidzj3CbonIdgNaDMDtLW63eCyzNBPPffucQ8YtKysTFJAkkUjs2m3emaKiogS1aygk22Aw4NKlSzb3q1absWpVBoYPL/77NanUjHfeKcWQIQE290fWq6ysxHPPPYcePXrgjz/+cHU5VikoEHa/KzjYPe/hdOokLKzs998VMJkcG/RMRFSf41ePu7oEj6ep1uDuHXdDa9C6uhSLPkv5DI/tf8yhY5jMJmw4ueHvrzNLMzHm4zHwedUHk/dMxoWiCzb1F6QKwsweM1EyrwS/Tv0Vg1oOErtkIqcLDw+36x5weXk5jEb3C8glIrKXwWDAxYsXUVpaCgCIiDBg2bIsyGT2fVbWaOR46qlYeHur0aZNG7ueT1hrcufJDh/DHp0iOmHPmD3wVni7uhQiIsHsCXisrq7mNTXZxVfpi8X9FgPbAaTZ0VEUgAcAOODypG1oWzzb91nR+vOSe2HdsHWQwEVzmioB2HZb6W/333+/U64ByXN99FEVsrKUgts/+SSf7xGR6zHym4iIiIiIiIiIiIjIhdq188Kdd1Zi924fQe0//VSN1FQdWrYU/uDSEWQyKUaMCMSIEcCXX5bitdek+PprP6vaensbcf/9RaLUYTKZkJeXh4KCAoSEhCAsLAxSKfdMISL3ZtJVIiO3FHq9c4IfU8tSLb4+o8/zQM6HQPbnTqnDGaoTZ+CKrA/gpLBIuVyO+Ph4u3azJfIkPj4+qKgQFgpbWlqKsLAwkSsiImf55N5PELo0FNWG6lrHXvnhFUy7YRqa+TcTdcyiImGfGwMCAiCXe8a0ueDgYEHt6vvemEwmXLx4EWazsEnMCgXw0kvZCA/XY+3acLz8cjEmTRJWJ9nuxIkTuOGGG/D666/j0UcfdXU59SosFLaAJCRE/Gv13Nxc5Obm2tVHZKQ3gDY2tyspkeOLL04jLs76n7nz58/bPA4RUV2SQpNw6NIhV5fh8X67+htm7J+B9+58DwBgNpthNBthMBmgN+r//LdJX+/X1pzz19etQ1qjZ0xPqOSqeus6knUE931yH0xmx9/rWndiHSJ9I7HsyDJc1Fy0ub0EEnRv1h2L+i/Crc1vdUCFRK4llUoRFBTUYEhzfa5evYqYmBgRqyIicq3y8nJkZmbWug/VrVslnngiD6+/LnwTH39/A2bP1qNFi+b2lmm1MR3GYNbBWagx1jhtTGu1CGqBAw8cQICKwf1E5NnCw8MFP/8BgPz8fMEbrhAZDAZ8/MLHgO23Pf4RDmAcgPpv6QgigQTrh61v8H6RrXrG9MQTPZ7Ayl9WitqvVX4HIDDLb/Jk9w5sJddbsUL4fL3WrWswfDjDdonI9TxjdhMRERERERERERERUSO2YIEcu3cLa2swSPDqqzqsX+9eoWD/NmBAAAYMAH7+uRyvvmrG3r1+MJnqXhh6773FCAwUd9c+k8mEgoICFBYWIjg4GBEREQwHIyK3ZDYZcSXnKqqrnTOZ/Nf8X2EwG2q97iP3RruQFkDQfKA6F9Acc0o9jqQPHYCMoEdgMtT+8zqCVCpFfHw8FAqFU8YjcgcBAQHIy8sT1LayspKhYEQeTK1U47073sO4z8bVOmY0GzF4y2D8/sjvoo4pdKG1n591gdXuQGitdX1vTCYTUlNTYTTa95lbIgFmzMjH4MF63HWXuGFv1LCamhpMnz4dKSkpWLFihdsG0BYWCmsXGir+rttr1qzBCy+8YGcv1wE4Lajl8OEvAthl5/hERMLM7jUb+y7uExTiZA+5VA6ZRAadUQczxH9vd4W1J9big9MfwGQ2wWBy/P2lrtFdsf/+/QhVh1o8nlKYgju33gmtQevwWgAgqywL076YZnO7YO9gTOw8ES/c8gJ8lb4OqIzIfURGRtoVCqbRlCAyMhpyOZ9hEpHny83NRWE9NwcmTizE779746uvbA+xSkqqxs6dZrRvH2hHhbYL8g7CyKSR2Hp2q1PHbUikbyQOjTuESF/hIWtERO5CJpNBpVJBqxX2WbekpIShYCSI0WjE2LFjsVvoRF4ACAEwHoBarKqu9Xj3x3Fj7I0O6fvl/i/js/OfIb0k3SH91+mksGZdunRB586dRS2FGpdvvtHi1CnhAXozZhgglXqJWBERkTAMBSMiIiIiIiIiIiIicrFu3bxw661V+PprYbMBPvpIjZdfNiAqyr1v+/fq5Yc9e4DTpyvw6qsG7NrlD73+2kntCoUJ48cLXDVqBbPZjKKiIly9qsHhw1GYNi0A3t7uuXiWiJqmvOxLKKvQOW28XZk7Lb7eNTzpz/+QKoAuS4Cjk4HKy06rS2xG70RkJL4FQ43zvrcxMTHw9uaOgdS0KJXCg2prapwThkhEjvNApwew6tdVOJZTO0z0TP4ZrDm+Bg93fVi08YTuFO/v7y9aDY4mtNa6vjfp6enQ6cS5HlIqlRg+nAtrXOnNN9/EpUuX8PHHH7vldadGIyzIICTEXYNjkgFoAQhZQHADGApGRK4SGxCLY1OP4ZvL3+BS8SUopArIpXLIpXIoZH/+91+vWft1Q+fIJDJIJH9uDPLlpS8x6MNBjSYYTGd03r2l4znH8eYvb+KFfrWDLXPKczDow0HQVAsPH3IkqUSKHs164JVbX8EtCbe4uhwip5FKpQgICEBpaalN7QwG4MCBAKxfH4a5c0vx0ENBDqqQiMjxTCYT0tPTUVVVVe95Egnw0kvZSE1VIT3d+sX2o0aVYuNGH/j5uWZ+zKTOk9wqFCzAKwAHHziI5kHNXV0KEZFowsPDkZmZKait0WhEVVUV1GoHpTJRo2Q0GjFu3Djs3Gl5DpVVAvFnIJiD8tDjA+Kx6NZFjukcgI/SB2vvXIsBmwc4bIxasgHkC2s6efJkUUuhxmfpUpPgtqGhBkye7H7PXomoaXLv1UFERERERERERERERE3E/PlSfP21sLZarRRLllRhxQrP2GG9UydfbNsGpKZW45VXarBtmz+qq/9cKHrXXcUIDzc4vIbduwPx4ovBeO01HR5+uBSzZvnD35+PTYjItTQ551BYanTaeD5qL/ySd9TisQlJd/zzhcIPuGElcHQSoHPPhYb1MUu9kdXpALRVzlu0GRUV5VGBI0RiUigU0Ov1NrcT0oaI3M+++/chankUDKban+ueOPAExnYYC3+VOL8ji4uLBbXz8/MTZXxnEFqrRlP7mi0zM7PBxZjWksvlaNmyJaRSYaFPJJ59+/bh7rvvxmeffQaFQuHqcq5RVCTs/4/wcJELEY0BwCkAPQW07SpuKURENgpQBeCupLtcMvaAFgPwUr+X8Oy3z7pkfE93Ku9UrdfKasowZMsQZJYKWyDtSCHeIZjcZTIW3rwQaiUXYFPTFBUVZXUoWE2NBJ99FoSNG0ORnf1n2P6KFWZMmWKCTMbPW0TkebRaLdLS0mAyWbcA39fXhBUrMjF2bIu/54zURak04aWXSvDUU8FilCpY/8T+iAuIc4trMZVchS/GfoHrIq5zdSlERKLy9/eHVCq1+vfJf+Xl5SExMVHkqqixMplMmDRpErZutSP00x/ABAABYlVV23t3vgdfpWPnB9/W/DZM7jwZG05tcOg4fzsprJmXlxfGjh0rbi3UqCQn1+DgQeGhXlOnauHt7Rnz8Ymo8eNdYiIiIiIiIiIiIiIiN9C/vwrdu1cLbr9+vTeKi50XJCOGli29sWFDIC5c0GH69GIEBRkwaVKhw8c1GIANG8IAALm5SixcGIzERGDevGIUFDgvMIaI6N8q8lKQo3He+7iXUgkf2SUUaktqHZNAgnFth1z7oroZcP3rgNT6nbrdgRnA1R6/osKJgWAhISEICQlx2nhE7kalUgluq9PxWozI04WqQ/FK/1csHtMZdbhz252ijSU04MqTgju9vb0hl9seYK3Vaq/5+urVqygrKxOlJqlUykAwN7Nv3z6MHTsWRqN73RfSaGSC2oWGSkSuREy/CWzHUDAiatqe6fMM7kwV9nuhqesS2eWar3VGHUZuH4nTeaddVFFtUokUN8XehO8nfI/CpwqxZMASBoJRkyaXy+HrW//C0YoKKTZsCMXtt7fGyy9H/x0IBgApKd7YuVOcz29ERM6k0WiQmppqc4BLy5Y1WLgwu95zoqN1OHCg0uWBYAAgk8owsdNEV5cBmUSGj+/5GL3jeru6FCIih7Bng5fKykrBgWLUtJjNZjz44IPYvHmz8E588WcgWJBYVdU2sfNEDGwx0HED/MuygcsQ6Rvp+IH0AM4Kazp8+HAEB7v+upDc19KlBpjNwp43enubMHOm8HlPRERi48wcIiIiIiIiIiIiIiI38fTTZsFty8tleP114aFirhQTo8JbbwUhI8OEtm0dHzZz4EAArlxRXvOaRiPHkiVBaNFChsceK8aVK9o6WhMRiU+rSUNmkfMmJMpkMsT7FWJN8qcWjyf4R0EutRA+EdgBuO5FAO68SP9aRd2/habSeeP5+fkhMtIJk+OI3JiPj4/gtqWlpSJWQkSuMvemuWgV3MriscMZh/HZuc9EGUev1wtq5+XlWSGnQuo1m81/f38KCwtRVFQkSi0SiQQtWrQQFFTmyaKiojBkyBA88cQTWLVqFT7//HMcPXoUaWlp0Gg0qKyshMFggE6nQ2lpKXJzc3HmzBkcOHAAa9euxYwZM9C3b1+7FjE15OOPP8a8efMc1r+tTCYziouFhb+Eh7vz543jAtsFA0gQsQ4iIs8ilUix6Y/WaK5xdSWeRSFV4MHrH/z7a5PZhMm7J+Pry1+7sKp/hKnD8PRNT6P86XL8OPlH9E3o6+qSiNxGdHS0xdc1GhnefDMcAwe2wYoVkSgsVFg8b9kyy68TEbkjk8mErKws5OTkCO5jyJBSjB1r+f5V794VOHbMjH79HHdfxVYTO090dQnYOHwjhrYe6uoyiIgcJiIiwq72Yj0XocbLbDZj2rRp2Lhxo/BO1ADGA3DgvoERPhFYPnC54wb4jyDvILw95G3HD3QOgMApupMnTxa1FGpc8vIM2L7dW3D7MWOqEB7etJ6FE5F74zsSEREREREREREREZGbGD7cG+3aaZGcLGyXoXfeUeHpp03w8fHMPUH8/JTw80uAwWBATk4OysrE3wXbZALWrQur83h5uQxvvx2EDRtMGD26BAsWeKFlS+EPiImIGqIvz0NGgc5pu5RKJBLE+5dC6eWFjy99Y/GcoQn17CgdeSvQZgZw/g0HVSiesus2Ilcb6rTxVCoVYmNjIZG4c4gBkeP5+/sjNzdXUNvKykqEhdV9rUZEnmP//fvR+q3WMJlrX+OM+2wciloVQSlXWmhpPZ1OJ6idpwVaCa1Xr9ejqqpK8HuyJQkJCR4XqmYrqVSKTp06oV+/frjlllvQvXt3qxcfyWQyKBQK+Pv7IyIiAh06dLjmuF6vx5EjR7B//3589NFHyMrKErX25cuXo0+fPhg+fLio/Qqh0ZhgNAoLBYuIcOf7Wr/Z0bYrgHSR6iAi8jyBnXrgkx3n0GsKoGXWjVUmdp6IGP+Yv79+5qtnsOXMFhdW9I9lA5Zh9o2zXV0GkdtSKpVQq9WoqqoCAOTmKvDBByH4+ONgaLUNX+/+9psP9u4txdChAY4ulYjILgaDAZcuXRIc3v9vc+bkIjlZhVOn/tl45PHHi7F8eQAUCve6V5AYlIh+Cf3wbfq3Lhn/9YGvY1yncS4Zm4jIWZRKJZRKpeBnQRqNhs+dqU5msxmPPvoo1q5dK7wTFf4MBAsXqyrL3h7yNoK9gx07yH+MTBqJUUmj8Mm5Txw3yElhzWJjYzFgwABxa6FGZeVKLaqrfQW1lUjMmDOHN6+JyL241x0RIiIiIiIiIiIiIqImTCqVYN48o+D2RUVyrF5dJWJFriGXyxEXF4ekpCQEBgaK2ve33/rh0qWGQ9eqq6V4//1AJCV5YfToEpw+XSFqHUREAGDSVSAzrwx6vcFpY8YEaKH2VsBkMuGc5rLFc57oNKb+ThIeAGJHOqA68VQ1fwpZkm5OG0+hUCA+Ph5SKR/BEymVwkN+tFqBW8ESkdtpEdwCT/R4wuKxCl0Fxu4aa/cYTSUUTKEQNvG4uLhY1NCp2NhY+Pj4NHyiB1IqlRg6dCjee+895OTk4MSJE1i+fDnuvPNOqwPBrKFQKHDzzTdj8eLFSE9Px/79+0VfuDBx4kRcvmz5Ot+Z8vKE398KD3fna+pkANUC294gZiFERJ5n8GB0zgXWfOHqQjyDVCLFUzc99ffXq35ZhSVHlriwomv9lPWTq0sgcnvR0dFIT1fiueeaYfDgVvjww1CrAsH+smSJsJBdIiJnKS8vx/nz50UJBAMAhcKMZcuyEBxsgJ+fEVu2lGDVqiC3CwT7y6TOk1wy7jO9n8GsXrNcMjYRkbOFhgrfBE6v16OmpkbEaqgxefzxx7FmzRrhHXgBGAcgUqyKLBuZNBKj2o1y7CB1eGvIWwhUBTqm82IAAh9lTZgwgXOzqE7V1SasWydsU24AuP32arRr17g3yCIiz8PfekREREREREREREREbmTsWDUSEoQtbAaAN95QQqczi1iR68hkMsTExKBdu3YICQmBRCKxqz+zGVi3zrYdAA0GKXbsCMT11/vg/vuLUVpaalcNRER/MRsNyMrORbXWeZMQIwKAAPWf/30w82cYzLUX6vsp1GgZGFd/RxIJkPQUENrLAVXaTxcxDJmBE2E2O+f3oVQqRXx8vODADqLGSOjPg8HgvJBEInK8ZQOWIdLX8mz4T859giNZR+zqX+iCQ08LBRNa76VLl0SrITIyEgEBAaL15y66d++Ot99+G1evXsUXX3yBqVOnihoCVh+pVIrbb78dhw4dwg8//IAePXqI0m9JSQmmT58uSl/2yMszCW4bFeXOP6NGCN6+Hl3FLISIyPOMHAnIZJhwGph23NXFuL8xHcagZXBLAMDOP3Zi5oGZri3oP/ac34Or5VddXQaRW1OpVNi5MxyffhoEg8H2pVuHD/vihx/KHFAZEZH9cnNzkZGRIfqzuIgIA958MxNHjtRg7NhAUfsW26h2o+Cn9HPqmFOvn4pF/Rc5dUwiIlcKDAy0a75gXl6eiNVQYzFz5ky8/fbbwjtQAngAQDOxKrIsUBWItwa/5dhB6hHpG4kVg1Y4pvNTwppJJBJMmuSaYFbyDOvXV6OwUPhzxrlzGb1DRO6H70xERERERERERERERG5ELpfgySeF76Sana3Ehg1VIlbkelKpFFFRUUhKSkJYWJjgyT4//+yDs2fVgtqaTBIEBOiRlZWFlJQUaDQaQf0QEf0lNzsN5ZVap40X5KdEqPc/4737xy6L53WP6GBdh1I50PlVwLelGOWJxuibhIzYpTAYageeOUpsbCxUKuG7DBI1Rvb8THDHZqLGQyqVYs+YPXUeH7FtBEwm4cFBOp2wQO3GHwqmAjBC8Pfnv0JCQhAaGipKX+5ArVZj8uTJOHnyJH755Rc8+uijCA4OdmlNvXv3xpEjR/D6669DrRZ23+Lf9u/fj927d4tQmXBCQ8FUKhN8fe0LhXe83wS2u0HUKoiIPI5cDvTrBwB4Yz/QLdvF9bi5p296GgDwffr3eODTB2CGe20GYzQbsfHURleXQeT25s9XQi4X/vO7eLGIxRARicBkMiEtLQ2FhYUO6V+pVOLee+PQoYP990ccTa1Q474O9zl1zJvjbrZ7Mz0iIk8ilUrh6+sruH1ZWTmMRuHPoajxmT17Nt544w3hHSgAjAUQK1ZFdXt94OuI8oty/ED1mNBpAgY0HyBup2YIDgXr27cvmjdvLmY11IiYTGasWiV8HkCXLlr068f5f0TkfhgKRkRERERERERERETkZqZO9UZkpPBgsOXL5TAa3WuBiBikUikiIiKQlJSEiIgISKW2PeZYty5M8Nje3kbcf38RAMBgMCAnJwfJyckoKCiwaxE7ETVNRdkpKCoTJ6TBGr5qL0SriyGR/jNJ/IfskxbPndzuTus7lvsCN6wEvNwjJMIs9UFm+89QI1IAhjWio6Ph5+fcXcCJPIGPj4/gtmVlZSJWQkSu1q1ZN4xpP8bisYKqAsw4MMPJFcHjFs7Z9tlXBmAbgE+xeXMizHbeGvD390dUlGsXHIht9+7dWL9+PTp37uzqUq4hlUoxa9YsHDlyBAkJCXb3N2vWLJcGbRYUCLtXEhRk9ICf0eMC2wUB4GIVImriVqwAAHgZgY93ACGNa38T0QxrMwwdIzribP5ZDN82HDqj8+512WLtibUwmfl8hKg+bdqoMWyY8HtdBw744dSpChErIiISTqvVIiUlBVVVjrmICwgIQOvWrT0q0H9Sl0lOHe+Bzx7AG0ftCDIhIvJAERERNrcpLJRjw4ZQ3HlnS3z/Pa+n6U9PPfUUXn/9deEdyAGMAZAgUkH1GNB8ACZ2nuj4gRogkUjw3p3vwUchfP5HLWkASoU1TeyXKF4d1Oh89lk1Ll70Etx+5kznbUBKRGQLz7lLQkRERERERERERETURKhUUjz+eDUWLFAIap+a6oXt26swdqz7754qhFQqRVhYGMLCwqDRaJCfnw+DwVBvm1OnvHHsmPCdA0eP1iAg4NqHviaTCXl5eSgoKEBISAjCwsJsDiojoqanPDcFV4vrf88Sk5eXErG+hZDIlH+/lltZCE1N7YVIUkgwutVA2wbwjgSuXwH8OhUwau0tVzAzgJwev6Cy0nmLJENDQxEcHOy08Yg8ib+/P3JzcwW1raysRFiY8DBXIlvcdtttKCwsdHUZjdq+ffuweeRm7EvdhzIL1x+rj63G490fR5vQNjb3rVAI+8zc0OdHd6PX2xIa/jaA4QCATZtaoKpKgwULciBkLaVarUZcXJztDd2c0P9vnKVTp044fvw4Bg0ahN9++01wP5cvX8bmzZvx4IMPilid9QoKhLULDjYCcO+/I0D43wvQFX+ueCEiaqI6dADi4oDMTMSVAls/BgaNA8zungfpZPN7z8eVsisYvGUwSmsErpJ0gvSSdHyV9hUGtrDxfiJRE7NggQyffmqGWcCbnckkwauvGrB9uwMKIyKyweXLxaiszHZY/zExMQgMDHRY/47So1kPJIUm4VzhOaeNOfPgTORW5uLVW1912phERK6kUqkgl8sbfLZjMAA//eSHXbuC8P33fjAa/7z+fu+9avTv74xKyZ3Nnz8fS5cuFd6BDMC9AFqIVVHdfBQ+eO/O99xmA5WEwAQs6r8IMw/OFKdDy3tYNswLeF/3Pg6vOoxPR3+K6yKuE6ceajRef134z0xsrK7RzrcnIs/HUDAiIiIiIiIiIiIiIjf0+OPeWLbMgOJiYbfylyyRYswYM6RS95gc4CjBwcEIDg5GaWkpcnNz61wsvXat8GAJpdKE8eOL6jxuMplQUFCAwsJCBAcHIyIiguFgRGRRteYSsjQmp40nl8sQ71sAmVx1zetv/b7D4vktAmIgk8psHyggCej0CnBiNv6M53K+wh4/oLjSeWP7+/sL2pGWqKlQKpWQSCQwm23/udRqXRcwSE3P2bNnkZeX5+oyGjWdTge5VI6to7Zi6EdDax03w4zBWwYj7QnbQ3IYCvZfzwGYds0rH38cjKIiOZYsyYJKZf17slKpREJCgtXnk7hCQkLw5Zdf4rbbbsOJEycE97N8+XJMmTLFJQtHhIeCOeaa/uGHH8aIESNE6UuvN6NPHwNqamy/Z3fvva/hmWeeafC88+fPY8yYMULKIyJyf6tWAf//njwgDXjpG+DZW11bkju5NfFWtAltgz4b++BK2RVXl9Og9357j6FgRA24/npfDBxYhoMH/QW137XLH6mp1WjZ0lvkyoiIGmY0mvDaayVYvDgAGzYUoW1bce/fy2QyNG/eHF5eXqL26ywSiQSTOk/CU1895dRxF/+4GHkVedgwfINTxyUicpXg4GDk5+dbPJaVpcSnnwZi9+4g5OfXfm60d68fSksNCAhgnEJT9b///Q+vvmpHmKYUwN0AWgMj2o5AjaEG+1P3i1VeLa/c+goSAhMc1r8Qj3V/DNv+2IajV47a11E1gBSBbdsDUAJpxWnotKYT7mh1B7bevRW+SuEbBVPj8csvWvz0k/D7JtOn6yGXKxs+kYjIBXgVS0RERERERERERETkhvz8pHjooSq89pqwh9anT6uwf381hg5tGhPEAwICEBAQgPLycly9ehU6ne7vYykpKhw+LGyiPQDcdVcxwsIaXjRuNptRVFSEoqIiBAYGIioqCjKZgHAdImqU9OU5yMjXw2RyTiiYRCJBvF8JlF6qWsc+vfStxTZ3JvYRPmB4X6DtbCBlmfA+BCrtvAV51YFOG8/b2xsxMTFusysnkbuSy+U2BNn8w9PCeojIOkNaDcGtibfi68tf1zp2ueQyFh1ehAV9F9jUp1IpbGKup73PWFfvVAAvWDzy7bf+mDo1AW+9lYmAAGODPclkMrRs2ZJh1y4WFBSE/fv344YbbsCVK8ICQVJSUvDFF1/gzjvvFLm6hhUVCbtWDg11zOelyMhIREZGitZf+/ZanDhh+/TbrKwIdO6cIFodREQeafhwYMAA4MsvAQDP/Aj8EgN83sbFdbmJuTfOxYhtI3A2/6yrS7HK7vO7kVuRi0hf8X7PEjVGzzwjwcGDwtoaDFK8+qoW69c3jWe+ROQ+ysoMmDChEp99FgwAmDkzDtu3pyIgQJzP7mq1GgkJCR5/D2pcp3F45utnYDQ3fN/NFqHeoSitKYXeZPk5y8ZTG5FXkYe99+8VdVwiIncUGhp6TShYTY0EX33lj127gvDrr/XPrayokGHjxmLMnBnk6DLJDS1cuBAvv/yy8A4kAEYCrXu3xq57d6F9eHukalLRfnV76Iy6BpvbqldML0zvNl30fu0lk8qwfth6dHm3i31/7jMAhD6m7XLtl19c/AIhS0Kw8JaFeKZ3w5uxUOO2dKnwa3F/fyMefZT3XIjIfXn2XRMiIiIiIiIiIiIiokZszhxvqNXCH1a+8oqIxXgIPz8/tG7dGs2bN4dK9WcQzrp1YYL7k8nMmDix0OZ2JSUlOHfuHDIzMz1uwTkRic9YU4aM3Aqnvh/EBlTB27t2UIbJZML5kgyLbWZ0us++QRPGAHGj7evDRlWtnsUVcyenjadQKBAfH+/xCxSInOGvazEhampqRKyEiNzFZ2M+g5fMy+Kx5797HrkVuTb1p1DU3vHdGp72Ga3heocBeKfeM06d8sH48Ym4erX+75lEIkGrVq14reMmwsPDsWvXLsEBeADw/vvvi1eQDQoLhYaCmUWuxDG6dBF2v+7sWSWMRs/4MxIROdQXXwBqNQBAagY2fQo017i4JjfQs1lPrD+5Ht9nfO/qUqxmMBnw/qn3XV0Gkdu7+WY/9O5dIbj9rl1+KC3l/TIicp7TpyvQvbsen30W8Pdr2dlKzJ8fAzH2PwoPD0fz5s0bxT2oSN9IDG09VNQ+g1RB+G7idzj98GmoFeo6z9uXug/d13Z32qZURESuIpVKoVarkZKiwiuvRKFfv7Z4+unYBgPB/vLhh8LvsZPnWrRoEV54wfKGOlaRAF53e+H9Be/j/GPn0T68PQCgZXBLzO41W6Qq/6GUKbFu2DrIpO65CW27sHZ4ts+z9nVyUmC7UACxtV/WGXWY//V8RC+PxuH0w/ZURh4sPV2P3bvrvmZuyKRJ1fDz8/zPJUTUePEdioiIiIiIiIiIiIjITYWGyjBpUrXg9keOeOPwYa2IFXkOtVqNli1bokWLlmjd2gQ/P2GLNYcOLUFMjOWdV61RVlaGlJQUpKenQ6cTf3c4InJ/ZqMeV3Lyoa1x3ntAZIAJ/mrLj4I/v3wYRnPtieEBSl/E+0fZP3jSk0BYH/v7sUJN1N3I8B0Ls9k5i+qlUini4+Mhl8udMh6Rp/P1tW4StiWlpaUiVkJE7sJX6Yt3hloOrzKajRiyZYhN/QkNSvK0z2b113sjgG0AGl4gkJamwgMPNMfFi5aD2QCgRYsWvNZxM926dcO8efMEt9+/fz8qKytFrMg6Go2wqakhISIX4iBduwprV14uQ0qK8PtMRESNhlIJfPTR318GaoFPdgAK4XukNArhPuHYmbzT1WXYbO2JtTBZuN9IRNeaM8f2gGq12ohJkwqwa1cqioqyHVAVEVFtmzYVo08fb5w/713r2OHD/li7VvimbBKJBImJiQgPD7enRLczqfMk0fpSK9TYd/8+tA9vj6SwJFx87CKCVEF1nn8s5xjavN0GWkPTnBtERE2H0RiJe+9tga1bQ1Beblto0m+/+eDECeEhveR5XnvtNTz7rH0BVn0e64OKbRWY0HlCrWPz+8xHM79mdvX/X//r+z+0C2snap9im9d7HjqGdxTWOBfAVYEDd6n/8NWKq7j5g5vRd2NfFFbZvgEwebbly2tgMAjbrEihMOHJJ+t+dk5E5A4YCkZERERERERERERE5MbmzfOCUil8McWiRU17IYa3twqrVgXh0iUj5s4tRnCw9RPuJRIzpkwRZ5JARUUFLly4gLS0NGi1nIxJ1FSYTSZczU5HeaXzfu6D/RQI8a47OGLtH59ZfL1XpMBJW/8lkQGdFgH+bcTprw4Gv47IaPYyjEbnrRaNi4uDSqVy2nhEns7f39+m8/V6CZKTVfj44yDs3du0r2GJGrNJXSahS6Tlmdsnc09i/Yn1Vvcl9PdyeXm5oHauoNPp6gkFSwLwOYDaCzTrkp+vwIQJzXH8eO3dkhMTE3mt46YWLFiAli1bCmpbXV2NvXv3ilxRw4qKhE1NDQ8XNmnf2Xr0EB6ed/QoQ8GIiAAAw4cD8+f//WVaECBw7VajEOUbhT0X9ri6DEHSitPwzeVvXF0Gkdu74w5/dO5cZdW5gYEGTJ+eh0OHzuPJJ/MQFmZAVVUV9HpeSxKR4+j1JkyfXowJE4LqDVt5++1wHDli+6YgSqUSbdq0gY+Pjz1luqWhrYYi3Mf+oDO5VI5P7v0EPWN6/v1atH800p9Irzd4JFWTisQ3EqGp0thdAxGRu2rVSo1evYRvgPHuu7yWbiqWL1+Op59+2q4+Fr2+CIdXHYZcavlZgK/SF0sHLLVrjH+7LuI6PHXTU6L15yhKmRLrh62HVCLgGdBJYWPK5XIsn7scakXtZ5v/9UPmD4hcFok5h+bAZOKck6agpMSIDz6w/ln5f40YUY24OIWIFRERiY+hYEREREREREREREREbiw2VoExY6oFtz90SI2TJ2tErMgzhYUpsWRJEC5fBhYu1CAiouGJPrfdVobmzcX93lVVVSE1NRWpqamoqrJu4j8Rea6inAvQlDnvPdjPxwtR6hJIpHWvoPwp97TF1x9sN0K8QuRq4PqVgCpCvD7/xST3R2a7j6HTOW/SZrNmzeDra/sCB6KmTKFQQCKx/H6k1wMpKSrs2hWEl16KwpgxzdGjRxJGj26JF15oho8+anyLgojoH/vu3weZxPLCwun7pqNCZ91u7UFBQYLGLysrE9TOFequtRmAAwCCbe6zvFyGadMS8OWX/4Q3xsTENMoFmY2Fl5cXFixYILj9F198IWI11tFohIVmhYWJXIiDdOyohLe3sAUlx46ZRa6GiMiDLVoEPPYYvk0A7hsFmJvwyoarFVddXYJd3vvtPVeXQOT2ZDIpnnyy/ucF4eF6PPXUVRw8eB4PP1yAgIBrrzlzcnIcWSIRNWFXrmhxyy1VWL264fttZrME8+bFICfH+sXzAQEBaN26NeRy4SHb7kwhU2DcdePs6kMCCTaN2ITbW95e65i/yh9pM9KQFJpUZ/vcilw0X9UcmaWZdtVBROTOxo8XPkfk44/9UFPDkKDG7o033sCcOXPs7mP+rPkNnjemwxj0ietj11gAIJVIsX7YeihlSrv7coZuzbphVs9ZtjUyAPhd2HhDhgzBkwOeROnTpRjfaTwkqH9XAaPZiOU/L0fo0lDsSfHMAH6y3ttvV9cbaNyQefMa5+cTImpcmvCjMyIiIiIiIiIiIiIizzB/vgIymfAFg6+8YhCxGs/m7y/H888H4/JlKZYu1SAuru7J91OmFDisDq1Wi7S0NJw/fwHnzgnfxZCI3FdZbgpyS5z3/qvyUiJGXQiJrO7JKlcq8lBSU17rdZlEirta9BO5oDDg+hWArOGdGm1hBpDT7WdUVetE7bc+YWFhgkNHiJo6uVwOgwE4f94Ln34aiJdfjsLYsc3Rs2c73HNPSzz/fDPs2BGCP/5QQ6//ZwrLH394ubBqInK0SN9IvHDLCxaP1RhrMGLbCKv6CQ62MRDLC0AnICs+C8dzjtvW1kUsh4IFAtgPIE5wvzqdFLNnx2L79mBEREQgMDBQcF/kHA888ADi4oT9nf/8888iV1O/ykoTqquFTU0ND/eMKa1yuQTt2wsLgD51SvjiBCKixuj4MxMwbIISOq6/8mifpnyKvIo8V5dB5PbGjg1Aq1baWq/Hx9fgxRev4MCBCxg3rghqteXnwuXl5TAY+NyXiMT15Zel6NZNiiNHrN8cp6REjiefjEVNTf2hDMCfYfSxsbH2lOgRJnWeZFf7VYNX4b6O99V5XClX4uwjZ9E7tned55TWlKLtW21xNu+sXbUQEbmrBx7wQ2CgsOthjUaOjz4qFbkicierV6/GzJkz7epj6dKlmDFjhlXnSiQSvDn4TUgl9j3XmN1rNrpGd7WrD2d7sd+LaB7U3PoG5wEI3Bd58uTJAAC5VI4PRnyAtBlp6BTRqcF2xdpiDN8+HNe/ez0ySjOEDU5uTa834513hIfp9e1bjRtu4NwkInJ/njGDgoiIiIiIiIiIiIioCWvTRolhw6oEt//0UzUuXHBeeIon8PaWYc6cYKSmKvDOO8Vo3fraCfg33VSO9u1rT8oX2/ffK9GxoxrDh5fi6NHaQT1E5JmqC1ORVWR02nhyuRzxvgWQKeqf6LLq1DaLr7cKjINU6oBHx/6tgc6LAYl4i94Lev6Mkkrn7d4aEBCA8PBwp41H1Nh89VUIevZsh7vvboXnnovB9u0hOHNGDZ2u/vecq1eVyMpy/LUYEbnOgr4L0DzQ8mTxry9/jX0X9zXYR0hIiPUDtgfwOIC7gJKuJei5ric2n95sfXsXKS//7+dELwC7AXS0u2+zWYLoaBXCwsLs7oscTy6XY/z48YLapqamoqDAccHn/5WbKzykICLCc6a0duki7DPf2bNKGI3Cw/+JiBqT84XnMXjLYFRI+PzC0xlMBnxw+gNXl0Hk9mQyKWbO/GcldNu21Vi6NBO7d1/EXXeVQKFo+Drx6tWrjiyRiJoQo9GEV17RYOhQP+Tm2r6Y/o8/1Fi8OKrO4zKZDK1atWoyYfTtw9uje7Pugto+1/c5PNb9sQbPk0ql+GHyD7ir7V11nlNtqMb1712P79O/F1QLEZE78/GRY8SICsHtP/iAieSN1dq1a/HYYw3/Lq3Pyy+/jDlz5tjUplNkJzx8w8OCx2wZ3LLOjZTcmVqhxro711nf4KSwccLDwzF06NBrXksISsCph0/hk3s/QaAqsOGhc08icWUiJu+eDIOJIduNyUcfVSE7W3go2OzZIhZDRORAnjODgoiIiIiIiIiIiIioCVuwQPikFKNRgldf1YtYTeOhUEjx8MNBSE5WYtOmYnTq9Gf42tSpzlksu3ZtGIxGCfbsCUCvXn647bZyfPUVdyUk8mS6smxkFOphNjtnkbdUKkW8nwYKL1WD5+6+fNji68MTbxa7rH+E3QgkzRWlq5IuO5FfZf0u5fZSq9Vo1qwZJJKGdzknIstatFCipkbY1JSffmIoGFFjt+/+fZDA8u/Z+z65r8GJ2cHBwQ0P4g/gPgD3APjXZYTRbMSz3z4Lk9l5YaNCFBcX/+cVEwBxdrP+3/80eOQRK76H5Dbuu+8+wW2PHj0qYiX1y8sT/nMVESFeoLCj3XCDsM8JlZUyJCfzPh0R0ZWyKxj44UAUVhW6uhQSydoTa93++prIHTz4YACGDCnBO++kY8eOS7j99jLIbLgMLi0thcnEnzUiso/BYMArr+RjwYJg6PXCl5d+/HEwPvsssNbrarUabdq0gZeXlx1Vep5JnSfZ3ObRro9i4S0LbWqza/SuegNI9CY9+m/qj0+SP7G5HiIid/fQQ8LvIf/wgy9SU6sbPpE8ysaNGzFt2jS75mk999xzWLBggaC2L/Z7EcHewp63rbtzHbwV3oLaulq/xH6Yev3Uhk8sA3BJ2Bjjxo2DXG553vTIpJEomluEmT1nQtbAZpVmmLHx1EYELg7E+6feF1YMuRWTyYwVK4T/PmjbtgZ33NHwXEsiInfAUDAiIiIiIiIiIiIiIg9www1euO22KsHtt271RnY2d7qqi0wmxbhxQfjtNxUOHChGt26OD6E4eVKN48d9rnnt66/9MGBAAG66qQK7d5fAaOSkfiJPYtSWICOvEgaD0WljxgZUwNu74Qn1JpMJqaVZFo893mm02GVdK+5uIOEBu7qobLMI2aYkkQpqmFKpRFxcHKRSPlInsseNN6ohlQqbfHvsmHPCFYnIddqEtsEj3R6xeKyspgzjPh1Xb/ugoKC6f1dLAHQDMB1AG8unZJZmIquO6yN3kZub+59X9AAmAHjNrn6nTi3Giy8yEMzTtGvXDvHx8YLanj9/XuRq6pafL+xehlRqRliY54SC9eqlENz26FGGghFR01ZUVYSBmwciszTT1aWQiFI1qfgu/TtXl0Hk9pRKKdasKUfv3hUQuh9F7c+KRETWKy8vx/nz5zFoUBFatrR/XsTLL0cjJeWfBfXh4eFo3rx5k3zGNqbDGKjk1ocLjG4/GqsGrxK0QdE7d7yDhTcvrPO4yWzCPTvvwepjq23um4jInfXq5YfrrhM2h9JkkmDNGoaCNSYffvghpjw4xa5AsKeffhovvPCC4PYh6hAs6r/I5nYP3/Awbk5w4CaOTrBkwBJE+0XXf9IpAAL/eiZPnlzvcalUihWDViDnyRzcFHtTg/1V6isxafcktH6zNf7I/0NYUeQWvv5ai9OnhYd6zZhhgFTKTUKJyDM0vbsrREREREREREREREQeasEC4bf1a2qkWLzY8UFXnk4mk2LQoCC0a9cO0dHRde40Joa1a8PqPHbkiC9GjAhE165abNlSzHAwIg9gNuqQlVOImhqd08aMCjDCz9u6RfMfp34Nk7n2e0mQlx+a+YaLXVptbWYAEf0ENa1pNhaZ6rvsmsRnC5lMhvj4eIf+DiBqKvz95WjRokZQ29On+TNI1BS8efubCFNb/my07ew2HMs+VmdbiUSCkJCQ2gdCAUwCMBRAA9mp2eXZVtfqCpYXepsBPA1gpqA+hw0rxerVAXZURa50000NL2qw5PLlyyJXUrf8fGHX7YGBRshknjMBv317BdRqYYHQx48z/JSImq4KXQWGfDQE5wrPuboUcoD3fnvP1SUQeYSoqCi72hcXF8Nk4rNDIrJdbm4uMjIyYDaboVabsWJFJnx97dvsqKZGipkz41BWJkNiYiLCw53w3NFNBaoCMSpplFXnDmg+AJvu2gSZVHhA+vO3PI/VQ1ZDAsv3U8wwY/q+6Vj47ULBYxARuaOxY4XPgdy+3RcGA6+lG4Nn33gW4yaMg9kk/H77rFmz8Oqrr9pdy9Trp6JzZGerz4/xj8FrA+zbAMgdBKoCsXpIAwGkp4T13aNHD7Rr186qc8N9w/Hj5B/xzfhvEOkb2eD5FzUX0eGdDhi5fSSqdMI3aibXWbZM+M99eLgekyZ5i1gNEZFjMRSMiIiIiIiIiIiIiMhD3HKLCr16Cd+t7v33vVFUZN+EzqYkODgYbdu2RWxsLBQKhah9nzunwg8/+DV43qlTajzwQBA6dKjBe+8VQ6/npCQid2Q2mZCTnYGKKueFL4b4yxHiY7D6/PXndlt8/aaoziJV1ACJFLjuJSDAuglbfzEEXI+MqOdgNDrn95dEIkFcXBy8vBpIECEiq3XsKCwU7OxZ4bt6ElkrNzcXZrOZ/zjwn4SEhHr/DqRSKXaPsXydAgB3br2z3oXO8fHx/3whA3AzgIcBxFn3/8CVsivWnegilkPB/vIGgDEArA+lvemmCmzb5gu5nNMGPVWPHj0EtUtPTxe3kHoUFAibiB8U5Fn3rGQyCTp0EBYKfeqU8AW/RESerMZQg5HbR+LX7F8dNkaPIm+8VNwFr4aPxbJbl2DloJV4e8jbePeOd7Fh2AZsGrEJW0dtxc57duKz0Z/hi/u+wLQbpjmsHmvIIUen4E4Y03wM5naci9FRDwMnpgApw4CsXoCmBVDT8PMEd7Dr3C5U64U/xyJqKuRyOfz8hP9cm81mFBYWilgRETV2JpMJaWlptd47EhJ0ePll+++P9ehRjY4dW8HHx8fuvjzdpM6TGjyne7Pu2DV6F5Qypd3jPdLtEey8Zyekkrrv971w+AU8/MXDdo9FROQuHnzQF97ett9PjourwahRGuTmFjmgKnKW3IpctHm0DRY9uQiwYyrlY489htdff12UmmRSGd4c/KbV568Zugb+Xv6ijO1qw9sOx73t77V8MB2ARli/kydPtrlNv8R+uDr7Kl7q9xIU0obn+36a8imClwRj+c/LhZRILvLHHzp8+aXwUK+HHqqBSsVn5UTkObitKhERERERERERERGRB3n6aWD4cGFtKypkWL68Aq+84ituUY1cQEAAAgICUF5ejqtXr0KnE7bg89/WrQuz6fyUFG9Mm+aNV1+twcyZlXj88UBIpXwwTeQuSnPPo7jMeQvY/X28EKkuxp/JF9Y5mnvG4usPdbhLpKqsIFMB178O/DwJ0F5t8HSTIhSZbbZCp7X/fddazZo144IFIpF16mTErl22t8vLUyAjQ4v4eIaDETV2vWJ7YVTSKHxy7pNax/Iq8zD70GysuH2FxbaJiYk4fvw4EANgGIBw28bOLsu2vWAnunz5cgNnbAeQD+AzAPUvHmjXrhp79njB25thRJ6sRYsWgtplZmaKXEndhGYThIR4XhB6ly5G/Cog1+bsWSUMBjPkcon4RRERuSmjyYjxn43Hl2lfOnQcn6698Oz4r21qM6TVEJRoS7D9j+0OqsqyaO9oPNDqAdwZdycCvQL/fn3hR9HAnuDaDeRaQF0A+OQDPn/+O75dFrr0zkdAVCkKqgtQUFmA/Mp85Ffmo9rg/HAuvUmPzNJMtAlt4/SxiTxNdHQ0zp8/L7h9YWEhwsLCIJHwmpKI6qfVapGWllZn8P6tt5Zj0qQCbNxo2xwGAFAqTXjppRI89ZSFa5cmql9iP8QHxCOjNMPi8aTQJOwduxe+SvHm7YxqNwrfjv8Wt22+DXqT3uI57/72LvIq8vDpmE9FG5eIyFVCQpQYPLgUu3YFNHiul5cJAwaUYeRIDbp2rYJEAlRWKgDY/nuPXMtkMmHGgRlY/eFqmLeb7QoEmzp1KlatWiVecQB6x/XG2I5j8dGZj+o9b2zHsRjaeqioY7vaqttX4au0r6Cp/k8C2Elh/anVaowZM0ZwPc/2fRYze87E6J2jsS91X73n1hhrMOfQHKw8uhI77t6BXrG9BI9LzrFkiR5ms7BwXW9vE554QnigGBGRKzAUjIiIiIiIiIiIiIjIg9xxhwodO2px5oywcIR331Vh/nwTfH0ZKGUrPz8/+Pn5oaqqCjk5OdBqtYL6SUtT4ssvhe30lp7uhW+/rcKttybD398f0dHRkMv5uIfIlQyVBbha6rzxvFVeiPHRQCK1/mf/cmk2ynSVtV6XSWQYGt9bzPIa5hUK3LAS+GUKYKio8zQzZMju+gOqKp0XCBYeHo7AwECnjUfUVPToITx85qefGApG1FR8NPIjhCwNQYWu9vXBG7+8gce6P4YWwbXDkKITooHbAfQAIGAd9JWyK7Y3chKNRoPU1FQrzvwWwM0A9gOItHhGbGwN9u2TIDi44V2xyb01b95cULvy8nKRK6lbQYGwUILgYLPIlTjeDTcI+7NWVclw9mwNOnf2ErkiIiL3ZDab8di+x7Djjx0OH+t07mmYzWabQnIkEgnWDVuH3/N+x7nCcw6s7h/9o/tjZc+VterMy5Nj9+5Ay40MKqAs9s9//l/GaSBjK9CpUxVmz67B2MkBkMn+fP5Tqav8OyCsoOqfsLCCygLkV/3rv///9boCJGwRpg5DYlCi3f0QNQUKhQJqtRpVVVWC2ptMJmg0GoSEhIhcGRE1JhqNBjk5OQ2eN2NGHv74wxu//mp9UFV0tA4ffliDfv0YCPZvUokUEztPxAvfv1DrWKx/LA4+cBCh6lDRx+2b0BcnHjqB7uu61xkO+9n5z3DT+pvww6QfuAkdEXm8Bx9EvRtTJSVVY9SoYgweXAJ//2vTo/R6PXQ6HZRKYaEy5Hw7/tiBqZ9PRdnZMmAH7AoEmzhxIt59912HBCwvuW0JdqfsRqW+9hwtAAhVh2LloJWij+tqEb4RWDloJcZ/Nv6fF2sAJAvrb9SoUfD3Fza/9i++Sl/svWiUV0kAAQAASURBVH8vTlw9gbt33I3LJfVvxHSl7Apu3HAj+if0xyejP0GgKtCu8ckxcnMN2LFDeKjX2LHVCA3lZqFE5Fm4SoSIiIiIiIiIiIiIyINIpRLMnWvE+PENn2uJRiPH229XYt48PtgUSq1Wo2XLltBqtcjJybF5sv6GDWEwm4VNKpFIzJgypQAAUFZWhrKyMvj6+iI6OpoTlYhcJK+wBEaj0SljKRRyxPkWQCq3beH4qtPbLL7eNijeNRO+/VoAnV8DfpsBmC1/7/J7HkVppcFpJQUGBiIsjDvBEjnCjTf6QCYzw2i0/frn2DEzxo51QFFE5HaUciU+vOtDjNg+otYxM8wYvGUwLjx+4ZrX91/cj81+m4GewsfNLs8W3tiBysvLkZOTg6ysLCtbnALQC8BBAK2vORIcbMDnn+sRH2/9ok5yX0IX/FdWWl6A4ghFRcLueYSGel4oWK9ewoP2fvnFwFAwImoynv/ueaz5bY1TxiqqLkJ2eTZi/GNsauer9MWu0bvQbW03i0G1YvKWeWPh9QstLj59//1QGAy23687fVqN8ePV8Pa+hJtuUiMiIgI+Sh8kKhOtCukym80oqymzOkSsoKoAJvO1K3D9lH7YOHwjlDI+qyCyVrNmzXDx4kXB7fPz8xkKRkQWmUwmZGdno7TUup2N5HLgtdeyMHp0S+TnN/xZt3fvCmzfrkB0tJ+9pTZKD3d9GG/9+haKqov+fi3EOwSHxh1CbEBsPS3t0yGiA1IeS8F171yH0hrLf/dHrhxB+3fa4/S001DKed1GRJ5r4EA/JCbW4PLlf+6x+vkZMXRoCUaOLEZSUv2bfebm5iIuLs7RZZKdLhZdxF3b78IfBX8AaQC2A7Bjitb999+P9evXOyQQDACa+TfD//r+D09//bTF46tuX4Uwn8Y5N+mB6x7AR2c/woHUA3++cBaAwPz5SZMmiVbX9VHXI+2JNLxz7B3MPjS7zvDUv3yT/g3CloZhzo1zsKjfIgapupmVK7XQaoU985ZKzZg7lxtoEZHn4W8iIiIiIiIiIiIiIiIPM3asGs2b6wS3X7VKCZ3O8xZauhuVSoXmzZujdevW8PW17kFzTo4Ce/cGCh5zwIAyJCZe+3dfUVGBCxcuIC0tDTU1NYL7JiLbmY06lFYKnMFkI6lUing/DRRK2xeNf375B4uvj2zR396yhAvtAbR/xuKh4hs+Q0GVymml+Pj4IDo62mGT/oiaOj8/OVq0EHaN8vvv3OuOqCkZ3nY4bo6/2eKxi5qLWPLTEgBAQWUBHtj1AIZ8NAQak8auMa+UXbGrvSNUV1cjIyMD1dXVKCgosKFlOoCbIJef/PsVb28jPvmkGp06MRCssfDxERbybmuguT2EhoKFhXnevaqkJAV8fIStQDp+XORiiIjc1BtH38BLh19y6pinc08Latc2tC02Dt8ocjW1jUochSCvoFqvazQyfPJJsOB+e/asQNu21SgqKkJycjKuXLli9WYGEokEAaoAtApphZvibsKItiPw0A0P4dm+z+KNwW9g66it+Hr81/j9kd+ROycX+v/pUTi3EMmPJuO7Cd/h8MTDyJyViaGthwqun6gp8vLygkol/F640WhESUmJeAURUaNgMBhw8eJFqwPB/hIaasTy5ZmQy+v/fP7448X45hs1oqMZdF2XSN9I7B6zG92bdUegKhC3Jt6KI1OOoG1oW4ePHRcQh/SZ6Yj0jazznJTCFDRf1Rxl2jKH10NE5CgymRRjx/65GUa3bhV49dUsfPNNChYsuNpgIBjw5+Ys5L50Bh3u+/g+tHmrzZ+BYOkAtgKwY2/Be++9Fx988IHDQ55m9pyJVsGtar1+R+s7MKbDGIeO7UoSiQRrhq6Br/L/n0merP/8ujRv3hy33HKLaHX95ZFuj6BkXgnGdhgLCep/jmUwGbD4x8UIXxaO/Rf3i14LCVNVZcK6dcLvoQweXIU2bRiKS0Seh6FgREREREREREREREQeRiaTYPZs4SE0OTkKrFvnvMWgjZ1SqURCQgLatm0Lf3//es/duDEUBoPw0JkHH6x7QXhVVRUuXryI1NRUVFfXv6MZEYmjqugyTCaTU8aK8y+HSmX75HqDyYDLZdkWjz123b32lmWfmBFA82t3d6xIWopsfQunlaBUKhEbG8udHYkcrGNHYaFgZ886LyCQiNzDnjF7oJRZnoy74JsFWH1sNZLeTsKWM1tEGS+73PJ1kqvodDqkpaUBALKysgT0UIjOnWehd+9yyOVmvP9+OW65xU/cIsmlhAYGaLUNL4ISi0Yj7No6JETkQpxAJpOgY0dhwf2nTvEzCBE1fh/+/iFmHpzp9HFP5Z4S3Pbudndjdq/Z4hXzH3KJHBNbT7R47MMPQ1BdLfz3w0MPXfv8oKSkBOfOnUNmZiYMBjtWzVoglUgRog5BUlgSbk64GX3i+yBQFSjqGERNRXR0tF3tc3NzRaqEiBqD8vJynD9/Hnq9sPkknTtXY86cqxaP+fsbsGVLCVatCoJCwc+0Dbkp7ib88uAvKJ5XjK/Gf4XWIa2dNnagKhCXn7hsMZDkL9nl2Uh4IwE5ZTlOq4uISGzTp6uxd+8FbNiQjjvuKIVKZf3GE2azmQG7buqtX99CwGsB2PbHNphhBrIAfATAjj0b77rrLmzZsgUymUysMuvkJffCx/d+jBDvfx56dInsgvXD1jf6zQrjA+Px0ciPoNAoAIH7Mk2cONFh3yelXIkto7bgwmMX0CGsQ4PnF1UXYchHQ9DtvW5uudFUU7NuXRWKioRvLDh3ruN//omIHIF3YIiIiIiIiIiIiIiIPNCDD6oRHS18psPy5QoYjdZPhKGGyeVyxMXFISkpCQEBAbWOFxbKsWtXkOD+e/cut2onQ61Wi0uXLuHChQuoqKgQPB4RNaxS2Npvm0UHGOCrFjapZduFQzCh9vt9iCoA4epge0uzX6tHgMgBAABt7ERkeg1x2tAymQzx8fGQy4VPGCIi63TubBTULj9fgbQ0hp0SNSX+Kn+sun2VxWMGkwHT901HUXWRaONll2XDZHZOyGtDDAYDUlNTYTb/ee128eJFQf20b5+AVasysHNnEe69N1DECskdCA33EhomJoRGI2xSfXi4Zy6G6dJF2HvIH394wWDgvTkiarz2XtiLSbsnNXyiA5zOO21X+8W3LUbf+L4iVXOt4fHDEeEdUev18nIptm0TnpDZqVMVunattHisrKwMKSkpSE9Ph07npBuaRGQ1tVoNpdJyOLY1DAYDysvLRayIiDxVbm4uMjIy/r63JNTYsRoMHlxyzWtJSdU4ckSHsWMD7eqbnEclVyFlegq6R3ev85xibTFavdUK5wrOObEyIiLxREWp0Ly58Gc8BQV1b85Jznc85zgSVibg8f2PQ2v4/2chOQA+BGDH7Yw77rgD27dvd+rcoOsirsP5x85j26ht2H//fvw4+UeE+4Q7bXxXurPNnZhgmiCorVQqxcSJE8UtyIKWIS1x5tEz2Hb3Nvh71b8JMAAcv3oc8SvjMe3zaTCahM19IfsYjWasWqUQ3P6GG7S4+WZuSkhEnomhYEREREREREREREREHkiplGDGDOGzHdLSlPjooyoRK6K/yGQyxMbGol27dggODv5757JNm0Kg0wl/NPPQQ7ZNRNLpdEhPT8f58+dRWloqeFwiqpvJ7PhF66H+MgT7CJ9QtPHc5xZf7xt9veA+RSWRAh0XwhD7ADLCn4bJ5JxQDolEgvj4eHh5eTllPKKmrkcP28JBgoMN6N27HNOm5aOqiiGnRE3NtK7T0DG8o1PG0pv0KKwqdMpY9TGZTEhNTb3mWig5OVlQX0lJSQgO9sOIEaFilUdupLLScthHQ9RqtciVWGYwmFFS0rRCwW64QVi76mopzpxhMAsRNU4/Zv6Iu3feDYPJ4JLxT+Wesqu9XCrH9ru3I8o3SpyC/p9UIsVjXR6zeGz79mCUlwv7HQoADz2UD0kDv0orKipw4cIFpKWlCQ4aJSLHiIqy7/3m6tWrIlVCRJ7IZDIhLS0NhYXi3OOSSICFC7PRsuWf1wujRpXil18UaN/eOfcWSDxSqRS/TP0FQ1sNrfOcKn0VOq3phCOZR5xYGRGReIKDhW+GV1NTA4PBNfcu6B9l2jLc/uHt6La2GzJKM649+AuAGvv6/+KLL6BUKiGRSJz6T6hPKMZ0HIPBrQbDR+ljV1/fffedfd8EJzIYDPh8p+W5ag257bbbEBsbK3JFdRvdfjSKnyrG9G7TIZXUP6/XZDbhvRPvIei1IGw5s8VJFdJfPv20GpcuCZ/jN2uWe2wSRkQkBEPBiIiIiIiIiIiIiIg81PTp3ggOFj4xZelSGUwm+3aJpbpJpVJER0cjKSkJISGhSEnxFtzXDTdUoksXYSFuer0eWVlZSElJQXFxseAaiMhV7FsY/2veHxZff6TjKLv6FZPJLENG1HPQ6/VOGzMmJsZpwQhEBPTq5QO53PJ1Z1CQATfdVI6pU/OxcmUGvvzyPL77LgXvvJOBxx7Lh1pd7uRqicgd7L9/f4OTr8VypeyKU8apy18LN/+78ERoKFinTp0QFxcnRmnkhoqKigS1c9a1b2GhEWaB4cnh4Z45nbVXL7ngtkePcsEZETU+v+f9jjs+ugNag+tCp1I1qajQ2RcwHekbiR337IBcKvx9/r/GdBiDW667BW3btoW/v//fr1dXS7B5s/BA1zZtqtGnj/V/3qqqKqSmpiI1NRVVVdw8hsgd+Pn5QaFQCG6v0+n480zURGm1WqSkpIj+HqBWm7FiRSaWLNHg448D4Ocn3jUROd8XY7/A5M6T6zyuN+nR5/0+2JOyx4lVERGJIzTUvg1S8vLyRKqEhFj47UKELg3FwUsHXV0KiWTv3r2Cf64mT677esVRpFIp3hryFrKfzEbPZj0bPL9cV44Hdj2ApLeTcL7wvBMqJAB4/XXh8yfj43UYPVr43G0iIlfzzFkUREREREREREREREQEX18pHnlE+MKaM2dU+OIL7gbvaFKpFFFRkfjhBzU++aQEPXvavhjpoYcK7K7DYDAgOzsb586dQ2FhIUwm7n5FZC+pxPHBioVlBmgqhU20P1+cgQp97UUACqkcA+IansjkDGaTCVcqg1GttXNrTxtEREQgICDAaeMREeDrK0fLlloEBBjQq1cFHnywAK+/nomDB8/j++9TsGZNBmbMyMett5YjMlIPyb/m89XUOO/9gYjcQ42hBu/+9i7gpAzr7LJs5wxUh8zMTGi11342N5lMSElJsbkvb29v3HbbbZBI7AuWJfeVlpYmqJ2fn5/IlViWm2sU3DYyUiZiJc7Ttq0Sfn7C/tzHjzOsn4gal7TiNAz6cBBKa0pdWocZZpzJO2N3P73jemPpgKUiVPSnZ3o/AwCQy+WIi4tDUlISAgMDsX9/IDQa4UEbDz5YACGXf1qtFmlpabhw4QLKyxnITeRqERERdrXPyckRqRIi8hQajQapqakOe+7fu3c45s4Ndkjf5Hzrh6/H/D7z6zxuMpswYvsIrDuxzolVERHZTyqV2rUpRmmpa+9hNFVfXvoSEUsj8MLhF6A3OW8DQXK8DRs2CGoXFBSEESNGiFuMDSJ9I/Hzgz/j0AOHEKYOa/D8lMIUJL2dhHt33uvSzRGagp9/1uLnn4WHek2froNczmfnROS5GApGREREREREREREROTBnnzSG76+whdcLl4sYjFUL5lMipEjA/Hzz744eLAU/ftbt8imXbtq9Ople5BYXYxGI3Jzc5GSkoL8/HyGgxHZwcfLORNGckplKK+y/b1+1eltFl9vF5xob0miyavyQ1ml8wJ/goKC7N4ploiE+eCDbPzwQwreey8dTzyRhwEDyhAdrW9w4bLRKPxal4g8z4+ZP6Lzu53x0uGXYIJzPqtkl7suFCw7OxsVFbU/7507d87i6w3p2rUr5HLhgRLk/i5duiSoXUxMjMiVWJaXJ/znNiLCM0PBpFIJOnTQCWp76pRn/pmJiCzJrcjFgM0DkFuR6+pSAACn806L0s8TPZ7A6Paj7e5neJvh6BDe4ZrXZDIZYmJi8MwzUVizphht2lTb3G98fA0GDCizqzadToeMjAycP3+ei6GJXCgwMBAymfDrQ61WWytwmogaJ5PJhKysLIeFAcpkMrRq1QqBgYEO6Z9cZ1H/RVh1+6o6j5thxtTPp2LR4UVOrIqIyH72BOyaTCYGZTtRbkUueq3rhYEfDkR+VX6D5/t7+TuhKhJLXl4e9u3bJ6jt2LFj4eXlJXJFthvQYgDy5+bjf33/B4VUUe+5ZpixM3kngl4Lwpu/vOmkCpuepUuFzxkKCDDgkUeEB0cSEbkDhoIREREREREREREREXmw4GAZJk60faHIX37+2RvffccJ4s42cGAAvv7aDz/9VI6hQ8sglZrrPPehh/IbDMsQwmQyIT8/H+fOncPVq1dhNDIcjMhW6uBESKXOeeSaVeYLrda28Kx96T9ZfP3ulreKUZLdNJUyFJYZnDaej48PoqOjIXHEmyoRNSgqykvwNU11tfDrXSLyDGU1ZZi+dzr6bOyDlMIUp459peyKU8f7S35+PoqLiy0eO3r0qKA+Bw4caE9J5AF++eUXQe0SEhLELaQO+fnC7i2o1Uao1Z47nbVLF2ELEpKTvaDX131PiIjIU5RoSzDow0FIK05zdSl/O50rTiiYRCLBumHrkBSaZFc/8/vMr/OYQiHFtGlB+OMPL2zeXIzOnaus7nfKlALYkSF0Db1ej6ysLKSkpECj0YjTKRHZJDw83K72jgoIIiL3UVNjwMWLFx0W5KlWq9GmTRu3CGQgx3i8x+PYNmobpJK678M8++2zmLF/hhOrIiKyj4+Pj11zd/LzGw6nIvuYTCZM3zcdzV5vhqPZDT8D81X64v3h7+OupLucUB2JZdOmTTAYhM0Dmzx5ssjV2OfFfi+iYG4BBjZv+Nmr1qDFjAMzEL8yHseyjzmhOtsZTUasOb4G931yH57/9nloqj3j3t/ly3p8/rnwUK/Jk7Xw9fXc549ERABDwYiIiIiIiIiIiIiIPN7TT6vg5SU80GnRIoZBucqNN/rhiy/88dtvlbjnnlLI5df+XbRooUW/fo7djdBsNuPYsQq0aqXD8uUa1NTw/wcia0lkCgT41r8roFhMJhPSy4Khr7EuGExn0CGj/KrFY492vEfM0gQprzIip1TutPG8vJSIi4tjIBiRC/n6+gpu66gFTkTkHj4//znavd0Oq4+vdsn42eXZTh9To9HUu8hEaCjYgAEDhJZEHuKnnywH/zYkMTFR5EosKygQ1i44WPgu3+6gWzdhU3G1Wil+/10ncjVERM5Vpa/CnVvvxO95v7u6lGucyjslWl++Sl/sGr0Lvkphn2tva34bujfr3uB5MpkUDzwQhOPHVfj00xLceGNFvedHRupwxx3if142GAzIyclBcnIyCgoKYDLxmQGRs4SEhNgVZlBVVYWaGl5fEjVWp09XoHNnPQ4dUjmk//DwcDRv3txpGyKR64zuMBqHxh2CXFr3s9o3f30T9+6814lVERHZJzAwUHDb6upqfvZ1oO1ntyNoSRBWH1sNk7n+77NUIsXULlNRPK8YEzpPcFKFJJaNGzcKatepUydcf/31IldjvwBVAA6OO4hfH/wVcQFxDZ6fWZqJ7uu6Y9DmQSjTljmhQuuYzWY8+PmDeGTvI9h2dhtePPwi+mzsg+Jqy5tXuZNly2pgMAib66dQmDBrFsOOicjz8S4NEREREREREREREZGHa9ZMjvvuqxbc/quv1PjtN+tCZsgxOnf2xY4dAUhOrsGECSVQqf6cADNlSgGcMed2/fpQXL6swpw5wUhMNODFFzUoLxe2axtRUxMRGgSZTOaUsQwGAzIqQmHUN7yoZ/P5fTDDXOv1MO8gBKsCHFGe1bTaGmSVCQ8HspVcLkN8XLzT/p6IyDI/Pz/BbauqqkSshIjcRV5FHkZ/PBrDtg1zSTDXX66UXXHqeOXl5cjJyanzeFVVFU6ePGlzv4GBgejatas9pZGbS05ORkZGhqC2LVu2FLkaywoKan8GsUZwsGcvuOrZU3jg8dGjvP9CRJ5Lb9Rj9Mej8WPmj64upZYzeWdgNIkXOtk2tC02Dhe2sHF+7/k2nS+TSTFiRCB++skXhw6V4tZbLW8cMnFiIRQKYb97rWEymZCXl4fnnsvD5s3FMBo9+/c1kacIDQ0V1O7kSTWmT4/DCy/UHyhIRJ5p06Zi9OnjjZQUbyxYEIPMTKVofUskEiQmJiI8PFy0Psn93Zp4K449eAwqWd0hczuTd+KW929hUA4ReQR7f4/Vt5ELCXOx6CLar26PMZ+MQVlNwwFJXaO6ImNmBt4b9l69wZXknn7++WecO3dOUNvJkyeLXI24ujXrhoyZGXhj0BtQyRsO6D2UdgihS0Px/LfPO6G6hu05vwfvn3r/mteSC5Ix59Ac1xRkpeJiIzZt8hbcfuTIasTGOmezVyIiR2IoGBERERERERERERFRIzB/vgJyufDFH4sWcQGiO2jVyhvvvx+ICxd0mDu3CIMHlzp8zOxsBfbuDfz766tXlXj++WAkJABPP61BYSF3FCeqj1wdiqhA542nrdHhSlUozA0satyUss/i6/2auTYoQl9Tg4yyYKdNHpdIJIiLDITSizv/EbmaXC6HRCJsB8+aGgbYEjUmZrMZ7596H0lvJ2HHHztcXQ4yNMJCloS4fLkae/bUv7Dkm2++EfS+179/f4agNnJbt24V3LZHjx4iVlK3wkJhv+tDQjx7cWnr1gr4+wsLnvntN8eFuRAROZLJbMLkPZPxxYUvXF2KRZX6SlwqviRqn3e3uxuze822qU2vmF64JeEWwWMOGBCAr77yw5Ej5bjzzjJIpX/+3ggONmDUqGLB/VpLo5Fh+fIIjB8fhHbtdFizphh6vWf/3iZyd6GhoVbfQzObgR9/9MWECYkYP745Dh/2x9q1fqio4HNfosZCrzdh+vRiTJgQhPLyP+/7lJfLMGtWLKqrhX0G/zelUok2bdrAx8fH7r7I83SO6ozk6cnwU9a9qcv3Gd+j87udYTDxdwsRuTe5XA6VquGwnrqUlJSIV4wDiRmA7ig6gw5jPh6DNm+1QXJBcoPnh3iHYO/YvTj20DHE+Mc4oUJyhA0bNghqp1Qqcf/994tcjWPM6DkDxfOKcU+7eyBB/dfiepMeLx5+EeFLw/HlpS+dVGFtWoMWsw7Osnhsw6kN+CrtKydXZL23365GRYXwZ99PPcVwQSJqHBgKRkRERERERERERETUCLRqpcSIEVWC2+/Zo0ZKCsOf3EVsrApLloSgXbvW8PX1dehYGzeGwmisPUlBo5HjtdeC0by5DI8/XoycHIZxENUlIKINgv2dFzpVXlmD3MqAes85nm95Yt2jHe92RElWMen1yKgMg97gvEnjsSFSqAOjnDYeEdVPoRC2C6fRaORO9ESNxCXNJQzYPACTdk9CsdbxIQbWyCzJdMo4hYU6DB0KTJmSiG+/rXuh3YEDBwT1P2zYMKGlkQcwGAzYvHmzoLaxsbGIiXHOQprCQmHtQkI8OxhLKpWgY0dh99VOnuSiBCLyPGazGbMPzsaHv3/o6lLqdTr3tOh9Lr5tMfrG97X6/Pl95gsOyP63Xr38sGePP06cqMTo0SWYPLkAKpXjf39++GEItNo/l5xcuKDCI48EoVUrPZYt06C62v0XIhN5IqlUiuDg4HrPMRqBAwf8MXp0CzzySAJOnPgnzKewUIFVq8ocXSYROcGVK1rccksVVq8OqnXswgVvvPxyNMx2XA4EBASgdevWkMv5ubQpSwxKRNoTaQhXh9d5zpn8M2j+RnNU6CqcWBkRke3CwsIEtzUYDKiurhaxGnGlFaehz8Y+8F7kjU5rOuFwxmFXl2TRm7++iYDXArD9j+0wo/4LFblUjmd6P4P8OfkY0mqIkyokR6iqqsKOHcI2gho2bBhCQkJErshxVHIVdtyzA8mPJiMpNKnB8wuqCjDww4Hota4XcitynVDhtZYdWYbLJZfrPD7186mo1FU6sSLr6PVmvPOO8LmYt9xSheuv5waiRNQ4MBSMiIiIiIiIiIiIiKiRmD9f+GRNo1GCV17Ri1gNiUGpVCIhIQFt27aFv7+/6P0XFsrx6ae1JxH/W3m5DG+9FYSWLeWYMqUYly657wQoIleRSKWIapYAX7XwXUdtVVSuR1Gl5XCds0WpqDJoa72ulCpwc8wNji7NIrPJiKyqEGi1zgsYjAySwz+y4QlYROQ83t7egttqtbXf14jIcxhMBiw7sgwd3+mIry9/7epyrlGDGpTVOHbBdHW1EXfeqcO5c96oqZFi5sw4fPxx7c9ixcXF+Omnn2zu39vbGyNHjhSjVHJTW7ZsQUZGhqC2vXr1ErmauhUVCQs98fRQMADo0kVYMMq5c0ro9Z7/5yeipuXVH1/Fyl9WurqMBp3KPSV6n3KpHNvv3o4o34ZD6K+LuA5DWw0VdfxOnXyxbVsgXnghACqVY+9FlpdLsXVr7UWZGRlemDs3GM2bG/HCCxqUlTlvAwCipiIiIsLi63q9BLt2BWH48FaYOzcO585Zvte2erUvdDoG7BN5si+/LEW3blIcOVL3BmJ79gRh5876n/XXJSYmBrGxsULLo0YmVB2Ky09cRvOg5nWek1WWhYSVCciryHNiZUREtgkICLArmDsvzz3f44qri9F3Y1/8mPkj9CY9fs/7HUO2DEFKYYqrS/vbsZxjSFiZgBn7Z0BrYb7Sf/VP6I/8Ofl45dZXIJUy6sLT7dy5E2Vlwp61Tp48WeRqnKNtWFskT0/Gh3d9CD9l3ZtB/eVo9lE0e70ZHt/3uNM2xMsszcQrP7xS7znpJel49ptnnVKPLT78sBo5OcI2HQSA2bPt36SBiMhd8EqJiIiIiIiIiIiIiKiR6NLFC4MGVQluv327N7KyGAzmjuRyOeLi4tC2bVsEBASI1u+mTSHQ6ax7XFRdLcOGDUFISvLCmDElOHPG/XYII3IliUyB2GZhUHkpnTbm1VIpyqpqTxRadWqbxfM7hLRwdEl1yq3yR3ml8wLBgv29EBLV2mnjEZF1/PwangxZF6GTSInI9U7lnkKPdT0w98u5qDa4Z8jw3sN7Hda3wWDCPfdU4ujRfxZxmkwSvPBCM7zzThjM/8oC2rZtGwwG20MVhg0bZtd7LLm3mpoavPzyy4LbDxw4UMRq6ldUJGxKaliYyIW4QLduwhYY1NRIcfKk8z4rERHZa+1va7HgmwWuLsMqp/NOO6TfSN9I7LhnB+TS+jdqmd97vl2LkeujVqvRsmVLtGzZEmq12iFjbNsWgooKWZ3Hc3OVWLgwGImJwLx5xSgo0DmkDqKmSCqVXvM8sKpKgs2bQ3D77a3x/PPNkJHhVW/77Gwl1q4tdXSZROQARqMJr7yiwdChfsjNbfiZ4+LFUThzxvrNOGQyGVq1aoXAwEA7qqTGSK1U4/xj53F91PV1nlNUXYQWq1rgYtFFJ1ZGRGQbezbdrKiocFpYjy1mH5qN7PLsa16r1FfiiQNPwGx27YYTZdoyDNo8CN3XdkdGacMbm8T6x+LnKT/j6wlfI8hbWLgpuZ8NGzYIatesWTOnPsNyhPuvux/F84rx0PUPQSqp/xmZyWzCW8feQtCSIOz4Y4fDa5tzaI5Vz+bf+OUNHL1y1OH1WMtkMmPFCuEROG3b1mDIEOdt7EpE5GgMBSMiIiIiIiIiIiIiakQWLBB+61+nk+K117gI0Z3J5XLExsaiXbt2CA4OtmtBUWmpDNu3B9vcTq+XYvv2QEydasb58+cZ0EH0LzKvAMRH+kIur39BoJiyStWorr52wd2BzJ8tnju65QBnlFRLUaUCRWW2h1sI5atWIapZAiTcTZTI7fj6+jZ8Uh2qqoSH3xKRa2gNWjzz1TPo+l5XnLh6wtXl1OudLe84rO9p00qxd6/lRSirV0fgpZeiYTQCOp0O27dvFzTG/fffb0+J5OZeeeUVpKamCmqrUChw1113iVxR3TSauoND6tMYQsF69BC+Y/kvvxhFrISIyHFyK3Ix8+BMV5dhNUeFggFA77jeWDpgaZ3HWwW3wt3t7nbY+H9RqVRo3rw5Wrdubddn7v+qrv4zgMgaGo0cS5YEoUULGR57rBhXrmhFq4OoKYuOjkZpqRRr1oRh0KA2WLIkCvn51l9zvvGGNwwG9ws0IKK6lZUZcPfd5ViwIBh6vXXPuPR6KZ58MhbFxQ1/Hler1WjTpg28vOoPFqSmSy6V49iDxzCo+aA6z6nUV6LDOx1wLPuYEysjIrJeRESEXe01Go1IlYjjy0tfYuOpjRaPHbp0CHvO73FyRf947tvnELI0BIfSDjV4rpfMC68PfB2ZszLRM6anE6ojZ7l06RJ++OEHQW0nTJgAmUzYcyV3IpPK8O6d7yJjZga6RnVt8PyymjKM/ng0Oq7uiEuaSw6p6ZvL32Bn8k6rzjXDjCl7pqDG4B5zx7/8UoszZ4SHes2caYBU6piNGoiIXEFidnUMLBERERERERERERERiap372r89JP1u8H+m1ptREYGEBrq+Q/bmwKTyYT8/HwUFRXZvPPfO++EYfVq4ROh3n33Mm68sRLAn2FlERERCAriDn5EAFBdlIrLeTqn7SAql8vRPKAISi8VtAYt1O/0hqV3hNJp38FfKd7iQGuUVZmRWeK83fdUXkokxkVA5hXgtDGJyDZ//PGHoB2LZTIZkpKSHFARETmCzqjD8G3DcSD1gKtLsYpktwTntp5DmzZtRO332Wc1WLSo4TDm/v3L0L37Sixe/LzNY0RERCArKwsKhfBAInJfx48fx0033QSdTtfwyRbcfvvt2L9/v8hVWWYymaFWm1FTY3s479atVRgzRu2AqpzHZDIjONiI0lLbQ6InTKjE++/7/P31qVOn0KVLF6vbnzx5Ep07d7Z5XCIiW209sxVjd411dRk2KZxbiBC1deFWtjKbzbjvk/uw/Y/awa7rh63H5C6THTJufQwGA3JycuzezOPDD0Pw2mtRgtp6e5uwffsV3HprKNRqz/79TuRqzz2nwUsv2b7Bz18++KAY48fz2R2RJzh9ugKjR8tw/ryweR49e1ZgzZp01JWpEB4ejvDwcDsqpKZm/K7x2Hxmc53HZRIZPr/vcwxuNdiJVRERWef8+fPQ6/WC2ioUCtGfFQlVoatAx3c6Ir0kvc5zEgMTkTw9GSq58+blHEw9iHGfjkNBVUGD50ogwaikUdg8crNTayTn+fXXX7Fv3z5BbSdPnoy4uDiRK3K9fRf3Yfyn41FUXdTguRJIcF+H+7Bx+EYo5UpRxjeYDOi8pjP+KPjDpnbP3/w8Ft6yUJQa7DFgQBW++krYPcWICD0yM+VQKhkKRkSNh/O2qCYiIiIiIiIiIiIiIqd45hngjjuEta2qkmHZsgosXuzc0BgSRiqVIjIyEuHh4SgqKkJBQYFVIUSVlVJ8+KHwhVDt21ehV6/Kv782GAzIzs5Gbm4uwsLCEBwcDKnU9kXARI2Fd0hLxBhSkFngnFAwg8GAzIowJMo02JD8ucVAsEh1iNMDwaqrdbhSFgDAeeFo8ZG+DAQjcnMKhUJQsInRaITJZOI1BpGH2H9xv8cEggGA2deM2bNn44svvhCtz7feKrYqEAwAvvnGH4cPDwSwEkCxTeM8/vjjDARrpPLz8zFy5EjBgWAAcP/994tYUf3Ky02oqREWMh8R4fm/36VSCa67To8ffrB9Wu6pUwznJyLPEO7jeUESp/NOo39if4f0LZFIsG7YOpwvOo9Tuaf+fr1PXB88cN0DDhmzIXK5HHFxcTAajbh69SpKSkps7kOvl2DjxlDBNURE6BEXV4a0tDIolUpERUXBz89PcH9ETdmsWX5YtcogKHgWAF5/3Qv332+CTOb519tEjdkPPxRg6NBglJcL/2x49Kgv3n47HDNm5F/zukQiQUJCAnx8fOpoSWTZppGbEOEbgWU/L7N43Gg2YuhHQ/H+iPcxvtN4J1dHRFS/0NBQXL16VVBbvV4PnU4HpVKccB57PPvNs/UGggHA5ZLLWHZkGZ7t+6zD68kpy8HIHSPxS/YvVp3fNrQtdt27C0lh3PirMevevTu6d+/u6jLcypBWQ5A/Jx8Lvl2AZUeWwWAy1HmuGWZ8dPYjfJryKZYPXI5Huj1i9/irj622ORAMAF754RWMShqFjhEd7a5BqDNndIIDwQDgoYdqoFTyuTkRNS68s0tERERERERERERE1MgMHqxCp05awe3ffVeF8nLnBLiQOKRSKcLCwtCuXTtER0dDVtcWwP9v584glJUJ3ztm6tQCSCxspmU0GpGbm4uUlBTk5+dbFVBG1Fj5R7RFVJDz9mjS1uiQVRGCD1Ms7754a0w3p9UCAPqaGmSUBzntfUAqlSI+TA6FX7RTxiMi4by9vQW3ra6uFrESInKkVE2qq0uwjT+wd+9eHDggTpDZzp0lmDUr0KY2BkNPAD8AiLG6ja+vLx599FGbxhFLeno6JBKJoH8WLlzokpo9SUlJCYYMGYKsrCzBfcTExGD06NEiVlW/vDyj4Lbh4Y1jKmvnzsK+B+fOKaHTWYp3JiJyL/0T+2Nwy8GuLsMm/w7rcgRfpS9+nPQj5veej6GthmLhzQvx2ZjPoJS5dvGwTCZDTEwM2rVrh5CQEEgs3dCvw549gcjPF754bsqUAvz1iEKn0yEjIwPnz59HaWmp4D6JmqqgIAUmTSoX3P70aTU+/7xMxIqISEwmkwlpaWnw98/DdddV2d3f2rXh+O67f4I4lUol2rRpw0AwEmzpwKVYNsByKBjwZ4jFhM8mYOlPS51YFRFRw4KCguxqn5ubK1Ilwv2c9TNW/bLKqnNf+eEVZJUKf5bQEJPJhEf3PorYlbFWBYL5Kn2xacQmnJt+joFg1GRJpVK8euuryJudh34J/Ro8v9pQjUf3PYrmbzTHqaunBI+bX5mP5759TlBbvUmPKXumwGgS/rzPXkuW6AW3VauNeOIJ4fORiIjcVeOYSUFERERERERERERERH+TSiWYN094CEtJiRyrVtk/6ZRcIzg4GElJSYiNjYVCUXvhTk2NBB98ECq4/5YttejXr/4FCCaTCfn5+Th37hyuXr3KcDBqskKatUWIv5fTxquoqsHJwgsWjz123b1Oq8No0COjIhQGQ907HYotJkQK75CWThuPiITz8/Nr+KQ6lJVxESORp+if2N/VJdjG/89/TZs2DRqNxq6uvv++HBMn+sFgsD544R/tAfz8//9u2NSpU+1e3NKY5efnY9WqVdBqhQenu0JRUREGDBiA3377za5+Zs2aZfG+gKPk5Qn/7B8ZWX+4uafo1k3Izz2g00lx4kSNyNUQEYlPIpHg8/s+x8bhGzGoxSB4yZx330uo03mnHT6Gj9IHi25dhC/GfoHnb3kewd7BDh/TWlKpFFFRUUhKSkJYWFiD4WAGA7B+vfDnB1FROgwdWlLrdb1ej6ysLKSkpNh9vU3U1Dz1lBpqtfAFuUuXOm/zEiKynlarRUpKCqqqqiCTAYsXX0F0tM7ufufPj0FmphIBAQFo3bo15HK+B5B9Zt84G5tGbIIEdV9HPvXVU5h9aLYTqyIiqp9UKoWvr6/N7QoL5Vi/PhQPPRTggKqsV2OowZQ9U2CGdRtJVBuqMefLOQ6pZeuZrQh8LRDvHH8HJnP9zwCkEikeuv4hFM8rxrhO4xxSD5GnCVYH45sJ3+CnST8hxr/hjaEul1xGl/e6YOiWoajQVdg83vyv56O0Rngw/7GcY3jjlzcEt7fH1asG7NwpPNTr/vurERLSOJ43EhH9G0PBiIiIiIiIiIiIiIgaoXvv9UbLlsIXE771lhe0WgY5ebKAgAC0adMG8fHxUCqVf7++e3cgCguFLwqeMqUAUiufMJnNZhQVFSE5ORlXrlxhOBg1SZHNEuHno3LKWH8U/wGtsfZ7v5dMiZ5R1zmlBrPRgKyKEGhr7F+4YK2oIDn8I9o6bTwiso89oWDV1dUiVkJEjtQlqgveveNdyKUesvDw/9+aMjMzMWnSJMHdnD5dgZEjvVFVZc+E4xgAPwDoXe9ZKpUKs2bNsmOcxq+qqgpPPPEEWrRogTfffNMjwsF+//13dO3aFcePH7ern9DQUDz00EMiVWUdoaFgcrkZQUGNYyprz57C77f88ovrdl4nIrKFTCrDxM4TceCBAyh6qgif3/c5Hun6COID4l1dmkWnck+5ugS3IJVKERERgaSkJEREREBax03+Q4cCkJUlPOxt4sRC1JdJajAYkJOTg+TkZBQUFPCZAZEVoqK8MHZs/Zv11OfIEV98953w9kQkPo1Gg9TU1Gt+DwYGGvH665lQKOz73ejnZ4SfXxRiY2PtLZPob+M6jcP++/dDJqn7nufrP7+OB3Y94MSqiIjqFxERYdV5BgPw3Xd+mDEjDrfd1gYrV0bi4MEAHD7sumvolw+/jHOF52xqs+OPHfgu/TvRarhQdAHt326PsbvGolzX8PeiW3Q3ZM7MxLt3etCzQSInujHuRmTNysLS25ZatdHCvtR9CH4tGIsOL7J6jGPZx7Dh5AZ7ygQAPPvNs7ikuWR3P7ZasUKLmhphzwulUjPmzFE2fCIRkQdqHDMpiIiIiIiIiIiIiIjoGjKZBHPmGAS3z81VYO1ahi40Bn5+fmjdujUSExPh5aXC1q0hgvuKidHh9tuF7SRWUlKC5ORkZGZmwmAQ/v8mkaeRyOSIbRYBlcrxE0+2Xtpq8fVOIa0cPjYAmE1mXK0KREWV8FBKW4X4KxHSjIFgRJ5EJpNBIql7R/n61NQ47/2FiOz30A0P4fTDp9E/sb+rS2mY/z//uWfPHjzzzDM2d5GZqcWwYQpoNGIsdvACUP/nprlz53KBp5VycnIwY8YMxMTE4JlnnkFWVparS6rFZDLhjTfeQK9evZCenm53f6+99hp8fX3tL8wGBQVmQe0CA42QSoVdG7ibFi0UCAoSds/jt9+Eff+IiFzJR+mDO1rfgdVDV+PyE5eR/Ggylg1Yhv6J/aGQCg9KFNO5gnPQGZ0XXu/upFIpwsLC0K5dO0RHR0Mu/+fa1WQC1q4NE9x3cLABI0cWW3WuyWRCXl4eUlJSkJeXx3AwogY8/bSXXUFBr77Ka00id2AymZCVlYWcnByLx9u312L+/KuC++/duwLHjpnRp4/wjTmI6jKo5SD8/ODP9YZYbDmzBQM2DeC1HRG5BW9v72s+8/5XZqYSb7wRgYED2+Dxx+Px7bf+MBr/uU/93nuu2cThdO5pLP5psaC2M/bPgMFk35w8rUGL0TtHo+1bbZFcmNzg+SHeIdg3dh9+nformvk3s2tsoqZgzk1zoHlKg7va3tXguXqTHs9++yyilkc1GPpnMpvw2P7HYIb9n/+rDdV46IuHYDY7715CZaUJ69cL33R16NBqtG7NUDAiapwYCkZERERERERERERE1EhNnqxGs2bCF7u8/roCBgMniTcWPj4+aNWqJb7+GnjkkWL4+to+eWny5ALUM1/KKmVlZUhJSUF6ejp0Oi7GoqZBqvRDfIQ/FPb+ADXg57yfLb5+X5tBDh33L0XVXtCU650yFgD4+agQ2ay508YjIvEolcIm4xmNRi4mIfIw7cLa4atxX2HH3TsQ4x/j6nLq5gtA9s+Xixcvxosvvmh1c71ej8uX0+HrK8Z7lBHAaABH6zwjLi5OUHBZU1dUVITFixcjMTERw4cPx86dO6HVal1dFn766SfcdNNNmDlzJqqqquzu76abbsKkSZNEqMw2BQXC2oWEuGZxlSNIpRJ07CjsM9GpU479vEhE5GgSiQRJYUmYfeNsfD3+axQ9VYRPR3+KqddPRTM/1y0K1Zv0SC5oeBFrUxQcHIy2bdsiNjYWCoUC33/vh9RU4Yvvxo8vhEpl2zMlk8mEgoICnDt3DlevXuVnfqI6tGjhjZEjywS3//JLP5w7VyFiRURkK4PBgIsXL6K0tP4NuEaNKsaIEdaFbP7b448X45tv1IiOrjuwiche3aK74ewjZ+GrrDuI/qvLX6Hr2q52h9IQEYkhKCjomq+1Wgk+/zwAkycnYOjQ1li3LgwFBZZDzffs8UN5uXPfywwmA6bsmSL4PfRM/hmsOb5G8Phv/vImgl4Lwo7kHQ0GC8mlcszvPR/5c/IxuNVgwWMSNUVqpRq7Ru/C2UfOonVw6wbPz63IRb8P+qHPhj4orCq0eM6m05vwa/avotX4zeVvsOHkBtH6a8jatdV2bbw1dy4jc4io8eI7HBERERERERERERFRI6VQSPDEE8JDl9LTldiyxf7FqORe4uJUWL06CJcuGTF7tgZBQdZNJAoL02P48BLR6qioqMCFCxeQlpaGmpoa0folclcKv0jEhysglTrmEW2VoQr52nyLxx5qN9IhY/5bWRWQWypp+ESRqFRKxDaLgETGhfNEnsjb21tw2+rqahErISJnkEgkuKf9PTg3/Rye6f0MFFLLCyxczu/aL59//nlMmTKlwdAok8mE1NRUhIQYsGHDZdx4Y7mdhUwD8EW9Z7z++ut2vZc2dUajEXv27MG9996LiIgITJgwATt37mxwYa6YTCYTDh06hEGDBqF37944erTuEDhbqFQqrFmzBhKJ867N/1JQICxYPji4cYV/XH+9sJCzlBQltNrG9b0goqbNz8sPI9qOwHt3voesWVn4/eHfsfjWxegb3xcyiazhDkR0Ove0U8fzNAEBAWjTpg1uvjkE995bArnc9t9Hfn5GjB6tEVyD2WxGUVERkpOTceXKFRiNjSc0lEgs8+crIJXads0tkZgxcGAptm+/BJksx0GVEVFDysvLcf78eej1DYdISyTAggU5SEqy7j64v78BW7aUYNWqICgUXCZKjtcypCUuPX4Jod6hdZ5zMvckWr/ZGlU6zjciItcKCwsDACQnq/Dyy1Ho378t5s+PxbFjdYcb/qW8XIYPPrD3eY9tVvy8Ar9d/c2uPv737f9QUGnbDh7Hso8hfmU8ZhyYAa2h4Y1Ubk28FQVzC7Do1kUOmwNF1BS0D2+P84+fx8bhG+Gj8Gnw/B+zfkTkskjMOjjrmmD9Um0p5n01T/T6Zh+ajZxyx99LMBrNePNN4fMHunWrRp8+wjc6ICJyd7zaIiIiIiIiIiIiIiJqxB59VI3QUOG71i1ZIoPJJGxRJ7m38HAlli0LxuXLwHPPaRAeXv8k5AkTCqFUiv//QlVVFS5evIjU1FSGfFCjpwpugdgQxzyi/eTyJxZfj/COgJfEsY+Fq6p1yCp13uQahVyO+Ag/SJV+DZ9MRG7J17fhidZ1KSsrE7ESInImX6UvXrn1FZx99Cxub3m7q8upzcKlxYYNG9CrVy/8+qvlnZVNJhMuXrz4d2iBj48Jb72ViaFDSwQW8T8A6+s9Y8SIERg1apTA/um/ysrKsGnTJtx7770IDQ1F3759sWDBAuzZswf5+ZZDd4UyGAw4fPgwnnnmGSQmJmLQoEE4dOiQqGO888476NChg6h9WquwUFgQWUhI4wrC6tZN2OcvvV6KEyeEh/sTEbkziUSCjhEdMa/3PHw/8XsUPlWInffsRKBXoFPGP53HUDBrXHedL7ZvD0Rycg0mTiyBSmX97+ixY4vg6yvO7/SSkhKcO3cOmZmZMBiEP98iamyuu84HgwdbF0ogl5swcqQGe/ZcxPLlWUhK0kKn06GystLBVRLRf+Xm5iIjIwNms/XP2VUqM5Yvz4SfX/0hmUlJ1ThyRIexYwPtrJLINuG+4bg88zLiA+LrPOdyyWUkvpGIwqpCJ1ZGRHQtqVSKHTsiMXp0S2zfHoLycttCyjdvVjqostouFl3Ec989Z3c/JdoSPPvNs1afO3DzQHRf1x2ZpZkNnh/rH4ujU47iq/FfIVAVaGelRPSXiZ0nouTpEkzqPAkS1P+szWg2YuXRlQhZGoJPz30KAHjh+xeQXynuM00AKK0pxaN7H7Xps4wQn3xSjbQ04e+3s2ZxfjsRNW4Ss6PfiYmIiIiIiIiIiIiIyKX+978KvPyy8OCFXbuqcNddahErIndUWWnA22+X4a23fJCV5XXNscBAAw4evAC12rELdUtLZVizJgpPP61E+/b8f44aL03OOeRo6p/Ib6v7vrkPZ4vP1np9ePxwrOi7FAl+JZDIxA8H09XUIK00CAaDuH+eukilUjSP9IIquIVTxiMixzCZTEhOThbU1tvbGy1a8D2AyNOZzWbsOb8HMw/ORHpJuqvL+dNOAH9YPiSRSDBmzBjMnTsXXbp0+fv1S5cuWQw3NpmAlSsjsHFjmA0FvAPg0XrPSEhIwMmTJxEYGGhDv46Rnp6OxMREQW2ff/55LFy4UNyCLLCnxr80a9YMrVu3Rps2bdCqVSs0a9YM4eHhiIiIQHBwMFQqFby8vODl5QWTyYTq6mpotVoUFBQgOzsbWVlZOHPmDE6dOoUTJ044NNzykUcewerVqx3Wf0MGDKjCV1/Z/ll+4sRKbNzY8A7onuLSJR1athS2eGHFikrMnOmDU6dOXfNe05CTJ0+ic+fOgsYkInIVk8kE5ctKGM2Ov6fUL6EfvpnwjcPHaWyysrRYvLgamzb5o6Ki7oXT3t5GHDp0AYGBjvm79PX1RXR0NJRK5y3GJnJXP/1Ujt69694sw9vbhFGjNJgwoRCRkbVD9by8vNCqVStHlkhE/89kMiE9PR1VVVWC+zh82BfTpydYPDZqVCk2bvSBn59ccP9E9jKYDLj+3etxJv9Mnef4Kf1w+uHTSAyy7x4dEZFQZ85U4rrrhN9/PnWqAp06CZ93aQ2T2YT+H/TH9xnfi9KfBBIcm3oMN0TfYHk8kwnPf/c8Fv+0GAZTw2HcXjIvLL5tMWb2nClKfURUt4zSDNy17S6czD1p1fltQtrgUvElq36Whdpx9w7c0/4eh/Xfq1c1jh71FtQ2IUGH1FQFZDJhGxcREXkCx24JTURERERERERERERELvfkk94N7iJbn8WL+cC0KfDxkeOpp4KRmqrA228Xo1Ur7d/H7r+/yOGBYACwZUsIPvwwEJ06eWPEiFL8+muFw8ckcoXg6CSEBoi7iO1C6QWLr49tMRaVVTXIqQqA2STuflFGvQ4ZFaFOCwQDgNgQKQPBiBoBqVQKiUTYNWZNTY3I1RCRK0gkEgxvOxzJjybj+Zufh5fMq+FGjuZf9yGz2YytW7fi+uuvR8eOHbFw4UK8//77yMrKqrU7stFoRGZmOtq02YAuXTZZOfinAB6r9wyFQoHt27e7RSBYU5KdnY1vv/0Wa9aswezZszFmzBj0798f7du3R1RUFIKCgqBWqyGTyaBQKODv74/w8HC0b98eAwcOxJQpU7By5Up89913Dg0EGzx4MFauXOmw/q2h0Qj73R4S0rj2tU1MVCAkRNjii+PHRS6GiMiN7b2412IgmJ/SDx+N/AjjrhuHUHWoKGOdzjtd65qNGhYbq8LbbwchLc2IuXOLERxs+ffbPfcUOywQDAAqKipw4cIFfPxxNq5c0TbcgKgRu+kmP9xyS3mt1/38jJg2LR8HD57HvHm5FgPBgD/vq2m1/DkicjStVouUlBS7AsEAoG/fCkybln/Na0qlCa+9psHHHwcwEIxcTi6V49S0U7gl/pY6zynXlSPp7SScuHrCeYUREf1Lx44+6NGjUnD7d9/Vi1iNZWt/WytaIBgAmGHG4/sfh8lce67fwdSDiFweiZd/eLnBECEJJLi73d0oebqEgWBEThIfEI8T005g9+jdCFIFNXj++aLzDg0EA4DH9j8GTbXGIX3/9JNWcCAYADz2mJ6BYETU6DEUjIiIiIiIiIiIiIiokQsKkmHKlGrB7X/91RtffSW8PXkWpVKKRx8NQnKyEu+/X4yePStw331FDh+3slKKLVuCAQBGowS7dwegRw9fDBxYju++q73AgcjTRTRrAX9flSh9/V70O3QmXa3XvaReaBfUDgBQXK5DYbXwSTT/ZTaakFkZipqa2uM6SnSwDH4RbZ02HhE5llJpfTii0QikpXnh888DsWxZGIxGx4eVEpFzeCu8sfCWhUienozhbYa7thg/6047e/YsXnjhBUyaNAn9+vVDly5d0Lt3b9x6663o2bMnOnfujDvvvBNPP/00Tp6cAGAMgPqumX4AMBZA/e9tq1atQvfu3a0rkpqU22+/HZ9++qlNv1sdQaORCWoXHi5yIS4mlUrQsaOwz0mnTgn7HhIReaL3fnvP4us3xtyI+zreh013bULu7Fz88uAveP7m59EtuhskELbAS1OtwZWyK/aU26SFhSmxZEkQLl8GFi7UICLinwXRCoUJEyYUOrwGnU6C6dPD0bq1ElOmFOPSJT6zoqZr3rx/Qg5DQ/V48slcHDp0Ho89lo+goIYD+nJychxZHlGTp9FokJqaCpNJnHvYjzySjxtv/PNZeXS0DgcOVOKpp4JF6ZtIDFKpFN9O/Baj24+u85waYw16rOuBr9O+dmJlRET/GDdO+LyWTz7xhU7nuGfTV8quYO6Xc0Xv9+crP2PL71v+/jqnLAc91vbA7VtuR0FVQYPt24a2RfKjydh5z06o5OLMbSIi6w1rOwyFcwsxp9ccyCSufXaUX5mPJw8+6ZC+ly4VvtFAYKAB06aJNxeSiMhdMRSMiIiIiIiIiIiIiKgJeOopFVQq4RNUXn3V3PBJ1KjI5VJMmPB/7N13fFPV/z/wV25m051O0kVLGQUFZLsVFRBEnKioqAioH3GBG/3qx4+g4N4oCKIogogIouBWRJQ9lBbooKV7pjNpxs3vD36i2LRNbm6Sjtfz8fg8PnJzzzlvtE1u7j3ndSKxdaseffrEQBB8+1hp9WoD6upa7mb8zTehOP/8UJx9dgPWrzf5tAYif1IISiQaeyBIp/W6r49yPnJ5PCMi46Q/l9U6USt9A9QTnKITxU3haGxq9r4zN0WHa2AwZrR/IhF1GkFBrifniSKQl6fBF1+EY+HCeNx0UyrOOCMDkyb1xqOPJmLZshgcPMjFv0RdTVpkGtZduw5fTvkS6Yb0wBQRJq2Zw+FAbW0tysvL0djo6mJrFYCLAdS5eO0PAJcCsLQ5xjPPPIPbb79dWoHUpU2YMAHr1q2DVuv99wpvSQ0Fi4npetNYTztN2j24Q4c0MJsZfkpE3cPWY1tdHp82ZNqJf1YKSoxIGIEnz3sS22dsR+n9pXj/svdx7SnXIlIX6dF4NZYar+olICxMhSeeMCAvT8Bzz1UjObkZl11mQmys3edjr18fgfJyNcxmAUuXRiIjQ4trrzXhwAEZbnYSdTLjxoXh0ktNePzxImzadBi33FKJkBD3ryGbmppgtfpvsw+i7kIURRw7dkz24D2lEliwoBCXX27Cjh1OnH++m6n2RH728VUf456R97T6ul2046IPLsLKAyv9WBUR0XE33RSKsDBp313Ly9VYtapW5oqOczqduP2L21Fv9c1mmQ9++yBMZhPu+OIOJL2chO3F29ttE6oJxYrLVyDzzkz0i+GmfUSBJAgCnhvzHErvL8U5yecEtJbl+5Zjc/ZmWfvMzrbiiy/0kttPm2ZBSEjXe8ZIRPRvfKcjIiIiIiIiIiIiIuoGevRQ4frrpYcnfP+9Hjt2+C/8hToOQRAQExOD/v37w2g0QqmUf+ex5mYFli+PavOcX34JwaRJERg6tAkrV5rgcHCRLHV+giYYKXFhUKvVXvXze/nvLo9PSJ7Q4lhhnQ5NZu8W/FSadaip99+iobAQHeISevltPCLyj9DQUIgikJ+vwZdfhuP55+Nxyy3HA8AuvbQPHnkkCR98EI3du4PR1HTy9ce2bVy4SNRVXdz7Yvxxxx+YP3o+9Grpk4AlkRgK5p7vAZwLoPQfx47heFiYqc2Wjz/+OB5++GGfVUad14MPPoj169d3iEAwq9WJujpp9wtiYxUyVxN4w4dLm5prtwvYtYvXOUTU9RXVFbkM6RIUAq7KuKrVdrHBsbhx0I1YeeVKlD9Qjq3TtmLu2XNxWvxpbY4XrA5GUliS13XTcUFBStx/vwHZ2Wo8/bQVCoVvP8vtduDdd2NOOmazCVi1KgKnnabHpEm1+O033yygJuqoFi+2YvLkGmi10jZ1kju0iKi7s9vtOHLkCGprfRMYYjRqsWZNGIzGwH//J2rLy+NexvwL5rf6uhNOTFk7Ba/89oofqyIiAkJCVLj00gbJ7Zcvb7nJpRxW/rESG49s9EnfAFDaUIrY52OxaNciiM6259kJCgG3Db0NpodMuH7g9T6riYg8F62Pxk+3/ISfbvoJPUJ6BKyOmV/MRH2zfPfgnn/eCodD2n1FjUbEnDk62WohIurIGApGRERERERERERERNRNPPywGiqVtMnhADBvnu93e6eOzWAwICMjA0lJSV6HGP3TZ59FoqrKvf5279ZjypQInHpqMxYvroHNxnAw6txUoXFIidVAEKQ9um2wNqCyudLla5elXNbimNPpRH5dBJot0oIea5uAMt+saXApSKdForEHFIL8gYREFFjBwaG48MK+uOSSPnjooSQsXx6NnTuD0djY/u/7rl1+KJCIAkar0uKRsx9B1p1ZmDxgsv8G9mkoGADsBXA6gMMAagCMA1DY6tmCIGDevHl46qmnfF0YdTIhISFYvXo1FixYIPl7hNzKyqTfM4qL6xh/Bzmdfrr0eybbtztkrISIyD2W6jyUHTuEY0ezkZN9BEcOH0Z+XjZKCg6jriwLTlHe96bXtr/m8ni6Id3tzzaVoMIZSWfg6dFPY/dtu1E8uxhLL12Kq/pfhTDt3xd2GqUGr138GiKDImWpnf6mVgvo0yceGRkZiImJ8Vk42ObN4Sgs1Lh8zeFQYP36cJx+eiguvLAe337rxxuXRAEUHR3t1e9cQ0MD7HY+9yWSQ319PQ4dOgSbzeaT/mNjY5GWltZhvv8TteeRsx7BkolLoEDrn1P3br4Xj373qB+rIiICZs6U/ln6448hyMuTvhmrKxWNFbj7q7tl7dMVm9j+Ncpw43Acu/cYFl2yiNccRB3YOT3PQfGcYjxw+gMBGb+gtgBzv58rS1/V1Q6sWBEkuf2VV5phNPomsJGIqKPh1RkRERERERERERERUTeRnq7BFVc0SW6/YYMeBw9KC5GhriU8PBx9+/ZFSkoKNBrXi3HcZbMBy5ZFe9wuMzMIM2dG4oILGlFYWAhRZDgYdV66yFQkR0sLvVqVt8rl8figeOhUrnfEczgcyG+Igt3q2Xt6k9mKwlr/7bKnVquREhcGQRPstzGJyH9UKgEJCdIWSu3fL184KRF1XEnhSVh11Sp8e+O3yIjO8P2AoUAba9VkchTAmQDGADjY6llhYWH4/PPP8eijXBxHJ7vkkkvw559/4uqrrw50KScpL5f+nTw2tutNY01OViE6WlrIws6dMhdDRNSGporj4V/ZxY2oqLWhtsECs6UZzVYr6hstqKqzoqDCjuzsHNQUZ8LpkCdA5vOsz10en9R3kuQ+e4T2wC2n3YJPrv4ElQ9UYuu0rVh/7Xpk35WNW067RXK/1D5BEBAXF4eMjAzExcXJuoBYFIElS2LcOve770Jx0UXhOPPMBnz+uQkOB58ZUNclCAIMBoNXfRQXF8tUDVH3VVpaivz8fDid0jdma41CoUBqaipiY2Nl75vI124dcis+v/ZzKBWtP/9+5pdnMO3zaX6sioi6u7PPDkP//tKCvRwOBd5+W95QsHs23YMqc5WsfXoqOigaX075EttnbIcxzBjQWojIfdk12QEb+/Xtr+PXY79638/rFrc2DGzNgw8yEIyIuo+uN5uCiIiIiIiIiIiIiIha9dhjaigU0ialiqIC8+dz12j6W2hoKPr06YPU1FTodNKCgr76KgLFxdKDxc4/vw4mkwkHDx5EQUEBdzanTiskti8SDJ5PdtlcuNnl8bPizmqzndVqQ0FjDESHw61xrM3NyK+L8MnCBlcEQUBKrBqq0Di/jEdEgXHqqVZJ7f78M4iLe4m6kQvSLsC+2/fh+YueR4gmxHcDKQHofdf93yoBtJ76M2jQIGzfvh2XXHKJP4qhTiIxMRGrV6/Ghg0bkJycHOhyWigrk/65HB/f9SbuC4ICAwdKu87Zt0/6IggiIk9UFWUht+x4+Fd7mq1WFFU7cKzgKERrg1fjiqKIw9WHXb5298i7ver7L2qlGmcknYGJfSciKTxJlj6pfYIgICYmBv3794fRaIRK5f1n/I8/hiI727NnD7/+GoLLLovAsGEW/PZbJTcUoS4rLs67e+d1dXX8/SCSyGYTceedNXj5Zd88M9NoNOjbty+Cg7lpDnVeE/tOxJZbtkAjtD4XZNneZZjw4QQ/VkVE3d3110sL9kpJaUZwcJNs188bDm3Ayj9WytKXFCpBhblnz0XZ/WW4uPfFAauDiDz3Tc43+Czrs4CN74QTt66/FRZ7+/eUW2O1OrFokfT5wqNHN2HwYK3k9kREnQ1DwYiIiIiIiIiIiIiIupFTT9Vg3DjpO9etXh2E/HybjBVRVxAcHIz09HSkp6cjKCjI7XaiCCxZEi153NhYGyZNMp34c11dHbKysnD06FFYrdIW3xIFUqQxAzHhnk16ya5zvfvflPQp7bZtMjejuDESTrHtRQsOmxVH66PgcDNATA7J0UroItP8Nh4RBcZpp0mbOF1fr8QffzTJXA0RdWRqpRpzzpiDw7MO44aBN/huoDDfdd2e0NBQvPjii9i1axf69u0buEK6kIiICFx55ZUICwvgf1gvpaSk4M0330ROTg6uvvrqQJfTqvJyaQuhw8Ic0GgUMlfTMUi9zjl8WAuzmeEMROQ7TtGBkoLDKKnxfHOFukYL8gpKYG+skDz+Z1mfQXS2fJ+L0EUgMSxRcr/UsRgMBvTr1w9JSUlQq9WS+nA6gcWLYyTXkJOjhUJRjszMTJSUlDD8iLocQRAQERHhVR8lJSXyFEPUjRQWWnDeeU14881IvPBCPHbvljdhPjw8HH369JElXJMo0E5POh37bt8Hvbr135Mvs7/E8HeG81qNiPxixowQ6HTuvd/odCIuvbQGy5blYsOGI7j8chNqamq8rqHWUos7Nt7hdT9SXZh6ISoeqMDTo5+GIDBigqgzsTlsuGfTPYEuA1mVWZj38zzJ7d9/vwklJdLuFwLAnDld87kiEVFreMVGRERERERERERERNTNzJ0r/fGAzSbgmWeaZayGuhKdTodevXqhT58+bu1c/N13YcjL00ke76abKqHRtFx43NDQgMOHDyM3NxfNzfx5pc4lNiEd4SHu/V5sL98Om9gyqFGn1KF3eG+3+jA1NKOiqfWJ2KLDgYKGaFit/guETDAoERLLIAyi7uD006VP9Nu2jUG1RN1Rj9Ae+ODyD/DzzT9jYNxA2ftPH5Iue5/t0Wq1mDZtGg4dOoT77rsPSqXS7zV0VREREVizZg0qKyvxzTffYPbs2Rg4cCAUio49WVyhUODcc8/F8uXLceTIEdxxxx3QaKTvmO0PFRXSFm5GRvoveNjfhg+Xdv/Nblfg4EFe5xCR75QX5aCqTvqGCmZLM/JLTBCtjZLaL9m9xOXxM5POlFwTdVzh4eHo27cvUlJSPL6e+e23YPzxh/Sgleuvr0JwsAin04mqqiocPHgQhYWFDJygLqVHjx5etTeZTPydIPLAN9/UYvhwAb/+GgLg+Pe3++9PQmWlPAFeiYmJSEpKkqUvoo6iX0w/HJl1BJG6yFbP2VmyE/3e6AeL3eLHyoioO4qJ0WDs2Po2zxkwoAmPP16E77/Pwrx5RRg2rAl/PVKorKz0uoaHvn0IRfVFXvcjxW1Db8M3U79BhC4iIOMTkXde2/4aMiszA10GAODZrc9iX+k+j9uJohMvvyz9WXj//haMGyd9vjERUWfEUDAiIiIiIiIiIiIiom7mzDN1OPtss+T277+vR3m5XcaKqKvRaDRITU1Fv379EBoa6vIcpxNYvDhG8hgREXZcdVV1m+c0NTXhyJEjyM7Ohtks/WeeyJ8UgoCEBCP0Qdp2z12Vu8rl8QGRAzwas7xOhKmxZTCCU3SiuDESjWb/hevFhGsQaczw23hEFFhDhwYjKEjawsNduzp2oAsR+dbZKWdj18xdeO3i1xCuDZet39lPzMYvv/yCq666yufhXHFxcXjiiSdQUFCAd9991+vF3NQ6tVqNCy+8EC+88AL27duHsrIyrFq1CnfeeSdOO+20DhHEplAoMHjwYDz11FPIzc3Fjz/+iKlTp0Ktlh6g6U8VFdLaGQxdN4Bg1Cjp/+3++KPrhqURUWDVFGeiolZ6INhfzJZmFBaXwCl6/n61rXCby+MzhszwtizqwEJDQ9GnTx+kpaVBp3Nv4Z43zw+Cghy4/vqqFsdNJhMOHjyIgoIC2O18zkWdn1KpRFhYmOT2TqcT5eXlMlZE1DU5HCLmz6/GhAmhKC09OeSyokKN++9Pgs2LbGelUonevXsjIiLCu0KJOihjmBFH7zmKhNCEVs85Un0Eqa+korqp7TkgRETemjat5eaTYWF2TJlShTVrsvHxx7mYPLkGoaEt713bbDZYrdLvq/x49Ee8vettye299cH+D3Cs9ljAxici6UobSvHkj08GuowT7KIdt66/FXbRs/trmzdb8Oef0kO97r3XAUHgXCEi6l7kiaInIiIiIiIiIiIiIqJO5dFHgYsvltbWbBbw/PNNWLgwRN6iqMtRqVRISUmB3W5HSUkJamtrT7y2dWsIMjODJPd9ww1V0OtbTtRyxWKxICcnB1qtFkajEcHBwZLHJfIHQa1HcnwEcouqYbW2vopgZ+VOl8cnJk/0eMyiOi3UinoE6/9euF7RpIepwX+BYOEhWsQmpPltPCIKPLVaQL9+TdizR+9x2/37O0dIChH5jkpQYdaIWZg8YDIe+fYRLN271Os+C+sKcccFdyApKQl33nkntmzZgi1btuC3335DfX3bu8e7o3fv3pgwYQLGjx+Pc889FxqNpv1GHVTPnj3hdLr3nayjiYmJweTJkzF58mQAQGNjI3bu3Ik9e/Zg37592LdvH7KysnwaLq1Wq9GvXz+MGDECF154IS644ALExEgPvgi0igppE/CjorpuKFhKihqxsTaUl3t+zXLwIBc0EJH8GsoPoahavtDBugYLyopyEJ/Ux+02+bX5qG2ubXFcqVBiYh/P72dR56PX65Geng6LxYLi4mI0NTW5PG/v3iDs2CH9GdTkyTWIiGj9572urg51dXUICQmB0Wjs1NflREajEXV1dZLbV1VVITY2FoIgyFgVUddRV2fH1KmN+PxzQ6vn7NoVjFdeicf995d63L9er0fPnj35O0hdXpguDLl352Lw24ORWZnp8pzShlKkvZqG/XfsR3J4sp8rJKLuYsKEMKSkNCM/X4uRIxtwxRU1uOCCOmi17j3vKCsrQ1JSksfjNtmaMGNDYAPRm2xNeOCbB/DxVR8HtA4i8tzD3z6Meqv3z6rltKtkF17a9hIeOPMBt9u88IL0Z8vx8TbcdJPnc4uIiDo7hbOzzswhIiIiIiIiIiIiIiLJRNGJYcOasWePtF2XwsPtyM9XIDxcKXNl1JWJoojS0lLU1NRg6tSe2L1bWjhXcLADX399CGFh0hYPq9Vq9OjRw6vd04n8odmUj9ySJjgcLRewmawmnL3h7BbHFVBg5+U7oRE8X8imVCqRFl4DrU4LU5MChSb/LYbTB2nRMzkBgpqTd4i6m5tuMuH99yM8bhcS4kBNjQIqFRdLEdFxvxf+jju/vBO7SnZJ7uOmQTfhmZHPoKqq6qTjdrsdhw4dQm5uLnJycpCTk4OysjI0NjaisbERTU1NsFqtCAoKgl6vR3BwMMLCwpCSkoJRo0ZhwIABGDRoEFJSUrz9a5KfOJ1OFBYW4siRI8jNzUVhYSGKiopQUlKCqqoqmEwmmEwmNDY2wmazwWazwel0QqvVQqfTQafTISgoCNHR0TAajejRoweMRiPS0tJw6qmnol+/flCru07A5aWXNmLDBs+/419zTSM+/rjrBndfdFETvv3W8+84PXtux9GjI90+f8+ePRg8eLDH4xBR92GpyUNuiRmiKH8Yo9GghMGY4da5czbPwYu/vdjieP/o/vjzzj/lLo06AavViuLiYjQ0NJx0fNasZPz0k7T792q1iE2bDiM21u52G71eD6PRCJ1O2jMzokDLy8tDY2Oj5PZxcXGdOqSYyFf27WvA5MkqHD7s3ufDCy8UYMwY90P6YmNjERsbK7U8ok5JFEWc+965+OXYL62eE6QKwvbp23FK3Cl+rIyIupPVq0sQGlqHpKTWN+lrjUKhwIABAzxu9+A3D+K5X5/zuJ0v/HjTjzi357mBLoOI3PRb4W84/d3TA12GSzqVDgfuOIB0Q3q75+7d24zTTtNKHuvJJxvxxBNd95kiEVFrVIEugIiIiIiIiIiIiIiI/E8QFHjoIRHXXiutfW2tCq++2oDHH5e+Uzt1P4IgwGg0Ii4uHnffXYsXXlDgwAHPF8dee2215EAwALDZbCgoKIBKpUJ8fDwiIiIk90XkS9qIFCTbDuNouYh/7/W0KmeVyzY99D0kBYIBgMPhQH5DFOLFehTV6gD4Z38pjVqN5PgIBoIRdVNDhoh4/33P2zU0KHHgQANOO43Xo0R03MjEkfh9+u94d8+7eOS7R1Btrva4j6NVR1sEggGASqXCgAEDPFrooVAokJ6eDq1W+uRmChyFQoGkpCQkJSVh9OjRgS6nw6uslBbSGRPTtfe0HTJExLffet6uoKDrBMYRUeDZ68uQX271SSAYABRXO6BWZiE0rl+75244vMHl8cszLpe7LOokNBoNevbsCbvdjuLiYtTV1eHQIZ3kQDAAuPzyGo8CwQCgqakJ2dnZ0Ol0SEhIQFBQkOTxiQIhISEBhw8flty+oqKCoWBE//L++zWYNSsM9fXub5L2+OMJSE+3IC3N2uZ5CoUCPXv2RHAwF7RT9yMIArZM24IrVl2Bz7I+c3mO2W7Gae+chu9u/A7n9DzHzxUSUXcwcWIEcnJaPgtyh9PphMlk8miu2c7inXhh2wuSxvOFu766C7tv2w2VwIgJoo5OdIq466u7Al1Gqyx2C6avn47vb/oegqLtZ4XPPWcHIO25eXCwA3fdxTB/IuqeuF0qEREREREREREREVE3ddVVQejbt1ly+9df18Js9s1CIuralEoBN90UiT17dFizxoSRI93fvVyrFXHjjZWy1GG321FYWIjMzExUVsrTJ5HcgmP6ICGy5WPdr4u+dnn+OfHeTYy2Wm0oMOlahJD5ilIpICVOC1UwFxwRdVdnnCEtyBAAtm3zfPdmIuralIISM4fOxOFZh3HHsDuggMKj9nlVx2SrpWfPngwEo26julraVNToaM9+RzubYcOk/XsRxa7974WI/Ee0NiC/rA42m2+/Ox2rEmGpzm3zHLtoR05NjsvX7hrRcRe2kX+oVCokJycjIyMDNlsYkpOlPbtSKp245Rbp9/otFgtycnJw+PBhNDQ0SO6HyN80Go1XYXaiKKK62vNgbaKuyGYTceedNbjppkiPAsEAoKlJifvuS0ZTU+vfBTUaDfr27ctAMOr21l6zFrcPu73V1+2iHee/fz4+PfipH6siou4iKCgIKpX0QKyKigq3z7U6rJj2+TSIzo4zx/JA+QG8vfPtQJdBRG5YumcpdhbvDHQZbfop/ycs2b2kzXOKi+1Ys0b6fYsbbjDDYPDs+xkRUVfBUDAiIiIiIiIiIiIiom5KqVRgzhzPdkv/p/JyNd55xyxjRdTdKJUCrrwyAr/9FoxNm2px/vn17ba58soaREU5ZK3D4XCgtLQUBw8eRHl5OUSx40zEIgKACGMGYiPUJx3LrXO90PL69Ov9UZIsFAoFkqNV0Eb0DHQpRBRAgwfrERQk7bN9926ZiyGiLiNKH4U3J7yJnTN3YlTiKLfbFdQXIjfX+yCvpKQkLu6kbkVqKFhMF88GHjVK3f5JREQ+4hQdKCwuhdkifWMQd4miiPwKK2z1pa2es/rP1S4XwBqCDIgLifNledSJKJVKXHttLLKz1XjzzWr07m3xqP348SYkJnofgme1WnH06FEcOnQItbW1XvdH5A9Go9Gr9uXl5TJVQtR51dVZcN55TXjzzUjJfeTm6vDEE0a42nsnPDwcffr08SqEhKgreWvCW3jy3CdbfV10irj6k6vx5o43/VcUEXUbERERkts2NzfDbndvzuWCXxbgQPkByWP5yuM/PI7KJm6gSdSR1Zhr8Mh3jwS6DLc88M0DKKwrbPX1F16wwGqV9ixRqXTi/vulbzZIRNTZMRSMiIiIiIiIiIiIiKgbu/lmPZKSrJLbv/SSGna7ixmtRB4aOzYc338fil9+qcf48XUQhJY/VyqVE7fc4rsJSaIoory8HPv3Z2Lp0mrY7QwHo44jxtgbESHHAyp+Lf0VdmfLCYZ6pR49Q3v6uTLpEiIFBMf0CXQZRBRgarWA/v3dX+QbEuLA8OENuPnmCpxxBhfmElHbhvQYgq3TtuK9Se8hNji2/QYqK66/XYu9e6XvVBwfH4/w8HDJ7Yk6G1F0oqZG2u7csbEKmavpWJKS1IiL8z6YhIhIirKiHNQ1eBao5A2bzY78snqIVtcbPyzds9Tl8bOTz/ZlWdRJqdUC7rjDgMxMDZYvr8HAgU1utbv1VnmfH9hsNhw7dgxZWVmoqamRtW8iuQUFBUGrlR5ybbfbUVdXJ2NFRJ1LdXU1CgqykZTkfaDqpk0R+PDDqJOOJSYmIikpyeu+ibqaJ857Am+OfxMKuL5H5IQTd355J5784Un/FkZEXV5srBvPjNrgTqjuwYqD+N/P//NqHF+psdTgse8fC3QZRNSGJ358otOE99U11+E/G/8Dp4t05MZGEcuW6ST3fcklTUhPZygYEXVfDAUjIiIiIiIiIiIiIurG1GoF7r1X+uLE/HwNPvjALGNF1N2deWYoNm4Mw86djbjqqlqoVH8Hc02caEJ8vO8X027YEI5bbzWgTx8bXnqpGs3NDAejwFMIAoyJyQgO0mJ13mqX55xiOMXPVUkXG6FGhDEj0GUQUQdx6qmuP9/1egeGDWvE1KmVWLDgGDZsOIytWzOxdOlRzJlThhEjGiCK/JwmorYJCgE3Db4Jh2cdxj0j74FS0XZ4UcMZD2H69FT88EOox2NFRUUhOjpaaqlEnZLJJMJulzYVNTa2609hHTiQoWBE5H/VRVmorJW+GYhUFkszjhWVweloGWa/vWi7yza3D7vd12VRJ6ZUCpg6NRK7d+vw6acmjBrV0Oq5F15Yi169vA9yccVut6OoqAiZmZnIyamCw8F7EdQxGY1Gr9qXlJTIVAlR5yGKIo4dO4bi4mIAwIMPlrodRtmWF16Ix+7deiiVSvTu3RsRERFe90nUVd0x/A58cvUnEBSt3yf678//xe0b+N2BiOQjCAKCgqRvEGMymdp83SE6cOv6W2ETO+794Xd2vYPdJbsDXQYRuXCg7ADe3PFmoMvwyIbDG7D6z5ZzGt9+24yaGpXkfh94QNrGREREXUXXn1FBRERERERERERERERtuv32IERHt1yk466FC5UQxZY7PBF547TTQvDJJ+H44w8Lpk41Qa934NZbK3w+rsMBLF0aAwDIy9Ni9mwD0tLsePrpatTXS/89IZKDoNIi2RiNXZW7XL5+Wcpl/i1IoogQLWKMvQNdBhF1IEOHOhEU5MCQIY244YZKPPPMMXz++WFs25aJZcvy8MADpRg/vhY9e1oh/GumS2NjY2CKJqJOJ1wXjpfHvYw9t+3BOSnntH7iKavQHLMd996bjDVrIt3uPywsDD169JChUqLOpbRU+nfluLiuP4V1yBCGhhCRf9WXZaG4JnD3MesbLSgtyj3pWHZVNuqt9S3OVQkqjEkb46/SqBNTKgVccUUEtm0LwebNtRg9uuXP0/Tpvn9+YLc7MGlSEIYNs+Cjj0wMB6MOJzg4GGq1WnJ7m83Ge23Urdjtdhw5cgS1tbUnjmk0TrzwwjFERnp3PWW3K3D4cDj69u0LrVbrbalEXd6V/a/Ejzf9CLXQ+ufY27vfxuUfX+7Hqoioq4uNjZXcVhRFNDS0Hlz9+vbX8Vvhb5L79wcnnLjrq7vgdHLeJ1FH4nQ6cfemu+FwOgJdisfu+uouVDZVnvizw+HEa69Jv08xcqQZZ56pk6M0IqJOq+vPqCAiIiIiIiIiIiIiojbp9QJmzZK+e3pWlhZr15plrIjob3376rF8eQSOHrWhXz/f7/r1zTdhOHr05InZxcUaPP64AampTjzySDWqqqw+r4OoNVUOG0xWU4vjCihwcdLF/i/IQ8FBWhgTk6H4d6oPEXVr112nwrZtmVi+PA8PPVSKSy6pRVpaywAwV+rrWy4EJiJqy6lxp+K7G77H0OIXAFfrHBRO4NLpEBU2/Pe/CXjrrRi0tx5Cr9cjOTnZJ/USdXRlZdIXDMXFdf3dvYcP53cfIvIfS3UOjlUFPqSoqs6KqqKsE39+5fdXXJ6XEZ0BgfeIyENjxoTju+9CsXVrPSZMqIMgOHHmmfUYMMDi87G3bQvGn3/qsXevHtdfH4FTTmnGO+/UwGYL/O8d0V/i4+MltSssVOPpp3vg7rv5DIy6h/r6ehw6dAg2m63Fa/HxNixceAyCIO37bmioAx9+aMLTT0fxWofIA2ennI3dM3cjSBXU6jnrDq3Dme+eCVHk9RdRZ5BTnYO3d76N9/e9j5zqnA4XPhUaGurVZ3V5ebnL43k1eXj0+0cl9+tPvx77FR8e+DDQZRDRP3xy8BP8ePTHQJchSUVTBe7bfN+JP3/yiRlHj2ok93fffR3rc4OIKBB4Z4mIiIiIiIiIiIiIiHDPPTqEhUnfWWrBAoWM1RC1FBOjQ69evdCnTx8EBwf7ZAynE1iyJKbV16uq1Hj2WQPS0gTcc08Nioulh+kRSfX6jtddHk8MToRKUPm5Gs9oNGok9YiCoOKO6ER0ssjIYCglZoI0NTXJWwwRdQv331+HXe/MBj5Z5fqE2D+BCx8EALz5Zhz+9z8jHK18ZdZoNOjZs6dvCiXqBMrLpS3C1GhEhIV1/Smsp58ufbEDEZEnbPUlyC+3dZjF8SU1dtSXHg8G23hko8tzrup/lT9Loi7mjDNC8cUXYdi1qxGPPlrllzEXL4496c9ZWUG47bZI9OljwwsvVKO5uWP8/lH3Fh4eDpXK/WcF2dlaPPJIIi65pA9WrYrChx+GIz/f9yF7RIFUWlqK/Pz8NoNJRo1qxF13lXncd0aGGdu2NWPKlAgvKiTqvk6JOwVZs7IQrg1v9ZxfC3/FgLcGwGpnkCVRR7Y2cy0y3sjA7Rtvx03rbkL6a+lIfSUV0z6fhg/3f4iS+pJAlwjg+PWzVE1NTS3uwzidTsz8YiaabJ3nGfaD3zyI+mZuxEXUETRaGzHn6zmBLsMrK/avwJdHvgQAvPSS9HnlqalWXHVV62GxRETdRdefUUFERERERERERERERO2KiFBi+nSz5PY7dwbh66+ltydyl0ajQWpqKvr164fQ0FBZ+96yJQSHDrU/kaCuToVXX41EeroK06ebkJvLn33yn7WZa10eP7fHuX6uxDNKpRIpsUFQ6Q2BLoWIOiBBECTvwmy1ctEHEXnm2Wer8corkcf/cHAysO9G1yeOegUYshgA8MknBsyenQyL5eSJy0qlEunp6V7tJE/U2ZWXS9ul22BwQBC6fsi80ahCjx62QJdBRF2caK1Hflk9bHZ7oEs5ybFqEfUVh3DUdNTl63cOv9O/BVGXNHhwCMaP74m0tDTodDqfjbNnjx47d7resOToUS3uv9+A1FQ7nnqqGvX1Het3kbqf2NjYds/Zvz8Id9+djMsv740vvoiAw3H82ry5WcAzz/C5F3VNoigiNzcXlZWVbp0/bVolzjuvzu3+r7yyFr//rsaAAXqpJRIRgOTwZBy99yjiQ+JbPSerMgtpr6ahzuL+7ygR+dddX90Fm3jyfdH82nws27sMN3x2A4wvGtH/jf6Y9eUsfJb5GWrMNQGpMy4uzqv2/76ueG/ve/g291uv+vS3koYSPP3z04Eug4gAvLb9NRTWFQa6DK/d/sXt2PRDObZvlx7qddddNiiVXf85IhFRezgbiYiIiIiIiIiIiIiIAAAPPqhDUJD0XcyfeUbaIlAiKVQqFVJSUtCvXz+vdm38i9MJLF4c41Ebs1mJd9+NQEaGFjNnVqOxsdHrOojaIooisiqzXL42pdcUP1fjPoVCgZRoJbQRyYEuhYg6MI1GI6mdKIotdmAmImrN8uU1mDs38uSDm14CGl18F1AAuOS2E8Fg338fhpkze6K2Vnn8ZYUCvXv3ZiAYdXsVFdLuB0VGdp/P74EDGQpGRL7jdNhxrKgMFkvHC0wWRRGv7fgUTrT8rIjRxyBKHxWAqqir0uv1SE9PR3p6OvR6+cNYliyJbveckhINnnjCgJ49gYcfrkZlZcf7vaTuwWAwuPyu6nQC27YFY/r0nrj++l744Ycwl+1XrAhDeTl/fqlrsVgsyMrKQlNTk9ttBAGYN68QSUnNbZ6n0YhYsKAaa9aEIzRU5W2pRAQgQheBvHvy0MfQp9VziuqL0POVniiuK/ZjZUTkDrtoR3F9+7+bmZWZeGPHG7hi9RWIWhiFYe8Mw0PfPITN2ZvRaPXPHCyVSgWtViu5fXV19Yl/LqkvweyvZ8tRlt+99NtLOFR5KNBlEHV76w+tD3QJsjhWdwx3rHlccnuDwY6ZM6UHihERdSWckURERERERERERERERACAuDgVbrjB/Umw//bjj3r89ptFxoqI2qdSqZCUlIT+/fvDYDBAoZC2O9jOnXrs3Rssqa3VKsDpdCAvLw+HDh1CXR13oyXf2HhkIxxOR4vjoeoQJIUkBaAi9yQaBOhjWp+wTUQEwKsFuw0NDTJWQkRd1Vdf1eK228Ihiv/6zmCOAr56xXUjwQlcOhM49ykATuzZE4ypU1NRUqJGr169oFJxoSdRZaW07+FRUd0nFOy007rP35WI/K+0KBf1jR33vvxneZ+5PH5uyrl+roS6C51Oh7S0NPTp0wfBwdLu+f9bVpYOP//sOjzJlepqFRYsMCAtTYm77qpBaWnbYTJEvhAT83f4tSgC330XiuuuS8PMman4/feQNts2NiqxcCHvt1HXUV1djezsbEmbS4SFiXjppQLodK7bGo1WbNrUiAcfNHhbJhH9i06lQ+admRiZMLLVc2osNej9em9kVmT6sTIiao9SoUSM3rONGZ1wYlfJLiz8dSHGfTgOkQsicc6yc/DfH/+LLflbYHX4LrT2n9fOnrLb7bBYjt+XmfXVLJgsJpmq8i+baMO9m++F08lNYYkCKUIXEegSZHM09h0gY42ktrfeakFwMGNwiIgAhoIREREREREREREREdE/PPKIFiqV9IWK8+a1DKsh8gdBEGA0GpGRkYHo6GiPw8EWL46VPLZOJ+KGGyoBADabDQUFBcjKyoLJZJLcJ5Er7+x6x+Xx05NGIViv83M17omLUCO8R0agyyCiTiA0NFRy2/r6ehkrIaKuaMeOBlx7bTCam1uZLvfHtUB1WusdnP8EMHMYEFKMujoljMYk6HQd8/qLyN8qKqS1606hYCNGcKouEflGVVEWqup8tyhWDn/W/Ony+B3D7/BzJdTdaDQapKamol+/fl7dcwCAJUukLRCvr1firbcisG/fUWRnZ8NsNntVB5EnoqKiYLcrsH59BC6/PB333puCP/90P5R/6dIw1NXZfVghke+Joohjx46huLjYq3769m3G//1fyz7OOqsBO3Y4cf753n3OEFHrBEHAb9N/w4TeE1o9p8nWhEGLBmFrwVY/VkZEbVEoFBiRMMKrPmyiDVsKtuDJn57EOe+dg8gFkRi3Yhye2/ocdhXvgkOUb45iRESE5E0oAaC0tBSfHvwUazPXylZTIGzK3oQvDn8R6DKIurW7R94NpUIZ6DLkM/lqYPirgML992ytVsR99/E5PBHRXzjTgIiIiIiIiIiIiIiITkhNVeOqq6QvSti4UY8//ujYi5CoaxMEAfHx8cjIyEBcXBwEof3HYX/8EYRt29reFb0tV15Zjaiokycu2O12FBYWIjMzE1VVVZL7JvqnrcdcT2S+dcgMJPeIglaj8XNFbYsM1SLa2DvQZRBRJxEcHCy5LRfVElFbmpqakJdXCpWqrbMUwDs7AFNy66cYdwP3JyDsocH4oOQpfJ/3PZrtzXKXS9TpVFdLWywVHS1zIR3Y6ad3rO9qRNQ11JVloaSmY4e1ZNdmw+xo+X1NLagxOnV0ACqi7kilUiElJQX9+vVDeHi4x+3z8jT4+uswyeNPmGBCQoINFosFOTk5OHz4MBoaGiT3R+QuQRCwf78Rc+cmIjfX88W0NTUqvPRSnQ8qI/IPu92OI0eOoLa2Vpb+Jk404Zpr/n7me9ddNfj+ez2MRq0s/RNR276Y8gWmDZ7W6us20YZz3jsH67PW+7EqImqLt6Fg/9Zka8LmnM148NsHMWzxMMQ8F4MrVl2BN7a/gcyKTDidTq/69yZMuqi6CHd+eadX43cUz/zyTKBLIOrWxqWPw3dTv8NNg27CGUlnoF90P8QGx0ItqANdmjQKABPuOb75VvIvbjW56iozevRo88E+EVG3onB6e6VLRERERERERERERERdyp9/WjFwoBqiKG1R57XXNmLlSumhDkRyq66uRllZGRwO1zuO3XNPMr7/XtqiHpVKxFdfHUF8vK3N8wRBQHR0NKKjo90KKiP6t6K6IiS+lNjiuKAQYHvMBkEQYK0rRG5xPex2+XZElSpYr0PPlGQolFz8TkTuO3jwIERR9LidIAjo37+/Dyoios7OarXiyJEjcDqdKCjQ4LbbeqKwsI3rE2UzcPlNwCmr3Opfr9bjvJ7nYUzaGIxNH4u+UX292k2eqDMaPNiCffs8Dxl46KEGPPus9IDuziYhwYbiYncXbewFcJrbfe/ZsweDBw+WUBURdVbmqmzklVklfX/yp6d2P4VP8j5pcfy0+NOw+7bdAaiICBBFEaWlpaipqXFr0fjjjydg3bpISWMpFE6sW5eNtLSWYcJqtRo9evRAWJj0wDGi9tjtIvr2tUoKBQOA+HgrcnOVCApSylwZkW/V19ejoKDA63CQf7NaFbjnnmTccYcDU6ZEyNo3Ebln7vdzMX/L/FZfV0CBdya+g+lDpvuxKiJyZXP2Zoz7cJzfxjOGGjE6dTRG9xyNC9IuQHJ4G5vAuGC1WnH48GFJYz+8/WFsPLZRUtuORiWoYJ5rhkpgIA9RR+J0OtFoa0S1uRo15hpUm6uP/7Ol5uRjlpav1zV3oMDv/dcD3ywE6o2tn7LfilNP5XxDIqK/8KqMiIiIiIiIiIiIiIhOMmCABuPHN+KLL6QFe61ZE4T5821ITe2ku1NRl2MwGGAwGGAymVBWVgab7e8Ar+xsreRAMAC49FJTu4FgwPGFRuXl5aioqIDBYEBcXBzDwcgjr21/zeXxdEP6iZ8lTVgikq1HkFcmyr7QwRNajQbJPaIYCEZEHtNqtTCbzR63E0URoijys5WITmK325GdnX3iuig52YoPPsjBf/7TE5mZQa4bObTApx8BDfHAqFfaHaPJ1oQvj3yJL498CWwGksKSMKbXGIztNRYXpF0AQ5BBzr8SUYdUXS3t8zcmpnsF6A0a5EkoGBFR62z1xcivsHf4QDAA+KX0F5fHJyad599CiP5BEAQYjUbEx8ejvLwcVVVVrd5LLS5W44svIiSPdeGFdS4DwQDAZrOhoKAAKpUKcXFxiIyUFjxG1BaVSsBdd5lx333SQsFKSzV4661qzJ7N77bUeZSWlqKystInfWu1wKZNAoKDQ33SPxG1b97oeYgPjsfdm+52+boTTszYMANlDWWYe85cP1dHRP80PGG4X8crri/Giv0rsGL/CgBAr8heuCD1AoxOHY3zU89HbHBsm+01Gg3UavVJc8rc8cqBV7pMIBgAZERnMBCMqANSKBQI0YQgRBPiceihXbTDZDH9HRTmKlTMUuPydZvo2XtiuwZ+CKR+Dyz7Caju3eLlCy9swqmn6uUdk4iok1M4AzkbnIiIiIiIiIiIiIiIOqRt2yw44wxpE8QBYObMBrz9doiMFRHJp76+HiUlJbBarXj44URs3BghqR9BcGL9+iNISbF63FahUCA8PBxGo5EBJuSWjNczkFWV1eL4A2c8gIUXLTzpWF1pJgoqHf4q7SQqlRJpPUKhCU8MyPhE1LmVlJSgqqpKUtukpCSEh4fLXBERdVaiKOLw4cOw2+0tXmtsFHDffcnYtq2t76xO4KI5wJkvSa5BAQWGJwzH2F5jMabXGIxMGAm1koFA1PWEhDjQ2Kj0uN3y5Y2YOlVaIH1n9NhjDZg3z917ZXsBnOZ233v27MHgwYMlVEVEnY2juRZ5BWWwNHt+P9Lfmh3NGLZumMvXtl26DYOSohAU3XLhF5G/iaKIqqoqVFRUtAjbmz+/B1aujJLc98cfZ2PAAItb5yqVSsTExMBgMPCZAcmquVlEaqodJSXSNvFITW3G4cNqqFT8uaSOTRRFHD16FE1NTT7pX6PRIC0tDSoVQzKIOoJVf6zClLVTIDpbD0u+a8RdePXiV/1YFRH9W5/X+uBI9ZFAlwEAODX21BMhYef2PBdh2pYbSFZUVKCsrMyt/kqbSvH8/uexuWiz3KUGjF6tx7c3fovTk04PdClE1AE4nU402ZpaBoi5CBX765+zSvPQJNYA7e0LdOC64xt1/ctXX5kxblwrm3sREXVTDAUjIiIiIiIiIiIiIiKXzj+/CT/+KG3XpaAgEbm5IuLjOSmWOq6GhkbcdZcVK1eGo7nZ88UMF19swsKFhV7XERYWBqPRyEnk1CpRFKF+Wu1yUvOx+44hMaxlAFdlURZKa1qGYPiSQqFAapwGei7oJCKJ6uvrkZ+fL6ltREQEEhMZSEhEx6+dcnJy0Nzc3Oo5NpsCjz+e0H5A8D09gUhp70v/FqYNw+jU0RiTNgZj08ciLTJNln6JAslsFqHXSwsH2LTJjLFju8/E/vXrzZg0yd2/714wFIyI/s3psCE/Px8NTe4FDAXa6tzV+N+e/7U4HqWNwo+X/Hg8WN4YCo2L+1pEgVJdXY2ysjI4HA5UVioxblxfSc8OAODMM+uxaJHn3yUEQUB0dDSio6MZDkayeeqpajzxhEFy+yVLanDrrZEyVkQkL4vFgtzc3BbhjnIJDw9HUlKST/omIum+y/sO41aMg11s/Zn41f2vxuqrV/uxKiCzIhNf53yNMG0Yrjv1OuhU0jdkpJNt2LABu3bt8rqfm2++GT179vS+IGrXDWtvwIcHPgx0GS0oFUoMMw47ERJ2RtIZCFIHQRRFHDx4sM22zY5mvHf4PSw5tAQWR+e4RwMcf0YVqYtEZFAkDEEGROr+/v/IoEgkhSVhfO/xiAzidT8RSSOKTpxyihWZh5TAsDeB858AgkyuTy4dCCzad9KhU06xYN8+LQShvUQxIqLuhaFgRERERERERERERETk0tdfe7c4c/bsBrzwQoiMFRH5RkGBBfPnm7FiRRgaG5Vut1uz5gj69m09aMBTISEhMBqN0Gik7dZOXdenBz/FVZ9c1eJ4hC4CNQ/VuGzjFEWUFOaguk6+n9H2JEcrERaf4bfxiKjrcWeidWu0Wi1692YoIREBeXl5aGxsbPc8UQReeikO770X0+o5w6euwI60G+Us74Rekb0wttdYjOk1Buennu9yV3qiju7oURtSU9WS2u7e3YzTTtPKXFHHVVZm9yA8fy8YCkZE/xSI+zzeuvHHG7G3am+L4+OTxmPBiAUAAK1Wg7TEGCi54JQ6mNraWixe3IiHHuoBUZS2EPG993IxdGiT5BoUCgUMBgPi4uIYDkZeq6+3o2dPoLpa2uY0/fubsX+/Fkolfxap4/nmm1qsW2fBHXdU+KT/xMRERERE+KRvIvLe3pK9OH3p6bDYWw/mOTflXHw/9Xu3rqksFgv27t2LXbt2YefOndi5cycyMzPhcDg8L24S0O+iftg5YyeCNcGet6eT5Obm4tRTT0VTk/Rr7L/88MMPOO+887wvitr16u+v4p5N9wS6jHZplVqcmXwmRvccjf5B/ZGqTYVK+PvaubSpFH/U/IGvC7/G9yXfo9kRmPszQaogRAZF/h3o9Y+AL5fH/v8/R+giTvr7EBH5wsaNZlxyyT/mm+srgAvmAkOWAIp/xdlsvxP48vWTDi1Z0ohbb+U1ExHRvzEUjIiIiIiIiIiIiIiIWjV8uBk7d0oLBgsLcyA/H4iIcD9kiSiQysutWLCgEUuXhsJkansy1Hnn1eG11wp8Uoder0dCQgK02u6zOJradvGKi7EpZ1OL4+PTx2Pj9Rtbbed02JCfn4+GJt/vThofqUJ0Qj+fj0NEXd/BgwchiqLH7QRBQP/+/X1QERF1JoWFhTCZTB61Wb48Cs8/36PF8bPOasCXm1To/VZPlDWWyVShaypBhdMTT8eYXmMwptcYDO0xFEqB36Wp4/vtNwtOP10nqW1xsR09enSvhUhJSVYUFroTBL4XDAUjon+qLMpCaY090GV4ZPi64bA4Wt6Tev/c93Fa9N/vccF6HXqmJEOh5EYJ1PHs2dOA+fMdWLcuFHa7+2FIQ4Y0YvnyPNnqiIiIgNFoZDgYeeXBB2vw3HPSQxg/+8yEyy6LkK8gIi85HCIWLDDhiSciYLcLmD//GCZOrJWtf6VSibS0ND6vJeoEjtYcxaBFg1BnrWv1nFNjT8Xu23afFIrT3NyM/fv3Y+fOnSdCwP7880/Y7TJ995oE4DTgkbMewfwL5svTZzfldDoxevRo/Pjjj7L0x1Aw//m98HeMendUoMvwmEbQIFQdCpWggsPhQKW1Ura+VYLqpMCuE2Fero79KwBMp5J2L56IyB9Gj27CDz/oW75g3AmMnQ2kbDn+57zzgY/XAc1/b5hlNNpw9KgKarW0cH4ioq6MoWBERERERERERERERNSqNWuacPXVLh7UuunJJxvxxBPcvYk6l9paO55/vg7vvBOK8nK1y3NWrMjBoEFmn9ah0wVBozEiOVlaMB91HRHPRqC2ueVChnXXrMOkfpPabOtorkVeQRkszVZflQdDmBY9EntBwUVpRCSDnJwcmM3SPmP79+/PBbJE3VhZWRkqKioktf3yy3DMnZtwYqF///5m/PKLCpGRajzy7SN4duuzcpbaLkOQARemXYgxacdDwpLCk/w6PpG71q83Y9Ikz7+zKhROWK2AStW9JvdfckkjNm505z7ZXjAUjIj+UleaiYJKh9/G0+m0CFaLqKq3Se4jqyYLV39/dYvjakGN3ZfvbnE8MlQLYxLvLVHHdehQE+bPt2L16jBYLO3/nL711lGcdVaD7HWEhYXBaDRCpepewaokj4oKK9LSlGho8CyA+pRTmjB9egUuuKARp5zCQH7qGOrq7Jg6tRGffx5+4phOJ2LFihz07dvsdf96vR49e/bkvWaiTqSyqRID3hiA8qZy1yc4gLjGODza61H8sfcP7Nq1CwcOHIDNJv17T7v+fyhYfEg8jt137KRAMvLMW2+9hf/85z+y9cdQMP+x2C0IeyYMNtGHv2sdhRNAQzx6O8dhxhX9Twr4+uc/h2hCoFB0r/viRNT17dnTjCFD2glUDikFBBtQ1/K591NPNeDxx0N8VB0RUefGUDAiIiIiIiIiIiIiImqVKDoxYIAVWVnSdsCNibHh6FEl9HpOmKXOp7HRjtdeq8Mbb4SgsFBz4vjIkQ1YsuSoz8ffvj0Yd9yRgquuqsPcuRr07y89oI86r3xTPnq+0rPFcaVCCetjVrcWJNjqi5FTVCffrsb/EKLXISUlBQql6wA9IiJPlZSUoKqqSlLbpKQkhIeHt38iEXU51dXVKC4u9qqPbduCce+9yYiKsmPLFidSUo7vuJ5dnY3er/WWo0zJMqIzMLbXWIzpNQbnpJyDYA3Dt6ljWLKkETNmeP7zGBFhR01N91sI+fjjDXj6aXcWNewFQ8GICACaKo8gr8wKf033V6tUSAuvhkqtxrH6CNQ1SgvVeHzn41iXv67F8QERA/DxBR+7bBMXoUJMYj9J4xH5S0GBBc8+a8YHH4S1GqyUkWHGqlU58OUa75CQEBiNRmg0mvZPJvqHO+6owaJFkW6dO3JkA6ZPr8DIkY0nfp6NRiMMBoMPKyRq3759DZg8WYXDh3UtXktObsbKlTkICxMl9x8bG4vY2FhvSiSiAGmyNuHURacitzIXqABQ/I//lQHwX9bycf8/FAwANly3AZf0ucTPBXQNBQUFOOWUU1BfXy9bnwwF868Ri0dgR/GOQJfhW/lnAV+9BpQORni4HUVFQHBw97v/TUTd13XXNeLjj6U9vw4JcaCgAIiM9CzEnIiou+AKHCIiIiIiIiIiIiIiapUgKPDgg9JnxlVUqLFokVnGioj8JzhYhYcfNiAnR4XXXqtBeroFADB9eoVfxl+8OAZWq4CPPorAwIFBuOyyWuzY0eCXsanjePX3V10e7xvV1+0dytWhRqTEqGTf0Vyn1SApIYaBYEQkq9DQUMlt5VwQQESdR319vdeBYABw+umNeO+9PGzYYDsRCAYA6YZ0nN/zfK/790ZmZSZe/v1ljP9oPAwLDbjw/QuxcOtC7Cvd57eQECJXKiR+PTYY/L0Ks2MYOZILGojIfdbaQhRU2v32WS8IAlLCqqHWaqEQBCQGVyNIJ22zkG3l21weH580vtU2ZSY7aksyJY1H5C/JyTq8+WYkcnIcmDOnGpGRLTdhmDGjwqeBYADQ0NCA669vwN1316C4WFp4H3VPjzwSBK227bCk0aPr8NFHOViy5ChGjWo86ee5vLzcxxUSte3992tw9tlBLgPBAKCgQIvHHkuEKCETTKFQIDU1lYFgRJ2Mw+HAgQMH8N577+HB2Q8i+qNoKJ5VAIsArAewE8dDwQJ8K2rpnqWBLaATmzFjBp//dXIjEkYEugTfsYQBn34ILPsZKB0MAKitVeGDD/gzS0TdR2GhHZ9+GiS5/Y03WhgIRkTUBoaCERERERERERERERFRm268MQgpKVbJ7V9+WQ2bjYuUqfPSaATMmhWJzEwNVq+uxqhRTT4f88CBIPz2W8iJPzscCnz+eThGjgzG2LF1+OknTiDrLtYfXu/y+GUZl3nUT1BUOhKj5Hs8rFKpkBIfAqU2XLY+iYgAQK/XS25rNjOMlqi7MZvNyM/Pl62/iy6KxqBBIS2OzxgyQ7YxvGV1WPFd3nd46NuHMPjtwejxQg/c+NmNWLF/BcoaygJdHnUzFRXS7vcYDBJWaHcBo0ZpAl0CEXUSDnMN8suaYLf7b+V6UlgDdP8IARNUKqSEVECt9iwMvsnehDKz62uSq9KuarNtYbWIporDHo1HFAixsRo8/7wBeXnA//1fNWJjbQCA1FQLLrigzufj5+Zq8OmnkXjttUikp6swfXoNcnN5T4Tal5ysw1VXtfwZVSqdmDixBp99dgSvvFKAU091/fNkt9tRW1vr6zKJWrDZRNx5Zw1uuikS9fVtLxb/4YcwLF0a7VH/Go0Gffv2RXBwsDdlElEAfPDBBxg4cCBuueUWvPHGG9j++3Y4O+D8pA2HN6Ci0T+bz3UlS5cuxddffx3oMshLXTIUzKYDsiYCL+UDB6YAODkZ+v33ubEeEXUfL75ogc0mbU6iSuXEnDl8zyQiagtDwYiIiIiIiIiIiIiIqE0qlQL33WeT3P7YMQ3ee8/3IUpEvqZSCbj6agP6989AXFwcBMF3j9oWL45xedzpVODrr8Nw3nmhOPvsBnzxBRdfdGV20Y7cmlyXr9014i6P+wuL64cekSpvy4IgCEiJUUEdavS6LyKifxMEQfJnrNUqPciWiDofq9WK3FzX10pSxMbGIiIiwuVrl2dcDkOQQbax5FTWWIYV+1fgxs9uRPwL8Ri8aDAe+uYhfJf7HSx2S6DLoy6uslLR/kkuREV1vMWZ/hAdrURyMq9XiKhtTocVBSVVaPbj9xtjuB2h+pYBGyqNFimhlR59R1ubt9bl8RhdDPSqtkOgnU4n8isdsNYWuD0eUSCFh6vw3/8akJurwIIF1bj33jL48LHBCUuXxsDpPH4dZjYr8e67kejXT4spU0z4808+j6O2zZ2rgUp1/HpcoxFxzTVV2LjxMObPL0J6enO77UtLS31dItFJCgstOO+8Jrz5ZqTbbV57LQ6//eZewFd4eDj69OkDlcr752dERK2xi3as2L8i0GV0KsXFxZgzZ06gyyAZjEwYGegSvCMKwJExwA9PAiu+BBZWAPPMwMfrgeYIl022bQvhdzMi6hYaGkQsW6aT3H7ixCb06sUNdYiI2sJQMCIiIiIiIiIiIiIiatfMmUEndjqX4oUXVBDF7rngk7oeQRAQExOD/v37w2g0Qqlse0dqTx05osUPP4S1e94vv4Rg4sRwDBvWiI8/NsHhEGWtgwJv1Z+rIDpb/nc1BBkQHxIvqc+ohH6IjZC+w54gCEiOEhAUlS65DyKi9mi1WkntnE4nRJGfh0Tdgd1uR3Z2NpxOeb5nGgwGxMbGtvq6TqXD1IFTZRnL1/aV7cPCXxfiwg8uhGGBATevuxnF9cWBLou6KKmhYNHR3fce0cCB0u+vEVHX5xRFFBfmo7HJf8Ge0WEqGIIdrb6u0+mQHF7vdn9fHvvS5fFRsaPcau9wOJBfZoHDXOP2mESBFhyswoMPGjBrVhIMBgMUCmnXSO4oLlZj48aIFsdtNgErV0Zg0KAgXHZZLbZvb/BZDdS5ZWToce21JkybVoHNmw/jscdKkJDg/jWqzWZDQwN/vsg/vvmmFsOHC/j11xCP2omiAg89lITS0raDvhITE5GUlORNiUREblu6d6ls97O7gzvuuAMmkynQZZAMekf1Rrg2PNBlSGI4di3wv2bgw83AT08A2RcDTdFutV20qP3AXSKizu6tt5pgMkkPWH7gAXnn3RIRdUUMBSMiIiIiIiIiIiIionYFBQmYNUv6ZJVDh7RYs8YsY0VEHYPBYEBGRgYSExOhVksPWvqnJUtiPDp/165gXHddBAYObMbSpdUMQ+lClu1Z5vL42clne9VvbGJfJBg8n1SjUqmQGqdFSFw/r8YnImqPXq+X3Laurk7GSoioIxJFEdnZ2bJd94aGhsJoNLZ73vQh02UZz5/MdjOW71uOCR9NgENsPeyDSKrqaoaCeWrIkO77dyei9lUWH0FNvf8WjYYFaxGnbz/wKyRIhYQI9wJjDtUecnl8Sq8pbtfVbLWioKQSop0LaKlzEQQBRqMRGRkZiI6O9kk42LJl0bDbW+/X4VDg88/DMXJkCMaMqcePP7of6kfdxxtvKHHffWWIjrZLal9SUiJzRUQnE0URCxZUY8KEUJSWaiT1UV2twpw5ybDZWr5nKpVK9O7dGxEREV5WSkTkvj/K/8Cukl2BLqNT+Oijj7B+/fpAl0EyERQCRiSMCHQZHglWB2PN1Wvwf6e+ATilhd188kkIbDbO3yKirstud+LNN6V9XwOA00834/TTdTJWRETUNTEUjIiIiIiIiIiIiIiI3HL33UEID5c2ORwAnn1WgChy4SN1TREREejbty9SUlKg0Uif7HDsmAabNknbIfPgwSCsWSMgMzMTRUVFDAfzs7yaPGRVZsHqsMrW5/ai7S6P3zb0Nq/7jjRmIDVOg2C9tt1zFQoFIkO16JUQhqCoXl6PTUTUnrCwMLfPdTqBoiI1vvkmDC+/HIcNG9xbqE5EnZMoisjNzYXdLv276T/pdDokJye7de6A2AE4PfF0Wcb1t72le7GjeEegy6AuqKpK2hTU6GiZC+lERo7krudE5FptSSbKTP77PhOk0yIxuBoKwb338ki9iJiwtt/DDlQdgFVseW9MK2hxiuEUj+prbGpGcVEBnLzHSZ2QIAiIj49HRkYG4uLiILj5e9aeykoV1q6NdPv8b74Jxfnnh+Lssxuwfr0JTief0dFxYWFhUKmkhRsAQHNzM8xmbgZFvmG323HkyBFUVjbDZvPu/XP/fj0WLow/6Zher0ffvn2h1bb/fIyISG5L9ywNdAkdXnl5Oe6+++5Al0Ey60yhYL0NvfH79N9xZf8rccstYQgJkbbhSlmZGp9+ys2siKjrWr3ajKNHpc+Tve8+3qciInIHQ8GIiIiIiIiIiIiIiMgt4eFKzJxpkdx+zx4dvv5aenuiziA0NBR9+vRBamqqpMnk774bDVFsuWO1u6ZPr4DT6URNTQ0OHjyIgoIC2QITyDWbw4Zr1lyDtFfTkPFGBqIWRuHyVZdj8a7FKKwrlNzvkaojqLfWtziuElQY22usNyWfEBzTB6lpvdErXgdDmBb6IO2JhUAajRoheh1iwtXokxyFhJTeUIcaZRmXiKg9QUFBLo87nUBJiRrffhuGV1+NxW23peCcc/ph3Li+mD07Ge++G4NNm9R+rpaI/KmgoAAWizzfK9VqNdLS0qBQuH/9PWPIDFnGDgRBwamCJL/qamkBVzEx0r/3dnajRklfIEFEXVdTxWEUVvsv/EqtViMlpBKCh4EwsfoGhIe0fs/zo5yPXB7vF9HPo3H+YqpvRkXxEUltiToCQRAQExOD/v37w2g0Qqn0Lhz0/fejYLV6fl3/yy8hmDQpAmvX5qG8vJwbihAAIC4uzqv2xcXFMlVC9Lf6+nocOnQINpsNU6dWYcyYWq/7/PjjKHzxxfENmWJjY5GWliZbWCMRkadW/rESZhuDNdty5513oqqqKtBlkMyG9RgW6BLcMqH3BGyfsR0DYgcAAMLCVJg4seW8HXctW8ZrDiLqul56Sfqzvl69mnHFFa7nBRER0cmkb+1ARERERERERERERETdzv336/D66yLMZmmTVubPB8aNk7koog4oODgYvXv3hsViQVFRkVs7ppeVqfD55xGSxzzvvDr06dN80rG6ujrU1dUhNDQUPXr0gEbDxcdye/X3V7H6z9Un/txgbcC6rHVYl7UOADAwbiAuTr8Y43uPx+mJp0OtdC+s5tXfX3V5PCM6Q/bFCkHR6fjnNBunKELBBRFEFECCIEAQlCguVuDPP4Nw8GDQif+vqWl7qsv+/fysI+qqCgsL0dDQIEtfgiAgPT3d4+uqyQMm497N96KuuXPt7j4iYQSGG4cHugzqYhwOJ0wmacEWsbHdNxTMYFCiZ0+rV7unE1HXYq0tQH6lA06n0y/jCYKAlNAqqDSeb2igEAQk6Ktgc0Shydzc4vXfKn5z2W580niPx/pLuckGjTITET0yJPdB1BEYDAYYDAbU1taitLQUNpvNo/a1tQJWrTJIHn/o0Eb07duE8vImVFRUwGAwIC4ujsE43VhkZCRKSkokh8SZzWZYrVY+dyLZlJaWorKy8sSfFQrgqaeKcOSIFnl5Oq/6/uQTA2bNMiAkJNjbMomIvGKymLAuax2uO/W6QJfSIa1duxZr1qxx+3ytVovm5pbfTSnw8mrysPKPlfgu9zv8UfEHyhvLA11Sux4/53E8ed6TLTZYmTlTiZUrpfX5/fchKCiwIDnZu2sZIqKO5qefLNi5U3qo11132aFUen5/moioO2IoGBERERERERERERERuS02VoWpUxvw9tshktpv2RKErVstOPNMTnah7kGn06FXr16wWq0oKipCY2Njq+cuXx4Nu136ApwZMypafa2+vh719fUIDg6G0WiEVstJFXLZUbyjzdf3l+3H/rL9WLB1AcK14bio10UYnz4e49LHoUdoj1bbbTyy0eXxKzOu9KpedzAQjIg6giVL4vDSS54vdj10SAez2YGgIGkhJUTUMX39dTWiomohx2WsQqFAeno6lErP3yeCNcGYcsoULNq1yPtC/CQ+JB4fX/kxFIruG8JEvlFZ6YAoSpuCGhfXvb9zDBxoYygYEQEA7E3VOFpmhsPh8NuYyeH10OmkX1QJKjWSgyuRazfA+o9Qo0ZbIyotlS7bXNHzCsnjAUBRtQi16jCCY/p41Q9RRxAeHo7w8HDU19ejpKQEVqvVrXYffRSFpibp9zr++fzA6XSiqqoKVVVViIiIgNFoZDhYNxUTE4OysjLJ7YuKipCamipjRdQdiaKIo0ePoqmpqcVrwcEiXn75GK67Lk3ye+CVV9Zi2bJghIRwCSUReU6j0UAdpEZjbevzPDy1dO9ShoK5UF1djf/85z9un3/BBRfAbrfjp59+8mFV5I46Sx3WZK7Bl0e+xO6S3SisK4RN9CwEOZBCNaF4//L3cVm/y1y+fvbZwejb14xDhzwPv0lMtGHv3hokJ7c+N4iIqDN67jnp97OjouyYMUN6oBgRUXfDO/dEREREREREREREROSRRx7RQq2Wtms0AMyfL70tUWel0WiQmpqKvn37IjQ0tMXrNTVKrFnjefDJX0aObMDAgeZ2z2tsbMSRI0eQk5MDs7n986l9OpX7IYe1zbVYc3ANpq2fBuOLRgx9Zyge//5x/HrsVzjEvyfL2EU7jpqOuuzjzhF3elsyEVGncMop0sJrbDYBO3a0XEBGRJ3Xt9/W4rLLwnH77T1RV+f9dLe0tDRoNNLDeGYMneF1Df4SqgnFV9d/hdRILtIm+ZWXS7+/ExvbvaeuDh0a6AqIqCMQ7c0oKKmC1eq/hbIJ4XaEBHkfiKHSaJASWgWl8u/389V5q12eGxcU59H9M1ecTicKKh1oNuV71Q9RRxIaGoo+ffogNTUVOl3bvyNNTQI+/DBK8lj9+5txxhkNLl8zmUw4ePAgCgoKYLfbJY9BnVNUVJRXAdKNjY38uSGvWCwWZGVluQwE+0taWjOeeqrI4741GhELFlRjzZpwhIYyEIyI3CAAiAcwBMAlgHGOEa/9/BoaB8sXCAYA3+V+h3x+t2nh7rvvdjusNCgoCG+//baPKyJX7KIdm7I34fYNt2PgWwMRMj8E4QvCcev6W/Fp5qfIM+V1qkCwvlF98fv031sNBAMApVLAdde5P78qKEjEpEk1WL48F+vXH0GvXtUQRc6VJKKu49AhK776Si+5/fTpFuj13fs5IRGRJ3hXi4iIiIiIiIiIiIiIPJKSosbkyY348MNgSe2/+ioI+/dbMXCg9EXYRJ2VWq1GSkoK7HY7SkpKUFtbCwBYsSIKZrP0yQ4zZlR4dL7ZbEZOTg60Wi2MRiOCg6X9PhMwKG6Q5La7S3Zjd8luPL3laRiCDBjbaywuTr8YNeYaOOFscX6MPgbR+mhvyiUi6jTOOEMrue22bTacc46MxRBRwOzZ04BrrgmG2azEzp3BuPnmNLz11lHExUlbdJySkoKgIO92Hh7SYwhOiz8Ne0r3eNWPr6kFNdZduw6D4wcHuhTqokpLpe8CHh/fvaeuDh/OxQ5E3Z1TFFFcWIAmc7PfxowJExAZLP29+9+0Oi2SxTocrQ2F0+nEpmObXJ53RuwZsozncDiQX25BmqYSKt4foy4kODgY6enpsFgsKCoqcrmZxyefRKK2Vvr104wZFWgv96murg51dXUICQmB0Wj0KkiZOg9BEBAVFYXKykrJfRQVFSElJUXGqqi7qK6uRnFxsVvnjh1bh337KvHBB+5dAxiNVqxY0Yzzz5e+IRMRdW1qtRoZ/TOQG5SLhqgGwAggDietti5GMW7bdJvsYzvhxPJ9y/F/5/6f7H13Vhs3bsSHH37o9vn//e9/0atXLx9WRH/5o+wPrPpzFX44+gMyKzNbncvSGV3a91K8f9n7CNeFt3vubbeFYP58EVZr6/d1TzmlCVdcUYOLL65FSMjfIWBOpxMmkwkGA69LiKhreP55G0RR2n0jnU7Evfd6t4EEEVF3071nVhARERERERERERERkSSPPqrCypVOiKLnu0c7nQrMm2fDqlVcUEDdl0qlQlJSEhISElBSUoodO6SHcg0c2IQRI6TtTtvc3Iy8vDyo1WoYjUaEhoZKrqO7kitkodpcjZV/rMTKP1a2es65Pc+VZSwios6gd28dDAY7qqs9n9qyZw+DNoi6grw8MyZO1Jz0PnDkiA433piGRYvykZbmWYiGnNe7M4bMwH++/I8sffnKB5d/gNGpowNdBnVh5eXSFn8FBYkICenen9WjRvGeGFF3V1F8BKYGm9/GCw/RIlZfC8Dz+/ltCdarkYBmFJo0OFJ3xOU5N6TfINt4VqsNBSU16Jmsh6DWy9YvUUeg0+nQq1cvWK1WFBUVobHx+D3/5mYFli+XHoSXlmbB6NF1bp/f0NCAw4cPQ6/XIyEhAVqt9NB26hxiY2NRVVUFp1Pa9X19fT0cDgeUSqXMlVFXJYoiioqKTmyc5K777ivFn38GYffutp+pnnVWA1atUsNo5DNPIjpOpVJhwIABGDp0KIYNG4ahQ4di0KBB0Gq1sIt2DHl7CA6UH/BrTe/tfQ+PnfMYBEX3vkcGALW1tbjtNvfD14YMGYLZs2f7sKLuq7yhHKsPrsbm7M3YW7YXJfUlcDjlCxfvSP573n89+h2Mj9fgoovqsHFj2EnHw8PtuOQSEy6/vAZ9+7b+zKqyspKhYETUJVRWOvDhh9I34Lr6ajPi47l5LRGRJxgKRkREREREREREREREHuvfX4uJExvx+efSHtCuXatHdrYV6elcBEndmyAISEgwYvt2ER98UIMXXtDhzz89mzgxY0YFFF6u57PZbMjPz4dKpUJ8fDwiIiK867AbGRQ/yG9j9Yvqh2pzNQxBnCxIRF2fUilgwIAmbNkS4nHbAwe4YJWos6uqsmLCBKCoqOV3xpISDaZOTcXrr+dj8GCzW/3FxsbKuuBiyqlTcP8396PJ1iRbn3J6eezLuOaUawJdBnVxFRXSQgMiIx0AuveCx8hIJVJTrcjL430xou7IVJyJcpP/FtXqg7RI0FdBIah90n+E3omfinfDJrYMOdMpdegT0UfW8ZrMzSgqKkZichoUQvf+PKGuSaPRIDU1FXa7HUVFRVi7VoWKCum/v9OnV0LKr0pTUxOOHDkCnU6HhIQEBAVJX/BJHZsgCIiMjER1dbXkPkpKSpCYmChjVdRV2e125OTkwGbzPBxVrQaef/4YJk/uhcpK1++Ld91VgxdeCIdazWsEou5KpVKhf//+LQLAdDqd6/MFFfbethcXvH8Bfsz/0W915pny8NPRn3B+6vl+G7OjmjNnDoqKitw6V6VSYcmSJQwjlYHVbsWGwxuw/tB6bC/ajqO1R2GxW3w2ngIKxOhjUN5U7rMx3BGmDcOHV3yIS/pc4nHbadNEbNx4/J9HjWrAFVfUYPToOmi17d8nt1qtsFqt0Gh4P5iIOrdXXjHDbPZ8Dg8AKBROPPigb+5RExF1ZQwFIyIiIiIiIiIiIiIiSebOVeHzz6W1tdsVePZZG5Ys4WQXIgBQqQTcckskpk4VsXatCc89p8aOHe2H7vXpY8a559bLVofdbkdhYSFKSkoQGxuLqKgo2fruqgxBBiSFJeFY3TGfj/X0lqcx/5f5GJU4CuPTx2N87/EYHD8YCm9T4YiIOqiBA23YssXzdocPa9HYaEdwMKfFEHVGZrMDEydakZnZ+oTi2loVZsxIxXPPHcN557V9PRwZGYnY2FhZawzXhWPygMl4b+97svYrhwfPeBD3jLon0GVQN1BeLi0ULCrKAYCT/gcNsjEUjKgbaqw4jKIa0W/jaTRqJAdXQlD59v1m5ZEVLo/3j+jvk/FqGyzQFB1BXFJfn/RP1BGoVCqkpKRgzhw7dLpqvP56MI4d8ywEPSHBiosvNnlVh8ViQU5ODrRaLYxGI4KDpW0WRB1bfHy8V6FgJpMJRqMRAsMaqQ319fUoKCiA0yntuyQAxMTY8fzzx3DrralwOP5+NhYa6sCiRfWYMiVSjlKJqBOJj4/HzTfffCIEbNCgQR6HmQqCgB9u/gHXrrkWq/5c5aNKW1q6d2mXDQX7vfB3LN69GCpBhelDpmOYcZjL87755hu8++67bvc7e/ZsnHbaaXKV2W2IoogdxTuw+uBqbMnfgsNVh1HbXOvTMcO0Yehj6IOzU87GVRlXYVTiKAiCgEGLBmF/2X6fjt2ajOgMrLt2HfpESQsvv/TSMNx3XynGjKlFYqLnAadlZWVISkqSNDYRUUdgsYh45x3pG/RdeKEZp5yil7EiIqLugXdciYiIiIiIiIiIiIhIkuHDtRg9ukly+w8/DEJJiV3Giog6P6VSwNVXR2D79mB89VVdu4Ff06dXwhd5UA6HAyUlJTh48CDKy8shiv5brNgZDYof5LexRKeIX4/9isd+eAxD3hmChBcTMO3zaVhzcA1qLb6duElE5G/DXK8RaJfdLmDHDrO8xRCRX9jtIiZPbsS2be3vMGyxCLjnnmR8+mnrCz5DQkKQkJAgZ4knzBgywyf9euPGgTfimQufCXQZ1E1UVUlrZzDw+yUADB0qfSE8EXVOzaajKKh0eBWE4QmlUomUkCqoNL4PIPyhaJfL45ckX+KzMStqbagpzvRZ/0QdRXCwCg8+aEB2thpvvFGD3r0tbredNq0CKpny0pubm5GXl4dDhw6hrq5Onk6pwxAEAWFhYV71UVZWJlM11BWVlpYiPz9fluugoUObcN99pSf+3K+fGb/+2owpUyK87puIOp9x48Zh2bJlmDVrFkaNGuVxINg/vXrxqwjXhstYXds+Pfhpl3u+7xAdmPvdXIx6dxTe3fMu3t71NkYtGYUf8n5ocW5DQwNmzHD/HnuvXr3w5JNPylht11VQW4CFWxdizAdj0OOFHlA/rcaod0fhxW0vYkfxDtkDwXRKHfpG9cWNp96I1VethnmuGbUP12LHzB14ceyLOCP5jBPhsSOMI2Qd212X97scv0//XXIgGHB8s8e77jJLCgQDwO9RRNTpvfeeGeXl0jf9uf9+bnpKRCQFQ8GIiIiIiIiIiIiIiEiyuXOlP2qwWAQsXOj+4gWi7mbcuDD8+GMofv65HuPG1UGhOHmifHJyM8aM8e0kUVEUsXOnCYMHW/DuuzWw27l425VBcf4LBfu3koYSLNu7DFd/cjWin4vGee+dhwW/LMCBsgN+W2RKROQrZ56pk9x22zZpE7KJKLBuv70WX3zh/kJkUVTgyScTsGhRDP596aPVapGcnCxzhX87PfF0ZERn+Kx/T43tNRbvXvouBAWnBJJ/VFRIm7wfHc3vKQAwfLgy0CUQkR/ZGyuQX94Mh8Phl/EUCgWSQ2uh1Wl9PpbJUodyc3XLGqDApJ6TfDp2cY2IhvJDPh2DqKPQaAT85z+ROHhQg/feq8Gpp7a9aU9MjA2TJplkr8Nms6GgoABZWVkwmeTvnwLHaDR61b66upobzFALoigiNzcXlZWVsvY7dWoVLrqoFldcUYvt29U45RS9rP0TUfdT11yHcSvGyR6W1Baz3YxVf67y23i+VmOuwSUrL8H8X+afdNzhdODpLU+3OP+hhx5Cfn6+2/2/8847XoW+dVUN1ga8v+99XLvmWqS/mg7t01qkvJyCh759CN/kfoPShlKITvmu0ZQKJRJCEzA+fTxeGfsKSuaUwPyYGVmzsvD+Fe/j6gFXQ6dq/fnuyMSRstXiDgUUmDd6HtZMXoNQbajX/cXFxUlu63Q6UVvbtYIAiaj7EEUnXnlFevL8wIEWXHih9Pk/RETdmUz7fhARERERERERERERUXc0erQOI0aYsX27tIlX774bhP/7PwciI7kQkqg1Z58diq++AnbvbsC8eQ6sXx8Gu12BW2+thNIPvzpLl0bjwAE9pk/XY/58C+6+uwm33x4BrZZhA38ZHD840CUAAOyiHT/l/4Sf8n/Cw989jMSwRIxPH4+Le1+MC1IvkGWSIxGRP6WlaREVZUNVlee7je7dy88pos7msceq8e67Bklt33gjDhUVKjz6aAmUSkClUqFXr14ndp/3BYVCgRlDZmD217N9Noa7hhmHYc3kNVArpe/OTOSpqippv18MBTtu5EgNFAonnE7ujE7U1Ym2JhSUmmC1+i+4OCG8GcF6/1wXvHlgjcvj8fp4aASNT8d2Op0oqHQgTZ0HXWSqT8ci6ihUKgE33RSJG24QsW6dCQsXqrF9e3CL8266qRJare+uu+x2OwoLC/HGG0049VQ9Lr00wmdjkX+oVCqEhISgoaFBUnun04nKykrExsbKXBl1VhaLBbm5uT4Ji1MogEWL6pCWliR730TU/VjsFkz6eBL2lO7x+9hL9yzFzKEz/T6u3P4o/wOXfXwZcmpyXL6+tWArrA4rNMrj3xF//vlnvPXWW273P23aNIwePVqWWjszURTxw9EfsDZrLbYWbEVOTQ4arNKu3dxlCDKgX1Q/nNfzPFzd/2oM7jHYq/5GJIyQpzA3hGvD8dGVH2F87/Gy9anX66FUKiWHvldUVCA8PFy2eoiI/GXjRguysqSHc953nwhB4PMwIiIpOAOSiIiIiIiIiIiIiIi88vDD0hcV1Ncr8eKLZhmrIeq6hgwJwaefhuPAATNuu60aEyeafD5maakKn38eceLPubk63HuvAb162TFvXjUaGuw+r6EzGBQ3KNAluFRYV4h3dr+Dy1ddjqiFUbjw/Qvx4rYXYbKYAl0aEZFblEoBAwY0S2p74IBW5mqIyJfeeKMG8+ZJCwT7y+rVUZg9OxlWqxLp6ek+DQT7y42DbjyxkClQekX2wsYpGxGiCQloHdT9VFdLm7wfHS1zIZ1URIQSqan+CwgiosBwig4UFRWhySzte40UsWECIvT+C2D8JPtbl8fPjj/bL+OLooj8civsDWV+GY+oo1AqBVx5ZQR+/z0YmzbV4bzz6k+8Fh5ux9VX1/i8htpaJebPj8OkSREYOrQJK1ea4HDIH/5D/mM0Gr1qX1lZKVMl1NlVV1cjOzvbJ4FgAJCYmMhAMCKShV2047pPr8OPR38MyPi/F/2OgxUHAzK2XD758xOMWjKq1UAwAGh2NGN/2X4AgNlsxq233gqn073vrXFxcXj++edlqbWzyazIxH9//C/OXXYuYp6Lgep/Klz4wYV4c8eb2Fe2T/ZAML1aj1NiTsGMITOwccpG2B63oerBKmy9dSvmXTDP60AwABgQMwDB6pahxnIbEDMAO2fulDUQ7C+RkZGS21osFtjtnGdFRJ3PCy9Iv99sNNpw/fXSA8WIiLo7hoIREREREREREREREZFXJk0KQv/+FsntFy3SobGRiwSI3NWvnx6LFhmQkdELQUG+nTCxfHk07PaWjxSLijR47DEDUlOdmDu3BjU1HWshc1ZlFh797lH83w//55dJtL0MvfwycdEbNtGG7/K+w5yv56DPa32wr3RfoEsiInLLoEHSPmOOHNEyvJKok/jkExPuvVeendELCzVISuoFlUolS3/tidZH44qMK/wyliuxwbHYfMNmxAbHBqwG6r6qq5WS2sXEcCfwv0i9ziGizqO8KAe1Df4LBIsI0SJG3+S38QDgz+pcl8fvHzzZbzXYbDbkl9ZBtDb6bUyijmTs2DD88EMofv65DuPH12Hq1Cro9b5/7vbRRwY0NR2/Jty9W48pUyJw6qnNWLy4BjYbn/t1RhqNBnq9XnJ7URRRVVUlY0XU2YiiiGPHjqG4uNgn/SuVSvTu3RsRERE+6Z+Iuhen04nbv7gd67LWBbSOZXuWBXR8qRyiAw998xAmr5mMRlv738W2F20HAMydOxfZ2dluj/Paa695FcLUWVQ3VePtnW/jso8vQ8rLKVD/T43+b/bHkz89iZ8LfkZlUyWckC8AXC2okRKegiv6XYHFExej5qEaND7aiAP/OYB3Jr6D8b3HQyXI/5xFKSgx1DhU9n7/6ar+V+G36b8h3ZDuk/5jY717HlNRUSFTJURE/rFrVzN++kn6vYI77miGWs1ng0REUjEUjIiIiIiIiIiIiIiIvCIICjz4oENy+8pKFd58078LlYi6Ap1Oh169eqFPnz4IDpY/kKq6Wok1awxtnlNZqcb8+ZFITVXg3ntrUFLiv0WOrdlVvAtD3h6CZ355Bv/7+X8Yvng4Nmdv9umYgkLAwLiBPh1DThVNFXjgmwcCXQYRkVuGDXP/XK1WxMCBTbj22ir83/8Vo66u3neFEZEsTCYTcnPrAXg/EbhHDyu+/NKJmBiN94V5YMaQGX4d7y8hmhB8OeVL9DL0Csj4RAwF897QofIt5COijqemOBMVtVa/jRccpIUxuAYKwX/vs98W/A6b2DKMOVgdhOEJPREX7r9azJZmFBaXwClKf1ZB1NmdfXYYNm4Mw9NP66HR+PZ7UWOjgBUrolocz8wMwsyZkejb14aXXqpGczPDwTobo9EoqV1jo4Bly6Ixc6a07wnU+dXV2TF3biWqq2t90r9er0ffvn2h1Wp90j8RdT+PfPcI3t3zbqDLwAf7P4DN0bmC46uaqnDxhxdj4a8L3W6zvWg7fvvtN7zyyitut7n00ktx9dVXSymxQ7OLdqw/tB7TPp+GAW8MgH6eHlHPReH2jbfj80Ofo6C2AHYX37WlUkCBGH0Mzu95Pv53/v9weNZhWB+34ui9R/HpNZ9i+pDpiNBFyDZee0YYR/ikX0EhYMGFC7D6qtUI0YT4ZAwAEATBqw0cTSaTfMUQEfnBwoXSP5NCQx2YNcu3m94SEXV1/tkSkYiIiIiIiIiIiIiIurTrr9fjySetOHpU2iKDV17R4N57ndwRikgCjUaD1NRU2Gw2FBcXo75engCUFSuiYLG4t8dQba0Kr7wSicWLHbj++ho88ogOqan+n9DhdDoxY8MMmO3mE8eabE249tNrsWvmLqRFpvls7MHxg7GtcJvP+pdbnikv0CUQEbnlzDN1Lo+r1SL69bOgf38zBgwwo39/C9LSLFCr/z7H4XAC6Pq7hxN1VvX19SgsLMSECUBEhAP33ZcEs1na4uHwcDs2bLChVy/5w3Lbc17P89ArshdyanL8NqZKUGHt5LUYahzqtzGJ/qmhQXT7++K/xcby3s9fRoxgYAJRV9VQfghF1f4Lp9Jo1EgKqYSg9G846qI/PnV5fHhsfwBAdJAZVjEMNfX+CUera7CgrCgH8Ul9/DIeUUcVFhaKsLBQNDY2oqSkBBaLRfYxPvkkEnV1rS9HysvTYvZsLZ5/3oo77mjAPfeEITSUy5c6A51OB51O5/bPTU2NEitWRGHlyijU1x+/vt2ypQ5nnx3myzKpg9m3rwGTJ6tw+HAsamuB//ynXNb+Y2NjERsbK2ufRNS9vfDrC1iwdUGgywAAlDWW4avsr3Bp30sDXYpb9pXuw+WrLvd4vsG2o9uw/dHtEEX3QmPDwsLw5ptvSimxw9ldshur/liFn/N/RlZVFkwWk0/HC9WEorehN85MPhNXZVyFs5LPgiBIu5frCyMTR8reZ6QuEh9f9THG9Boje9+uxMbGIj8/X1Jbh8OBxsZGn2z+SEQkt2PHbPjsM+lzQKdONSMiwndBjURE3QHvqhMRERERERERERERkddUKgVmz7bh7rulLToqKtJg6dJG3HYbJ7wQSaVWq5GSkgK73Y6SkhLU1krfibu+XsDHH0d53K6pSYnFiyOxd28DPvzwCIxGo18nsm3K3oQ9pXtaHDdZTLhy9ZX4ddqvCFL7JqxsUNwgn/TrK6cnnh7oEoiI3JKWpoPRaEVkpB39+1v+fwCYGenpzVCrnW22NZvNbb5ORIFjsVhOWjBx5pkNWLYsD//5T09UV3s2pU2nE7FqVROGDg3MgmNBIeDW027Fo98/6rcxp502DRf1ushv4xH9W0mJHYC0e0Dx8QzC+suIERoIghOiyKA0oq7EUpOHgkr/BYIplUqkhFRBpdb6bcy//FS02+XxmzMmAgAUggJGfS2sjgg0NjX7pabKWis0ykwYjBl+GY+oIwsODkZ6ejosFguKiopku0/S3KzA8uXRbp1bXKzB448b8PLLNsyYUY377w9BVJR/AwzJcz169EBeXttBH6WlaixfHoVPPzXAbD45ZOLZZ4Gzz/ZlhdSRvP9+DWbNCjsRCrdoUQxOPbUJZ5/d4HXfCoUCPXv2ZGgGEclq+d7luP+b+wNdxkmW7lnaKULBVh5YiVvX33rSJm3uOvzpYSDT/fOfffZZJCQkeDxOoBXXFePjPz/GNznfYF/ZPpQ1lkF0uheEJoVWqUVyeDKGGYdhYp+JmNR3EvQavc/Gk8OIhBGy9jcwbiA+u+Yzn24S+G+hoaEQBMHtkLt/Ky8vR2pqqsxVERHJ78UXm2GzSQv1UqmcmDPH//esiYi6GoaCERERERERERERERGRLGbMCML8+TaUlqoltX/+eRWmT3dCqeRCSCJvqFQqJCUlISEhASUlJTCZTHA62w5N+bdVqwwnJu9LcdNNVWhubkZeXh7UajWMRiNCQ0Ml9+cOp9OJeVvmtfr63tK9uPPLO/Hupe9CoZD/fWZQfOcJBYsPice80a3/uyIi6kgUCgW+/joHTqfni+ptNpsPKiIib9lsNuTk5LQ4PmCABR98kIvbbuuJwkL3FokrlU68804txo6NlLtMj9w8+GY8/sPjcEh4r5LinV3vIDksGXPPmeuX8Yj+rbxc+kK22Fih/ZO6ifBwJdLSmpGdzUURRF2Fvb4M+eVWyYtCPaVQKJASZoJW5//3kcomEyotppY1QYHr+477+89KAcnBlci1R6HZavVLbcXVDqiVWQiN6+eX8Yg6Op1Oh169esFqtaKoqAiNjY1e9bduXSQqKz17FlhVpcazzxrw5pt2fPzxMYweHQutltdAHVVwcDA0Gg2sLt63jx7VYOnSGGzYEA673fW1/aZNodi7twGDB0tbOEydg80m4t57a/Hmmyffk3E6FXj44USsWpWDxETp92c1Gg3S0tKgUnHpIxHJZ8OhDbh1/a2BLqOFjUc2oqyhDHEhcYEuxSW7aMfD3z6MF7a9IK2DYgC/un/6WWedhdtvv13aWH7UZG3C54c+xxeHv8CO4h0oqC1As8N3gdiCQkBccBwGxg3EmF5jMHnAZCSGJfpsPF9JCktCfEg8ShtKve7r2lOuxZKJSxCs8X+AaFhYGEwmk6S2jY2NEEURgsB75UTUcdXXi1i6VPrmq5MmNSE1lQHPRETe4hUjERERERERERERERHJQqcTMGuW9MlN2dlarF4tzy7lRAQIgoCEhARkZGQgOjra7SAss1mBDz6Iljxunz5mnHNO/Yk/22w25OfnIysrS/KEOHdsKdiCrce2tnnOsr3LsGT3Ep+Mf2rsqVCg44cahmvDsfmGzUgKTwp0KUREbgsKkrZI1Ol0wm63y1wNEXlDFEVkZ2e3GlqbnGzFBx/kICPDve+GzzxTgxtvDGwgGAD0CO2BiX0n+nXMx354DLdv6PgLo6hrKiuTFnajVDoRFSU9gLorGjyY1ypEXYVobUB+WZ1fw4kTwyzQB7kXpiq31/evdnk8NcwIlXByeIdSrUFKaCVUKv99BhyrEmGpzvXbeESdgUajQWpqKvr16yd5Ew+bDVi2TPrzg7AwET161OLIkSPIzs6G2czngh1Vjx49TvpzZqYOc+Yk4dJLe+OzzyJbDQQDAFFU4JlneJ3blRUWWnDeeU0tAsH+UlenwuzZyWhulvbcLDw8HH369GEgGBHJ6uf8nzF5zWS/bezgCbtox4r9KwJdhkuVTZUYu2Ks9EAwB4DPAbh5O1Gr1WLx4sU+2ejNG6Io4uejP+Oer+7B0LeHIuyZMAQ/E4wpa6fgoz8+wpHqI7IHgkXoIjAqYRQePONB7JixA47/c6B4TjE23bAJs0+f3SkDwYDjAecjEkZ41YegEPD8Rc/joys+CkggGADEx8d71b6yslKmSoiIfOOtt5pQVyf9fu4DD/B5IBGRHBgKRkREREREREREREREsrn7bj0iIqRP8l6wQIAoul4cTkTSCIKA+Ph4ZGRkIC4urt2dJteujUR1tfRJ9jNmVMDV/Ey73Y7CwkJkZmaiqqpKcv+tmbdlnlvnzfpqFnYW75R9/GBNMHpH9Za9XzkFqYLwxZQvMDBuYKBLISLySHCw9MncdXV1MlZCRN4QRRFHjhyBw9H2oqvoaAeWLcvD6ac3tHne7Nk1eOABg5wlemXGkBl+H/Pt3W9jwocTIIrSApqIpCovl3bvJiLCAaWyYy3oC7QhQwJdARHJwSk6UFhcCrNF3gXAbYkLVyA8MOteAQCf5nzn8vglPc9yeVyj1SI51OS3hd2iKCK/wgpbfalfxiPqTFQqFVJSUtCvXz+Eh4d71ParryJQVCQ9jHDatAr8lfFjsViQk5ODI0eOoLGxUXKf5BuhoaFQKlXYuVOP229PweTJ6fj663A4ne69j3/2WRhychj61hV9800thg8X8OuvIW2el5kZhPnze7R5jiuJiYlISuLGNkQkr32l+zBx5URY7JZAl9KqpXuXtrqZRqDsLtmNYe8Mw/d530vvZAuAMvdPnzt3Lvr16yd9PJnkVOdg3s/zMHr5aMQ9FwfV/1Q4d/m5eHX7q9hduhv11vr2O/FAkCoI/aP745bBt2DdNevQPLcZNQ/VYNv0bVhw0QIMMw6TdbxAG2GUHgoWFRSFzTdsxpwz5gQ0PE6lUkGjkf7dqLq6WsZqiIjkZbc78cYb0t/jzjjDjJEjdTJWRETUfTEUjIiIiIiIiIiIiIiIZBMaKuC226RPotu3T4evvuq4k/CIOjNBEBATE4P+/fujR48eUCpb7sZmsymwbFmM5DF69mzGRRe1Hb7icDhQUlKCgwcPory8XJYAg53FO/F1ztdunWt1WHHV6qtQ1SR/MNng+MGy9ykXlaDCmslrcFay64WZREQdWVhYmOS2DQ1thwoRkf/k5eXBZrO5dW5wsIg33sjHhAkml69PmWLCwoWeLV73tbG9xiIxLNEnfSvQ+sKWL7O/xNDFQ2EXpQd0E3mqslLaAkWDoe1QwO5o5EjulE7UFZQV5aGuwX/3tSNDNYgOClzQiiiKyKo56vK1ewZf12o7fZAGSeH+q9tms+NYeT2cIj9/iFxRqVRISkpC//79YTAY2l1QL4rAkiXRkseLjbVh0iRTi+PNzc3Iy8vDoUOHGO7ewdTVGXHLLWnYujXU47Y2m4BnnuEz367E4RAxf341JkwIRWmpe4vD1641YO3aSLfOVSqV6N27NyIiIryokoiopZzqHIxdMRZ1zR37OuNgxUHsKN4R6DJO+GDfBzhz6ZnIr82X3kkZjoeCuemUU07Bww8/LH08iUwWE5bsXoIrV12J1FdSofmfBumvpeOxHx7DD0d/QHlTOZyQL7BNJaiQHJaMSX0n4c3xb6LigQo0zW3Cn3f+iaWTlmJSv0nQqKQHsXQGIxNHSmo3OH4wds7ciQvTLpS5Immio6V/P7Lb7bBYeL1MRB3TypVNKCiQ/lk0e3bHCjolIurMGApGRERERERERERERESyuv/+IOj10hfZPPOMjMUQkUtRUVHIyMhAYmIiVCrVieMbNkSgrEwtud9p0yrgImvMJVEUUV5ejszMTJSUlHgVDjZ/y3yPzs+vzcf1a6+HQ+YFgYPiBsnan5zem/QexvceH+gyiIgkCQoKktyWk6mJOob8/HyYzZ4FQKjVTsyfX4ibb6446fhFF9XjvffCoFR2rKlvSkGJaYOnyd7v4PjB2H3bboRpWg9I3Fu6F2mvpKHO0rEXtlHXUV4urV1UlPeh0F3NiBEaCAIXRxB1ZtXlxais9d/3jmC9FkZ9LRRC2+E9vrQpfxvszpb31ULVeqSFtx2SGqZXIN6P2a5N5mbUlBzx34BEnZAgCDAajcjIyEB0dHSr4WDffReGvDyd5HFuuqkSGk3r1z02mw0FBQXIysqCyWSSPA7JZ+TIMJx1lvTA/Y8+CkNxcbOMFVGg1NXZceWV9Zg71wCbzbP7MfPm9cCff7b93qHX69G3b19otVpvyiQiaqGkvgRjVoxBWWNZoEtxy9I9SwNdAmwOG+7ddC+mrpsKi92L77oigM8BuDklQxAELFmyBGq19Pkq7vqt8DfM3DATA98aiOD5wYhcEIkZG2ZgbdZaHDUdhU10b3MTdyigQLQ+Guckn4MnznkCB/9zELbHbci/Lx/rrl2HO4bfgWi99GCpzmqYcZjHba4/9XpsnbYVPSN6yl+QRBEREe2GK7elrKxzvDcRUffz8svSN7RJT2/G5ZdLn+NDREQn61gzo4iIiIiIiIiIiIiIqNOLjlbi5ps9W+z9T1u3BmHLFoY3EPlDREQE+vXrh5SUFKjVGrz/fpTkvuLjrbjkklqP2zmdTlRVVSEzMxNFRUUeh4MdrDiIz7I+83jczTmb8dRPT3ncri2D4wfL2p9cXhn3Cq4feH2gyyAi8so/Qyw9YbPJN3GfiKQpKSlBfX29pLaCAMyZU4b77y8BAAwd2oi1a4OgVnfMaW/TTpsGBeQL6EiNSMVX13+FwfGDkXdPHuJD4ls991jdMaS8koJjtcdkG5+oNZWV0n7ODQaGX/1bSIiA9HRroMsgIonq6+tRXF7tt/G0Gg2SgyuhCHA46tt/fury+Mj4U9xqHxVkgSHU9wu9/1JaK8JWz4W2RO0RBAHx8fHIyMhAXFwcBOHv9xqnE1i8OEZy3xERdlx1lXvvl3a7HYWFhcjMzERVVZXkMUkeDzxgl9zWbFZi4cImGauhQNi3rwHDh9vx+efSUj2tVgFz5iSjttb1ovLY2FikpaWd9J5DRCSHuuY6jPtwHHJrcgNdittW/rESTbbAfXaWN5bjog8uwiu/v+J9Z1sBFLt/+qxZszBy5Ejvx3XDI98+gsW7F+NA+QHZ/32HaEIwKG4Q/jPsP/j2xm9hf9yOigcq8NMtP+HJ859ERkyGrON1VhG6CPSL7ufWuUqFEi+PfRkfXP4B9Gq9jyvzjCAICA0Nldy+oaHBqw0UiYh84YcfLNi9W3oo/N132yEEcEMLIqKuhnfMiIiIiIiIiIiIiIhIdg89pIVGI33Syrx5nPBC5E+hoaHo27cPNmwQccMNJmi1nv8O3nJLJdRq6Qu8nU4nampqcPDgQRw7dgx2u3sLTZ755RnJYz7181PYeHij5Pb/NihukGx9yeXxcx7H3SPvDnQZRERe02q1kto5nU63P1OISH4VFRWyLOK+6aYqvPZaATZuVCMkRFpIoD+kRKRgbPpYWfqK1kdj0w2bTgSBGfQGHL3nKDKiW180ZLKY0Of1PthbsleWGohaU1UlbTJ/dDRDwVwZNIjXKkSdkcViwbFj/gvjVKmUSAmthFKt8duYrfmleK/L47f2n+RWe4WgQA+9CSF6ad/zPCWKIurqavwyFlFXIAgCYmJi0L9/fxiNRiiVSmzdGoLMzCDJfd5wQxX0es+uBR0OB0pKSnDw4EGUl5dzsXyATJgQhsGDpYdlvPdeKGpqGNrfWZWWlmLLliocPix9QTgAFBVp8PDDifjnr7FCoUBqaipiY2O9rJKIyLVntjyD/WX7A12GR+qa6/BZpucboslhZ/FODH1nKH7K/8n7zioBeNBNcnIy5s2b5/24fqZRapAWmYbJ/Sdj+WXLUf9IPeofqcfe2/fijQlv4IK0Cxh62YYRCSPaPSdaH41vp36Le0bdA4WiYwbMxMXFSW7rdDphMpnkK4aISAbPPSf9/kt0tB3Tp0u/f0RERC3xGwUREREREREREREREckuOVmNa64xS26/ebMee/Y0y1gREbkjI0OPDz6IwKFDVsycWYPgYIdb7QwGO664Qr6FdbW1tcjKykJ+fj5sttYXi+TW5GLlgZVejXXDZzfItjuwMdSIaH20LH3J4faht+O/5/030GUQEckiODhYctu6ujoZKyEid5lMJpSVlcnW3y23RCEuLvAhGO2ZMWSG133o1XpsnLIRfaL6nHRcq9Lijzv+wPk9z2+1rcVuwbDFw/DVka+8roOoNVVV0qaeMhTMtaFDA10BEXnKZrMhPz/fbwE1CoUCyaEmaCSGJcuppLEC1c0tv2MJCgUmp1/kdj8KpQpJIZXQaf1zfVff3HGDZYk6MoPBgIyMDAwZYsD48XVQKDy/ngsOduDaa6WHRYuiiPLycmRmZqKkpIThYH6mVAqYM0f6M9vaWhVefLFexorIH0RRRG5uLiorK3HeefWYPr3C6z5/+SUUb78dAwDQaDTo27evV/d8iYjas/GIfJuD+dPSvUv9PuZ7e9/DWUvPQmFdofediQA+B+BBBv6iRYsQEhLi0TAWuwUVTd5/PrlLUAiID4nHRWkXYcGFC3D0nqNofqwZOXfnYNXVqzB10FSEaDz7O3R3I4xth4IN7TEUu2buwnk9z/NPQRJptVqo1WrJ7SsrK2WshojIO1lZVmzeLD3Ua/p0C4KCGF9DRCQnvqsSEREREREREREREZFPPPqoGkql9MWe8+d7MEOMiGSVkqLD229HIifHgfvuq0F4eNu/j1OnVkKnk39xd319PQ4dOoS8vDw0N7dcdLJw60I4nO4Fl7XGZDHhytVXwmyTHmT4F4VCgUFxg7zuRw6TB0zG6+Nf77C7pRIReSosLExy24aGBhkrISJ3NDY2orBQhgVE/19ycnKnWSg6sc9ExAVL3xleqVBizdVrMCLB9YIYQRDw/U3f48aBN7bah8PpwISPJuDd3e9KroOoLdXV0qaexsTw+4krI0cqA10CEXlAFMV2g+zllhRuhj6oY4SjvrZvlcvjvcKTIAiefT4oVRokh1RApfJ9YFejuRlOh9Xn4xB1VSNGhGHjxjDs3NmIK6+shUrl/vOAa66pRni490FeTqcTVVVVyMzMRGFhIcPB/Oi668LRp49Fcvt33glFYyOf+3YWFosFWVlZaGpqOnFs1qwyjBzp/T3WpUtjYLFEok+fPn75/Cei7i0uRPo92kD6Pu97HDUd9ctYNocNd315F275/BY0O2TauPF3AMfcP33KlCm4+OKL2zxHFEVsO7YNszfPxvB3hiPi2QgEzQvCwfKD3tXahnBtOIYbh2P26bOx7dZtsD1mQ8mcEnx949d48MwHkRKR4rOxu4szk89s9bWpg6Ziyy1bkBye7MeKpDMYDJLalZer8OabYaiu9t89JiKitjz3nBWiKO1Znk4n4t57dTJXREREDAUjIiIiIiIiIiIiIiKf6NdPg0svbWr/xFZ89pkehw9zkQ5RIMXFafDii5HIy3PisceqERPTciJaaKgD11xT7dM6GhsbsWtXDu64owZ5ecfDu4rri7Fs7zJZ+t9buhd3fnknnE7vg806QijYmF5j8MHlH0ApcGE5EXUdOp30yYMWi/RFi0TkOYvFgry8PNn669Gjh1fBgP6mVqpx8+CbJbd/99J3cXHvthdBAcD7l7+PR89+tNXXnXBi+obpePKHJyXXQtQa6aFgMhfSRQwfrvEqWJ+I/MfpdOLYsWN+/Y4RH+ZEmL7jhCquy/3R5fFLU8+W1J9Gq0NKaI3HgWKecjqdcMq1yJ2oGxsyJARr1oTjwAEzbrzRBK227WAurVbEjTdWylqD0+mEyWTCwYMHUVBQALudYVO+plQKuOce6RurlJer8eabdTJWRL5SXV2N7OzsFqF7SiWwcOExxMVJD6wwGq348stGDBuW4G2ZRERu+d/5/0OQKijQZUjy3t73fD5GWUMZLnj/Ary+43X5Oq0G8L37p0dFReHll19ucTzflI9nf3kWF71/EXq80APqp9U4Y+kZeOm3l7CzZCdqm2tlKxkAdCod+kX1w9SBU7Hm6jUwzzXD9LAJ22dsxwtjXsCoxFE+/87aHQ2KG4RzUs456ZhKUOG1i1/De5PeQ5C68/z+RkVFuX2uzQZ8910oZs1KxkUX9cUrr8Rj6dJ6H1ZHROSe8nI7Vq7US25/zTVmxMUx/JmISG78JkJERERERERERERERD4zd670h7wOhwLPPMOd8Ig6gshINf73PwPy8hSYP78aCQl/B/ZNmVKFkJC2F/7IYdWqKCxaFIl+/bS4/noT5n6xAFaHfMGBy/Yuw5LdS7zuZ3D8YO+L8cLIhJH4dPKn0Cg1Aa2DiMgXVCpp15Y2G68pifzFbrcjJydHtv6io6M9WkzRUdx62q2S2j1zwTO4afBNbp8/b/Q8LJqwCAq0HhTy35//i2mfT5NUD5ErNpsTtbXSPpPj4jhl1ZXgYAG9ezMYn6gzKC0tRX29/xZqGoKBKOt2v43XHlEUcdhU4PK1uwddJ7lfjQpQqRhuT9SZ9Ounx/vvR+DwYStuu60GwcEOl+ddcUUNoqNdvyaHuro6ZGVlYePGYlRV8XrKl6ZPD0dSkufhirGxNjz4YAnOPbekRdAUdRyiKOLYsWMoLi5u9RyDwYEXXyyASuX5f8ezzmrAjh1OnH9+qDdlEhF5ZFTiKGTemYl7Rt6D3obegS7HI+/tfQ+i03efm78X/o6h7wzFloIt8nXqBLAegAeP5F566SUEhQdh+d7lmPzJZPR6pRe0/9Oi5ys98ch3j+DbvG9R2lAq+7+L6OBoTOg9Aa9e/CrK5pTBPNeMzFmZWH75clzZ/0roVNI3KiL3KRQKrJ28FjcPvhkZ0RmY0HsCfrnlF8waMQsKRccJR3eHIAgIDg5u85yjRzV48cU4XHRRX9x7bwp++ikMonj87/nhh/yZI6LAe/VVC8xmac/xFAonHnyQgWBERL6gcMqx3TUREREREREREREREVErLrqoCd9+K20HKa1WRE6OiIQEPjAm6kisVhFvv23C4sU6vPFGPiIjfbeoBwCamhQYN64vamr+/3tBUBVwXwqgaZR1HI1Sg63TtmKYcZjkPvaX7cegRYNkrMp9GdEZ2HLLFkTpO19wBhGRO/Ly8tDYKO29v1+/fpJDxYjIPaIo4tChQ3A45Lk2DA8PR1JSkix9BcL5y8/Hj0d/dPv8u0bchVfGvSJpscsXh77AZasug8PZ+r/7C9MuxObrN0MQGMpE3ikutku+T/PbbxaMHMkFTq5ce20jVq36a+HYXgCnud12z549GDx4sA+qIqJ/qqqqQklJid/GC9FrkLJ9MBRKDTDqPSA48NdFa7N/wJVfPdDieLgmBKbbfpTUp+hwIL8+Eo1NngfNeKp/n1QImrYX6RKRNOXlVixY0IilS0NhMh2/VlSpnPjyy8Po0cO3Ye02G3DJJX3Q0CDg5pvr8dBDehiNWp+O2V09+2w1HnnE4Na5ycnNuPXWSlxyien/sXff4U2VfxvA75zspnvvwShLQGQoKgoOVAQFUVHEwXSi4MCBWwHBgaC+giKIIgrugai4UQEBQfbooKV7pLvZJ+8fOH7YtE1OT0bb+3NdvZTkGV8opCcnz3M/0GhObFuLjIxEYmKiN0skCf4OeHf3YIV16yLx9NPufx9nzqzC88+HQa3m/Qgi8q8sYxY2Ht2IL7O+xI/HfoTZbnav4w8AfpIw4eXw5PZOE99e/y3O73K+9AGa8cYfb+C2L2+T9QA2AMB2ABvcbx7cKxjOSU402Nqw5mMVgDzPu/3www8YPny49HmJXGhoaEBubu5Jj5lMCmzaFIYPP4zAH3+0fD9i27Z6DBkS7M0SiYiaZTaLSE11oLxcLan/RRc14quvpK0RJyKilvGOGhERERERERERERERedXcudI/jrBYBCxc6OZCPCLyGY1GwMyZkdi9W4fu3SO8fkrnRx9F/hsIBgCnL5U9EAwArA4rrlx/JSobKyWP0TO6JzRKjYxVuSc1LBXfXP8NA8GIqENr7YTlltTW1spYCRH9lyiKyMrKki0QLCgoqF0HggHA9NOmu932qt5XYfFFiyVfV4/uMRpbp22FVtn8xvdvc75F/+X9YbXLvNmLOp2SEun/zuPjlTJW0rEMHCj9fN/iYu8GbRDRifcTvgwE02k1SPnzYihEE2CrAXbeBVirfTZ/c1Yc+Njl42cm9JM0nlN0oqgh3CeBYDqdloFgRF4UG6vB889HIDcXePhhI2JjbRg9utrrgWAA8OWX4Sgq0qC2VoWlSyPQrZsK06dXIyfH5PW5O5uZM0MRE9Py97RnTxOefTYfn312FFdcUfVPIBgAVFVVQRRFb5dJHqirq8Phw4fdDgQDgKuvNmLMmKpW24WG2vHOO9VYujSCgWBEFBC6RXbDzNNnYuN1G1E5pxJfTvwSdwy+A10iuvi7NJdW7l4p63hWhxW3fnErpn0+Tf5AsGoAmzxorwbqR9a3LRCMKMAYDAYolUo4ncD+/To89VQCzjuvJ+bOTW41EAwAli/nPV4i8p+VK02SA8EA4N57vbt2lIioM+NdNSIiIiIiIiIiIiIi8qrhw3UYOlT6wvtVq/QwGuXZWE7U2ZjtZmQbs2E0GSE65d9oIQgC4uPj0atXL8TGxkIQ5P/40WpVYNWq6H8f0NaeCAXzkryaPFz30XVwiNJedzRKDXrH9Ja5qpZFB0Vj0/WbkBya7NN5iYh8LTQ0VHLf+vp6GSshov86duwYrFZ5NhJpNBqkp6fLMpY/XdHrCkTqI1ttNzx9ON4a9xaUQtvCkgYlDsLhOw4jTBvWbJt9ZfuQsTQD1ebqNs1FnVtpqfT3lrGxDAVrzumnq1pv1Iy9e+0yVkJE/2UymVBQUOCz+VQqFdJy74DSlPvvg435wK45gOjfcM/five4fHxa73GSxis36VFd75vfU4iWITREvhAersJTT0UiJ0eBJ55o9Pp8DgewYkXMSY+ZTEqsWBGOXr20uO66ahw44P06OguDQYUZM+pcPnfaaQ34v/87hvXrs3HxxbVQurj0dzqdqKio8HKV5K6SkhLk5eXB6fQsoFihAB55pAiZmc1//t+rlwm//WbFxInhbaySiMg7gtRBuKT7JXhp1EvImpmFw3ccxosXvYiLul7U4sELvvTRwY9ku49bXFeMEatHYNnOZbKM18TnADx5a3cegIi2TakW1NCqAuN7RfS3mpooXHVVV1xzTTesXx+F+nr374d//HEITCaujyQi3xNFJ5Yulf4ZVf/+Zpx3nk7GioiI6H8xFIyIiIiIiIiIiIiIiLzugQek962vV+KFF3iaN5En7KIdd399NwzzDej2UjdELYqC5ikNEp5PQP9l/XHh2xdi4ocTMeurWZi/eT5e3/k6Pj30KbYc34IsYxZqLbUebQIQBAGxsbHo3bs3EhISoHS120Oizz8PR1nZ/5xEN2gZoK+WbXxXvs7+Gk/+9KTk/qfGnypfMa0I1gTjq+u+QmZUps/mJCLyF51O+kJCk4nXk0TesmFDMRoa5NlkrVKp0K1bN6+EzfqaTqXD9f2ub7FNv7h++GTCJ9Cp5FkonRaehmOzjiEpJKnZNkV1RUh/MR151XmyzEmdT3m5tFCV4GAH9Pr2/2/bWwYN0kCl8mwz/t/27ZPWj4haZ7PZkJeXB1H0TaCUIAhIq3oV6opNTZ+s+gPY9xTgYXCHXPLrSlBjbRq2rFQIGNvlXI/Hq25UoKzGd7+XUIP0jW1E5DmDQYV+/ZLQu3dvREZGQqFQeGWe774LxbFjrsMgrFYBa9eGo18/PcaOrcGOHQyMl8Ps2cEIDf03lHbYsDqsXp2D1atzMWxYPVr7VjMUzP9EUUROTk6bvhd6vROLFx9HSEjT4Irx42uwbZsaffoEtaVMIiKfUSgUyIzKxF1n3IWvJn2FyjmV+OLaL3DboNuQEZ7ht7rMdjPe2/dem8f57fhvGPjaQPx2/DcZqnLhDwDZHrRPBHC6Z1MooECsIRbnpZ+Hp0c8jayZWbA+YsUZyWd4NhCRl/XvH4XycnXrDV2oqlJhzZpamSsiImrdZ5+ZcPiw9KDNu+92QBC8c9+HiIgAfrpFREREREREREREREReN3q0DqecYsa+fdI2Or/6qg4PPCAiOJibR4ncsXbvWizeuvikxxxOB0rqS1BSX+LWGFqlFjGGGMQaYhFriEVMUDP//1ebIPWJxf1RUVGIiopCdXU1SkpKYLfbW5mpeXY78MYb0f8+oK4Dhs2TPJ4nnvz5SZyefDpGdR/lcd/+cf29UFFTGqUGn13zGQYmDvTJfEREgUClUkn62dKWn0dE1LzXX6/CzTfH45prNLj//mK0JRtWEIQOEwj2t2mnTcOSbUtcPpcaloqN121EmC5M1jnDdeHIuTMHg14fhL1le122qbHUoMfLPbB58mYMThos6/zU8ZWWSgtwiYx0AJAvQLqjCQoS0L27BQcPer7x4vBhbrYg8gaHw4G8vDyfvpdIdmyGPndp8w2KNgJBKUC3GT6r6W8v/el6M3r38FSPr98aTDYU1oQA8E0oWGSIFvrIrj6Zi4hOJggCEhMTER8fj7KyMlRWVnp0IElLnE5gxYqYVts5HAp8+mkYPvvMiQsvrMVDDylw7rkhstTQGUVFaTBlihGHDgmYOrUCPXuaPeoviiIqKysRFRXlpQqpJWazGTk5ObIEnqamWjFvXgHuvDMNAKDRiHjqqWrMmRPZ5rGJiPzJoDHg0sxLcWnmpXA6nZhZOBOv/PSKX2pZtXsVbhl0i+T+y3csx8yNM2ETbTJW9T9qAXzjQXsBwGV//bcFoZpQdI/qjrNSzsJVfa7CmclndqjPDajj0uuVGDeuCm+8ESGp/1tvqTF9usxFERG14oUXpH/GlJxsxcSJDIQmIvImhoIREREREREREREREZHXCYICc+Y4cMMN0vobjSq88koD7r/fIG9hRB3UN9merLx0zeKwoKC2AAW1BW61N6gNLkPEwlRhUFqUCFOGIVIXiQhNBCK1kdAoNa2O+c03YTh+XAuEHgdOewM4ayGg9myDSVtc99F12DljJ7pEdPGony9CwQSFgPfGv4cRGSO8PhcRUSDRarWSNuU7nU7YbDao1dJOZyaipj79tBq33x4Gp1OBd9+NQkWFCgsWFECr9XyDt0KhQNeuXaFSdazlbKfEnoKzUs7Cr8d/PenxSH0kvp70NRJDEr0yr0alwe6bd+OSdy7BNzmu3xtYHBYMfWMoPp7wMcb0GOOVOqhjqqyU1i8iou2bzju6/v3tkkLBjhxRw+l0QqFgOBiRXJxOJ44fPw6z2Xf3oRK0xQjd7sZm76zXAH0SkHSp94v6H5/m/uzy8XFdhns0jsVsQX5tBJxOhwxVtU6lUiEuNrr1hkTkVYIgID4+HrGxsaisrER5eXmbQ4l++SUYBw/q3W7vdCrwzTeh+OYb4Oyz67FkiQ2nnSZts35nt2CBAVlZRyX3LysrYyiYHxiNRhQVFck65ogRdZg2rRxffhmGNWssGDGCgWBE1LEoFApEB/nv/cTvhb9jX9k+nBJ7ikf9LHYLZm6cidf/eN1Llf1lAwBP3jafBSD+5Ie0Si1Sw1IxOHEwLutxGcZkjkGQhuEi1H7dfLMab7whre+vvxpw+HAjevTgvwEi8o3t2y3YvNn9eyv/ddttNqhUra8BJSIi6TrWKioiIiIiIiIiIiIiIgpYEycG4fHHrcjJkfYh8NKlGsye7YRGww2ORK1JDk32+ZwNtgY0VDfgWPUxt9qHqENOBITpIhGpjfzn/6O0UYjQRiBUFYaFv1QA1/0MdP0WEHy/gbzaXI0xa8dg7fi1UAkq2EQb7KIddtEOm+PE///92Ilf22ArPI7qrH1er+210a9hXK9xXp+HiCjQGAwGNDQ0SOpbW1vLDYdEMvnttzpcf30IbDbhn8c2bQpDVZUKS5bkITTUs2u39PR0aLWeB+G0B8tHL8eQFUPQaGsEAMQExeDTaz5Fz+ieXp1XEAR8ff3XmPrpVKzcvdJlG4fTgcvfuxz/d+n/4ZZBboSQEAEoL5fWLzqaoWCtGTQIeO89z/tVV6uQn29HWhrDT4nk4HQ6UVxcjPr6ep/NGWVwIGrLSPc77HsK0McDkQO9V9T/EEUR2TXHXT43s/8Et8exWy3Iq4+Cw2GTq7QWKRQKJEcqoNQz9IcoUAiCgJiYGMTExMBoNKK0tBQOh7SQwBUrYiTXsWuXHmZzPg4cKEZ0dDSio6MhCELrHQkAoNNpodPpJIdnOhwOVFdXIzw8XN7CyCVRFFFYWIiamhqvjH/XXRV46qlQxMeHeGV8IqLObtWuVXj+oufdbl9YW4jx68djW+E2L1YFYA+Awx60jwJwzr+/jNBFYN+t+5AY6p2DM4j8ZfDgYJx6aiN27/Y82MvpVGDZMgsWL2YoGBH5xqJFdgDSPqMPDXXgttt08hZERERNMBSMiIiIiIiIiIiIiIh8QqlU4J57bLj9dmmhYEVFaqxY0YDbbjPIXBlRx3Nl7yux8NeF/i6jRXW2OtTZ6pDfkN98I9/sa2zRgYoDOHX5qf4u4yQLL1iIqadN9XcZRER+ERoairKyMkl96+vrGQpGJINDhxoxbpwOdXXKJs/t2GHATTd1wauvHkNcnN2t8VJSUmAwdNz3eX1i+yDnzhy8u+9dqAU1JpwyAdFB0T6b/43L30BKWAqe+OkJl8874cStG27F8ZrjmHf+PJ/VRe1XRYW0sPbISKfMlXQ8p5/e9HXVXVu22BgKRiSTyspKGI1Gn80XEqRG/DYPb4I57cCu+4DTVwLB6V6p63+tz9oE0dn0dTxSG4oEg3uhPKLDjvyGGFitFrnLa1ZihIDg2B4+m4+IPBMZGYnIyEhUV1ejpKQEdrt77yEBYMeOIPzxh/T3kddcY0RoqAhRBMrKylBeXo7IyEjExcUxHMxNiYmJyMnJkdy/pKSEoWA+YLfbkZ2dDZvNO4GcQUFBSE9P578bIiIvemX7K3jmgmegVrZ+32dz3mZc9f5VKG0o9W5R9QA2ethnDID/+S1UmaugFKTfCyMKZJMmmSWFggHA+vUGPPusCJWK11dE5F15eTZ88olecv8bbjAhLCxYxoqIiMgVXhUSEREREREREREREZHPTJsWhMRE6YuOX3hBBYeDm0iJWjMwYSAGxA/wdxnkBfcOvRdzzprj7zKIiPxGp5N+0qjZbJaxEqLOqajIglGjlCgra34D0tGjOlx/fRfk5LR+qnB8fDzCwsLkLDEgxQXHYdYZs3D7kNt9Ggj2t8eHP44VY1ZAgebDnOb/Mh/Xf3S9D6ui9qqyUtqy05gY3s9pzcCBGqhUoqS+27dL60dEJ6utrUVJSYnP5tNpNUjZdQEUotXzzrZaYOddgLVK/sL+Y+WBz1w+fnbiqW71d4pOFDZEotHku0CwmDA1IhJ7+Ww+IpIuPDwcPXv2RFpaGjQa9w4WWrHCvUBCV7RaEddfX3HSY06nE5WVlTh48CAKCwshiry2ak1QUJDb3y9X7HY76urqZKyI/quurg6HDx/2WiBYbGwsunTpwkAwIqJmPH3e03j2wmdxXsZ5UAvSg9wtDgtGrx0Np4ug5r85nU688vsrOO+t87wfCAYAXwIwedB+IID0pg//Xvi7PPUQBZgpU0IQFOSQ1LeoSIOPP66VuSIioqaef94Cu13a+zmVSsS997a+FoCIiNqOd96IiIiIiIiIiIiIiMhnNBoFZs6UsMHpL9nZWrz7bqOMFRF1TAqFAjMGzvB3GSSzyadOxqILF/m7DCIiv1OpVG63rahQ4uefg7FsWQwee0z6hlEiAurq7Lj0Ugdyc1tf4FtcrMH112dg9+7mTxeOiopCdLTvA7I6q6mnTcWGiRugEpp/DV2zdw1GrB7BDfDUIqmhYPzn3jq9XkCPHtLum+3axeXARG3V2NiI48eP+2w+tUqFtJybIVgKpA9iKgT+uAdweDdsa1vJPpeP39xnvFv9yxqDUFPvu0CwsBAtYpO6+2w+IpJHSEgIMjMzkZGRAa22+fed+/fr8OuvIZLnGT++ClFRrjfoO51OVFVV4cCBA8jPz4fdbpc8T2eQkJDQpv7FxcUyVUL/tW6dEQcP5rcYICOVQqFARkYGYmNjZR+biKgjSQpNwr1n3ovvbvgOlXMq8fGEjzHjtBlIDk32eKxvcr7BzI0zITqb3rc12824/qPrccfGO2AXfXDtcuCvL3eFALjQ9VMMBaOOKiJCjdGjpQfgvvkm7/USkXfV1DiwenXzn+O3ZuxYE9LSpIeeEhGR+3hlSEREREREREREREREPnXHHXpERkpfiLZokRKiKP8CZqKOZmLfiQhSB/m7DJLJ5T0ux2tjXoNCofB3KUREfqfT6Vw+bjQq8csvwXjttRjcdVcqLrigB0aM6IXbb0/HK6/EYf36CFRWSg+oJerMrFYRY8easHu3+9eXtbUqTJuWgR9+aLpZOzQ0tM2bh8lzl3S/BNunbYdO5fp1FAB+PPYjTnn1FFjtfL0k16qqpC07jYnhexl39O/vOqCiNXv2aHi/jKgNrFYr8vO9E5zhiiAISKt8EerKH9s+WPUeYO/jgIvN4XLIqSlAra2hyeMqhRIXpw1ttX9VgwLltb4LHA3Sa5GUmAyFwG0SRO2VwWBA9+7d0a1bN+j1TTeorlghPfRdpXJi8uQKt9rW1tbi0KFDyMvLg9XK90euhISEQK2WvgnYarWisZGHQcnJZhNx++1VuOaaSDz5ZBLkvrTRaDTo0aMHDAaDvAMTEXVwIdoQjO05FsvHLEf+rHzsvXUvFl6wEMPTh7d4iMP/emX7K5j44USY7WYcLD+I1btXY+KHExEyPwTv7HvHy7+DvzQC2OBhn1EAmrkdva1wWxsLIgpcU6dKvx+ena1GQ4PvwtWJqPN59VUzamuVkvvPmeP+QX5ERNQ2fMUlIiIiIiIiIiIiIiKfCg4WcPPNjViwIFhS/717ddiwwYQxY6SfVEXUGYRqQ3HtKdfijV1v+LsUaqNzU8/Be1e+5/aCYCKijs5gMKCgwIQDB/TYv1+PAwd02L9fj+JiTYv9nE4Ffv21EZdd1nI7IjqZwyHihhtq8f334R73tVgEzJqVikceKcKVV1YBAIKCgpCamipzleSuUxNOxeE7DuPUZaeiylzlss3BioNIX5KOfbfuQ2RQpI8rpEAmik4YjdI2CcTGMhTMHYMGAWvXet6vslKFY8es6NKF1zlEnnI4HMjLy4PdLv0gC0+l2L6DLm+5fAOWbAKCkoHM2+Ub8y9Ldr/r8vGeEekQWgneqjfZUFQbAsA3YWsajRqpCVEQ1PzsgKgj0Ol06Nq1K6xWKwoLC9HQ0IDsbC2+/TZM8phjxlQjPt7mUZ+6ujrU1dXBYDAgMTERWq1W8vwdUVxcHAoKCiT3LyoqQrdu3WSsqPM6ftyMCRPs2LIlAgCwYUM4+vdvxLXXGmUZPywsDCkpKbKMRUTUmSkUCpwSewpOiT0Fc86ag1pLLb7N+RYbj27EhqMbUFxf3GzfdfvX4f0D70P0Uih0qzYCaJoZ3bxef301Y3vRdohOEYKCoc7U8Zx/fgi6dTMjK6v5Q1r+l14v4qKLanDFFVU49dRGVFSEwGBI83KVRNQZ2e1OvPKK9IDvs882YfBg3n8lIvIVvlsiIiIiIiIiIiIiIiKfu+cePYKDHZL7L1ggYzFEHdiMgTP8XULbOTv3R5oDioFPN4RC55R+Oh8RUUcjiqEYNqwXbr45HUuXxuHbb8NaDQT72/btftooQdSO3XNPNdatC5fcXxQVeOKJJLz6agzUag3S09Nlq42kSQ1LxbG7jiEltPnNvMX1xUhfko5sY7YPK6NAV1MjwmaT9h4tLq5zv7dz15Ah0t/7bd3qu0Ajoo7C6XQiPz8fFovFZ3MmavIRsv9O+QfOWQUUfCL7sF8c+8Xl4+O7ntdiP4vZgvyaUDidvgkEUyqVSIvVQ8VAU6IOR6PRICMjAz169EBNTShiYz0L9fqbIDgxdWq55DoaGhpw9OhRZGdnw2QySR6nowkPD4dSKf0a1mw2w2w2y1hR57RpUw2GDBGwZcvJh3ItWhSP3bvbvlk7OTmZgWBERF4Sqg3FFb2uwOuXvY7Cuwvxx4w/0Cu6+SQtvwWCHQGw14P2WgCjWm5Sba7G0cqjbSiKKHAplQKuvbax1Xb9+jXisccK8f33h/DUU4UYMKARCgVQX18PUeTn2kQkv7VrG1FQIP2Ambvv9s39XiIiOoGrLIiIiIiIiIiIiIiIyOeiopS46SbpC+a3bNHjp5+4QJyoNYMTB6N/XH9/lyFZiCYEUHTeRW7dKoGv1gBhH34BXHcdwAV/REQAgLg4LZKSrJL67t6tkrkaoo7tmWeMWLJEnmCFffsMyMjoBkHgkrVAEKoLRc5dOTg1/tRm29RZ69Dn//pgW8E23xVGAa2kRHroVEyMQsZKOq7TTtNApZL23m/HDr5nJPKE0+lEUVERGhoafDZntMGKyB2Xem+C/QuACvl+bttFO3Jri1w+d0e/Cc33s1pxrC7KZ5tXFQoFUqOV0Ian+mQ+IvIPtVqNG26IQ06OAgsWGJGc7Nm9oZEja5CWJu1+0v8ymUzIzs7G0aNHffozJJDFxsa2qX9RkeufNdQ6h0PE/PlGjBoVgpKSppu67XYB99yTispKacFtSqUS3bt3R3h4eBsrJSIidygUCgxIGID9t+3H/PPm+7ucf5kBfO5hn5EAQlpv9nvh7xIKImofZswIcnmvNyzMjkmTKvDRR0fxzjs5uPLKKgQHn9zO6XSiurraR5USUWeyeLH0YO/MTAsuv7ztwdNEROQ+rrAiIiIiIiIiIiIiIiK/eOABHbRa6ZuC5s3jRkei1igUCswYOMPfZUiiU+laPAG3Mzg3D4j9e0/R++8D993n13qIiAJJ377SAmL37dPKXAlRx1VSUoKDB+V539W3byM++0wHjYbL1QKJSlBh5/SdGNVtVLNtLA4Lzlx5Jj4++LEPK6NAVVYm/fTvhAQGc7pDrxeQnm6T1PePP/gaS+SJiooKVFVV+Wy+UIMacVuGeHcSpwPYPQeoy5ZluHcOfwUnmr72R+vCER0U7rKPaLcjryEaNpu01zIpkiIFGGIyfTYfEfmXwaDCAw9EIjtbhZdeqkK3bu7dI5o2rVzWOiwWC3Jzc3H48GHU1dXJOnZ7ExUV1aYA8MbGRlitbQ9s62xqa+0YP74Oc+dGwm5v/s+/rEyNOXNSYPcw4zkoKAg9evSAVsv7qUREvqZQKPDgsAfx2ujX/F3KCV8D8ORyJw3Aae41ZSgYdWTJyTpccEE9AEChcOLMM+vw7LP5+P77w7j//hJ0725psX9FRYUvyiSiTuT7783YvVsnuf+dd9ohCDwEiIjIl7gCgIiIiIiIiIiIiIiI/CIpSYVrrzVJ7r9pUxB27mx5cQwRAdf1vQ56Vfs6oU1QCHhy+JP4vahzLwB94zRgfZ//eWDxYuDnn/1WDxFRIOnf38NdbH85dkyLigpuMiRqTWVlJSoqKnDvvSWYPbukTWOlp1vw5ZcCwsIYCBSIBEHAhus24ObTbm62jegUMX79eLy07SUfVkaBqLRUWlCgSiUiLIzLVd2VmSntz3nvXg1EUXpwG1FnUlNTg9LSUp/Np9dpkPzHOVDA4f3J7A3AzlmApe0bR988+LnLx89Jcr272ymKKGiMhMnku/v2seFqhCd07oMFiDorjUbAHXdE4OBBDVaurEKfPs1/5njuubXo0cM7r002mw15eXk4dOgQiourvTJHexAdHd2m/kVFRTJV0jn8+Wc9Bg+249NPw9xq//vvwXjppTi3x4+NjUWXLl3aFPZGRERtd36X81tto4ACKsGL996zAezyoL0KwGUA3MwL2Va4zfOaiNqRW2914NZby/DVV0ewfHkeLr64FhqNe/dwrVYr7J4muxIRtWDRIukHgkVH2zFlSvtag0pE1BHw7hwREREREREREREREfnNgw+qoVRK36w4bx4XvhC1JkwXhmtOucbfZXjklVGvYEvBFn+XERCmXA4c/HsvjdMJTJkCNDb6tSYiokAweLD0JS+//srXUaKW1NbWori4GACgUABTplRg/vwCqFSev3eLjrbhiy8cSE6WfuIw+cayMcvw9Iinm33eCSfu/OpOzNk0x4dVUaApL5d2Dycy0sGTwz3Qu7e0fkajCjk5NnmLIeqAGhsbUVBQ4LP51Go10o5OhmAp89mcMBcDf9wNOMxtGmZ72QGXj992ypUuHy9tDEZtve8CwcJDtIhJ7O6z+YgoMKlUAiZPjsCff2qxfn01Bg9uaNJm+vRyr9dhs9lx6aVqDBtWjw0barw+X6CJjo6GQiH9mr++vp6BB256660qDBumx5Ejnt1rWbkyBt99F9JiG4VCgYyMDMTGxralRCIiksnrO193+XhSSBKeH/k8Nk/ejLoH62B7xIaGhxqw6fpNeOCsBzAkaQgEhQxbxy0APvOwz7kAotxvvrtkNyx2HghJHdfo0WG47bYyJCZKu29bUtK2g3uIiP524IAF33wjPdTr5pvN0OsZTUNE5Gt85SUiIiIiIiIiIiIiIr/JzNRg3DjpoQyffRaEw4etMlZE1DHNGDjD3yW4be6wuRiWOgwfH/rY36UEhAYNcMUEoE7z1wPZ2cCDD/q1JiKiQHD22UGS+27fLv30U6KOrrGxEfn5+U0eHzOmGi+/nAe93uH2WAaDAx99ZEafPtL/vZJvzT1nLlaPXQ0Fmt/I/exvz+LaD671YVUUSMrKpIaC8WevJ045RfrS3i1bGApG1BKLxYK8vDw4ndIPqvCEIAhIK1sEVdVvPpnvJDUHgD2PAE5pr8GHqo6hwWZq8rhaUOH81CFNHjc2KFFR6/61YlsZgrRITEqFQuB2CCI6QakUcNVV4fj9dwM2bqzFuefWAQCGDKlH//5NX8/ktmNHEHbtMuCXX4IxenQYBg1qwLp11XA4Ose1sCAIiIyMbNMYfweUk2s2m4jbb6/CjTdGoK5OKWmMhx9ORl6exuVzGo0GPXr0gMFgaEuZREQkE6vDile2v+LyuY8nfIy7h96Ns1PPhkFz4nU7SB2EC7pcgAUXLMC2adtQOacSn0z4BHcOuRN9YvpIK+JbAJ5kncYBONOzKWyiDX+W/ulZJ6J2RBCENl1f1dbWylgNEXVmzz5rh9MpLcxbrxdx5508BIyIyB/4KRgREREREREREREREfnVQw+pJPd1OBSYP5+bHYlac3rS6egb29ffZbTqxv434qkRT+GZX5/xdykB5VAMMPVy4J/tqi+/DOTl+bMkIiK/i4vTICVF2snhu3ZJv/4k6sisVityc3Obff6ss+qxalUuIiPtrY6lUol46606DBsWImeJ5AM39L8Bm67fBJXQ/Gvle/vfw7CVwyCKnWNzO/2rslJaP4aCeaZnT7Xkvjt2+CboiKg9stvtyMvLg8Phu+CqVMtG6I6v9Nl8TZT+ABxeKqnrkt3vuny8T2SXJo/VN9pRVOO791lajQapCdEQVFqfzUlE7cvFF4fixx9D8PPPdXjggXKfzLliRcxJv96504BrrglHv34WrFhRBbu9418Tx8XFtal/TU0N32c2w2w24+uvc7BiRVibxqmvV2LWrFQ0Np68ETwsLAyZmZlQqXjflIgoUFy5/krUWeuaPH5awmkYlDio1f7hunBc3vNyLLlkCfbdtg8l95Rg7RVrMW3ANGSEZ7RewDEA2z0oWAHgMgASciu3FWzzvBNROxIbGyu5ryiKqKtr+lpAROSJ0lI71q3TS+5/zTWNiI3l+0UiIn9gKBgREREREREREREREfnVgAFajBzZKLn/e+/pcfw4g8GIWqJQKDBj4Ax/l9Gii7pehNfHvI7c6ly8u9f1psPO7P0+wItn/PULUQSWL/drPUREgaBvX2mhYPv3c+M40X/Z7XZkZWXB6Ww5TKZPHzPefjsHycnWFtu99FINrrgiXMYKyZfO73I+ds3YBb2q+cXhvxz/BT1f6Qmz3ezDysjfysulnSAeHc2N/Z7QaqUv7d21S8LOS6JOQBRF5Ofnw2pt+RpGTknqbAQfvNdn8zXr2Bog/wOPu23M+83l41d2u+CkX5vNFuTX+i4IVqlUIi1OD6U+wmdzElH7NWxYCMaNy0BaWho0Go3X5tm3T4/ffnP9WnjggB7Tp0egRw8rliwxwmLpuNfGgiAgLKxtoVUlJSUyVdNxGI1GZGVlIT3djIcfLmrzeFlZOjz5ZBL+vgWUnJyMlJSUNo9LRETyEJ0i7v3mXnx+5HOXz9888GYoFJ7fo4sLjsO1fa/F65e9jpy7cpBzZw5WjFmBiX0nIs7wn2BPG4DPPJzgDABJHpcFAPi96HdpHYnaCYPBAKVS+n3bsrIyGashos7oxRfNMJmkffYkCE7cd5/37qkQEVHLGApGRERERERERERERER+N3eu9I8srFYBCxdKC4Qg6kwm9ZsEnUrn7zJcGpgwEB9c/QHUSjUW/boIDqfD3yUFpPtGAptT//rFG28APtzISkQUiPr3l/bzIi9Pi/JyvoYS/U0URWRlZUEU3duYnJpqxdtvZ6NXL5PL5x95xIhbbmFIQ3t3StwpyJqZhUh9ZLNtjhqPIu3FNFQ0VviwMvKnykqpoWAtBw6SfPbuVUMU+edN9L+cTieKiorQ2Cj9YApPxQSZEbFzrM/ma9WBRUD5r243t9qtyK9zHcpye98r//l/m9WCvLpIt68j20qhUCAtRgVNGINLiMgzISEhyMzMREZGBrRa+cPiV6yIbrVNTo4Os2ZFomtXO+bNM6K+3i57HYEgMTFRUj+HA/jqq1BMnx4Eu73jBqd5QhRFHD9+HEVF/waBjRtXjfHjjW0ee8OGcPz4Yxi6d++O8PDwNo9HRETyMNvNuPbDa/H8luebbXNNn2tkmSsjIgNTT5uKd654B8X3FGP/bfux9OKlGNtzLDQ/agBPftyEAxghvZZtBdukdyZqJ9pyzWUymXx274WIOh6TScSKFdLXjF50kQm9ejEUjIjIXxgKRkREREREREREREREfnfOOTqceabrDeXuePNNPSoqGCJE1JJwXTgm9Jng7zKa6BLRBRsmbkCwJhiFtYVYtXuVv0sKWA4BuPoqoDgYQFkZ8MEH/i6JiMivBg+WFkwCAL/84rtAAKJAJooisrOzYbd7thk5OtqBVatyMXRo/UmPT59ehSefbD5EitqXxNBE5M3KQ3p4erNtyhrKkLEkA4crDvuuMPKbykppS06jW89IIJlUV6uQlWXzdxlEAaW8vBzV1dU+my/MoELs1jN8Np97RGD3g0DtEbdarz60AU40DRiM1UcgXBd6YkS7Hfn1MbDZfBdqkxwpICi6u8/mI6KOx2AwoHv37ujWrRv0er0sY2ZlafHdd2Futy8s1ODhhyORkeHE3LlVqKrqWNduSqUSISEhbre32RT46KMIXH55d9x3Xyq+/DIca9fWeLHC9sFut+Po0aOoqWn6Z/Hgg8Xo3Vv65+oKhRN33lmFW25J8kpIHhERSVNlqsJFay7C+v3rW2zn6r1aWykUCvSO6Y2Zp8/E/Wn3w77Fw/d5owG0ISvkqPEojKa2h14SBbKYmJg29S8rK5OpEiLqbN54w4SKCpXk/vfdxzgaIiJ/4qswEREREREREREREREFhIcekt63oUGJ556TvviZqLOYMXCGv0s4SXRQNL667ivEBccBAF7Y8gKsDqufqwpsJSHAhKsAmwDg44/9XQ4RkV+dfXaQ5L6//87TlIkAIC8vDxaLRVJfg0HEK6/k4dJLqwEAl11Wg//7P/c3QlP7EKwJxtGZRzEoYVCzbeqt9ej3aj/8kv+LDysjfzAaGQrWHmzd2rGCJYjaorq62qebJoN0GiTtGAYFAvAAC0cjsHMWYG79z+OtwxtcPj4i6cT1gFN0oKAhEiaztOtIKeLDVQhL6OWz+YioY9PpdOjatSsyMzNhMBjaNNYbb0jb3F9RocYzz4Tjt99ykZubK/m9eSBKTExstU1jowJvvx2FSy7JxGOPJSEv799wqsWLtXA4Ou+9u7q6Ohw+fBg2m+vreq3WiRdeyEdYmOfBnKGhdqxZU4MlSyKgVnNLIRFRoMirzsNZK8/Cz3k/t9q2vLHca3VYLBZMmTIFoujBz+H+ALq1fe4dRTvaPghRAFOpVNDpdJL7V1VVyVgNEXUWoujE0qXSA8EGDDBjxAjpr11ERNR2vINHREREREREREREREQB4ZJLdOjf3yy5/2uv6VBf33kXiBO5Y2jyUKSEpvi7DABAkDoIGyZuQPeo7gCAisYKLNu5zM9VtQ+b04D7LwSwc6e/SyEi8quYGA3S0tzbMKlUOpGZacLYsVWYO7cI55zDhdNEBQUFaGhoaNMYarUT8+cX4IknivHee8FQqbgcrSNSCSpsn7Edl2Ve1mwbq2jFuW+ei/f3v+/DysjXjEalpH6xsQqZK6GWbN/u9HcJRAGhoaEBhYWFPptPo1Yj9fC1EGwVPpvTY5Yy4I/ZgL2xxWZ/lB1y+fhtfa8CAJQ0hqK2wXfhNRGhWkQlZvpsPiLqPDQaDTIyMtCjRw+EhIR43P/4cTU2bpQejn3RRTVIS7OioaEBR48eRXZ2Nkym9n8IklqtbjZsraZGwLJlMbjooh5YtCgBpaXqJm127w7CF1/UervMgFRSUoK8vDw4nS1f0ycl2bBwYQEUCvev/Xv1MuG336yYODG8jVUSEZGcdpfsxtA3huJgxUG32lc0eu895xNPPIGDB92rAwD0YXr0vb4vFGj7vb9tBdvaPAZRoIuJkRYoDAAOhwONjS3fzyEi+q9PPjHh6FFt6w2bMXt2AB5+QUTUyXAVFhERERERERERERERBQRBUGDOHOmhXlVVKixdysUvRK5UNFZg2mfTEPpMKI7XHvd3OVAqlFh/5XoMSRryz2NLty1Fo43/ht21eCiwPigXMBr9XQoRkV+dckrTjeiC4ES3bmZcdlkVHnywCG+/nY0tWw7gww+z8dRThbjmGiNSUtr/BkuitigtLUV1dbUsYymVCjz4YDT0emlhQdR+fHrtp7hj8B3NPi86RVz9wdVYvGWxD6siXzGbRdTXSw0F41JVX9q1i6/HRBaLBfn5+a0GashFqRSQVvIkVDV/+GS+Nqk9DPw5F3C63tC1p/wIGu1ND+/QCGqck3waKhtUqKy1e7vKfwQH6ZCYlA6FwJ8lROQ9arUaaWlp6NmzJ8LC3A/5WrUqBg6H9BCMqVPLT/q1yWRCdnY2jh492uYQb39LTEw86dfl5Sq88EIcRo7sgVdeiUN1tarF/s8+2/LzHY0oisjJyUFFhftBL2edVY9bby1zq+348TXYtk2NPn2CpJZIRERe8E32Nxi2ahiK64vd7uOtULA//vgDzz77rEd93nj1Dey5Zw/K7yvHB1d9gNsG3YYeUT0kzX/UeFRSP6L2JCwsDAqF9PcPpaWlMlZDRJ3BCy9If81JTbXi2mv5HpKIyN86111SIiIiIiIiIiIiIiIKaBMm6PHYYxZkZUk7neqll7S4+24ROh03CBEBwAcHPsCTPz2JvWV7/V3KSZaNXoZLMy/959d20Y6Xfn/JjxW1T1MuB/r+8jF6XTbV36UQEfnNaafZceiQGX36mNC7twl9+piQmWlGUFDrm/+tVis0Go0PqiQKLEajEeXl5a03dFPXrl2hVqtlG48C20ujXkJKWAru//b+Ztvc/c3dyK/Jx+KLGQ7WkZSWOiD1HNq4ON6n8aW9ezUQRScEQfpmD6L2zG63Iy8vDw6H69AruSkUCqQ2fgJt4VqfzCeL8s3AwReA3vc1eWrpnnUuu/SN6oY6kwPFNdLu3Uuh1WqQkhgNhZLXmkTkGyqVCikpKUhKSkJJSQmqqqqaDZgsLVXhk0/CJc81fHgtevRoGnYPnAi3zM3NhVqtRmJiIkJCQiTP4y9arRZ6vR5Hjtjx5pvR+OSTCFit7r8v+PXXYPz4Yx2GD29/v3dPmc1m5OTkQBQ9Pzzr5pvLsXdvEDZvdv3npNGIeOqpasyZE9nWMomISGard6/GtM+nwS56Frpc3iDfvf2/2Ww2TJ48GXa7+7WMGjUK1157LQAgKigK43uPx/je4wEABbUF+CH3B3yX+x2+y/0OBbUFrY4XpnU/mJWoPQsNDUVNTY2kvg0NDRBFEQKD04nIDVu3mvHrr3rJ/W+7zQaViutpiIj8jVd+REREREREREREREQUMJRKBe65x7MFb/+rpESNFStMMlZE1P6U1Zdh8qeTETw/GFe9f1XABYI9fu7jmHbatJMeO1xxGNXmav8U1I41aIAr/nwIdZY6f5dCROQ3M2eK+OSTLMybV4jrrjPi1FNNbgWCAZC84JqoPaurq0NRUZFs46WlpUGn08k2HrUPc86ag7VXrIWgaH754YvbXsSV66/0YVXkbSdCwaSJi1PKWAm1prZWiSNHbP4ug8gvRFFEfn4+rFarz+ZMEg7AcHiuz+aTTf464Nh7TR7+On+ry+ZXpI/A8Zpgb1f1D5VKhbR4A5S6cJ/NSUT0N0EQkJiYiF69eiE6OhoKRdOw1dWro2GzSd+SNW1a64EeNpsNeXl5OHToEKqrqyXP5S/BwYkYP7471q+P8igQ7G8LFrh3j689MxqNyMrKkhQIBgCCACxYUICkpKbXPomJVnz1VQMDwYiIAozT6cTTPz+Nmz69yeNAMACoaKyQvab58+djz549brcPDg7Gq6++2uzzyaHJuL7/9Xhz7JvIn5WPI3ccwbJLl+Gq3lchOii6SXu9So/ZQ2dLqp2ovYmLi2tT/8rKSpkqIaKO7rnnpH+uFxrqwG23SQ8UIyIi+aj8XQAREREREREREREREdH/mjIlCE8/bUVhobRTpp5/Xo1bbnFCpWq6QJ+oI1u3bx2e+vkp7C/f7+9SmjX9tOl49NxHmzyeFJoEtaCGTeSmZU8dEssw9bOpWHflOpcbk/7L6XTC4XTA5rDBLtphE//6r4Rfa1VanJ50OqKConzwOyUici0sLBSlpSWS+jY0NCAmJkbmiogCl8lkQl5enmzjJScnIyQkRLbxqH25tu+1SAhJwMi3RzZ7Hf/hwQ9x5htn4pfJv/Dk+g6grEz6hvzYWIaC+dq2bTb07MkT3KlzcTqdKCwsRGNjo8/mjA2qR/jWq302n+wOPQ8EJQCx5wIAzHYzCupLXTYdmTxZcmCJpxQKBdKiVdCEJPlkPiKi5giCgPj4eMTGxqKyshLl5eUQRRFVVUp88IH0oKXTT69H//7uH3Jkt9tRUFCA4uJixMbGIiqqfdyTj4vT47LLqrFuXbik/ps2hWDnzgYMHGiQt7AAIIoiCgsLZTm0ICzMgRdeyMf113f5J3zt7LPrsW6dGomJvG9DRBRI7KIdt35xK1bsWiF5jPLG1oNFPbFv3z7Mnz/foz7z589HamqqW20VCgW6R3VH96juuHnQzRCdIvaW7sX3ud9jX9k+BGuCcdcZd6FLRBcp5RO1OxqNBhqNRnKgvdFo5OfbRNSqY8ds+PTTIMn9J082ISTEdwdEEBFR8xgKRkREREREREREREREAUWjUeCuu6yYM0faxsVjxzRYu7YBN9zQ8RaIE/1XSX0J7t90Pz48+CEabA3+LqdFozNH4/8u/T+XwVXhunA8cs4jePTHpoFh1Lr3D7yPzS9sRpg2DHbR3mKYl5TThluiVCjx5tg3ManfJFnHJSJyl0YjPezCbDbLWAlRYLNarcjJyZFtvNjYWISHh8s2HrVPw9OH489b/sTg1wc3+35kS8EWZL6ciT237EGQRvric/K/0lJpQTChoQ6o1QwF87Xt25248UZ/V0HkW2VlZbIEa7gr3KBEzJahPpvPO5zAn3OBIa8DYb2wYv+nLlvF6GKgE3Q+qyolSoA+upvP5iMiao0gCIiJiUFMTAwqKyvxxRcWmEypokCsAAEAAElEQVTSg4+nT5cW5uFwOFBcXIzS0lJER0cjOjo64AOYH3xQhfffd0IUPT/MyelUYP58Oz780AuF+ZHdbkd2djZsNvkOyund24yHHy7Co48mY+bMKjz/fBjU6sD+u0FE1NnUW+sx4YMJ+PLol20ap6KxQqaKTli5cqVH4URnnHEGbr/9dsnzCQoB/eP7o398f8ljELV30dHRKCoqktTXZrPBYrFAq9XKXBURdSTPP2+B3a6W1FetFnH33XyNISIKFAwFIyIiIiIiIiIiIiKigHPbbUFYuNCOykppH2UsWqTEpElOCILnC8yJ2oN39r6DeT/Pw8GKgx73VUCBAQkDcFr8aW06gdYTpyedjvfGvweV0Py/6UfOfQTnpp+Ln479BJPdBLWghkpQQSWooFae+P+/H3P31y212V2yG2PfGwu7U96QLH8pqS9BSX2Jz+d1OB2Y+tlUjMkcgzBdmM/nJyICALVaLWkTnd3eMX4GELXGbrcjKysLTqdTlvEiIyMRGxsry1jU/vWK6YWsO7PQ79V+KG90vbE9uyobaUvSsO/WfYgLjvNxhSSXCon7DSMjHQAYCuZru3bxz5w6l6qqKpSXSwtYkSJIr0HijjPQIe4+O8zAH7OAM1Zj7ZGvXDY5PeZ0n5UTH65CaHxPn81HROSpqKgoPPAAcNZZdZg/34mvvw6B0+n+T4R+/RoxZEjbDnkRRRFlZWUoLy9HZGQk4uLiAjYcrH//YFxySS02bAiV1P+zz0Jx6FAjevbsGCHTdXV1yM/Pl+0ezf8aN64aZ5+tx4gRUbKPTUREbVNaX4pL116KncU72zyW3KFgouj+QQBqtRorVqwI2OsOovYiPDwcxcXFkq8JS0tLkZqaKnNVRNRRVFc7sHq1XnL/ceNMSE3lgcxERIGCoWBERERERERERERERBRwDAYBt97aiKefDpbUf/9+HT79tBHjxnWMBeJEAFBUW4Q5387Bx4c+RqOt0eP+YdowXNfvOsw7bx7CdeGobKzE23vehsVh8UK1/+oe2R2fX/s5DJrWF4uck3YOzkk7x6v1/C0pNAkvXvwi7th4h0/m68isDit2l+zGuenn+rsUIuqkdDqdpFAwADxJmTo8URSRlZXl0caeloSEhCAxMVGWsajjiA+Ox7G7jqHfsn7Irsp22aaisQJdl3bF9unb0Suml48rJDmUlUnboBQVJc/rD3lm714NRJGB+dQ51NfXo7Cw0GfzaTRqpB64EoKtymdzep2lEtg5C7vK810+PbHrRJ+UERmqQXRypk/mIiJqq2HDQrBxI/DHH/WYN8+Bzz4Lhd3e+rXX9OnlUMh0ieZ0OlFZWQmj0Yjw8HAkJCQEZEjHgw8qsGGDtL52uwILFliwenX7/8y3pKQEFVLTlluhUCiQnp6OU07hxm0iokBzuOIwLnnnEuRW58oyXnMHM/iCzWbDKaec4rf55TJixAjJfb0R7EmdjyAICA4ORl1dnaT+dXV1EEUxIK/9icj/XnnFhLo6aeuuAWDOHMbPEBEFEl7xERERERERERERERFRQLr7bj1CQhyS+y9cyE2P1P6Jooi3/nwLvV7uhaTFSXhn7zseBYIpoMCghEH4cuKXqH6gGq+MegXhunAAQFRQFK7sfaWXKj8h1hCLryZ9hRhDjFfnkeq2wbfhur7X+buMdk8BBXrH9PZ3GUTUiQUHS1/QWFtbK2MlRIHF4RDx9dfHYbfbZRlPp9Px5HFqVpAmCEfuOIKhyUObbdNga0D/Zf3x47EffVcYyaayUtp9lshIhoL5Q12dEocOWf1dBpHXmc1m5Oe7DrLyBqVSibTCh6Gq2+uzOX1lR0UWzI6mrxsaQYO+UX29Pn+IQYeEpC5en4eISG6nnRaMDz8Mw549JkyaVA2ttvnr3+7dzTjnHGkb/1vidDpRVVWFAwcO4Phx+e4DyOWss0IwfLj03/f69WE4ftwsY0W+JYoicnJyvBYIptFo0KNHDxgMDAQjIgo0vx3/DWeuPFO2QDDgxOELRNT+xcXFSe7rdDpRU1MjYzVE1FHYbE68+qpGcv9zzjFh4EAeqkdEFEgYCkZERERERERERERERAEpIkKJqVNNkvtv26bH99+33wXi1LkV1BZg4ocTEbwgGDd+ciMOVR7yqH+4Lhx3DrkT1fdXY/uM7bik+yUu280YOEOOcl0K1gTjy4lfoktE4G7mUygUWD56OU6Jbf+n2frT+N7jAzb4jYg6h9DQUMl9GxoaZKyEKLDMnVuNMWNS8emn4W0eS61Wo0uXLlAoGL5MzRMEAb9N/Q3je41vto1NtOH8t87H2r1rfVgZyUHq/vXoaKe8hZDbtm4NrDAIIrnZ7Xbk5eVBFH0TPqhQKJBW/y60xR/4ZD5fe6na9eM9wnp4fW6dVovkxFgolCqvz0VE5C29egXh7bfDcfiwFTNmVMFgaHrw0fTp5RC8vIurpqYGU6ZU4+GHjaiqsnl3Mg888ID09wVms4BnnpH+mbE/FRSYsXnzUTQ2un/gjyfCwsKQmZkJlYo/Q4mIAs2Ooh04/63zYTQZZR23vKFc1vGIyD90Op3ka7jSUhU+/NA715dE1L69844JhYXSQ8HuuUfGYoiISBYMBSMiIiIiIiIiIiIiooA1Z44OOp30TV3z5/tmQxiRHERRxKpdq9Dj5R5IWZyCd/e9C5Pd/U0OCigwJHEIvp70Narur8KSS5YgVNdySMqw1GHoESX/xj6VoMKHV3+IgYkDZR9bbgaNAR9d/RFCtdIDZTq7B89+0N8lEFEnp1arJQcVmc0MkaWOafFiIxYujITDocDDDydjxYpoOCXuvxUEAd26dYPg7Z3L1GF8cPUHmHXGrGafF50irvvoOiz6dZHviqI2q6yU9hrAUDD/2bHD3xUQeY8oisjLy4PN5ruwk2TFnwg6+pTP5vO1b5vZSzoqZZRX51WpVEiLD4aS9+aIqINIS9Nh+fIIZGc7MHt2FcLCTgS1pqZaMHJkjdfnP35cg3feicK8eZHIyFBg1qwqFBdbvD5vay66KBSDB3sezq/TiZg0qQLjxpXBarV6oTLv2bSpBoMHC5g9OxneuGRJTk5GSkqK/AMTEZEsXvn9FZjt8n8GVWOpgc0ROMGfRCRdZGSk221tNuC770Jw221pGDmyB2bPjkdtLQ+FIKJ/iaITL74o/fP8nj0tGD1aJ2NFREQkB67UIiIiIiIiIiIiIiKigJWQoMLEidJPtvvuuyBs3+7/he5ELcmvycc1H1wDwwIDpnw2BUcqj3jUP1IXiVlnzELNAzXYNn0bRnYd6XZfhUKBGQNneFpyq9647A2P6vC37lHdsXrsan+X0S5d3O1inJZwmr/LICKSfJKy3c7F0tTxvPtuNe67L+Kkx5YsicczzyTA4fBsLIVCgW7dukGpVMpYIXUGiy9ajBdGvtBim/u/vR93fHmHjyqitjIapS03jYmRuRBy2+7dXCJMHZPT6URBQQFMJvfD9NsqTl+NsN3X+Ww+X6sXgaJmrhOvyLjCa/MKgoC0WDXUIQlem4OIyF/i4jR44YUI5OY68fDDRsycWQpfvLV+441oiOKJ8PyaGhWWLIlAt24qzJhRhdxc3/3sdOWee9wPMAkJcWDGjDJ8/fVh3H9/CeLjbSgqKvJidfJxOETMn2/EpZeGoKREg127DHjhhXjZxlcqlejevTvCw8NlG5OIiNqXSlOlv0sgIhlER0e32iY3V4MXXojDBRf0xKxZadi8OQSiqEB9vRKrVtX6oEoiai+++86MP/+UHup15512CIK0w/iIiMh7+Ik/EREREREREREREREFtAcf1EClckruP28egx4o8IiiiBV/rEDmS5lIezEN6/av8+iUWAUUOCPpDHx7w7eovL8Siy9ajBBtiKRabuh/AzRKjaS+rsw/bz5u6H+DbOP5ytieY3H/Wff7u4x2Z+6wuf4ugYgIAKDTSV/caDbLf1I7kb9s2lSDqVND4XA0XbC7dm0U5sxJgcXi/mLeLl26QKOR71qROpfZQ2dj/ZXrISiaX6b4yvZXcPm7l/uwKpLKaJSWYBATww0E/rJ3rwYOh/R7akSBqrS0FLW1vtv0GGFQIHrbMJ/N5w+v1bh+PFYXiyBVkNfmTYkSoI/s6rXxiYgCQUSEGk89FYlZsxIRFhbm1blKS1X49NPwJo83Nirx+usR6NlTi+uuq8bBg9IPZGqLK68MRe/eLQeTRUXZMHt2Cb755jBmzixDZOS/qZX19fUBH/BfW2vH+PF1mDs3Ejbbv++F16yJxsaNbf/+BwUFoUePHtBqtW0ei4iI2q/yhnJ/l0BEMhAEAUFBTe+7NDYq8Mkn4bjxxgxcdlkmVq2KgdHY9ICsNWt4TUhE/3r2WemfB8XG2jB5sl7GaoiISC4MBSMiIiIiIiIiIiIiooDWrZsG48ZJX5z++edBOHDAImNFRNLlVefhqvevgmG+AdM/n46jxqMe9Y/SR+Geofeg9sFabJm2BednnN/mmqKDojG+1/g2jwMAtw26DQ+c/YAsY/nD0+c9jRGp5/q7jHZjWOownJ16tr/LICICAAQHB0vu68tAASJv2rWrHhMmGGAyNb8k7JtvwnDrrWmoq2t92VhaWhr0ei7+pba5qs9V+Ommn6ARmg+X++zIZxj82mDYxcDe3N2ZORxOVFUxFKy9qa9X4uBBm7/LIJKV0WhERUWFz+Yz6DVI3HY6Ovor2bvNXBueGXem1+ZMiFQhJK6n18YnIgo0KpUKKSkp6N27NyIiIqBQyP/T5c03o2G3N/9+32oVsHZtOPr102PcuBrs3Nkgew0tUSoFzJrlOpw/KcmKhx8uwldfHcGUKRUIDhZdtisqKvJmiW3y55/1GDzYjk8/dR3+9dhjicjOlh7cEBsbiy5dukAQuBWQiKizq2j03ftiIvKuuLg4AIDTCezdq8cTTyTivPN64pFHkvHHH4YW++7YYcAff9T7okwiCnD791vx7bfSP9efMcMCnY7vNYmIAhFfnYmIiIiIiIiIiIiIKOA9/LAaCoW0k6xEUYH587mxmPxHFEUs37Ec3ZZ2Q/qSdHxw4AOYHa43PbgiKAScmXwmfrjxB1TMqcBzI59DsEZ68IkrMwbOaPMYY3uOxdJLlnplI4uvqAQV3rt6PZJEef98O6q5w+b6uwQion+EhbnebOeOhgbfboAk8obcXBPGjNGgqqrpSeH/tX17MG66KQNlZc23TUxMREhIiJwlUid2durZ2HvbXgSrm7/O3lG8A92Xdke9lRtYApHR6IDDIe29Xlwcl6n609atDAWjjqOurs6nQSBajQap+8ZAIXbs9wtOAHtsroMfJ3ad6JU5o0I1iEpkIBgRdU6CICApKQm9evVCdHS0bJ+pGI1KfPhhpFtt7XYFPvkkDIMHB+Hii2vx8891stTgjptuCkN6+r+HOXXrZsb8+cfxxRdHMGGCETpdy58H19bWQhRdB4b501tvVWHYMD2OHNE128ZkUmLWrFTU13v2HkmhUCAjIwOxsbFtLZOIiDqI8sZyf5dARDIxGAz48cdQjB/fDRMndsUHH0SiocH9AzqWL+f9XyICFi2ywemUdn9Brxdx1108KIyIKFC1vgqMiIiIiIiIiIiIiIjIz/r10+DiixuxcWOQpP7r1+sxb54NaWlqmSsjal5OVQ7u++Y+bDi6ARaHpfUO/xGtj8aUAVPw2LmPIUgj7e++u85NOxfdI7vjqPGopP5npZyFtVeshVJwf2FaoIo1xOL9i1fi3I1Xo5n9kARgYMJAjOw60t9lEBH9Q6VSQaFQwOn0PEjWYvH85zRRIKmosOLSS4HCQo3bfY4c0WPSpC5YtuwYunSxnvRcbGwsIiPd20hM5K7MqEzk3JWDU149BWUNZS7bHKs5hrQX07D3lr1IDE30cYXUktJS6ZvuGQrmXzt2ODFtmr+r6LycogO2+hKIEu4L0cnsohrHS30XWKJSKZF2/D4oG474bE5/+TL9JViPzmzyuFapRa+IXrLPF2rQIT45Q/ZxiYjaG0EQEB8fj9jYWFRUVKCioqJNYVdr1kTBZPLs2tvpVODrr0Px9dfABx/kYPjwMERFRUmuwR1qtYA77mjAW285MHVqOYYPr4Pg4VuG4uJiJCUleadAD9lsImbNqsH//V+EW+2PHdPi0UeT8Pzzx+FOHpxGo0GXLl2gUnH7HxER/auiscLfJRCRjNTqEBw92ny4bEs+/DAYS5eK0Gp5H56osyopsWP9eumhXhMnmhAdbZCxIiIikhPvChIRERERERERERERUbswd66AjRul9bXZBDzzTCNefZWhYORdoihi2c5leP6355FTneNxf0EhYGjyUCw4fwGGpQ3zQoWuKRQKzBg4A/dtus/jvj2je+Kzaz+DXt1xTowbOvQqvLBmEGbG7vB3KQHroWEPQeHOjhUiIh9SqVSw2Tw/Ddlut3uhGiLfMJkcGDPGioMHgz3uW1yswQ03dMHLL+fh1FNNAICIiAjExsbKXSYRACDGEIO8WXno/2p/HDG6Dlkxmozo9lI3/D7td5wSd4qPK6TmlJY6JPeNj+cyVX/avZtp175mqc5HZa0FDWYnrDabpNBa8i+FQoHU6jehKf3M36V4XU3/1fi/betcPtcrXP5AML1Oi+SkeCg6wMECRERyEQQBsbGxiI2NRWVlJcrKyuBweHb9XVcn4L33pId59evXiMzMRhQXN6K0tBTR0dGIjo6G4Glal5vuvDMMI0cedCsUy5Xq6mokJCR4rT53HT9uxoQJdmzZ4l4g2N82bQrDW2814sYbK1tsFxYWhpSUlLaUSEREHRRDwYg6lkmTQvDAA3ZUV3t+L72yUo13363CTTd5dk1KRB3Hiy+aYTZ7vlYAAATBifvu45pqIqJAxuhXIiIiIiIiIiIiIiJqF846S4dhw0yS+69eHYSyMgY+kHdkVWZh3HvjoJ+vx+1f3u5xIFhMUAweOPsB1D9Yj1+m/OLTQLC/3dj/RqgFzxZ5JAQn4KvrvkKkPtJLVfnP7U9sxHVHpJ3E2dH1iu6FsT3H+rsMIqIm9HrpAZVms1nGSoh8w24XcdVVDdi6VdoiXwCoqVFh+vQM/PhjCIKDg5GUlCRjhURN6VQ6HLz9IM5OObvZNia7CQNeG4Bvc771YWXUkrIyaaFGOp2IkBAuU/Wnffs0cDgYSuULtroi5B/LwtGCWhhrLbBYrQwEa6dSnNsRlLPI32V4XWO3B1GAgdhWts3l82NSxsg6n1qtQmpcKASN9GtXIqKOLioqCr169UJycjJUKvcDAdati0RdnfTAxRkzyv8J6BJFEWVlZTh48CCKi4shiqLkcZujVisRFhYqub/T6URZWZmMFXlu06YaDBkiYMsWaT/XFi+Ox44dQc0+n5yczEAwIiJqVnlDub9LICIZGQwqjB1bL7n/6tU8mIOos2psFLFihfT1jZdc0ogePTQyVkRERHLjagsiIiIiIiIiIiIiImo3HnxQel+TScDzzzPsgeQjiiJe2vYSMpZkoPvL3fHJ4U9gdVjd7i8oBAxLHYZfJv+CsvvKsOD8BdCrpYeZtFWMIQZX9LrC7fYhmhBsvG4j0sLTvFiV/yiio7H8ilU4pdTflQSeB89+EIKCHzUTUeAJDpa+uby2tlbGSoh84+aba7Bhg/RNtH8zmwXs2BGK1NRUGaoiap0gCNg8ZTMm9JnQbBu7aMfIt0di9Z+rfVgZNUdqKFhkpEPmSshTDQ1KHDhg83cZHZ7ZmI3swlrU1vPeY3sXr6tA6J7J/i7D66zxlyMv5HrUWmpRaal02eby9Mtlm08QBKTFaKEOiZNtTCKijiw8PBw9e/ZEWloaNJqWN+eaTAq8/Xa05LkyM00455y6Jo87nU5UVlbi4MGDKCwslD0cLDExsU39KysrvRJY1hpRFJGdfRw33KBHSYn0jdMOhwL33puCsrKTAxyUSiW6d++O8PDwNlZKREQdWYWpwt8lEJHMZsyQHvL788/ByMqSftAqEbVfK1Y0orJSejDgffdJf+0hIiLf4EptIiIiIiIiIiIiIiJqNy66SIcBA6Rvrlu+XIeaGm5IpbY5XHEYl797OfTz9LjzqztxrPqYR/1jDbGYO2wuGh5qwM+Tf8ZZqWd5p1AJZgyc4VY7taDGxxM+Rv/4/l6uyL8M46/BR42jYbD4u5LAkR6ejmtOucbfZRARuRQaKj0cqaGhQcZKiLzvyJE87NunlmWsiy+uxeuvh0EQuJSMfOu9K9/DfWfe1+zzTjhx0yc3Yd7P83xYFblSUSEtFCwigvdgAsGWLQwF86aG8iPIKbHAbrf7uxRqo0gDEPX7CH+X4XWO4F7IS14Eh8OBdTnrXLZJ0CdAq9TKNmdqtBK6yAzZxiMi6ixCQkKQmZmJjIwMaLWuX5c/+igCRqP0DcDTp5dDoWj+eafTiaqqKhw4cADHjx+X7ZpHpVLBYDBI7v93aJkv2e12HD16FCZTDebNK4QgSHuf9LfKSjXuvTcFtr8u14OCgtCjR49mv9dERER/K28ol22sF198EU6ns11+nXvuuZJ+zz/88IPkOYm8ZejQEPTr1yiprygqsGwZQ8GIOhuHw4mlS6WvFxg40Ixzz9XJWBEREXkDV3IREREREREREREREVG7IQgK3H+/9FOfa2pUeOklLoIhz4miiMVbFiPtxTT0fKUnPjvyGayi1e3+SoUS56adiy1Tt6D03lI8fd7T0KkCb1HF8PTh6BbZrdV2q8euxvldzvdBRf7X/f/Woa8p2N9lBIz7z7ofaqU8ASRERHJTqVRQtLSLsQUWCxMgqf0oKiqC1VqHV1/Nw0UX1bRprMGDG/D++0FQq7mMjPxj0YWL8NIlL0GB5l+/H/7hYdzy+S0+rIr+q1ziPsOoKG6UCwQ7dvD74C2WqmPIK7dDFKXfr6TAEBykQcK2IS38NOoYRFUo8vt8Aov1xH3Nrwu+dtnu7PizZZszMVKJ4Ngeso1HRNQZGQwGdO/eHV27doVer//ncZtNgVWrYiSPm5pqwYUX1rrdvqamBocOHUJeXh5strYHzyYlJbWpf7nUNyoS1NXV4fDhw//8vocMacBdd5W2edxduwx45ZU4xMbGokuXLgxsJyIit1Q0Vvi7BCLygokTpR+Uun69AXY771ESdSYff2xCdrb0UOm77+ZrBhFRe8C7hURERERERERERERE1K5ceaUemZnSQxteflkLk4kfaJN7DpYfxOi1o6Gbp8Pd39yN/Jp8j/rHGeLw6DmPouGhBvx40484I/kML1UqD0EhYPpp01ts89yFz+Havtf6qCL/q1XasS28wd9lBIQYXQzGdx3v7zKIiFqkVksLLrTb7TJXQuQd5eXlMBqNAACNxolFi45j0iRpG4AyM83YsEGN4GCVnCUSeeyOIXfgw6s/hKBofjnj8j+W49J3LmXwjp9UVEiLyYmK4vcrEOzerfR3CR2SvaEMx8osfF3qAHRaDVL+vBgKsWMfJuEEUDR4CxpM/x50kFWb5bLtxK4TZZkzOkyDyMResoxFRESAXq9H165dkZmZCYPBgC++CENpqfRDPKZOrYBSwqXi3wFZubm5sFrdP0DnvzQazUkhZ54SRfGfeyTeVFJSgry8PDidJ4ftTp5cgfPPb1tYe69eJsyebUBsbGybxiEiIu+pt9b7u4QmGApG1DFNmxYMvd4hqe/x41p8/rn7gb9E1P698IL0Iy7S0qy4+mrp78eJiMh3GApGRERERERERERERETtilKpwL33Sg9tKC1V47XXOvYGL2obu2jHc78+h9TFqej9f72x4egG2ET3TzxXKpQYkT4Cv0/7HSX3luCJEU9Aq5J+Kpuv3XTqTVALrjeRzDp9Fu4eerePK/KvY9XH4ISz9YadwA3db0BpYSkOHTqE6upqf5dDROSSTqeT3Ndk4jUiBbbq6mqUlpae9JggAHPmlODuu0s8GishwYovv3QiJkYjZ4lEko3rNQ6/TfkNGmXzfye/zPoSA18fCLvIIEdfq6yUtrEgOprvpQLBvn1a2O38XshJtDYgr6QGNpv794soMKlUKqTl3gGlKdffpXhd+em/oLrh3xC738t+h93Z9GeqXqlHt7BubZ4vNFiHuKSubR6HiIia0mg0yMjIwB13xGHuXCOioz2/JomLs2HMmOo21dHQ0IAjR44gOzsbZrNZ0hiJiYltqqGsrKxN/VsiiiJycnJQUeE6eEWhAJ56qhBpadIOsxo/vgbbtqnRp09QW8okIiIvOlxxGG/88Ya/y2iivLG8SVglEbV/UVEaXHKJ9CDCzz/n4QVEncWWLWZs2SI91Ov2261QqaSHihERke8wFIyIiIiIiIiIiIiIiNqdm24KQkqK9JOnFy9WczMkNbG/bD9GvTMKQfOCcN+39+F47XGP+scHx+OJ4U+g8aFGfH/j9xicNNhLlXpXrCEWk0+d3OTxq/tcjecveh4KRedaENI7pjdiDTyhPVQdiqu7XA0AsNvtKCgowMGDB2E0Gv1cGRHRyYKDg91uW1cn4PffDXjzzSjcd18yNm5kKBgFrrq6OhQUFLh8TqEAJk+uwPz5BVCpWn+fExZmx+ef29C1K0//pcByevLpOHDbAYRqQptts7tkN7os6YJaM0+896XKSmlLTaOjZS6EJDGZBOzbJ/0+Gp3MKTpQUFQMk0la+AMFDkEQkFa1HOqKTf4uxeuqB7yLMlPYSY+9l/Oey7Z9Ivq0eT69XovkxAQoBGWbxyIiouZFRKjx9NORyM1VYN48I5KS3L/mmzy5HGq1PJ+VmkwmZGVl4ejRo2hoaPCor16vh1Yr/WAdu92O2lr53x+azWYcOnQIjY2NLbYLCRGxeHE+9Hr3Axg0GhELFxrxwQdhCAlRtbVUIiLykt+O/4YzV56JanO1v0tpwuqwot4qPTiIiALX1KmetdfrHRg3rgpvv52N2bOLYLXyPjBRZ/Dssw7JfcPD7bj1VoZTExG1F7x7SERERERERERERERE7Y5arcCsWTbcc49GUv+8PA3efrsRkyfzw+3Ozi7a8fxvz+Pl7S+joNZ1yEJLlAolhqcPx8ILFmJg4kAvVOgfL1z0AipMFfj44McAgDtPvxPPXPAMBEXnO3NIJajw+bWfY9y6cSiqK/KoryACahFQiYDa8dd/3fm1Vgd1775QRcXAaDJia8FWL/3u3Dep2yQEqU5+zXQ4HNixoxyPP67B3XfbMW5cKJTKzvd3hIgCS2hoKIqKmr5e19cLOHhQhwMH9Ni/X48DB/TIyzt5w2GPHlW44gpfVUrkPrPZjLy8vFbbjRlTjchIO2bPToHJ5DqAQacTsW5dIwYObD50icifukZ2Re5duejzah+U1Je4bHO89jjSlqRhzy17kBKW4uMKOyejUdp1fkxM5wqVDmRbt9px6qnSwxboX6WF2ait5+a6jiDZsRn63Bf9XYbXNWQ+hkKxL4CTg192lO9w2f6ytMvaNJ9arUZafBgEjaFN4xARkfuCg1V46KFI3HuviFdfNWLp0iDk5OiabR8ZaccVV1TJXofFYkFubi40Gg0SEhIQEhLiVr/ExETk5uZKnre4uBihofLd5zAajS7vLzane3cLHn+8EPff3/r708REK9assWDEiMi2lEhERF720cGPcN1H18FsN/u7lGaVN5YjROvez1oiaj8uuigEGRkW5Oa2fC+3X79GXHFFFS6+uAYGw78BtSUlJUhNTfV2mUTkR7m5Nnz+ufR1z5Mnmz06bI+IiPyLoWBERERERERERERERNQu3XKLHgsW2FFRIe3jjkWLlLjxRicEgRtUO6M9pXsw55s5+O7Yd7CLdo/7JwYn4rbBt+G+M++DRiUtnC6QGTQGfHj1h6g2VyNIHQSNsuP9Hj0xJGkICmYXIMuYBZPdhPX712Pe5nlN2i3dAEzdfSLcSyUCgrPpWC2KiQFmzAAeeggI+nfxzuM/Po4nfnqibb+JNghSBWFit4kun1u5MhpbtgTjqquAvn0bcffdFkyaFAaViuFgROQfKpUKJpMSBw5o/wn/2r9fj7w8DZzOlq/79uzhMhoKPDabDdnZ2W63P+useqxalYvbbkuH0Xjy32ml0onXXqvBRRdFyF0mkawigyJx7K5jGLB8AA5WHHTZptpcjcyXM7FlyhacmnCqbwvshIxG10GDrYmN5T2XQLFzp78r6BiMRQdRUePwdxkkgwRtMUK33+LvMrzOkng18g0T4HSc/Pe2ylKFKmvTMBgFFBiTOkbyfEqlgPRYLVSGWMljEBGRdBqNgLvuisTtt4tYvboKL7xwIiD/v66/vgJ6vacfYLjParUiLy8PmzZFYNCgUAwb1nJgicFggFqths1mkzSfzWZDQ0MDDIa2BVKKoojCwkLU1NR43HfUqBr8+WcQ1q6NarbN2WfXY906NRITGeBCRBTIXtr2Eu766i444b2flXKoaKxAl4gu/i6DiGSmVAq49tpGzJ/fNBQsPNyOMWOqccUVVejWzeKyf11dnbdLJCI/e+45C+x2taS+arWIu+9uPkSciIgCD1diExERERERERERERFRuxQUJOC226SfynnokBYff2ySsSIKdHbRjvmb5yPphST0X9YfX+d87VEgmEpQYWSXkdg1YxcK7ynE3HPmdshAsP8Vrgvv9IFgf1MoFOge1R394vrhqRFPYeaQmSc9f2lFJG7bAQTZAI3Dw0CwoUOBt98Gjh8Hnn76pEAwAHj03EdxcbeLZfhdSDOhywSEacKaPF5RocLHH/8bKrJ3bxAmT45A795WvPJKFaxWsUkfIiJfWLQoETfd1AXPPpuADRvCceyYttVAMADYt4+LHymwiKKIrKwsOJ2ebT7q08eMt9/OQXKy9aTHFyyowvXXMxCM2getSot9t+7DiPQRzbYx280Y9PogbDy60YeVdT4NDSJMJoaCtXe7dkn7HtK/6ksPocjIQLCOIMrgQNT2kf4uwy1OJ/BNA3BPOfBkJfCLCbC7eWloiRuPvMQn4XA0/Xv7XvZ7LvskBiVCJUgLS1YoFEgINkEbkS6pPxERyUelEjB1agT27NFi3bpqDBrU8M9zISEOTJhg9HoNdXUCHnssHuecE4Jzz63Hxo0tB23Fx8e3ab6ioqI29bfb7Th69KikQLC/3XtvCfr3b2zyuELhxJ13VuH774OQmNg03IGIiALHkz89iTu/ujPgA8GAE6FgRNQx3XyzHirVidchhcKJs86qw3PP5eO77w5jzpySZgPBAMDpdKK6utpHlRKRr1VVOfDWW03Dv901frwJyck8LI+IqD1hKBgREREREREREREREbVbs2frERoqfTPeM89wc2pnsLt4Ny5860Lo5+kx9/u5KKrzbGNAUkgS5p8/H6a5Jnx9/dc4NeFU7xRK7YZCocDSS5Ziw8QNeOScR/Du+Hfx4eIiKI9mAWvWALNnA8OGAcHBTTsHBQFnngnMnAmsXg0cOgT89hswaRKgdb0ZRFAIWDNuDdLC0rz8O2tKI2hwQ/cbXD731ltRsFqbfuR89KgOd9wRgW7dbFi40IiGBvfD94iI5HDqqdKuD8vL1cjOZmgsBQZRFHH06FGXIQ7uSE214u23s9Gr14m/03ffXYX77ouUs0QirxMEAd/f+D2u73d9s20cTgcuXXsp3vjjDR9W1rmUlEi/no+LYxBVoDhwQAO7u0lC1ITZmIP8SgZfdwQhQWrEbxvi7zLctrAKuKgIeKEaeMwIDCsAYnKAa4qB1bVAaTMv0fagDBSkL4TVanP5/KbCTS4fPyfhHMm1RhlsKK7Xw1J1TPIYREQkL6VSwNVXh2P7dgO++KIGw4bV45prKhES4v3rmnXrIlFXd+L9wM8/B2PUqDAMGdKA9eur4XA0nT8sLAwqlfSNyRaLBWaztMOk6urqcPjwYdhsrn9uukutduL55/MRGfnvD+jQUDvWrKnBkiURUKu5hY+IKJD9Xvg7Hv/xcX+X4bbyhnJ/l0BEXpKaqsM111ThtttK8dVXR7BsWR4uuqgWGo1793fLy/n6QNRRvfKKCfX10j97mzOHgWBERO0NX7mJiIiIiIiIiIiIiKjdCg9XYurUeixe7CJ4xw07dujxzTcmjBwp/fQsCkxWuxULf12IV3e8iuL6Yo/7qwQVLsi4AIsuXIS+cX29UCF1BKO6j8Ko7qP+faBr1xNf11134tdOJ2AynfgCAJ3uRCiYwvNAwqigKHx49Yc4a+VZsDiaP/VTbuPSxyFaF93k8ZoaJdatazlY5PhxLR54QIsXXrDh5puNuOeeUISF8SNqIvK+00+Xvgjy11/N6NqV14bkf7m5uW3ejBod7cCqVbn48stoPPpo05/nRO3FW+PeQkpYCuZvnu/yeSecmPb5NByvOY7HRzzu2+I6gdJS6YEBcXHc9B4oTCYBe/ZYcNpprsOoqXm2ulLklVshigwFa+90Wg1Sdp0PhWj1dylusTlPBIH9V7UIrKs/8QUAg7TAKMOJr0HaE7edigb8AFNdnctxRVFETl2Oy+eu63qdpFojQwRU1KkAiDhWZkFXTRlUhlhJYxERkXdcemkYLr0UMBrtKCtTwW733mEeJpMCb7/d9D7E9u0GTJgA9Oljwt13m3HDDWFQqf59zxAbG4uiIs8O9vlfhYWF6Nq1q0d9SkpKUFFRIXnO/4qLs+PZZ49j+vR09OhhxvvvO9GnT7hs4xMRkfdsK9gGJ9pPoHpFo3w/v4go8Dz/vB1lZdLCvSwWC+x2e5tCd4ko8NhsTrz6qvTPeIYPb8SAAUEyVkRERL7AFRdERERERERERERERNSuzZmjg14vfVPeggXtZ1EftW5n0U6cv/p8BM0PwqM/PupxIFhyaDIWXrAQprkmbJy0kYFg1DYKxYkQsKioE18Gg6RAsL8NTByIl0e9LGOBLVMpVJiSOcXlc2vXRqKx0b3QnbIyNZ56KhIZGcC99xpRVtY+Nt8SUft1xhkGqFTSrvF27JC5GCIJ8vLyYPo7VLSNwsIEPPZYNJRKLhOj9m3eefOw7NJlUKD56+knfn4CUz51ff1K0kkNBRMEJ6KjpQd1kvy2bvVe8ENHJVrrkV9aC5uNf3btnVqlQlrOzRAsBf4uxW01ImB1423NDgvwpBE44zgQlwNcJY7Fu/vfQ7Wl2mX738p+g8PpaPJ4kCoIaSFpHtcZGqyFsfbf8Ww2G/JLaiDaGj0ei4iIvC8yMhw9e/ZEWloaNBqNV+b46KMIGI3NBxDs36/H1KkR6NnTiqVLjbBaxb9qi4QgSL9/YTKZYLW69/mDKIrIycmRNRDsb0OGNGD58kJs26ZGnz7ccE1E1F6khXv+fsifyhulhQURUfsQHd22w35KS0tlqoSIAsVbbzWiqEgtuf8990hfs0hERP7D1V5ERERERERERERERNSuxcerMGmS9A1GP/4YhK1bzTJWRL5mtVvx+I+PI+H5BAx6fRC+P/a9y41tzVELaozqNgr7bt2H47OPY85Zc6ASeFoiBaZpp03DlFN9E3QwKnUUEg2JTR5vaBCwZk2Ux+NVVanw/PORGDPGiuzsbJjNfO0lIu8IDlahe3dprzF79vAagPyruLgYdXV1sowlCAK6devWpg21RIHk5kE347NrPoNS0XzQ1Krdq3Dh2xdCFKWHh9PJysulBW2GhzugVHKDQSDZuZPB+J5wOuwoKCyByWzxdynURoIgIM24FOrKH/1dikciBMDg4ctopQh8lP0JHtj+AM754hxc98N1WHZwGfZX7YfoPPGzcX3Oepd9+0Z4fjhCkF6L+vqGJiH4jSYLCguL4BTdv0dLRES+FRISgszMTGRkZECr1co2rs2mwKpVMW61zc7W4a67ItGlix0LFhhRX29HTIx7fZtTWFjYahuz2YxDhw6hsdE7AZZhYWGYNi0ZISG8z0hE1J6MzhyNS7tf6u8y3FbRKH+wJREFDkEQEBQkPWC2pqZGxmqIyN9E0YklS6QfxNOrlwWjRulkrIiIiHyFdxiJiIiIiIiIiIiIiKjde/BBLVatEmG3S9vsPn++iM8+k7ko8rrthdsxZ9McbM7f7FEI2N9SQ1Nx5+l3YtYZs6AUpC+aIPK1l0e9jF0lu7CrZJdX5xkaO9Tl4++/H4HaWukfNU+cWAmTyYSsrCxotVokJibCYDBIHo+IyJW+fS04eFDvcb99+3RwOEQolQxRIt8rLy9HZWWlLGMpFAp069YNKhWXh1HHMrrHaGydthVnrzwbFofroJ5vc75F/+X9sXP6TmhUGh9X2PGUlUkLkoqMdKCjL1FduXIlVq5cKfu49fX1so8JALt2dezvh9xKCnNQ22D1dxkkgxTbd9Ade9XfZXhMqQD6agGp51k44cQe4x7sMe7BKwdeQaQ2EmfHn42tZVtdth+bPtaj8TUaNRzmGohwvZmspt4MTWE24lIyPS2diIh8yGAwoHv37jCZTCgqKoLJZGrTeJ9/Ho7SUrVHfQoLNXjooUgsXmzDmjVWJDY9q8Qte/fq8d574Xj7bTtCQ11f+xqNRhQVFUmbwA3JyckIDw/32vhEROQ9gkLAZ9d+hnf2vIP/2/F/2Frg+r1ToGAoGFHHFxcXh9zcXEl9RVFEXV0dQkJCZK6KiPxh0yYz9u71fP3L3+66yw5BkC8QnIiIfIef8BMRERERERERERERUbuXkaHGlVc24L33pIXKbNigx/79VvTpw83Cgc5it2Dez/Pw2h+vobSh1OP+akGNkV1H4tkLn0WvmF5eqJDI+/RqPT68+kMMfG0gqsxVXptn4Z8L0S+yH1KDU/95zGJRYPXqaMljdu1qxogRdf8zngW5ubnQaDRISEjggkQiks2pp4pYv97zfpWVauTmmtCtm/QFlURSVFdXo7TU8+vb5qSnp0Oj4fsb6pgGJQ7C4TsOo/+y/qixuD7tfl/ZPmQszcD+2/YjXBfu2wI7GKlZhZGRoryFBKD8/Hz8+uuv/i7DbQcPamCzOaFWK/xdSsCrLDyEylq7v8sgGSRq8hGy405/lyHZqW0IBfsvo8WIz/KaPxnj4uSL3R5LqVRC46xBvTOoxXblNVZolAcRkcj7sEREgU6v16Nr166wWCwoKipCQ0ODx2PY7cAbb0j//ECpdCImptqjPk4nsG2bAStWxGDbtmAAwIsvGvHoo5EntXM4ROzbVwyl0jufqSiVSnTp0gVaLTdZExH5w5tvvonJkyf7u4yTffrXlzdcDpSnlHtpcCIKFAaDAYIgQBSl3WsvKyvjGhyiDuK556Qd4AMAcXE2TJ7c8n1cIiIKXDzWlIiIiIiIiIiIiIiIOoS5c9VQKKR9+C2KCsybZ5O5It/Jr8nH+PXj0XVpV4x9bywOlh/0d0my21qwFeeuOheG+QY8tfkpjwPB0sLSsPiixTDPNeOLiV8wEIzavYyIDKy5Yg0U8N5m7mprNW7/9XbUWP8NWvjkkwhUVKgljzl1ajkEF59SW61W5OXl4fDhw6iurpY8PhHR3844Q/o5eb/8ItOueyI3NTQ0oKCgQLbxUlNTYTBIC0wmai/SwtNwbNYxJIUkNdumqK4I6S+mI686z4eVdTzl5dLec0RFSd+gQN5hNgv480+rv8sIeHUlh1BcxUCwjiAmqBGROy71dxlt0t9HGa9KhRJP7XoK3xZ+i3pbfYttFQoFQtX1qLe5t5Gs0OhAfdlhOcokIiIf0Gq1yMjIQI8ePTwOENi0KQz5+dJDsW66qQJqtXvvI0QR+O67EFx3XRdMn57xTyAYACxbFgyL5d/ghNpaO8aPr8Po0TGoqZF/G11QUBB69OjBQDAiIvKpisYKf5dARD4QHh4uua/JZJIcKEZEgWPvXiu+/VZ6qNfNN1ug0fCwGCKi9oqhYERERERERERERERE1CGccooGl17aKLn/++/rcexY+wsGy6nKweDXB+Ojgx8hpyoHnx7+FKPfHY06S52/S2szs92Mud/NReyzsRj6xlD8nP8zHE6H2/01Sg0u63EZDt1+CMdmHcOsM2ZBcJVGRNROjeo+Co+c84hX5zhWfwyzt86GTbTBZgNWrYqWPFZSkhWXXFLTYhubzYaCggIcPHgQRqNR8lxEREOGBEGlkrbIeccOmYshaoHZbEZubq5s4yUkJCA0NFS28YgCWbguHDl35qBvbN9m29RYatDj5R7YUcQXd6kqKhgK1pFs3cqwq5aYjNk4buRGuY4gUZOPuK2n+7uMNjvVR9kiDqcDHx37CLO3zsawz4dhys9TsOrwKmTVZsHpPPn1PDxYhSqz3qPx8yscMFflyFkyERF5mVqtRlpaGnr27ImwsLBW24si8PrrMZLni4y0Y/z4qlbb2WzA55+H44orumHWrDTs3dt0Y3RxsQb/93/VaGxsxNat5Rg82I5PPw1DQYEGc+cmQ85chNjYWHTp0oWfPxIRkc+VN5T7uwQi8oHY2Ng29S8rK5OpEiLyl0WLpK9pDgpy4M47PbuXS0REgUX6sahEREREREREREREREQB5qGHlPjiC2l97XYBCxY0YvlytbxFeVF5QzkuXnMxyhpOXsCTU5WDN3e/iZmnz/RTZW3zS/4vePDbB/FbwW8QnZ6vzE8PT8fdQ+/G7YNu5yJ86vAePfdRbCvchq+zv/baHNvLt+PJP57E4KKlKCzUSB5nypRyqNz8hNrhcKCoqAglJSWIiYlBVFQU/z0TkUcMBhUyM004cMDzBY579rSf60Fq3+x2O7Kzs2UbLzo6GlFRUbKNR9QeaFQa7L55Ny5+52Jsytnkso3FYcEZK87AJxM+wegeo31cYftnNEoLBYuJYShYINq5098VBC5bXRHyymwQ5UyJIJ/TajVIaPgSwXtm+7sUWfTVAgoATgAwAaj466vyr//WAbAAsP7PFwAocWKXgP6vr2AA4X99RQOIBdBMvovdacf28u3YXr4dL+x7AQlBCTg77mwMix+Gi7qdj6o6zzehiaKIvDIbuqpKoQqJ87g/ERH5j0qlQkpKCpKSklBcXIzq6uomgZEA8PPPITh6VCd5nuuvr4BO1/x7CLNZgU8+icCbb0a79TnFSy8FQaksxcMPJ6OuTvnP4z/9FIoVK2IwY0bbglQUCgXS09NhMBjaNA4REZFUVeYq2EU7VAK3iBN1ZCqVClqtFhaLRVL/6upqxMfHy1wVEflKcbEd778vPdTruutMiIoKlrEiIiLyNb7jIyIiIiIiIiIiIiKiDmPoUB3OPbcRP/3U9FRod7z9dhCefNKOuLjA/wilwdqA0e+OxlHjUZfPv/bHa7hjyB1QKKRt3vW1Rmsjnvz5Sbyx6w1UNFZ43F+j1GBU91F49oJn0S2qmxcqJApMSkGJd654BwNfG4i8mjyvzfNJ3ifYvOs0AI9I6h8TY8Pll1d73E8URZSWlqKsrAxRUVGIjY1lOBgRua1vX4ukULD9+3VwOEQolXy9Ie+xWERs3pyL+Hh5QnPCwsK4qJ86LUEQ8M3132DKp1Owavcql20cTgcue+8yvHrpq7h50M0+rrB9q6xUtt7IhZiY9nE/orPZtUva97Ojc1hqkVdSD7vd7u9SSAK1WgWdWkBk3dcI3n4nOsqrj9kKbDkChP8KVB0FUOxBZxGADSeCxJqjA5D011fqX18uMlaKG4vxfu77eD/3fai3qTEoehDOjj8REpYenO72/WebzYa80lpkaA0QNNyIRkTU3giCgKSkJCQkJKC0tBRGo/GfcDCnE3j99RjJY4eEOHDNNUaXz9XXC1i3LhJvvx2Fykr3g/xzc3W46640l8+9/HIsTjmlEWee2SCpXo1Ggy5dukDl7ikoREREXmI0GRFriPV3GUTkZbGxsTh+/Likvna7HSaTCXq99FAhIvKfxYvNsFik3UtVKp24917ph38SEVFg4B1IIiIiIiIiIiIiIiLqUB56SIGffpLW12QSsGhRI55/PrA3JdlFO6758Br8Xvh7s232le3D1oKtGJoy1IeVeW5z3mY88N0D2FqwFaJT9Lh/l4guuGfoPbhl4C0dNiiooqICWVlZyMrKQkFBAQoKClBYWIiKigpUV1ejqqoK9fX1sFqtsFqtAACtVgudTgedToewsDDExcUhPj4e8fHxyMzMRO/evdG7d2/ExEjfpNHZiaKIrKwsHD58GEeOHMHhw4dx9OjRf74f9fX1qKurg9lshlqthkajQUhICKKiohAdHY2UlBSkp6ejS5cuOOWUU9C7d2/Ji/CigqLwwdUf4OyVZ8PikHY6qDsqBzyKQeGp2LXmBjgcnm2xvfHGCmi10kNPnE4nKioqUFlZiYiICMTHx3fYf/NEJJ8BA0SsW+de27Q0C3r3NqFPHxN69zajsTEWISEG7xZInZbDIWLixDr88EMGXn45D/36tZTW0LqgoCCkpKTIVB1R+7Xy8pVIDU3FEz8/4fJ5J5y4ZcMtyK/Nx7zz5vm4uvarqkradXd0tMyFkCwOHdLAanVCo+kosUlt53TYUVBUBrPF6rM548IUCFHW+Gy+DsHeABR8Boj/3vdQOExQV3wDwVLmx8Lk98th4LXvgQ9+B0ze/GtpBpD91xcAKHEiIKwbgB4A4pp2sYk2bCnbgi1lW/DsnmeRbEjG2XEnAsIGxwyGXtXyvS2T2YKCwhKkpGVAITCkkIioPRIEAQkJCYiLi0NFRQUqKiqwZYsee/ZIO7AJAK69thLBwU0/I3Q6gWuv7Ypjx7RtKdnFuArcf38K1q/PRkKCzaO+YWFhvAdDREQBo7yhnKFgRJ1AWFgYCgoK/gnl9VRpaSnS09PlLYqIvK6hQcQbb+gk9x81yoTMTOnv1YmIKDAwFIyIiIiIiIiIiIiIiDqUkSP1GDjQjJ07pX0gvmKFHo884kB4eGBuSnI6nbj1i1vxxZEvWm372h+vBWQoWKO1EY/9+BhW7V6FSlOlx/21Si1GZ47GogsXoUtEFy9U6B8NDQ3YtWsX/vzzT+zduxd79uzBwYMHUV1d7fFYjY2NaGxsBAAUFRXh4MGDLtslJibi3HPPxTnnnIPzzjsPmZmZbfktdHg5OTn49ttv8e233+K7776D0ej65Pr/slgssFgsqKurQ1FRkcs2giCgZ8+eOOOMM3DGGWdg+PDh6N69u9u1DUochJdHvYzpn093u48U+7rfgre/T8cXy/vjgw9CYbW2HhAQFmbHVVdVyTK/0+mE0WiE0WhEWFgYEhISoFLxY28icm3oULXLx1NSLOjd24w+fU6EgPXsaUJo6MkbDxsa6hgKRl5z5501+OijCADAtGkZeO65fJxzTr2ksTQaDRfyE/2Px0c8jpSwFEz/fDqccL1BZv7m+ThefRxvXfGWj6trf+x2J6qrpd0fiYtjiG8gslgE7NplxumnS99I0pE4RRHFhbmoa/BewPZ/RYaoEa2vg0KQN9yi49MCUZnAH7MBp8Pfxciu0QK8/gOw/DvgoOtbR97nAJD/19f3ACIA9AZwCoAE110KGgrwXs57eC/nPWgFLc5JOAd39bkLaSFpzU5T22BGaWE24lN4H5KIqD0TBAGxsbGIjY1FWVk1hg2rx+bNnh+6pNeLmDTJ9WeFCgVw+eVVWLIkvq3lNlFdrcLdd6dg9epcaDTuhSskJycjPDxc9lqIiIikqmis8HcJROQjoaGhqKmRdshAfX09RFHkwXtE7czrr5tgNEpfs3Lfffw3T0TUESicUqNhiYiIiIiIiIiIiIiIAtQHHzTiqqukn3L1xBMNePTRwAyBeOLHJ/D4T4+71Vav0qPoniKE68K9WpO7fsj9AXO/n4tthdsgOpue+N2arhFdMeesOZg2YFqHWKh0+PBhbN68GVu3bsXvv/+OAwcOwOHw76bGU045BVdffTWuueYajwKpOrKqqiq89dZbWLFiBfbt2+fTuZOTk3HBBRdg9OjRuOiiixAc3PqGmqmfTsXK3Su9WlesIRbbpm2DaIzDggUWvPNOCEym5oMCbrutFLfeWu61ekJCQpCUlMRwMCJqwmRyoHdvO7p3/zcArFcvE8LCWr8OCQoKQpcuHSd8lALHU08Z8eijkSc9plQ68fjjhRg7ttqjsVQqFTIzMzvEtTGR3DYe3YjL3rsMdtHebJsR6SPw7fXf8t9QC4qL7UhMlHadvWWLGWec0bGDp1auXImVK+V//1VfX48///zTgx67AJzqduulS+sxc6bngQ0dUUXBIZRUN/86IbeQIC1SQ4xQKPn+VbL8D4ADz/i7Ctk4RGDVT8BjHwJF8uSpe0dvAFe71zRME4YNF21AmCasxXaJESpEJvVse21ERBQwfv65DvPnO/HNNyFwOhVu9bn++grMmVPS7PN1dQJGjuyB+nrvHOZ01VVGPPpoy4mcSqUSXbp0gVbLUFciokD15ptvYvLkyf4uw3cuBzAAeP+q93Fl7yv9XY3fDB8+HD/99JPH/X744QcMHz5c/oKIvMhqteLIkSOS+8fHxyM6OlrGiojImxwOJ7p3tyE3VyOp/+DBJvz+u17mqoiIyB8YCkZERERERERERERERB2OKDrRp48Vhw5JW5wdE2NDXp4Sen1gbQxe8ccKTP98ukd9Xr7kZdw+5HYvVdS6ems9HvvhMbz555swmowe99cpdRjTYwyevfBZpIWneaFC3zl8+DC+/fZb/PDDD9i8eTPKysr8XVKzFAoFLr74YsyePRsXXnihv8vxi+3bt2Pp0qX44IMPYDab/V0OtFotLrjgAkyYMAFjx45FSEiIy3YmmwlnrTwLu0p2ebWePjF98OuUXxGmC0NRkQULFzbizTdDUFt78sbmoCAHvvnmsFsBPG3R0CDgww/jce+9wYiNlbYgiog6pv3790PK0hilUolevXp5oSLqzF5/vQo33xze7MbYu+4qwdSpFVC4sW9WEARkZmYyFJOoBbuLd2PoyqEw25u/nu8V3Qu7b94NjYrXkK7s3m3BgAHS7q3k5NiQkaGWuaLOYffu3RgwYIAHPTwLBbvhhgasXh2YYfi+VFtyCPkVvgsE02k1yAithFLN15s2O/QicGyNv6tosy93A/etBQ4U+rsSN6QB8GB//YP9H8TEbhNbHzZGhZA4BoMREXU0O3bUY948Bz7/PBQOR/M3OdRqERs3HkFcXMvXZEuWxGHFihi5y/zH008X4PLLq10+FxQUhPT0dIZJExEFuM4aCvbqpa/ilkG3+Lsav2EoGHU2hw8fhs1mk9RXrVajR48eMldERN6yfn0jJkyQfijyu+824pprpPcnIqLAwbuSRERERERERERERETU4QiCAvfeK31TX3m5GsuWmWSsqO2+OPIFbvnC88V8y3culxSE0Vbf5XyHM1acgdAFoXhh6wseB4J1j+yOFWNWoOGhBqy/an27DgSbMmUKUlNT0bNnT9xxxx348MMPAzoQDACcTic2btyIkSNH4rTTTsMPP/zg75J8JisrC1dffTWGDBmCNWvWBEQgGABYLBZs2LABN9xwA2JjY7Fz506X7fRqPT68+kNE6CK8Ws/+8v24+oOrYRftSEzUYsmSCOTkiHjgASOiov5dhDhhgtHrgWAAsH59JJ59NhJduypx661VyM8PjO8bEfmfRiMtdMHhcEAUvf/6RZ3Hp59W4/bbw5oNBAOAJUvisWBBAhyOlsdSKBTo2rUrA8GIWnFqwqk4fMfhFq+ND1YcRPqSdBgbPQ+x7gxKS6X/LIyLU8pYCclp925+b0wVWThe2coPXBmpVCqkBZczEEwuPe4E4kb4uwrJGszAjBXApc+2k0AwCZxw73708UoRZmO2l6shIiJfGzQoGB9/HIY9e0yYOLEaGo3r9xWXX17daiAYAEyaVAGt1nv36Z56KhGHDumaPB4bG4suXbowEIyIiAJWRWOFv0sgIh+Kjo6W3Ndms8FqtcpYDRF50+LFbpwi1oz0dCuuukovYzVERORPvDNJREREREREREREREQd0o03BiEtTfpilsWL1bDZfB+m5cq2gm24+v2r4XB6vllxb9le/F74uxeqaqrOUodZX81C5MJIXPD2BdhWuM3tDWAAoFPpcE2fa5A3Kw9HZh7B1NOmdoiF9qtWrcLx48f9XYZku3btwnnnnYfLL78c+fn5/i7Ha4xGI2bOnInevXvj/fff93c5LTKbzairq2v2+YyIDKy5Yg0UkL5AyB3fZH+DmV/O/Cd4MCpKgwULIpGbq8BTTxmRkWHGDTd4fyGyxaLA6tVRAID6eiWWLYtAjx4a3HhjNQ4fbvT6/EQU2HS6phv63GUyBVZILLVfv/1Wh+uvD4HN1vq17bvvRuG++1JgsTT/czw9PR1arVbOEok6rNSwVBy76xhSQlOabVNcX4z0JenIZihJE1JDwYKCHAgKav/v5zuqQ4c0MJs7b/iptbYQeRU2n4XoC4KAtBAj1Frp16X0HwoB6PcUENbb35V4bGcucNrDwOsdOH/foDLgkpRL3GoriiKOldlgqyv2clVEROQPvXsH4Z13wnHokAUzZlQhKOjfzzkFwYkpU9z7/CAqyoErrqjyVpmwWATMnp2KmpoT72EUCgUyMjIQGxvrtTmJiIjkUN5Q7u8SiMiHIiLadjhgSUmJTJUQkTf9+qsZW7dKD/W64w4blErvrhkkIiLf4XGRRERERERERERERETUIalUCsyaZcPs2RpJ/Y8f12D16gZMm2aQuTLPHK08itHvjobJLj2U4rWdr+H05NNlrOpk32R/g4e/fxg7inZ4FAL2tx5RPfDg2Q/i+n7Xd4gQsI7qs88+w08//YSXX34ZkyZN8nc5svrhhx9www03oKCgwN+lyGZU91F45JxH8OTPT3p1nmU7lyEzKhOzh87+57GQEBUefjgSDz4oorg4BDU1NV7dbP3xxxGorFSf9JjZLOCtt8Kxdq2Iyy+vwdy5SgwYEOy1GogocIWEnHgdkqK2thYGg3+vBan9O3SoEePG6VBXp3S7z6ZNYaiqUmHJkjyEhp4c2pKSksK/l0QeCtWFIueuHAx+fTB2l+x22abOWoc+/9cHP930k1ffP7c3FRIzfiMjHQDcf90j37JaBezaZcbQoZ0vpMphrkZeaQPsds+D96VKCauHXs8wT9kpdcBpi4EtNwHm9hEo9fr3wO1vAjbf/fXzOaVCiYVDFiJSG+l2H7vdjrySemRoaqHUhnqxOiIi8peMDD2WL9fj8cctWLSoFqtWheDss+uRkuL+4U433VSB99+PhN3unY3NBQUazJ2bjOXLS9C1axeoVNxuR0REga/C5P0DugLZTTfdhOHDh3vcLz09XfZaiHxBEAQEBwejvr5eUv+WDh8kosDx7LPSbyBHRNhx883SA8WIiCjwKJy+OuqKiIiIiIiIiIiIiIjIx0wmEenpDpSVqVtv7EKPHhYcOKCBIPjn5KzS+lIMfWMocqtz2zROkDoIRXcXIUwXJlNlQK25FnO/n4s1e9eg2lztcX+9So9xPcdh4YULkRyaLFtdgUih6Hgnr91www14/fXXodFIC90LFDabDQ8//DCee+45iKLYeocA8sMPP7S6wNUhOnDp2kvxdfbXXq1FAQU+nvAxLu95ucvnRVFEaWkpjEaj7OFgNhswenQmiopa/rsoCE5cfHEdHnpIgbPOCpG1BiIKbKIo4sCBA5L66vV6dO3aVeaKqDMpLrbg7LOdyMmRFrrSvbsZr756DHFxdgBAfHw8oqOj5SyRqFMRRRFj3h2DL7O+bLaNoBDwwVUfYFyvcT6sLHA98EA9Fi70PFy3f38zdu/ufIFTctm9ezcGDBjgQY9dAE71aI4XX2zAXXd1rpBJp8OKvLx81DeafTZnQpgDUQa7z+brlOpzgK1TALu0zZC+8tTHwKMf+LuKNkgDMLn1ZvMHzceYtDGSpggx6JCamg6FkiEsREQdndFoRXZ2KfR6z4L8585NwmefRXilJqVSxH33VWPBAveDLYmIiP7XxqMbMWrtKJfPFd1dhISQhFbHsIt2fHHkCyzfuRxfZ33d6qF8Y3uOxccTPpZULxG1TyaTCdnZ2ZL6lpSokZAQjz595Fs/SETyysqyomdPNRwOaetN7767Hs8/z0MziYg6En5qRkREREREREREREREHZZeL+COOxrx6KPSQsEOH9bigw8acfXVQTJX1ro6Sx1GrR3V5kAwAGi0NWLt3rW4dfCtbR5r49GNeOSHR/BH8R+tLkB0pWd0T8w9ey4m9Z/U5lrIf9566y3k5+fj448/Rnh4uL/LkaSsrAxjxozB77//7u9SvEYpKPHOFe9g4GsDkVeT57V5nHBi4kcTsXnyZpyWcFqT5wVBQEJCAuLi4lBRUYGKigrZQti+/DK81UAwABBFBb78MhRffgkMH16HBx5w4qKLQmWpgYgCmyAIUCgUkkIJrVarFyqizqKuzo5RoxzIyZH+XuLoUR2uv74Lli3Lw+DBwQwE8yK73Y6srCwcOHAABw8eRG5uLoqKilBUVITy8nKYTCaYTCZYrVZotVro9XrodDqEhIQgISEBiYmJSExMRLdu3dCvXz/07dsXwcFccP1flZWV//wZHz58GAUFBSgqKkJxcTHq6urQ2NgIk8kEQRD++TPW6/WIjo7+5884JSUFffr0Qb9+/ZCRkeFRCLMgCNhw3Qbc8vktWP7HcpdtRKeI8evHY8nFSzDz9Jly/dbbrcpKaZsOIiPbV+hyZ7Rjh78r8C2nKKKoMA/1jRafzRkVqkKUwXfzdVrBXYBTFwI77wScDn9X04QoAjNXA//3rb8r8b45/eZIDgQDgLoGM0oKc5CQmiljVUREFIgiIzWIjEyB3Z6AoqIi1NbWttrH6QQiIrwXtupwCFi4MAI//WTCNdc4cN11ekRFKb02HxERdTwPf/+wy8d7x/R2KxAMAFSCCmN7jsXYnmORW5WL1/94HW/segNlDWUu2/eJ6SO5XiJqn/R6PVQqFex2966NbTYFfvwxBB99FIFffw3GxIk1WLPGy0USkWTPPWeFwyHtkFaNRsQ99/DAHiKijkbhlPsoZiIiIiIiIiIiIiIiogBSU+NAWpoTNTXSzkoZMMCMHTu0EARpG2GlsDlsGPPuGHyd/bVsY/aP649dN+/yaMP036rN1Zj73Vy8s/cd1Fg8O7UbAILUQRjfczyeueAZJIYmety/vZPyZ95e9O3bFz/99BMiIrxzMru35ObmYuTIkcjKyvJ3KZL98MMPGD58uFttdxTtwFkrz4LV4d1wm8SQRGybtg3Jocmttq2srERZWRkcDukbdh0OYOzY7jh2TCup/+jR1Vi50oaoqCgIgiC5DiIKfEePHoXFIi2QoXfv3nyNII9ZrSIuuaQB338fIst4CxZU4oEHomQZi044fvw4fvnlF2zbtg3btm3Drl27JL9OuKJQKNC1a1eMGDECF154Ic477zxERXWu76HVasXvv/+OrVu3YuvWrdi2bRsKCgpknSMkJARDhgzBBRdcgAsvvBADBgxw+zV73s/z8PAPrjfq/e2+M+/DogsXyVFquzVuXAM++cTgcb8rr2zA++973o9O2L17NwYMGOBBj10ATvVojr59zdizp/NsDikvOITSau+FSPxXqEGLlJAqKAQGSfhMwSfAvqf9XUUTNy0DVm/2dxUySAMwufmnp/ecjjv73CnLVAkRKkQl9ZRlLCIiah9EUURxcTGqq6tdBvuLIvDss/FYs8Z3YekajYjzzzdj0iRg3Dgd9HreHyQiouZVmaoQtSjK5cF6665ch6v7XC15bKvDik8PfYplO5fh+/9n777jm6r6MIA/uVlNmu5S2jLasjcCMkUQRRBZgii8KCC4QMWNiuBWVHChoCAgCAICgqIiyhJFhuy9V2kplO42zR7vHyiKbWlzcpOm7fP9fKpwc885P9omubn3nOee2XBle8Oohtj2wDaEB4UL901EFVN6ejoyMjKuuc/p01qsWBGBH34IR3b2P3MmQ0KcOH/ejZAQsXmUROQ72dlO1K4NFBaKXVcYOrQQCxfy2hwRUWXDUDAiIiIiIiIiIiIiIqr0nnvOiClTDMLtV68247bbdDJWVDK3242RK0fiy31fyt739ge2o22NtmXe/4djP+CVja9g78W9xU5eLE2T6CZ4scuLuKf5PR63rUwqcygYAHTq1Alr166FXq8v71LKZO/evejVqxcuXrxY3qV4xZNQMAD4Ys8XuP/7+31X0F9aVm+JP0b9AYOmbK+5ubm5uHjxYpnvYvpva9aE4plnanvc7m/jxl3A8OFZUCgUiIqKQkxMDIN/iCqp1NRU5ObmCrVNSkpCcDAnTlLZuVwubN58FkOG1ERamthdfP/tkUdyMH16xQpgDUT5+flYt24d1q1bh/Xr1+P48eN+HV+SJHTr1g3Dhw/HwIEDYTCIfz4NZPv378eaNWuwfv16/P777zCZTH4dPzY2FkOHDsWwYcNw3XXXlbr//H3zcd93913z8+6QpkOweNBiGausWG680Yw//vD8fMjo0UZ89lnl/D33B3+EgqlULuTno0qEG+RdOIKULPFAak/pgrRICs2GpOLCOr87Ph04Pbe8q7jixSXA29/7oGM9Lod0xQCI/OvLAEANQANABcAJwAHACsD411c2gEwAGQAuArB7MOY1QsHuSroLL7V6SdZzoLWjVQiNZTAYEVFV43K5kJ6ejuzs7CvhYFarAhMm1MQvv4SVW12hoU707WvBsGESuncPglJZua/7ERGR50b/OBozd80sst2gMaBgfIFs45zIOoE/z/8JjVKDfg37IUhVdQLfiegfLpcLhw8fLrLdZJLwyy+hWLEiAnv3lnx9+5NPcvDYY7z2SBRoXn+9EK+8Ij43Zd8+G1q08H5+AhERBRaGghERERERERERERERUaV36ZIDiYkSzGaxhY5dupjx22/+CQWbuGEi3tr0lk/6fqDVA5jVb9Y198k2ZePFDS9i8cHFyLfmezxGsDoYg5oMwjvd30GsIVa01EqlsoeCAcCdd96Jb775przLKNXevXvRtWtX5Od7/rsdaDwNBQOAMT+OwYxdM3xT0L/0adAH3w3+Dkqp7HcuzM/Px4ULF2C3l21FqtsNDB5cF0eOiL02h4c78Msvx6HXu65sUygUiIiIQGxsLMPBiCqZvLw8pKSkCLWNiopCXFyczBVRZXb69GmYTCZcuqTCI48k4Ngx8c8Rd96ZhyVLQqBU8n1JxPnz5/H9999j5cqV+PXXX2Gz2cq7JABAcHAwRo4ciXHjxqF2bfGA00DgcDjw+++/Y+XKlVi5ciWSk5PLu6QrWrdujeeffx6DBg265rHd+tPrcdvC2+BwlRxS27lWZ/x2329V8hixaVMLDh/2fHHhxIlGvPEGQ8FE+SMUDAD++MOCG26o3ItHTZkncCbdBn9NlVarVagTlg21RuuX8eg/3C5g3wTg4tryrgQz1wOjv5Cvv7p160LTSoMjMUeAagC8Pd3oBHAJwDkApwCcBXCtQ6USQsFurXErprSfAqWi7OeAykKhUKBOdS100fVk7ZeIiCoGl8uFixcvIjs7GyaTAg88kIQDBwLjxjTx8XbceacV992nRuvWPOYjIqLLwt4JK3Z+zf2t7sfsfrPLoSIiquz+vh7pdgMHDuiwYkUEVq8Og8lU+jmadu0K8eefvCkWUSCx2dxITHTgwgW1UPubbzZh/frA+NxMRETyYigYERERERERERERERFVCaNHGzFzpviC1M2bLejUybcLJT/b8Rke+ekRn/UfrA5G2jNpCNWGFnls5dGVeHXjq9iXvg9ueH75qFm1ZpjYZSIGNxssR6mVirehYNWrV0fTpk1Rp04dJCYmIiEhAbGxsYiOjkZ0dDQMBgO0Wi20Wi1cLhesVissFgsyMjKQkZGB5ORkHD9+HAcPHsSff/6JtLQ0mf5lV5s5cyYeeughn/Qth+TkZHTs2BEXLlyQtV+lUomWLVuiU6dOqF+/PurWrYukpCSEhYUhODgYwcGXJ9JZLBaYzWZkZGTg4sWLSE1NxbFjx3Ds2DHs2bMHZ86c8WhckVCwe1fci4UHFnrURtQT7Z/AR7d95HG7wsJCpKWlwWq1XnO/P/4wYMyYRLHiADz6aDpGj84o8fGwsDDExcVBpVIJj0FEgaOkuyWXhU6nQ926dWWuiCqrlJQU5OXlXfl7QYGEJ5+sje3bPf8c0rVrAdasCYZGU/VCiLyRkZGBZcuWYdGiRdiyZYvfQmBEqNVqDBs2DK+//jpq1KhR3uWUmdvtxqZNm7B48WIsW7YMWVlZ5V3SNTVs2BAvv/wyhg4dWuI+B9MPot3sdjA7zCXuUz+yPvaP2Y8gVeUOUPqvuDg7Ll70fAHCxx8XYuxYLioS5a9QsA8+KMRTT1Xen5MtLwWn0oxwOp1+GU+SJNQJz0VQEMMhypXTCuwYA+TuL7cSftoL9HsfcLpK3fWaFAoFunfvjvvvvx9NmzbF/BPzMWX/FFlqLMIJ4DSAwwCOAvjvW2IxoWAdYjpgeqfp0Cg1PilJpVKhTo0QaEIqznESERHJw+12IyUl5coNXrKzlbj33jpISQms46zGja24+2477rtPi8REsYXbRERU8X135DsMWDqg2McyxmUgWh/t54qIqCrIzy/ApElGLF8egZMnPb9usXevES1b8sYeRIFi1qxCPPSQ+PWaVavMuP12/9z0mIiI/IuhYEREREREREREREREVCUkJ9tRv74SdrvYovrbbzdh1Srf3U3ru6Pf4c6ld8Ll9nK1WClm9J6Bh69/GACQZcrC+HXj8fWhr1FgK/C4L4PGgLua3IV3bnkHMYYYuUutNDwJBatXrx7atm2L66+/Htdffz2aNWuGyMhIWes5efIkvv/+eyxduhR//vmnbP3q9Xrs378/IINTcnJycMMNN+DIkSOy9KfT6dC/f38MHToUXbt2RWho0aA9T2VkZGDbtm1Yv3491qxZU2qtIqFgdabWwZlcz8LHvDGt1zQ82u5RobZmsxlpaWkwm4sPZhgxIgm7d4tNhgoOduKXX44hLKz019uQkBDUqFGD4WBElcChQ4eEwoEkSUKTJk18UBFVNhcvXkRmZmaR7TabAi++WBO//BJW5r5atDDh9981CAvj+09ZWK1WrFy5EnPnzsW6devgcDjKuySPhISE4NVXX8Xjjz8e0Mccx48fxxdffIGFCxciNTW1vMvx2E033YTp06eX+Jqelp+G5jOaI9ucXWIfMcExOPTIoSqzkM/lckOnc8Nm8/w8yuLFJgwZwjuSi/I0FCwsbAfy8q73eJyhQwuxcGHlDAVzmnNwOiUDVpvNb2MmhhfCoA/c1/EqxZYDbL0PMJ/3+9Dns4EW44Fso3f9dOrUCU899RQaNWp0Zdv2S9tx/6b7vaywDBwAjgHYjctBYW4UCQVrHtEcs7vMhl7l29d6rVaDOrVioAwK9+k4REQUWPLy8pCSknLVtpQUNQYProuCgsA73lIo3OjQwYKhQ10YOjQIkZHK8i6JiIj8qOVnLbH/UtFg6pbVW2Lv6L3+L4iIqoz27QuxfbvY+d0xY3Lw6acRMldERCJcLjdatLDi0CGxGxM1bWrB/v1aSJJ3N64lIqLAxFAwIiIiIiIiIiIiIiKqMu65pxCLFolNhlEo3Ni3z47mzTUyVwVsPrcZ3Rd0h8Vhkb3v/2od1xovdn4Rr//2erETE8uieUxzvNz1ZQxqMkjm6iqna4WCNWvWDDfddBO6du2KLl26ICbGv+Fq+/btw7vvvoslS5bA5fI+kG7QoEFYtmyZDJXJx26345ZbbsGmTZu87qtGjRoYP348hg0bJksQ2LUkJyfjm2++wfLly7F169Yij3saCnbReBFx78fJWGHpJIWEH//3I3rV7yXch9Vqxfnz52Eyma5s27VLj/vuqyPc56hRGXjqqXSP2gQHB6NGjRrQaOR/DyAi/zhx4gSsVqtQ2yZNmkCSxIJlqWrIysrChQsXSnzc5QImT47FwoWlBwklJlqxaZMbNWuKTfqtSg4cOIA5c+bgq6++QlZWVnmX47VWrVphyZIlqF+/fnmXcoXJZMKyZcswZ84cWY6ny5tarcbrr7+O559/vtjPaUabEc0/a46zuWdL7MOgMWDXg7vQILqBDysNDHl5ToSHiy1m37DBgm7d+DomytNQsOuv34KdOzt6PE7TphYcPFj5fk4uhxXJ586h0CR27CciPsyByGCn38ajMjCeBf4cBdjz/TakywV0fxv49bB4H3q9Hs8++yzuuuuuIo/l2fLQ+YfOXlQoIBvANgC5AIZe3lQ/LAlzbvwSEVr/LBw16LVISEiEQqn2y3hERFS+rnWOZdGiSLz7bhxcrsBd6KzRuHDrrWbcc48CAwYEISiI5xSJiCqzjMIMxLxX/ByPlUNWol/Dfn6uiIiqkmnTcjB2rNj5mWrV7EhNVUKj4fEqUXlbvdqM22/XCbf//PNCPPhg5bwBDBERMRSMiIiIiIiIiIiIiIiqkMOHrWjeXCM8WfzuuwuxZIm8F9CPZBzBDV/cgBxLjqz9yi1EE4LBTQfj7e5vI1pfepgB/ePfi83Dw8Nx66234rbbbsNtt92G+Pj4cqzsH/v27cP999+PXbt2ed3X1q1b0aFDBxmqksfzzz+PyZMne9VHWFgYXn31VYwePRpBQf5fMH3y5El88cUX+PLLL5GWlgbA81Cwb498i4FLB/qowpIZNAZsHrUZLaq38Kofm82GtLQ0GI1GjB6dgM2bQ4T60Wpd+PnnY4iOFlusrdPpUKNGjXL5PSAi76SmpiI3N1eobWJiIgwGg7wFUaWRl5eHlJSUUvdzu4G5c6Px4YexJe4THW3Hb7/Z0aSJXs4SK63o6OhKEQb2b6GhoZg9e3axQSDlYdq0aRg7dmx5lyG73r17Y/78+YiMjCzymMPlQMfZHbHzws4S22skDdaPWI/Otf0czOJnx47Z0KiRWCjuoUNWNGmilbmiqsPTULB7792Mr77q5PE4KpUL+fmATld5Fn65XS6cTzmF3AL/BYJFhyoRazCVviP5X/YuYMejgNvhl+He/QF44Wvx9klJSZg+fTpq1apV4j7df+qOdLNnQeeycAJQArUM1bF50ByoFHWRle+f7ysARIZoEVerLhQMayYiqtQuXLhQ6uf8LVsMeOSRBDidgRsM9rewMAf69rVi+HAJN98cBKUy8GsmIiLPjFo5CnP3zi2yPVQbirwX8sqhIiKqSgoKHKhRQ4GCArGbe8yfn4Nhw/wT+k5EJbvlFhM2bBCbHxAba0dysgoaDT9vEhFVVrwyRkREREREREREREREVUaTJlr06SO+SG/FCj1OnbLJVk9aQRpuW3hbwAaCKaBAy+otseLuFcgfn49Z/WYxEExAzZo18cgjj2DNmjW4dOkSli5dilGjRgVMIBgAtGzZEn/++SeeffZZr/t67733ZKhIHhs2bPC6nu7du+PAgQN48sknyy0Iql69epg0aRKSk5OxaNEitG3b1uM+tqZu9UFlpTPajOizqA8uGi961Y9Go0FiYiIaNmyE226zIz5e7LV44MAc4UAwADCbzTh58iROnjyJwsJC4X6IyP9CQsTCBAGgoKBAxkqoMjGZTGUKBAMAhQIYNSoTb72VCpWq6D0cg4OdWLHCwkCwKi4/Px933303Xn/99fIupVJbtWoV2rZtizNnzhR5TCWpsOOhHejXoF+J7W0uG7rO64plh5b5ssxyd+mSS7ht9eoqGSuh0jRtKrbYw+GQsGuXfOe5AkFG2gm/BoKFGrSorjf6bTzyUGQboNlLfhlqXzLwkhdvC61atcKCBQuuGQgGAI3CGokP4g0lEB0UjjX9p6NWSCxi9fkICfZf+GN2gRVZF477bTwiIvK/c+fOlSn4u1MnI95447wfKvJeXp4KX30VjB49dKhd24EnnjBizx7/HasSEZHvLT20tNjt9za/18+VEFFVFBKiQv/+4texv/yS5/GJytvevVbhQDAAGDPGxkAwIqJKjqFgRERERERERERERERUpUyYIHZ3PABwOBR45x27LHXkW/Nx+8LbcS7vnCz9ySlUG4qHWz+MzHGZ2Dt6LwY0HlDeJVVoKSkpmD59Om699Vao1eryLqdESqUSU6ZMwfTp073q5/vvv0d6erpMVYnLzs7G8OHD4XKJLWRXKBR48803sWbNmlIXZPqLSqXC//73P2zfvh2dO3f2qO2WlC0+qqp0Kfkp6Le4H0x28VDGv6nVKkycGInTp1X44INsJCaWfQGNSuXGyJGZXtcAABaLBWfOnMHx48cZFkRUQXgTCmYyef/6RZWPzWYrNlCoNP365eKTT5Kh0/0TUqlSuTB/fgFuvFH895Qql1deeQVPP/10eZdRqZ0+fRqdO3fGkSNHin185f9W4rG2j5XY3uV24e5v7saHWz/0VYnlLj1d7LOUSuVCRASnpvpTixbii7e2bXPIWInvOV1OLDu0DIO/GYyu87rio20fweW+/Luae+EILuXKc96uLHQ6LWrqs6GQ+Pse0Gr0Buo+6PNhHp8P2AUzyFu1aoXPP/8cYWFhpe7bILyB2CBeMqj1WN3vYzSKTAQAKCQlaumzoAvyXzDYxRwH8i4W/75NREQVl8vlwqlTp5Cfn1/mNn375uLJJ727EYm/paWp8fHHBrRurUXTpha88YYRycn+O3YlIiL5LTqwCIX2ojeRUkCBSbdMKoeKiKgqeugh8XmQGzcacOaMWcZqiMhTU6aIX6MJDnbiscfK5wanRETkP7wSTUREREREREREREREVUq7dkG4+WbxYIevvtLhwgXvFkzanDYMXDIQ+9L3edWPnBRQoFVsK6wcshJ5L+RhRt8ZiNRHlndZVA4eeeQRvPnmm8Lt7XY7vvrqKxkrEjN69GicPy92t3i1Wo358+djwoQJUCgC8256KlXZF33bnDbsTNvpw2pKtyNtB4Z9O+zKYm1vabUSnnoqEsePq/H55zlo3Lj0iYp9+uQiLk7eRTY2mw3Jyck4duwY8vLyZO2biOQlSRIkwcAGq7XsAYRUNTgcDpw8eRJut1uofefORnzxxVlERl7+XPHJJ3kYODBcxgqpMvjwww/xzDPPlHcZlVpaWhq6du2KU6dOFfv4J7d/gne7v3vNPp5e8zSe+vkpX5RX7i5dEnuNi4hwQpIC83NUZRUfr0Z0tNi5ql27KsbPyua04Ys9X6DJp01w9zd3Y+mhpfg9+Xc89ctTeGnDSyi8dBzns+X5vFkWarUaCcGZkDz4bE7lqN5DQHwvn3X/zZ/A70fF2iYlJeGTTz5BUFDZFm81CmskNpAXNJIa3/V+D9dXb3LVdkmtRm1DBtRq/z0PUrNcMGWe8Nt4RETkWy6XCydOnIDZ7HkQwahRmfjf/7J8UJXvHT4chJdfNiApSYXOnc2YPr0QOTmC6aJERFRu3vy9+DkVbeLaICyo9NBnIiI53HhjCJo0EQv2cjoVmDmToWBE5SUtzYFvvtEJt7/3XjMiI8WDAYmIqGJgKBgREREREREREREREVU548eLL3i0WCRMmWIRbu9yuzBy5UisP7NeuA85hWnDMOb6Mch+Phu7H96Nfg37lXdJFABefPFF9OzZU7j9L7/8ImM1nvv111+xbNkyobaSJGHp0qW49957Za6q/Oy5sAdWZ/kH2qw4sgLj142XtU+1WsKDD0bgwAEtFi3KRatWxYc+KhRujBqVIevY/2a325GSkoKDB49g3TqGgxEFKo1GI9TO5XLB5fJfyAQFNpfLhZMnT3r9O9GsmRnz55/G5MmZGD06QqbqqLL54IMP8Nlnn5V3GZVaRkYGevfujZycnGIff+6G57Bw4EJIipKnWn7050cYtHSQr0osN5mZYu0iI/meWR5atrQJtdu3L7BDrQpthZi6bSrqflwX939/P45nHS+yz+xdnyM50yEc1ukppVJCYkgWVILHllQOFAqg2UtARGvZu7bYgHGLxdqGhITg008/RVhY2ReLNwxrKDaYIEkhYXHPt3BLrXbFPq7WaJEQki0cwOwpt9uN5AwHbHmpfhmPiIh8x2az4dixY7DbxW7koVAAzz9/AbfeevX5+MGDs/D666kICQn8kC23W4HNm3V47LFgxMUp0LdvIZYsMcFi4WcqIqJAl5afhiOZR4p97K2b3/JzNURU1Q0dKh7stWRJMJxOHn8SlYf337fAZhM7r6pUuvHss7xGQURUFTAUjIiIiIiIiIiIiIiIqpzu3XVo1058Qszs2TrhOza/sO4FLDqwSHhsOU3tORW5L+Ti096fIjwovLzLoQCiUCjw6aefCoenbNq0CRaLeHieN1wuF5588knh9tOmTcMdd9whWz2BYGvq1vIu4YrJWyZj9u7ZsverVEr43//CsXu3HitX5qJzZ+NVj/fokY+kJLFF8p745Zdg3HprGNq3L8Ty5bmcPEkUYHQ68busFhYWylgJVVQulwunTp2Cw+GQpb9GjZQYNy5alr7IewqFAvXr18fQoUPx6quvYt68edi4cSNOnjyJCxcuoKCgAE6nE2azGdnZ2Th69CjWrl2LadOmYeTIkahfv75P6ho7diw2bNjgk77LQ2hoKLp27Yonn3wSH330Eb777jvs27cP586dQ1ZWFiwWC+x2O/Lz85GWlobt27dj2bJlmDBhAnr27OnVa3lJjh07hrvuuqvEQKGhzYdi/fD1UEvqEvtYfmQ5Os3pVKlCJDMyxAKWGApWPq67Tuz7fuKEBiZT4P3Mci25eOv3t5A4NRFP/vIkUvNLDgC6ZM5Eoc0/x2oKhQK1QvOhDdL6ZTySkaQBWk0B9LWvbJqbB7Q7B1x/DnglC8gVON370c/AWcEM8hdffBE1a9b0qE0tQy3olPK/F5Zkxk3jMbDezdfcJyhIi1qhxmvuIyen04nkdBOc5uIDPYmIKPBZLBacOHECTqd3wV1KJfD226lo3fryseCTT17EhAkXMGBALlasOImOHf33/uQtq1XCjz8GY8gQPWJjXRgxohDr1pnhcvkn+JaIiDwzbu24YrdHBEWgR70efq6GiKq6Bx80IChI7Bzv2bNarFtXIHNFRFSawkIX5s4NEm7fp48J9eoxFIyIqCoI7Ft8ERERERERERERERER+cjzz7tx551ibQsKlPjwQyNef93gUbup26ZiypYpYoP6QEl3LiUCgDp16mDkyJGYOXOmx20tFgv27NmDjh07+qCya5s1axb2798v1Pbxxx/HmDFjZK6o/G1J2VLeJVxlzKoxSApPwi11bvFJ//36haNfP2DDhny8844C69YZ8MADgit0PeB2A7NnVwMAbN8ejEGDgObNTXjmGSvuuScMKhXv2UVU3gwGA3JyxBaOFxQUICQkROaKqKJJTk6G1WqVpS+1Wo2kpCRZ+iIxCoUCrVu3Rs+ePXHLLbegTZs2CAsLK7VdUFAQgoKCEBERgYYNG6J79+5XHjtx4gS+/vprzJ49G+fOnZOlTqfTiZEjR+LAgQMIDQ2VpU9/ioyMRPfu3dGzZ0906tQJDRs2hEKhKLVdSEgIQkJCEBcXh7Zt22LQoEEAALPZjLVr12LOnDlYtWqV14vI/7Z+/Xp8/PHHeOKJJ4p9/KbEm7B39F60m9UOhfbiw4e2pm5Fg2kNsH/0fug1elnqKk8ZGaX/nIoTFRV4AVNVQbt2Yp83HA4Fdu60oksX8cUncko3puPDbR/i0x2fosBW9sVoKsk/06HjQ60w6EoOCKQApwkD2kwFto3E4uxcjLr0z0O7rMDHucDzEcDYcCC4DE8piw34cLVYKT179kSfPn08bicpJDQIa4B92fvEBvbA2x0fw4PNBpRp3xC9EvFuB9Ly/PNctNpsOHchE4kJwVAoufiNiKgiKSgoQHJysmz9abVufPxxMnbsMKB79/wr22Nj7Zg58yyWLYvAe+/FwmxWyjamr+XlqTB/vgrz5wM1a9owaJAN992nRsuWDKYlIgoELpcL3x79ttjH7rvuPv8WQ0QEICZGg54987ByZenXuP6m1zvRq1ceBgzIQUKCA0DZ2xKR92bONCMnJ1i4/bhxFeczLhEReYezjomIiIiIiIiIiIiIqEq64w4dmjSxCLf/7LMgmExlX+i67NAyPPXLU8Lj+cLCAwthtFWcu2ST/z300EPCbY8dOyZjJWVTUFCAl156Saht06ZN8e6778pcUWDYmrq1vEu4isPlwJ1L78SRDN8GE958cyjWrAnBgQNGNG8uT1jEtWzaZMDRo7qrth04oMd990WgSRMbPv00BzYbAxKIypM3oV4mk0nGSqgiSk1NRWFh8UFAnlIqlahfvz4kiVO3/E2lUqFnz56YN28e0tPTsXPnTrz11lu4+eabyxQIVpr69evjpZdewpkzZzBv3jzZgt/OnTuHp59+Wpa+/KFWrVp49tlnsW3bNmRkZGDJkiUYNWoUGjVqVKZAsGvR6XTo168fVq5ciRMnTmD48OGyPZfGjx+PEydOlPh4k2pNcPLxk4jWR5e4z6mcU0iYmoB0Y7osNZXVt0e+RfvZ7dH006aYtGkSnC7vj3+zssR+VtElf3vIhzp0EA+q+vNPh4yViEnOTcZjPz2GxKmJeHfzux4FggGASuH7IKJqoRIigt0+H4d8LLgW0Po9LCgo+hqX6wLGZwF1zwLTcwFbKT/uBX8Al/KvvU9xdDodnnvuOc8b/qVReCPhtmX1TKt78XybER61iQx2IjrUf4vRCk1WpKUmw+3iuRYioooiOztb1kCwv4WFua4KBPubQgHcfXcOli8/iTZt5Dmn42+pqRp89JEB112nRbNmFrz5phHnztnLuywioipt3r55MDvMRbZLkPB6t9fLoSIiImDUqLKdt2zZ0oTXX0/Fr78ew6uvpqFlSzMcDjtsNpuPKySivzmdbnzyifg1nfbtzbjhhsC40QsREfkeZ5YREREREREREREREVGVJEkKPPec+CLZzEwVpk8vWzjEb2d/w73f3gs3AmvhYIGtAEsOLinvMiiAtW7dGrVq1RJqWx6hYLNmzUJGRobH7dRqNRYuXIigoMo3YSYlLwWp+anlXUYRedY89F7UGxmFnv+8PNW0aQgaNmyIxMREaLVan4zhdgOzZlUr8fETJ4Lw6KMRqFfPjsmTs1FYWP6L7omqIkmSyhwcY7EosG+fDosWRWLixBp44YUoH1dHgSw9PR25ubmy9KVQKFCvXj0GgvnZ9ddfj+nTpyMtLQ0///wzRowYgWrVSn7v9pYkSRgxYgQOHz6McePGQan0PiDjiy++wJ49e2SozjcMBgMefvhh/P7770hOTsaUKVPQvn17n/6uJyUl4csvv8TmzZvRuHFjr/szm80YN27cNfeJNcQi+Ylk1I2oW+I+maZM1P24rs9DcP82ddtUDFw6ENvPb8fhjMOYsGECJm2a5HW/WVliP7tq1QLr3EdVUbu2GjExYuEAu3Z5F9bnjSMZRzDiuxGo90k9TN8xHRaH5wH+KoXK68DB0oQZtIjRMyS20oi4DueUJR8HpDuBxzKAhmeBL/MBZzEva2438OFqseGHDx+OmJgYscYAGoQ1EG5bFiMa9cGUG54Qel5V1xsRGuybcy/FySmwIjOt5EBPIiIKHOnp6UhLS5O939DQ0FL3qVbNgQceyEDbtkYoFBX388qhQ0F46SUDkpJUuPFGMz77rBC5ub6/IQoREV3tnT/eKXZ7+5rtYdAY/FwNEdFlvXuHIiHBWuxjEREOjBiRie++O4GvvjqNAQNyoddfHbKenu7fG50QVWXLlplx9qxGuP3TT1fcz7VEROQ5zi4jIiIiIiIiIiIiIqIq65579EhMFL/T3dSpGtjt177IfvDSQfT/uj9szsC8o97nuz8v7xIowHXr1k2o3YULF2Su5NocDgemTp0q1PaRRx5By5YtZa4oMGxN3VreJZToTO4Z3LHkDqFF3yIMBgPq16+PunXryh4At2uXHnv3Bpe6X0qKFs8/H4k6ddx45ZVs5OUxHIzI3zSaopMrrVYFDhzQ4euvI/HyyzVw55110aFDE9x7b128/XY8Vq6MwM8/h8LhcBXTI1V22dnZQqGjJalbty7UavE7/1LZBQUFYcSIEfjzzz+xY8cOPPLIIz4NAiuphsmTJ2PNmjWIivIuXNDtduOll16SqTL5NGvWDNOmTUNaWhpmzJiBG2+80efhPP/VoUMH7Nq1C0OHDvW6r5UrV2LHjh3X3Eev0eP4Y8fRsWbHEvcptBei5YyW2Hh2o9c1XcvXB7/Gk788WWT7O5vfQb4136u+c3LEppdGR3s1LHmhRQuxULC9e1UyV1K6nWk7cefSO9H006aYv28+HC7xz0Zqybfvq3qdFjWCs6GQyi88jeRnl0o/L3DWAdyXDjQ/B6wwXg4C+9uqPcARgVyTyMhIjBo1yvOG/9IwrKFX7a+lX1IXzL5lovB7uUKSUDM4G7og/wWDpefakXfBP0GcREQkJjU1VdZzK39LTExEjRo1imx3u4Fjx7SYNy8KDz2UiBtuaIwxYxKxY4cBbnfFP6ZzuRT44w8dHnkkGHFxCvTvX4ilS02wWnnukojI15Jzk3Eiu/hg4nduKT4sjIjIH5RKCUOGFF75u0LhRufOBfjgg3NYv/4Ynn32IurWLT40DADy8727nkBEZffhh+KfS5OSbLjzTp2M1RARUaBjKBgREREREREREREREVVZKpUCTz8ttmASAM6f1+CLL0wlPp6Sl4JeC3shz5onPIavbT+/HXsv7i3vMiiANWnSRKid0WiUuZJr++abb3Du3DmP24WHh+Pll1/2QUWBYUvKlvIu4Zq2pGzByJUj4Xb77y6GOp0O9erVQ/369aHX62Xpc9YszwJGLl1S4/XXI5GUBEyYkAWbLTCDI4kqI5VKh0OHgrB0aQRefTUed911OQBs6NC6eOuteHz7bQSOH9fB6bx6ImZhoRL795d83EeVU0FBAdLSBNIeSpCQkCB7MCUVFR0djddffx3nz5/HvHnz0K5du/IuCTfffDP+/PNP1KpVy6t+Vq1ahZ07d8pUlXduvfVWbNiwAQcOHMCjjz6KkJCQcq1Hp9Nh4cKFePHFF73u67XXXit1H0mSsOX+Lbiz8Z0l7mN32XHL/Fuw6MAir2sqzoYzGzD82+HFPmaym7D4wGKv+s/OVgq1i4nhtNTy0rq1WAjAyZMaFBb6PkDA7XZj49mN6LGgB9rOaosVR1bADe8/C6ok34WaaTRq1A7OgKT0f3Aa+Zbd5SzzvkdswJ0XgHYpwNrCy0EjM9aLjXvXXXd5fS6iflh9KCB/oEmX+Nb4+rZJXj+nJJUKCYYMvwbhpma7YMo47rfxiIiobFwuF86cOYPc3FxZ+1UoFKhXrx4MBgOUSiWUSiUyM1X44YdwjB9fE926NcSgQfXx/vtx2LrVAJutpM8o/rsu4SsWi4Tvvw/G4MF6xMW5cN99hfj1Vwtcror/byMiCkTPrnm22O3R+mh0Sezi52qIiK728MM61K5txaOPpmPNmuP47LNk3HprPtTq0o8N3W637MftRFTUpk0WbN8uHuo1dqwdSmXFD7smIqKy4+wLIiIiIiIiIiIiIiKq0h58UIfYWPFgsPffV8HpLDp5JteSi14LeyE1P9Wb8vxi1q5Z5V0CBbDExEShdgUFBfIWUor3339fqN0LL7yAyMhImasJHFtTt5Z3CaX6+uDXeGXjK34fV6vVok6dOmjQoAEMBoNwP4cOBWHLFrEQjJwcFc6eBY4fP47Tp0/DYrEI10FEZZOZGY4hQ+rhjTdqYPnySBw9qoPDUbZJk1u3ih8zUsVjNpuRnJwsW381a9Ys99Ckyq5mzZr44IMPkJycjJdeeingjvHq1q2LjRs3Ii4uzqt+Zs0qv89vCoUCAwYMwI4dO7BmzRp069at3GopyVtvvYXnn3/eqz5Wr16N8+fPl2nfb+7+Bk+2f7LEx11uF+5ZcQ8mb57sVU3/tffiXtzx9R2wu0p+b5q1W/x3xWZzIz9fLBSsWjUuRigvbduKTQl2OhXYscN3QcVutxs/HPsBnb7ohG5fdsPa02tl7V+l8E1gl1KpRIIhCyqN1if9U/myuxwet9lpBXqkATeeAH454PmYarUagwcP9rzhf+hVeiQYErzu59+ui26A7/t8AJ1KngBblUaLhJAsSJJ/liq43W4kZzphzfX8hgFEROQbNpsLv/12FoWFhbL2q1Qq0bBhw6tC13/5pRq6dWuEF1+siR9/DEdWVlmDKRWoUaPy3LAjJ0eFL78Mxs03ByEx0Y6nnzbiwIHK8+8jIipvLpcLPxz/odjHHmj1gJ+rISIqKilJh59/PoPRozOE5kJmZGT4oCoi+rcpU8Rv0BIZ6cBDD4kHihERUcXEUDAiIiIiIiIiIiIiIqrSgoIkPPaYVbj9iRNaLFtmvmqbxWHBHV/fgUMZh7wtzy++OvAVCm3yTsqnykM0vMLt9t9dyHfu3ImdO3d63M5gMGD06NE+qCgwmO1m7L6wu7zLKJM3fn8DC/YtKJexNRoNEhMT0ahRI4SGhnrcftasasJjq1RujByZCQAwmUw4efIkTp48CZPJJNwnEV1by5Y66PVOoba7K8ZLKskgI8OG/fvPytZfTEwMwsPDZeuPrhYTE4OpU6fi1KlTeOqpp6DX68u7pBLVqVMH3377LbRa8YCZJUuWwGw2l76jzPr27Yv9+/djxYoVuP766/0+vifefvttDBgwQLi9y+XC/Pnzy7z/h7d9iPd7XDuk+Pl1z+Oxnx4TrunfzuScQa+FvVBgu3YQ864Lu7Dnwh6hMdLTPQ/L+Vv16pyWWl46dtQIt/3zT7Hjo2txuBxYfGAxWs5oiX5f98O21G2yjwEAKkn+UDCFQoHaobnQBjEQrLKyOcUDfzfvBhwCT5kePXqgWjXxcwj/1jC8oSz9AEC9sFr4uf8nCNOKB6YXJyhIi9ph/rtpgNPpRPIlMxymbL+NSURExcvPd6BXr0IMGVILFy6UNaCrdBqNBg0bNoRKdfXxX5cu4qGWHTua8PTTRiiV/rum5Q8pKRp8+KEBLVpo0KKFBW++aURKCm94QETkjRm7ZsDqLDq3SFJIeOUm/98Ai4ioOBER4cJtrVYrHA7xawNEdG0nTtjw00/ioV73329BcDCvwRERVTV85SciIiIiIiIiIiIioirv8cf1CA8Xn9TyzjsSXK7Lk8VdbheGfzscvyX/Jld5PpdvzcfSQ0vLuwwKUKKBBTqd/+5Mt3jxYqF29913H8LCwmSuJnDsurALDlfFmbD3+M+PI9+aX27jq1Qq1K5dG02aNClzcMupU1qsXy/+O9S3b26RO7RaLBacPn0ax48fR0GB/xbPElUVarWEJk0sQm337xcP2qCKo7DQgd697bjvvkRkZnofMhIZGYmYmBgZKqP/Cg0NxauvvopTp07h8ccfh0ZTMZ6j7du3x1tvvSXcPi8vD6tXr5axomu78cYbsXnzZnz//fdo1qyZ38b1hkKhwLx581CjRg3hPjz9jPF0x6exZNASSIqSp2RO3zEd/Rf3F64JADIKM9Dzq564aLxYpv1n754tNE56uvidyhkKVn5q1FAV+XxRVrt2yVeH1WHF57s+R6NpjTB0xVAcuHRAvs6L4YtQsBphVgTrKsb7Comxe3O+5KBYsz59+oiP+R8Nw+QJBYsLjsaa/tNQXR8lS3//ZdCpUCPMfwEkNpsd5y5kwWX3f4AqERFdlpZmRdeuNmzYEIJLl9QYMyYBeXlKr/vV6/WoV68eJKno542WLfWIj7cJ9bt1qx6TJ+uxcaMV9eqJ30QqkB04EISXXjIgMVGFLl1MmDGjEHl58ocCExFVdlO2TCl2e+fanRGkEg+oJCKSk7fXJC9duiRTJUT0X++9Z4PTqRBqq9W68NRTPN4gIqqKOPuCiIiIiIiIiIiIiIiqvJAQCQ8/LBYOAQD79gXh558tcLvdePqXp7Hs8DIZq/OPz3d/Xt4lUIAyGo1C7SIiImSupHhutxtLl4qF2j3++OMyVxNYtqRsKe8SPJJryQ2ImiVJQs2aNdGkSRNERUVBoSh5Qtbs2dW8GMeN++/PKPFxm82G5ORkHDt2DHl5ecLjEFFRzZuLLUo/fDgIDod4SAoFPofDhUGDTNixIxhHj+pw7711cPaseCBISEgI4uPjZayQ/m3Pnj145ZVXYDAYyrsUjz355JNo1aqVcPsNGzbIWE3Jhg8fjt9//x2dOnXyy3hyCg0Nxccffyzc/uDBg8jIKPlYrTh3N70bv933GzRSya8b3x//Hm0/bysU3ltoK0SfxX1wIvtEmdssPLAQJrvJ47EuXfImFEz+gCYquxYtxI5z9u3z/udmtBnxwdYPUOfjOnj4x4dxKueU132WhUoh7+9cTJgC4Xq3rH1S4BEOBTMCOOt5s/DwcHTo0EFszGLIEQoWrg3BL/2mISlMPESzLCKCXagW6r8lCyazFWnnz8Pt4mc3IiJ/O3zYhBtuAPbu1V/ZdupUEB5/vDasVrGFzwAQFhaGOnXqFBsIBgBKpYTOnT3/3AMA589rcOCACZ07B2HfPjUeecQIhaJyHgu6XAps2qTHmDHBiItT4I47CvHNNybYbJXz30tEJKfjmcdxNvdssY9NubX4sDAiovIgSZJXN3HMzc2VrxgiuiIry4mvvhJ/bt51lxlxcbz+RkRUFTEUjIiIiIiIiIiIiIiICMCzz+qg14vfFXnSJOD9re9j6p9TZazKf7albsP+9P3lXQYFING7QNaqVUvmSor3xx9/IDU11eN27du3R/369X1QUeDYmrq1vEvwWKwhtrxLuEKSJMTFxaFx48aIiYkpsuAoJUWN1avDhPvv0SMPCQm2Uvez2+1ISUnBkSNHkJ2dLTweEf2jTRuxhW4mkxL79pllroYChdPpwqhR+fj559Ar286f12D48Do4cMDzCbpBQUGoXbu2nCXSf4SFib8PlzelUonXXntNuP3GjRvlK+YaQkNDS98pgA0cOBBt2rQRaut2u/Hbb7953K5z7c7YP2Y/gtXBJe6z88JO1P+4Poy2sgcw25123P3N3dh+frtH9eRZ87DskOfB5Zcuib1XhoY6odGIL/Yn77VqJRaCc/KkBkajWNtsczZe2/gaEj5KwDNrnkFaQZpQP6JUknwLYcINGlTT8XivKhAOBTsJQOAl8pZbboFKJd/vasNw70LBdCotVvX9CM2j68lU0bXF6E0IM2j9MhYA5BotyEgre4gmERF5b9OmAnTtqsbZs0Vf73fvDsYLL9SEU+AybHR0dJmuN3XvLh5s9eOPl8/T6/USpk83YM0aS5nO3VdkZrOElSuDcdddesTGOjFqlBEbN1rgcjEgjIioOM+ufbbY7dWDq6NdjXZ+roaI6NpiYmKE27pcLhQWFspYDREBwMcfm2EyKYXbP/ecWsZqiIioImEoGBEREREREREREREREYDoaCXuu0980d9mxwyMWztOxor8b9auWeVdAgWg48ePC7XzV+DWkiVLhNoNHjxY5koCi9vtxpaULeVdhkeGtRiG62KvK+8yipAkCTExMWjUqBFiY2OhVF6epDVvXjScTvHAgwceyPBof6fTibS0NBw+fBgZGRlwucQW7BMR0LGj+ITJzZutMlZCgWTChFwsWBBeZHtOjgr335+ETZsMZe5LrVajTp06UCgYjEMl69u3Lxo1aiTU9tChQ8jPz5e5ospp3Djxz+lbt4qF7DaMbojTj59GjL7khTdn884i4aMEpOWXHp7kdrvx0I8P4acTPwnVM2u355/1L10SO9aMjBQPWyd5tGsnNi3Y5VLgzz89O85JK0jDs2ueRe0Pa+PV315Ftrl8QoxVCnmCloL1WsQH50Ih8f27KhAOBTsr1qxr165iDUsQExSDcE24UFuVpMTyXpPRKa6lrDVdi0JSoIY+C3qd/4LBLuXakZt2xG/jERFVZcuX56JXLz0yM0s+57ZuXRjeeScObg8yp+Lj4xEbW7YbifTpo4ckiQVabdx4dd3du+tw4IAKI0eWPci5IsvJUWHuXAO6dQtCUpIdzzxjxMGDlTsUjYjIEy6XCz+f/LnYx8ZcP8bP1RARlS4kJKTITe88kZ6eLmM1RGSxuDBzpvh50e7dTWjeXCNjRUREVJEwFIyIiIiIiIiIiIiIiOgvzz+vhUbjycJXN5DwG3B/B+C2p31Wl78s2L8AJrupvMugALNli1iwVJs2bWSupHg//eT5wniFQoG77rrLB9UEjjO5Z3Cp8FJ5l1GqmOAY3N30biy/ezm+vOPL8i7nmiRJQnR0NBo3boz4+BooLBRfeN61az4aNhQLFnK5XEhPT8eRI0dw8eJFhoMRCWjRQo/gYLHQkj17ONWmMvrww2y8+25kiY+bzRLGjk3AypXhpfYlSRLq1avn1WR7qjqGDx8u3PbEiRMyVlJ59e/fH2FhYUJtRQOSASDGEIPkp5JRP7LksORsczbqfVIPB9MPXrOviRsmYt7eecK1bE7ZjMMZhz1qk+FZfu0VERE8Ni1vHTuKLwzZvr1sP7/TOacx+sfRSJqahPe3vo9Ce6HwmHJQSd6Hgmk1GtQOzoT0Vwg0VW4utwsut+Dr1VnPmygkBVq0aiE2XgkkSULLak2E2n7Z/TX0SrxB1nrKQlKpUTs4ExqNeEizp87nuFB46ZjfxiMiqoqmT8/BkCGhKCws/Tjq66+jMGdOdJn6TUhIQGRkyedq/isuTotmzcRu/rRtmx5W69XHBiEhEr74woAffzQjPt4u1G9FdO6cBh98YEDz5hq0bGnBpElGnD8vGKZKRFRJfLjtQ9hdRd8LlAolxnceXw4VERGVTvS6CACYTCbOQyGS0ZdfmpGeLn5O9JlneCMTIqKqjLPPiIiIiIiIiIiIiIiI/lK7thqDB5dhwrg+E+j4PvBYY2DkTUCtP4FKcO09z5qHZYeWlXcZFEBycnKwfft2j9tFRkaicePGPqjoaufOncOZM2c8bnfdddehZs2aPqgocGxJEQtz87U4QxyGNBuCGb1n4MijR3DxmYtYMmgJBjYeCIWi4ryQRkZG4Mcfw7B1awH69cuDUun2qP2DDwqmLPyL2+1GZmYmjhw5grS0NE7KJPKASiWhSROLUNv9+3kH1spm8eJcjBsXUep+TqcCEyfWxOzZ0XCX8LKvUChQr149KBkoQmXUp08f4bYMBSuboKAg3HLLLUJtvf0eB6mCcPTRo+hcq3OJ+5gdZrT6vBXWnV5X7OPTtk/DpD8meVUHAMzePduj/TMzxY7No6J4TFre4uJUwqEFu3df+/ED6Qdwz4p7UP+T+pi5ayZsTpvQOHJTS94FDCmVSiSEZEKp5nFeVWF3CQZb5P715SF3rBuDtwzGN2e+gUN07P+IiQpBm2pJHrf7uMuzGNrwNllqEKHSaJBgyPLb8bLb7UZKthtOc45fxiMiqkqcThcmTMjBY49FwOEo+9K0qVNj8f334SU+rlAoULduXYSEhHhc0403it2Io7BQiXXrCop9rHdvHQ4elPC//5VvEG552L8/CBMmGJCQoMRNN5kwc2Yh8vLEbrRARFSRTf1zarHbuyV2g0bFcwlEFJiqV6/uVfvMzEyZKiGq2lwuN6ZOFb+xSfPmFvToESRjRUREVNEwFIyIiIiIiIiIiIiIiOhfXnxRDUkqYZW/ZAe6Pw88XQPo+SwQfcy/xfnB57s/L+8SKIAsWLAADofnixV79uwJSfL9pchff/1VqN3NN98scyWBZ2vK1vIuAQBQI6QG7ml+Dz7v8zmOP3Yc558+j8V3LsbD1z+MRtGNKlQQWHE6dAjBypVh2LPHhCFD8qBWlx6C0K6dES1bliGAsozcbjeys7Nx+PBhpKSkwOnkohyismjRQizE4sgRLex2Bp5UFmvX5uH++0PhdJb9/Wjq1Fi8804cinu5rVOnDjQaLgKismvWrBkiIyOF2p49e1beYiqxrl27CrWT43ssSRI2jdqEwU0Hl7iPw+VAjwU98OW+L6/a/s3hb/D46se9rgEA5u+bD6uj7AvkRdf7REV5FpZLvtG8uVgo2N69xS9M2Za6Df2/7o8WM1pg0YFFcLkD61hIpRBfUKNQKJAQmgeNVitjRRTo7E7BYK6zggMmAenmdLy2+zXcsfYOrE5Z7dXzKDIiHNU0GbiuWgOP2r3c9kGMbTlEeFy5aIO0qB2S57dzQg6HA+kZXMhKRCQnh8OFBx7Ix6RJpYesF+eVV2pg82ZDke2SJKF+/frQ6XRC/d52m/h1qZ9/Lvm9OSJCiUWLgrFsmQnVqokda5eVShV4n6mcTgV++02P0aODERenwMCBhVi+3AS7PfBqJSKS28FLB5GSn1LsY1NuneLnaoiIyk6lUkHrxTnP7OxsGashqrpWr7bgyBHx5+ITTzghSRV7bh0REXlH/Eo4ERERERERERERERFRJdSokQb9+xfi22+Diz7Y7RWg82T/F+VHW1K24OClg2gW06y8S6FyZrVa8cEHHwi1HTLEPwsMN27cKNSuKoSCbUndUi7j1g6rjZsSb0LXhK7omtAVdSLqVPjgr7Jo3jwYixcDp06ZMWmSBYsXh8FsLn4B0oMPZvisjry8POTl5SEkJATR0TUQHMwpAUQladPGjTlzPG9nNiuxZ48R7doVXbhIFcuePUYMHhxc4uv1tSxaFIXMTBUmTUqFVnt5AWRCQoLwolWquhQKBZo0aYI//vjD47b5+fk+qKhyatq0qVA7q9UKm80mS9jf14O+Ru2w2piypfjFgm64cd939yE1LxUTukzAxrMbcc+Ke+CGPIuss8xZ+O7odxjcrORwsqv2zxJbTF+tGheFB4LWrV345RfP250+rUFenhNhYUq43W6sP7MekzZNwq9nxQK5/UUtqYXb1gyzQK8Tb08Vk90lGAp2XnDA+H/+mGxMxnPbn8OcY3PweNPHcWPsjdc8b2I0GnHixAmcOHECp06dwqVLl2A3ZSPfWIisvDzACEADQP3X/0MBhP/1FQ2gOgAl8Ejzu/Bq+4cE/wHyC9arUQNWpOb6J1A3O9+KyOxTCIqs65fxiIgqs8JCBwYNMuHnn8OF+3A4FHjqqVqYO/cMmja1AADUajXq1asHpVIp3O+tt4ZAr3fCZPK8j99/L32R9qBBenTp4sDo0SVcR5aBw3H5uKBJEwuys5W4eDGwjlXNZgnffhuMb78FoqIc6N/fghEjVOjcWcuF6kRUKY1bM67Y7TVCauC6uOv8WwwRkYeqVauG1NRUobYOhwMWiwVBQUEyV0VUtbz3nvh1s/h4O4YP18tYDRERVUScAUxERERERERERERERPQfEyao8O23xTzQfKHfaykPs3bNwtReU8u7DCpnkydPRnJyssft4uPj0bt3bx9UVJRIKJhSqUSXLl3kLyaAFFgLsD99v1/Gqh5cHb3q90LXhK64KfEmJIYn+mXcQFW3rg5z5ujw2msWvPuuGV9+GYqCgn8WIDVvbkL79oU+r2PrVgcefRQYOTIbzz9vQLVq/llkS1SRdOgg/rzYutWGdu1kLIb87swZM/r21SAnR3zq1Jo1YcjJUWLq1HNo2DAWISEhMlZIVUndunWFQsGMRqMPqqmc6tYVDwAxGo2IjIyUpY7Jt05G7bDaeHz14yWGfU38dSL2XNyDtafXwua0yTLu32btnlXmULDsbNFQMC4CDwTt2on9/FwuBbb9aYGp1hq8/cfb2JG2Q+bKfEMlib2fVw8DwriepkoSDgW7JDhgXNFNx/KO4dEtj6JVVCs83vRxXF/t+iuPnT17Fr/99hs2btyIvXv3wuEQrBcA1EC1OuEIydFju+EQ2rVpGjDh7eF6N2wuBS7l+ydQMq/QgSB53tKJiKosm82GbdvOYufOJK/7MpuVeOSRRHz11Sk0aKBCUlISJEnsOPZvWq2EDh0KsGFD2c/R1K1rQceORnTubITVGget9trhYDExKqxYocKCBYV48kktsrN9syzv8OEg1Khhw6RJRhw5osDKlUHIzxcPTPOFrCwVvvjCgC++ABISbLjrLhtGjlSjSZPSA9aIiCoCh8uBdWfWFfvY2HZj/VwNEZHnwsPDcf78ebjdYude0tPTkZCQIHNVRFXHnj1WbNwofhFizBgr1OrACoomIiL/YygYERERERERERERERHRf7Rpo0X37iasW/efi/KWcADnim/kUgJZ9YH0ZlDk1cM992fBpMjCpcJLV75yLbk+rlweC/YvwEe3fRQwC8TI/zZv3ozXX39dqO2zzz7r1Z3cyyozMxNnz571uF2jRo1gMBiExnS73Th58iQOHjyIgwcP4siRI8jKykJ+fj7y8/NhtVqh1+uvfEVHRyMxMRGJiYlISkpCmzZtEBMTIzS2J3ak7YDL7fL5OABwa51bMbf/XL+MVZHUrBmETz4Jwiuv2PDee3mYNSsU2dkqPPhgBvzx0jprVjVkZ6vw/vuRmDnTiWHDcjB+vA61avEurkR/a95cj5AQ51XBfSWpXt2OJk3MaNr08lfbti4AXE1eUWVm2tC7N3D+vPeBibt3B+PChTh07BghQ2VUVUVEiP3+mEwmmSupvES/x8Dl77NcoWAA8Fi7x1AjpAYGLRtU4jH78iPLZRvv39afWY9T2adQN7L0kDTRULDoaKFmJLOOHa/xHhdxGqizDtBlA04N4FQDLjXgUgB112LA1vUwb831W61yUCk8nwodEaJBtC4fAM99VUXCoWAZAm00AK7xNrQnaw9G/j4Snap1QqfcTvjtu9+wY4eMgXx2IONYLt499iXenfolatWojjv73owxIwehQb3yX9RZTW+GzR2K3AJ5gzCLY7RKqO7zUYiIKi+TyYQzZ86genU3PvssGffdl4TCQu+uBWVnq3DoUBR69ZLvg8RNN9mxYUPJj4eHO9Cxo/HKV2zsP8cF2dnZiIsrJs2zGMOGBeOWWxy4/34Tfv7ZN0mz589r8OKLGjzwQCFOnXJj3ToTvvrKjbVrdbDZvAtQk1tysgbvvafBe+8BLVtaMGSIE8OHaxEfz2WLRFRxTd48GY5iPj+qJBWe6fRMOVREROS5kJAQ5OfnC7U1Go1wuVxeh/cSVVWTJzsAiIUmGwxOPPqoTt6CiIioQuLZNSIiIiIiIiIiIiIiomJMmCBh3X9v+rlpAnDX4Ku35SYAux4E9o4ECuIBAG4AEY2MWPDx1cFDNqcNmaZMXCq8hIzCjCthYRmm4v9stBl99w+8hhxLDjJMGYgJ9n14EQWeAwcOoF+/fnA4PF8gWbNmTYwePdoHVRV18OBBoXatWrXyaH+z2Yx169bhhx9+wKpVq5CWliY07t+SkpLQoUMH3Hrrrejfv7+sAQN/25KyRba+GkQ1QNeErnC5XZizZ06Rxzed2yTbWJVRdLQG77wTiQkTHJg9Owtduxb4fMyTJ7XYsCH0yt+NRiU++ywCc+e6MHhwLiZM0KJ+fU4cI1KpJDRuXIjt24Ov2h4TczkA7O8QsCZNzIiOdl61Dyc+V1xOpxM//3weZ87IE4Dw3nu5GDiQgWDkneDg4NJ3KoZWKzaJvCoS/R4Dvvk+D2g8AFtGbUGXeV1gc/o+BOXf5uyZg0m3TLrmPi6XGzk5Yov7Y2IYsBQIqldXoUYNW9EAzPo/AYMHAipriW3NPq7NFw7mHMQTW5+AWlJf/lKooVaqoZE00EgaqKW//qzUQKvUIjQoGDWC7dBp9NAptQhSa6BTaqFTaaFTBUGn0kKvDIJeFYQglYbHfpWQUCiYEYBIHmcsSs+eOwhsWb8FW3LkO59TkpTz6fhoxmJMnfk1+va8Ec8+Ngw3dvTsXJmcFJIC8fpc2B0RKDSX/NokB7PFCpfdBEntm+AWIqLKLD8/H+fO/XPTpEaNLPjoo3MYMyYBDofYsZJa7cLHH+dh9Gh5k4X79NHg5Zf/+btK5UKrViZ06nQ5BKxxYwtKOrwrKCgocygYAMTHq7BqlRJz5hTi2WeDkJ/vmxvmzJ4djHXrbJg7V8KPPwYhO9uJRYsKsWiRhG3bguB2B9bnsH37grBvHzBxohs33mjC0KFuDBmiQ0gIj6uJqGKZtn1asdt71OkBlcRl2URUMcTGxgqHgrndbuTk5CAqKkrmqogqv5QUO5YvF5+bNWyYBRER4tc3iYio8uCnTyIiIiIiIiIiIiIiomLcdFMQOnQwY9u2f12cP3Q3YIoGWnwFWMKAk7cBp7sD7qKTvOfO1eHVV52IjPznMY1Sg/iQeMSHxJepBrPdfHVg2DWCxNKN6bA65Vk4VTO0JiJ18gcVUeBbu3Yt7r77buTm5gq1/+STT6DT+Sds6NChQ0LtrrvuujLtl5qaiunTp+Pzzz9Hdna20FjFOXPmDM6cOYPFixdDpVKhW7duGDZsGIYMGQK1Wi3LGIcyxL43ANAouhFuSrgJXRO7omtCV8SFXF4AY7KZig0FS8lP4Z1ByyAkRIWnnoqC0xmOCxcuCD/HymL27GrFbrdYJHz5ZTgWLnRhwIA8vPiiEtddZyh2X6Kq4sYbLdDpnGjSxHIlAKxatdIDAlwuF1/7KiCXy4WTJ0/iuuvsmD37DB57LAG5ueJTp557LgdPPslAMPKeySSSMAIYDHwfLyvR7zHgu+9z+5rtcfiRw2g1sxUKbL4Pjv3b3L1z8dpNr0GtLPmzR06OCw6H2GL26tX53hgoWrRwFA0F6/nUNQPBKqosaxY2pG3wy1gKKKBQKKAAoFAoIEGCpLi8TVJIUEKCJElQKiQoFUooFRJUkhJKhRIq6a+vK39WQf33l1IJjaSGRlJDLamgUaqhUaqhlf76/5W/axCk1CBI/df/ldrLX2otdEoNdKrLf9eptND/HXCmvhxwxgXL/7A57Z43uiQ42LVOsV4C8BOAs4J9e8HtduP7n3/H9z//jjtuvwkfvPkUkhJq+L8QAJJSidqGTJxyRsJmE/jZeMLtLH0fIiK6SlZWFi5cuFBke4cOhXjzzfN44YVaHvdpMDgxf34BBgyQ/7xKixZ6dOxoRN26FnTsaMT115ug17vK1NZms3l8zk+SFHjwwWD06GHHyJFW/Pqrb8Inz57V4JZb3HjkESMmT9bjsceC8dhjwNmzdnz5pQ1Llqhw5EhghYc7nQps3KjHxo3AE084cdtthbj3XgX69tVBrQ6sIDMiov/albYLF4xF3/8A4L0e7/m5GiIicRqNBmq1Gna72DmXrKwshoIRCfjwQyvsdrFrjCqVG88+qyl9RyIiqhJ4hZeIiIiIiIiIiIiIiKgEL7zgxh13/GfjmZsvf5XCaFTigw+MePNN8QXEOrUOtcNqo3ZY7VL3dbvdMNqMV4WFXRUkZioaKuZwFQ29CFYH47Pen3GhYBVjMpkwceJETJ06FS5X2RZH/Ne9996LO4o8YXzn4MGDQu1KCwW7ePEiXnjhBSxcuBAOR+nBMN5wOBxYu3Yt1q5dixdeeAFjx47FmDFjEBYW5lW/WmXZF340rdYUXRO64qbEm9AloQuqG6oXu59eo0ekLhLZ5qsD0lxuF349+ytuqXOLVzVXFUqlEjVr1kR8fDzS09ORnZ0Nt9stW/8pKWqsXn3t3x+HQ8KyZWFYvtyNXr3y8eKLCnTqFCJbDUQVyTPP2JCVVfyijtIUFBR4/XpN/nX69OkrE95btjRj/vzTGD06EWlpnk+oHTYsF5Mm8edP8hANCw0J4ft3WYl+j5VKpU9Dj+tG1sXZJ86iyadNkF6Y7rNx/u2i8SJ+OvET+jfqX+I+6ekOAGKhYDExDAULFG3auLB69b82KK1A5Mlyq6eycMP9z2c4NwBUzIAhBf4JNvs76Ez6V8iZpJAuh5wpJCgl5ZWQM5Uk/SfgTAW1pIRaUkGlVF0JNbsSbHbl//+Em2klDbRKDbQq9V/BZhoEqbQIUv0dcnY53Eyn0kL3d8CZWgf9X0FnGqUGCoV3IRL2Ys6JlipLcLDwErZvA7AGgNhpOFl999NG/LxhKyY8NRIvPj2qXMKPbQ7A4aiYzyciosrswoULyMoq+U2wd+88ZGSo8P77cWXuMybGjhUrLLjhhnAZKixKqZQwb14abDabUPvCwkKhz9sJCWqsW6fCtGlGvPiiDoWFYp+prsXlUmDaNAPWrLFi7lw3OnUKQmKiGq+8osYrrwC7d1sxb54dy5drkZYmz01o5GI2K/Htt8H49lsgKsqBO+6wYMQIFW64QQtJYkAYEQWecWvHFbu9dlhtNK7W2M/VEBF5JzIyEunpYtcgbDYbbDYbNBoGFBGVldHowty5QcLt+/Y1oU6dYBkrIiKiioyrOYiIiIiIiIiIiIiIiErQt68OzZpZcPCg2EX6GTOCMH68C8HBvl9IpVAoEKINQYg2BHUi6pS6v9vtRq4l90pA2KXCS1BLarSt0Raxhlif10uBwWg04osvvsDbb7+NixcvCvfTrFkzzJgxQ8bKSnfo0CGhdvXq1St2u8PhwMcff4zXXnsN+fn53pQmJC0tDePHj8cHH3yAt99+G6NGjRJe5Ppo20cxf998uFE0bKpF9RbomtAVXRO6oktCF1QLrlbmftvEtcHa02uLbF+wfwFDwTwkSRLi4uJQvXp1ZGZmIjMzUziQ79+++KIaXK6y/d64XAqsWhWKVauAm28uwPPPu9CjBwNuqGoxGAzXXNh4LQwFq1iSk5NhsViu2paUZMOCBafxyCMJOHas7KE/t92WjzlzQqFUMviG5JGWlibUrlatWjJXUnkF8vc4QheBXvV7Yd7eeT4f62+zds8qJRRMPLQ2Nlb+he8kpm3b//wsnFogtQNQe0v5FEQBxf33GYOrAs4qHsVf//073Ez61///HWz2T8DZ5VAzp0sgfKpAsMiI//zdBuB7AGJZ9z5jsVjx0tsz8Osfu7Bw5huIrR7tt7HtViuSCyLhEglr84BCoYDCgyB9IqKq7ty5c2W6VjJiRBbS09X46qvS3zvq1LFg1SoXGjXybch1SEiI8Dm/nJwc4RBuSVLg8ccN6NXLhhEjbNi61Tch08ePa9G1qxtPPWXEm28GQ6O5fFTUurUWrVtr8eGHbqxfb8b8+S788EMQ8vMD63NaVpYKc+YYMGcOkJhow9132zBihBpNmvB9mogCg9Vhxe/Jvxf72NMdnvZzNURE3ouKihIOBQOA9PR0XpMi8sBnn5mQmyt+I+Fx4wLrMxwREZUvzk4jIiIiIiIiIiIiIiIqgSQp8NxzAovE/pKVpcL06SYZK5KPQqFAhC4CDaMbonPtzhjYeCD6NuzLQLAqwGw2Y9WqVXjwwQcRHx+PJ554wqtAsFq1amH16tUIDvbvHeqOHTvmcRu1Wo2aNWsW2X7u3Dl06tQJzzzzTLkEgv1bRkYGHnjgAbRr1044+Kxtjbb4feTv6N+wP7rX6Y4n2z+Jbwd/i8xxmdg3eh8+7vUx7mxyp0eBYAAwoNGAYrdvSt4kVCddDgeLiYlBo0aNEBsbC6VSfGJXeroKK1eGC7XdsCEEb7+twOHDh5GRkSFLQBlRReDNe5fZbJaxEvKltLQ0FBQUn+IQE+PA3Lln0LatsUx9tW1biGXL9FCrOeWK5LNnzx6hdvXr15e5kspr9+7dQu388T1+deOrfg0EA4DVJ1cjNT+1xMfT08WOBTUaF0JC+PoYKDp0UBfduHwRcKmJ/4sh8hE3LgecudwuON1O2F0O2Fx2WJw2mBwWGO0m5NmMyLHmI9OSi3RTNtIKM5BuzvZ8sLIdLhb171AwE4AvEHCBYP+2YdMOtOp2D7bv8k+RTocdycZoOBy+DQQDgGCdBgqlxufjEBFVdC6XC6dOnSrztRKFAhg37iJ69sy75n6tWpnwxx8KNGqkl6PMa4qKihJuW1hY6PX49etrsGlTEN591widzjfn2h0OBaZMMaB1ayt277Ze9ZhSqUCPHjp89VUwLl5UYOFCE26/3QSNJvDO+589q8HkyQY0bapFq1YWvPtuIS5c8P1xARHRtby16S043UXnCWmUGoxtN7YcKiIi8o4kSV5dFz99OjDnPhIFIofDjenTxc9BduxoRseOYjcwJiKiyokzMIiIiIiIiIiIiIiIiK5h6FA96tSxCbefOlULm80tY0VE12az2WA0GnH+/Hns27cPP//8M6ZNm4axY8eiQ4cOCA8PR58+fTB79uwSAzLKKikpCb/++muxQVu+5HA4kJGR4XG72rVrFwldWrNmDVq3bo0dO3bIVZ4sdu7ciXbt2mHevHlC7TvX7ozvhnyHtcPW4sPbPsQdje5AlF58IQwADGs5rNjtyXnJDJHykiRJiI6ORuPGjREfHw+VSuVxH/PnR8NuF58C8OCDl8PA0tPTceTIEVy8eJE/V6r0JEmCJIk9b2w28eND8p+MjAxkZ1879CEkxIUZM5LRo8e1F682aGDBqlVqGAyev0YTlSQ1NRWXLl0SastQsLIL1FCwmTtn4vXfX/fpGMVxuV34Ys8XJT6ekSF2DBgZ6YQkKUTLIpnFxKhQq9Z/jlfyEoBPDwIfnwDmbAbmbgTmrwW++gn4ejlwYDBgCSmXeokCnugpNMNf/zcBmA9APJffby6mZ+GWAY/g1007fTqO2+lAijEKFqt/PluFaMVv/kFEVFW4XC6cOHHC4zB8SQImTUotMXS9e/cC/PabBnFxWjnKLJVGo4FCIfbZxOl0wun0/j1DqVTguecM2LHDgdatLV73V5JDh4LQoYMaL79shMNR9Hq0Tidh6FA9Vq3SIy3NjY8/LkTHjmYoFIF37Xrv3iC88EIwatVS4uabTZg9uxBGI69REJH/zdw1s9jtt9e7XfiaEhFReYuN9ewmoXa7AmvWhGL06AR069YAW7Z4N7+MqKpYutSM5GTxULCnnw68z2pERFS+OEuNiIiIiIiIiIiIiIjoGpRKBZ5+2o7HHhO7WJ+WpsacOYUYM0b8jntUNe3cuRNt27Yt7zJK1L59e3z77beIi4vz+9jp6elwuz2fBJOUlHTV32fPno2HH344YIOPTCYTRo4cic2bN2PGjBlFAs38zaAxICIoAjmWnKu2O91O/HHuD3RJ7FJOlVUukZGRiIyMRF5eHi5evAi73V5qm5wcJZYtixQes317I1q0+Gehl9vtRmZmJrKyshAREYHY2FhOcqdKS6vVerzQEbj8PHG5XHxuBLDc3Fykp6eXaV+Nxo0pU1IQHe3AokVFQzTj4mz46Sc3qlUTn8BLVJyff/5ZqF1CQgKqVasmczWVk9vtxpo1a4Ta+vLz2HdHv8MjPz3is/5LM2fPHEy4cQKUUtHPGII5dYiMdAJQe1cYyapFCztSUv773qUAsutd/vqvowMBpRWRPaZDdfO7uFQo+MvgZ9dHX4+ucV1hc9pgc9lgd9lhdVlhd9phd9mvbHO4HJf/73Zc/rPbDoXCCYXCBrvLCYfLAYfbCYfr8pfT7YLT7YTT5YLT7YLL/c//XW43XG4X3HDD5XbDDfdf5ync4JKdSqr4jJPS6QFYUWECwf5mLDTh9iFPYPm8d3H7rZ1l79/tcuOCKRxGk1X2vosjSRJCQ8P9MhYRUUVlt9tx8uRJ4UAsjcaNjz46h/vuq4MTJ4KubB86NBfz5oVCrfbvOTSdTgeTySTUNjc3F1FR3t1k5W9Nm2rw559uvPVWISZN0sFmk//7YLdLeOMNA3780YL58yU0a1b8+auoKCXGjg3G2LHAmTN2zJtnxdKlahw96p+wtrJyOhX49Vc9fv0VePxxF3r1KsSwYQr07q2DWs0gaiLyrS0pW0o8H/Jej/f8XA0RkXx0Oh2USmWpx/unTmmxYkUEfvghHDk5/0RQfP65E506+bpKoorvww/FP7PUrWvFgAE6GashIqLKgKFgREREREREREREREREpXjgAR0mTbIjLU1scev776vw0ENuKJWcqEwVnyRJGDt2LCZPngyNpnyCMS5cuCDU7t8BZl988QUeeughoXAxf5s9ezays7OxePHicvue/61VbCtsOLuhyPb5++czFExmYWFhCAsLg9FoRFpaGmw2W4n7LlwYBbNZfDHRgw9mFLvd7XYjOzsb2dnZCAsLQ3x8fLmH0xHJTa/XC4WCAUBBQQHCwsJkrojkUFBQgNTUVI/aSBLwwgsXEBNjx0cf/XO37LAwB374wY66dRnyS/Jbvny5ULtu3brJXEnltX37dqSkpAi1vemmm+Qt5i9/nPsD/1v+P7jc5RdOfC7vHNaeXovb6t1W5LHMTLE+IyMD/7NVVdO6tRurVnnYyKlF9uqncW7u/Zh/bBqmbJmCPGueT+qTS7OIZrivwX3C7ePCXIgKLj2MWYTNYYPJYYHJYYXJYYbZYYXJYYHZYYXZYYXFaYPFaYXFYYPFYYXVaYPFaYPVaYfFaYPtrz9bnXbYXHbYnHbYXA7YnHbYXY4iX5eDz/4KOHM54XQ74XD9FW7mdsHpcv4r3MwNF/4JOXP/K9yM8WbFEAkFUwLQAliKChUI9jeLxYq7Rr2ATT/ORuuWjWTtO8usRXaBb553xakeLkEdElv6jkREVZTFYsGpU6e8vl4SGurCZ5+dxb331sHFixo8+2wO3nknDEql/0P1w8LChEPB8vLyZAsFAwCVSoFXXglGv35WjBjhxoEDQaU3ErBnTxDatnXhlVcKMW6c/prXpZOS1HjtNTVeew3YtcuKefPsWL5ciwsXAivo2WyWsGJFMFasAKKjHRgwwILhw1Xo1EkLSeJ1dyKS3/Prni92e52IOqgbWdfP1RARySsiIgKZxVwAMJkk/PxzGJYvj8D+/fpi2373nQGFhQ4EBzOWgqgkv/1mwc6d4qFeY8c6oFQGVmgzERGVPx59ERERERERERERERERlUKrlTB2rBnjx4tNhD51SouvvzbhnnuKnzhDVFE0b94cM2bMQKdyvv2jaChYdHQ0AGDBggV44IEHKkQg2N9WrFiBPn364IcffoBWW34TgO5odEexoWAbz270fzFVhMFgQIMGDWAymZCWlgaLxXLV40ajhEWLxBcotWhhQrt2haXul5eXh7y8PISGhiI+Ph4qFacbUOUQGhqKrKwsobYMBQtMFosFycnJQm0VCuD++zMRHe3AK6/UgFrtxpIlJrRpEypzlURARkYGNmwoelxVFr4Kq6qMlixZItQuMTERiYmJ8hYD4NClQ+i7uC8sDkvpO/vY7N2zSwgFE1tYHR1dfiFnVLx27cQDfQ/u1mBCrwkY03YMJm+ejI///Bhmh1iQqq+pJe+CCy7kSdBIToTo5A9A1qg00Kg0CJe9Z/9yuBywOGwo/CvYrNBu/ivU7HK4mdlpg8V++e+XQ80uh5tZHJf/fDnYzAab0w7r3+FmfwWb2Vx/BZw5/xtw5oTD7bz8/ysBZ3+Fm7n/HW72V8DZv4LOrgSb/RV0JguRl20dgM0AjngxbgiARAC1AUQBiAAQBEADwAXADsAEIBtAJoCzAJIBWL0Y819MJgv6Dn0Kf66Zh5o1qsvSZ77JjYt5/gvx0Ou0iIyt47fxiIgqmoKCAuHzKMWpXt2BGTOScfZsFJ54IlK2fj0VEREhfC1J9AYCpWnVSoudO914+WUj3n8/GA6H/O+HFouE8eOD8f33Zsybp0SDBqXfaKZNGy3atNHio4/cWLfOjPnzXfjxxyDk5wfWDUIyM1WYNcuAWbOApCQb7r7bhhEj1GjcmIvmiUgeJpsJW1K2FPvY852KDwsjIqpIYmJiroSCud3Avn06fPttBFavDoPZfO1jv7w8FRYsyMHo0RH+KJWoQpoyxSncNirKgQcfFA8UIyKiyouzdImIiIiIiIiIiIiIiMrgscd0mDLFgexsscsrkydL+N//3LxrMVVIDRo0wIQJE3DvvfdCkvx/R/f/unjxolC76Oho7NixAw8++GCFCgT729q1azFy5EgsWrSo3GoY3nI4Hv/58SLbk/PkWzRExdPr9ahXrx4sFgvS0tJgMpkAAEuWRKKgQHxxzoMPZkDhwVtTfn4+8vPzYTAYEB8fD42m9EVFRIFMpxOfWOmrBYIkzm6349SpU173079/LiIjHTAYwtCzJye3k298+umnsNlsHrdTq9Xo3bu3DyqqfAoKCjBnzhyhtgMGDJC5GiA1PxW3LbwNuZZc2fsWsfLYSqQb01HdcHXIS1aW2HmLKPGcWvKRDh3Ej9V37HChVy8gUheJd7q/gyfaP4G3Nr2Fz3d9DrvLLmOV3lNJ3k+FTskzIAm50OkYKFAclaSCQaOCQVOxb3jgcrlgddqw/NQGDFv7smeNHQIDWgGsF2gnAWgOoBWABAAlvSwrAagB6AFEA2gAoBMu13oM0OxVw3bC++dr2sUMDBr5PDavngOl0rtwEJPZhpS8UECusLZSqFUq1IoxQCEFVqgJEVGgyM7ORlpamuz9duwYhv79yy8QDAAkSYJKpYLD4fmbuNvthtVq9ckNWjQaBd55x4D+/S0YOVKBY8d8c/y5dasOrVo5MWlSIcaO1Zfp+rRSqUDPnjr07AmYzS6sWGHCwoXAunVBsNvL/9rgv505o8G772rw7rtAq1YW/O9/DgwbFoTYWC6TJCJxr/32GlzuoqH3QcogPND6gXKoiIhIXpIkwWYLxuLFQfj22wicOhXkUfsFC9QYPdpHxRFVcMeO2bB6tfj58wcesECvN8hYERERVRaBdVaOiIiIiIiIiIiIiIgoQBkMEh5+2CLcfv/+IKxaJd6eyN/UajX69u2LH374AUePHsXw4cMDIhAMAHJzc4XbDho0CFarVaitWq3GDTfcgIkTJ2LZsmXYvXs30tPTYTQa4XA4kJ+fj/Pnz2PLli1YsGABxo4di+bNmwvXWpzFixfj5Zc9XLgqo7CgMIQHhRfZ7nA5sPncZv8XVAUFBQWhTp06aNCgAYKDDfjppzDhvho0MKNr1wKhtkajEcePH8fp06dhsfD9jSouSZKE399EwnzId5xOJ06ePClb8GffvioMG8ZAMPINq9WKTz/9VKjtbbfdhujoaJkrqpxmz56N/Px8obb33nuvrLXkmHNw21e3ITU/VdZ+veFwOfDlvi+LbM/OFntfjI6ueMHLlV10tBK1a4sdr+zadfXf40LiMO32aTj22DEMbzkcihJTivxPjlAwl8uF5IJI2K38bFOZSZIEnToIOpWH4RtOiGVY2QXaNQXwGIABABIBKACVQoWBiQPxQ48fcODOAzhw5wHsG7gPu+7YhaW3fgSt8j8BgKrL/djusQOjgKAE78NG/tx1EO98NM+rPmxWK84VhPstqF+SJCTEqKEOifPLeEREFc2lS5d8EghWs2ZNxMTEyN6vCL1efEF2dna2jJUU1bFjEPbsUeOJJ4yQJN+8N5pMSjz5ZDBuucWMs2c9CwrV6STcc48eP/2kx4ULbkydakSHDoF5g4Q9e4Lw3HMG1KqlRPfuJsyZUwijsWioDxFRaebsKf7mAv0a9guYeRJERN6rhvfei/M4EAwAtmwx4PBhkw9qIqr43nvPDpdL7LpJUJALTz7p+XOSiIiqBn4aJSIiIiIiIiIiIiIiKqNnntEhONgp3P7tt2UshsgHJEnCwIEDMXfuXFy4cAHff/89+vTpA4UicBb7AoDZLLbw4N1338W5c+c8btewYUNMnToVaWlp+OOPP/DGG29g0KBBaNWqFWJiYhAcHAylUomQkBDEx8ejY8eOuPfee/Hxxx9j//79OH78OCZOnIioqCihuv/rjTfewA8//CBLXyKuq35dsduLCxQg39FoNEhKSsTOnWq8/no24uI8X+z/wAOZ8PbpbTKZcPLkSZw8eRImEyeAUsWk1Yotkne73XC5uMAsELhcLpw8eRJOp/ix+r8FBwejZs2asvRFVJxp06bh0qVLQm2HDRsmczWVk9FoxJQpU4TaNmnSBK1bt5atFrPdjP5f98ehjEOy9SmX2btnFwlnycoSm1YaExNYnxvpspYtHULt9u9XF7s9KSIJX97xJQ6MOYABjQZ4U5psVArvQ8EAwOFwINlYDU47g18rO7vLw+eF2NPIM3oAgwHcBSDy8qYgZRDurXcvVt+2Gq+1eQ2JIYlXdpcUEjRKDZqEdceCm9+EUqEsvt/agGWEFegOr1cNvDZlFvYdPC7U1mm3IdkYDYdDnuP1sqgVJSEosq7fxiMiqkhSU1OFP5NeS0JCAsLDw2XvV1REhHjYe0GB2M00PKHTSfjoIwM2bLAiKcl3x6AbN+rRsqWEmTML4XJ5HkAWFaXE448bsHWrDidP2vDSS0Y0bCh28x1fcjgUWL9ejwceCEb16m7cdVchVq40weFggDURle7XM78iy5xV7GNTeoidYyQiCkStWxtw/fWFwu1nzAi840Ci8paZ6cTChTrh9nffbUZsrDzXOYiIqPJhKBgREREREREREREREVEZRUUpMXKk+F2Qt27V4bffLDJWRCQvl8uFtWvXYunSpViwYIFQgJY/WK1ik8zy8/M92j82Nhbz5s3DoUOH8PjjjyM6Olpo3Pr16+ONN97AmTNn8OqrrwqHz/zbQw89hKys4icm+1r/Rv2L3b7x7Eb/FkIAgJAQFV56KRKnTinx/vvZSEws2/Ojdm0revTIk60Oi8WC06dP4/jx435ZMEUkJ71eL9zW0/cW8o0zZ87AbrfL0pdWq0VCQoIsfREVJyMjA2+88YZQ24SEBAwYEBghPIFu0qRJuHDhglDbp556SrY6nC4n7llxDzad2yRbn3I6kX0CvyX/dtW2nJwSgmVKIfhxiXysTRuxBfBnz2qQnV1yeE/TmKZYMXgFtj+wHd3rdBctTxYqSb7FMharDamF0XA7/ZECReXF5vTwuNHXvw5RAB4A0PjyX0PUIXio0UP4pdcveL7l84jVx5bY1O12o1lEH8zq+mLJ/UsAOgMYCsCLU1J2uwNPvPiex+3cThfOFUbDavVf4F58pBIh1Rv5bTwioorC5XLhzJkzyM3NlbVfhUKBevXqISQkRNZ+vRUcHCzc1maz+e1mAF27BuHAARUeesgIhcI3AVb5+UqMHh2M2283Iy1N/OCmbl0NXn/dgKNHtdi+3YpHHzUiNlaec3JyMpmU+OabYNxxhx7x8Q48/LARW7ZYhELRiKhqGL9+fLHbG0Q1QO2w2n6uhojIt+69VzzYa+lSA+x23jSL6N+mTjXDbBaLbFEo3HjuueJv0kJERAQwFIyIiIiIiIiIiIiIiMgjL7wQBK1WfHLLW29xYgwFtoKCAqxevRpPPfUUEhIS0KlTJ8yfPx8WS+AE2vmjlsGDB+PQoUMYMWIElEqxRfH/FRISgldeeQV79uxB69atverr4sWLGDNmjCx1eWp4i+HFbj+Te8bPldC/6XRKPP10JI4fV2PmzBw0bHjtEMv778+ETL/aV7HZbEhOTsaxY8eQlydf6BiRL4WGhgq3ZQhe+UtOTobZLB7c+28qlQp169aFJHFKFfnOxIkThd8jn3/+eahUvFN0ac6cOYMPPvhAqG3NmjUxfHjxx7uecrvdeOynx/Dt0W9l6c9XZu2edeXPZrMLhYViB4nVq/O1MxC1bSv+c9m2rfQAn7Y12mLtsLVYP3w92tdoLzyWN1QKeV8XC0xWXDCFw83AgErL7vIwCMOXoWDRAEYBiASitFF4stmTWNNrDcY2HYtIbWSZunA6negcdy9aRNa99o71AAwHoBEv97fNu/Hz+i1l3t/tciPNFIZCk/hiU09Fh2kQGd/Yb+MREVUUdrsLe/acRmFhoaz9KpVKNGjQAEFBQbL2KwdJkqDRiL/xyf29upbgYAkzZxqwerUFNWv6Lkjzl1/0aNYMmD/f+39b27ZaTJtmQGqqCj/9ZMb//leIkJCSg4XLS0aGGp9/bsANNwShfn0bxo834tgx/4WVElHgK7AWYPv57cU+NuHGCX6uhojI90aODIXBIHbclp6uxvLlvGkW0d8sFhc+/1z8Tgzdu5vRtKkXJ2yJiKjS4ywMIiIiIiIiIiIiIiIiD9SoocKQIeKhA2vX6rF7t/8WQRF5a+vWrRgxYgRq1aqFKVOmyBa64Q2r1XfPIYVCgTfeeANff/01IiPLtvjSU40bN8Yff/yBgQMHetXPsmXLsHHjRnmK8kCkPhJh2rAi2x0uB3ac3+H3euhqarWEhx6KwKFDWnz1VQ6uu85UZJ/q1e3o2zfXp3XY7Xbs3HkBt95agDVrGA5GgU2n0wm3DaTQzKrowoULsgWzSZKEevXqMRCMfOrXX3/FrFmzSt+xGHFxcRg1apTMFVU+brcb999/v/BnhnHjxnm1aPzf3tr0FmbsmiFLX760/PByZJuzAQAXL4ov4GYoWGDq0EH89/nPP8v++3Bz0s3Yev9WrByyEs1imgmPKUIlyR+WmF1gR5aZC3EqK49DwXwlFMBwIL5aPCZcNwE/9/oZ9ze8Hwa1weOurDYbxl//Wuk71gDwP3i1gmD8G9PKvG+mOQg5Bf4L3Qg1BKF6jVLC0YiIqqD8fAd69SrEAw/EwWJRyNavRqNBw4YNoVarZetTbiEhIcJtc3JyZKykbHr21OHgQSWGDfNdIFlOjgojRgTjjjsKcemS98dFSqUCvXrpsGhRMC5eVGD+/EL07GmCWh14N8o6fVqLd94xoFEjDa6/3oIpU4xITw+QY0MiKjcTN0yEG0WDwfUqPYa3lOfmAUREgSQ0VIW+fcWvr86dy2sBRH+bO9eMS5fEPxM/+6x8n9GJiKhy4pEXERERERERERERERGRh158UQ2lsuikwLJ6801OLqaKJzMzE8899xzq1q2LpUuXlmstvgxg+fjjjzFx4kSf9f83nU6HZcuWYejQoV71M378eJkq8kyL6i2K3T5371w/V0IlUSol3HNPBHbuDMJ33+WiUyfjlcdGjsyAWi3+PlZW8+ZFY926EPTsGYaOHY1YsSIXTmfgLQQikiQJSqVSqK3N5r8F7nS1jIwMZGVlydKXQqFAvXr1oFLJHypC9Lf8/HyMHDkSbrfYe/CkSZOg1YrfabqqmDp1Kn799Vehtg0aNMDo0aNlqWP27tl46deXZOnL16xOK77a/xUAID3dm1AwsfdS8q3ISCUSE8WOV3bv9mwxikKhQL+G/bD34b34asBXqBNRR2hcT6kl34RQXMyTkF/Izy+VkcehYL6YbS8B8cPj8dbNb+HHnj9iSN0hCFIGedVlw+AmCFGXIfgkCcAt4uPsPXAcv27aWep+eSYg3Y8Z4bogLWrGx0Eh8f2IiOjf0tKs6NrVhvXrQ7B3bzCee64WHDJcptTr9RUiXD0qKkq4bWGh74K5riUsTIn584Px7bcmxMbafTbOypXBaNoUWLas6I1FROn1EoYNC8bPP+uRlubGhx8Won378r/ZUHF27QrCc88ZULOmErfeasK8eSYU8vifqEqav39+sdvvbHynnyshIvKfBx8UP47fsMGAc+d44ywil8uNjz8Wn1/QsqUF3bt7d06YiIgqv8A++0pERERERERERERERBSAGjTQ4I47xCdIf/+9HseOMUCCKqYLFy5g8ODB6N+/P7Kzs8ulBtEghdK8+uqreOyxx3zSd3EkScKXX36J2267TbiPbdu24bvvvpOvqDLq26Bvsds3nNng50qoNEqlhP79w7F5swFr1+ahf/88DByY4/Nxs7OVWL488srft20z4M47w9GmjQULFuQwHIwCjmjQjtvthtMpHqBCYnJzc5Geni5bf0lJSdBoNLL1R1ScJ554AsnJyUJtO3TogBEjRshcUeVz9OhRvPjii8Ltp06dKstrwU8nfsLDPz7sdT/+NGv3LLjdbqSnix2jKRRuVKvGEJZA1bKlWJDA/v1iYVtKSYl7WtyDo48exWe9P0OcIU6on7JSKXwX6pmSr4fZzHN4lY3HoWA+eHnr+b+eWP3QavRL6CdbsJ1aUuOG6jeUbedOuBwOJuizud9c83GT2YbUPP8taFOr1UioHgpJE+y3MYmIKoLDh0244QZg7179lW2//hqKSZPi4c1llrCwMNSpUyfgA8EAQKPRCNfpdDrL9bzfHXfocfCghEGDfBdOlpmpwt136zFkSCGys+X9t0ZHK/Hkk8HYtk2HEydsmDjRiPr1rbKOIQeHQ4F16/QYOVKP6tXduPvuQvzwgxkOh+9vrEJE5W/1idXIteQW+9jkHpP9WwwRkR916WJAw4Zi4a0Oh4TPP5cvWJaoolq1yoKjR8Vv6PTkky5Ikmc3ZyEioqon8M/AEhERERERERERERERBaAJE8QXHDqdCrz9tu/u7EzkD99//z1atWqFnTt3+n1stVqexZL/1qtXL7z88suy91salUqFhQsXonbt2sJ9fPjhhzJWVDYjW40sdvvpnNN+roQ80b17GL77LgwNGtT0yfPo3xYujILZXHRKwr59egwfHoEmTWz47LMc2O0MB6PAoNfrS9+pBAUFBTJWQqU5e7YQ586lytZf7dq1vfr5E5XFggULMG/ePKG2kiRh2rRpUCg4KfxaTCYT7rrrLpjNYotY+vfv71VY79+sDivGrBoDl7tiHeMcvHQQf57/E5cuiS16DgtzQqXi72igatNG7Od67pwGmZniwQBqpRqjrx+Nk4+fxOTukxGpiyy9kQCV5LtQMLfbjeSCcNisFp+NQf5X3qFgNWvWxFtPvQVJIf80/i6xXcq2owJAbwj/2777aSMupmcW+5jNakVyfrjPQv3/S5IkJMSooQqp7pfxiIgqik2bCtC1qxpnzxZdoLxsWSQ+/7yaUL/R0dGoVauWt+X5VVCQeFBlTo7vb7BxLVFRSixbFozFi02IjvbwGMYDS5YEo1kzF378UewzdWnq1dPgjTcMOHpUg23bLHjkESOqVw+8a+WFhZe/3/366RAf78Do0UZs3WqBy8WAMKLKauKGicVub1qtKWINsX6uhojIf5RKCUOHih/7LV6s543gqMp77z3xtvHxdtxzj06+YoiIqNJiKBgREREREREREREREZGAVq206NFD/K53ixfrkJISeJOdKXBcf/31cLvdHn3ZbDbk5+fj0qVLOHToEDZs2IAvv/wSzz//PPr27Ytq1cQWeZTk3LlzuOmmm7B27VpZ+y2NRqORtb+oqCjMnz+/3IIWIiMjsWDBAuH2v//+Ow4fPixjRaWL1kcjRBNSZLvdZcfuC7v9Wgt5LiwsDA0bNkRiYqLszycAKCiQsHhx1DX3OX48CI88EoF69eyYMiUbZrN42ACRHEJCir6mlRVDwfwnJcWCm25S4YUXasJm8/59Oy4uDqGhoTJURlSy/fv34+GHHxZu/8QTT6BNmzYyVlQ5PfTQQzh48KBQ27CwMHzyySey1HE65zTO5Z2TpS9/mzXlf8j4arVQ28hILv4JZG3biicabdtm83p8vVqPcTeMw+nHT+PlLi/DoDF43ee/+TIUDAAcDieSjdXgdHj/vaDAUN6hYE888QS02qIBLXK4IfYGKFDG4+RoAIKHGHa7A3d9+AK2XTxwVfiX027D2YIoOJ3++4xfO1qJoIg6fhuPiKgiWL48F7166ZGZWfKNIaZNq45vvw33qN/4+HjExla8gJTw8HDhtvn5+fIV4oUhQ/Q4eBDo21f82nRpLlxQo29fHUaOLERBgW8+40mSAu3bB2H6dANSU1VYtcqMwYMLYTAE3vWBjAw1Zs40oFOnIDRsaMOLLxpx/Dg/ExBVJjnmHOy5uKfYx17u6v+biRER+dtDDwVDo/HsuE+vd+LOO7PxxhvnkZub65vCiCqAXbus+P138VCvRx6xQq3mzXaIiKh0DAUjIiIiIiIiIiIiIiISNGGC+KUWm03C5MlWGashAtRqNUJCQlCtWjU0adIE3bp1w/Dhw/HOO+/g+++/vxIWNmXKFFx//fWyjFlYWIg+ffrgl19+kaW/spA7xOjtt99GdHS0rH16qkuXLhg+fLhw+xkzZshYTdk0r9682O1z98z1cyUkymAwoEGDBqhTpw6CgoJk63fJkkgUFJRt1fS5c1o891wkkpJceO21bOTne7g4m0gmOp34hE2zWfwuylR2eXkO9O7tQnKyFqtXh+ORRxJgNIofj0dHRyMq6toBhkTeysvLw5133in8OtGkSRNMmjRJ5qoqn+nTp2PhwoXC7T/55BPUqlVLllpigmOgVfom6MXXvjacxXnBwMUoTR6wZInMFZFc2rfXQKFwl75jMf78U77F+WFBYXit22s4/fhpPNXhKdmeKyqFb0PBAMBqtSHFGA23kwF4lUGexcPng4y/YrVq1cKtt94qX4f/EamNRPPI4s/XFKsThFcT/LFxLzouG4lGX92Jt3fOxbm8NJwzRsNm89+NMGpEKmGIaei38YiIKoLp03MwZEgoCgtLPz/72ms18PvvZQtsTUhIQGRkpLfllQtvQsEC6bxf9eoqfP+9HnPnmhAe7rvz6PPmBaNZMwfWrvXtv12lUuD223X4+utgpKcr8OWXhejRwwSVKvCOuU+e1OLttw1o2FCDtm3N+OCDQly6xGsZRBXd+PXj4UbRz4cGjQF3N727HCoiIvKv2Fgtbr3VWKZ9W7UqxOuvp+LXX4/h1VfT0KKFGVlZmT6ukChwTZ4s/nkgJMSJRx8Vn59CRERVC0PBiIiIiIiIiIiIiIiIBHXpEoROncQnRM+dq0NWVuDd+ZgqtyZNmuDZZ5/Fjh07cPDgQYwaNQparXcLcW02GwYNGoSdO3fKVOW1yRkK1qRJEzzwwAOy9eeNt99+W/jftnTpUrjdYou8RfVt0LfY7evPrPdrHeQ9vV6PevXqoV69etDr9V71ZTYrsGCB5yF76elqvPpqJHr0sODs2bOw2Wxe1UHkKUmSoFSWLczuv+x2/y16r6qsVhf69bPgwIF/XqP+/NOAkSOTkJnpeUpDWFgYYmNj5SyRqAin04mhQ4fi5MmTQu3VajUWLFgga3BnZfT777/j6aefFm4/cOBADBs2TLZ6ovRReKPbG7L1508mDbArfodQ20h1HjBkCBAeDvz0k7yFkdciIpRITBQ7Xtm9W/5pxtWCq+GDnh/gxNgTeKDVA1AqxI7B/qaW1DJVdm1GkxVppjC4Xf797E3yyje5kGsWOB8rUzDYow/cA5XKt0F2XWK7lH3ncACimVpnANiB47nn8OLW6Uic3x/3rrkPP6X8BIvTIthp2VUL0yAivrHPxyEiqijcbjcmTszGY49FwOEo2zGc06nAs8/WxsGDJS9GVigUqFu3LkJCQuQq1e8kSRJ+/zUaFcjNDaybPN13nx7797vRvbvJZ2OcO6dBz55BGD3aCJPJ9yFder2E4cOD8csvepw/78IHHxSibdvACWT7t507dXjmmWDUqCGhRw8TvvyyEIWFgRdkRkSlW3RgUbHbhzQd4udKiIjKz6hRJR/HREY6cN99GVi58gTmzz+DAQNyodf/s7/NZuO8DqqSzp2z49tvxUO9hg83Izzcu+siRERUdTAUjIiIiIiIiIiIiIiIyAvjx4u3LSxU4r33AnNCM1UNTZs2xZw5c3DkyBEMHDjQq76MRiMGDBiArKwsmaormZyhYM899xwUCoVs/XkjPj4ew4cPF2qbnp7ut1C2v426blSx20/lnPJrHSSfoKAg1KlTBw0aNIDBYBDqY8WKCGRniy9wHjQoG0ajEcePH8fp06dhsfh+ITHR30RDMt1uNxwO8TvB0rU5nS4MHVqA338v+rp09KgO995bB2fPlv3YQK/Xo1atWnKWSFSsJ598Ej95EY706quvonXr1jJWVPmcOHECAwYMEF50EhcXh5kzZ8pcFTDuhnHY/sB2PNr2UdSLrCd7/750tNYqoXbR6tzLf8jLA3r3vvzFxUAB5brrxELB9u/3XXhRrbBamNVvFg4/ehiDmw4W7ifUy2BjT+QU2JBpZlhjRWU225CSp4fDJXDsLsOPXalUYsRDT6BGhG+n73eJ8yAUDABaCA7kAHDun7+64caWS1vw/Pbn0e3Hbnh116vYm7XXJyH2YQYtYmrUlb1fIqKKyuFw4f778/DWW5EetzWbJTz6aALOnSt6bkWSJNSvXx86nfhi50ARHBxcpv2cTuDAAR0+/7wa7rsvCZ07N8bXX/sufEtUrVpq/PKLDtOnFyIkxDc3oHK7FZg504AWLezYtMl/5+ljYlR46qlgbN+uw/HjNkyYYES9eoEVzAYADoeEtWv1uO++YMTGujF4cCFWrTLD4WCIMFFFsOLIChTYCopsV0CBd7u/Ww4VERGVj379QlGjxj/n8iXJjc6dC/Dhh+ewbt0xPPNMOurUKflYLD093R9lEgWUDz6wwm4XO8erUrnx7LPe3byViIiqFoaCEREREREREREREREReeH224PQsqX4ROiZM4NgNPLuwVS+kpKSsHz5cixfvhwRERHC/aSmpmLEiBEyVlY8uRagREdHY+jQobL0JZcnnnhCuO2qVWIL+EXFGGJg0BQNaLE5bdifvt+vtZC8NBoNEhMT0ahRI4SGhpa5nd2uwNy51YTHTUiw4tZb86/83WQy4eTJkzh58iRMpsBbeEWVj76MgRIOB3DsmBbffhuON9+Mw9ChdbBlC4NefWXs2DysWBFW4uPnz2swfHgdHDhQ+vHB369vRL728ccfY9q0acLtb7vtNoz3JoG6CsjOzkbv3r2RnZ0t1F6lUmHJkiWIjo6WubLL2tZoi2m3T8OJsSdw6vFT+Kz3ZxjQaABCtWU/tioPeREHgdi9HrerJv0nHPqnn4CoKGDDBnkKI6+1bi22MD01VYP0dN+GnzaIaoCvB32NPQ/vwe31b/e4fXxMDHRB/ltEk54H5PHjSYVjs1qQXBBxOdDXLfA7LUP23I033ojY2FiExzdGTLja+w5L0CisEWKCYsreoD4A0fz9tOI3Gx1GLD+7HMM2DkPfNX0x6+gsXDRdFBzkanqdFjVq1IBCUsrSHxFRRVdY6EDfvkbMnRsu3Ed2tgoPP5yIzMx/XlvVajUaNmwo601aytO1rn1duKDG8uUReOaZWujSpRGGDq2LTz6pjl27guFwKLBuXWAuvZMkBR55JBj79rlw442+Ozd56pQW3bpp8fTTRlgs/r2mXb++Bm++acCxYxps3WrBww8bERMjFnjsS0ajEkuXBqNPHx1q1HBgzBgjtm2zwOViQBhRoHp146vFbm8Z2xKRes9DNomIKiqVSsKQIUbUqGHDY4+l45dfjuGzz5LRvXs+1OrSj2Xy8/NL3YeoMikocGHuXPF5i/37m5CY6Ltzw0REVPkE5plJIiIiIiIiIiIiIiKiCkKSFHjuOfEJ0Dk5KnzyCUMkKDAMHDgQe/fuRePGjYX7WLVqFb7++msZqyrKm+Cyf7v77ruhVgfWRJtmzZqhZcuWQm3Xrl0rczWla1atWbHb5+6Z6+dKyBdUKhVq166Nxo0bIzw8vNT9f/wxDOnp4s+p++/PgLKYNb0WiwWnT5/G8ePHUVBQ9K7dRHIpLgTP4QBOnNDiu+/CMWlSHO65pw46dGiCQYPq4+WXa2LJkigcOKDH5s2BtxitMnjjjWx89lnp7/s5OSrcf38SNm0qGlb5N5VKhXr16kGSOF2KfGvVqlV4+umnhdsnJCRg4cKFUCgUMlZVudhsNgwYMAAnTpwQ7uOdd97BjTfeKGNVJasTUQejrx+NFYNXIOu5LPwx8g+83OVldKjZAZIiAF+TWs/yuEmUO6PoRqMRuPVWYOlSGYoib7VrJx6es22bTcZKSnZd7HVYNXQVNo3chBtrl/35qdWGoXb1UKjVKh9Wd7XUvCCYzDz+qyicDhuSjdXgcFwOA7O7BH52MoSCde/e/cqfq8XXR1iIb8LsFAoFboz14D1OBaC24GAlhIL9W7IxGR8f+hg9VvfAg5sexI/nfoTZIXY+XKNWo3ZsOCS1DD8QIqJKwGaz4YcfzmHdupLPh5RVaqoGjz6aCJNJQlBQEOrXrw9lcSdrKyiD4Z/vkckk4bffQvD223Ho27c+evRoiFdfrYE1a8KQn1/0mHLzZh2czsC9wVNSkhobNwbh/fcLodP5pk6nU4EPPzSgVSs7tm8Xv1mWKElSoEOHIMyYYcD58yr88IMZd99diOBgp99rKc2lS2rMmGFAx45BaNTIhokTjThxwj+fqYiobC4ZL+HApQPFPvbGTW/4uRoiovL34otB+Omn43j44QzExnoWpu92u5GXl+ejyogCz2efmZCfL/5Zedy4yvM5m4iI/CMAZ5QQERERERERERERERFVLIMH61CvnlW4/SefaPx+Z2WiktSuXRt//PEH2rRpI9zHU089hcLCQhmrulpUVJQs/dx9992y9CO3wYMHC7Xbu3cvnE7/LoDo3aB3sdvXnvZ/QBn5jlKpRM2aNdGkSRNERUUVG1LidAJz5lQTHiM21oY+fa49WdRmsyE5ORnHjh3jxFLyiaCgIJw5o8H334fj7bfjMGxYEjp2bIKBA+vjpZdqYvHiKOzfr4fVWnS6zZ49nLwpt1mzcvDKK2UPAjWbJYwdm4CVK8OLPCZJEgPByC927NiBwYMHCx+TabVafPPNN4iMjJS5ssrD7XZj+PDh+P3334X7GDhwIJ555hkZqyo7laTCDbVvwGvdXsPW+7ciY1wGlt21DA+0egC1QmuVS01FtFgIqE0eNYlxXiz+AZcLGDKEwWABoH17DRQKt1DbHTv8e86qc+3O+O2+37D6ntVoFduq1P21Ki3UIdWRUE3rt/d6t9uN5Pww2Kzi5wPJP9xOB1KM0bBa/wlicLg8W9wIANB5X0u3bt2u/FkhSagRXxN6nW+CwbrEdfGsQZLgQBfKvqsbbmy7tA3jd4xHt1Xd8OquV7Encw/c7rK9NimVSiRU10IVLH7ugYioMjGZTDhx4gSaNTNh0qTzsvR5+LAOe/ZEV9pzKH/+GYGRI5Nwww2N8NhjCVi0KApnz5b+XnzxogZ79wb2DZ4kSYGnnw7G7t0OtGvnu1qPHtXihhs0GD/eCLtd7POFt1QqBfr00WHJkmCkpyswb14hunc3QaUKvGvtJ05o8dZbBjRooEH79mZ8+GEhMjIEjkWJSFbPr3u+2O1h2jD0adjHz9UQEZW/yEg91Grxa90ZGcXcNISoEnI43Jg2TSPcvlMnM9q3D5KxIiIiqgoq31laIiIiIiIiIiIiIiIiP1MqFXjmGfEJvBcuqDF7dmBPJqeqJTIyEqtWrUJSktiKwIsXL+Kzzz6Tuap/REdHe92HXq9Hx44dZahGfrfccotQO5PJhCNHjshczbWNum5UsdtPZp/0ax3kH5IkIS4uDo0bN0a1atWuWhi2dm0okpPFFzPfd18m1OqyLSKy2+1ISUnB0aNHkZ2dLTwm0X9JkoT33ovHhAk1sWhRFPbuDYbFUrapNQcPik/+pKJWrszFo4+Gwe0uGkJ4LU6nAhMn1sScOdH4O1tAoVCgbt26UKlUPqiU6B9HjhzB7bff7lU47qefforrr79exqoqn7Fjx2LJkiXC7Zs2bYq5c+fKWJF3InWRGNRkEGb1m4XkJ5Nx9NGjmHrbVPSu3xt6tb58igrKA5os86hJNes1Qgjc7svBYGsZHFyewsKUqFPHVvqOxdi92/9TjRUKBW6rdxt2PrQTSwctRcOohsXup1fr0bRaUwBAUGQSakf7L6jV6XQiuSAaTrvY95V8z+1yI80UAaPp6vA2u9vucV+hYaFe1aJQKNCyZcurtklqHWrHRUGjUXvVd3E6xHSAWvKg3zjBgfIACGShFjoKsfzscgz/bTj6/NIHM4/MxAVTyQljCoUCtaOV0IYnChZKRFS55Ofn4/Tp01eCFXv1ysO4cR4kNRZDrXbh009z8PDDMXKUGJAUCj127gyGw+H58e2PP1aMMNhGjTTYsiUIb7xhhFbrm5Ash0PCO+8YcP31VuzfX77HwsHBEkaMCMbatXqkprrw3nuFuP76wLzmvn27Dk8/HYwaNST07GnC/PmFMJkCL8iMqCpYdrj48173tLjHz5UQEQWOiIiy36jpvywWCxwOBp9S5bd4sQkpKeLzQp55pnyClYmIqGJjKBgREREREREREREREZEMRo3SIz7e8wVlf/vgAzUcDl74p8BRvXp1LF++HGq12MLE9957DzabbxYDREVFed3HDTfcAI0mMANc2rRpg9BQscWmu3btkrmaa4sPjUewOrjIdqvTikOXDvm1FvIfSZJQvXp1NGrUCNWrV4dCIWH27GrC/UVGOnDnnTket3M4HEhLS8Phw4eRkZEBl4sLaMh7LVuKHc+dOBEEo5GTneWwZUsBhg0Lgd0uPq3po49i8e67sXC5gMTERGi14qGFRGWRnJyMHj16IDMzU7iP119/HaNGFR+4Spe99NJLmD59unD72rVr4+effxY+1vY1hUKBhtEN8Xj7x/Hj0B+R/Vw2NgzfgBdueAGtYlv5t5g2szzavbr53LV3cLuB/v0Bi8WLoshb110ndqyyb5/8gUVlJSkk3NX0Lhx85CDm9JuDWqG1rnp8cvfJ0Kr+eZ83xDREfKT/gsGsNhvOFUbD5RRIRSKfyzIHIaeg6Lkph6vsz4UWkS3wScdPMLjFYK9qqVOnDoKDi54/UekjkRCjg1Ip7++tXqVH2+i2ZW8gmv/iBlAg2PYv5wrPYdrhaej9S28sPLmw2H1qREgIrtbAu4GIiCqJrKwsnDtX9Ph7+PAsDB8u9pnUYHBiyZJ8jBkjHgRQEfTpEwylUuxa7K+/lt8xsaeUSgUmTjRgxw4HWrb03Wew/fuD0K6dCm+8YQyIa9zVq6vwzDPB2LFDh2PHbBg/3oi6dQMvzM1ul7BmjR4jRgQjNtaN//2vED/9ZIbTWf7fQ6KqYNGBRSi0F72pgwIKvH3z2+VQERFRYIiJ8S4cOCMjQ6ZKiALXRx+Jn8OtX9+KO+7QyVgNERFVFQwFIyIiIiIiIiIiIiIikoFGo8CTT4pPLD5zRoNFi0wyVkTkvVatWmHChAlCbdPT0/H999/LXNFlcoSCtWrl50X1HlAqlWjRooVQ21OnTslcTemaVmta7PYv9n7h50rI3yRJQrVq1dC0aRN88okNt9withJ42LBMBAWJL3hxuVxIT0/H0aNHkZ6eznAw8kqbNmLtHA4Ftm4tupCEPHP0qAkDBgShoMD7UITvv4+A21272PAFIjldvHgR3bt3R2pqqnAfTzzxBF566SUZq6p83nvvPbz55pvC7atVq4a1a9eiZs2aMlblW1qVFt2SuuHt7m9j98O7kf5sOhYOXIjhLYcj1hDr28Frbwb+z95dx1dd/X8Af93OJevBRmx0N0hIl4kYgIIIdkvYHYiAoghSKqCCwBdQFGkQDFJAOkYN2GBdN3bz94c/cxvbzv3c2PZ6Ph4+HvL5fM75vBnb7ifOeZ2I4xU+PLroXPkHWSzADTd4UBR5qk0bsWvutDQVrlzxb/ipUq7EfW3uw+nHT+O74d9hev/p+O2B3/Box0dLHBse1wQRIb4LATeZi5FmCoXbxUn8gSTfDFzJL32fQlb+tWaXqC74tPun+PL6L3F93PWoHe/Z50dycnKZ+zShCUiIUEAmk3l0jv/qEduj4gcbAYjm6BYItvsPu8uOd39/F2cK/v1sKypUhdC4JtKchIioiktPT0d6enqZ+8ePv4JBg/Iq1WdUlB3r15tx662hnhVXBURFqdGihUWo7Z49BphMVWtBgBYt1Ni7V4OXXiqCUumdZ+bFxXK88ooRXbtacexY4ARwNWyoxjvvGHHqlBq//mrFgw8WITJSfHEvbyksVODrrw0YMkSH2rUdePTRIuzZY4XbzXsLIm95a0fpzxfbxbZDsDYwFxIgIvIFuVwOnU48sCgvL0+6YogC0LZtVuzfrxVu//jjDsjl0j7/JSKimoGhYERERERERERERERERBJ55BE9atUSHxD+3nsKuDiBkALMxIkTERsbK9R24cKF0hbz/yIiIiCXe/aqs0WLFhJV4x2i9V28eFHiSso3OHlwqds3ndnk40rIn/r1C8HmzUH49ddC3HhjAeTyin2eBQU5ceedOZLU4HK5kJmZiePHjyM9PZ3hYCSkWzfxgZx79jglrKTmKS4uxtdf5yEjQ+VxXyqVC198UYhWrTiJh7wrOzsb/fr1Q0pKinAf9957Lz744AMJq6p+5syZg4kTJwq3Dw0NxcaNG9GwYUMJq/K9KEMURrQYgUW3LELaM2n4/aHfMbXfVPSr3w8ahWiSyzV0/KjCh8YUnK3YgVu2ACtXChZEnurUSTx0c+dOm4SViNMoNbih4Q14psszaBvbtszjouMbIMQofl1XWXlFNmRaxCfNkbTMFjsu5Zf9798srPRwcwDoE9cHS3stxbzu89AxquNfQV3x8fEe1RQXF3fN/YbIhqgdLu2w/h4xlQgFA4AgwRNJFAr2p/1Z+//6/1CjBpFxZQeqERHVJKmpqcjOzr7mMXI58NZbl9GxY1GF+qxf34rt2+247jrRD4Gqp2dPseAqi0WOTZsq9nUNJCqVDG++acTOnXY0aeK90K69e3Vo316JqVOLAupdt1wuQ5cuWsyZY0RamhJr1lgwbJgJBkPgPce9ckWF2bON6NRJi8aNbXj55SKcORMY92FE1cXlgss4nlV6CP47fd7xcTVERIEnKipKuK3T6YTJxAW0qPqaOlV8/FFEhAPjxvH9ARERiWEoGBERERERERERERERkUQMBjkeftgq3P7oUS3WrBFboZrIW/R6PSZMmCDUduvWrbBYpP+eVqlU5U6mLE9ycmBPKBQNLLh06ZLElZRvbNuxpW4/lX3Kx5VQIOjSJQhr1gRj/34T7rwzDyrVtQfGDR+ejaAgacO73G43srOzcezYMVy6dAlOZ+BN8KHA1aCBDpGRdqG2Bw6IB23UdA6HA2fOnMGwYTl4/fXLUCjEJw/KZG7MmpWPm28Ola5AolLk5+ejf//+OHLkiHAfw4YNw4IFC/4KHKGSFi9ejEceeUS4vcFgwNq1a9G6dWvpigoAMpkMLaNbYkLXCdh4z0bkPJuD9SPX45nOz6BZRFNpTtJhLmAs//5Cp3PCYMuveL+jRnlQFHmiUydNhcN7/2vPnqoVuCuTKxAfHwe9zguBeWXIyHcjz8zf5/5mKy7GhYIQuN1lf6/fVu82tI34O1ROIVPgpoSb8E2/bzCjyww0D29eok3t2rU9qismJqbcY0JimyA61POA3D/VMdZBXWPdijcwCp5I4qyKOsY6AACDToO42gmQebgwABFRVedyuXDmzBkUFFQshVGtdmPGjFQ0bHjtdzNt2pjx888yNG6sl6LMKmPQIPHndxs2BE7YVWW1b6/B/v0qPPNMkUfP3a7FYlFg0iQjevSwIiUl8MKslEoZbrxRhxUrDLhyRYbPPjOjb18zlMrA+3c9dUqDt94yIilJjc6dLfjwQxOys/meg8hTkzZNKnV7mDYM/Rr083E1RESBJygoyKMFGjMyMiSshihwnDhhw4YN4qFe48ZZodPxGScREYnhJwgREREREREREREREZGEnn5ah6Ag8UG5777LyYMUeO655x6oVJWflGixWLBjxw4vVATUq1fPo/aehop5W2xsrFC7y5cvS1xJ+WoH14ZeVXLiULGzGCezTvq8HgoMrVoZ8fXXoTh2rBhjxuRBpysZIqDTuXD33dlerSMvLw/795/AW2/loKDA4dVzUfXRrJlYyOuRI2qJK6kZXC4XUlJS4HL98Xti6NBcfPhhKrRasfCR117Lxf33h0lZIlEJRUVFGDRoEPbv3y/cx6BBg7BkyRIoFAwULMvy5ctx3333XTPY5Vo0Gg2+/fZbdO3aVeLKAo9epceApAGYPmA6jqTegEvTgc+/Ae46DNQyC3YqcwMPtQVCz1/zsPDg4sr1azYDM2cKFkWeCAqSo0EDscn5Bw5UveHGcpUeCTEhQs8zRF3O18BkEQuYJc857TZcKIwoNxhaq9Di0+6fYkH3BXi/8/vYOGgj3u7wNhoENyizTUxMDJRKpXBtQUFBFTouIi4ZoUHShdn1iO1R8YNFTyvht3y/+H7oFNkJarUKdWJrQa70XbAfEVEgcrlcOH36dKUXXwkKcuGTTy4gNrb0a7++fQuxfbsasbE17/dsr15G4fe4O3ZoJa7Gt7RaOaZPN+LHH4uRlFTJ+7hK+OUXHdq0UWDWLBNcrsAL3AIAo1GOMWP02LRJj4sXnXjvvSK0bSu+8Jc37d6tw1NPGRAbK8OgQWZ88YUJFkvVCm0mCgQulwurTqwqdd+YNmN8XA0RUeAKDg4Wbmsymf5630tUnUydaoPLJTamV6t14amnqva9JBER+VfVe0tPREREREREREREREQUwMLDFbjvvsoNzv+n3bt12LYtMAcdU80VGRmJ3r17C7XdvXu3xNX8oX79+h61j4mJkagS7xANBSssLJS4koppEtGk1O2fHfjMx5VQoElK0uGzz0Jx8qQNjz6a+68JV8OG5SAszPur269aFYaXXw5HvXrAs8/mIjNTLAiBao5WrcQC5FJStCgsZPhcZfwZCOZw/Pvr1rNnIRYsOIeQkMp9PR9+OBevvBIuZYlEJVgsFtxwww3YuXOncB+9evXCypUrfRpUU9V8++23GDlyZLnBLmVRqVRYsWIF+vTpI3FlVcCCBYgvBO49CCxdCWRMBfbOA97eAvQ8Dygr8yU1ZgJjuwLRv5d5SLhB4BnItGmVb0OSEL3OOXSoav6+UhqiUDdKA4XCN8Ol3W43UgtCUGz1XsgClc7ldCLVFIFiW8Xu95RyJTpFdUK/+H6I0kWVe7xCoRB+VgMAWm3FJn7J5HLE106EQS9NSEuPmEqEgolmnkl0C9Qvvh/e7fAulEolEqN0UOp5XU9ENZvdbsfJkydht4ulL0ZFOTBnzgUEB//7F/WIEXn44QcDgoLEwy6rMrVajs6dxZKTjx/X4tKlqv8Ot1s3LX7/XYVHHy2CTOad0K6iIgUee8yA/v0tSE0N7NDcmBglJk404rfftDh+3IZnny1CvXqB9w7Bbpdj/Xo9Ro0yICbGjREjTFi/3gynMzCD14gCzcLfF8LqKPk7XC6T483r3/RDRUREgcnTsVRZWVkSVUIUGDIyHFi6tORCmRV1110WREfXzPtvIiKSBkPBiIiIiIiIiIiIiIiIJDZpkhZarfjKd++8w1XzKPCIhoLt379f4kr+4EkomEajCfgAhqCgIKF2Fot4KKEnBiUNKnX7hjMbfFwJBao6dbT4+OMwnDnjxKRJuYiOtmP0aO8PCLXbZfj880gAQE6OEu+9F4YGDRR47LHcajGBi7yjfXuxdk6nDDt3mqQtppo7f/48bGUEN7RqZcHixWcRF1exSXhDh+Zj5swQKcsjKqG4uBg333wztm/fLtxHly5dsGbNGuh0Ogkrq17Wr1+PO+64o0RgYEUpFAp8+eWXuPHGGyWurArYsAHIyfnXJrkbaJ8GvPAT8ONCIGcKsGYJ8NhuIDm7An0GpQNjegB1t5W6u5auqPJ1pqYCR45Uvh15rF07sXbp6SqkpVXN8FNNWF0k1FJAJpP55HxOpxMXimrBYWMwmK+4XW6kmUNhMnv3a96gQQPhthpNxUO+ZAo1EmIjoFGrhc/3p7YRbWFQGip2sELwJBL8ahhadyimdpoKjVKDxAgFNKEJnndKRFSFWa1WnDp1Sjgk+U/16xfj449TodH88d5x/PgcLF4cDJWqZk8l69VLLKTK7Zbhu+/EAsUCjV4vx8cfG7FpUzESE70XgLVlix4tW8rw2WcmuN2BH17VuLEa775rREqKCj//bMUDDxQhIiLw7oMKChRYutSAQYP0qFPHgccfL8K+fbz/ILqWyT9PLnV75/jO0KvFgz6IiKobpVIJtQfPpHL+836CqKr76CMrLBaxe2iZzI2JExkIRkREnqnZT3KJiIiIiIiIiIiIiIi8IC5OiREjxAeFb96s58BdCjhdunQRanf69GmJK/mDJ6FgWq1Wwkq8Q7RGf4WCjWs7rtTtJ7NP+rgSCnSRkWpMmRKGCxdkSE72/iD7774LxdWr/w4BLCxUYNasMDRsqMZ99+UhJcU/PzcUuK67TvxzYvduzyZr1iQXL16E2Xzta+b69W344ouzaNjw2j+nPXoUYcmSICgUHApF3mOz2XDbbbdh06ZNwn20bdsW69atg9FolLCy6mXLli249dZbywwMLI9MJsOnn36KO+64Q+LKqohXXin3kCAbcOMpYOY64NRM4OwMYM53QFB+MlDWHG1tAXD3QKDelhK7aqkKxGqdNEmsHXmkUyfR1B9g507vhQV4myGqEeLCfXedYLPZkWqKhMsZeAEC1VGmRYe8Qu9/fzZt2lS4bWU/1xS6MCRG66FQiP/MAoBKrkLX6K4VO1j0VsazEnFv8r14re1rUMgUqB0uhz6yoWcdEhFVcYWFhUhJSZEsQKlNGzOmTLmI6dNzMG1aOJ+dALjpJvFnf1u2ePjBF2D69NHi8GEl7rtPIOy5gvLzlRg71oAbbzTjypWqcX0sl8tw3XVazJ1rRFqaAt98Y8awYSbo9YH37Dc9XYWPPzaiQwcNGjcuxiuvFOHs2ap770bkDefzziMlJ6XUfVP6TfFxNUREgS8iIkK4rcPhgNXKxdmoerBYXJg3r+KLPfxX//4WNG0q3p6IiAhgKBgREREREREREREREZFXPP+8Gkql+ID9t9+uGoOiqeZISkoSanfx4kWJK/lDs2bNhNtqNIE/4Ea0Rn8NrksMTYROqSux3eqw4kzOGT9URIFOo1EiISEBTZo0QWhoqFfO4XQCn35a9oBVi0WOzz8PRdOmGtx1Vx5+/917E5+oaqlXT4eoKLtQ24MHq9fEQG+5cuUK8vPzK3RsVJQDCxeeQ4cOpf+Mtmhhxpo1Wmg0HAZF3uNwOHDHHXdg7dq1wn00b94cGzduREhIiISVVS/bt2/HTTfd5NE17ezZszF69GgJq6pijh2rdJN6ecCDvwFtNmwB5u8GTJGlH6i0ATffB8j//bwiQpEjUCiA/fvF2pFHOnRQQy4Xe161d69L4mp8Kyy2CSJDVOUfKBGzpRiXTeFwu6QJ9KDS5ZlkyMj3zdfYk2dRIp9t6pDaSIxUQiaTCZ8XAHrE9KjYgaKPoz34sXqy+ZN4psUzkMlkiA5VISS2iXhnRETVQE5ODi5cuCB5v8OH6/DMM+GS91tVNWumR0JC5Rdnioy0IzjYBperal8X/1dQkByffmrE999bEBcn9ky0ItauNaB5c2DJEvGFtfxBpZLh5pv1WLHCgKtXZViwwITevc0ejQPwlpMnNXjzTSOSklTo0sWCjz4qQnZ24AWZEfnahA0TSt0eqY9Et4RuPq6GiCjwhYaGevQ86urVqxJWQ+Q/n31mQWam+MPPiRM5foGIiDzHTxMiIiIiIiIiIiIiIiIvSEpS49ZbxQc1r1mjx7FjlR+QTuQtsbGxUKvVlW5XWFgIs1n6Af7NmzcXDs6y2QJ/hWzRGv0ZeNY4onGp2z898KmPK6GqRKFQoHbt2mjatClq1arl8WTnf9q4MQSpqeX/TNjtcixbFoq2bQ246aYC7NxZKFkNVHW1aCEWSHP4cOAHT/pbdnY2srKyKtUmKMiFOXMuoH//fweJ1a1bjB9+kCMkRClliUT/4nQ6MWLECHz77bfCfTRs2BCbN29GrVq1JKysevnll19www03eHTv8P777+Ohhx6SsKoqxmYDisRDTrMtBiCtI7BgF5BdRih0aCqgzfvXpkhZ5X6n/yUzU6wdecRolCM5Wex+c//+qj/kOCo+GSFBvrteyy8qRoZZ77Pz1TQmiw2XC3z379mqVSvhtiaTSaidPiIZtWt59rPXLaaCk9xFH5cJzIuTQYaX27yMcY3GQSaTISxIg4i4ZMECiIiqh4yMDKSlpUneb3x8PKKioiTvt6rr1s1S7jEajQvXXVeICRPSsWrVaWzZchLPPHMVRR7cdwWyIUN0OHJEjuHDxa5bKiI7W4mRI/UYNsxUJcOqjEY5xo41YMsWPVJTnZgypQht2vhnsZ5rcbtl2LVLhyefNCIuTobBg81YssQMi6V6BdoRVYTL5cL3p78vdd+4tuN8XA0RUdUgl8thNBqF2xcVFVW7IF2qeVwuN2bOFB+D0Lq1Fb17ayWsiIiIaqqq/4aeiIiIiIiIiIiIiIgoQL30kgoymdgqwS6XDJMnOySuiMgzooO+vBEKplKp0KJFC6G2VmvgDdD/L9EadTqdxJVU3MCkgaVu35CywceVUFUkl8sRGxuLJk2aIDIy0uNwMLcbmD8/slJtXC4ZvvsuGF27BuGOO/KQk5PjUQ1UtbVsWbHrsJAQB7p2LcS4cZn44INUfPzxBTgcvIYrS35+PtLT04XaqtVuTJ16ESNGZAMAIiLs+P57J2rX5mBa8h6n04l77rkHK1asEO6jXr162LJlC6KjoyWsrHrZvXs3Bg0a5NHE6rfeegtPP/20hFVVQWvXetQ81/T/9xK59YHPfik9GMyuA2z/vi+McF4VO6HLBRw8KNaWPFLR65z/OnRIIPknwMjkcsTH1YZe57sgqcwCF3JN0oUf0x+KrcVILQiF2y327LWy5HI52jeNR3x8vFD7K1euCJ87JKYJYsLEJ6BFaCPQPKx5+QeKfgxXcg0BpUyJ9zq+hzvq3wEAMOi1iKudCJmc0xqIqOa6dOkSMjIyJO83MTERYWFhkvdbHfTrV/o1ROPGFowZk4l5887hl1+OY86cCxg9OhvJycX485F1bm6uDyv1rbAwBZYsMeB//zMjMtLutfOsXGlAs2YurF4t/ftDX4mNVWLSJCP279fi6NFiPPtsEerWDbxFiWw2Odat02PkSD1iYty4+24TNmywwOn0zXU0kb99su8TFDtLLsYnl8nxSs9X/FAREVHVEBMTI9zW7XYjLy9PumKI/GDNGgtOnhR/j/D0005IuCYiERHVYHx7RkRERERERERERERE5CUtW6oxcGD5K02XZdkyHVJTvTfgmqiy9Hq9UDtvhXC1b99eqF1xcXHAB7aIBiKI/htJYWybsaVuP5513MeVUFUml8sRHR2NJk2aIDo6GnLBScHbtwfh9GnxoKD4eCvS0tJw7NgxZGZmciXbGqhDh5IjNIOCnOjcuQj33ZeJ6dNTsW7dSfz00wnMnXsBTz55FX37FiAuzo6CggI/VBz4zGYzLl686FEfcjnw3HPpmDAhHatWWdGsmf8+96j6c7lcGDNmDJYuXSrcR+3atbFlyxbUrl1bwsqql3379mHAgAEoLCwU7uOll17Ciy++KGFVVdS6dcJN3QBy8v+R6mKKAtLblDzQoQEc/77GirKnCZ8Xq1aJtyVh7duLTf6+elWFixer/nMquUqHhNhaUKt9F3KWVqBBkaXqf+0ChcNWjAtFteB0On1yPplMhoQIBTRhddG1a1ehPtLSPPhdCaBWbEOEB4lPQusR06P8g0Q/ioMrfqhWocVHXT/CwDp/BMtr1GokxNaCTFHJZDEiomrC5XLh3Llzkk+Yl8lkSEpKQlBQkKT9Vic33GCAQuFGRIQdN92Ui8mTL2LbtuNYseIMnnnmKrp0MUGjKf262RsL4QSa227T4+hROW691eS1c1y9qsLQoXrcfbcJeXm+ua7zlqZNNXj3XSPOnFHhp5+sGDfOhFq1Au89ZEGBAl99ZcDAgTokJDjw+ONF2L+/ZFgSUXUybee0Urd3T+gOrZILjhARlUWj0UClEn9+mpWVJWE1RL43fbp4olft2jaMGMFxDEREJA2GghEREREREREREREREXnRiy+Kv46x2+V4993AW1GYai7RcC+12jsT+9q1ayfUzu12IyMjQ+JqpJWeni7Uzp+TfBqENyh18LTFYcGFvAt+qIiqMrlcjsjISDRt2hRxcXFQKpUVbut2A/PnRwqfOyjIiTvvzAHwx8S8q1ev4sSJE7h69SrDwWqQ667TolOnIowZk4mpU1Pxww+n8MsvxzF//nk8/fRV9O9fgNq17aWu7ioa7Fid2Ww2nDt3TpK+ZDJg0iQlunfnxFbyHrfbjXHjxuGLL74Q7iMmJgZbt25FvXr1JKysejlw4AD69++P/Px84T7Gjx+PN998U8KqqrDUVOGmRdpasBYr/r0x4aeSBypLBp9HWi8Jnxfnz4u3JWGdOlX82vq/du2qHsFWSn04EqN0UCgU5R8sAbfbjdT8YBRbOeHeUy6nA6mmSNhsvvtejAuTwxjVCADQv39/oT5SUlI8qkEmlyO2dl0Y9WLBYD1iywkFMwMQzfQPrdhhQaogzOs2D91jugMAlEoFEqP1UOjCBE9MRFS12e0unDiRApNJ2tAlhUKBhg0bQqtl0Mm1RESo8f33Kdi69STefvsybrghHxERFQumcjqdAb/wjBQiIxVYtcqAL74wIzzce3/fr74yoHlzJ9atE19oK1DI5TJ066bF/PkGpKcrsGqVGUOHmqDTBd57hbQ0FT7+2Ih27TRo0qQYr71WhPPnq8f9HtGfTmWdwvm886Xum9pvqm+LISKqgsLDw4Xb2mw22O28tqCqae/eYvz8s064/aOP2qFUioeKERER/RNDwYiIiIiIiIiIiIiIiLzouuu06NZNfBDzokVaZGRU/4HlVDWITk4xGAwSV/KHrl27CrdNS0uTsBLpiYaC1a5dW+JKKqdRrUalbv/0wKc+roSqk/DwcDRu3Bh16tSp0Gq0e/YYcOiQ+KqbI0Zkw2j89yQdl8uFzMxMHD9+HOnp6QwHqwESErRYsOA8nnnmKgYOLECdOrZSA8BKY7FU/QlsUnI4HEhJSYHb7Zakv1q1aiEyUjz4j6g8brcbDz74ID7//HPhPiIjI7FlyxYkJydLWFn18vvvv6Nv377Izc0V7uPRRx/FtGnTJKyqivPg8+dKcP1/b2j6PyDoSskD5SWfT8SYPQgAljgAgSqmfXs1FAqxz+V9+6rPdbAmNAEJEQrIKnqR5yGXy4XzhbXgsHEBAFFulxuXTeEwW3wXrhYZokJYXJO//jxgwAChflJSUoTD9v8kU6hQJy4SGk3lw/ebhDZBLU2tsg8Qzc6XAzCWf1i4Jhyf9/gcbSLaAABkMhkSIpRQh/j3ORYRkb8UFDgwaJAJr7wSAYkelwD4Y4GWRo0aVegZKgGNGikr/Lzvvzy5l61q7r5bj8OHgYEDzV47x+XLagwerMP995tQVFQ97jlUKhluvVWPlSsNuHoVmD/fhF69zML3Yt504oQGr79uRP36SnTtasHMmSbk5FQsJI8okE3YNKHU7THGGHSI7+DjaoiIqp5ata7xLKkCLl68KlElRL713nviY3WDg514+GGGdBMRkXQYCkZERERERERERERERORlL7wg3tZsVmD6dM8mjBFJoaCgQCjkRCaTQa8XD+e5lqZNmwqHYKWkpEhcjbRE60tMTJS4ksrp36B/qdvXnV7n40qoOgoJCUGjRo2QmJgItbrsSdDz54uHBel0LowcmV3mfrfbjezsbBw7dgyXLl2C08mJMdWZUqkUaudwMND1Ty6XCykpKZIF6QUFBSE2NlaSvohK43a78cgjj2D+/PnCfYSFhWHTpk1o2rSphJVVL4cPH0bfvn2Rk5Mj3MfYsWMxc+ZMCauqBjxIE7hqqPv3H+puA4aOBEqbHC8reY6YwrPC5wWDVv3CYJAjOVksmGr//uo17NgQ2RDx4b77O9ntdlwwRcDF60UhmWY98ot8FwgWYtQiKv7fAZ916tRBkyZNymhRNqfTiSNHjnhck0IbisQYQ6XvVeQyObrHdC/7gFJyICskHOXORojTx2Fxz8VoFPp3kHydWnLoIxieSkQ1U1paMXr2tGHLliCsXBmOOXOkCT7X6/VISkqCXF69rte8KSQkRLhtQUGBhJUEvrg4Jdau1WHePBOCg733THzBAgNatHBg27bq9W48KEiOceMM2LpVj9RUJ95914RWrQLv7+h2y7Bzpw5PPGFAbKwMQ4aYsXSpGVYr792p6nG5XFifsr7UfQ+3f9jH1RARVU1yubzSi0DabDKsXx+MBx9MxLBh4V6qjMh7Llyw45tvdMLtR42yICREIWFFRERU04mNXiQiIiIiIiIiIiIiIqIKGzBAi9atrTh4UGwVsHnztHjxRSeCgzlggPzn9OnTQu2CgoIgE11qvQL69++Pzz77rNLtpJiI6U2HDx8WaufvULCxbcZi6q9TS2w/lnXMD9VQdRUUFISgoCCYzWakpaXBav178syhQzrs3m0U7vv223MQFlaxSU15eXnIy8tDcHAw4uLihAOkKHBpNBqhgC+32w2Hw1HjvydcLhfOnDkjWUiaTqfz++ccVX+PP/445syZI9w+JCQEGzduRKtWrSSsqno5duwY+vTpg6ysLOE+7r77bsybN8+r9xlVklZ85fEMfZ0//ifmADD8ZkBZRmCU+99fc4XCjbDCS8LnhZcCpKl8rVo5cOKEptLtfv9d5YVq/Cs0tglszpPIyLP75HwWSzFSZeEwqgIvBCCQOdwqZBX4LkxNr9MgPj4eslKCVfr374/jx49Xus9t27ahffv2HtemDopHYkQKzl51wl2JQMgesT3wzYVvSt95TrCY+Gvvrh9UH/O6z0O0LvqvbTFhSgTHNBY8IRFR1XbsmBlDhihw/vzf18GzZ0cjKsqB227LFe43JCQEderUkaLEGiU0NBRpaWlCbf/5TLqmkMtluP9+A/r3t2PMmGJs2+ad+7nz59Xo29eNRx4pwnvv6aHTVa+gu7g4JZ59VolnnwWOHSvGwoV2rFihxvnzZS+E4g82mxw//KDHDz8AwcFO3HSTCaNGydG7txYKBZ/HUOD7YNcHsLtK3ucrZAo8d91zfqiIiKhqioqKwrlz5T84On1ag1WrwvD996HIy/v7HfnevUXo0EF8/AaRr02bVgyHQ+x7Vql0YcKEyr93ISIiupaaPfqQiIiIiIiIiIiIiIjIB+RyGZ57zoW77hJrn5enxEcfFeGllzhIhvxHNESrXr16ElfybwMGDBAKBTt48KD0xUjE7Xbj0KFDQm0bNmwocTWV0yiiETQKDYqdxf/abrabcangEmoH1/ZTZVQd6fV6JCUlwWq1Ii0tDWazGfPnRwr3p1K5MHp05QNKCgoKUFBQAKPRiLi4OKjVgTV5h8QZDAaYTCahtvn5+ahVq5bEFVUtFy5cQHFxcfkHVoBKpfL6NQXRU089hVmzZgm3NxqNWLdunSRhH9XViRMn0Lt3b2RmZgr3cccdd2DhwoWQlxLSUuNFRAg3vaiNAK5/BejxNiB3lX2gwgmEpwA5SQCAsGA7FLnXOL48UVHibckj7dq5sWxZ5dtlZqpw4YIdiYnVKxwsMi4ZNucZ5BVKc+1SniJzMYrAifSV47tAMLVahYTYMMhVulL3Dx06FB9++GGl+928eTMmTpzoaXkAAF1EEuo4TiA1q+Jfly5RXaCUKeFw/6eNC8AFwUKuEQrWPKw5Zl83G2GasL+2hQdrUCu2geDJiIiqtp9+KsRtt2mRmVnyOurNN+MQEeFAz56Fle43IiICMTExUpRY48jlciiVSuFFAaxWK7QehDNXVYmJKmzerMTHH5vwwgtamEzSL2rlcsnw8cdGbNxYjM8/d6Nr1+r5dW7aVIP33tPg3Xfd+PlnKxYvdmL1ag1ycgJrumdBgQJffmnAl18CcXF2DBtWjHvvVaFNGwYeUOCasXtGqdt71+sNtZLv8YiIKspgMEChUMDpLLmwmskkx/r1IVi1KgyHDpUeGDt3rh0dOni7SiJp5Oc7sXhx6c+EK+KWWyxITDRIWBERERHAkTFEREREREREREREREQ+MGyYDg0bik8s/PhjDSwWDybaEnnoxx9/FGqXlJQkbSH/0bdvX6FAgJ9+uDTD2gABAABJREFU+qnUQWuB4Pfff0dOTo5Q2w4BMJquYa3Sg8k+3f+pjyuhmkKr1aJ+/fpITm6ITp0cCA8Xmyx+yy15iIoSn2heVFSEU6dO4ezZs7BarcL9UOAIDg4WbltUVCRhJVXPpUuXhAPV/kuhUCA5OZkBQORV48ePFwr3+JNer8f333+PLl26SFhV9XLy5En06tULV69eFe7jlltuwVdffQWFQvoJx9VC796VOtwNYF8c8NANwMSBrwPXv3ntQLA/tZv31/+GB1kqWeR/DB7sWXsS1qmT+CTzXbvsElYSGGRyOeLiE2DQc1J7TadQKJAYpYVSX3bQYvfu3YUCa7dt24bs7GxPyvuX4JjGiA2r+M+yUWVEu4h2JXecASB6C3uNULCeMT3/FQhm1GsRG18XMl7XE1ENtHJlHgYN0pcaCAYATqcMEybUwaFDlZt8HBsby0AwDxkM4hO2Rd/jVAdyuQxPPGHAgQNOdOni4X3hNZw6pUHPnhpMmlQEm83ttfP4m1wuQ48eWixYYMCVKwqsXGnGrbeaoNMF3tiAtDQVPvrIiLZtNWjWzIo33jDhwoXqd49IVduRq0dwqeBSqfum9Z/m42qIiKq+0NDQv/7f7QYOHtThlVfi0atXI7z2WnyZgWAAsGpVECyWwBybRfRfn3xiRUGB+DvISZMCK9yXiIiqB75VIyIiIiIiIiIiIiIi8gGFQobx48WDRq5eVWH+fLOEFRFVnMvlwqZNm4TaejsULDw8HD179qx0u4KCAuzZs8cLFXlu69atQu0iIiKEJqVKrV+DfqVu/+H0Dz6uhGoajUaNd98Nx7lzwGuv5SAmxlbhtgqFG2PGZEpSh9lsRkpKClJSUmA287O7KtNqtcJta3Iw3JUrV5CXlydJXzKZDElJSQwEI6+aNGkS3n//feH2Wq0W3377rdA1aU2RkpKC3r1748qVK8J9DBo0CMuWLYNSyQH1ZRo6tEKH5eiAmR2B1g8BHR4A5rYH7KpKhJi3/hxQ/HF8uM7Da50+fTxrT8Lat1dDqRSbVL93b+BNTJeCXKlBQmwENGq1v0shP5HJZEiopYAmNLHc4+65555K92+327F8+XLR8kpVK74xagVX/Hu2R2yPkhsPCZ7cACC27N2zjs/CqnOrAABajRp14iMhU5QehkNEVJ3NmpWLu+4Khsl07YnFVqscjz6aiPPnK/Z7PSEhAbVq1ZKixBotPDxcuG1NXxQAAJKT1fjpJy2mTCnyWoCVwyHD1KlGtG1bjP37xRfgqipUKhmGDtVj1SoD0tPdmDvXhOuvN0OhCLxQtGPHtHj1VQPq1VPiuussmDXLhNxchn6Q/03YNKHU7fFB8WgZ3dLH1RARVX1RUVHIzlZg0aJauOWWJNxzTwOsXh0Gi6X88KTcXCW++qrAB1USecbhcGPWLPFnl926WdChAxcdISIi6XHEHBERERERERERERERkY+MGaNH7doVDyj5rw8+UMPhCLwBv1T9bd68GZcvXxZq27ZtW4mrKWn06NFC7f73v/9JXIk0RCeIdurUSeJKxNzX+r5Stx/NPOrjSqimCg5W4tVXw3H2rAJTp+YgMbH8iUKDBuWjTh1pV7O3Wq04e/YsTp06xQliVZho+IzDIR4GW5WdPZuLrKwsyfpr0KABVCoGB5D3vPDCC5g6dapwe7VajZUrV6Jv374SVlW9nDlzBr169UJaWppwH3379sWqVaugZlDPtYWHA2UEWrpkwJZ6wIjbgLjxwBODgUMxgucxZAFNVgMAamk8mMwTGgow9NFv9Ho5GjYUm1B/4ED1/XdT6MKQGK2DQlH+hDaqfuLD5TBENazQsaNGjRI6x+zZs+F2S/t8Nya+PoIMFQs07hHzn1CwQgDHBE/cEOXORHh1/6vYlr4NiTFGKDQhgiciIqq6XnopB489FgaHo2LXT3l5Sjz0UF1kZZX9PEomk6FBgwYIDg6WqswazWAwCLe12WxwuapnYG5lKBQyTJpkxL59drRr572FEo4e1aJzZxVeeaWoxrwvDwlR4IEHDNi2TY8LF5x45x0TWrUKvMUo3G4Zfv1Vh8ceMyA2VoYbbzTh66/NsFr580G+53A5sOXcllL3PdHpCR9XQ0RUPSgUCnzxRQymTYvF2bOVX1Rr0SK+66XAt2SJGZcuib+HHD++ZtyjEBGR71XfN/NEREREREREREREREQBRqWS4amnxANHzp9X48svLRJWRFQxn3zyiXDb66+/XrpCynDbbbcJTdxYunRpwE3YSElJwe7du4XaDho0SOJqxDSLaga1ouRAKZPdhLQC8TAIosrS6RSYMCEcp0+r8MknuWjYsOzJMmPHZnqtDpvNhvPnz+P48ZPYu7fQa+ch79CWEa5SHrfbDbtd2qC5QPfbbya0bx+ERYtqSdJf3bp1hb/+RBXx8ssvY/LkycLtlUolli1bhsGDB0tYVfVy7tw59OrVC5cuXRLuo0ePHvj222/5+6CiEhL+9cdLwcBbPYCkJ4C+o4GlLYBisbzLf2s3FwBQS5kn3kejRhIUQp5o1cop1O7QITVcruo7wUUdUgeJkUrIZDJ/l0I+FBWqQmhskwof36BBA6FnXkeOHMH3339f6XbXIlMoUTsuClqNptxj6wbVRYLhH58VuwCI/SoAGlfssKd2PoWd2SmCJyEiqpocDhfuuy8Pb78dXum2ly+r8cgjiTCZSk73ksvlSE5Ohk6nk6JM+n+aCnyGlqWwkM97/9S0qQa7dmnw2msmqNXeefdmt8vx5ptGdOxYjCNHxBfiqori45V4/nkDDh7U4sgRG8aPL0JCQuB9DYqL5fj+ewOGD9cjJsaFUaNM2LzZUq3vIUmM3WnHudxzsDulfY8y5ecpcLhKLtqikqvwTJdnJD0XEVFN8uCD4sFev/xiwMmTZgmrIZKWy+XG+++LLxTSqFExbrqJ9+lEROQdDAUjIiIiIiIiIiIiIiLyoYcf1iEiouQgxIp67z0FB82ST+3duxfffPONUNsmTZogKipK2oJKYTQaMXTo0Eq3S09Px8qVK71QkbiZM2cKt73pppskrMQzyeHJpW7//ODnPq6ECFCp5HjooTAcO6bG4sW5aNXq3wNO+/TJR1JSsdfr2LRJi44dg9C3byE2b873+vlIGiKhk38qKCiQsJLAduaMBTfdpEJurhLTpsXivfdi4EnuZu3atWE0GqUrkOg/XnvtNbz11lvC7RUKBb766ivccsst0hVVzVy4cAG9evXCxYsXhfvo0qUL1q5dC71eL2Fl1dwjj8AuB1Y1AYaMABKfAl7uDZwLk/g89X4EIk4gQp4t3sfzz0tWDolp316sXVaWEqmp4s+2qgJ9RDJqh3OIdU0RGqRBZFzpzzGuZdKkSULne+GFF+BwSPszpNAEIzHGCKWy/OTHHrE9/vifPAB7BE9oANDg7z+OaTgGekXpn9cutwt9vuiDg+kHBU9GRFS1mEwO3HhjET7/PFS4j+PHdXjmmTqw2/8OKVWpVGjUqBHU6pILcpBngoKChNvm5eVJV0g1oFTK8OqrBuzaZUeLFmUv0uGpAwe06NBBicmTTXA6a95782bN1Jg2zYhz51T48UcrxowpQnh44N2j5ecr8cUXBvTrp0Nioh1PP12Egwe9/y6GAt/aU2uRMCMB9T+qj+B3gzHm2zHYdWkX3G7Pf55n7Z1V6vZ+9ftBKZciKZ+IqGbq0MGI1q3Fgr3cbhnmzuU1AAWurVut+P138cWJHn/cAbmci4wQEZF38I01ERERERERERERERGRD+n1cjzyiPgg6OPHNVi92iJhRURlczqdeOKJJ4TbDxw4UMJqrm3s2LFC7aZMmSJxJeKys7OxYMECobbt2rVDnTp1JK5IXJ96fUrdvvb0Wh9XQvQ3hUKOe+4Jw2+/abFqVR66dCkCAIwbl+X1c7vdwIIFkQCALVuC0K9fCK67rgjffJMHp9OD5CTyuuDgYOG2RUVFElYSuDIzbRg8WIa0tL8npX7xRQSee642bLbKD36Njo5GaGiohBUS/dvbb7+N119/Xbi9XC7HwoULcccdd0hYVfVy8eJF9OrVCxcuXBDuo3379li3bh0DAivhRNYJTGxyCbXHA7fdCfzQEHB5c4Rou3mIcmeItQ0JAW6+Wdp6qNI6dlQIt9250y5hJYEpJLYJYkI5Ybi6M+g1iItPgExe+V+YgwYNQtu2bSvd7siRIx6FwpdFFRSLulEqyMv5u3SP6f7H/6wHIPqj3B7A//94PN/qeTzT4hn8r+//oJaXHlTjcDnQ5dMuOJd7TvCERERVg81mw7x56Vi/Xvx50p9+/TUIr74aB7cb0Gq1SE5OhkIhfv1GZQsPDxduazaLBSNUd23aaLBvnwbPPlsEpdI7oV1WqxwvvGBAt25WnDpl88o5Ap1cLkPPnlp89pkR6ekKrFhhxi23mKDVBt47h0uX1Jgxw4g2bTRo3tyKt94qQmpq9b+vpJKyzdm4a+VduFJ0BQBgdVix8OBCdPm0C9rMbYNP9n6CgmKxBVd+S/sN6UXppe6b1n+acM1ERPSHkSPFxzsuX26AwxF41yhEADBtmvg9S2SkHffdp5OwGiIion9jKBgREREREREREREREZGPPf20DsHBTuH2U6ZwZTHyjTfffBO7du0Sbj9q1CgJq7m2nj17olOnTpVu99tvv2HZsmVeqKjyXn31VeEJJL78WlfE2Lalh7Qdzjjs40qISlIo5Lj11lD8+qsRv/6ah9atvT/xZNcuAw4f1v9r26+/GnHrraFo396KL7/MZThYgNJoNMJtrVbxgdFVhcnkwJAhdpw6VXLl3HXrQvHII4koKqr48KTw8HBERkZKWSLRv0yZMgUvvfSScHuZTIb58+fj7rvvlrCq6uXy5cvo1asXzp0TD/1o3bo1Nm7ciJCQEAkrq55MNhMWHlyIbp91Q5NZTTBt5zRkGHx08laLEOK6KNZ29GhpayEh7dqpoVSKXYPu3Vszrl1rxTVEWLD49SAFNo1ajYTYCMiV4v/Gzz//vFC7F154AYcOHRI+b1m04Q1Qp9a1r7/bR7SH6qAKOCF4EjmA9oBCpsDkDpMxImkEAKCOsQ6+uv4rKGWlh+lZnVa0nNMSGUWCgZJERAHObDbj9OnT6NcvH2PGZErS53ffheHEiQgkJSWVG/pI4tRqtfDX1+l0wuFwSFxR9aBWy/Duu0bs2FGMRo2KvXaeXbt0aNNGgRkzTHC5vBNAVhWo1TIMG6bH6tUGXLnixpw5JvToYYFcHnhfk6NHtXj5ZSPq1VOie3cLZs82IS9PfOwEVS0HrxxEka30BVV+v/o7HvnhEcRNj8MD3z2A/en7K9X3xE0TS92eGJKIJpFNKl0rERH929ixQdDrxT6zL19W45tvxEIfibzp2LFibNwoHur1wAPF0Ol4v05ERN7DTxkiIiIiIiIiIiIiIiIfCw1VYOxYi3D7vXt12LRJvD1RRXz99dd44403hNu3atUKrVu3lq6gCnjhhReE2o0fPx6FhYUSV1M5Bw4cwJw5c4TaGo1G3HvvvdIW5KGW0S2hlqtLbC+yFXHyJwWULl1C0bhxY9SpUwcqlcpr51mwoOyQo4MH9bjnnjA0a1aMuXNzYbfXjICFqkSpLH1Se3nsdu8HzvmTw+HCsGFm7N1bdvrM7t1GjBlTD1lZ5X8Ng4KCEBcXJ2WJRP8yffp0PPfccx71MXv2bNx3330SVVT9pKeno3fv3jhz5oxwH82bN8emTZsQFhYmYWXVi9vtxp7Le/Dgdw8idnosxnw7Br9c/MX3hehzcDpqR+XbyeXA5MnS10OVptPJ0aiRTajtgQM1Y/ixTC5HXHxdGPUlA1CpalMoFEiM1kKh8+zzZujQoWjevHml21mtVtx+++3Izc316PylCYpujLiwsq+/z5w6A+cPHoQutAY0IRrM6DwDNyTc8K9djcMa46t+iyCXlf47oshWhKazm6LAykmgRFS9FBQU4OzZs3C7/wjfeeqpqxgyJM+jPlUqF2bPzsHtt8dIUCGVR6cTnwTujc/z6qRLFy0OHFDhySeLvBZQZTYr8PTTBvTubcH589X7mWxFhIQo8OCDBmzfrsP58w689VYRWrYMvAUsXC4Zfv5Zh0cfNSA2VoabbjJj+XIziov5jqQ6c7jKD1I02U2Yv38+2s1rhw7zO+DT/Z/CZDNds02xoxg7LpT+nGp8l/FCtRIR0b+FhakwZEjpwY4V8fnnNeOZMlUtU6c64HaLLdCr07nwxBN8d0BERN7FKygiIiIiIiIiIiIiIiI/mDRJC51OfEDr5MmBt6ov/eHy5ct48sknkZkpzUrw/rBq1SqMGjXqrwksIh588EEJK6qYG2+8ES1atKh0u8uXL+Ohhx7yQkUVYzKZMHLkSDidYhMyR48ejeDgYImr8lz98Pqlbv/84Oc+roSofCEhIWjUqBESExOhVpcMtPPEwYM67NljLPe4kyd1eOihMDRsaMf06TmwWjnxJVBoteIDOW02saCNQOd0unDffQVYv778z58TJ3S4++76uHCh7J8trVaLxMREKUsk+pcPP/wQEyZM8LgPf14zBrqrV6+id+/eOHXqlHAfjRs3xpYtWxARESFhZdVHtjkbH+76EC3ntESnBZ0wb/88FNr8G268pd7+yjeaMAHQ66UvhoS0bi12H3r4sBouV814NiVTqFAnLgIajbT3CeQ/MpkMiZFKqEMSPO5LLpdj1qxZQm1PnTqFIUOGwGS69uR2EeHxjRERUvJ79sKFC3jooYfgsgneb6oAXT8dPun2Ca6Pu77Ebq1WjWHtbsSqO1ZBhtIn02VbstFsdjPYHNXzXomIap7s7Gykpqb+a5tcDrz55mV06iQ2Yd5odGLZsgI8/HC4FCVSBYSEhAi3LShg2GV5dDo5ZswwYuvWYtSr571rgO3b9WjVSo65c0015n6lPHXqqPDii0b8/rsWhw7Z8PTTRahTJ/Cuw6xWOb77To8779QjJsaFe+81YetWK/8dq6FIQ9mL6JRmX9o+jPtuHOLej8NjPzyGw1cPl3rc2z+9Dae75DMOtUKNRzs8KlQrERGVNG6ceNtNm4xISyuWrhgiD1296sDXX4sHRA8fbkZUlNgCc0RERBXFUDAiIiIiIiIiIiIiIiI/iIlR4u67zcLtt23TY9euwFvRlwC73Y6PPvoIDRo0wBtvvIG8vDx/l1Qp7733HoYNGwa7XXwl7YSEBIwdO1bCqipGJpPh5ZdfFmq7ZMkSzJ49W+KKyud2u/HAAw/g+PHjQu3VajXGjw/M1Y371utb6vbvTn3n40qIKi4oKAgNGzZE/fr1PQqC+qcFCyo3weH8eQ0mTAhHvXoOTJ6cA4ej/FXTybsMBoNw2+o6KfDFF/PwxRehFT7+8mU17rmnPo4cKTmoVqVSoX790oMkiaQwe/ZsPPXUUx71MXXqVDzxxBPSFFQNZWZmok+fPjhx4oRwH8nJydi6dSuioqIkrKzqc7ld2HRmE+76312Iez8OT214Ckcyjvi7rL/8HpODo5W51ElMBKZM8Vo9VHnt24u1y85W4tw58ecGVY1CG4rEGAOUSk7wqQ5qh8uhj0iWrL8ePXrgnnvuEWq7c+dO9O/f3yuLC0THN0Cw4e/72uPHj+O+++5DTk6OcJ/aHlosHLIQHSI7lNinUiqRGB0EuToINze+GfNvnF9mP5cKL6HlnJZwuRiGTURVW3p6OtLT00vdp1K5MWNGKho3tlSqz8hIO9avN+PWW0MlqJAqKjQ0VLit1cr3tRXVs6cWhw8r8cADRZDJvBP2VFCgwEMPGTBokAWXL/PZ+j+1aKHG++8bcf68Clu3WnHvvSaEhgbe1ygvT4lFiwzo00eLunXteOaZIhw6FHhBZiQmQi+2GEBBcQFm7Z2FlnNa4rrPrsPi3xfDYv/7M3bOvjmlthuSPARyOadQExFJpU+fICQliV3/2u1yzJ8vfTg+kagZM6ywWsWuE+RyNyZO5EIiRETkfbyjJSIiIiIiIiIiIiIi8pPnnlNDqRSf+PTOO5w0FcgKCwvx6quvok6dOnjiiSdw9uxZf5d0TampqejXrx+effZZuN2eDcR/5ZVXoFb7Z+DL7bffjt69ewu1ffzxx7FixQqJK7q28ePHY8mSJcLtH3/8cdSrV0/CiqQzps2YUrcfzih9BWeiQKLX65GUlISkpCTo9Xrhfk6e1GL79mChtleuqHHwoBsnTpzA+fPnYbNx0ou/hISECLc1marfwOYPPsjBlCnhlW6Xm6vEfffVw88/G//aJpfLkZSUxEk55DXz58/HY4895lEfb731FiZMmCBRRdVPdnY2+vbti6NHjwr3Ua9ePWzduhWxsbESVla1Xcy/iDe2v4EGHzVA/y/7Y9nRZbA5A/NaYG5FQ6XkcmDTJq/WQpXXsaNCuO3u3YE3edyb1EHxSIxQQiaT+bsU8kB0qBIhsU0k73fatGnCYSK//vorOnfujL1790pak0yuQO34GOi0GqxduxajR49GRkaGcH+KKAUWv7gYTcOaltgnl8uRGKWCKujvz/KxbcdiSt+ygyBPZp9E18+6CtdDRORvqampyM7OvuYxRqMLs2dfQHx8xa7l69e3Yvt2O667LkiKEqkS5HK5cACs2+1mMFglGAxyzJ1rxLp1VtSu7b373I0b9WjRAli8uPo9n/WUXC5Dr15afP65AVevKrB8uRk33WSCVht4Yw8uXlTjgw+MaNVKjZYtrXjrrSJcvFhzAqqrI9FQsH/69eKvGP3NaMS/H4+n1z+NJYeWINNcetDy9P7TPT4fERH9TaGQY/jwyi+CajA4cfvtOWjRIoch8RQQLBYXFiwQXyhwwAALGjdmKBgREXmfzO3piH4iIiIiIiIiIiIiIiISdtddJixbZhBqK5e7ceiQHc2acYBBIDl//nypIU1yuRx9+/bFqFGjcOutt3oUMiOlvLw8TJ06FR9++KEkwSWtW7fG3r17hSdPSOHEiRNo1aqVUICOSqXCvHnzcO+990pf2D84nU489dRT+Pjjj4X7CA8Px5kzZzxawd7b1G+qYXeVHJyfOTFTkkHfRL5is9mQlpaGoqKiSrWbOLE21q8PFTqnQuHG99+fQu3af/8M6fV6xMXFQasVH5xIYo4cOSLUTqVSoVGjRhJX4z9Ll+bhnntC4HSKh2EolW68/vpl3HxzPpKTk/0WJErV3+eff46xY8d6FHj7yiuv4PXXX5ewquolNzcXffr0wYEDB4T7SEhIwI4dO5CYmChhZVWTzWnDmpNr8OmBT7EhZQPcqBpDO0OsQNp0QF/enNw33wReesknNVV1Bw8eRJs2bSp8/IEDB9C6dWuhc1mtLgQHA3Z75QM6n3qqCB98YCz/wGqm4MoJpGbVrEC06iIsWIO42g0g81Ig7ZIlSzBy5Ejh9gqFAuPHj8cLL7zgUTDxP509exbPPPkYvv1+nWcdKYDZn89G9zbdS92dGKlEUHTjUvc9u+lZvPfre2V2PbDBQKy728P6iIh8yOVy4dy5c7BYLBVuc+6cGvfcUx/5+WW/N2nTxoy1axWIjdVIUSYJuHjxIvLz84XahoeHIy4uTuKKqr/8fCeeeMKKxYvF3pVX1M03mzBvngZRUf57d1kV5OU5sXSpFUuXyvHLL1q4XIEZiCyXu3HddRaMGOHGXXdpERoqHnZN/mF4xwCzvfKBMpXVIKwBUp5I8fp5iIhqmkuXrKhXTw2Ho/xnbG3bmjB0aC769cuHXv/HO4+4uDiEh1d+ASoiKc2cacITT4jfh2zdakWvXhy3Q0RE3sdlNomIiIiIiIiIiIiIiPzopZdUkMnEJvq6XDK8/TZXwq0qXC4XNm7ciLvvvhvR0dEYPnw4vvjiC2Rmlr5qrbcdPXoUjz/+OOrWrYt33nlHkkAwjUaDL774wq+BYADQuHFjTJgwQait3W7HmDFjMGHCBBQXF0tc2R+uXr2KG264waNAMAB4//33AzoQDADqh9Uvdfuig4t8XAmRZ9RqNerWrYvGjRsjODi4Qm3On1djwwbxidyDB+f9KxAMAMxmM1JSUpCSklKpiYfkOdHPNru9+lyrbdqUj7Fjgz0KBAMAh0OGTz6JQmxsfQaCkdd8+eWXGDdunEeBYM899xwDwa4hPz8f/fv39ygQLD4+Hlu3bq3xgWDHMo9h/IbxqP1+bdy+4nasT1lfZQLBACBfCyxvVs5BDz/MQLAApdXK0bhx5QO1AWD//po58To4pjFiwxgmUNUY9VrExSd6LRAMAEaMGIGHH35YuL3T6cR7772HunXr4pVXXsH58+eF+9q3bx/uv/9+NG7c2PNAMAAPPfpQmYFgceGKMgPBAGBKvykY03pMmfvXn1mPe1bd43GNRES+4HK5cPr06Uo/l6tXz4aPP74ArdZV6v6+fQuxfbuagWB+5kkwQWFhoYSV1BwhIQosWmTA6tVmxMR47znqt98a0KwZsGKF90OIqrLQUAUeftiAHTt0OHfOgTffLELz5lZ/l1WCyyXDTz/p8fDDBsTGynDLLSasWGGGzVZ1nqXUdL5aOGrSdZN8ch4iopqmdm0t+vYtezG18HAHxozJxJo1p7Bo0TncfHPeX4FgAJCVleWLMonK5HK5MXOm+DP+tm0ZCEZERL4jc3sy8omIiIiIiIiIiIiIiIg8dsMNJqxdK7bymFLpwunTTtStq5K4KhJ1/vx51KtXr8LHy2QytGvXDt26dUOnTp3QuXNn1K1bV/K6TCYT9u7diw0bNmDNmjU4duyY5OeYMmUKJk0KjMG1FosFnTt3xqFDh4T7aNq0KT7++GP06tVLkpqcTicWL16MiRMnIjs726O+hg0bhhUrVkhSlzc9/P3DmPPbnBLbeyT0wPYx2/1QEZE0nE4n0tPTkZeXV+Yxr7wSj9Wrw4TP8c03p9GgwbXDCdVqNeLi4mA0GoXPQxVz/vx5FBWVPbj5Who2bFjlw68KCwsxZowdK1d6vmpzWJgDW7ZY0aYNv2/JO77++mvcfffdcDqdwn08/fTTeP/99yWsqnopLCxE//79sWvXLuE+YmJisH37djRs2FDCyqqOIlsRlh9djgX7F2DnpZ3+LsdjnS8COz8tY+f99wPz5vm0nqru4MGDaNOmTYWPP3DgAFq3bi18vlGjTPjii8o/lwoLcyArSwG53LPA0KoqLfUUcgrEAtXItzQaNerXjoRCJ35/VlE2mw09evTA7t27Pe5LJpOhS5cu6N27N7p164aGDRsiISEBCsW/A/mKi4tx9uxZHDt2DDt27MDGjRtx4sQJj8//p4FDBmLqu1NL3RcRokZMnYp9lt+89GasObWmzP1PdnoSMwbOECmRiMgn7HY7UlJSPLrX3LYtCE89lQCX6+/rpxEj8rBwYTBUKu8FV1LFHTlyRLht06ZNIfdiAGl1l53txMMPW7Fihdg784q6804TZs/WIjy8ZoYcizh0yIaFC21YsUKNS5cC9zl3WJgDN99cjNGjFejRQ1Nj71Wrgnbz2mF/+n6vn6dvvb54uMPDuLHhjVApOJ6GiEhKy5fn4c47Q//6s1zuRrduhRg6NBc9ehRCVc6v3caNG/t9wUmquVatMuO22/TC7RcvNuGee7x730JERPQnhoIRERERERERERERERH52c6dVnTtKr562IMPFmHOHIYqBIrKhoKVJjw8HI0aNUKjRo3QsGFD1K5dG1FRUYiOjkZERAR0Oh00Gg20Wi3kcjlsNhtsNhssFguysrKQmZmJ9PR0pKSk4PTp0zh8+DAOHz7s0WSV8tx5551YunQpZLLAGWCdkpKC9u3bIz8/36N+evXqhSeffBKDBw+GqryRa6UoKCjA8uXLMW3aNJw8edKjWgCgdu3a+P333z1atd5Xdl/ajc6fdi6xPUQTgrzn8nxfEJHEXC4Xrl69ipycHPxz+EV6ugqDBzeEwyH2O7Fv33x88MHFCh+vUqkQExODkJAQofNR+TIzM3H16lWhttHR0YiMjJS4It+xWCw4c+YMnE7gnXdisXx5LeG+dDoX1qwpRN++/F4l71i1ahXuvPNOOBwO4T4ee+wxzJw5U8KqqheTyYSBAwfi559/Fu4jMjISP/74I5o2bSphZYHP7XZj9+Xd+HT/p/j66NcosomFTQaqg58Arf75USmTAc8/D7z9tt9qqqp8HQr24YcmPPWU2ASWU6dsSE4O3Enh3uR2OpCaeh6FJqu/S6FrUCoVqB8XDHVwvM/OefHiRVx33XW4eLHi93QVpVAoEBQUBIPBAJfLBZPJhMLCQnhrOkD7ju0xb868Up+HBRu1qJNQDzJ5xQM1un3WDb9c/KXM/W/2ehMv9XhJqFYiIm+yWq04c+aMJL9vV6wIwxtv/PG5NH58DqZMCYVCwSCpQHH69GkUF197oYY/ud1AaqoaO3ca8euvRkyeLEOnTkFerrD6+/prMx5/XI2sLO+FRMTG2jF3rgM33qjz2jmqI5fLjR9/LMaiRU6sWaNBXl7gBnkkJNgwbJgNY8ao0bx5zbxnDWQDvxyIDWc2+Ox8McYYjG0zFve3vR+JoYk+Oy8RUXXmcLiQmOiATAYMHZqLm2/ORXR0xd/NhYaGonbt2l6skKhs111nwa+/it0LJCTYcOaMCkpl4IyPJCKi6o2hYERERERERERERERERAHg+uvN2L5dbAUync6Fc+dciI4O3IG3NYkUoWBVTc+ePbFhwwZoNBp/l1LCN998g1tvvVWSviIjIzFgwABcf/31aN26NZKSkkoN4Ll69SpSUlKwZ88ebNu2DZs3b4bFYpGkhqCgIOzYscOjCd++pnpTBYer5OC/3GdzEaoN9X1BRF7gcrmQkZGB7OxsuN1uTJ4ciyVLxIOTvv46Bc2aVT5cQKlUIioqqkqEBlY1NpsNp06dEmobFBSExMSqOdHEZrPh9OnTf016dbuBefMi8fHH0ZXuS6l044sv8nHXXaESV0n0hzVr1mDYsGGw2+3Cfdx///2YO3duQAXdBhKLxYIhQ4Zg27Ztwn3UqlULW7duRcuWLSWsLLBlmbPwxe9f4NMDn+Jo5lF/l+M1D+8FZq/9/z9ERQHr1gFt2/q1pqrK16Fgu3ZZ0aWLWFj94sUm3HOPWKBYdeAsLsC51KuwVjA4gnxLJpOhfrQGuogkn5/7zJkz6NmzJy5fvuzzc0ulZauWmDtnLozGkotR6LQa1EuIg1xduZ9/l8uFlnNaXvPzcPbg2Xi4w8OVrpeIyFsKCwtx4cIFSfv85JNINGigwjPP8BleoLly5QqysrLK3J+fL8eePX+EgO3cacTly3+HDb30Ug7efJP/plK4etWB+++34bvvxN6dV9To0SZ89JEWwcEVDzmlP1itLnz7rRVffQVs3KhFcXHghhu2bGnFnXc6MHq0FvHxHE8RCO5edTe+OvyVz88rgwyDkgfhoXYPYXDyYCgqEXBMREQl/fzzRQQH50MucBkgl8tr3MIxFBg8eR8CAFOmFGHSJC7eS0REvsNQMCIiIiIiIiIiIiIiogCwYYMFAweKr0Y8fnwRpk3jgINAUNNCwTp27IgNGzYgNDTU36WU6fXXX8drr73mlb71ej2MRiM0Gg3MZjOKiooqvIp8ZSmVSqxduxb9+/f3Sv/e0nBmQ5zOOV1i+wcDPsBTnZ/yfUFEXuRyuZCVlY077tBi+/YgoT66di3E3LmeTTSUy+V/hYPJRUbhUqmOHDlS7jEuF3DxohpHj+pw7JgOR4/qUK+eHcuXh3q/QIk5nU6cPHkSLperxL6VK8PwxhtxcLkqHpw0Y0YOnnySEyPJO9avX4+bb74ZNptNuI97770Xn332GQPBylBcXIwbb7wRmzZtEu4jNDQUW7ZsQdsaEhR1Mf8iJmyagNXHV8PuEg+rqyqCioG06YBx1Dhg/nx/l1Ol+ToUzGZzIyjIDZut8teNjz9ehI8+qtnPo+yFV3Hhaj6sVvHPIJKeXC5HQoQCxqhGfqvh9OnTuP7665GWlua3GkR17doVM2bMgE5X8nm1TqtBYmwIlIYoob4dLgeSPkrChfyy73uXDVuGO5rdIdQ/EZGUcnJyvPJ7PCoqClFRYr9Hybv+uzCA3Q4cOaLHr7/+EQR25IiuzOdh3boV4aefava1sdQWLjTj6afVyMvzXpBTQoINCxY40a+f+Hv6mi4314mlS61YskSOnTu1lXpm7EsKhRvdulkwfLgbd92lRUgIA6H85en1T2PG7hl+raF2cG3c3/Z+jG0zFvHB8X6thYioqjKZTDh37pxw+8TERAQFiY2pIBI1bJgJK1eKLXQSHOzEpUsyBAVxDA4REfkOQ8GIiIiIiIiIiIiIiIgCgMvlRseOxfjtN7GVyIKDnbhwAQgN5eBVf6tJoWBDhgzB8uXLodd7d6VuKTz//PN49913/V2GMKVSiUWLFmHEiBH+LqXSHvjuAczfXzIU4PrE67Ht3m1+qIjINzZsyMd778mxdWvlBrJ+/vlZtG9vlqQGuVyOiIgIREREMBxMAidPnoTd/neoi9sNXLqkxtGj2r9CwI4d06Go6N/XYwkJxbhwQePrcj3icrlw+vTpf/19/+vHH4MwcWIdWK3lf289+2wO3n2XgWDkHVu2bMENN9wAq9Uq3MfIkSOxePFi/q4sg81mw9ChQ7F27VrhPoKDg7Fp0yZ07NhRwsoC15WiK2g6qylyrbn+LsWn5l/3Lsb1fdbfZVR5vg4FA4DWra34/ffKP5Pq3t2MHTsC/5mAtzmLC3AxLQNFJvHPIpKOSqlEYpQK2vAG/i4FZ86cwS233FKhgOFAceONN+L111+HSqUqsS/IoEWd+BjI1Z4FnphtZtT9sC4yzZml7pfL5Nh490b0qd/Ho/MQEXkiIyMDGRkZkvcbHx+PsLAwyfsl6WzefBrbtxvw669G7NljKPGsryxarQuZmS4Yjd4LsKqJLl1yYMwYGzZv9t59h0zmxgMPmDB9uh4GA58NeeLCBTsWLy7GsmVKHD0qNu7BF3Q6FwYMsODuu2W46SYdVKrADDKrrt7e8TZe2vaSv8sAAChkCtzY6EY82O5B9G/QH3IZfwcQEVXG8ePH4XQ6hdrqdDo0aOD/53dUc5w7Z0fDhko4HGLXfk8+WYQZMxgETUREvsW7VCIiIiIiIiIiIiIiogAgl8vw7LMu4fYFBQp89BEnHpLvPPTQQ/jmm2+qRCAYAEyePBkTJ070dxlCdDodVq9eXSUDwQBgVKtRpW4/ePWgbwsh8rEBA0KwZUsQfv65EEOGFEAuL3/NtjZtTGjXTppAMOCPYKeMjAwcP34c6enpcLnErzUIsFj02LAhGO+/H41x4+riuuuaYPDghpg4MQELF0Zizx5jqZMEU1M1yMiw+aFicWfPnr1mIBgAXH99IebPP4eQEMc1j7vnnjy8/XaohNUR/W3Hjh246aabPAoEu+OOO7Bo0SIGgpXB4XDgzjvv9CgQzGg0Yt26dTUmEAwAFuxfUOMCwQBg7rn/+bsEEtS6tdjErUOH1HC5uDaxQhOMxIRExIUroFaXDFIi35DL5YgIUaNBfFhABIIBQIMGDbBr1y4MHz7c36WUS6vV4rXXXsM777xTIhBMo1YjLlyBhIS6HgeCAYBercexR48hWBNc6n6X24WBXw3EvrR9Hp+LiEjEpUuXvBIIlpiYyECwKmD9+lp46604bN0aXOFAMACwWuXYsKHIi5XVTLVrK7Fhgw6zZ5sQFCR231Iet1uGuXONaNnSgZ9+4vt2TyQmqvDyy0YcOaLFgQPFeOqpIsTHB96zcYtFjm++MWDYMD1iYpwYO7YI27dbeX/rIxH6CH+X8Ben24lvTnyDQV8NQtJHSXj353dxteiqv8siIqoyQkNDhdtaLBaOXyCfmj69WDgQTKVy4ZlnqtZCcEREVD3I3G43n1YQEREREREREREREREFAJfLjWbNbDhxQmwAQWSkHRcuKKDTcTK7P50/fx716tXzdxleEx4ejvnz52Po0KH+LkXI5MmT8dJLL1WZgWWRkZFYuXIlunfv7u9SPKJ8Qwmnu+Rkjfxn8xGsLX0CKFF1c+BAESZPdmL16iA4HKV/Vs+efR7du3t34lhoaCiio+OgUvF6obK++SYPt94aKtR25co8DB0q1tbXLly4gMLCwgoff/asGg89VBfp6eoS+wYOLMCaNUZ+v5FX7Nq1C/369UNRkfjvzVtvvRXLly+HUqmUsLLqw+l0YuTIkVi2bJlwH3q9HuvWrUOPHj0krCzwvbLtFby5401/l+EX++7fh3Zx7fxdRpV28OBBtGnTpsLHHzhwAK1bt/bonDNnmvDEEwahtidO2NCoUcnrgJrK7XSgMDMFJpscNqccxXYnJ5Z7iUwGqJUKqJWAVulEaHg0FLrADVr5+OOP8dxzz8FkMvm7lBLatm6B96e+g/pJjVDsANwuN9QqOdQKFwxqF4KikiGTVzwUpaJS81PR+OPGsDgspe7XKDQ4/PBhJNdKlvzcRESlcblcuHDhguS/q2UyGRo0aACtVitpv+Qdmzfno1+/EKG2DzyQi7lzA/d6pKo7d86O0aMd+OknndfOoVC48fjjJkyerIdWy2eaUnC53Ni61YrFi11Ys0aD/PzAfQ6XmGjDsGE2jBmjRrNmvM/1llXHV+G25bf5u4wyqeQq3NL4FjzU/iH0qtsLMplYeAgRUU3gcDhw4sQJ4fYRERGIiYmRsCKi0uXlOZGQABQWij3jvOMOE5YtE3uHQkRE5AmGghEREREREREREREREQWQTz81Ydw48QEE779vwtNPcwCCP1XnULAbbrgBc+bMQXx8vL9L8cimTZswfPhwZGdn+7uUa7r++uvx1VdfIS4uzt+leCzpoyScyT1TYvvMQTPxWMfH/FARkf+cPm3B228XY9myYFitf08qatLEgmXLzsDbcwtOnNDiyScT8NBDRXjqqWAEBQXuBJxAk5VlQ2Sk2ESgZ5/NwbvvhktckfTS0tKQk5NT6XYZGUo89FBdnD799+TWDh1M2LpVA6OR32Mkvd9++w19+vRBfn6+cB833HADVq1aBZVKJWFl1YfL5cKYMWOwePFi4T50Oh2+//579O7dW8LKqoZDVw+h3bx2cLgc/i7F5+5vez/m3TjP32VUaf4IBdu7txgdO4qF1C9aZMKoUXwWRVQRly9fxsSJE7F06VJ/lwLgjzD6d955B/fddx/kcv+EXhzNOIo2c9vA7rKXut+gMuDUY6cQF1z1n48RUWBzOl04e/YMiouLJe1XoVAgKSmJ955ViN3uQmSkSyi4qHFjC44f915gFf0RMDVjhhkvvaSDxeK965fGjYuxcKEbnToxzE9KVqsL33xjxZdfurF5sw7FxYEbvNaqlRV33eXEqFEaxMXxGbeUdlzYgZ4Le/q7jArp36A/vhr6FSL0Ef4uhYgoYKWkpMBqtQq1VSgUaNKkicQVEZX09ttFeOklo3D7ffuK0a6d2DsUIiIiTwTukxMiIiIiIiIiIiIiIqIaaNQoPRISbMLtZ8xQwW7nmjD+pNFoYDBUr8mwrVq1wubNm/Hdd99V+UAwAOjXrx/279+P7t27+7uUUmm1WrzxxhvYsmVLtQgEA4AeiT1K3f7NiW98WwhRAEhO1mHhwlCcOmXDww/nwmh0AgDGjcv0eiAYACxYEIm0NDVeeSUc9eq58dxzOcjKEr/2qEkiItSoW1dsYujvvwf+pKHMzEyhQDAAiIpyYOHCs2jf3gQAaNjQirVrVQwEI6+ZOXOmR4FgAPD9999DrVZDJpNV2f9+/PFHab6gpUhNTfUoEAwALBYL+vTp4/evkyf/XX/99UJ/95bRLTH/xvmQy2reEM0lh5egoLjA32VQJbVurYZG4xJqu3cvn0MRVVR8fDyWLFmCn376Cb169fJbHTExMXjrrbdw+vRpjBs3zm+BYADQLKoZto3eBoVMUep+k92E5p80R541z7eFEVGNUljowIABJnz5pV7SftVqNRo1asRAsCpGpZKjSxezUNsTJ3S4cEEsEIEqRi6X4ZlnDNi/34GOHS1eO8+JExp066bG888X8d27hLRaOe66S4/vvzcgLc2NmTNN6NrVApks8L7Gv/+uxfPPG5CQoECvXmbMm2dCYaHYfTP9W1UK2Np4ZiPe2P6Gv8sgIgpokZGRwm2dTifMZrFrb6KKstvdmD1bPNCrRw8LA8GIiMhvat6IEyIiIiIiIiIiIiIiogCmUsnw9NN24fapqWosXszBMv4UGxuLzMxMrFixArfffjv0emknkfhShw4dsGTJEuzfvx99+vTxdzmSSkhIwI4dO/Dll18GVNDZLbfcgmPHjuHll1/264RMqY1qNarU7fvT9/u4EqLAUaeOFrNnh+HsWSdeey0bffp4Pzzj/Hk1Nm4M/uvP2dkqTJkSjvr1FXjiiVykpYkFXtUkzZuLfY2OHNFKXIm08vLycPXqVY/6CA52Yc6c8xgxIhs//OBGZKRaouqIiKqme1vfi9V3roZWGdifAVIz2U1YcniJv8ugSlKpZGjSRCwo9sCB0oN8iKhs3bp1w9atW3H48GE8+OCDPllgQC6Xo3v37li4cCEuXLiAF198ESEhIV4/b0Vcl3Ad1gxfAxlKT8rOteai6aymsDoYskJE0ktPL0aPHjZs2RKEt96Kw48/BknSr16vR1JSUrV6zl+T9O7tEG773XfeC6qivzVurMavv2rx5ptFwgHH5XE45Hj3XSPaty/GwYN8di618HAFHnvMgF9+0eHsWQdef92EJk0C7+vsdMrw4496PPigAdHRbgwdasKqVWaGxXkgUi8eHuMPm89u9ncJREQBLSQkBDIPVj/z9B01UXm++sqCtDTxsO4JEyQshoiIqJL4dJmIiIiIiIiIiIiIiCjAPPigDlFR4sFgU6cq4XJxEKo/6XQ6DBs2DMuXL0dWVha+++47PPTQQ6hTp46/SyuXXq/HXXfdhV9++QV79uzB8OHDq/WklZEjR+LkyZN4+eWXUatWLb/UIJPJMHjwYPz4449YvXo16tWr55c6vKlHQg8oZCUniudac1FkK/JDRUSBIzJSjVdfrYVmzRojODi4/AYe+PTTSLjdJQfkFhYqMHNmGJKSlBg7NhdnznDiWllatxabEHjpkhpXrgTehCYAKCwsxKVLlyTpS6NxY84cNRo00EnSHxFRVXdTo5uw6Z5NCNWG+rsUn5qzbw7cbj6XqGratBG7zjl8WM3nUESCmjdvjjlz5uDKlStYvXo1HnzwQdStW1ey/mvVqoUhQ4Zg1qxZuHz5Mnbs2IHRo0dDrQ68AN/ByYOx+JbFZe5PL0pHi09awOESD2khIvqv48fNuO464ODBPxZ3cblkmDixDn7/3bPnGsHBwahfv361frdS3d14o3i48+bN/Hf3FYVChpdeMmLvXgdatfJeeOihQ1p06qTCm28WweHgvY831K2rwiuvGHDsmAa//VaMxx8vQlyc+HgJb7FYFFi92oDbbtMjNtaJceOKsGOHlffElRSuCy8zEDgQ1Qurfu/uiYik5sk4B5PJBJfLOyGvRC6XGx98IH6P1rhxMYYMqVmL/xARUWCRuTnygoiIiIiIiIiIiIiIKOC8+WYRXnnFKNx++XIzbr9dL2FFJJXjx49j69at2Lp1K7Zv347s7Gx/l4Tg4GAMHDgQw4YNw5AhQ6DX18zvHavViiVLluDjjz/GgQMHvH6+6OhoDBs2DI899hgaN27s9fP5W/0P6+Nc3rkS2+cMmYMH2z/oh4qIApPT6URaWhry8/Ml7Tc9XYXBgxvC4Sh/ooVK5cLQoQV48UUVWrQwSFpHVbdmTR5uvjlUqO2KFXkYNkysrbdYrVakpKRI1l9cXBzCw8Ml64+oLPfeey8WLVrk7zL8btu2bbj++uu90vf58+erZVhtZfXs2RM//vijx/0cyTiCAV8OQFphmudFVRG7xu5Cp9qd/F1GlXTw4EG0adOmwscfOHAArVu39vi8s2aZ8NhjYtd+x44Vo0kTjcc1ENEfzp49iyNHjuD48eM4ceIETp8+jdzcXBQWFqKwsBBFRX8ErOv1euj1ehiNRsTGxqJevXqoW7cukpOT0bFjRzRs2NDPf5PKm7FrBp7e8HSZ+9vGtMXe+/cyaIeIPPbTTwW47TYdMjNVJfaFhjqwePFZ1Ktnq3S/ERERiImJkaJE8rP69a04d67yk78jIuy4ckUBhYKfVb5kt7vxxhsmvPuuHg6H97727dtbsGiRHE2b8v7H25xON7ZsseKLL1xYs0aLgoKSiw8Firp1bbj9dhvuvVfF740KingvAtkW/4+TKI9epcfe+/eiaWRTf5dCRBTQbDYbTp06Jdw+OjoakZGRElZE9IeNGy0YMEA8+Hv2bBMefphjZoiIyH8YCkZERERERERERERERBSA8vOdSEx0Iz9fKdS+bVsr9u7VQC6vOius1kRutxunT5/Gnj17sGfPHhw4cADHjh1DTk6O184pk8lQp04dtG/fHt27d0f37t3RunVrKBSBO5DaH44ePYp169Zh/fr1+Pnnn1FcXOxxnwqFAs2aNUPPnj0xdOhQ9OjRo0ZNYBy9ejQWH1pcYnu/+v2w8Z6NfqiIKLC5XC5cuXIFubm5kGJoxzvvxGLp0lqVaqNQuDFkSAFefFGBjh3Fw0qrk+xsGyIjVXC7K3+NNWlSLqZMCfNCVWLsdjtOnTolyfcXAERGRiI6OlqSvojKw1CwPzAUzPukCgUDgAt5FzDgywE4mX1Skv4C3ZjWY/DZzZ/5u4wqyV+hYL/9Voz27cUmL3/+uRn33lszA8aJSHovbn0R7/z0Tpn7+9bri02jNvmwIiKqblatysOoUUEwmcp+LxIfb8MXX5xFZKSjwv3GxsaiVq3KPX+jwDV6dC4WLxZ7lvfLL4Xo2jVI4oqoIvbtK8bo0W4cO1b5QLeK0ulceP11M8aPN/BdvI9YLC58840VX34JbN6shc0WuO9XW7WyYvhwJ0aN0iA2VmysR03Q+OPGAf+MLFIfibUj1qJDfAd/l0JEVCWcOnUKNlvlg5UBQKVSoVGjRhJXRAT072/Gpk1i7y6iouy4cEEBrTZwrz2JiKj6YygYERERERERERERERFRgJowoQjTp4sHcKxf79lKZ+Q/6enpOH78OM6dO4fU1FSkpqbiypUryM7ORnZ2NvLy8lBcXAybzQaHwwGlUgmNRvPXf0ajEVFRUYiOjkZ0dDRiYmJQv359NGnSBI0aNYLBwBXsKsNsNuPgwYM4fvw4Tpw4gePHj+Py5csoLCxEUVERCgsLYbVaodFooNfrodfrERYWhsTERNSrVw/16tVDy5Yt0bFjRxiNNTdUZ8vZLej7Rd8S22vpaiFrUpYfKiKqGlwuFzIyMpCdnS0c3pSVpcDAgY1QXCw2WPG66wqxYMFlREdHIywscEKt/KV+/WKcO1f5wIwBAwqwfn2wFyqqPKfTiVOnTsHpdErSX2hoKGrXri1JX0QVwVCwPzAUzPukDAUDgCxzFoYsGYI9l/dI1meg0il1SBufhlBtqL9LqXL8FQpmt7sRHOyG1Vr5a8ZHHinCrFk1936XiKT30HcPYe7+uWXuv7PZnfh62Nc+rIiIqotPPsnBE0+EwuEo/5qncWMLPv/8HIxGV7nHJiQkIDg4MJ77kDS++CIXo0aJPQt96aUcvPlmuMQVUUUVF7vxwgsmfPihAU6n90K7rrvOgoULFUhKUnvtHFRSTo4TX31lxdKlcuzapRVawMMXFAo3evSwYMQIN+68U4egIIZJ/FO3z7rhl4u/+LuMMiWHJ2PdyHVoEN7A36UQEVUZOTk5SEtLE27fsGFDqNW8riLpHD1qQ4sWYgu+AcBLLxXhzTf53oOIiPyLceNEREREREREREREREQBauJELWbPdsFiERsgOnmyGwMGSFwU+URsbCxiY2P9XQb9P71ej65du6Jr167+LqVK61W3F+QyOVzuf0+gyrZkw2wzQ68WW5mRqLqTy+WIiYlBVFQUsrOzkZmZCZer/ImI//TFFxHCgWAAcP/9mXA4HLh8+TKuXLmCyMhIhIeHQy6vmZNYWrSwCoWCHTmi9UI1ledyuZCSkiJZIJjBYGAgGBFRBUXoI7B11FYMWzEM61PW+7scr7I4LPjy0Jd4rONj/i6FKkilkqFp02Ls31/5a5YDBxReqIiIarI5N85BpjkTq06sKnX/sqPLUEtfC7MGz/JxZURUlb38cg7eeqviQU0nTujw1FMJ+OSTC1CpSg/rl8lkqF+/PnQ6LtJT3dxwgxFKpatCAXL/9csvKi9URBWl0cgwfboRt95qxZgxMqSkVP5ZbkX88osObdo4MXmyCY88oodcHpjhVNVNeLgCjz9uwOOPA+fO2bFwYTGWL1fhxAnv/DuLcjpl2LZNj23bgCeecGHQIBPuvluGG27QQaXi90qkIdLfJZSpc+3O+G74d4jQR/i7FCKiKiU0NBTp6enCC51duXIFCQkJEldFNdl779nhdosFzel0Ljz5JO/ziYjI/2rm6EwiIiIiIiIiIiIiIqIqIDpaiVGjzMLtt2/X49dfrRJWREQkTi6Xo05wnVL3LTmyxMfVEFU9crkckZGRaNq0KeLi4qBUVmwduPx8OZYtq/hkx/9q29aEdu3+vh5xOp24cuUKTpw4gYyMjEoHlFUHrVqJhWldvqxGWlqxxNVU3rlz52C32yXpS6PRIDExUZK+iIhqCoPagDV3rcHdLe/2dyleN/e3ucITgMg/Wrd2CLU7ckQNl4v/1kQkrZV3rsT1ideXuX/23tl4bdtrPquHiKouh8OF++7Lq1Qg2J927zbi5ZfjUdojMLlcjuTkZAaCVVNhYSq0aWOp0LFyuRstW5rx4IMZWLToLKZPvwCHQ+zamqTTrZsWv/+uwqOPFkEm8879SlHRHwFV/ftbkJoqzTNXqrh69VR4/XUjjh/XYN++Yjz2WBFiYwPv38FikWPVKgOGDtUjLs6J++834eefrTX6PjpCF5iBW7c0vgVbRm1hIBgRkQC5XA6j0SjcvrCwsEaOPSDvuHLFgWXLxO/VR460ICKCi6EQEZH/MRSMiIiIiIiIiIiIiIgogD33nAYqlfiAl3feEQutICLyhm4J3UrdvvLYSh9XQlS1hYeHo3HjxqhTpw5UKtU1j126tBZMJvHBivffn1nqdpfLhYyMDBw/fhzp6ek1aoBup07iX8+ff67YREJvuXDhAiwWaWpQKpVo0KAB5HIOPyIiqiyVQoVFtyzC+C7j/V2KVx3JOIJfL/7q7zKoEtq3lwm1KyxU4MQJm8TVEBEBW0ZtQavoVmXuf33H6/h4z8c+rIiIqhqTyYGbby7C55+HCvexdm0oZsyI/tc2lUqFhg0bQq1We1ghBbIePcoO+I+Ls2HYsBxMn56KHTtO4KuvzuKxxzLQtq0ZKhWQm5vrw0qpLHq9HB9/bMSmTcVITPTePcuWLXq0bCnDp5+aanTQkz+1a6fBzJlGXLyoxPr1FowYYUJwcOCNlcjKUmLBAgO6d9eiQQM7nnuuCMeP+38xEV8LxNCtRzs8iv/d/j/oVXp/l0JEVGVFR0eXf1AZ3G43CgoKJKyGarIZM6woLhYbxyCXuzFhwrXH4RAREfkKR+UREREREREREREREREFsLp1Vbj9dvHghh9+0OPwYU7KJKLAMLLFyFK370vf5+NKiKqHkJAQNGrUCImJiaVOQDSb5fjyy1rC/TdpYsF11xVd8xi3243s7GwcO3YMly5dqhHhYF276iGTlT+xS6dzom1bE+6+OwuTJ1/Et9+eQrt2/psMmJJyBYWFhZL0JZfLkZSUxEAwIiIPyGVyTOs/DVP7TfV3KV4197e5/i6BKqFzZ6Vw2507HRJWQkT0B7lcjn0P7EP90PplHvP4usex9PBSH1ZFRFWFzWbDK69k44cfgj3u6/PPI/96zqbVapGcnAylUvzaiaqGwYP//jfW6524/voCvPBCGr7//hTWrz+FV19NQ//+BQgJKRk8xECDwNKnjxaHDytx333Xft7tifx8JcaNM+Cmm8y4coX3R/6iUMgwYIAOX31lwJUrMnz5pRmDBpk9WojNW86fV2PKFCOaNtWgbVsr3nuvCOnpNeN7J9IQ6e8S/uW9vu9h5qCZUMjFF4UhIqI/7pU8uU/KzCx9wTKiyjCbXViwQCvcftAgMxo1YgA4EREFBo7MIyIiIiIiIiIiIiIiCnAvvqiEXC62orDbLcPbb9slroiISMyABgMgl5V8TZ1lzoLVYfVDRUTVQ1BQEBo2bIj69etDq/17cOOKFWHIzxcfdHv//ZmQySp+fF5eHo4dO4bU1FQ4HNV34kpYmAr16xf/a5tO50KbNiaMHJmFd965hG+/PY2dO49j0aJzePbZK7jhhnzUr2+D3V5cRq/etWpVHjp0iMCvvxo87ksmkyEpKYkTX4mIJDKh6wQsvmUxlPLq+Xt1+dHlyLHk+LsMqqAWLdTQ6cQmSu/bJ/bsioioPEq5EocfPowYY0yZx4xcNRIbUjb4sCoiCnQWiwWnT5/G3XdnoUsXaUKApk6NQVZWGIPSa5Du3Y145JGrWLjwLH7++ThmzkzF8OE5SEy0lfvc1GrlO49AExQkx6efGvH99xbExXnv/fnatQY0bw4sWWL22jmoYnQ6OUaO1OOHH/RIT3fjww+L0Lmz+IJs3nTggBbPPmtEQoICffqY8emnJhQVBV6QmVQi9BH+LgEAoJKrsGToEky8biJklXkhRkREZQoPDxduW1xcXK3HGZBvzJ9vQXa2+Du3iRMZEkpERIGDT6GJiIiIiIiIiIiIiIgCXNOmGtxwg/ig4ZUrdThzxiZhRUREYuRyOeKD4kvdt+zIMh9XQ1T96PV6JCUlISkpCTqdHqtWhQn3Va+eFX36FAi1LSgowIkTJ3D+/HnYbNXzGuTGGwsxYkQ23nrrElavPo2dO49h8eJzeO65K7jxxjzUr18MRSljRf0xiPmnnwoxalQQ8vKUePTRuvj++xCP+qtXrx7Uaq6MS0QkpXta3YM1d62BXqX3dymSK3YWY/Hvi/1dBlWQUilDs2ZiIaYHDnCiDBF5j16tx/FHjyNUG1rqfjfcGLJkCHZf2u3bwogoIBUUFODMmTNwu91Qqdz44INUNGniWQiMSuXCxx/n4vrrS3++TdWTSiXHE0/koV07M1SqyrV1u92wWAIzfKimGzJEhyNH5Bg+3OS1c2RnKzFypB7DhpmQleX02nmo4mrVUuCJJ4zYuVOHlBQbXn65CI0a+WcRj2txOGTYulWPceMMiI524/bbTfj2WzMcjuoVxB2pj/R3CQjRhGDjPRsxvMVwf5dCRFStRERUPvjRZpNh/fpgPPBAXcyaJTZGgQgAnE43Zs4UDwRr396Cnj215R9IRETkIzK32129nggQERERERERERERERFVQ7t3W9G5s/iAg3HjTJg/3yBhRUREYob/bzi+Pvp1ie2DkwZj7ci1fqiIqPrKzLThvfdM+PTTIOTmVm7g49tvX8JNN+VJUoder0d8fDw0Go0k/QWC1NRUFBSIDUhOSkqCVuubgaTHjpnRs6cKWVn/nrU4YUI6Ro/OrnR/CQkJCA4Olqo8IiL6j2+Pf4tblt/i7zIk1ziiMY49cgwymczfpVQJBw8eRJs2bSp8/IEDB9C6dWvJzn///SYsWFD5Z0gGgxP5+XIoFPx3JiLvuVRwCY0+bgSzvfRFNNQKNQ4+eBBNIpv4uDIiChTZ2dlIT08vsT0rS4m7766Py5crH3RuNDqxeHEhbr01VIIKqaq5dOkS8vLyhNqGhYUhPp5BcoFs5UozHnlEhYyMSqa+VUJ0tB2ffGLHrbdWvyDw6mDv3mIsWmTHypUaXLnive8DT0VEODB0qBWjRinRpYsGcnnVvvfee3kvOi7o6Lfz1wmug3Uj16FZVDO/1UBEVJ2dPXsWZnP5C6CeOqXB6tVh+O67UOTn/zGeoV07E/bt4xhHEvO//5lx++3i191ffWXGiBG8biciosAh93cBREREREREREREREREVL5OnbTo3bv8wTJl+eorHdLTHRJWREQkZmSLkaVu35e2z8eVEFV/kZFqTJ0ahvPngVdfzUVUlL1C7eLibBg0KE+yOsxmM06fPo2UlBRYLBbJ+vUno9Eo3FY0TKyyLl2yYsgQRYlAMACYNi0WU6fGwOWqeH+xsbEMBCMi8qI8ax7uXXOvv8vwihNZJ7Djwg5/l0EV1L69WDuTSYHjxyt2vUlEJKp2cG3su38f1IrSQ31sThvaz2uPSwWXfFwZEQWCK1eulBoIBvwRpjJnznmEhlbuXVlkpB3r1pkYCFaDhYWFCbctKiqSsBLyhttu0+PoUTluvdXktXNcvarC0KF63H23CXl5Tq+dh8R06KDBxx8bcemSEj/8YMHw4SYEBQXev1NWlhLz5hnRrZsWyck2PPdcEU6etPm7LGER+gi/nbtldEvsHLuTgWBERF4UHR1d5r6iIjlWrAjDiBH1cdttyfjyy4i/AsEA4LffDNi/n9fRJOb998WDUxMTbbjjDp2E1RAREXmOoWBERERERERERERERERVxPPPiw9asFjkmDrVKmE1RERiBicPhgwlf59lmDNgc1TdwetEgSw4WInXXgvD2bMyTJmSgzp1iq95/JgxWVCVzJHymNVqxZkzZ3D69GmYTN6bZOULnoRj+eLvnp/vwJAhLpw/rynzmMWLI/D887Vht5d/jRkREYFatWpJWSIREf2DzWFD89nNkWfN83cpXjP3t7n+LoEqqHNn8QvBnTsZCkZE3tcksgl23LsDCpmi1P1mhxnNZzdHjjnHx5URkT+lpqYiKyvrmsfUrWvDrFkXoNVWLCW9fn0rtm+3o1s3hqTXZAaDATKZ2Dtau90OV2VS+ckvIiIUWLXKgC+/NCM83HuLbH31lQHNmzuxbl31WDijulEoZBg0SIclSwy4ckWGxYtNGDDADJUq8H6Gz57VYMoUIxo3VqNdOyumTi3C1atVa4G4SEOkX87bt35f/DTmJ8QHx/vl/ERENYXBYIBc/neEhdsN7N+vx0svxaN378Z44414HD6sL7P93Ll8zkyVt3OnFTt3iod6PfqoDUql+PhcIiIib2AoGBERERERERERERERURXRt68OHTqIDxL+9FMdcnMDb1VbIqpZ5HI54oNKH2i9/OhyH1dDVLMYDEpMmhSOlBQVZs/OQXJyycDQWrXsuPXWXK/WUVxcjL17UzF0aD727Kmaq/wqlUrhyYDFxdcOZfNUcbELN91kxaFDZQ+k/tMPP4TikUcSYTKVPYQoJCQEMTExUpZIRET/4HK50GZuG1wuvOzvUrxq5fGVyDJfO6SBAkOzZiro9WLPj377zS1xNUREpetUuxPWjlhbavA8AOQX56Pp7KYw28w+royIfM3lcuHs2bMoKCio0PEtW1owbdpFKBTXvm5p08aMn3+WoUmT8p+vUPWn0ZQdvF+ewsJCCSshbxo5Uo8jR4CBA713/XD5shqDB+tw//0mFBUFXtgU/UGvl+OeewxYv16PtDQ3PvjAhE6dAjPMbf9+LSZNMqJ2bQX69TPj88/NMJkC/3vLoDJAoxD/3Srinpb3YO2ItQjWMOyTiMgXwsLCkJWlwOefR+Cmm5IxenR9fPttGCyW8qMtVq40org48D/PKLBMnSo+LjY01IGHH+b9PxERBR6GghEREREREREREREREVUhzz0nPrmyoECBGTMCc7AqEdUsXep0KXX7imMrfFwJUc2kVsvx8MPhOHZMjUWLctGy5d+TnEaPzoZG4/0wh8WLI7B6dQg6dTKiX79CbN1asYmbgUSpVAq1czgcElfyN6fThREjCrFjh7HCbXbtMmLMmHrIylKU2KfX61GnTh0pSyQiov/o80UfHMs6Vub+FlEtfFiN99icNiw8uNDfZVAFKJUyNG9uE2p74EDJ6wkiIm8ZkDQAXw39qsz9V01X0fyT5nC4vHcPRkT+5XK5kJKSArO5cgE+PXsW4uWX08rc36dPIbZvVyM21rdhJRS4goKChNvm5eVJVwh5XWysEmvX6jBvngnBwd5bbGvBAgNatHBg27aSC3dQYImIUOCppwzYtUuH06dteOmlIiQne3fhDxEOhwybN+tx3316REe7cccdJnz3nQUOR2CGd8tkMkToI3x2vhe7v4hFtyyCWqH22TmJiGq68PBI3H57Et5/Pwbnz1fu3io7W4WlS/O9VBlVR2fO2PDdd+KhXmPGWGE0MnaFiIgCDz+diIiIiIiIiIiIiIiIqpBbbtGhaVPxwcGzZ2thNnMlPSLyr+HNh5e6fffl3T6uhKhmUyrlGDUqDPv3a7FyZR769CnAHXfkeP28+flyLFsW/tefN28OQp8+wejWrQhr1uTB6awa1yo6nU64rdXqncleTzyRj1WrQird7vhxHe65pwEuXPh7QoxarUbdunUlrI6IiP5r5MqR+PH8j2Xuf7nHy9j/4H7c1/o+3xXlRfN+mweXu2p8ztd0rVuLTX4/ckQNpzMwJxwTUfU0vMVwzBw0s8z95/LOod28dnC5+PlDVN3Y7XacPHkSNptYmOltt+XikUeultg+YkQe1q0zIChILAyeqqfw8PDyDyqDyWSSsBLyBblchvvvN+DQIRd69apc6GBlnD+vRt++Gjz+eBEsFl6rVAVJSWq8+aYRJ06osWuXFY88UoToaLu/yyrBZFJgxQoDbrpJh7g4Bx56qAg7d1rhcgXW/XqkIdLr55DL5Jh7w1y81fstyGQyr5+PiIj+ptEoMWSI+LXwokW8J6OKmz7dDodD7LNepXJh/HitxBURERFJg6FgREREREREREREREREVYhcLsOkSeKrEmdlKfHJJxYJKyIiqrwbG90IGUoOxsowZcDmEJvERUTiFAo5hg4NxebNwUhOjoFCofDq+ZYsqQWzueQ5fvnFiJtvDkWHDlYsWRL44WBGo1G4bUFBgYSV/OHNN3Mwe3aYcPtLl9QYNao+jhzRQalUIikpCXI5hxYREXnLxE0TseTIkjL3j20zFm/0egNKuRILblqAF7q94MPqvON0zmlsO7fN32VQBbRvLzZ5xmxW4MgR3tMRkW891vExvNrj1TL3H7p6CL0X9/ZhRUTkbVarFadOnYLTKf6+DAAeeigTt932d0D++PE5WLw4GCoVn4fQv6lUKuHnZC6XCw6HQ+KKyBcSE1XYvFmHjz4ywWDw7PdNWVwuGT7+2IjWre349VfvLCRB0pPLZejUSYtZs4y4dEmJtWstuPNOE4xG73yfeCIzU4W5c43o2lWLhg1teOGFIpw6FRj37RH6CK/2r1fp8e1d3+KBdg949TxERFS2Bx4QH3ewY4cRKSkc40jly8114osvxEO9brvNgvh4htAREVFg4pNqIiIiIiIiIiIiIiKiKmbkSD3q1hUfqDljhgp2e2CtAktENYtSrkRsUGyJ7W64sfrEaj9URER/Cg8PR5MmTVCnTh2oVCrJ+zeb5fjqq1rXPObAAT1GjgxF8+bFmDcvF3Z7YIaDBQcHC7c1mcRXRS7N/Pm5ePVV8UCwP+XkKDFzZjQDwYiIvGzGrhmY9uu0MvcPbDAQC25a8NefZTIZ3u7zNj4c+KEvyvOqub/N9XcJVAGdO4tfB+7axcADIvK913q9hsc6PFbm/u0XtmPosqE+rIiIvKWwsBApKSlwuz1/zyWTAS+9lIa+ffMxfXoOpk0Lh0LB5yFUOr1eL9w2Jyen/IMoIMnlMjz+uAEHDjjRpYv3QilOndKgZ08NJk0qgs3G9/hViVIpw+DBOnz9tQFXr8qwaJEJ/fuboVQG3nuNM2c0mDzZiEaN1OjQwYLp0024etV/9/CR+kiv9v3j6B9xQ8MbvHYOIiIqX9euQWjRwizU1uWSYe5chqZS+WbNsqCoSDyAbtIkBoIREVHg4tNqIiIiIiIiIiIiIiKiKkaplOHpp8VDwS5dUuPzz8UG3BARSaVzfOdSt3995GsfV0JEpQkJCUGjRo2QmJgItVotWb8rVoQhP79igypPnNDhwQfD0LChHe+/n4Pi4sCaRKNUKiGTyYTaFhcXS1ZHRkYWZszQwu0Wq+Wf6te34n//U0Gp5MBXIiJvWX50OZ7e8HSZ+9vEtMHaEWtL3fdEpyew9Lal3irNJ1afWI2rRVf9XQaVo2lTFQwGp1Db337jBHYi8o+Zg2firmZ3lbl/9YnVeOC7B3xYERFJLScnBxcuXJC0T6US+PLLYjzzTLik/VL1ExoaKty2oKBAukLIL5KT1fjpJy2mTCmCTued59QOhwxTpxrRtm0xfvtNuufH5Dt6vRyjRhmwYYMely+78P77JnTo4L0wOU/s26fDhAkG1K4tR79+ZixaZILJ5Nt3MBH6CK/0mxyejJ1jd6JDfAev9E9ERJUzcqR4sNeyZXo4HIE1RoACi93uxiefaITbX3+9GW3aiLcnIiLyNoaCERERERERERERERERVUEPPKBHTIxduP306Uo4nZykSUT+M7zF8FK3776828eVENG1BAUFoWHDhqhXrx60Wq1HfRUXy7BoUeUneZw/r8H48eHo08eE1NRUOBz+W7n+v1QqlVA7qf4O+fn5yMi4gnnzzqFtW5NHfUVF2bF2rQuxsRz0SkTkLTvO78DwlaVfBwNAYkgi9ty/B3J52UM772p+F9rEtPFGeT7hcDmw5dwWf5dB5VAoZGjeXCyQ/sABhcTVEBFV3NJhS9G3Xt8y98/fPx8vbHnBhxURkVQyMjKQlpYmeb9xcXGIjo6SvF+qfoKDg4XbSrlAAPmPQiHDpElG7NtnR7t24uEW5Tl6VIsuXVR4+eUiOBx8n19VRUUp8fTTBuzZo8OpUza8+GIRkpIC73eBwyHH5s163HuvATExbtx5pwnff2/xyfeeN0LBOtfujF/H/ooG4Q0k75uIiMSMHWsUDlW9eFGD779nwC6VbfFiM9LSxMZsAMCECZ4vvEZERORNDAUjIiIiIiIiIiIiIiKqgrRaOR59VHzQ6KlTGqxYEZir0hJRzXBL41sgQ8nBVVeKrsDhCpzAHyL6g8FgQFJSEpKSkqDT6YT6+PbbUGRmig/IHDIkHwUFBThx4gTOnz8Pm00sqEJKngSlWSyeXYuZTCZcvHgRABAS4sLcuefRp0++UF9BQU6sXm1F48Z6j2oiIqKyHc04ir5f9IXLXfrkl1q6WjjyyBEo5cpy+3ql5yulXktXFbmWXH+XQBXQurVTqN3Ro2pOXCciv9pw9wa0i21X5v7JP0/G+zvf92FFROSpS5cuISMjQ/J+ExMTER4eLnm/VD3J5XLhBQLcbrfHzwIpcDRtqsGuXRq89poJarVYwEV57HY53nrLiI4di3HkiP+fg5NnkpPVeOstI06eVGPnTisefLAIUVHiC8B5S1GRAsuXG3DjjTrExzvw8MNF2LXLCpfLO/f4kfpISfu7pfEt2DJqi1fCxoiISFxEhBqDBhUKt//sM0ZhUOlcLjc+/FB8kZImTYoxaJBnC+MRERF5G6+EiIiIiIiIiIiIiIiIqqgnn9QjNFQ8OOfdd+VeG8BJRFQepVyJaGN0ie1uuPHNiW98XxARVYhWq0WDBg3QsGFDGAyGCrdzOIDPPhOf4BEfb8PAgXl//bmoqAinTp3C2bNnUVwsHpTqKaPRKNy2oEB8VePi4mKcP3/+X9u0WjemT7+IO+/MrlRfarULX3xRiK5dg4TrISKia0srSEPHBR1hd5U+4VOv0uPww4dhVFfsc+WWxrdg/d3rMTh5MNQKtZSl+kSb2Db+LoEqoEMHseA5i0WBw4c5aZ2I/Ecul2PPuD1IDk8u85jxG8dj8e+LfVgVEYlwuVw4d+4c8vLyJO1XJpMhKSkJQUF8FkKVU5nnof+Vk5MjYSXkb0qlDK++asCuXXa0aGH12nkOHNCiQwclJk82wenke/2qTi6XoXNnLebMMeLyZSW++86CO+4wwWAQC+X2powMFebMMaJLFy0aN7bhpZeKcPq0tPf6UoZ3PdrhUfzv9v9Br+LCJ0REgWjsWPG2GzcacfUqnzdTSZs2WXH4sHio15NPOiCXV90FeIiIqGZgKBgREREREREREREREVEVFRQkx4MPig8y/v13Ldav994gZSKi8nSO71zq9q+PfO3jSoiostRqNerVq4fGjRtXaALlunWhuHxZPLTkvvsyoVKV3G42m3H69GmkpKTAYrEI9y8qODhYuK3ZbBZq53A4cObMGbjdJSeBKRTAiy+m4/HHr1aoL5nMjVmz8nHzzaFCtRARUfmKbEVoMacFzPbSf++r5Crsu38fYoNiK9Vv/wb9sXbEWpx/8jxaRbeqUJsWUS3QtU5X1A9JBixhlTqflKwOPouoCjp3LuXiq4J27xYPsScikoJcLsehhw8hLiiuzGPu/eZefH/yex9WRUSV4XK5cObMGZhMJkn7VSgUaNiwIbRa8YnDVHOFh4cLty0qKpKwEgoUbdposG+fBs8+WwSl0juhXVarHC+8YEC3blacOsVAjOpCqZThhht0WLbMgKtXZVi40IS+fc1QKl3+Lq2E06c1ePttIxo2VKNjRws++MCEjAzP7/ulCgV7r+97mDloJhRyhST9ERGR9AYMCELdupVf6MtodOLmm3ORmprhhaqoqps2Tfz6OzrajjFjGCZKRESBj6FgREREREREREREREREVdiECTro9eIrx06eLGExRESVdEezO0rdvvPSTh9XQkSilEolEhMT0bhxY4SEhJR6jMsFLFggPrkjMtKOm2/Ou+YxVqsVZ86cwenTpyWfLHotSqUSMpnY6rFWa+UDUVwuF1JSUuBylT0xSCYDHnggE6+/fhkKxbUHwr7xRi7GjfNfKAwRUXXncDnQbHYz5FhySt0vl8mxdfRWNIlsInyO2KBYbL93O3om9iz32JV3rMQv9/2Cb/seAabkAG/YgGnpwOzDwMKtwIplwNpZwLbXgN2PAUfuBM72Bq60BApjAad4SNSfgjXB6BTfyeN+yPsaN1YhKEjsmdO+fd6ZDE9EVBlapRbHHzmOMG3p9zxuuHHzspvxS+ovPq6MiMpTWOjAjTcWYfduaac8qdVqNGrUCKrSkueJKkCv1ws/C7Tb7dd8pkdVl1otw7vvGvHTT8Vo1KjyYRcVtWuXDm3aKDBjhgkuF++5qhODQY7Row3YtEmPS5dcmDbNhPbtfb8ISkXs3avDM88YEB8vx4ABZixebILZLPa7LdIQ6VEtaoUaS29bionXTRT+3UxERL6hUMgxYkTFF8xq186Et9++hK1bT+Dll9Oh1+d7sTqqig4ftmHzZvFQrwcfLIZazesHIiIKfDJ3acuGEhERERERERERERERUZXx6KNFmD3bKNz+p5+s6NaNK6ITke/ZHDZo3taU2C6DDI6XHZDLuc4VUVXjcrlw5coV5Obm4s8hKZs3B+PppxOE+5wwIR2jR2dXqo1KpUJsbCyCg4OFz1tRp06dgs1mE2rbvHnzCh/7ZyBYZc61fXsQJkyoA6u15O/TRx7JxaxZDAQjIvIWl8uFdvPa4eDVg2Ues+L2FRjWdJgk57M6rBi5aiRWHV9V6v76YfWR8ngKZDIZNm+2oF8/ncBZ3LiUlQeLLBtZ5ixkmjKRac4s+f//2FZoK/yrdZQhCktvW4re9XoL/i1rhoMHD6JNmzYVPv7AgQNo3bq1V2rp2tWCnTsr/73Stq0Vv/3GZ01EFBiuFF1B0kdJMNlLD5BWyVXY/8B+NI+u+P0ZEXlPenoxBg924uBBPUJCHFi8+Czq1xd77vJPer0edevW5TNn8lhKSopQ2D8A1K5dG6GhodIWRAHFYnHh+efNmDnTAJfLeyEDPXuasXChCnXrMuSwOjt1yoaFC21YvlyFM2dKvk8NFEFBTgwebMWoUXIMGKCFQlGx7/0rRVcQOz1W6JwhmhB8c9c3uL7u9ULtiYjI91JTrWjQQAOHo/TPiYgIO266KQ+33pqLunVL3gPyWpr+6Z57TPjyS4NQW73eidRUoFYthcRVERERSY+hYERERERERERERERERFVcaqodyckK2GxiExkGDjRj3TrxldOIiDwRMy0GV01XS2z/5s5vcHPjm/1QERFJweVyISMjA1lZ2bjzzvo4dkwkeAQICXFg48ZT0OvFVppXKpWIiYnx6gDhixcvIj9fbHXiBg0aQKer2Nfm7NmzMJsrvoLynw4e1OGxxxKRn6/8a9ttt+Vj2bIgKBScCEtE5C0DvxyIDWc2lLl/xoAZeLLzk5Ke0+ly4tEfHsXc3+aW2Pd056fx/oD3AQBLl5oxYkTlnwNotS5YLJX77LA6rMg2Z8PpdqJOcB3IZFx5vTyBFAomGkSv07mQny+DSsV/byIKDKezT6PFJy1Q7Cwudb9OqcPxR48jMTTRx5UR0T8dP27GkCEKnDv3d/BJbKwNX355FlFRDuF+g4ODkZAgHlhP9E8ZGRnIyMgQams0GlG3bl1pC6KAtH27FWPGyHHunNpr5wgOduK996y4/3495HLee1VnLpcbu3cXY9EiB1at0iAzM3DD4KKj7bjttmKMHq1Ehw6aaz4HsjvtUL9V+Z+ROsF1sG7kOjSLauZJqURE5Af9+xdi06agv/4sl7vRo0chbr01F927F0J1jY84jUaD5ORkH1RJgS493YF69eQoLhYb6/DAA0WYO1d8AV4iIiJf4sg+IiIiIiIiIiIiIiKiKi4hQYU776x8QMSfNmzQ4eDB0idDERF5W4e4DqVuX3L4/9i77+ioqr194M+cKZmWQgiBBAiEGkJLIAiIggVFQUAEFRQQBEERUeQiNq4Nr4AdFAsIBAREKYIUBUHpIiWhJPRAQgkE0qeXc35/+Lu+cpmE5GRmMkmez1rvWi+zzz7ne+Mkc2afvZ+91M+VEJE3CYKAevXqoVWrVnj7bTs6dzbLOs/jj+fKDgQDAJfLhQsXLuDYsWO4du2a7POUxmCQtwMtgDKHiZ0/f15WIBgAJCRYsWhRBqKi/tpRuUePYixdykAwIiJfenLNk6UGgr1060teDwQDAKWgxBd9vsCbPd687vW6hrp49fZX//53To68vWTDw93l7qNVaVE/pD5iQmMYCFYFJSXJu1+wWgUcPuzwcjVERPI1r90cu0fthkpQeWy3uqxo92U7XLP45nsjEd3cjh1F6NFDfV0gGABkZ2vwzDONUFws774kIiKCgWDkVeHh4bL7yh3fo6qnRw8tjhxRYcwYExQKed/Bb6aoSImnnzbg/vutuHhRfnAiBT5BUKBrVy2+/NKIS5dUWLvWikGDzDAYyj9O42tXrqgxZ44RnTtrERfnwNSpJpw+7Xl8QK1UI0wbVq7zt6vbDntG7WEgGBFRFTVixF+fXQ0b2vH885exefMJzJ6dhbvuKj0QDADsdjtcLt7zEPDxxzbZgWBKpYR//ct3wb1ERETextl9RERERERERERERERE1cCrr2ogCPImFEuSAu++y0kzRFQ5Hm39qMfXd1/Y7edKiMgXlEoBAweG4Y8/DPj550LceWdxmfvq9W489lieV+pwu924fPky0tPTkZOTA1GUHzT2v0JCQmT3LctCwMuXL5c5PKwkTZo48O23GXjwwXysWaODRsMpQ0REvjJ161QsSF1QYvvjbR/HjHtm+Oz6CoUCb9zxBlLGpuDlbi/jvbvfw7FnjyFCH/H3MVev+i8UjKq2zp2Vsvvu3cuxJiIKLB2iOuCXob9AUHj+PlRkL0L85/EwOUx+royIVq0qwP33G3D1qudV4CdP6jBxYgwcjvKFzEZFRaFevXreKJHobyqVCoJQ/rG13FwlfvopGEVFvE+uKQwGAV99ZcTGjTY0aOC70ORNm/Ro2xZYtEjexhxUtahUCvTtq8MPPxhw+bIC8+db0LOnBSqVb8LnKuLkySBMm2ZE8+YadOlixSefmHHt2vVjS/8cr7qZnk16YsfIHagfUt/bpRIRkZ88/HAI5s/PwLp1pzB69DVERpbv3vjKlSs+qoyqCrNZxDffaGX3793biubNGQpGRERVB2f4ERERERERERERERERVQNxcRr06yd/d+kff9SXuEMrEZEvPdL6EY+vXyy66NXQHiKqfL16hWLr1mDs3FmM3r2Lbhpo+uijeQgN9W74iCiKyMnJwbFjx5Cdne2VvzMqlQoKRfkWpf6X3W4vtT03NxfXrl2Tde7/FRnpwrJlOoSGqrxyPiIiutGX+7/EtB3TSmy/q/Fd+Pahb/1SS0K9BLzX8z28fNvLqKWrdV2b3I+W8PDAW2BKvhUXp0FIiLz7sf37+X4hosBzV+xdWD5oORTw/B3uquUqWs9pDYeLY+VE/vLFF3l49NEQmM2lh5Hu3WvE66/XR1mHcmJiYlC7dm0vVEh0I71ef9NjHA4F9u414OOP6+KRR5rijjta4eWXG2LjRoZP1jS9eulw9KgSw4f7LrQrP1+FJ54w4MEHzcjJYfBcTWE0Chg5Uo/Nm/U4f96NmTNN6NDBVtllebR3rw4TJxoQHa3AffdZsHixGRaLiDr6OmXqP7z9cKx/bD1CguRv0kJERJVPrRbQowcgI2MXACq8kRZVfV9/bUVenvz5DpMnM1qFiIiqFn5yERERERERERERERERVROvvSZ/woPLpcB773GhExH5n0al8TjhW4KEDac2VEJFRORr3boFY/36EOzfb8agQYVQqW5czanRiBg+PNdnNUiShNzcXKSmHsesWXmw2ysWDqZWq2X1c7nccLs9X7uwsBDZ2dkVKes6sbGx0Grl75pLRESlW3N8DcatH1die5s6bbB52GY/VlSyq1flhVnWrs3Q3ppGEBRo00beeFFqKoNIiSgwDYofhC/6fFFie1ZhFjp83YFh9UR+MHVqHsaNC4fLVbalTRs3huGjj+qVeoxCoUDTpk0REsLQEPKdsLCwG16TJODMmSAsXlwbzzzTCN26tcLo0bGYP78Ojh3T/X3cpk0Mz62JQkOVSE424McfrahXz+mz66xZY0Dr1sD338vfTIyqpnr1VJg82YgDB7Q4dsyBKVNMiI0NvPkfTqeAX37RY/hwA+rVk3D65M3HqF6//XUs7L8QGqXGDxUSEZGvRUZGyu4riiKKi4u9WA1VJW63hNmz5c3LAIBbbrHi9ts5X4KIiKoWhoIRERERERERERERERFVE0lJQejZU/4E3yVL9Lh0iTsHE5H/dYru5PH1pUeX+rkSIvKnxEQjfvghFEeP2jBsWAGCgv5vwfVDD+UjIsL39yWrV4fh+efDERvrwjvv5KG4WN41dTrdTY+RJODyZRW2bAnG7NmRePrpRujRIw4ZGfYbjrVYLDh//rysWjxp0KABDAaD185HRETX++P8Hxj4/UBI8Ly4u35wfRwYcwCCEBhTNnNz5YWCRURw8XpN1KGDW1a/9HQNnE6+Z4goMI1NGotpd04rsT3tahq6L+zux4qIahaXS8STTxZg2rTwcvdNTo7AokW1PbYJgoDmzZuXaZyGqCL+GzqXn6/Exo2hmDq1Pnr2bIkHH2yOmTOjsHNnMGw2z9//duzg+7Mm699fh6NHBTz8sNln17h2TYVHH9Vj8GAz8vLkfZ+jqi0uToPp0404fVqNnTttGDPG5JfnLeVVXKzEVceFEtsFhYCvHvgK79z1DhQKeWNZREQUeIxGY4WeleTk5HixGqpKVq604uxZ+SGhEyfyeQUREVU9gTHDhIiIiIiIiIiIiIiIiLzitdfkP/6x2wXMnGnzYjVERGUzKH6Qx9d3nd/l50qIqDK0bKnHokVhOHnSgbFj8xEa6sLIkdd8fl2nE1iwIAIAkJ2twb//HY7YWAkvv5yH3FxHuc4VHBx83b8lCbhyRYXffgvGZ59FYty4Rrjjjjjcc08cXnihEb7+OhK7dgUjP1+FnTuvv/9yOBw4e/Zsxf7H/UPdunURFhbmtfMREdH1TuWeQo/kHnBLnhfahmnDkD4uHRqV/IUK3paXJ2/sICLCy4VQlZCUJG/hrd0uIDW1fPdURET+9Fr31zCxy8QS23ed34W+S/v6sSKimsFsdqF/fxMWLAiTfY7334/Czz+HXPeaWq1GixYtoNEEzn03VV+CIGD27Cj06BGHl15qiB9/rIWcHHWZ+p46pcWZM1YfV0iBrHZtJb7/3oDvvrP4NKhp+XID2rQR8dNPfL/VVIKgQLduWnz1lRGXLimxZo0VgwaZodcHSFic4AIMVzw2KSU1vuyxAmM6jvFzUURE5A8VeXZttVohiuLND6Rq56OP5IeENm7swMMPM6CZiIiqHoaCERERERERERERERERVSN33KFFly7yJ/Z+842OOwYTkd8NaTvE4+sXii5wMh9RDRITo8WXX9bC+fMimjf3/QLOjRvDcPHi9dfJzVVjxoxwxMYqMWFCPi5dspfpXEajETt3GjFnTiTGj4/BXXe1RM+ecZgwoRG++ioSO3YEIy9P5bHvgQP/9/+7XC6cPn0akuSdXWpr166NOnXqeOVcRER0oxxTDjp83QEOt+fgI51Kh0NPH0KINsRje2XJzVXK6hcZKX/BBVVdXbqULdzAk717fbfAnYjIGz7q9RGGtR1WYvu6U+swcs1IP1ZEVL05HA6MHVuIDRsqfn/86qsN8OefBgCAVqtF8+bNoVJ5Hnsh8oWWLRWQJHnfkdauZUgTAY8+qsfRo0DfvhafXSM7W41+/XQYMcKMwkLOAajJ1GoF+vXT4YcfDLhyRYF588y46y4LVCrvPIuQpfkGQO3hGYwEuOfuwNg7H0TXrlbMmmVCbi7fv0RE1UlkZGSF+ufk5HipEqoqdu2yYe9e+aFezz3nhFLJZ1xERFT1MBSMiIiIiIiIiIiIiIiompkyRf7ETZNJiY8/5kR0IvIvrUqLCH3EDa+LkojNGZsroSIiqkzBwRrExsYiLi4OwcHBPrmGKALz5t34d+e/iouVmD27Fpo1U2H06HxkZJR+f6RSqTB7dl188UUktm0LwbVrZQ/POHRI/f9rEnH69GmvhSEGBwcjKirKK+ciIqIbWRwWtPmiDUwOk8d2laDCH6P/QExojJ8ru7n8fHlTR+vU4YKJmqh5czVCQ+WFe+3f7+ViiIh8YNFDi3B/s/tLbF+YuhAvbX7JjxURVU9WqxWnTp3C6NE5aNDAc6hueTidAl54IQZudyiaNWsGQeDyKPKvfv3kL0jfupUBdvSXunVVWLtWjwULLAgL812ocnKyAe3aubF5M+cBEGA0Chg1yoAtW/TIynJjxgwTEhNt/i+k41eeX98zEbjUGZKkwB9/6PD880ZERyvQu7cFS5ZYYLVyQykioqpOpVIhKChIdv+CggLvFUNVwvvvyw8IrVXLhbFj5X9/IyIiqkwc9SYiIiIiIiIiIiIiIqpm+vXToU0b+ZM2v/hCC7OZEymJyL86RnX0+Pq3h7/1cyVEFChUKhUaNWqEuLg4hIaGevXcW7aE4OxZ7U2Ps1qV+OabWoiLC8JjjxUgLc1S4rFt23rY0b4M0tK0cLncOHPmDFwu7yz80ul0aNSokVfORUREN3KLbrT9si2uWq56bFdAgZ8f/xnt6rbzc2U3ZzaLsFqVsvpGRjIUrCYSBAXatnXK6puaKu+9RkTkbxse34DO9TuX2P7+7vcxc9dMP1ZEVL0UFRXhzJkzkCQJERFufPnlOdSqVbExEJVKxIwZhWjfvqGXqiQqn2bNdGjWTN7z2N279XC5+CyW/s+IEXocPQr07Fny+HNFZWVp0KuXFk8/beJcAPpbVJQKL71kxMGDWqSl2TFligmNG1c8vPOmws4BzTfe+LpTC2yfesPLDoeAjRv1GDpUj3r1JDz+uBm//GKF2y1/wzwiIqpckZGRsvu6XC5YrQw7rSlOn3Zg3Tq97P4jR9pgMDBShYiIqiZ+ghEREREREREREREREVUzgqDA5Mnyd0fLzVXh8899N+GYiMiTQfGDPL6+I2uHnyshokCjUqnQsGFDxMfHIzw8HApFxQJJJAmYO7dOufo4nQKWLQtD+/Y6PPFEHoqKim44JjFR3kKq/HwVtm49D7tdXqjY/1Kr1YiNjfXKuYiIyLNbv7kVGfkZJbYvfmgx7m5ytx8rKrvsbPnhC/XqMeCppkpMlDfOdOyYBg4HF+gSUdWw+8ndiKsdV2L7lF+n4JuD3/ixIqLqITc3F1lZWde91qiRA59/ngmdTt5YisHgxvLlRXjmmXBvlEgk2+23ywsFy8tTYfdus5eroaqufn0VfvlFhzlzzAgOlv+svzSSpMBXXxnRrp0LO3bI32SMqqf4+CBMn27EmTNq7Nhhw+jRZkREeGcjkxt0mAcoPIwXHB0M2GqV2rWoSImlSw247z4dYmJceO45Ew4c8M7zFSIi8p/Q0NAKPfe/cuWKF6uhQPbBBw643fLeKxqNiEmTbr5ZHBERUaBiKBgREREREREREREREVE19PjjejRpIn/i46efBnHRJhH51WNtHvP4+vmi8xBF7lhORIAgCIiOjkarVq0QEREhe5Lw7t1GHDumk9XX7VYgJMSJrKwsHD9+HAUFBX+3demilnVOAHj88fo4f15+//9SKpVo3rw5BIFTgoiIfKXfsn7489KfJbbP7DkTj7d93I8VlU9Ojvx768hIfr7UVElJ8u67HA4BKSlcmEtEVYMgCDj09CE0CGlQ4jFP/fQUVh9b7ceqiKq2y5cvIzs722Nb27ZWfPBBFpTK8j2LqlPHiY0bzXjooTAvVEhUMffeK7/vhg1O7xVC1YYgKPDMMwYcOiTi9tutPrtORoYGd94ZhIkTTbDZ+AyOricICtx2mxZz5xpw6ZISq1ZZMHCgWXaYp0dNN3l+/cDYcp3m0iU1PvvMiKSkILRqZccbb5hw9iz/vhIRVRUhISGy+5pMJs4lqgHy8tz49lt5czsAYNAgK6KjVV6siIiIyL84Q4OIiIiIiIiIiIiIiKgaUioVePFF+bu2XrqkxjffWLxYERFR6fQaPcJ14Te8Lkoifjv3WyVURESBShAE1KtXD61atULdunXLHYD19dd1ZF/bYHBj8OBcAIDL5cKFCxdw7NgxXLt2DbfcoodaLW/i8bVragwd2hTp6fJ3qVUoFGjWrBkDwYiIfOiZdc/gp5M/ldj+QucXMLnbZD9WVH5Xrsj7rBIECRERSi9XQ1VF167yw0v37pU/PkVE5G8alQbHnj2G2rraHtslSBj0wyBsO7fNz5URVT1ZWVm4du1aqcd0727CG29cLPM5Y2Pt2LbNidtvl79wnMibevc2yh4P3LZN4+VqqDqJjVXj99+1+PBDLwcx/YPbrcAnnxiRmOjE3r02n1yDqj61WoEBA/RYscKAK1eAuXPNuPNOS7lDPW+gKb7xtcvtgQudZZ/y+PEgvP22EU2bqnDrrVbMnm1GXp67AkUSEZGv1a1bt0L98/LyvFQJBarPPrPBbJb/bGrKlIpvzEZERFSZOAuQiIiIiIiIiIiIiIiomho1SoeoKPm7oH74oQpudwUncxIRlUPHqI4eX198eLGfKyGiqkAQBNSpUwfx8fGIjo6GUnnzyaAHDuhx8KBB9jUffTQPoaHXL8Jyu924fPkyzp49gZYt5S+eystTYeTIWOzeLa++pk2bQq3mpFYiIl95d/u7+PLAlyW2D2w1EB/f97EfK5InJ0fe9/ywMDeUSoWXq6GqomlTNcLC5IV77d/P9w0RVS1GjRHp49Jh1Bg9touSiJ6LeyI1O9W/hRFVEaIoIiMjA0VFRWU6fsCAAjz77JWbHpeQYMGuXUCrVvqKlkjkNSEhKnTsKG+TpQMH9CgqYoAulUwQFHjxRQMOHnShc2erz65z/HgQbrtNg1deMcHp5NwAKllwsIDRow3YulWPrCw3pk83o317mc9EDj1x42tb3gVQ8TEESVJgzx4dJkwwICpKgT59LFi2zAKbzTcBe0REJJ9Go6nQ8+3c3FwvVkOBxuGQ8MUX8sOU77rLgnbtGMZMRERVG0PBiIiIiIiIiIiIiIiIqimtVsCECQ7Z/c+cCcLy5b6bYExE9L8GxA3w+PqOzB1+roSIqprw8HC0atUKDRs2LHXi8Ny5dWRfIyhIxLBh10psF0UR8fEVu3eyWJR49tnGWLcutFz9GjduDK1WW6FrExFRyeanzMfrv71eYnu3ht2w4pEVfqxIvqtX5S3wDQ93e7kSqkoEQYF27eQFzx86dPPgViKiQBNpjMThpw9Dq/T8PcslutDlmy7IyMvwc2VEgU0URZw+fRoWS/lCksaOvYqHH84rsf3uu4uxfbsGUVFBFS2RyOt69JD3LNbpFLBhg8nL1VB1FBenwa5dWkybZkJQkG9CjVwuAdOnG5GUZEdqqt0n16DqJTpahSlTDEhN1SItzY7Jk01o3Lgcfw93vQRsng5kJwDZicCqxcCpPl6v0+EQsGGDHo89pkfduhKGDTNj0yYrN8cjIgogERERsvs6nU44HPLnRlJgS0624PJl+aFx//oXNywhIqKqj6FgRERERERERERERERE1dj48TqEh8vfZXrGDAGiyAmRROQfw9oP8/h6ZmEmRJG7NxPRzYWGhqJly5Zo1KgRNJrrd31NT9di165g2ed+6KF8RESUHojSurVN9vn/y+VS4JVXGiI5uXaZjm/QoAGMRmOFr0tERJ5tPLURo9eOLrG9Re0W2D5iux8rqphrJedblqp2bd6P13QdOsgLhjt2TAObje8fIqp6YmvFYs+oPVAJKo/tdrcd7b9qjxxTjp8rIwpMTqcTJ06ckLUgW6EAXn31Eu64o+iGtiFDCrBxowHBwZ5/F4kqW58+8hepb9rkxUKoWlMqFXjtNSP27XMhIaHiY9AlOXxYi86d1Xj7bTNcLs4RoLKJjw/CzJlGnDmjxrZtNowaZb75HBVJAHZNAb5KAb46CBwe6vM6i4qU+PZbA3r10iEmxoUJE0xISWEIHhFRZatVq1aF+l++fNlLlVAgEUUJn34qf8OR1q1t6NWLm6oREVHVx1AwIiIiIiIiIiIiIiKiasxoFDB2rPyJwYcPa7Fhg+8mFhMR/ZNRY0Qt7Y0T/tySGzuzdlZCRURUVQUHB6NFixaIjY2FVvvXZM958+rIPp9KJWHkyJunqMTHW2Vf43998EEU3n+/HkrLRKxbty7CwsK8dk0iIrre/kv70XdZX0jwvBC2nrEeDj19CIJQdaZiXrsmb2f08HAuBq7pkpLkvc+dTgEpKeUPByEiCgQJUQnYMmwLBIXnv4Emhwnxc+JRZLsxyIioJrHZbDh58iTcbnkhogCgUgEzZ55H+/aWv1+bNCkPixeHQK2uOvfbVPN07Woo9wZNjRvbMWRILrp3z/dRVVRdtW2rwZ9/BuH1101QqXwTvuxwCHjjDQO6drUhPZ2BSVR2gqBA9+5azJtnwOXLSqxcacGAAWbodIEXFH7pkhqzZxvRoUMQ4uPtePttMzIznZVdFhFRjSQIQoU2wCouLvZiNRQofvnFhrQ0+aFezz/vhiDIex5GREQUSDgyTkREREREREREREREVM1NmqSDwSB/IcZ//uPFYoiIbiKxXqLH1xcdXuTnSoioOjAYDGjWrBmaNm2GZs1E2fdEDzxQgKiomy8IadrUBo3GewtcFi2KwMsvN4DTeeOE1fDwcNSpIz/ojIiISneu4Bxum38b3JLnz46QoBCkPZMGrapq7TQuNxQsIoKhYDVdly4q2X337pU/LkVEVNm6N+6OVY+sggKeP0NzrbmInxMPh4sBiFQzFRcX4/Tp05Ckit8v6nQSPvssE82a2fDBB3n44INwKJVc9kSBTaUS0K2bpdRjQkJcuPfeQrz55kX88ssJ/PTTKbz6ajaSksywWErvS/S/1GoF3nnHiD17nIiP993mXvv365CUpMb775vgdnNMgMpHrVbgoYf0WLXKgOxsCV99ZcYdd1igVAbee+nYsSC88YYBsbEqdOtmxWefmZGfz3EMIiJ/qlu3ruy+kiShoKDAe8VQQPjgA/n3DFFRTjzxhN6L1RAREVUejo4TERERERERERERERFVc7VrKzFypFV2/z17dNi+3XcTiomI/unBuAc9vv77ud/9WgcRVS86nRZz5tRCRoYbkyblISzMVea+CoWEUaOululYtRpo2dK7900bN4Zh3LhGMJn+b5pPcHAwoqOjvXodIiL6P3mWPLT/sj3sbrvH9iBlEFLHpiJcH+7nyiouN5ehYCRPbKwa4eFlv4f6p/37vVwMEZGf9Y/rj3n95pXYfrH4Itp92Q6i6L2QaKKqID8/H5mZmV49Z1iYG7//XoRJk6revTbVXHfddf19skoloUMHM8aPv4KlS89g+/bj+PDD8xg4MB/R0ddvPJCXl+fPUqkaSUoKQkpKECZNMvksaMlqFfDSS0b06GHD6dMMQCV5QkOVGDPGgN9+0yMry4333jOjffvAm38iSQrs3q3Dc88ZEBWlQN++Znz3nQU2G+/xiYh8TafTQaWSvynF1atle5ZPVUNqqh1bt8oP9Xr6aQc0GnnPwoiIiAINQ8GIiIiIiIiIiIiIiIhqgClTghAUJH+y4rvvcqIjEfnH8PbDPb6eWejdxWVEVDNFRmrwwQfhOHcOmDo1D5GRzpv2uffeIjRuXPYFT/Hx8sNYS/LHH0Y8+WQsrl1TQavVolGjRl6/BhER/cXmsqH1F61RZC/y2K5UKLHzyZ2IrRXr58q8Iy9P3rTROnW4gKKmEwQF2rWTtwj80CGll6shIvK/JxOfxIyeM0psP5F7Al2/6erHiogqV05ODi5evOj180ZHR6N+/Uivn5fIl/r106FRIzsGD87FrFmZ2LHjGJKTz2Ls2Kto29YKZSm3w2az2X+FUrWj0SjwwQdGbNtmR7NmnoPNvWHXLh0SE5X47DMzRJGh4SRfdLQKL79sQGqqFkePOjBpkgmNGgVe4JzdLmDdOgOGDNGjXj0Rw4eb8euvVr7/iYh8qFatWuXuY7crsGFDKMaMqYviYnkbWlDgef99+f8tDQY3xo/XerEaIiKiysVQMCIiIiIiIiIiIiIiohqgQQM1Bg+WH1CxaZMeBw/6biIxEdF/hWpDEaYNu+F1l+jCrqxd/i+IiKql0FAV3n47HBkZCkyfnocGDUpedDJ69M13FpYk4PJlFbZtC8bVq/J3MS7NsWM6JCdHokmTJj45PxERAaIoIuHLBFw2XfbYroACa4esRVJ0kp8r8568PHnhTHXqeLkQqpISE+WFxh8/roHVysB5Iqr6Xur2EibfOrnE9j8v/Yn7v73fjxURVY4LFy4gJyfH6+dt1KgRwsPDvX5eIl9r0kSH9etP47XXsnHnncUwGst+7+t0OiGKvFemiunWTYtDh9R49lkTFArfhBaZTEo895wB995rRVbWzTfbILqZ1q01+OADIzIy1Pj9dxuefNKE8PDAC3QpLFRh8WID7rlHh5gYJyZONCE1lXNniIi8rU45HkKcOBGE996Lwl13tcSUKQ3x++8hSE4u9mF15C8XL7qwYoVOdv+hQ60ID+cmJUREVH0wFIyIiIiIiIiIiIiIiKiGePVVNZRK+ZOA//OfwJuASUTVU0LdBI+vJx9K9m8hRFTtGQwqTJkSjjNnVPjss3w0a2a7rr179yLExV3/mssFnD4dhHXrQvHhh3Xx1FON0aNHHO65Jw7jxzfC1q2hPqm1a1cT5swJhSBwug8Rka/0WNgDJ3JPlNg+t+9c9G7e248VeZfLJaGwUN5iiMhIfv4Q0KmTvPeByyXg4MGSQ1iJiKqSmffMxIiEESW2/3zmZwxdNdR/BRH5kSiKOHv2LAoKCrx6XoVCgWbNmiE4ONir5yXyp6CgINl9i4qKvFgJ1VR6vYDPPjPi11/taNTId9+/tmzRo21bAd98Y4Yo+iaAjGoWQVCgRw8tvvnGiOxsJVassODBB83Q6QIvMPHiRQ0++cSIxMQgtGljwzvvmBiSR0TkJYIgQK/Xl9heXCzg++9rYfDgJhg0qDmWLq2NoqL/26xr8WKNP8okH/voIxscDnnPIZRKCf/6F98HRERUvSgkSeLoCxERERERERERERERUQ0xcKAZq1YZZPVVKiWkpTnRsiUnTxCRb33yxyeY+MvEG15vHt4cJ587WQkVEVFN4XKJ+PbbQnz4YRCOHtVj7twMaLUSjh3T4cQJLY4f1+LUKa3siahytWplxfbtSkRE8D6MiMhXHv7+Yaw4tqLE9nfufAevd3/djxV5X3a2C9HRqpsf6MGePTZ06aL1ckXkSWpqKhITE8t8fEpKChISEnxX0D+cO+dEbKxaVt8PPzTjxRfljUkREQWi/sv6Y+3JtSW2T7hlAj69/1M/VkTkW6Io4syZM7Db7V49r1KpRLNmzaBWy7vHIAoUOTk5yMnJkdXXaDSicePG3i2IarTiYhEvvGDB/PlGn16nd28L5s3TICpK3lgDUWkKC9347jsbli4VsHOnFqKoqOySPBIECV272vDYYyKGDNGiVi15gfxERAQUFxcjMzPz739LEnDwoB6rVtXCpk2hsNlKf0afmmpC+/a+vf8h3zGZRMTEiMjPl3dv2b+/GT/+yGcQRERUvXDrNiIiIiIiIiIiIiIiohrktdfkT8h1uxV47z3uckpEvje83XCPr58tOOvnSoiophBFCZmZTvz4ow0nT6rRqJGEevUcGDMmFsOGNcV//hONlSvDkZam93sgWP36DqxfDwaCERH50As/v1BqINjTHZ+u8oFgAHD5slt233r1uKCRgJgYFSIiXLL6Hjjg5WKIiCrZmiFr0K1htxLbZ/05C9O2T/NjRUS+U1zswmOPFSIrS/79pCcajQYtW7ZkIBhVC+Hh4bL7WiwWL1ZCBAQHC/jmGyPWrbMiOtp3z/c3bNCjbVtg6VK+h8n7QkOVGDvWgG3bdDh3zoVp00xo185W2WXdQBQV2LVLh2efNSAqSoF+/SxYvtwCm02s7NKIiKqc4OBgCIKAa9dUmD8/Av36NceIEU2wdm2tmwaCAcBXX3FeY1X21VdW2YFgADB5Mp9jERFR9aOQJEmq7CKIiIiIiIiIiIiIiIjIf3r1smDTJr2svhqNiNOn3WjYkAs0iMi3wqaHodBeeMPrf47+E53qd6qEioiounC5JBw96sD+/S6kpko4dEiJ9HQ18vLkTzD1FYPBjeXLz6BVKxXq1KkDo9EIhUJR2WUREVUrM3fNxJRfp5TY3q9FP6wZssaPFfnOL79Ycd99Oll9LRYROh33ofWH1NRUJCYmlvn4lJQUJCQk+K6g/3H33RZs3Vr+caX4eBvS0rQ+qIiIqPKIooh2X7ZD2tW0Eo+Z03sOnun0jB+rIvKu7Gw7evd2IzVVj+bNbVi4MAMhIRUPudDr9WjcuDEEgfeYVH2kp6dDFOX9fsTFxUGlCrzxSar68vPdGD/ehqVLDT69zsCBZnz5pRYREQxjIN86etSBBQsc+OEHDc6fD9zNVMLCXOjf347hw5W4444gCAKf7RARlcXKldcweHBtuFzl/7tZp44TFy4oodHwe2ZV43ZLaNbMiXPn5H22d+lixZ498p5/ERERBTLe1RAREREREREREREREdUwr70m/xGRwyFg5ky7F6shIvKsXd12Hl9fkLrAz5UQUVVWXCzit99s+OADM4YONSMhwYbgYAmJiUF46ikDPv/ciJ07dQEZCAYAZrMSn38eiUuX7MjMzMSZM2dQWFgI7gFIROQdS44sKTUQrFN0p2oTCAYAV67IW5xuMLgZCEZ/S0iQ9z46eTIIFkvFA0SIiAKJIAhIfToVjUIblXjMuA3j8H3a936sish7jh2zoFs3IDX1r0DQU6e0eOGFGDgcFQu1CAkJQZMmTRgIRtWOXi9vUyYAyMvL82IlRP+nVi0lliwxYMUKCyIjnT67zsqVBrRuLWLVKovPrkEEAG3aaPDhh0acO6fGb7/ZMGKEGbVquSq7rBsUFKiQnGzA3Xdr0bixEy++aMLhw47KLouIKODde28YdDp548hXr6qxfPmNmw9S4PvhB6vsQDAAmDiR8yeIiKh64gg6ERERERERERERERFRDdO9uxZdu1pl91+wQIfcXLcXKyIiulHfFn09vr717NYKndfusmNn1k5M2z4NfZb2wV3Jd2Hmrpmwuxh4SFTVnT/vxKpVFkydakK/fhY0aeJAaKgCd92lxeTJBixZYsChQ1rYbFVruszGjWEYMKAZfv89GDabDefPn8fp06eRn5/PcDAiogrYkrEFw1YNK7G9Sa0m2D1qtx8r8r2rV+X1q1WLYwD0f265Rd69lMulwIEDXPxKRNWPSlAhfVw6IvWRJR4zZOUQbMnY4seqiCpux44i9OihxtmzQde9vm+fEa++2gCizKzPiIgIxMTEeKFCosATFhYmu29RUZH3CiHyYOBAPdLSBAwYYPbZNXJy1Bg4UI+hQ80oKOBYAvmWIChwxx1aLFhgwOXLSnz/vQX9+5uh1QZeIPn58xp8/LER7dtr0LatDdOmmXD+vO9C+oiIqrLgYBX69y+W3T85OTA3A6PSffyx/PDx2FgHBg7UebEaIiKiwKGQODuQiIiIiIiIiIiIiIioxlm3zoq+feVPhnjlFRP+8x+jFysiIrreNcs11Hm/zg2vqwU1HFPLvpDc5rJh74W92Ja5Db+f+x17LuyBzWW74bjxncZjdu/ZFaqZiPzD5ZJw7JgT+/e7cPCgiMOHlUhPV+Pateo/wbd//3xMmZKN4OC/FrWo1WpERESgVq1aEISqFXZGRFSZjlw5gg5fd4BLdHlsr6Ovg3PPn4Neo/dzZb718ssmzJhR/u/y7dvbkJqq9UFF5ElqaioSExPLfHxKSgoSEhJ8V9D/yMx0onFjtay+M2eaMHkyx5OIqHq6ZrmGprOaosjuOdRFJaiwZ9QeJEUn+bkyovJbtaoATzwRDJNJWeIxQ4dew0svXYaiHOt2o6KiULt2bS9USBSYRFFEenq6rL4KhQKtW7f2ckVEni1ZYsGECRrk5fluTL1+fQfmznXj/vsZ0ED+VVDgxnff2bB0qYBdu7QQRfkhI74kCBK6dbNiyBAJQ4ZoERZW8n0XEVFNs2NHMbp3D5bVV6mUcPq0HY0b85lGVbFjhw3du8v/7/Xxx2a88ILBixUREREFDoaCERERERERERERERER1UCiKCEx0Y7Dh+VNqKhVy4WsLAFGI8MniMh3Qt4LQbHjxh1AD4w5gA5RHTz2sTqt2HNhD7ad24Ztmdvwx4U/YHfbb3otQSHA8boDSoETrokCickk4sABBw4ccCM1FThyRIkTJzSwWmvuPUi9eg689dZF3Hqr+e/XVCrV3+FgSiX/jhERleZC0QW0mN0CVpfVY7tRbcSZCWcQaYz0c2W+N3q0Cd98U/5AprvusmDLluoVkBbIAj0UDAAiI524erX8wWCDB5uxbBkX5xBR9ZVVmIW4z+JKvM8IUgbhyDNH0Lx2cz9XRlR2X3yRhwkTwuBy3Xzs5V//ysYTT+SW6bwxMTEICQmpaHlEAe/EiRNwOp2y+jZp0gR6Pb97kX9kZ7swapQDGzf69j03apQZn3yi47wCqhTnzzuRnGzH8uUqHD0auOEwWq2Ie++1YuhQBfr310GjCcwgMyIif2rd2or0dHnholOm5GH69HAvV0S+0q+fBT/9JO+eNDzchfPnBej1vNckIqLqiZ9wRERERERERERERERENZAgKDBliii7f36+Cp995nlhExGRt7St29bj6wtSFvz9/5sdZvya8Ste3/o6bl9wO8JmhOHuRXfj7e1vY1vmtjIFggGAKIlwiS6v1E1E8ly65MKPP1rw73+b8OCDZjRrZkdoqAJ33KHFpEkGLF5sQGqqtkYHggHA5csajB0bi2nTomCzqWAwGBAWFgaVSgW3213Z5RERBbRCWyHaftG2xKAOjVKDg2MPVstAMADIzZW3oDA8nHvP0vXat5cXcpCaqvJyJUREgSUmNAb7ntoHteA5ONHutiPxq0RcKrrk58qIymbq1DyMGxdepkAwAPjggyisXx9a6jEKhQJNmzZlIBjVGEZj+YOY/ysvL8+LlRCVLipKhXXrdJg714yQEJnjyoITaLUKuOs1IO5HADeOH3zzjQFt27rw22+2CtVLJEfDhmq8/roRR45oceiQAxMnmtCggaOyy7qBzSZg7VoDHnlEj3r13Bg50ozffrNBFDkmR0Q112OPyZ+XuHy5AW63/HmR5D8nTzqwYYO88DcAGDXKxkAwIiKq1hSSJPGbIRERERERERERERERUQ3kdkuIi3Pg9OkgWf2jopzIyFBCq+XECiLyjek7p+OVLa/c8HrDkIYY2m4ofj/3O/Zd2ueVMK/m4c1x8rmTFT4PEd2c2y3h+HEn9u1zISVFwuHDCqSlqXH1qudF01Syhg0dmDfPjXvvlT9RloiopnC4HGgyqwkuFl/02C4oBOwcuRNdG3b1c2X+c/vtVuzcWf7PjGeeMWPOHIMPKiJPUlNTkZiYWObjU1JSkJCQ4LuCPHjpJRPef7/8YQcqlYSCAgkGA8eSiKh625W1Cz0W9oBb8hywUUtbCxnPZyBMG+bfwohK4HKJGDOmCAsWhJW7r0ol4osvMtGli/mGNkEQ0KxZM2g0Gi9USVQ1WK1WnDlzRlZftVqNli1berkiopvLzHRi5EgnfvtNX/ZOChEYMAxot/T/Xtv3DLB+jsfDBUHCuHFmzJyph07H74RUeURRwu+/27FokRtr1gShoCBwA8xjYhwYNMiBkSM1aNOG91NEVLPk5DgQE6OC3S7vvuGnnwrxwAOlh1hT5RszxoS5c+UFKwcFiTh7VkRUVOB+lhMREVUUR1CIiIiIiIiIiIiIiIhqKKVSgRdflB+kk52txjffyN+Vj4joZp5MeNLj6+eLzuO9ne9hz4U9XgkEA4BbG97qlfMQ0fXMZhE7dtjwySdmjBhhRseONgQHS2jTRoORI/WYNcuA33/XMxBMpvPnNbjvPi3GjjXBbOZux0REJRFFER3ndiwxEEwBBVY9sqpaB4IBQG6uvCmjERHce5au16mTvPeSy6XA/v0OL1dDRBR4usV0w9oha6GAwmN7vi0f8Z/Hw+ay+bkyohuZzS7072+SFQgGAC6XgBdeiMHx49rrXler1WjRogUDwajG0el0UCg8//2/GafTCVHkGB/5X6NGavz6qw6zZplhMHgONb1B6+XXB4IBQKcvgJDzHg8XRQU++8yI9u2d2L2b90BUeQRBgbvu0mLhQgOyswUsX25B374WBAUF3t/frCwNPvrIiLZtNWjf3oZ33zXh4kXvPBsnIgp0kZEa3Hdfsez+33zjxWLIJ3Jz3ViyRP7mZw8/bGUgGBERVXsMBSMiIiIiIiIiIiIiIqrBRo3SIzraKbv/hx+q4XJxcTAReU+BrQDrTq7D5E2T0WdZH79dt2uD6h0AQeQPly+78NNPVrz1lhkPPWRG8+Z2hIQo0L27FhMnGpCcbMDBg1pYrZyu4k2SpMDXXxvRtq0L27dzMRURkSf3fHsPjuYcLbH9896fo39cfz9WVDny8+V9BtepI29BO1VfXbrID3Tdu5eLV4moZujdvDcWPbioxPZsUzbaftHWa4H3RHI4HA48/LAZGzaEVOg8ZrMSzzzTCBcv/nWPoNVq0bx5c6hUXJxLNVNQUJDsvkVFRV6shKjsBEGB554zICXFja5db7IxmOAC7nzDc1vIhVK7njoVhB49gjB5sgkOB+cZUOXSagU88ogea9fqkZ0t4fPPzbjtNisEIfDem4cPa/H660Y0aqREjx5WfPWVGYWFZQzxIyKqokaOlPf3ODjYjbAwBxwOblARyGbNssJiUcru/9JL3HiOiIiqP4UkSYH3DZWIiIiIiIiIiIiIiIj8ZuZME6ZMMcrun5xsxvDhBi9WREQ1SZ41Dzsyd2Bb5jZsy9yGlOwUSPD/Y+zDTx9G27pt/X5doqrI7ZZw4oQD+/e7kJIi4fBhAWlpaly5wkmXpYmOdsBuVyA313c/J0GQ8NxzZrz3nh46HcPXiIgAYNiqYfj2yLcltr9+++t45653/FhR5RBFCTqdBIej/J8P331nwaOP6n1QFXmSmpqKxMTEMh+fkpKChIQE3xVUgnr1nLLu/x55xIzlyzmOREQ1xyd/fIKJv0wssb1DvQ7Y99Q+CAK/w5F/Wa1WZGRk4OjRIIwcGQurVf5C3P9q0sSGn3++gubNG3mhQqKqKycnBzk5ObL6Go1GNG7c2LsFEZWT2y3hww/NePNNvedNPhLnA/1H3fi63Qi8fxVwact0ndatbUhOVqBjR/lBekS+kJXlxKJFdnz3nQppaWV7P1cGnU5Er15WPP64Av366aDRMNifiKoXt1tEkyZOZGWV7V4hKcmMhx7Kwz33FEGrlRAaGoqGDRv6uEqSw2YT0bixW/Yck549Ldi8mc+tiIio+mMoGBERERERERERERERUQ1nNoto1EhEbq68HdvbtLHh0KEgCAInGBLRzeVacrE9czt+P/c7tmVuw+ErhyslBOyfgjXByJ+SD6VQ8YVvRNWNxSIiJcWBAwdcSE0FjhxR4tgxDcxm/r6URK0W0aKFA23auBEXZ0WTJkVo0cIGo1GEJAErV9bC++/Xq9CutzcTF2fHwoUSOncO3MUqRET+8PKvL2PGrhklto9IGIEF/Rf4saLKU1DgRq1a8j57tm614c47+Znyv+bPn4/58+d7/bwmkwmHDh0q8/GVFQp2zz0W/Ppr+RfdtGxpx/HjXPBNRDXLa1tfw392/KfE9p6xPbF5+GY/VkQ1XVFREbKysv7+986dRowf3whut/znPCqViFmzCvDMM+HeKJGoSnO5XDh+/LisvoIgID4+3ssVEcmTnm7H8OESDhz4x5iA0g481wIIy7qxw7apwG9vl+saarWIKVMseOMNA1QqzjegwJOaakdyshM//KDBxYuayi6nROHhLvTvb8MTT6hw++2cv0NE1ceUKfmYObNWie0REU7071+AAQPy0aiR47o2hUKB1q1b+7pEkuGrr8x4+mn5m4f8/LMVvXrpvFgRERFRYGIoGBEREREREREREREREWHqVBOmTTPK7r96tQUPPsjd14joRjnmHGzP3I5t57bh98zfcTTnaGWXdIN7mtyDTcM2VXYZRJXuyhUX9u934sABEYcOAUePqnDmjKZCC0Kru5AQN1q3dqBdOzcSEhRISlKhXTvN37uxFxQU4MKFCzf0u3hRjTfeaIi9e313/6RSiZg0yYJ33jFAreZ/QyKqeWbvnY0JP08osf3eJvfil2G/+LGiynXihANxcfIWLqal2REfzxCn//Xmm2/irbfequwyKi0U7OWXTZgxo/xjSUqlhIICCUaj4IOqiIgC19M/PY2vDn5VYvsj8Y9g+cPL/VgR1VS5ubnIzs6+4fUffwzD1KkNZJ3TYHBj0aJiPPRQWAWrI6o+0tPTIYqirL4tW7aEWq32ckVE8rhcEt5914L//EcHh0MA7psAdJl944HWWsCnGYAtTNZ1EhNtWLRIQJs2gRu6RDWbKErYutWGRYtErF0bhMJCeZvu+UOjRg4MGuTAyJEatG7N3ykiqtoyMqxo0UJ73ZwFpVLC7bcXY+DAfNx2WzFUpfxJbtiwIUJDQ/1QKZWVKEpo08aBY8fkPXdq29aG1FQGYBIRUc0QuN88iYiIiIiIiIiIiIiIyG8mTtThk0/cMJmUsvrPmKHAgw96tyYiqrqOXzuOz/78DL+d+w3pV9Mru5yb6tqga2WXQORXoijh5Ekn9u1zIiVFwpEjAtLS1MjOVoNTSUrWoIEDrVu70L69iMREAZ06qRAbq4YglLwDrU7nua1r1yjs2qXDzJlmvP22Djab90MxXC4BM2YYsWGDDcnJCiQmMsyFiGqOFekrSg0ES6iXgI2Pb/RjRZXvyhV5i9EBoF493h/QjTp1knf/4nYrsG+fHXfeqfVyRUREge3Lvl/iquUqVh1f5bH9+/TvEbE+Ap/3+dzPlVFNcvnyZVy7ds1j24MPFuDqVTVmzapbrnPWqePEypVW3H57mBcqJKo+DAYDiouLZfXNy8tD3brl+10k8hWVSoE33jCgb18b+kz7BJfbeQgEA4Bdk2UHggFASooWnTqJmDrVhClTDFAqGfJAgUUQFOjZU4eePQGbTcSPP1qwZImEzZt1sNsDK/g8M1ODDz/U4MMPgfbtbXj0UTeGDw9C/foc4yOiqqdJEx169CjG1q3BiImxY8CAfPTvX4A6dVxl6n/16lWGggWYjRttOHas5DkWN/PCCyIDwYiIqMZQSJIkVXYRREREREREREREREREVPmef96EWbOMsvtv3Wrjgk4iwsZTG9F3WV+4JXdll1JmPz/+M3o161XZZRD5hNUqIjXVgQMH3EhNBQ4fFnDsmEZ2EGhNoFKJaN7cibZtXWjfXkLHjkokJWlQu3b5f2aSJOHYsWMQxf8LYomOjkZ4ePjf/z561IFhw0SkpvruPkqjEfHaa1a8+qoeKhUnyBJR9bYjcwfuSL4DouQ5BKtRaCOcnnAaKqFmLYJbscKChx/Wl7ufSiXCbldwgYUHb775Jt56663KLgMpKSlISEjw+3UvXXLJXkw6fboZU6YYvFwREVHVcOfCO/F75u8ltv+7+7/x1p2V//lC1U9WVhaKiopKPUaSgHffjcLy5bXLdM7YWBvWrxfRqlX57zOJqrvCwkKcP39eVl+tVotmzZp5uSIi+fKseXjqp6ew6pjncFPYDcAHVwCnd77ndeliRXKyEi1aaLxyPiJfys93Y+lSG5YuFbBnjxaSFJhjaEqlhNtus+KxxyQMGaJDcHBgBZkREZXml1+u4dKlIiQlWaCQ8Wc2Li4OKlXNeiYUyO6804Lff5c3jhAd7cS5cyqo1YH5eUtERORtDAUjIiIiIiIiIiIiIiIiAH8t5mzSRJC9i2nPnhZs3syFH0Q1Xfsv2+PwlcOVXUa55E/JR5g2rLLLIKqwq1fd2LfPgYMH3Th0SIGjR1U4fVoDl4sTIksSEuJGfLwDbdu6kZCgQMeOSrRvr4FW673FEBkZGbBYLACAyMhIREZG3nCMyyXhrbfMmDFDD6fTdwsxOna0YdEiBeLjg3x2DSKiynTs6jG0/7I9nKLTY3u4LhyZL2TCqJEfiF1VzZljxrPPln9xbp06TuTkqH1QUdVX00PBgL8W4GRnl//9MWiQGT/8wFAwIqqZRFFEh6874NCVQyUeM+u+WXiu83N+rIqqM1EUce7cub/HJm7G7QYmTWqILVtCSz0uIcGC9euViI7mGAORJ6IoIj09XVZfu11Ax47xXq6ISJ4dmTvw+KrHcb6olJC70/cA327y6nX1ejemTbPh+ef1DCqnKuPcOScWLXJg+XIl0tMDd0M9nU7EffdZ8fjjCvTrp2OwChEFvIrcWwNAeHg4oqOjvVgRyZWSYkeHDvLHEd55x4TXX695z/iIiKjmYpwzERERERERERERERERAQCio1V4/PGyLQrx5Ndf9di/3+7FioioKrpsulzZJZRL6zqtGQhGVY4oSjh50oGlSy34179MuPdeC+rXdyIyUok+fXSYOtWIFSsMOH48iIFg/xAd7cQ991gwaZIJS5dacPKkA/n5Avbs0eHrr40YN86Azp21Xg0EAwCdTgfgr8nGderU8XiMSqXAO+8YsWePE/HxNq9e/58OHNAiKUmNmTNNcLu5jyARVS+XTZeRNDepxEAwvVqPI08fqZGBYABw9aq8frVri94thKqVtm09/77dzKFDKi9XQkRUdQiCgP1j9qNJWJMSj5nw8wQsPbLUj1VRdSWKIk6fPl3mQDAAUCqB6dMvIDHRXOIxd99djO3bNQwEIyqFIAhQq8sWoCuKwLFjWnzzTQRGj26Mrl3jcOKE/Ge2RN7gFt14e9vbuCP5jtIDwQAgfZDXr2+xKPHiiwbceacN587J++5J5G+NG6vx738bkJamxcGDdkyYYEJ0dOC9f61WAatXGzBokB5RUW6MGmXC9u02iCKfGxFRYBIE4e9n7nIUFBR4rxiqkJkzXbL7Go1uPPus/PcBERFRVcSn6kRERERERERERERERPS3V17RYNEiSXaAyLvvurB6NReBENVk/Vr0w7yUeZVdRpl1bdC1sksgKpXNJuLQIQcOHHAjJQU4ckRAeroGxcUaAJrKLi8gqVQSmjVzoE0bF9q3l9CxoxKdOmkQEaEGULaFeN6k0+kQEhKCqKgoKBSl32N17BiElBQJr79uwscfG3wS6ma1CpgyxYg1a6xITlaiWTO+j4io6jM5TGgzpw0sTs+LptWCGn+O/hPRITV3J/hr1+Qt6qtVi6FgVLIOHURs2lT+fmfOaFBcLCI4mHsbE1HNpBJUOPLMETSd3bTEgP2hq4ailrYW7m9+v5+ro+rC6XTi9OnTcLvd5e6r1UqYPTsLw4fHIiNDe13bkCEFSE4OgVrNz3GimzEajcjPz/fYduWKCnv2GLFnjxF//GFEXt71S/x++smGli31/iiT6AbnC89j6Oqh2J65vUzH1wnVQ2YW+U1t365D+/ZuzJhhxpgxeggCN0KhqiExMQiJiUH46CMJW7ZYsXixiLVrtSgqUlZ2adfJzVVh/nwj5s8HGjd24OGHHRgxQo34eM77IaLAEhkZiczMTFl9RVGE2WyGwWDwclVUHufPO7FypfxQr+HDrahVq2Zu/ENERDWXQpIkxjcTERERERERERERERHR3x5+2IwVK+RNghEECWlpTsTFMVyCqKa6bLqMW+becvNdwwPE/H7zMTJxZGWXQQQAyM11Y9++vwLADh1S4OhRFU6dUsPl4iLLkhiNbsTHO9C2rYiEBKBjRyUSEjTQ6QLnZ+ZyuSAIAgShfDXt2mXDyJEKnDrlu4UXBoMb771nw7PPcjEVEVVdLtGF5rOa41zhOY/tgkLAb8N/Q/fG3f1bWIAZPNiM5cvL/12/b18L1q7lQnRP3nzzTbz11luVXQZSUlKQkJBQKddetcqCgQPlvT82b7aiZ0/5C4CIiKqDAlsBYj+NRYGtwGO7UqHErid3oXODzv4tjKo8m82GM2fOoKLLhbKz1Rg6tAlycv4KWZ80KQ8zZoRBqQyccReiQGa1WnHmzJn///8rcOCAAbt3/xUEdvq0ttS+vXsXYf36EH+USXSdH4//iCfXPIl8m+dAO08W9f0Ou77ug6+/NkCSfDfOfO+9Fsyfr0H9+qqbH0wUgKxWET/+aMO33wK//qqFwxG491Tt29swZIgbw4cHISqKv3NEFBjS09MhivI2MtHr9WjSpImXK6LyePFFEz7+WF6ol0ol4eRJF2Jj/b8JHBERUWViKBgRERERERERERERERFdJzXVjg4dNLIn7A4bZsKiRdyVjagmO3zlMLrN7waTw1TZpdzUsWePIS4irrLLoBpGFCVkZDixf78LKSkiDh0ScPSoChcvMlSzNFFRTrRu7US7diISExXo1EmN5s3V1TrMymoV8dJLFsyZY4Ao+u5/5513WrBggRqNGnESLRFVLaIoImluElIup5R4zPJBy/FI60f8WFVguuceC379tfzhTSNGmLFggbzg8Opu/vz5mD9/vtfPazKZcOjQoTIfX5mhYNnZLkRHy1sY+u67Jrz6KsePiIguFF1Ay89awuK0eGzXCBqkPp2KVnVa+bkyqqqKi4uRmZnptfOdOBGE0aNj8frrRZg0Kdxr5yWqKf7znwtYuzYMBw/q4XSWPfwlNNSFq1cFqNWBGxhD1YvVacW/Nv0Lc/bPKXffVY+swoBWA7BpkxWjRytx/rzvnnXUquXCJ5/YMXw4xyqoasvLc2PJEhuWLRPwxx9anwbqVYRSKaF7dyuGDJEweLAOwcH8XCKiynPx4kXk55c9uPR/xcfHl3sjL/IOk0lEgwYiCgvlPU8YMMCMVat4/0dERDUPQ8GIiIiIiIiIiIiIiIjoBvffb8HPP5d/sTAAqNUiTp92IyaGoRJENdmGUxvQd1lfiJK8XTr9IVwXjquTr0JQcNIf+Y7DIeHwYQf27XMhNVXCkSNKpKVpUFSkrOzSApZSKaFZMwdat3YhIUFChw5KJCWpUbduzd2J/LffbHjySQHnzvluMVVIiBsffGDDqFH6ah20RkTVS+8lvbHx9MYS2z/p9Qme7/K8HysKXB062JCSoi13v8mTTZg5k8FN/pSamorExMQyH1+ZoWAAUL++E5culX8MaOBAM1as4CIeIiIAOHb1GBK+SoDD7fDYrlPpcPK5k2gQ0sDPlVFVk5+fj4sXL3r9vFptXTRrVsfr5yWqCZ56qgDz5oXJ6rtlSxHuuivEuwUReZCWk4bBKwfjaM5RWf3XDl6Lvi37AgAKC92YMMGGRYt8+32vXz8zvv46qEY/N6Dq4+xZJ5KT7Vi+XI3jx4Mqu5wS6XQi7rvPimHDFHjgAR3Uaj5LIiL/crlcOH78uOz+kZGRiIyM9GJFVFbvv2/CSy/Jf9a0e7cNXbuW/xkXERFRVceZzURERERERERERERERHSD116T/xjJ6RQwY4bdi9UQUVXUu3lvzLpvVmWXUaouDbowEIy8Kj/fjU2brJg+3YzBg81o08YGo1FCp05BGDfOgK+/NmLPHh0Dwf7BYHAjKcmKkSNN+PRTE3btsqGoSMLx40FYudKAqVON6NNHV+MX9tx5pxZHjqgwapTZZ9coKlJizBgDHnjAiuxsl8+uQ0TkLaPWjCo1EGzyrZMZCPYPeXny7nvrMPuBbqJdO6esfocO1ez7OyKif2pVpxW2j9gOpcLzeIHVZUWbOW2QZ8nzc2VUleTk5PgkECw6OpqBYEQVcO+98vtu2MAxOvItSZLw9YGv0WluJ9mBYACgEv7v+11oqBLJyQasWWNFvXryvi+Wxdq1BrRpA3z/vcVn1yDyl9hYNd5804hjx4Kwf78d48ebEB3tu98fuaxWAatXG/DQQ3pER7vx1FNm7NhhgyhKlV0aEdUQKpUKQUHywxPz8jiuUhlcLgmffy5/87OuXa0MBCMiohqLs5uJiIiIiIiIiIiIiIjoBrfdpsVtt1ll91+4UIdr19xerIiIqqJnb3kWE26ZUNlllOjWBrdWdglURYmihLNnnfj+ewteftmE+++3ICbGgfBwJXr10uGVVwxYvtyAtDQtnE5OzfivunWduPtuCyZONCE52Yy0NDsKCwXs26fD/PlGTJhgxK23aqHX82fmidEoYN48A9avt/p0McjGjXq0aQN8+63vAsiIiCrqjd/ewPzU+SW2D2kzBDPvmenHigJffr68UNI6dfi5TKXr2FGU1e/MGQ0KCzl2RET0X50bdMb6x9ZDAYXH9kJ7IeLnxMPiYPAF3ejChQvIycnx+nkbNWqE8PBwr5+XqCa57z4jgoLk3TNv3y4/8IDoZvKt+Xj4h4cxdt1YWF3y5wUAgFK4ccyhXz8djh4V8PDDvhtnvnZNhUcf1ePRR83Iy+P3S6oeOnYMwuzZRmRlqfDzz1Y8/rgZISGB9/6+dk2FefMM6N5di6ZNnZgyxYT0dG4eSES+V6cCO5m4XC7YbDYvVkNl8f33VmRmyg8Fe/FFhk8SEVHNpZAkiZ+EREREREREREREREREdIMNG6zo00cnu/+UKSZMn270YkVEVBW5RTf6f9cf60+tr+xSbrBl+BbcFXtXZZdBAc7plHD4sAP797uQmgocPiwgPV2NggLVTfvWVEqlhCZNHGjTxoX27YEOHQQkJakRFcWfmbcUFLjx7LM2LF1q8Ol1Bgww4+uvtYiIkBckQ0TkC1/v/xpj148tsf2ORnfgtxG/+bGiwGe3i9Bq5YV7rV9vRe/e8scGqPxSU1ORmJhY5uNTUlKQkJDgu4Ju4scfLRgwQC+r7y+/WHHvvXx/ERH907Ijy/DYqsdKbI8Ni8XJ505CJfA7NgGiKCIzMxNms3cDVxQKBZo2bQqtVuvV8xLVVLfdZsKuXeV/ZqpSibh82YXateUvoCfyZGfWTjy28jGcLzrvlfPd7Hnb8uUWjB+vwbVrvrt/iYpy4quvXOjbl98xqfqxWkWsWmXDkiXAr78G9oZEiYk2DB7swrBhWj4XJCKfSUtLg9x4jODgYDRq1MjLFVFpOnWyYv9+efdoTZvaceKEBkql5xB9IiKi6i5wv/0RERERERERERERERFRpbrvPi0SEuTvjvfVV1oUF8vb+ZqIqg+loMSygcvQvm77yi7lOoJCwC31b6nsMijAFBS48euvVsycacJjj5nRrp0NRqOEpKQgPP20AV9+acDu3ToGgv2DTieiQwcbnnjCjE8+MWPHDhsKCyWcPBmEVasMeOMNA/r21XHiv5eFhSmxZIkBK1daULeu02fXWb3agNatRaxcafHZNYiIymPtibV4ev3TJbbHR8Rjy/AtfqyoarhyxS27b2Qkp5lS6bp2lR9Q8Oef8t+bRETV1ZC2QzD7/tkltp8tOIuOX3eEKHLsvaYTRRFnzpzxeiCYUqlEixYtGAhG5EV33OGQ1c/lErBhg3d/x6lmc4tuvL3tbfRY2MNrgWAAbhpW+uijehw9CvTr57v3c3a2Gv366TBihBmFhfyuSdWLTifg8cf12LBBj+xsCZ9+akKXLlYoFPICcXwpJUWLKVOMiIlR4u67LfjmGzNMJn53ISLvCg4Olt3XZDJxTMWPtm2zyQ4EA4AJE5wMBCMiohqNszWIiIiIiIiIiIiIiIjII0FQYMoU+ZNgCgpU+PRTBkgQERAcFIx1j61DlDGqskv5W7u67WDUGCu7DKokoighM9OJFSsseOUVE/r0saBxYwdq1VLinnt0mDLFiGXLDDhyRAuHg1Mr/isy0ok777Tg+edNWLjQjKNHHSguVuDAAS0WLjTg+ecNuO02LQwG/sz85aGH9Dh6VMDAgb5bTJWTo8agQXo89pgZ+flcTEVElWfvhb14aPlDkOB5sVt0cDRSxqZAEPg59L9ycuR/t69blz9PKl3duirUry8v5ODgQS7mISLyZPwt4/FG9zdKbD985TDuWnSXHyuiQFNc7MKECXkoKpL3GVwSjUaDli1bQq1We/W8RDVd797yf6c2b+Y9M3nHhaILuHvR3Xjj9zcgSt4NwlAqlDc9pm5dFdasMWDBAgvCwlxevf4/JScb0LatG5s2WX12DaLKVLu2EhMmGLFnjw6nTjkxdaoJLVvaK7usG7hcCmzdqsfo0QbUrSvh4YfN+PFHC5zOwAsyI6Kqp169erL7SpKEgoIC7xVDpXr/ffnzC2rXdmH0aL0XqyEiIqp6FJIk8VsUEREREREREREREREReeR2S4iPd+DkySBZ/evWdeLcOSW0Wi4iJiLgwKUD6L6wOyzOyg8MHJc0Dp/3+byyyyA/cDolHD3qwP79LqSmSjh8WIn0dDXy8krfub4mEwQJsbEOtGnjQrt2Ejp0ENCpkwb16/NnFsiWLrVgwgQNcnN9998pOtqJuXNd6N1b/m6+RERynMk7g/g58XC4PYcehGnDcPb5swjThvm3sCpi/XorHnhA3t9uu12CRsNF6P6UmpqKxMTEMh+fkpKChIQE3xVUBn36WLBhQ/kX5zRpYseZM/LGnIiIaoLnNjyHz/Z9VmL7gLgBWPXoKj9WRIEgO9uO3r3dSE3V4557CvH+++ehvHkWy03p9Xo0btyYIbtEPuB2i6hXz41r18ofDta4sR1nz/KemSpmzfE1eHLtk8iz5vnk/H+M+gOdG3Qu8/EXL7owYoQDv/7qu5AHhULCmDFmfPihnhuZUI2wf78dyclOrFgRhMuXAzfgNSLChQEDbHjiCRW6dg2CIHDckYjkOXHiBJxOp6y+Go0GLVq08HJF9L9OnHAgPl4NUZT3t37KFBOmT+dmj0REVLNxRIOIiIiIiIiIiIiIiIhKpFQqMGmS/J16r1xR4+uvKz/8h4gCQ8fojlj60FIoUPmTe7s27FrZJZAPFBa68dtvNrz/vglDh5qRkGBDcLCEDh2CMGaMAXPmGLFzp46BYP+g04lISLBh+HAzPvrIjG3bbCgslHD6dBB+/NGAt9824sEH9QwEqwIee0yPI0eA++/33b3XpUtq9Omjw6hRJphMos+uQ0T0T9cs15DwVUKJgWBalRaHnj7EQLBSXL0qb+/YkBA3A8GoTDp0kHdfcPasBgUFbi9XQ0RUfczuPRuDWw8usX318dUY89MYP1ZEle3YMQu6dQNSU/8KUdm8ORQzZ0ZBkne797eQkBA0adKEgWBEPqJUCujWTd6Y3blzQTh+nM9aSR6r04rxG8bjweUP+iwQDABUQvmeH9Svr8Ivv+gwZ44ZwcG++U4oSQp89ZUR7dq5sH27zSfXIAokSUlBmD3biAsXVNi40YIhQ3z3+1UR166pMHeuEbfdpkWzZk68/LIJx497HvclIipNeHi47L4OhwMOB//2+Nr77ztlB4JptSJeeEHr5YqIiIiqHo7YExERERERERERERERUalGjtSjQQP5E2E+/lgDl6uCK1KIqNroH9cfH9z7QWWXgVsb3lrZJVAFnT/vxMqVFrz+ugl9+1oQG+tArVoC7rpLi5deMmLJEgMOHdLCbufUiP+KiHChRw8Lxo83Yf58Cw4fdqCoSIGUFC2Skw2YONGA7t21MBr5M6uqoqJUWLdOh7lzzQgJ8d1ij/nzjWjb1oWtW7mYioh8y+KwoPXnrWFymDy2qwQV9jy5BzGhMX6urGrJyZEX2BQeHngLBykw3XKLUlY/SVJg714uviIiKs2yQcvQM7Znie1zD87Fq1te9WNFVFl27ixGjx5qnD0bdN3rS5fWxoIFEbLPGxERgZgY3k8T+VrPnvID9n/6iWNwVH7pV9PReV5nfL7vc59fSymU/zuhICjwzDMGHDok4vbbrT6o6i8ZGRrcdVcQJk40wWbjRhdU/SmVCtx3nx5Llxpw+bICixaZ0auXBWp14L3/z57VYMYMI1q10qBjx782fbp8Wf6mhURUs9SuXbtC/a9cueKlSsiTa9fcWLpUJ7v/I49YUa8eN64jIiLiLE4iIiIiIiIiIiIiIiIqlVqtwPPPy1+gee6cBkuWcAdrIvo/E7tMxNiOYyvt+nUNdREbFltp16fycbkkHD7swDffmPHccyb06GFFnTouxMSoMWiQHu++a8S6dXqcO6eBJMnbZbS6USgkxMY60LfvX6FpK1dakJXlxNWrKvz+ux6zZxsxcqQebdtqoFLxZ1bdCIICo0cbcOSIiLvv9t092LlzGtxzTxDGjzfBYgm8xSREVPWJooh2X7ZDjiXHY7sCCmx4bAMSohL8W1gVlOP5R3hT4eH8+05l07WrRnbfP/9k+BwR0c38MvQXdIzqWGL7ezvfw0d7PvJjReRvq1YV4P779bh6Ve2x/eOP6+Gnn0LLfd6oqCjUq1evouURURn07StvQXx4uAtFRQzSpbKTJAlfH/gaSV8n4UjOEb9cUyXID2yIjVXj99+1+OgjM3Q634xDuN0KfPKJEYmJTuzdy5A9qjn0egHDhhnw8896XLok4eOPzejc2XchfBVx8OBfmz41bKjEPfdYsGCBBSYTxyaJqGSCIMBgMMjuX1RU5MVq6H99+qkVVqu8GBOFQsJLL3ke/yAiIqppFJIkcVt2IiIiIiIiIiIiIiIiKpXFIqJRIxHXrsmb0NuqlR1Hj2ogCAweIaK/ON1OPLDsAWw6s8nv134w7kGsfnS1369LN2cyiThwwIEDB9xITQUOH1bixAkNbDbueVYSrVZEy5YOtG3rRkIC0LGjEh07ahAczJ8ZAaIoYc4cC15+WQuzWemz6zRrZsfChRK6ddP67BpEVPN0ndcVf1z8o8T2xQ8uxtD2Q/1YUdU1cqQZCxeWf3FMz54WbN6s90FFVJrU1FQkJiaW+fiUlBQkJCT4rqAyiolx4Pz58oeD9e9vxo8/yl+8RURUU4iiiLjP43Aq71SJxyQ/mIzh7Yf7sSryhy++yMOECWFwuUof61GpJHz++Tncequ5TOeNiYlBSEiIN0okojJq1cqK48dLDwfTaER06GDBrbeacOutJjRvboMgAPHx8RAEjvlS6fKt+RizbgxWpK/w63WPPXsMcRFxFT7P8eMOjBjhxt698kL0ykKlEvGvf1nw9tsGqNWcu0A10+nTDiQnO/D992qcPBlU2eWUyGBw4/77bRg+XMD992u50RER3cBisSAjI0N2/4YNGyI0tPwB21Q6m01Eo0Zu5OTIC/a65x4LNm3isykiIiIA4GggERERERERERERERER3ZReL2DcOPm75h47FoQffwzMHUeJqHKolWp8P+h7xNeJ9/u1b21wq9+vSTe6eNGF1astmDrVhP79zWja1IHQUAXuuEOLSZMMWLzYgEOHtAwE+4fwcBduv92KZ581Ye5cM1JS7CgqUiA1VYvFiw2YNMmAO+7QMhCM/iYICowfb0BqqhvduvnuXuz06SD06BGESZNMsNm4czsRVdyD3z1YaiDYe3e/x0Cwcrh2TV6/iAjuOUtl1769U1a/Q4fkLQwiIqppBEHA4WcOIzo4usRjRvw4AutOrPNjVeRrU6fmYdy48JsGggGAy6XAxIkxOHas9MBuhUKBJk2aMBCMqBJ07+75WWuzZjYMH34NX355Djt3HsPcuecwcuQ1tGz5VyAYABQUFPivUKqSdmXtQsJXCX4PBAMApcI7G1LExWmwa5cW06aZEBTkm3Fml0vA9OlGJCXZkZpq98k1iAJds2YavPOOEcePa7B3rw3jxplQt668cR1fMpuVWLHCgH79dIiOduHpp03YvdsGUeSYJRH9Ra/XQ6ks/32I3a7A+vWh+PRT3gv4woIFVtmBYAAweTJDIImIiP5LIUkSvwERERERERERERERERHRTRUUuNGoEVBUJG9Sb6dOVvz5p+929SWiqulcwTl0ntcZOeYcv11zx8gduC3mNr9dr6ZzuyUcO+bE/v0uHDwo4sgRAWlpaly9ysX/pWnc2IHWrZ1o105Cx44COnVSo0EDFQSBEyBJHlGU8OGHZrzxhh5Wq++C4+LjbUhOViApKXB3lyeiwPbs+mcxZ/+cEtufu+U5zLp/lh8rqvpuvdWKPXvK/318/HgTZs82+qAiKk1qaioSExPLfHxKSgoSEhJ8V1AZ/fvfJrzzjrz3S26uG+Hh3llETkRU3RXaChH7aSzybfke2wWFgO0jtqNbTDc/V0be5HKJGDu2EPPn1yp339q1nfj22ww0aHBjsIMgCGjWrBk0Go03yiSiclq5sgCDBoUhPNyFrl1Nf/9fZKTrpn0NBgNiY2P9UCVVNW7Rjfd2voc3f38TbsldKTVkTMhAbC3vvj+PHHFg+HARqamlh11WhEYj4rXXrHj1VT1UKj57oZrN5ZKwaZMNixeLWLdOC5MpcMdpmja14+GHnRgxQoOWLXlfS1TTXb58GdfKuDPK8eNarFpVC+vWhaG4WInQUBcuXgQMBpWPq6w5RFFC69YOHD8ub65A+/Y2HDwYxHkxRERE/x9DwYiIiIiIiIiIiIiIiKjMXnzRhI8/lr8gePNmK3r2ZDAYEV3vjwt/4M7kO2Fz2Xx+LbWgRuHLhdCp+bfIF8xmEQcOOHDggBupqcCRI0ocP67xaQBRVRcUJKJlSwfatHEjIUFCx44qdOigRlhY4E62p6otPd2OJ54QsX+/7/4OqtUipkyx4N//NkCt5oRdIiq793a8h1e3vlpi+8C4gVjx6Ao/VlQ9xMXZceJE+RdgvPWWGf/+t8EHFVFpqmoo2Pr1VjzwgLz7iw0brLj/fn5HIyIqq8umy2g2qxnMTrPHdrWgxsExB9Gmbhs/V0beYDa78OijFqxfHyL7HI0a2bF4cQZq1fq/cBi1Wo2mTZtCpeJiZ6LKYja7sHHjObRoYYNQziFzQRAQHx/vm8KoyrpQdAFDVw3FtsxtlVpH1gtZaBja0OvndTolvP22GTNm6OF0+u45U1KSFcnJAuLjudEFEQBYLCJWrLBiyRIFtm7VwuUK3Oe8HTvaMGSIG0OHBqFuXd7nEtVEoigiPT29xPaiIgEbN4Zh1apaSE+/cQz6yy/zMXZs+QO5ybOffrKiXz/5Y/0LFlgwYoTeixURERFVbQwFIyIiIiIiIiIiIiIiojK7fNmFJk0E2eEud91lwZYtnLhBRDf6Ie0HPLLiEZ9f55b6t2Dv6L0+v05NkJ3twr59Thw44MbhwwocPapCRoYGosgAoJKEhbnQurUT7dqJSEgAkpJUaNtWw9Ak8juXS8J775kxbZoeDofvFnMkJNiweLGANm24UzsR3dzClIUYuXZkie23NrgVu0bt8mNF1UedOi5cu1b+RXFz5pjxzDMMBfO3qhoKlpvrRkSEvGDbN94w4c035YfQExHVRKdyT6HtF21hd9s9tutUOhx79hgahTXyc2VUEXa7Az17OrBzZ8U/F9u1s2DevLPQ6SRotVo0adIEQnlTiIjI644dOwa3233zAz1o0aIFNBqOs9Ff1hxfgyfXPok8a15ll4KLL15EdHC0z86/f78dTzwhIT1d67Nr6HQi3nrLghdfNECp5DMbov/KyXFhyRI7li0TsG9f4Aa6q1Qi7rjDhqFDJQwapIPBwPteoprkzJkzsFqtf/9bkoD9+/VYvboWNm8Ohc1W8t+EW281Ydcujk17S48eVmzfLu/zon59B86eVXP+DBER0T8wFIyIiIiIiIiIiIiIiIjK5amnzJg3T/6i4D/+sKFzZ99N2CWiquu9He/h1a2v+vQaL3R+AR/f97FPr1HduN0STpxwYP9+Fw4elHD4sIC0NDVyctSVXVpAi4lxoHVrF9q3F9Ghg4BOndSIiVFBEDiBkQJHaupfi6kOH/bdvVlQkIipUy14+WUupiKikv18+mf0XtIbEjxPZ2we3hzHnz3OEAMZRFFCUBDgcpX/b/APP1gwaBCDvf2tqoaCAUDjxg5kZpY/pKBfPzPWrGEAHRFReR3MPojO8zrDJbo8tocEheDMhDOI0Ef4uTKSw2q1IiMjA2vXhuDVVxt65Zx33FGEBQvy0bgxw+GIAkVmZiaKi4tl9Y2IiEC9evW8XBFVNTaXDZM3TcZn+z6r7FL+duVfVxBpiPTpNRwOCa++asYnnxjgdvtunLlbNysWLlSiWTMG8BH9r1OnHEhOdmD5cjVOnw6q7HJKZDC40aePDcOGCbjvPi1UKj6bIqruiouLkZmZiatXVVizJgw//lgLmZll+zulUEg4etSK+Hg+C6moAwfsSEqS//kwbZoJr73GgDYiIqJ/YigYERERERERERERERERlcuZMw7ExangcslbjM2FnkRUEkmS8OTaJ7EwdaHPrrF80HI80voRn52/qrNYRBw86MCBA26kpgJHjihx7JgaFouysksLWGq1iJYtHWjTxo2EBKBDBwFJSRrUqsWfGVUNTqeEf//bjA8+0Mu+vyuLzp2tSE5WomVLLqYiousdzD6IW+beArfk9the11AX5144B62K4dJy5Oa6EREh775k+3Ybbr+dP3d/q8qhYP37m7F2bfnHfBo1cuDcOd4jEBHJsfXsVtyz+B6IkuixvY6+DjKez4BRw0WVgayoqAhZWVl//3v+/Ah8/HHFgn9UKhGfflqIceNqVbQ8IvKiwsJCnD9/XlbfoKAgNG/e3MsVUVWSfjUdg1cMxpGcI5VdynVyX8pFuC7cL9fatcuGkSMVOHXKd4FERqMb771nw7hxem70QuSBKEr48087kpNdWLUqKKA3koqMdGLAADtGjFDhlluC+DtNVI0988xVzJ0bISs89Lnn8jFrFr87V9Sjj5rx/ffy5oQGB7uRlQWEhXGeDRER0T8xFIyIiIiIiIiIiIiIiIjKbfBgM5YvlzeJQxAkHDniQHx84O4cSkSVx+F2oNe3vfD7ud99cv7zE8+jQUgDn5y7qrlyxYV9+5w4eFBEaiqQlqbCmTMan+6wXtWFhroQH+9Eu3ZuJCQo0KmTCm3baqDR8GdGVd/evTaMGKHA8eO+u0fT6US8+64Vzz/PxVRE9JfMgkzEfR4Hm8vmsT1YE4yM5zMQoY/wc2XVR1qaA23ayAtbOnHCgRYtGNTkb1U5FOytt8x4801540XXrrlRuzYX/BARybEifQUe+eERSPC8NCQmNAanxp+CRsXP9UCUl5eHS5cuXfeaJAHTp0dh6dLass5pMLixaFExHnoozAsVEpE3iaKI9PR02f3btGnjxWqoqpAkCfMOzsPzPz8Pq8ta2eXcoPDlQoQEhfjtehaLiJdesmDOHAMkyXfjzHffbcH8+WrExARu4BFRZXO5JPzyiw2LFonYsEELkylwx3aaNbPj0UedeOIJDZo353cjourmk0/yMHGivJDSevUcyMpSQa323QZa1V1WlhNNmyplb0I2frwJs2cz0J6IiOh/MRSMiIiIiIiIiIiIiIiIyu3IEQfat1fLnmT72GNmLFkib5EoEVV/edY8dP2mK07mnvTqeRuENMD5iee9es6qwO2WcOqUE3/+6URqqoTDhwWkpalx+TIXMZSmQQMHWrd2ISFBRGKigKQkFWJj1QwyomrNZhPx6qsWzJpl8GlAYPfuVixc+NfvFBHVXPnWfDT+tDGK7EUe24OUQUgbl4am4U39XFn18ttvNtx1l1ZW34ICN0JDA3chX3VVlUPBNm60ondvnay+69ZZ0aePvL5ERAR8tf8rPL3+6RLb4+vE48jTRyAIXOAaSC5fvoxr1655bHO7gcmTG2Lz5tBynbNOHSdWrrTi9tv9F85CROVz4sQJOJ1OWX1jY2NhMPAZa01SYCvAmJ/G4If0Hyq7lBKZXjHBoPH/+3LrVhuefFJAZqbvwn1CQtz48EMbnnySG10Q3YzZLGLFCiuWLFHgt9+0soNh/KFTJysGDxYxdGgQIiNVlV0OEXlBUZEL9esrZIcTLltWgMGDw7xbVA3ywgsmfPqpvFAvlUrCqVMuNG7MuQNERET/i6FgREREREREREREREREJMsDD5ixfr28yb1qtYiTJ92czEFEJTqddxpd5nVBrjXXa+d8pPUjWD5oudfOF4isVhEpKQ4cOOBGaqqEI0eUOHZME9C7Mlc2lUpEixYOtGnjRkIC0KGDgKQkDWrX5s+Maq7t220YOVJARobvFlMFB7sxY4YNY8dyMRVRTeRwOdD408bINmV7bFcqlNgzag861e/k58qqn+++s2DIEH25+wUFibBYFPwbXQmqcihYXp5b9n301KkmvP22vEVDRET0l3e3v4vXf3u9xPZbG96KXU/u8mNFVJrz58+jsLCw1GPsdgXGjm2MAwfK9iymcWM7Nmxwo1Wr8t//EZH/XLp0CXl5ebL6hoaGomHDhl6uiALV7vO78djKx5BZmFnZpZTK9poNQaqgSrl2cbGIF16wYv5834aS9e5twbx5GkRFMTyIqCyuXHFhyRI7li0TsH9/4IbAq1Qi7rzThqFDJQwapINeH7hBZkR0c0OGFOC778Jk9e3Vqwg//8xwbTmKi0U0aCChqEjes4GBA81YsYLBx0RERJ7wGwoRERERERERERERERHJ8tpr8sNSnE4B06fbvVgNEVU3zcKbYfWjq6FRei+QpmuDrl47VyDIyXFhwwYrpk0z4eGHzYiLsyMkRIFu3bSYMMGA+fON2LdPx0CwfwgJcaNLFyueesqEzz83448/bCguBtLStFi+3IBXXjGgVy8dA8GoxuveXYvDh1UYO9YEhcI3+w0WFysxbpwB991nxcWLLp9cg4gCkyiKaP9V+xIDwRRQYM3gNQwE85KcHFFWv1q13AwEo3ILD1eicWOHrL4pKXy/ERFV1GvdX8PELhNLbN99fjf6Lu3rx4rIE1EUkZGRcdNAMAAICpLw6aeZaNbMdtNjExIs2LULDAQjqgLCw8Nl9zWbzV6shALZzF0z0X1B94APBAMAlVB5QVnBwQK++caAdeusiI52+uw6Gzbo0bYtsHSpxWfXIKpO6tZV4cUXDdi3T4cTJxx45RUTmjYNvDlCLpeAzZv1eOIJA+rWlTB4sBkbNljhdvvm2RgR+daYMfJjM7ZsMeL8+Zt/96YbzZljlR0IBgCTJ3N+DhERUUkUkiTx2wkRERERERERERERERHJcscdFmzbJm+BiU4n4uxZEXXrcjddIirZt4e/xbDVw7xyrr2j9+KW+rd45Vz+JIoSTp1yYv9+Fw4eFHH4sID0dDUuXVJXdmkBLTraiTZtnGjfXkRiooCkJBWaNlUz3IKonDZtsmL0aCXOn/deSOP/Cgtz4ZNP7HjiCe4ATFQTdF/QHTuydpTYPq/vPIzqMMqPFVVvU6eaMG2asdz94uNtSEvT+qAiupnU1FQkJiaW+fiUlBQkJCT4rqByGjDAjB9/LP9nesOGDmRl+e5+g4ioJhm+ajgWH1lcYvuI9iOw4MEFfqyI/ksURZw+fRoOR/lCNC9fVuPxx5sgJ8fzeODddxdj9WodgoP5vIWoqkhLS4PcJX3x8fEQBPmBBxT4klOTMWLNiMouo8zEf4tQKCr/2Ut+vhvjx9uwdKlvx5kfesiMr77SIiKCARZE5SGKEvbutSM52YVVq4Jw9WrgPuuuW9eJgQPtGD5chU6dgvh8maiKcLtFtG5tx4kTOln9X389D++8Iz/AtyZyuSQ0aeKUPZegWzcrdu6U99+LiIioJuAIIBEREREREREREREREcn2yivyJ75ZrQLef5877BFR6Ya2G4o3erxR4fNoVVok1EuoeEE+ZrOJ+OMPGz7/3IynnjKjSxcrwsJExMVpMHSoHh99ZMSvv+oZCPYPKpWEuDg7Bg0y4513TNiwwYqrV924eFGNX37RY+ZMI4YM0aN5cw0nbBPJcO+9Ohw5osQTT5h9do2CAhVGjDCgXz8Lrlxx+ew6RFT5Hv3h0VIDwd664y0GgnnZ1avy+tWuzf1mSZ4OHeS9d86f1+DqVd4HEBF5w6KHFuH+ZveX2L7w0EJM3jzZ53W4RTcWpCzAncl3os/SPth2bpvPrxnInE4nTpw4Ue5AMACoV8+JL788h+Bg9w1tjz5agA0bDAwEI6pitFr5IcwFBQXeK4QC0sJDCyu7hDJTKpQBEQgGALVqKbFkiQErVlgQGen02XVWrTKgdWsRq1ZZfHYNoupIEBTo2lWLL7804tIlFdauteLhh80wGG68x61sV66oMWeOEV26aNGqlQNTp5pw+nT57+OJyL+USgFDhlhl91+6VA+3W/RiRdXfsmWWCm0u9uKLfBZFRERUGoUkd1sBIiIiIiIiIiIiIiIiqvFEUUKnTnYcPChv4npIiBtZWUBoKHfRJaKSSZKEx1c9jmVHl8k+x20xt2HHyJIDKCpDbq4b+/Y5cOCAG6mpChw9qsLp02q4XNzfqyRGoxvx8Q60bSsiIQFISlKifXsNdDr+zIj84aefrBg7VoXsbN8FE0ZEuPDZZw48+qjeZ9cgosox6ZdJ+OiPj0psf6rDU/i679d+rKhmePhhM1asMJS734MPmrF6dfn7UcWlpqYiMTGxzMenpKQgISHBdwWV0y+/WHHffTpZfdeutaJvX3l9iYjoRl3mdcHei3tLbJ9+93RMuW2KT67tcDswbPUwfJ/2/d+vKaDAn0/9iaToJJ9cM5DZbDacOXMGFV2+s3+/HmPGNIbT+ddY2Isv5mPmzFAolRwbI6pqrl69iitXrsjqazAYEBsb6+WKKJD0WNgD2zO3V3YZZRKkDILt9cDbCOzaNTfGjLH5fGzjscfM+PxzLcLCON+BSC6zWcQPP9iwZAnw++86uFyBETToyS23WDFkiIihQ7WIiODvPVEgys62o3FjNRwOed+Tf/65CL16hXi5quqrY0crDh6UN6bfvLkdx49zcz8iIqLScOSfiIiIiIiIiIiIiIiIZBMEBV5+Wf4OeUVFSsyaJX+HPiKqGRQKBeb3n49uDbvJPkfXBl29WFH5iKKEU6ccWLbMgpdeMqFXLwsaNHAgIkKJ++/X4fXXjVixwoDjx4MYCPYP0dFO9OxpwYsvmvDttxYcP+5AYaGAvXt1mDfPgPHjDejSRctAMCI/6ttXh6NHBTzyiNln17h2TYXBg/V45BEz8vICb3d4IpLnw90flhoI1qd5HwaC+UhurrzFFBERXi6EaozOnTVQKOQFnvz5Jz/7iYi8afeTuxFXO67E9pe3vIx5B+d5/bpmhxn9v+t/XSAYAEiQ8Pa2t71+vUBXXFyM06dPVzgQDACSkiyYPv0CVCoR77+fhw8/rMVAMKIqqlatWrL7Wq18tlrdPd3x6couocyUQmCG4kREKLFqlQHffmtBeLjLZ9dZutSANm3c2LiRv5dEchkMAkaM0GPzZj3On3dj5kwTOnYMvLBBAPjzTx0mTjQgOlqB++6zYNEiMywW+XOmiMj7oqKCcM89Jll9g4PdOHrUd8/Bq5vffrPJDgQDgAkTXAwEIyIiugmF5I0nC0RERERERERERERERFRjiaKE1q0dOH48SFb/yEgnzp1TMtSFiG7qqvkqunzTBRn5GeXuu/rR1Xgw7kHvF/U/HA4Jhw45sH+/C6mpEo4cUSItTYOiosBcFBEIlEoJzZo50KaNC+3bS+jQQYmkJDXq1lVVdmlEVIrvv7fg2Wc1uHbNd7+rUVFOfPmlC/36yZ9MTESVb9mRZXhs1WMltneM6oj9Y/b7saKapX17Gw4f1pa735QpJkyfbvRBRXQzqampSExMLPPxKSkpSEhI8F1BMjRt6kBGhqbc/Xr3tmD9er0PKiIiqrkcLgeazm6KC0UXPLYroMDKR1ZiQKsBXrlevjUfDyx7ALvP7/bYrlPpkPtSLnTqmvE9Lz8/HxcvXvT6eR2OeujQgSmuRFXdsWPH4HbLC8Zt0aIFNJry33NT1bH86HK88MsLuGy6XNmllCokKASFLxdWdhmlys52YdQoBzZu9O33zVGjzPjkEx2MRs57IPKGEyccWLjQge+/VyMjQ958JH8IDnajTx8bhg8XcO+9WiiVDLghqmyrVhVg4MCwMh9/yy0mDBiQj549i6DVSrzXLqPevS2y768iIlzIyhI4X5SIiOgmGApGREREREREREREREREFfbNN2aMHm2Q3f/jj8144QX5/Ymo5jh+7Ti6ftMVBbaCcvW7POky6hrrerWWvDw39u934MABEampwNGjSpw6pYHTyUlrJTEY3GjVyoG2bd1ITFSgY0clEhI00Ov5MyOqiq5ccWHsWDvWrPHtfdzw4WbMmqVFaCgDFomqmt/O/oaei3tClESP7bFhsTj53EmoBIaB+krDhg5cuFD+xSsffmjGiy/ye3plqA6hYA89ZMbq1eV//9SvL+/9SkREpTM5TGj8SWPkWnM9tgsKAVuGb8Edje+o0HUumy6j17e9cPjK4VKP2/DYBtzf/P4KXasqyMnJQU5OjtfPGx0djfDwcK+fl4j8LzMzE8XFxbL6RkREoF69el6uiAKNxWnBnH1zMH3n9BI/xytbuC4cuS8FZm3/JIoS5s+3YNIkrU838mnc2IH580XceWf5A9qJyDNRlLBnjx2LFrmwapXWp5vVVFS9ek4MHGjHiBFqJCUFbpAZUXXncolo3NiFixdLHmuOjHSif/98DBhQgIYNHde1hYaGomHDhr4us0pLT7ejbVsNRFFeEOLLL5vw3nvcmIaIiOhmGApGREREREREREREREREFeZ0SmjWzImsLHkLN2NiHDh9Wg21mjtmEtHNbT27Fb2+7QWX6CrT8U1qNcGZCWdkX08UJZw758K+fU6kpIg4dEhAWpoK589zsXpp6tVzonVrJ9q1E5GQoEBSkgotW2q4OzJRNbRokRkvvBCE/HzfLcRo2NCBuXPd6NVL57NrEJF3Hb1yFIlfJ5Z4zxahj0Dm85nQa+TtIk5lYzC4YbGUf7HrokVmDBvGULDKUB1CwaZNM2HqVHkLei5fdqFu3cBd3ElEVFXlmHLQdHZTmBwmj+0qQYV9o/chISpB1vnP5p/FPYvvwZn8m4/BjUsah8/7fC7rOlXFhQsXUFBQ4PXzNmrUCMHBwV4/LxFVjqKiImRlZcnqGxQUhObNm3u5IgpURfYifPrHp/hgzwcoshdVdjnXqaOvg5zJ3g/B9JXMTCeefNKJrVt9Nx4lCBLGjTNj5kw9dDpuikPkTS6XhA0bbFi8WMSGDVpZ457+0rKlHY884sQTT2jQtCnnFRD527/+lYcPP7w+UFuplNCjRzEeeigf3boVQ1XCMLQgCIiPj/dDlVXXk0+asGCBvGcAOp2Is2dFPgcgIiIqA4aCERERERERERERERERkVd8/LEZL74of8HwvHlmjBrFBcdEVDbfHPwGo38aXaZjH2/7OL596NsyHetwSDhyxIH9+11ISZFw+LAS6elqFBZyMlpJlEoJTZo40KaNC+3bAx06COjUSY169fgzI6pJLl504cknHdi0yXeLqRQKCU89ZcZHH+lhMHAxFVEgu1B0AS1mt4DVZfXYblAbkDEhA5HGSD9XVrNYLKLsv5c//2xlEGMlqQ6hYJs3W3HvvfLeP6tXW/DggwwLJCLyhbP5ZxH/eTxsbpvH9iBlENLGpaFpeNNynTctJw33fnsvLhVfKtPxjUIb4ezzZ6FQVL/geFEUkZmZCbPZ7NXzKhQKNG3aFFqt1qvnJaLKJYoi0tPTZfdv06aNF6uhqiDPmof3d72PWX/OgsVpqexyAABRxihcmlS2e4BAIYoSPv/cglde0cJs9l2gUPPmdixYIKFbN35+E/mCySRi+XIrli1TYNs2HVyuwPx+oVBI6NzZhsGDRQwdqkXt2oEbZEZUnZw+bUXLllqIogKNGtnx0EP56NevABERZdt8MCYmBiEhIT6usmrKyXGhcWMBVqu8508jRpixYAHniBIREZUFQ8GIiIiIiIiIiIiIiIjIK6xWEY0auXH1qlpW/7g4O9LSNBCEwJyoR0SB5+VfX8aMXTNuetznvT/HuE7jbni9oMCNffscOHhQRGoqcPSoEidPauBwMGimJDqdiFatHGjXzo2EBKBjRyUSEzUM5yEiAH8tpvr6awteekmL4mLfLWqIjXVg4UIR3btzMRVRICqyFaHxp42Rb8v32K4RNDj8zGG0jGjp58pqnowMB5o21cjqm5JiR0JCkJcrorKoDqFghYVu1KolQJLKP8bz6qsmvPuu0QdVERERAKRmp6LTvE5wiZ4XwRo1Rpx57kyZw1v/vPgn7l9yP/KseeWq4+gzR9E6snW5+gQ6URRx5swZ2O12r55XqVSiWbNmUKvlPXshosB28uRJOBwOWX1jY2NhMHAxfU10xXQF7+18D1/s/wIOt7z3j7c0DGmIrIlZlVqDXKdOOfDEE27s2eO7UHSVSsLzz5vxn/8YoNFwHgSRr1y+7MLixTYsW6ZCSkrgPjtSq0XcfbcNQ4cCDz2khU7HZ+xEvjRlyhXEx5vRoYMF5c0l12q1aNasmW8Kq+Jef13+GL5CIeHoUQfi4/n8iYiIqCwYCkZERERERERERERERERe8/bbZrzxhvzJ599/b8HDD+u9WBERVWeiJOKRHx7BymMrSz1u/+gDqO1si337nDh4UMThwwLS0lTIzJQXkFBTREY60bq1E+3aiUhMVCApSY24ODWUSi5aIKLSnTvnxIgRTmzb5rv7OkGQ8NxzZrz3np6LJogCiNPtRJNZTXCh6ILHdkEhYPuI7egW083PldVMe/bYcOut8hbBZWe7UK+eyssVUVlUh1AwAGje3I7Tp8u/sOe++yzYuJFjQ0REvrT93HbcuehOiJLosT1cF46zE84iRBtS6nm2ZGxB/+/6w+w0l7uGGT1n4KVuL5W7X6AqLnbh00+von//3HIvNC6NWq1G8+bNIQj83ktUXV26dAl5eeULVvyv0NBQNGzY0MsVUVVyvvA8pm2fhvmp80sM/PS12LBYZDyfUSnX9ga3W8KHH5rx5pt6WK2++7xt3dqG5GQFOnZkAAaRr6Wn27FokRPLl2tw7lzgzgcICXHjgQdsGDZMwD33aPkMnsgHsrOzkZubK7t/q1atoFT6biOsqshqFRETI+LaNXnPj3r1suDnnzn+T0REVFYMBSMiIiIiIiIiIiIiIiKvKSx0IyYGKCqSNyGmY0cb9u0LgsKbq2aIqFqzOC24M/lO/HnxT88HSALCZptRkBe4OwJXNkGQEBvrQJs2LrRrJyEpSYmkJDWioxkCQUTyiaKEWbMseO01LSwW302WjouzY8ECCV268O88UWUTRREJXyXgSM4Rj+0KKLDykZUY0GqAnyurudasseDBB8u/uEKhkOBwACoVv5tXhuoSCjZokBkrV5Y/OD462omLF9U+qIiIiP5pzfE1GLB8ACR4Xk5SP7g+MiZkQKPyvIh+9bHVGLxyMBxuh6zrd2/UHdtGbJPVN9BkZ9vRp48bKSl6PP/8ZYwefc0r59Xr9WjcuDEDwYiqOZvNhtOnT8vqq1KpEBcX5+WKqCo6k3cGb257E0sOLynxs91XmoU3w6nnTvn1mr6Qnm7H8OESDhzw3TizWi1iyhQL3njDwDEXIj8QRQm7d9uxaJELq1drZQfY+ENUlBMDB9oxYoSa4YFEXuR2u3Hs2DHZ/WvXro2oqCgvVlT1ff65GePHy98wdssWG+66i8/1iYiIyopPB4iIiIiIiIiIiIiIiMhrQkOVeOopq+z+Bw5osXmzzYsVEVF1Vljoxh87BPTKWwqtq47ng9xqBoL9g04nIjHRhuHDzfjoIzO2bbOhsFDC6dNB+PFHA95+24h+/XQMBCOiChMEBV54wYCUFDe6dJF/f3gzx48H4fbbg/DyyyY4ndwbkagy9VrSq8RAMACYdf8sBoL5WU6OvL+LYWFuLk6lCuvYUV6/S5fUyM52ebcYIiK6Qf+4/pjbd26J7ReLL6Ldl+0giuINbQtTF2LQD4NkB4IBwK6sXci35svuHyiOH7fgttskpKT8FcT66af1sGZNWIXPGxISgiZNmjAQjKgG0Gq15d4s6cIFNb7/vhYmTaoHh+PGv9NU8zQNb4rFAxbj6LijGNhqoF+vrRKqx/Ok+Pgg/PFHEN56ywyNxje/V06ngGnTjLjlFjuOHpV/H0VEZSMICtx2mxZff23EpUtKrFplwcCBZuh0gffZmZ2txmefGZGUFIRWrex44w0Tzp51VnZZRFWeUqmETqeT3b+goMB7xVQDoihh9mz5934JCQwEIyIiKi8+ISAiIiIiIiIiIiIiIiKvmjxZW6FJdP/5D8MciOh6kgRkZTmxcqUFr79uQt++ZsTGOlCrloC779binSlNYft6Mzxufi44AWXNnFgfEeFCjx4WjB9vwvz5Fhw+7EBRkQIHD2qRnGzAxIkGdO+uhdHIqQNE5DstWmiwc6cW//mPGVqtbxZauFwKzJhhRMeOdqSk2H1yDSIq3ROrn8CvGb+W2P7qba9i/C3j/VgRAfJDwWrVCryFcVT13HKLUnbfPXtq5nc4IiJ/G9VhFGb0nFFi+4ncE+j6TdfrXvt4z8cYuWYkRKli9wtuyY1NZzZV6ByVbdeuYvTooUZGxvULWt94oz527jTKPm9ERARiYmIqWh4RVSFabekL400mAVu3BmPatCj06dMc99/fEu+8Ux8bNoTht9+K/VQlVQXxdeKx4pEVODDmAHo37+2Xa1aXUDAAUKkU+Pe/DfjjDyfatvXdRmYpKVp06qTCu++a4HZzbgSRP6jVCgwYoMeKFQZcuQLMnWvGnXdaoFQG3u/g8eNBePttI5o2VeHWW62YPduMvDx3ZZdFVGVFRkbK7ut2u2E2m71YTdW2dq0VJ04Eye4/cSL/lhEREZUXZ/YSERERERERERERERGRV9Wtq8Lw4RbZ/bdt02PPHt9NsiWiwOZySTh82IF588wYP96E7t2tqFPHhUaN1Bg0SI933zVi3ToDzp3TQJIU/9cxpz1wsdONJxREIHq///4HVAKFQkJsrAN9+/4VmrZqlQVZWU5cvarC77/rMXu2ESNH6tG2rQYqleLmJyQi8jKlUoFXXjFg3z4XEhJ8d5935IgWXbqo8dZbZrhcgbeQg6i6enXLq1h0eFGJ7cPbDce7d7/rx4rov3Jz5fWrXZsLM6jibrlFA0GQ93m8bx+D6YiI/OWlbi9h8q2TS2z/89KfuP/b+yFJEqZunYoXN73otWuvP7Xea+fyt9WrC3DffXrk5KhvaHO7FXjxxYZISys95MeTqKgo1KtXzxslElEVEhISct2/XS7g0CEdvviiDp54Iha33dYKzz/fCMuX10ZW1vWL8H/5hffOdKMOUR0wtO1Qv1xLqZAfCB2oEhODcOBAEKZMMUGl8s3vmM0m4PXXjbjtNhtOnGAwNpE/BQcLGD3agK1b9cjKcmP6dLNPn13JJUkK7Nmjw4QJBkRFKdCnjwVLl1pgtfKzn6g8goODIQjy4zRycnK8WE3V9uGH8ucbNWjgwGOP6b1YDRERUc2gkCSJM+CIiIiIiIiIiIiIiIjIq86dc6J5cyVcLnmTavr0MWPdOoOXqyKiQFNcLOLAAQcOHHAjNRU4ckSJEyc0sNlkTsjrMA/o99SNr295F9jxaoVqDRRarYiWLR1o29aNhASgY0clOnbUIDiYe4IRUdXgckl4+20zpk/Xw+n03d+ujh1tWLRIgfh4+bsVE9HNffbnZ3hu43Mltt/T5B5sGrbJjxXRPw0bZsa335b/u/V991mwcSMXZ1SW1NRUJCYmlvn4lJQUJCQk+K6gCmjZ0o6TJ8v/WXzvvRb88gvfg0RE/vTkmiexIHVBie3Nw5vjVN4pr14zQh+By5MuQylUrTCRL7/Mx4QJoTf9Thse7sK332agYcOyBX3ExMTcEAxERDWDy+XCli1nsHu3EXv2GPHHH0YUF5ftb2OHDhYcOMB7Z7pR3Q/qIsfs+xCLjlEdsX9M9d2c548/bBg5UoHjx303zqzXuzFtmg3PP6+HIHBzH6LKkp5uR3KyE99/r8G5c5rKLqdEISFu9O1rw/DhAu6+Wwulkn83iG7mwoULKCgokN0/Pj6+QsFi1cG+fXbccov8+6H33jPj5Zc5F5SIiKi8GApGREREREREREREREREPvH442YsXSpvModCIeHwYSfatAnciXZEVD4XL7rw558OHDwo4tAhAUePqnDunBqS5MVJquGngQnNb3z99L3At7947zp+Eh7uQuvWTrRr50ZCggJJSSq0aaOBSsWJvURU9R04YMcTT0hIS9P67Bo6nYg337Rg0iQDF0UQ+cDK9JUY9MOgEtvb1W2HlDEpNX6hRGXq3VteuNfjj8sLEyPvqE6hYA8/bMaKFeV/L0VFOXHpktoHFRERUWn6L+uPtSfX+vWau5/cja4Nu/r1mhUxdWoepk0LL/PxDRvasXhxBmrXdpd4jEKhQGxsLPR6hvoQ1WQ9epiwfbux3P2USgmXLzsREcFnqvR/5h6YizHrxnhsiwmNQVZhlteu1bl+Z/wx+g+vnS8QWa0iXnnFgtmzDRBF340zd+9uRXKyCo0b8/swUWUSRQm7dtmRnOzGjz8GITdXVdkllSg62omBA+0YMUKNDh24SQ5RSVwuF44fPy67f926dVGnTh0vVlT1yB3rB/4KM8zKAkJDq1YoPBERUSDgbBsiIiIiIiIiIiIiIiLyiddeU0EQ5O1PI0kKvPuu08sVEZE/uFwSjhxxYMECC557zoQ77rCgTh0XGjRQ4aGH9Jg2zYifftLj7FmNdwPBACCvKVAUfePrMbsAIXD/pigUEho3duCBB8x47TUTVqywIDPTiatXldi+XYfPPjNi9GgDEhKCGAhGRNVGx45BOHgwCJMnm6BS+WZPQ6tVwJQpRnTvbsPp0w6fXIOoptqZtROPrHikxPaGIQ1xYMwBBoJVstxcefeOdepwr1nyjqQkef2ys9W4eNHl3WKIiOim1gxZg24Nu/n1mutPrffr9eRyuUSMGpVfrkAwADh/PgjjxzeCxeL5vlgQBDRv3pyBYESEO+6QN3bldiuwbp3Zy9VQVTfl1ykeX68fXB9nnz+L5YOWo2Xtll65llKo/uEOOp2ATz4xYutWO2JjfTfOvH27Du3bC/jyS/P/Y+++A6Oo9vaBPztbsi0hjQ5J6JAeCIJIF1AUEQRBFAERBEVURLHrVbgWVCygqIgQmgjSRKUKYgGpCZDQW2iBmEKS7WX294e/e1+9SSCZ7Oxukufz13t39sz5vnHZmT1zznMgihybIfIXQVCgWzctvvzSgJwcJVatsmDwYDN0OtHfpZVy+bIas2cb0aFDEGJj7Xj9dTPOnQvceRFE/qJSqaDRSA/Rzc/P92I11U92thNr1+oktx892spAMCIiIok444aIiIiIiIiIiIiIiIhkERsbhDvvtEpu/+23Opw5w/AGokBmMon45RcbPvjAjNGjzWjf3oaQEA8SEzUYO1aPOXOM2LFDj7w8X+2eqwDO9Sz9ssYM6PN8VMP1BQWJSEy04f77zZg504SffrKhoEDE2bMarF9vwIwZRgwZokdUlBqCwAAwIqrZNBoFZs40YscOO1q1ssvWz86dOiQnKzF7NhdTEXnD8bzj6J3WG6Kn7EVQYdowZD6aCZXgq3tAKk9+vrQpopGRXi6Eaq2bbpK+0GfXLo4JERH5wy9jfkFc3Tif9VcdQsEsFjcGDTLhq6/CJLXPzNRj6tSmcP7P2nyVSoXWrVtXaWEyEdUcAwZI/y7YsoXPEuj/vL/zfRTaCss89umdn0JQCBgWNwyZj2Vi4d0LERMaU6X+atP4T48eWhw+rMKECSYoFPKMMxcXK/HoowbcfruVYdlEAUCtVuCee/RYvdqAnBwPPv/cjJ49LVAqA+9Z09GjQfjXvwxo3lyFW26xYs4cMwoK3P4uiyhgRFbhwYfL5YLNZvNiNdXLe+/Z4XJJe96kUomYOjXIyxURERHVHgqPxxN4vz6IiIiIiIiIiIiIiIioRti924bOnbWS248fb8IXXxi9WBERSXX5sgt79zqxf78bhw4pkJmpwtmzGohigC02iV8ODB3xz9ecWuDdXMAR7NNSQkNdiItzIjFRRHIy0LGjCvHxGqjVAfY3IyIKAFariGnTLPj0U4Os15ZevSxYsECN6Gi1bH0Q1WRXTVfR4uMWMDvNZR7XqXQ4MfkEmoQ08XFlVJaICBcKCiq/OPfzz8145BGDDBVRRWRkZCAlJaXC709PT0dycrJ8BVWBySQiNFQBt7vy1/bnnjPh7bc5JkRE5A+XSy4j5sMYOEXnjd/sBRenXETjkMY+6auySkoc6NvXid27q35vNHhwIV5//RIUCkCr1aJ58+YQBGmLaomo5nG7RTRu7MbVq5Ufs4qKsiM7mwvtCRBFEXXeqQOTw1TqWLPQZjjz5JlSrzvcDsw/MB8zfp2ByyWXK91n72a98dOonyTVW51t3mzFuHFKXLggX7hnaKgLH31kx6hRHKMhCjSXL7uwaJEdy5crcfCg9DlRcgsKEtGnjxUjRyowaJAWWi1/f1DtJYoijh49CqmxGsHBwYiOjvZyVYGvqMiNqKi/gkulGDrUjJUreS9DREQkFe/giYiIiIiIiIiIiIiISDadOmnRq5dFcvslS/S4coU74BL5ktvtQVaWA2lpZjz1lAm9e1tQv74TjRurMGiQDtOnG7FunQGnTwcFXiAYAGTdC2R3/edr29+QPRAsOtqBO+6w4PnnTVixwoKzZ53Iz1fit990+PRTAx55xICUlCAGghERlUOnEzB7thFbt9oRE+OQrZ/t2/VITBQwb54Zosi9FIkqw+KwIH5ufLmBYCpBhT3j9jAQLEC43R5cuyZtkUa9erxnJe8wGgW0bCntur5/P6c4ExH5w/mi8+iV1stngWAA8OPJH33WV2VYrVZkZ59Eq1ZWr5xvzZowzJlTD8HBwWjZsiUDwYjoH5RKAV27Snumev58EA4fLvu3OtUub+x4o8xAMAD4cuCXZb6uUWrwaMdHcWryKczqNwt19XUr1adSIW3sobrr10+Hw4eVGDVKvn97166pMHq0AXffbcbVq5wzQRRIGjVS4fnnDcjI0CIz04GpU02Ijpbv2ZZUdruAH34wYMQIPRo0EDFqlBlbtljhdvP5GNU+giDAaJS+CYXJZIIoil6sqHr49FOb5EAwAJg2rfIb1xAREdH/UXikRpoSERERERERERERERERVcDWrVb07auT3H7KFBNmzZI+KYeIymc2i0hPd2D/fjcyMoBDh5Q4dkwNi6WaT+AXXEDCUiDkEnCuB3DhFq+dWq0W0aaNA/HxbiQnA+3bC0hN1SAsrJr/zYiIAojJJGLKFCu+/FLeXYP797dg/nwNGjbkZGSiG3GJLrSe3Rpnr50t87igEPDTqJ/QM6anbwujcl254pL8/fb77zZ06aL1ckVUURkZGUhJSanw+9PT05GcnCxfQVU0fLgZK1ZU/ppev74TV66oZaiIiIjKcyzvGPou7ouLxRd92u/dbe7G2vvW+rTPGykpKUF2djYAQBSBadOaYtOmOlU6p0ol4sMPizBpUpg3SiSiGmju3AI89li4pLZvvlmAF16Q1pZqBpfoQshbIbC6SodZto1si6OTjlboPCaHCR/98RHe3fkuiuxFN3x//5b98eMDgRnw6SvffWfFhAkqWX/DRka68MknDgwbppetDyKqGlH04Ndf7Vi0yIW1a7UoKAjcZ0+NGzswdKgDY8aokZwc5O9yiHzGbrfj5MmTkts3atQI4eG1557b5fKgWTMnLl7USGrfrZsVv/wifc4oERERMRSMiIiIiIiIiIiIiIiIfOCmm6zYu1faJI+QEDeys4HQUAbuEFXFlSsu7N3rxIEDIg4eBDIzVThzRgO3W+Hv0gJWnTouxMY6kZjoRkqKAqmpKiQkaKDR8G9GROQLGzZYMX68EpcuSZtoXBHh4S589JEdI0fKG0BGVJ15PB50nNcR+3P2l/ue5UOWY3j8cB9WRTdy8KBd8oKuU6ccaNFCvu9eur6aFgr27rsmTJsmLez9/HknmjZlMBgRkS/sv7wfty+9HXmWPJ/3bVAbkD8tH0GqwFiMXlBQgMuXL//jNYdDgYkTo7F3r7RrmsHgRlpaCYYMCfVChURUU128aENUVBA8nso/g+jbtwSbNwfLUBVVF1M3TcWsP2aVeWz3w7txU5ObKnW+Qmsh3t/1Pj7840OYneZy3zeo7SCsGb6mUueuiQoK3Hj0UZukUOzKGDbMjLlztQgP59wJokDmcHiwfr0VS5Z4sGmTDlar4O+SyhUba8N997kwalQQoqM5Dkc13/Hjx+F0OiW11Wg0aN26tZcrClyLFpkxerT0e5u1a624+26GghEREVUFQ8GIiIiIiIiIiIiIiIhIdqtWWTB0qPRda1991YTXX5e22IaotnG7PThxwom9e53IyPDg0CEBWVlqWXenrgmaNnUgLs6FpCQRKSkCUlNVaNZMDUFgABgRkT9du+bG44/bsHSpvIupBg8244svtIiM5GIqov81YNkA/HDyh3KPv9/vfTx989M+rIgqYvNmK267TdpiC5NJhMEQuAvVarqaFgq2Y4cNPXtqJbVdscKCe++VPp5EREQV8/O5nzHw64EocZT4rYZNIzehX4t+fuv/P65cuYK8vLKD0YqLBYwZ0xwnT1buuhYZ6cTq1TZ068awHiK6sbg4K44cqfxvueBgN/LyFNBo+FuuNnK4HAh+OxgOt6PUseQGyUifkC753LnmXLzz2zv4ZO8nsLvtpY7P7DMTz97yrOTz1zTffGPB449rkJenkq2Phg2d+PxzF+66iyEbRNVBUZEby5fbsGyZgN9+00IUA3P+gSB4cPPNNtx/v4gRI7QIC+PzMqqZ/vzzT1y9elVy+zZt2kCtrvnzr0TRg/bt7Th4UNrYfps2dhw5ouGcKyIioiriSB8RERERERERERERERHJbvBgHdq1Kz1JuKI+/VQLi0X0YkVENYPVKmLnThtmzzZj7FgTOna0ok4dEbGxGowebcAHHxjx0096BoL9jUolIjbWhmHDzHjzTTM2brQiP9+N8+c12LBBj7ffNmL4cD1atODkNCKiQBAaqsSSJQasWmVB/frSdm2uiDVrDIiLE7FqlUW2Poiqo0fWP3LdQLCnb36agWABKjdX2m9onY6BYORdqakaqFTS9i/es4djQUREcvvu+He4fcntfg0EA4AfTpR/z+krFy5cKDcQDABCQkTMnXsODRqUDlwpT0yMHTt2OBkIRkQV1r27TVK7khIltm83ebkaqi4mb5hcZiAYACwetLhK565nqIf3b3sfp584jYkdJkIl/F/YVcdGHfFIh0eqdP6aZvhwPTIzgYEDzbL1kZOjxsCBOowZY0ZRkVu2fojIO+rUUWLCBAN27NDh3DkXZswwITFR2vVeTqKowO+/6zBpkgENGyowcKAF33xjgc3G8TmqWSIiIqrUviqBYtXJtm02yYFgAPDEEy7OuSIiIvIChcfjkfaknYiIiIiIiIiIiIiIiKgSFi604KGH9JLbv/eeGVOnGrxYEVH1kpvrwt69Thw44MbBgwpkZqpw+rQGLhcnUZUnJMSN2FgHEhPdSE5WIDVVhYQENbRahhwQEVVHeXluTJxow6pV8t4TjhhhxiefcBd0on/9/C+8vuP1co/fF3cfvh76tQ8rosr44AMznn668t+XjRs7cPGiRoaKqKIyMjKQkpJS4fenp6cjOTlZvoK8oF07O44dC6p0u1tvtWDrVuljSUREdH2LDy7GQ+segtvj/zCJ5mHNcWryKSgUvh/rFEUR586dg8VSsZDo06eD8OCDzVFScv3fjMnJFvzwgxKNGlX+GkhEtdfatdcweHCopLZTphRi1qww7xZEAc/sMCP0nVC4RFepYzc3uRk7H97p1f4ul1zGjnM7EKoNRa9mvaBVSQ+LqOnS0sx46qkgXLumuvGbJWra1IEvv3SjXz+dbH0QkTwyMx1YsMCBlSs1uHAhcMdjQ0NdGDjQjtGjlejZM4ghP1QjnD17FmaztABPQRAQGxvr5YoCz+23W7Bpk7Sx+bp1nTh/Xsm5WURERF7AUDAiIiIiIiIiIiIiIiLyCZfLg1atnDh3TtpktiZNHDhzRg21mhPMqGYTRQ9OnnRi3z4XDhwQceiQgKwsNXJy1P4uLaA1buxAXJwLSUkiUlIEpKaq0KKFmpNSiYhqoGXLLHjiCQ3y8+VbTNWokRPz5rlwxx1cTEW105cHvsT49ePLPd49qjt2PLTDhxVRZb3wgglvv22sdLvExKrt/k5VVxNDwUaMMGP58sqH1NWt60RuLn8LExHJYfbu2Xhi4xP+LuMfjk46iraRbX3apyiKOHXqFBwOR6XaHTigx/jxMXA4yl7g2rt3Cdas0SEkRL7frURUM5nNLtStq4DVeuOweoXCg3btbOjSxYQuXUxISbEiObnmBxTQPz2w6gEsy1xW5rFTk0+hRXgLH1dEf3fpkgsPPeTAli3yBV4rFB488ogZ77+vh8HA8A2i6kYUPfjlFzvS0txYty4IhYWB+xuiSRMH7r3XgTFjNEhMDNwgM6IbMZvNOHv2bKXb2WwKbN0agttuC0VKSrAMlQWGI0fsiI/XwOORNt/qpZdMmDGj8s+niIiIqDSGghEREREREREREREREZHPfPyxCU8+KX3SxxdfmDF+fOUXkRIFKptNREaGA/v2uZGRARw+LODoUQ1KSm682KO2Uqk8aNnSgfh4F5KSPEhNVSI1VYPISP7NiIhqk5wcF8aNc+DHH+VbTAUAY8ea8NFHehiNXExFtcf3x7/HwOUD4UHZUwvbRrZF1qNZEAT+uwhkjzxiwrx5lf/93bOnBdu3y/vdStdXE0PB3nvPjGeflTaec+6cE9HRDAYjIvIWj8eDN3a8gX/t+Je/Synlvb7vYWqXqT7rz+Vy4eTJk3C73ZLab90agqefblpqkezw4dewaFEINBreLxORND17lmDHjrJDBurVc+KWW0y4+WYTOnUyITz8n99hrVu3hkbDkI7a4prtGiJmRkD0iKWO9Y7pjZ9G/+SHquh/iaIHX3xhwbRpWlmfATdv7sCCBSK6d2fYO1F15XB4sG6dFUuXerBpkw42W+D+poiPt2H4cBdGjQpCVBTH7qj6OXr0aIXHA44e1WL16jD88EMoSkqUePjha/jyy1B5C/SjMWPMSEuTNp6v04nIzvagbl3O4SIiIvIGhoIRERERERERERERERGRz9hsImJi3Lh6VdqEsNat7ThyRAOlUtpOdET+lJfnxt69Duzf78bBgwpkZqpw6pQaLlfgTuT0t+BgN2JjHUhIEJGcDHTooERSkgY6Hf9mRET012KqBQssmDo1CEVF8u2cHhPjwPz5Inr35mIqqvn2XtqLm+ffDLen7IUQDY0Nce7Jc9CouMA40N1zjxlr1lR+0cbQoWasXMkwbn+qiaFgv/5qk7woeflyC4YPZ1AdEZE3iB4RUzZOwcd7PvZ3KWXqFdML20Zv80lfNpsNp0+fRlWX03z9dTjefLPRf//3008XYubMOlAqOX5JRNK9/noB/vWvcAB/LapPTTWjSxcTunQxoVkzOxTXeUwaGRmJBg0a+KhS8rdBywdh3fF1pV5XQIELUy6gcUhjP1RF5Tl71onRo1349VedbH0olR5MnmzGW2/podXyfoSoOrt2zY3ly21YtkzA779rIYqBOU9KEDzo0sWG++8XMWKEFqGhDAKi6iEnJwf5+fnlHi8uFvDjj6FYvToMR4/+89odHu7CxYsK6HQ17/N+9aoLMTGC5FDCsWNNmD9f+oaxRERE9E8MBSMiIiIiIiIiIiIiIiKfmjHDhFdekT75g4tBKdCJogenTzuxb58L6ekiMjIEZGWpcfkyd0e9nkaNnIiNdSIxUUT79gJSU1Vo1UoNQQjMya1ERBQ4zp93YuxYJ376Sb57REHwYOJEM959Vw+9noupqGY6XXAacZ/Gwe62l3m8TlAdnHvqHEK1ob4tjCTp3t0qaZHphAkmfPYZF2z4U00MBbNaRYSEQFIo9tNPm/D++/xMEhFVlUt04eHvHsaig4v8XUq5VIIKec/moY62jqz9lJSUIDs722vn++ij+liwIBJvv12IZ54J99p5iaj2OnjQhNmzrejSxYTkZAs0moov/QsKCkKrVq1krI4CxRXTFTR6vxE8KP35uLPVnfj+/u/9UBXdiCh68NFHFrz8shYWi3xBIm3b2rFwoQedOnGjC6Ka4MIFJ9LS7PjmGxUyMwP337VWK6JfPytGjlTg7rt10Gg414MCl9vtxtGjR//xmscD7NtnwOrVYdiyJQR2e/nj2fPmFWLcuDC5y/S5F14w4e23pY3HC4IHWVlOtG3LjYWIiIi8haFgRERERERERERERERE5FPFxW5ER3tw7ZpKUvvkZBv27w9iUBAFBLvdg4MHHdi3z4WMDA8OH1biyBENiotr3m6Q3qJUetCypQPx8S4kJ3vQvr0Sqalq1Ksn7TuBiIgI+Gsx1aefWvDCC1qYTPJdh1u2/Gsx1S23BO6iCyIp8ix5aP5Rc5Q4Sso8rlVpcWzSMUSHRvu4MpIqPt6GrKzKf1e9/LIJ06czgMmfamIoGADExdlw5EjlP5O9e1tkDf4kIqoNbC4bhn87HN8d/87fpdzQyntXYmjsUNnOX1hYiEuXLnn1nB4PkJvbCLfeykAwIvIOURRx5MgRye3j4+O9WA0FqtsW34bNZzaXel1QCMh9JhcR+gg/VG1uxxkAAQAASURBVEUVdfy4A6NHu7F7d+UD3StKpRLxzDMWvPGGAWo151YQ1RSHDjmwcKEDK1dqcPFi4AbvhIW5cPfddowapUSPHpzjRYHp1KlTsNlsyM1V4bvvQrF6dRguXAiqUNtu3Uz45Zea9SzFYhERHS0iL0/a/K3+/S348UeO5RMREXkTQ8GIiIiIiIiIiIiIiIjI555/3oR33pE+MebHH63o31++CbJEZSkocGPvXgcOHBCRkQFkZipx8qQGTmf5O0PWdgaDG7GxDiQkuJGcrECHDkokJ2ug1/NvRkRE8jh1yoExY9z4/Xf57hWVSg+efNKMf/9bD62W1zSq/mwuG2I+jMFV89Uyj6sEFXaP2432Ddv7uDKqikaNnMjJUVe63UcfmfDEEzVrIUt1U1NDwR54wIxlywyVbhcR4UJurpILB4mIJCq2F+Pu5Xfj53M/+7uUChmTPAYL7l4gy7lzc3ORm5vr9fM2atQI4eEMBCMi7zpx4gQcDoekttHR0QgODvZyRRRIsq9lo9lHzeBB6WWhw2KH4Zt7v/FDVVRZbrcHb79txvTpetjt8o0zJybakJamQHJyxUJOiKh6EEUPfv7ZjkWL3Fi3Lkjyxoy+0LSpA0OHOvDQQxokJARukBnVPrm5xRg+HPj112C43ZUbf1YoPDh61Io2bWpOCNbs2WY88UTlx/D/Y/t2G3r25MZaRERE3sRQMCIiIiIiIiIiIiIiIvK5P/90ISZGAYtFKal9t24W/PJLzZlUQ4FFFD04e9aJfftcOHBAxMGDArKyVAG9y2ogaNDAibg4JxITRSQnK5CaqkKbNhoolVy4TUREviWKHrz/vhmvvaaH1SrfYqrY2L8WU6WmcjEVVV+iKKLtJ21xsuBkmccVUGDDAxtwW8vbfFwZVYXH44Fe74HNVvnvwGXLLBgxgr+3/ammhoLNmmXG1KnSFhSdOeNEs2aVD7kjIiJg5OqRWHp4qb/LqLB6hnrImZoDQeHd33KXLl1CYWGhV88JMHiHiOSTk5OD/Px8SW3r1KmDpk2berkiCiTdvuqG3y78Vup1pUKJwucKERzEa1N1cviwA6NGicjIkC9EQ6MR8dJLVrz4oh4qFZ/dEtU0NpuI776zYckSYPNmraxBg1WVkGDD8OEujBmjRePGgRtkRrVHSooFGRnSnolMmVKIWbPCvFyRf4iiB23bOnDypLTn3u3b27B/PwPBiIiIvC1w7+yJiIiIiIiIiIiIiIioxqpbV4XRo22S2//6qx6//y69PdF/OBwe7Ntnx2efmTFxogldulgRHu5Gy5Ya3HefHjNnGrFpk56BYH+jVHrQqpUdgweb8frrZqxfb0VOjgs5OWps3arHrFlGjBplQGxsEAPBiIjILwRBgWefNWLfPic6drTK1s+RI1p06aLGK6+Y4HRyX0aqnrot6FZuIBgALLh7AQPBqqGSElFSIBgA1K/PaaUkj06dpAXDA8Affzi9WAkRUe2Ra86tVoFgwF8177+832vnE0URZ8+e9XogmEKhQMuWLRkIRkSyCQ8Pl9zWbDZ7sRIKNEf/PFpmIBgAjEoaxUCwaighQYM9e4Lw8ssmqNWiLH04HAJee82Am2+24cgRuyx9EJH/aLUChg3T47vv9MjJ8eCTT8zo2tUKQQi8Z1eHD2vx8stGREUp0aOHFZ99ZkZRkdvfZVEt9sAD0ucfrlhhgMslz7Xb19autUoOBAOAKVNqxt+BiIgo0Cg8Hk/g3dUTERERERERERERERFRjXf+vBMtWyrhdEpbcNy/vwU//ihtpz6qnQoL3di3z4EDB0RkZACZmUqcOKGBw8FF7+XR691o186JhAQ3kpOBDh2USEnRwGDg34yIiKoHl8uDt94yY8YMvazX/KQkGxYvFpCQwCBRqj7u+eYerDm2ptzjb/Z+Ey90e8GHFZG3nDjhQJs20r6PDh92ID6e32X+lJGRgZSUlAq/Pz09HcnJyfIV5CVWq4g6dSBpHGjKFBNmzTLKUBURUc12sfgimn7Q1N9lVNqr3V/F671er/J5RFHE6dOnYbd7N/hCqVSiZcuWUKvVXj0vEdH/ysrKgtRlf7GxsRAEPsupiVK/SMX+nNIBmmpBjeIXiqFVaf1QFXnL/v12jBrlwZEj8v131OlEvP66BU8/beAGT0Q13PnzTixaZMfy5SpkZQXu9UGnE9GvnxUjRyowcKAOGg2/m8h3CgudaNJEgMUibVOLlSuvYejQUO8W5Qe33GLFzp06SW2johw4fVoNlYr/domIiLyNo3tERERERERERERERETkF1FRagwfbpXcfuNGHQ4dcnixIqopRNGDc+ecWLHCguefN+GOOyyIjnYgPFyJfv10eP55A5YvNyAzU8tAsL+pV8+JXr0sePJJExYuNCMry47iYgH79mmxYIEBTz5pQNeuWgaCERFRtaJSKfDKK0bs3u1EYqL0nZ5v5OBBLTp2VOHf/zbB7eYejRT4ntjwxHUDwR7r+BgDwaqx3FzpO7I3aCBt4QvRjeh0Atq0kTaOk57O36FERFI0CWmCfi36+buMSvvh5A9VPkdJiQtpaRe9HgimVqvRpk0bBoIRkU/odNIW5QPAtWvXvFcIBYz9l/eXGQgGABNTJzIQrAbo0CEI6elBmDrVBKVSnnFmq1XAtGlG9Ohhw6lTnG9BVJNFRanx8stGZGZqkZ5ux1NPmdC4ceD9u7daBaxbZ8C99+rRsKEbY8ea8PPPNogin7eR/MLC1LjzTpPk9gsWVP+x6z/+sEkOBAOASZMcDAQjIiKSicIjdcsAIiIiIiIiIiIiIiIioio6etSO+HgNRFHaxJB77zVjxQqDl6ui6sTp9ODwYQf27XMhIwM4dEjAkSNqFBaq/F1awBIED5o3dyA+3oXERA86dFAiNVWNRo34NyMioprN6fTgtdfMePddPVwu+SZod+pkRVqaEm3aaGTrg6gq3v7tbbzwU/mBX4PbDsbq4at9WBF526pVFgwdqq90O6XSA4cDEAQu3vCnjIwMpKSkVPj96enpSE5Olq8gL3rwQTOWLKn8OE54uAt//qnkZ5OISIJiezGmbpqKRYcWweEOvMXf5bn89GU0DG4oqW1Ojh0DBrhx8KAOs2dno1s36Yt7/06v1yMmJgaCUP0X/BJR9ZCXl4crV65IaqvX69G8eXMvV0T+Fv9pPLL+zCr1ulalRckLJVAJfNZXk/z+uw0PPaTAyZNBsvVhNLrx5ps2TJqk529uolpCFD3Yts2GRYtEfPddEIqKAvfaERXlwNChDjz0kAbx8XzmRvLZtKkIt99eR1JbtVrEuXNONGok3/VabkOHmrFqlbT5lyEhbly8qEBwMMdKiIiI5MArLBEREREREREREREREflNu3ZBGDjQIrn9mjV67l5bixQVubFtmw0zZ5pw//1mJCbaYDR60KFDECZMMGDuXAN+/13HQLC/0elEpKTYMGqUGbNmmbFjhw1FRR6cPBmENWsMeP11IwYO1DEQjIiIagW1WoE33zTit98caNvWLls/u3frkJKiwqxZZu5iTgEn7WDadQPBOjfuzECwGuDPP6V994SFubkAlGTVoYO0dgUFKpw96/RuMUREtURIUAjmDZyHy09fxpz+c5DaKNXfJVXIhlMbJLU7dsyCrl09OHBAD7dbgalTo5CZqatyPSEhIWjevDkDwYjIp8LCwiS3tdlsXqyEAsGv2b+WGQgGAE93fpqBYDXQLbdokZGhxqRJJgiCPOPMJpMSTzxhQN++Vpw/z9/dRLWBICjQp48OixYZcOWKgK+/tmDAADOCgkR/l1bK+fMazJplREKCBklJNrz1lhmXLrn8XRbVQH36BKNlS2n3z06ngC++kD730d/OnnVi3brKbzLzH2PHWhkIRkREJCOFx+PhzDMiIiIiIiIiIiIiIiLym3377OjYUfpueWPHmjB/vtGLFZG/iaIHFy64sHevE+npHhw8CGRlqZGdrYbHwwXq5YmMdCEuzoGEBBEdOghITVWhbVs1VCr+zYiIiP6XzSbixRct+PhjA9xu+a6V3bpZkZamQrNmatn6IKqozac24/alt8ODsqcMtgpvhWOTjjHooAaYPt2EV1+t/O/k1q3tOH68+u5mX1NkZGQgJSWlwu9PT09HcnKyfAV50a5dNnTpopXUdvFiM0aONHi5IiKi2ikrNwtpB9Ow+NBiXDFd8Xc5Zbqn3T1YNWxVpdrs3FmCwYO1yM395++v8HAXFi8+g6goaRuMREREoGHDhpLaEhFV1dGjR+F2uyW1bd26NTQajZcrIn9pNbsVThWcKvW6QW1A8fPFHM+p4bZts2HsWAHZ2fL9mw4JceP9920YO1bP0HiiWqiw0I1ly2xYtkzArl3agJ2bo1R60LWrFSNGeDBihA4hIbz+kXe88koBZswIl9S2VSsbjh7VQKmsfp/Hxx834ZNPpM27VKtFnD7tRtOmfA5OREQkF4aCERERERERERERERERkd/17WvB1q3Sdp3TakWcPi2iUSPuflwduVweZGY6sG+fCxkZHhw8qMSRI2oUFPC/Z3kUCg+aNXMiPt6JxEQP2rcXkJqq5iQrIiIiCX791YYxYwScOSPfYqrgYDfeeceGCRO4mIr8JyMnAx2/7AiX6CrzeD1DPWQ/lQ2tSlpYDwWWyZNNmDOn8os4br7Zip07dTJURJVRk0PBbDYRISGA01n5xVFPPmnChx8yFJ6IyJtcogubT2/GwoyFWHd8HRxuaaFZcgjWBCNvWh40yor9Vlu79hoefDAYJpOyzONNmjiwePFpREZWLlinYcOGiIiIqFQbIiJvOn/+PIqLiyW1ZahhzbHh5AbcseyOMo+9eeubeKHrCz6uiPzBZBLx1FNWzJ8vb2D2HXdY8OWXGjRsyOf1RLXVuXNOLFrkwDffKHHkSOA+M9DpRNx+uxUPPKDAwIE6qNV8BkfSXbxoQ7NmGrhclR+7Dglx4bffTEhICPV+YTK6ds2NqCigpKTssZQbGTbMjG++4UYeREREcmIoGBEREREREREREREREfnd9u029O4tfSIZF4ZWDyUlIvbtc2D/fjcyMoDMTCWOH9fAZqt+OyX6ilYrok0bBxIS3EhOBjp0UKJDBw2Cg/k3IyIi8hazWcTUqRZ88YVB1p3P+/a1YMECDRo35mIq8q3zRefRZk4b2Fy2Mo8bNUacffIsIvWRPq6M5HL//WZ8/XXlF2LceacZ33/PBRz+VpNDwQAgKcmGQ4cqPwbUvbsVO3YwtI6ISC4F1gJ8k/kNFh5ciD2X9vi7HADA1ge34tbmt97wfZ99Vognnqhzw9DJuDgLvvrqHPR6sUL9R0VFISQkpELvJSKSS0lJCbKzsyW11Wg0aN26tZcrIn+I+iAKF4ovlHq9TlAdFEwrgCDwuWFt8uOPVowfr8Lly/JtGBUe7sLs2Q7cf7+0jd2IqOZIT7cjLc2JlSuDZP3eqaqICBfuvtuG0aNV6No1iJv0kCT9+xdj48aKjwN06mTCPfcU4tZbixEcrK52994zZpjwyivS51vu22dHhw5BXqyIiIiI/hdDwYiIiIiIiIiIiIiIiCggdO5sxe7d0hZ3Bge7kZ0NhIVJ27mOvO/iRRf27HEgPV3EwYMCMjNVOHdOLWvQRnUXHu5CXJwTSUluJCcr0LGjGrGxaqhU/JsRERH5wpYtVowbp8T58xrZ+ggNdeHDD+0YPZqhO+Qb12zXEPNhDIrsRWUe1yg1OPLYEbQIb+HjykhO/fpZsGVL5Rdtjh5txsKF/H7yt5oeCjZ6tBmLFlX+cxYa6kJ+vpIL+oiIfODIn0eQlpGGxYcWI8eU47c6pnSeglm3zbrue159tQDTp4dX+Jy33FKC2bOzob7OWnaFQoFmzZpBr2cIBhH5nyiKOHLkiOT2sbGxDIyq5lZkrcDwb4eXeWxO/zmYdNMkH1dEgaCw0I3HH7dh2TJ5x3EGDzbjiy+0iIzkPAyi2s7t9uCnn2xYvFjEd99pUVwcuN8L0dEODBvmwJgxasTGMrCIKm7FimsYPjz0uu+pV8+JQYMKMWhQIZo2df7jWNu2baFSVY/NoZxOD2JiXJLD/nr0sODnnzluQkREJDeGghEREREREREREREREVFAWLvWgsGDpU8WefllE6ZPl757HUnjcnlw9KgT+/a5cOCAiEOHlDhyRI28vOoxyckfFAoPoqOdiI93IinJg5QUAR07qtGkiYqLm4mIiPysuNiNJ5+0yR6Kc9ddFsybp0H9+rxnIvk4XA40+7gZLpdcLvO4UqHE72N/R6cmnXxcGcmtQwcbDhzQVrrd00+b8P77/F3tbzU9FOzjj0148klpn7MTJxxo1Uq+8E4iIvonl+jC1jNbsTBjIdYeWwu72+7T/ltHtMbxx4+XXZtLxMSJRZg/P6zS5x04sBAzZlyCooyhWEEQ0LJlS2g0vN4QUeA4ceIEHA6HpLbR0dEIDg72ckXkSw3ea4Cr5qulXo/UReLPaX/6oSIKJKtWWfDYY2rk5koL9KiIevWcmDvXiXvuYfAHEf3FahWxdq0NS5YAW7dq4XAEbgBpUpIN993nxqhRQWjUiM/k6PpcLhFRUS7k5PxzTECl8qBHj2Lcc08hbrnFBGU5mXihoaFo0qSJDyqtuoULLXjoIenX9u++s+Kuu6Rt/kpEREQVx1AwIiIiIiIiIiIiIiIiCgii6EFioh1ZWZVfuAwAEREuZGcLMBgCd7JZdWcyidi/34H9+93IyAAOH1bi+HENrFb+zcsTFCSiTRsH4uPdSE72IDVVhfbt1ahTJ3B3TSUiIiJg/XorJkxQISdHvsVUkZEuzJnjwPDhXExF3ieKIuLnxuNo3tEyjyugwLr71uGuNnf5uDLyhWbNHDh3rvJBFm+/bcZzz8kbikg3VtNDwXbvtqFzZ2ljP2lpZowaxc8oEZE/FFoL8U3WN0g7mIY/Lv7hs35PPH4CrSJa/eM1q9WNYcPM+P77EMnnHT8+F088kfuP11QqFVq2bAmVigvFiSiw5OTkID8/X1LbkJAQREVFebki8pX5B+Zj3PpxZR5bNGgRHkx60McVUSDKy3PjkUdsWLNG3t/L999vxiefaBEayufcRPR/CgrcWLrUhq+/FvDHH1p4PIG5EZ5S6UG3blbcf78H992nQ3Aw5zlR2Z56qgAffRQOAIiJseOeewpx112FiIx037CtIAiIjY2Vu8QqE0UPUlLsOHRI2jh927Z2ZGVpuPElERGRDzAUjIiIiIiIiIiIiIiIiALGokVmjB4tfbLqzJkmPPus0YsV1V6XL7uwZ48DBw6IOHRIgcxMFc6e1UAUOaGnPGFhLsTFOZGY6EZysgKpqSrEx2ugVvNvRkREVB0VFLjx2GM2fPONvIup7r3XjM8+0yI8nIupyHt6LuyJHdk7yj3++YDP8UiHR3xYEflSnTpuFBdX/jvlq6+qtjM8eUdNDwVzODwIDvbA4aj8wrvHHzdh9myO+xAR+duxvGNIy0jDokOLcLnksqx9fXDbB3iq81P//d/5+Q4MGODAH39U/Xrw0kuXcd99BQAArVaL5s2bQxC4MJyIAo/dbsfJkycltVWpVGjbtq2XKyJfiZgZgQJrQanXGxob4vJUea/BVP0sXWrBE09oUFAgX8Bp48YOfPGFG3fcoZOtDyKqvs6edWLRIgeWL1fh2LEgf5dTLp1OxO23WzFypAJ33aXjnB76h2PHLHjuOTuGDClESooFikp+PKKjoxEcHCxPcV6yebMVt90m/Vo+d64ZEydy8w4iIiJfYCgYERERERERERERERERBQy324NWrZw4e1YjqX2jRk6cPauCRsMJWxXldntw7JgTe/e6kJ7uwaFDCmRlqfHnn2p/lxbQoqMdiItzITFRRPv2Ajp2VCMqSsVdEImIiGqgFSssmDRJg7w8+RZTNWjgxOefuzBwIBdTUdWNWDUCyzOXl3v8te6v4V+9/uW7gsinnE6P5N/E69dbMWAAv4f8raaHggFAcrINBw9qK92ua1crfv2Vn1EiokDhFt3YemYrFh5ciLXH1sLmsnm9jz7N+2DLg1sAAFarFceOncXEiVHYs6fqoWAKhQcffHAegwYBUVFRUFR2pS8RkQ9lZWVB6hLA2NhYhh5WQx/+8SGmbJpS5rE1w9dgUNtBvi2IqoWcHBceftiBDRvkDX1/+GETPvxQD6OR3y1EVLb9++1YuNCJ1auDcPly4M4/iohwYfBgO0aNUuKWW4I454cAAEePHoXb7ZbUVqfToUWLFl6uyLv69bNgyxZp9wr16jmRna2EVst7ACIiIl9gKBgREREREREREREREREFlE8+MePxx6XvJsfd6MpnNos4cMCB/fvdyMgADh9W4uhRDaxWTtQpj0YjonVrB+Lj3UhJ8aB9eyVSUzUIDVX6uzQiIiLyoatXXZgwwY516+S9zxw1yoyPP9aiTh3ea5A0z2x+Bu/ver/c4+NSxmHewHk+rIh87eJFJ5o2lbbIas8eOzp2DPJyRVRZtSEUbMwYM9LSKn9NDQlxo7BQ4OI8IqIAdM12DSuyVmBhxkLsurjLa+dVC2rkT8sHHEB2djYAoKREwJgxzXDiRNWCIlUqER99VITHHgvzRqlERLI6c+YMLBaLpLYNGzZERESElysiOYmiiNB3QlHiKCl1LCY0BmefPOuHqqi6EEUPvvrKgqlTtSgulm+cOSbGgfnzRfTuXfnQbyKqPdxuD7ZutWHxYhHr18v7vVRVMTEODBvmwOjRasTGcpy8NsvJyUF+fr7k9oEcypuZ6UBiohoej7Qx9pdfNmH69KoHtRMREVHFMBSMiIiIiIiIiIiIiIiIAorNJqJ5czdycqQtYm7Z0o5jxzRQKmv3AtErV1zYu9eJAwdEHDwIHD6swpkzGohi7f67XE+dOi7ExTmRkOBGSooCqakqJCRooNHwb0ZERER/WbTIjKeeCkJhoUq2Ppo2dWDePDduu61qC9yp9vnwjw8xZdOUco/3b9kfPz7wow8rIn/Yv9+O1FRpC5ays52IipL2W5y8pzaEgs2ZY8bkydKCNo8dc6BNG42XKyIiIm86nnccaQfTsPjQYlwsvljl86XdkYb2uvb/eC03V4WRI5sjJ0faNcFgcCMtrQRDhoRWuT4iIl/Iz89HTk6OpLZ6vR7Nmzf3ckUkpzd2vIHXfn6tzGNbRm5BnxZ9fFwRVUfZ2U6MHevEtm162foQBA8ee8yMmTP10OkCM/yEiAKH1Spi9Wobli4Ftm7VwukM3O+N5GQbRoxw4cEHtWjYUL5nghSYXC4Xjh07Jrl9ZGQkGjRo4MWKvGfUKDMWL5Y2Nq/Xu3H+PBAREbjhfkRERDUNQ8GIiIiIiIiIiIiIiIgo4Lz1lhkvvihtAgoALF1qwf33yze5NZC43R4cP+7Avn0upKd7cOiQgKwsNa5e5ULu62na1IG4OBeSkkSkpAjo2FGNmBgVBIEBYERERHR9ly65MHasA5s3y3e/qVB4MH68GbNm6WEwBO6iCAoc32R+g/tW3Vfu8fYN2mPv+L0BuzM5ec+GDVbccYe0UEGrVYRWy8+Iv9WGULB9++zo2FFaeN3ChWaMHi19zIiIiHzHLbqx7ew2LDy4EKuProbNZZN0ni71uuDzbp+Xev3MmSA8+GAzFBdXboF2ZKQTq1fb0K1bsKR6iIj8we124+jRo5Vud+2aEkeO6PDIIzHeL4pkIYoijG8ZYXVZSx1rHdEaxx8/7oeqqLoSRQ8+/dSC55/XwmyWL8CjVSs7Fizw4JZbtLL1QUQ1S36+G0uXWvH110rs3q2FxxOYc3VUKg+6d7dixAgP7rtPB6OR4+e1xalTp2CzSRvHUCqVaNeunZcrqrorV1yIiRFgt0v7HI8bZ8a8eRybJyIi8iWGghEREREREREREREREVHAMZlEREWJKCyUtttiUpINBw4E1biAJ4tFRHq6A/v3u5GR4cHhw0ocPaqRdQJvdadWi2jVyoGEBDeSk4H27QWkpmoQHs6/GREREUknih7Mm2fBtGlaFBfLd1/RrJkDCxaI6NGDi6mofD+f+xm3LroVokcs83hMaAxOTj4JlcDd7GuDtDQzxoyp/KKM4GC3rN9nVHG1IRTM6fQgJMQDm63yi48ef9yE2bONMlRFRERyKrIVYUXWCqQdTMPvF36vdPsf+/2IpsFNS72enq7H+PExFV7QGhNjxw8/uBEbWzs2FSGimuXo0aNwu93XfY/TqUBGhg67dhmxc6cRR47ooFAAly87Ub++xkeVUlVM2zIN7+58t8xjO8fuxM1Nb/ZxRVQTnDzpwJgxbuzcKS1IviKUSg+eesqMN980QKOpWfM0iEhep087kJbmwMqVahw7Jm0jAV/Q693o39+GkSMVuPNOHdRqftfVZEVFRbhw4YLk9s2bN4deH1hjD88/b8I770gbWxcED44ccaJNG/6mICIi8iWGghEREREREREREREREVFAeuEFE95+W/oiz/XrrRgwQL5JrXK7etWFffucOHDAjYwMBTIzVTh9WgO3m5PKyhMS4kZc3H8CwBRITVUhMVGDoCD+zYiIiEge5845MWaMEzt2yDepWxA8mDzZjLfe0kOn4w7k9E9ZuVlI+TwFTtFZ5vEIXQTOPXUORg0DdGqLd981Ydq0yv/3jopyIDubizkCQW0IBQOA9u1tSE+vfOhlly5W/P579R3vISIi4ET+CSw6uAhpB9Nwsfhihdo00jfC0l5LEamNLHXsp5+C8fTTURDF648DJydb8MMPSjRqFLiLzImIruf8+fMoLi7+x2seD3DunAY7dxqxa5cRe/YYYLWWDnyeN68Q48aF+apUksjhciDk7RDY3fZSxxLrJ+LgxIN+qIpqCrfbg1mzzHjtNT2sVvnGmWNjbVi0SIEOHXjPRUSVt2+fHWlpTnz7bRCuXFH7u5xyRUa6MHiwDaNGqdClS83btJL+kpWVBakxHAaDAc2aNfNyRdJZLH9t0JqfL20DoTvvNOP77yu/IQ0RERFVDUPBiIiIiIiIiIiIiIiIKCDl57sRHQ2YzaUnrldEdVkkKooenDjhxL59Lhw4IOLwYQFZWWrk5ATu5LZA0LixA3FxLiQliUhJEdCxowrNm6s50Y6IiIh8ThQ9+PhjC156SQuLRdq9a0W0bWvHggUedO5c+QAVqpkuF19Gq9mtYHFZyjxuUBtw6olTaGBs4OPKyJ+ee86EmTMrHwqWnCwtoIm8r7aEgo0da8KCBZX/rIaEuFFYKPD3PxFRDeAW3dh+bjsWZizE6qOrYXVZr/v+tnXaYn73+QjRhJQ6tmJFGKZPb1xu2969S7BmjQ4hIdIWvxIRBYKSkhJkZ2ejqEiJP/4wYNcuI3buNCIn58YBz8OHX8Py5aHyF0lV8uj3j+Kz/Z+VeezgxINIrJ/o44qoJjpyxI5RozzYv1++cSC1WsRzz1nw2msGqFT8/U5Eled2e7Bliw2LFon4/nstSkrke/5WVc2aOTBsmANjxmjQti033qhJLly4gKKiIsntY2NjIQiBseHTRx+Z8dRT0kO9fv7Zhh49+AyJiIjI1xgKRkRERERERERERERERAFr8mQT5syp/ALR/9ixw4bu3QNnQorVKiIjw4H9+93IyAAOHxZw5IgGJlPgTl7zN5VKRKtWTsTHu5CU5EGHDkp07KhBRAT/ZkRERBRYTpxwYPRoN/74Q75gWpXKg6lTzXjjDQM0Gi6mqs1K7CWI+SgGBdaCMo+rBTUOTjyIdnXb+bgy8jepQUt9+liwZYtehoqosmpLKNinn5oxaZK0RUhZWXbExgZ5uSIiIvKnYnsxlh9ejg9+/wDHrh0r931t6rTB4p6LoVOV/t318cf1MG9evVKvDx9+DYsWhUCjCYyFuEREUomiiNtvL8HWrSHweCo3LtSokQPnz6ugVPK7MFBZHBbUeacOXKKr1LFOjTvhj3F/+KEqqqlcLg/efNOCf/9bB4dDvu+F5GQbFi8WEB/PkBwiks5iEbFqlRVLlyqwbZsWTmfg3s+0b2/Dffe58OCDWjRowFDq6s7hcODEiROS29evXx9169b1YkXSuN0etGnjwOnT0sbUU1Ot2Ls38DdmJSIiqokC986XiIiIiIiIiIiIiIiIar1p04Kg0YiS2//739LbVlVenhsbNlgxY4YJ995rRrt2doSEKNClixaTJxswf74Be/boGAj2N8HBbnTqZMW4cWbMmWPGrl02lJQAR44EYcUKA156yYjbb9cxEIyIiIgCUuvWGvz2mxZvvmmGVivPfajLpcA77xiRmmpHerpdlj4o8LlEF+LnxpcbCCYoBGwbvY2BYLVUfr60wMDwcO4vS77VqZP0RXG7d7u9WAkREQUCjUeDW3S3YOWtKzG3y1xohLKDI44XHcegLYPg9pS+FkyenItBgwr/8dqUKYVYupSBYERUMwiCgLAwT6UDwQDg8mUNDh2yyFAVecvEHyaWGQgGAIsHL/ZxNVTTqVQKvPqqAbt3O5GQYJOtn4wMLTp2VOHf/zbB7ebYExFJo9cLePBBAzZu1OPyZQ8+/NCMTp2s/i6rTAcOaDFtmhFNmyrRp48FCxZYYDL5b+4aVY1Go4FGIz3YsqCg7Od4vrZmjVVyIBgATJnCazgREZG/8MkGERERERERERERERERBaymTdUYMUL6RK7Nm/WyhyWIogcnTjiwbJkFzz5rRr9+FjRu7ETdukrccYcOr7xixLffGnDsWBBcLmmLs2uiRo2c6NPHgqlTTVi61ILjxx24dk3AH3/oMG+eAZMmGdC5sxZaLR9pEhERUfWhVCrwwgsG7N3rQkqKfIupDh/WonNnNV5/3QyXixOxaxNRFJH6RSrOF50v9z3fDP0GXaO6+rAqCiR5edJ+Q9Wty+8S8q3ERA10OmkL4vbt40I6IqKaxGQy4dSpU/B4/rof6dqwK5b1XoZgdXCZ779suYxX971a6nWFAnj11Uvo2rUESqUH775bgFmzwqBUcoyZiGqOPn2k/3b7/nuHFyshbyqyFWHZ4WVlHusR3QOtIlr5uCKqLZKTg7B/fxCee84ElUqe39o2m4CXXzaia1cbjh/n9xARVU1kpBJPPmnAH3/ocPKkAy+/bELr1oG3iY7LpcBPP+kxdqwe9et7cO+9Znz3nZXP9KqhyMhIyW2dTiccDv9f+2bNkj5fMSbGgWHDdF6shoiIiCpD4fnPkxMiIiIiIiIiIiIiIiKiAHTihAOxsWq43dImqAwZYsa33xq8UovNJuLgQQf273cjI8ODQ4eUOHpUg+JipVfOXxOpVB60bOlAfLwLSUketG+vRGqqGvXqqfxdGhEREZGsXC4P3njDjLff1sPplG8ReocONixapEBsrPQdnqn6uG3xbdh8ZnO5xz++/WNM7jTZhxVRoGnXzo5jxyr/ffDaa2b861/e+e1MVZORkYGUlJQKvz89PR3JycnyFSSj1FQb9u/XVrrdzTdbsXMnFyIREdUE165dw8WLF8s8lpGfgXG/jINdLHuB97xu89C5XudSr1ssAi5daojBg8O8WisRUSDIybGjSRMNRLHyz01vvbUEW7eWHbhI/jXkmyFYfWx1qdcVUOD8lPNoEtLED1VRbfPHHzY89JBC0rhSRen1bsyYYcOTT+ohCNxQjYi8Z+9eO9LSnPj22yBcvar2dznlqlvXicGD7Rg9WoXOnYP4XVgNiKKIo0ePQmocR0hICKKiorxcVcXt2mVDly6VH4P/j3ffNeOZZ/jsiIiIyF8YCkZEREREREREREREREQBb8gQM1avljbBRKn04MgRJ1q31lSqXUGBG3v2OHDggIiMDCAzU4WTJ9VwueQLdKjuDAY3YmMdSEhwIzlZgQ4dlEhJ0UCn49+MiIiIaq/9++0YPdqDrCzpE65vRKcT8a9/WTB1qgFKJRcQ1FRj1o5B2sG0co8/f8vzeKvPWz6siAJR/fpO5OZWftHTnDlmTJrEhR2BoDaFgo0bZ8b8+ZX/3AUHu1FYKPCaR0RUzeXm5iI3N/e67/k151c8tvOxMo9FBEXg2z7fIlIb+Y/XGzVqhPDwcK/VSUQUaJKSLDh0SF/pdgaDG/n5CgQF8bldIMk15aLh+w0hQix1rH/L/vjxgR/9UBXVVlariBdesGD2bIOk8MGK6t7dioULVWjWLHCDe4ioenK7Pdi82YZFi0R8/70WJlPgbvLYvLkDw4Y5MGaMBm3aVG5OG/lWdnY2SkpKJLVVKBRo164dBME/9+D33GPGmjXSnv2Ehrpw4YIAo5G/H4iIiPyFV2EiIiIiIiIiIiIiIiIKeC+9pJLc1u1W4K23nOUeF0UPTp1yYPlyC557zoTbb7egaVMHIiKU6N9fh5deMmDlSgOOHg1iINjfNGjgRJ8+FkyZYsKiRWYcPepAUZGAPXt0mD/fiMmTDejSRctAMCIiIqr1OnQIwoEDQXj2WRNUKnn2b7RaBTz3nBHdutlw8qRDlj7Iv17a9tJ1A8EeTHiQgWAEUfSgoEDaIqd69RiuRL6XmiqtXUmJEseOlT/WQ0REge/SpUs3DAQDgG4Nu2F0q9FlHsu35+OJnU/A7XH/97Xo6GgGghFRjde9u11SO7NZia1bpYUZkHxGrx1dZiCYoBCQNqj8sSAiOeh0Aj780Ijt2+1o3ly+ceZfftEhKUnAZ5+ZIYryjJkTUe2kVCrQv78OX39twNWrCqSlmdGvnwUqVelrrb+dOaPB228b0batBqmpNrz/vhlXr7r8XRaVoX79+pLbejweFBcXe7Gaijt92oHvvqt8mPB/PPSQjYFgREREfqbweDz81UxEREREREREREREREQBr18/C7ZskTZRJShIxOnTIurWVeLQIQf27nUhI8ODw4eVyMrSoLg4cHeG9Del0oMWLRyIi3MhORlo315AaqoaDRpID2ojIiIiqq127rRhzBgFTp4Mkq0Pg8GNt96yYdIkPQSBIT81wad7P8WkHyeVe/zWZrdi66itPqyIAlVhoRvh4dJ+3/78sw09emi9XBFJkZGRgZSUlAq/Pz09HcnJyfIVJKP0dDvat5d2TZw3z4xx4wxeroiIiOQmiiLOnz8Pk8lUqXYv7n0R68+vL/NYfW19zOs+D31T+kKr5f0MEdV8P/xQhAED6khq+/jjhZg9O8zLFZFU54vOI+bDGHhQennn0HZDsXLYSj9URfQXs1nE1KkWfPGFAR6PfOPMfftasGCBBo0bc/4BEcknN9eFpUvtWL78r80OA5VKJaJnTxseeAC4914tDAYGMgWKY8eOweWSFtoWFBSEVq1aebmiG3vsMTPmzpU2hq7RiDhzRuT1mYiIyM8YCkZERERERERERERERETVwo4dNvTsKX1BT2SkC0VFApxOTpgqj17vRrt2TiQkuJGcDKSmKpGSooFez78ZERERkbdYrSKmTbPg008NEEX5FlP16mXBggVqREerZeuD5Lf26Frcs+KeMheHAkBCvQRkTMiAIPCenYAjR+yIi5MWsHT0qANt22q8XBFJUZtCwVwuD0JCPLBaK/8dNmGCCZ99ZpShKiIikosoijh9+jTsdnul21pdVty//X6cKj5V5nEFFLg/4X683P1ltI1sW9VSiYgCmt0uIiLCA7O58qHQiYkWHDwobRMm8r4eC3vgl+xfSr2uVChRMK0AIdoQP1RF9E+bN1sxbpwSFy7IN24UGurChx/aMXo0w7+JSH4nTzqwaJED33yjlnUTn6oyGNy44w4bRo0ScPvtWqhU3AjIn3Jzc5Gbmyu5fdu2baFS+S5gq7DQjagowGSStpHMffeZ8fXXvC4TERH5G2cCERERERERERERERERUbXQo4cWN99sldw+L0/FQLC/qV/fid69LXjqKRPS0szIyrKjuFjAvn1aLFhgwJNPGnDLLVoGghERERF5mU4nYPZsI376yY6YGIds/WzfrkdiooB588wQRe4b6Q0WpwWF1kKf9bfzwk4MWTmk3ECwJiFNsG/8PgaC0X/l5kr/t96ggbSFIURVoVIpEBdX+WAYAMjI4GeWiKg6KSlx4ccfz0kKBAMAnUqH9zu9D5Wi7AW0Hniw9PBSxH4SiwdWP4BjeceqUi4RUUALChLQubNFUtvMTB1ycqR9F5N3ncg7UWYgGAA8kPgAA8EoYPTrp8Phw0qMHm2WrY9r11QYM8aAu+824+pVl2z9EBEBQKtWGkyfbsSxYxr88YcNjz5qRr16Tn+XVYrZrMTKlQbcdZcOjRu7MHGiCbt22fjMz08iIyOr1P7q1ateqqRi5syxSg4EA4Bp03wXYEZERETl42wgIiIiIiIiIiIiIiIiqjZefNHfFVQ/guBBy5Z2DBpkxquvmrBunRWXLrlw5YoaP/2kxwcfGDFqlAGxsUFQKrmrJBEREZGv9OypxeHDKowbJ99iquJiJR55xIABA6zIyeFiKqk8Hg+e3/o86rxdB+Ezw3HH0juQfS1b1j5P5J1Ar7ReED1imcfDtGHIejQLGpVG1jqoesnNLfvzciNqtYiQEE4nJf9ISXFLapeZqYHbzQVwRETVQU6OHT17OjBqVBTOnZN+/9o8pDmGNht63fd44MGyw8sYDkZENV7PntKCK0RRge+/lxYoRt41cs3IMl9XC2rMvWOuj6shur46dZRYuNCAdeusaNBAvuCc774zID4eWLGC31NEJD9BUKBTJy0+/dSAS5dU+P57K4YPN8NolDZeKafcXDU+/9yILl20aNPGgZdeMuPECfk2HqLSBEGAXq+X1NZqVWD9et99rpxODz77LEhy+169LEhJkd6eiIiIvIezOIiIiIiIiIiIiIiIiKjauOMOLRITbf4uI2DpdCJSUmwYNcqMDz4w45dfbCgu9uDkySCsWWPA668bMXCgDo0acTc/IiIiokBgNAqYN8+AH3+0onFj+Sbvb9igR3w8sHixfAFkNdnXmV/jnd/fgUv8K1htw6kN6PJVFxy+eliW/nJNuWj/RXs43GV/JnQqHQ49eggh2hBZ+qfqKzdXWkBSeLgbgsCQaPKP1FRpnz2zWYkjR+RbiExERN5x7JgFXbt6cOCAHoWFKkycGIO8POnj05NiJ1XofQwHI6KabsCAyocsNm7swLBh+YiIKJahIqqMjJwM7L28t8xj4zuMh14jLXCCSG4DB+qQlSVg2DD5xpnz8lQYPlyPYcPMKCgIvGAeIqqZVCoF7rxTh+XLDbhyRYG0NDP69rVApZK2EYecTp0KwptvGtCmjQYdO1oxa5YZubncGMgX6tevX6n3HzmixYwZDdG7d1s8+mgUDhwwyVTZPy1aZMHly2rJ7adO5fMiIiKiQKHweDzcJouIiIiIiIiIiIiIiIiqjaVLLRg5khOh69Z1Ii7OiYQEEe3bC0hNVaFtWzVUKk7MISIiIqqOrl1z4/HHbVi61CBrP4MHm/HFF1pERipl7acm6b6gO349/2up1+sE1cH6EevRLbqb1/qyOCyI+SgGf1r+LPO4SlBh/yP7kVg/0Wt9Us3x6qsmTJ9urHS7tm3tOHqUu74HioyMDKSkpFT4/enp6UhOTpavIJkdOuRAUlLlAw0A4IsvzBg/Xt7rJhERSbdzZwkGD9YiN/efC1HbtbNiwYKzMBikLa6+9cdbkWvNrVQbBRQYkTACr3R/BW0j20rql4gokLjdIqKjXbh0qfx7aaPRjZtuMqNLFxO6dDGhadP/Cx+PjY2FIAi+KJXKkDg3EYdzS4fNBymDUPJCCdRK6SEORL6yYoUFkyZpqhT4eiMNGzrx+ecu3HWXTrY+iIiuJzfXhSVL7Pj6awH79gXud5FKJaJXLxtGjvRg6FAd9Hre58nlyJEjEMXyxzOKigT88EMo1qwJw7Fj//zMPPJIIT7/PEzW+kTRg6QkOzIztZLat2tnR2amhhvJEBERBQje1REREREREREREREREVG1ct99OrRoYfd3GT6jUHjQvLkDAwea8fLLJqxebcHFiy7k5qqxfbseH39sxJgxesTHaxgIRkRERFSNhYYqsWSJAatWWVC/vlO2ftasMSAuTsSqVRbZ+qhJimxF2HlhZ9nH7EXou7gv1h5b65W+XKILCXMTyg0EU0CBjSM3MhCMypWfL61dRIS0QA4ib4iLU0Ovd0tqu28f90UmIgpUa9dew2236UsFggHA0aM6PP10UzidlR/PbtiwIVKbpFa6nQceLDu8DLGfxOKB1Q/gWN6xSp+DiCiQKJUCunb959iOIHiQlGTBo4/mYvHi0/j116P46KPzGD684B+BYABgNpt9WS79ze/nfy8zEAwAnuz0JAPBqNoYNkyPzExg4ED5vk9yctQYOFCH0aPNKCqSNnZARFQV9eqp8PTTBuzdq8Px4w688IIpIOesuVwCtmzRY/RoA+rX9+C++8z44QcrXC6On3pbWFjpUC9RBPbsMeC555qgd++2eOutRqUCwQBg1Soj7HZ5n8ds3myTHAgGAE895WIgGBERUQBhKBgRERERERERERERERFVK0qlAlOnuvxdhiy0WhFJSTY8+KAZ779vxs8/21BU5MHp0xqsW2fA9OlGDB6sR+PG8u22S0RERET+dc89emRlCRg6VL7FVLm5agwdqsf995tRWMjFVNez7ew2uD3l/43sbjuGrBiCefvnVbmvLvO74My1M+UeX3LPEtza7NYq90M1159/SluoERnJUDDyH6VSgfh4x43fWIb0dKWXqyEiIm/47LNCDBsWApOp/O/pnTuD8dprjeCpxPrkqKgoREREIKl+kuTa/h4Odv+q+3H0z6OSz0VE5G99+3rQuLED995bgA8+OI9ffz2KJUvO4LHHcpGcbIXqOo8TCwsLfVco/cPYdWPLfF2v1uOtW9/ycTVEVVO/vgrr1hmwcKEZoaHyzeFYtMiAhAQ3Nm+2ytYHEdGNtG6twZtvGnHihAY7d9owYYIJdevKt8mPVCaTEt98Y8CAATo0aeLCY4+ZsXu3DaLIgDBvqFu37n//76tXVZg3ry7uvLM1Hn64GX78MRQOR/nRHfn5anz9dZGs9b3/vvT/zg0aODFmjN6L1RAREVFVMRSMiIiIiIiIiIiIiIiIqp2HH9ajQYPAm1hVGRERLnTvbsXjj5vw5ZdmHDzoQEmJAhkZWixaZMDTTxvQo4cWwcF8pEdERERU20REKLFypQHLllkQESHfYqqvvzYgPl7EDz9wMVV5Np7aeMP3iB4Rj3z/CGb8MgOeyqQa/M1dy+7C3st7yz3+Xt/3cH/C/ZLOTbVHQYG0ULCICC4GIv9KSZEWUJmVpYHLxc8vEVEgefXVAjz6aBiczhuPa69fH4aPPqp/w/cpFAo0b94cISEhAIDE+olVrtMDD77O/Bpxn8YxHIyIqq0HHjBgw4YTePXVy+jTpxghIRUPfDab5Qujp/JtPrUZJwpOlHnsxa4vQhD4XJiqp9GjDcjMBPr2tcjWx4ULGtx+uxYTJ5pgNjPgnoj8RxAUuPlmLT77zIjLl1VYv96Ke+81w2AIvE14rl5VY+5cAzp31qJtWwdeecWEU6ekbdBAf1GpVDh7NgSPPx6Ffv3a4OOP6+PiRU2F2y9aJN9GoIcPO7B1q/RQrwkTHNBopD1nIiIiInlwpIiIiIiIiIiIiIiIiIiqHY1GgSlT7P4uo0IUCg9iYhwYMMCMl14yYdUqC86fdyIvT4UdO3SYPduIhx82IDFRA5WKE2uIiIiI6P+MGKFHZiZw553yLdS8fFmNAQN0ePhhE0pKuJjq7zweDzaevnEo2H+8sv0VTN4wGW6xcgs/Jn4/Ed+f/L7c4091egpTu0yt1DmpdsrLkzYl9G8b2xP5RYcO0sZDLBYlMjO5iI2IKBC4XCLGjSvE9OnhlWo3f35dLFtWfhtBENCqVSvo9f+3qDWpfpLkOv8Xw8GIqDrTajUQBGn30m63G2534AVX1HSPfP9Ima+HBIXgha4v+LgaIu9q3FiFjRt1mDvXjOBgeb5fPB4FPv/ciMREF375xSZLH0RElaFSKTBggA4rVhhw9aoCCxZY0KePBSpV4G1kcPJkEGbMMKJVKw06dbLigw/MyMvj/aAUERFh2LEjBKJY+XvxHTuMOH1ans2a3nlH+garBoMbTzyh9WI1RERE5A0MBSMiIiIiIiIiIiIiIqJqadIkPTSawAotCAoSkZRkwwMPmDFzpgnbttlQWCji7FkN1q83YMYMI+65R4+mTdX+LpWIiIiIqokGDVRYv16P+fPNqFPHJVs/X31lREKCC9u2cTHVfxzPP47zRecr1eaTvZ9gxKoRsLsqFmI8fcd0fL7/83KPD40dig9u/6BSNVDtVVAgNRSMAdXkXzffLH2cZPdu+a6NRERUMVarG4MHmzB/fpik9m+/3RBbtoSUel2lUqF169bQaDT/eL1VRCtoVd5dqMpwMCKqrnQ6neS2hYWFXqyEbmTVkVXILsou89iMXjMgCFzmSdWfICgwcaIBBw+K6N5dnsATADhzRoNevYIwZYoJNltgzRkhotrLYBAwZoweW7bocfGiG+++a0KHDoH5zG3PHh2eftqARo0UuP12CxYtMsNi4fdpRXXpEoyEBIuktqKowOefe/9zkZPjwrffSv9t8MADVoSHK71YEREREXkDR4uIiIiIiIiIiIiIiIioWjIYBNx8s/Qd7qoqLMyFrl2teOwxE774wowDB+woKVEgI0OLJUsMePZZI3r10qJOHU6YISIiIqKqUSgUGDvWgEOHPLj1VmmTzCsiO1uDvn2DMGmSiZP/AWw8tVFSu5VHVuKOZXeg2F583ffNPzAfr/78arnHuzbtipX3rpRUA9VOhYXSfn/WrevlQogqqV07NYxGt6S2+/Z5uRgiIqqUvDwHeve24vvvS4d6VZTHo8DzzzfB/v36/76m1WrRunVrqFSqUu9XCSrE1Y2T3N91a2E4GBFVM3Xq1JHctrj4+uMW5F2Pb3i8zNcjdBGY3Gmyj6shklezZmps367FrFlm6PXSfu/fiCgq8OGHRqSkOLF7d2CG7hBR7VW/vgrPPGPEvn1aHDvmwPPPm9C8ucPfZZXidArYtEmP0aMNaNDAgxEjzNiwwQq32+Pv0gLe/fdLv/YsX66Hy+Xd57AffGCD3S4tNkSp9OCZZzQ3fiMRERH5HEPBiIiIiIiIiIiIiIiIqNp65JHSC4LkEB3twB13WPDCCyasXGnBuXNO5OUp8euvOnzyiRHjxxuQkhIEtVrhk3qIiIiIqHaKilJj82Yd5swxSw5PuRFRVODTT41ISnLi999r92IqqaFgALDt7Db0XNgTV01Xyzz+48kfMX79+HLbt4logx1jdkjun2ofq1WEySQtFKxePU4lJf9SKhWIj5e2KC4jg59fIiJ/sVqtyMw8i/Pnq75w1OEQMHlyNE6dCkJwcDBatGgBQSj/Oz6pflKV+7wehoMRUXURFhYmua3VavViJXQ9aRlpuGK6Uuaxd/u+6+NqiHxDEBSYMsWAAwfc6NRJvu+bY8eC0LWrBi+8YILTyRAbIgo8bdpo8NZbRpw8qcbvv9vwyCMmREa6/F1WKSUlSixfbsAdd+jQpIkLjz9uwt69dn+XFbDGjTNCp5MW7HXhQhC+/957Ab1ms4gvv9RKbn/HHVa0asVQMCIiokDEJ+FERERERERERERERERUbXXvLm3Bc3k0GhEJCTaMGGHGO++YsGWLFYWFbpw7p8EPP+jx5ptGDB2qR3S0GoLAADAiIiIi8j1BUGDSJAPS09245Rb5FlOdOhWEHj2CMHWqCTabd3errg6sTit2ZFctlCv9Sjpu+eoWnC44/Y/X917ai4FfD4QHZS9Sa2BsgIyJGdcNQSD6X1evSg8KZCgYBYKUFGnXmqysILhcXPRLRORrJSUlOH36NCIjnfjss3OoU6fqC5qtVgX+/DMC0dHRUCiuP/6eWD+xyv1VxN/DwUasGoEjfx7xSb9ERBUlCAJUKmmbKHk8HtjtDHrwhambp5b5egNjAzyU8pCPqyHyrTZtNPj9dy3efNOMoCB5xpldLgFvv21EaqodGRn8XiOiwCQICnTposXnnxuRk6PEunVWDB1qhl4vzyZAVXHlihqffGLETTcFoW1bO155xYTTp6Vt6lBTRUZq0L9/ieT2CxZ4b97hF19YUVgofWPVadP4jIiIiChQ8SpNRERERERERERERERE1VbjxkBYmLSFn3XquNClixUTJpjw2Wdm7Ntnh8mkwKFDWixbZsC0aUb06aNDaKh3g8eIiIiIiLyhZUsNfvlFi5kzTdDp5Fkw4HYrMGuWER06OLBvX+1aTPVL9i+wuWxVPs/pwtPo8lUXpOekAwDOFp5FtwXd4PaU/d8sJCgEWY9mQauSvqM31U5VCQVr0IC/e8n/OnSQ1s5qFXDoEBekERH5UkFBAbKzs//7v5s1c2DOnOwqhTwYDG58/XUxxo8Pr9D7kxokSe5LCg88WJ65HPGfxjMcjIgCjl6vl9y2oKDAi5VQWWbvno18a36Zx+b0n+Pjaoj8Q6lU4IUXDNi714Xk5KqPuZbn0CEtOnVS4403zAwQJ6KAplIpMHCgDitXGnD1qgLz55tx660WqFSB9911/HgQZswwolUrNTp3tuKjj8zIzw+8IDN/ePhh6W03bQpGbm7Vx7Xdbg9mz1ZLbn/TTVZ07cpnkkRERIGKoWBERERERERERERERERUbSkUQPv2N945z2h0o0cPK557zoRvvrHgzBknCgqU+P13HT77zIgJEwzo0CEIarX3duEjIiIiIpKbICjw7LNG7NvnQseOVtn6OXJEi5tvVuOVV0xwOgNvQYIcNp7a6LVz5Zpz0WNhD6w9uhbJnyfD7i47YE2r1OLQxEMI11csCIHo73Jzpf3bVCg8qFuXoWDkfzffrJLcdvdulxcrISKi67ly5QouX75c6vXkZCveffcCBKHy9ySRkU5s2GDB0KGhFW6TWD+x0v14A8PBiCgQhYWFSW5bUlLixUrof4miiJe3v1zmsag6URgSO8THFRH5V0KCBnv3BuHll01Qq6UHyl6PwyHgtdcM6NzZjiNHatdGF0RUPRmNAsaONWDrVj0uXHBj5kwT2reX75mfVB6PArt36/DUUwY0bKhA//4WLFligdUqz/d5dXDbbcGIiZF2rbHbBXzxhanKNaxaZcXZsxrJ7adMqR3PfYmIiKorhoIRERERERERERERERFRtZacXPbrGo2IYcOcOHLEjZISJX7+WYe33zZi2DA9mjVTQxAYAEZERERENUNsbBB27tTijTdM0GjkmXzvcgmYMcOIjh3tOHy46jtXB7pNpzd59XwljhIMXjEYxfbiMo8rFUr8/vDviA6N9mq/VHvk5kr7tx8S4mZANgWEtm01CA52S2q7bx8XLhER+cKFCxeQl5dX7vFevUrw0kulA8OuJybGjp9/dqJbt+BKtQvXhaNJSJNKtfEmhoMRUSAJDq7cd+jfORwOiGLtDXKQ29u/v13uWNDnAz73cTVEgUGlUmD6dCN27XIiNtYmWz/792uRmqrGu++a4HZz3ICIqocGDVR49lkj9u/XISvLjueeM6FZs8B7Jud0Cti4UY8HH9SjQQMPHnjAjI0brbXu+1apFDBihFly+/XrpYd5/cesWdKf78TEOHDvvboq10BERETyYSgYERERERERERERERERVWv33QekpQEDBvy1cDQyEpg+HbhyRcA336jRrp3SzxUSEREREclPpVLglVeM2L3bicRE+RZTHTyoRceOKsyYUXMXU50vOo+jeUd91p8CCqwfsR7tG7b3WZ9U8/z5p7R24eFc/E2BQRAUiI+XtsAtI4NjP0REchJFEWfOnEFRUdEN3ztsWCEmTMit0HmTkiz47TcgLk4vqa6k+kmS2nkTw8GIKFBoNNIDBcxm6UEGVD5RFPHvX/9d5rFW4a1we8vbfVwRUWDp0CEI6elBmDrVBJVKnnFmq1XAtGlGdO9uw6lTgReqQ0R0PbGxQXj7bSNOnVLj119tGD/ehMhIl7/LKqW4WIllywzo31+Hpk1dmDzZhP377f4uy2cmTtRX+jrWubMJM2dewKefZuPatWuS+/79dxt275Ye6jV5shNKJTeNISIiCmQMBSMiIiIiIiIiIiIiIqJqLTUVGDUKePddJT76CDh3Dnj5ZSAszN+VERERERH5XnJyEPbtC8ILL5igUskT9mO3C3jlFSNuucWG48dr3mKqTac2+bS/+QPno3+r/j7tk2qe3FxpiycjItxeroRIuvbtpX0ejxwJgtNZM4MqiYj8TRRFnDp1ChaLpcJtJk3KxeDBhdd9T+/eJfjlFw0aNw6SXFsghIL9x9/Dwe779j5k5Wb5uyQiqmWCg4Mlty0svP53Nknz0raXYHGWff386u6vfFwNUWDSaBR47z0jfv7Zjlat5AuQ2blTh5QUJWbPNkMUOX5ARNWLICjQtasWX3xhxOXLSqxZY8GQIWbodIG34UdOjhpz5hiRmhqEdu3seO01E86edfq7LFlFRWnRq5fphu+rX9+JCRNysWHDccybdw79+xchKMiDP6Xu+ALg3XelP98JC3NhwgTpgWJERETkGwwFIyIiIiIiIiIiIiIiohqhbVvgiScAg8HflRARERER+ZdarcCbbxrx228OtG0r32Kq3bt1SElRYdasmrWYauPpjT7r6/Uer+OhlId81h/VXPn50nZzDw+vOf92qfpLTZU2rdlmE3DoUM0LqSQi8jeXy4Xjx4/D4ajcd6xCAbzyyiV061ZS5vHhw69hwwYDQkJUVaovsX5ildrLwQMPvsn6BglzExgORkQ+FRERIbmt2Wz2YiUEAE63Ex/88UGZx+LrxqNrVFcfV0QU2G65RYuMDDUmTTJBEOQZqzKZlHjiCQP69rXi/PmaHVBDRDWXWq3AoEF6fPutAVevAvPmmdG7twVKZeCN8x87FoQ33jCiRQsVunSx4uOPzcjPr5mblIwZU/b/XyqVB337FuHTT89h06bjePzxXDRp8s9rkN1uh8vlqnSfp0458P33ekn1AsDYsTYYDIwZISIiCnS8WhMREREREREREREREREREREREdVAnTppkZ6uxpQpJtkWBFitAqZONaBnT1uN2O3b6XZi65mtPusv/Wo6rE6rz/qjmisvT1ooWGRk4C0Wotqrc2fp4TB//FH5hVNERFQ+m82G48ePw+2WtmBXrQbee+88EhIs/3h9ypRCLF0aAo2m6ktZkhokVfkccmE4GBH5mkajgSBI+251u92Sv++pbFM2TYHdXXZQ/6LBi3xcDVH1oNcLmDPHiC1b7IiOli/4e9s2PRISBHz5Zc3a6IKIap/gYAHjxhnw0096XLjgxjvvmJCcbPN3WaV4PArs2qXDk08a0KiRAnfcYcGyZRZYraK/S/Oae+8NQb16//eMtFkzG555Jgdbtx7DrFkX0K2bCUpl+e1zc3Mr3ed77zngdkt7LqTRiHj6aa2ktkRERORbDAUjIiIiIiIiIiIiIiIiIiIiIiKqobRaAbNmGbF9ux0tWpS9GNEbfv1Vh6QkAXPnVu/FVLsv7Uaxvdhn/a09tha3LbkN12zXfNYn1Uz5+VJDwbxcCFEVtG6tRkiItDCCffu8XAwRUS1mMplw6tQpeDxVu6/X6z2YMycbUVF2KJUevPtuAWbNCoNS6Z1lLK3CW0GrCuxFrH8PB5v4/UQ43PIFXBARabXSvxMLCwu9WEntZnPZ8MX+L8o8ltowFSkNU3xcEVH10ru3FpmZKjz8sFm2PoqLlRg/3oC77rIiJ4ch40RU/TVsqMK0aUakp2uRlWXHtGkmxMQE3u9Ph0PAhg16PPCAHg0aeDBypBmbNlnhdlff54oAoFYLGD26GIMGFWLx4tNYt+4URo/OR0RExca6r127Vqn+CgrcWLJEJ6HSvwwdakWjRtI36CAiIiLfYSgYERERERERERERERERERERERFRDdetmxaHDqkxcaIJCoU8k+tLSpR47DEDbrvNigsXnDduEIA2ntro8z5/Pf8rui/ojssll33eN9UcBQXSpoPWrVu9F9tQzSIICiQkSFuslpGh9HI1RES107Vr13Du3DmvnS883I3PPjuHRYuu4Zlnwr12XgBQCkrE14v36jnl4oEHn+//HM9tec7fpRBRDRYaGiq5bXGx7wLSa7pHv38UTrHscbEl9yzxcTVE1ZPRKODLLw344QcrGjWSb5z5xx/1iI8Hli2zyNYHEZGvxcYG4Z13jDh9Wo1ffrHh4YfNiIgIvADE4mIlli414PbbdYiKcuGJJ0w4cEC+zY3k9uqrQZg+/RKSk61QVHIPF1EUUVJSUuH3z55tg9ksfTz8uefUktsSERGRbzEUjIiIiIiIiIiIiIiIiIiIiIiIqBbQ6wXMnWvEpk02REXJt0P41q16JCYqkJZmlq0PufgjFAwADuceRpf5XXA877hf+qfqr6BA2gKQunUruTqFSGYpKW5J7Y4e1cDpZMgdEVFV5Obm4uLFi14/b6dOdXH//WFePy8AJNVPkuW8cllxZIW/SyCiGqwqoWBWq9V7hdRixbZiLD60uMxj3aK6oU1kGx9XRFS93XGHDllZAu6/X75x5oICFR54QI977jEjL0/amAQRUSASBAW6ddPiyy8NyMlRYtUqCwYPNkOnC7zvusuX1Zg924gOHYIQG2vH66+bce5c9dp8yGg0QhCkx3bk5uZW6H0OhweffaaR3M+tt1qQmCi9PREREfkWQ8GIiIiIiIiIiIiIiIiIiIiIiIhqkb59dcjMVGHMGPkWU127psKYMQYMHGjB1auBtwN5WXLNudifs99v/WcXZeOWr27Bnkt7/FYDVU9utwfXrjEUjGqGjh2lfSbtdgHp6XYvV0NEVHtcunSpwgtQKyM6Ohrh4eFeP+9/VLdQsEh9pL9LIKIaTBAEqFQqSW09Hg9sNpuXK6p9Hl7/MNye0kEbCiiw+J6yw8KI6PpCQ5VYutSAb7+1oF49+QJi1qwxIC5OxOrVFtn6ICLyF7VagXvu0WP1agOuXAG++MKMnj0tUCoDb5OFo0eD8K9/GdC8uQpdulgxZ44ZBQWBF2RWlqqG9IqieMP3paVZcOWKWnI/U6fymRAREVF1wlAwIiIiIiIiIiIiIiIiIiIiIiKiWiY4WMCCBQasX29Fw4byLaZav16P+Hhg+fLAX0y15fQWf5eAfGs+eqf1xqZTm/xdClUj+fluuN3SFnLUr89ppBRYOneWvqBp9+7qEUJJRBRIRFHEuXPnUFhY6NXzKhQKtGzZEsHBwV497/9KrJ8o6/m97aVuL/m7BCKq4QwGg+S23r4W1DZ5ljysPrq6zGP9mvdDdJ1oH1dEVLMMGaJHVpaAIUPk2+giN1eNIUP06N3bhtzc6hFAQ0RUWSEhSowfb8D27XqcP+/GW2+ZkZQUeOGwHo8Cu3bpMHmyAQ0bKjBggBlff22BzXbj4Cx/qVevXpXa3yisXRQ9+OgjaRvEAEBcnA233aaV3J6IiIh8j7M5iIiIiIiIiIiIiIiIiIiIiIiIaqkBA3TIzBQwfLh8i6ny8lQYMUKPYcMCezfvjac3+rsEAIDZacaArwdg6aGl/i6FqomrV6UvgqlXj9NIKbC0bKlGnTrSwr3275cWjkdEVFuJoojTp0/DZDJ59bxKpRKtWrWCViv/QtPqEgqmU+mw8O6FGBY3zN+lEFENFxYWJrltUVGJFyupfUavGQ3RU/r3uQIKLBq8yA8VEdU8kZFKfPutAUuWWBAeLl8w+PbtWjRoIKBXLxe+/Rbw8u0yEVHAaNRIheefNyAjQ4vMTAeeecaE6GiHv8sqxeEQ8MMPBtx/vx4NGoh48EEztmyxwu32+Lu0f1CpVAgKCpLc/tq1a9c9vnGjDVlZ0sdannrKDUHgGDoREVF1wtkcREREREREREREREREREREREREtVh4uBLLlxuwYoUFkZHyLaZaudKAuDgRa9daZOtDKtEjYvPpzf4u479cogsj14zEB7s+8HcpVA1cvSo9bK9hQ5UXKyGqOkFQIDHRKaltRobSy9UQEdVcJSUu7Np1Gna73avnVavVaN26NTQajVfPW54wXRii6kT5pC+pYuvGYu/4vRidPNrfpRBRLWA0Giv8Xo8HOH48CGlpEZgwIRq33x4Nt1t66HRtdrH4Ijac2lDmsUFtB6GesZ6PKyKq2R54QI/MTKB/f/nGmT0eBX7+WYV77wUiIz0YOBBYsACwWmXrkojIr+LiNHj3XSPOnFFjxw4bxo41yRrAKFVRkQpLlhjQr58OUVEuPPWUCenp3h3bqIq6detKbutyuWC9zoXm/felh6A1bOjEqFF6ye2JiIjIPxgKRkRERERERERERERERERERERERLj3Xj2ysoBBg8yy9XHlihqDB+sxapQZRUXSg4y8LeNKBnLNuf4uo5SnNz+N57Y8B48nsHY7p8CSmyvt86HTiTAaOY2UAk9ysrTrw9GjGtjtDDEgIrqRnBw7evZ0YNy4JjCZvHcvoNPp0KpVKyiVvg1pTKyf6NP+KmN00mjsGbcHcfXi/F0KEdUiQUFB5R7Ly1Nh/fo6ePHFxujduw2GDm2F995riJ07g5GdHYQDBwIvyL06eHDNg/Cg9G9zpUKJr+7+yg8VEdV8DRuq8P33OsybZ0ZIiLzjzHa7AuvXA5MnAwqFrF0REfmdICjQvbsW8+cbkZOjxLffWjBokBk6XeCNu16+rMZHHxnRvn0Q4uJsmD7dhOxsaRtOeEtoaCgUVbhYXL16tczXMzLs2LZNeqjXxIkOaDS8iBEREVU3nM1BREREREREREREREREREREREREAIB69VRYs8aAtDQzwsLk2wF88WIDEhLc2LSp/B2vfWnTqU3+LqFcM3fOxEPrHoLT7d+FDBS4/vxTWihYWFjgBPMR/V3HjtIWJzkcAtLTHV6uhoioZjl2zIKuXT04cECPY8d0mDIlCk5n1ReFhoSEoEWLFhAE3y9RSaqf5PM+b0Sn0mHB3QuwcNBCGDQGf5dDRLVMcHDwf/9vm02BnTsNmDWrPoYObYFevdrixRebYv36MOTlqUu1/fFH3k9X1qmCU/j53M9lHhsRPwKh2lCf1kNUmwiCAuPGGXDokIjeveUPNWzYkGNpRFS7aDQKDBmix5o1BuTkePDZZ2b06GGBIATeRjZHjmjx6qtGNGumQteuVnzyiRmFhf753g4JCZHc1mQyQRRLB7DNnCn9ma3R6MbkyVrJ7YmIiMh/GApGRERERERERERERERERERERERE/zBqlAGZmUC/fvItprpwQYP+/bWYMMEEs9m/O4xvPL3Rr/3fSNrBNAz6ZhDMDrO/S6EAlJsrbQFOeDgXMlJg6ty5dDhBRe3ezc81EVF5du4sQY8eapw5838LQf/4w4hXXmmMMtabVlhERASioqK8UKE0ifUT/dZ3WdpFtsPe8XsxJnmMv0sholoqPDwcS5ZEYMKEaHTt2g4TJjTDggV1cfy47oZtt2+Xfi9eW41cPbLM11WCCp8P+NzH1RDVTtHRamzZosPs2WYYDPKNC5w6pUSnToCD+YlEVAvVqaPEhAkG/PyzHtnZLvz73yYkJtr8XVYpHo8Cv/+uw+OPG9CwoQJ33WXBN99YYLP57jlk/fr1q9S+oKDgH//70iUXVq268b18eR54wIqwMGWVaiIiIiL/YCgYERERERERERERERERERERERERldKokQobNujw2WdmhITIs5jK41Hgiy+MSEhwYccO/yweKLYXY+eFnX7puzJ+PPkj+izug3xLvr9LoQCTlyetXUSEf8P4iMrTooUaYWEuSW3375cWkkdEVNOtXXsNt92mR25u6bCXH34IxYcfSluw2rBhQzRs2LCq5VVJUv0kv/b/d6OSRmHv+L2Iqxfn71KIqBbTaDTYtKkOdu4Mht1euaWDe/YYYDZLuxevjQ5dPYTdl3aXeezhlIeh1+h9XBFR7SUICjz+uAEZGW506WKVrZ8BAwCNRrbTExFVC02aqPHii0YcPKjF4cMOPP20CVFRgZeYaLcL+P57Pe67T48GDUSMHm3GTz/ZIIryjiFrNBqo1dLDdvPz//kccNYsGxwOaZEgSqUHzzzDCxcREVF1xVAwIiIiIiIiIiIiIiIiIiIiIiIiKpMgKDBhggEHD4ro0cMiWz9nz2rQu3cQnnjCBKvVt0FF285ug0usHgte/7j4B/ot6QeHO/AWV5D/5OUpJLULD2d4EgUmQVAgMVHa91xGhsrL1RARVX+ff16IYcNCYDIpy33PggV1sWRJRKXOGxUVhYiIyrWRQ8vwltCpdH6tQafSYcHdC5A2KA0GjcGvtRARAUCPHnZJ7axWAVu2mLxcTc01as2oMl8PUgbh49s/9nE1RAQALVtq8MsvWsycaYJO591x5oQE4NVXvXpKIqJqLz5eg/ffN+LsWTW2b7fhoYdMkjd8kFNRkQqLFhnQp48W0dFOTJliwqFD8j1rq8p4idPphMPxV20mk4ivvtJKPteAARa0bMlQMCIiouqKoWBERERERERERERERERERERERER0XTExamzbpsOHH5qh17tl6UMUFZg924iUFCf++MMmSx9l2Xhqo8/68oYDOQewMGOhv8ugAJKfLy0UrG5dhoJR4EpJkbZw99gxDWw234ZLEhEFstdeK8Cjj4bC6bzx0pGZMxtg48aQG75PoVCgefPmCAm58Xt9QSkoEV8v3m/9t4tsh73j92JM8hi/1UBE9L/69y8/CPJGNm3ib8WK2HVhFw5ePVjmsck3TYZGxfAFIn9RKhV49lkj9u1zIjXV6pVzCoIHixYBQUFeOR0RUY0jCAr07KnFV18ZceWKEitXWnD33WZotYE3VnvxogYffmhEUpIG8fE2zJhhwvnzTq/2ER4eXqX2V69eBQB8/rkV165J3wjj2Wel/y4gIiIi/2MoGBEREREREREREREREREREREREd2QICjw5JMGpKe7cfPN3llMVZbjx4PQrVsQnn/eBIdD3oWoHo+n2oWCAUD2tWx/l0ABJD9f2lTQyEhpYWJEvtCxo7TPtdMp4MABh5erISKqflwuEePHX8Mbb4TD46nYNd/jUeDFF5tg7159ue8RBAGtWrWCXl/+e/whqX6SX/odlTQKe8fvRVy9OL/0T0RUnl69jAgOlhbq/ssvWi9XUzM9tO6hMl/XqXR4u8/bPq6GiMoSGxuEXbu0eP11MzSaqoXSTJkiIjnZO3UREdV0Go0CQ4fqsXatATk5Hsyda0a3blYIQuCFz2ZlafHKK0Y0a6ZCt25WzJ1rxrVrVd8cSRAEGI1Gye2Li4vhdnswZ45a8jk6d7billt4b09ERFSdMRSMiIiIiIiIiIiIiIiIiIiIiIiIKqx1aw1+/VWLt96Sb4dvl0uBd94xIjXVjvR0uyx9AMCJ/BPILqp+AVt9mvfxdwkUQAoKpO30Xreulwsh8qJOnVSS2+7eXfVFW0RE1ZnV6sbgwSZ8+WVopds6nQKefDIaJ04ElTqmUqnQunVraDQaL1TpXUkNfBsKplPpsODuBUgblAaDxuDTvomIKkKjEdC5s0VS26NHtbhwweblimqWn878hOP5x8s89nzX56EUpP1OJyLvU6kUePVVA5Ytk77JhV4v4q23+O+aiEiK0FAlJk404JdfdDh3zoXp001ISAi8e01RVOC333R47DEDGjZU4O67zVixwlKlzYvq168vua3H48GiRQU4d076GMyUKYEXwkZERESVw1AwIiIiIiIiIiIiIiIiIiIiIiIiqhSlUoHnnzdg3z4XUlLkm7x/+LAWnTur8frrZrhc3p+8vvHURq+fU05KhRLTe01Hz5ie/i6FAkhhobRFifXqKbxcCZH3NGumRkSES1Lb/fu9XAwRUTWSl+dA795WfP99iORzlJQo8eijMbhyRf3f17RaLVq3bg2VSnpoo5wS6yf6rK+2kW2xZ/wejEke47M+iYik6NXLKamdx6PA999LCxSrLcatH1fm68GaYLzc7WUfV0NEFZGRIX1secwYK9TqG7+PiIiur2lTNV5+2YhDh7Q4dMiBKVNMaNLE4e+ySrHZBHz3nQHDh+vRoIEbY8aYsX27DaJYuWuJTqer0jjKnDlayW2bN3dgyBCd5PZEREQUGBgKRkRERERERERERERERERERERERJLExWmwZ08QXnnFBLValKUPh0PAv/5lQOfOdhw5YvfquTeerh6hYFF1ovBaj9dw+onTeLn7y1AoGOZEfzGZRFit0qaC1q3LzxEFLkFQICFB2oKwjAxpQXlERNWd1WrF9u0XkJGhr/K5cnPVmDgxGkVFAoxGI5o3bw5BCNzlJ74MBRsWOwzx9eJ91h8RkVQDB0oPEdi6lffU5Vl7dC3OXTtX5rHXe74e0NdLotps/XrpoSyTJgVmMC4RUXWWkKDBrFlGZGersW2bDaNHmxEaKm2TCDkVFqqQlmZA795axMQ48fTTJhw+XPFx67CwMEn9ZmbqcOCAQVJbAJg82Qmlks+AiIiIqjuOMhEREREREREREREREREREREREZFkKpUCb7xhxB9/OBEXZ5Otn/37tUhNVWPmTBPc7srtxl0Wq9OKHed2eKEyeagFNe6NvRebRm7CmSfO4F89/4Xo0Gh/l0UB5soV6YtkGjTgIm8KbCkp0sImjx/XwGqVJ6iSiChQlZSU4PTp02jXzor33rsAQaj6/XJ2tgbnztVHTExMwAechGpDEV3HN/fK03+Zjr2X9vqkLyKiqoiL0yMqSlq4+m+/6eF28566LJM2TCrz9XBtOKbcPMXH1RBRRZw758TBg9KCElu3tiM2NsjLFRER0X8IggK9emmxcKEBV64I+OYbCwYONCMoKPDuRS9c0OCDD4xITNQgMdGGGTNMuHjx+s9o6tatK6mvtLQISe0AIDzchUce0UluT0RERIEjsJ/MEBERERERERERERERERERERERUbXQvn0QDhwIwrRpJqhUVQ8hKIvVKuC554zo1s2GkycrvhN3WX49/yusLquXKvOeuLpxmNVvFi49fQkr7l2Bfi36QSkwvInKdvWq9IUx9etzCikFtptukvYZdbkE7N9ftWsEEVF1UlBQgOzs7P/+7x49SvDqq5erdE6DwY2vvy7GAw9IX4Tqa4n1E33Sjwce9FncBzaXfIHIRETe0rWrtHGP3Fw1DhyweLma6m/JwSW4XFL2NXZm35k+roaIKmrlSmkBiQAwYIDTi5UQEdH1BAUJGDZMj3XrDLhyxYNPPzWja1erV4LPve3wYS1eecWI6Gglune34rPPzCgqcpd6nyAI0Ov1FT6vxwNs327Epk11JNc2bpwNej2f/xAREdUEvKITERERERERERERERERERERERGRV2g0CrzzjhE7dtjRurX0xVY3smuXDikpSnz8sRmiKG0xwMZTG71clXRGjRHjUsZh18O7cPjRw5hy8xTUNUjbPZxql9xcaaFgSqUHEREMm6PA1rmzWnLbPXtKL8AiIqqJrly5gsuXS4eTDBlSiMceuyrpnJGRTmzYYMHQoaFVrM63kuonef2cdYLKXoRbbC9G77TeXu+PiMjb+vaVNmYSGupCVpbZy9VUf1M2Tynz9fqG+ni4/cM+roaIKmrdOuljYPfeq/JiJUREVFGhoUo8+qgBv/6qw9mzLkyfbkJcXOCFc4uiAr/+qsOjjxrQoIECgwaZsXKlBQ7H/92H16174+d9RUVKLF0ajqFDW+CJJ2Lg8Sgk1RMUJOKpp7SS2hIREVHgYSgYEREREREREREREREREREREREReVWXLlpkZKjx+OMm2XbwNpuVePJJA/r0sSI721np9ptOb5Khqsq5ucnNmD9wPnKm5mDewHno3KQzFAppE/2pdsrNlbrA2w2lkp81CmxRUSpERroktd23z8vFEBEFoAsXLiAvL6/c4xMn/okhQwoqdc6YGDt+/tmJbt2Cq1qezyU18F4omE6lw/yB83HmiTPQqspeTLvr4i7M+GWG1/okIpLDgAEGKJU3/t2oUono2NGEJ5+8guXLT2HHjmPo1Kly15Ca7tO9nyLPUvZ196P+H/m4GiKqqLw8N3bvlhaO0rixAzfdFOTlioiIqLKiotR4+WUjMjO1SE+346mnTGjc2OHvskqx2QSsW2fAsGF6NGjgxkMPmfHzzzYYDEYIQulID1EE/vjDgGnTmqB37zZ4++1GOHFCV6Ua7r3XioYNGWhJRERUU/CqTkRERERERERERERERERERERERF6n0wmYPduIIUNseOghAefOaWTpZ/t2PRIT3XjvPTMeflgPQbhx0NGFogs48ucRWeq5kUh9JEYnjcbYlLGIrRvrlxqo5vjzT2mhYGFhbnAKKQU6QVAgMdGBbdsq/1nNyODnm4hqLlEUce7cOVgsluu+T6EAXn75MvLzVfj555AbnjcpyYIfflCicWO9t0r1qcT6iV45T9vItlh570rE14sHAKy7bx1uW3Jbme99dfuruK3FbejYuKNX+iYi8rbISA2Skiw4cKD0d3vz5jZ06WLCzTebkJpqgV4v/uO42+2Gy+WCSsV7a1EU8eJPL5Z5rGlIUwyPG+7jioioor791gaXyyCp7Z13OiAI8oxpExGRNMnJQUhODsL773uwbZsVixeLWLcuCEVFgXXPWliowsKFKixcCERFOXDXXfVx++35iIlx4MoVFdatC8OaNWG4dMm715lp09RePR8RERH5V2Dd4RAREREREREREREREREREREREVGN0rOnFocPi5gyxYwvv5S2AOtGiouVeOQRA9assWD+fM0Nd8HedHqTLHWURwEFbmt5G8aljMNdbe6CRsnFZOQdf/4prV1EhHjjNxEFgJQUEdu2Vb7dyZMaWCwi9HrB+0UREfmRKIo4deoUHA5Hhd6vUgEzZ17AuHHNcOhQ+WFfvXqVYO1aHUJCqu8SkxZhLaBX62FxXj8s7XpGJo7E3Dvnwqgx/ve1fi36YfJNkzF7z+xS7/fAgz6L++DqM1ehVWkl90tEJKcePew4cECPOnVcuPlm0/8PAjOjQQPnDdsWFhaibt26PqgysL27810U2YvKPPbZgM98XA0RVcbatTfeQKI8Q4YovVgJERF5kyAo0KePDn36ADabiHXrLFiyxIMtW3Sw2wNrTPj8eQ0++SQCn3wSAaPRDbNZgMcj/fpUnj59LEhIqJ5B70RERFS2wLqrISIiIiIiIiIiIiIiIiIiIiIiohrHaBQwb54BP/5oRePGFQswkGLDBj3i44HFi83Xfd/GUxtlq+HvoutE4/Wer+PcU+ew4YENGBI7hIFg5FV5edIWjkREeLxcCZE8OnaUNtXZ5VJg3z75rjdERP7gcrlw/PjxCgeC/YdO58GcOdmIibGXeXzYsGvYuNFQrQPBAEApKBFfL15SW61Ki/kD52PRoEX/CAT7j4/7f4zYyNgy2xbbi9E7rbekfomIfOGhhxRYvvwUduw4hnffvYjBg69VKBAMAIqLi2WuLvCJoojpv0wv81iLsBa4o9UdPq6IiCrKZBKxY4e04NbwcBd692boKxFRdaDVChg+XI/16w3IyfFgzhwzbrnFCoUi8J6DmExKWQLBAOCZZ+Q5LxEREfkPQ8GIiIiIiIiIiIiIiIiIiIiIiIjIJ/r31yEzU4mRI68f2lUVBQUqjBplwD33mJGX5y513CW6sPXMVtn61yg1GB43HJtHbsaZJ8/g1R6vIqpOlGz9Ue2Wn89QMKrZOndWS267e7fLi5UQEfmXzWbD8ePH4XaXvr+tiLAwN+bOPYeIiH+GwEyZUohly0Kg0dSMpSVJ9ZMq3aZtZFvsGbcHY1PGQqEo/97q94d/h1ZVdjDErou7MH1H2YExRET+FhcXgrg4G5TKyre12WzeL6iaefXnV2F2lj2O9dXAr3xcDRFVxnff2WCzSbvPve02O1QqhqsQEVU3YWFKTJpkwG+/6XDmjAuvv25GbGzNv6dNSLChb1+GWRIREdU0NePJDREREREREREREREREREREREREVULoaFKLF5swOrVFtSv77xxA4nWrDEgLk7EqlWWf7y+++JuFNmLvN5ffL14fHjbh7j89GUsH7ocfVv0haDgFD2Sl9RQsMhIhoJR9RAdrUa9etKuFfv3c/EuEdUMJpMJp06dgsdTtet3kyZOzJ2bDb3eDaXSg5kzCzBrVhiUyppzz1rZULCRiSOxd/xeJNRPuOF7Q7Wh+O6+78o9/trPr2Hvpb2V6p+IyBcEQYBKpZLU1uPx1OpgMJfowvu73i/zWGzdWHSP6e7jioioMtaskX7/fM89HFMgIqruYmLUePVVA7KytDhwwI4nnzShUSP5nkv605QpIgSB1y4iIqKapuY8vSEiIiIiIiIiIiIiIiIiIiIiIqJqY/BgPbKyBAwdapatj9xcNYYO1eP++80oLHQDADae2ui18xs1RoxvPx67x+3GoYmH8GTnJxGhj/Da+YluJD9fKaldvXpcHELVR2KitIVaBw9KCz4gIgok165dw7lz57x2vnbtbPjgg/NYuPAann023GvnDRSJ9RMr9D6tSosv7/oSiwYtglFjrPD5+7boiydueqLMYx54cOuiW2Fz1d7wHCIKXAaDQXLbgoICL1ZSvUzdNLXc7/W0QWk+roaIKsPh8GDzZq2ktgaDG3feKa0tEREFppSUIHz4oRHnz6uwebMVI0eaERLi9ndZXtGokRMjR+r8XQYRERHJgKFgRERERERERERERERERERERERE5BcREUqsXGnAsmUWRES4ZOvn668NiI8X8cMPVvx48scqn++Wprfgq4FfIWdqDr646wvc1PgmKBQMWSLfKyyUNg00MtLLhRDJqH17UVK7kyc1MJultSUiCgS5ubm4ePGi1887dGgdjBwZ5vXzBoKKhIK1iWiDPeP24OH2D0u6h/+o/0eIrRtb5rESRwl6LexV6XMSEcktPFx6EKTJZPJiJdWHzWXD3H1zyzzWoWEHpDZK9XFFRFQZmzfbUFwsLUy/d28bdDouvSYiqomUSgX69tVh8WIDrl5VYNkyC+680wyNpvqOIz/6qB1qNZ9R/j/27jM6qnJ/+/g1NZNMEkISqnQIIh1CR6qoVDt4bAgee1esR1QsqFiwVywoVsCKIKJIU3oHQaRXQwIJpGcy5Xnh4/nrYYBkZ89Myvez1lnrMHt+932BmT77CgAAlRGvTAEAAAAAAAAAAAAAAAAAEXXJJTHauFEaMiQvZHscOODQ0BE5Wv3HakPzNWJq6K7ud2nzTZv181U/a3SH0Yp1xpqcEig5rzego0eNndxYqxZfH0XF0amTsZ9Xn8+iFSs8JqcBgPDYv3+/0tPTTV+3YcOGZSqGKe+quaqpUUKj4x6/vO3lWnntSrWp1aZM+/xy1S9y2V1Bjy3dv1SPLni0TOsDgNncbrfhWY/HI7+/4pYkGHXTzJtU7C8OeuyD8z8IcxoApfX558bvt847z7wcAIDyy+Wy6pJLYvTtt2798UdAL7+cp+7dC2SxBCIdrcTi4ny6+eboSMcAAAAhwrc6AAAAAAAAAAAAAAAAAAARV7u2XTNmxOidd/JUrZo3NJtcfIFUil+WbbVYNajZIH0+4nPtu3OfnjnrGbVIbhGabEAppaf7FAgY++3vNWrwW+NRcXTr5jA8u3x5iB5PACBE/H6/du3apaysLFPXtVgsatasmeLi4kxdtzwa3nL4MZe57C69PextfXDeB6YU+ya4EvTNv7457vFx88dpxf4VZd4HAMwUFRVleDYnJ8fEJOVfridX7697P+ixnvV7qmWNlmFOBKA0fL6AvvvOaWjW4fDr/PODl78CACqvxESbbr7ZrcWLo7Vjh1fjxuXptNOKIh3rpC6/vEAJCcZ+eQwAACj/KAUDAAAAAAAAAAAAAAAAAJQLFotFV13l1oYNAZ1xRr65i3d7Xmr4S4mu2iihkR7r95h2375bsy6bpQtOu0BOm7ETyYBQOXjQZ3i2dm1OEkHFUb++Q7VqFRuaXbmSAjwAFYff79f27duVm5tr6ro2m00pKSlyuapGucE9Pe9Rn4Z9/vvnDrU7aPnVy/Xvjv+WxWLe48KZTc/UrV1uDXosoIDO+OAMFXoLTdsPAMqqLMWQR44cMS9IBXD1N1fLFzj2NbdFFn10wUcRSASgNH75pUgHDxorGD/99EJVr877ZgBQlTVq5NDDD7u1aVOUVq4s0s0356puXWPvT4eSxRLQ3XcbL/4FAADlH6VgAAAAAAAAAAAAAAAAAIBypX59h+bMidYrr+QpNtZ48dF/tflIGnjnCa/itDn1r9b/0o9X/Kjtt27X2N5jVS++Xtn3BkKkLKVgtWpxciMqlrZtjZ10tX693eQkABAaublebdy4VUVFRaau63A41Lx5czmdVafgNjkmWXNHztWvN/6qNdet0aprV6lNrTYh2evFQS+qVY1WQY/leHLUb3K/kOwLAEYkJiYans3PN7m4vRw7nH9Y0zZNC3rsjMZnqGFCwzAnAlBa06Z5Dc+ee27AxCQAgIouNTVKL78cqz177Jo9u0CXXZan+HgTPrc0QZ8+hWrc2FgJJgAAqBgoBQMAAAAAAAAAAAAAAAAAlDtWq0U33eTW2rU+nX56gfGFmn4vnTfq+McLqsky+wX9+8jvem/IRzqjyRmyWvhqHcq/9HRjJym63T5FR/MzjoqlY0e/obmtW53KzTU2CwDhcvCgR336eHTffbXkN/EuKzo6WikpKbLZql4ZqM1qU8saLdW+dntZLJaQ7vXzVT8r2h4d9NjS/Uv16IJHQ7o/AJSU0+mU1WrstaDP55PXa7xkpyIZ9dUo+QPHPiBbZNGUC6ZEIBGA0po501ghrsUS0PDhUSanAQBUBjabRWefHa0PP3QrLc2ijz7K16BB+XI6I/fe8/jxoX2/AwAARB7f6gAAAAAAAAAAAAAAAAAAlFtNmzq1YIFLzzyTq+joUv727cSt0sUXSrbjnLi68UJpQpYCS2/T6881VMeOxVq5sqjsoYEwMFoKlphYPn6LPVAanTsb+8qz32/RihUek9MAgHl++y1fPXv6tXp1jL77LkETJ9Y2Zd34+Hg1bdrUcPkLSi7BlaBv/vXNcY+Pmz9Oy/YtC2MiADi+6OjgJYYlkZWVZWKS8ulA9gHN3Doz6LFzTj1HtWPNeZwGEDrr1nm0c6exUrDU1ELVrWs3OREAoLKJjrbq0ktjNGtWjA4cCOjFF3PVvXuBLBZjn9kYUa+eRz16uMK2HwAAiAw+4QEAAAAAAAAAAAAAAAAAlGtWq0V33RWrlSu96ty5oOSDvcdLzrzgx1ZfJU2fJun/fpP25s1R6t7dobFjc1VcHL4v7wNGHDpkbC4xMXK/uR4wqnt3Yyf0StKyZRThASifFi/OUZ8+Dm3f/n8ncb7/frI++CCpTOsmJSWpQYMGZY2HUhjQdIBu63pb0GMBBXTmlDOV78kPcyoAOFa1atUMz2ZnZ5uYpHy64qsrFNCx7wdZLVa9d+57EUgEoLSmTi02PHvOObx/AAAonaQkm269NVaLF0dr27ZiPfRQrlq0CP0vH7rmmgz5/XzWAwBAZUcpGAAAAAAAAAAAAAAAAACgQmjZMkpLlrj02GO5cjpL8GX3uP3BL98yTPr2Tf29EOwvXq9V48fHqnPnIm3Y4ClbYCCEjJaCJSVxoggqnrp17apTx9iJvatWmRwGAEzw9ddHdfbZMUpPdxxz7Jln6ui774yVttSpU0d16tQpazwY8MLAF9SqRqugx3I8Oer/Qf8wJwKAYyUkJBieLSwsNC9IObQjc4d+2vlT0GMXt7pY1aOrhzkRACNmzLAZnh0xwnghOQAATZo49cgjsdq8OUorVhTp5ptzDb+nfSJRUX6dd16WcnJyTF8bAACUL5SCAQAAAAAAAAAAAAAAAAAqDJvNorFjY7V8ebHatTvJCal7egW5rKc0/VPJbz/h6Lp1LnXubNfjj+fK5wuUITEQGocOHVtqVxJJSfw8o2Jq29bYCVTr1p34/h4Awu3NN7M0fHiccnOPX1jwwAOnaPlyd6nWrV+/vpKSksoaD2Xw81U/K9oeHfTYsv3L9Mj8R8KcCAD+yWq1ym439vw4EAhU6mKwK768Iujldqtdbw17K8xpABixY0exNmxwGZpt0aJIp55KKRgAwBydOkXp5ZdjtXevXd99V6BLLslTXJzPlLXPOCNbVquUmZlpynoAAKD8ohQMAAAAAAAAAAAAAAAAAFDhtGsXpRUronT//bmy2/3Br/TzvdL6S6XA/y9P2nCJ9PEMqTimRHsUFVn14IOx6tGjUL/95jEpOWCOw4eNfQU0OdnkIECYdOhwnPv6k9i+3ansbHNOuAKAsnr44UzdcEOCiotP/DheXGzVbbc10JYtJy81sFgsatKkiapVq2ZWTBiU4ErQjEtmHPf4Iwse0bJ9y8KYCACO5XaXrnTy7ypr8cDG9I1avG9x0GOj241WrDM2zIkAGDF1qvH3b4cNM1ZEDgDAidhsFg0cGK2PP3YrLc2iDz7IU//++bJajb3XLQV0++1pkqS8vDx5PHx2CQBAZUYpGAAAAAAAAAAAAAAAAACgQnI4LHriiVj98otHLVoUHXsFX5T0xUfS0xnSk0ekzz+WCquXep/ly6PVsaNdEyfmye8PlD04YALjpWD8DKNi6tLF2M+832/R8uWcHAUgsrxev6655ogefTRRgb8Ka08iN9emG25oqAMHHMe9jtVqVUpKimJiSlZ6i9A7o8kZur3r7UGPBRTQmVPOVL4nP7yhAOBvEhMTDc/m5OSYmKT8GPnlyKCXO21OvTL4lTCnAWDUN98YP116+PDjP+cGAMAMMTFWXXGFW3PnxujgwYCefjpPjRuX7n3rhg2LVKeO979/zsrKMjsmAAAoRygFAwAAAAAAAAAAAAAAAABUaF26uLRmjUN33JErmy1I4VFBklRUrUx7FBRYNWaMW337FmrHjuIyrQWYITPT2FdAa9YsWREJUN507+40PLtsmc/EJABQOgUFPp1/fq7efjuh1LMZGQ7dcENDHT1qO+aY3W5X8+bN5XQav39EaDw/8Hm1rtE66LEcT476f9A/zIkA4P+43W7Ds8XFxfL7/SamibwV+1doTdqaoMdu7HyjnHYeZ4GK4OBBr5YvdxmarV/fo9RUbusAgPBJTrbp7rvd2rHDqVWrMnXOOVlyuU7+PHvUqMP/+HNWVpYCAX4RDAAAlZU90gEAAAAAAAAAAAAAAAAAACgrl8uqiRNjdf75hRo92qLt26NCss+iRdFq396nCRPydN11MbJaKVhC+Pn9AWVlHVsOUhI1avAzi4qpdm276tYt1oEDjlLPrl7Nzz2AyDh0yKNhwzxaujTe8Bo7drh0yy0N9NZbu+Ry/Xmip8vlUpMmTWS18nviy6tFVy1S3efqqsBbcMyxZfuXadz8cRrXd1z4gwGApKioKBUVFRmazcnJUbVqZSteL0+u/OrKoJe77C49c+Yz8nq92rZtmzZt2qTNmzdr586dOnDggA4cOKCMjAwVFBSooKBAHo9HUVFRio6OlsvlUlxcnOrUqaO6deuqbt26atasmdq2bas2bdooNjY2zH/Lysfv92vbtm3asmWLfv/9d23ZskVbt25VVlaWcnNzlZubq5ycHBUWFsrhcMjpdCouLk5JSUlKTk5W/fr11ahRIzVp0kStW7dWy5YtFR0dHem/Fspg+vQi+XzGSg8HD/bIaqUUDAAQGe3bJ+jJJ3/T+PH7NXNmvN56q6Z27IiS9M/3tO12v4YMOfKPy7xer3JzcxUXFxe+wAAAIGwoBQMAAAAAAAAAAAAAAAAAVBq9erm0fr1fd92VpzfeiFEgYH4RTE6OTTfe6NYXX+Tr3Xcdql+/9AU1QFlkZ/vl8RgrBatVi/IQVFzt2hkrBVu3jq9MAwi/goICffhhhpYubVDmtdascevee+tr4sQ9qlYtVg0aNKAQrJxLcCVoxqUzNOCDAUGPP7rgUQ1qNkhd63UNczIAkOLi4gyXgh05cqTSlILN2zlPmw9t/ueFRyXtkdoG2qpXz15as2ZNif+t/ioI+8uWLVuOuY7FYlHTpk3Vr18/nXnmmerfv7+SkpLK8teoMnbs2KEff/xRP/74o+bOnavMzMwSzRUVFamoqEg5OTk6cOBA0OtYrVa1aNFC3bp1U7du3dS3b1+lpKSYGR8h9tVXxt8DvugiY++xAQBgBqvVqoSEBGVmZmrIkGwNGZKt/fsdmjixtn76KV5e75+Pcb175yg6OnDMfFZWFqVgAABUUpZAIHDsoz8AAAAAAAAAAAAAAAAAABXcDz8U6OqrbdqzxxmyPRISvHr+eY9GjYoJ2R7A//rtN49OO83Yz/WvvxapZcsokxPBLGvXrlWHDh1KfP01a9aoffv2oQtUzowdm6vx42NLPWexBJSZ6VdCAif6AgiPnJwc7d69W5L05ps19Mortcq8pt3u15dfHtbQoTXKvBbC547v79ALS18IeizOGae0MWmKcfJaAkB4eTwe/f7776Wa+eMPh5YsiVVmpkMvvFAzRMnCq+lLTbXjjx3SDv35v52SDoc3g9VqVb9+/TRy5EhdcMEFio0t/eudyiwrK0sffPCB3n77bW3cuDGse9erV08DBgzQ0KFDdfbZZ/PfphzLyfGrRg2pqKj0pbnJyV6lpdlks5n/iyUAACipgoICbd++/ZjLc3Ksmjo1UatWxenee7PVqFGmglWDtGjRQnY7vxgDAIDKhlIwAAAAAAAAAAAAAAAAAECllZPj1623FmjyZHdI9xk2LF+TJjlVqxZfukfoLVxYqD59XIZmDx/2KTGRYqTyilKwE/vmmwKde260odnvvy/QWWcZmwWA0sjMzNSBAwf+++dAQHrssbqaNi3R8JoxMT69/36OLroowYSECLc2r7XRxozgRSZd6nbRsmuWhTkRAEibNm2S3+8/7vH8fKtWrHBr8eJYLV4cq127/iyXjory69Ahv2JjK+77H/v379fjkx7XGx++Ie2S5It0oj+53W6NHj1ad999txo0aBDpOBG1YsUKvfTSS5o+fboKCwsjHUdRUVEaMGCALr74Yp133nmKi4uLdCT8zQcf5OnKK42993vZZXn68MPQvm8MAMDJBAIBbd++/bjPexo3biy32y2v16vs7GwdOXJE+fn5/z1eu3ZtJScnhysuAAAIk9JXXwMAAAAAAAAAAAAAAAAAUEHExVn13ntuzZhRoLp1i0O2z4wZMWrdWvr00/yTXxkoo4MHj3/i9onY7X4lJPDVUVRc3bo5DM8uX15OzvQHUKmlpaX9oxBMkiwW6YEHDqhfv2xDayYnF+u77/IpBKvAFl21SNH24MWUyw8s17h548IbCAAkRUf/837J55N+/dWlSZNqaPToxurZs4VuvrmhPv446b+FYJJUVGTV7Nm54Y5bZhkZGXrttdd0+umnq379+nrjkTek7So3hWCSlJeXp1deeUXNmjXTv//9b+3fvz/SkcJu27ZtGjFihLp06aIPP/ywXBSCSVJRUZFmzpypkSNHqmbNmlq1alWkI+FvvvrK+OwFF1hMywEAgFEWi0XVq1cPeiw6OloxMTGSJLvdrsTERDVp0kTNmzdXrVq1FBUVpaysLAUCgXBGBgAAYcA3OwAAAAAAAAAAAAAAAAAAld7QodHauNGqf/0rL2R7HDpk1yWXxGjEiDxlZpajs0pR6WRkGDu5o3p1n6xWTnZExVWzpl316nkMza5ezc8+gNDau3evDh06FPSYzSZNmLBX7dqVrkC2UaMizZ9frN6948yIiAhJcCXo20u/Pe7xRxc+qmX7loUxEQBI1apVU1qaQ19+maC7766nvn1b6F//aqaXXqqllSvd8nqPf9rhDz9UjMKBoqIiTZ06VYMGDVLdunV100036Zdffin3hQnFxcV69913ddppp2nixInyer2RjhRymZmZuuWWW9SyZUtNmzYt0nFOqLCwUDk5OZGOgf+vqCigH390GZqNjfVp8GBjswAAmC0hIUEWy7HvYScnJwe93Ol0qkaNGmrWrJnq1asnv9/YL5MBAADlF6VgAAAAAAAAAAAAAAAAAIAqoXp1mz75xK2pU/NVo0ZxyPaZNs2tVq38+uqr0pU+ACWVnm7sBOakJE4KQcXXrp2x+++1ax0mJwGAP/n9fu3YsUNHjx494fWiowN65ZXdatSoqETrtmuXr0WLAmrVKsaMmIiw/o37645udwQ9FlBAZ045U/keXj8ACJ/4+AQNH95UDz1UT7NnJ+jIEXuJZxcuLN8lOhs2bNDtt9+uU045RRdffLFmz55dIYu1cnJyNGbMGHXp0kVbt26NdJyQmTdvntq1a6dXXnlFxcWhe78OldPs2YXKybEZmj3jjEK5XJxiDQAoH2w2m+Lj4/9xmcPhOOay/2WxWBQdHS2bzdjjIQAAKL94xQoAAAAAAAAAAAAAAAAAqFKGD4/Rxo0WnXdeXsj2SEtz6PzzYzRyZJ6OHvWFbB9UTYcOGZtLTKQUDBVfhw7GSvF27nQqK4v7YwDm8vv92rZtm/LzS1bmlJDg0xtv7FJy8okLL/r1y9HChU7Vq1e+S1dQOhPPnqg2NdsEPZbjyVG/9/uFORGAqsxut6pbN2NlhL/9Fq1duwpMTmSefv366cUXX9Thw4cjHcUUa9asUadOnTRt2rRIRzFVcXGx7r33Xg0YMED79u2LdBxUUF98Yfy9rvPPNzEIAAAmqF69+j/+nJycLIvFEqE0AAAg0igFAwAAAAAAAAAAAAAAAABUOTVr2vXll269/36eqlf3hmyfKVPcat3ap++/L78ny6LiOXTI2EkgSUnGypSA8qRrV5vh2WXLikxMAqCq83q92rJlizweT6nmTjmlWK+/vltud/CiwhEjjmj2bLfi4+1mxEQ5s2j0IkXbo4MeW35guR6a91CYEwGoyvr3N/5+yLffFpqYBCeTnZ2tESNG6NFHH410FFOkp6fr9NNP19NPPy2/nwJzGOPzBfTdd05Ds06nX+edRwEvAKB8cbvdcjgckiSr1aqEhITIBgIAABFFKRgAAAAAAAAAAAAAAAAAoMoaOdKtjRuls8/OD9ke+/Y5NWiQS9ddl6u8PE50RNkdPmysFCw5mZ8/VHzduhk74VeSli+nGA+AOQoLC7Vlyxb5fMGLvU6mRYtCvfDCHtnt/3xsvuOOLH38cbycTk71qKyquarp20u/Pe7xxxc+riV7l4QxEYCqbNgw44U4P/7IY1UkPPzww7rzzjsjHaNMdu7cqZ49e2r58uWRjoIKbtGiImVkOAzN9upVqGrVjJeOAwAQChaLRdWrV5ckJSYmymbjsQoAgKqMd98AAAAAAAAAAAAAAAAAAFVa3bp2zZoVrTffzFN8vLFih5MJBCx6661YtWnj1YIFhSHZA1XHoUPGvv6ZnGxyECACkpNtatDAY2h29WqTwwCoknJzc7Vt2zYFAmUrGuzWLU/jx++XJNlsAU2YkKmJE6vLZuM0j8quf+P+urNb8EKXgAI668OzlO8JXWkxAPylRYsYNW5s7D2KX36Jkc9H8XQkPP/88xozZkykYxiydu1a9ejRQ9u2bYt0FFQC06d7Dc+eey6l4QCA8ql69eqyWCxKSkqKdBQAABBhfFoEAAAAAAAAAAAAAAAAAKjyrFaLrr3WrXXr/OrbN3Qn4O/c6VT//lG69dZcFRRw8iyMycoy9vXPGjVMDgJESLt2xk78XbfOYXISAFXNkSNHtGvXLtPWGzz4qO6774Dee++I7rkn0bR1Uf49d/ZzalOzTdBjuZ5c9X2/b1jzAKi6evUqMDR36JBDy5blmZwGJTVx4kS9/vrrkY5RKmvXrlWfPn2UlpYW6SioBPz+gGbOdBqatVoDuuiiKJMTAQBgDofDoXr16snh4L1sAACqOnukAwAAAAAAAAAAAAAAAAAAUF40auTQ3Ll2vfxynv7zH5fy822m7+H3W/Tyy7GaM6dIkycH1K2by/Q9ULllZhr7uaxZ02JyEiAyOnTwa8aM0s/t2uVUZqZPiYnm37cDqPzS09OVnp5u+rp33+1SYmJ109dF+ffz6J9V+7naKvAeW8iz4sAKPTTvIT3a79EIJANQlZx5pvTBB8ZmZ80qVo8e5uYpjywWi5o1a6bOnTurefPmatSokRo1aqR69erJ7XYrNjZWMTEx8ng8KigoUHp6uvbu3astW7Zo1apV+vnnn7V161bTc91yyy069dRT1b9/f9PXNtvu3bs1ePBgZWdnm7quzWZTu3bt1KNHD6WkpKhp06Zq3LixqlWrJrfbLbfbLUkqLCxUQUGBMjIylJaWpn379mnLli3asmWL1qxZo507d5qaC6G3dq1Hu3YZK/bq3LlQdepEm5wIAADzVKtWLdIRAABAOUApGAAAAAAAAAAAAAAAAAAAf2O1WnTbbW4NGuTRqFEeLVkSmpPEtmyJUq9eAY0Zk6tHH3XL6aSwCSdXVORXTo6xQqMaNawmpwEio2tX46VeS5d6NHgwJ/8CKJ39+/crKyvL9HUbNmyouLg409dFxRDvite3l36rMz44I+jxxxc+rkHNBql7/e5hTgagKhkyJFZ2u19eb+lfL86f7wxBosizWCzq2LGjzj77bJ1xxhlKTU0tUTGDy+WSy+VS9erVdeqpp2rAgAH/PbZ161Z9+umnevvtt7Vnzx5Tcvp8Po0ePVobNmxQfHy8KWuGQlZWlgYNGqQ//vjDlPWio6N17rnn6tJLL1WfPn1K9Hd3OByKi4tTzZo11apVq2OOZ2RkaOnSpZo7d67mzJmjzZs3m5IVoTN1arEkY6Vgw4b5zA0DAAAAAEAI8O0OAAAAAAAAAAAAAAAAAACCaN7cqUWLXHryyTy5XP6Q7OH1WjRhQqw6dSrSmjVFIdkDlcvBg8ZPXKxVi6+NonLo1s14+cCyZZz8C6Dk/H6/du3aZXohmMViUdOmTSkEg/o37q87u98Z9FhAAZ314VnK9+SHORWAqqR6dYc6dCgwNLtyZYxycrwmJ4oMu92us88+W5MnT9bBgwe1cuVKjR8/Xv379y9RIdjJpKSk6MEHH9TOnTs1efJkNW7c2ITU0p49e3TnncEfR8qD4uJinXvuuaaUbJ1yyil65ZVXlJaWpk8++UTDhg0zrQytRo0aGjZsmF544QVt2rRJu3bt0rPPPqvu3SnmLK++/dZueHbEiMpZaAgAAAAAqFz4dgcAAAAAAAAAAAAAAAAAAMdhs1l0331urVzpVYcOhSHbZ8MGl7p1c2jcuDx5vYGQ7YOK7+BB4wV1tWrZTEwCRE5iok2NGnkMza5ZYzE5DYDKyu/3a/v27crNzTV1XZvNppSUFEVHR5u6Liqu5856Tm1qtgl6LNeTq77v9w1rHgBVT+/exkrKi4qsmj3b3MfJcOvUqZNeffVVHThwQLNnz9aVV16pGjVqhGw/q9WqK6+8Ups2bdLdd98tm63sr9PfffddrVmzxoR05hs7dqwWLVpUpjWqVaum559/Xtu2bdNNN91kWhHYiTRs2FBjxozR4sWLtXXrVt1///2qW7duyPdFyWzd6tGvv7oMzbZqVaiUFErBAAAAAADlH6VgAAAAAAAAAAAAAAAAAACcRKtWTi1fHqWHHsqVw2G8lOlEPB6rHnnEra5di7Rpk7ETclH5pacb//mrWZNSMFQebdsWG5pbt85hchIAlVFBgVe///67iorMfU7mcDjUvHlzOZ0UEeCffh79s2IcMUGPrTiwQg/99FCYEwGoSgYPtpfq+i1aFGj06AxNmrRTrVplhihVCNmlGj1qaNmyZVqxYoVuvPHGkBaBBeNyufT0009rzpw5SkpKKtNagUBADz74oEnJzPPTTz/p2WefLdMaAwYM0IYNG3T77bfL5TJWAlVWzZo10xNPPKHdu3fr448/VufOnSOSA/9n6lRjJeGSNHSo18QkAAAAAACEDqVgAAAAAAAAAAAAAAAAAACUgN1u0SOPxGrp0mK1bl0Ysn1Wr3apUyeHJkzIk88XCNk+qJgOHjRWChYf75PTaTE5DRA5qanG5vbscerQIZ+5YQBUKgcPetSrV5HeeaeaqetGR0crJSVFNhslnThWvCte317y7XGPP77ocS3ZuySMiQBUJb16xSoh4fhFOcnJxTrnnCw9+eRezZu3WdOmbdeddx5Ut255CgQKwpi0jGIk9ZN0p7T026Xq0qVLpBOpf//+WrZsmerXr1+mdWbOnKmVK1ealKrsMjMzNXLkSPn9xt7DsFgsevzxxzVnzpwy/9uYxW6365JLLtHy5ct1+umnRzpOlTZjhvHn0yNGUBQOAAAAAKgYKAUDAAAAAAAAAAAAAAAAAKAUOnaM0qpVUbrnnlzZ7aEp7SoosOq++9zq1atQW7d6QrIHKqZDh4z9zCUmUoKEyqVLF+Nfg166lPtVAMFt2ZKvnj39WrXKrWefraNZs8wpBouPj1fTpk1ltXIKB46vX+N+GtN9TNBjAQV01odnKd+TH+ZUAKoCh8OqHj3+7/4lKsqvHj1ydNddf+jzz7fqp5+2aPz4/Ro69KiSk//52jIQCKigoJwXg8VLOlvS7ZL6SP1b9leT6k0im+lvmjZtqvnz56tOnTplWmfSpEkmJSq766+/Xvv37zc063A49MEHH+iBBx6QxVI+y83tdnukI1RZf/zh1YoVLkOzjRp51L690+REAAAAAACEBp8oAQAAAAAAAAAAAAAAAABQSk6nRRMmxGrhwiI1b14Usn2WLIlWhw42vfRSnvz+0BSQoWJJTzc2l5joNzcIEGFduxo/kXf5ckryABxr8eIc9e7t0Pbt/1cy8MADp2jpUneZ1k1KSlKDBg3KGg9VxLNnPau2NdsGPZbryVWfyX3CnAhAVXHhhR6NGpWhN9/cqZ9/3qw339ytK688rObNi3SyXqbMzMzwhCwtt6SBkm6V1F2SU7LIoinnT4lsriCaNGmiL7/8UlFRUYbX+Oyzz8pFQdu8efM0bdo0Q7NWq1VTp07V5ZdfbnIqVBbTpxfJ7zdWFjdkiEdWa/ksmgMAAAAA4H9RCgYAAAAAAAAAAAAAAAAAgEHdu7u0dq1DN9+cK6s1NKVdeXk23XabWwMGFGj37uKQ7IGK49AhYycvJiVRCobKpXp1mxo39hiaXb2ak4AB/NPXXx/RwIExSk93/ONyr9eq229voN9+cx1n8sTq1KmjOnXqmBERVcii0YsU44gJemzlHyv14E8PhjkRgKrg4oujNWbMQfXokSeXq3Tvb+Tm5oYolTHuOLfUV3+WgXWTZP+/Y0NShqhufN3IBDuJrl27avz48Ybnjx49qu+++87ERKXn9/t1++23G55/5ZVXdN5555mWB5XP118bfz1/0UX2k18JAAAAAIByglexAAAAAAAAAAAAAAAAAACUQXS0VS+/HKsLLyzU6NFW7drlDMk+8+bFqG1bn559Nk///neMrFZKbaqiw4eNzSUlhaa0rqp699139e6775q+bnk7mb68a9euWDt3lv4+d906x8mvBKDKeOutLN18czUVFwf/net5eTbdcENDffjhDp1ySskLWuvXr69q1aqZFRNVSLwrXjMvnal+7/cLenz8ovEanDJY3et3D3MyAJWZ2+2WxWJRIFD6147FxcXy+/2yWoM/loZbk/uaaE/anmMut1qsev+89yOQqORuv/12ffTRR1qzZo2h+Z9++kkXXHCByalKbtKkSVq/fr2h2VtvvVU33HCDyYlQmRw54tOiRcbKemvUKFavXlEmJwIAAAAAIHQoBQMAAAAAAAAAAAAAAAAAwAR9+7q0YYNfd96Zq0mTYkOyR3a2Tdde69YXX+TrnXecqluXrwFWNYcPGzvJOjmZUjAz7dmzR7/88kukY1R5qakBffVV6ef27XMqPd2rmjW5DwWqukceydQjj1RXIHDistVDhxy6/vpGmjJlhxISfCe8rsViUePGjRUTE2NmVFQxfRv11V3d79KzS5495lhAAZ314VlKG5Mmt9MdgXQAKquoqCgVFhYams3OzlZCQoK5gQzYfWS3FqQtCHpseMvhSoxJDHOi0rHZbHrkkUd0zjnnGJqfP3++uYFKIScnRw8++KCh2VatWmnChAkmJ0Jl8/XXhfJ4jD33GTTII5uNgnAAAAAAQMVRPur3AQAAAAAAAAAAAAAAAACoBGJjrXrrrVh9912+6tXzhGyf2bNj1KaNNGVKXsj2QPlktBSsRo0Tl50AFVHnzjbDs0uXFpuYBEBF4/X6de21WRo3LvGkhWB/2bUrSjff3FAFBce/vtVqVUpKCoVgMMUzZz2jtrXaBj2W68lV38l9wxsIQKUXHx9vePbo0aMlul4gENCGgxu0fP9yFfvMf05+2ReXKaBjS7FtFpvePudt0/cLhWHDhqlFixaGZn/99VdlZ2ebnKhkJk2apIyMjFLPORwOffTRR3K5XCFIhcrkyy+Nz15wAe+LAQAAAAAqFkrBAAAAAAAAAAAAAAAAAAAw2cCBMdqwwabLLw9daVdmpl0jR7p1wQV5OnTIF7J9UL5kZhorQapRw+QgQDnQtatTFsuxJ/yXxIoV3G8CVVVBgU8XXJCrSZOql3p23boY3XNPfXm9xx6z2+1q3ry5nE6nCSmBPy0atUgxjuAlcyv/WKmxP40NcyIAlVliYqLh2by8k7//kV+crzOnnKm2b7RV17e7qt7z9fTC0hdU6C00vO/fbc7YrF/2/hL02Mh2IxXrjDVln3AYOXKk4dmtW7eamKRkvF6vXnzxRUOzN954o9q1a2dyIlQ2hYV+zZ1rrDguPt6ngQMpnQMAAAAAVCyUggEAAAAAAAAAAAAAAAAAEAIJCTZNmeLWF1/kq1at4pDt8+WXbrVs6df06fkh2wPlg98f0JEjxkrBata0mJwGiLyEBJuaNPEYml21iq9RA1XRoUMenXFGgWbMiDe8xvz58XriiboK/K2T0OVyqXnz5rLb7SakBP5PvCteMy+dedzjTyx6Qr/sCV6AAwClZbfbZbUae57s9/vlDdaa+TcvLn1Rc3fO/e+f0/PSdcf3dyjl5RS9teotFfvK9t7JFV9eEfRyh9Wh14a8Vqa1w23o0KGGZyNRCjZ9+nTt2bOn1HMJCQl66KGHQpAIlc2sWYXKzTX2ntgZZxQqKor3AAAAAAAAFQuvZAEAAAAAAAAAAAAAAAAACKHzz4/Rr79addFFeSHbIyPDoeHDY3TppXnKyvKFbB9EVlaWX16vsXKvmjX5yigqp7ZtT1w8cDzr11PcA1Q1BQUFeuKJLC1ZElvmtaZNS9Sbb9aQJMXGxqpJkyaGS1SAk+nbqK/u6n5X0GMBBXT2h2cr15Mb5lQAKquYmBjDs5mZmSc8vmD3gqCX78vep+u+vU4tXm2hKeumyOcv/fsaKw+s1Ko/VgU9dkOnG+Syu0q9ZiS1bt1aiYmJhmZ37dplbpgSeO655wzN3XfffYb/nqhavvgicPIrHcf555sYBAAAAACAMOFTJwAAAAAAAAAAAAAAAAAAQiwpyaZp09z6+ON8JSUZK7ApiU8+cat1a79mziwI2R6InLQ044VvtWrxlVFUTqmpxk4M3r/fqbS00N0fAyhfcnJytH37dl15ZYYGDDhqyppvvllDOTk11KhRIwrBEHLPnPWM2tVqF/RYXnGe+k7uG95AACqthIQEw7PZ2dknPJ5XfOKy9B1ZOzTyq5Fq83obTd80Xf6Av8R7j/pqVNDLXXaXnjvbWGFVJFksFrVs2dLQ7Mn+O5ht5cqVWrlyZannYmNjdf3114cgESobrzeg77+PMjQbFeXXeedFm5wIAAAAAIDQ45MnAAAAAAAAAAAAAAAAAADC5JJLYrRxozR06IlPhC2LAwccGjo0WlddlaucnJKfQIvyryylYHXq2E1MApQfXbrYDM8uWeIxMQmA8iozM1O7d++WJNls0pNP7lPHjmV7LhYT49Mnn2Sre/daZkQESmThqIWKccQEPbbqj1V64KcHwpwIQGUUHx9veLaoqOiEx73+kpXybj60WcOnDVentzpp1tZZCgROXAS8cNdC/Zrxa9Bjd3a/U3ZrxXw93LRpU0Nzubm5Jic5sU8++cTQ3KhRo1StWjWT06Aymj+/UIcOGbsd9+5dqLg4TqMGAAAAAFQ8FfMdLQAAAAAAAAAAAAAAAAAAKqjate2aMcOu997L1x13OHX0aGi+yvfee7H66SeP3n3Xr/79XSHZA+GVkXHiE6GPJyrKL7fbYnKaqq1Bgwbq2bOn6evm5uZq3bp1pq9bmXXp4pTVGpDfX/qf8RUr/Dr//BCEAlBupKWl6dChQ/+4zOUK6KWXduvKK5to+/bSP0dKTi7W558XqnfvBJNSAiUT74rXzEtnqt/7/YIef3LRkxrcbLB6NjD/OQqAqsNqtcrhcKi4uLjUs4FAQAUFBYqOjg56vKSlYH9Zk7ZGQz4eoh71e+jxfo+rX+Pg939XfXNV0MvdDrce6/tYqfYsT6pXr25oLj8/3+QkxxcIBDR16lRDs7feeqvJaVBZTZ9uvCT/vPOMvZcGAAAAAECkUQoGAAAAAAAAAAAAAAAAAEAEjB4dowEDinXVVfn68ceYkOyxe7dTAwYEdMMNuXrmmRjFxFhDsg/CIz3db2guMdEnq9Vhcpqq7aqrrtJVVwU/8bws1q5dqw4dOpi+bmVWrZpNTZoUadu2qFLPrl7NfSJQme3du1dHjx4NeqxaNb9ef323Lr+8idLTS/4Y2ahRkb791qdWreLMigmUSt9GfXV3j7v1zOJnjjkWUEBnf3i20u5KU6wzNgLpAFQWbrdbR44cMTSbmZmpU045Jeix0paC/WXx3sXq/0F/ndH4DD3e/3F1q9ftv8dmbZ2l7Vnbg86N7T1WVmvFfc7vdrsNzUVFlf61kVE///yz9u3bV+q5rl27KiUlJQSJUNn4/QHNmuU0NGuzBXTRReG7PQAAAAAAYKaK+64WAAAAAAAAAAAAAAAAAAAVXP36Dn3/fbRefTVPsbG+kOwRCFj02muxateuWD//XBiSPRAeGRnG5qpXD83PFlBetG9vrFxgwwbK8oDKyO/3a8eOHcctBPtLnTrFev31XSV+DtauXb4WLQqoVavQlLkCJfX0mU+rXa12QY/lFeep7+S+4Q0EoNJJTEw0PJubm3vcYz5/2V6bzt05V93f6a5hnwzT2rS1kqTrv70+6HWrRVXTPT3uKdN+kZafn29oLjY2fMWQn332maG5iy++2OQkqKxWrfJo715jpWBduhSqZk27yYkAAAAAAAgPSsEAAAAAAAAAAAAAAAAAAIggq9WiG290a+1an04/vSBk+2zbFqW+faM0ZkyuCgv9IdsHoWO0FCwpKWBuEKCcSU01NnfggEN//GGsUAxA+eT3+7Vt27YSl2g0b16kl17aI4fjxM+N+vXL0cKFTtWr5zIjJlBmi0YvUowjeEHdqj9W6YG5D4Q5EYDKJCYmRhaLxdBscXGx/P7gj6tevznPvb/9/Vt1eLODur/dXXuz9wa9zhNnPCGrtWKfOnnkyBFDc3FxceYGOYFZs2aVesZisWj48OEhSIPKaNq0YsOz55zD+58AAAAAgIqrYr+zBQAAAAAAAAAAAAAAAABAJdG0qVMLFrj0zDO5io4OzUlrPp9FEyfGqmPHYq1cWRSSPRA6hw8bOyk7OZmTIFG5deliMzy7ZInHxCQAIsnr9WrLli3yeEp3u+7cOU9PPLHvuMdHjDii2bPdio+3lzUiYJq4qDjNuvT4RSxP/vykft7zcxgTAahsoqKiDM9mZ2cHvdysUrC/LN2/NOjlyTHJurHzjabuFQkHDhwwNFe/fn2TkwS3Z88e7dy5s9Rz7du3V7169UKQCJXRjBkOw7PDhxufBQAAAAAg0igFAwAAAAAAAAAAAAAAAACgnLBaLbrrrlitWlWszp0LQrbP5s1R6t7dobFjc1VcHAjZPjCX0VKwpCSTgwDlTJcuTlmtxu7Lli+nNA+oDAoLC7Vlyxb5fD5D8wMHZuuee/445vLbb8/Sxx/Hy+nk1AuUP30a9dE9Pe4JeiyggAZ+OFC5ntwwpwJQWcTHxxuePXLkSNDLfQFjj9Ol9fxZz4dln1Bbs2aNobmUlBSTkwQ3b948Q3P9+/c3OQkqqy1bPPrtN2MFhW3aFKppU6fJiQAAAAAACB8+mQIAAAAAAAAAAAAAAAAAoJw57bQoLVni0mOP5SoqKjSFNV6vVePHx6pz5yJt2OAJyR4w1+HDxr72mZxM8Rsqt9hYq5o1M3Y/tno1X6cGKrq8vDxt27ZNgUDZHu+uuOKwRo3KkCRZrQFNmJCp55+vLpuN+wmUXxPOnKD2tdsHPZZXnKe+k/uGNQ+AyiMxMdHwbH5+ftDLvX6v4TVLY3XaaqXnpYdlr1DZt2+f0tON/R3CVQo2f/58Q3OUgqGkpk41/n7l0KHhub8BAAAAACBU+HQKAAAAAAAAAAAAAAAAAIByyGazaOzYWC1f7lW7doUh22fdOpc6d7br8cdz5fNRHlWeGS0Fq1nTYnISoPxp187YCb8bNjhMTgIgnI4cOaKdO3eatt4ddxzUhRdmavLkI7rnHuNlKEA4LRq9SG6HO+ixVX+s0n/m/ifMiQBUBna7XVarsdegfr9fXu+xz8/DVQr2/NLn1eTFJhr701hlFWSFZU+zzZ4929Bcw4YNVaNGDZPTBGekFMxms6l3797mh0Gl9M03NsOzI0bwWh8AAAAAULHZIx0AAAAAAAAAAAAAAAAAAAAcX9u2Tq1YEdC4cbl6+ukYeb3m/z7QoiKrHnwwVjNmFOj9921q0cJp+h4ou6wsYydDJiebHAQoh1JTpWnTSj+XlubQvn3FqlePE4aBiiY9PV3p6emmrmm1Sm+9JSUmVjd1XSCUYp2xmnXpLPV5v0/Q40/9/JQGpwzW6Q1OD3MyABVdTEyMcnNzDc1mZmaqZs2a/7gsXKVgkpRXnKfxi8br1RWv6q7ud+m2brcp1hkbtv3L6vPPPzc0169fP5OTBHfo0CHt2rWr1HMtWrRQbKyx/w6BQEDbtm3Txo0btXHjRm3evFmHDx9Wdna2srOzVVRUpJiYmP/+Lzk5WY0aNVKjRo3UuHFjpaamHvMzifJr/36vVq1yGZpt3Nij9u2jTE4EAAAAAEB4UQoGAAAAAAAAAAAAAAAAAEA553BYNH58rM49t1CjRlm0eXNoTmxbvjxaHTv69dhjebrjjhhZrZaQ7IPSy8/3Kz/fWClYrVrmF8kB5U3XrsZuH5K0dGmxLrqIUjCgItm/f7+ysrJMX7dhw4aKi4szfV0g1Ho36q17etyjpxc/fcyxgAIa+OFApd2VVqEKcQBEXkJCgqFSsKNHrdq9u1BDhvzzcp/fZ1KykjtSeERj543VC8te0P2n368bOt2gaEd02HOURkZGhn766SdDs3379jU3zHFs3LjR0FyHDh1Kdf2CggL9+OOPmjFjhmbOnKkDBw4Y2vcvjRs3Vrdu3XTmmWfq3HPPVWJiYpnWQ+hMm1akQMBtaHbIEI8kfuEBAAAAAKBi41seAAAAAAAAAAAAAAAAAABUEF26uLR6tUN33JErmy0Qkj0KCqy66y63+vYt1I4dxSHZA6X3xx9ew7O1ahkvSwIqis6dnYbvF1es8JucBkCo+P1+7dq1y/RCMIvFoqZNm1IIhgptwpkT1L52+6DH8orz1Gdyn/AGAlDhxcfHl+h6xcXSmjUxevXVmrrssibq3fs03XFHzWOu5/Ubf11bVofyD2nMnDFq9nIzvb7idXl8nohlOZnXXntNHk/p8zkcDg353ya2EPn1118NzbVv375E19u3b5/uv/9+1atXT+ecc44mTZpU5kIwSdq5c6c++eQTXXXVVapVq5bOOussTZkyRcXFvP9V3nz9tfFfVDB8uN3EJAAAAAAARAalYAAAAAAAAAAAAAAAAAAAVCAul1UTJ8Zq3rwiNW1aFLJ9Fi2KVvv2Vr32Wp78/tAUkKHk0tONlxbVqsXXRVH5ud1WpaQYO7F/9WpuI0BF4Pf7tX37duXm5pq6rs1mU0pKiqKjo01dF4iERaMXye1wBz22+o/V+s/c/4Q5EYCKzGq1yuFwBD22d69Tn32WqNtua6DevU/TyJFN9MYbNbV+fYz8fou2bnVp+/aCf8xEshTsLwdyDujGWTfq1FdO1eS1k8tFpr8rKirSa6+9Zmh24MCBSk5ONjlRcBs3bjQ0d7JSsLS0NI0aNUqNGzfWU089pczMTEP7lITX69UPP/ygkSNHqlGjRnrqqad09OjRkO2HksvK8umXX1yGZmvVKlbPnlEmJwIAAAAAIPz4BBsAAAAAAAAAAAAAAAAAgAqoVy+X1q936IYb8mSxhKa0KyfHpptucuvsswu0d29xSPZAyRw8aKwUzGoNKDnZZnIaoHxq187YCf3r1wcvOgBQfhQXe/X777+rqMjcQlSHw6HmzZvL6XSaui4QKbHOWM26dNZxjz/181P6ec/PYUwEoKJzu/8sGszOtmru3Dg99lgdDRrUXIMHN9fjj9fVTz/FKzc3+GvOb775ZymYL+ALed6S2nVkl0Z/PVqtX2utqb9OlT9gvIjbTK+88orS09MNzV5xxRUmpzm+X3/91dBcs2bNgl7u9Xo1ceJEnXrqqXr//ffl9Ya3rO3AgQO6//77lZKSonfeeUeBAOX4kfTll0UqLjZ26vOgQR7ZbBaTEwEAAAAAEH6UggEAAAAAAAAAAAAAAAAAUEHFxFj12mtuzZlTqAYNPCHb58cfY9S2rUWTJ+eHbA+cWEaGsRNSq1XzyW7nZEhUDampxm4n6ekO7dlD8SFQXh086FGfPoVauDDK1HWjo6OVkpIim43yTFQuvRv11r097w16LKCABn44ULme3DCnAlBRxcQk6oorGqt379N0++0NNXVqkvbtK1mZ5k8/2f/xZ68/vEVPJbHl8BZdPP1idXyzo2ZsmRHRMqiMjAw99thjhmYbNmyo888/3+REx7dly5ZSzzgcDtWrV++Yy/fs2aMePXpozJgxys7ONiOeYRkZGbr66qvVpUsXw8VnKLsvvzQ+e+GFnDINAAAAAKgceIULAAAAAAAAAAAAAAAAAEAFN2BAtDZutGv06NCd3H/kiF2jR8do2LB8paWVvxN5K7v0dGMnJicm+kxOApRfXbvaT36l41i6lFIwoDzasiVfp5/u15IlsbrjjgbatMllyrrx8fFq2rSprFZOqUDl9NSAp9Shdoegx/KK89TnvT5hTgSgokpMjFFurk0+X+nLphcvjpHX65ckBQKBclkK9pd1B9fpnE/PUfd3umvF/hURyTB27FgdPXrU0Oy9994ru93466HS8Hq9ysjIKPVcgwYNjiljnTNnjjp27KgVKyLzb348K1euVJcuXTR58uRIR6ly8vP9+uknY2XA8fE+nXWWOa8XAAAAAACIND7BAgAAAAAAAAAAAAAAAACgEoiLs+rdd2M1Y0aB6tYNXbnNt9/GqE0b6dNP80O2B4516JCxucREv7lBgHKsUyen7HZjBXrLl3NbAcqbJUty1Lu3Q9u2/Xlif36+TTfe2FD79jnKtG5SUpIaNGhgRkSgXFs4eqHcDnfQY6vTVuv+ufeHORGAiqpXr0JDc5mZdi1enCdJ8gcqxvPtZfuXqc/kPvplzy9h3XfevHmaNGmSodk6deroqquuMjnR8R08eFCBQOlfdzVu3Pgff3777bc1aNAgHT582KxopsrPz9fo0aN1zTXXyOejcD1cZs4sVH6+7eRXDOKsswrldJa+wBAAAAAAgPKIUjAAAAAAAAAAAAAAAAAAACqRoUOjtXGjVf/6V17I9jh0yK5LLonR8OF5OnyYEyPD4dAhYyc1JiUZK0gCKqKYGKtSUjyGZteu5WvVQHnyzTdHdPbZMUpP/2cB2OHDDl1/fSNlZRkrCqhdu7bq1KljRkSg3It1xmrWpbNkUfDnkRN+nqBFuxeFORWAiuiss4zPzpr1Z2m5L1Bx3jso8BboxWUvhm2/7OxsjR492lDRliQ98cQTioqKMjnV8f3xxx+G5v7+HOzdd9/VtddeK7+//JfFvf322xoxYoQ8HmOvNVE6X3xh/H2s88+nEAwAAAAAUHnw6TUAAAAAAAAAAAAAAAAAAJVM9eo2ffKJW1On5qtGjeKQ7TN9ulutW/v11Vf5IdsDfzJaCpacTCkYqpb27b2G5tatcxo+CR+AuSZNytJFF8UrJyd48dfu3VG6+eaGKigo3WNj/fr1lZycbEZEoMLo3ai37u15b9BjAQU06KNByvXkhjkVgIpm8OBYORzGypvmz/+zrMrrN/Y8PVJyPDlh2+u2227T7t27Dc1269ZNV155pcmJTsxoKdhfz8OmTJmiq6++ukK9/vriiy80dOhQFRUVRTpKpeb1BjRnjrGCO5fLr3POcZmcCAAAAACAyKEUDAAAAAAAAAAAAAAAAACASmr48Bht3GjReeflhWyPtDSHzj8/RiNH5unoUV/I9qnqMjMpBQNKIjXV2NyhQ3bt2VOxigqAyuiRRzJ13XUJKi4+8akO69fH6O6768tbgputxWJR48aNVa1aNZNSAhXLkwOeVIfaHYIeyyvOU+/3eoc5EYCKJj7ertRUY2Xgq1dHKzvbW+FKwc5vcX5Y9pkyZYomT55saNZqteqVV16RxWLs/QKj0tLSDM0lJydrxYoVuuaaaypUIdhffvjhB40ePTrSMSq1uXMLlZlpNzTbp0+hYmM5XRoAAAAAUHnwKhcAAAAAAAAAAAAAAAAAgEqsZk27vvzSrfffz1P16qE7CXfKFLdat/Zp9uyCkO1RlR0+bOwrn8nJJgcByrmuXW2GZ5csKTYxCYDS8Hr9uu66LI0bl6hAoGTFFgsWxOvxx+vqRJ0SVqtVKSkpcrvdJiUFKqaFoxfK7Qh+O1iTtkb3/3h/mBMBqGj69PEYmisutmrWrFz5/BWnRPzuHnfrmo7XhHyf9evX67rrrjM8f9tttynVaCtyGRw5csTw7EUXXaSioiJDsw6HQz179tTYsWM1bdo0rV69WgcPHlRubq68Xq+ys7O1f/9+LV68WFOmTNEtt9yiNm3aGM4azCeffKKHHnrI1DXxfz7/3Pj9xHnnVbyiOQAAAAAAToRSMAAAAAAAAAAAAAAAAAAAqoCRI93auFEaODAvZHvs2+fU4MEuXXttrvLy/CHbpyrKzDRWdFSzZsmKVYDKIjXVKbvd2P3P8uXcbwGRUFDg04UX5uitt6qXevbzzxP1xhs1gh6z2+1q3ry5nE5nWSMCFV6sM1azL58ti4I/N5zwywQt3LUwzKkAVCRDhjgMz86ZI3n9oSspN0tSdJJmXDJDT5/5tCyW0L6WPnr0qC688EIVFBgrVm/ZsqWeeOIJk1OVjNHMEyZM0J49e0o9d+qpp+rFF1/UgQMH9PPPP+uxxx7TRRddpA4dOqhmzZpyu92y2WyKi4tT3bp11b17d11++eV66aWXtH79ev3+++8aO3askpKSDOX+X4899phmzJhhylr4P35/QDNnRhmatdsDuugil8mJAAAAAACILErBAAAAAAAAAAAAAAAAAACoIurWtWvmzBi9+Wae4uN9IdkjELBo0qRYtWnj1YIFhSHZo6rxegM6etRYKViNGpSCoWqJjrbq1FM9hmbXruWr1UC4HT7s0YABBfrmm2qG13jttVr6/PN/FopFRUWpefPmstvtZY0IVBqnNzhd951+X9BjAQU0+OPByvXkhjkVgIqie3e3EhONFXstWuQq96Vg/Rr107rr12lo86Eh38vn8+nSSy/Vtm3bDM07HA5NmTJFLldkSpCKiooMzWVnZ5fq+rVr19bkyZP166+/6tZbb1VycrKhfVNSUvTYY49p586dGjdunKKijBVP/d21116rw4cPl3kd/J/ly4t04ICx8sGuXQuVnGzsfTMAAAAAAMorPrkGAAAAAAAAAAAAAAAAAKAKsVotuvZat9at86tv3/yQ7bNzp1P9+0fp1ltzVVDgD9k+VcGhQz75/cbKvWrV4quiqHratTNWerh+vVN+f8DkNACOp6CgQDfdlKvFi2PLvNZjj9XVggVxkqTY2Fg1bdpUViuPgcD/euKMJ9Sxdsegx/KK89TrvV5hTgSgorDbrerZ09h7CNu2ubRtZ/ksHbRZbBrff7x+uOIHnRJ/Slj2vP322zVr1izD8+PGjVPHjsHvy8OhsDD0BfAXX3yxfv31V1155ZWy2cwpe4qLi9PDDz+sNWvWlPnfLy0tTTfccIMpufCnadOMFweee25ofvEBAAAAAACRxKdcAAAAAAAAAAAAAAAAAABUQY0aOTR3brRefDFXMTGhOXnO77fo5Zdj1aFDsZYuDf1Jo5VVWprx/z61aplz8ixQkXTqZGzu8GG7du0qNjcMgKBycnK0fft23XJLmpo1K/tzBJ/PovvvryerNVGNGjWiEAw4gQWjF8jtcAc9tjZtre778b4wJwJQUZxxRulLe+rU8ejCCzOVnpEVgkRl07BaQy0avUj/6fUf2azhee380ksv6ZVXXjE8P3DgQN1///0mJiq9oqKikK1tsVj02GOP6dNPP1ViYmJI9jjttNP0888/64ILLijTOtOmTdP8+fPNCQXNnOkwPDt8eJSJSQAAAAAAKB/4pAsAAAAAAAAAAAAAAAAAgCrKarXo1ltjtWaNT927F4Rsny1botSrV5Tuuy9XHk8gZPtUVunpfsOztWtTCoaqp2tX4z/3S5eWvugAQOlkZmZq9+7dkqRq1fx6/fXdqlmzbIV8MTE+vfNOjlq2rGtGRKBSi3XGavbls2WRJejxCb9M0MJdC8OcCkBFMGxY9EmvExPjU9++2br//gOaMeN3ff/97xo37oDiqh0JfcBSGNFqhNZev1bd63cP254zZ87UnXfeaXi+YcOG+uijj2SxBL//DpfCwtCVvr/00ksaO3ZsyNb/S3R0tKZNm6ZLL720TOtEuqCtsti0qUhbthgr9mrXrlCNGhkvFAMAAAAAoLyiFAwAAAAAAAAAAAAAAAAAgCqueXOnFi1y6amn8uRyGS+gOhGv16IJE2KVmlqkNWuKQrJHZXXwoLH/JjExPsXE8FVRVD0dOzrlcBi73axcGZr7QAB/SktL04EDB/5xWe3axXrjjV2Ki/MZWjMpqVjffZev4cMTTEgIVA2nNzhd951+33GPD/54sHI9uWFMBKAiaNIkWikp/yyEslgCat06X9dck6733tuhn3/+TS+/vEeXXpqpRo08+qu/qtATuiKp0oi2R+vtYW/r0ws/VYIrIWz7rlixQhdffLF8PmPPd6KiojR9+nQlJiaanKz0AoHQlL2PGzdON998c0jWDsZqter999/XwIEDDa+xdOlSffXVV+aFqqKmTTNezj1sGMXeAAAAAIDKiW96AAAAAAAAAAAAAAAAAAAA2WwW3XuvWytXetWxY0HI9tm40aVu3RwaNy5PXm9oTiStbA4dMjZXvbqxk42Bis7lsqpFC4+h2dWr+Xo1ECp79+7VoeM8qKWkFOnFF3eXutCvYcMiLVhQrN6948yICFQpT5zxhDrW6Rj0WF5xnnq91yvMiQBUBL17F6h2bY8uvDBTzzyzRwsX/qZPPtmhW29NV6dO+XI4gr/O9yvy5btta7XVqmtX6d8d/y3LX21lYbB582YNHjxYeXl5htd47bXX1KlTJxNTGedwOExfc9CgQXrooYdMX/dk7Ha7PvroIzVo0MDwGs8//7yJiaqmb76xGZ69+GKniUkAAAAAACg/+NQaAAAAAAAAAAAAAAAAAAD8V6tWTi1b5tJDD+WWupijpDweqx55xK2uXYv066/GinuqkvR0Y+VpSUmRP+kaiJR27YyV4q1f75TfT2EhYCa/368dO3bo6NGjJ7xe5875evLJfbJYSnYbbNs2Xz//HFCrVjFmxASqpAWjFsjtcAc9tjZtre794d4wJwJQ3j30ULHmzPld48Yd0MCB2UpIKNnzbp8/sqXVt3S5RcuuXqbTapwW1n13796ts84667jFqCXx6KOP6qqrrjIxVdk4neaWMCUlJemDDz4Ia1Hb3yUmJmrKlCmG5xcuXKhNmzaZmKhq2bu3WGvWRBmabdasSK1bUwoGAAAAAKicKAUDAAAAAAAAAAAAAAAAAAD/YLdb9MgjsVq6tFitWxeGbJ/Vq13q1MmuCRPy5PNRwnM8hw4ZOzGWUjBUZZ06GZvLyrJrx45ic8MAVZjf79e2bduUn59fouuffXa27r33j5Ner2/fHC1c6FS9eq6yRgSqtFhnrL6//HtZFPz55tOLn9bCXQvDnApAeVa3bqKMdDd5A17zw5RAUnSSvvnXN3pp0Ety2cP7vCEtLU0DBgzQvn37DK9x22236cEHHzQxVdmZXQr25JNPKjk52dQ1S6t3794aOXKk4fk33njDxDRVy7RpHgUCxt73GjqU1+4AAAAAgMqLUjAAAAAAAAAAAAAAAAAAABBUx45RWrUqSvfckyu7PTSlXYWFVt13n1u9ehVq61ZPSPao6A4fNjaXlETRGqquLl1shmeXLOHEYsAMXq9XW7ZskcdTusf3yy7L1OjRGcc9Pnz4UX3/vVvVqtnLGhGApJ4Neur+Xvcf9/jgjwcr15MbxkQAyjO73S6rtfSnJPoD4S+t7tuor9Zdv07DTh0W9r0PHz6sM888U9u2bTO8xqhRo/T888+bmMocZpaCtWzZUldffbVp65XFk08+afjvNnXqVAUCvAdjxNdfGz/F+aKLeD0AAAAAAKi8KAUDAAAAAAAAAAAAAAAAAADH5XRaNGFCrBYuLFLz5kUh22fJkmh16GDTSy/lye/nRMq/O3TIYmiOUjBUZR07RsnpNFY8sHIltx2grAoLC7Vlyxb5fD5D87ffflBDhhw55vLbbsvSJ5/EyenkVAjATOP7j1dqndSgx/KK89Tr3V5hTgSgPIuJiSn1jC9g7DmBETaLTY/3e1w/XvGjTok/JWz7/uXo0aM666yztHHjRsNrXHTRRXr77bdlsRh7PyCUzCwFu+eee8rN37Fu3boaOXKkodmDBw9q5cqVJieq/DIzfVq8OMrQbN26xere3dgsAAAAAAAVAZ+EAQAAAAAAAAAAAAAAAACAk+re3aW1ax265ZZcWa2hKczJy7PpttvcGjCgQLt3F4dkj4ro8GFjX/esUcPkIEAFEhVl0WmneQzNrlnDV6yBssjLy9O2bdsUCBh/vmC1So89tl/duuX+/z8H9NRTmXrhheqy2biNAqEwf9R8uR3uoMfWHlyre3+4N8yJAJRXCQkJpZ7x+r3mBwmiYbWGWjh6oR7o/YBsVltY9vy73NxcDRo0SKtXrza8xqBBg/Txxx/LZgt//pKIjo42ZZ3k5GRdeumlpqxllttuu83w7MyZM01MUjV8/nmhvF5jz+0HDSqS1Vo+CuUAAAAAAAgFPg0DAAAAAAAAAAAAAAAAAAAlEh1t1UsvxWru3CI1amSsbKck5s2LUdu2Vr31Vp78/tAUkFUkWVnGTgSmFAxVXbt2PkNzGzY4ue8BDDpy5Ih27txpyloOR0DPP79HHTrkafLkI7r33kRT1gUQXKwzVt9f/r0sCl6w8fTip7Vg14IwpwJQHsXHx5fq+kc9R7U8Y3mI0vyf4S2Ha+31a9Wjfo+Q7xVMQUGBhg4dqiVLlhheo1+/fvr888/lcDhMTGau6tWrm7LOiBEjyt3fs3Xr1mrXrp2h2R9++MHkNJXfV18ZL/W68MLyWZoHAAAAAIBZKAUDAAAAAAAAAAAAAAAAAACl0revSxs22HXNNbmyWEJTnJOdbdN117k1ZEiBDhzwhmSPisDvDygz09iJjjVr8jVRVG2dOhmbO3LErm3bis0NA1QB6enp2rdvn6lrxsb69cMPRbriCnPKJwCcWM8GPXV/r/uPe3zwx4OVXZgdxkQAyiOr1XrCMqdif7FWH1qtVze9qsvmXabeM3rr9c2vhyxPtD1ak4ZN0mcXfaYEV0LI9jmRoqIinXvuuVqwwHh5Yvfu3fXNN98oOjraxGTmS0pKMmWdESNGmLKO2S6++GJDc2vXrpXPZ6yYuirKy/Nr3jyXodmEBK8GDDA2CwAAAABARcG3PQAAAAAAAAAAAAAAAAAAQKnFxlr11luxmjWrQPXqeUK2z+zZMWrTRpoyJS9ke5Rnubl+FRUZ+7onpWCo6rp0MVaoJ0lLl1IKBpTG/v37lZ6ebvq6DRs2VFJSounrAji+8f3HK7VOatBj+cX56j25d5gTASiPYmNj//v/A4GA9uTu0afbP9Wti29Vrxm9dOWCK/XG5je0PnO9/PKHLEfbWm216tpVurrj1bJYLCHb50Q8Ho8uvPBC/fDDD4bX6Nixo7777rt//LuWV8nJyWVeIyYmRt27dzchjfnOOOMMQ3P5+fnavHmzyWkqr2+/LVRBgbH3rc46q0gOR2Ru7wAAAAAAhAvf9gAAAAAAAAAAAAAAAAAAAIYNHBijDRtsuvzy0JV2ZWbaNXKkWxdckKdDh3wh26c8Sksz/vetVYuviaJq69AhSlFRxgoIVqwImJwGqJz8fr927dqlrKwsU9e1WCxq2rSp4uLiTF0XQMksGLVAsY7gxTTrDq7TPT/cE+ZEAMoba4xVP+7/UY+uflSDZg/SkO+HaPza8Zr3xzzlecNT6n1z55u17OplOq3GaWHZLxiv16sRI0Zo5syZhtdo3bq15syZo2rVqpmYLHSSkpLKvEbPnj3ldDpNSGO+1NRUxcfHG5pdtWqVyWkqry++MP6a+4ILKAQDAAAAAFR+fNsDAAAAAAAAAAAAAAAAAACUSUKCTVOmuPXFF/mqVas4ZPt8+aVbLVv6NX16fsj2KG8OHjRWaCRJtWrZTEwCVDxOp0UtWngMza5Zw+0HOBm/36/t27crNzfX1HWtVqtSUlIUHR1t6roASs7tdGv25bNlUfDSjWcWP6P5u+aHNxSAiPL6vVq8d7HGzR+nHu/0UL2X6+mOpXdo2s5p2p+/P6xZqruq66uLv9LLg1+Wy+4K695/5/P5dOmll+rrr782vEbz5s31448/mlK0FS5mZO3QoYMJSULDZrOpbdu2hma3b99ucprKqbg4oDlzogzNRkf7NWxY5G73AAAAAACEC6VgAAAAAAAAAAAAAAAAAADAFOefH6Nff7XqoovyQrZHRoZDw4fH6JJL8pSV5QvZPuVFerqxUjC7PaDERL4mCnToYOx+YsMGp/z+gMlpgMrD6/Xq999/V1FRkanrOhwOnXrqqXI6naauC6D0ejboqQd6PXDc40M+HqLswuwwJgIQbtszt+v1Fa/r/M/OV9LTSer5bk89suARLdm3RP6A8QLrsoh1xmr9Det1botzI7L/X3w+n6644gpNmzbN8BqNGzfW3LlzVatWLROThV5ycrKs1rK939CmTRuT0oSG0Xx79+41OUnl9OOPhTpyxG5otl+/QsXE8H4XAAAAAKDy49UvAAAAAAAAAAAAAAAAAAAwTVKSTdOmufXJJ/lKSvKGbJ9PP3WrdWu/Zs4sCNke5UF6urFSooQEn6xWi8lpgIqnUydjc9nZNm3Z4jE3DFBJHDzo0ZAh+dq509zTEaKjo5WSkiKbzWbqugCMe6z/Y0qtkxr0WH5xvnpP7h3mRABC6UjhEX25+Uvd8O0NavpSUzV7uZlunHWjvvrtK2UXlY8SwItbXax68fUimsHv92v06NH65JNPDK9Rr149zZ07V/XqRfbvYoTD4VDdunXLtEZKSopJaUKjefPmhub27dtncpLK6fPPjZcKnnce5d0AAAAAgKqBUjAAAAAAAAAAAAAAAAAAAGC6f/0rRhs3SkOH5oVsjwMHHBo6NFpXXZWrnBzjJxSWZ4cOGTvZMTHRZ3ISoGLq2tVueHb58tAVGwIV1ZYt+Tr9dL/mzInX9dc31OHD5hR4xcfHq2nTprJaOcUBKG8WjlqoWGds0GPrDq7T3XPuDnMiAGbKLMjU4wsfV893eyr56WRdMPUCvbHqDe3I2hHpaEF1qmuw9dckgUBAV199taZMmWJ4jdq1a+unn35S48aNTUwWXmXNXtZSsVCrU6eOobn9+/ebnKTy8fsD+u47p6FZu92vCy90mZwIAAAAAIDyiU/MAAAAAAAAAAAAAAAAAABASNSubdeMGW69+26+qlULXbnOe+/Fqk0br376qTBke0RKerqxuaSkylmSBpRWu3ZOuVzGbg8rVhgr5QMqqyVLctS7t0Pbtv15Iv6ePVG6+eaGys+3lGndpKQkNWjQwIyIAEIgxhmj2ZfNlkXBb+vPLnlW83fND28oAKbYkbVDzV9urgfnPajFexfLFyj/5dKpdVIjtncgENB1112n9957z/AaNWrU0Ny5c5WSkmJisvBr0qRJmeZr165tUpLQMFoKlpOTY3KSymfJkiIdOOAwNNujR5ESE80pJQYAAAAAoLyjFAwAAAAAAAAAAAAAAAAAAITU6NEx2rAhoAED8kO2x+7dTg0YEKWbbspVfn7lKcQ6dMhY0QqlYMCfHA6LTjvNY2h29WpONgb+8s03R3T22TFKT//nCfwbN8borrsaqLjY2Lq1a9c2XLoAIHx6NuipB3o9cNzjQz4eouzC7DAmAmCGRxY8osMFhyMdo8QcVofa1mobkb0DgYBuvPFGTZo0yfAa1atX1w8//KCWLVuamCwyylIKFhUVJYfDWClUuMTFxRmaKygoMDlJ5TN9uvFfGnDuubzXBQAAAACoOigFAwAAAAAAAAAAAAAAAAAAIVe/vkPffx+tV1/NU2ysLyR7BAIWvfZarNq1K9bPPxeGZI9wO3zYaCmYyUGACqxDB2MnHW/c6JTfHzA5DVDxTJqUpYsuildOTvCivEWL4vTYY6coUMqbS/369ZWcnGxCQgDh8Fj/x9SpTqegx/KL89Vrcq8wJwJQVvuz90c6Qqm0rtlaUfaoiOx9yy236I033jA8X61aNc2ZM0ft2rUzMVXklKUUzOVymZgkNIxmpBTs5L791lghnMUS0PDhTpPTAAAAAABQflEKBgAAAAAAAAAAAAAAAAAAwsJqtejGG91au9an008P3YmS27ZFqW/fKN15Z64KC/0h2yccjJaCJSdTZAT8JTXV2O0oJ8em337zmJwGqFgeeSRT112XoOLiE5968OWX1fXqqzVLtKbFYlHjxo1VrVo1MyICCKMFoxYo1hkb9Nj6g+t195y7w5wIQFmc3fTsSEcoldQ6qRHZ9/bbb9err75qeD42NlbfffedOnUKXqxYEbVq1crwbFRUZIrdSsNoxsLCylFQHyobN3q0bZuxf9v27YtUv76xQjEAAAAAACoiSsEAAAAAAAAAAAAAAAAAAEBYNW3q1IIFLj37bK6io0NT2uXzWfT887Hq2LFYK1cWhWSPcMjMtBmaq1HDWAkSUBl162Y3PLt0qdfEJEDF4fX6dd11WRo3LlGBQMkeU958s6amTq1+wutYrValpKTI7XabERNAmMU4YzTn8jmyKPj9wrNLntW8nfPCnAqAUTd3uVmd63aOdIwSS60b/lKwMWPG6MUXXzQ8HxMTo2+//Vbdu3c3MVXktW7d2nBxlsdT/ouXjWasCIVnkfTZZ8b/2w8bxmtzAAAAAEDVQikYAAAAAAAAAAAAAAAAAAAIO6vVojFjYrVqVbG6dCkI2T6bN0epe3eHxo7NVXFxIGT7hIrRUrCaNSkFA/7Stq3TcAHhihUV734DKKuCAp8uvDBHb7114oKvYMaPr6uffooLesxut6t58+ZyOp1ljQgggrrX764Hej1w3ONDPxmq7MLsMCYCYFS0I1ozL52pZonNIh2lRFLrhLcU7J577tHEiRMNz7tcLn399dfq06ePianKB4fDoTZt2hiaLSwsNDmN+YxmjI6ONjlJ5TJjhvHC7osvdpiYBAAAAACA8o9SMAAAAAAAAAAAAAAAAAAAEDGnnRalxYtdeuyxXEVFGSvtORmv16rx42PVuXORNmzwhGSPUPB4AsrOphQMKCu73aKWLY3d9tetM3YbBCqqw4c9GjCgQN98U83QvN9v0T331Nfatf8sRIiKilLz5s1ltxsvAgBQfjzW/zF1qtMp6LH84nz1eq9XmBMBMKqGu4a+v/x71XLXinSUE7Jb7WpTy1gJlRH/+c9/9Mwzzxiedzqd+vzzzzVgwAATU5UvnToFfxw4maKiInm9XpPTmCs3N9fQXExMjMlJKo9du4q1bp3L0Gzz5kVq2TLK5EQAAAAAAJRvlIIBAAAAAAAAAAAAAAAAAICIstksGjs2VitWeNWuXWHI9lm3zqXOne16/PFc+XyBkO1jlvR04yfJ1qzJV0SBv+vQwWdobsMGZ4W4vwDMUFBQoOHDC7V4cWyZ1ikqsurmmxtqxw6nJCk2NlZNmzaV1cpjE1CZLBi1QLHO4PcX69PX6645d4U5EQCjmlRvolmXzTrubbo8aF2ztVx2Y4VCpfXggw/qySefNDxvt9v12WefafDgwSamKn9SU1MNzQUCAaWnp5ucxlx//PGHobm4uDiTk1Qe06YVGZ4dMqTYxCQAAAAAAFQMfKoGAAAAAAAAAAAAAAAAAADKhTZtnFqxIkr/+U+u7HZ/SPYoKrLqwQdj1aNHoX77zROSPcxy8KDxf4NatfiKKPB3Bs9XV26uTZs3cwIyKr+cnBxt375dt956UHFxxkr0/u7oUbtuuaWhYmOrq1GjRhSCAZVQjDNGcy6fI4ssQY8/t+Q5/bTzpzCnAmBUxzod9cWIL2S32iMdJajUOgaf0JfSuHHj9Pjjjxuet9ls+uijj3TeeeeZF6qc6tGjh+HZAwcOmJjEfEZLwerVq2dyksrj669thmeHDy+f90sAAAAAAIQSn6wBAAAAAAAAAAAAAAAAAIByw+GwaPz4WP3yi0ennVYUsn2WL49Wx452Pfdcnvz+QMj2KYuylILVrs0Jk8Dfdetm/DaxdCmlYKjcMjMztXv3bklSs2ZFevnl3XI6y1bOGRPj0zPPFKhRo1PMiAignOpev7vG9h573ONDPx6q7MLsMCYCUBZnNj1T7537XqRjBBWsFMzn9+n3w79ry6EtCgTK/rp+/PjxeuSRRwzPW61WTZ48WSNGjChzloqgZcuWhkuwtm3bZnIacxnN17BhQ5OTVA6HDvm0bJnL0GzdusXq2jXK5EQAAAAAAJR/lIIBAAAAAAAAAAAAAAAAAIByp0sXl1avduiOO3Jls4WmtKugwKq77nKrb99C7dhR/kp/MjKMFbLExfnkdFpMTgNUbK1bOxUdbew2tXJl+SwOBMxw8OBBHThw4B+Xpabma8KEfbJYjP3sJyUVa9asfI0YkWBCQgDl3aP9HlXnup2DHivwFuj0904PcyIAZXF528v19ICnIx3jGKl1/ywF23N0j95e/bZGTBuhGs/U0KmvnKoWr7ZQr/d6KSMvw/D6EyZM0Nixxy85PBmLxaJJkybp8ssvN7xGRXTWWWcZmtu4caPJScy1YcMGQ3OUggU3fXqhvF5j71MNGVIkq5X3uAAAAAAAVQ+lYAAAAAAAAAAAAAAAAAAAoFxyuayaODFW8+cXqWnTopDts2hRtNq1s+q11/Lk95ef8p/0dGNZEhN9JicBKj673aLWrY3dj6xdazM5DVA+7N27VxkZwcszBgzI1n33/VHqNRs2LNL8+cXq0yeurPEAVCDzr5yvWGds0GMb0jdozPdjwpwIQFnc1eMu3db1tkjH+C+rxarJayerxSst1PCFhrpmxjWatmmasgqz/nudX/b+ovt+vM/Q+s8995zuu8/Y7F9ee+01XXXVVWVaoyI6++yzDc2tXbvW3CAmCgQCWr9+vaHZ5s2bm5ymcvjqK+OlXhdeyOtxAAAAAEDVRCkYAAAAAAAAAAAAAAAAAAAo104/3aX16x268cZcWSyhKe3KzbXpppvcOvvsAu3dWxySPUrrOD0tJ1W9ut/cIEAl0aGDscK8jRud8vnKT2EgUFZ+v187d+7U0aNHT3i9Sy/N1L//XfIHozZt8rVoUUCtW8eUNSKACibGGaM5l8+RRcFLPyYunai5O+eGORUAoywWiyaePVEjWo2IdBRJkj/g1+srX9eWw1tOeL2Vf6ws9dovvvii7rrrLqPR/rvG9ddfX6Y1KqoBAwbIai39KaqLFi2Sz1c+C83XrVunzMxMQ7OdO3c2OU3Fl5vr14IFLkOziYlenXGGsVkAAAAAACo6SsEAAAAAAAAAAAAAAAAAAEC5FxNj1auvxmrOnEI1bOgJ2T4//hijNm0smjw5P2R7lNShQ8bmkpMpBQOCSU0NXlRyMnl5Nm3aVD7KAoGy8vv92rZtm/Ly8kp0/dtuO6hzzsk66fX69s3RokVO1a/PSftAVdW9fneN7T32uMeHfTxMRwtPXEYIoPywWqz64LwP1LdR30hHKbFoe3Sprv/aa6/p9ttvL9OezzzzjG699dYyrVGRJSYmqk+fPqWey87O1vLly0OQqOx++uknQ3PJyclq3LixyWkqvm++KVRhobHTmM86q0h2u7HX8QAAAAAAVHSUggEAAAAAAAAAAAAAAAAAgApjwIBobdhg1+jRuSHb4+hRu0aPjtGwYflKS/OGbJ+TOXTI2ImPSUkBk5MAlUP37g7Ds0uWUAqGis/r9WrLli3yeEpermmxSOPG7VfPnjnHvc7w4Uf1/fduVatmNyMmgArs0X6PqnPdzkGPFXgL1Ou9XmFOBKAsouxR+urir9S2VttIRymRjnU6lvi6kyZN0s0331ym/R5//HHdddddZVqjMrjyyisNzU2fPt3kJOaYOnWqobmuXbuanKRy+PJL4+9RXXABhWAAAAAAgKqLUjAAAAAAAAAAAAAAAAAAAFChxMVZ9e67sZoxo0B164auqOfbb2PUpo306af5IdvjRA4fNvY1z+RkSsGAYFq2dMjt9hmaXbmS2xUqtsLCQm3ZskU+X+lvAw6H9Nxze9WyZcExx269NUuffBInp5NTEwD8af6V8xXnjAt6bEP6Bo35fkyYEwEoi2quavrusu/UoFqDSEc5qdQ6qSW63nvvvafrrrtOgYDx5/gPPfSQHnjgAcPzlcmFF14ot9td6rlPPvlEfr8/BImM27Ztm5YtW2ZodtCgQSanqfg8noDmzHEZmo2J8WnIEGOzAAAAAABUBnzyBgAAAAAAAAAAAAAAAAAAKqShQ6O1caNV//pXXsj2OHTIrksuidHw4Xk6fNhYmZBRRkvBatSwmJwEqBxsNotat/YYml271mZyGiB88vLytG3btjIVX7jdfr366i6dcsqftyGrNaCnnsrUiy9Wl83GaQkA/k+MM0Zzrpgji4I/J524dKLm7pwb5lQAyqJuXF3Nvmy2qruqRzrKCaXWPXkp2Icffqirr766TM+L7rvvPj3yyCOG5yub2NhYXXDBBaWe++OPP/T555+HIJFxL7/8suHZc845x8QklcOcOYXKzjb2Wrp//0LFxPA6AwAAAABQdfGqGAAAAAAAAAAAAAAAAAAAVFjVq9v0ySduTZuWrxo1ikO2z/TpbrVu7ddXX+WHbI//lZlptBTM5CBAJdK+vbFyv40bnfJ6jRcHAJFy5MgR7dy505S1kpN9evPNXapTx6PJk4/o3nsTTVkXQOXTrV43PdT7oeMeH/bxMB0pPBK+QADK7LQap+nbS7+Vy+6KdJSgomxRalWj1Qmv8+mnn2rUqFHy+/2G97njjjv05JNPGp6vrP79738bmpswYYLJSYw7fPiw3n77bUOzqampql+/vsmJKr7PPzd+WzvvPPNyAAAAAABQEdkjHQAAAAAAAAAAAAAAAAAAAKCsLrooRr17e3X99Xn68kt3SPZIS3Po/PMduuKKPL38skvVqtlCso8k+f0BZWUZW79GDYvJaYDKo1Mni958s/RzBQU2bdxYpPbto8wPBYRIRkaGDh48aOqaDRt6tGpVrurUoRAMwImN6zdO3237TssPLD/mWIG3QL3f6631N6yPQLLQKy4u1s6dO7V161bt3r1b+/bt0759+5SWlqasrCxlZWXp6NGjKiwslMfjUXFxsRwOh1wul1wul6Kjo1WzZk3VqlVLtWvXVv369dWyZUu1bNlSKSkpcjgckf4roorqUb+HPr3wU10w9QL5A8bLfkKhXe12ctiOf9v44osvdMUVV8jnM1YSLEk333yzJk6caHi+MuvTp4+6du2qZcuWlWpu1apV+uyzz3TxxReHKFnJPfzww8rPN1YEP3LkSJPTVHw+X0Dffec0NOtw+HXBBeWzgBAAAAAAgHChFAwAAAAAAAAAAAAAAAAAAFQKNWva9cUXdk2Zkqfbb49SZmZoviY5ZYpb8+Z5NGmSRwMHRodkjyNH/PJ6jZWC1aplNTkNUHl07268RGPpUi+lYKgw9u/fr6ysLNPXbdiwoeLi4kxfF0DlNO/Kear9XG3leHKOObYhfYPu+P4OPX/28xFIZp7t27drzZo12rBhg9avX6+NGzdq586dpS4e8ng88ng8ys7OliTt3r076PUcDoc6deqkPn36qHfv3urbt6+io0PzmgT4XwdyDuhI4RF1qtMpaOFfJKXWST3usW+++Ub/+te/5PV6Da9/zTXX6KWXXjI8XxX85z//0bnnnlvquTFjxmjw4MERfY65Zs0avfHGG4ZmY2NjNWrUKHMDVQK//FKkgweNFXv17Fmo6tVjTE4EAAAAAEDFQikYAAAAAAAAAAAAAAAAAACoVK64wq0zzvDq3//O1+zZoTmJcN8+pwYPDujqq3P1/PMxcrvNLeJKS/NKMlYKVrMmpWDA8bRo4VBsrE+5uaW/fa1aFYJAgMn8fr/27Nmj3NxcU9e1WCxq0qQJxTNAJVVYWKi1a9dq1apVWrlypVauXKnNmzeXuthKkt57773/lqPEOGP0wxU/qPs73RVQ4JjrvrD0BQ1NGaozmpxR1r9CWOTm5mrx4sX65ZdftHz5cq1YsUKHDx8Oa4bi4mItWbJES5Ys0VNPPSW3262hQ4dqxIgRGjp0qJxOZ1jzoHLLL87Xwt0LNWf7HP2w4wdtTN8Y6UjHdbxSsNmzZ2v48OEqLi42vPaoUaP05ptvymKxGF6jKhg2bJjatGmjDRs2lGpu//79uv766/XRRx+FKNmJ5eXl6bLLLjP0mCdJV155peLj401OVfFNm2a8hO/cc499zgAAAAAAQFVDKRgAAAAAAAAAAAAAAAAAAKh06ta1a+ZMm95+O0933+1Sdraxgq0TCQQsmjQpVj/+6NF77/nVp4/LtLXT042fAFm7tvl/V6CysNksatPGoyVLSl9stGYNty2Ub36/X9u3b1dRUZGp61qtVjVr1oyiGaCSKCoq0vr167Vy5cr/loD9+uuv8nqNl3ecSNd6XfVQ74f0yMJHgh4f9skwHRhzQAmuhJDsXxZ5eXlauHChfvzxRy1cuFBr1qwxXBoTKnl5efrss8/02WefqXbt2rrhhht0ww03qEaNGpGOhgqs0Fuoh+Y9pJeXv6xCb2Gk45RIat1jS8Hmzp2r888/Xx6Px/C6l112md555x0KwUrAYrHowQcf1IgRI0o9+/HHH6tnz5668cYbQ5Ds+AKBgK699lpt3rzZ0LzT6dSYMWNMTlU5zJxp7LWDxRLQ8OFRJqcBAAAAAKDi4VfBAQAAAAAAAAAAAAAAAACASslqtejaa91av96vvn3zQ7bPzp1O9e8fpVtvzVVBgd+UNQ8eNLaO0+lXfDxfDwVOpH17Y7evTZuc8nqNF/YBoeT1evX777+bXgjmcDh06qmnUggGVFDFxcVavXq13nrrLV177bVKTU1VXFycunTpohtvvFHvvPOO1q1bF7JCsL+M6zdOXep2CXqswFugXu/2Cun+pTVnzhz17dtXiYmJGjx4sCZOnKiVK1eWu0Kw/5WWlqaHH35YDRo00L333qvs7OxIR0IF9eSiJ/XM4mcqTCFYlC1KrWq0+sdlCxcu1DnnnKPCQuN/hxEjRuj999+X1cpr7JIaPny4+vfvb2j2lltu0bRp00xOdGJjxozRxx9/bHj+lltuUePGjU1MVDmsW+fRzp3GXj+kphbqlFPsJicCAAAAAKDi4R0pAAAAAAAAAAAAAAAAAABQqTVs6NDcudF68cVcud2hOZHf77fo5Zdj1aFDsZYsKfuJ0xkZxoqHqlf3yWq1lHl/oDLr3NnYbaSgwKr16z0mpwHK7uBBj0aOzFZ2tjnFlH+Jjo5WSkqKbDabqesCCA2v16t169bpnXfe0Q033KDOnTsrNjZWqampuu666zRp0iStXr1axcXFEck378p5inPGBT22MWOj7ph9R5gTHd/ixYu1YMECeTwV83G/sLBQTz/9tJo1a6a333470nFQAU3dNDXSEUqlba22ctgc//3z0qVLNWTIEOXnGy8HP//88/XRRx/xPMiAV1991VChrN/v12WXXabJkyebH+p/+Hw+3XLLLXr++ecNr5GYmKixY8eamKrymDbN+OPnOeeU7wJOAAAAAADChVIwAAAAAAAAAAAAAAAAAABQ6VmtFt16a6zWrPGpe/eCkO2zZUuUeveO0n335crjMVbsJUnp6cZmExPNLYQBKqOuXY2f2L90qdfEJEDZ/f57gU4/3a9PPknUnXfWl1ldP/Hx8WratKmsVk45AMojn8+nDRs2aPLkybr55pvVrVs3xcXFqX379rr66qv1xhtvaOXKleWq1CrGGaMfrvhBFgUv53xh2Quau2NumFNVbhkZGbrmmms0ZMgQHTx4MNJxUIHEOmMjHaFUUuuk/vf/r1q1SgMHDlRubq7h9YYOHarPPvtMdrvdjHhVTosWLXTXXXcZmi0uLtbo0aN11113qaioyORkfzp48KCGDh2qV155pUzrTJw4UQkJCeaEqmRmzDB+2xkxovSFcgAAAAAAVEZ8QgcAAAAAAAAAAAAAAAAAAKqMlBSnFi1y6amn8uRyhaZAy+u1aMKEWKWmFmn1amMnsWZkGNubUjDg5Fq0cCo+3mdodtUq42V/gNmWLMlRr152bdvmkiT98kucxo07RYEy/pgmJSWpQYMGJiQEECpTpkxR27ZtNXr0aL366qtatmyZCgsLIx3rpLrW66qH+zx83OPDPhmmI4VHQpohEAjI669aJZ+zZs1SmzZttGjRokhHQQVx/+n3RzpCqaTW/b9SsJdffllHjx4t03rffvutnE6nLBZLhf3f/Pnzy/ivWjZjx45V27ZtDc8/99xz6tixo+bNm2daJp/Pp/fee0+tWrXS7Nmzy7TWRRddpCuvvNKkZJXLzp3FWr/eZWi2RYsinXoqpWAAAAAAAEiUggEAAAAAAAAAAAAAAAAAgCrGZrPo3nvdWrnSq44dC0K2z8aNLnXr5tC4cXnyekvX0HL4sMXQnsnJlIIBJ2O1WtS6tcfQ7Jo1dpPTAMZ8880RnX12jNLTHf9zeXW9/HJNw+vWrl1bderUKWs8ADiuh/s+rK6ndA16rMBboNPfPT1ke3+4/kO1eLWFoh6PUpdJXbQ5Y3PI9ipvMjIydOaZZ+qzzz6LdBRUABecdkGFKgZLrZN68ishrKKjo/X555+rWrVqhtfYtGmT+vfvr/79++vrr79WcXGxoXWys7P19ttvq1WrVrrqqqt0+PBhw5kkqV69enrzzTfLtEZlNnWqsdfakjRsmLH/xgAAAAAAVEaUggEAAAAAAAAAAAAAAAAAgCqpVSunli1z6eGHc+VwhKZMq7jYqkcecatr1yL9+mvJT4w0XgpmaAyocjp08Bma27zZqeLi0pX8AWabNClLF10Ur5wc23GO19SnnyaWet369esrmQcSAGHw08ifFOeMC3rs14xfdfvs203dL8+Tpyu/ulJXfHmFfj/8u/wBv1YcWKHzPztf/kDVKdUtKirSJZdcorfffjvSUVABjO8/Xle2uzLSMU7KaXOqVc1WkY6BIJo1a6bJkyeXeZ158+bpvPPO0ymnnKIrrrhC77zzjlatWqWjR48Gvf7Bgwf1yy+/6Pnnn9c555yj2rVr65prrtGWLVvKnCUuLk4zZsxQYmLpn2tXFV9/bfyU5eHDHSe/EgAAAAAAVQSlYAAAAAAAAAAAAAAAAAAAoMqy2y0aNy5WS5cWq3XrwpDts3q1S5062TVhQp58vpMXCh0+bOwrnsnJlBUBJdG5s7HivcJCq9atK3nBH2C2Rx7J1HXXJai4+MSPE088UUdz5wYv3PlfFotFjRs3VrVq1cyICAAnFeOM0Q9X/CCLgj8ev7jsRf24/UdT9tqYvlGdJ3XWB+s+OObYlsNbtGTvElP2qSgCgYCuv/56ffHFF5GOgjIo9BbqhaUv6NxPz9XV31ytab9OU3ZRtql7WCwWTRo2SQObDTR1XbO1q9VOTpsz0jFwHOedd57GjRtnyloZGRn68MMPdfXVV6tTp05KSEiQ2+1WrVq11KBBAyUnJ8vlcql27do6/fTTdeedd2rGjBkqKCgwZX+73a7p06erffv2pqxXGR086NXy5S5Ds/Xre5Saym0ZAAAAAIC/UAoGAAAAAAAAAAAAAAAAAACqvI4do7RqVZTuvTdXdntoirUKC6267z63evUq1NatJy4Vysw09hXPGjWMFR0BVU3Xrg7Ds0uXek1MApSM1+vXdddlady4RAUCJ7+vDwQsuuee+lq9OuaE17NarUpJSZHb7TYrKgCUSNd6XfVwn4ePe/ycT8/RkcIjZdrjvTXvqcukLtp8aPNxr7MmbU2Z9qiIfD6fLr30Uq1cuTLSUWDQjTNv1B3f36Fvtnyjd9a8oxHTRyj56WQN/HCgXlvxmvYe3WvKPg6bQ9OGT1Onup1MWS8UUuukRjoCTuLhhx/WfffdF5K18/PzlZ6err179+rw4cMqKioKyT52u13vv/++zjrrrJCsX1l8/nmRfD5j70sNHuyR1cp7WgAAAAAA/MUe6QAAAAAAAAAAAAAAAAAAAADlgdNp0VNPxerccws1erRFW7ZEhWSfJUui1aGDT+PH5+mWW2KCnvSYmWkztHaNGmVNB1QNzZs7FB/vU3Z26W9rq1aFIBBwAgUFPv3rX7n65pvqpZrzeKy65ZYG+uCDnWra9NiCBLvdrmbNmslu57QCAJHxcN+H9d2277Rs/7JjjhV4C3T6u6dr440bS71unidPN826Se+ve/+k112Xtq7U65+M0+nUqaeeqhYtWqhhw4Zq2LChGjRooOTkZCUnJ6t69epyuVyKioqS3W6Xx+ORx+PR0aNHlZGRobS0NG3dulW///67VqxYoXXr1snjOXGpcGkVFRXp0ksv1Zo1ayiGrGAyCzL13tr3jrm82F+s77d/r++3f6+bZt2kjnU66pzm5+jcFueqXa12sliMle3EOmM189KZ6vFOD23P2l7W+KZLrUspWEXw5JNPyufz6Zlnnol0lFKLjo7W1KlTNXTo0EhHKfe++sp4qddFFxl7HwwAAAAAgMqKT+8AAAAAAAAAAAAAAAAAAAD+pnt3l9as8evee3P16qtu+f3GT2o8nrw8m26/3a2vvsrX5MkONWzo+O+xggK/8vKMnQxZs6bVrIhApWa1WtS2rUc//xxd6tk1azhZGeFz+LBH55zj0eLF1QzNZ2fbdf31DfXhhztUq5b3v5dHRUWpadOmslp53AAQWfOunKdaz9ZSjifnmGO/Zvyq2767TS8OerHE6/2a/quGTxuuzYc2l+j669PXl3jtYGJjY9WxY0d17txZnTt3Vvv27dW0adNSFS66XC65XC7Fx8erfv36xxwvLCzU3Llz9fXXX2vq1Kk6evRomTL/ZevWrRozZozeeOMNU9ZDeGQVZJXoeqv/WK3Vf6zWuAXjVD++vs459Ryde+q56tOoj5w2Z6n2rOmuqe8v/1493u2h9Lx0I7FDJrUOpWAVxdNPP63q1atr7Nix8vv9kY5TIjVq1NDnn3+uXr16RTpKuZeT49fChS5Ds0lJXvXrZ2wWAAAAAIDKik/wAAAAAAAAAAAAAAAAAAAA/kd0tFUvvRSrn34qUuPGnpDtM39+jNq2teqtt/Lk9wckSQcP+gyvV6sWXw0FSqp9e2O3td9+c8rjCZicBjhWfn6BBgzwavHi2DKtk5bm1I03NlROzp+PEbGxsRSCATghp9OppKSksOwV7YjW3JFzZVHwIt6Xlr+kH7b/UKK1Jq+drM6TOpe4EEySNhzcIJ+/5M8J4uPjNWzYMD3zzDNavny5jhw5ogULFujZZ5/VxRdfrFNPPbVUhWAl4XK5NGTIEL311ls6cOCA3nzzTTVo0MCUtSdNmqQNGzaYshbCo158PdkspSup3Zu9V6+ueFVnfXiWkp9O1sXTL9bHGz4uccGYJDVNbKqZl86U2+EubeSQcdqcalWzVaRjoBTuv/9+zZ49O2yPMWXRt29frV27lkKwEvrqqwIVFRl7fTFwYJFsNvML+QEAAAAAqMj4FA8AAAAAAAAAAAAAAAAAAOA4+vRxacMGu669NlcWS2hKgLKzbbruOrcGDy7QgQNepaWVpRSsdCeHA1VZ587GTjouKrJqzZoik9MA/5STk6MdO7Zr1KgMWa1lf/z5/fdo3XVXfSUkVFejRo0oBAPwXw6HQx06dNA111yjN954QytXrlROTo5uvvnmsGXofEpnjes77rjHz/30XB0pPHLc43mePI36apRGfz1aBd6CUu1d4C3QtsxtJ7xOhw4ddP/992vBggU6fPiwvvnmG911113q3LmzbLbwPv+OiYnRtddeq61bt+rxxx+X0+ks03p+v1+33XKj9u/eqn27tung3i3KOrBZ3tyDJiWG2aLsUUpJSjE8n+PJ0dRfp+qyLy5TjWdqqP/7/fXi0he1M2vnSWc71e2kz0d8LrvV3OI7o9rUbCOnrWy3AYTfmWeeqdWrV5fbsi2Xy6VHH31Uc+fOVd26dSMdp8L48kvjsxdcQCEYAAAAAAD/i0/yAAAAAAAAAAAAAAAAAAAATsDtturNN2M1a1aB6tXzhGyf77+PUevW0rRpxYbmLZaAatakFAwoqW7dHIZnly3zmpgE+KfMzEzt3r1bknTGGTn6z3/+KPOaMTE+3XabT/XqnVLmtQBUXA6HQ+3bt9fVV1+t119/XStWrFBubq5Wr16tt956S9ddd51SU1PLXDRlxEN9HlK3U7oFPVbgLVDPd3sGPbYpY5O6vN1F76973/De6w+u/8efHQ6H+vfvr5deekl79uzR6tWr9cQTT6h3796y28tHGZLT6dQDDzygFStWqGHDhmVaa96Cn7Vs1QYdyS1UxtFi7c/0acvuQ9q7a6sKDp+4MA2R0apGK1PW8QV8mrdrnm7//nY1eamJ2rzeRmN/Gqvl+5fLH/AHnTm72dl655x3TNm/rLKLso+bE+VbgwYNtHDhQn344Yc65ZTy8/z0vPPO06ZNm/Tggw9SolsKHk9Ac+e6DM3Gxvo0eLCxWQAAAAAAKjPemQAAAAAAAAAAAAAAAAAAACiBgQNjtHGjTVdckRuyPbKy7Jo4Mc7QbLVqPtntFpMTAZVXs2YOJSQYK/datYrbGkLj4MGDOnDgwD8uu/jiTF1zTbrhNZOSijVrVr5GjEgoYzoAFYndble7du101VVX6bXXXtOyZcuUk5OjNWvWaNKkSbr++uvVqVOniBSAHc+8UfMU5wz+XHhTxibd9t1t/7hs8trJ6jypszZlbCrTvusOrvvHnx944AHNnTtXt9xyi+rXr1+mtUOtbdu2Wr58uVq1KltJ1PTp0//x50AgoKO5Rdr+R6EO7ftNAT/FS+WJWaVg/2tj+kaNXzReXd/uqnoT6+m6Gddp5u8zVegt/Mf1RrYbqafOeCokGUpja+ZW3f/j/ZGOgTK47LLLtGXLFj344INKSkqKSAaLxaLBgwdr/vz5+vLLL9W4ceOI5KjIZs8uVHa2sZL6M84olMvFac4AAAAAAPwvXi0DAAAAAAAAAAAAAAAAAACUULVqNn3wQay+/DJftWsXRzrOP1Svzon6QGlYrRa1aWPsdrx2rbETnoET2bt3rzIyMoIeu+WWdJ17blap12zYsEjz5nnUp4+xwkkAFYPdblfbtm01evRovfrqq1q6dKlycnK0du1avfPOO7rhhhvUpUsXRUVFRTrqCbnsLs0dOVcWBS/ffGn5S/ph+w/K8+Rp1FejNPrr0covzi/zvusPri/zGpFUs2ZN/fDDD2UqMJs5c6a83uBlqWlHvNq3Z4cCPo/h9WGuVjVDUwr2d3/k/qG3Vr+loZ8MVdLTSbrgsws0ee1kZeT9+Vzlnp736JYut4Q8x8k8vfhpvbj0xUjHQBm43W49+uij2rdvn9555x116NAhLPvWqlVLN910kzZt2qSZM2eqT58+Ydm3Mvr8c+PvR51/volBAAAAAACoROyRDgAAAAAAAAAAAAAAAAAAAFDRnHdejHr18un66/M0fbo70nEkSUlJvkhHACqcjh19WrSo9HO//eZUYaFfLhe/oxll5/f7tXv3buXl5R33OhaL9PDD+3X4sF0//1yygq82bfI1c6ZV9euXj8ep/8fefcdXWd/vH7/OyMneixAgQAKyhyxFGdaFooLirLVate7Rb6tWW61W29qh9Wetq1VrbZ24UHFQ6yjK3nuEEUYghOx1csZ9fn8gKpLAOXfuc07G6/l45KG5z/3+fC40npFz7ksA1unWrZuuuOIKjRo1SqNHj9bw4cMVHx8f7ViWGJM/RvdNvk/3fnZvi7ef9fJZ6pvWVxsqNli258qylZatFS15eXl68cUXNXnyZBlG6OUstbW1WrNmjUaMGNHi7TX1bgV27lDPnr1kc7jamBZtNTg7/KVg39bobdRbG97SWxvekt1m1/ie43VO/3N0/ejrtad+j15f93pE83zX/330f8pLztOFgy/U888/r+effz6qeWBOXFycrrzySl155ZVau3atPvjgA3344Yf64osv1Nzc3Ob1HQ6HBg8erEmTJum8887TxIkTZbfzeq6t/P6APvjA3OOCy2Vo+vQ4ixMBAAAAANA5UAoGAAAAAAAAAAAAAAAAAABgQmamQzNnJuqVVxp1000uVVRE92OZmZmBqO4PdERjxpi7CNzjsWv5creOP54LmNE2hmGouLhYHo/nqOfGxEgPP7xTV17ZW2vXJhzx3MmT6/T22/FKTeWSAaAzmjJliqZMmRLtGGHzq0m/0gebP9CC3QsOu83j91haCCZJO2p2qKqpSunx6ZauG2kTJkzQj370Iz377LOm5ufNm9dqKZgk1da7tZNisHahX2Y/Oe1O+QxfxPc2Aoa+2PGFvtjxhe74+A71y+innik9tbN2Z8SzHBRQQJe9dZmyE7J1Up+TopYD1hk8eLAGDx6s2267TY2NjVqxYoXWr1+vDRs2aP369dq9e7fq6upUX1+vuro6ud1uxcbGKiEhQQkJCUpPT1dBQYH69OmjPn36aNiwYRo7dqySkpKi/UfrdObObVZ5ubnXxRMmuJWaeuTXNQAAAAAAdFW8wwcAAAAAAAAAAAAAAAAAANAGF1+coMmTfbrmmga9+25i1HJQCgaEbtw48x+nXrTIr+OPtzAMuhyfz6fNmzfL7/cHPZOQYOjxx0t02WV9tXNnbIvnnH9+jV58MVkul7nSOwBoDz694lPlPpSr2ubaiOy3et9qTSyYGJG9wum+++7T888/H9Jjy0ErV6486jkUg7UPLodL/TP7a135umhH0ebKzdGOIOlAYeD0V6dr7o/maljusGjHgYUSEhI0fvx4jR8/PtpR0ILXXzdfTjhtmmFhEgAAAAAAOhfe5QMAAAAAAAAAAAAAAAAAAGijbt2ceuedRD33XKNSU81fENkW2dmUggGh6ts3RhkZ5v6bXbLE4jDoUtxutzZu3GiqtCUz06+nnipp8Wf3lluq9MorFIIB6PjinHH6+LKPI7bfyr1HL8TqCHr06KEzzzzT1Oz27duDOu9gMVjA7zW1D6wxOHtwtCO0O7XNtTrjxTNUUl0S7ShAl2AYAc2eba4g0m4P6Pzz4yxOBAAAAABA58E7fQAAAAAAAAAAAAAAAAAAABb50Y8StHp1QKec0hjxvbOyIr4l0OHZ7TYNHeoxNbtihcPiNOgqGhoaVFxcrEDAfJljr14ePf54ieLjDUkHLqr//e8r9eij6XI4uEwAQOewfv96xdhjIrLXyrLOUQomSdOnTzc1t2fPHrnd7qDOra13a9fOEorBoohSsJaV1pVqyotTVNFYEe0oQKe3YoVH27ebKwUbM8atvDynxYkAAAAAAOg8eLcPAAAAAAAAAAAAAAAAAADAQj17xuijj+L1+OMNSk72R2zf7GxbxPYCOpNjjzVMzW3Y4FJTk7lZdF3V1dXatm2bJWsNGdKkhx/eoaQkv/7xj2r9/OcZlqwLANHW6G3UlbOu1OVvXy6vEZnSqVVlqyKyTyQMHVBgai4QCKiiIvgipZp6t3bt3E4xWJQMzqEUrDUb9m/QOa+coyZvU7SjAJ3aa6+Zv/8/66zI/b4MAAAAAICOiFIwAAAAAAAAAAAAAAAAAAAAi9ntNt1wQ6KWL/frxBMjcyFyRgalYIAZo0eb+0i1z2fXsmUei9OgMysvL9euXbssXXPChHqtWFGrH/4w3dJ1ASBa1pWv09i/j9U/Vvwjovuu2bdGfqPjF5SU79qouOQcxcXFmZpvbGwM6fya+mbt2llCMVgUDM6mFOxI5u2cp0veuEQ+wxftKECn9d57TtOzF17osjAJAAAAAACdD6VgAAAAAAAAAAAAAAAAAAAAYVJY6NLnn8fp4YcbFB9vhHWvX/wiTqtXh3ULoFM6/vgY07OLFnX88hBERmlpqcrKyixft6CgQIWFFIIB6BxeWPmCxvx9jNaWr4343k2+JhVXFkd8XyuV79qgsmqvbDab8vLyTK3R0NAQ8kxNvfurYjDKlyKpKKNILgelOkcya+Ms3Tj7RgUCgWhHATqdzZs9WrvWXAHloEFu9e/P/RcAAAAAAEdCKRgAAAAAAAAAAAAAAAAAAEAY2e02/fSniVq61KuxY5vCtk9xsV2jRkn/+lfYtgA6pYICp7KyzJVYLFlicRh0OoZhaPv27aqsrLR0XZvNpsLCQiUnJ1u6LgBEQ6O3UVfOulKXv325Gr2NUcuxsmxl1PZuqwOFYN88n0lMTIzo/geKwbZRDBZBMY4YHZN5TLRjtHt/W/Y3PfC/B6IdA+h0XnvNY3r27LN5rAAAAAAA4GgoBQMAAAAAAAAAAAAAAAAAAIiAgQNjNW9enB54oF6xsUZY9rDbpdGjw7I00GnZ7TYNHWruguaVKx0Wp0FnYhiGtm7dqvr6ekvXtdvt6tevn+Lj4y1dFwCiYV35Oo39+1j9Y8U/oh1FK/d2zFKw7xaCSZLL5TK1VmxsrOkcNfXN2rWLYrBIGpwzONoROoR7P7tXzyx7JtoxgE7l3XfNvxa+4IIYC5MAAAAAANA5UQoGAAAAAAAAAAAAAAAAAAAQIQ6HTXffnaTFi30aPtxt+fq/+500cKDlywKd3siR5or6Nm50qbExPCV/6Nh8Pp82bdokt9va+/qYmBgdc8wxpsteAKA9eWHlCxrz9zFaW7422lEkSav2rYp2hJDtb6EQTJIaGxtNrZeSktKmPDV1zdq9czvFYBEyOJtSsGBd9951em/Te9GOAXQKe/b4tHhxnKnZggKPRo7ktQwAAAAAAEdDKRgAAAAAAAAAAAAAAAAAAECEDR3q0uLFsfrlL+vldFpTKHTiidKtt1qyFNDljBlj7mPVPp9dS5d6LE6Djq6szKM77qiQ12ttIUp8fLz69esnh8Nh6boAEGmN3kZdNesqXf725Wr0miuvCoeVe1dGO0JI9u/eoL0tFIJ5Da/27d8X8np2u105OTltzlVd79buXdsoBosASsGC5w/4deHMC7Vg14JoRwE6vNdfb5Zh2EzNTp3qkd1ubhYAAAAAgK6EUjAAAAAAAAAAAAAAAAAAAIAoiImx6Te/SdK8eV4NHNjcprVstoCef16iJwYw5/jjY0zPLlxI4QW+sXlzk0480dAjj+Tq0UdzLVs3JSVFhYWFstu5BABAx7a+fL3G/n2snlvxXLSjHGZn7U5VNlVGO0ZQ9u/eoL1Vhz4HCQQCem3razr5rZNVuT/0P0deXp5iYsw/J/q26rpmisHCzO1zq7yxPNoxOpQmX5POeuksbdy/MdpRgA5t1izzpV7nn++0MAkAAAAAAJ0Xr6ABAAAAAAAAAAAAAAAAAACiaMyYWC1bZuiXv6zXI48kKhAI/eLKwkKvCgtdYUgHdA0FBTHKyvJp//7QP169dKn5C6LRucyfX6dzz41TWdmBQpVnn81WTo5X3/9+2wpmMjMzlZeXZ0VEAIiqf638l66bfZ0avY3RjtKq1WWrNan3pGjHOKKWCsFqPDW6b+l9+rj0Y2mLuXUHDRpkQbpvVNc1S7u2Kb9nX9nstBeb5fF59On2T/XJtk+0dM9Sba7crH31++T2u6MdrUOqaKrQ6f8+XUuvWarMhMxoxwE6nOpqv+bOjTM1m53t1cSJsRYnAgAAAACgc6IUDAAAAAAAAAAAAAAAAAAAIMri4ux6+OEkrVnj15w5oV8wP2yYVxKlYEBbDB/u0X//G/rHq1eu5CPZkN59t0aXXpqkurpD78N///s8ZWf7dOqptabW7datm7KysqyICABR0+ht1M3v36znVjwX7ShHtbJsZbsuBdu/a4P2Vh9aCLZs/zL9fNHPtbdp74EDxebWPvbYY9uY7nDVdc3Szq0UgwXB4/No7o65+u+2/2pJ6RJtqtiksoYyuX2Uf1mtpKZEf/zyj/rDqX+IdhSgw5k1yy2PJ9HU7JQpHjkcMRYnAgAAAACgc+IdaAAAAAAAAAAAAAAAAAAAgHbCbvJC+aysgMVJgK7n2GMN/fe/oc9t3uxSY6OhhAS79aHQIfz971W68cZUeb2H/wwEAjbdeWcPZWRs16hRjSGt27NnT6WmploVEwCiwuv3aupLU/XZ9s+iHSUoq8pWRTtCqyp2H1oI5g/49bcNf9NT656SIeOrg5JM/hFOPPHEtodsQXVds2w7t6o7xWCSJJ/h07wd8/Txto+1ePdibazYqL31e9Xka4p2tC5l6Z6l0Y4AdEhvvWV+9rzzbNYFAQAAAACgk6MUDAAAAAAAAAAAAAAAAAAAoJ0oLzc3l51tbQ6gKxo92lypl89n05IlzZo4Mc7iROgIfv3rSv361+kKBFq/wN3jsevmmwv0wgtbVVTUfNQ1bTabevfurcTERCujAkBUvLLmlQ5TCCZJK8tWRjtCiyp2b9Ceqm8KwfY27tVdi+/Skv1LDj1xmaSG0NcfOHCgevfu3aaMR1JV1yx1sWIwwzA0f9d8fbz1Yy3avUgbKzZqT/0eNXpDKwlFeByTeUy0IwAdjttt6L//Nfe6NznZrylTeM0MAAAAAECwKAUDAAAAAAAAAAAAAAAAAABoJ957T9q370A5WHm5tGuXoRdf9GnFClcLZwckHSihycpqvYwGQHCOOy7G9OzChT5NnGhhGLR7Pp+hG2+s0d/+lhHU+XV1Dl13XW/9+99b1K2br9Xz7Ha7ioqK5HK1dL8PAB3P5srN0Y4QkjX71shn+OS0t59Lrr5bCPZp6ae6Z+k9qvHUHHpig6TPzO0xY8YM0/mCVVXXLO3aqu49OlcxmGEYWly6WP/Z+h8t3LVQGys2qrSuVA1eE+1siIjB2YN13+T7oh0D6HDef9+t+voEU7OnnOJWXBylxwAAAAAABKv9/IYaAAAAAAAAAAAAAAAAAACgi+vW7cDXN+y67TaXZs9u0jXXOFVaeqC0KCXFpzffLFZcnKGqKqeGDOnW4noAgterV4xycrzaty/0crAlSyjm60qamvy6+OJ6vfNOekhzZWUxuv763vrnP7cqJcU47Han06mioiI5nXzMH0Dn8b0+39MD/3sg2jGC5va5VVxZrAFZA6IdRdKhhWDN/mY9vPphvbzl5cNPNCS9rQPFYCHKysrStGnT2hIzaFW1HbcYzDAMrShboTlb5mjhroVat3+dSutKVe+pj0qexJhEdU/urh4pPfTp9k+jkqEj6Z7cXacVnqYphVM0Y9CMdlX8B3QUb74ZMD07fbp1OQAAAAAA6Ar47RUAAAAAAAAAAAAAAAAAAEA7N3VqvNas8evGGxv08suJuvvuPcrNPVAOkJrqUXZ2x7qgHmivhg3z6uOPQy8FW7mSj2V3FRUVHp1zjkfz5qWami8ujtOttxboqae2Kzb2m4vqY2NjVVhYKLvdblVUAGgXJhVM0m+/91v98pNfRjtK0FbuXdkuSsEqSr8pBNtau1V3LLpDG2s2Hn5iQNJ7kjab2+fHP/6x4uLiTOcMVVVts2w7tyqvZ6Fs7fBxzzAMrSlfo4+KP9KCXQu0bv867a7drXpPvQIyX4hjVkJMgrolddOAzAEamz9Wp/Q9ReN6jPu61Mpv+JX0YJLcPnfEsx1kt9llBA4vPI2meGe8JveerNMKT9NphadpYNZA2WwU+QJm+XwBffRRrKnZ2FhD554bb3EiAAAAAAA6N959BgAAAAAAAAAAAAAAAAAA6ADS0x166aVEXXddg7KzG+T3f3Ob08lHQgErHHusoY8/Dn2uuNilhgZDiYntr9gC1qmqatLEidK6dUltWmfJkkT94hc99Kc/7ZTdLiUlJalXr14UggHolGw2m34x4Rc655hzdP/n92vmupnRjnRUK8tW6qIhF0U1Q+XuA4VggUBAb5e8rQdXPKgmf9PhJ3okvS1pnbl9Bg4cqIsuivyftbKuWdq1RXk9olsMtnbfWn205SPN3zVf6/at0666XaprrotK+Ve8M17dkrqpf2Z/jek+Rif3PVkn9jrx6/Kv1jjsDg3MGqjle5dHKOmhBmcPVrOvWcVVxVHZ/9tGdhv5dQnY+J7jFeeMXNkd0Nl9/nmz9u8399/UhAluJScnWJwIAAAAAIDOjU+AAAAAAAAAAAAAAAAAAAAAdCATJybK5yvSnj17VFNTI0lyOBxRTgV0DmPGmCul8PttWry4WZMnUzzQWdXV1Wn37hJNnJijdevi27zenDmpys316sEHm5Wfn29BQgBo34bkDNFrF7ymNfvWtPtysFUbPpfW/kVatUqqqZHcbsnhkOLjpV69pFGjDnwVFoZl/8rS9Sqt8qvOW6cHlj2gD3Z90PKJJZJmSao0t09cXJx+85vfRO21RGVt5IrBNlds1ofFH2reznlaW75WO2p2qLa5NirlX3HOOOUm5qp/Zn+N7j5aJ/c5WRN6TZDL6TK95uCcwVEpBbtu1HV64KQHlPtwbsT3PmhIzhDddeJdOqXvKcpJzIlaDqCze/11/9FPasX06ZG/rwUAAAAAoKOjFAwAAAAAAAAAAAAAAAAAAKCDcTqd6tmzp1JSUrRnzx5KwQCLHH+8+TKGhQv9mjzZuixoPyorK1VaWipJuuGGfdq3z6k338xo05oJCX6ddZZT+flZVkQEgA7j2+VgD/zvAc1cOzMqxUxHsnLLPOmReUc/MT1dmjRJuvZa6fTTJZutzXtXlq5XaaVfqypX6Y6Fd2h34+7DTyqV9LmkjW3b6+6771b//v0lScmJsYp1+LS/1nzpixlWF4Ntq9qmD4o/0Jc7vtSa8jXaWbNTNc01MgKGBWlDE+uIVW5SrooyijSZ3sd7AAEAAElEQVQ6b7S+1+d7mtR7kuKc1pfIDs4ebPmaR5IWl6Znzn5GMwbN0Lyd86Lyz/egNfvWqLKpkkIwIIwMI6DZs2NMzTocAZ1/fqzFiQAAAAAA6PwoBQMAAAAAAAAAAAAAAAAAAOigUlNTlZSUJJsFBQQApPx8p7p182rv3tAveF66NAyBEHVlZWUqLy//+nubTbrnnlKVl8do7txkU2tmZPj05ptNmjQpzaKUANDxDMkZolfPf1X3TLyn3ZWD7UqVKuOljKajnFhVJb399oGvwkLpuuukq646UBZmQmXpeu2q8Oofm/6hv679q3wB3zc3VkjaJGmVpD2mlj/EDTfcoGnTpkk6UAjWM6lKNptdUmKUisGKldejKOhisB01O/TB5gPlX6vLV2tHzQ5Vu6ujVv6VnZitovQiHdv9WJ1UcJK+1+d7SnAlRCxDJEvBTuh5gl4870UVpBVIkpaWRv9J8C0f3KJuSd10/qDzox0F6JSWLvVo505zxV5jx7qVmxtvcSIAAAAAADo/SsEAAAAAAAAAAAAAAAAAAAA6MIfDEe0IQKcybJi5UrCVK/lodmezc+dO1dTUHHbc6ZQeemiHrr66j1avDq3wo6CgWe++69PQoeYKxQCgs2mv5WCrcqXJ20MY2LJFuv126Q9/kP76V+mii4Ie9fv92rt9lZZu36lfffErrdyxUqqWVCmpTNIuSXWhpD+ya6+9Vtdff72kbwrB7F+9pshNaFB0isE8su0qVrfvFIOV1pbqg+IP9MXOL7S6bLW2V29XlbsqKuVfLodL2QnZKkwv1LF5x2py78k6ue/JSnIlRTzLdw3OCX8pmE023T3xbv1q0q/ktH/zvHfJniVh3/toAgro0jcvVXZCtib1nhTtOIcIBAKq99SrsqlSFU0VqmisUEVThWrcNeqT3keTCiYp1mmubAmIlJkzvZLM/Zyec07k768BAAAAAOgMeOcZAAAAAAAAAAAAAAAAAAAAAL4ycqShOXNCnysudqmuzlBysv3oJ6NdMwxDJSUlamhoaPWchISA/vrXEv3wh31VUhLcBfJDhzZq9my7evZMtCoqAHQa7a0cbGWopWBfOWv/fs2++GLp4ostz9RWzhin7rrzLl144YWSDi8EkySb3RaVYrAKd4Vmbf9Ca79Yoc3121VSU6LKpkr5A5EtJ5OkGHuMshKy1De9r47NO1aTCibp1L6nKiUuJeJZgtU7rbcSYhLU6G0My/rdk7vrxfNe1OTekw+7bWnp0rDsGSqP36Npr0zT3B/N1dDcoWHZw+v3HlbuVdFYcfixb/19ZVOlPH5Pq2se1+M4vf/995Uenx6WzIAV3n039NLsgy64wPwsAAAAAABdGaVgAAAAAAAAAAAAAAAAAAAAAPCVsWPNlXoZhk2LFrl18snxFidCJBmGoeLiYnk8rZc3HJSR4deTT27XD35QqMrKI380f/LkOr39drxSU/kIPwAcSXspB1uVG/EtwytduuD2C3Th2d8uBKuU3XH449I3xWBJ2l/rszRGlbtKX5Z9qaX7l2pDzQaVNpaqxlMTlfIvp92prIQs9UnroxHdRmhSwSSdXnS60uLSIp6lrew2uwZmDdTSPdYXdJ3d/2w9N+05ZSVktXh7SU1JyGsOyx2m0/qeJkl6aP5Dbcr3bTXNNTrjxTM0/6r56pnas9XzAoGA6jx1hxR7tfTX75Z91TbXWpb1oAW7Fujvy/6uO064w/K1ASts3OjRhg3BlSB/19ChbhUWxlmcCAAAAACAroF3FAEAAAAAAAAAAAAAAAAAAADgK8cf7zI9u3ChXyefbGEYRJTP59PmzZvl9wdfTNKzp1dPPLFdV17ZR42NjhbPOf/8Gr34YrJcLnOFcwDQFR0sB/vVxF/pgf89oNfWvhbRcrCV3SK2VXg5JI2TdJLUkNcgSUpOaL0Q7KADxWD1MlsMVuup1ZdlX2rJ/iXaWL1Ruxp2qdpTHbXyr4z4jAPlX7kjNKH3BJ1eeHqrJVcd1eCcwZaWgrkcLj106kO6aexNstlsrZ6Xk5ijek/9EdfKTczVqYWn6rS+p+mUvqcoLzlPknTLB7dYlveg3XW7Ne6ZcfrxsT9Wk6/pm6Kv75R9+QxrC+/aYm352mhHAFr12mseSeZeI591Vvv57wwAAAAAgI6GUjAAAAAAAAAAAAAAAAAAAAAA+EpenlPdu3tVWhoT8uzy5a0XJqB9c7vd2rJliwKB0AtnBg9265FHdurGGwvk8x36M3DLLVX6859T5XBQCAYAZgzOGaxXzn9F90y8J6LlYGtyJJ9dchph3yo8HJKGSpokKf3AoS21W5SUEKueyUcuBDvoYDFYQEmqaKUYrN5Try/3faml+5dqffX6A+VfzdXyBSJfBOOwOZQRn6GC1AIN7zZcEwsmakrhFOUk5UQ8SzQMzh5s2VrHZB6jV85/RSO6jTjqub856Tf6/pvfP+RYrCNWEwsm6rTC03Rq31M1NHeo7LbDnwtZWWL2bXvq9+j+/90flrXDYUj2kGhHAFr17rstFx8H48ILQ39NDQAAAAAADqAUDAAAAAAAAAAAAAAAAAAAAAC+Zdgwc6VgK1bw8eyOqKGhQdu2bWvTGuPH1+vXv96tX/6yhyTJbg/od7+r0s9/nmFFRADo8iJdDtbslDZnSAP3h22L8EiTNFzSaEnJh960tXareiSWy+6IDXo5m92mbgn1qvfY9P7WL7S4fLE2VG/Qjvodqmquilr5V1pcmnqn9dbQ3KE6seeJOqPoDHVP6R7xLO2JVaVgV464Un854y9KdCUGdf4lQy9RUUaRZq6bqThnnE7sdaIm9Jqg+Jj4I875Db9W7F1hQeKOzWl36gfDfhDtGECLSkt9WrIkztRsnz4ejRgR/OMNAAAAAAA4FO86AwAAAAAAAAAAAAAAAAAAAMC3jBxp6MMPQ5/butWlmhq/UlMd1odCWFRXV2vXrl2WrHXOOdXat8+pp5/O0dNP1+iHP6QQDACsFslysJXdOkgpWJqkoZL6S+ohydbyaU3+Ju1s3K8+qfmtLtXoceuT3Yv16a4lWla+QcXVO7WvqUoew2t97qOwy67kmGT1TO6ukT1G68ReJ2pK0RT1Su0V8SwdweCctpWCJbuS9fRZT+uSoZeEPDsmf4zG5I8JaWbD/g1q9DaGvFdnM33AdOUl50U7BtCimTObFQgEVxD4XVOneiS5rA0EAAAAAEAXQikYAAAAAAAAAAAAAAAAAAAAAHzL2LF2U3OGYdOiRR6demq8xYkQDuXl5SorK7N0zauu2q8f/jBOxx6bbum6AIBDRaIcbFWudPEaS5cMj2pJ6yW5JTVL6iOplX7StZVb1Sc1X26fW5/uWqpPdy3R0vIN2ly9Q/uaqtTs90Qq9ddssik5Jll5CXkqSinSyMyRGp87Xj2Ten59TlaqS7n5RbLZzT1H6wp6pfZSYkyiGrwNIc+OzR+rl2e8rL7pfcOQrGVLSpdEbK/27IbRN0Q7AtCqWbNaaZkMwgUXcOkyAAAAAABtwStrAAAAAAAAAAAAAAAAAAAAAPiW4493mZ5duNCvU0+1MAzCorS0VJWVlZav27t3gZKTky1fFwDQsnCWg63MtWSZyNj/1ddiSXGShkoaIynn0NMum/Mruf3Nckep/CspJknd4rupKKVIwzOG68RuJ6ogueCos/trPJKKKQY7ArvNrkHZg7S4dHFIc3eMv0MPfO8BuRzmn/+asXTP0oju1x4NyBqgyb0nRzsG0KKqKr+++CLO1GxurlcnnBBrcSIAAAAAALoWSsEAAAAAAAAAAAAAAAAAAAAA4Ftyc53Kz/do9+7QyxGWLbOFIRGsYhiGduzYofr6ekvXtdls6tu3r+Lj4y1dFwAQnIPlYL+a9Cs98PoterXsvwq08SF5ZTdrskWcWwfKwRZLKpL0PUndD9xU7akL+/Y22ZToTFRuQq4Kkws1InOETsg9QX1T+rZp3f01HtlUrByKwVo1JGdI0KVguYm5euHcF3Ra4WlhTtUySsGk60ZdJ5uN1w5on95+u1leb4Kp2TPO8MjhiLE4EQAAAAAAXQulYAAAAAAAAAAAAAAAAAAAAADwHcOG+UyVgq1cyUe02yvDMLR161a53W5L17Xb7SoqKpLLFfrPCwDAWoOyB+nlzzJ1z6fSAxOlV4fIdDnY7hSpIl7KbLI2Y0QVf/U1RNIUSUnWLp/oTFROfI4Kkws1PHO4xueOV1FykexhKu0qr/FIFIO1anD24KDOO73wdP1z+j+Vm5Qb5kQt8xt+rdi7Iip7txfxznhdPuLyaMcAWvXWW+ZnZ8zg/hkAAAAAgLbiHWcAAAAAAAAAAAAAAAAAAAAA+I5Rowx98EHoc9u2uVRd7VdamsP6UDDN5/OpuLhYPp/P0nVjYmJUVFQkh4N/3wDQLuzdK731lgZ5pZffkO75X9vKwVblSidtD/78Jqckax9qrLFG0hZJU3WgICxESTEJyk/M1sCMPhqXO1in9TpewzP6qawpVZV1XovDHtmBYrDNysnvRzHYdwzOOXIpmNPu1IMnP6ifHv9T2W3R+2e3Yf8GNXobo7Z/e3DJkEuUFpcW7RhAi5qaDH3ySayp2ZQUv047Lc7iRAAAAAAAdD2UggEAAAAAAAAAAAAAAAAAAADAd4wda67kKRCwaeFCj04/Pd7iRDBr3z6PXnqpTKecYm1LS3x8vPr06SM7hSQA0H78/e+S95uSqkHlbSsHm9cj+FKwmYOk/zXrQPlWe9Qk6XVJOyWdJqmFpzqJMfHqnpitgem9NTZ3iE7rNU6jsge2+liXl1gnKTkKxWBeSZuV2/OYiO7b3g3LHdbqbYXphXp5xssakz8mgolatnTP0mhHiLobxtwQ7QhAq2bPdquhIcHU7GmnueVyJVqcCAAAAACArodSMAAAAAAAAAAAAAAAAAAAAAD4jnHjYkzPLl7s1+mnWxgGpm3e3KSpU20qLu6hP/0poNNPr7Vk3eTkZBUUFFiyFgDAQq+80uJhs+Vgjx4n/fKLI5/TGCPdOkV6ZpSJvAFJvq++PJLqJDVIqpBULmnvV18BE2u3ZqHkqLGr15V5GpTdR2NzB+vUXuM0LndIyEWXNrtNeYm1CihVVXUeC0MeXXmNVzbbRuX0oBjsoO7J3XV2/7P17qZ3Dzl+6dBL9cTUJ5QSmxKlZIdaWtq1S8HGdB+jUd3N3GEAkfHmm+YfdM49N4TmTQAAAAAA0CpKwQAAAAAAAAAAAAAAAAAAAADgO3JynOrZ06OdO10hzy5dyoXQ7cGCBXWaPj1OZWUHCt7uuquHMjK2a8yYxjatm5mZqby8PCsiAgCsVFcnbdhwxFO+XQ72m4nSK0cpBytPkv41TLpsVcu3r8qVLj5fWp9tMrNNUsxXX/GSUls4xy2pRNI6SRskNZvc61v8GwwVvd9Db778J7lc5otQJclmt6t7Yo0UhWKwfdVeSRSDfdsL576gm96/SZ9s+0R5yXm67fjbdPGQi2WztZ/np0v3dO1SsOtHXx/tCECrfL6APvoo1tRsXJyhc86JszgRAAAAAABdU2j/+wYAAAAAAAAAAAAAAAAAAAAA6CKGDfOamluxom3lGmi7996r0WmnJXxdCCZJXq9dt95aoE2bzF3kLkndunWjEAwA2qvlyyXDCOrUQeXSS29Iax+XLlkt2QKtn3vdWdL6rEOPBST9epI06po2FIIFK07SMZLOlXSbpLMlWbDnfz5bqMtvvFeBwBH+8EE6WAyWnhx6mWpb7av2at+ujRHft71Ki0vTv8/7t0p/Vqql1yzVJUMvaVeFYH7Dr+V7l0c7RtSkxaXpoiEXRTsG0KpPPnGrstJpanbSJLeSkrhkGQAAAAAAK/AKGwAAAAAAAAAAAAAAAAAAAABacOyx5koytm93qarKb3EaBOuZZ6o0Y0ay6uoch91WV+fQ9df31t69oRe39ezZU1lZWUc/EQAQHUuXhjwycP835WDHlupA29d3NLqkM78vPTZWuuUM6aQfSjH3SPedJPkOf6gJrxhJoyRdL+kcSYltW+6VN+foj3/5Z9tziWIwBGdjxUY1ehujHSNqrhh+hRJiEqIdA2jVG2+Yfx07fXrbSyYBAAAAAMABlIIBAAAAAAAAAAAAAAAAAAAAQAvGjjXf9LFggcfCJAjW/fdX6ppr0uTxtP5R+X37YnTddQWqqQnu4/Q2m019+vRRamqqVTEBAOGwcqXp0YH7paV/k364ouXbt2dIt5wpPTZO+qyv5I90Gdh32SUdK+lGSQPattTdv3tS8xevsiDUN8VgaRSDoRVLS0Mv7+tMrht9XbQjAK0yjIBmzzZ3/+10BjRjRqzFiQAAAAAA6LooBQMAAAAAAAAAAAAAAAAAAACAFhx3nPlCi8WLDQuT4Gj8fkPXXVele+/NUCBgO+r5W7bE6ZZbCtTcfORz7Xa7+vXrp8TERKuiAgDCpaamzUs89440eZsFWSIlQdLFkk41v4TP59c1//db+Xw+SyLZ7HblJ9YoLSk6xWDlFIO1a0tKl0Q7QtSc3OdkHZN1TLRjAK1atKhZu3ebu+8eN86t7GynxYkAAAAAAOi6KAUDAAAAAAAAAAAAAAAAAAAAgBZkZTlUUOAxNbt0qcVh0Cq3268ZM+r09NPpIc0tW5aou+7qIb+/5dudTqf69+8vlyvypSYAABPc7jYv4QhIL70hZdZbkCeSTpA0zfz4mvVb9Je/vWJZHJvdrvyk6BSDlVEM1q4t3dN1nyRfP/r6aEcAjmjmTPPlkNOmtfKiCgAAAAAAmEIpGAAAAAAAAAAAAAAAAAAAAAC0YtgwcxdGr1oVY3EStKSiwqNTTmnSrFmppub/859U/eEPeQoEDj0eGxur/v37y+l0WpASABARDocly+TVS/fMtWSpyBop6VTz43/4ywtqbGx7sdpBB4rBqpWWHK1isA0R3xdH5jf8Wr53ebRjREVeUp7OOeacaMcAjmj2bPOvYS+4INbCJAAAAAAAgFIwAAAAAAAAAAAAAAAAAAAAAGjFqFGBo5/Ugu3bXaqo8FucBt+2e3eTJk7068svk9q0zssvZ+rZZ7O+/j4pKUmFhYWy2/m4PQB0KHFxli2V1dj6bTbZlBufqzRXmuIc1u1piRMkDTI3uq+8Us/8620r08hmdyg/sVppSdEoBvOpYjfFYO3JxoqNavQe4T+uTiwrIUtVTVXRjgG0at26Zm3caK7Ya/hwt3r3phQbAAAAAAAr8S4lAAAAAAAAAAAAAAAAAAAAALRizBjzH7lesMBjYRJ8W11dncrLtyg722vJeo8+2k3vvJOm9PR09e7dm0IwAOiICgosW6o4o+Xjj+84RovPW6yPz/xYc8+eq8XTF+u9097TbUNv07FZx8reHi7Vmiopwdzo315409Io0lfFYEnRKQbbU+VTY/mmiO+Lli0tXRrtCFGzet9q5T6cq+FPDdc7G9+JdhzgMDNn+kzPnn22+VkAAAAAANCydvCbZgAAAAAAAAAAAAAAAAAAAABon447znyBxaJFfguT4KDKykqVlJTI6ZT++MedGjassc1rJiT4VVSUpPz8fAsSAgCiYtQoy5ZqrRRs+K1/V6wt9pBjBckFurz/5frnpH/qs7M+029H/1an5p+qeEe8ZXlCkihpgrnRtRu2asnydZbGkb4pBktNij36yRbbUWHI31QV8X1xuKV7um4p2EGrylZp2ivTlPb7NN36wa2q99RHOxIgSXrnHYfp2QsvjHzpIwAAAAAAnR2lYAAAAAAAAAAAAAAAAAAAAADQiowMh3r39piaXbbMZnEalJWVqbS09OvvExIC+utfS9S7d7PpNTMyfHr//UZdeGGaBQkBAFFjYSnY+/0OPxYjh5JtqUecS49N1zkF5+jPx/1Zc8+eqydOeEIX9LlA2XHZlmULyhhJCeZGZ//nC0ujHGSzO9QjqSrixWA+n09VlWUR3RMtoxTsGzXNNfrLor8o9fepOvG5EzV/5/xoR0IXtnOnV8uXm7tvLixs1tChlIIBAAAAAGA1SsEAAAAAAAAAAAAAAAAAAAAA4AiGD/eamlu1KsbiJF3bzp07VV5eftjx9HS/nnxyuzIzQ//3VFDQrM8+a9akSclWRAQARFP//lJy2+/Pl3SXKuMPPx6w22S3BX8pVqwjVhO6TdCvjv2VPj7zY73yvVd0zYBr1D+1f5szHpVT0lBzox/+N3zlRDa7Qz0SKyNeDFbZYFPAMCK6Jw7lN/xavmd5tGO0O0bA0Jc7v9T458ar20Pd9MDnD8hn+KIdC13MzJkeBQLmCq3POsvca2UAAAAAAHBklIIBAAAAAAAAAAAAAAAAAAAAwBGMGhUwNbdjh0vl5VzU31aGYWjbtm2qqalp9ZwePbx68skSJST4g1536NBGzZ0b0NChiVbEBABEm80mTZrUpiWanNLFMyS10I3iM3yq99abWtdus2tw+mDdPPhmvXHKG/pwyoe6c/idGpc9Tk6bs02ZWzXE3Njy1Rvl9Ybv+YvN4Yx4MZjH41Vz9baI7YfDbarYpAZvQ7RjtGtlDWX61We/Uvxv43Xmi2dqQ/mGaEdCFzFrlvnLjM8/P0yPYQAAAAAAdHGUggEAAAAAAAAAAAAAAAAAAADAEYwZ4zA9u3Ch18IkXY9hGCouLlZDw9FLJAYOdOuRR3bI6Tx6idukSXWaO9elnj3jrIgJAGgvrrmmTeN3nSJtyWz99s/2fNam9Q/KT8zXpUWX6pmJz+jzsz7XH8b+QWf0OENJziRL1pckdZfkCn2sudmjtRu2WJejBdEpBvNEbC8cbumepdGOEHFxzjhtvXmrbhpzk1JiU4Ke8xk+fVD8gQY+MVB9Hu2jpxY/JcMwwpgUXVllpV/z5pm7L87L82r8+MjdjwMAAAAA0JVQCgYAAAAAAAAAAAAAAAAAAAAARzBunEs229GLplqycKHf4jRdh8/n06ZNm0Iq8Rg/vkH337/riOecf36N5sxJVGqqs60RAQDtzdSpUkGBqdFP+kiPHnfkcz7a9ZGptY8kxZWiM3ueqT+O+6MWzpivD896VDcPu0i9kru1bWGHpHxzo5u37mzb3kE4WAyWEqFiMI/fFpF90LKlpV2vFOyiwRepT0YfPXbmY6q5s0avX/C6hmQPCWmN7dXbdf371yvxwUR9/43vq7S2NExp0VW98YZbPp+5y4zPOKNZdjv3rQAAAAAAhAOlYAAAAAAAAAAAAAAAAAAAAABwBOnpDvXu7TU1u2wZH9k2o7m5WZs2bZLP5wt59uyza/R//7e3xdtuuaVKr7ySLJeLfy8A0CnZ7dI114Q8Vh0nXTH96Od9Wfal6rx1oecKUozdpZPzR+svk27X9svf1YqLX9L9467TqJyB5hbMMDe2c3fLj6NWC0gyjIhshShbsmdJtCNIkjLiM3TR4Iv05NQnNSpvVFj3un709Yd8P2PQDK2+YbV2/99ufX/I9xXnjAt6LbfPrZfXvKz8R/I15IkhemPdG1bHRRf19tvmS71mzHBYmAQAAAAAAHwb72QCAAAAAAAAAAAAAAAAAAAAwFGMGGGuFGzVKqfFSTq/hoYGbd68WUYbWkJ+9KP9uvTS/V9/b7cH9PvfV+rRR9PlcPAxegDo1K65RkpPD2nk1inSztSjn+c1vPqs9DNzuYLQ7PFoW22WfJ5m2Ww2Dc/ur3vGXq0lF/1LO380W09OvlNTeo2Xyx4T3IJp5nLs3VdhbjAEht+nnXUZqm9sDvtekuSiuyZq/IZfy/csj8reMfYYTSqYpN9+77da/OPF2nfbPr1y/iu6bvR1+vAHH6pfRr+w7Duy20iNzR/b4m3dU7rrxRkvquGuBj019Sn1SesT0tpry9fq/JnnK/X3qbrx/RtV6661IjK6oIYGQ59+Gnw53belpfl06qnmZgEAAAAAwNHxbiYAAAAAAAAAAAAAAAAAAAAAHMWxxwZMze3a5VJZmc/iNJ1XdXW1tm3b1uZ1bDbp9tv36tRTaxQXZ+gf/6jWz3+eYUFCAEC7l5UlPfpo0Ke/OVB6YUTwy3+066PQM4Wg2ePRtros+TyeQ473SMrVdUPP1wfT/qL9P/5Yr5/xB112zJnKiDtCm5nLXIbGRre5wSAZfp921meoLkKFYJLkcsVGbC8calPFJjV4GyK3YfkAxa+6ScdtfUUbflSiz674TL+Y8AuN7j5aDvs37XBZCVl6/9L3lZWQZXmEG8bcIJvNdsRz7Ha7rh19rbbeulXrb1yvM4vOlNMefKFwbXOtnlj8hNL+kKbjnzlec0vmtjU2upj33nOrqcncJcanntqsmJgj/4wDAAAAAADz+N9OAQAAAAAAAAAAAAAAAAAAAMBRjB3rOPpJrViwwKNp0/jo9tGUl5errKzMsvUcDunBB3epvr6HJk1Kt2xdAEAHcNll0syZ0rvvHvG0vUnSNWeHtvSXZV+q1lOrFFdKGwIeWXOzR9uUqT7JFXK6Dm/2SnYlakbRyZpRdLJ8hk/z9qzSrK2fa9a2z7WlZtc3J8aY29/d7Dn6SSYZfv+BQrCGyBWCxca6FJtWELH9cKile5aGd4PGDDlKTlbfwCSd3Gesppyapr59m2WzSU7De8TRoowivXPxO/reC9+T22dNGV5qbKouGXJJSDMDsgZo9qWz5TN8+v0Xv9fjix/X3vq9Qc0GFNCC3Qs08fmJyk7I1nWjr9PdE+6Wy2myFRBdxptvmiu+lqTzzqMQDAAAAACAcDJX4w0AAAAAAAAAAAAAAAAAAAAAXci4cS7ZbOYuml60yLA4TedTWlpqaSHYQf3799KkSamWrwsA6ACeflpKb70UMiDpx2dLFQmhLesL+PTpnk/bli0Izc0ebavLlM9z5IIup92pifnH6uEJ/6fNl72ltZe+pgePv0nHdxsm+czt7Yox2SZ2FAcKwdIjWggmSRkJhmx2LqOLlqWlFpeC+Z3S9onKXnWvzin7SH/vv1CL7rhXb94zSTf+IF6FhQcKwSSpoaHhqMsd3/N4/fvcf8sma0qOfjj8h0p0JZqaddqdunvi3drzsz2ad+U8ndDzBNltwf/sljeW64H/PaCE3yXo9H+drjX71pjKgc7P6w1ozpxYU7Px8YbOPjvO4kQAAAAAAODb+G0mAAAAAAAAAAAAAAAAAAAAABxFaqpDffseuZSjNcuX87Ht1hiGoe3bt6uystLSdW02mwoLC5WcnGzpugCADiQvT3rtNSm25dKT50ZK7x1jbuk5u+a0IVjwmps92h5EMdhBNptNgzL66s7RV2jeBc/p7hFXmdo3MTHe1NyRRKsQLCYmRmlZeRHdE4dauqftpWCxdf0Vv+oGjdvyku5PXKXPf/SUPvn1+frtDd113Di3XK6Wy3v9fr/8fv9R158xaIYePu3hNueUpOtGX2fJOsf3PF5fXPmFau6s0U/G/URpcWlBz/oDfs3ZOkdDnxyqgv9XoMcWPibDoKgY3/j4Y7eqq52mZidPdisxkde4AAAAAACEE6+8AQAAAAAAAAAAAAAAAAAAACAII0b4TM2tXBljcZLOwTAMbd26VfX19Zaua7fb1a9fP8XHW19oAgDoYE45RXrlFSnm0MfibWnST6aYX3Ze2TzVeGrali1I7q+LwUIv06qvbDS1Z5LFpWABv6FdUSgEs9ls6pXpkCM2NaL74lCbKzeHPJMel64LBl2gv5/9d22/dbvmff8jLbzvej1zx1CdO9WvjIyjF30dVFVVFdR5PznuJ7p57M0hZ/22SQWTNCh7UJvW+K4kV5IemfKIqn5epVkXz9Kw3GEhze+o2aFbPrxFCb9L0IUzL9Su2l2W5kPH9MYb5kvipk9vuYQPAAAAAABYh1IwAAAAAAAAAAAAAAAAAAAAAAjCyJHmLn4uLY3R3r3mCsU6K5/Pp02bNsntdlu6bkxMjI455hi5XC5L1wUAdGDTp0tvvSV9VRbpt0mXnyvVx5pf0hfw6dPST63JF4QDxWBZIReDFW8zV/6Tkpxoaq4lAb+hnfVpqo1wIZgkdU+3Kz6rKOL74lCpQZSyOe1OTeg1QQ+c9IAWXr1Q5beX67ULXtPVx16tgrQCFRQky2Yzt39tbW1Q59lsNj1y+iOadsw0cxtJumHMDaZng3HOMedo5XUrVfazMl027DLFO4Mv8Gv2N2vmupnq+UhPDXx8oF5d82oYk6I9M4yAPvjA3OslpzOgGTPiLE4EAAAAAAC+i1IwAAAAAAAAAAAAAAAAAAAAAAjCuHEO07Pz53ssTNKx7dvn0Rtv7JDPZ21RWnx8vPr16yeHw/y/JwBAJzV1qvT559KAAXrkeGluQduXnLN7TtsXCYGZYrA167eY2qtPr3xTc98VzUKwvAyn0rsPjPi+ONzPT/h5i8f7ZfTTjWNu1KyLZ6nijgr970f/090T79bY/LFy2A99Ppeenm56/6ampqDPddgdemnGSxqbPzbkfXITczV9wPSQ58zIScrRC+e+oPq76vXM2c+oML0wpPkN+zfo4jcuVvKDybru3etU7a4OT1C0S/PnN6u0NMbU7PHHu5WZyestAAAAAADCjVIwAAAAAAAAAAAAAAAAAAAAAAjCuHGxstsDpmYXLTIsTtMxbd7cpBNPNHT11QXauDHWsnWTk5NVWFgou52PyAMAWjFmjFbP+Zd+eao1ZSbz936pWm+tJWsFK5RisJKde7R9R6mpfYr69jA1921RLQRLdyqz+4CI74uWXTHiCs3+/mxdMuQSXT78cv3trL9p263btOnmTfrrmX/VOceco5TYlCOuYbfb5XQ6Te0fCATU3Bz8z2FCTILeveRd9UnrE9I+Vx97tVwOV6jx2sRut+uqY69S8S3F2nzzZp3d/2zF2IMve6r31OvpZU8r4w8ZGvO3Mfpk2ydhTIv24vXXzZczT5vG61oAAAAAACKBdzwBAAAAAAAAAAAAAAAAAAAAIAjJyXYVFnpMzS5fzke3Fyyo04QJTm3eHKf6eoduuKG39uwJvrSgNZmZmSooKLAgIQCgM/P4Pbps9tXy2PyWrOeToRVf/EU2m82S9YJ1sBjM7z3yc5KPPplvan2bzabC3m0rBQv4De1siGIhWD6FYO2JzWbTmf3O1EszXtLz05/Xj0f9WL3Teoe8TkJCgukMlZWVIZ2fk5ijDy79QOlx6UGdb7fZdc2oa8xEs0xRRpHeueQdNf6yUQ+e/KDykvKCng0ooCV7lujkF05W1h+z9Iv//kJunzuMaRFN771n7jWYzRbQBRdEtvgOAAAAAICuineWAQAAAAAAAAAAAAAAAAAAACBIw4f7TM2tWtX28quO7L33anTaaQkqK/vmn8O+fTG67roC1dQ4TK+bm5urvLzgCw8AAF3XfZ/dp5VlKy1d851Fr6pgw/yoFINtO0ox2PMvv2dq7QH9eis+Ps5sNAX8vgOFYPUUgsFa6enBFXS1pK6uLuSZY7KO0ayLZ8nlOHoJ0tR+U9UrtZeZaJZz2p2688Q7VfqzUi26epEmFkyU3Rb8ZaQVTRV68IsHlfS7JJ38z5O1Ys+K8IVFxK1Z41Fxcayp2REjmtWrV9d+XQsAAAAAQKRQCgYAAAAAAAAAAAAAAAAAAAAAQRo1ytzcnj0xKi01VyjW0T3zTJVmzEhWXd3h5V9bt8bp5pt7ye0OvUylZ8+eys7OtiIiAKCTm7dznv7w5R8sX/fjfg41n3GuemU5Il8M5m7W9laKwVau2aT5i1eZWnfyCSaf7OhAIdiuhgwKwRAWycnJpmc9Ho8Mwwh5bkLBBP1z+j+Pet4NY24wEyvsxuSP0edXfK66O+t02/G3KT0u+GI1f8CvT7Z/opF/G6mej/TUn+f/2dQ/Q7Qvr77aepnk0Zx9dtd8PQsAAAAAQDRQCgYAAAAAAAAAAAAAAAAAAAAAQRo37vBiq2DNn2/+AuyO6v77K3XNNWnyeFr/6Pry5Ym6884e8vuDW9Nms6lPnz5KTU21KCUAoDOr99Trh2/9UEbA+jIbf8Cvtza8peTcAVEpBmtqpRjsF7953PSak080Vwp2sBCsJgqFYN3SKATrKmJjY03PNjQ0mJq7eMjF+v3Jv2/19r7pfXVa4WlmY0VEgitBfzrtT6r8eaXe//77GtltpGwK/v5qV+0u/WzOzxT/u3id9+p5KqkuCWNahNO77zpNz150UYyFSQAAAAAAwJFQCgYAAAAAAAAAAAAAAAAAAAAAQRozxiW7PWBqdvFi68tI2iu/39D111fp3nszFAgcvXDgv/9N1YMP5ilwlH+0drtdRUVFSkxMtCgpAKCzu33O7dpStSVs67+29jVJajfFYO99NFfv/+dLU2vFxDh18sQxIc9FtRAs3amsHhSCdRXJycmmZ6uqqkzP3nHCHbp21LUt3nbtqGtlt3WcyzTP6HeGll27TPtu36cfjfiREmOCf17t8Xv01oa31PvR3jrmr8fo3yv/HcaksNr27V6tXBlnarZ//2YNGmS+lA8AAAAAAISm4/y2CQAAAAAAAAAAAAAAAAAAAACiLCnJrn79PKZmly3rGh/fbm42NGNGnZ56Kj2kuVdfzdSzz2a1ervT6VT//v0VG8vF6ACA4Hyw+QM9tfSpsO7xybZPVN5QLin6xWB7SvfqqlsfML3OmaecoMyMtJBmAoY/uoVg+RSCdSUZGRmmZxsaGkzP2mw2/fXMv2raMdMOOT44e7BuGnuT6XWjKSshS89Ne071v6jXC9NfUP+M/iHNb6rYpMvevkxJv0vSVbOuUkVjRZiSwiozZ5q/n5461WthEgAAAAAAcDRd411lAAAAAAAAAAAAAAAAAAAAALDI8OE+U3OrVsVYnKT9qajw6OSTGzVrVqqp+Ucf7aZZs9IOOx4bG6v+/fvL6XS2MSEAoKuoaKzQVe9cFfZ9/AG/3trw1tffJ+cOUK/MyBeDVVRWacqld2lfeaXpNa645OyQzg8Yfu2qT6cQDBHjcrlkt5u7JNLv98vv95ve22l36s2L3tRTU5/S5cMv1z0T79Enl3+ihJgE02u2F5cNv0wbb96orbds1bkDzpXL7gp6tsHboOdWPKfsP2Vr1NOj9FHxR2FMiraYNcthevaCC3gdBgAAAABAJFEKBgAAAAAAAAAAAAAAAAAAAAAhGDUqYGqurCxGO3d6LU7TfpSUuDVxol9ffpnUpnXuvTdfX3zxzRpJSUkqLCw0XQABAOiabnz/Ru2p3xPcyV9I2mh+r9fWvnbI98ndIlsMVl9fr5tvvlmrVq02vUZ+Xo6mnnZi0OdHtRAsjUKwriwuLs70bFVVVZv2ttvsunb0tXp++vO6/6T7lZOY06b12ps+6X305kVvqumXTXro1IfUI7lH0LMBBbRs7zJNeXGKMv+Qqdvn3K4mb1MY0yIU+/f7tXChuf92unf3aty4WIsTAQAAAACAI+FdUQAAAAAAAAAAAAAAAAAAAAAIwbhxTtOzCxZ0zlKwuro67dy5TU1NbS8/8ftt+ulPe2rt2jilp6erd+/eFIIBAELy8uqX9eraV4MfKJf0sqTnJG0Pfb9Pt3+qfQ37DjmW3G2AemaFvxhs165duuyyy7Ro0aI2rXPPbVcpJia45zgBw6/d9WlRKQTLTXMqqweFYF1ZWlqa6dna2lrrgnRidrtdPxv/M+386U4tu2aZTup9khw2R9Dzle5KPTT/ISU9mKTJz0/WktIlYUwbHRv2b9D9n9+vvyz8i6rd1dGOc1RvvOGWz2fu8Wjq1GbZ7ZEpuQQAAAAAAAfwzigAAAAAAAAAAAAAAAAAAAAAhGD0aJccjoCp2cWLDYvTRF9lZaVKSkqUlubXU0+VKDvbmuIzuz1T+fn5lqwFAOg6dtfu1g3v32BueIek5yX9TdJqSf7gxoyAobfWv3XY8ZTcAeqZGb5isJkzZ+r8889XcXFxm9bpU5CvKy+dFtS5AcOv3Q1pqq73tGlPM3LTnMqmEKzLa0spWFNTk3VBuoiReSP1yeWfqP4X9brzhDuVGZ8Z9KwRMPR5yeca8/cxyn84X3/88o/yGb4wpo2Mj4o/0qDHB+nez+7VrR/eqqFPDtX68vXRjnVEb79t/nFoxozgC+EAAAAAAIA1KAUDAAAAAAAAAAAAAAAAAAAAgBAkJtrVr5+5IozlyzvXR7jLyspUWlr69ffdu3v1xBMlSkwMskWlBRkZPr3/fqMuuCDdiogAgC4kEAjoyneuVLW7um0LlUp6Q9L/kzRHUtnRR15b91qLx1O6DVDPTLulxWALFy7UpZdeqvvvv18NDQ1tXu9P992imBjnUc8LGH7trk9TdV00CsFiKASDJMlut8vpPPrPa0sCgYDcbrfFibqGOGecHjzlQe2/Y7/+c9l/NDpvtGwK/n6ttL5UP//450r4bYKmvTJNWyq3hDFt+Hj9Xl397tUK6JuS6F21u3TmS2eqrD6IB4soaGgw9PnncaZmMzJ8Ovlkc7MAAAAAAMC8zvWOMgAAAAAAAAAAAAAAAAAAAABEwPDhPlNzK1fGWJwkenbu3Kny8vLDjg8Y4Najj+6Q02mEvGavXs369NNmTZ6cbEVEAEAX8+SSJzVnyxzrFqyTNE/Sk199fSppp6QWHuI+2/5Zq4UwKd0Gqmemo01R3G63Zs2apUsvvVRXX321Vq1a1ab1Dvr++VM045yTj3pewDAOFILVR6sQ7JiI74v2KzEx0fRsVVWVhUm6plP6nqLF1yzW/tv368fH/lhJrqSgZ72GV+9sfEdFjxWp6C9F+sfyf8gwQn/dEC3vbnpXu2p3HXZ8e/V2nfXyWWrwtL2o0WrvvONWU5O5S4lPO61ZTqd1pZYAAAAAACA4lIIBAAAAAAAAAAAAAAAAAAAAQIhGjQqYmisvj1FJidfiNJFlGIa2bdummpqaVs8ZN65Bv/3t7pDWHTKkUXPnBjRsmPmSBwDoSp5//nnZbLawfP361782lelHP/pR2DI9//zzR9x7c8Vm3TbnNlO5g1Im6XNJz0r6k6TXdKAwrESSVzICht5c/2ar4yndBqhXljOkLXfu3Km33npLP/nJTzRx4kTdfffdlpWBSVL3btn66x/uOOp5AcPQ7obUqBSC5VAIhhakp6ebnq2rq7MwSdeWkZChv539N9XdVaeXZ7ysAZkDQprfUrVFV75zpZIeTNLlb12uffX7wpTUOk8sfqLV25aULtElb1wiv+GPYKKje/NNc69dJem88ygEAwAAAAAgGkL7TTIAAAAAAAAAAAAAAAAAAAAAQMcdZ/6j2AsWeFVQEGNhmsgxDEPFxcXyeI5eCnLmmTUqL3fqoYfyjnruxIn1euedOKWm8hF3AEDofIZPl711mZp8TZHZsEnSuq++JMkuKU265617tOWULerbt6+6deum3Nxc5ebmKjk5WXFxcYpN662ega3aurdZXq9XXq9XdXV1qqqqUlVVlXbv3q0dO3Zo+/btWrdunSorK8P2R0hMjNesfz+s9LSUI54XMAyVNqSqui46hWA5FIKhBUlJSaZnPR6PDMOQ3W63MBEuHnKxLh5ysXbU7NDP5vxM7258V83+5qBmm3xNemHVC3ph1QsanjtcvznpNzrrmLPCnDh0myo26b/b/nvEc97d9K5u/fBWPXbGY7LZol+o5fUG9J//xJqaTUjwa+rUOIsTAQAAAACAYPCOKQAAAAAAAAAAAAAAAAAAAACEaNQol5zOgHy+0C/0XrzY0EUXhSFUmPl8PhUXF8vn8wU9c/nlFSori9G//pXV6jkzZtTopZeS5XJRzAAAMOcPX/xBC3cvjF4AQ1KlVFFZoYdXPhy9HEFyOBx69ZkHNXrkoCOed7AQrIpCMLRDsbGxam4OrnTqu+rr65WScuRCPJjTK7WXZl4wU4Zh6PHFj+uh+Q9pR82OoOdXlq3U2a+crbS4NF0x/Ao98L0HlOQyXwJnpaeWPBXUeY8vflx90vroZ+N/FuZERzdnjls1NfGmZr/3PbcSEhItTgQAAAAAAILBu6YAAAAAAAAAAAAAAAAAAAAAEKKEBLv69zdXQrB8ecf7GHdzc7M2bdoUUiHYQbfdtldTplS3eNtNN1Xp1VcpBAMAmLdszzLd9/l90Y7RYTidTj3zyC809bQTj3gehWBo75KTk4M+NxCQtm1z6aWXMnTzzb30+OPeMCaDJNntdt087maV/KREq69brVP7niqHzRH0fLW7Wv9v4f9T6u9TNeG5CVq4K4rFj5KavE16fsXzQZ9/239u0+vrXg9foCC98Ybf9Oz06dblAAAAAAAAoXFGOwAAAAAAAAAAAAAAAAAAAAAAdETDh/u1bl3oc6tWuWQYAdntNutDhUFDQ4O2bdtmet5ul377292qqHBq8eKkr44F9JvfVOmuuzKsigkA6ILcPrcue+sy+YzQSyu7ovj4eD300EOaNOVUGb5K2Z0tX1oWzUKw7FQKwRCcjIwM7d+/v9Xba2ocWrAgUfPnJ2nevCTt2eP6+jbDqNddd0UiJSRpSO4Qzblsjjw+j34z9zd6aslTKm8sD2rWCBj6YucXOu7Z49QtqZtuGnOTfn7iz+W0R/bS2FfXvqoqd1VIMz948wfqntxd43uOD1OqIzOMgD74INbUbEyMofPOi7M4EQAAAAAACBb/OyUAAAAAAAAAAAAAAAAAAAAAMGH0aHNz+/c7tWNHxygvqa6ublMh2EEuV0CPPrpD/fq5FRtr6NlnqykEAwC02S//+0utKzfR0NkF5eTk6Nlnn9XEiRPV0NiskvoMGb7Dn48EjID2NKRErRAstyeFYAiOy+WS3f7N5ZFer7R0aYIeeyxH3/9+X02YMEC33dZLb7yRcUghmCQtXpyghoaO8Xy8M3E5Xbr/pPu17/Z9+uzyzzQuf5xsCr4oeW/9Xt396d2K/228pr44VRv3bwxj2kM9sfiJkGea/c065+VztLlicxgSHd2XXzZr794YU7MnnOBWerrD4kQAAAAAACBYka1DBwAAAAAAAAAAAAAAAAAAAIBOYuxY8xdJz5/vVe/e5i7QjpTy8nKVlZVZtl5ysqEnn9wun6+7Tj893bJ1AQBd02fbP9MjCx6JdowO4dRTT9W9996r1NTUr481NDarRBkqSKqU3XngErMDhWDJqqzzRjxjdmqMcvL7RXxfdGz19YmaNStG8+YladGiRDU2Bvf8vKnJrv/8p1bTp6eFNyBaNan3JC24eoFq3bW667936d+r/63a5tqgZn2GT+8Xv6/3i99Xn7Q+uvPEO3X1yKsPKYmz0tLSpVpcutjUbEVThc548QzNv2q+shOzLU52ZDNnmi++mzYtYGESAAAAAAAQqvD8lgMAAAAAAAAAAAAAAAAAAAAAOrlRo1xyOg1Ts4sXm5uLlNLSUksLwQ4aOzZfp5+eYvm6AICupba5Vle8fYUCorTkSNLT03X//ffrz3/+8yGFYAc1NDarpD5Dhs8X5UIwl3Ly+8kWpkIfdF5VVWn63e+667PPUoIuBDvoo4+4/2gPUuJS9PjUx1VzZ41ev+B1Dc4eHNL8tuptuva9a5X4YKIufeNS7a3fa3nGJ5c82ab5LVVbdM4r56jJ22RRouDMnu0yNWezBXTBBbEWpwEAAAAAAKHgN6UAAAAAAAAAAAAAAAAAAAAAYEJ8vF0DBnhMzS5f3j4/ym0YhkpKSlRZWWnpujabTYWFhUpOTrZ0XQBA1/STD3+ikpoS6xZMsG6p9sDlcumKK67Q7Nmzde655x7x3IPFYNEtBCuiEAymnHRSspKT/aZm//e/OIvToK1mDJqhNTes0e7/262Lh1ysOEfw/47cPrdeWvOS8h7O09AnhurtDW9bkqnaXa2XVr/U5nUW7FqgH7z1A/kNcz+voVq1yqOtW82Vgo0a5VZ+vtPiRAAAAAAAIBS8MgcAAAAAAAAAAAAAAAAAAABC8Nxzz+m5556zfN36+nrL10T4DR/u15o1oc+tXu2SYQRkt9usD2WSYRjaunWr3G63peva7XYVFRXJ5TJ3UToAAN82a8Ms/WPFP6xd9HRJx0pa+9VXubXLR0pCQoKmTZumyy+/XPn5+UHPNTQ2qyGMuVqTRSEY2sjlsuv442s1Z05KyLPr18dp5063evakHKy96Z7SXS/PeFmGYejppU/rj/P+qO3V24OeX1O+Rue+eq5SYlP0w2E/1G+/91ulxIX+MyJJL6x8QU2+JlOz3/Xm+jd1+39u159P/7Ml6x3Ja695JJl7/XX22Ya1YQAAAAAAQMgoBQMAAAAAAAAAAAAAAAAAAABCsGPHDn355ZfRjoF2YvRo6cUXQ5+rqHBq2zaPCgvbR1GWz+dTcXGxfD6fpevGxMSoqKhIDofD0nUBAF3TvoZ9+vG7Pw7P4tmSJn/1tV/SZkmbJJVIauf9KH379tV5552n8847T8nJydGOE5SsVJdyKQSDBU46yac5c0KfCwRseu+9Rl1/PaVg7ZXdbtf1Y67X9WOu1/ry9frpRz/Vx9s+ls8I7jVLbXOt/rr4r3p88eM6rsdx+uOpf9SJvU4Mev9AIKAnlzxpNn6LHlnwiPqk9dHN4262dN3vevdd85cOX3hhjIVJAAAAAACAGfzWFAAAAAAAAAAAAAAAAAAAAABMGjvWfNnVggXWFnCZtW+fR59/vtXyQrD4+Hj169ePQjAAgCUCgYCuefcalTeWh3+zLEnHS7pc0s8lff+r7/Mk2cK/fTD69++vG264QW+99ZZmzZqlyy+/nEIwdElnn22+1Ovjj3me2lEMzB6oD37wgZp+2aRfT/61chNzg54NKKD5u+Zrwj8mKPdPubrvs/vk8XmOOvfZ9s+0Yf+GtsRu0a0f3qpZG2ZZvu5B27Z5tWqVuf8uBgxo1oAB7aO4GgAAAACArswWCAQC0Q4BAAAAAAAAAAAAAAAAAAAAdBT33Xeffv3rX0c7hpYvX64RI0ZEO0aX53YbSkmRvN7QSy1+8pN6PfJIUhhSBW/z5iZNnWqT12vTv/61VWlpfkvWTU5OVkFBgSVrAQAgSf9a+S/98O0fRjuG1CypVNLur/5aJqlSUhiv0IqPj1dRUZFGjBihUaNGaeTIkcrIyAjfhmFEIRjCoXfvZpWUxIY8l5PjVWmpQw4HP48d0Zc7vtQd/7lD83fNVyDEO2Gn3amT+5ysh097WINzBrd4zoUzL9TMdTOtiHqYeGe8PrviM43NH2v52n/4Q4PuvDPR1OzPflavhx6K7mtUAAAAAAAgOaMdAAAAAAAAAAAAAAAAAAAAAAA6qrg4uwYMcGv16riQZ5ctc4QhUfAWLqzXtGmxKiuLkSTddFOBnnlmm+Li2tZqkpmZqby8PCsiAgDwtYfmPxTtCAfESurz1ddBPkn7daAcrFpSjaRaKdmfrF4xvVRZWamGhgZ5PB55PJ4Dy8TGfv0VFxen9PR05ebmfv3Vo0cPDRgwQHnpDikuRzabLbJ/zjDITKEQDOFx4olNpkrB9u2L0dKl9Ro7lhKkjuiEXifoy6u+VL2nXr/87y/1z5X/VE1zTVCzPsOnj7Z8pI+e/EgFqQW6ffztun709bJ/df+0p26P3trwVtiyN/madNZLZ2nB1QvUN72vpWvPmmX+PvaCC7jkGAAAAACA9oBX6AAAAAAAAAAAAAAAAAAAAADQBiNG+LV6dehzq1fHyDACstsjX/Lx3ns1+v73k1RX900x2cqVCbrjjp768593yGnyk+a5ubnKzs62KCUAAAcEAgEVVxZHO0brnJK6ffX1LXWq0/s/eV+9Unu1afmq0vXaXelv0xrRlpniUrceFIIhPE49NaAXXzQ3+957Ho0da20eRFaSK0mPnvGoHj3jUc3aMEv3fHqPVu8L/gVaSU2JbvrgJv1szs807Zhpevj0h/WP5f+Qz/CFMbVU3liuM188U/OumqeM+AxL1iwr82nRotALqyWpRw+PxowJvVwPAAAAAABYj9+iAgAAAAAAAAAAAAAAAAAAAEAbjB4dMDVXVeXUli1ei9Mc3TPPVGnGjORDCsEO+vTTFP3ud90VMPFH6tmzJ4VgAICwsNlsmtBrQrRjmPL6utfbvEZ694HKzzj8cbujyEyJpRAMYTV1aqIcDnPPyT/7zGVxGkTTtAHTtOr6Vdrzsz26bOhlinfGBz3b7G/Wa+teU89Heur+/90fxpTf2FixUdNfmS63z23Jem+80Sy/31zp9NSpnqgUVgMAAAAAgMPxm1QAAAAAAAAAAAAAAAAAAAAAaIOxY52mZxcsiGwp2P33V+qaa9Lk8bT+UfKZMzP0t78FX+5ls9nUp08fpaamWhERAIAWPTftOY3pPibaMUL22trXLFmnoxaDZaa41K1HIYVgCKusLJeGD28yNbthQ6yam30WJ0K0dUvqphfOe0H1d9Xr72f/XX3T+4Y07zMi9zMxd8dc/WjWj2QEjDav9fbb5ku9ZszoeI8xAAAAAAB0VrZAwMz/wwkAAAAAAAAAAAAAAAAAAADomp577jk999xzlq9bX1+vlStXBn3+8uXLNWLECMtzIHQeT0DJyYEjFm215uab6/WXvySFIdWh/H5DN91Uo6eeSg965v77d+ncc6uPeI7dbldhYaFiY2PbmBAAgOCsL1+v9fvXq7iy+JCvnbU7ox2tVdtu3abeab0tWauydL1KK/2WrBVuBwrBiigEQ0T89KdVeuSRoz/XtdsDGjq0SePH12v8+DoNGdKk/PxcZWcHX4qLjmlzxWb99KOf6sMtH0a09CtYPz/h5/r9Kb83PV9XZyg7W2puDv0+NzPTp717HXI6zZeKAQAAAAAA61AKBgAAAAAAAAAAAAAAAAAAALQDK1as0MiRI4M+n1Kw9mXECLdWrowLee7EE5s0d258GBJ9o7nZ0EUX1WnWrNSQ5hyOgP7ylxJNnFjf4u1Op1NFRUVyOp1WxAQAoE2avE3aVr3tsLKw4spildSUyAgYUcv2p1P/pNvG32bZeh2hGCwjxaU8CsEQQXPm1Oj001t+vpuf7/mqBKxeY8fWKyXl0PuD+Ph4FRYWRiIm2gGf4dOfvvyTHlv0mPbU74l2nEM8NfUpXTv6WlOz//53oy67LMHU7Pe/36AXX0w0NQsAAAAAAKxHKRgAAAAAAAAAAAAAAAAAAADQDlAK1rFdcUWD/vnP0C+iTk31qbLSIbvdFoZUUkWFR9One/TFF0mm5uPjDT377DYNHdp0yPHY2FgVFhbKTtEHAKAD8Pg92l69/ZCisI+3fqz1+9dHZP+Tep+kTy7/xNI123MxWEZKrPJ6FFIIhojyeg1lZgZUV+dQYqJfY8c2fF0E1rOnR7YjPN222WwaPHhw5MKi3Vi0e5Fum3Obvtz5ZVTLIw+y2+x695J3dWa/M0OenTGjQW++aa7Y6/XXGzVjhrlCMQAAAAAAYD1KwQAAAAAAAAAAAAAAAAAAAIB2gFKwju2xxxp0yy3mLsDesMGjY45xWZxIKilx68wzA1q3Lr5N66Sn+/Tvf29Vr14eSVJSUpJ69epFIRgAoEO7/K3L9cKqFw47PixnmArSClRcWawtVVvk8XvavNeQnCFaff3qNq/zXe2xGIxCMETTww/vVnZ2s4YObVRMTGizRUVFiouLC08wtHuNnkbd9cldemzhYwooupfcJsYk6n8/+p+OzTs26BmPJ6DsbEO1tY7Q90v0q7zcpvh47rcBAAAAAGgvnNEOAAAAAAAAAAAAAAAAAAAAAAAd3XHHmf9o9sKFXstLwerq6rRs2V7t2NG3zWtVVTl17bW99a9/bVG/finKz8+3ICEAANG1sWJji8dvGXeLrjr2KkmS3/Brd91uba7YrOLK4gNfVQf+uqVyi5p8TUHtdWbRmZbl/raM7gOlwAaVVvnCsn6oKARDtF14oaGamkZTs5WVlerevbvFidBRJLgSNDpvdNQLwSSpwdugqS9N1YKrFqggrSComQ8/dKu21lwZ9MknuxUfb67gGgAAAAAAhAelYAAAAAAAAAAAAAAAAAAAAADQRiNGuBQba6i5OfQSjMWLA/rhD63LUllZqdLSUvXrJz366A5dd12BvN62lXNUVDhUU9NN+fnpFqUEACC6dtXuavH4xIKJX/+9w+5Qr9Re6pXaSyf3PfmQ84yAoT11e74pC/tWYVhxZbHqPfWSpEuGXKJfTvxl2P4cGfkDFLBt0J7K6BaDZSTHKq9HXwrBEFUZGRmqqakxNVtfX29xGnQ0Ty55MtoRvra3fq/OfOlMfXnll0qLSzvq+W+8YZje69xzbaZnAQAAAABAeFAKBgAAAAAAAAAAAAAAAAAAAABtFBNj08CBzVqxIi7k2eXLHZbl2Ldvn/bt2/f192PHNuh3v9ul22/vZXrNjAyf3nijSZMnUwgGAOg8KpoqDjtmk02F6YVBzdttduWn5Cs/JV+Tek865LZAIKCKpgqlxKbI5XBZkvdIMrsPkAIbtKcqOsVg6SkHC8Gse04DmJGYmGh61uPxyDAM2Sm265JW7F2h+bvmRzvGIdaVr9N5r56nD3/w4REfS/z+gD74wNxjjctlaPr0WLMRAQAAAABAmPAbKgAAAAAAAAAAAAAAAAAAAACwwMiR5oo4Vq92yTACbd5/165dhxSCHTRlSq3uuGOPqTV79WrWp582a/Lk5LbGAwCg3TAMQ26f+7Dj8THxlhQC2Ww2ZSVkRaQQ7KDM/AHKS3dGbL+D0pNj1Z1CMLQjsbHmC47q6uosTIKO5MnFT0Y7Qos+3f6prn7nagUCrb9enDu3WeXlMabWP/FEt9LSuP8GAAAAAKC9oRQMAAAAAAAAAAAAAAAAAAAAACwwapTN1FxtrUMbNnhM72sYhrZt26bq6upWz7nssgpdfvn+kNYdMqRRc+cGNGxYoulsAAC0R2vK17R4PCshK8JJrBXpYrD05Fh170khGNqX5GTzZbZHej6Nzqu2uVYvrn4x2jFa9a9V/9K9n93b6u2vv26unFqSpk0zTM8CAAAAAIDwoRQMAAAAAAAAAAAAAAAAAAAAACxw3HHmSzgWLfKbmjMMQ8XFxWpoaDjquT/96V6deWZ1UOtOnFivL75wqVevOFO5AABoz77Y8UWLx3ul9IpwEutFqhiMQjC0VxkZGaZnGxsbLUyCjuJfK/+lBu/RX09F0wP/e0DPLX/usOOGEdDs2S5Ta9rtAV1wAa/3AAAAAABojygFAwAAAAAAAAAAAAAAAAAAAAALDBvmUlycYWp28eLQ53w+nzZt2iSPxxPU+Xa79Jvf7Na4cfVHPG/GjBr95z8JSk0Nf6EIAADRsGzPshaPD8gaEOEk4ZGZP0Dd0sL3OJ5GIRjaMZfLJbvd3GWTfr9fPp/P4kRozwKBgJ5c8mS0YwTl2veu1Zwtcw45tmKFR9u3mysFGz3arbw8XvMBAAAAANAeUQoGAAAAAAAAAAAAAAAAAAAAABaIibFp0KDgCrq+a/ny0Eo1mpubtWnTppBLC2JiAvp//2+HjjmmqcXbb7qpSq++miyXi4+aAwA6rw37N7R4/Ni8YyOcJHyyegxQt3Try17SkmOVTyEY2rn4+HjTs1VVVRYmQXv3xY4vtLZ8bbRjBMVn+HT+a+dr5d6VXx977TWv6fXOPttvRSwAAAAAABAGvFMLAAAAAAAAAAAAAAAAAAAAABYZOdLchdVr1rhkGIGgzm1oaNDmzZtlGIapvZKSDD3xRIm6d/+mwMxuD+h3v6vUY4+ly+HgY+YAgM5tR82OFo9P6DUhwknCKyvf2mIwCsHQUaSmppqera2ttTAJ2rsnljwR7QghqfPUaepLU7Wrdpck6b33zN/HX3ihy6pYAAAAAADAYrxbCwAAAAAAAAAAAAAAAAAAAAAWGTXK3FxdnUMbNniOel51dbW2bdtmbpNvycnx6ckntys11afYWEPPPlutu+7KaPO6AAB0BBVNFS0eH5Q9KMJJws+qYrC0pFjl9+hDIRg6hLS0NNOzbrfbuiBo18rqy/TGujeiHSNku+t2a+pLU7V83X6tXRtnao1Bg9zq359SMAAAAAAA2itKwQAAAAAAAAAAAAAAAAAAAADAIscdZ750Y/583xFvLy8v165du0yv/119+3r017+W6O2363XFFemWrQsAQHtmGIYavY2HHY93xstu75yXWmXlD1BeG4rBMpJjld+zj2yOtpeLAZFgt9vldJr7eQ0EAhSDdRHPLX9OXsMb7RimrCpbpQtfv1iym8t/9tlHfu0JAAAAAACiq3P+phoAAAAAAAAAAAAAAAAAAAAAomDoUJfi4w1Ts4sXB1q9rbS0VGVlZWZjtWratBxNmZJi+boAALRXmys3t3g8Iz4jwkkiKzN/gPrkxMjpdAQ9Y7PZlJ/hUPeCfhSCocNJTEw0PVtZWWlhErRHfsOvp5c+He0YbVIc+K909TjJ7gl59oILYsKQCAAAAAAAWIVSMAAAAAAAAAAAAAAAAAAAAACwiNNp0+DBzaZmV6w4vKQjEAiopKTE8mICm82mwsJCJScnW7ouAADt3dwdc1s83jOlZ4STRF5izjEq6pGh7NQYOZ2tl3zZ7XZlpMSqKD9R6d0HRjAhYJ2MDPNFf3V1dRYmQXv0YfGHKqkpiXaMtuu+XLozTTrpV1LKrqBGCgo8GjnSFd5cAAAAAACgTfhfNAAAAAAAAAAAAAAAAAAAAACAhUaMMLRkSehza9a45PcH5HDYJEmGYWjr1q1yu92W5rPb7SoqKpLLxYXgAICuZ2np0haPH5N1TISTRIczKVe5SbnK8XvUsH+rmn2Sx29XQDa5HH65HFJiep4csanRjgq0SWJioulZr9crwzBkt9stTIT25IklT0Q7gnVcTdKkB6QJv5U2nS0tvkHaeooUaPnnd+pUj+x2XgsCAAAAANCeUQoGAAAAAAAAAAAAAAAAAAAAABYaPVp65pnQ5xoaHFq/3qMhQ1zy+XwqLi6Wz+ezNFtMTIyKiorkcDgsXRcAgI5i/f71LR4f2W1khJNEl83hUlLuACVFOwgQRrGxsWpubjY1W1dXp9RUyvE6o21V2/TB5g+iHcN6dkMaMOvA19bvSa+/IjVmH3ba+edzWTEAAAAAAO0dVfUAAAAAAAAAAAAAAAAAAAAAYKHjj48xPTt/vlfl5R6tWLHZ8kKw+Ph49evXj0IwAECXVlJT0uLxE3qdEOEkAMItJSXF9Gx1dbV1QdCu/G3p3xRQINoxwqvvJ9JJvzrscHa2VxMnxkYhEAAAAAAACAWlYAAAAAAAAAAAAAAAAAAAAABgocGDY5SQ4Dc1++mnhk44wdBtt+XLyk6w5ORkFRYWym7nI+QAgK6tvKG8xeMjuo2IbBAAYZeenm56trGx0cIkaC+MgKFnlz8b7RiRUTjnsENTpnjkcNiiEAYAAAAAAITCGe0AAAAAAAAAAAAAAAAAAAAAANCZOBw2DRni0aJF8SHPvv56orxeuzZvjtNvftNd995bKlsbr9nOzMxUXl5e2xYBAKCTaPQeXvQT64iV085lVkBn43K5ZLfbZRhGyLN+v18+n09OJ/cNncmu2l0qb2y5HDLa0uLSlBmfqcyEzK//mhGXccj3mfGZ+t09Cfrs41Sp7xzp2H9IuWtaXrCy6LBD551HIRgAAAAAAB0Bv5ECAAAAAAAAAAAAAAAAAAAAAAsYhqGmpiYlJCRoxAi/Fi0KfQ2v1/7137/xRoZycny64YZ9pjPl5uYqOzvb9DwAAJ3JtqptCihw2PGM+IwopAEQCfHx8WpoaAhpZv9+p+bPT1RFRa0mTeL+oTNJiU1RnDNObp87bHvEOmIPK/I6rOwrPuOQY+nx6UGVU7rdhpa+F5DqHFL5EGnh/0m9vpTGPCENel1yeA+c2JwkffTnQ2aTk/2aMiUuHH9kAAAAAABgMUrBAAAAAAAAAAAAAAAAAAAAAMACdrtde/fulc/n0+DBGZKS2rzmk0/mKCfHq/PPrwp5tmfPnkpNTW1zBgAAOou5O+a2eDw/OT/CSQBESmpq6lFLwZqbbVq2LEHz5ydp3rwkbdwYL0n68Y+rNGlSJFIiUtLi0vTLCb/UPZ/ec9RzbbIpPT5dmfFflXi1UvD17b9mxGcoISZBNpstLPk/+MCturqEQ1Jqx4kHvj78f1LB/6TYWmn9uZI7/ZDZU05xKy4uMSy5AAAAAACAtSgFAwAAAAAAAAAAAAAAAAAAAACLpKenq7S0VH36VEnKtmTNBx7orqwsnyZPrgvqfJvNpt69eysxkQu+AQD4tiWlS1o83j+zf4STAIiUtLQ0lZaWHnIsEJCKi2M1b16S5s9P0pIliWputh82+7//xUUqJiLo7ol36/gex2vujrny+r2tFnylxaXJYXdEO+4h3nwz0PqNDTnSuvNbvXn6dOvzAAAAAACA8KAUDAAAAAAAAAAAAAAAAAAAAAAskpqaqr1796qgwKPERL8aGtp+Eblh2HT77T31zDPbNHx40xHPtdvtKiwsVGxsbJv3BQCgs1lXvq7F4yO7jYxwEgCRYrfb5XQ6VVYW0IIFSV8XgZWXxxx1duPGeG3f3qTeveMjkBSRdHLfk3Vy35OjHSMkfn9AH35o7nVebKyhc8/l5xgAAAAAgI7i8Pp6AAAAAAAAAAAAAAAAAAAAAIApDodDKSkpstulQYOOXOAVCrfbrptuKtC2ba5Wz3E6nerfvz+FYAAAtGJ79fYWj4/vOT6yQQBE1OefZ2ny5IG6886eeued9KAKwQ56913rntMDbfH5583av99panbCBLeSk7mcGAAAAACAjoJX8QAAAAAAAAAAAAAAAAAAAABgoYyMDEnSoEFuS9etrnbq+ut7q7z88AvBY2Nj1b9/fzmd5i4SBwCgK9jXsK/F42Pyx0Q4CYBImjQpwfTsf//rsDAJYN7rr/tNz06fHrAwCQAAAAAACDdKwQAAAAAAAAAAAAAAAAAAAADAQvHx8YqNjdXgwU2Wr717t0s33FCg+vpvPgqelJSkwsJC2e18PBwAgCNp8DYcdszlcCnGEROFNAAiZcCABPXp02xq9ssvE+T3GxYnAkJjGAHNnm3uscrhCOj882MtTgQAAAAAAMKJd30BAAAAAAAAAAAAAAAAAAAAwEI2m03p6ekaNMj6UjBJ2rAhXv/3f73k9R7Yp3fv3hSCAQBwFKW1pTIChxf7pMelRyENgEibMMHcc/P9+2O0cOHhhYJAJC1b5tGOHS5Ts2PHupWb67Q4EQAAAAAACCfe+QUAAAAAAAAAAAAAAAAAAAAAi6WlpalXL6+Sk/1hWX/lynhVVOQpPz8/LOsDANDZzN0xt8Xj3ZO7RzgJgGg49dSA6dn33/damAQI3cyZ5n8Gzznn8EJMAAAAAADQvlEKBgAAAAAAAAAAAAAAAAAAAAAWczqdSk1N1sCBTZavnZTk15tv1uuUUzIsXxsAgM5qUemiFo/3y+gX4SQAomHq1CQ5nebKkT77zGVxGiA0774bY3r2/PPNzwIAAAAAgOigFAwAAAAAAAAAAAAAAAAAAAAAwiAmJkaDBllfClZf79DFFyfqxhsrVFFRIcMwV24AAEBXsnbf2haPD+82PMJJAERDenqMRo4099x8yZIE1dX5LE4EBGfjRo/Wr481NTtkiFtFRZTaAQAAAADQ0VAKBgAAAAAAAAAAAAAAAAAAAAAWCgQC2rdvnyoqKhQbG57Crpoap2pqAtqzZ4/WrVunrVu3qra2Nix7AQDQGWyr3tbi8eN7HB/hJACiZdKkZlNzzc12ffhhvcVpgODMnOkxPXvWWZTZAQAAAADQEVEKBgAAAAAAAAAAAAAAAAAAAAAWCQQOFHXt27dPkrRsWWLY9jrrrJqv/76xsVE7duzQ2rVrVVJSoqamprDtCwBAR1RWX9bi8eN7UgoGdBVnnuk0PTtnjoVBgBC8847D9OyFF8ZYmAQAAAAAAESK+d9iAQAAAAAAAAAAAAAAAAAAAAC+ZhiGdu7cqbq6OknS1q2xWrw4KSx79e7drMGDDy/+CgQCqqurU11dnex2u1JSUpSTkyOXyxWWHAAAdBR1nrrDjsXYYxTnjItCGgDRMGFCktLSfKquDv2yyrlzY8OQCDiy0lKfliwx9zjVu7dHw4fzOhAAAAAAgI6IUjAAAAAAAAAAAAAAAAAAAAAAaCOfz6eSkhI1NX1T1PXCC5lh2+/MM6tlsx35HMMwVF1drerqasXExCgtLU1ZWVlyOBxhywUAQHu0v3G/jIBx2PHUuNQopAEQLU6nXePH1+v991OCnunTx63x4+s1fny9mppyFR8fH8aEwKFmzmxWIJBoavasszyy2ykFAwAAAACgI6IUDAAAAAAAAAAAAAAAAAAAAADayDAMJSUlyefzyev1av9+h959Ny1s+511Vk1I53u9XpWXl6u8vFyxsbHKzMxUWlqa7HZ7mBICANB+zC2Z2+Lx7sndI5wEQLSddJJP77/f+u2pqT4dd1yDxo+v1/HH1ysvz/v1bZWVMcrPz49ASuCAWbOO0gR9BOefz+XDAAAAAAB0VLyqBwAAAAAAAAAAAAAAAAAAAIA2crlcys3NVU5OjpqamvT00255POEp3Bo2rFE9e3pMzzc3N6u0tFSlpaVKSEhQdna2kpOTLUwIAED7smj3ohaPF6UXRTgJgGg7++w43X77N987nQGNGNH4dQnYwIFNcjhanq2vr49MSEBSVZVfX3wRZ2o2J8erE0+MtTgRAAAAAACIFErBAAAAAAAAAAAAAAAAAAAAAMAiNptNhhGnF190hW2Ps86qtmytxsZGlZSUyGazKSkpSTk5OYqPj7dsfQAA2oPV+1a3eHxY7rAIJwEQbccck6BJk+qUn+/R+PH1Gj26QYmJRlCzXq9XhmHIbg9P+S/wbW+/3SyvN8HU7BlneORwxFicCAAAAAAARAqlYAAAAAAAAAAAAAAAAAAAAABgoaefblJVVWJY1nY4Ajr99BrL1w0EAqqrq1NdXZ0aG2M0f362fvCDJGVmhq/cDACASNlatbXF48f1OC7CSQC0B888Uya3221qtra2VmlpadYGAlrw1lvmZ2fMoLgOAAAAAICOjFf2AAAAAAAAAAAAAAAAAAAAAGARvz+gv/41Jmzrn3BCnTIy/GFbX5I++ihRP/lJhnr0cOqss2r1739XqbnZCOueAACE0976vS0eP6HXCRFOAqA9SElJMT1bXV1tXRCgFU1Nhj75JNbUbEqKX6efHmdxIgAAAAAAEEmUggEAAAAAAAAAAAAAAAAAAACARWbObNL27a6wrT91ak3Y1j5o9uw0SZLbbdfs2Sm67LJ05eUZ+sEPqvXRRzXy+ykIAwB0LLXNtYcdc9qdSnIlRSENgGjLyMgwPdvY2GhhEqBls2e71dDgMDV76qluuVw2ixMBAAAAAIBIohQMAAAAAAAAAAAAAAAAAAAAACzy5z+H7+Lr2Fi/Tjrp8FITK5WVObVoUeJhx6uqnHrxxTRNmZKqPn28uuWWKi1bVh/WLAAAWKHWXSt/wH/Y8ZTYlCikAdAeOJ1O2e3mLq00DEM+n8/iRMCh3nwzYHr23HMpBAMAAAAAoKOjFAwAAAAAAAAAAAAAAAAAAAAALDB3rluLF8eHbf2sLJ/i481fHB6MDz5IVSBw5IvId+6M1WOPpWvUqCQNHdqo++6rVEmJO6y5AAAw64udX7R4PC8pL8JJALQnCQkJpmcrKystTAIcyucL6KOPYk3NxsUZmjYtzuJEAAAAAAAg0igFAwAAAAAAAAAAAAAAAAAAAAAL/OlP/rCsa7cHlJ7u03nnVYVl/W+bPTstpPPXrEnQr3+docLCWL388nbt3r1bXq83POEAADBhwa4FLR4vTC+McBIA7UlaWprp2draWuuCAN/xySduVVY6Tc1OnOhWUhKXDQMAAAAA0NGZ+80AAAAAAAAAAAAAAAAAAAAAAOBrmzZ5NHt2gqVrFhQ069xzq3TOOdXKzvZJkux2uwKBgAKBgKV7SVJxcaw2bIg3NZuc7NeAAfWqqpKqqqoUExOj9PR0ZWVlyW7nonQAQPSsLlvd4vEhuUMinARAe5KSkmJ6trm52cIkwKHeeMN82fT06da/TgQAAAAAAJFHKRgAAAAAAAAAAAAAAAAAAAAAtNFDD3lkGK42rxMXZ+i002p07rlVGjWqUTbbobcHAgENHjxYtbW12r9/vxobG9u850GzZ6eZnj399BrFxHzzvdfr1b59+7Rv3z7FxsYqMzNTaWlpFIQBACJuS9WWFo+Pyx8X4SQA2hO73a6YmBh5vd6QZwOBgJqamhQfb65QF2iNYQQ0e7a515UOR0AzZsRanAgAAAAAAEQDpWAAAAAAAAAAAAAAAAAAAAAA0AYVFX69+GLbCgEGD27UeedV6YwzapScbLR6XiAQUHV1tdLS0pSSkiLDMFRVVaXKyko1Nzeb3t8wpPffTzU9f9ZZ1a3e1tzcrNLSUpWWliohIUHZ2dlKTk42vRcAAKEorStt8fjEgokRTgKgvUlMTFR1dbWp2crKSuXn51sbCF3eokXN2r07ztTsuHFu5eRQVAcAAAAAQGdAKRgAAAAAAAAAAAAAAAAAAAAAtMFf/tKkxsYk0/OPPlqi732vLujzy8vLlZaWJkmy2+3KzMxUZmam/H6/ysvLVV1dLZ/PF1KG5csTVFrqCmnmoPx8j4YPbwrq3MbGRpWUlMhmsyk5OVk5OTmKizN30TsAAMGoaa457JjD5lBaXFrkwwBoVzIyMkyXgtXX11sbBpA0c2Zor+O+bdo0v4VJAAAAAABANFEKBgAAAAAAAAAAAAAAAAAAAAAmud2Gnn461vT85Mm1IRWCSVJzc7N8Pp+czkM/Du5wONStWzd169ZNHo9H+/btU21trQzDOOqas2enhZTh26ZOrZbNFtpMIBBQbW2tamtr5XA4lJqaqpycnMP+TAAAtEWjp1E+4/CCleTY5CikAdDeJCQkyGazKRAIhDzr9XplGIbsdnsYkqGrmj07xvTshReaf10KAAAAAADaF94xBQAAAAAAAAAAAAAAAAAAAACT/vnPJpWVJZqev/zy/abmysrKlJ+f3+rtLpdLPXr0kCQ1NjaqvLxc9fX1LRYeeL02ffRRiqkc0oFSsLbw+/2qrKxUZWWlYmJilJ6erqysLAoWAABtNm/XvBaPd0vsFuEkANqr2NhYud1uU7O1tbVKS0uzNhC6rPXrPdq40Vyx1/DhbvXuHWdxIgAAAAAAEC2UggEAAAAAAAAAAAAAAAAAAACACYYR0KOPmv9I9uDBjf+fvfsOj6u80/9/z5kijUYjjarl3pvopgRTDdgYYxkwxSGFABvSGxAgu9/NJvlld5MNxAQCSYBNIJBAqAaDbQiYGAMxzZgS3LDBvUiWpZFG0vQzvz9YWizbmkdnVEbv13VxJTxzPufcyLJmjjTPLR19dIfRbEtLywFLwT6pqKhII0eO/GiusbFR0Wj0o8dfeKFYra1m/x21tVGNGZMwmu1MMplUQ0ODGhoaVFhYqPLycoVCIQrCAABGXtr2Uqfro8tG93ASAH1VSUmJcSlYOBymFAyOefDBpCSf0eycOSlnwwAAAAAAgF5FKRgAAAAAAAAAAAAAAAAAAAAAGFiyJKa1a/3G89/5TkIul9msbduKRCIKBoNZzZWWlqq0tFS2bau5uVl79+7V0qUlZiEk1dWFjWcPJhaLaefOnbruurSKiz267DKvjjyyOGfXAwDkn7fr3+50/dDqQ3s4CYC+qry8XA0NDUazHR1mBb9AZx5/3G08O2+eWZkYAAAAAADom/h1SQAAAAAAAAAAAAAAAAAAAABgYP78jPHskCFJ/cu/lMqyzN/SbVpeIEmWZamiokITJkzQX/4S1J13NmvmzFb5fHYW58ho1qwW4wxd0dFh6b77KnTzzWU66qhiHXFEh3760yZt2xbL6XUBAPlhY9PGTtePG3pcDycB0Fd5PB7j1+S2bSuVSjmcCAPR9u0pvfFGgdHs2LFxHXYYpWAAAAAAAOQTSsEAAAAAAAAAAAAAAAAAAAAAIEurVsX13HNFxvPf+EZcXq9LoVDI+BzRaFS23fUSr/0JBDy6/PIyPfVUibZtS+mGG5p03HHtcrkOXHp2/PFtqqzMbQnCs88GFY1+/Lb3t98u0o9/XK7Rowt06qlt+u1vm9XSQhEDAKBzOyI7Ol0/ZcQpPZwEQF9WVGT+ur6pqcnBJBioHnwwrkzGZTRbV5d0OA0AAAAAAOhtlIIBAAAAAAAAAAAAAAAAAAAAQJauv968iCoYTOvb3/ZLkqqrq7uVo6GhoVvz/6y62qdrrinXK68EtH59TP/6r02aODHa6bF1dS2OXrszixeHOl1Pp116/vlifetbZRo82KXzzmvRAw+ElUh0vyQNAJA/wrHwPmuWy1J1cfeefwHkl+4U9ba2tjoXBAPWwoXmW30vvNDjYBIAAAAAANAXUAoGAAAAAAAAAAAAAAAAAAAAAFnYti2pBQv8xvOXXBJVKOSWJHk8HhUUFBifKxwOG88ezPjxfv385+Vat86vFSsi+trXmlVTk5AkFRbaOv303BYgNDa69dJLxQc9Lhp1a+HCUl18cUhDhqR12WVhLVvWKtumIAwABrJ4Kq6kndxnvdh38OcWAANLSUmJ8Ww8HncwCQaipqa0VqwwuyccPDipE04wv58EAAAAAAB9ExXgAAAAAAAAAAAAAAAAAAAAAJCFX/0qrmTSrFDE48nomms+vWm7urpa27ZtMzpfKpVSNBqV329eUtYVU6cGNXWqdOuttpYsCesf/4gpEMht6dZTT4Vk266sZvbu9eruu0PasaNFVVVrFAgEVFVVpeJiCmAAYKB5dcerna4PCgzq4SQA+jrLsuT1epVM7lskeDDt7S7t3RtVRUVuX48jfz3ySEypVMBodtasuCzL63AiAAAAAADQ2ygFAwAAAAAAAAAAAAAAAAAAAIAuamuzdeedhcbzc+Z0aPToT2/4Li0t1fbt25XJZIzOWV9fr1GjRhlnyobHY+mcc0I65xwplapUY2OjwuGwUqmU49davLjUeLauLixJam9vV3t7uyzLUnFxsaqrq1VYaP7nBwDoP1ZsW9Hp+qjQqJ4NAqBfCAQCCofDBz3OtqW1awv10kvFWrGiWG+8UaTrrw/rqqsoBYOZxx7Lrgj5ky64wO1gEgAAAAAA0FdQCgYAAAAAAAAAAAAAAAAAAAAAXfS733WopaXYeP7aazvftF1SUqKWlhajc7a1tcm2bVmWZZzLhMfjUU1NjWpqapRIJFRfX69IJCLbtrt97s2bfXrnnSKj2WAwrZNPbvvUmm3bam1tVWtrq9xut0pLS1VdXS2Ph7fUA0C+erP+zU7XD6k6pGeDAOgXKioq9lsKtnu3Vy+9FNCKFcV6+eVihcOffg35t795dNVVPRASeae93dayZWalxaFQSjNmUHgMAAAAAEA+4ieYAAAAAAAAAAAAAAAAAAAAANAFqVRGv/mNz3h+6tSopk71d/rYoEGDjEvBJKmpqUmVlZXG893l8/k0fPhwSVJ7e7v27Nmj9vZ2ZTIZo/MtXhwyznLmmS3y+fZ/3XQ6raamJjU1Ncnr9aq8vFwVFRU9XqoGAMitDXs3dLp+zNBjejgJgP7A7/fL5XIpk8moo8OllSsDeumlYq1YUaz33z9w8dKKFUVKpWx5PLyeRHYWLYopGjUrQ54xIy6vN+BwIgAAAAAA0BdQCgYAAAAAAAAAAAAAAAAAAAAAXfDgg1Ft2WK2YVuSrr56/0VVPp9PXq9XyWTS6Nx79+7t1VKwTwoEAgoEPtic3tLSosbGRkWj0S7PZzLS4sWlxtefPTvc5WOTyaTq6+tVX1+vwsJCVVZWqqSkhIIwAMgDOyI7Ol0/ecTJPZwEQH/x+ush/eY3pVq1qkipVNdfDzY1ebRiRUSnnBLMYTrkowULzEqUJen8810OJgEAAAAAAH0JpWAAAAAAAAAAAAAAAAAAAAAA0AU33mheFDVuXFxz5/oPeExlZaV27dpldP5kMqlEIiGfz2c0nyulpaUqLS2VbdtqampSU1OTEonEAWfeftuvbdsKjK5XU5PQ0Ud3GM3GYjFt375dLpdLRUVFqq6u/qjcDADQ/zRHm/dZc8mlEaUjeiENgP7A5wvo1VeLjWaXLEnqlFMcDoS8lkxm9PTTZvc9fr+tOXMKHU4EAAAAAAD6CkrBAAAAAAAAAAAAAAAAAAAAAOAgli+P6fXXzTddf+c7KbndB97wXVZWZlwKJkm7d+/WiBF9s+jEsixVVlaqsrJSqVRKe/bsUUtLi1Kp1D7HLl4cMr7O2We3yDLvbpMkZTIZtbe3a9OmTbIsS8XFxRo0aJAKCsw27AMAel7KTimeju+zHvBR9ghg/84+u1her61kMvsXlM89x2tFZOfZZ2MKhw9cHL0/06bFFAgUOZwIAAAAAAD0FZSCAQAAAAAAAAAAAAAAAAAAAMBB3HBD2ni2oiKlK644+GbvDwuo2trajK4TiUSM5nqax+PR4MGDNXjwYCUSCdXX1ysSici2bSWT0lNPlRqfu64u7FxQSbZtq7W1Va2trXK73QoGQyotrVIwyFvxAaAvW7VrVafr1UXVPZwEQH9SUuLR0Ue36eWXi7OeXbXKr5aWlEpLeZ2IrnnkEdt49rzzMg4mAQAAAAAAfU03fwcSAAAAAAAAAAAAAAAAAAAAAOS39esTevLJIuP5K66Iqaioa2/dHjRokPF1MpmMwuGw8Xxv8Pl8Gj58uGprazV69Gi1tYVUUZEyOteECVGNHx93OOHH0um0nnwypsGDXbrgghY9/HBYyaT5Rn4AQO78fevfO10fGRrZw0kA9DennpowmksmLS1ZYlbui4HHtjNassRnNOvxZHTBBYUOJwIAAAAAAH0JpWAAAAAAAAAAAAAAAAAAAAAAcAA33JCUbbuMZgsLbV11Vdc3bPv9fnk8nqyukclIr70W0L/92zBdc00m24h9RiAQ0MknD9P69QV6/vlWfeUrzaquTnZ5vq6uJYfpPrB4cUjt7W4tWFCqiy4KaejQtL785WY9/3xE6TQFYQDQV7yx+41O1ydXTe7hJAD6m9mzvcazTz/tYBDktZdfjmvnTrPPtalTY6qocDucCAAAAAAA9CWUggEAAAAAAAAAAAAAAAAAAADAfjQ2pnXffX7j+Xnzoho0KLuSr7Kysi4d19Dg0e9/X6m6uvH6l38ZrUWLQnrwwRJFIimTqH2GZbl08skluuOOMm3f7tYjj4R1wQUtKi5O73fG5cpo1qxwTnPFYi4tXVryqbU9e7y6884ynXpqUBMnJnTNNU1as6YjpzkAAAf37t53O10/ZvAxPZwEQH8zdWpA5eVmr6dfeKHrZcAY2B5+2Pye7dxzKSMGAAAAACDfUQoGAAAAAAAAAAAAAAAAAAAAAPtx881RRaNmb7t2uTK67jpv1nNVVVX7fSyVkpYtC+o73xmhM8+cqJtvrtHWrQUfPR6JuHXPPRGjvH2R12vp/PNDevjhUu3cmdEddzTrjDMi8ng+vRH+2GPbVVOT2zK0554Lqr3dvd/H33uvUPPnl+uQQ4p09NEd+vnPm7RrVzynmQAAndvWuq3T9VNGntLDSQD0Nx6PpRNPNCt5fe+9Qm3cGHU4EfLRokXZ3yd+6KKLfA4mAQAAAAAAfRGlYAAAAAAAAAAAAAAAAAAAAADQiVjM1h13FBz8wP0488yoDjkk+w3blmWpqKjoU2tbtvj0q18N0owZE/Xd747Uc8+VKJ12dTp/zz35uUk8GPToK18p09KlQW3dmtTPftako49ulyTNnt2S8+svXhzq8rGrVhXp//2/co0Y4dX06RG99FKDUqnclpYBAD7WFG3aZ80ll8aWj+2FNAD6mzPOMH/d9vjjlILhwFavTmjDBrP7zCOPjGnECPNCMQAAAAAA0D9QCgYAAAAAAAAAAAAAAAAAAAAAnbjrrqgaGsw3XH//+52XdnVFVVWVolGXnngipMsuG626ugm6884qNTYePM+rrwb01lttxtfuDwYPLtC//Vu5Vq4MaPXqDp1/fkoul/nH+2Cam9168cVg1nOplKXly4uVSu3VunXr9O6772rPnj2ybTsHKQEAkmTbtmKp2D7rRd6iTo4GgH3NmeM3nv3b3zwOJkE+euCBhPHsnDkUDQMAAAAAMBDwHSYAAAAAAAAAAAAAAAAAAAAA+Ce2ndHNN5u/3fqII2I644xC4/lgMKhrrx2h5cuzL6KSpNtvT+q3vzW+fL9SW1skaaRs21Zra6saGxsVi+1bBtMdTz9dqlTKrHTspJMiKitLS5ISiYTq6+tVX18vv9+viooKlZSUyLL4fd8A4JR/NPyj0/XKosoeTgKgvxozxq/x42PasCG71/OVlUmVlSVk2zav77BfTzxhfp/52c/6HEwCAAAAAAD6KkrBAAAAAAAAAAAAAAAAAAAAAOCfLFoU0/r1fuP5q65Ky7LMSqQ+dOGFKS1fbjb7yCPFuukmWz7fwCkjsCxLoVBIoVBItm1r7969am5uViKR6Pa5Fy8uNZ6dPTvc6Xo0GtX27dvlcrkUCARUVVWlQCBgfB0AwAde3Ppip+vDS4f3cBIA/dkpp0QPWgpWUGDr6KPbdcIJbZo6tU3jx8flckmtrR6FQqGeCYp+ZcuWpN5806w8evz4uA45pMDhRAAAAAAAoC+iFAwAAAAAAAAAAAAAAAAAAAAA/sn8+eazQ4cm9PnPF3U7w6WXBvX//l9akYg769mGBq8efLBZX/xiWbdz9EeWZamqqkpVVVVKpVLas2ePWlpalEqlsj7Xtm1evfGGWVlXIJDWtGmRAx6TyWTU1tamtrY2WZalYDCo6upqFRSw4R8ATKzatarT9cmVk3s4CYD+7MwzXfrDH/ZdnzAh+lEJ2JQpHSoszOxzTDgcphQMnXrwwbgkr9FsXV1SEvcIAAAAAAAMBJSCAQAAAAAAAAAAAAAAAAAAAMAnvP56XM8/7zee/+Y3k/J6fd3OEQx6dM45Yd17b8ho/o9/9OiLX+x2jH7P4/Fo8ODBGjx4sOLxuBoaGhSJRGTbdpfmlywJGV97+vTWTosi9se2bbW0tKilpUUej0elpaWqqqqSx8Nb/wGgq9btXdfp+tGDj+7hJAD6s1mziuXz2QoG0x+VgE2d2q7KyoOXzHZ0dPRAQvRHjz+efeHzhy68kHsCAAAAAAAGCr4LAAAAAAAAAAAAAAAAAAAAAACf8ItfpCQVGM2WlKT1zW8WOpbla19z6957zWaXLy/Wpk1RjR5tXnCWbwoKCjR8+HBJUnt7uxoaGtTR0aFMpvPirkxGWry41Ph6s2eHjWdTqZT27t2rvXv3yufzqaysTBUVFbIsy/icADAQbGvZ1un6iSNO7OEkAPqzYNCjxx/foCFD4nK5spu1bVupVIpiV3xKY2NaL79sdq84ZEhSxx9vdo8KAAAAAAD6H34aCAAAAAAAAAAAAAAAAAAAAAD/Z+vWpB591LxE60tfiioUcjuW5+STg6qtjRrNplIu3X672exAEAgENHr0aE2ePFnDhg1TYeG+G/TXrCnUpk1mG/erqpI67rj27saUJCUSCdXX12vNmjV677331NLS4sh5ASAfNXY0drpeW1nbw0kA9HcTJ3qzLgT7UFNTk7Nh0O898khMqZTZJ9TZZydkWYafjAAAAAAAoN+hFAwAAAAAAAAAAAAAAAAAAAAA/s/8+XGlUmZvs/Z4Mvr+9wscTiR9/vPmxV4PPBBQOm07mCb/WJalUCikcePGqba2VoMGDZLP55MkLV4cMj7vrFktcjvXD/eRaDSqbdu2afXq1br//l1at67D+YsAQD9l27aiqX2fN/0evyyLbVQAshMKhYxnW1tbnQuCvPDYY+alXhdcwHMYAAAAAAADCd8JAAAAAAAAAAAAAAAAAAAAAABJkYitP/7Rbzx/7rkdGjXK62CiD3zlK8UqKDAr9tq8uUBPPhlxOFH+sixLVVVVmjBhgiZNmqQZMyyddlpEHk8m63PV1YWdD/gJ6XRGV11VocmTi3Tcce36xS+aVF+fyOk1AaCvW793fafrFUUVPZwEQD4oKSkxno3H4w4mQX/X3m5r+fJCo9myspSmTzebBQAAAAAA/ROlYAAAAAAAAAAAAAAAAAAAAAAg6be/jaq11W08f911HgfTfKy62qezzsq+2MvjyeiMM1qUTDbnIFX+83g8uuSScv3tb0Ft2hTXf/1Xk448sqNLs2PGxDRpUiyn+V5/vUi7d/skSa+9FtC//mu5hg/36MwzI/rDH5rV3p7K6fUBoC96YesLna4PLxnew0kA5APLsuT1mpX+ZjIZtbe3O5wI/dXjj8cUjZpt5z3zzLg8HpfDiQAAAAAAQF9GKRgAAAAAAAAAAAAAAAAAAACAAS+Vyug3vzHb8C9JJ54Y1XHHFTiY6NMuvzzT5WNHjYrr6qt365ln1ummm7Zp/Pg2JRKJnGUbCIYNK9S//3u53nijSP/4R4euvrpZo0bF93t8XV2LXDnet794cWiftWTS0jPPBHXFFWUaPNilefNatHBhWKmUndswANBHrNq5qtP1iZUTezgJgHxRXFxsPNvcTDkvPrBgQdfv5/7Z+edTCAYAAAAAwEBDKRgAAAAAAAAAAAAAAAAAAACAAe8vf+nQtm0+4/mrrzbf5N0VdXUlGjFi/yVUhYW2zjmnWXff/b4ef3yDLr+8UZWV6Y8er6+vz2m+geTQQ4s0f36ZNm70atmyiC6/PKzKyuSnjjn77HBOMyQSLj39dOkBj4lE3HrooVKdd15Iw4en9LWvNWvFikhOcwFAb1vbuLbT9Sk1U3o4CYB8UV5ebjzb3t7uYBL0V8lkRs88Y1YgXVSUVl1docOJAAAAAABAX+fp7QAAAAAAAAAAAAAAAAAAAAAA0Nt+9Su38eyECXGdd57fwTT7crstXXxxh66//tObyQ89tENz5zZr1qwWBYP2fudbW1tzmm8gcrstTZsW1LRpUiJha+HCsO6916W9ey0NHZo86Hx3vPBCsSKRrn/O7t7t0x13+HTHHVJdXVi33BJWVVWVAoFADlMCQM/b0rKl0/UTR5zYw0kA5Au/3y+Xy6VMJvsS4GQyKdu2ZVlWDpKhv3j66ZhaWszuF087LaaiIl6zAwAAAAAw0FAKBgAAAAAAAAAAAAAAAAAAAGBAW7YspjfeKDSe/853UrKsgoMf2E1f+1qh5s/PKBBIa86csObObdbEifEuzWYyGYXDYYVCodyGHKB8PksXXRTSRRdJyWRKe/aUq6WlRel0OifXW7QoZDx76KEdamtrU1tbmyzLUjAY1KBBg+Tz+ZwLCAC9pLGjsdP1Iwcd2bNBAOSVwsJCRaNRo9nW1lZegw9wjzxifk9w3nnO5QAAAAAAAP0HpWAAAAAAAAAAAAAAAAAAAAAABrQbbrCNZysrU/ryl/0Optm/MWP8uvPOLTrkkDYVFGSynt+zZw+FBD3A6/VoyJAhGjJkiGKxmBoaGtTW1ibbNv88+6TWVkvLlweNZt3ujGbObPno323bVktLi1paWuTxeBQKhVRZWSmPh60GAPqnjmTHPmuF7kJZltULaQDki5KSEuNSsObmZl6DD2C2ndGTT5oVSHs8ts4/37y8GgAAAAAA9F/8pA4AAAAAAAAAAAAAAAAAAADAgLVmTVxPPWVe6vWVr8Tk9xc7mOjAzjyzQI2NEaPZeDyuVCpF4VMPKiws1IgRIyRJkUhEjY2Nam9v79Y5n3mmVMmkWbnN8ce3qbIy3eljqVRKjY2NamxslM/nU3l5ucrLyynSAdBvvNf0njLatzSzzF/WC2kA5JOysjLV19cbzZqWiSE//P3vce3ebVbsdeKJMZWXFzmcCAAAAAAA9Af8NBcAAAAAAAAAAAAAAAAAAADAgPXLXyaVyRQYzfr9tq680myDt6nq6mo1NjYazzc0NGjIkCEOJkJXBYNBBYNB2batlpYW7d27V7FYLOvzLFoUMs5QVxfu0nGJREK7d+/W7t275ff7VVlZqdLSUuPrAkBPeHHri52uDysZ1sNJAOQbj8cjt9utdLrzctUDsW1byWRSXq83B8nQ1z38cPafMx8699x9iy4BAAAAAMDAwK/sAQAAAAAAAAAAAAAAAAAAADAgNTSkdP/9Rcbzn/1sVNXVPft7mi3Lkt/vN54Ph8POhYERy7JUVlamcePGqba2VtXV1V0uidi1y6uVKwNG1/X7bZ1+eiTruWg0qm3btmn16tXavHmzOjo6jK4PALm2cufKTtcnVEzo4SQA8lFRkfl9Q1NTk4NJ0J8sWmRWBudyZTRvnll5NQAAAAAA6P969ifQAAAAAAAAAAAAAAAAAAAAANBH3HxzTNFosdGsy5XRtdf2ztuxq6urtWXLFqNZ27bV3t6uQMCsWArOsixL1dXVqq6uViqVUkNDg1paWpROpzs9fsmSUuNrnX56q4qKbOP5TCajtrY2tbW1ybIslZSUqLq6Wj6fz/icAOCkNXvWdLp+VM1RPZwEQD4KhUKKRLIvWJWkSCSiQYMGOZwIfd3bbyf0/vtmr5WnTIlr6NBChxMBAAAAAID+glIwAAAAAAAAAAAAAAAAAAAAAANONGrrjjvMN1nPnBlVbW2Rg4m6LhgMyrIs2bZZwVN9fb3GjBnjcCp0l8fj0ZAhQzRkyBDFYjE1NDQoEokok8l8dMzixSHj88+eHe5+yP9j27bC4bDC4bA8Ho9CoZCqqqrkdrsduwYAZGtzy+ZO108YfkLPBgGQl4LBoPFsPB53MAn6iwcfTEgyKwU755zOS4IBAAAAAMDAYPV2AAAAAAAAAAAAAAAAAAAAAADoaXfeGVVjo/nvWL722t59K3ZpaanxbEdHh3GhGHpGYWGhRowYoUMOOUQjR45UIBDQxo0F2rDBrMiuvDylqVPbHE75gVQqpcbGRi1Z8p4uvjisRYtalErx+QWg5+1p39Pp+rFDj+3hJADykWVZ8nq9RrOZTEbt7e0OJ0Jf98QT5veb8+aZfa4BAAAAAID8QCkYAAAAAAAAAAAAAAAAAAAAgAHFtjP69a/NN2gfeWRMp59uVs7klEGDBnVrvrGx0aEkyLVgMKjRo0drzpyxeuaZFn3pS2GVl6eyOsdZZ7XIY/4p3yWLFoX0wAMhzZlTqpEjU/rGN5r16qu5KSIDgM60Jfb9muNz++SxcvwFEMCAUVxcbDzb1NTkYBL0dZs2JfX222b3jJMmxTVpks/hRAAAAAAAoD+hFAwAAAAAAAAAAAAAAAAAAADAgLJwYVTvvltgPH/VVWkH05jxeDwqKDD/b6CUoP9xuy1Nn16qu+8OadcuS3/5S1jnnNMiv98+6GxdXTin2TIZafHi0Ef/vnOnT7fdVqbPfKZYkydH9cMfNum996I5zQBgYNveul0ZZfZZLyss64U0APJVeXm58Wx7e7uDSdDXPfhgwnh29uykg0kAAAAAAEB/RCkYAAAAAAAAAAAAAAAAAAAAgAHlxhtdxrPDhyf0+c8XOZjGXFVVlfFsKpVSLBZzMA16ks9n6eKLQ1q4sFQ7dqR1yy3NOvnkNrnd+xbijBwZ16GH5raQ6623/Nqxw9fpY+vW+fXf/12u8eMLNXVqm+bPb1Jjo3lJAgB05oUtL3S6PrRkaA8nAZDP/H6/XC6ze4lUKiXbPniZK/LDwoXmW3cvusjjYBIAAAAAANAfUQoGAAAAAAAAAAAAAAAAAAAAYMB49dWYXnzRbzz/zW8m5fGYl4o5KRQKGZcSSNLu3bsdTIPeUlbm1be/Xabnny/We+/F9ZOfNOmwwzo+enz27LC68WnSJYsWhQ56TCbj0ssvF+uaa8o1bJhHs2a16u67mxWNpnMbDsCA8NrO1zpdH18+voeTAMh3hYWFWR2/bZtPDzxQru99b4SWL4/kKBX6kvr6lF59NbvPkw8NG5bQsccWOJwIAAAAAAD0N1SGAwAAAAAAAAAAAAAAAAAAABgwbrjBvICopCStb37TvFAsF4LBoFpbW41m29raZNu2LIvfNZ0vRo4s1I9/XKgf/1h64402/fGPSZ11VktOr5lMSn/9a2lWM/G4paeeKtFTT0mh0AbV1krl5eUqKyvj8xGAkdUNqztdP6LmiB5OAiDflZSUKBqN7vfx1lZLr70W0IoVxVqxIqjt230fPXbUUU067bSeSIne9MgjcaXTAaPZ2bMTsizfwQ8EAAAAAAB5jVIwAAAAAAAAAAAAAAAAAAAAAAPCli1JPfaYeanXZZfFVFJitrk7V2pqaoxLwSSpublZFRUVDiZCX3HUUcU66ijJtksVDoe1d+9exeNxx6+zYkVQ4bDZ1oTJk6MaOzaueFzatWuXdu3apaKiIlVWVqqkpMThpADy2abwpk7XTxh2Qg8nAZDvysrKVF9f/9G/p1LSO+/4tWJFUCtWFOudd/xKp12dzi5fXtBTMdGLHnus8z//rrjgAreDSQAAAAAAQH9FKRgAAAAAAAAAAAAAAAAAAACAAeGXv4wrlSo2mvV4bF19tc/hRN3n8/nk9XqVTCaN5vfu3UspWJ6zLEvl5eUqLy+XbdtqbGxUc3Oz8efMP1u0qNR4dvbs8D5rHR0d2rp1q1wul4qLi1VdXS2/37zMD8DA0NDe0On6Z4Z9poeTAMh3Ho9HDQ0Feu65Iq1YUaxXXy1WJNK1Iqc33yzS3r0JVVT0vfsKOCMSsfX884VGsxUVKZ12mtksAAAAAADIL5SCAQAAAAAAAAAAAAAAAAAAAMh7LS1p3XOPebHQeedFNXJkwMFEzikvL1d9fb3RbCKRUCKRkM9HMcFAYFmWqqurVV1drWQyqYaGBrW2tiqdThudr63N0rJlJUazLldGs2a17PfxTCajSCSiSCQiy7JUUlKi6upqPlcBdCqSiOyz5rW8KvRQrgLAecuWVei//qs867lUyqUlS9p1ySW8nslXCxfGFI8XGc3OnBmXx9M37zkBAAAAAEDPsno7AAAAAAAAAAAAAAAAAAAAAADk2m9/G1Nrq9t4/gc/6Lu/j7mioqJb86aFYujfvF6vhg4dqsmTJ2vs2LEKBoNyuVxZnePZZ0sUj5ttSzjuuHZVV6e6dKxt2wqHw3r33Xe1fv161dfXGxeZAcg/DW0NsjP2PuuhwlDPhwEwIJx9ttd49plnsnu9hf7l0UczxrPnn8/nBgAAAAAA+EDf/ck0AAAAAAAAAAAAAAAAAAAAADgglcrot78137h/8slRHXOM38FEzrIsS4FAQO3t7Ubzra2tDidCf+P3+zVy5EhJUiQS0Z49e9TR0XHQucWLQ8bXrKsLG80lk0nt2bNHe/bsUUFBgSoqKhQKhWRZ/M50YKB6YesLna4PCQ7p4SQABorjjguoqiqpPXuyv8d44YW+e1+B7kkkMlq6tNBoNhBI6+yzzWYBAAAAAED+4adeAAAAAAAAAAAAAAAAAAAAAPLaffd1aPt2n/H897/vYJgcGTRoUNYzti29+mpAP/jBUK1YEclBKvRHwWBQY8aMUW1trYYMGaKCgoJOj2to8OiVVwJG1ygosDV9evfL6OLxuHbu3Kk1a9bo/fffVyTC5zEwEL2649VO18eVj+vhJAAGCrfb0oknHrxAtTObNxdo7VqzWfRtTz0VU2ur22j2jDNi8vvZ7gsAAAAAAD7g6e0AAAAAAAAAAAAAAAAAAAAAAJArtp3RjTeabcyWpIkT45ozp9DBRLlRVFQkt9utdDp90GPr6z16/PEyLVhQ9lFZWmVlWCeckOuU6E8sy1J5ebnKy8tl27b27NmjcDisZDIpSXryyVLZtsvo3NOmRVRcbDsZVx0dHdqyZYtcLpeKi4tVXl6tYNDv6DUA9E3vNLzT6frhgw7v4SQABpLp02099pjZ7BNPxDR5cpGjedD7HnnE/PXt3Llmr6sBAAAAAEB+ojocAAAAAAAAAAAAAAAAAAAAQN76299ieust81Kv7343JcvqHxu0y8rK9vtYMik9+2xQ3/72CJ155kT9+teDPioEk6THHitWe3uqJ2KiH7IsS4MGDdLEiRM1YcIElZWVaffuAllWxuh8dXVhZwN+QiaTUSQS0bRptk46qU0339ykvXsTObsegN73fvj9TtePH3Z8DycBMJDMmWNePrpsmcfBJOgL0umMnnzSd/ADO+Hz2TrvvAKHEwEAAAAAgP6MUjAAAAAAAAAAAAAAAAAAAAAAeeuXvzQrLZKkqqqk/uVfzDf797Tq6up91jZv9unGGwdpxoyJuvLKkVq+vES2vW/JWUuLR3/6U6QnYqKf8/l8Gjp0qP70p3Jt2BDTD3/YpNraaJfnS0tTOvHEthwmlLZt82nVqoD+/vdiXXlluYYN86iurlV//nOz4nE7p9cG0PPq2+o7XT9h+Ak9nATAQDJiRKEmT+76a6BPWrGiSMkkr0nyyYsvxrVnj9do9qSTYgqF3A4nAgAAAAAA/RmlYAAAAAAAAAAAAAAAAAAAAADy0urVCT39tHmp19e+FldhYf95y7VlWfL7/erocGnhwpAuvXS05syZoLvuqtLevQffoP6nP5ltYsfANWaMX//5n+VavdqvlSvb9a1vNWvo0MQBZ846q0Ver3lZX1csWlT6qX+PxSwtXlyiSy4p0+DBtr74xbD++tcWpdOUcQD5oDXeus+ax/Ko2FfcC2kADCQnnxwzmmtt9ei55yjkzScPP5wynj33XF6TAgAAAACAT+s/P6EGAAAAAAAAAAAAAAAAAAAAgCzccENSmYzLaNbvt/W975kXivUWt7ta06dP0g9/OEyrVgWymn3ppYDWrOnIUTLku6OPDujWW8u0ZYtHTz7Zqs9/PqxQaN9yhNmzW3KaI5ORliwJ7ffx5maP7r03pLPOKtXo0Ul997vNWrWqLaeZAOROOBZWOpPeZ720oLSTowHAWTNnmt1rSNJTT1EElS9sO6NFi3xGs5aV0UUXFTqcCAAAAAAA9HeUggEAAAAAAAAAAAAAAAAAAADIO/X1KT3wgHmp1+c+F1VlpdvBRD1j1KigJkyIGc1mMi7ddlvc4UQYaNxuS2edVaJ77w1p506X7rmnWWef3aqCAltDhyZ05JG5LZ5bvdqvzZsLunTstm0FuuWWMh19dLEOPTSq+fMbFYuZ/f0B0Dte3PJip+s1xTU9nATAQDRzZrEKC83KvV5+2etwGvSWt95KaPNms1KwY46JafBgj8OJAAAAAABAf0cpGAAAAAAAAAAAAAAAAAAAAIC8c9NNMcViZm+XtqyMrr22/27Sv+QS82Kvhx4KKJk0KzYA/pnf79Yll5Rp8eISbd+e0u9/3yy3O7fbGBYvLjWaW73ar9WrM9q4caPWrl2rHTt2KJlMOpwOgNNe2fFKp+tjy8f2cBIAA1Eg4NExx3St8NTlyuiwwzr01a826K673tett25RIpHIcUL0hAcfNH/NOGdO2sEkAAAAAAAgX1AhDgAAAAAAAAAAAAAAAAAAACCvdHTY+v3vC43nzzorqkmTihxM1LMuv7xEP/xhWm1t7qxnd+/26ZFHwrr44pDzwTCgVVb6dNZZgyQNUjQaVUNDg9ra2pTJZBy7RiolLVkSMp6fPbtFkpROp9Xc3Kzm5mZ5vV6VlZWpsrJSlsXvZQf6mn80/KPT9cOqD+vhJAAGqmnTEnrxxc4fq6lJ6MQT2zR1aps+85l2hUKfLoBqampSTU1ND6RELi1aZL5Nd948n4NJAAAAAABAvqAUDAAAAAAAAAAAAAAAAAAAAEBe+cMfompsDBjPX3tt/y7+KSnxaM6csP7yl5DR/B//aOnii53NBHyS3+/XyJEjJUmtra1qbGxUR0dHt8/7yivFamoy2yYxblxMEybE9llPJpNqaGhQQ0ODCgoKVFFRoVAoREEY0Ee81/Rep+vHDz2+h5MAGKhmz/bqv/7rg//v96d13HHtmjq1TSec0KZRoxJyufY/G4lEKAXr5zZuTOidd8wKqSdPjmvChAKHEwEAAAAAgHxAKRgAAAAAAAAAAAAAAAAAAACAvGHbGf361+Zvk54yJaZp08w2dfclV1xh6S9/MZt99tlibdsW0/Dh/f/jgL6vpKREJSUlsm1bzc3NampqUjweNzrXokUh4xyzZ4cPWNohSfF4XDt37tTOnTtVVFSkqqoqBYNB42sC6L5dbbs6XT9p5Ek9nATAQHXssQF9+9v1mjKlXUceGZXXm+nyrOlrHvQdDz2UlOQzmp0zJymJUjAAAAAAALAvfjUNAAAAAAAAAAAAAAAAAAAAgLzx6KNRbdxovrH66qttB9P0nlNPLdaECTGj2VTK0h13dDicCDgwy7JUUVGh8ePHa/LkyaqsrJTH0/WCv44Ol5591ryg6+yzW7I6vqOjQ1u2bNHq1au1detWxWJmf98AdE9LfN+/u26XW6HCUM+HATAgud2WvvOdFh17bEdWhWAfam9vz0Eq9JTHHzffonvRRV4HkwAAAAAAgHxi/iuwAAAAAAAAAAAAAAAAAAAABrjt27drzZo1WrNmjdauXav6+npFIhFFIhG1trYqk8koGAx+9E9VVZUmTZqk2tpa1dbWatSoUXK5XL39nwHklRtvNP87NWJEQp/9rN/BNL3H7bb0+c936Cc/KTSa/8tfivSTn9hyu/k91Oh5brdbNTU1qqmpUSKRUENDg1pbW2Xb+y/tW7asRNGo2+h6Rx/driFDkkazmUxGra2tam1tldvtVmlpqaqrq7MqNANgpi3RppSd2me9pKCkF9IAGMiKi4vV1NRkNNvU1KRAIOBwIvSE3btTevVVs/utESMSmjLF53AiAAAAAACQL/gpEwAAAAAAAAAAAAAAAAAAQBdFIhE988wzWrJkiZ588knt3LmzW+erqKjQzJkzdfbZZ+uss85SRUWFQ0mBgenll2NascK81Otb30rI48mfjdlf/WpAP/uZrUQiu2Ivjyej0aPj2r69QyNHlucoHdA1Pp9Pw4YNkyR1dHRoz549amtrUyaT+dRxixaFjK8xe3a4Gwk/lk6n1dTUpKamJnm9XpWVlamyslKWRbkekAsvbXup0/VBxYN6OAmAga68vNy4FKy9vd3hNOgpDz8cl22bFbrNnp2UZeXPvScAAAAAAHAWpWAAAAAAAAAAAAAAAAAAAHQimUzqnXfe0cqVK7Vy5Uq9/vrr+sc//qFEIpH1uX784x/rJz/5ifMh0WNee+013XTTTXr44YeNPgf2Z+/evbrvvvt03333ybIszZ49W1deeaVOP/10x64BDCTXX582ni0tTekb3yhyME3vGzy4QDNmtGrx4pIuHT96dEznn9+surqwKivTisd9kigFQ99RVFSkkSNHSpJaW1u1Z88eRaNR7d3r1ksvFRud0+u1deaZLU7GlPTBa8mGhgY1NDQomSzS3r0VOu20oNxuCsIAp7y0vfNSsDGhMT2cBMBAV1hYKJfLtU9paVekUinZtk2JaD+0cKHLePbCC90OJgEAAAAAAPmGUjAAAAAAAAAAAAAAAAAAwICXSqW0Zs2ajwrAVq5cqbffflvxeLy3o6GXLVmyRP/93/+tFStW5Pxatm3riSee0BNPPKHDDz9c1113nb7whS/k/LpAvti0KaknnjAv9br88piCQbNSob7s8sttLV68/8f9flszZ7bogguadMQRUbk+sa89kUgokUjI5/PlPiiQpZKSEpWUlMi2ba1e3aILL2zRk08Wq7U1u20SJ5/cptJSO0cpP/DYYwX66U9LNXJkXHPnduiyy7w64oj8+3oD9LS369/udP3Q6kN7OAkAfFAMFo1GjWbD4bDKyynj7U9aWtJ6/vlCo9nKypROPbXA4UQAAAAAACCfUAoGAAAAAAAAAAAAAAAAABhQ0um01q5dq9dff/2jArC33nrLeOMm8tOWLVv0ve99TwsXLuyV67/99tv64he/qNtvv12//e1vdeihFBsABzN/flyplNdo1uu1dfXV+bkp+9xzSzR0aEI7dny62Ovwwzs0d26zzjqrRcXF+y9Eqq+v1/Dhw3MdEzBmWZYOO6xM998vtben9NBDzbr/freWLStWImEddL6uLpzzjIsWhSRJW7YU6KabCnTTTdIRR3To/PNjuvzyIg0fblYoAQx0G5s2drp+3NDjejgJAHxQWGr6vaWWlhZKwfqZhQtjSiQCRrNnnRWX2202CwAAAAAABgZKwQAAAAAAAAAAAAAAAAAAecu2ba1fv14rV678qATsjTfeUEdHR29HQx82f/58/ehHP+oTnycvvPCCjjrqKF1zzTX6z//8T3k8vPUT6Ew4nNY99/iN5+fOjWr48PzclO3xWPrsZ9t1440+lZamNGdOWOef36zx4+Ndmm9tbc1xQsA5gYBHl11Wpssuk/bsSejuu9v00EMFeu21ImUyrn2ODwbTOuWUSE4z7dzp1apV+359eeutIr31VpF++tOMTjoponnzUvriF4MqKeG5HuiqnZGdna6fPOLkHk4CAFJZWZnq6+uNZimq738efdR89vzz931dCgAAAAAA8En8tAgAAAAAAAAAAAAAAAAAkBcymYw2bNiglStXflQCtmrVKrW1tfV2NPQT7e3tuvzyy/XQQw/1dpRPSaVS+p//+R+98sorevDBB1VZWdnbkYA+59Zbo4pEio3nf/CD/H5b9Te/WajBg7fq9NMj8vkyWc1mMhm1traqpKQkR+mA3Kiq8umaa8p1zTXShg1R3XlnVI8+6tf69R8XCM6Y0aKCguz+TmRryZLSAz6eTru0fHlQy5dL116b1owZLfr85zM677wS+XxWTrMB/V04Ft5nzXJZqi6u7vkwAAY8j8cjt9utdDqd9axt20okEvL5fDlIBqfFYraefbbQaDYYTGvWLLNZAAAAAAAwcOT3T68BAAAAAAAAAAAAAAAAAAPG8uXLddppp/V2DPRTmzdv1rnnnqu33367t6Ps17Jly3Tsscfqscce0xFHHNHbcYA+I5nM6He/KzCeP/XUDk2ZUuRgor5n7Fi/Zs9uVzptVn7U0NBAKRj6tfHj/fr5z/36+c+ll16K6O67U1q4MKDZs1tyet1MRlq0KNTl4zs63Fq4sFQLF0oVFUndd982HXtsiUpLS2VZFIQBnxRLxZS0k/usB33BXkgDAB8oKipSJBIxmm1qalJNTY3DiZALTz4ZUyRidg95xhkxFRYGHE4EAAAAAADyDT8VAgAAAAAAAAAAAAAAAAAAA9rmzZt18skn9+lCsA9t3rxZ06ZN0xtvvNHbUYA+4957o9q502s8//3vuxxM03eVlZUZz8ZiMaXTaQfTAL1n6tSgbrutTNu2eVRXF5TP58vZtdavL9R77xUaz1dXR7Rjxw6tWbNGmzZtUltbm4PpgP7t1e2vdrpeHaju4SQA8LHuvOY2LRNDz1uwwKxsWZLmznUwCAAAAAAAyFuUggEAAAAAAAAAAAAAAAAAgAFrx44dOuOMM7R9+/bejtJl4XBYZ555ptasWdPbUYBeZ9sZ/epX5m+JnjQprtmzzQt7+pOqqqpuzTc0NDiUBOgbPB5L1dWVmjBhgiZNmqTKykp5PB5Hr7F4canx7KxZLfpknPb2dm3evFlr1qzR1q1bFYvFHEgI9F8rtq/odH10aHQPJwGAjxUXFxvPxuNxB5MgV9LpjJ56qsBo1uezde65A+P+EwAAAAAAdA+lYAAAAAAAAAAAAAAAAAAAYEBqbGzU9OnT9f777/d2lKx9mH3Tpk29HQXoVUuXxvT22+abqr/3vZQsy+Vgor7L7XbL7/cbz4fDYefCAH2Mx+NRTU2NJk2apAkTJqi0tFSW1b3tFum0tGRJyHi+ri7c6bpt22ptbdXGjRu1du1a7dy5U6lUyvg6QH/11u63Ol0/pPqQHk4CAB+zLEs+n894vr293cE0yIXly+NqbDQrkj3llJhKS90OJwIAAAAAAPnI2V9jAwAAAAAAAAAAAAAAAAAA0A9kMhldcsklWrdunSPnGzt2rGbNmqVjjjlGRx55pCorK1VWVia3263m5mY1NzfrnXfe0cqVK7Vs2TK99tpr3b7mrl27dOGFF2rFihUqKChw4L8C6H9++cuM8Wx1dVKXX17kYJq+r7q6Wlu2bDGaTafTam9vVyAQcDgV0Lf4fD4NHz5c0gfFHHv27FF7e7symey+3rz2WkANDV6jDKNGxVVbGzvocel0Wk1NTWpqapLX61V5ebkqKiq6XWgG9AcbmjZ0un7skGN7OAkAfFpxcbGampqMZpuamni93cc9/HDaePbcc83vXwEAAAAAwMBCKRgAAAAAAAAAAAAAAAAAABhwfv7zn+upp57q1jlcLpcuvvhiffOb39RJJ5203+NqampUU1OjyZMn66KLLpIkrV+/Xn/4wx906623KhqNGmdYtWqVrr76av3mN78xPgfQX73zTkJLl/qN57/2tbgKCswKe/qrYDAoy7Jk27bRfENDg0aPHu1wKqDvCgQCHxVztLS0qLGxscvP24sXh4yvO3t2WC5XdjPJZFL19fWqr69XYWGhKisrVVJSQkEY8taOyI5O108eeXIPJwGATysvLzcuBWtvb3c4DZxk2xktXmx2D2lZGV14IYXuAAAAAACga/jpDgAAAAAAAAAAAAAAAAAAGFBefPFF/ehHP+rWOaZOnarXXntN99133wELwfZn4sSJuv766/Xuu+/qC1/4Qrey/Pa3v9VDDz3UrXMA/dH11yeVyWTZmvN/iorS+t73zAvF+rOSkhLj2fb2duNCMaC/Ky0t1dixY1VbW6uamhr5fL79HhuLufTMM+Z/12bPbjGe/eD6MW3fvl1r167Vpk2bKBhBXmqONu+z5pJLw0qG9UIaAPhYYWGhXNm2e/6fVCrF6+0+bNWqhLZu3f9rwAM57riYamo8DicCAAAAAAD5ilIwAAAAAAAAAAAAAAAAAAC6wO12q7q6urdjoJvi8bguv/xypdNp43NcddVVev7553X00Ud3O8+wYcP05z//WX/84x/l95sXFH3jG99QU1NTt/MA/cWuXSk9+KD535nPfz6migq3g4n6j5qamm7NNzY2OpQE6J8sy1JlZaUmTJigSZMmqaKiQh7Ppwseli8Pqr3d7GvMEUd0aPjwhBNRlclk1N7erk2bNmnNmjXaunWr4vG4I+cGelPKTime3vdzudhX3AtpAGBfhYWFxrPhcNi5IHDUQw8ljWfPOYeyNwAAAAAA0HWUggEAAAAAAAAAAAAAAAAA8E/cbrcOOeQQXXrppfr1r3+tv//974pEIvrFL37R29HQTfPnz9fGjRuNZl0ul37/+9/rxhtv3Kf8o7suvfRSLV++XCUlJUbze/fu1X/8x384mgnoy266KaZ43Oyt0JaV0TXXeB1O1H94PB75fD7jeQoIgY95PB4NHjxYkyZN0oQJE1RaWirLsrRoUcj4nLNnhx3L90m2bau1tVUbNmzQNdfU67bbmhWJpHJyLSDXXt/5eqfrVYGqHk4CAJ0zvbeXpJaWFgeTwElPPGF+H3nRRQP3HhQAAAAAAGTP2XekAAAAAAAAAAAAAAAAAADQz1iWpUmTJunoo4/WMccco6OPPlpHHXWUioqKejsaHLZ9+3b97Gc/M57/zW9+oy9/+csOJvq0Y489Vk8++aRmzpyptra2rOdvv/12ffWrX9URRxyRg3RA39HRYesPfyg0nj/77A5NnBhwMFH/U1lZqZ07dxrNplIpxWIxFRaa/xkA+cjn82n48OGSpN/9rkN33dWsBQv82rix639XPJ6MZs7MbRFIJGLplluqlEhYuuaatGbObNHnPpfRueeWyOvl986jf/j7tr93uj6qdFTPBgGA/SgrK1N9fb3RbDQadTgNnLB+fUJr1xYYzR56aEzjxnH/BAAAAAAAuo5SMAAAAAAAAAAAAAAAAADAgGFZliZMmPBR+dcxxxyjo446SoHAwC6HGSh+8IMfqL293Wj2+9//vr7xjW84nGhfJ5xwgu655x6df/75Wc+m02l997vf1fLly3OQDOg7/vd/o9q71/zr9rXXuh1M0z+FQiHt2rVLmUzGaL6+vl4jR450OBWQPyZNKtIvflGkn/88o7//vVV/+lNaCxcWq6HBe8C5E06IqLw8ndNsS5eWKJH4oPyrvd2tBQtKtWCBVFWV1Jw5Lbr0Uo9OPDEgt5uCMPRdb+x6o9P12qraHk4CAJ3zeDxyu91Kp7N7Xm9qcuvll4tVXZ1QZaUvR+lg4qGHEpLM/kzq6lLOhgEAAAAAAHmPUjAAAAAAAAAAAAAAAAAAQF6yLEvjx4/fpwCsuLi4t6OhF2zcuFH333+/0exxxx2nn//85w4n2r+5c+fq29/+tm699dasZ59//nm98MILOvnkk3OQDOh96XRGt9xi/hboY46J6pRT/A4m6p8sy1JxcbEikYjRfFtbm2zblmVRGgQciGW5dPLJJTr5ZOk3v7G1aFFY997r0l//Wqy2tn0LCuvqWnKeafHiUKfre/Z4deedZbrzTmnMmJjmzu3Qv/xLoWpri3KeCcjWu3vf7XT9mCHH9HASANi/oqKig77eTiRcevPNIq1YUawVK4q1du0H9ypVVc26/HJKwfqSxx83L5eeN+/AxbAAAAAAAAD/jFIwAAAAAAAAAAAAAAAAAEBeKC0t1ec+97mPSsCmTJmiYDDY27HQR/zyl7+UbdtZz/l8Pt17773yent2A+cvf/lLPfXUU9q4cWPWs7/4xS8oBUPeWrAgqvfeMy+oufrqjINp+reamhrjUrBMJqNwOKzy8nKHUwH5y+u1NHduSHPnSm1tKd1/f7Puv9+j5csDSqUsFRWlNW1aa04z1Nd79OqrgYMe9/77hZo/v1Dz50tTpnToggtiuuyygIYMKchpPqCrtke2d7p+yshTejgJAOxfWVnZPq+3Mxlp06aCj0rAVq4MKBrdt2h36VKXLr+8p5LiYHbuTGnlykKj2VGjEjriCAreAAAAAABAdigFAwAAAAAAAAAAAAAAAADkhaOOOkr33Xdfb8dAH9TQ0KC7777baPbKK6/UuHHjHE50cAUFBZo/f77OPffcrGeXLFmi1atX65BDDslBMqB3/epXLuPZUaMSmjfP72Ca/q2goEBer1fJZNJovrGxkVIwwFBxsUdXXFGmK66Qdu2K6+6721Vfn5Tfn9viwiefLFUmk93X0VWrirRqVZFefDGsG2/cpNLSUlVVVcnjYTsKek9TtGmfNZdcGl02uhfSAEDniouLJUnNzW698kpAK1YEtWJFserrD146/sIL3Lf0JQ89FFcmc/Bi1c7U1SVkWZSCAQAAAACA7PBTGAAAAAAAAAAAAAAAAAAAkNduvfVWxWKxrOeqq6v17//+7zlI1DXnnHOOpk+frqVLl2Y1l8lkNH/+fN155505Sgb0jhUrYnrpJfPN8d/6VlJuN5uxP6m8vFz19fVGs4lEQslkUl7vwUsNAOzf4MEF+td/LZAktbcXa8+ePWpvb1cm43xB2OLFIePZ2bNblEqltHfvXu3du1c+n09lZWWqqKiQZVnOhQQOwrZtxVL7vrYv8hb1QhoA2D/LsnTHHTW69daKrEs5t20r0Ntvt+nww4tzlA7ZWLjQvJz6wgvZwgsAAAAAALLHT14AAAAAAAAAAAAAAAAAAEDeymQyuvvuu41mv/vd76qkpMThRNkxLSV78MEH1d7e7nAaoHfdcEPaeDYUSunrXzcvFMtXFRUV3Zo3LRQD0LlAIKBRo0Zp8uTJGjZsmAoLCx0798aNBVq3zuzrYCiU0gknRD61lkgkVF9frzVr1ui9995TOByWbdtORAUO6K36tzpdryyq7OEkAHBwtbXurAvBPrR4ccLhNDDR3JzWiy+avSarrk7qpJMKHE4EAAAAAAAGAkrBAAAAAAAAAAAAAAAAAABA3nr++ee1devWrOf8fr++/vWv5yBRdqZNm6YpU6ZkPdfe3q7HHnvM+UBAL3nvvYSeeKLIeP7yy2MqLuat0//MsiwFAoGs52xbeuWVgH7+cza4A7lgWZZCoZDGjRun2tpaDRo0SD6fr1vnXLw4ZDw7c2aLvN79Px6NRrV9+3atXbtWmzdvppgUOfXi1hc7XR9ZOrKHkwDAwdXV+eVyZYxmly07wJMvesxjj8WVTJrdS86alZDbbVYKBwAAAAAABjZ+sg0AAAAAAAAAAAAAAAAAAPLWvffeazT3pS99SRUVFQ6nMXPllVcazZn+twN90S9/mVA6bbaZ2uez9f3vFzqcKH9UV1d3+dj6eo/uuKNKs2dP0BVXjNZvf1ul115ry2E6AJZlqaqqShMmTNCkSZNUUVEhj8eT1TlsW1q8uNQ4Q11duEvHZTIZtbW1adOmTVqzZo22bdumeDxufF2gM6t2r+p0fXLl5B5OAgAHN2xYoWprY0azL79cpETCdjgRsvXoo+azF1zA9l0AAAAAAGCG7yoAAAAAAAAAAAAAAAAAAIC8lEgk9PDDDxvNXnLJJQ6nMXfBBRcoEAhkPffMM89oz549OUgE9Kzm5rT+/Ge/8fz550c1dGh2BToDSSAQkNvt3u/jyaT07LNBfetbI3TmmRN1yy2DtH2776PHb7892RMxAUjyeDwaPHiwJk2apPHjx6u0tFSWdfBtIW+8UaRdu3wHPa4zQ4cmdMQR0aznbNtWS0uLNmzYoHXr1mnXrl1KpVJGGYBPWt+4vtP1KUOm9HASAOiaU04xKwWLRNxatowC3t4Ujdr6298KjGZLStKaOZNyagAAAAAAYIZSMAAAAAAAAAAAAAAAAAAAkJeWLVum5ubmrOeGDx+uE044IQeJzBQVFWnOnDlZz6VSKT3++OM5SAT0rFtvjaqtbf+lVQdz3XUUgh1MKBTaZ23TJp9uvHGQpk+fpCuvHKnnny+Rbbv2Oe7RR4OKRtM9kBLAJxUUFGj48OGqra3V6NGjFQgE5HLt+3dUkhYtChlfZ/bssPZz2i5LpVLau3ev1q1bp3fffVd79uyRbdvdOykGrG2t2zpdP3nEyT2cBAC6ZuZM8yfSJ5+kULM3LV4cU3u72b3ojBkx+XzdfBEFAAAAAAAGLErBAAAAAAAAAAAAAAAAAABAXnrmmWeM5j772c/ut1Sjt3zuc58zmjP9GAB9RTKZ0W23FRjPn3Zah446ynx+oKiurpYkdXS49NhjIV166Widc84E3XVXlZqaDlyq1tTk0b33tvZETAD7EQgENHr0aE2ePFnDhg1TYWHhR48lEi49/XSJ8blnzw47kPBjiURC9fX1WrNmjd577z2Fwy3KZBy9BPLc3o69na5PrJjYw0kAoGvOPDMov9+sRHf58sKDH4ScWbDA/EXK3Ll96/tKAAAAAACgf6EUDAAAAAAAAAAAAAAAAAAA5KWlS5cazc2ePdvhJN03ffp0+Xy+rOeeffZZZWjaQD92zz0d2rnTazz//e+zEbsr3G63li2r0OmnT9J//McwrVoVyGr+nnvM/4wAOMeyLIVCIY0bN061tbUaNGiQtmwpVipl9rWwtjaqMWMSDqf8WDQa1X33NWvixJh+8INmrVvXkbNrIT/Ytq1oKrrPut/jl2WxRQpA3+T3u/WZz5g9x/3jH341NOTuuRj7l0pl9Ne/mhVMFxbaOvdcCt0AAAAAAIA5vuMNAAAAAAAAAAAAAAAAAADyzp49e/T2229nPVdUVKQTTjghB4m6p6ioSFOnTs16rrGxUW+88UYOEgG5Z9sZ3XST23i+tjamWbPYiN1Vxx8fVHu72cf7xRcDWr+eMh+gL7EsS1VVVZo7d6R27crod79r1rRpEXk8XS8LrasL5y7g/1m8OKQNGwp1/fVlmjy5SMce265f/KJJ9fUUoOSDzeHN+sOqP+iWV27R4ncXa33jeiXS5n+2axvXdrpeWVRpfE4A6AnTpiWN5tJplxYtanc4Dbrib3+LqanJYzR7yikxFRezdRcAAAAAAJgz+64EAAAAAAAAAAAAAAAAAABAH/bss88qk+l66cWHTj75ZPl8vhwk6r7p06dr+fLlWc8988wzmjJlSg4SAbn19NMxvfOO33j+e99Ly7JcDibKb8ceW6wjj+zQm28WZT2bybh0++1x3Xhj9rMAcq+kxKOvf71MX/+6tH17THff3aGHHy484N93y8po1qyWnObq6LC0bFnJp9ZWrgxo5cqA/uM/bJ16akSf/WxKF18cVHEx21/6m2Wblunc+89VJBH51LrlsjSidITGlY/TuLJxH/zv//0zpmyM/N79P/e/uPXFTteHlwx3NDsAOG3OHJ9+8hOz2aVLXfqXf3E0DrrgkUfSxrPnnZf996MAAAAAAAA+iZ+KAAAAAAAAAAAAAAAAAACAvLNixQqjuWnTpjkbxEGnnXaa0dxLL73kcBKgZ8yfb76RuqYmqcsuo6AqW1/4QsyoFEySHnwwoOuvt+XxWA6nAuCkYcMK9e//Xqh//3fpnXc6dNddcS1YUKTNmws+ddzxx7epsjKV0yzPPhtUNNr514xk0tLSpUEtXSpdfXVaM2e26AtfyKiuroSvM/3ED5b+YJ9CMEmyM7Y2hzdrc3izlmrpPo8PKxnWaWHY2PKxen3X651ea2LlRMfzA4CTjjiiSDU1Ce3e3fUS8pEj4zr++DadfnqrpFDOsmFftp3R4sVmhfFud0YXXFBw8AMBAAAAAAAOgFIwAAAAAAAAAAAAAAAAAACQd9544w2juWOOOcbhJM458sgjZVmWbNvOas70YwH0prffTmjpUvNSr699LSGfz+tgooHhy18O6sc/Tqujw5317I4dPj32WFgXXhhyPhiAnDj00CLNn1+k66+39cILEd1zT1pPPBFQY6NXdXUtOb/+4sWhLh0Xibj18MOlevhhadCgpM49t0XXXefW2LEluQ2IbtnastVobnvrdm1v3a7nNj+3z2Neq/Pn9smVk42uBQA9xe22dNJJUT388P6LpoLBtI4/vk1Tp37wz7BhyY8ei0QiCgaDPREVkl59Na4dOwqNZj/zmZiqq/0OJwIAAAAAAAMNpWAAAAAAAAAAAAAAAAAAACCvZDIZvfXWW0azU6ZMcTiNcwKBgCZNmqQ1a9ZkNbd161bt3btXFRUVOUoGOO/665OS9r9h/kACgbS++12zDdwDXVmZV7Nnt+ihh0qN5u+6y9KFFzocCkDOud2Wpk0Lato0KZm09dhjYY0Z05HTazY2uvXSS8VZz9XXe3XXXaW69NJ1isUyCgQCqqqqUiAQyEFKdMf4ivGqb6939JxJO9np+nVLr9P1K67XuPJxGlc+TuPLx3/0/8eVj1O5v9zRHABgYvp0Ww8//PG/u90ZHX54h6ZObdMJJ7TpkEOi8uxnt2dzczOlYD3o4YdTxrPnnpt2MAkAAAAAABioKAUDAAAAAAAAAAAAAAAAAAB5ZcOGDYpEIlnPjRw5UuXlfbsw4Oijj866FEyS3nzzTZ1xxhk5SAQ4b+fOlB5+2G88/4UvRFVenn3RDD7w5S9LDz1kNvvMM8XauTOuIUMKnA0FoMd4vZYuuigkKaRUKqWGhga1tLQonXa24OKvfy2VbbuMZk89NaKSEluZjNTW1qa2tjZZlqVgMKhBgwbJ5zMrlYSzLpx8oV7c+mKPXa+xo1GNHY16efvL+zxWVlj2qZKwT/5TVVQll8vscxEAsjFnTpH+53/i+sxn2jR1apuOO65dwaDdpdmOjtyWdeLTFi/2Gs9edBH3QgAAAAAAoPsoBQMAAAAAAAAAAAAAAAAAAHll1apVRnNHHHGEw0mcd8QRR+hPf/pT1nOrVq2iFAz9xo03xhSPm5V6ud0ZXXMNZTDdMX16UOPGxbRxY2HWs8mkpTvuaNdPfsJGeCAfeDweDRkyREOGDFEsFlNDQ4Pa2tpk210rMDmQRYtCxrN1deF91mzbVktLi1paWuTxeBQKhVRZWSmPh20zveXC2gt15V+v7O0YkqTmWLNe2/maXtv52j6PBX3BjwrCDqs+TJceealGlI7ohZQA8t2QIQVatGi1MplM1rOpVEq2bcuyrBwkwyetW5fQunVm9zOHHx7T6NHZ30cBAAAAAAD8M74LBAAAAAAAAAAAAAAAAAAA8sqaNWuM5saNG+dwEueZZly9erXDSYDcaG+3deed5puoZ8/u0PjxlIJ1h9tt6eKLO4xmPR5b27enHSkMAtC3FBYWasSIEaqtrdXIkSMVCASMz7V5s0/vvFNkNBsMpnXyyW0HPCaVSqmxsVHr1q3Tu+++q8bGRr4u9YKhJUN14vATezvGQUUSEb2x+w09tOYh/ei5H2n8LeP1yvZXejsWgDzl9/uNZ5ubmx1Mgv158MGk8eycOSkHkwAAAAAAgIGMUjAAAAAAAAAAAAAAAAAAAJBXNm3aZDSXz6VgmzdvdjYIkCN33BFVc7PHeP7aa90Ophm4vva1Ink8XS/QGTs2pmuu2aVnn12vK6+sVzgczl04AL0uGAxq9OjRqq2t1dChQ1VYmF2Z4+LFIeNrn3lmi3y+TJePTyQS2r17t9asWaP33ntPLS0txtdG9uYdMq+3I2QtkU7oB0t/0NsxAOSpkpIS41mew3rG44+b31POm0dBNQAAAAAAcAalYAAAAAAAAAAAAAAAAAAAIK+YloKNHz/e4STOGzt2rFwuV9Zzph8ToCel0xndcovXeP6446I66aTsimnQuWHDCjV9etsBj/H70zr//Cb96U/v6dFHN+rSS/eqvDwtSWpsbOyJmAB6mWVZKisr07hx41RbW6vq6mp5vQf+Op7JSIsXlxpfc/bssPFsNBrVtm3btHr1am3evFkdHR3G50LXXDD5ArmU/WvX3ralZUtvRwCQp8rKyoxnY7GYg0nQmR07Ulq1qsBodsyYhA4/nFIwAAAAAADgDPNfowUAAAAAAAAAAAAAAAAAANAHmRZgjRkzxuEkzissLNSQIUO0Y8eOrOa2b9+uZDJ50KIOoDc9/HBUmzYVGc9ffXXGwTS47DJbTz217/rhh3fogguaNXNmiwIBu9PZRCKhVColj4e3qwMDhWVZqq6uVnV1tVKplBoaGtTS0qJ0Ov2p495+269t28zKNmpqEjr66O4XeWUyGbW1tamtrU2WZamkpETV1dXy+SjycNrQkqE6acRJemHrC70dJSuzxs3q7QgA8pTb7Zbb7d7n+bErbNtWIpHg+SqHHnwwrkwmYDQ7e3ZCEn82AAAAAADAGVZvBwAAAAAAAAAAAAAAAAAAAHBKPB7Xrl27jGYHDx7scJrcqKmpyXrGtm1t3bo1B2kA5/zqVy7j2dGjE7rwQr+DaXD++SUaPDghSQqFUrrkkkY9+ugG3Xvv+zr//Ob9FoJ9aPfu3T0RE0Af5PF4NGTIEE2ePFnjxo1TSUmJXK4PvsYvXhwyPu/ZZ7fIcngXjG3bCofDevfdd7Vu3TotX96oaDT7ohbs37xD5vV2hKyUFZbph6f8sLdjAMhjgYBZ6ZQk7d2718Ek+GcLF5rfk150EYXIAAAAAADAOXynAQAAAAAAAAAAAAAAAAAA5I2tW7cqk8lkPVdSUiK/v38UCpmUgknSpk2bNHbsWIfTAM548cWYXnnF/O/gt7+dlNvtczARvF5L113XrHQ6rtNOi8jny+5ra2tra46SAehPCgsLNWLECElSJBLRuHEJjRwZ15YtBVmfq64u7HC6T4vHU7roolLF4xnNmhXWJZe4NHNmUB6Pw01kA8wFky/Qd5/8rjLK/jV6b/jd7N9pSHBIb8cAkMfKysqMXytHIpF+U2je3zQ1pfX3vxcazdbUJHXiidm/tgEAAAAAANgffjIBAAAAAAAAAAAAAAAAAADyRn19vdHcoEGDHE6SO6alYA0NDQ4nAZxzww1p49myspS+9rX+UerX33zlK8WaObM160IwSbJtW5FIJAepAPRXwWBQP/1phd57z6unn27Rl74UVnl5qkuzEyZENX58PKf5Xn01oD17vGpt9eiBB0KqqyvVyJEpfeMbzXr11bacXjufDQ4O1ikjT+ntGF3yuUM/p88e+tnejgEgzwUCAePZRCIh27YdTIMPLVgQUypltt121qy4LMvlcCIAAAAAADCQUQoGAAAAAAAAAAAAAAAAAADyRlNTk9GcadFWbxg8eLDRnOnHBsi1jRsTWry4yHj+y1+OKxDgbdG5EAgE5Ha7jecpIwTQGbfb0owZpbr77pB27bL0l7+ENWdOq/z+/Zec1NW15DzXokWhfdZ27vTpttvK9JnPFGvy5Kh++MMmbdwYzXmWfDPvkHm9HeGghgSH6Nazb+3tGAAGAMuy5PP5jOfb29sdTIMPPfaY+ewFF5jfMwEAAAAAAHSGn34DAAAAAAAAAAAAAAAAAIC8sXfvXqO5iooKh5PkTnl5udGc6ccGyLVf/jKhdNplNOvz2brqqgKHE+GTQqGQ8Ww0GpVt77/kBwB8PksXXxzS44+XaMeOtG65pVknndQmtzvz0TEuV0azZoVzmiMadenZZ0sOeMy6dX7993+Xa8KEQk2d2qb585u0Z08ip7nyxfmTz5fl6ttbmO469y6V+81eZwNAtoLBoPFsc3Ozg0kgSR0dtpYtKzSaLS1N6cwzzWYBAAAAAAD2x9PbAQAAAAAAAAAAAAAAAAAAAJzS1NRkNNedDbk9zTSr6cemP9u9e7d2797d2zG6bP369b0docc1NaX15z/7jecvvDCqIUMCDibCP6uqqupWqWBDQ4NqamocTAQgX5WVefXtb5fp29+WtmyJ6Y9/7NAjjxTK77dVU5PK6bWXLw+qvd3dpWMzGZdefrlYL78s/b//Z+srX2nUD3+YUlVVldzurp1joKkprtGpI0/Vss3LejtKp755zDd15tgzezsGgAGkvLzc+DV2R0eHw2mwaFFMHR1FRrMzZsTl9XJPCgAAAAAAnEUpGAAAAAAAAAAAAAAAAAAAyBumm2pLSkocTpI7plm7U+rTX9122236//6//6+3Y+AAbrklpvZ28w3UP/iB18E06IzH41FhYaFisZjRfHNzM6VgALI2cmShfvzjQv34x1JDQ0RtbUU5LUFZvDhkNJdIWCorS6ixsUmNjY0qKChQeXm5ysrKZFmWsyH7uXmHzOuTpWDjy8fr+hnX93YMAANMQUGBXC6XMplM1rOpVEq2bfM846AFC7L/c/jQ+ee7HEwCAAAAAADwAb7zAwAAAAAAAAAAAAAAAAAA8kZzc7PRXDAYdDhJ7phmbWpqcjgJ0D2JREa33eYznj/jjA4dfrj5PLquqqrKeDadTue0yAdA/quuDmrMmDGqra3VkCFDVFBQ4Oj5m5vdevFFs9dXHk9GM2e2fPTv8Xhcu3bt0po1a/T++++rtbXVqZj93vmTz5fl6lvbmCyXpXvm3qOAz7ygFABM+f1+41nT731gX8lkRk8/bfbawu+3dc45hQ4nAgAAAAAAoBQMAAAAAAAAAAAAAAAAAADkEdPimZKSEoeT5I5p1mg06nASoHvuvrtDu3d7jee//32Xg2lwIKWlpXK5zD/e9fX1DqYBMFBZlqXy8nKNHz9etbW1qq6ultdr/jzyoaefLlUqZfY17qSTIgqF0p0+1tHRoa1bt2r16tXasmXLgH8tVh2o1mmjTuvtGJ/ybyf9m44fdnxvxwAwQJWWlhrPtrS0HPwgdMmzz8bU3Owxmj311JgCAbboAgAAAAAA5/EdBwAAAAAAAAAAAAAAAAAAkDeSyaTRXEFBgcNJcsc0ayKRcDgJYM62M7rpJrfx/KGHxjRzZqGDiXAw3SlPbG9vl23bDqYBMNBZlqXq6mpNnDhREydOVFlZmdxus+eVRYvMS1lmzw4f9JhMJqNIJKL33ntPa9as0fbt2wfs67J5h8zr7QgfOarmKP3o1B/1dgwAA1hZWZnx7EAvmnTSI4+Y36ecd17GwSQAAAAAAAAfoxQMAAAAAAAAAAAAAAAAAADkDdOCBY/H43CS3DHNalqYBuTCU0/FtGaNeanX976XlmW5HEyEgxk0aFC35vfu3etQEgD4NK/Xq6FDh2ry5MkaO3asgsGgXK6uPUds2+bVm28GjK4bCKQ1bVokqxnbthUOh/Xuu+9q/fr12r17t9LptNH1+6O5k+bK7TIvBXVKgbtAf5r7J/ncvt6OAmAAsyzL+P4+k8koHo87nGjgse2Mliwxey7weDK64AKKqgEAAAAAQG5QCgYAAAAAAAAAAAAAAAAAAPLGQCgF83q9RnOmHxsgF+bPzxjPDh6c1Je+VORgGnSFz+eTz2dentLU1ORgGgDonN/v18iRI3XIIYdo5MiRKio68PPFkiUh42tNn96qwkLz57NkMqnGxkatXbtWGzZsUFNTk2zbNj5ff1AVqNLpo0/v7Rj62Rk/0yHVh/R2DAA46PPUgfD6uvtefjmunTvNvsdy/PExVVb2ftElAAAAAADIT5SCAQAAAAAAAAAAAAAAAACAvJFMJo3m+lMpmGlWSsHQV7z5Zlx/+5v55vevfz0hn8/lYCJ0VWVlpfFsMplUPB53MA0AHFgwGNSYMWNUW1urIUOGqKCg4FOPZzLS4sWlxuefPTvczYQfi8fj2rlzp9asWaP3339fkUjEsXP3NfMOmder1z915Km68vgrezUDAHyorKzMeDafnyt6ysMPp4xnzzkn7WASAAAAAACAT6MUDAAAAAAAAAAAAAAAAAAA5A3T4itKwYCec/315huvi4vT+s53Ch1Mg2yEQiG5XOaFbPX19Q6mAYCusSxL5eXlGj9+vGpra1VdXS2v16s1awq1aZPZc0pVVVLHHdfucNIPdHR0aMuWLVq0aIN+9KMmbdoUzcl1esvcSXPldrl75dpBX1B/PO+PslxspwLQNwQCAePZ1tak0mnbwTQDz6JFXuPZefMKDn4QAAAAAACAIb6LDQAAAAAAAAAAAAAAAAAABrzulNz0NMsye/tnJpNxOAmQvR07UnrkEb/x/Be/GFNZWe8UieCDrz/FxcXG85FIRLZNcQGA3mNZlqqrqzVx4kTNmDFCN93UpBNPbJNlZfc6adasFrlz/HT06KMh/ed/lmvcuEKddFKbbr65SXv39v+S14qiCk0fM71Xrn3zWTdrVGhUr1wbADpjWZZ8Pl+XjrVtad26Qt15Z6WuuGKUTjhhst5+uyPHCfPX6tUJbdhgVux15JExjRxpXigGAAAAAABwMP3n19oBAAAAAAAAAAAAAAAAgEOmT5+uxsbG3o6R15YsWaIhQ4b0dgwMQF6v2abMVCrlcJLcSSaTRnNd3WgM5NL8+TElEmalUm53Rt//Phuve9ugQYMUiUSMZjOZjFpbWxUKhZwNBQAGyst9+t73yvW970mbNkV1111RPfKIX2vWHLy8sq4unNNsti0tWVL6f//fpb//vVh//7v0r/9q6/TTW/W5z6V10UWlKigwK4vtbfMOmae/vvfXHr3mORPP0WVHXtaj1wSArggGg9q7d2+nj+3Z49FLLxVrxYpivfRSsZqaPr0ddNGihI46qidS5p8HHkhIMvs+yZw5/ed7SAAAAAAAoH+iFAwAAAAAAAAAAAAAAADAgPPOO++ovr6+t2PktUQi0dsRMEBRCrZ/ph8bwCltbbbuuqvQeH7OnA6NGxdwMBFMFBYWyuPxGH/d3LNnD6VgAPqc0aP9+ulP/frpT6XXX2/XXXcl9NhjAe3YsW9ZyJgxMU2aFMtpntdfL9Lu3fteOxaztGRJiZYskb773ZTOPrtVl1xiafr0Yrnd/acg7LxJ5+lri76mlN0zr8Griqr0v3P+Vy6Xq0euBwDZKC8v/6gULBp1adWqwEclYBs2HPj+6bnnvPqP/+iJlPnniSfMt9Z+9rOUrgMAAAAAgNyiFAwAAAAAAAAAAAAAAAAAAOQNn89sY2Z/KgUzzWr6senPvv71r+u8887r7Rhdtn79el188cW9HSNnbr89qnDYvNTr2mvdDqZBd5SXl6uhocFoNh6PK5VKyePhrewA+qajjw7o6KMDuvlmW88806o//cnWkiXFCoc/+LpVV9eiXHdLLV4cOugxzc0e3XtvSPfeKw0fHtd553Xossu8mjKlOLfhHFDuL9f0MdP11ManeuR6t9fdrupAdY9cCwCyVVBQoCefLNWCBWVatapIiUTXSx5ffrlI8bitgoL+UwzZF2zZktSbb5oVVo8fH9chhxQ4nAgAAAAAAODT+EkqAAAAAAAAAAAAAAAAAADIG16v12iOUrD8VFNTo5qamt6OAUnpdEa33mr291OSjj8+qhNO8DuYCN1RWVlpVApm29IrrwS0fn2zLrigKgfJAMA5brels84q0VlnSdFoWg8/3Kz773fr7LPDOb1uIuHS00+XZjWzbVuBbrmlQLfcIj399LuaMKFAgwYNUmGhWeFJT5hXO69HSsEuPeJSzZ08N+fXAYDu2LatWC+/nH2pY0eHW88806K6uuyeNwa6hx5KSDK7P62rS0qiFAwAAAAAAOQWFfAAAAAAAAAAAAAAAAAAACBvmBZfJRIJh5PkjmnWgVgKhr7jwQej2rzZ/HPw6qszDqZBd1mWpaKioi4fv3u3V7fdVqWzz56gr351tP7nf7o+CwB9gd/v1iWXlGnx4hKddtpolZWVybJysyXnhReKFYm4jWYPPbRDgwcnFIlEtHHjRq1du1Y7duxQMpl0OGX3nTfpPHkt88LQrhhROkI3n3VzTq8BAE446yzz55SnnrIdTDIwLFxo/vG+8EKPg0kAAAAAAAA6x3cgAAAAAAAAAAAAAAAAAABA3igsLDSai0QiDifJHdOsph8bwAm/+pXLeHbMmITOP9/vYBo4YdCgQdq0adN+H08mXVq+PKhHHinTihXFsu2PPwdWrgxo1ao2TZlS3BNRAcBRPp9PQ4cO1dChQxWNRtXQ0KC2tjZlMs4UWC5aFDKerasLf+rf0+m0mpub1dzcLK/Xq7KyMlVWVuas0CwbZf4yzRg7Q0s2LMnZNf547h9VWlias/MDgFPOOCOoQCCt9vbsSyGff74gB4nyV2NjWi+/bPb9kSFDkjr+eD7eAAAAAAAg9ygFAwAAAAAAAAAAAAAAAAAAeaOsrMxorrW11eEkuWOa1fRjA3TX88/H9Npr5qVe3/lOUm63z8FEcEIgEJBlWbJt+1Pr77/v06OPlunxx8vU1LT/t6vffntSt9+e65QAkFt+v18jR46U9MFrtMbGRnV0dBifr7XV0vLlQaNZtzujmTNb9vt4MplUQ0ODGhoaVFBQoIqKCoVCoV4tCJtXOy9npWBXHX+VTht9Wk7ODQBOKyiwdPzxET37bPbPAe+849euXXENHkxZVVc88khMqVTAaPbssxOyLK/DiQAAAAAAAPbV+7/aAwAAAAAAAAAAAAAAAAAAwCHl5eVGcwOhFMz0YwN01w03pI1ny8tT+upXzQvFkFsflg12dFh69NGQLrlktM49d4L++MeqAxaCSdKCBcWKx+0DHgMA/UlJSYnGjBmj2tpaDR48WAUF2ZezPPNMqZJJs60+xx/fpsrKrj3nxuNx7dy5U2vWrNH777+vSCRidM3uOnfSufLmoFxlcuVk/ffp/+34eQEgl6ZNSxrNZTIuPfGEeSHlQPPYYy7j2QsuYDsuAAAAAADoGXwXAgAAAAAAAAAAAAAAAAAA5I2Kigqjud4qQjBhmtX0YwN0x7vvJrRkSZHx/BVXxFRUxFue+6qqqir96leDdPrpE/WjHw3Tm28Gujzb2OjVX/7SksN0ANA7LMtSRUWFxo8fr8mTJ6uyslIez4GLEj+0aFHI+Lp1dWGjuY6ODm3ZskWrV6/W1q1bFYvFjDNkK1QY0sxxMx09p8fy6E9z/yS/l1JRAP1LXZ3PeHbpUu6ZuqK93dby5YVGs2VlKU2fbjYLAAAAAACQLb7bAwAAAAAAAAAAAAAAAAAA8kZ5ebnRXHNzs8NJcsc0q+nHBuiOX/4yIdt2Gc0WFNi68ko2XfdlHo9H6bRX7e1uo/l77ulaSQ4A9Fdut1s1NTWaNGmSJkyYoFAoJMvqfCvPrl1erVzZ9XLFT/L7bZ1+evdKbjOZjFpbW7Vx40atXbtWO3fuVCqV6tY5u2Je7TxHz/ejU36ko4cc7eg5AaAnHHZYkYYOTRjNvviiX+m07XCi/PP44zFFo2Zbas88My6Px+zeFgAAAAAAIFuUggEAAAAAAAAAAAAAAAAAgLxRUVFhNLd7926Hk+SOaVbTjw1gau/etO691288f9FFUQ0eTGlUX/fVr5oVgknS8uXFeu+9qINpAKDv8vl8GjZsmGprazVmzBgFg0G5XB+XiyxZUmp87tNPb1VRkXNlMOl0Wk1NTVq3bp3Wr1+vhoYG2XZuymbOmXiOfG6fI+c6buhx+reT/82RcwFAT3O7LZ10UofR7K5dPr31ltnsQLJgQcZ49vzzKQQDAAAAAAA9h1IwAAAAAAAAAAAAAAAAAACQN6qqqozmBkIpmOnHBjB1881RdXSYFUa5XBldd53X4UTIhRNOCOqww8wKCGzbpdtuoxQMwMBTVFSkkSNH6pBDDtGIESPk9/u1cmXA+HyzZ4edC/dPksmkGhoaNG1au770pbCeeaZF6bRzBWGlhaU6a9xZ3T6P3+PXPefdI49FoSiA/mvGDPPSqieeSDiYJP8kkxk980yB0WxRUVp1dYUOJwIAAAAAANg/SsEAAAAAAAAAAAAAAAAADDi7d+9WJpPhnxz+M2rUqN7+Y8YANXLkSKO55uZmJRL9YwOtaSmY6ccGMBGL2brjDrMN15J0xhlRHXaYz8FEyKXPfz5mPPvAAwGlUs6VywBAf1NSUqKxY8dq2bKAFi1q0Wc/G1ZJSarL8+XlKU2d2pbDhNL77/v0wgtB/elPIZ15ZqnGjk3qyiub9eabzlx3Xu28bp/j+hnXa2LlRAfSAEDvmTMnIMvKvhisvDyl9vZkDhLlj6efjqmlxaw48rTTYioqYisuAAAAAADoOXwnAgAAAAAAAAAAAAAAAAAA5I1AIKCqqiqj2fr6eofT5IZpKRhlfehJd98dVX2913j+mmtcDqZBrl1xRbH8frNir23bCrRoUavDiQCg//F4LM2eXar77w9p1y6X7rqrWTNntsrnO/DX17POapHHrOOkyxYvDn3q37dsKdDNN5fpqKOKdcQRHfrpT5u0bZt5QeSciXNU4DYvE50xZoa+eew3jecBoK+orvbp8MOjBz3O67X1mc+06cord+vBBzdq2bJ1+tKX9iidTvdAyv7pkUfMPzbnnedcDgAAAAAAgK6gFAwAAAAAAAAAAAAAAAAAAOQV0/Kr999/39kgOZBMJrV9+/as52pqauT3+3OQCNiXbWd0003m7SSHHx7TjBmFDiZCrlVW+jRrVsR4/s47eVs7AHxSUZFbl11WpqeeKtH27SndcEOTPvOZdrlcmX2OrasL5zRLJrNvKdgnvf12kX7843KNHl2gU09t029/26yWllRW1ygpKNGs8bOM8pUWlOrOc++U5eK5BEB+OOWUeKfr48bFdMkljfrd7zbrxRfX6ve/36wvf7lRkyfHZP3fl8Dm5uYeTNp/2HZGTz5pVj7p8dg6/3zuTwEAAAAAQM/iO94AAAAAAAAAAAAAAAAAACCvjB492mhu48aNDidx3qZNm5ROp7OeM/2YACaWLIlp3TqzDdeSdOWVtizL5WAi9IQvf9l89umni1Vfn3AuDADkkaoqn665plwvvxzQ+vUx/du/NWnixKgkaeTIuA49NJrT67/1ll87dvgOelw67dLzzxfrW98q0+DBLp13Xosef7xZtm136TrzaucZ5fvN2b/RsJJhRrMA0BedddYHWz7LylKaNSus//zP7Vq6dJ0efXSjrrtut046qU1FRfuWREpSa2trT0btN/7+97h27/YazZ54Ykzl5W6HEwEAAAAAAByY+a/gAgAAAAAAAAAAAAAAAAAA6INMC7A2bNjgcBLnmRaXUQqGnjR/fucb1LtiyJCkvvhFv4Np0FNmzgxq1Ki4Nm/OvhAunZaeeiqsSy+tzkEyAMgf48f79bOf+fWzn0kvvRTRxo0RuXLco7loUSjrmWjUrYULS1Vd3aAxY9aosLBQFRUVKi0tlWVZnc7UTahToadQsVSsy9e5qPYiff6wz2edDwD6sjPOCOr++zdq8uSY9vMlc7+i0dwWRfZXDz+cfbn6h8491/z+FgAAAAAAwFSW3xYCAAAAAAAAAAAAAAAAAADo2yZPnmw0Z1q41ZPee+89o7lJkyY5nATo3KpVcT33XJHx/De+EZfXm+N2E+SE223pc59rz2pm3LiYrr12l559dr2OOWZPjpIBQH6aOjWoSy4ZotraWtXU1Mjn8zl+jWRS+utfS43nZ89ukSTFYjHt2LFDa9as0aZNm9TW1rbPscGCoM4ef3aXz11TXKPfzf6dXLluRQOAHubzWTriiFTWhWCSlMlkFI/HnQ/Vzy1a5DWac7kymjcv+9JjAAAAAACA7vL0dgAAAAAAAAAAAAAAAAAAAAAnHXXUUUZz77zzjsNJnPePf/zDaM70YwJk6/rrU5LMNk0Hg2l9+9t+ZwOhR33960W64YaMUqn9F7QUFaU1a1aL5s5t1uGHR/Vhl0smI4XDYYVCoZ4JCwB5wrIsVVZWqrKyUqlUSo2NjQqHw0qlUt0+94oVQYXDZluPJk+OauzYfYtp2tvb1d7eLsuyVFxcrOrqahUWFkqS5tXO04K1C7p0/j+c8wdVFFUYZQOAvq6oqEitra1Gs01NTRo8eLDDifqvt99O6P33zYozp0yJa+jQQocTAQAAAAAAHBylYAAAAAAAAAAAAAAAAAAAIK/U1taqoKBA8fi+JQQH8u677yoSiSgYDOYoWfe9/vrrRnNTpkxxOAmwr23bklqwwLzU65JLogqFih1MhJ42YkShpk2LaOnSfb+OHnFEhy64oEkzZ7aqqMjudH7Pnj2UggFAN3g8HtXU1KimpkaJREL19fWKRCKy7c6/7h7MokWlxllmzw4f8HHbttXa2qrW1la53W6VlpZq5piZ8nv8iqaiB5z96pSv6uzxZxtnA4C+rqyszLgULBKJUAr2CQ8+mJBkVgo2Z07a2TAAAAAAAABdZPV2AAAAAAAAAAAAAAAAAAAAACd5PB4ddthhWc9lMhm9+eabzgdySCKR0DvvvJP1XHV1tYYMGZKDRMCn3XhjXMmk2duTPZ6MrrmmwOFE6A2XX/7xxvmyspQuvbRRjz22QX/+8/uaOze830IwSYrH40qlUj0REwDyns/n0/Dhw1VbW6vRo0eruLhYLpery/NtbZaWLSsxurbLldGsWS1dPj6dTqupqUnb39+uUwafcsBjx5SN0fyZ841yAUB/0Z2y8kQiYVwGmY8WLfIYz86b53UwCQAAAAAAQNdRCgYAAAAAAAAAAAAAAAAAAPLOUUcdZTT3+uuvO5zEOf/4xz+USCSynpsyZUoO0gCfFonYuuuuQuP5OXM6NHo0G67zwUUXlWj27LBuvHGrnn12va65ZrfGjo13eb6hoSGH6QBgYAoEAho1apQOOeQQDR8+XH6//6Azzz5bonjcbNvRcce1q7rarORxxpAZ+33MJZfuOe8eFfuKjc4NAP1JQYF5aXJ7e7uDSfqvzZuTeusts/vUiRPjmjzZ53AiAAAAAACArqEUDAAAAAAAAAAAAAAAAAAA5J3jjz/eaG758uUOJ3HOc889ZzR33HHHORsE6MRtt3WopcVjPH/ddW4H06A3eb2Wfv3rJs2Y0SqvN5P1fDgcdj4UAOAjpaWlGjt2rGpra1VTUyOfr/PCk8WLQ8bXqKsLG8+eXHPyfh+76rirdOKIE43PDQD9STAYNJ5tbm52MEn/9eCDXS8n/mezZycdTAIAAAAAAJAdSsEAAAAAAAAAAAAAAAAAAEDemT59utHcc889p3Q67XAaZyxdutRobsaMGQ4nAT4tlcroN7/pvFCkK6ZOjer44wsdTITeVl1dbTxr27YikYiDaQAAnbEsS5WVlZowYYImTZqkiooKeTwfFHw2NHj0yisBo/MWFNiaPr3VOFeBu6DTdbfLrS8M+YLWrFmjNWu2aedO86IXAOgPysvLjWfb29sdTNJ/LVxoXj590UXmpdcAAAAAAADdRSkYAAAAAAAAAAAAAAAAAADIOyNGjND48eOznguHw1q5cmUOEnVPIpHQCy+8kPVcMBjUZz7zmRwkAj72wANRbdliXgr2/e9nHEyDvqC4uFiWZf5W9YaGBgfTAAAOxuPxaPDgwZo0aZImTJigdDqko4/uMDrXtGkRFRfbxlkaop0/BxxXdZx8bp9s29a997o1cqRPp58e0e23NysSSRlfDwD6Kp/PZ/yaOp1O99nC857S0JDSK6+YlU8PHZrQccd1XlIJAAAAAADQEygFAwAAAAAAAAAAAAAAAAAAeWn69OlGc0899ZTDSbrvhRdeUHt7e9Zz06ZNk9frzUEi4GO/+pX5W5LHjYtr7ly/g2nQV4RCIePZaDQq2zYvlAEAmPP5fJoxo0avvhrQ2rUduu66Zo0bF+vyfF1duFvX39q2tdP1oyuP/uj/L14cUirl0rJlQX3962UaPNilCy5o0cMPh5VM8vwBIH/4/eb3Ss3NzQ4m6X8eeSSudNplNDt7dkKWZTYLAAAAAADgBErBAAAAAAAAAAAAAAAAAABAXpoxY4bR3AMPPOBwku67//77jeZMPwZAVz33XEyvv15oPP+d76TYbJ2nqquruzXf0NDgUBIAgKlJk4r0i1+Uaf36Aj3/fKu+8pVmVVcn93t8aWlKJ57Y1q1r7q8UbETxCEnStm0+vfVW0acea293a8GCUl10UUhDh6b15S836/nnI0qnKQgD0L+VlpYaz7a0tDiYpP957DHz+8wLLnA7mAQAAAAAACB7lIIBAAAAAAAAAAAAAAAAAIC8NGPGDPn9/qzn1q5dq7feeisHicwkk0ktWLAg6zmXy6U5c+bkIBHwsRtuMC/bqKhI6Yorsv87iv7B4/GooKDAeD4cDjsXBgDQLZbl0sknl+iOO8q0fbtbCxaEdeGFLSouTn/quLPOapHXm+nWtV5ueLnT9Q9LwRYtOnBBzp49Xt15Z5lOPTWoCRMSuuaaJq1e3dGtTADQW0KhkPFsLBZzLkg/09Zm6/nnzcqry8tTOv108+JrAAAAAAAAJ1AKBgAAAAAAAAAAAAAAAAAA8lJxcbHOOecco9l7773X4TTmnnzySTU1NWU9d+KJJ2rUqFHOBwL+z/r1CT31lHmp1xVXxFRUxNuZ81lVVZXxbCqVUjQadTANAMAJXq+luXNDeuihUu3aldH//m+zzjgjIo/H1uzZLd0+/6t7Xu10fVhgmDIZacmSUJfP9f77hZo/v1yHHlqkKVM69PrrOxSPx7udEQB6imVZ8ng8RrOZTGbAFoMtXBhTLGZ2rzlzZlwej8vhRAAAAAAAANnhp+gAAAAAAAAAAAAAAAAAACBvffGLXzSa+/3vf6/29naH05i56aabjOa+8IUvOBsE+Cc33JCUbZttli4stHXVVYUOJ0JfEwqF5HKZb6ivr693MA0AwGnFxR5dcUWZli4NauvWpE491SvLMt+qtC68TuFEeJ91r+VVqa9Uq1f7tXlzgdG5d+zwyutt1oYN/z97dx4eVX23f/yeM0symSWTFcK+CAL61B13FFwQgxsIWlu3WqttbbUVrV2sPvZnn1aUVlu11tZa27ovpQIuiFsVd1GrkV0QCJB1MpPMTGY58/vDqrUESE7OZLK8X9fFVTjnfL7fW0rCnGTOzRqtXLlSW7duVTqdtpwVAHqKz+ezPNvc3Gxjkr7jsceylmdnzaIQDAAAAAAA5B+lYAAAAAAAAAAAAAAAAAAAoN+aPn26ysvLuzzX3Nysu+++2/5AXfTOO+/oueee6/Kc2+3WnDlzcpAI+ERDQ0b33uu1PD93blyDBrlsTITeKhgMWp5tbW2VaZo2pgEA5EpVVYFGjBiuSZMmafTo0fL7/V0uhnxo/UMdHj+o/CBJ0uLFxZbzVVeH9WlfWTqdVmNjo1auXKnVq1ervr6ev28A9FolJSWWZ6PRqI1J+oZkMqulS60VUPt8GVVXU14NAAAAAADyj1IwAAAAAAAAAAAAAAAAAADQb7ndbp111lmWZm+66SYlk0mbE3XNL37xC0tzM2fOVFlZmc1pgM/dfHNc8bi1tyI7HFldeaXb5kTorQYNGtSt+aamJpuSAAB6is/n06hRozRx4kQNGzZMhYW7L1hpS7Vp0aZFHZ67at+rlE5LS5aELGeqrm7p8HgymdT27dtVU1OjdevWKRwOUxAGoFfx+/2WZ5PJ5ID7nPbUUwlFIk5Ls9Omtcvr5ZFbAAAAAACQf3yFAgAAAAAAAAAAAAAAAAAA9GuXXnqpnM6uPxD60Ucf6ZZbbslBos5Zvny5HnjgAUuzl19+uc1pgM8lEqZ+//sCy/PHHx/XXnt5bEyE3szj8cjttl4C19jYaGMaAEBPMgxDoVBIe+yxhyZNmqRBgwbJ4+n4NcAfVv1BsXRsh+OTKyZrdGC0XnvNr6Yml6Uce+yR0Pjxid1eF4/HtXnzZn344YfasGGD2traLO0HAHYrKLB+/9Xa2mpjkt7vkUesl6CddpqNQQAAAAAAALqBUjAAAAAAAAAAAAAAAAAAANBpGzZskMPhsPTj2muvzUvmMWPGaPbs2ZZmf/azn6murs7mRLuXzWZ12WWXWZo97LDDdPjhh9sbCPgPf/pTXHV11kueLr/cYWMa9AVlZWWWZ1OplJLJpI1pAAD5YBiGKioqNH78eE2YMEFlZWVyuT4p+fpX47/0h1V/6HBuzpg5kqRFi0KW966uDsvRhZcf2WxWra2t+uijj1RTU6NNmzapvb3d8v4A0F2BQMDybHNzs41JerdMJqsnnrBWQO12mzr1VOvlawAAAAAAAHaiFAwAAAAAAAAAAAAAAAAAAPR7V155paW5SCSiCy64wOY0u/eLX/xCb7zxhqXZH/zgBzanAT5nmlndfLPL8vw++yR0zDGFNiZCX1BaWtqt+W3bttmUBADQG7hcLlVVVWnChAlaZ6zTuS+e2+F1TodTxww5RrGYQ8uWWS/Eqa5usTxrmqZaWlq0Zs0arVy5Ulu3blU6nba8HgBY0Z3X07FYzMYkvdtLL7VbLrA+4oiESkqcNicCAAAAAACwhlIwAAAAAAAAAAAAAAAAAADQ7x1wwAE6/vjjLc0uWrRICxYssDnRzi1fvlw//elPLc3uvffeOumkk2xOBHxu0aKEVq0qsDz/ve9lZBgOGxOhLzAMQ36/3/J8NBq1MQ0AoLe48607Nfvh2UqZqQ7PF3uK5Tbceu65oOJxa0UtBxzQpqqqjtfvqnQ6rcbGRq1cuVKrV69WfX29TNO0ZW0A2BWPxyPD6NqjoFu2uPXwwyW6/PIqtbUNjDLDhx+2/t95yilZG5MAAAAAAAB0j/V/pgsAAAAAAAAAAAAAAAAAAKAPWbBggfbdd1+l011/SPSqq67S+PHjNXPmzBwk+9yaNWs0e/ZsSxkl6eabb5bDQeEScuemm6zPDh2a1FlnFdkXBn3KoEGD1Nraamk2m80qHA4rFArZGwoAkBfZbFY/fe6n+n///H+7vK7SWylJWrQoZHmvmTPDlmd3JZlMavv27dq+fbuWLKnU4Yd7dfjhgZzsBQCS5PV61dbWttPzbW2G3njDp+XL/XrlFb82bPi8zPnpp8M67bRQD6TMH9PMatEij6VZw8hqzhzr5dcAAAAAAAB261o9PAAAAAAAAAAAAAAAAAAAQB+111576ZJLLrE0m0qldPrpp+vpp5+2OdXnNmzYoGOOOUbbtm2zND9nzhxNmzbN5lTA5958s10vvui1PP+tb6XkdlNaN1B5vV65XNb/Tev6+nob0wAA8iWZSeq8heftthBMkpxupyZNmqTvfS+jWbNa5PNlurSX223quONarEbtlJYWp37843IdcURA48cndNVVTVq5MpbTPQEMTMXFxV/4dSYj/etfXv3+9xU677zROuKIifrOd0bqvvvKvlAIJklPPZXtyah58e67SW3YYK0U7IADEhoyxPq9CgAAAAAAgN0oBQMAAAAAAAAAAAAAAAAAAAPGtddeq8rKSkuz7e3tOumkk3TrrbfanEp67rnndPDBB2vTpk2W5ouKinTjjTfanAr4ohtuSFueDQYz+ta3Cm1Mg76opKTE0pxpSs8951I0av3PIAAg/yLtEc28d6buefeeTl3fEGuQYRiaNSukRx4pVm1tVrff3qypU6NyuXZfcDNlSlTFxWZ3Y+/S008HlU5/8njWmjWF+uUvSzVxYpEmT27TL3/ZpO3bkzndH8DAEQqFtG2bW48+WqLLLx+uKVMm6Kyzxuo3vxmkt97yKZ3eeQHzP//Z/+/FHnwwZXn25JO7VjoJAAAAAACQa5SCAQAAAAAAAAAAAAAAAAD6leeff14OhyMnP84//3xLmf73f/83Z5muvfZae38D+7ni4uJulXolk0ldcsklOuOMM7Rly5Zu52lra9NPf/pTHXfccaqrq7O8zs9//nONGDGi23mAnfn445Qee8xref6cc+IKhZw2JkJfVFFR0aXrt21z6/bbKzRjxnhddNFo3XNPNEfJAAC5Vhut1ZQ/TdHS9Us7PdMQa5CZ/bzUKxh06eKLS/TsswFt2JDU//t/Tdp339hO56urW7qVuTMWLQp1ePyNN3y66qpSDR/u0vHHR/XHPzarrY1ySwDWGYah+fOrdM01Q/X008WKRFydnq2p8WrTpkQO0+XfokWd//34b3PnemxMAgAAAAAA0H2UggEAAAAAAAAAAAAAAAAAgAHl9NNP17e+9a1urfHggw9q/Pjx+slPfqLNmzd3eT4Siej222/XuHHj9LOf/UyZTMZyllNPPVWXXnqp5XmgM268sV3ptLW3HrtcWV1+eYHNidAXGYahoqKiXV6TSjn09NNBXXzxSB1//Hjddtsg1dZ+8pD+X/7Cw/oA0Bd9UPeBDvnDIXp3+7tdmstkM2pJdFzsNXRogX7841KtWFGkf/0rpu9/v1mjRrV/dj4QyGjKlNyWSdbWuvX2275dXpNKGVq6NKCvf71EVVUOzZ3booULw0qnzV3OAUBHpk61Xi64aNHOSxT7urVrk3r//UJLsxMntmv8eO4zAAAAAABA70IpGAAAAAAAAAAAAAAAAAAAGHAWLFig/fffv1trxGIxXX/99Ro5cqSOPfZYLViwQP/85z8ViUR2uDaRSOitt97SHXfcoTPOOEODBg3St771LW3durVbGUaNGqU//elP3VoD2J1o1NSf/+y1PH/qqTGNGuW2MRH6soqKig6Pr1tXoPnzB+uYY/bU5ZeP0MsvB5TNOr5wzWuv+fTee209ERMAYJMXNrygI/50hDZFNlmar4/V7/aavfcu0k03lWjtWreeey6q888Pa+7cJhUUZC3t2VlLlhR36fpo1KmHHirWqaeGdM45zVq3bp1aWjouPQOAjpx0krXiK0l65hmnjUl6l4ceSlmePekk67MAAAAAAAC54sp3AAAAAAAAAAAAAAAAAAAAgJ5WUFCghx56SIceeqjq6uq6tZZpmlq2bJmWLVv22TGPx6NQKCSn06lwOKx4PN7dyDvw+/166KGHFAqFbF8b+E+33RZXJOKzPH/FFbxlGZ8LBAIyDEOmaSoWM/Tkk8V65JESvfdeUafm77gjqVtvtf7nEQDQcx54/wGd8/dzlMwkLa/REGvQ+LLxnbrW6TR09NEBHX30J6/RGxulpqYmpVL2F75ks9KiRSHL80cdFVU8HtemTZu0efNm+Xw+VVRUyOfj7zgAO7fXXkUaObJdGzcWdHn2pZeKlMmYcjqNHCTLr3/8w/p/05w5FFgDAAAAAIDeh++wAwAAAAAAAAAAAAAAAACAAWnMmDFaunSppk6dqqamJlvXTiaT3S4b2xWv16t//OMfOvDAA3O2ByBJ6XRWt95q/SHpww+Pa/Jkr42J0B9kMqW69lqPnniiWPG4s0uzDz/s169+Zcrj6X9lBgDQX2SzWS14ZYHmLZ3X7bUaYg2W5gzDUEVFhSoqKpROp1VXV6eWlhZlMpluZ5KkVasKtW5doaXZsrKUDj649bNfZ7NZtba2qrW1VYZhKBAIaNCgQfJ4PLZkBdC/HHFE3FIpWF2dW2+91arJk/05SJU/27al9frr1j4fjxiR1P7787kWAAAAAAD0PnwnFAAAAAAAAAAAAAAAAAAADFhf+tKX9NRTTykYDOY7Sqd5PB498sgjmjp1ar6jYAC4996YNm2y/pD05ZdnbUyD/mLUqHItXdr1QjDpkzKDBx9syUEqAIAdMmZGlz55qS2FYJJU31bf7TVcLpeGDBmiiRMnao899lAwGJRhdO+RqsWLiy3PzpjRIper43OmaaqlpUWrV6/WypUrtW3bNqXTact7Aeh/jjvO+j3WokVJG5P0Dg8/3C7TdFiara5OyTCszQIAAAAAAOQSpWAAAAAAAAAAAAAAAAAAAGBAO/DAA/XMM8+oqqoq31F2q7i4WAsXLtSMGTPyHQUDxK9/3fXSpk+NH9+uU07x2pgG/UUg4NLJJ0ctz999906aVAAAeRVPxTXnoTn6zeu/sW3NhliDbWtJUmFhoUaMGKFJkyZp5MiR8vl8XV4jk5GWLAlZzjBzZrhT16XTaTU0NGjlypVavXq1GhoaZJqm5X0B9A/V1T65XNaKwZ5/3nrhc2+1cKH1Uq/TT7d+vwsAAAAAAJBLlIIBAAAAAAAAAAAAAAAAAIAB76CDDtJbb72lQw45JN9RdmrixIl6/fXXdcIJJ+Q7CgaIZ59NaMWKQsvz3/lOWoZh/QFt9G/f+Ib1B/BfeMGvjz6K25gGANBdDbEGHXPPMXps5WO2r5srgUBAo0eP1qRJkzR06FAVFnbudc8bb/hUV+e2tOeoUe2aNCnR5blkMqlt27appqZG69atU0tLi6X9AfR95eUe7bNPzNLsG28Uqa0tbXOi/IlETL34orV71vLytI46qsDmRAAAAAAAAPagFAwAAAAAAAAAAAAAAAAAAEBSVVWVXnjhBX3zm9+Uw9G7iozmzJmjV199VePHj893FAwg8+eblmfLy9O64AKvjWnQ30yZEtCkSdaKvdJph+64g1IwAOgt1jev1+F3Ha5XNr9i+9r1sXrb1/xvhmGopKREe+yxhyZNmqTKykq53Tsv/Vq8OGR5r+rqsLp7qxGPx7Vp0yZ98MEH2rBhg2Ixa+VAAPquo45KWppLJAw99VSrzWny5+9/jyuZtPaI7AkntMvp7F1f+wEAAAAAAPgUpWAAAAAAAAAAAAAAAAAAAAD/5vF4dNttt+nll1/Wvvvum+84Gjt2rJYsWaIHH3xQwWAw33EwgNTUtOupp6yXel14YUJeL29Vxq59+cvWi70eeMCnTMZ6cR0AwB5v1r6pQ/94qFY3rs7J+g2xhpysuzOGYaiyslJ77rmnJkyYoNLSUjmdzs/OJxIOLV1q/XV5dXWLHTElSdlsVq2trVq/fr1qamq0efNmJZPWioIA9C3Tp1u/13r66ayNSfLrscesz86aRSEYAAAAAADovfhOOwAAAAAAAAAAAAAAAAAAwH859NBD9eabb+o3v/mNhg8f3uP7l5eX62c/+5nef/99zZgxo8f3B268MaVs1tpD0l6vqcsuK7Q5Efqjb3zDr4ICa8VeGzYU6IknojYnAgB0xZI1S3TU3Ueprq0uZ3vUx+pztvbuuFwuDRkyRBMnTtQee+yhYDCot9/2qa3NufvhDuyzT0zDh+emtMs0TYXDYf3hD7U64YSI7r67WfF4Jid7Aci/qVMDCgQ6/zE+cWJcF1xQrz/+8SNddNHWHCbrOYmEqWXLrN13BgIZzZjBPSsAAAAAAOi9KAUDAAAAAAAAAAAAAAAAAADogNPp1CWXXKL169fr/vvv1yGHHJLzPffee2/deeed2rRpk37yk5+osJCHVNHz6urSuv/+IsvzZ5wRV2Wly8ZE6K8qKz2aPt16sdcf/2hjGABAl9z51p06+b6TFUvFcrpPQ6whp+t3VmFhoUaMGKFvfGOUVqxo1WWXNWvkyPYurVFdHc5NuP+wcGGJnnoqqPPPL9HgwVmdeWZYixa1KJ22VsIJoHdyuw0ddljbTs9XVqZ0yinN+uUvN+mFFz7Ugw+u02WXbdfkyW1yu00lEokeTJsbTzyRUDRqraTxmGMSKizk0VoAAAAAANB7ObLZbDbfIQAAAAAAAAAAAAAAAAAAAPqCDz/8UIsXL9aSJUv00ksvKZVKdWs9wzA0efJknXjiiaqurtb+++9vU1L0Re+8847222+/Tl+/YsUK7bvvvrbn+NGPWvV//+e3NOtwZPX++0lNmlRgcyr0VwsXhnXqqSFLs4FARlu2ZBQIeOwNBQDYqWw2q2uev0Y/e/FnPbJfsCColqtaemSvrspkTD33XFR/+UtWixb51dS081JUlyurZctWqrQ0k7M80aiho4+eoGRyx6KbIUOSOvnkNp1/vluTJ1t7nQegd/nlL5t01VWlkqTCQlMHHNCmww5r1WGHtWrs2HY5HDufLS0t1ZAhQ3ooaW6cfXab/vpXn6XZP/+5TeecY20WAAAAAACgJ1AKBgAAAAAAAAAAAAAAAAAAYEE0GtWKFStUU1Ojmpoaffjhh9q+fbui0ehnP7LZrAKBwGc/ysvLNWHCBE2aNEmTJk3Sfvvtp9LS0nz/p6CX6A2lYPG4qREjTDU07LzUYldOOCGmJ54osjUT+rdMxtSYMSl9/HHni+T22COh2bObNXNmWCNH+jV8+PAcJgQAfCqVSenCxy/Un9/9c4/um/hxQgWu3l04mkyaevTRiO67z6GlSwOKx79YzDVlSkS33vpxTjM89lhIP/3psN1eN2FCXLNnx3X++V6NHevNaSYAubNqVUy//OUnRWD77RdTQUHnHxP1eDwaP358DtPlViaT1eDBGUv3rR6Pqbq6rIqLnTlIBgAAAAAAYA9r360HAAAAAAAAAAAAAAAAAAAY4AKBgKZMmaIpU6bkOwpgm7vuiquhwWd5/oorjN1fBPwHp9PQmWfGdMMNuy57KSrKaMaMFs2e3ay9947L4fjkeCQS6YGUAIBIe0SnP3i6lq5f2uN7N8YbNSQwpMf37QqPx9CZZ4Z05plSc3NKf/tbix580K3ly33KZByaObMl5xkWLw516rqVK726/nqvfv7zrA4+uFWnn57U17/uV3GxJ7cBAdhqzz2L9P3vr7c0m0wmZZqmDKNv3r+98EK7GhoKLc1OmZJQcTFF1gAAAAAAoHejFAwAAAAAAAAAAAAAAAAAAACATDOrW26x/vbi/fZLaNo0aw9mY2C76KJC3XRTVpmMY4dz++3XptNOa9b06REVFZk7nM9mswqHwwqFQj2QFAAGptporU7824l6d/u7edm/IdbQ60vB/lNJiVuXXFKiSy6RPv44oT/9KaapU6M53XP7dpdef71rxa7ZrEOvvurXO++YOuKIlSouNhQKhVRRUSGn05mjpADsVFBQoPb2dkuz0WhUxcXFNifqGQ8/nLE8e8opWRuTAAAAAAAA5AalYAAAAAAAAAAAAAAAAAAAAAC0cGFcq1cXWZ6/7DLrD2ZjYBszxqspU6J67rmAJKm0NK2TT27Waac1a8yY5G7n6+vrKQUDgBz5oO4DzfjbDG2KbMpbhvq2+rzt3V0jRhTqmmsKJZUqGo2qvr5esVjM9n2eeKJY2eyO5ZqdMXVqRD6fqXTaVENDgxoaGlRQUKDS0lKVlJTIMAyb0wKwSyAQsFwKFg6H+2QpmGlmtXix29KsYWR1+ukFNicCAAAAAACwH6VgAAAAAAAAAAAAAAAAAAAAALRggbUiCUkaPjyps86yXigGfO1raaXTUc2a1ayjjorK7c52era9vV3pdFouF2+PBwA7vbDhBZ36wKkKJ8J5zdEQa8jr/nYJBAIKBAIyTVPhcFiNjY2Wy3z+2+LFIcuz1dUtOxxrb2/X1q1btXXrVhUVFam8vFzBYLAbCQHkQmlpqRoarH2OzEVBYU94++2kPv7YWrHX5MkJDR7stTkRAAAAAACA/fiuJwAAAAAAAAAAAAAAAAAAADDAvfZaQi+9ZP3h6G99KyWXy2NjIgw0Z51VrH33rbE8X1dXpyFDhtiYCAAGtgfef0Dn/P0cJTPJfEdRfaw+3xFsZRiGSktLVVpaKtM01dDQoObmZqVSKUvrrVlToJUrrb2OC4XSOuyw6C6vicVi+vjjj+VwOOT3+1VZWSmvl1IdoDfweDwyDEOmaXZ5NpPJ9Mli3YceSkmyVgp28sld/30CAAAAAADIh771FRsAAAAAAAAAAAAAAAAAAAAAtrvxxozl2WAwo299i2IIdI9hGPJ6vYrH45bmw+EwpWAAYINsNqsFryzQvKXz8h3lMw2xhnxHyBnDMFRZWanKykqlUinV1dUpEokok+n8a7PFi0OW958+vUVud+euzWazikajikajMgxDwWBQlZWV8ngohgXyyev1qq2tzdJsc3OzKioqbE6UW48/3slPWh2YM8f6LAAAAAAAQE8y8h0AAAAAAAAAAAAAAAAAAAAAQP5s2JDS3/9uvdTrvPMSCgZ5WzK6r7Ky0vKsaZqWyxAAAJ/ImBld9uRlvaoQTOrfpWD/ye12a+jQoZo4caLGjh2rQCAgh8OxyxnTlJYsKba858yZYUtzpmkqHA5r9erVWrVqlbZt29alIjMA9ikutv45IBKJ2Jgk91atSurDDwssze61V0J77EGJIQAAAAAA6Btc+Q4AAAAAAAAAAAAAAAAAAAAAIH9uuqld6bTf0qzLZer73+fBatgjEAjIMAyZpmlpfvv27RozZozNqQBgYIin4vrqY1/Vox8+mu8oO6iP1ec7Qo/zer0aOXKkJCkajaq+vl6xWGyH695+u0hbt1p7LTZsWFL77BPvVk5JSqVSamhoUENDgwoKClRWVqZQKCTDoDQW6AmhUEi1tbWWZhOJhM1pcuuhh5KSrH3OmzkzbW8YAAAAAACAHKIUDAAAAAAAAAAAAAAAAAAAABigWloyuucer+X5006La+RIn42JMNAVFxerubnZ0mwsFpNpmpSQAEAXNcQadMr9p2j5puX5jtKhhlhDviPkVSAQUCAQkGmaCofDamxsVHt7uyRp8eKQ5XWrq8NyOGwK+W/t7e2qra1VbW2tioqKZBgVGjUqYO8mAL7AMAy5XC6l010vvcpms0okEiosLMxBMvv94x9Oy7Nz57ptTAIAAAAAAJBbfLcTAAAAAAAAAAAAAAAAAAAAGKBuuy2hSMT6g9VXXsm/UQx7DRo0qFvzDQ0DuzgGALpqffN6HX7X4b22EEyiFOxThmGotLRU48aN06RJk1RZWSmPx6HCQtPSetXVYXsD/peWlpgOOMCrvfaK6+qrm7R+fTyn+wEDmc9nvai5qanJxiS5U1ub1ptvWisvGzUqqX339dicCAAAAAAAIHcoBQMAAAAAAAAAAAAAAAAAAAAGoFQqq9tuc1ueP/LIuA48sMDGRIDkcrlUUGD9z1VfKTUAgN7gzdo3degfD9XqxtX5jrJL9W31+Y7Q6xiGocrKSv3tbyXavDmtX/+6SYcf3irDyHZqfq+9Yho9OpnTjK+84ldTk0s1NV79v/9XqnHjCnX44a26+eYmNTbmdm9goCktLbU8G41GbUySOw8/nFA267A0W12dlGFYmwUAAAAAAMgHSsEAAAAAAAAAAAAAAAAAAACAAejee2PavNljeX7ePBvDAP+hoqLC8mw6nVYikbAxDQD0T2sa1+jou49WXVtdvqPsVkOsQdls58quBqKyMo8uvbRUL73k19q1CV19dZP22iu+y5nq6pac51q8OPSFX5umQ8uX+3XZZaUaNsyl6uqI/vrXZrW3mznPAvR3Pp/P8mwqlZJp9v6Pw4ULrT8Ke/rpLhuTAAAAAAAA5B6lYAAAAAAAAAAAAAAAAAAAAMAAY5pZ/epXTsvzEya0a+bMQhsTAZ8rLi6Ww+GwPL99+3Yb0wBA//SjZ3+ktlRbvmN0SspMKdIeyXeMPmH0aK+uu65U77/v1VtvteqSS5o1dGjyC9cYRlYzZuS2FCwWM/Tcc8Gdnk8kDC1ZEtTZZ5eoqsrUV78a1lNPRZTJ9P5iIqC3KigosDwbjUZtTGK/cDijf/7T2v1nRUVKRx5p/fcGAAAAAAAgHygFAwAAAAAAAAAAAAAAAAAAAAaYZ59N6N13rZd6fec7aRmG9dImYFccDocCgYDl+Wg0KtOkVAQAduXjlo/zHaFLGmIN+Y7Q5+y/v1+/+U2JNm506cknIzrrrLBCobQOOaRV5eXpnO69bFlA8XjnHltrbnbpb38L6YQTgho1Kq358+t6fUER0BsFgzsv4tudcDhsX5Ac+Pvf25VKWXsUdsaMpJxO7l0BAAAAAEDfQikYAAAAAAAAAAAAAAAAAAAAMMDMn5+1PFtRkdLXvua1MQ2wo8GDB3drvrm52aYkANA/TR87Pd8RuoRSMOucTkPTpwf1t7+FtHWrQ7fdlpDb7c7pnosXhyzNbd7sUSyW0saNG/XBBx9o48aNSiQS9oYD+qnS0lLLs7FYzMYk9nvsMev3r7Nn8wgtAAAAAADoe1z5DgAAAAAAAAAAAAAAAAAAAACg53zwQVJLl1ov9broonYVFvptTATsyOPxyO12K5VKWZpvbGxUWVmZzakAoP+44rArtKZpje5///58R+mU+lh9viP0C4WFTu2zT4WkCiWTSdXX16ulpUWmadq2R0ODU6+8Yu21ottt6rjjWiRJ2WxW0WhU0WhUTqdTwWBQlZWVOS80A/oqt9stwzAsfTxnMhml02m5XL3vcdN43NSyZYWWZoPBjE44wdosAAAAAABAPlFzDgAAAAAAAAAAAAAAAAAAAAwg8+enlM06LM16vaYuvdR6oRjQFaWlpZZnk8mkksmkjWkAoH8JFAR03+z79OaFb+rC/S+Uz+3Ld6Rdaog15DtCv+PxeDR06FBNmjRJY8eOVSAQkMNh7TXif3ryyZBM09o6Rx0VVTC4Y6FRJpNRc3OzVq1apVWrVqmurs7WIjOgv/B6rd+rNTc325jEPkuWJNTW5rQ0e8wxCXk83f+8BgAAAAAA0NMoBQMAAAAAAAAAAAAAAAAAAAAGiO3b03rgAesPin/5y3GVl1t7IBvoqrKysm7Nb9++3aYkANB/HTDkAP3+pN+r9vJa3XbibfrSoC/lO1KHKAXLLa/Xq5EjR2qvvfbSiBEjVFRUZHmtxYuLLc/OnBne7TWpVEp1dXWqqanRmjVr1NTUREEY8G+hUMjybCQSsS+IjR59NGt59rTTbAwCAAAAAADQgygFAwAAAAAAAAAAAAAAAAAAAAaIX/0qoUTC2luIDSOrK65w25wI2DnDMOTz+SzP99ZiAwDojYIFQX3zoG/qnYve0SsXvKJz9zlXha7CfMf6TH1bfb4jDBjBYFBjxozRpEmTVFVVpYKCgk7Pbtjg0fvvWysUCwQyOvLI1i7NtLe3q7a2VjU1NVq/fr2i0ailvYH+orjYWilfS4tTzzzjsjlN96XTWT31VOc/B/2nggJTp55qvRAbAAAAAAAgn3rfV2oAAAAAAAAAAAAAAAAAAAAA2C4WM/XHP1ov9zjhhLgmTLBW8gBYNWjQIK1fv97SbDabVUtLi+VyBAAYiBwOhw4ZdogOGXaIfjX9V7rn3Xt0x1t36MOGD/OaqyHWkNf9ByLDMFRWVqaysjJlMhnV19crHA4rnU7vdGbx4pDl/Y4/vkUeT9byfCwW08aNG+VwOBQIBFRZWanCwt5TbAf0BMMw5HK5dvlxKkmplPTee0V65RW/XnnFr/ff98o0HTr++LhGj+49RVrPPZdQY6O1PFOmJBQIcP8KAAAAAAD6JkrBAAAAAAAAAAAAAAAAAAAAgAHgj3+MqaHBb3n+iisMG9MAnVNUVCSn06lMJtPl2UxGev31sI47jlIwALCixFuiSw+5VN89+Lv658f/1B1v3aGHax5WMpPs8Sz1sfoe3xOfczqdGjx4sAYPHqxkMqm6ujpFIhGZpvnZNdmstGhRyPIe1dXh7gfVJ6WgkUhEkUhETqdTxcXFqqyslMvFY3QYGHw+n1paWr5wLJuVPv7Yo+XL/Vq+3K833vCprc25w+zjj8f13e/2nlKwRx7p+j3Ap0491XrJIAAAAAAAQL7x1UwAAAAAAAAAAAAAAAAAAACgnzPNrG65xW15/oADEjr66EIbEwGdV1JSooaGhk5fX1vr1t//XqLHHgspHje0ZUtaPh9vnQcAqxwOh6aMnKIpI6fo5hNu1t3v3K073rpDa5vW9liGhljn/x5Abnk8Hg0bNkySFIvFVF9fr9bWVr3zTqE2b/ZYWnPw4KQOOCBmZ0xJUiaTUVNTk5qamlRbW6SmplLNmhWUx0PZLfqv0tJStbS0qKXF0Ouvf1IC9sorfm3ZsvuPz2efdeq73+2BkJ1gmlktXmztc4rTmdXppxfYnAgAAAAAAKDn8J1NAAAAAAAAAAAAAAAAAAAAoJ977LG41q4tsjz/ve+ZNqYBuqaysnK3pWDJpEPPPhvQY4+V6JVX/MpmHZ+d++tfm3XRRSW5jgkAA0J5UbnmHTZP3z/0+3ruo+f0u7d+p4drHs75vpSC9U5FRUUaOXLkv38V1cUXN+sf//CptrZrRT4nntgiI8c9XX/7W1D33BNSaWlaM2dG9NWvOjRtWkBOJwVh6F98Pp+uumqYnniiWKbp2P3Af3j55SJlMmav+Lh44412bd5srZh68uSEKiu9NicCAAAAAADoOfn/6gwAAAAAAAAAAAAAAAAAAACAnFqwoGsPg/+nESOSOuMMHqhG/hiGIa+34z+Da9YU6Je/HKxjjtlTV1wxQsuXB75QCCZJ99zj7omYADCgGA5Dx4w5RqdPPL1H9quP1ffIPrBur70Cuv32Em3c6NLjj7fojDPCCgbTnZqdOTOc02yZjPTEE8WSpKYml+65J6Tjjy/W2LEpXXZZs955pzWn+wM9raxMXS4Ek6SGBrdee60tB4m67qGHOvf5oyOnnEKpNQAAAAAA6NsoBQMAAAAAAAAAAAAAAAAAAAD6sVdfTWj5cuulXt/+dlIul/VSMcAOlZWVn/28rc3QI4+U6CtfGaNZs8bpr38tVzjs2unsK6/49OGHsZ6ICQADznUvXNcj+4QTYaUyqR7ZC93jchmaObNY998f0tatDv3pT82aPj0ij6fjkp7x4+MaN649p5lef92n+vodS0I3bizQzTeXaL/9/Npnn5iuu65JmzYlcpoF6AnHHZe1PLtkSe/4XLt4sfVi37lzPTYmAQAAAAAA6HmUggEAAAAAAAAAAAAAAAAAAAD92A03ZCzPFhen9c1vFtmYBrAmEAho9WqvfvrToZo6dU9de+1Qvfde5/5sZrMO/e53uS0bAYCBqDZSq5qGmg7P/fW0v+rao67V0MBQ2/ZrijfZthZ6RlGRU+edV6Innwxq8+a05s9v0uTJbXI4Pi8smjmzJec5Fi0K7faa994r0jXXlGr06AIddVSrbr21WS0t6ZxnA3Khutovl6vjIr7dee65/BdqrVyZ1MqVBZZmv/SlhEaPtl4oBgAAAAAA0BtQCgYAAAAAAAAAAAAAAAAAAAD0Ux99lNLjj1sv9Tr//IQCAd5yjN5h48YSPfZYieJxZ5dnH3zQp1TKWjECAKBjVz5zZYfHSwpL9JUvfUXXHH2NNly2QQvPXKgZe8yQQ45u7Vcfq+/WPPKrosKjefNK9dprPq1aldBVVzVpwoS4ZswI53TfjP5WGgABAABJREFUeNyhZcuCnb4+k3HoxRf9uuSSEg0Z4tBrr61RXV2dTJPXEeg7Skrc2m+/uKXZt94qUjSa30K8Bx9MWZ496STK/AAAAAAAQN/Hd+gBAAAAAAAAAAAAAAAAAACAfurGG9uVTlsr4HC7TX3/+wU2JwKs+9rXgvL7M5Zmt23z6NFHIzYnAoCByzRNPfrhox2eO3efcz/7uctw6eQ9T9aSryzR+kvX60dH/EiDfIMs7dkQa7A0h95n3Div/u//SvXhh14ddFCVvF5vzvZ64YWA2tq6XigqSXvumZDP1666ujrV1NRo7dq1am5upiAMfcLRRyctzbW3G3ryyajNabrmH/+w9jErSXPnemxMAgAAAAAAkB+UggEAAAAAAAAAAAAAAAAAAAD9UDic0V/+Yr1gYdasuIYPd9uYCOie4mKXqqutFxT86U+8fR4A7PKX9/6ieDq+w3GHHPrZtJ91ODMqNErXH3O9Nn1vkx6a85COHXNsl/asb6u3lBW9W3FxscaOHatJkyZp8ODB8njsLfRZvDhkeba6uuULv04kEtqyZYtqamr00UcfqbW1tZvpgNw58USX5dmnn7ZWLG2HLVvSevtta+XUY8Yk9aUvUQoGAAAAAAD6Pr6rCQAAAAAAAAAAAAAAAAAAAPRDv/1tXNGo0/L8lVdaf4gcyJVvfMP6W+CXLfNr06aEjWkAYOC6/p/Xd3j84KEHy+/x73LW7XTr9Emna+nZS7X6ktW64rArVOYt2+2eBS5rJTHoGwzDUHl5ucaPH68JEyaovLxcLlf3Xo82Nzv10ksBS7MuV1bTp7fs9HxbW5s2bNigmpoaffzxx0okeI2B3uWII3wKhdKWZl98sdDmNJ334IPtymatlZJVVydtTgMAAAAAAJAflIIBAAAAAAAAAAAAAAAAAAAA/UwqldXtt1svzjjqqJj235/iDfQ+Rx3l1/jx1ko30mlDv/99zOZEADDwbAxv1JqmNR2e+79j/69La40rG6cbjrtBW76/RffOuldTRk7p8Dqf26eDhhzU5azom1wulwYPHqwJEyZo/PjxKi4ulmF0/TG4p58uVjptrVzoiCOiCoUyu73ONE1FIhGtXbtWH374oWpra5VOWytiAuzkchk67DBrr31Xry7U+vVxmxN1zsKF1j5mJWnOHIqtAQAAAABA/0ApGAAAAAAAAAAAAAAAAAAAANDP/PWvcdXWui3Pz5tn/UFsIJecTkNnnWW92Ou++4qUyZg2JgKAgWfe0nkdHi/zlunoUUdbWrPAVaAv/8+X9cJ5L6jmWzW69OBLVVJYIkkaFhyme2ffq6pAldXI6MM8Ho+GDx+uSZMmafTo0fL7/XI4OvdaddGiYsv7VleHuzyTyWTU1NSklStXatWqVaqvr5dp8roD+TNtmvWCuscf7/lSsKamjF5+udDS7ODBKR1+OMXWAAAAAACgf6AUDAAAAAAAAAAAAAAAAAAAAOhHTDOrX//a+tuEJ0xo14knWnsQG+gJ3/iGTx6PtYKNdesK9cwzUZsTAcDAYZqmHl/1eIfnLtz/Qlv2mFgxUb8+4ddqvLJR2y7fpo8u/Ugn73myLWujb/P5fBo1apT22msvDR8+XF6vd6fXbtrk1jvv+Czuk9HRR3fv9UIqldL27dtVU1OjtWvXKhwOUxCGHnfSSV2/rxs6NKk5c5o0ZEjPv2Z+9NGE0mlr97IzZrTLMCi3BgAAAAAA/YMr3wEAAAAAAAAAAAAAAAAAAAAA2OeZZxJ6772dFyTszqWXpmUYBTYmAuxVVVWg446LaPHioKX5P/5Rmj7d5lAAMEDc8dYdas+073DccBi65uhrbN3L4XBokH+QrWui/yguLlZxcbFM01RTU5OampqUTCY/O79kScjy2sceG1FhYdaGlJ9IJBLavHmzHA6HioqKVFFRIb/fb9v6wM6MH1+kMWMSWr9+5+VgPl9Gkye36bDDWnXYYa0aPjwpx7+7tUzTlGFYL5zuqr//3frs7NlO23IAAAAAAADkG6VgAAAAAAAAAAAAAAAAAAAAQD8yf771AoPKypTOP7/IxjRAbpx/vqnFi7s2M25cQrNnN6m6ukXJpFcejyc34QCgH7tx+Y0dHj9i+BEqdO28dAbIFcMwVF5ervLycqXTadXX16ulpUVLl1orD5Wk6uqwfQH/QzabVVtbm9ra2vSTnwzTQQeZOu+8Ig0dyscOcufII79YCmYYWe29d/yzErC9947J7e54NhKJKBQK9UjOWMzUc89Z+1goLk7r+OP5OAIAAAAAAP0HpWAAAAAAAAAAAAAAAAAAAABAP/H++0ktW+a1PH/RRe0qKNjJE+FAL3LKKUENHZrUli27Lvby+TI68cQWzZrVrL32isvh+OT49u3bNXz48B5ICgD9x5rGNVofXt/huRuOu6GH0wA7crlcqqqqUlVVlV54Iak//7lJDz9coDfe8HV6jYqKlCZPbsthSmn16gItXBjSwoXStddmdeSRUc2dm9ZXvhJQIMDjfrDX8cdLS5cmPysBmzy5VcXFZqdmw+Fwj5WCLVqUUCxmraD6uOPa5XZ3/uMcAAAAAACgt+OrhAAAAAAAAAAAAAAAAAAAAEA/ccMNKWWzuy5J2pmioowuvdR6oRjQk1wuQ2ec0aYFCzr+877//m2aNatZxx3XoqKi7A7no9ForiMCQL9zxdIrOjw+yDdIBw87uIfTALs2aJBHV15ZqiuvlFaujOnuuxN69NEirVlTuMu5GTNa5HTmNtvixaHPfp5OO/TccwE995w0b15Gxx/forPOyuqUU4Jyu43cBsGAcPrpfv3P/6z8rBy3K2KxmP2BduLRR3d8zd5Zs2ZZ+I8DAAAAAADoxfjKIAAAAAAAAAAAAAAAAAAAANAPbN2a1oMPWi/1OuushMrKctyAANjo4osLZRiflweUlqZ1/vn1+sc/VuvPf/5Ip5wS7rAQTJJM01QkEumpqADQ55mmqSfWPNHhuYsPuLiH0wBdM2FCkX7xi1KtWlWgf/4zogsvbFZlZarDa2fODOc0i2lKS5YUd3iurc2pxx4r1pw5IQ0dmtEFFzTrxRejymTMnGZC/+bxuOR0WnuM1DRNpdNpmxPtKJXK6umnCyzNer2mTj5512V/AAAAAAAAfY0r3wEAAAAAAAAAAAAAAAAAAAAAdN+vf51Qe7vf0qxhZHXFFW6bEwG5NW6cV0cdFVUmk9WsWc2aMiUqdxf+GNfV1SkYDOYuIAD0I7e8fouSZnKH406HUz868kd5SAR0ncPh0BFHBHXEEdKtt5patCise+916Mkn/WptdWrMmIQmTEjkNMNbbxVp2zbPbq+rr3frrrtKdNdd0pgxCZ12WkwXXFCoiROLcpoP/VNRUZFaW1stzTY1NamystLmRF+0bFlCzc3WCq6POiohn4+PCwAAAAAA0L9QCgYAAAAAAAAAAAAAAAAAAAD0cbGYqT/+sdDy/IknxjV+PA9So++5555WhcONlmYTiYQymYycTqfNqQCg/1nwyoIOjx896mh5XLsvOAJ6G7fb0GmnhXTaaVJra1r339+sWCwmhyO3+y5eHOryzPr1hbrppkK1tdXpO9/ZoEAgoMrKShUUFNgfEP1SKBSyXAoWiURyXgr2yCOm5dlTT83amAQAAAAAAKB3oBQMAAAAAAAAAAAAAAAAAAAA6OPuvDOuxkaf5fkrrjBsTAP0nKqqSsulYJJUV1enqqoqGxMBQP/zQd0H2hTZ1OG5G4+7sYfTAPbz+136+tdLJJWovb1cdXV1ikajMk3rRUUdaW936Omniy3PV1eHZZqmWlpa1NLSIpfLpeLiYlVUVMjl4jFB7FwwGLQ8297ebmOSHZlmVkuWWCuXdLmymj3bejk2AAAAAABAb8VX+wAAAAAAAAAAAAAAAAAAAIA+LJPJ6pZb3JbnDzoorilTvDYmAnqO0+mU1+tVPB63NB8OhykFA4DdmPf0vA6PDwkM0b5V+/ZsGCDHCgoKNHz4cElSW1ub6uvr1dbWpmw22+21//nPgKJRp6XZvfeOadSo5BeOpdNpNTY2qrGxUR6PRyUlJSorK5NhUPiLLzIMQ263W6lUqsuz2WxW8XhcXm9u7hlffbVdtbXWir0OOSSh8nLuZQEAAAAAQP/DV/gAAAAAAAAAAAAAAAAAAACAPuzRR+Nav95jef573+t+wQGQT5WVlZZnM5mM2trabEwDAP1L2kzrmY+e6fDcdyZ/p4fTAD3L5/Np1KhRmjhxooYNG6bCQmvFRZ9avLjY8uzMmeFdnk8mk9q+fbtqamq0bt06hcNhmaZpeT/0Pz6fz/JsU1OTjUm+6OGH05ZnTz45Y2MSAAAAAACA3sOV7wAAAAAAAAAAAAAAAAAAAAAArPvVrxyWZ0eNSmruXK+NaYCeFwgEZBiG5eKLuro6jR492uZUANA/zH95vtLmjoUtLsOleYfNy0MioOcZhqFQKKRQKCTTNNXY2Kjm5mYlk8lOr9HSYuiFFwKW9nc6s5o+vaXT18fjcW3evFkOh0M+n08VFRXdKoRC/1BaWqpwOGxptrW11d4w/2HRIrfl2blzC2xMAgAAAAAA0HtQCgYAAAAAAAAAAAAAAAAAAAD0UcuXJ/TKK9ZLvb797ZScTo+NiYD8CAaDlksO2traZJqmDMOwNxQA9AO/feO3HR4/bsxxchk8loSBxzAMVVRUqKKiQul0WvX19WppaVE6vWN53n965plipVLWXmscckirysszXZ7LZrNqbW1Va2urDMNQIBBQZWWlCgooUhqIioqK5HA4lM1muzybSqVy8nr5gw+SWrPG2p/HffdNaOTIQlvzAAAAAAAA9BZ89R0AAAAAAAAAAAAAAAAAAADoo+bP73o5wKdCobQuvth6oRjQmwwePNhyKZgkNTQ0qLKy0r5AANAPvL31bdVGazs8N/+4+T2cBuh9XC6XqqqqVFVVpfb2dtXV1Skajco0zR2uXbQoZHmfmTPD1kP+m2maamlpUUtLi1wul4qLi1VRUSGXi8cLB5KCggIlEglLs5FIRKFQyNY8DzyQlGStpHrmzF0X8QEAAAAAAPRlfNUOAAAAAAAAAAAAAAAAAAAA6IM2bUrp8ceLLM+ff35Cfr/fxkRA/rhcLnk8HiWTSUvzTU1NlIIBwH+5cumVHR4fUTxCe1Xu1cNpgN6toKBAw4cPlyS1tbWprq5OsVhM2WxWW7e69eabPkvrer2mpk2L2hlV6XRajY2NamxslMfjUVFRiQYNKpPbbdi6D3qfYDBouRQsHA7bXgr2+OPWH2894wxrZWIAAAAAAAB9AV+pAwAAAAAAAAAAAAAAAAAAAPqgP/85pUzGYWnW4zF1+eWFNicC8qu8vNzybDqdtlyQAAD9UTKd1PMbnu/w3PcO+V7PhgH6GJ/Pp9GjR2vixIkaNmyYtm/3q6IiZWmtadMiKioybU74uWQyqd/8Jq1hwzK68MKwXnopKtPM5mw/5Fdpaanl2VgsZmMSaePGlN55x9o96R57tGvvvSkFAwAAAAAA/RelYAAAAAAAAAAAAAAAAAAAAEAftGRJgeXZ2bPjGjrUZWMaIP9CoZAcDmtFeZK0fft2G9MAQN/283/+XJlsZofjHsOj707+bh4SAX2PYRgKhUL66leHassWpx5+OKxZs1rk8+34sbUz1dXh3AX8t0WLQqqrc+sPfwjpyCMD2nPPdv3gB81audLeEijkn8vlkmFYe6TUNE2l02nbsjz0UNLy7MyZ1kr2AAAAAAAA+gpKwQAAAAAAAAAAAAAAAAAAAIA+KB53Wp698koKwdD/GIYhv99veb61tVWmadqYCAD6rtvfur3D4zPGzbBcKAMMZG63odmzQ3rkkWJt3ZrV737XrGnTonK5sjudKS1N69BDW3Oaa/16j2pqvF84tnZtoW64oUQTJxbpoIPa9MtfNmn7dusFTuhdioqKLM82NTXZlmPhQut/l5x+OvezAAAAAACgf+Or8AAAAAAAAAAAAAAAAAAAAMAAMnVqTPvuW5DvGEBODB482PJsNptVOBy2LwwA9FGvbHpFdW11HZ676fibejgN0P8EAi5ddFGJli0LaOPGpK6/vkn77Rfb4boTTmiRK8fdR4sXh3Z5/s03fbrqqlINH+7SccdF9Yc/NKu1NZ3bUMipUChkeTYSidiSoaEho1dfLbQ0O2RISoceyv0sAAAAAADo3ygFAwAAAAAAAAAAAAAAAAAAAAaQefMc+Y4A5ExBQYHcbrfl+YaGBhvTAEDf9INnftDh8TGhMRpbOraH0wD925AhBfrRj0r19ttFev/9mC6/vEmjR7dLkmbODOd072x296Vgn0qlDD3zTEAXXliiIUMcmjOnRevXN8g0zZxmhP2CwaDl2fb2dlsyPPJIQum0tfvSGTOSMgzuaQEAAAAAQP9GKRgAAAAAAAAAAAAAAAAAAAAwQEyalNAJJxTmOwaQU6WlpZZnk8mkUqmUjWkAoG+JJWN6edPLHZ678vArezgNMLDstVeRbryxVGvWuPXiixEdeGA2p/u9+65XW7Z4ujwXjTq1fLlXra3bVFNTo3Xr1qmlpSUHCZELhmFYLtHNZrOKxWLdzrBwofVSr9mzeSQWAAAAAAD0f3wFBAAAAAAAAAAAAAAAAAAAABggLr00I8Ow/gA20BeUlZV1a3779u02JQGAvud/X/hfmVlzh+MFzgJduP+FeUgEDDxOp6Ejjwxq3Lg9NGnSJA0aNMhyidOuLFoUsjxbXR2W8e8nE+PxuDZt2qQPPvhAGzZsUFtbmz0BkTM+n8/ybFNTU7f2bmsz9fzz1oqqQ6G0jj2WkmsAAAAAAND/ufIdAAAAAAAAAAAAAAAAAAAAAEDuDR6c0nnnFeU7BpBzhmHI5/NZLqSIRCI2JwKAvuOPK/7Y4fGT9zxZxqcNQAB6jGEYqqioUEVFhdLptOrq6tTS0qJMJtOtdVMp6amnii3PV1e37HAsm82qtbVVra2tMgxDgUBAgwYNksfj6U5U5EBZWZnC4bCl2Wi0e6Vvjz+eUDxu7b70+OPb5XZbLzQDAAAAAADoKygFAwAAAAAAAAAAAAAAAAAAAAaAiy9OyuNx5zsG0CMqKyv10UcfWZpNpUzV1kY0ZEjQ5lQA0Ls9v+F5NcYbOzx34/E39nAaAP/N5XJpyJAhGjJkiBKJhOrq6tTa2irTNLu81vLlAYXD1h4tnDgxrrFj23d5jWmaamlpUUtLi1wul0KhkMrLy+Vy8Thjb+D1euVwOJTNZnd7bTYrrVlToFde8euVV/z66KMCbdxoyuWyVhT56KO733NnZs1yWJ4FAAAAAADoS/gqGgAAAAAAAAAAAAAAAAAAANDP+XwZfec7hfmOAfQYn88np9OpTCbT6ZktW9z6+99L9Pe/h1Rd3aY//CGHAQGgF/rhMz/s8Pj4svEaUTyih9MA2JXCwkKNGPHJx2Vra6vq6+vV1tbW6flFi4ot711dHe7S9el0Wg0NDWpoaJDH41FpaalKS0tlGNZKpWCPgoICJRKJDs81NDj16qv+z4rA6uu/WC69fHlUU6YEurxnKpXV0qUFlvJ6vaZOOol7WgAAAAAAMDBQCgYAAAAAAAAAAAAAAAAAAAD0c1/5Slylpf58xwB6VCgUUmNj4y6vSSYdevbZgB59tFSvvupTNuuQJD32mKHf/CYjr9fZE1EBIO9ak616bctrHZ770RE/6uE0ALrC7/fL7/fLNE1FIhE1NDTstOxJklpbDT33XNDSXg5HVjNmtFiNqmQyqW3btmnbtm3yer0qLy9XcbH1gjJYFwwGP/tz0t7u0IoVRVq+/JMSsJUrvbucXbIkpSlTur7n0qUJhcO7Xntnpk5NqKioyNIsAAAAAABAX0MpGAAAAAAAAAAAAAAAAAAAANCPOZ1ZzZvnyXcMoMdVVlbutBRs9eoCPfZYiR5/PKSWlh3fVt/U5NK99zbrggtKch0TAHqFq5+9WllldzjudXl19pfOzkMiAF1lGIZCoZBCoZBM01RDQ4Oam5uVSqW+cN2yZUG1txuW9pg8uU2VlWk74ioej2vTpk3avHmzfD6fKisrKX3qQaWlpbrllrSefz6gt97yKZHo/J+J558vsLTnI49kLM1J0qmn7vh3FAAAAAAAQH9FKRgAAAAAAAAAAAAAAAAAAADQj1VXxzRunC/fMYAe53Q6VVhYqEQiIUlqbTX0xBPFeuyxEv3rX7svnPjzn9264IJcpwSA3uHud+/u8PisibNkGNbKgwDkj2EYqqysVGVlpdLptOrq6tTS0qJMJqPFi0OW1505M2xbxk9ls1m1traqtbVVhmHo7bcrNH16sSoqKDbOJZfLpWefDeqVV/xdnn37ba9aWtIqLu7846mmmdUTT1grE3O5TM2eXWhpFgAAAAAAoC/iq/IAAAAAAAAAAAAAAAAAAABAP3bFFc58RwDyprKyUitWFOknPxmqadMm6LrrhnaqEEySXn7Zp1WrYjlOCAD598SaJxROhDs8d8OxN/RsGAC2c7lcGjJkiCZOnKg99thD1dVJ7bNP11/jFBSYOvbYSA4Sfq6hwaHzzy/XsGEunXBCRHff3axYLJ3TPQeyo45KWppLpQwtWdLapZnly9u1davb0n6HHdau0lLuawEAAAAAwMBBKRgAAAAAAAAAAAAAAAAAAADQTx18cFxHHFGY7xhA3gSDQS1YMFgLF5YoHu/a2+dN06E77mjPUTIA6D2ufu7qDo9PKp+kIcEhPZwGQC4VFhbqxz8u1TvvFGnFilZddlmzRo7s3Oudo4+Oyu83c5rvqaeKlU47lEwaeuqpoM4/v0RVVdKZZ4a1aFGL0unc7j/QnHiiy/Ls00937fqHH7Ze7nbKKfz/DgAAAAAABhZKwQAAAAAAAAAAAAAAAAAAAIB+6nvfy+Y7ApB3X/lKwvLsgw/6KJ8A0K+FE2G9vfXtDs9dc/Q1PZwGQE/ad1+/fvWrEq1b59bSpS0655ywSkt3Xtw0c2Y455kWLw7tcCwScemBB0I66aRijRiR1je/2axXX43mPMtAcOih/l3+f74r//xn18qnFy1yW9rH4chqzhyPpVkAAAAAAIC+ilIwAAAAAAAAAAAAAAAAAAAAoB8aPTqp00/35jsGkHcXXBBQUVHG0uyWLR4tXBixOREA9B4/fOaHymrHElGf26e5e83NQyIAPc3pNHTsscX6859D2rrV0H33hXXyyS3yej9//VRcnNbhh7fmNMemTR69+27RLq/ZutWj3/2uRIceGtDEiXH9+MfNWrs2ntNc/ZnLZejww2OWZtetK9SaNZ37vf/Xv5Jat67A0j777deu4cOtFYoBAAAAAAD0VZSCAQAAAAAAAAAAAAAAAAAAAP3QJZek5HQ68h0DyLuSErdOPNF6icVdd/G2ewD9173v39vh8TP3PrOHkwDoDTweQ2eeGdLChcWqrTX1298268gjW1Vd3SK3e8cCQTstWlTcpetXrvTq5z8v0fjxhZo3b7s2b96sZDKZo3T91zHHpC3P/uMfnSsFe/BB6/+/nHyytXJfAAAAAACAvozvTgIAAAAAAAAAAAAAAAAAAAD9TElJWhdd5M13DKDX+PrXrc8uXepXbW27fWEAoJdYuHKhIu2RDs/94thf9HAaAL1NKOTWt79dohdf9OsPf/ApGAzK4chN6XA2Ky1ZErI469CkSTGFw2GtXr1aK1eu1LZt25TJUCbVGSedZP2+8dlnXZ267vHHO3ddR+bMsT4LAAAAAADQV1EKBgAAAAAAAAAAAAAAAAAAAPQzF1zQLp+PtwoDnzr22IDGjk1Ymk2lDN15Z5vNiQAg/376/E87PL7PoH1UXlTew2kA9GZeb6FGjBihvfbaSyNHjlRRUZGt63/wgVcbNhRYmq2sTOnAAz9/rZZOp9XQ0KAPP/xQa9asUWNjo0zTtCtqvzNmjFfjxll7nbx8eZHS6V3/3m7YkNK77xZaWn/PPds1aZK1PxcAAAAAAAB9Gd/pBwAAAAAAAAAAAAAAAAAAAPoRj8fU977Hg9PAf3I6DX35yzHL8/feW6RMhjIJAP1HQ6xB721/r8Nz1029rofTAOhLAoGAxowZo0mTJmnIkCEqKOj+vcfixcWWZ6urwzJ28pRke3u7tm7dqpqaGq1fv16RSMTyPv3ZlClxS3PhsEsvvbTr8twHH2y3tLYkVVenLM8CAAAAAAD0ZZSCAQAAAAAAAAAAAAAAAAAAAP3InDlxDRniyncMoNe56KIiuVzWir1Wry7U889HbU4EAPlz5dIrOzweLAjq5D1P7uE0APoiwzBUWlqqcePGadKkSaqsrJTb7e7yOum0tGRJyHKO6uqWTl0Xi8X08ccf64MPPtDGjRsVj1srwuqPjj/eYWmuuDitVat2/fu4cKHT0tqSNGcO97UAAAAAAGBg4qsiAAAAAAAAAAAAAAAAAAAAQD9y5ZVdfxAfGAiGDSvUMcdE9NRTwS7N7blnXKed1qzi4pik4tyEA4Ae9uAHD3Z4/Cv/85UeTgKgPzAMQ5WVlaqsrFQqlVJ9fb1aWlqUyWR2O/vaa341NVl7zHGPPRIaPz7RpZlsNqtoNKpoNCrDMBQMBlVZWSmPx2MpQ38wY4ZfHo+pZNLY5XUuV1b77hvTYYe16tBDWzVxYlxutyGpssPr6+rSeu21QkuZhg5NavLkAkuzAAAAAAAAfR2lYAAAAAAAAAAAAAAAAAAAAEA/ccwxMX3pS0X5jgH0Wuefb+qpp3Z/nd+f0YknhjVrVrMmTUrI4fjkeDqdlsvF2/AB9G33v3+/2lJtOxx3yKGfH/PzPCQC0J+43W4NGTJEQ4YMUTweV11dnVpbW5XNZju8ftGikOW9qqvDn71Os8I0TYXDYYXDYbndbhUXF6uiokJOp9P6on1QIODSgQe2avly/w7nRo1q12GHteqww1p14IFt8vnML5w3TXOnr5EfeaRdmYzPUqbq6qQMY+AWtQEAAAAAgIGN70YCAAAAAAAAAAAAAAAAAAAA/cS8ed14Ih4YAGbNCmrw4KS2beu4YOCAA9o0a1azjjuuRV7vjsUV27Zt07Bhw3IdEwBy6mcv/KzD4/tX7a9QYahnwwDo17xer0aOHClJikajqq+vVywW++x8LObQsmUBy+tXV7d0O+OnUqmUGhoa1NDQoIKCApWVlSkUCskwDNv26M2OOiqp5culYDCtQw5p02GHterQQ1s1ZEhqt7NNTU2qrKzc4fjf/279/nT27IFVzAYAAAAAAPCfKAUDAAAAAAAAAAAAAAAAAAAAegHT3LGAqCv23juh448vtCkN0D+53Ybmzm3TLbd8XgpWXp7SySeHddppzRo1KrnL+UgkkuuIAJBTtZFa1TTUdHju+mnX93AaAANJIBBQIBCQaZoKh8NqbGzUE08UKh63Vv50wAFtqqrafWGVFe3t7aqtrdXDD0f03nvFOv98jw44wJeTvXqLs8926n/+Z50mTYrL2cX/SyKRyA6lYK2tpl580dr9aWlpWtOmcW8LAAAAAAAGLkrBAAAAAAAAAAAAAAAAAAAAgF7g5ZfbuzV/6aUZGYbDpjRA/3XxxQW67TZTRxzRqtNOa9aRR0bldndu1jRNRaNRBQKB3IYEgBy58pkrOzxeUlii6XtM7+E0AAYiwzBUWlqq0tJSffe7poYMCeu++wwtW+ZXImF0ep2ZM8O5C/lvDzxQqmefDerWW6VJk+KaPTuu88/3avRob8737ml77hlQJrPJ0mx7+473sgsXJpRIFFlab/r0drlc/buEDQAAAAAAYFcoBQMAAAAAAAAAAAAAAAAAAAB6gXvuyVqerapK6ZxzrD1wDQw0EycW6cUXVykQSFmar6uroxQMQJ9kmqYe/fDRDs+dt+95PRsGACQVFBj6yldC+spXpMbGpP7611Y99JBHr7zik2nuvPDY7TZ13HEtOc3W0uLUiy/6P/t1TY1XNTVeXX99Vocc0qq5c5P66lf9Kivz5DRHTzEMQ263W6lU118jZ7NZtbW1yef7vMjrsces39/OmkXZNQAAAAAAGNg6X50PAAAAAAAAAAAAAAAAAAAAICfeeaddb77ptTz/zW+2y+PhwWmgs0aNClqejcfjMk3TxjQA0DPuefcexdPxHY4bDkPXTb0uD4kA4HNlZR5demmpXnrJr7VrE7r66iZNmrTj5yxJmjIlquLi3L4ee/rpoNLpHR+/NE2Hli/367LLSjVsmEvV1RH99a/Nam/v+68P/X7/7i/aiebm5s9+nkxmtXRpoaV1fL6MqqutzQIAAAAAAPQXlIIBAAAAAAAAAAAAAAAAAAAAeXbDDWnLs35/RpdcYr1QDBiIKioqujVfV1dnUxIA6Dk/f+nnHR4/eOjB8nusF8EAgN1Gj/bquutK9cEHXr35Zpu+/e1mDR2a/Ox8dXVLzjMsWhTa7TWJhKElS4I6++wSVVWZ+upXw3rqqYgymb5ZEFZaWmp5tq2t7bOfP/VUQpGI09I606a1y+vlsVcAAAAAADCw8dURAAAAAAAAAAAAAAAAAAAAII+2bEnr4Yetl3p99asJlZRYe+AaGKhcLpcKCwstzzc3N9uYBgByb2N4o9Y0renw3C+O+UUPpwGAzjvgAJ9++9sSbdzo0hNPRHTuuc2aMiWa0z1ra916+21fl2aam136299COu00n95660OtX79e0Whuc9rN6/XK4XBYmk2lUjLNT8rQHnnEeinaaadZHgUAAAAAAOg3XPkOAAAAAAAAAAAAAAAAAAAAAAxkN92UUCrltzTrcmU1b57b5kTAwFBRUaFNmzZZms1kMorFYioqKrI5FQDkxryl8zo8Xl5UrimjpvRwGgDoOqfT0AknBHXCCVImE1RDQ4PC4bBSqZTtey1ZUmx59thjIyoqyioWi2njxo1yOBzy+/0aNGhQt0ppe0phYaHi8bil2ZaWFgWDIT3xhMfSvNtt6tRTCyzNAgAAAAAA9CeUggEAAAAAAAAAAAAAAAAAAAB50tpq6k9/sv5g+MyZMY0d67MxETBwFBcXa/Pmzcpms5bmt2/frtGjR9ucCgDsZ5qmHl/1eIfnvr7/13s4DQB0n9Pp1KBBgzRo0CAlk0nV19erpaVFpml2e+1sVlq0KGR5vrq65b/WyyoajSoajcrpdCoYDKqyslJud+8sdw4Gg5ZLwcLhsN57z6u6Omv3uEcckVBJCaW7AAAAAAAAlIIBAAAAAAAAAAAAAAAAAAAAefK738UUDvstz19xhdPGNMDAEwwG1dLSsvsLO9DW1ibTNGUYhs2pAMBed7x1h9oz7TscNxyGrjnqmjwkAgD7eDweDR06VEOHDlU8HlddXZ1aW1stF7+uWlWodeuslVqVlaV08MGtOz2fyWTU3Nys5uZmud1ulZSUqLy8vFe9niwpKdH27dstzcbjcT38cNry3qecYu3/MwAAAAAAgP6GUjAAAAAAAAAAAAAAAAAAAAAgDzKZrG691WN5/ktfSuiww6w9rA7gE4MGDbJcCiZJjY2NqqiosDERANhv/vL5HR4/YvgRKnTxWgJA/+H1ejVy5EhJUiQSUUNDg2KxWJfWWLy42PL+M2a0yNXJJzZTqZTq6upUV1engoIClZWVKRQK5b0gzOVyyel0KpPJdHk2kzG1aJG1e1zDyGrOnAJLswAAAAAAAP0NpWAAAAAAAAAAAAAAAAAAAABAHjz4YFwbNhRZnv/qV7M2pgEGJo/HI4/Ho2QyaWm+qamJUjAAvdqaxjX6KPxRh+fmH9dxWRgA9AfBYFDBYFCmaaq5uVlNTU1qb2/f5UwmIy1ZErK858yZYUtz7e3tqq2tVW1trYqKilRRUaFAIGA5R3cVFRUpGo12eW79+gJt2GCtFOyAAxIaMsRraRYAAAAAAKC/oRQMAAAAAAAAAAAAAAAAAAAAyINf/crRrflp0wptSgIMbOXl5aqtrbU0m0qllEwm5fFYKz8AgFyb9/S8Do8P8g3S5GGTezgNAPQ8wzBUVlamsrIyZTIZ1dfXKxwOK51O73DtG2/4VFfntrTPqFHtmjQp0d24isVi2rhxoxwOhwKBgCorK1VY2LP3fqFQyFIp2LJlQct7nnxyxvIsAAAAAABAf0MpGAAAAAAAAAAAAAAAAAAAANDDXnwxoTfe8HZrDaeze6ViAD4RCoW0detWZbNZS/Pbtm3TiBEjbE4F9C3pdFpr165VTU2NPvzwQ3300Ueqra1VbW2t6uvrFY/HFY/HlUwmVVBQIK/Xq8LCQgUCAVVVVWnIkCEaMmSI9thjD33pS1/S//zP/8jv9+f7P6vPM01TT6x9osNz3zzwmz2cBgDyz+l0avDgwRo8eLCSyaTq6uoUiURkmqYkafHikOW1q6vDcth4i5bNZhWJRBSJROR0OlVcXKyyskoVFOT+kdBAIGBprjulYHPmULILAAAAAADwKUrBAAAAAAAAAAAAAAAAAAAAgB42f34m3xEA/JthGPL7/YpGo5bmo9GoTNOUYRg2JwN6r02bNumll17Sa6+9ptdee00rVqxQe3t7p2Y/LQj71KpVq3a4xuFwaOzYsZo6daqOO+44TZs2TWVlZbblHyhufu1mpczUDsedDqd+eMQP85AIAHoPj8ejYcOGSfrk76bt2+u0ebP1Yqrq6rBNyXaUyWS0fXuzDjigXAcdFNGXv2xq9uygPJ7cvP40DENut1up1I5/h+zM1q1u1dRYK76eMKFde+5ZYGkWAAAAAACgP6IUDAAAAAAAAAAAAAAAAAAAAOhBq1cntWRJUb5jAPgPgwYNslwKls1mFYlEFAqF7A0F9CKRSETPPPOMnnnmGS1btkyrV6/O6X7ZbFZr167V2rVrdeedd8owDE2dOlXnnHOOZs2aJb/fn9P9c2XDhg0aPXp0vmMoo4wKrrG/fCWbzdq+JgD0BK/Xq1GjRuqNN6TXX2/V3XentHChT7W1nSsJ22efmIYP73yBlhX//Kdf27Z59PjjHj3+uFRamlZ1dURnn+3QtGkBOZ32FoQFAgE1NTV1+vpnnw1Y3uukk1KSKAUDAAAAAAD4FP8UEQAAAAAAAAAAAAAAAAAAANCD5s9PyTQd+Y4B4D8UFhbK5bL+b27X19fbmAboHbZs2aLbb79dJ5xwgioqKjR79mzdfvvtOS8E64hpmlq2bJnOPfdcDR48WN/5znf08ccf93gOAED/N3myX7fdVqKNG11atKhFZ5wRVjCY3uXMzJnhnOdavDj0hV83Nbn0l7+EdPzxxRo7NqXLLmvWO++02rZfSUlJl65ftixoea85c9yWZwEAAAAAAPojR5Z/hgMAAAAAAAAAAAAAAAAAAADoEY2NGY0YIcVizg7OviNpv06vtWLFCu277742JQNQV1enuro6y/MTJkzoVrEY0BvU19froYce0r333qvly5erNz9y4na7dfbZZ+u6667T0KFD8x2nUzZs2KDRo0fnO0bO9OY/LwDQHbFYRg8+GNH99zv13HN+JZPGZ+dcrqyefXalSkoyOds/GjV09NETvrDvznzpSzHNnp3Q+ecXafjwwm7t+8EHH3Tqc3tzs1NHHz3BUvn18OFJbdjglmFQnA0AAAAAAPCp3X8VCAAAAAAAAAAAAAAAAAAAAIAtbr45vpNCMAD5Vl5e3q357du325QE6Fnt7e168MEHNWPGDA0ZMkTf/va39fLLL/f6gqdUKqW77rpLEydO1IIFC5ROp/MdCQDQTxUVOXXeeSV68smgNm9Oa/78Jh18cJscjqwOPzya00IwSXrmmWCnCsEk6b33inTNNaUaPbpARx3VqocearD8d2RhYedKxZ5/PmCpEEySqqtTFIIBAAAAAAD8F0rBAAAAAAAAAAAAAAAAAAAAgB6QSJj6/e8L8h0DwE4YhqGioiLL883NLTamAXLvX//6ly677DINHTpUZ5xxhp588sk+WawVjUZ1+eWXa/LkyVqzZk2+4wAA+rmKCo/mzSvVq6/6tGpVQldfHZXDkdtSq8WLQ12eyWQcevFFv9asSWjlypVatWqV6urqZJpmp9cIBoOduu7ZZzt3XUdOP53SbAAAAAAAgP9GKRgAAAAAAAAAAAAAAAAAAADQA+6+O67t2935jgFgFwYNGtTlmc2b3frNbyp17LHj9PbbrTlIBeTG1KlTdfPNN6uxsTHfUWyxYsUKHXjggXrooYfyHQUAMECMG+fVMccM1V577aXhw4fL6/Xavsf27S69/rrP0mxhoaljjolIklKplOrq6lRTU6O1a9eqqalptwVhJSUlu90jFjO0fLnfUr7y8rSOPpribAAAAAAAgP9GKRgAAAAAAAAAAAAAAAAAAACQY6aZ1c03u/IdA8Bu+Hw+Gcbu32bf3u7QkiXF+vrXR2nGjD31+99Xavt2t+64I9UDKQHsTCQS0dy5c3XdddflOwoAYIApLi7W2LFjNWnSJFVVVcnj8diy7hNPFCubdVianTo1Ip9vx+KvRCKh2tpa1dTU6KOPPlI0Gu1w3uVyyel07nKPZcsCSiatPaY6fXq7nE5r/20AAAAAAAD9Ge8sAAAAAAAAAAAAAAAAAAAAAHJsyZKEVq705jsGgE4oKSlRY2Njh+dWrSrQo4+WatGiYkUiO74d/5FH/LrlFlMFBfz73UA+XXPNNQqHw1qwYEG+owAABhjDMFRWVqaysjKl02k1NDQoHA4rnU5bWm/x4pDlLDNnhnd7TVtbm9ra2mQYhvx+vyorK1VYWPjZ+aKioi+UhpmmtHJloZYv9+uVV/x64w2f5XyzZlEIBgAAAAAA0BFKwQAAAAAAAAAAAAAAAAAAAIAcu/HGbL4jAOikioqKL5SCRaOGnniiWI8+WqIPPija5Wxjo1v33des884ryXVMALvxq1/9Sg6HQzfddFO+owAABiiXy6XBgwdr8ODBSiaTqqurUyQSkWmanZpfs6bAcrl0SUlahx7a2unrTdNUJBJRJBKR0+lUcXGxKisrFQqFtHZtXK+84tfy5X69+qpfzc3dfyzV78/oxBMLd38hAAAAAADAAEQpGAAAAAAAAAAAAAAAAAAAAJBDb7/drhde2HWREIDew+VyqaCgUMuXG3r00RI9/XSxEgmj0/P33OPSeeflLh+AzluwYIH22GMPffOb38x3FADAAOfxeDRs2DBJUltbm+rr69XW1qZsducF0osXhyzvN316i9xua7OZTEZNTU1qamqS0+nSWWeNVV2dxcV24phjEios9Nm6JgAAAAAAQH9BKRgAAAAAAAAAAAAAAAAAAACQQzfckJZUkO8YALqgqWmQzjsvYGn2hRf8WrcurrFjvTanAno3h8OhPfbYQwcddJDGjx+vUaNGadSoURo2bJh8Pp/8fr+KioqUTCYVj8dVV1enTZs2adWqVXrrrbf00ksvac2aNbbn+s53vqM999xT06ZNs31tAACs8Pl88vk+KcRqaWlRQ0OD4vH4F64xTWnJkmLLe1RXh7sT8TOZTFqHHNKqf/yjxJb1PnXaabYuBwAAAAAA0K9QCgYAAAAAAAAAAAAAAAAAAADkyKZNKT36KMVAQF9z8MEB7b13TO+/X9TlWdN06I47ErrhBj720b85HA7tv//+mj59uo455hgdcMABKi7efXlJYWGhCgsLVVJSoj333FPHHnvsZ+fWrFmj+++/X3/4wx/08ccf25Izk8no/PPP17/+9S8Fg0Fb1gQAwC7FxcUqLi6WaZpqampSU1OTksmk3n67SFu3eiytOWxYUvvsE9/9hZ102GH2loJ5PKZOPbXQtvUAAAAAAAD6GyPfAQAAAAAAAAAAAAAAAAAAAID+asGCdqVSvGUX6Iu+8pWE5dn77y9SOm3amAboHVwul6ZPn667775b27dv15tvvqnrr79e06ZN61Qh2O6MGzdOV199tT766CPdfffdGj16tA2ppY8//ljf//73bVmrpx111FHKZrO7/XHkXUdK12qHH2NuHtOpeTt+AACsMwxD5eXlGj9+vCZMmKCqqoCOOy4qt7vrrymrq8NyOOzLdsghrfYtJunIIxMqLnbauiYAAAAAAEB/wjsMAAAAAAAAAAAAAAAAAAAAgByIRk396U+F+Y4BwKKvf90vr9dasdemTQVavDhqcyIgfw488EDdeuutqq2t1ZNPPqlzzz1XFRUVOdvPMAyde+65qqmp0RVXXCGns/vFIXfddZdWrFhhQ7reJ5aM6eVNL3d47geH/6CH0wAAuuuTEs4KPf10QJs2pfXLXzbpoIPaOj1fXR22NU9ZWUYTJ8ZtW++UUyiSBAAAAAAA2BVKwQAAAAAAAAAAAAAAAAAAAIAc+N3vYmppceU7BgCLyss9mjHDerHXXXfZGAbIg8LCQp177rl67bXX9MYbb+hb3/pWTovAdpbhhhtu0NNPP62ysrJurZXNZnX11VfblKx3+d8X/ldmdscSw0Jnob6+39fzkAgAYJdBgzy68spSvf66Tx9+GNMPftCkceMSO71+r71iGj06aXuOQw9ttWUdw8jq9NMLbFkLAAAAAACgv6IUDAAAAAAAAAAAAAAAAAAAALBZOp3Vb3/ryXcMAN30ta9Zn33qqYDq6uwvZAByrby8XNddd522bNmiu+++W5MnT853JE2bNk2vvfaahg8f3q11Fi9erDfffNOmVL3HH1f8scPjJ+95sgyDR4cAoL+YMKFIv/hFqVavLtRLL0X1jW80q7Iy9YVrZs5sycnehx1mTynYQQclVFVFeTYAAAAAAMCu8JV9AAAAAAAAAAAAAAAAAAAAwGYPPBDXxx9TCgb0dSecENCoUe2WZtvbDf3+9/aUJwA9YdiwYVqwYIE2btyoq6++WqWlpfmO9AVjx47V888/r6qqqm6tc+edd9qUqHd4fsPzaow3dnhu/vHzezgNAKCnHH54QHfcUaItW5x67LGwTj+9RcXFaZ1wQjgn++23X0yFhWa315k+PaZkkuJcAAAAAACAXaEUDAAAAAAAAAAAAAAAAAAAALDZr37F23SB/sDpNHTmmW2W5++912tjGiA3KisrdfPNN2vdunX63ve+p6KionxH2qkxY8boscceU0FBgeU1HnjgAcXjcRtT5dcPn/lhh8fHl43XiOIRPZwGANDTXC5Dp54a0kMPFWvbNmnPPUNyuVy27+PxZLXfftZfF3/q8MMbtHr1aq1fv15NTU1Kp9M2pAMAAAAAAOhfeLcBAAAAAAAAAAAAAAAAAAAAYKPnn0/orbcK8x0DgE0uvrhILle2y3MTJ8Z12mnNamwM2x8KsEEwGNS1116rdevW6bvf/a48Hk++I3XKwQcfrOuvv97yfEtLi5544gkbE+VPa7JVr215rcNzPz7yxz2cBgCQb4WFLlVVVWnChAkaN26ciouLZRj2PEK6ebNb69Z17z534sS4hgxJSZJisZhqa2u1atUqbd68Wdls119vAwAAAAAA9Ff2V74DAAAAAAAAAAAAAAAAAAAAA9j8+Wa+IwCw0ciRhTr66KieeSaw22sDgYxOPDGsWbOaNWlSQpLU1NSmsrJQjlMCXbdixQoVFxfnO4Yll112mf72t79pxYoVluafffZZzZo1y+ZUPe/Hy36srHYsUSlyF+mcfc7JQyIAQG9RUFCg4cOHS5La2tpUX1+vtrY2S+VbL77o1w9/OEyRSPceRy0qynSYs6KiQg6Ho1trAwAAAAAA9CeUggEAAAAAAAAAAAAAAAAAAAA2WbkyqSef9OY7BgCbnXtuWs88s/PzBx7YplmzmnTssRF5vV8sWmhvb1c6nZbLxdv30bv01UIwSXI6nfrf//1fnXzyyZbmn3/+eXsD7UI8FdejHz6q1mSrhpnDbF37nvfu6fD47Amzbd0HANC3+Xw++Xw+maapSCSixsZGxePx3c5lMtLvflepO+6oUDbb/dKut97y6/nnAzr66KgkKRQKaciQITIMo9trAwAAAAAA9Cd8VxEAAAAAAAAAAAAAAAAAAACwyfz5SZmmx9Ksx2MqmbQ5EABbzJ1brMsvT6muzv3ZsfLylE45JazTTmvWyJG7/uCtq6vTkCFDch0TGFBOOukkTZgwQStXruzy7AcffKBIJKJgMJiDZJ+LtEd0yB8O0YcNH35yoNm+tZ9Y84TCiXCH5244/gb7NgIA9BuGYSgUCikUCsk0TTU2Nqq5uVnJDm5Ew2GnrrpqmF5+OWBrhh/9aJgeeGCdDj64XCUlJXI4ul82BgAAAAAA0N9QCgYAAAAAAAAAAAAAAAAAAAB0wV133aW77rprh+OplF9vvvmo5XV9vmWUggG9lMdj6PTTW3THHSEdeWRUs2Y168gjo3J18h354XCYUjAgB8455xz96Ec/sjS7Zs0aHXDAATYn+qJbX7/180Iwm1393NUdHt+rYi8N9g/OyZ4AgP7DMAxVVFSooqJC6XRa9fX1amlpUTqd1gcfFOr73x+h2lprhde74vOZCgaHq7TUa/vaAAAAAAAA/QWlYAAAAAAAAAAAAAAAAAAAAEAXfPzxx3r55Zc7OPMDSUUWVzXV3HxLN1IByLV589w6/fRVqqhId3nWNE1Fo1EFAoEcJAMGrpkzZ/bqUrBcFYKFE2G9vfXtDs/99Kif5mRPAED/5XK5VFVVpaqqKi1YENFVV/mVShm273Pooa165JFCVVVRCAYAAAAAALAr9n9lBgAAAAAAAAAAAAAAAAAAABhw3JK+2435hZI225QFQC6MHu3XoEGm5fm6ujob0wCQpL333lulpaWWZjds2GBvmA4Uua2Whe7aD5/5obLK7nDc7/Fr7l5zc7InAKB/a2szdeaZbbr88mBOCsG+/vU6/e53GzV4sNP2tQEAAAAAAPobSsEAAAAAAAAAAAAAAAAAAACAbvuypCHdmL/JriAAcigUClmejcfjMk3rpWIAduRwODRp0iRLs5FIxOY0O6ooquj2GmZ2x88bf/vX3zq89oy9zuj2fgCAgWfVqqQmT07qgQd8OVn/iCOiuvTSOhlGVvF4PCd7AAAAAAAA9CeUggEAAAAAAAAAAAAAAAAAAADddnk3Zl+V9LJdQQDkUGVlZbfm6+vrbUoC4FNjx461NNfa2mpzkh2VF5V3e41XNr+iK56+Qmsa10iSHvvwMUWT0R2uc8ihXx77y27vBwAYWB5+OKbJk52qqSnM2R5nn93w2c974u9fAAAAAACAvo5SMAAAAAAAAAAAAAAAAAAAAKBbjpX0pW7M32RXEAA55nK5VFBQYHm+ubnZxjQAJKmkpMTSXCwWsznJjip8Fd1eI51J68ZXbtT4347Xsfccq8uevKzD6/YZtI/Kisq6vR8AYGBIp7O6/PJWzZ3rVSTizNk+gUBGBx3U9tmvKQUDAAAAAADYPVe+AwAAAAAAAAAAAAAAAAAAAAB927xuzH4k6TG7ggDoARUVFdq8ebOl2XQ6rXg8Lq/Xa3MqYODy+XyW5rpT8NdZ5UXltq637KNlOz133dTrbN0LANB/bd+e1ty5Kb34ot/2tR2OrAoKskokDEnSUUdF5XZ/fj4WiymTycjpzF0RGQAAAAAAQF9n5DsAAAAAAAAAAAAAAAAAAAAA0HftLWl6N+Z/JSljUxYAPSEUCsnhcFie3759u41pAMRiMUtzfr/9RSj/ze5SsJ3xuryaMW5Gj+wFAOjbXnopof33z+rFF+0vqR00KKW//nW9li+v0R13fKQzzmjUzJnhHa5ra2uzfW8AAAAAAID+xJXvAAAAAAAAAAAAAAAAAAAAAEBfMmLECB1++OGSpFWrfqCGBmvrOJ0RHXhgjVyuT9ZqbW3Vu+++a1dMADkUDAbV0tJiaba1tVWmacow+De+ATuEw2FLc4FAwN4gHagoqsj5HpIUT8c16tejdOH+F+qC/S/QsOCwHtkXANC33Hxzm664wqtUyv7XoYcc0qpf/nKTSks/Kb0+7LA2HX54TKNGjVIkUqCWlhal02lJn7weDgaDtmcAAAAAAADoLygFAwAAAAAAAAAAAAAAAAAAALrga1/7mr72ta9p48aU9tjDaXmdb37T0G9+88xnv37nnXe033772RERQI4NGjTIcimYJDU1Nam8vNzGRMDAVVtba2lu+PDhNifZUXlRz32cb4lu0bUvXKvrXrxOJ40/SRcdcJGOH3u8nIb11yoAgP6hrc3UBRfE9cADvpysf+GFdfr2t+vk/K+/cvx+v3w+n3w+nwYPHqy2tjaFw2HFYrGc5AAAAAAAAOgvKAUDAAAAAAAAAAAAAAAAAAAALLjppnal035Lsy6XqcsvL7A5EYCe4vF45Ha7lUqlLM03NjZSCgbYZMWKFZbmxo0bZ3OSHXndXvncPrWl2nK+16fMrKmFqxZq4aqFGhUapQv3v1Bf2+9rGuwf3GMZAAC9x6pVSc2aZaqmxv5CsEAgo+uv36ypU6Mdng8Gg5/93OFwyO/3y+/3yzRNZbNZORwO2zMBAAAAAAD0B0a+AwAAAAAAAAAAAAAAAAAAAAB9TSSS0Z//7LU8f+qpcY0a5bYxEYCeVlZWZnk2lUopmUzamAYYmDZv3qy6ujpLsz1RCiZJ5UX5KwDcEN6gHz/7Yw3/1XDNeWiOlq1fJjNr5i0PAKBnPfxwTJMnO1VTU2j72hMmtOuZZ1p2WggmSYFAoMPjhmFQCAYAAAAAALALlIIBAAAAAAAAAAAAAAAAAAAAXXT77QlFIk7L81dc4bIxDYB8KC0t7db8tm3bbEoCDFxPPvmkpbmRI0eqoqLC5jQdy2cp2KfSZloP1zysY/9yrPb87Z66cfmNaog15DsWACBH0umsLr+8VXPnert137ozs2e36Y033Np//+BOr/H5fHK5uO8FAAAAAACwgq+qAAAAAAAAAAAAAAAAAAAAAF2QTmd1661uy/OHHx7X5MleGxMByAfDMOT3+9Xa2mppPhqN2pwIGHgeeeQRS3NTp061OcnOVfhsLh8zJdVL2vLv/22WFJbUJiklKfnv69z65Kkht6RCScFPfqwtXqsrXrxCPxr2I51+xOm6+MCLdeSII+VwOOzNCQDIi+3b05o7N6UXX/TbvrbLZer//i+u73+/SIbhkGSosLBQiURih2uDwZ0XhgEAAAAAAGDXKAUDAAAAAAAAAAAAAAAAAAAAuuDee2PatMlnef7yy7M2pgGQT4MGDbJcCpbNZhUOhxUKhewNBQwQ9fX1evbZZy3NHn300faG2YXyovLuLxKRtOrfPz7W58Vfu9L+7x+f2vbF0ymldN/t9+m+qvtUPqlc5805T9d/9Xp5XJ7u5wUA5MVLLyV0xhlO1dbaX0I9eHBK99+f0VFHffFe2O/3UwoGAAAAAABgMyPfAQAAAAAAAAAAAAAAAAAAAIC+5Ne/dlqeHT++XaecYv8D2gDyw+v1yuWy/m9119fX25gGGFhuu+02JZOdacf6Irfbrerq6hwk6li5t5ulYJskLZC0WNJada4QrLPaJW2QGpY06Mbzb5S/3K8Lvn6BXn/9dRs3AQD0hJtvbtO0aR7V1rptX/vww+N6+22HjjqqcIdzfr9/h2Ner1dut/05AAAAAAAABgpKwQAAAAAAAAAAAAAAAAAAAIBOevbZhFas2PFB6M76znfSMgyHjYkA5FsoFLI8297ernQ6bV8YYIBob2/XbbfdZmn2hBNOUHl5N4u6uqDCV9G9BUx7cnRGqiWlu/54lw4++GDtv//++v3vf6/29vaeCwAA6LK2NlNnntmmyy7zKZWy/3HRSy9t1fPPF6qqquMi3KKiIhnGF/cNBoO25wAAAAAAABhIKAUDAAAAAAAAAAAAAAAAAAAAOmn+fOvNHOXlaV1wgdfGNAB6g8rKym7N19XV2ZQEGDh++9vfWv7YOfvss21Os2vlRT1XQGanFStW6KKLLtK4ceN01113KZPJ5DsSAOC/rFqV1OTJST3wgM/2tQOBjO67L6Zf/9ovl2vnxdaGYcjn++L+lIIBAAAAAAB0D6VgAAAAAAAAAAAAAAAAAAAAQCfU1LTrqaesl3p94xvt8np5+y7Q3xiGIa+3658bNm1y65ZbKnXxxUU5SAX0X/X19frZz35maXbkyJE67bTTbE60axVFFT26n902bdqkCy64QHvvvbeef/75fMcBAPzbww/HNHmyUzU1hbavPWFCu159Na0zz+zc61S/3//ZzwsKClRQUGB7JgAAAAAAgIGEdxUAAAAAAAAAAAAAAAAAAAAAnTB/flrZrMPSrNdr6tJLeTAa6K8qKys7dV17u0OLFxfrggtG6cQT99Sdd1bq8cdD+te/2nKcEOg/fvKTn6ilpcXS7A9+8AO5XC6bE+1aeVF5j+6XKytXrtS0adN06aWXKh6P5zsOAAxY6XRWl1/eqrlzvYpEnLavP3t2m954w61Jkzp///qfpWCBQMD2TAAAAAAAAAMNpWAAAAAAAAAAAAAAAAAAAADAbtTVpfXAA17L82eeGVNlZc+WkADoOYFAQIax87fnr1xZqJ//vEpTp07QVVcN1+uv+79w/o47krmOCPQLzz33nO68805Ls1VVVfra175mc6Ld6y+lYJKUzWZ1yy23aN9999WHH36Y7zgAMOBs357WMccktGCB33Jh9c64XKbmz2/Tgw8Wye/v2mOnHo/ns9LNYDBoay4AAAAAAICBiFIwAAAAAAAAAAAAAAAAAAAAYDd+/euE4nFrb711OLKaN89tcyIAvU0oFPrCryMRQw88UKozzhirOXP20H33lSkadXY4+9BDfqVSZg+kBPquSCSi888/X9ls1tL8z3/+cxUUFNicavcqfBU9vmeurV69WoceeqiWLl2a7ygAMGC89FJC+++f1YsvWi+r3pnBg1N65pmk5s3zyTC6XjbmcDjk9/vlcrnk9dqfDwAAAAAAYKChFAwAAAAAAAAA/j979x0fZZmucfyayaRPAoQQEno3RFRAiSIKAlLtgAEbRewtVD2669pW15UOKitYWBuEZkURARGDNAUUjQYQkBIJPSGTNuU9f+iuqxBI3rwzk8Dvez58jmSe+34u0Q0M5r0AAAAAAAAAAOAkiop8mjkzwvR8r15FSkkJfAkJgMBKSEiQYUjr10fpkUfqq3v3ZP397/WUlXXqYoT9+0M1b15+AFIC1Vd6erp+/vlnU7MXXXSRhgwZYnGi8qkVUUs2VbxgparLy8tT37599corrwQ7CgCc9qZMcalbtzDl5FhfNt2pU5E2bLCpSxfz73klKSYmRrGxsbLZTr+f8wAAAAAAAAKNUjAAAAAAAAAAAAAAAAAAAADgJF55pUgHDzpMz48dy5fsAmcCh8Ohl15K0q23NtMHH9RScXHF/rf/2mshfkoGVH9vvPGGZs2aZWrWbrfr+eefD1pJSYg9RHGRcUG52988Ho9uv/12vfHGG8GOAgCnJZfLp0GDXBoxIlput/XvK9PTC7RiRYSSksy/3/2P6OhoxcbGWpAKAAAAAAAAfIUBAAAAAAAAAAAAAAAAAAAAUAafz9C0aeYfkG7XrljdukVYmAhAVTZwYJjp2RUrnNq5s8jCNMDp4dtvv9Wdd95pej49PV3nn3++hYkqrk50naDe70+GYWjYsGFauHBhsKMAwGklO7tUqamlysiItnx3TIxXs2cXavJkpxwOa0ozHQ6HoqOtzwoAAAAAAHAmqnyFOwAAAAAAAAAAAAAAAAAAAHCaeu+9Im3ZEmV6fsQIr4VpAFR1l14ao5SUImVlRVZ41uOx6aWXivSPf1R8Fjhd5eXlqX///ioqMleYl5KSomeeecbiVBUXHxVvftguKV5SgqS4377FSIr+7VuopJDfvnkleSSVSjomKV/SUUn7fvt2QJJhPkpZvF6vbrzxRq1atSroBWwAcDqYP79Qw4eHKz/ffOFsWZKTS7RggZSSYv59bllsNmsKxgAAAAAAAM50lIIBAAAAAAAAAAAAAAAAAAAAZZgwwfxDzQ0blurGG61/0BpA1XbDDUV69FFzxV5z5kTr73/3KSTEbnEqoPr5T9HUtm3bTM2HhobqjTfeUEREhMXJKq5OVJ3yHw6T1EhSU0mNJdXVr8Vf5WH/7WykpBrHv3xT85vUUz318aKP9e6776q4uLj8uU6hpKRE119/vTZs2KCaNWtathcAziQej6GHHnJp0qRoGYb1BVv9+7s0a1aknE5+rQkAAAAAAFCV8bs3AAAAAAAAAAAAAAAAAAAAwAmsXVusVavMFftI0r33uuVwWP8gN4Cq7Y47nAoP95ma3bkzXIsXH7M4EVA9jRgxQh999JHp+ccff1zt27e3MJF58VHxJz8QI+kCSTdLeui3/99JUgOVvxDsFJ647Am9cdMbGnzzYM2ePVs5OTmaPHmyGjRoYM0Fknbs2KGhQ4datg8AziS5uR51716siROdlheCORw+jRvn0ty5URSCAQAAAAAAVAP8Dg4AAAAAAAAAAAAAAAAAAABwAuPHe03PxsZ6dc895gvFAFRfCQlh6tXLfLHXq69aGAaopqZOnarnn3/e9Hzv3r318MMPW5iock5YCuaQdI5+LQAbKelKSS0khVh7d4gtRK9e/ar+1uVvstl+L5mpVauW0tPTtW3bNk2ZMkU1a9a05L733ntPc+fOtWQXAJwpMjOL1b69oZUrrX8PmZjo1tKlpRozJlp2O6XVAAAAAAAA1QGlYAAAAAAAAAAAAAAAAAAAAMCf7Nzp1rvvRpmeHzq0WDExfKkucKa69VbD9OzHH8fo4MFSC9MA1cuiRYs0atQo0/ONGzfWW2+99YcCrGCrE1Xn9+/UlNRD0mhJ/fVrEZiffsngDHNq0Y2LNKzdsDLPhIeH64EHHlBWVpauvfZaS+4dPXq0XC6XJbsA4HQ3ZYpL3bqFKScn1PLdnToVacMGm7p0ibB8NwAAAAAAAPyHrzQAAAAAAAAAAAAAAAAAAAAA/mTChBJ5PObKRBwOn0aPDrM4EYDq5MorY9WoUYmp2aIiu15+ucDiRED1sH79eg0cOFBer9fUfHh4uObPn6+4uDiLk1VOfFT8r39RQ9IDkjpJivTvnYnORH0+9HP1atGrXOeTkpL0zjvvaMKECQoJCanU3Xv27NHTTz9dqR0AcLpzuXwaNMilESOi5XZb/5hnenqBVqyIUFKSw/LdAAAAAAAA8C9KwQAAAAAAAAAAAAAAAAAAAID/kZfn1euvm2/quO66IjVqFGphIgDVTUiIXQMHFpqabd26SJGRlILhzPPDDz+ob9++crlcpne8+OKLuuCCCyxMZY3/loLZFZAneVrHt9bq4avVPql9hWdHjRqlDz/8UBEREZXKMG3aNB09erRSOwDgdJWdXarU1FJlZERbvjsmxqvZsws1ebJTDoe5omsAAAAAAAAEF6VgAAAAAAAAAAAAAAAAAAAAwP944YUi5eeHmJ5/8EGHhWkAVFd33hmhkBCjXGdjYrwaNOiQ5s7dprlzf1L37vnKy8vzc0Kg6vj555/Vs2dPHTx40PSOJ598UrfeequFqaxTJ7pOwO66tNGlyrw1U01qNjG9o3fv3nrvvfcqVQxWUFCg6dOnm54HgNPV/PmFSk0NUVZW5coXTyQ5uURr1ng0aFCU5bsBAAAAAAAQOJSCAQAAAAAAAAAAAAAAAAAAAL9xuw29+GKY6flLLy3SBReEW5gIQHXVvHmkOncuOOmZ1NQC/eMfu7V8+Y/6y19+UevWxf997cCBA/6OCFQJ+/bt0+WXX649e/aY3pGenq5HH33UwlTWio+KD8g916dcryW3LFFcZFyld/Xs2VOvvPJKpXZMmzZNpaWllc4CAKcDj8fQ6NEFSkuLrFQJdVn693dp/fpQpaTwfhQAAAAAAKC6oxQMAAAAAAAAAAAAAAAAAAAA+M3bbxdq717zpWBjxlgYBkC1N2SI57iPJSS4dfvt+/XRR1v0yis7deWVeYqIMI47V1xcLI/n+HngdHLo0CH16NFD27ZtM71j6NChmjRpkoWprFcnqo7f7xh10SjNGTBHEY4Iy3beeOONGjlypOn5X375RZ988olleQCgusrN9ah792JNnOiUYdgs3e1w+DRunEtz50bJ6eRxUQAAAAAAgNMBv8sDAAAAAAAAAAAAAAAAAAAASPL5DE2aFGJ6Pjm5RFdeaV0RB4Dq74Ybaig+3q2QEEPduuXr+ed/1iefZOuBB/arYcPSU87v378/ACmB4MjLy1PPnj313Xffmd4xYMAAvfzyy7LZrC1YsVpUaJSlZV3/yyabJvWapAm9Jshus/4xoX/84x9q2bKl6fl58+ZZmAYAqp/MzGK1b29o5cpIy3cnJrq1dGmpxoyJlt1etX8uBAAAAAAAQPk5gh0AAAAAAAAAAAAAAAAAAAAAqAqWLSvWN9+Yf1D7/vs9stvDLUwEoLoLC7NrypRfVK/eMcXHeyo8f/ToUdWrV88PyYDgKigoUJ8+fbRhwwbTO/r06aO3335bISHmCz0DxWazKT4qXnvy91i6NzwkXG/2e1MDUgZYuvcPd4SHa/r06br88stNzb///vsqLS1VWFiYxckAoOqbMsWlsWMj5XZbX9rYqVOR5s0LVVISxdQAAAAAAACnG+t/NwkAAAAAAAAAAAAAAAAAAACohsaPN0zPJiS4deut5gvFAJy+rroq1lQhmCT5fD65XC6LEwHBVVRUpCuvvFKrV682vaNr165asGCBQkNDLUzmX3Wi6li6r1ZELS0dvNSvhWD/0b17d3Xp0sXUbF5enjIzMy1OBABVm8vl06BBLo0YEe2XQrD09AKtWBGhpCSH5bsBAAAAAAAQfJSCAQAAAAAAAAAAAAAAAAAA4Iz3/fel+vRT86Ved9xRoogIvjQXwPFiYmJkt5v//JCbm2thGiC4SkpKdM011+jzzz83vaNjx456//33FRlZvco446PiLdvVuEZjfTn8S13S6BLLdp7KI488Ynq2MgVwAFDdZGeXKjW1VBkZ0ZbvjonxavbsQk2e7JTDYbN8PwAAAAAAAKoGvvIAAAAAAAAAAAAAAAAAAAAAZ7znnnPLMMw9VB0Z6VN6evUqJgEQWDVq1DA9W1hYKJ/PZ2EaIDhKS0vVv39/ffrpp6Z3tG/fXh9//LGcTqeFyQLDqlKw9knttea2NUqOT7ZkX3n16NFDjRo1MjVLKRiAM8X8+YVKTQ1RVlaE5buTk0u0Zo1HgwZFWb4bAAAAAAAAVQulYAAAAAAAAAAAAAAAAAAAADij5eZ6NHeu+VKvG28sUnx8iIWJAJxu6tatW6n5gwcPWpQECA6Px6O0tDQtWrTI9I42bdpoyZIllSrZC6Y6UXUqvaN3i976fOjnSnQmWpCoYmw2m9LS0kzNUgoG4HTn8RgaPbpAaWmRys+3/r1h//4urV8fqpSUcMt3AwAAAAAAoOqhFAwAAAAAAAAAAAAAAAAAAABntEmTilVcbO7Lau12Q2PHhlqcCMDpxuFwKDzcfInD4cOHLUwDBJbX69WNN96o9957z/SOhs0a6qNPPlLt2rUtTBZY8VHxlZof3m643h/0vpxhTosSVdwVV1xhau7w4cOUGwI4beXmetS9e7EmTnTKMGyW7nY4fBo3zqW5c6PkdPIoKAAAAAAAwJmC3wkCAAAAAAAAAAAAAAAAAADAGauw0KeXX44wPd+7d5HOOivMwkQATld16tQxPevxeFRcXGxhGiAwvF6vbrnlFs2bN8/8kprS7mt2K3lWsnq/2VvjVo3T1zlfy+vzWpYzEOpEm/8c8MRlT2jmVTMVGhLcItLU1FSFhprLsGPHDovTAEDwZWYWq317QytXRlq+OzHRraVLSzVmTLTsdmvLxgAAAAAAAFC1OYIdAAAAAAAAAAAAAAAAAAAAAAiWl18u1KFDTtPzY8fyZ/QCKJ/Y2FjZbDYZhmFqPjc3V40bN7Y4FeA/Pp9Pw4YN0+zZs80viZU0RFINqdBdqE9++kSf/PSJJKlWRC1d1uQydW/aXd2adlNyfLJstqpbmhIfFV/hmRBbiGZeNVPD2g3zQ6KKi4qKUps2bbRx48YKz+7cuVMdOnTwQyoACI4pU1waOzZSbrf17wk7dSrSvHmhSkoyX2ANAAAAAACA6otSMAAAAAAAAAAAAAAAAAAAAJyRfD5D06aFmp4///xiXXYZD2kDKB+73a6YmBjl5+ebmi8oKJDP55PdThkhqj7DMHTbbbfpjTfeML/EqV8LwWqd+OUjxUf0zo/v6J0f35Ek1Yupp25Nu6lbk27q3qy7GtVoZP5uP6hoKZgzzKn5189Xrxa9/JTInObNm5sqBdu1a5cf0gBA4LlcPg0fXqSMjGi/7E9PL9D48dFyOKpu0SUAAAAAAAD8i1IwAAAAAAAAAAAAAAAAAAAAnJHeeadI27ZFmZ4fOdJnYRoAZ4LExETTpWCGYejIkSOqXbu2xakAaxmGoTvvvFOvvfaa+SVRkgZLqsC/7jnHcvTmt2/qzW/flCQ1r9Vc3Zt2/7UorGk31YmuYz6PBepElf/+RGeiFt24SO2T2vsxkTnNmjUzNXfs2DGLkwBA4GVnl6pfP5+ysqwvBIuJ8WrGjBINGuS0fDcAAAAAAACqF0rBAAAAAAAAAAAAAAAAAAAAcEaaMMFmerZRo1INHBhpYRoAZ4KwsDCFhobK7Xabmj906BClYKjSDMPQPffco5kzZ5reEVMjRsduOCYlVC7LT0d+0k9HftKMDTMkSefWPVfdmnRT92bd1blxZ8WGx1buggqKj4ov17nk+GR9fNPHalKziX8DmWT2c5DL5bI4CQAE1vz5hRo+PFz5+WGW705OLtGCBVJKivnSagAAAAAAAJw+KAUDAAAAAAAAAAAAAAAAAADAGWfNmmKtXm2+1Ou++0rlcFj/MDiA019cXJxyc3NNzZaWlqq0tFRhYXz+QdV0//3361//+pfp+Ro1amjR4kXq+mlXuX3myvPK8m3ut/o291tNXjtZIbYQdajf4b8lYRc3vFgRjghL7/uz2lGnLtO6pNElem/Qe4qLjPNrlsqIjo42NVdYWGhxEgAIDI/H0EMPuTRpUrQMw3yxdFn693dp1qxIOZ12y3cDAAAAAACgeqIUDAAAAAAAAAAAAAAAAAAAAGec557zmp6tUcOju++OsjANgDNJ7dq1TZeCSVJubq4aNmxoYSLAGiNGjNALL7xget7pdOrjjz9Wx4s66rzN5+mrnK8sTPdHXsOrNXvWaM2eNXom8xmFh4SrU6NO6t60u7o17aYL6l0gh93aR27c3pOXnF2fcr1ev+51v5eTVVZEhLl8xcXFFicBAP/LzfUoLc2tlSudlu92OHz6xz+KNGpUlOx268vGAAAAAAAAUH1RCgYAAAAAAAAAAAAAAAAAAIAzyo4dbn3wgflSr2HDiuV0Wv9QOIAzg91uV3R0tFwul6n5/Px8ixMBlTd69GhNmTLF9HxUVJQ+/PBDdezYUZJ0Yf0L/VoK9mcl3hIt37Fcy3cslyTFhMWoS5Mu/y0Ja5PQRnabvVJ3zM+aX+Zroy4apXE9x1X6jkAwW+5ltkwMAIIlM7NYAweGKCcn0vLdiYluzZnjVZcu0ZbvBgAAAAAAQPVX9f9rAQAAAAAAAAAAAAAAAAAAAGCh8eNL5PHYTM2Ghvo0alS4xYkAnGnq1q1retYwDOXl5VmYBqicBx98UBMnTjQ9HxERoffee09dunT578dS66daEc20Y6XH9OGWDzXyk5E671/nKXF8ogbOH6gZX8/QT4d/kmEYFd750tcvnfDjPZv11IReE6pFIZgk04WGUVHmC1kBINCmTHGpW7cw5eSEWr67U6cibdhgU5culCUCAAAAAADgxBzBDgAAAAAAAAAAAAAAAAAAAAAEytGjXr3xRqTp+X79itSwYbSFiQCciaKiohQSEiKv12tq/sCBA6pRo4bFqYCKe+SRRzRu3DjT82FhYVqwYIEuv/zyP3w82KVgf3ag8IDmfj9Xc7+fK0lqVKORujftrm5Nu6lb026qF1PvpPPf7f9Oq3avOu7jkY5IvTvoXX9E9ptDhw6ZmqMUDEB14HL5NHx4kTIy/POeLz29QOPHR8vhMFdSDQAAAAAAgDMDpWAAAAAAAAAAAAAAAAAAAAA4Yzz/fJGOHXOann/wQb78FoA1atWqpYMHD5qaLS4ulsfjkcPB5yQEz6OPPqp//OMfpucdDocyMjLUt2/f415rVbuVaoTXUF5JXmUi+s2uvF16bdNrem3Ta5Kk5PhkdW/aXd2bdleXJl0UFxmnvOI8fZXzldbuXasX1794wj13nH+HIkPNl5UGw/bt203NxcTEWJwEAKyVnV2qfv18ysqyvhAsJsarGTNKNGiQ+feiAAAAAAAAOHPwXwABAAAAAAAAAAAAAAAAAABwRnC7DU2fHm56vkuXQrVvH2VhIgBnsoSEBFOlYLt2hemdd2qpc+d83XJLnB+SAaf2+OOP6+9//7vp+ZCQEL311lu69tprT/i63WZXh/odtHT7UtN3BNKPB3/Ujwd/1AvrX5D0a36f4Tvl3J3n3+nvaJb76aefTM01aNDA4iQAYJ358ws1fHi48vPDLN+dnFyiBQuklBTeSwIAAAAAAKB87MEOAAAAAAAAAAAAAAAAAAAAAATCm28WKScn1PT8mDE2C9MAONPZ7XZFRkaW62xxsU0ffFBDw4Y11RVXtNLLL9fRSy9ZX1oBlMfTTz+tJ554wvS83W7XrFmzlJaWdtJzqfVSTd8RbOUpBJOkd398V4Zh+DmNdYqKivTdd9+Zmm3SpIm1YQDAAh6PodGjC5SWFqn8/BDL9/fv79L69aFKSTFfTg0AAAAAAIAzjyPYAQAAAAAAAAAAAAAAAAAAAAB/8/kMTZ5s/s/TTU4uUd++ERYmAgApISFBP//8c5mv//BDhBYsqKWPPqqpY8f+WFTx5ZfR+uGHQrVuHeXvmMB//fOf/9Rf//pX0/M2m00zZ87UzTfffMqzFza40PQ91cUjyx/RgcIDGt9zvOw2879OCZS1a9fK7Xabmm3atKnFaQCgcnJzPUpLc2vlSqflux0On559tkgjR0bJbqdcGgAAAAAAABVT9f+LAQAAAAAAAAAAAAAAAAAAAFBJn35arG+/NV/qlZ7u4WFuAJaLiYmR3f7HL+vPz7drzpw4paU1V1paC2Vk1D6uEEySDMOmf/2rJFBRAU2YMEH/93//V6kdL774om699dZyne1Qr0Ol7qouJq2ZpEaTGmnp9qXy+DzBjnNSixYtMjUXExOjunXrWpwGAMzLzCxW+/aGVq6MtHx3YqJbS5eWavToaN5DAgAAAAAAwBRHsAMAAAAAAAAAAAAAAAAAAAAA/jZ+vGF6tm5dt4YNi7IwDQD8LjY2VkeOHNVXX0VrwYJaWro0ViUl5fvzv+fOjdb48T6FhvLnhcO/pkyZojFjxlR6x1133VXu80kxSWoY21C783dX6t6qwmF3lFn6tffYXvV4o4dqhNdQz+Y91adFH/Vu0VtJMUkBTlk2wzA0d+5cU7OpqakWpwEAcwzD0NSphRo7NlJut/W/furUqUjz5oUqKcl8ITUAAAAAAABAKRgAAAAAAAAAAAAAAAAAAABOa5s3l2rZskjT83fcUaLw8FALEwHA7+rWTVTPnrX1ww8V/zy1b1+YFi48qoEDa1ofDPjNiy++qBEjRlRqx7hx4/TAAw9UeO7CBhdqd1b1LAVz2B268Zwb1bdFX13Y4EI1jG2o9MXpemH9C2XO5JXkaV7WPM3LmidJapfYTn1b9lWfFn10YYML5bAH7zGgpUuXateuXaZmL774YovTAEDFuVw+DR9epIyMaL/sT08v0Pjx0XI4bH7ZDwAAAAAAgDMHpWAAAAAAAAAAAAAAAAAAAAA4rT33nFuGEWZqNirKq/R084ViAHAqoaEOnXtugalSMEl67TW7Bg60OBTwm5kzZ+q+++6r1I6///3vGjNmjKnZ1Hqpmp81v1L3B8NN59ykmVfNVGToH/93Pa3PNNWJqqPHP3+8XHs27tuojfs26ukvnlatiFrq2byn+rToo94tequus64fkpftmWeeMT3bsWNHC5MAQMVlZ5eqXz+fsrKsLwSLifFqxowSDRrktHw3AAAAAAAAzkz2YAcAAAAAAAAAAAAAAAAAAAAA/OWXXzyaN898qddNNxWpdu0QCxMBwPFuv938l/YvW+bU7t3FFqYBfvXaa6/pzjvvlGEYpnf87W9/01/+8hfT8xc2uND0bDA47A493+d5vXHdG8cVgkmSzWbTY5c9piHnDanw7iPFR5TxfYaGvjdUiRMSdcGMC/S3z/6m1btXy+vzWhG/TMuXL9eKFStMzUZGRurSSy+1NhAAVMD8+YVKTQ1RVlaE5buTk0u0Zo1HgwZFWb4bAAAAAAAAZy5KwQAAAAAAAAAAAAAAAAAAAHDamjy5WCUl5r5k1m43NGZMmMWJAOB4l13mVMuW5oq9PB67ZswotDgRznRvvvmmbrvttkoVgv3f//2fnnjiiUrlaJ/UXnZb9Xj0JSE6QcsHL9e9qffKZrOd9Oxr17ymGuE1KnXf1798radWPqWLX71YCeMTdOOCG/XGN29ov2t/pfb+WUlJie6++27T83369JHT6bQwEQCUj8djaPToAqWlRSo/3/qi5/79XVq/PlQpKeGW7wYAAAAAAMCZrXr8lxEAAAAAAAAAAAAAAAAAAACgggoLfXr55QjT8337FqlVK0rBAPhfSIhdN91kvthr9uwoeb0+CxPhTDZnzhwNHTpUPp/5f6dGjhypf/zjH5XOkluQqzpRdSq9x99S66fq6zu+1qWNLy3XeZvNpjEXj7Hs/sNFhzX7u9ka/O5gJY5PVOrMVD322WNau2etvD5vpXY//PDD2rJli+n5tLS0St0PAGbk5nrUvXuxJk50yjBOXtRYUQ6HT+PHuzR3bpScTh7PBAAAAAAAgPVsRmX+2BYAAAAAAAAAAAAAAAAAAACgipo82aWRI6NNz3/+ebE6dzZfKlZRmzZtUrt27cp9fuPGjWrbtq3/AgEIqJycEjVpEiq321y5xOLF+erVK9biVDjTLFy4UAMHDpTH4zG947777tO0adMqPHe0+KgWZC3QR1s/0oZ9G7Q3f6/cPrfpHIEyvN1wvdD3BYU7wis0tztvtxpPbixD/n2sp3ZkbfVu0Vt9WvRRrxa9FB8VX+7Z2bNn68YbbzR9d2xsrHJychQdbf7XYwBQUZmZxRo4MEQ5OaGW705MdGvOHK+6dAnc+0QAAAAAAACceRzBDgAAAAAAAAAAAAAAAAAAAABYzes1NG2a+YfAO3QoUufOkRYmAoCTq1cvXD165Oujj8wVe738sqFevSwOhTPK+++/r0GDBlWqEOz222/X1KlTT3nO4/Po058+1Ts/vqM1e9bopyM/qdBdaPreYAi1h2pan2m64/w7ZLPZKjzfsEZD9WjeQ0t+WuKHdL87VHRIb21+S29tfks22ZRaP1V9WvRR35Z9dX6982W3nbiI8NNPP9Wtt95aqbvvuusuCsEABIxhGJo6tVBjx0aaLlk9mU6dijRvXqiSkigEAwAAAAAAgH9RCgYAAAAAAAAAAAAAAAAAAIDTzsKFRdq+Pcr0/MiRhoVpAKB8hg3z6aOPzM0uWuTU4cNuxcWZL0TEmWvx4sW6/vrr5Xa7Te8YOnSoXnrppRMWZG3O3aw538/R5zs/1w8Hf9DhosOViRt0ic5ELUhboIsbXnzSc++9955q1aqlzp07n/D1W9ve6vdSsP9lyNDavWu1du9aPf7546oTVUe9W/RWnxZ91LN5T9WOqi3p138frrvuOhUXF5u+Kzw8XCNGjLAoOQCcnMvl0/DhRcrI8E8RYXp6gcaPj5bDUfESSAAAAAAAAKCiKAUDAAAAAAAAAAAAAAAAAADAaWfiRPMPazdpUqq0tEgL0wBA+Vx7bazq1y/V3r1hFZ5t1qxE336br8suS/RDMpzOli1bpuuuu06lpaWmd9x000165ZVXZLPZlFuQq7nfz9UnP32iTfs2aV/BPnkNr4WJg6tjg46anzZf9WLqnfLsxo0b9cQTT6hbt2567LHHjisHuyb5GtWMqKmjxUf9lPbkDhQe0BvfvqE3vn1DdptdF9a/UDU21tCn//pUXm/l/pkNHTpUSUlJFiUFgLJlZ5eqXz+fsrKsLwSLifFqxowSDRrktHw3AAAAAAAAUBZKwQAAAAAAAAAAAAAAAAAAAHBa+fLLYq1ZY77U67773AoJqXghDwBUlsNhV1qaS5Mmle9zUGysR1demad+/Y7orLOKZbfbJVEKhvJbuXKlrr76ahUXF5ve0bF3R+laKeXFFP2c97OKPeZ3VXV3nn+npvSeonBHeIXmli9fruXLl+uCCy7Q/fffr4EDByo8PFwRjgjddM5NemH9C35KXH6+fJ9Wz14t/Vj5XXFxcXrqqacqvwgATmH+/EINHx6u/Hzr378lJ5dowQIpJSXK8t0AAAAAAADAydiDHQAAAAAAAAAAAAAAAAAAAACw0rhxXtOzNWt6dOed5gvFAKCy7rorQna7cdIzF15YoH/+c7eWL8/Www//orPO+rWEyefzKT8/PxAxcRpYs2aNrrjiChUWFppfkiyt7rBab33/lrIPZVteCFYjvIZS66Xq/KTzLd1bUWEhYZp51Uz968p/VbgQ7H999dVXGjJkiBo1aqRRo0bp66+/1rC2wyxMaoJH0lpJL8iSQjBJevbZZ1WnTh1rlgHACXg8hkaPLlBaWqTy80Ms39+/v0vr14cqJcX853wAAAAAAADALEewAwAAAAAAAAAAAAAAAAAAAABW2batVB98EGV6ftiwYjmdTgsTAUDFtGoVqU6dCvTFF3/8XJSQ4NY11xzRddcdUcOG7jLn9+/fr9jYWH/H9Is1e9bo8RWPK+tAls6vd76m9p6qhjUaBjvWaenrr79W7969VVBQYH5JK0nXS7KoiyXCEaEmNZsotX6qrm51ta5sdeV/C7jmfT9PafPTrLmogurF1NPCtIW6sMGFlu3cv3+/Jk2apEmTJik5OVkJTRO0v95+qb4ku2XXnFyRpG8lrZJkYZfgpZdeqttuu826hQDwJ7m5HqWlubVypfXv2xwOn559tkgjR0bJbrdZvh8AAAAAAAAoD0rBAAAAAAAAAAAAAAAAAAAAcNoYP75UXm+YqdmwMJ9Gj46wOBEAVNyQIW598YXkcBjq0iVf/fod0cUXF8hRjicAiouL5fV6FRJiUVNTABiGoRfXv6gRn4yQx+eRJO3O362fDv+kTXdtkt0WqJakM8e0adOUl5dXuSVbJD1lSRxJUrGK9eNv//e6Xrdu8ckMkdS07JcvaXSJ5l0/T4nORL9F+PHHH6Uff/tO5G95GkpqIClJ1j75UyjpJ0nZ+vVOj4W7JSUmJiojI0M2G0U6APwjM7NYAweGKCcn0vLdiYluzZnjVZcu0ZbvBgAAAAAAACqCUjAAAAAAAAAAAAAAAAAAAACcFo4c8eqtt8w/HN6/f5Hq1+cBcADBd+ONscrO/kV9+x5VfLy3wvP79+9XUlKSH5JZr9hTrLsX3a1Zm2Yd99rm/Zv1+c7P1bVp18AHO435fD7lHMsJdowq794O92pir4kKCzFXNmpKkaSs375Jkl1S7f/5VkuSU1L0b9/CJYXo16eDQiR5Jbl/+3ZMUr6ko5L2/fZtvyTDP9FDQ0M1f/78avO5B0D1YhiGpk4t1NixkXK7rS8L7dSpSPPmhSopiZJoAAAAAAAABB+lYAAAAAAAAAAAAAAAAAAAADgtPP98kQoKnKbnH3yQL60FUDVERobozjsLVVRU8UIwSTp69Gi1KObZnbdb/eb201c5X5V5ZvWe1ZSCVdIPB35QxncZWr5zubIOZOlw0WEZP/mpGeo0EB4SrulXTNewdsOCHUXySTrw27cqzG63a+bMmerUqVOwowA4DblcPg0fXqSMDP8UOKenF2j8+Gg5HDa/7AcAAAAAAAAqiq9cAAAAAAAAAAAAAAAAAAAAQLVXWmpo+vRw0/NduxaqbdsoCxMBQOUkJCTo559/NjXr9XrlcrkUHe2f8gwrrNi5Qmnz0nSg8ORtR+v2rgtQotPDwcKDmvf9PC3etlgb923ULwW/yOPzBDtWtdEgtoEWpi1Uh/odgh2l2rDZbXr55Zc1ZMiQYEcBcBrKzi5Vv34+ZWVZ/2uamBivZswo0aBB5oulAQAAAAAAAH+gFAwAAAAAAAAAAAAAAAAAAADV3uuvF+qXX8w/KD5mjM3CNABQeTExMbLb7fL5fKbm9+/fr6ZNm1qcqvIMw9DUtVM1esloeQ3vKc+v3btWhmHIZuPz9J+Vekr18baP9W72u1q7Z612Ht2pIk9RsGNVW10ad9Hc6+cqIToh2FGqD7v0/L+e17Bhw4KdBMBpaP78Qg0fHq78/DDLdycnl2jBAiklhWJoAAAAAAAAVD2UggEAAAAAAAAAAAAAAAAAAKBa8/kMTZ4cYno+JaVYvXtHWJgIAKwRGxuro0ePmpp1uVzy+Xyy2+3WhqqEQneh7vzwTr357ZvlntlXsE978veoYY2GfkxWPXyV85Xmfj9XK39eqexD2TpafDTYkU4b6Rema1yPcQoNCQ12lGrD7rRr7ty56t+nf7CjADjNeDyGHnrIpUmTomUY1peC9u/v0qxZkXI6q86vkQAAAAAAAID/RSkYAAAAAAAAAAAAAAAAAAAAqrVPPinW999Hmp5PT/fKbrf+YXMAqKy6deuaLgWTpEOHDqlOnTrWBaqEnUd3ql9GP23ct7HCs+v2rjvjSsH25O9RxncZ+nT7p/o291vlunLlM3zBjnXaCQ0J1SvXvqJbzrsl2FGqFUdDh5Z9uEydz+0c7CgATjO5uR6lpbm1cqXT8t0Oh0/PPlukkSOjeP8HAAAAAACAKo1SMAAAAAAAAAAAAAAAAAAAAFRrEyYYpmcTE90aOjTKwjQAYJ3Q0FCFhYWptLTU1HxVKQVbtn2ZBs4fqENFh0zNr927Vv1T+lucquooLC3UO9nvaNGWRVqfs16783arxFvit/tCbCEKCw1TkYr8dkd18Xzf5ykEqwiHFNY9TJkzM9WhYYdgpwFwmsnMLNbAgSHKyTFf+FyWxES35szxqkuXaMt3AwAAAAAAAFajFAwAAAAAAAAAAAAAAAAAAADV1rfflmrZMvOlXnfdVaqwsFALEwGAteLj45WTk2Nq1uPxqKSkROHh4RanKh/DMDRx9UQ9uPRB+Qyf6T3r9q6zMFVw+Xw+rdy1Ugt/WKjMXZnadnibjpUe8+udtSJqKTk+WV2adFFaSpraJbXT0O1D9e+v/u3Xe6uDVrVbBTtC9dFCCrsqTJ888AmFYAAsZRiGpk4t1NixkXK77Zbv79SpSPPmhSopKcLy3QAAAAAAAIA/UAoGAAAAAAAAAAAAAAAAAACAauuf/3RLCjM1Gx3t1f3382A4gKqtZs2a+uWXX2QYhqn5ffv2qXHjxhanOjVXqUu3fXCb5nw3p9K7vsr5Sl6fVyH2EAuSBdbWQ1s157s5Wr5jub4/8L0OFh6UIXP/LMsjKjRKTWs21UUNLtK1Z12r3i17y2Hn0ZFg6dixoy688EKtX79ePp/5YrygaiGpi2RvZFdGWoYua3JZsBMBOI24XD4NH16kjIxov+xPTy/Q+PHRcjhsftkPAAAAAAAA+AP/ZQcAAAAAAAAAAAAAAAAAAADVUk6OR/PnR5qev/nmIsXFOS1MBADWs9vtcjqdOnbsmKn5goIC+Xw+2e12i5OVbfuR7bou4zp9m/utJftcbpeyDmTpnLrnWLLPX44WH9W87+fp420fa8MvG7T32F55fB6/3eewO1Q/pr7aJbVTnxZ9dH3K9aoVWctv96HievXqpV69emn//v366KOP9Mknn2j58uXav39/sKOdXLikFEkXSKr/64dmXDlD1yZfG7xMAE472dml6tfPp6ws6wvBYmK8mjGjRIMG8X4PAAAAAAAA1Q+lYAAAAAAAAAAAAAAAAAAAAKiWJk4sVmmpuYe8Q0IMjRkTZnEiAPCPunXrmi4FMwxDR48eVVxcnMWpTmzJT0s0aP4gHSk+YunedXvXValSMI/Po0+2faJ3f3xXa/as0faj21XoLvTbfTbZFB8Vr5Q6KerWtJsGtRmkVrVb+e0+WCshIUFDhw7V0KFDZRiGvvvuO3322WfKzMzU6tWrtWfPnmBHlEIlNZXURlLr377/m39e/k8Nbz88OLkAnJbmzy/U8OHhys+3/j1ZcnKJFiyQUlKiLN8NAAAAAAAABILNMAwj2CEAAAAAAAAAAAAAAAAAAACAinC5fGrY0KcjR8z9GblXX+3Se+9FW5yqcjZt2qR27dqV+/zGjRvVtm1b/wUCUKX8+OOP8ng8pmbDwsLUqpV/C6QMw9Bzq57TI8sfkc/wWb7/jvZ36KWrXrJ8b3l9s+8bZXyfoc93fq4fDv5geenZn8WExah5XHNd0vAS9WvdT10ad5HdbvfrndXFAx8/oGnrppX7fI9mPTS7/2zVjqrtx1SVs2fPHq1fv16bNm3Spk2b9O2332rnzzslfz7xEyGprqTGkppJaigp5PhjYzqO0bie4/wYBMCZxOMx9NBDLk2aFC3DsFm+v39/l2bNipTTyc+ZAAAAAAAAqL7MfRUEAAAAAAAAAAAAAAAAAAAAEEQvvVSkI0fMl3qNHXuC1gsAqMJq166t3NxcU7OlpaVyu90KDQ21ONWvCkoLdOt7t2pe1jy/7JektXvX+m33n+0r2KeM7zK05Kcl+ib3G+0r2Cev4fXbfWEhYWoY21Ad6nXQla2u1LXJ1yo6rGoVV1YlqfVTy332wYsf1NPdn5bDXrUfn2nQoIEaNGig66677r8fe/zTx/XEu09IhyTlScqXdExSgaRiSUWSSiR5JPkkeSXZ9euTQv/5FibJ+du3GEmxkmrr1zKwGqfONbTtUD3X4zlL/h4BIDfXo7Q0t1audFq+2+Hw6dlnizRyZJTsduvLxgAAAAAAAIBAqtr/VQMAAAAAAAAAAAAAAAAAAAD4E6/X0LRp5ottLrywSJdcEmlhIgDwv8qUgklSbm6uGjRoYGGiX207vE3XZVyn7/Z/Z/nu//Xd/u/kKnVZXpZV7CnW+9nv64PsD7QuZ512Hd2lYm+xpXf8L7vNroToBJ2XcJ4ub3a50tqkqVGNRn6773RUnlKwqNAovXbNa0o7Oy0Aifzjtgtv05NfPikjwQjK/VefdbVmXjVTNhvlOgAqLzOzWAMHhignx/r3YYmJbs2Z41WXLhRqAgAAAAAA4PRAKRgAAAAAAAAAAAAAAAAAAACqlfnzi7RzZ5Tp+ZEjg1OuAQCVYbfbFR0dLZfLZWo+Pz/f4kTSx1s/1o0Lb9TR4qOW7/4zr+HVhl826NLGl5re4fP5tHrPas3/Yb6++PkLbT28Vfkl1v+4/K8a4TWUHJ+sSxtdqrSz03RBvQsoWaqklnEtVTOiZpn/3jWr1UzvDnxX59Q9J7DBLNYgtoF6teilxdsWB/zuzo07a07/OXLYeewIQOUYhqGpUws1dmyk3G675fs7dSrSvHmhSkqKsHw3AAAAAAAAECz87jwAAAAAAAAAAAAAAAAAAACqlYkTzZepNG1aqgEDIi1MAwCBk5CQoB07dpia9fl8ys/PV2xsbKVzGIahZ754Ro9+9qgMBa5ocd3edRUqBdtxZIfmfDdHy3Ys03f7v9OBwgPyGT6/5Yt0RKpJzSa6sP6Fuib5GvVt0VdhjjC/3Xemstls6ta0mxb+sPC413o176W3+7+tuMi4ICSz3rC2wwJeCnZe3fP0/qD3FRnKr5cAVI7L5dPw4UXKyIj2y/709AKNHx8th4OyTQAAAAAAAJxeKAUDAAAAAAAAAAAAAAAAAABAtZGZWax168yXVNx/v1shIRS0AKieoqOjFRISIq/Xa2r+wIEDlS4FO1ZyTEPfG3rCQiZ/W5ezrszX8ovzteCHBfpo20f6Oudr7cnfI7fP7bcsDrtDSc4ktU1sq94teuv6lOtVJ7qO3+7DH/3l0r/oo60fqdhT/N+PPXzJw3qq61MKsYcEMZm1rjnrGsVFxulw0eGA3BcdGq3FNy9WjYgaAbkPwOkrO7tU/fr5lJVlfSFYTIxXM2aUaNAgp+W7AQAAAAAAgKqAUjAAAAAAAAAAAAAAAAAAAABUG+PGmSvCkaS4OI/uuMN8oRgAVAU1a9bUoUOHKjz3889hWrQoRhMmeBUZaa40acuhLbp2zrX64eAPpuYra+2etZIkn8+nT7d/qnd/fFdf7v5SPx35SS63y2/32mRTXGScWse3Vrem3XT92derTUIbv92HU2uf1F6b7tykGV/PULGnWEPbDlWH+h2CHcty4Y5w3djmRj2//vmA3Odyu3TD/Bu0bPAy2e32gNwJ4PQzf36hhg8PV36+9WXMycklWrBASkmJsnw3AAAAAAAAUFXYDMMwgh0CAAAAAAAAAAAAAAAAAAAAOJWtW0vVunWovF6bqfkxY1waNy7a4lTW2bRpk9q1a1fu8xs3blTbtm39FwhAleT1evXDD+Ur5Soqsmnp0hpasKCWvv76189/L798RMOH16rwvR9u+VA3LbxJ+SX5FZ61Uq2IWjpafFSG/PcoRHRotJrHNdfFDS/WdcnX6fKml1OQhKDZ+MtGtZ/RPqB3npNwjjbcuUEOuyOg9wKo3jweQw895NKkSdEyDHPv2U6mf3+XZs2KlNPJz8kAAAAAAAA4vfG78wAAAAAAAAAAAAAAAAAAAKgWxo8vldcbZmo2PNynkSPDLU4EAIEXEhKiiIgIFRcXn/B1w5CysiL0zju1tGhRTRUUhPzh9ddfD9Xw4eW/z2f49PeVf9djKx6rTGzLHCk+Yum+UHuoGsY21Pn1zlffln3Vv3V/xYTHWHoHUBntktqpbWJbbdq3KWB3bt6/Wc2nNtf393wvZ5gzYPcCqL5ycz1KS3Nr5UrrP2c4HD49+2yRRo6Mkt1ufdkYAAAAAAAAUNVQCgYAAAAAAAAAAAAAAAAAAIAq7/Bhr956K9L0/IABRapXL9rCRAAQPAkJCdq1a9cfPpaXZ9eiRTW1cGEtZWeX/fkyMzNaW7YUqlWrqFPek1ecp8HvDtb72e9XOnNVYJNNCdEJapPQRt2bddcNZ9+gJrWaBDsWcErD2g5T+uL0gN65K2+Xmkxuoqx7spTgTAjo3QCql8zMYg0cGKKcHPPv18qSmOjWnDledenCezkAAAAAAACcOSgFAwAAAAAAAAAAAAAAAAAAQJU3dWqRXC6n6fkHHwy1MA0ABFdsbKzsdrs8Hp/Wr4/WwoW1tHRprEpL7aec9flseumlEk2YcPJSsB8P/qhr51yr7EPZVsUOuNjwWLWKa6VLGl+i61tfr4saXCS7/dQ/RkBVc9M5N2nsp2NV6i21dO8rV7+i59c9r437Np7w9UNFh9R8anNtvHOjWtRuYendAKo/wzA0dWqhxo6NlNtt/c+vnToVad68UCUlRVi+GwAAAAAAAKjKbIZhGMEOAQAAAAAAAAAAAAAAAAAAAJSltNRQ48Ye7dtnrtire/dCLV168vKbqmDTpk1q165duc9v3LhRbdu29V8gAFXaJ5/s0223xWnPnrAKz9avX6qdOx1yOE5c4PHuj+9q8DuDdaz0WGVjBkyEI0KNajTShfUu1FVnXaWrzrpKEQ5KRHD6uH7e9ZqfNd+yfRN7TtTIjiPl8/nU560+WrJ9SZlnw0PC9cWwL9ShfgfL7gdQvblcPg0fXqSMjGi/7E9PL9D48dFyOGx+2Q8AAAAAAABUZY5gBwAAAAAAAAAAAAAAAAAAAABOZtasQu3bZ/5h8zFjeJAcwOknNbW2Dh8+canXqezdG6b33juq/v1r/uHjPsOnx1c8rqdWPmVBQv+xy66kmCSdV/c89WreS2lt0pToTAx2LMCvbm17q2WlYA9f8rBGdhwpSbLb7frklk9088Kb9dbmt054vsRboo6vdNSHN36o3i16W5IBQPWVnV2qfv18ysqyvhAsJsarGTNKNGiQ0/LdAAAAAAAAQHVh7r8AAgAAAAAAAAAAAAAAAAAAAAHg8xmaMiXE9HybNsXq2TPCwkQAUDXUqhWqvn0LTM+/+uofHyc4WnxUV8++usoXgknSrGtnac+oPVp00yI9cNEDFILhjNCzeU/Vj6lf6T23t79dT3d7+riPv9nvTY3pOKbMOa/hVd+3+uqNb96odAYA1df8+YVKTQ1RVpb177GSk0u0Zo1HgwZFWb4bAAAAAAAAqE4oBQMAAAAAAAAAAAAAAAAAAECV9fHHxZV64Dw93Su73WZhIgCoOm67zfzsp586lZNTIkn6fv/36jCzgxZtXWRRMv9at3ddsCMAARdiD9Hg8wZXake/1v00/YrpstlO/GujcT3Hadzl48qcN2Ro8LuDNeHLCZXKAaD68XgMjR5doLS0SOXnmy9tLkv//i6tXx+qlJRwy3cDAAAAAAAA1Q2lYAAAAAAAAAAAAAAAAAAAAKiyJkwwTM/Wq+fW4MFRFqYBgKrl8stj1Lx5salZt9uumTNdWpC1QBe+fKG2Hd5mcTr/WZdDKRjOTMPaDjM927VJV73V7y2F2E9e5jOm0xj9+9p/y6ayS1XHfDpGY5eMNZ0FQPWSm+tR9+7FmjjRKcOwtnDZ4fBp/HiX5s6NktPJo44AAAAAAACARCkYAAAAAAAAAAAAAAAAAAAAqqiNG0v02WfmS73uuqtEYWHWPrQOAFVJSIhdN9xQaG7Y7tb4HXdpwLwBcrld1gbzs037NqnEUxLsGEDAtazdUpc0uqTCc+2T2uvdQe8qwhFRrvODzxusRTcuUoit7AKx8avHa/DCwRXOAqB6ycwsVvv2hlaujLR8d2KiW0uXlmr06GjZ7bxvAwAAAAAAAP6DUjAAAAAAAAAAAAAAAAAAAABUSc895zE963R6dd991j+4DgBVzZ13Rsnh8J36YEyOlPyu1P1haXBX6dFwFTSd5/d8/lDqLdU3ud8EOwYQFLe2vbVC51vVbqWPb/pYseGxFZrr07KPVg9frbCQsDLPvLH5DfV6o5d8vnJ8DgJQrRiGoSlTXOrWLUw5OaGW7+/UqUgbNtjUpUv5ygoBAAAAAACAMwmlYAAAAAAAAAAAAAAAAAAAAKhy9u71aMEC86Vet9xSrFq1QixMBABVU4MGEbr88oITvxh+VLqpj/TXcGl0fWnQddKlz0rNVkg2I5AxLbd2z9pgRwCC4vqzr1d0aHS5ztaLqaclNy9RQnSCqbs61O+g7+7+Ts5QZ5lnlmxfogtmXiCPz3yZK4CqxeXy6YYbCjViRLTcbusfP0xPL9CKFRFKSnJYvhsAAAAAAAA4HVAKBgAAAAAAAAAAAAAAAAAAgCpnwoRi0w+gOxyGRo8OtTgRAFRdQ4f6/vQRQzr3DWlkY6nlYslRGpRc/rQuZ12wIwBB4QxzKu3stFOeqxVRS0tuXqLGNRtX6r6WtVtq2wPbVDuydplnNu7bqFbTWqmwtLBSdwEIvuzsUqWmliojo3zlgxURE+PV7NmFmjzZKYfDZvl+AAAAAAAA4HRBKRgAAAAAAAAAAAAAAAAAAACqlIICn157LcL0/JVXFqp58zALEwFA1davX6ySkn4r/kraIN16idRvsBSRH9xgfrRuL6VgOHPd2u7Wk74eFRqlRTcu0tkJZ1tyX11nXe0csVONajQq88yOozvUdEpTHSw8aMmdAAJv/vxCpaaGKCvL/HuxsiQnl2jNGo8GDYqyfDcAAAAAAABwunEEOwAAAAAAAAAAAAAAAAAAAADwv6ZPL9TRo84/fdSQau2QbF7pcAtJtjLnx44N8Ws+AAiGUm+pjhQd0ZHiIzpcdPi4v44dkqVfvMulqIMn+xR52thyaIuOFB1RrchawY4CBFynhp3UMq6lth7eetxrDrtDC9IWqGPDjpbe6Qxz6qcHflL7l9pr8/7NJzyzv3C/mk9prm/u+kZNajWx9H4A/uPxGHroIZcmTYqWYVj/i4gBA1x67bVIOZ12y3cDAAAAAAAApyNKwQAAAAAAAAAAAAAAAAAAAFBleL2GXnwx7I8fDDsm3XCN1PSzX7+fe470yURp++XHzXfsWKSLL44MQFIAqDif4VNecd6vRV5llHv94bXiI//9mMvtOvnyiIplSYpIUpgjTKXeUuW78+XynGJ/FbQ+Z716Nu8Z7BhAwNlsNt3e/nY9uPTBP35cNr1+7evq3aK3X+512B3adOcmdX+9u1b8vOKEZ/JL89X6hdb6cviXapfUzi85AFgnN9ejtDS3Vq78cylz5TkcPj37bJFGjoyS3X4GNJYCAAAAAAAAFqEUDAAAAAAAAAAAAAAAAAAAAFXG3LlF2rkz6o8f7PLk74VgklR3szS4h5TVT1oyQTra5L8vjRxpBCYogDOWYRhyuV0nLfQ6UnREh4uPL/nKK86ToeB8nooIiVCPej3Uu2FvnV3rbNWOqP2Hv6c9pXu0zbNNy3Ys04qdK5RXkheUnBWxbu86SsFwxkq/KF0Lf1yoNXvWSJLCQsI0rc803XDODX69126367Ohn2ngvIGamzX3hGeKvcVKfTlVi29arO7Nuvs1DwDzMjOLNXBgiHJyrC9VTkx0a84cr7p0ibZ8NwAAAAAAAHC6sxmGwVc+AAAAAAAAAAAAAAAAAAAAoEro0KFIX331p4fSh18sNVx94gF3hJQ5Rlr1sJo1cmjLllCFhNj8H9QPNm3apHbt2pX7/MaNG9W2bVv/BQLOQAcLD+qD7A+08+jO38u+/lPy9T/lXh6fJ9hRyy0yJFK3J9+uwS0HKzwk/KRnU1JSZLfb5fF5tPGXjVq2Y5mW71iuzF2ZKvIUBShx+V3Z6kp9cMMHwY4BBI3H59F7P76nQ0WH1KVxF50Vf1ZA73/g4wc0bd20Ml+32+x6u9/bGthmYABTATgVwzA0dWqhxo6NlNttt3x/p05FmjcvVElJDst3AwAAAAAAAGcCSsEAAAAAAAAAAAAAAAAAAABQJaxcWawuXSKOf+HKu6QLXjr5sCGF2iLVrHYjxUXGqVZkLcVFxiku4ve/rhXx28ci//ix0JBQ//wNVRClYEBwrdu7Tt3+3U0utyvYUSzTu0FvjT5ntBKjEst1Pj4+XomJx58t8ZRozZ41/y0JW7t3bZUoRkuITtC+0ftks1XPMkjgdPDMF8/oL8v/ctIzU3pN0QMXPRCgRABOxuXyafjwImVkRPtlf3p6gcaPj5bDwc/NAAAAAAAAgFmUggEAAAAAAAAAAAAAAAAAAKBKuOoqlz788AQPp8fkSEMvk2pv9cu9zjDn8aVhZRSI/e/HYsJiLC2ioRQMCK6LXr5Ia/euDXYMywxrOUyjzh1VoZmQkBC1bt36lOeOlRxT5q5MLduxTMt2LNOmfZtMpqy8Hek71KRmk6DdD0B6ZcMruv2D22Wo7EeUHrnkET3d/ekApgLwZ9nZperXz6esrBMUMVdSTIxXM2aUaNCgKMt3AwAAAAAAAGcaSsEAAAAAAAAAAAAAAAAAAAAQdNnZpUpJCZXPV0bJVsQRqevfpA4vSnZfYMOVIcQW8ofSsP8tDjtRqdh/Pl4rspbCQsKO20cpGBA8hmGoxrM1dKz0WLCjWKJH/R6aeNFEU7PNmjVTVFTFCj0OFh7Uip0rtHzHci3bsUxbDm0xdbcZGQMylHZ2WsDuA3Bi72e/r+syrpPPKPvXabe2vVWvXPNKAFMB+I/58ws1fHi48vNDLN+dnFyiBQuklJRwy3cDAAAAAAAAZyJKwQAAAAAAAAAAAAAAAAAAABB0t9/u0ssvR5/6YN1vpT73S01W+j+UH0WHRv+3KKx5XHMNOW+IGhU1ohQMCKI+b/XR4m2Lgx2j0mpH1tbC7gsVFx5naj46OlpNmzatVIY9+Xu0fMfy/5aE7cnfU6l9JzO642iN7zneb/sBlN+qXavU9d9d5fa5yzxzRcsr9OGNHwYwFXBm83gMPfSQS5MmRcswyihgroQBA1x67bVIOZ12y3cDAAAAAAAAZypKwQAAAAAAAAAAAAAAAAAAABBUhw551aiRVFgYUs4JQ2ozW+p3s2Q/fb4U9pmUZ/RI2iPlPk8pGGCtzF2ZuvS1S4Mdo9LevO5Nda7VWXl5eaZ3pKSkyG63ptzDMAxtO7xNy3Ys07Idy/TZjs90qOiQJbsl6ZJGl+iLYV9Ytg9A5fxw4AddMPMCFboLyzyTWi9Vq4evtuzzDIATy831KC3NrZUrIy3f7XD49OyzRRo5Mkp2u/VlYwAAAAAAAMCZjFIwAAAAAAAAAAAAAAAAAAAABNXf/lagp55yVnywQaY0vLNkOz2+HPY84zx988Q35T5PKRhgvZsW3qS3N78d7BimXdHyCn1wwwdyu93asmWL6T1169ZVnTp1LEz2O5/h07e532r5juVatmOZVv68UgWlBab3RToilf9wvhx2h4UpAVRGTn6O2kxvoyPFR8o80zKupb69+1tFOCICmAw4c2RmFmvgwBDl5IRavjsx0a05c7zq0oX//QIAAAAAAAD+wB+pAQAAAAAAAAAAAAAAAAAAgKApLvbppZfCzQ3vuURNdz9kbaAgKnQXBjsCcMZ77vLnFB0aHewYpsSExWj6FdNls9kUFhamsLAw07sOHz5sYbI/stvsapvYVqM6jtKiGxfp8IOHterWVXqq61O6rMllCgupWO4iT5GOlRzzU1oAZtSLraed6TtVP6Z+mWe2Ht6qplOa6khR2cVhACrOMAxNmeJSt25hfikE69SpSBs22CgEAwAAAAAAAPyIUjAAAAAAAAAAAAAAAAAAAAAEzaxZRdq/3/zD6lOvf0it41tbmCh4ujbpGuwIwBmvfmx9/bXzX4Mdw5TnejynhjUa/vf78fHxpne53W6VlpZaEeuUQkNCdXHDi/XXzn/VZ0M+09GHjurTWz7Vw5c8rNT6qbLbTv7YQ3xUvGLCYwKSFUD5xUbEavsD25Ucn1zmmX0F+9R0SlPtytsVwGTA6cvl8umGGwo1YkS03G7rHxtMTy/QihURSkpyWL4bAAAAAAAAwO9shmEYwQ4BAAAAAAAAAAAAAAAAAACAM4/PZ+jss0v144/hpubPPbdYGzeGa+3eNer0aicZqr5fFpvoTNS8S+fp0gsvLffMxo0b1bZtW/+FAs5QJZ4StZneRtsObwt2lHLr3LizPhvy2R8KtHw+n3744QeZfWQgNjZWjRo1siqiaXnFefr858+1bPsyLd+5XN/t/+6/r4WFhOn1a1/XwDYDg5gQwMn4fD51ntVZq3avKvNMpCNS625bpzZ12wQwGXB6yc4uVb9+PmVlRVi+OybGqxkzSjRoUJTluwEAAAAAAAAcj1IwAAAAAAAAAAAAAAAAAAAABMUHHxTp6qsjTc+/+mqhhg379cH0EYtHaMraKVZFC7h/X/tvnWucq3bt2pV7hlIwwH8WbVmkK2dfGewY5RLhiNA3d32jVrVbHffazz//rGPHjpnaa7PZlJKSIpvNVtmIlsotyFXmrky53C5d2uhSNa3VNNiRAJTDdRnX6d0f3y3z9VB7qJbeslSdm3QOXCjgNDF/fqGGDw9Xfn6I5buTk0u0YIGUkmKuyBkAAAAAAABAxdlPfQQAAAAAAAAAAAAAAAAAAACw3oQJ5v9s23r13Lr55t8Lxf7e7e9qUrOJBakCr2ODjrr53JuDHQPA/7ii1RW6ouUVwY5RLk9c9sQJC8EkqW7duqb3GoahvLw80/P+UtdZV/1T+mvweYMpBAOqkXcGvqM7z7+zzNfdPre6vt5VC7IWBDAVUL15PIZGjy5QWlqkXwrBBgxwaf36UArBAAAAAAAAgACjFAwAAAAAAAAAAAAAAAAAAAAB9/XXJfr88yjT83ffXaLQUNt/v+8Mc+qlK1+yIlpA2WTT832fl93Gl/UCVc2kXpMUFhIW7Bgn1T6pvUZ1HFXm6xEREXI4HKb3HzhwwPQsAPzZv678lx7r/FiZr/sMn66fd73+tf5fAUwFVE+5uR51716siROdMgzbqQcqwOHwafx4lzIyouR08j4FAAAAAAAACDR+Vw4AAAAAAAAAAAAAAAAAAAAB99xzHtOzMTFe3Xdf5HEf79m8p4a2HVqJVIF3e/vb1T6pfbBjADiBlrVbatRFZRduBZvD7tCrV78qh/3kpV9xcXGm7ygpKZHHY/7zNQD82eNdH9eLfV+UTScuMTJk6O6P7tbjKx4PbDCgGsnMLFb79oZWrjz+PVFlJSa6tXRpqUaPjpbdbm3ZGAAAAAAAAIDyMf9H/gAAAAAAAAAAAAAAAAAAAAAm7N7t1jvvmH+AffDgItWs6TzhaxN6TtDHWz9WrivX9P5AqRlRU093fzrYMSzn8Xi0bds2ZWVl6YcfftCOHTuUk5OjnJwcHThwQEVFRSoqKlJpaanCw8MVGRmpiIgIxcTEKCkpSfXq1VO9evXUokULnXvuuTrnnHPkdJ74nzd+V1RUpA0bNmjr1q3auXOnduzYoV9++UUul0uFhYVyuVyy2WxyOp2KiYlRTEyMatWqpVatWql169ZKTk5Wy5YtFRYWFuy/lSrlL53/ote/fV05x3KCHeU4D3V6SOclnnfKc/Hx8dq/f7/pe3Jzc1W/fn3T8wDwZ3d3uFsJ0QlKm58mn+E74ZknPn9Cua5cTb9ieoDTAVWXYRiaOrVQY8dGyu22W76/U6cizZsXqqSkCMt3AwAAAAAAACg/SsEAAAAAAAAAAAAAAAAAAAAQUBMnlsjtNlfy5HAYGj06vMzX4yLj9ELfFzRg3gCz8QLmqa5PKT4qPtgxKm337t3KzMzU2rVrtXbtWm3cuFElJSXlmv1PQdh/ZGdnH3fGZrOpefPm6tq1q3r06KFu3bqpdu3aluWvrtxut5YuXaqPPvpIq1ev1jfffCOPx1OpneHh4br00kvVu3dv9e7dW2effbZFaasvZ5hT43qM000Lbwp2lD9Ijk/WXzv/tVxn7Xa7oqKiVFhYaOquvLw8SsEAWK5/Sn99NvgzdX+juzy+E//89a+v/qV9Bfv0zsB3ApwOqHpcLp+GDy9SRka0X/anpxdo/PhoORw2v+wHAAAAAAAAUH42wzCMYIcAAAAAAAAAAAAAAAAAAADAmeHYMZ8aNvQpL8/cn23br59LCxac+kH4/nP7a+EPC03dEQjnJJyjDXdukMP++4/Dpk2b1K5du3Lv2Lhxo9q2beuHdCeXn5+vpUuXaunSpVq2bJm2bNkS0Pvtdru6du2qwYMHq1+/fnI6zRXMVVcrVqzQa6+9pvfff19Hjx71610tWrTQPffco2HDhqlmzZp+vasqMwxDnWd1VuauzGBHkSTZZFPmrZm6uOHF5Z5xuVzasWOH6TsbN26smJgY0/MAUJbvcr9T6supKvIUlXmmU8NOWjl0pex2ewCTAVVHdnap+vXzKSsrwvLdMTFezZhRokGDoizfDQAAAAAAAMAcfjccAAAAAAAAAAAAAAAAAAAAATN9eqHpQjBJGjs2pFznnu/zvGpG1DR9j79N6zPtD4VgVd3evXs1ffp09e7dW3Xq1FH//v01ffr0gBeCSZLP59OyZcs0ZMgQJSYm6v7779euXbsCniOQPB6P3n77bZ1//vnq2rWrXn/9db8XgknStm3bNGrUKDVo0EB33323du/e7fc7qyKbzaZpfabJbqsaX35/f+r9FSoEk6To6GjTZTo7d4Zp3rxjpmYB4FTa1G2jH+/7UTXCa5R5ZtXuVWozvY1KPaUBTAZUDfPnFyo1NcQvhWDJySVas8ZDIRgAAAAAAABQxdgMwzCCHQIAAAAAAAAAAAAAAAAAAACnP4/HUPPmbu3aFWZq/uKLi7RqVWS5z7+68VUNf3+4qbv8aVCbQZrdf/ZxH9+0aZPatWtX7j0bN25U27ZtLUz2RwcOHNC8efP09ttv68svv1RV/rLj0NBQ3XLLLXryySdVv379YMex1LJly/TAAw8oKysr2FEUFRWlRx55RGPGjFF4eHiw4wTcPYvu0fSvpgc1Q+MajfXdPd/JGeas8GxOTo4OHz5crrNFRTZ9+mkNLVhQSxs2RCs+3q29e0MUFlY1itEAnH6OFh9V6xdaa1/BvjLP1I+pr6x7shQbERvAZEBweDyGHnrIpUmTomUYNsv3Dxjg0muvRcrp5Od2AAAAAAAAoKrhd+0AAAAAAAAAAAAAAAAAAAAQEHPmFJouBJOkUaMqVko1rO0wdW/a3fR9/hAVGqVxPcYFO0aZSkpKNHfuXPXp00f16tXTvffeq1WrVlXpQjBJcrvdevXVV9W6dWtNnDhRHo8n2JEqbd++ferfv78uv/zyKlEIJkmFhYX661//qrPPPlufffZZsOME3FNdn1JcZFxQM8y4aoapQjBJSkhIOOnrhiF9/32Ennyynrp1S9Zf/tJAGzZES5IOHgzV7Nl5pu4FgPKoGVFTO9J3qGVcyzLP7D22V02mNFFOfk4AkwGBl5vrUffuxZo40Wl5IZjD4dP48S5lZERRCAYAAAAAAABUUfzOHQAAAAAAAAAAAAAAAAAAAAJi0qQQ07MtWpTouusiKzRjs9k046oZigqNMn2v1f566V/VILZBsGMcZ/PmzRoxYoTq16+vgQMHavHixdWyWOvYsWMaPXq0UlNTtXXr1mDHMW3JkiU677zztHDhwmBHOaGffvpJPXr00HPPPRfsKAFVO6q2bm17a9DuH9p2qHo272l63uFwKCIi4riP5+WF6K234jRgQHMNGtRC8+bFqaDg+M/X//63w/TdAFAeEY4I/Xjvj+pQr0OZZ44UH1HL51vqxwM/BjAZEDiZmcVq397QypUVe+9THomJbi1dWqrRo6Nlt1tbNgYAAAAAAADAOpSCAQAAAAAAAAAAAAAAAAAAwO9WrCjWhg3Hl9GU1wMPeEw9uN6sVjM93e1p0/daqXmt5hrVcVSwY5xQ165dNWXKFB06dCjYUSyxceNGXXDBBZo3b16wo1TY3/72N/Xu3Vv79+8PdpST8nq9euihhzRgwAAdO3Ys2HH87mjxUXX/d3eNXz0+KPfXja6rCT0nVHpPnTp1JEk+n7RmTbQefLCBunU7S88+W09btpy8fGTlSqe2by+qdAYAOBm73a51t69T3xZ9yzxT6C7Uuf86V6t3rw5gMsC/DMPQlCkudesWppycUMv3d+pUpA0bbOrSxfx7MgAAAAAAAACBQSkYAAAAAAAAAAAAAAAAAAAA/G7cOJ/p2fh4j2677eRlNSdzf+r9urD+habnrTK592SFO8KDHeOMkZ+fr7S0ND355JPBjlIuXq9Xw4cP11NPPSXDMIIdp9wWLFigXr16nbbFYD6fTw8vfVh1xtXR8p3Lg5bjhb4vKC4yrtJ7atSoofffr6m+fVvp9tub6uOPa6q0tHyPFXi9Nr30UnGlMwBAeSy6aZGGtR1W5utun1uXvnapPsj+IICpAP9wuXy64YZCjRgRLbfb+sf90tMLtGJFhJKSHJbvBgAAAAAAAGA9SsEAAAAAAAAAAAAAAAAAAADgVz/+WKrFi82Xeg0fXqzISPNf9hpiD9HLV7+sUHuo6R2V1bdlX13Z6sqg3X8me+yxxzRq1Khgxzip0tJSpaWl6dVXXw12FFNWr16tPn36qKCgINhRLPXR1o+UMD5Bz656Vh6fJ2g5+rXup/4p/S3bZ7NFae/eMFOzc+ZEyes1X/IIABXx6jWv6uFLHi7zda/h1TVzrtErG14JYCrAWtnZpUpNLVVGRrTlu2NivJo9u1CTJzvlcNgs3w8AAAAAAADAPygFAwAAAAAAAAAAAAAAAAAAgF+NG1cqn8/cQ+gRET6NHBlR6QxtEtroL5f+pdJ7zIqPjJfPR5FOsEyaNEmjR48OdowTMgxDw4YN08KFC4MdpVJWrVqlK664QsXFxcGOUml78vfoghkX6Iq3r9ChokNBzVIzoqae7/O8pTtvv92pyEhzn4927QrXhx/mW5oHAE7mme7PaHKvyWW+bsjQbR/cpme+eCZwoQCLzJ9fqNTUEGVlVf79zp8lJ5dozRqPBg2Ksnw3AAAAAAAAAP+iFAwAAAAAAAAAAAAAAAAAAAB+c+CAR7Nnm38QfeDAItWt67Aky8OXPqw2CW0s2VVRr3/7uuKei9P8rPlBuR/SxIkTNX369GDHOM4jjzyit99+27J9NWvW1FVXXaXx48dr0aJFys7O1sGDB1VcXKzS0lIdPnxY27dv16effqoXXnhBN9xwg5KSkiy5e+XKlbr33nst2RUMHp9Ht79/uxpPbqyvf/n6lOfDQ8L9nmliz4lKirHmn89/xMeHqVevY6bnX33VXMkjAJiVflG63u73tmwq+/PPX5b/RemL0wOYCjDP4zE0enSB0tIilZ8fYvn+AQNcWr8+VCkp/v+1CgAAAAAAAADr2QzDMIIdAgAAAAAAAAAAAAAAAAAAAKenRx8t0N//7jQ1a7MZ+u67UksfZl+3d506vtJRPsNn2c6KOifhHL036D01rdX0Dx/ftGmT2rVrV+49GzduVNu2bS3JFB8fr0OHDlmyS5JsNptatGihDh06qFWrVmrSpImaNGmiBg0aKDo6Wk6nU1FRUSotLVVRUZH279+v3bt3Kzs7W19//bUyMzO1detWy/L8R0hIiJYsWaJu3bpZvtuM119/XUOGDLFkV8+ePXXHHXfoqquuUlhYWIVmDcPQihUr9Oqrr2r27Nnyer2VyjJz5kzddtttldoRaK9/87ru/eheFZQWnPKs3WbX3RfcrXGXj9O5L52rbYe3+SVTj2Y99MnNn8hms76Ea9GiPF15ZQ1Ts+HhPu3a5VFCQsX+PQOAylq2fZl6v9VbHp+nzDMDzx6oOQPmBDAVUDG5uR6lpbm1cmWk5bsdDp+efbZII0dGyW6nxBMAAAAAAACorigFAwAAAAAAAAAAAAAAAAAAgF8UF/vUqJFXBw6Emprv1atQixdHWZxKGv3JaE1cM9HyvRVhk003n3OzXr76ZYU5fi3Wqc6lYDabTe3bt1evXr3UvXt3nX/++apRw1zh0H9s3bpVc+bM0csvv6xdu3ZVatf/atSokTZv3qzY2FjLdpqxfft2tW3bVseOHavUnosuukgTJkzQxRdfbEmurVu36v/+7/+0cOFC0zsiIiK0atUqtW/f3pJM/vT9/u/Vb24/bTm0pVznL6p/kd4Z9I4SnYmSpEVbFunK2Vdanis6NFrf3fOdmtRsYvluSfJ6fWrRwq2dO82VLj711GH99a9xFqcCgFPb9MsmdXylo4q9xWWe6dK4i5YPXi673R7AZMCpZWYWa+DAEOXkmHt/dDKJiW7NmeNVly4Rlu8GAAAAAAAAEFj87jYAAAAAAAAAAAAAAAAAAAD84tVXi0wXgknSmDE2C9P87smuT6ppzaZ+2V1ehgy9sfkN1XqulmZ8PSOoWcxyOBzq1auXZs2apdzcXH311Vd6+umn1a1bt0oXgklSy5Yt9eijj2rHjh2aNWuWmja15p/Zrl27NGrUKEt2meX1enXLLbdUqhDM4XDo2WefVWZmpmWFYNKvP+4LFizQnDlzVLNmTVM7iouLNXjwYHk8HstyWa3IXaT+Gf3VZnqbchWCJUQlaMnNS7T6ttX/LQSTpCtaXaG+Lftanu+Z7s/4rRBMkkJC7Bo0yGV6fvbsSAvTAED5tU1qq6x7sxQTFlPmmc9//lxtX2orj6/q/jyEM4thGJoyxaVu3cL8UgjWqVORNmywUQgGAAAAAAAAnCYoBQMAAAAAAAAAAAAAAAAAAIDlfD5DU6c6TM+fd16xunXzz0Pt0WHRmnnVTL/s/g+7za7zk84/5blCd6Hu/PBONZ/avFzFRFXBBRdcoBdeeEE5OTlavHixhgwZojp16vjtPrvdriFDhigrK0tjx45VSEhIpXe++uqr2rhxowXpzHnxxRf15Zdfmp6vUaOGPv74Yz300EOW/HicyMCBA/Xll1+qWbNmpua///57TZ482dpQFpmweoJq/bOWFv648JRnQ+2heqzzY8odm6sezXuc8MzkXpMVareu4KNjg466t8O9lu0ry113RcnhMEzNZmVFauVK86V2AFAZTWs11fb07UqISijzzOb9m9V8anMVlBYEMBlwPJfLpxtuKNSIEdFyu61/lC89vUArVkQoKcn8ey8AAAAAAAAAVQulYAAAAAAAAAAAAAAAAAAAALDc++8XKTs73PT8yJFe2e02CxP9Ufdm3TW83XC/7b/r/Lv01R1f6YthX6heTL1Tnt9+ZLsGzhvotzyVFRERoSFDhmjt2rVav3697rnnHr8WgZWV4bnnntOSJUtUu3btSu0yDEOPPvqoRckqJi8vT08++aTp+ZiYGC1btkyXX365halOrHXr1srMzDRdDPbEE09oz549Fqcy78tdX6rhpIYas2SMSrwlpzzfu3lvHRx7UI93ffyk51rWbqlRHUdZkjEsJEwvX/2yQuz+KXv7X40bR+iyy8yX5Xz44al/DAHAX+Kj4rUjfYea1Sz756hdebvUZHIT7S/YH8BkwO+ys0uVmlqqjIxoy3fHxHg1e3ahJk92yuHw3/smAAAAAAAAAIFHKRgAAAAAAAAAAAAAAAAAAAAsN3Gi+QfTGzQo1Y03RlmY5sTG9xyvJGeS5XtrR9bWU92ekiRd0ugS7R21V892f1ZhIWGW3+Vv8fHxevLJJ7V3717NmjVLqampwY6kbt26ae3atWrYsGGl9ixatEhfffWVRanK7+mnn9bBgwdNzYaGhur999/X+eefb3GqsiUlJWnp0qVKSEio8GxBQYFGjx7th1QVc7jwsLr9u5s6vdZJe/JPXVLWuEZjrb99vT6++WPFRsSW646/dv5ruQoAT+XRzo8qpU5KpfeU15Ahngqdr1nTo5tvPqiFC7dq8OB98ngqNg8AVooKi1L2/dlql9iuzDOHig6p+dTm2nZoWwCTAdL8+YVKTQ1RVlaE5buTk0u0Zo1Hgwb5/z0TAAAAAAAAgMCjFAwAAAAAAAAAAAAAAAAAAACWWr++RF98EWl6/p573AoNNV8qVl41I2rqxStetHzv092eVlxk3B8+9tAlD+nIg0d0daurLb/PHxo0aKCJEyfq559/1qOPPqq4uLhTDwVQ8+bNtWLFCiUlVa7UbebMmRYlKp8jR47o+eefNz3/7LPP6rLLLrMuUDk1bdpUb7zxhuz2in/5+bx58/T999/7IdWp+Xw+/d/S/1PdCXX12c7PTnk+0hGpF/q+oJ0jduqCehdU6C5nmFPjeowzG1WSdG7dc/VgpwcrtaOi0tJqKCHBfdIzNpuhiy8+pnHjdmnZsmw99NA+tWxZIknav39/IGICQJkcdoe+uv0r9WjWo8wzBe4CnT39bK3fuz6AyXCm8ngMjR5doLS0SOXnh1i+f8AAl9avD1VKSrjluwEAAAAAAABUDZSCAQAAAAAAAAAAAAAAAAAAwFLPPecxPRsb69U990RYmObkrk2+VgNSBli2r11iO93W/rYTvhYVFqX3bnhP39z1jVrEtbDsTislJCRoypQp+umnnzRy5EhFRUUFO1KZmjVrpnfeeUfh4eYLETIyMlRUVGRhqpN75ZVXTN93+eWXa9SoURYnKr+ePXtqxIgRFZ4zDEP/+Mc/rA90Cou2LFLC+AT9c9U/5fGd/HOSTTbd0OYGHX3oqO7pcI/pO29oc4MuaXSJqVm7za5Xrn5FYSFhpu83IyzMrgEDCk74WmJiqe6+e78WL96il176Wb175ysszPjDmaNHjwYgJQCcnN1u15Jbluimc24q80ypt1QdX+moxdsWBzAZzjS5uR51716siROdMgxrS44dDp/Gj3cpIyNKTiePBAIAAAAAAACnM5thGMapjwEAAAAAAAAAAAAAAAAAAACn9vPPbrVoESKPx9yD6vfdV6Bp05wWpzq5fQX7lPJCio4UH6n0rsxhmerUqFO5zr684WWlL05Xobvw1w/8Iuml8t+1ceNGtW3btsIZT6RZs2YaMmSIRo8eLaczsD/+lTVhwgSNGTPG9PyCBQvUr18/CxOdmM/nU4sWLbRjx44Kz4aFhWnz5s1q1aqVH5KVX0FBgc466yzl5ORUaC4kJERbt25V06ZN/ZTsd7vzduu6jOv09S9fl+t8mzpttHDgQrWs3dKS+zft26TzZ5wvn+Gr0NzYi8fquR7PWZKhojZvduncc6Ml/Vo40rXrMfXrd0QdOxYoJOTU840bN1ZMTIyfUwJA+YxdMlbjV48v83WbbPr3tf/WLefdEsBUOBNkZhZr4MAQ5eSEWr47MdGtOXO86tIlcOXJAAAAAAAAAIKHPxYAAAAAAAAAAAAAAAAAAAAAlpkwocR0IZjD4dOYMeEWJzq1RGeiJvWaVOk9N597c7kLwSTptva3Ke//8jT43MGyyVbp+ytj48aNeuyxx6pdIZgkjRgxQu3atTM9v3z5cgvTlG3FihWmCsEk6c477wx6IZgkOZ1OPfnkkxWe83q9GjdunB8S/c7j8+i2929TkylNylUIFhseqzn952jzPZstKwSTpLaJbXVH+zsqNNMiroUev+xxyzJU1DnnROv6649ozJhftGxZtiZO3K1LLilfIZgk7d+/378BAaACxvUcp/E9yi4FM2Ro8LuDNX5V2WeAijAMQ1OmuNStW5hfCsE6dSrShg02CsEAAAAAAACAM4jNMAwj2CEAAAAAAAAAAAAAAAAAAABQ/eXledWokZSfX84mmT8ZMMClefOiLU5VPoZhqPdbvbXkpyWm5p1hTm25b4uSYpJMze84skO9x/fWlme2lHvmo5Ufqc+lfUzdd7r54IMPdPXVV5uaPfvss/Xdd99ZnOh4999/v55//vkKz4WGhmrbtm1q1KiRH1JVXGlpqZo1a6a9e/dWaC42Nla5ubmKiLC+0OLfm/6t+z66TwXuglOetdvsuueCezSl9xTZ7f75M7YPFR5Sy2ktdaT4SLnOfzbkM13W5DK/ZCmvnJwcHT582PR8SkqK3348AcCM1795XUPfHSpDZT82NbrjaI3vSTkYzHO5fBo+vEgZGf55D5OeXqDx46PlcAS3QBgAAAAAAABAYPFf3QAAAAAAAAAAAAAAAAAAAGCJ6dOLTReCSdLYsQ4L01SMzWbTS1e+pOhQcw/0/63z30wXgklS01pNlXF9RoVm+r7VV7e+d6s8Po/pe08XV111lZKTk03Nfv/998rPz7c40fHef/99U3PXXnttlSkEk6SwsDDdfffdFZ7Lz8/Xu+++a2mW7/d/r7OmnaWh7w0tVyFYxwYdtXfUXk3rO82vBVa1o2rr793+Xq6zd55/Z9ALwSQpISGhUvMHDhywKAkAWGPweYO16MZFCrGV/WvTCasn6JaFtwQwFU4n2dmlSk0t9UshWEyMV7NnF2ryZCeFYAAAAAAAAMAZiFIwAAAAAAAAAAAAAAAAAAAAVJrHY+jFF0NNz19ySZFSU8MtTFRxTWo20TPdn6nwXKvarZR+UbofEp3aa5teU81na2rWxllBub8qGTx4sOnZrVu3WpjkeN9++6127dplavbmm2+2OE3l3XTTTbLZKl5Q8frrr1tyf2Fpofpl9FOb6W205fCWU55PiE7Q0luW6svhXyrRmWhJhlO58/w7dV7d8056pkFsAz3X47mA5DkVh8Oh8HDzn4OPHDliYRoAsEafln20evhqhYeU/fntzc1vqtcbveTz+QKYDNXd/PmFSk0NUVZWhOW7k5NLtGaNR4MGRVm+GwAAAAAAAED1QCkYAAAAAAAAAAAAAAAAAAAAKu3ttwu1e3eY6flRowwL05h3b4d71bFBxwrNTOk9RWEh5v/eK8vldmnY+8PUalorfb//+6DlCLYrr7zS9Ky/S8HWrFljai4mJkZ9+vSxOE3lNWnSRKmpqRWeW7Jkifbt21epu8evGq+45+L0zo/vnPJsqD1Uj3d5XLljctW9WfdK3VtRIfYQTe0z9aRn/nXFvxQbHhugRKdWp04d07Mej0dFRUUWpgEAa3So30Gb794sZ5izzDNLti/RBTMvkMfnCWAyVEcej6HRowuUlhap/PwQy/cPGODS+vWhSkkJblkyAAAAAAAAgOCiFAwAAAAAAAAAAAAAAAAAAACVNmmS+YfiW7Uq0TXXRFqYxrwQe4hevvrlcpd8XX3W1erdorefU5XP1sNb1WZ6G/XL6KfC0sJgxwm4Nm3aKC4uztTszp07rQ3zJ+vWrTM116VLF4WGhlqcxhrdu1e8ZMvr9erdd981dd+qXavUYGIDjV06ViXeklOe7928tw6OPajHLnvM1H1W6Ny4s25oc8MJX7vxnBt1RasrApzo5GrWrCmbzWZ6Pjc318I0AGCdlrVbatv921Q7snaZZzbu26hW01qdkb+GQvnk5nrUvXuxJk50yjDM/3x5Ig6HT+PHu5SRESWnk8f9AAAAAAAAgDMdv0sIAAAAAAAAAAAAAAAAAACASlm+vFibNkWYnn/gAY/sdmsfrK+MlDoperTzo6c8Fx4Srkm9JgUgUcW88+M7insuThO+nBDsKAFls9mUkpJiajY/P9/iNH+0fv16U3Ndu3a1OIl1unXrZmruk08+qdD5w4WH1XVWV13y2iXae2zvKc83qdlEX9/xtT6++WPFRsSaymilcT3GKS7yj2V1ic5ETe41OTiBTiE21vyPWUFBgXw+n4VpAMA6dZ11tXPETjWq0ajMMzuO7lDTKU11sPBgAJOhOsjMLFb79oZWrrS+yDgx0a2lS0s1enR0lXpPBAAAAAAAACB4KAUDAAAAAAAAAAAAAAAAAABApYwbZ74EJj7eo1tvtf7h+sp6sNODOrfuuSc9M/bisWpWq1mAElVMibdEYz4do4YTG2r17tXBjhMwzZs3NzVXUFBgcZLfGYah7OxsU7Pt27e3OI112rVrZ2pu+fLl8ng8pzzn8/n00KcPKWF8glb8vOKU5yMdkXqh7wvakb5D7ZOqzo9b/dj6Wj54uTo17KTo0Ghd1uQyfTHsC9WJrhPsaCdUt27dSs0fOXLEoiQAYD1nmFM/PfCTzkk4p8wz+wv3q9mUZtp5ZGfggqHKMgxDU6a41K1bmHJyQi3f36lTkTZssKlLF/MFywAAAAAAAABOP5SCAQAAAAAAAAAAAAAAAAAAwLSsrBJ98on5Uq877ihRZGTV+5LWsJAwvXL1K7LbTpytYWxDPXzpwwFO9Uf1Yuqd8syeY3t08asXq/u/u+to8VH/hwqyWrVqmZorLCy0OMnv9u3bp5KSElOzbdq0sTiNdeLi4lSv3qn/Hfyz/Px8rV598qK6D7I/UJ3xdfTcl8/Ja3hPetYmm25sc6OOPnRU93S4p8J5AuG8xPOUeWumjj18TJ8N+Uwt4loEO1KZwsLCFBpqvvTk4MGDFqYBAOs57A5tunOTLmt8WZlnjpUeU+sXWmvjLxsDFwxVjsvl0w03FGrEiGi53da/X0lPL9CKFRFKSnJYvhsAAAAAAABA9Vb1voICAAAAAAAAAAAAAAAAAAAA1ca4cR4Zhs3UbGSkT+np4RYnss4F9S7QqItGnfC1CT0nKCo0KsCJ/mjRTYv0Yt8XFek4dSnb8p3LVWdcHT289GH5fL4ApAuO6OhoU3Ph4f7793DXrl2m5mrVqqX4+HiL01irZcuWpuY++eSTE358V94unT/jfF0952odLjp8yj1t6rTR1vu36q3+bynMEWYqSyDZbOY+VwZa7dq1Tc+63W6VlpZamAYArGe32/XZ0M808OyBZZ4p9hYr9eVULdu+LIDJUFVkZ5cqNbVUGRnmfm15MjExXs2eXajJk51yOKrHrw0AAAAAAAAABBalYAAAAAAAAAAAAAAAAAAAADBl/36PMjJOXUhVlkGDCpWQ4LAwkfWe6PqELmpw0R8+dtM5N2lAyoAgJfqjuzvcraMPHdUNbW6QTScvFfD4PHp21bNKGJ+gj7d+HKCEgVVYWGhqzul0Wpzkd7t37zY1V69ePYuTWC8pKcnU3KpVq/7wfY/Po+HvDVfTKU214ZcNp5yvEV5DGQMytPmezWoe19xUBpQtLi6uUvO5ubkWJQEA/5ozYI7uT72/zNc9Po96vtlTczbPCWAqBNv8+YVKTQ1RVlaE5buTk0u0Zo1HgwYFt1wYAAAAAAAAQNVGKRgAAAAAAAAAAAAAAAAAAABMmTy5WEVF5r4c1WYzNGZMqMWJrBcVGqWltyzV+B7jNaztMM28aqZmXTtLNtvJC7gCKcwRprf7v63s+7LVpk6bU54/VHRIfd/uqw4zOmhP/p4AJAyco0ePmpqLiYmxNsj/yMvLMzWXmJhocRLrmS0u27hxowzDkCTN2jRLNZ+tqVc3vSqf4TvpnN1m1/2p9+vwg4eVdnaaqbtxana7vVJFefn5+RamAQD/mtpnqp7p9kyZr/sMn25YeIOmrpkawFQIBo/H0OjRBUpLi1R+fojl+wcMcGn9+lClpIRbvhsAAAAAAADA6aVq/9FqAAAAAAAAAAAAAAAAAAAAqJKKinyaOTPC9HyvXkVKSYmyMJH/RIdFa/TFo4Md45Ra1m6pzfdsVsZ3GbrjwzuUX3LyYp6vfvlKjSc31m3tbtMLV7wgh736f2lxTk6OqbmGDRtanOR3hYWFpub8WVRmFbPFUXl5efp43ccasW6Eth7eWq6ZixtcrIUDF6qus66pO1ExdevWVUFBgalZwzB09OhR1axZ09pQAOAnD1/6sBKiE3T7B7fLkHHCM+mfpCvXlaunuz8d4HQIhNxcj9LS3Fq50nwpZlkcDp+efbZII0dGyW6vOsXCAAAAAAAAAKouc380GwAAAAAAAAAAAAAAAAAAAM5or7xSpIMHzZdIPfggX8bqLwPbDNSRB4/ong73yG47+Y+zz/BpxoYZqvXPWnpr81sBSug/GzduNDXXsmVLi5P8rqioyNRcRIT50r1AqUzGK8ZfUa5CsLrRdbX0lqVaNXwVhWABFBkZKYfD/Of4AwcOWJgGAPxvePvhenfQuyf9tdMzmc9o+HvDA5gKgZCZWaz27Q2tXBlp+e7ERLeWLi3V6NHRFIIBAAAAAAAAKDe+mgIAAAAAAAAAAAAAAAAAAAAV4vMZmjrVfFlMu3bF6tq16hceVWd2u10v9H1Be0ft1YX1Lzzl+YLSAt288Ga1fqG1sg9mByCh9fbs2aP9+/ebmvVnKVhJSYmpubCwMIuTWC88PNz8cM7JXw61h+qJy57QvjH71L1Zd/P3wLSaNWuani0pKZHH47EuDAAEwNVnXa2VQ1cq1B5a5plXN72qK966IoCp4C+GYWjKFJe6dQtTTk7Z/8zN6tSpSBs22NSlC+97AAAAAAAAAFQMpWAAAAAAAAAAAAAAAAAAAACokHffLdLWrebLgEaM8FqYBieT6EzUmtvWaMnNS1Qnqs4pz/948Ee1fqG10ualqdhTHICE1lm8eLGpucaNG6tOnVP/2JgVGmquZKK0tNTiJNYzW3gmSTpJf1ufFn10+KHD+luXv5nfj0pLSEio1LzZkj4ACKZOjTrpm7u+UVRoVJlnPtr2kS6ceaF8Pl8Ak8FKLpdPN9xQqBEjouV2W/94XXp6gVasiFBSkvkiZQAAAAAAAABnLkrBAAAAAAAAAAAAAAAAAAAAUCETJ9pMzzZsWKobbyy7ZAH+0aN5D+0fu1+Pdn5UDvvJywkMGZqXNU+1/llLU9dODVDCiivxlOjDLR9q6tqp2py7WQsWLDC1p2vXrhYn+6PIyEhTc8XFZZeyuUpdeu/H9/TKhle0J3+P2WiVdrKMp3Tk+A81rdlUX9/xtT666SM5w5zmd8MSdrvd9L+/knT06FHrwgBAALWu01pb79uqWhG1yjyzLmedkl9IrnYlqpCys0uVmlqqjIxoy3fHxHg1e3ahJk92yuEw/54JAAAAAAAAwJmNUjAAAAAAAAAAAAAAAAAAAACU29q1xVq1ynxJzL33unlAPoie7PqkDow9oB7NepzybLGnWOmL09V4cmOt37s+AOnKr9hTrKvnXK2rZl+l9MXpOm/ieVq6bKmpXZdddpm14f7EbKnSsWPHTvjxg4UH1XlWZ12bca1u++A2JT+frC9+/qIyEU0rKCgwP3xUkvHrX0Y6IvVi3xe1PX272ie1tyIaLJKQkGB69qefHPrpJ5eFaQAgcOrF1tPO9J2qH1O/zDNbD29V0ylNdaToBE2XAWIYRtDuro7mzy9UamqIsrIiLN+dnFyiNWs8GjSIAmQAAAAAAAAAlUMpGAAAAAAAAAAAAAAAAAAAAMpt3Div6dnYWK/uucd8oRisUTOippbcskRrhq9Rw9iGpzy/K2+XUl9OVa83eim/OD8ACU/t6ZVPa8lPS/77fWOdIY/bU+E9oaGhuuKKK6yMdpzo6GhTc/v27Tvhx+9edLc2/LLhv993uV1Km5+mYyUnLhHzp19++cX8sFdSvnTTOTfp6ENHdXeHuy3LBevExMTIbi//YweFhTa9+25NDRnSVFdf3UoTJ5b6MR0A+FdsRKy2P7BdyfHJZZ7ZV7BPTac01a68XQHLteXQFl026zJF/D1CrV9orY+3fhywu6srj8fQ6NEFSkuLVH5+iOX7Bwxwaf36UKWkhFu+GwAAAAAAAMCZh1IwAAAAAAAAAAAAAAAAAAAAlMvOnW69916U6flhw4oUE8OXr1YVFza4ULtG7tLkXpMVERJxyvNLti9R/Lh4PfbZYwFIV7btR7Zr3Jfjfv+AR9J6c7t69+6t+Ph4S3KVpV69eqbmTlS4tfCHhZqfNf+4j+8r2KenVj5l6p7KqFQpmKS3u72tN/u9qTBHmEWJ4A81atQ46euGIW3eHKknnqinbt2S9eijDbRhw69lePPnO1Va6gtETADwizBHmL6/+3t1atipzDN5JXlKfj5Z3+V+5/c8Ww5t0SWvXqLPf/5cJd4SZR/K1vXzrtf2I9v9fnd1lZvrUffuxZo40SnDsFm62+Hwafx4lzIyouR08j4HAAAAAAAAgDX43UYAAAAAAAAAAAAAAAAAAACUy4QJJfJ4zD1IHxrq06hR4RYnghXSL0rXkf87ogEpA2TTyf/5un1uPbnySSWMS9CnP30aoIR/NOqT/2fvzuPrKsj8Ab+5udmTLmxtUVREpXZQAcfqWKUKqIzoALW04IJCFRAXCmHxNzouozM6tLQUURCkKAq2UBYXBKRALQXqVEoRrJZ9LYSWLmlulpube39/4DJIuuTkZO3z+OEDPfe87/mCvclNc883p0dHV8ffD/xvROSS7frEJz6RSqZt2WuvvRLNbdiwITZs2PC3X29s2xin3HDKVs8/b/l5sWb9mkTXSuqhhx7q1Xz+hXxKSehLY8aM6fb4pk3lccUVu8RHPvK6+OhH94lFi3aJXK78Jec8/3xFXH11c3/EBOgzmUwmlp2wLI4af9RWz2krtMWBFx8YSx9f2mc5nml+Jt73k/fFutZ1Lzme68zF+b87v8+uO5QtW9YeBx5YiqVLa1LfPXZsZyxenI/GxrrIZNItGwMAAAAAdm5KwQAAAAAAAAAAAADYrk2buuLyy5PfTH/kkW3xqldVpJiINFVnq+Pqo6+O1aesjvG7jd/u+eta18X7f/r++Jcf/ks81/JcPyR80c0P3xw/X/Pzvx/IRcRvk+169atfHUcdtfVyj7S88pWvTDz7wAMP/O2fG3/TGE25pq2e21nsjJk3z4xSqZT4ej2xadOmeOaZZ3q1o6lp6/8+DB7ZbDaqql4sdSwWI+6+uy7OOuuVcfDB+8Z3vrNnPPRQ9Tbnf/Sj8m0+DjBUXDv92jj5rSdv9fHOYme89/L3xjWrr0n92hvaNsT7f/r+eHLzk90+/tM//DTyXco2/6pUKsW8ebk4+ODKWLs2/a9BJk1qi5Ury2Ly5G1/DgQAAAAASEIpGAAAAAAAAAAAAADb9b3vtUVzc/Jil7POyqaYhr4yfvfx8afP/Sl+cuRPor6yfrvnL39mebxizivi87/+fBSLxT7Nlu/Kxxdv+uJLD94WER3J9p199tmRzfb978vq6urYc889E83ee++9ERFxyyO3xGWrLtvu+Tc9fFP86sFfJbpWTzzQ9EDs9x/79XrPCy+8kEIa+sPo0bvHRRftHh/84BvixBP3jhtvHBWdnTt2O8KSJfXxxBPtfZwQoH9c+KEL42sHfW2rjxdLxTj66qPjwhUXpnbNXD4Xh195eKxet3qr57zQ9kL8cs0vU7vmUJbLFePYY1tj5sy6Hf5c1ROnntoSS5ZUx7hxvr4BAAAAAPqGUjAAAAAAAAAAAAAAtqmzsxQXXliZeP6gg9rin/+5KsVE9LWPv+XjsfHsjfGZAz8TmbJtv+W4WCrG91Z8L0afMzqu+uNVfZZp3vJ58eALD/79wGMRcU+yXePGjYsTTjghlVw74oADDkg0d/vtt0dLviVO/NWJOzwz8+aZ0V7omwKm1nxrHLngyHjTRW+KZ/7wTK/3KQUbOnbbbVTcdtuIeOaZnn8uKBTK4qKLWvsgFcDA+Pp7vx7f/+D3oyzKun28FKU45denxNdv/3qvr5XvysfUq6fG8qeXb/fc+avm9/p6Q92aNfmYODEfCxfWpb67oaErfvaz1jjvvPrIZrv//x4AAAAAIA1KwQAAAAAAAAAAAADYpiuvbE1UBPNXjY0phqHfZDPZuPjDF8cTM5+Ifx73z9s9v7mjOaYvmh5v+v6b4pENj6Sa5dktz8Z/Lv3Pvx9oj4jrk+/77//+76iq6r+iure+9a2J5pYsWRL/fsu/x+ObHt/hmUc3Phpz7p6T6Hrbcs6d58Toc0bHz9f8/MUDj/V+p1KwoeWjH21LPLtgQV10dRVTTAMwsD77ts/G1Udfvc3y1G8s/UZ89lefTXyNYqkYn7r+U3HTwzft0Pk3PXxTrN2yNvH1hrpFi1pj4sTyWL26OvXd48d3xPLlhTjmmNrUdwMAAAAA/COlYAAAAAAAAAAAAABsVbFYirlzyxPPjx/fER/6UPo35tN/XjnilbHixBVxw0dviF1rdt3u+Q+seyBe/93Xx8eu+VjkC/lUMpy9+Oxoybf8/cBNEbE52a53vOMd8clPfjKVXDsqaSnY5s2b47tXfrfHc/91x3/FU5ufSnTNf7TsyWXxinNfEWcvPjvyXX/5/3NzRKSwXinY0HLiifVRVZWs2Ovxx6vippu2pJwIYGB9ZMJH4vbjbo9sJrvVcy6656I4auFRPd5dKpVi5k0z42cP/GyHZ4qlYlx+3+U9vtZQVyiUorGxJaZNq4nm5uRft2zN1Km5WLGiIiZM6L9CWQAAAABg56YUDAAAAAAAAAAAAICtuvXW9rjvvuSlXl/8YiEymbIUEzFQPvj6D8bzZzwfX5r0pW2WX0RElKIUVz5wZYz6n1Fx0e8v6tV173rqrvjJH37y9wP3RcSqZLsymUxccMEFUVbWv78nDzrooMhmt/3fbKvu7/lIa2drnLX4rGTX+4sXWl+IyZdNjndf9u5Y27K215m6vYZSsCFljz0q4wMfSF7sNX9+imEABomDXnNQ3HvivVGTrdnqOdf/+fqYNH9SFIs7Xqz4raXfiu/+b8+LQeffOz9KpVKP54aqpqZCHHJIe8yZUx+lUrqv77LZYsyenYuFC2ujvt4teAAAAABA//EnkgAAAAAAAAAAAABs1ezZyUsF9tijM44/fusFCQw9mUwmvn3ot6OpsSne+5r3bvf8tkJbfPaGz8Zr5702Vj27qsfX6yp2xed//fm/H3guIn7Z4zV/c+qpp8Zb3/rW5AsSGjVqVEyaNCnZ8OqIaO752IIHFsRvH/9tj+eKxWKc+ZszY8zsMbH0yaUvP6ErIlb0PE932tra0llEvzn++OSfE268sSHWr8+nmAZgcNhvzH7x58//OUZWjdzqOXc9dVfsd+F+kS9s/+PghSsujK8u+WqiLA9teCjueuquRLNDzbJl7XHggaVYujT9rzfGju2MxYvz0dhYp+AYAAAAAOh3ZaWd6cc/AAAAAAAAAAAAALDD/vjHfLzpTRVRKiW7Ef4rX2mJb36zPuVUA2/+/Pkxf/781Pe2tLTEfffdt8Pn33vvvbH//vunnqMn7nzyzpi+aHo8s+WZHTr/g6/7YCw8emHUV+7Y74sf/P4HcfINJ7/4i/aIuDgiNiTLOmHChLjnnnuiuro62YJemj17dpx55pnJhv8lIj7Q87E3j3lz3HPiPZHNZHfo/J//+edx/M+Pj43tG7d+0qqIuL7nWbrzile8Ip5++ul0ltEvurqKsffenfHUU1WJ5r/97Q3xpS/tknIqgMFhU/umeOP33hjPtTy31XNe0fCKWH3K6hhRPaLbx6/641VxzKJjohTJb/c6Yf8T4tIjLk08P9iVSqU4//zWOPPMmujszKS+f9Kktrj66ooYN27HXj8BAAAAAKRNKRgAAAAAAAAAAAAA3frkJ3Nx+eV1iWZraorx5JOl2G238pRTDbyvf/3r8Y1vfGOgYwyKUrC/mnXnrPiP2/8jOro6tntuRaYivjb5a/Hlg768zfM2tG2IN3z3DfFC2wsRxYj4WUQ8lDBgJuKCay+Izx3xuYQLeu+xxx6LffbZJxK9fTsbEZ+LiNE9H73gXy+Iz03c9r/3E5ueiCMXHhmrnlu17WX5iPheRGzueY7u7L777vH888+ns4x+c9ZZG2PWrAS/GSPiTW9qjT/8oTblRACDR3uhPd584ZvjoQ1bf9Eyunp0PPDZB2LPEXu+5Pgtj9wSh195eHQWO3uVoa6iLp4747kdLmEdSnK5YsyY0RYLFyb7GmV7Tj21JWbProtsNlkpMgAAAABAGtL/cQgAAAAAAAAAAAAADHlNTYW46qqaxPMf/WjbsCwEo3tnTjozNpy1IY7c98jtnttZ7Iyv3P6VGHfuuFjy+JKtnvfV27/6YiFYRMRNkbwQLCLiPRGzHpsVLfmWXizpnb333jve//73JxsuRMSvk43+x+3/Eetb13e/tliI468/Pvaet/f2C8EiouquqtQKwSIi8vl8esvoNyedVB2ZTLKfTX7//bVxzz1bUk4EMHhUZ6vjz5/7c7xtz7dt9ZyN7Rvj9Re8Pv607k9/O/a7p38XRy08qteFYBERuc5cLFq9qNd7Bps1a/IxcWK+TwrBGhq64mc/a43zzqtXCAYAAAAADDilYAAAAAAAAAAAAAC8zNy57dHenuytpplMKc48syLlRAx2tZW1cd0x18UDn30gXr/L67d7/nMtz8V7f/zeePf8d7+stOq+5+6LC39/4Yu/WB4R/9uLYK+LiHdHPLH5ifjKbV/pxaLeO/nkk5MPPxSJ/jtsbN/Y7b/3pSsvjZHfGRk/uu9HUYptFzyVl5XH1JqpUbij0PMA26AUbGjaZ5+amDy5ZwV7o0cX4hOfWB/XXfdQjBzZ1EfJAAaHTCYT//uZ/40Pvu6DWz2ntbM13nLRW+Lup+6OP637U3zwyg9GrjOXWob5985PbddgsGhRa0ycWB6rV1envnv8+I5YvrwQxxxTm/puAAAAAIAklIIBAAAAAAAAAAAA8BKtrcX44Q+T33B/2GFtse++lSkmYij5pz3+KR78woMx/9/mR11F3XbPX/bUshg7e2ycdtNpUSwWo1QqxRdu/EIUS8WIByPi5l6EGRkRUyKi7MVfnv+78+Pup+7uxcLe+fCHPxz77LNP8gU3R8STPR+7+J6LY+WzKyMi4oGmB+L13319fPqXn47Wztbtzr5rr3fFimkr4s7z7oyurq6eX3wblIINXccdt/2CuLKyUkyatCXOPffJuPXWNXHWWc/F617XEe3t7VEopFswBzAY3fCxG+L4/Y/f6uOdxc6YNH9SvPuyd8eGtg2pXvuOJ++Ih154KNWdA6FQKEVjY0tMm1YTzc3lqe+fOjUXK1ZUxIQJVanvBgAAAABISikYAAAAAAAAAAAAAC/xwx+2xgsvZBPPn3WWt6gScfwBx8emL22KT+3/qSj7ayvXVnSVuuK8350Xu87aNc74zRlxx5N3RDwTEVdHRClhgPKImBYRtX8/VIpSzPjFjOgodCRc2jvl5eXxzW9+M/mCroi4MiKe69lYKUrxuRs+F//2s3+LN130pnh4w8PbnRlbPzZu/+Ttcc2Hroljjjgmnn322USRGZ6OPXZk7LZbZ7ePjRuXj1NOaYqbb34wLrroiXj/+5ujouKlT+Tnn3++P2ICDLj5R8yP//eu/7fVx0tRihfaXuiTa/9o1Y/6ZG9/aWoqxCGHtMecOfVRKm37tWRPZbPFmD07FwsX1kZ9va9dAAAAAIDBxZ9aAgAAAAAAAAAAAPA3XV2lOP/8isTzb31re0yeXJ1iIoaybCYblx1xWTx26mNxwNgDtnv+pvZNMWf5nIh1EXFFRHTfObRjDo+IV7z88J/W/yn+647/6sXi3jnmmGPigAO2/99iq9oj4scR8XjPxpY/szx++eAvt3teZaYyvvneb8azjc/GKwuvjHe/+93x4IMPJkm6XVVVVX2yl75XVZWJKVNa/vbrbLYYH/jA5vjBDx6PG298MD772XUxbtzWn8CbNm3qh5QAg8N/H/Lfcd4Hzuv36/74vh9HV7Gr36+bhmXL2uPAA0uxdGlN6rvHju2MxYvz0dhYF5lMumVjAAAAAABpUAoGAAAAAAAAAAAAwN9cd11bPPJI8qKe004rppiG4eLVo14dK09aGddPvz5GV4/e9smbIuInEdHaiwu+NyIO3PrD31727fhD0x96cYHkysrK4rzzzouysl6UULTFi/+N7o6IFJ9yh7/+8Hjh7BfiKwd9Ja677rp4xzve0WeFYBER1dUKBIeyk0+uiNe9rj3OOuvZuO22NTF79lPxzne2RHn59meLxWLkcrm+DwkwSJz6jlPjyilXRln0XwnVM1ueiVsevaXfrpeGUqkU8+bl4uCDK2Pt2uRFxVszaVJbrFxZpsQYAAAAABjUykqlUmmgQwAAAAAAAAAAAAAwOLzznW1x9901iWZf/ep8PPxwRWSz/Vd2MBDmz58f8+fPT31vS0tL3HfffTt8/r333hv7779/6jn6WrFYjDMXnxnzls+LrlLXSx/cEhGXRcSGXlzg7RHxr9s/7Z/3/Oe4e8bdkc1ke3Gx5E4//fSYO3du7xftFREfiIhXJl/x2tGvjWuOvib2H7d/PPLII/HlL385Fi5c2Pts27HnnnvGM8880+fXoe+sXr06isVkzXS1tbXx2te+NuVEAIPbbx7+TRx2xWFRiv65nevoCUfHVUdf1S/X6q1crhgzZrTFwoV1fbL/1FNbYvbsumH/tQoAAAAAMPQpBQMAAAAAAAAAAAAgIiLuvrs93vnO6sTz55zTEmeeWZ9iop3LqlWr4oADDtjh84dqKdhfrW9dH1MWTok7nrzjxQOtEfGjiHi+F0v3j4gjImIHux5mv292NL6zsRcXTK69vT3esv9b4sE1D6az8HUR8daIeENElO/YSG1Fbcz9wNz4zIGfiTvuuCMuvfTSuPLKK6NQKPTo0rW1tZHP53s899rXvjYeeeSRHs0wuDzzzDOxcePGxPMTJkyITCaTYiKAwatUKsUpN5wSF91zUb9ds7K8MtaevjZ2rd21366ZxJo1+ZgypRirVyf/WmRrGhq64uKLO+KYY2pT3w0AAAAA0Bd89wwAAAAAAAAAAACAiIiYNasr8ezIkYX47GfdaM+O2612t1h6/NJY8sklMSpGRfwkelcINiEi/i12uBAsIuI/bv+PeHjDw724aHLV1dXx+lNeH5FW98XDEbEwImZFxIKIuDsiHoqIFyKiLSIKEdEVEe0RsSniffG+OGfUOXHHeXfEXnvtFZMnT47LL7+8x8VeEREXXHBBdHX1/ONHdXX6xR/0rzFjxvRqfv369SklARj8vrbka/1aCBYRke/Kx5X3X9mv1+ypRYtaY+LE8j4pBBs/viOWLy8oBAMAAAAAhpTsQAcAAAAAAAAAAAAAYOA99lhn/PKXyW+WP+GE9qivr08xETuL/UbtF+0/ao94thdLXhcRH4ke/8jktkJbfOaXn4nbjrstysp60CaWgl+u+WXcsPGGiOnxYiFaMaXF7RHx57/8tQ23/OV/vXXyySfHBz/4wSiVSj2eHTFiRK+vz8DKZrNRVVUVHR0dieY3bNgQe+yxR8qpAAaf8393fnxz6TcH5NrzV82PL7z9CwNy7W0pFEpx9tm5mDu3Lkql9F+HTZ2ai8suq4n6+h6+QAQAAAAAGGD+VBMAAAAAAAAAAACAmD27IwqFZDfjV1QU47TTqlJOxM6gra0t3vbet0X74+3Jl7wmXizWKk82vuTxJfHDlT9Mfv0ENrdvjs/e8NkXf7F3RBwZEf3bSZaKgw46KM4777xYv359ovlx48alnIiBsPvuuyeeLRQK0d7ei+c/wBBwxR+uiFNvOnXArr/quVVx77P3Dtj1u9PUVIhDDmmPOXPqUy8Ey2aLMXt2LhYurFUIBgAAAAAMSf5kEwAAAAAAAAAAAGAnt3FjV1x+eU3i+SlT2mKvvSpSTMTOoKOjIw47/LB4bNVjyZe8MiKOjYhe/vY745Yz4pnmZ3q3pAfOXnx2PLPl/1zvzRExLRIXmw2ESZMmxQ033BBVVVWxbt26RDvGjh2bcioGwogRI6KsLHmhS1NTU4ppAAaXGx+6MT71808NdIy4bNVlAx3hb5Yta48DDyzF0qXJv/7YmrFjO2Px4nw0NtZFJjMEG1cBAAAAAEIpGAAAAAAAAAAAAMBO73vfa4uWluRtRGedlU0xDTuDfD4fH/nIR2Lp7UuTLxkXER+PiKre52nuaI5Tfn1KlEql3i/bjiWPL4kf3PODlz/wxoj4aKTy79PX3vnOd8aNN94Y9fX1ERHx3HPPJdozbty4NGMxQDKZTDQ0NCSeb2lpiWKxmGIigMHhrqfuio9c9ZEoFAsDHSWuuP+K6Ch0DGiGUqkU8+bl4uCDK2Pt2vQLhSdNaouVK8ti8uTq1HcDAAAAAPQnpWAAAAAAAAAAAAAAO7HOzlJceGHyFqL3vKc1DjxwCLQYMWgUCoWYNm1a3HDDDcmX7BERn4iIFDsffrHmF3H16qvTW9iN1s7W+MwvP7P1E/aJiJMjYs8+jdErJ5xwQtx6660vKYF69NFHE+0aO3ZsWrEYYL35/7JUKsWmTZvSCwMwCDzw/ANx+JWHR1uhbaCjRETEhrYN8Ys1vxiw6+dyxTj22NaYObMuOjvTv53t1FNbYsmS6hg3TlkxAAAAADD0KQUDAAAAAAAAAAAA2In95CetsXZtReL5xsayFNMw3HV1dcVHP/rR+PnPf558ya4RcVxE1KaV6u8+/+vPxwutL6S/+C++vuTr8fCGh7d90uiIOCEi3hmD6t3eVVVV8YMf/CAuvfTSqK5+aRvbY489lmjnuHHj0ojGIFBZWRkVFck/l6xfvz7FNAAD6/FNj8cHfvqB2NS+aaCjvMT8VfMH5Lpr1uRj4sR8LFxYl/ruhoau+NnPWuO88+ojm/V1CQAAAAAwPAyibxMDAAAAAAAAAAAA0J+KxVKcd1554vnx4zvigx+s3v6JEC8Wgn3iE5+Iq6++OvmSUfFiIVh9SqH+wbrWdXHazaf1ye7fr/19nHv3uTt2cjYi3h8RJ0fEa/skTo8cdthh8Yc//CFOPPHEbh9PWgr2hje8oTexGGR22WWXxLP5fD7y+XyKaQAGxvO55+N9P3lfrN2ydqCjvMxvHvlNPN38dL9ec9Gi1pg4sTxWr07/a4bx4zti+fJCHHNMHzTFAgAAAAAMIKVgAAAAAAAAAAAAADupW25pj/vvT36D/syZhchkylJMxHBVLBbj+OOPj5/97GfJl4yIiE9GxMi0UnXvJ3/4Sdz08E2p7sx35eOEn58QxVKxZ4N7xIslaB+LiL1TjbRD9t1337j22mvjxhtv3GaB1yOPPNLj3dXV1bHPPvv0Jh6DzK677tqr+aamppSSAAyM5o7mOOynh8XDGx4e6CjdKpaKcfl9l/fLtQqFUjQ2tsS0aTXR3Jy8hHhrpk7NxYoVFTFhQlXquwEAAAAABppSMAAAAAAAAAAAAICd1OzZpcSzY8Z0xvHH16aYhuGqVCrFpz/96fjJT36SfEl9vFgINjqtVNt20q9Oii0dW1Lb9z/L/ifuf/7+5AteHy/++58cEf8cEXXp5NqaQw89NH71q1/Fn/70pzjqqKO2ee6mTZvi8ccf7/E1xo8fH+Xl6ZeEMHAymUzU1SX/zdnc3JxiGoD+1V5ojyMWHBH3PnfvQEfZpstWXRalUvKvAXZEU1MhDjmkPebMqY9SKd0C4Wy2GLNn52Lhwtqor3dbHAAAAAAwPPnTTwAAAAAAAAAAAICd0P3352Px4uSlXiee2BGVlene5M/wUyqV4qSTTorLLrss+ZLaiDguInZNK9X2Pbn5yfj3W/89lV2r162Oby79Ziq7YmxEfCgiGiPiUxHxjoh4RUT0tlsrExF7R/zLjH+Jhx56KG655ZY4/PDDo6xs+8/xVatWJbrkP/3TPyWaY3AbM2ZM4tlSqRSbN29OMQ1A/ygUC/HRaz4aSx5fMtBRtuvhDQ/HsieX9dn+Zcva48ADS7F0aU3qu8eO7YzFi/PR2FgXmYyvQwAAAACA4Ss70AEAAAAAAAAAAAAA6H/nnNMZEZWJZmtru+LUU9O/0Z/hpVQqxSmnnBKXXHJJ8iXV8WIh2B5ppdpx31vxvZi+3/R416velXhHV7ErZvxiRnQWO1NMFi+WeL3mL39FRBQi4tmIWB8RmyNiU0Q0R0Q+Ijr/8lfEi0/5qr/8NToido8X/9uOefHY8lgeW+q29ChK0lKw/fbbL9Ecg1ttbW2Ul5dHV1dXovl169bFyJEjU04F0HdKpVKc/KuT47o/XzfQUXbY/FXz492vfneqO0ulUpx/fmuceWZNdHZmUt0dETFpUltcfXVFjBtXnfpuAAAAAIDBRikYAAAAAAAAAAAAwE7m2WcLcfXVyUu9Pvaxtth11/oUEzEcfeELX4iLLroo+YKqiPhERIxNK1HPlKIUn/7Fp2PVyauiOpusgOKC/70glj+9POVk3chGxF5/+asXSlGKL9z4hbjj+DuirKxsh2Z+//vfJ7rWgQcemGiOwW/06NGxfv36RLPt7e1RKBQim3WrAzA0fPd/vxuX3nvpQMfokav/eHWcf9j50VDVkMq+XK4YM2a0xcKFdans+0enntoSs2fXRTa7Y69NAAAAAACGuvR/9AIAAAAAAAAAAAAAg9p557VHR0eyt5FmMqU444zKlBMx3MycOTO+973vJV9QGREfj4hXpJUomTUvrIlv/vabiWYf2/hY/Ptt/55yor5351N3xpX3X7nD5y9ZsqTH16ioqIhJkyb1eI6hYY899ujV/Lp161JKAtD3/vO3/znQEXos15mLq1dfncquNWvyMXFivk8KwRoauuJnP2uN886rVwgGAAAAAOxUlIIBAAAAAAAAAAAA7ERyuWL88IfViec/+MG2eMMblIKxdY2NjTFv3rzkCyoi4qMRsVdaiXrnnLvOiVXPrerRTKlUihN/dWK0drb2Tag+duYtZ8aWji3bPW/NmjXxzDPP9Hj/2972tqirS788hMEhk8lETU1N4vk//aklxTQAfWtzx+aBjpDI/Hvn93rHokWtMXFieaxenfxri60ZP74jli8vxDHH1Ka+GwAAAABgsFMKBgAAAAAAAAAAALATueSSttiwIZt4/qyzvP2UrTvrrLNizpw5yRdkI+KYiHhNSoFSUCgWYsYvZkShWNjhmR+t+lEsfnRxH6bqW8+2PBv/dcd/bfe82267LdH+97znPYnmGDr22GOPHp3f2pqJ664bFZ/4xN5x6KGviz/9aWgW6gE7nyP2PWKgIyRy51N3xoMvPJhotlAoRWNjS0ybVhPNzeUpJ4uYOjUXK1ZUxIQJVanvBgAAAAAYCrwrAwAAAAAAAAAAAGAn0dVViu9+tyLx/Nve1hbvfnd1iokYTv793/89Zs2alXxBeURMi4h90kqUnpXProw5d+9Y2dmzW56N039zeh8n6ntz7p4Tj258dJvn3HDDDYl2KwUb/hoaGiKT2fbtCqVSxB/+UBNf//qe8d737htf/eorY9WquiiVyuKiizr6KSlA73z/8O/HtH+aNtAxErns3st6PNPUVIhDDmmPOXPqo1QqSzVPNluM2bNzsXBhbdTXu+UNAAAAANh5+RNSAAAAAAAAAAAAgJ3ENde0xaOPViaeP+20UoppGE7+4z/+I7797W8nX5CJiKkR8Ya0EqXvq7d/NR584cFtnlMqleJzv/5cbGrf1D+h+lBnsTOu/uPVW31848aN8Zvf/KbHe+vq6uJd73pXb6IxRIwYMaLb4xs3lsdPfrJrTJnyuvjYx/aJa67ZJVpby19yzlVX1UVnZ7E/YgL0yh51e8TCqQtj7elrY/6/zY+pE6bGyKqRAx1rh1z+h8ujUCzs8PnLlrXHgQeWYunSmtSzjB3bGYsX56OxsS4ymXTLxgAAAAAAhhqlYAAAAAAAAAAAAAA7iblzk99g/5rX5GPatPQLABj6vv71r8e3vvWt5AvKImJKRLwxrUR9o6OrI45YcEQUS1svKrps1WVx3Z+v68dUfWtD24atPnbddddFZ2dnj3ceccQRUVPjY8nOYOzYsX/752Ix4q676uOMM/aKQw7ZN845Z1w8/HD1Vmefe64yrr22uT9iAqRiXMO4OP6A4+Pqo6+OdWeui6WfWhpfmvSleMuYtwx0tK1au2Vt/OaR7Rd8lkqlmDcvFwcfXBlr11aknmPSpLZYubIsJk/e+ucFAAAAAICdiVIwAAAAAAAAAAAAgJ3AnXe2x/LlyYt4Pv/5zigvT14qxvD0X//1X/GNb3wj+YKyiDgyIvZLKVAf+/P6P8f+F+0fL7S+8JLjpVIpLlxxYcz4xYwBSpa+8rLyOHL8kVt9/Iorrki095hjjkmYiKEmm83G5s01ceGFu8e//usb4qSTXhM33zwyOjt37DaGH/3I7Q7A0FRRXhHvfvW749uHfjtWnbwqnj7t6fjhh38YH3njR2JE1YiBjvcS8++dv83Hc7liHHtsa8ycWbfDH797YubMlliypDrGjcumvhsAAAAAYKgqK5VKpYEOAQAAAAAAAAAAAEDfOvLIXPz853WJZkeNKsRTT2Wivl5BS19atWpVHHDAATt8/r333hv7779/3wXajv/5n/+JL33pS71b8m8RcWAqcfrVLjW7xLfe+6048a0nxup1q+OLN30xljy+ZKBjpeYtY94SXznoKzF1wtRuH//jH/8Y++3X8ya3UaNGRVNTU1RWVvY2IkPE4sWb433vG5loNpstxqOP5mOvvapTTgUwcDq7OuOup+6KGx++MX790K/j/ufvH9A8FZmKWNu4Nnar3e1lj61Zk48pU4qxenX6H4cbGrrikks6Yvr02tR3AwAAAAAMdX6MAgAAAAAAAAAAAMAw9/DD+fjVr5LfcH/88e1RX1+fYiKGunPPPbfXhWBn/veZ8Z6p74mNbRtjQ9uG2NC2ITa2v/yf//p4Z7EzpfS9t6FtQ5zy61Piy7d9OTa1b4pSDL6f01xVXhWja0bHLjW7xOjqv/y9ZnTsUv3i319y7C/n/PV4RXnFNnefd955iTJNmTJFIdhO5r3vbYg3vKE9Hnyw54UyhUImLr64Nb75TaVgwPBRUV4Rk18zOSa/ZnJ859DvxNPNT8dND98Uv37o17H40cWxJb+lX/N0Fjvjij9cEae+49SXHF+0qDVmzKiK5ub0P2+PH98R11wTMWGCQjAAAAAAgO6UlUqlwfcdaAAAAAAAAAAAAABSc/LJLfGDHyQr9aqsLMajjxbjFa/ws2j72qpVq+KAAw7Y4fPvvffe2H///fsu0FbMmzcvZs6c2esdX/ziF3f4/FKpFLnO3NYLxP5yvLtSseaO5l5lHUiZssxLyrv+9s9bKfT6v4/VVNT0SaampqbYe++9o62trcezv/vd72LixIl9kIrB7Bvf2BBf//ouiWb32ac91qypjPLyTMqpAAaffFc+7nzyzrjx4RvjxodvjAeef6BfrvvmMW+OVSetirKysigUSnH22bmYO7cuSqWy1K81dWouLrusJurrfVwHAAAAANgapWAAAAAAAAAAAAAAw9iGDV3xqldF5HLlieaPPTYXV15Zl3IqujMUSsG+//3vx+c+97le7Zg1a1acccYZKSXavkKxEJvaN72kPGxrBWL/eE5nsTOVDCOqRnRf5LWdcq+GqobIlA2u0oyTTjopLr744h7Pvetd74o77rijDxIx2D37bEe85jUVkc8n+718002b4wMfGJlyKoDB78nNT8ZND98Uv37o13HrY7dGS76lz651z4n3xCsyb45p0zpj6dL0i0Wz2WJ85zttcdpptZHJpF82BgAAAAAwnCgFAwAAAAAAAAAAABjG/vM/c/G1ryUv9br33o7Yf/+qFBOxNYO9FOySSy6Jk046KXrz9uNvfetb8eUvfznFVH2nVCpFa2drbGjbED9f8/OYc/eceGzTY9udq8xUxlFvPCr+37v+X7xixCtiVPWoyGay/ZC4761evTre/OY3R1dXV49nr7/++jjiiCP6IBVDweGHN8evfz0i0ezRR2+Oq65SCgbs3PJd+Vj25LL49UO/jhsfvjFWr1ud6v4PjftUrPzGxbF2bUWqeyMixo7tjAULumLy5OrUdwMAAAAADEdKwQAAAAAAAAAAAACGqXy+FK95TSGefTbZzf0HH9wat95am3IqtmYwl4JddtllMWPGjF4Vgn31q1+Nb3zjGymm6l+FYiEuXHFhfPm2L8eW/JZuz5nyxilx7vvPjdeMek3/husHpVIpDjnkkLj99tt7PPv6178+/vznP0cmk+mDZAwFixZtiqOPHpVotra2K55+uhijR6dfVAMwVD2x6Ym48eEb48aHb4zFjy6O1s7W3i0slUXMWhvROjadgH8xaVJbXH11RYwbNzwKUgEAAAAA+oPvqgIAAAAAAAAAAAAMU5df3pq4ECwiorGxLMU0DFU//elP49Of/nSvCsG+9KUvDelCsIiIbCYbX3j7F+Laadd2+/jH9vtYXDPtmmFZCBYRMWfOnESFYBERZ511lkKwndyRR46IV7win2i2tbU8Lr20+yI+gJ3Vq0e9Ok7+55Pj58f8PDactSFu+cQtcfo7To/xu41PtrCsFHHygRF1TallnDmzJZYsqVYIBgAAAADQQ76zCgAAAAAAAAAAADAMFYulOO+88sTzEya0x2GHVaeYiKFowYIF8alPfSqKxWLiHaeddlp8+9vfTjHVwKqu6P558eaxb+7nJP3nvvvuiy9/+cuJZt/85jfH8ccfn3IihppsNhPTpuUSz19xhc9HAFtTla2KQ197aJz7gXPjT5/7Uzz6xUfjex/8XnzoDR+K2oraHV804tmIE94VMeqxXuVpaOiKBQtaY+7c+shmlQwDAAAAAPSUUjAAAAAAAAAAAACAYejmm9vjj39MXqIyc2ZXZDJu4t+ZXXvttfGJT3wiurq6Eu/4/Oc/H3PmzEkx1cBrL7R3e7w6OzxLi5555pn48Ic/HB0dHYnm586dG+XlyQsKGT5OOqkqMplSj2ZGjy7Eccetj69//Zlobm7uo2QAw8veo/eOU952Svzy2F/GC2e9EDd//OaY+faZ8YZd37D94V0fjpgxKWKP+xNde/z4jli+vBDTp/egjAwAAAAAgJdQCgYAAAAAAAAAAAAwDJ17bs+KV/6vsWM745OfdCP/zuwXv/hFHHPMMVEoFBLv+MxnPhPnn39+iqkGh/W59d0eL5WSP+cGq82bN8e//uu/xlNPPZVo/sgjj4yDDz445VQMVfvuWxuTJuW2e15ZWSkmTdoS5577ZNx665o488znYp99OuL555/vh5QAw0t1tjrev8/7Y+5hc+OPJ/85Ttjyh4gbLohY//qIrb10aXg24viDIsau6tG1pk7NxYoVFTFhQlWvcwMAAAAA7MyUggEAAAAAAAAAAAAMM6tWdcSttyYv9Tr55HxUVpalmIih5Kabboqjjz46Ojs7E+/41Kc+FT/4wQ+irGz4/T764b0/7Pb4zY/c3M9J+tbatWtj8uTJcf/99year62tjdmzZ6eciqHuuOO2/nFlzz3zccopTXHzzQ/GRRc9Ee9/f3NUVPy9saa9vT26urr6IybAsNPUVIhDDmmP+ee+KWLF5yIueDDi8psj2uu7H6jZFHHkpyLKitvdnc0WY/bsXCxcWBv19W5VAwAAAADoLX/SCgAAAAAAAAAAADDMzJpVSDxbV9cVX/hCdYppGEpuvfXWOOqooyKfzyfe8bGPfSwuvfTSYVkIti63LpY+sbTbx+566q4oFHv23CsWt1+0MRDuv//+eMc73hH33Xdf4h1z5syJffbZJ8VUDAcf+9iI2GWXvz9PKiqKcdhhm+IHP3gsbrzxwfjsZ9fFuHFbLw57/vnn+yMmwLCybFl7HHhgKZYurXnpA4+9P2L+XRFbxnU/OPa+iIrWbe4eO7YzFi/OR2NjXWQyw++1HwAAAADAQFAKBgAAAAAAAAAAADCMrF1biEWLarZ/4lZ8/ONtscsu5SkmYqhYunRp/Nu//Vu0t7cn3jFt2rT48Y9/HJnM8Hyb8reWfis6i90XFm3u2BzX/unaHu37wAc+EF/96lejqakpjXi9ViwW49xzz42JEyfGU089lXjPEUccESeddFKKyRguamrK46ijWuJ1r2uPs89+Nm67bU3MmvV0vPOdudiRDxubNm3q84wAw0WpVIp583Jx8MGVsXZtRfcnPf+miEvvjNjQTZFnbreIrq3MRcSkSW2xcmVZTJ6sUBgAAAAAIE3D87vtAAAAAAAAAAAAADupOXPaI59P9hbR8vJSnHFGZcqJGAqWL18ehx9+eLS2tibecdRRR8UVV1wR5eXDs1Tu0Y2PxoW/v3Cb55xz5zlRKpV2eOe6devim9/8ZrzqVa+KadOmxc033xzFYrG3URNZvnx5HHTQQXHGGWf0qhhuzz33jEsvvTTFZAw33/lOeVx77cPx8Y+/EKNGdfVotqurK3K5XB8lAxg+crliHHtsa8ycWRedndv52mDT3i8Wgz399r8f68pG3DIroquq25GZM1tiyZLqGDcum2JqAAAAAAAilIIBAAAAAAAAAAAADBu5XDHmz69OPH/44a3xutcpBdvZ3HPPPXHYYYdFS0tL4h0f+tCHYuHChZHNDt9iiK/c9pXoLHZu85x7nr0nljy+pMe78/l8XH311XHYYYfFq171qjj11FPjjjvu6JeCsGXLlsXhhx8e//Iv/xJ33nlnr3ZVVlbGFVdcEbvuumtK6RiOdtutIcrLk9/K8Pzzz6eYBmD4WbMmHxMn5mPhwrodH8qNibj0roifXR/xyx9EXLQqYtWnXnZaQ0NXLFjQGnPn1kc2W5ZWZAAAAAAA/o/h+113AAAAAAAAAAAAgJ3MD37QFhs39uDm/39w5pnlKaZhqPjud78bmzdv7tWOX/3qV1FZObQL5W6//fZ4z3ve0+1j96y9J372wM92aM85d50T7937vYlzPPPMM3H++efH+eefH7vuumsccsgh8b73vS8mTZoU48ePj7Ky3hVwlEqluP/+++P666+Pn/zkJ/Hwww/3at9flZWVxfz587f63xD+rxEjRsSmTZsSzeZyuSgWi5HJ+BnpAP9o0aLWmDGjKpqbE7wuK2Ui1hyx1YfHj++Ia66JmDChthcJAQAAAADYHqVgAAAAAAAAAAAAAMNAV1cpvvvdisTzb397W7zrXTUpJoLhoVQqxdmLz97h8296+Kb4Q9Mf4s1j3tzra7/wwgtx1VVXxVVXXRURLxYpvfWtb403vvGNse+++8ZrX/vaGDt2bIwdOzZGjBgRVVVVUVFREe3t7ZHL5aKlpSXWrl0bjzzySDzyyCNx7733xrJly2Ljxo29zvaP/vu//zs+9rGPpb6X4WnMmDGJS8EiXnxu7L777ukFAhjiCoVSnH12LubMqe+T/VOn5uKyy2qivl4hIwAAAABAX1MKBgAAAAAAAAAAADAMXH11Wzz+eG3i+dNOK6WYBoaPWx69JW597NYezcy+a3ZcftTlqWdpbm6O22+/PW6//fbUd/fGKaecEl/60pcGOgZDSEVFRVRWVkY+n080v2HDBqVgAH/R1FSIadM6Y+nS9AvBstlifOc7bXHaabWRyZSlvh8AAAAAgJfz4xkAAAAAAAAAAAAAhoG5c5PfpL/33vmYOrUmxTQwPBRLxTh78dk9nvvZAz+LJzc/2QeJBp8zzjgjLrjggoGOwRC02267JZ7t7OyMjo6OFNMADE3LlrXHgQeWYunS9F/Ljx3bGYsX56OxsU4hGAAAAABAP1IKBgAAAAAAAAAAADDE3XFHe/zv/yYvAvjCFzqjvNyN/vCPrrz/ylj13KoezxWKhThv+Xmp5xlMysrKYvbs2TFr1qwoK/Pxg54bNWpUr37vPPfccymmARhaSqVSzJuXi4MProy1aytS3z9pUlusXFkWkydXp74bAAAAAIBtUwoGAAAAAAAAAAAAMMTNmlVMPLvLLoU48cTkhWIwXHUUOuIrt30l8fwlKy+JjW0bU0w0eFRVVcXll18ejY2NAx2FISyTyUR9fX3i+ZaWligWk3/+AxiqcrliHHtsa8ycWRednenfGjZzZkssWVId48ZlU98NAAAAAMD2KQUDAAAAAAAAAAAAGMIeeigfv/518lKvE07oiLo6bymFf/T9Fd+PJzY/kXi+Jd8SF/3+ohQTDQ4TJkyI3/3ud/Hxj398oKMwDIwZMybxbKlUik2bNqUXBmAIWLMmHxMn5mPhwrrUdzc0dMWCBa0xd259ZLNlqe8HAAAAAGDHeAcHAAAAAAAAAAAAwBA2e3Y+urqS3bRfVVWM006rSjkRDH2b2jfFt+74Vq/3zPvdvGgvtKeQaHD47Gc/G7///e/jLW95y0BHYZiorq6ObDabeH79+vUppgEY3BYtao2JE8tj9erq1HePH98Ry5cXYvr02tR3AwAAAADQM0rBAAAAAAAAAAAAAIaoF17oip/+tCbx/NSpbbHnnsnLWGC4+p9l/xMb2jb0ek9Tril++oefppBoYO23335x8803x/e///2oqUn+MQe6s+uuuyaezefz0dnZmWIagMGnUChFY2NLHH10bTQ3l6e+f+rUXKxYURETJigLBgAAAAAYDJSCAQAAAAAAAAAAAAxR55/fFq2tyYsBzjqrIsU0MDw80/xMnPe781LbN+uuWVEsFbt9bPfdd0/tOn3hla98ZVx66aVx3333xfvf//6BjsMw1ZtSsIiIpqamlJIADD5NTYU45JD2mDOnPvXd2WwxZs/OxcKFtVFf7xYzAAAAAIDBwp/YAgAAAAAAAAAAAAxB+XwpLr64KvH8oYe2xpvfXJliIhgevrbka9FeaE9t34MvPBi/WPOLbh+75ZZb4u67744vfvGL8cpXvjK1a/bWP/3TP8X5558fDz74YJxwwgmRyXjbOX0nk8lEXV1d4vnm5uYU0wAMHsuWtceBB5Zi6dKa1HePHdsZixfno7GxLjKZstT3AwAAAACQnO/OAgAAAAAAAAAAAAxBP/pRazz3XEXi+cZGN//DP1q9bnVctuqy1PfOumvWVh97xzveEfPmzYunnnoqfv/738fXvva1ePvb3x7l5eWp59iW2traOO6442LZsmXxwAMPxBe+8IWoqUm/hAS6s8ceeySeLRaLsWXLlhTTAAysUqkU8+bl4uCDK2Pt2uSv97dm0qS2WLmyLCZPrk59NwAAAAAAvVdWKpVKAx0CAAAAAAAAAAAAgB1XLJZiv/3y8ac/VSWa32+/9rjvvqrIZBSDDSarVq2KAw44YIfPv/fee2P//ffvu0A7oSMWHBG/WPOLPtm97PhlMelVk3b4/Obm5vjtb38by5Yti+XLl8c999wTuVwutTyZTCb233//eN/73heHHnpovOtd74rqauUgDJw//elP0dXVlWi2pqYm9tlnn5QTAfS/XK4YM2a0xcKFdX2yf+bMlpg1qy6yWV8HAAAAAAAMVtmBDgAAAAAAAAAAAABAz9x4Y3v86U81iednzuxSCAb/YNmTy/qsECwi4py7zomfv+rnO3z+iBEj4sMf/nB8+MMfjoiIYrEYjz32WDzwwAOxZs2aeOKJJ+LJJ5+MpqamWL9+fWzcuDHa29sjn89HJpOJurq6aGhoiPr6+mhoaIhXvvKV8YY3vCH23Xff2HfffWPChAkxatSoPvq3hZ4bNWpUvPDCC4lm29raoqurK8rLy1NOBdB/1qzJx5QpxVi9Ov1CsIaGrrjkko6YPr0+9d0AAAAAAKRLKRgAAAAAAAAAAADAEHPuuaXEs3vu2RnHHVebYhoY+kqlUpx5y5l9eo1frPlF/Hn9n2P8buMTzWcymdhnn31in332STkZDA6777574lKwiIgnn3w+9t57XIqJAPrPokWtMWNGVTQ3V6a+e/z4jrjmmogJE3wNAAAAAAAwFGQGOgAAAAAAAAAAAAAAO+7eezvi9tuT39B/8skdUVFRlmIiGPqu//P1sfzp5X1+ndl3ze7za8BQlc1mo7q6ukczra2ZuPba0fGxj702PvWphj5KBtB3CoVSNDa2xNFH10Zzc3nq+6dOzcWKFRUxYUJV6rsBAAAAAOgb2YEOAAAAAAAAAAAAAMCOO+ecQkQku6m/vr4rPv/5mnQDwRBXKBbi/936//rlWj/5w0/im+/9ZoxrGNcv14OhZvfdd4+nnnpqm+eUShH33VcT1103Om68cWS0tb1YopPJlOKhh9ri9a/3eQ4YGpqaCjFtWmcsXVqf+u5sthjf+U5bnHZabWQyCoEBAAAAAIaSzEAHAAAAAAAAAAAAAGDHPP10Z1xzTfKyk098oj1Gjy5PMREMfZeuvDTWvLCmX66V78rH+b87v1+uBUPRyJEjo6ys+/KaDRvK48c/3jWOOup18YlP7BPXXrvL3wrBIiKKxbK46KL2/ooK0CvLlrXHgQeWYunS9IsMx47tjMWL89HYWKcQDAAAAABgCFIKBgAAAAAAAAAAADBEzJnTEZ2dyd7+mc2WorGxIuVEMLTl8rn4+m+/3q/XvPD3F0ZzR3O/XhOGkhEjRvztn7u6Iu68sz5OP32vOOSQfWP27HHxyCPVW51duLAuCoVif8QESKRUKsW8ebk4+ODKWLs2/dfmkya1xcqVZTF58tY/VgIAAAAAMLgpBQMAAAAAAAAAAAAYAlpainHZZclv7v/Qh1pjn30qU0wEQ9/c5XPjuZbn+vWamzs2xyX3XNKv14ShZMyYMbF2bUV8//t7xGGHvSFOPvk1ccstI6NQ2P7tD888Uxk//7nSPWBwyuWKceyxrTFzZl3iot9tmTmzJZYsqY5x47Kp7wYAAAAAoP8oBQMAAAAAAAAAAAAYAi68sDU2bUp+g/+ZZ5anmAaGvnW5dXHOnecMyLXP+915ke/KD8i1YbCrrKyMSy4ZGxdeuEc891zPyywvu8xtEsDgs2ZNPiZOzMfChXWp725o6IoFC1pj7tz6yGbLUt8PAAAAAED/8t0uAAAAAAAAAAAAgEGuUCjF97/f82KUv/qXf2mLd76zOsVEMPR9c+k3Y0t+y4Bc++nmp2PBAwsG5NowFHz608lnb7mlPp59tiO9MAC9tGhRa0ycWB6rV6f/enz8+I5YvrwQ06fXpr4bAAAAAICBoRQMAAAAAAAAAAAAYJC76qq2ePzx5KVgp51WSjENDH2PbHgkLvr9RQOaYdZds6JU8tyE7hx6aEPss097otl8PhMXX5xLORFAzxUKpWhsbImjj66N5uby1PdPnZqLFSsqYsKEqtR3AwAAAAAwcJSCAQAAAAAAAAAAAAxyc+eWJZ7dZ5+OmDKlJsU0MPR95favRGexc0AzPPD8A3HTwzcNaAYYrMrLM3Hssa2J56+8sja6uoopJgLomaamQhxySHvMmVOf+u5sthizZ+di4cLaqK93axgAAAAAwHDjT34BAAAAAAAAAAAABrHf/rY9fv/75KVeX/hCIcrLk5eKwXDz+7W/jwUPLBjoGBERcc5d5wx0BBi0TjyxNrLZZMVeDz5YHb/9bUvKiQB2zLJl7XHggaVYujT9Yt6xYztj8eJ8NDbWRSbjNT4AAAAAwHCkFAwAAAAAAAAAAABgEJs1qyvx7K67FuIzn0m/jACGqlKpFGcvPnugY/zNkseXxIpnVgx0DBiU9tqrOg45JHmx18UXJysUA0iqVCrFvHm5OPjgyli7tiL1/ZMmtcXKlWUxeXJ16rsBAAAAABg8lIIBAAAAAAAAAAAADFJr1uTjxhtrE8/PmNEetbXeLgp/9ZtHfhO3PXbbQMd4iVl3zRroCDBoHX988mKvG25oiM2bCymmAdi6XK4Yxx7bGjNn1kVnZ/qvv2fObIklS6pj3Lhs6rsBAAAAABhcvMsDAAAAAAAAAAAAYJCaPbszisWyRLNVVcU47bTqlBPB0FUsFePsxWcPdIyXueZP18TDGx4e6BgwKE2ZMiLGjs0nmm1pKY/LLtuSciKAl1uzJh8TJ+Zj4cK61Hc3NHTFggWtMXdufWSzyb4uAAAAAABgaFEKBgAAAAAAAAAAADAIrV/fFVdcUZN4ftq0thg7NptiIhjarvjDFXFf030DHeNliqVizLl7zkDHgEGpoiIT06blejy3yy6F+NSn1sW++67vg1QAf7doUWtMnFgeq1enX8Y7fnxHLF9eiOnTa1PfDQAAAADA4KUUDAAAAAAAAAAAAGAQmjevLdrakr3Vs6ysFGedVZFyIhi62gvt8ZXbvzLQMbbqslWXxbrcuoGOAYPSySdXRVlZabvnZTKlePe7t8TcuU/G4sVrorGxKfbaqyO2bNnSDymBnU2hUIrGxpY4+ujaaG4uT33/1Km5WLGiIiZMqEp9NwAAAAAAg5tSMAAAAAAAAAAAAIBBpr29GBdfnLwA4NBD22K//SpTTARD2/dXfD+e3PzkQMfYqvZCe1zwvxcMdAwYlN74xtp45ztzW338Fa/Ix+c/3xQ337wmvv/9J+LQQ5ujouLvJWLPP/98f8QEdiJNTYU45JD2mDOnPvXd2WwxZs/OxcKFtVFf77YvAAAAAICdUXagAwAAAAAAAAAAAADwUj/6UVs8/3xd4vkzzihLMQ0MbZvaN8V/3fFfAx1juy5YcUGcNemsqKtM/tyH4eoTn+iMO+/8+68rK4txyCHNMWXKxpg4MReZbfTmtLW1RbFYjMy2TgLYQcuWtcf06eWxdm1N6rvHju2MBQu6YvJkrwUAAAAAAHZmvqsFAAAAAAAAAAAAMIgUi6WYNy/5z31985vb49BDq1NMBEPb/yz7n9jQtmGgY2zXhrYNcdmqywY6BgxKH/94Q4waVYg3vKEtvvSltXHbbWvinHOejne8Y9uFYH/1/PPP931IYFgrlUoxb14uDj64MtaurUh9/6RJbbFyZVlMnux1PAAAAADAzi75O0YAAAAAAAAAAAAASN0NN7THn/9ck3j+tNOKkcmUpZgIhq6nm5+O83533kDH2GHn3n1unPzPJ0c2423e8H/V1WXjV796LEaMyEVZgk9xGzdujLFjx6YfDNgp5HLFmDGjLRYurOuT/TNntsSsWXWRzXoNDwAAAABAxA78TBwAAAAAAAAAAAAA+su555YSz+65Z2d87GPJC8VguPna7V+L9kL7QMfYYY9vesxZvp4AAGExSURBVDwWrV400DFgUNpvv10SFYJFRHR1dUVra2u6gYCdwpo1+Zg4Md8nhWANDV2xYEFrzJ1brxAMAAAAAIC/UQoGAAAAAAAAAAAAMEjcc09H/Pa3tYnnP/vZjqioUCgAERF/fP6P8aP7fjTQMXps1l2zolRKXg4Iw9XIkSOjLGkrWEQ0NTWlmAbYGSxa1BoTJ5bH6tXVqe8eP74jli8vxPTpyV/7AwAAAAAwPCkFAwAAAAAAAAAAABgkzjmnkHi2oaErPv/5mhTTwND29d9+PYql4kDH6LGVz66M2x67baBjwKA0YsSIxLO5XC6KxaH3MQHof4VCKRobW+Loo2ujubk89f1Tp+ZixYqKmDChKvXdAAAAAAAMfUrBAAAAAAAAAAAAAAaBp57qjOuuS17qddxxbTFqVPqlBTAUdRW74uaHbx7oGImdc9c5Ax0BBqUxY8b0av6FF15IKQkwXDU1FeKQQ9pjzpz61Hdns8WYPTsXCxfWRn29W7oAAAAAAOieP0EGAAAAAAAAAAAAGATmzOmIzs5kb+3MZkvR2FiVciIYusrKyqKmInnJ3kD7zSO/iRdalRfBP6qsrIzKysrE8xs2bEgxDTDcLFvWHgceWIqlS9N/DTF2bGcsXpyPxsa6yGTKUt8PAAAAAMDwoRQMAAAAAAAAAAAAYIBt2VKM+fOTlw/827+1xt57V6SYCIa2TFkmvjjxiwMdo1ee2PzEQEeAQWm33XZLPNvZ2Rn5fD7FNMBwUCqVYt68XBx8cGWsXZv+a+pJk9pi5cqymDy5OvXdAAAAAAAMP9mBDgAAAAAAAAAAAACws7vwwtZobq5PPH/mmeUppoHh4d/f/e+x18i94ro/XxfPtTwX7YX2aC+0R1tn24t/L7z493zX4CsIGlM3Jt485s0DHQMGpVGjRsWzzz4bpVIp0fxzzz0Xr3rVq1JOBQxVuVwxZsxoi4UL6/pk/8yZLTFrVl1ks2V9sh8AAAAAgOFHKRgAAAAAAAAAAADAACoUSvG971Umnn/nO9viHe+oSTERDA9lZWVx3FuOi+Pectw2zyuWilstDPvHYx+95qPRVep6yXwmMvH5iZ9/8fyul+/466+7O1aKl5cavXb0a+Pqo6+ObMZbvaE7mUwm6uvrY8uWLYnmk84Bw8+aNfmYMqUYq1enXwjW0NAVl1zSEdOnJy/+BQAAAABg5+Q7xQAAAAAAAAAAAAAD6Gc/a40nn0xeRHD66S8vFQJ2XKYsE7UVtVFbURuxnX69j17z0Zcdq8xWxrx/ndfj65ZKpegsdr6kRKyyvDL2bNizx7tgZzNmzJjE5V6lUik2bdoUo0aNSjcUMKQsWtQaM2ZURXNz8nLerRk/viOuuSZiwoTa1HcDAAAAADD8KQUDAAAAAAAAAAAAGEDnnVeeePZ1r+uIo47aTosRkJpSvLyEr7ws2XO4rKwsKssro7K8MkbGyN5Gg51KdXV1ZLPZKBQKiebXrVunFAx2UoVCKc4+Oxdz5tT3yf6pU3Nx2WU1UV+f6ZP9AAAAAAAMf/6EGQAAAAAAAAAAAGCA3H57e6xcWZ14/otfLEQmU5ZiImBbiqXiy45lM35OMwyEXXbZJfFsR0dH4kIxYOhqairEIYe090khWDZbjNmzc7FwYa1CMAAAAAAAesWfMgMAAAAAAAAAAAAMkFmzXl4wtKN2260Qn/50TYppgCSUgsHA2G233Xo139TUlFISYChYtqw9DjywFEuXpv/6eezYzli8OB+NjXUKewEAAAAA6DWlYAAAAAAAAAAAAAAD4M9/zsfNNycvJZgxoz1qarwVFPpLvpDv9nhFeUU/JwEiIjKZTNTW1iae37x5c4ppgMGqVCrFvHm5OPjgyli7Nv3P2ZMmtcXKlWUxeXJ16rsBAAAAANg5eScIAAAAAAAAAAAAwACYNSsfxWJZotnq6mKcdpriAehPzfnmbo9Xllf2cxLgr8aMGZN4tlgsxpYtW1JMAww2uVwxjj22NWbOrIvOzvRvoZo5syWWLKmOceOyqe8GAAAAAGDn5U+dAQAAAAAAAAAAAPrZ888X4mc/q0k8P316W4wZU5diImB7Nrdv7va4UjAYOHV1dZHJZKJYLCaaf/7556OhoSHlVMBgsGZNPqZMKcbq1em/Zm5o6IpLLumI6dPrU98NAAAAAADp/5gLAAAAAAAAAAAAALbp/PPbo62tPNFsWVkpzjrLz4WF/raxfWO3xyszSsFgII0aNSrxbFtbW3R1JSsUAwavRYtaY+LE8li9ujr13ePHd8Ty5YWYPr029d0AAAAAABChFAwAAAAAAAAAAACgX7W3F+Pii6sSz7///W0xYULyeSCZ5o7mbo9XZ9MvHAF23B577NHjmVwuE9dcMzo+9rHXxk9/urkPUgEDoVAoRWNjSxx9dG00Nycr4N2WqVNzsWJFhdfiAAAAAAD0KT8mDgAAAAAAAAAAAKAfzZ/fFuvW1SWeP+OMshTTADtqc3v3xUFVWcUgMJCy2WxUV1dHe3v7Ns8rlSLuu68mrrlml7j55hHR1vZiYdDll3fFJz/ZH0mBvtTUVIhp0zpj6dL61Hdns8X4znfa4rTTaiOT8VocAAAAAIC+pRQMAAAAAAAAAAAAoJ8Ui6U4//zkb998y1va4+CDq1NMBOyoLfkt3R6vydb0cxLgH+2+++7x1FNPdfvYCy+Ux69+NSquuWZ0PPbYyz+H/va39fHoo23x2td6LsNQtWxZe0yfXh5r16b/PB47tjMWLOiKyZOTl/oCAAAAAEBPKAUDAAAAAAAAAAAA6Ce/+EVbrFlTm3j+9NO7IpMpSzERsKNa8i3dHq/OKuqDgTZy5Mh4+umno1QqRUREV1fEXXfVx3XXjY7bbx8RhcLWP3d2dZXFD37QHv/zP0rBYKgplUpx/vmtceaZNdHZmUl9/6RJbXH11RUxbpzP9QAAAAAA9B+lYAAAAAAAAAAAAAD9ZM6c5IVer3xlPj760eSFYkDvNHc0d3u8tsLzEgaDESNGxB//2BrXXz86rr9+dDQ1Vezw7IIFtfHf/12M8vL0S4WAvpHLFWPGjLZYuLCuT/bPnNkSs2bVRTarkBcAAAAAgP6lFAwAAAAAAAAAAACgH6xY0RF33FGTeP6UUzojm61MMRHQE7l8rtvjSsFgcBgxYkxMmVIebW3lPZ598smq+NWvNsURR4xKPxiQujVr8jFlSjFWr06/EKyhoSsuuaQjpk+vT303AAAAAADsCD/GBgAAAAAAAAAAAKAfnHNOIfHsiBFdccop1SmmAXqqJd/S7XGlYDA4jBxZGR/4QPfP0x0xf35ZimmAvrJoUWtMnFgeq1en/9p4/PiOWL68ENOn+9wOAAAAAMDAUQoGAAAAAAAAAAAA0MeeeKIzrr++JvH8cce1xciR5SkmAnoq15nr9nh9ZX0/JwG2ZsaM5LM339wQzz+fTy8MkKpCoRSNjS1x9NG10dyc/uviqVNzsWJFRUyYUJX6bgAAAAAA6AmlYAAAAAAAAAAAAAB97NxzO6JQSPa2zWy2GGecoZwABlou330pWF1FXT8nAbbmX/+1IV7zmo5Esx0dmbj44paUEwFpaGoqxCGHtMecOekXcWazxZg9OxcLF9ZGfb3brAAAAAAAGHj+tBoAAAAAAAAAAACgD23e3BU//nFN4vkjj2yLV7+6IsVEQBJthbZujzdUNfRzEmBrysszMX169wV+O+JnP0v++RroG8uWtceBB5Zi6dL0n59jx3bG4sX5aGysi0ymLPX9AAAAAACQhFIwAAAAAAAAAAAAgD504YXt0dxcnnj+rLOyKaYBkmrr7L4UrL6yvp+TANty8sm1kc2WEs2uXl0TS5duSTkRkESpVIp583Jx8MGVsXZt+gW5kya1xcqVZTF5cnXquwEAAAAAoDeUggEAAAAAAAAAAAD0kUKhFN/7XvISg3e9qy3e9raqFBMBSbUVtlIKVqUUDAaT17ymOiZPbkk8f/HFXSmmAZLI5Ypx7LGtMXNmXXR2pn/r08yZLbFkSXWMG6d8FwAAAACAwUcpGAAAAAAAAAAAAEAfufLK1nj66crE86efXkoxDdAb7YX2bo+PrBzZz0mA7fnUpwqJZ3/xi4bYsiX5PNA7a9bkY+LEfCxcWJf67oaGrliwoDXmzq2PbLYs9f0AAAAAAJAGpWAAAAAAAAAAAAAAfWTu3PLEs294Q0cccURNimmA3thaKdiIqhH9nATYnmnTRsYee3T2eG6XXQoxdeqGeOqpdX2QCtieRYtaY+LE8li9ujr13ePHd8Ty5YWYPr029d0AAAAAAJCm7EAHAAAAAAAAAAAAABiObrutPVatSl5o8MUvFiKTqUoxEdAbHV0d3R4fVTOqf4MA21VZmYmpUzfH978/ervnZjKleNe7tsSUKRvjoIO2REVFxIs/f31cX8cE/qJQKMXZZ+dizpz6Ptk/dWouLrusJurrM32yHwAAAAAA0qQUDAAAAAAAAAAAAKAPnHNOMfHsbrsV4oQTalJMA/RWvivf7fGRVSP7OQmwI04+uTK+//2tP/7KV+bjqKM2xhFHbIwxYwoveaxYLMaWLVuioaGhj1MCTU2FmDatM5YuTb8QLJstxne+0xannVYbmUxZ6vsBAAAAAKAvKAUDAAAAAAAAAAAASNnq1R3xm98kL/U68cSOqKmpSzER0FtbLQWrVgoGg9Gb3lQXb397Ln73u79/Pq2sLMahhzbHlCkb421vy0Ums/X5devWKQWDPrZsWXtMn14ea9emX4Y7dmxnLFjQFZMne00NAAAAAMDQohQMAAAAAAAAAAAAIGWzZhWiVKpKNFtTU4xTT002C/Sdzq7Obo+PqBzRz0mAHfWJT+Tjd7+ri333bYspUzbG4YdvjpEju3ZotrW1NYrFYmS21RwGJFIqleL881vjzDNrorMz/efYpEltcfXVFTFuXHXquwEAAAAAoK8pBQMAAAAAAAAAAABIUVNTIRYurEk8f8wxrbHHHvUpJgLS0FnsvhRMYRAMXp/8ZEPsttvDMWFCe5SV9Xx+3bp1MWbMmPSDwU4slyvGjBltsXBhXZ/snzmzJWbNqotsNsGTHgAAAAAABgHfgQYAAAAAAAAAAABI0XnntUdbW7K3aJaVleKMMypSTgSkoVAsvOxYWSgcgcGsvj4bBx5YSlQIFhGxcePGdAPBTm7NmnxMnJjvk0KwhoauWLCgNebOrVcIBgAAAADAkKYUDAAAAAAAAAAAACAlbW3F+OEPqxPPH3ZYW0yYUJViIiAt3ZaCJW0aAvrN7rvvnni2UChEW1tbimlg57VoUWtMnFgeq1cnf628NePHd8Ty5YWYPr029d0AAAAAANDflIIBAAAAAAAAAAAApOTSS9ti/fps4vkzz/TWThisuopdLzuWKfOchcFu1KhRvSrwa2pqSjEN7HwKhVI0NrbE0UfXRnNzeer7p07NxYoVFYp1AQAAAAAYNnwXGgAAAAAAAAAAACAFxWIpzj8/eSHYAQe0x3vfW51iIiBNXaWXl4KVl6VfbgKkb8SIEYlnW1paolgsppgGdh5NTYU45JD2mDOnPvXd2WwxZs/OxcKFtVFf7/YoAAAAAACGD3/qDQAAAAAAAAAAAJCC669vi4ceqko8f9ppLy8cAgaPYunlpUCZMm/HhqFgzJgxvZrfuHFjSklg57FsWXsceGApli6tSX332LGdsXhxPhob6yKTKUt9PwAAAAAADCTfhQYAAAAAAAAAAABIwZw5yQsJXvWqfBx7bG2KaYC0lUqllx3LZrIDkAToqcrKyqioqEg8v379+hTTwPBWKpVi3rxcHHxwZaxdm/x5tzWTJrXFypVlMXlydeq7AQAAAABgMFAKBgAAAAAAAAAAANBLy5e3x5131iSeP+WUzshmk5eKAX2vFErBYCjbddddE892dnZGPp9PMQ0MT7lcMY49tjVmzqyLzs70b1maObMlliypjnHjfP4FAAAAAGD4UgoGAAAAAAAAAAAA0EuzZ3clnh0xoitOOSV5oRjQ94rFYrfHK8or+jkJkNQuu+zSq/mmpqaUksDwtGZNPiZOzMfChXWp725o6IoFC1pj7tx6RboAAAAAAAx7SsEAAAAAAAAAAAAAeuHxxzvj5z+vTTx//PFt0dDgLZ0wmLUWWrs9XpFRCgZDRSaTifr6+sTzzc3NKaaB4WXRotaYOLE8Vq+uTn33+PEdsXx5IaZPT/56GwAAAAAAhhLvIAEAAAAAAAAAAADohXPP7YhCoSzRbEVFMU4/vSrlREDaNrRt6PZ4ZXllPycBemPMmDGJZ0ulUmzatCm9MDAMFAqlaGxsiaOPro3m5vLU90+dmosVKypiwgSvlwEAAAAA2HkoBQMAAAAAAAAAAABIaNOmrvjxj2sSzx95ZFu86lUVKSYC+kJze3O3x6vKlZTAUFJTUxPZbDbx/Lp161JMA0NbU1MhDjmkPebMqU99dzZbjNmzc7FwYW3U17v1CQAAAACAnYs/GQcAAAAAAAAAAABI6Hvfa4stW8oTz599dvJiEqD/bOrY1O3xymxl/wYBem3UqFGJZzs6OqJQKKQXBoaoZcva48ADS7F0afJy3K0ZN64zbr01H42NdZHJlKW+HwAAAAAABjulYAAAAAAAAAAAAAAJdHaW4sILkxcCHXRQW7z1rVUpJgL6SnNHc7fHq8ur+zkJ0Ft77LFHr+aff/75lJLA0FMqlWLevFwcfHBlrF1bkfr+SZPaYuXKsjjoIJ9fAQAAAADYeSkFAwAAAAAAAAAAAEjgiiva4plnkpeCNTamGAboU1s6tnR7vDqrtASGmkwmEzU1NYnnN23alF4YGEJyuWIce2xrzJxZF52d6d+ONHNmSyxZUh1jx2ZT3w0AAAAAAEOJUjAAAAAAAAAAAACAHioWS3Heecnfhjl+fEd86EPKhGCo2NyxudvjNRXJi4WAgbPHHnskni0Wi5HL5VJMA4PfmjX5mDgxHwsX1qW+u6GhKxYsaI25c+sjmy1LfT8AAAAAAAw1SsEAAAAAAAAAAAAAeujWW9vjvvuSl3p98YuFyGSUHsBQ0ZJv6fZ4TVYpGAxFDQ0Nkckkv52iqakpxTQwuC1a1BoTJ5bH6tXpF9qOH98Ry5cXYvr02tR3AwAAAADAUKUUDAAAAAAAAAAAAKCHZs0qJZ7dY4/OOP54RUIwlLR0bKUUrMJzGYaqkSNH9nimpSUTV189Ok44Ybfo7Cz2QSoYPAqFUjQ2tsTRR9dGc3N56vunTs3FihUVMWFCVeq7AQAAAABgKMsOdAAAAAAAAAAAAACAoeSPf8zH4sXJi4BOPLEjqqvrU0wE9LWWzu5Lweoq6vo5CZCWMWPGxMaNG7d7XqkUce+9tXHttaPjN78ZGW1tL/5s9quv3hQf/eioPk4JA6OpqRDTpnXG0qXpv2bNZovxne+0xWmn1UYmU5b6fgAAAAAAGOqUggEAAAAAAAAAAAD0wDnndEapVJlotqamGKeemrxQDBgYuc5ct8drK2r7OQmQlmw2G1VVVdHR0dHt4+vXl8cvfzk6rr12dDz+eNXLHr/ssvL46Ef7OiX0v2XL2mP69PJYuzb916zjxnXGggVdcdBBSjUBAAAAAGBrlIIBAAAAAAAAAAAA7KDnnivEVVclL0j46EfbYrfdlCDAUJPLd18KVl9V389JgDTtvvvu8fTTT//t111dEXfeWR/XXjs6fvvbEVEolG11dsmS+njiifZ49aur+yMq9LlSqRTnn98aZ55ZE52dmdT3T5rUFosWVcTYsZ4zAAAAAACwLUrBAAAAAAAAAAAAAHbQeee1R3t7shKgTKYUZ55ZkXIioD+0drZ2e7y+QikYDGWjRo2KZ555Jp56KhvXXTc6rr9+dDz//I59ri4UyuKii1rj299WcMTQl8sVY8aMtli4sG/Ka2fObIlZs+oim9160R4AAAAAAPAipWAAAAAAAAAAAAAAO6C1tRg//GHy4o9//dfW2HffvilaAPpWW2dbt8frq5SCwVB35517xEkn7Z5odsGCuvjWt4pRXp5JORX0nzVr8jFlSjFWr07/dWpDQ1dccklHTJ/u8yUAAAAAAOwo33kCAAAAAAAAAAAA2AE//GFrvPBC8p/HeuaZ5SmmAfpTW6H7UrARlSP6OQmQtiOOGBlVVcVEs48/XhU337wl5UTQfxYtao2JE8tj9erkxbdbM358RyxfXojp02tT3w0AAAAAAMOZUjAAAAAAAAAAAACA7ejqKsX551cknn/rW9tj8uT0yxaA/rG1UrD6yvp+TgKkbcyYynj/+1sSz196aYphoJ8UCqVobGyJo4+ujebm9Itrp07NxYoVFTFhQlXquwEAAAAAYLhTCgYAAAAAAAAAAACwHddd1xaPPJK81OD004sppgH6W0eho9vjo6pH9W8QoE+ccELyz9M33tgQ69fnU0wDfaupqRCHHNIec+akX2yZzRZj9uxcLFxYG/X1blkCAAAAAIAk/Ak7AAAAAAAAAAAAwHbMmVOWePbVr87HtGk1KaYB+tvWSsFGVI3o5yRAX/jwh0fEXnt1/zzfnra2TPzwhy0pJ4K+sWxZexx4YCmWLk3/tem4cZ1x6635aGysi0wm+WtnAAAAAADY2SkFAwAAAAAAAAAAANiGu+9uj7vvTl6c8LnP5SObVYwAQ1lHV/dlQSOrR/ZzEqAvlJdn4phjWhPPX3lldYppIH2lUinmzcvFwQdXxtq1FanvnzSpLVauLIuDDvJcAAAAAACA3lIKBgAAAAAAAAAAALANs2Z1JZ4dObIQn/1sbYppgIGQ78p3e3xU1aj+DQL0mZNOqo5MppRo9v77a+Ouu7aknAjSkcsV49hjW2PmzLro7Ez/NqKZM1tiyZLqGDs2m/puAAAAAADYGSkFAwAAAAAAAAAAANiKRx/Nxy9/mbzU64QT2qO+3ts1YajbailY9aj+DQL0mX32qYnJk1sSz198cfISUegra9bkY+LEfCxcWJf67oaGrliwoDXmzq2PbLYs9f0AAAAAALCz8i4TAAAAAAAAAAAAgK0499x8FArJSg4qKopx2mlVKScCBkJnsbPb45XZyn5OAvSl444rJJrbbbfOGDWqPQqFZPPQFxYtao2JE8tj9erq1HePH98Ry5cXYvr05OW5AAAAAABA95SCAQAAAAAAAAAAAHRj48auuPzymsTzU6a0xV57VaSYCBgohaKiH9gZHHvsyNhtt+5LAP9RJlOK97ynOebNeyJ+85s18elPr49169b1cULYvkKhFI2NLXH00bXR3Fye+v6pU3OxYkVFTJig/BYAAAAAAPpCdqADAAAAAAAAAAAAAAxG3/teW7S01CeeP+ssb9OE4aKz6+UlQWVRNgBJgL5UVZWJKVM2x8UXj97qOXvt1RFTpmyMf/u3TbHHHi8tDNy4cWOMGzeur2PCVjU1FWLatM5YujT5a9ityWaL8Z3vtMVpp9VGJuNzIAAAAAAA9BXvNgEAAAAAAAAAAAD4B52dpbjwwqrE8+95T2sceGBtiomAgdRV6nrZsUxZZgCSAH3t5JMr4uKLX3qsqqoYhx7aHB/5yMZ461tzkdnK079YLEYul4u6urq+Dwr/YNmy9pg+vTzWrq1Jffe4cZ2xYEFXHHSQ39sAAAAAANDXlIIBAAAAAAAAAAAA/IPLL2+NtWuTlx40NpalmAYYaF1FpWCwszjggPr453/Oxe9/Xxfjx7fFlCkb44Mf3BQjRxZ3aL6pqSle+9rX9nFK+LtSqRTnn98aZ55ZE52d6X9umjSpLRYtqoixY6tT3w0AAAAAALycUjAAAAAAAAAAAACA/6NYLMW8eeWJ59/4xo744AeVJsBwUiy9vAyoPJP84wQwuP3Hf+Sivf3ZmDChvcezra2tUSwWI5NRHEjfy+WKMWNGWyxcmLzMdltmzmyJWbPqIptVeAsAAAAAAP3Fd5kAAAAAAAAAAAAA/o9bbmmP++9PXup16qmFyGQUJ8Bw0m0pWJlSMBiuPvjBXRIVgv3V+vXrU0wD3VuzJh8TJ+b7pBCsoaErFixojblz6xWCAQAAAABAP1MKBgAAAAAAAAAAAPB/zJ5dSjw7ZkxnHH98bYppgMGgFC//uFBRXjEASYD+kM1mo6qqKvH8hg0bUkwDL7doUWtMnFgeq1cnL7LdmvHjO2L58kJMn+41LQAAAAAADASlYAAAAAAAAAAAAAB/cf/9+Vi8OHkBwokndkRlZVmKiYDBKpvJDnQEoA/ttttuiWcLhUK0t7enmAZeVCiUorGxJY4+ujaam8tT3z91ai5WrKiICROSl+IBAAAAAAC9oxQMAAAAAAAAAAAA4C/OOacz8WxtbVecempNimmAwSBfyHd7vCJT0c9JgP40cuTIKCtLXvTZ1NSUYhqIaGoqxCGHtMecOfWp785mizF7di4WLqyN+nq3GgEAAAAAwEDy46kAAAAAAAAAAAAAIuLZZwtx9dXJS70+9rG22HXX9EsagIG1qX1Tt8cryyv7NwjQrzKZTDQ0NERzc3Oi+ZaWligWi5HJKFii95Yta4/p08tj7dr0C2jHjeuMBQu64qCD6lLfDQAAAAAA9JzvLgEAAAAAAAAAAABExNy57dHRkeytlZlMKc44Q0EQDEdKwWDnNXbs2MSzpVIpNm3alF4YdkqlUinmzcvFwQdXxtq1FanvnzSpLVauLIuDDqpOfTcAAAAAAJCMUjAAAAAAAAAAAABgp5fLFePSS5OXIRx+eFu84Q0KgmA42tyxudvjVeVV/ZwE6G+VlZVRUZG8iGn9+vUppmFnk8sV49hjW2PmzLro7Ez/9p+ZM1tiyZLqGDs2m/puAAAAAAAgOaVgAAAAAAAAAAAAwE7vkkvaYsOG5IUIZ57pLZkwXDV3NHd7vCqrFAx2Brvsskvi2Xw+H/l8PsU07CzWrMnHxIn5WLiwLvXdDQ1dsWBBa8ydWx/ZbFnq+wEAAAAAgN7xDhQAAAAAAAAAAABgp9bVVYrzz69IPP+2t7XFu99dnWIiYDDZ1L6p2+PVWc972BnsuuuuvZpvampKKQk7i0WLWmPixPJYvTr9zzPjx3fE8uWFmD69NvXdAAAAAABAOpSCAQAAAAAAAAAAADu1a65pi8ceq0w8f/rppRTTAINNS76l2+NKwWDnkMlkoq6uLvF8c3NzimkYzgqFUjQ2tsTRR9dGc3N56vunTs3FihUVMWFCVeq7AQAAAACA9CgFAwAAAAAAAAAAAHZqc+eWJZ59zWvycfTRNSmmAQab5o7uC31qsp77sLMYM2ZM4tlSqRSbN29OMQ3DUVNTIQ45pD3mzKlPfXc2W4zZs3OxcGFt1Ne7jQgAAAAAAAa77EAHAAAAAAAAAAAAABgod97ZHsuXJy/2+fznO6O8vDLFRMBg05Jv6fZ4TYVSMNhZ1NbWRnl5eXR1dSWaX7duXYwcOTLlVAwXy5a1x/Tp5bF2bfqfV8aN64wFC7rioIPqUt8NAAAAAAD0DT/iAwAAAAAAAAAAANhpzZqVrNwjImLUqEKcdJJSIBjuWjq7LwWrrajt5yTAQBo9enTi2fb29igUCimmYTgolUoxb14uDj64MtaurUh9/6RJbbFyZVkcdFB16rsBAAAAAIC+oxQMAAAAAAAAAAAA2Ck9/HA+fvWr5KU+J5zQHvX13ooJw11LR/elYHWVdf2cBBhIe+yxR6/m161bl1IShoNcrhjHHtsaM2fWRWdn+q8nZ85siSVLqmPs2GzquwEAAAAAgL7lnSgAAAAAAAAAAADATmn27Hx0dZUlmq2sLEZjY3XKiYDBqLWztdvjdRVKwWBnkslkoqamJvH8pk2b0gvDkLZmTT4mTszHwoXpfx5paOiKBQtaY+7c+shmk73OBQAAAAAABpZSMAAAAAAAAAAAAGCns2FDV/z0p8mLPT7ykbbYc89siomAwSrXmev2eH1lfT8nAQbaHnvskXi2q6srcrnuP56w81i0qDUmTiyP1avTL5cdP74jli8vxPTptanvBgAAAAAA+o9SMAAAAAAAAAAAAGCnc8EF7ZHLlSeeP/vsihTTAINZW2dbt8eVgsHOp6GhITKZnt+GsWVLJq66anRccEFrH6RiKCgUStHY2BJHH10bzc3JX4NuzdSpuVixoiImTKhKfTcAAAAAANC//Ig6AAAAAAAAAAAAYKeSz5fioosqE88ffHBrvOUttSkmAgaztoJSMODvRowYEZs2bdrueaVSxMqVtXHttaPjN78ZGe3tmRg3Lh+nn16Migo/331n0tRUiGnTOmPp0vQ/b2SzxfjOd9ritNNqI5MpS30/AAAAAADQ/5SCAQAAAAAAAAAAADuVH/+4NZ59ti7xfGOjwgXYmbR1dl8KNrJqZD8nAQaDsWPHbrMUbP36bPziF6PiuutGx+OPV73ksWefrYzrrtsU06aN6tuQDBrLlrXH9OnlsXZtTeq7x43rjAULuuKgg5K/rgUAAAAAAAYfpWAAAAAAAAAAAADATqNYLMW8eeWJ5//pn9rjsMOqU0wEDHbthfZujzdUNfRzEmAwyGazUVlZGfl8/m/HCoWIO+9siGuvHR2//W1DdHVtvUD0sssyMW1afyRlIJVKpTj//NY488ya6OzMpL5/0qS2WLSoIsaO9boUAAAAAACGG6VgAAAAAAAAAAAAwE7j5pvb449/rEk8f+qpXZHJbL3oAxh+2ru6LwUbUTWin5MAg8Vuu+0Wa9eujaeeqozrrhsVP//56Hj++Yodml28uD6efro9XvlKZU7DVS5XjBkz2mLhwro+2T9zZkvMmlUX2azXpAAAAAAAMBwpBQMAAAAAAAAAAAB2GrNnlxLPjh3bGZ/8ZG2KaRiq5s+fH/Pnz099b0tLS+o76b18Id/t8VFVo/o3CDBojBo1Kj772Yirrtqlx7OFQiZ+8IPW+OY3lYINR2vW5GPKlGKsXp1+IVhDQ1dccklHTJ9en/puAAAAAABg8FAKBgAAAAAAAAAAAOwUVq3qiNtuS17qdfLJ+aisrEgxEUPVk08+GXfeeedAx6CfdHR1dHt8RPWIfk4CDBaZTCYmTEg+v2BBbXz968UoL8+kF4oBt2hRa8yYURXNzZWp7x4/viOuuSZiwgQFtQAAAAAAMNz5DhIAAAAAAAAAAACwU5g1q5B4tq6uK77wheoU0wBDRb4r3+3xXWp26eckwGDymc/URUVFMdHsww9Xx+LFW1JOxEApFErR2NgSRx9dG83N5anvnzo1FytWVMSECVWp7wYAAAAAAAYfpWAAAAAAAAAAAADAsLd2bSEWLapJPP/xj7fFLrukX/IADH6dxc5uj9dma/s5CTCY7LlnVbzvfS2J5y+9NMUwDJimpkIcckh7zJlTn/ruiopizJ6di4ULa6O+3u0/AAAAAACws/BdAQAAAAAAAAAAAGDYO/fc9sjnk71tsry8FGecUZlyImCo6OzqvhQsk/FWbNjZHX98MfHsDTfUx8aN3X98YWhYtqw9DjywFEuXJi+e3Zpx4zpj8eJ8NDbWRSZTlvp+AAAAAABg8PKdaAAAAAAAAAAAAGBYy+WKcdll1YnnP/Sh1njd65SCwc6qUCy87FhZKGgBIo48ckS84hX5RLOtreVx6aVbUk5EfyiVSjFvXi4OPrgy1q6tSH3/pEltsXJlWRx0UPLXrwAAAAAAwNClFAwAAAAAAAAAAAAY1n7wg7bYuDGbeP7MM8tTTAMMNd2WgpUpBQMistlMTJuWSzx/xRVKn4aaXK4Yxx7bGjNn1kVnZ/q35Myc2RJLllTH2LHJX7sCAAAAAABDm1IwAAAAAAAAAAAAYNjq6irFd79bkXj+7W9vi0mTFHbAzqxYKr7sWKbM27CBF510UlWUlZUSza5aVRsrVrSknIi+smZNPiZOzMfChXWp725o6IoFC1pj7tz6yGYVTwIAAAAAwM7Mjw4BAAAAAAAAAAAAhq2rr26Lxx+vTTx/+unJSj4Y3l71qlfFpEmTUt/b0tIS9913X+p76Z2uUtfLjpWXlQ9AEmAw2nff2njXu1rijjvqezy7226dcd99zfG2t/V8lv61aFFrzJhRFc3NlanvHj++I665JmLChOSvWQEAAAAAgOFDKRgAAAAAAAAAAAAwbM2dW5Z4du+98/GRj9SkmIbh4oQTTogTTjgh9b2rVq2KAw44IPW99E6xVHzZsfKMUjDg7447rjPuuGPHzi0vL8W7370lPvKRjfGud22JbDaiq2tMlJf7uDIYFQqlOPvsXMyZ0zfFbVOn5uKyy2qivj7TJ/sBAAAAAIChRykYAAAAAAAAAAAAMCzdccf/b+/eg+u86wP/f87RObKuviRObDE0IYQmroHcCA7ErQtONrC/LaEJdhQvhGETLgFKUOw4/NHtlN2FDSROUqdlmJKQdLdQ7K5DuJTttvWywet2PetiYPnV1GWX3y8XQuxcbMuSji5H59k/hCzJkhz78SM9urxeMxrreXQ+3/OZBJQzo6O3e+N//s/0Ua9PfGIg6urqM9wImI2SJBl3r1T0NmxgxHvfuzA+9alqvPzy5N8bzjuvL2644XC8+91H4pxzqmO+dujQoWhra5vqNTlNBw9W46abBmLXruyDYOVyLe65pxJ33tkUxWL6iC0AAAAAADD3+Gk0AAAAAAAAAAAAMCfdd18t9exZZ1Xjwx9OHxQD5o4kRMGAk2tsrIsbbjgcX/7ykjH3Gxpq8c/+2dG44YbDceWVPVGYpP105MgRUbAZZvfu3mhvr4vnnsv+9WBb20Bs2zYYa9Y0Z342AAAAAAAw+/lpNAAAAAAAAAAAADDn/PSn/fGf/3P6iMNtt/VGc3NLhhsBs1GtNnFcsFwsT/MmwEz3kY+U48tfHvp85cpK3Hjj4fjn//xILFz4ypHSwcHB6O7ujuZmkai8JUkSDz3UE5s3N8bAQDHz81evrsSOHeVYvrwh87MBAAAAAIC5QRQMAAAAAAAAAAAAmHO2bOmPwcH6VLMLFtTizjuFGoCIzv7OCe+X60TBgLHe/OaWuOuug3HVVcdixYre054/dOhQXHDBBVOwGaequ7sWt91Wie3bpybO1tHRFffd1xylUmFKzgcAAAAAAOYGUTAAAAAAAAAAAABgTnnppcH4ylcaU8+vW1eJtrapiUEAs8vR3qMT3q+vSxcdBOa2T35yII4cOf0gWEREd3d31Gq1KBaLGW/FqThwoD9uvLEW+/dn/xqwtXUwHn64L9rbWzI/GwAAAAAAmHv8tAgAAAAAAAAAAACYUx56qBI9PXWp5z/1qXKG2wCz2dE+UTDg1C1btuyM5l966aWMNuF07NjRE6tW1cX+/Q2Zn71iRV/s2VON9vamzM8GAAAAAADmJlEwAAAAAAAAAAAAYM7o7a3FH//xgtTz117bE298o9gPMORI5ciE9xfUpf8+A8xd5XI56uvTv454+eWXM9yGV1KtJrFpU1esX98UnZ3pg7KTWbeuO/buLcfKlf6bAQAAAAAAnDpRMAAAAAAAAAAAAGDO+A//oRIHD5ZTz2/aVMhwG2C26+zrnPB+Q6lhmjcBZoulS5emnh0YGIi+vr4Mt2EyBw9W45preuOBB1oyP7tcrsWWLd2xfXtTtLT4tR0AAAAAAOD0+OkCAAAAAAAAAAAAMCfUakls3VpKPf/GN/bGddcJ/QAjjvYfnfC+KBgwmcWLF0ehkD4y+vzzz2e4DRPZvbs3rrgiiV27GjM/u61tIHbu7I9Nm5qjWBSbBQAAAAAATp8oGAAAAAAAAAAAADAn/OVf9sZPfrIg9fwnPzko3gCM0dXXNeH9xlL2IRlgbigWi9HS0pJ6vqurK2q1WoYbMSxJkti6tTvWrq2P554rZ37+6tWV2LevEGvWCEcCAAAAAADpiYIBAAAAAAAAAAAAc8KWLUnq2Ve9aiDe//6mDLcB5oKu/kmiYGVRMGByy5YtSz2bJEkcOXIku2WIiIju7lps2NATHR3NMTCQ/a/SdHR0xZNPNsTy5aXMzwYAAAAAAOYXP20AAAAAAAAAAAAAZr0f/KAvnnwyfdTr9tv7olwuZ7gRMBcc6zs24f3GkigYMLmGhoYolUpRrVZTzb/44otx1llnZbzV/HXgQH/ceGMt9u9vzvzs1tbBePjhvmhvb8n8bAAAAAAAYH7K/q83AQAAAAAAAAAAAJhm996bLroREdHSMhi/8zsCP8B43QPdE95vrs8+LAPMLWcS9erv708dFGOsHTt6YtWquti/vyHzs1es6Is9e6rR3p4+TAsAAAAAAHAiUTAAAAAAAAAAAABgVnvmmYF4/PH0Ua9bbumNJUvqMtwImCu6+rsmvN9cFgUDTm7p0qVnNP/8889ntMn8VK0msWlTV6xf3xSdndm/zlu3rjv27i3HypULMj8bAAAAAACY30TBAAAAAAAAAAAAgFntwQf7YmAg3VsiS6UkNm0qZ7wRMFf0DPRMeL+lvmWaNwFmm2KxGM3N6QOCnZ2dGW4zvxw8WI1rrumNBx7I/nt1uVyLLVu6Y/v2pmhp8Ss5AAAAAABA9vwEAgAAAAAAAAAAAJi1urpq8dhjDann3/WunrjwwvoMNwLmku6B7gnvN9enD/0A88e5556berZWq8WxY8cy3GZ+2L27N664IolduxozP7utbSB27uyPTZuao1gsZH4+AAAAAABAhCgYAAAAAAAAAAAAMIt98Ys9ceRIKfX85s11GW4DzDWVgcqE91vrW6d5E2A2am5ujrq69K81Dh06lOE2c1uSJLF1a3esXVsfzz1Xzvz81asrsW9fIdasSR+jBQAAAAAAOBWiYAAAAAAAAAAAAMCsVK0m8YUv1Keef+tbK/HWtwo7AJPrrfZOeL91gSgYcGoWL16cerZSqUStVstumTmqu7sWGzb0REdHcwwMZP9rMh0dXfHkkw2xfHn6EC0AAAAAAMCpEgUDAAAAAAAAAAAAZqU///NKPPVU+ijYnXcmGW4DzEWVamXC+631omDAqTnnnHPOaP7QoUMZbTI3HTjQH6tW9cf27c2Zn93aOhjbtvXEgw+2RKlUyPx8AAAAAACAiYiCAQAAAAAAAAAAALPSgw+mjzNceGFf3HhjY4bbAHNRX7VvwvuLGhZN8ybAbFUqlaKhoSH1/OHDhzPcZm7ZsaMnVq2qi/370//zncyKFX2xZ0812tubMj8bAAAAAADgZETBAAAAAAAAAAAAgFnne9/rjb//+/RRr098ohp1demjYsD80FvtnfD+wgULp3kTYDY755xzUs0dO1aMr31tYfzv/13JeKPZrVpNYtOmrli/vik6O+syP3/duu7Yu7ccK1cuyPxsAAAAAACAV1LKewEAAAAAAAAAAACA03XffYOpZ88+uxof+lD6oBgwf/TX+ie8v6RhyTRvAsxmixYtimeffTaSJHnFxyZJxPe/3xRPPLEk/vqvF0VvbzG6uw/H/fd77RIRcfBgNW66aSB27WrJ/OxyuRb33FOJO+9simJRPBYAAAAAAMiHKBgAAAAAAAAAAAAwqxw40B9/+ZdNqec/+MHeaGrKPiQBzD391YmjYIsaFk3zJsBst3Dhwjh69OikX3/xxVJ885uL44knlsRTTy0Y87Xt25vj85+vRalUnOo1Z7Tdu3ujvb0unnsu+0BaW9tAbNs2GGvWNGd+NgAAAAAAwOkQBQMAAAAAAAAAAABmlS1bBqJWq08129BQi46Ohow3Auaq/trEUbDFDYundxFg1lu2bNm4KFi1GrF7d2t8/etLYteu1hgcLEw4+/Of18c3v3kk3vOexdOw6cyTJEk89FBPbN7cGAMD2YfRVq+uxI4d5Vi+3GtEAAAAAAAgf6JgAAAAAAAAAAAAwKzx4ouD8dWvNqaeX7++EsuXN2e4ETBTDAwOxL//7/8+/uZnfxPH+o9FY6kxGkoN0VBqiMby0Odj7v3y8+GvTXSvMlCZ8LkGa4NRV6iLQmHigA/Aierr66O+vj76+/vj6afr44knlsQ3v7k4XnihfErzjz1WjPe8Z4qXnIG6u2tx222V2L59al6/dXR0xX33NUep5Ps5AAAAAAAwM4iCAQAAAAAAAAAAALPG1q2VqFRaUs0WCkncffephTeA2efDf/Hh+JMf/sm0PFfDZxuiEIXjMbFXiouNuTcqTHZ209lx3YXXxWsWv2Za9gbyVSqdE+97Xzn27j391zJ/8zct8Ytf9EVb24Ip2GxmOnCgP268sRb792cfBGttHYyHH+6L9vZ0rysBAAAAAACmiigYAAAAAAAAAAAAMCv09tbiS19KH8K49tpKvOENTRluBMwUx/qOxVf/11en9TmTSKJSrUSlWjmjc4qFYnzlhq/EhjduyGgzYKY6//xF8fLL/alm+/uL8aUvdcfv//78iILt2NETt922IDo76zM/e8WKvnj88YiVK70uBAAAAAAAZp5i3gsAAAAAAAAAAAAAnIrHHqvEoUPl1PN33VXIcBtgJqmvq49aUst7jVRqSS0++p2PRrVWzXsVYIrV1RVjw4ae1PN/9mdNMTg4O7/XnapqNYlNm7pi/fqm6Oysy/z8deu6Y+/ecqxcOT/iagAAAAAAwOwjCgYAAAAAAAAAAADMeLVaEg89VEo9f8klvXHttQ0ZbgTMJAtKC2LN+WvyXiO1o31H49nOZ/NeA5gGH/5wU5RK6cJe//RPDbFrV3fGG80cBw9W45preuOBB1oyP7tcrsWWLd2xfXtTtLT4VRoAAAAAAGDm8pMMAAAAAAAAAAAAYMb7znd64x//cUHq+TvvrEWxWMhwI2Cm2Xz15rxXSG15y/I4f9H5ea8BTINf+ZWGuOaartTzDz88mOE2M8fu3b1xxRVJ7NrVmPnZbW0DsXNnf2za1Oz1IAAAAAAAMOOJggEAAAAAAAAAAAAz3pYt6Wdf9aqBeO97sw9MADPLO1/3znjDuW/Ie41UNl+9OQoFoRqYLz7wgVrq2W9/uzU6O6sZbpOvJEli69buWLu2Pp57rpz5+atXV2LfvkKsWdOQ+dkAAAAAAABTQRQMAAAAAAAAAAAAmNG+//2+2LUrfdTrox/ti3JZbAfmukKhEJuv3pz3GqftvEXnxcfe/LG81wCm0XveszCWL+9PNdvVVRePPdaZ8Ub56O6uxYYNPdHR0RwDA9n/ektHR1c8+WRDLF9eyvxsAAAAAACAqSIKBgAAAAAAAAAAAMxo995bTT3b2joYv/M76YNiwOxy8xtujlcvfHXea5yWz7z9M9FQash7DWAalcvFWL++O/X8n/7pggy3yceBA/2xalV/bN/enPnZra2DsW1bTzz4YEuUSsKwAAAAAADA7CIKBgAAAAAAAAAAAMxYTz89EE88kT7q9f73V2Lx4roMNwJmsvq6+rjzLXfmvcYpu3TZpfHeS96b9xpADm6/fUEUCkmq2WeeqY9nnz2W8UbTZ8eOnli1qi72788+iLhiRV/s2VON9vamzM8GAAAAAACYDqJgAAAAAAAAAAAAwIz1wAN9MTCQ7u2OpVISmzYtyHgjYKb70BUfikULFuW9xin53LWfi2LBW7phPlq5sine+tbuU358qZTE2rWd8Ud/9FT81V8diL6+Q1O43dSoVpPYtKkr1q9vis7O7KOt69Z1x9695Vi50us/AAAAAABg9irlvQAAAAAAAAAAAADARI4dq8VjjzWmnn/3u3vigguaM9wImA1aF7TGR6/8aHzubz+X9yontfaCtfGOC9+R9xpAjm65ZSD+7u9O/pjzz++LG288HNdffySWLq0ev1+pVKJWq0WxODvCggcPVuOmmwZi166WzM8ul2txzz2VuPPOpigWC5mfDwAAAAAAMJ1mx09/AAAAAAAAAAAAgHnni1/sic7OutTzmzennwVmtzuuuiPq6+rzXuOkPn/t56NQEK+B+eyWW1pj0aLquPsNDbW4/vrD8Sd/8rP49rd/Grfe+uKYINiwQ4cOTceaZ2z37t644ookdu1KH3udTFvbQOzc2R+bNjULggEAAAAAAHOCKBgAAAAAAAAAAAAw41SrSfzRH6UP+lx9dSWuuqohw42A2aSttS1uueSWvNeYVPvr2+PKV12Z9xpAzpqbS/Hbv911/Pr1r++J3/u9n8d3v/uP8dnP/jze9KaeOFk78PDhw9OwZXpJksTWrd2xdm19PPdcOfPzV6+uxL59hVizxms+AAAAAABg7ijlvQAAAAAAAAAAAADAib72tZ545pnm1PMbNyYZbgPMRnddfVd8+QdfznuNccrFcnx27WfzXgOYIW6/vS4GBl6KG288HBdf3Htas4ODg1GpVKKxsXGKtkuvu7sWt91Wie3b07+eO5mOjq64777mKJVOUk0DAAAAAACYhUTBAAAAAAAAAAAAgBnnD/6gLvXs617XFzfcMPPiGMD0WrF0RVx/8fXxrQPfynuVMW6/8va48KwL814DmCHe8pbWaG39h0iSdEHT559/Pi644IKMtzozBw70x4031mL//uyDYK2tg/Hww33R3t6S+dkAAAAAAAAzQTHvBQAAAAAAAAAAAABG+2//rTf27WtIPX/HHdUoFgsZbgTMVndffXfeK4zRUt8S/3rNv857DWCGWbhwYerZ7u7uqNVqGW5zZnbs6IlVq+pi//70r+Ums2JFX+zZU4329qbMzwYAAAAAAJgpRMEAAAAAAAAAAACAGeW++9KHLZYurcYHP9iY4TbAbLb6vNVx9a9cnfcax9199d1xbvO5ea8BzDDLli07o/mXXnopo03Sq1aT2LSpK9avb4rOzrrMz1+3rjv27i3HypULMj8bAAAAAABgJhEFAwAAAAAAAAAAAGaMn/ykL/7qr9JHvT74wd5obPT2SGDE5qs3571CREQsa14WG9+6Me81gBmovr4+6uvrU8+//PLLGW5z+g4erMY11/TGAw+0ZH52uVyL++/vju3bm6KlxWs8AAAAAABg7vMTEQAAAAAAAAAAAGDG2LJlIGq1QqrZhoZadHQ0ZLwRMNtdf/H1cdHZF+W9Rnz6bZ+O5vrmvNcAZqizzz479ezAwED09/dnuM2p2727N664Ioldu9JHXSfT1jYQO3f2x8aNzVEspnt9CAAAAAAAMNuIggEAAAAAAAAAAAAzwqFD1fja15pSz7e3V2LZslKGGwFzQbFQjM1Xb851h4vOvihuu/y2XHcAZrYlS5ZEoZA+fPX8889nuM0rS5Iktm7tjrVr6+O558qZn796dSX27SvEmjWCrwAAAAAAwPwiCgYAAAAAAAAAAADMCA891BuVSrq3NhYKSdx9tyAYMLH3XfK+WNa8LLfnv+eae6Jcl300B5g7isVitLS0pJ4/duxYhtucXHd3LTZs6ImOjuYYGMj+11I6OrriyScbYvlyr+0AAAAAAID5RxQMAAAAAAAAAAAAyF2lUosvfWlB6vnrrqvEypXp54G5raHUEJ+86pO5PPdbXv2WuGHFDbk8NzC7LFuWPl6YJEkcOXIku2UmceBAf6xa1R/btzdnfnZr62Bs29YTDz7YEqVSIfPzAQAAAAAAZgNRMAAAAAAAAAAAACB3jz5aiRdeKKeev+su4Qjg5G6/8vZoqW+Z9ue999p7o1DwPQp4ZQ0NDVEqlVLPv/DCCxluM96OHT2xalVd7N/fkPnZK1b0xZ491Whvb8r8bAAAAAAAgNlEFAwAAAAAAAAAAADIVa2WxB/+YfoAxqWX9sbatdnHKYC5ZUnjkvjQFR+a1ud810Xvit84/zem9TmB2e2ss85KPdvX1xfVajXDbYZUq0ls2tQV69c3RWdnXebnr1vXHXv3lmPlygWZnw0AAAAAADDbiIIBAAAAAAAAAAAAufrWtypx4ED6CMTGjYNRLBYy3AiYqzre0hGlYvoI4ekoFopxzzX3TMtzAXPH0qVLz2j+4MGDGW0yfF41rrmmNx54oCXTcyMiyuVa3H9/d2zf3hQtLX69BQAAAAAAIEIUDAAAAAAAAAAAAMjZ/fenD3q9+tX98S//ZVOG2wBz2XmLzosNb9gwLc/1gUs/EK8/9/XT8lzA3FEsFqOpKf1rm6NHj2a2y+7dvXHFFUns2tWY2ZnD2toGYufO/ti4sVncFQAAAAAAYBRRMAAAAAAAAAAAACA3e/f2xe7d6UMTH/vYQJRKQhLAqbvr6rum/DkaSg3xb97+b6b8eYC56dxzz009W6vV4tixY2f0/EmSxNat3bF2bX0891z5jM6ayOrVldi3rxBr1jRkfjYAAAAAAMBsJwoGAAAAAAAAAAAA5Obee6upZxcuHIyPfUxMAjg9lyy7JN75undO6XN0XNURr1746il9DmDuamlpiWIx/a97HDp0KPVsd3ctNmzoiY6O5hgYyP5XTjo6uuLJJxti+fJS5mcDAAAAAADMBaJgAAAAAAAAAAAAQC6eemogvvGNxtTz739/JRYtqstwI2C+uPvqu6fs7LMaz4pP/fqnpux8YH5YvHhx6tlKpRK1Wu205w4c6I9Vq/pj+/bm1M89mdbWwdi2rScefLAlSqVC5ucDAAAAAADMFaJgAAAAAAAAAAAAQC62bOmLajXdWxlLpVrcddeCjDcC5ou3veZt8aa2N03J2b/7G78bixsWT8nZwPxx7rnnntH8oUOHTuvxO3b0xKpVdbF/f8MZPe9EVqzoiz17qtHe3pT52QAAAAAAAHONKBgAAAAAAAAAAAAw7Y4eHYz/+B8bU8//9m9X4vzzyxluBMwnhUIh7l59d+bnnr/o/Pj4mz+e+bnA/FMqlaKhIV2gq7OzGN/4xsApPbZaTWLTpq5Yv74pOjvrUj3fyaxb1x1795Zj5UoxVwAAAAAAgFNRynsBAAAAAAAAAAAAYP754hd7o7OzOfX83Xd7CyRwZm78tRvjtUteGz87/LPMzvx3b/93saAkfANk45xzzolnnnnmlB6bJBF///fN8fjjS2LnzoVRrRbiuusq8drXTh5hPXiwGjfdNBC7drVktfJx5XItPve5SnR0NEWxWMj8fAAAAAAAgLmqmPcCAAAAAAAAAAAAwPxSrSbxhS+UU8//+q9X4s1vFt0BzkypWIqNb9mY2XmXLrs03nvJezM7D2DRokVRKJw8qHXoUCkeeWRp/It/8atx660XxHe+szj6+ooxOFiIP/7j3knndu/ujSuuSGLXrsmjYWm1tQ3Ezp39sXFjsyAYAAAAAADAaRIFAwAAAAAAAAAAAKbVn/1ZTzz7bH3q+Y0bkwy3Aeazf3X5v4qzG8/O5KzPX/v5KBa8PRvI1sKFC8fdGxiI+O53W+MTnzgvrrvu4ti6dXk888z4YOq2bU0xOFgbcy9Jkti6tTvWrq2P555LH2mdzOrVldi3rxBr1jRkfjYAAAAAAMB84KfOAAAAAAAAAAAAwLSp1ZJ44IG61PMXXdQX7353Y4YbAfNZU7kpPrHqE2d8ztoL1sZ1F16XwUYAYy1btuz45089VR8PPrgsrrvu4vjkJ8+PJ59cGIODhUlnn356QfzFX3Qev+7ursWGDT3R0dEcAwPZ/zpJR0dXPPlkQyxfXsr8bAAAAAAAgPlCFAwAAAAAAAAAAACYNt/9bm/86EcNqefvuKMaxeLk8QuA0/XxVR+PxtKZxQbvvfbeKBR8bwKyV19fHz/+8cL4wAcuiN/6rYvi0UfPiRdfLJ/y/GOPDX1vOnCgP1at6o/t25sz37G1dTC2beuJBx9siVLJ90IAAAAAAIAzIQoGAAAAAAAAAAAATJstW5LUs0uXVuPWW88s3ANwoqVNS+PWy29NPX/zG26ON73qTRluBDDWwoWL4vvfTxfz+i//pTUeffRYrFpVF/v3pw+zTmbFir7Ys6ca7e1NmZ8NAAAAAAAwH4mCAQAAAAAAAAAAANNi//6++Ou/Th/1+shHeqOx0VsfgextfOvGKBZO//tLuViOz7z9M1OwEcCId76zNV7zmr5Us319xbjtttbo7KzLeKuIdeu6Y+/ecqxcuSDzswEAAAAAAOYr74wBAAAAAAAAAAAApsV991UjSQqpZhsba3HHHQ0ZbwQw5LVLXhvrVq477bnbr7w9LjzrwinYCGBEXV0xbr65O+81jiuXa3H//d2xfXtTtLT4tRQAAAAAAIAs+ekLAAAAAAAAAAAAMOUOHqzGtm2Nqedvvrknzj23lOFGAGNtvnrzaT2+tb41fm/N703RNgBjfeQjjVEqJXmvEW1tA7FzZ39s3NgcxWK62CsAAAAAAACTEwUDAAAAAAAAAAAAptwf/EFv9Pame9tisZjEXXeVM94IYKwrX3VlrL1g7Sk/fvPVm+Oc5nOmcCOAEa95TWP85m925brD6tWV2LevEGvWNOS6BwAAAAAAwFzmr8wDAAAAAAAAAAAAplSlUotHHkkfj3jHOyqxcmVThhsBTGzz1Zvju//fd1/xcctblsfGt26cho2AMzE4mMTgYES1mkStNvTnZNeDg0OPr9UKY66H/hz9ceK98ddDZ4/cq9WGHzd0dpJEDA4Wjt8bPTP8Z5KMXA+fUasVcvtn2dHRFffd1xylUn47AAAAAAAAzAeiYAAAAAAAAAAAAMCUeuSRSrz4YnPq+c2bixluAzC5d1z4jnjjuW+MHx/68Ukf9+nf/HQ016f/vsb8VKuNDVGdSqSqVhsJSU0UoBqem+x64tBVnPCYka+PDlON7DgcpBp+fOH4zEjUanS46sQYVmGCr514b/z16McORbTil885EsgavnfizNC9QkQMB6yErNJqbR2Mhx/ui/b2lrxXAQAAAAAAmBdEwQAAAAAAAAAAAIApU6sl8Yd/mP7tipdf3htvf3tDhhsBTK5QKMTdq++OW564ZdLHXHT2RXHr5bdO41ZTZyg4FeOCUydGqyaKSaWNVFWryS8DT6caqSocnxmOU00erSqM2WWiENVwZGuyINXokNXo65GzC2POHB+mGvl89NcGByOSRKCK2WXFir54/PGIlSub8l4FAAAAAABg3hAFAwAAAAAAAAAAAKbMN75RiZ/+NH1I4s47BzPcBpjJkuSVI1UTXQ9Ho0YHpdJEqqrVoev+6m9FUyyJnjg84Z6XvfT78W8/3RdJ0jdppGqiANWJ8asTw1Mnj1SNvx79PEORrbHnJcn4iNXYSFUhRuJUIlXAWOvWdcdjjzVGS0sx71UAAAAAAADmFVEwAAAAAAAAAAAAYMrcf3/60Mx55/XHhg3pg2Jwpmq15JfBp/HBqckjVTFm5sQA1cmiVf/n/1ROa79HHumJZcu6xgWpRq5HR6mSSSNVI0GpyQJU6SNVw4+b6N7omaHPZ1Ck6ob/J+LSr46/37Mk/vzeDZH7fgBTpFyuxec+V4mOjqYoFn2vAwAAAAAAmG6iYAAAAAAAAAAAAMCU2LOnN/7u7xpTz3/sYwNRKtVnuNHsNziYTBicOjFaNfb65JGqia5Hx56Gz6zVChOeOxK5Kox53ESRqmp1KEA1Nlp1YpAqxsSlxsepxgephs+ZKEp14tcmC1INxbEK466HTFcU5fT+//KFLzRFRMvUrDLf7V8/cRTswLtCEAyYq9raBmLbtsFYs6Y571UAAAAAAADmLVEwAAAAAAAAAAAAIDP9/RE9PUOhpc98ZjD1OU1N1XjtayO+9a3KuEjVUHCq8MsQ1fig1NjroVjV6JnRkaoTw1LDUauJzhyOWGUbqRobphp7b2Rm6PxCjMSIRIlgSiV1E99/dvX07gEwTVavrsSOHeVYvrwh71UAAAAAAADmNVEwAAAAAAAAAAAAIDN/+qcRH/zg8FVz6nN6ekpx003e5gjkpFSZ+P5A4/TuATANOjq64r77mqNUEh0FAAAAAADIm3fLAAAAAAAAAAAAAJkpFvPeACADpd6J71cbpncPgCnU2joYDz/cF+3tLXmvAgAAAAAAwC+JggEAAAAAAAAAAACZqavLewOADIiCAXPcxRf3xte/XoiVK5vyXgUAAAAAAIBR/H18AAAAAAAAAAAAQGZEwYA5oVid+P6AeA4w+73tbUdj+/Zn4td+rT7vVQAAAAAAADiBKBgAAAAAAAAAAACQmSRJ8l4B4Mw9f9n4e4OliF9cMe2rAGTt4x9/Ierq+qKnpyfvVQAAAAAAADiBKBgAAAAAAAAAAACQmf/xP/rzXgHgzP18VcT/e9PYe//9dyN6l+SzD0CGhhuuhw8fzncRAAAAAAAAxinlvQAAAAAAAAAAAAAwN9RqSXznO4W81wA4c0ldxNe/EvG/3hex/EcRT6+O+P/fnvdWAJmo1Yb+PHr0aLS1tUVdXV2+CwEAAAAAAHCcKBgAAAAAAAAAAACQiZ07e+OppxrzXgMgG7VyxD+9a+gD4JcKhSTq6iKKxSSKxaE/R18Pfz7+XkRd3fDM0OfD90/tevhj6H6hMHJvcLAv9u9viB//uGncvm96UyXWrBmMcnloplSKWLlySSxfnkRExODgoCgYAAAAAADADCIKBgAAAAAAAAAAAGRiy5Yk7xUAYN4ZCk+NDkidGK0aHZiaLEqVjApXTXQ9ebRq+GN0pGr07NDjClFXlxyPUhWLQ39OfF0YNXNiECuOnzXR14dmR+5Ndl0qFcbNDe0w/usn3isWC7/8J1846b+X6fTCCz3xi1/8LO6447z43vcWRkREa+tgPPxwX7S3jw+FRbRM74IAAAAAAACcskKSJN6BAwAAAAAAAAAAAJyRf/iH/njjG8uRJDMnkAGzzw8j4vLTePwPIuKyKdkEzkRd3UikaigUlRyPSI0PUI2PVA3PnDxSdfJo1UQxqaGZwoSPGw5T1dUVolhMjoepisXC8dkT742OVI18fXyAauQ5xl6PD06NhK4mi1SNvh46pxAF/+md9wYGBuLAgQNx9Ggxbr75ddHSksTjj0esXLkg79UAAAAAAAA4TaW8FwAAAAAAAAAAAABmv+99rzvq6xdFX58yCTCzFApJjI5InXg9NlI1+t7JIlXJuPDUxJGqsXPjI1UjZ5VKQ88zHKcaiVSNBKXGRq3GB6ZGx6VGB6RONVJ1YnCqUEhOuFc44XkmjlRFDH8A06FcLkdra2tEHIuvfe2luOyyZdHSUsx7LQAAAAAAAFIoJEmS5L0EAAAAAAAAAAAAMHtVq9U4cOBAvPRSMbZsWR7f/vaSvFeCGW0o2DQ+SFWr/SC6ut58yue87nV7orn50gmDVCeLVo2OQI2NVCVRLI4OTo1cTxypGr4+tUjVRF8fHaUa/fWJIlUnnjl65sTr0TNDkSqAue3YsWMxMDAQS5YsiULB9z0AAAAAAIDZqpT3AgAAAAAAAAAAAMDs9vLLL0eSJHHWWYPx7ncfEQWbZQqFZEyYaihYNRxtGrpXKIwOTg3fG/l87PzYANWJkarRYafh88bfmyhSNXGQqlQa2mUoCjUUnhre58R7I7Go0TPjA1STRarGB6dGQlevFKkafR0x/DHWD39YissvP/V/d//pPy2Iyy5ryOx/CwDMXq2trXmvAAAAAAAAQAZEwQAAAAAAAAAAAIDUarVavPTSS8evi8XkjM8ciVKdGKmaKEA1+t7oSFUyJiA1Ojw1eaRq8gDV6DDU8NnDUaqTRaqGw1Sj41Ennjkcrhp67rFxrFONVA0/7sRzh547xjxm/MxwnGp8pAoAAAAAAAAAgOkjCgYAAAAAAAAAAACkliRJnH/++VEoDAWl2toKsW9f37jQ1U9+UoxHHinGd75TiFptJD71X/9rLa66aiRaNRTpEqkCAAAAAAAAAGD+EQUDAAAAAAAAAAAAUqurq4umpqbj142NEWefPf5xv/qrEddfH/HUUxEPPRTx8MMRl1wSsXZtcRq3BQAAAAAAAACAmcs7aQAAAAAAAAAAAIBpc/75EfffH/HMMxGPPpr3NgAAAAAAAAAAMHOU8l4AAAAAAAAAAAAAmH8WLRr6AAAAAAAAAAAAhhTzXgAAAAAAAAAAAAAAAAAAAAAAAADmO1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGeiYAAAAAAAAAAAAAAAAAAAAAAAAJAzUTAAAAAAAAAAAAAAAAAAAAAAAADImSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHImCgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAACAnImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGeiYAAAAAAAAAAAAAAAAAAAAAAAAJAzUTAAAAAAAAAAAAAAAAAAAAAAAADImSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHImCgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAACAnImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGeiYAAAAAAAAAAAAAAAAAAAAAAAAJAzUTAAAAAAAAAAAAAAAAAAAAAAAADImSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHJWynsBAAAAAAAAAAAAAJhNHn300Xj00UczP7erqyvzMwEAAAAAAACA2UMUDAAAAAAAAAAAAABOw9NPPx1/+7d/m/caAAAAAAAAAMAcU8x7AQAAAAAAAAAAAAAAAAAAAAAAAJjvRMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAclbKewEAAAAAAAAAAAAAmE3OO++8WL16debndnV1xY9+9KPMzwUAAAAAAAAAZodCkiRJ3ksAAAAAAAAAAAAAwHz3wx/+MC6//PJTfvwPfvCDuOyyy6ZuIQAAAAAAAABgWhXzXgAAAAAAAAAAAAAAAAAAAAAAAADmO1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJwVkiRJ8l4CAAAAAAAAAAAAAOa7SqUSBw4cOOXHX3zxxdHY2DiFGwEAAAAAAAAA00kUDAAAAAAAAAAAAAAAAAAAAAAAAHJWzHsBAAAAAAAAAAAAAAAAAAAAAAAAmO9EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGeiYAAAAAAAAAAAAAAAAAAAAAAAAJAzUTAAAAAAAAAAAAAAAAAAAAAAAADImSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHImCgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAACAnImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGeiYAAAAAAAAAAAAAAAAAAAAAAAAJAzUTAAAAAAAAAAAAAAAAAAAAAAAADImSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHImCgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAACAnImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGeiYAAAAAAAAAAAAAAAAAAAAAAAAJAzUTAAAAAAAAAAAAAAAAAAAAAAAADImSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHImCgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAACAnImCAQAAAAAAAAAAAAAAAAAAAAAAQM5EwQAAAAAAAAAAAAAAAAAAAAAAACBnomAAAAAAAAAAAAAAAAAAAAAAAACQM1EwAAAAAAAAAAAAAAAAAAAAAAAAyJkoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAAByJgoGAAAAAAAAAAAAAAAAAAAAAAAAORMFAwAAAAAAAAAAAAAAAAAAAAAAgJyJggEAAAAAAAAAAAAAAAAAAAAAAEDORMEAAAAAAAAAAAAAAAAAAAAAAAAgZ6JgAAAAAAAAAAAAAAAAAAAAAAAAkDNRMAAAAAAAAAAAAAAAAAAAAAAAAMiZKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAAAciYKBgAAAAAAAAAAAAAAAAAAAAAAADkTBQMAAAAAAAAAAAAAAAAAAAAAAICciYIBAAAAAAAAAAAAAAAAAAAAAABAzkTBAAAAAAAAAAAAAAAAAAAAAAAAIGeiYAAAAAAAAAAAAAAAAAAAAAAAAJAzUTAAAAAAAAAAAAAAAAAAAAAAAADImSgYAAAAAAAAAAAAAAAAAAAAAAAA5EwUDAAAAAAAAAAAAAAAAAAAAAAAAHL2fwHoET+tDUhoIQAAAABJRU5ErkJggg==", + "text/plain": [ + "Graphics object consisting of 691 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "GS = S.graphical_surface(edge_labels=False)\n", + "Omega.error_plot(GS, plot_points=10, cutoff=.7).show(dpi=1024)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "84ed5c3c-197c-431b-a993-6b713aef4aec", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/gl2r_orbit_closure.py:846: UserWarning: orbit_closure.decompositions() has been deprecated and will be removed in a future version of sage-flatsurf; use surface.flow_decompositions() instead.\n", + " warnings.warn(\"orbit_closure.decompositions() has been deprecated and will be removed in a future version of sage-flatsurf; use surface.flow_decompositions() instead.\")\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/pyflatsurf/flow_decomposition.py\n", + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/flow_decomposition.py\n", + "2 2 2 4 4 4 4 4 4 4 4 5 6 " + ] + } + ], + "source": [ + "from flatsurf import GL2ROrbitClosure\n", + "O = GL2ROrbitClosure(S)\n", + "for d in O.decompositions(6, 16):\n", + " O.update_tangent_space_from_flow_decomposition(d)\n", + " print(O.dimension(), end=\" \")\n", + " if O.dimension() == 6: break" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "38fbfcbc-2b13-404b-ad5b-92adab208df1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{B[(4, 0)] - B[(6, 0)]: 0.854101966249685, -B[(6, 0)] + B[(12, 1)]: 0.854101966249685, B[(23, 1)]: 0.381966011250105, -B[(19, 1)] + B[(34, 1)]: -1.00000000000000, B[(28, 0)]: -0.763932022500210, B[(5, 1)] + B[(6, 0)]: -0.381966011250105, B[(8, 0)]: 1.00000000000000, B[(19, 0)] + B[(19, 1)]: -0.236067977499790, B[(10, 0)]: 0.236067977499790, B[(6, 0)] + B[(11, 2)]: -1.23606797749979, B[(13, 2)]: 0.763932022500210, -B[(6, 0)] + B[(21, 0)]: 0.381966011250105, -B[(0, 0)] + B[(3, 0)]: -0.618033988749895}\n" + ] + } + ], + "source": [ + "F = O._lift_to_simplicial_cohomology(O.lift(O.tangent_space_basis()[5]))\n", + "F = F.parent()({k: v / max(F._values.values()) for (k, v) in F._values.items()})\n", + "print(F)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "273b4b69-ad91-426d-a615-a099a623d5bc", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.environ[\"SAGE_NUM_THREADS\"] = '4'" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "f244f0e0-b41e-4036-8a0f-6d75b38df6e3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "63 at Vertex 0 of polygon 14 with angle 3\n", + "53 at Vertex 0 of polygon 33 with angle 1\n", + "82 at Vertex 0 of polygon 16 with angle 1\n", + "53 at Vertex 0 of polygon 1 with angle 1\n", + "82 at Vertex 1 of polygon 19 with angle 1\n", + "256 at Vertex 0 of polygon 0 with angle 13\n" + ] + } + ], + "source": [ + "Omega = HarmonicDifferentials(S, error=1e-6, cell_decomposition=V)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ca35979e-1c28-4a3b-97a5-bbd082945222", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Watch /home/jule/proj/eskin/sage-flatsurf/flatsurf/geometry/power_series.py\n", + "Adding L2 conditions\n", + "Ignoring L2 condition on edge of polygon\n", + "Ignoring L2 condition on edge of polygon\n", + "Ignoring L2 condition on edge of polygon\n", + "Ignoring L2 condition on edge of polygon\n", + "Ignoring L2 condition on edge of polygon\n", + "Ignoring L2 condition on edge of polygon\n", + "Ignoring L2 condition on edge of polygon\n", + "Ignoring L2 condition on edge of polygon\n", + "Ignoring L2 condition on edge of polygon\n", + "Delete flatsurf.geometry.harmonic_differentials.RationalMap.monodromy @L1139\n", + "Ignoring L2 condition on edge of polygon\n", + "Ignoring L2 condition on edge of polygon\n", + "Ignoring L2 condition on edge of polygon\n", + "Adding cohomology constraints\n", + "Creating Lagrange symbols\n", + "Denormalizing system\n", + "Constructing linear system\n", + "Solving 1194×1194 system\n", + "Computing condition\n", + "condition=4.625023334888032e+88\n", + "Solving system\n", + "Interpreting solution\n", + "Building series\n" + ] + } + ], + "source": [ + "f = Omega(F, check=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a77c8cce-8841-4037-b0d5-547391fa44c1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "b'x\\x9c\\xec\\x9du\\x98\\xdbF\\xf7\\xef\\x93\\xe5\\xf5\\xf2\\x86\\x99\\x93M\\xdb$f(\\xa7\\xe1\\xba\\x81n\\xd26\\x05wk\\x90m\\x99%[n\\x926\\xe5d\\x9b\\xa6M\\x99\\x99\\x99\\x99\\x99\\x99\\x99\\x99\\x99\\xe9j\\xbe\\xc2Q$w\\xf7\\xde\\xe7\\xb9\\x7f\\xbd\\xbf\\xf7\\xf9\\xa5\\xe7H\\x9fs\\x9b\\x15J\\x121\\xb9\\x97\\x9b\\xd2\\xcdM\\x15\\x89V\\x1d\\xb1[\\x8e-\\x853\\xdc\\xb4^\\xae\\xab\\x9b\\x9b.\\x9e$\\xad\\xd1;\\xde\\xa2\\x97\\xdb\\xb2\\x9b\\xdbJ<\\xd3\\xa63[\\x94#c\\x86\\xe1f\\xf4r3\\xbb\\xb9Y\\xe2\\xd9:\\xf1\\xac\\xec\\xcc\\xde\\xcb9\\xba9\\xa7x\\xb0\\x01\\x1d)\\xb3dtq\\xae^\\xce\\xdd\\xcdy\\xe4\\xcf\\xd07\\xcd\\xdb\\xcb\\xf9\\xba9\\xbfit\\x8bL\\xa9H\\x06\\x89m\\xb9(\\xd8\\xb8\\x80\\x18\\xb8\\xad{\\xb9m\\xba\\xb9me\\xff\\x8brqV\\xfc\\\\\\x86\\xdb\\xae\\x97\\xdb\\xbe\\x9b\\xdb\\xc1\\xc4\\x0f\\x05\\xd7A\\xb8a\\xe4\\xec$\\xc2\\r\\'\\xd2Trl\\x04\\xb8\\t!~$\\xb8I\\xe4\\xd8(r\\xb6\\x93H\\xa3\\x894\\x99\\xf8\\x1b\\x03nb\\x88\\x1f\\x0bn\\x10\\xf12\\x8e\\x9c\\x9dF\\xb8\\xf1D\\x1aK\\xa4\\t\\xe0&\\x85\\xf8\\x89\\xe0&\\x90c\\x93\\xc8\\xd9\\xf1\\xc4b\\xb2\\xd4\\x0f\\xd1\\xdf\\x14p\\x93C\\xfcTp\\xc3\\xc8\\xd9iR\\xabD\\xa9\\x8bH\\x13\\x087\\x1d\\xdc\\x94\\x10\\xbf\\x05\\xb8\\xd1\\xc4\\xdf\\x96R\\xd4Dn+\"\\r\\'\\xdc\\x0cpSC\\xfcLp\\xe3\\xc9\\xb1YR\\xebE\\xceN\\xa4\\x11\\xc4\\xd6\\x01nZ\\x88w\\xcaq\\x16\\xcf\\xba\\xc8\\xd9\\x91Dr\\x13i\\x14\\xe1<\\x84\\x13\\xa4mc\\x8eYU\\xea\\xc9\\x84#L\\x86\\xf7\\x8a\\x87\\xf5[~V,\\xb3\\t\\x86\\xb7e\\xc3i\\xa6GQx\\x9fH\\xad\\x14\\xff\\x7f\\x80\\x9d\\xf7\\x8b\\xffY\\xc7\\x07\\xc4\\x7f\\xbb\\xf9\\xad\\xc9\\xe1:\\xac?\\xf9|\\xa9\\xc8oC>M<\\xbb-9NV\\xb6\\x9eB>\\xb3:\\x91\\xcf\\x15\\xf9\\xed\\xc4Ck\\xf9\\xed\\xd1\\xc6\\x01d\\xa1\\x18+\\x9e\\x9e\\'D3l\\x8c\\t\\xe7\\x96I\\x18\\xbd0\\xf0;\\x90\\xb6m\\xbe6\\xc8>mFk\\x1b\\xbf\\xa3h nT\\xfa\\xb0\\xdc3\\x8a\\xad\\xda\\xc2\\xcd\\xdc\\x15m\\xfcl58\\xda\\xd7-q\\xd5)\\x91\\xaf\\x00\\t&\\xc7\\x90\\xcd\\xa1\\xac\\xf7\\x08\\xb9\\x02\\x1bMg\\x18\\x1b\\xbf\\x13\\xe9\\xa4\\x95Y&\\x9fO\\x0b\\x05q]\\xcaG\\xc4/y\\xfc\\x1c\\x12\\xa9\\x80\\x18\\n]\\nrB6\\xc2\\xf0=q\\xf2%\\x8bV\\x96@\\xa1\\xbe}9\\xf9\\xb9H\\xc8<$d>I\\x00YS\\xf8\\x05Z#\\xe4\\xefr\\xd8q\\x89\\xdf\\xe7\\xe0\\xca\\xd6-\\xabpf\\xe3\\x17\\x8a\\xf8\\xf4n~\\x91a4\\x90\\xe0\\xe4\\xf2Y\\xf1\\x8b\\x92N\\xec\\xd1\\\\e\\xc4\\x11b[fy\\x86\\xdf\\xd9\\xd8\\n\\x0b\\x87\\xe2\\xb9\\x1eq\\x07&\\x85+\\xcf\\xdb\\x94`\\xf6h\\xbe\\xbbE\\xc6\\xc6\\x07\\x89\\xc3\\xd4\"e8\\xae\\xe2wA\\xef\\x17\\x8b\\xff.\\xd9P\\xe2\\x97 \\nK\\xc5\\x7fC\\xfc2\\xab\\x08Hc[\\xd5\\xf8]\\x15o\\x1e\\xbe\\x1b\\xde\\x96\\xc3\\xcb\\n\\xf1\\xdf\\x149\\x97\\x92\\x86\\xfcn8\\xba\\xbbrte\\x95h1\\xc3\\xc3\\xef\\x81\\x93+qrO\\x83\\xc9^8\\xba\\xb7jB>\\xc4\\xc1\\xef\\x83s!\\x9c\\xdb\\x97\\xcc\\xca\\rb\\xcb{\\xa0\\xee\\xa78\\x8e\\xda\\xf90\\xb0\\x08\\x19\\xd2\\xe2t\\x19O\\xbeFe\\x12L\\x84\\x0f\\xb3Q\\xed;8=a\\xa2\\x86\\xf4q\\\\$\\xcc\\xdb67\\xb3\\xf11i\\xa6\\x90-\\xbd?\\xb9\\xc3z\\x9e\\xc1\\x87\\xc51I\\x13\\xe2\\xbf\\xbd|\\x12\\rb\\t\\xb7\\xebz>\\x05--\\xfe\\xbb\\x9e\\xcf\\x90`/I\\x11\\x17%>\\x8b\\x139i\\xf8\\xe4\\xff\\xfb\\xf3m|\\xc1\\x1cZ2oU\\x89\\xc9\\x91!=O\\xbaN`\\xe3\\xb9\\xca\\xee\\x16\\x90\\x19\\x18&\\xc3\\x85\\xe7I\\x881\\xefRd\\n\\xa4\\x16\\xa8\\xc3$\\x85!\\x982\\x8c\\x9b\\xd5|\\x11\\x1d.\\xc9\\xe3F@/\\xca\\x187\\xfb\\x03E\\x16\\xa5L\\xad\\xc2\\xc9\\xd5\\x86\\xdc\\xae\\xc1\\xd1\\x03\\xe8\\xe1\\x10\\xe5\\x0f\\xc4\\xc9\\xb58y\\x90\\xc1\\xe4`\\x1c=\\x84\\x1a\\x0e)\\xfeP\\x9c;\\x0c\\xe7\\x0e7X\\x1c\\x81\\xa3\\xeb\\xe8\\x0f\\xf1\\xf3\\xebq\\xb2\\x17\\'\\x8f4\\x98l\\xc0\\xd1\\xa3\\xd4\\xa3R\\x1f6\\xe2\\xe8\\xd1\\xcah;\\x06\\xea&\\xa5\\x11a\\xfeXP\\xc7\\x91p\\xa4\\x8eEP\\x96\\x94\\xf8\\xe31\\x1cN T-\\x19\\x93I&\\x9a\\xe6O\\x14\\xd5\\r\\xe2D=\\t.N\\xb6Hf\\xb7\\xb8\\x1e\\xd8\\xf8S*\\'P\\x9b\\xdc\\xe2w\\xc2h\\x9a,4\\xa7j)\\x93\\xb2q\\x9a1\\x1b\\xa7\\xe3s\\xcf0\\xf4\\xfaL\\x1c=\\xcb\\x98\\x8d\\xb3q\\xf2\\x1c\\x9c<\\xd7`r\\x1e\\x8e\\x9e\\xaf\\x1e\\x95\\xf2p\\x01\\x8e^h`/\\xc2\\xd1\\x8b\\x8dy\\xb8\\x04\\'/\\xc5\\xc9\\xcb\\x0c&\\x97\\xe3\\xe8\\x15\\x86<\\\\\\x89\\xa3W)y\\xb8\\x1a\\xea58u-\\xe4\\xeb\\x0c!S.\\xc1\\xb1\\x86Kp\\x8b\\xc4\\xa5\\x99/\\xcb\\xf3Y\\x9e1\\xca\\x9a\\xe0\\xb0\\xf1\\xd7\\xff\\xdf\\xb8\\xd1\\xae\\xe8\\xf17\\x88\\xf6\\x8b\\x07\\x8c\\xdf\\xb0\\x9e\\xbf\\x11\\xcd\\xba\\xc9\\xc2\\x9f\\xf1\\xca\\xa0\\xb4B\\xe9\\x1c\\xddL\\nH\\x1dq\\xa5\\\\ \\xdc\\x8d\\xbf\\x05\\x05\\xe6V8\\xbe\\x8d\\x843-\\xee!\\x1c3\\xcb\\xde\\x82\\x9bM\\xe4\\x04\\x7f\\xb6\\xc8y\\x929\\xb7\\xdf\\x95\\xf2E\\xd9T6\\x12\\xb6\\x0b\\xc9\\xa4\\xe0\\x8b\\x89\\x9f\\x97N;\\x02\\xd1\\xacP\\x8a%\\x9d\\xa9\\x84\\x83wd\\x0b\\x8eX1\\x95\\xf0ySq\\xbb;\\xc5\\x97\\xd2\\xf1\\xa4\\xbf\\xec\\x89{\\x13\\xd1\\xb8K\\xe0\\x1c\\tg\"\\xe3\\xca\\xf9\\xc2\\x82\\x93qd\\xb3~W,\\xe7\\x89\\xb1\\x1eo\\x82-\\xc5\\x0b\\xe9L \\xe2\\x888\\x03^\\xbb3\\xcb;\\x0bY\\xde\\x93\\x8f8\\x9cE\\xaeX\\xf4\\x14\\x98\\x88\\x9fq\\xa4\\xf3i\\xd6\\x9f\\xc8\\x95J\\\\&\\x9a*\\x07\\xf2\\xbeBZ\\x08\\x94\\\\L,\\xe9\\xcf\\xf8\\xdd\\xe1\\x80\\xc3\\xc1\\x94RB&\\xcb\\xe7c\\x9eb\"_*\\xb8\\xd2\\xe1b&\\x99I\\xf21>\\xe7\\x8d9K>\\xaf\\x83\\xe1\\x03\\x99x)\\x13-\\x08\\xf9T\\xd4WL\\xd9\\xd9\\x80\\xd7\\x97\\x8b\\x07\"%\\xaf\\xcb\\xe1\\xc8g\\xbda.\\xe2)\\xc4\\xca\\xc5b2\\x96\\xe2\\xcan\\x9f\\xb8\\x8d\\n\\xf3\\xb9$\\x9b\\xb4gs\\x89r\\x98\\x0b\\xd8\\xf9D:\\x13\\xb6\\'\\xa3i\\xa7\\x93-eS\\xa9H\\x91\\xb1\\xfb\\xfd\\x11g\\xb9\\x9c\\xcfE\\xb9r2\\x96\\xf4d\\xfdB9\\'\\x94|\\\\&b\\xe73nO\\xa4\\x9c\\xf6z2\\xb1\\x8c?\\x93\\x8d\\xfa\\xedL\\x8e\\xe7\\x98dY\\xc8%\\xa3NW\\xc9\\x99\\xf5\\xc5\\xfc\\xf6\\xb0\\xd7%z\\xf4\\'\\xb9\\x92\\x10\\x15\\x83\\xc7\\'\\x8a\\xac\\xafT\\xf0\\xa6\\xcb\\xe9l2\\x1f\\x8b\\xe5\\xe3B\\xc9\\x1e\\x0e\\xe4b\\x1e&\\xeeHqQ\\xa6 \\xc6A\\xf0\\'J\\x82+\\xe6s\\x89\\xe72l4o\\xf7\\xd9\\xddy\\xc1\\xcf\\xf8\\xb8B<\\xe1\\xf6\\x14\\xf3)\\xa7\\xa3\\x10\\xe7\\xf8B\\xc6\\x9b\\x10<\\xbc\\xcb\\xee\\xc8d\\xc4H8\\x8b>\\xaf3\\x9aq\\xb9X\\x91e\\xd9\\xa2W\\xeca\\xc0\\xef)\\xf9\\xfd\\x82\\x98\\xbd|)\\xe0N\\xc5\\xca\\x8c=\\x17a\\xfcb}\\xe0\\\\B\\xd8\\x9f)\\x07<\\xc5\\x12\\xe7u\\t~\\xce\\x13\\xcb\\x95\\xb2\\x05>)p\\xf9L\\x98)\\x04\\x84\\xa8[(e\\x1c\\x82\\x90`\\x9c\\x91B\\xcc\\xe1\\xb1\\x17\\x13\\xee\\x88\\xd7\\xe3\\xf7\\xba\\xcbQ\\xaf\\x9dI\\x06\\x84D\\\\\\xb0\\xb3a\\xd1\\xd8\\xe5\\x8c\\xd9\\xdd\\xb9\\xb8\\xb3\\x14\\r\\x94b\\xd9R\\xca\\x93`]\\xf1L\"\\x12.D\\xb3\\xe1r2\\xe3\\t\\xf0\\xfep\\xd4\\xc7\\xe4\\\\\\xf1\\xb28v\\x02\\x82\\x97\\xe5\\xa3E6\\xe1\\xf3\\x89\\x86B\\xba \\xc4\\x9c\\xa9\\x08\\x1b\\xb1g\\xcbN\\xa6Xv\\x16\\x92\\xe9b\\xd9\\x1b\\x8eD\\x9d\\xe5\\x0c\\xe7H\\xc7\\xbcq\\x17W\\xe4\\x02L\\xd2\\xed\\x8d\\xda\\xedn\\x7f*\\xc7G\\x02\\\\\\xb9\\\\\\xcc\\xe6\\xe29\\xd6\\x97\\x13\"\\xc9t8\\x1fN\\xe6Rl2\\x16O$cB\\xd1k\\xcf\\xd8\\xdd\\x91\\x00SN\\x0bl\\xdc\\x13\\x89\\x97Y\\xa7\\xd7\\xeep\\xf9\\xc5\\x90&2\\xee\\x12S.\\xba\\xe3\\xf6b\\xa9\\xe4)\\x17\\xcaI\\xa6\\xe4`\\xc5\\xf4$\\xed\\x82\\xd3\\x15+\\xa4\\x8b\\xf6T\\xc9\\x9e\\x8f\\xf9K1\\x87;\\x15\\x8e%\\xc2\\xe5,\\x9fs8\\x13\\t>\\xef\\x8a\\xb1\\t{<\\x90g\\xdc\\x0e.\\x9e\\t\\xe4\\xc3\\x82\\x90\\x14J%6\\x97\\xe6\\xd2\\x9c3\\xecuz\\xd3\\x81\\xa4\\x87\\xe7\\x9cQ\\xbf?\\xcb\\xfa2\\x0e7\\xe3\\x88f}\\xd9l\\xd4W\\x8eG\\xb9b\"\\xe1\\x0b\\xb8\\x1c\\x85|\\x82+\\x96\\xfc\\x81\\x92\\'\\xec*p\\xd9\\x08\\x17\\x0ed}\\x9et,\\x1b\\xc8\\xf3\\x9e\\xa8\\xc0\\x17b\\x0c\\xef\\x8eD=\\x05\\xaf7\\x93t\\xdb\\x13B4\\xca9\\x9c^\\xc6\\xcd\\xb8\\xc9\\xcc\\xf0r\\xeex:\\xe7\\x14xW\\xb6P(\\x86\\xdd\\xf9\\xa4\\x97)\\xe7\\x9c>w\\xb4\\x9cN\\xe5\\x05w*\\xe2\\xf7\\xf9\\\\\\x89\\\\\\x96\\x8f\\x05Jb\\'\\xd8tD\\xdc\\xa4\\x17\\x13N\\x8e\\r$\\\\\\xb9@\\xdc\\xe9\\xf0\\xba\\xdc\\x1c+\\xce\\xca\\xb8\\xcb\\xefI\\x94\\x02EN\\xc8\\xa5\\\\\\x02\\x93\\xf2\\x14\"\\xe2\\x9ca\\xb8\\xb4G\\xac\\n\\x89R.\\x19v\\x15S\\xee\\x9c+\\xcf\\x84\\xa3\\x99\\x04\\x97/\\xc7\\x13\\xe4\\xff\\xe3\\xc9\\x80?,\\xc4\\xed\\x01_9\\x9c\\xf4%\\xd9B\\xce\\x99\\xf2\\x95\\x8ai\\xb1=\\xdeT\\xc9\\x95\\xc9\\'R\\xfe\\xbc[\\xe0b^\\x9f\\xdb\\x93/D\\x02\\xf6l6\\xe5\\xe4\\xb2\\xb9l&\\x19\\xf3E\\xc4\\xceg\\x13\\xc52\\xcb\\xc6R\\x89t\\x8aa\\xb3\\x91\\x848X\\x13L!\\xe6\\xe6\\xf2\\\\\\xd1^\\xe4\\xb3\\x9e0\\x93\\xcd\\x95y\\xaf\\xe8<\\x9c\\xe7Rn6\\x1a+\\xb0\\x91\\xb4\\x10\\xc9\\xc6\\xa3\\xe1\\xac\\xdb\\x9e\\x8e\\x06\\x9cv\\'\\x9fO\\xb9\\xec\\xb1<#8\\xcb>\\xb7\\xe0\\n\\xa7\\x931\\xc6\\x19\\xe5=\\xd9\\x80?\\xe5\\xf7\\xbb\\xbdY\\x17\\xcb\\x07\\\\\\x1c\\xcf\\xb9\\x92^>\\x11e\\x0b\\\\\\xc6\\x11M\\x08\\xa5@\\xdc\\xee*0^\\x87\\xd7\\x1b\\xe0\\x8b\\x8e\\x9c/\\x99\\xcb\\xba\\xf3\\t{&\\x19/:\\x85\\xb2\\xd3\\xce2\\x02\\xebt\\x88{k\\x17\\x17g\\x02\\xa9R\\x92\\x0f8\\x03\\\\@\\xdcI\\xc7\\xbcb\\x9c\\xc5r\\xc9\\x08\\xbc\\'\\xedw\\x88\\xe5S\\x9c\\xc5\\xbc\\xbd\\xe0\\x8b\\ti\\xa7\\xdd\\x95H\\xa5]\\xdel\\xda\\x99\\xf2\\x87=\\x89t:\\xe7\\x0bd\\xbdeO\\xda\\x1d);=\\xfe\\x98\\x10+\\x86\\xb3\\xce\\xb03[.\\xe5=\\x8ed\\xda\\x11\\xe6x1\\x18\\xf1\\x80/\\xeas$\\xd2\\\\!\\xca\\x8b!\\x13\\xab\\r\\x1b\\xcd\\x94\\x02\\x01\\xf1\\x03|I\\x17\\x13\\xf5\\x16\\x9c\\xbc;\\x9c\\x8apq\\x9f\\xd7\\xc7&b\\xae\\xb8?\\xcaG\\x12N_\\xb9Tf\\x056\\xc0\\xb1\\x99\\xb0\\xcfW\\xe0s9\\xa6\\x98\\xb0\\x8b\\xc1\\x112\\xc5x4\\xeaw\\xe4\\x18\\x8f\\xdf\\xcd\\xb0<\\xcb\\x8aC2\\x1d/\\x94\\x05qt\\xf2\\x0e\\xb1\\xca\\x883\\xd2\\xeb\\xe0=\\xf1,Wb\\x9a\\xf0\\xb9}\\xf1<\\x97O\\xc6\\xa2\\xb1\\xb0\\xb3\\x94K\\xbb=I\\xd6\\xe5\\xe7\\xa2,\\x17v\\xba\\xd3\\x9ex)\\x95H\\xech\\xe7o\\x1fH\\xbe\\xbf\\xf7\\xf2w`\\t\\xba\\x93,\\xcf\\x9b\\xafSs\\xf9\\xbb\\xb0N\\xdd\\r\\xe8\\x9e\\xff\\xadS\\xff[\\xa7\\xfe\\xb7N\\xfdo\\x9d\\xfa\\xdf:\\xf5\\xbfu\\xea\\xff\\xc3:\\xe5\\'\\xeb\\xd4\\xbd\\xf2:u\\x1f\\x96\\xa0\\xfb\\xb1\\x1c=\\x00\\xf9Arf`/\\xff\\x10\\xb4\\x87\\x07\\x92\\xeb2\\x8f@~\\xd4\\xf0M\\xcd\\xf2jb\\x8f\\xfc<\\x86MwUQ\\xf9\"\\x19\\x8e\\x14\\xf3\\x19\\xa1\\xc4\\xd8\\xf8\\xc7\\xc8\\xe2x\\xb2\\xd9\\x85\\x94\\x94t\\xe9\\xedq\\xf9\\x12\\xca\\x13\\xf8\\xf4\\'\\xf1\\xa5\\xfd)\\xf5K\\xbb\\xf4M\\xd9\\xc9?\\r\\xf6\\x190\\xcf\\x1a\\xbe)?\\x87\\xa3\\xcf\\x1b\\xbe)\\xbf\\x80\\xa3/*\\xdf\\x94_\\x82\\xfa2:\\xfa\\n\\xe4W!\\xbf\\x06\\xf9u\\x98\\xbc\\x01\\xf9M\\x1c\\x7fK\\xbdj\\xd1s\\x80}-\\xff\\xb6rM\\xe3\\x1d\\\\\\xd3x\\x97|\\x0e\\xb9\\x92qd\\xb1\\xc4\\xbf\\x07\\xb3\\xf7\\xe1\\xe2\\x03\\x9c\\xfe\\x10\\x91\\xfe\\x08\\xc7?&\\x1b\\x03\\xe9A\\x85\\xe5,\\xb9\\xb9\\xcf\\x7f\\x82\\xb3\\x9f\\xe2\\xecg\\xda\\xd99\\xf9\\\\\\x99Y\\xc5\\x7f\\x8e\\xb3_\\xe0\\xec\\x97\\x03\\xa5\\xabg_A\\xfb\\x1a\\r\\xfbf \\xae\\x9e\\x91K\\xd5%\\xfe[\\x9c\\xf8N\\xfcw\\xfa\\xa1\\xfc\\xf7\\xf8\\xec\\x1fH\\xec\\x10\\xb6\\x9e2\\xff\\xa3\\x9a\\xccl>&d\\x98\\xe2\\xcc8\\xcf0=\\x92\\xa2&\\x10\\xd73\\xe7\\x8b\\'\\x16\\xe3\\xb8\\x92D\\xe5\\nu\\x8c\\xc9\\x15\\x99\\x9e\\xb2\\xc3\\xc6\\xff\\x84\\xbcH\\xd7\\xc9p\\xe5\\x19\\xf7\\xb2UC\\xfeg\\xc4\\xe0\\x174\\xea\\xd7\\x81\\xca\\xa5\\xe4\\xdf\\xc0\\x93\\xf8\\x04\\xabH\\x08\\x7fG;\\xff@\\x07\\xfe\\x04\\xfb\\x17\\xb2\\xfe78\\x0c\\x98\\xf7\\xb5\\x01#\\x8d\\x88\\x7f\\xb4\\x111T\\x1a\\x111w\\x86\\xe5\\xfcl.<\\xcb\\xef`\\xc3E\\x87\\x90\\xc8\\xf1\\xff\\xe2\\xf3\\x07T\\x11\\x9f\\x03\\xab\\x94\\x8b-\\x83E\\x03\\xc1\\x1e\\xc9\\xf8}d}\\xd5\\xe1UU\\x04\\xaf\\x06^\\xa3\\xe2C\\xc8EV.-.o|2\\xe9,\\xea\\xf8Z\\xf0u\\xe0\\xeb)~F\\x81w\\xe5r\\xeex\\xc4\\x15\\xd7\\xf1\\r\\xe0\\x1b\\xc1\\xdb\\xaa\\xe4\\x81\\xd8\\x04\\xb5\\xb9\\x8a\\xe4\\xb2\\x05r+qe\\xde\\xed\\xb6*\\xb5\\xdb\\xe4\\xc6\\xcb\\x0c\\xb7X\\x18\\x9c\\xb3\\xca\\xbc/\\xc3\\xb7\\xc3y\\x07\\xb5-\\xe4\\xbe\\x18\\x93*d%\\xc6\\x0f&\\x00fk\\x8aq\\xc7R\\x19\\x89\\xd9\\x06\\xcc\\xb6`\\xb6\\xa3F\\xc1\\x8c\\xa8\\xb8\\xecH\\xd0\\xf6\\x80v\\x00\\xb4\\xa3\\xd2\\x91\\xd9PwBG\\xe6@\\x9e\\xab\\xe6w\\x1e\\xf4\\xf9\\xc6\\xfc.\\xa8\\x90\\xdf\\x85t~g\\xb0\\xc5\\x14\\x1b\\xcef<\\x19}\\x06\\x16\\xa1!;\\xc3{\\x90\\x9e\\x95\\x016\\x1ds\\xba\\xbdL\\xb80+\\xef\\xce\\xd9\\xd3\\x1e^\\\\Yw\\x01\\xbf\\x18\\xfc\\x12*\\xc1\\xe9@:\\x17\\t\\x94y\\x8f~<,\\x05\\xbe\\x0c\\xf8\\xae*\\x8e\\xa2\\xe2p\\x05\\x02\\xd9x\\xd1\\xe3u\\xbat\\xfe\\xbba\\xb0\\x1c\\x06+\\x94\\xc0\\xec\\x06uw\\x04f\\x0f\\xc8+\\xad3\\xbc\\xa7\\xd6\\xedf\\x14\\xafL\\xc2\\xee\\x98\\xe5,\\'\\xb3e~/x\\xdf\\x1b.\\xf6\\xa1&\\x9f#\\xcd\\x96\\xdc2\\x15\\x02\\xb5/\\xa8\\x1e\\x8a\\x127\\xeb\\xc5\\xbcL\\xed\\x07*\\x0c*B\\xe79\\xee,\\xbb\\xa5\\x8e?\\x08\\xfc`\\x8b6\\xf3\\x07\\x93\\xcf@{\\x80D\\xc9^\\x84/\\xc9\\x0f\\xa4\\xe2#\\xf9C\\xe0a\\x84\\xde\\x03y\\x8a\\xad\\xa7 v\\xb0Gz\\x0e\\x91?Td6H.\\xc89ro6\\x9ag\\xf8(\\xd3\\x93!\\x0f\\x96\\x1eVE\\xa6\\xc3\\xe1\\xea\\xc7(\\x8c8\\x8e\\xc8c~`\\x8e\\x00\\xb3N\\xcd\\x93\\xe6Gj\\x12\\xa0\\xf5\\x80z\\xc5\\x7f\\x85Hp`J\\xde\\x00\\x1dYE6\\x16\\x1b\\xaat\\x1b\\xa0\\xa3\\x8c\\xe5ic\\x85\\xf2t4i=\\xb9\\xbb\\x85\\xecl\\xc2\\xf89\\x16\\xf2q\\xd6\\x93\\xfbx\\xd9\\xe8\\x04\\x80\\'\\xc2\\xe8$\\xc8\\'\\xabS\\xe8\\x14\\xe8\\xa7\\x1a\\xdbrZ\\x85\\xb6\\x9c^Eox\\\\\\x82\\x9bI{\\x12\\xc9t\\xcc\\xae+fg`2\\x9f\\t\\xf7gQ\\xb5\\x8fe\\x9c%&\\xe2\\xf3D\\x03:\\xfcl\\xe0\\xe7\\x00?\\x97.\\xad\\xf9\\x98\\xa3\\x90+\\xb8\\x12Y\\xbd\\xfb\\xf3\\xc0\\x9f\\x0f\\xfe\\x02z1L\\x88\\xc3F\\x88\\x16\\x12n^\\xc7_\\x08\\xfe\"\\xf0\\x17+\\xb5\\xe5\\x12\\xa8\\x97\"0\\x97A\\xbe\\xdc:\\x9aWT\\xd1\\x1b\\x1e\\x0f\\x1b/\\xca\\xdb\\x94+\\xe1\\xfc*x\\xb8\\x9aZ\\xe9\\xc4\"\\x9f\\x97\\x98k\\xc0\\\\\\x0b\\xe6:\\xaa\\x02:\\x13\\xd9\\x8c\\xbc)\\xba\\x1e\\xd0\\r\\x80n\\xa4\\xcbd\\xc6\\x19\\xb1K\\xd0M\\x80n\\x06t\\x8b\\xd2\\x95[\\xa1\\xde\\x86\\xae\\xdc\\x0e\\xf9\\x0e5\\xc7wB\\xbf\\xcb\\x98\\xe3\\xbb+\\xe4\\xf8\\x1e\\xc3r\\x98r$\\x85\\x1cW*\\xf9\\x19]L\\xefEC\\xee\\x83\\xf7\\xfb\\xe9\\x9c\\xf9\\xbc\\xe2\\x17\\xc8\\xb2? \\xe4u\\xfc\\x03\\xe0\\x1f\\x04\\xff\\x105$\\nE>\\xec-\\x8a\\xdf\\xa8\\xf5\\xee\\x1f\\x06\\xfe\\x08\\xf0G\\xe9\\x14g2<\\xe7u\\xf8\\x8a\\x91\\x98\\x8e\\x7f\\x0c\\xfc\\xe3\\xe0\\x9fP\\xe2\\xf2$\\xd4\\xa7\\x10\\x97\\xa7!?c\\x9d\\xe2g\\xab\\xa8\\xfd\\xce\\x8cR&\\x15\\x90b\\xfe\\x1c|?\\x0f\\x07/P\\x89q\\xa4\\x04.-A/\\x02z\\t\\xd0\\xcb4\\xe4\\xf5\\xa7\\xe5E\\xee\\x15@\\xaf\\x02z\\x8dNq1\\xea\\x16$\\xe8u@o\\x00zS\\xe9\\xca[P\\xdfFW\\xde\\x81\\xfc\\xae\\x9a\\xe2\\xf7\\xa0\\xbf\\x8f\\x95\\xf0\\x83\\xffZ\\t?T\\xd6\\xa0\\xcd\\x7f\\xbb\\xc0\\x7fD\\xce\\xfd\\xc7R\\xf41a\\xc8B\\x93\\xc2\\xe2Aj\\x9b\\xbcx|\\x82f|\\xba\\xf9\\xe2\\xf1\\x99\\xc9\\xe2\\xf1\\xb9\\xd9\\xe2\\xf1\\x85\\xe5\\xe2\\xf1\\xa5\\xe9\\xe2\\xf1U\\xe5\\xc5\\xe3k\\xf2\\x19\\x9fV\\\\<\\xbe\\xe9\\xc3\\xe2\\xf1m\\xe5\\xc5\\xe3;\\xd4\\xfc\\xef+.\\x1e?\\x80\\xf9\\xb1\\xf2\\xe2\\xf1\\x13\\xa0\\x9f\\xa5\\xc5\\xa3JY<~\\xc1\\xe2\\xf1+\\x06\\'\\xf9\\xda\\x9c\\xdalg\\xfb[\\x85\\xa9\\xfc\\xbb\\xbc\\n\\xfc\\x81\\xdc\\xfc\\x89\\xe1\\xf3\\x17\\xe4\\xbf\\xadg\\xc2?\\xb2\\xd1\\xbf\\x00\\x07T\\x13\\xa3\\x81\\xd5D\\xae\\xaaV\\xc6\\\\5\\xf4\\x1a\\xf1\\xdf\\x94\\xb4\\x05\\xab%bV\\x19\\\\\\xc9V\\x8c\\xa3\\x94@\\x8f\\x96_\\xb4\\xd1R\\x07\\x07\\xf5\\xc4J\\xdd\\\\\\xa4\\xd4-E\\n\\xfb\\x88\\x94\\xb4gHa\\x93\\x90\\xc2^\\x00\\x06X\\xf2SX\\xd4S\\xd2\\xda\\xdd@\\x0eKKt#\\x11\\xa5\\x85\\xd8V\\x8dXV+\\xb1l\\xaa&\\xb1l\\xaeVc\\x89\\xf6\\xe3\\xab\\xa0\\xd4\\x89\\x96\\xbet\\x82x\\x91;\\xd1\\x8aN\\xb4\\xf5\\xb7\\x13m\\xe6\\x9dh\\xd7:\\xd1\\xa1u\\xa2S\\xeaD\\x8d\\xd2\\x89A\\xe8\\xc4`tb\\xb3m\\xc4\\x90j\\xeb\\xb10\\xb4Z-pd\\xa0\\xe6\\x8b\\x99d>\\x1aHp^]\\x19\\x1dVMj\\xcfptkD5\\xfd-\\xc4\\x19-\\xfa\\\\\\xde\\xa87 \\xe8\\x0cF\\xc2`\\x14\\x0cF\\xab\\x06\\xa8\\xd3\\x82O\\xe0yw\\xc1\\x99\\xc9\\xe9\\xf81\\xe0\\xc7\\x82\\x1f\\xa7\\xf2\\xa4=\\x99\\x02\\'V\\xd30[\\xd2\\x7f\\x8d\\x1d\\x0f|\\x02\\xf0\\x89\\xd5r-\\x9c\\x04u2\\xc6\\xe5\\x14\\xc8S\\xab-\\x07\\xf3\\xb4j\\xaa\\xac;\\xbc^\\x86\\x97\\xeal\\x17|O\\x87\\x83-\\xd4\\xa6H\\xd7\\x17\\xa2\\xe5rY\\xa2\\xb6\\x04\\xb5\\x15\\xa8\\x19F*mOH\\xd4LP\\xb3@\\xd9U\\xaa\\x11\\x0f@\\xba=\\x12\\xe3\\x00\\xe3\\x04\\xe3R\\xfa\\xe2\\x86\\xeaA_\\xbc\\x90}\\xea\\x1c\\xf3C\\x0fT\\x1br\\xbcu\\x85\\x1coS-M\\xddma\\xba\\x1d\\xdcn\\x0fy\\x07\\xeb\\x10\\xed(\\x1b\\xcd\\x06\\xb8\\x13\\x8c\\xe6@\\x9e\\xab\\xb6e\\x1e\\xf4\\xf9\\xc6\\xb6,\\xa8\\xd0\\x96\\x85\\xd5\\xd46\\xc2\\xed*\\xb3>\\xaf\\xa3\\xe4\\xa3\\xb6\\x05\\x8b\\x10\\x94\\x9d\\xe1=H\\x8f\\x9fX:\\x1e\\xcb\\xb2\\x11GN\\x7f\\xedj\\x17\\xf0\\x8b\\xc1/1\\x0c\\xd0b\\xde\\x13\\x89:\\x9c\\xae\\x92~o\\xb9\\x14\\x06\\xcb`\\xb0+5\\xe0\\x12\\x89\"\\x9b\\xf3\\x14\\xbd9\\xa7\\x0e\\xef\\x06\\xbe\\x1c\\xf8\\n%I\\xbbA\\xdd\\x1d\\x81\\xd9\\x03\\xf2J\\xebh\\xeeI\\x0f8\\x0fo\\xcf\\xc9\\xd7;\\xf6\\x82\\xef\\xbd\\xe1`\\x1f\\xb5)6i\\xdb\\x1a\\x97\\xb7\\x93!@\\xfb\\x02\\xea\\xa1\\xc7\\x9b3\\xe7tp\\x12\\xb5\\x1f\\xa80\\xa8\\x085\\xde2\\xf6\\xb0O\\xfeF\\r&\\x06\\x86Q\\xba\\x12\\x87\\x9a@W\\x92\\x90Y5\\xc7)\\xe8\\xe9j|\\xa3&N\\xd5\\xbdBJ\\xdd\\x19\\xa4\\x0c\\xeb\\xff \\xad\\x18fa\\x9e#\\x07\\xd4\\x15?\\xa5\\xae\\xf3),\\xee)i!Oa\\xe5Na\\x81\\x86\\x01\\xd6\\xe1\\x14V\\xda\\x94\\xb4\\xa0\\xe6\\xc9ai\\xdd,`\\xd4A\\xe4\\xa4bX\\xab\\x14C\\x1e\\xc5\\xb0h^\\x0cK\\x15\\x06\\xa7P\\xdd\\x87=n\\x19\\x11\\xdc\\x1f\\xfdZE\\rN\\xf3=\\xeej\\xf0k\\xc0\\x1f@\\x8d5\\xd3=\\xee\\x81\\xc0\\xd7\\x02?\\x88\\x1e\\xfb\\xa6{\\xdc\\x83\\xc1\\x1f\\x02\\xfeP%\\xa1\\x87A=\\x1c\\t=\\x02\\xf2:\\xeb\\xb1\\xb9\\xbe\\xdaj\\x8f\\xdb\\x0b\\xdfG\\xc2\\xc1\\x06jl\\xea\\xf6\\xb8G\\x01\\xda\\x08\\xe8h\\x1a\\xd2\\xf6\\xb8\\xc7\\x00\\xda\\x04\\xe8Xz\\x94k{\\xdc\\xe3\\x00\\x1d\\x0f\\xe8\\x04\\xa5+\\'B=\\t]9\\x19\\xf2)\\xea\\xd8<\\x15\\xfai\\xc6\\xfasz\\x85\\x14\\x9fA\\xa7\\xd8S(\\x87\\x03\\xe98\\x13+\\xeb\\xaf\\xb5\\x9f\\x89\\x86\\x9c\\x05\\xefgS)\\x13\\x02\\xa9\\x1c_\\xf4\\xa6X\\xfdE\\xc0s\\x80\\x9f\\x0b\\xfc\\x00\\xf9A\\xeb\\x10=$\\x1b=\\x0c\\xf0\\x11\\x18=\\n\\xf91\\xb5-\\x8fC\\x7f\\x02\\xc5\\xf0\\xc9>\\x16C^+\\x86O\\xc1\\xfc\\xe9\\xfe\\x16\\xc3\\xa7\\xcd\\x8b\\xe13Z1|V+\\x86\\xcfI\\xc5\\xb0N)\\x86\\xcf\\xa3\\x18\\xbe`^\\x0c_\\xac\\x10\\xc4\\x97\\xe4x\\xbc\\x8cF\\xbf\\x82x\\xbc\\n\\xf95\\xeb \\xbe.\\x1b\\xbd\\x01\\xf0M\\x18\\xbd\\x05\\xf9m5\\x88\\xef@\\x7f\\xd7\\x98\\xd0\\xf7*\\xb4\\xe5}m\\xf8bZ\\xf9\\xc3NG&\\xe7\\xcc\\x8b\\xff\\xa7\\x9b&\\x1f`h}\\x08\\xf7\\x1f\\x19\\xe6a \\xc2\\xfa\\x05G\\xd2\\xe9\\xd5\\xd7\\xce\\x8fa\\xf0\\t\\x0c>\\xa5Ky\\xcc\\xed\\xceg\"\\x82P\\xd2\\xef\\x03>\\x03\\xff9\\xf8/\\xa8\\xba\\xc0E\\x8a\\xbe\\xac\\xa7\\x90\\xa1\\xa6\\xed\\x97\\xc0\\xbf\\x02\\xfe\\xb52\\xd4\\xbf\\x81\\xfa-\"\\xf3\\x1d\\xe4\\xef\\xad\\xc3\\xf9\\x83\\xd6oL\\xb6H\\xac\\x18\\x8fH\\xf3\\xe8G8\\xff\\t\\x1e~6L\\xc9\\x0c\\xe7\\x95g\\xdb/\\xa0~\\x05\\xf5\\x1b=\\xbb\\xf9l9*A\\xbf\\x03\\xfa\\x03\\xd0\\x9f4\\xe4\\xf4\\x04\\xe4\\xcd\\xc5_\\x80\\xfe\\x06\\xf4\\x8f\\xd2\\x99\\x7f\\xa1\\x0e\\xa8\\xc1\\x97\\xc1\\x1a|\\x19\\xacQ\\xbf\\x0cB\\xaf\\xa91\\xa4\\xb9\\xb6\\xc6:\\xcdu5t\\x9a\\xcd\\xef\\xa9\\xd5\\xd7\\x90\\x964\\xc0}c\\rU=Mo\\xaa\\xd9\\xc07\\x81o\\xa6y\\xd3\\xbbj-\\xe0[\\xc1\\xb7\\xd5\\xe8\\xb3lzS\\xad\\x1dx\\x07\\xf0\\xce\\x1a90\\x83\\xa0\\x0eF`\\x86@\\x1eZc\\x99\\xe5a5t\\x96uw\\xd5\\x86\\xc3\\xf9\\x08x\\x18Y\\xa3O\\xcd\\x0c\\xed\\xb6\\xda(@\\xa3\\x01\\x8d\\xa1!\\xed\\xbe\\xdaX@\\xe3\\x00\\x8dW!\\xb29\\xd4n\\xabM\\x003\\x11\\xcc$\\xa5+\\x93\\xa1NAW\\xa6B\\x9e\\xa6\\xe6\\xb8\\x0b\\xfa\\xf4\\x1aR\\xdc\\xb6\\xa8\\xe9[=|^\\xab\\x87[\\xc2|\\xab\\x9a~\\xd6C\\x18l^\\x0fg\\xd4\\xa8\\xf5pf\\x8dZ\\x0fg\\xd5\\xa0\\x1e\\xd6+\\xf5\\xd0^C\\xea\\xa1\\xa3\\xc6\\xb4\\x1e:+\\x0cNW\\x8dT\\xda\\xdch\\xb4\\x07\\xf1\\xf0B\\xf6Y\\xa7\\xd6/\\x1b\\x05\\x00n\\r\\xa3m o\\xab\\x06q;\\xe8\\xdb\\x1b\\'\\xca\\x0e\\x15\\xda\\xb2c\\r\\xb5\\x8bq\\xd9\\xa3N\\xbe\\x90v\\x05\\n\\xfa\\x0b\\xe2\\xb3\\x91\\xcd\\x9d\\xe0}\\x0e5\\x8e\\xb9l\\xd4\\x1d\\x15\\xc2\\xf6TT\\x87\\xcf\\x05>\\x0f\\xf8|z\\x9a\\xc4\\xc2\\x11{F\\x08\\xa7\\x1cz\\xf7\\x0b\\xc0/\\x04\\xbf\\x88\\xe6\\x99H>\\xcd0\\x11\\xae\\xa4/\\xb6;\\x83\\x0f\\x82\\xdfE\\x19\\\\\\x8b\\xa1.A\\\\\\x96B^f\\x1d\\xcc]k\\xa8M\\x8c\\xdb%(O\\x05t\\xc3\\xf7r8XA\\xcd\\x00\\x87\\x18\\x14\\xf9z\\xfbn\\x80v\\x07\\xb4\\x07=M\\x92\\xce\\xa4\\xfc\\xfdh%\\xa0=\\x01\\xedECl!\\xea\\x97\\xa0\\xbd\\x01\\xed\\x03(\\xa4te_\\xa8=\\xe8\\xca~\\x90\\xc3j\\x8a#\\xd0\\xa3\\xc6\\x14\\xc7*\\xa4\\x981\\xd4B\\xf3\\x87H\\xe2hI\\x02\\xee\\x93T\\x8eM\\x1f\"a\\x81\\xa7\\x80\\xa7\\xa9\\x9c\\x99?D\\x92\\x01\\x9f\\x05\\x9f\\xa3sl\\xfa\\x10I\\x1e|\\x01<\\xa7\\x04\\x86\\x87ZD`J\\x90\\x05\\xeb\\x1c\\x97\\r\\xb5P\\xf7\\x10\\xc9\\xfep\\xbe\\n\\x1eV\\xd3I\\xd6\\x1e\"Y\\x03\\xe8\\x00@\\x07R\\x90\\xee!\\x92\\xb5\\x80\\x0e\\x02t\\xb0\\n\\x19\\x1f\"9\\x04\\xd4\\xa1\\xa0\\x0eS:s8\\xd4#\\xd0\\x99u\\x90\\xd7\\xabY\\xee\\x85~$\\xaa\\xe1\\x86>VCR\\x8e\\xe4jx\\x14\\xcc7\\xf6\\xb7\\x1an4\\xaf\\x86Gk\\xd5\\xf0\\x18\\xad\\x1an\\x92\\xaaa\\x83R\\r\\x8fE5<\\xce\\xbc\\x1a\\x1e_ax\\x9e \\x17\\xb6\\x13\\xd1\\xe8\\x93\\x10\\x8f\\x93!\\x9fb\\x9d\\xdcSe\\xa3\\xd3\\x00\\x9e\\x0e\\xa33 \\x9f\\xa9\\x06\\xf1,\\xe8g\\x1b\\xa7\\xca9\\x15\\xdar\\xaea\\xaa\\xb8\\xb2Y\\x97\\x90\\xe5\\xc3\\\\\\\\?\\x96\\xcfC:\\xcf\\x87\\xfb\\x0b\\xe8\\xb1\\x1f\\xe3\\x02\\xae\\\\\"\\x19w\\x95\\xf5\\xf7\\x07\\xc1_\\x04\\xfeb\\xc3\\\\\\xc9\\xfa#nw9W\\xd2oK.\\x01\\x7f)\\xf8\\xcb\\xe8\\xb9\\xc2\\xf9sa\\xbe\\x90g\\x8a.\\x1d\\x7f9\\xf8+\\xc0_\\xa9\\x0c\\xaf\\xab\\xa0^\\x8d\\xc8\\\\\\x03\\xf9Z\\xebp^g\\x98+\\x9e\\x80\\x8f\\x93W\\xfb\\xeb\\xe1\\xfc\\x06x\\xb8\\x91\\x9e+\\xc5\\x04\\xa7\\xdc6\\x04t3\\xa0[\\xe8\\xb9\\x92NdK\\x12t+\\xa0\\xdb\\x00\\xddn\\x98+\\xce\\x00#\\xef\\x0e\\xef\\x00u\\'\\xa8\\xbb\\x94\\xce\\xdc\\r\\xf5\\x1et\\xe6^\\xc8\\xf7\\xa9i\\xbe\\x1f\\xfa\\x03\\xc64?X!\\xcd\\x0f\\xd5P\\x8b\\xde\\x0c\\xd3k\\xd5\\x0f\\xa3!\\x8f\\xc0\\xfb\\xa3t\\xd6L/U?\\x06\\xfeq\\xf0O\\xd0\\x05\\xd4\\xecJ\\xf5\\x93\\xc0\\x9f\\x02\\xfe4\\x9dd\\xd3K\\xd5\\xcf\\x80\\x7f\\x16\\xfcsJ\\\\\\x9e\\x87\\xfa\\x02\\xe2\\xf2\"\\xe4\\x97\\xac\\x93\\xfc\\xb2!\\xc9\\xbak\\xd5\\xaf\\xc0\\xf9\\xab\\xf0\\xf0\\x1a\\x9dd\\xedR\\xf5\\xeb\\x80\\xde\\x00\\xf4\\xa6\\x01R\\xafT\\xbf\\x05\\xe8m@\\xefP\\xd0\\x0c\\xedR\\xf5\\xbb\\x80\\xde\\x03\\xf4\\xbe\\xd2\\x97\\x0f\\xa0~\\x88\\xbe|\\x04\\xf9c5\\xc7\\x9f@\\xff\\x14\\xf5\\xf0\\xb3>\\xd6\\xc3c\\xb5z\\xf89\\xcc\\xbf\\xe8o=\\xfc\\xc2\\xbc\\x1e~\\xa9\\xd5\\xc3\\xaf\\xb4z\\xf8\\xb5T\\x0f\\x1b\\x95z\\xf8\\r\\xea\\xe1\\xb7\\xe6\\xf5\\xf0\\xbb\\n\\x83\\xf3{\\xb9\\xb4\\xfd\\x80F\\xff\\x88x\\xfc\\x04\\xf9g\\xeb\\xdc\\xfe\"\\x1b\\xfd\\n\\xf07\\x18\\xfd\\x0e\\xf9\\x0f5\\x88\\x7fB\\xff\\xcb8Q\\xfe\\xae\\xd0\\x96\\x7f\\xe8\\x89\\xe2\\x8d\\xd9\\x8b\\xfeh8\\x1a\\xf1\\xe9\\xcb\\xdb\\xbf\\xc8\\xe6\\x80Z\\xe2}`-5\\x92\\xfdE^(\\xbb\\x1c\\xd9\\x88\\xbe|V\\xd5\\xe2\\xf9S\\xf05*/mM\\xec\\\\4P*rn.\\xa5\\x7f\\x00\\x15\\x06u0\\xa8W\\r\\xc8\\xcc\\xf2\\xe6\\x98B\\xc4\\xe7\\x8f\\xa6|\\xfa\\xe7O\\x817\\x02\\xb7\\xd5*\\xcf\\x9fBm\\xae\\xc5\\xf3\\xa7\\x90[k-\\xa3\\xd9VK_\\xe3\\x12\\x98\\x92\\\\\\xe8\\xda\\xe1\\xbb\\x03\\x0e:\\xd5\\xa6`xGR\\xcal\\x1a\\x04h0\\xa0!*$]c\\xe7\\x1d\\x02+?\\x7f\\nj\\x18\\xa8\\xe1*E\\xbeF\\x895^\\xde\\x1e\\x8e\\x003\\x12\\xcc(\\xa5+\\xa3\\xa1\\x8eAW\\xc6B\\x1eW\\xab>}\\n}B\\xad!\\xc7\\x13k\\xads<\\xa9\\x96\\xca\\xb1\\xf9}\\x94\\xc9h\\xc8\\x14x\\x9fJ\\xe7\\xd8\\xf4>\\xca4\\xf0]\\xe0\\xa7\\xd396\\xbf\\x8f\\xb2\\x05\\x0c\\xb6\\x84\\xc1VT\\x8eM\\xef\\xa3\\xcc\\x00>\\x13\\xf8,%0v\\xa8\\x0e\\x04\\xc6\\t\\xd9e\\x9dc7\\x9dc\\xdd}\\x14\\x0f|{\\xe1\\xc0G\\xe7X\\xbb\\x8f\\xe2\\x07\\x14\\x00\\xb4\\xb5!\\xc7\\xda}\\x94m@m\\x0bj;*\\xc7\\xda}\\x94\\xed\\xc1\\xec\\x00fG\\xa5+\\xb3\\xa1\\xee\\x84\\xae\\xcc\\x81o/\\xe9\\xbf\\x1a\\xed\\x01|%\\xf0=)\\x94\\xc2\\xf5\\xe0{\\xc1\\x1f\\xd9\\x97R\\xb8\\x01\\x06G\\xc1`\\xe3\\x7f\\x97\\xc2\\xa3\\x81\\x1f\\x03|\\x93\\x92\\xa4c\\xa1\\x1e\\x87\\xc0\\x1c\\x0f\\xf9\\x04\\xebh\\x9ehY\\nO\\x82\\xef\\x93\\xe1\\xe0\\x14\\xabRx*\\xa0\\xd3\\x00\\x9dnY\\n\\xcf\\x00u&\\xa8\\xb3,J\\xe1\\xd9`\\xce\\x01s\\xae\\xd2\\x95\\xf3\\xa0\\x9e\\x8f\\xae\\\\\\x00\\xf9B5\\xc7\\x17A\\xbf\\x18\\xa5\\xf0\\x92>\\x96BR\\x8b\\xe4Rx)\\xcc/\\xebo)\\xbc\\xcc\\xbc\\x14^\\xae\\x95\\xc2+\\xb4Rx\\xa5T\\n\\x9b\\x94Rx\\x15J\\xe1\\xd5\\xe6\\xa5\\xf0\\x9a\\n\\x83\\xf3ZC)4\\xbfsq\\x1dBx=:v\\x83a\\xb4\\x99\\xde\\xb9\\xb8\\x11\\x067\\xc1\\xe0fj8\\x9b\\xdf\\xb9\\xb8\\x05\\xfc\\xad\\xe0o\\xa3F\\xa7\\xe9\\x9d\\x8b\\xdb\\x81\\xdf\\x01\\xfcN%\\xa5wA\\xbd\\x1b)\\xbd\\x07\\xf2\\xbd\\xd6\\xa3\\xf3>C1\\xd4\\xdd\\xb9\\xb8\\x1f\\xce\\x1f\\x80\\x87\\x07\\xe9\\x91\\xa7\\xbbs\\xf1\\x10\\xa8\\x87A=B\\rb\\xdd\\x9d\\x8bG\\x01=\\x06\\xe8q\\x1a\\xd2\\xee\\\\<\\x01\\xe8I@O)\\x9dy\\x1a\\xea3\\xe8\\xcc\\xb3\\x90\\x9fS\\xc7\\xe7\\xf3\\xd0_0\\xd6\\xa0\\x17+\\xa4\\xf9%C\\x9a\\xcd\\xef+\\xbf\\x8c\\x96\\xbc\\x02\\xf7\\xaf\\xd2E\\xc8\\xf4\\xc6\\xf2k\\xe0_\\x07\\xff\\x06\\x9de\\xd3\\xfb\\xcao\\x82\\x7f\\x0b\\xfc\\xdbT\\x96Mo+\\xbf\\x03\\xfc]\\xe0\\xef)\\x81y\\x1f\\xea\\x07\\x08\\xcc\\x87\\x90?\\xb2\\xce\\xf2\\xc7\\x86,\\xeb\\xee+\\x7f\\x02\\xe7\\x9f\\xc2\\xc3g\\x86,k7\\x96?\\x07\\xf5\\x05\\xa8/\\xe9\\x04j\\xf7\\x95\\xbf\\x02\\xf45\\xa0o\\xa8\"\\xa4\\xddV\\xfe\\x16\\xccw`\\xbeW\\xfa\\xf2\\x03\\xd4\\x1f\\xd1\\x97\\x9f \\xff\\xac&\\xf9\\x17\\xe8\\xbf\\x1a\\x93\\xfc[\\x85$\\xff^+?7\\t\\xd3?\\xe1\\xf6/\\xc8\\x7f[\\x87\\xe8\\x1f\\xd9\\xe8_\\x80\\x03\\xeap\\xab\\xac\\x8e\\xc8Uu\\xea\\xad2\\xe85uxd\\xb2\\xaeo\\x05\\xf1*\\xad \\xd6\\xc1\\xbc\\xbe\\xae\\x9f\\x05\\x11\\x06\\x9b\\x17\\xc4\\x86:\\xb5 6\\xd6\\xa9\\x05\\xd1V\\x87\\x82\\xd8\\xac>5Y\\x87\\xa7&\\xebL\\x0bbK\\x9du\\x10[\\xeb\\xa4x\\xb4\\xa1\\xd1\\xed\\x88G\\x07\\xe4\\xce:\\xcb \\x0e\\x92\\x8d\\x06\\x03\\x1c\\x02\\xa3\\xa1\\x90\\x87\\xa9A\\x1c\\x0e}D\\x9d\\xa1-#+\\xb4eT\\x9da\\x9f\\x9ap\\xe6\\xa2\\xceT8\\\\\\xd0\\xefSG\\xd7\\x91\\xa15\\x06\\xee\\xc7\\xd6Q\\xb36\\xe2\\x10\\x92NO\\x98I\\xe9g\\xf98\\xf0\\xe3\\xc1OPy|\\xf1\\xf5\\xa6\\xf2B\\xa4\\x1cH\\x94t\\xf8D\\xe0\\x93\\x80O\\xa6\\xf0H,\\xee\\xe5#\\x9c\\xd7\\xae\\xbf\\xed2\\x05\\xf8T\\xe0\\xd3\\xea\\xe4\\x81\\xde\\x05u:\\xe2\\xb2\\x05\\xe4-\\xad\\x83\\xb9U\\x1d=i]1\\x97G~\\x96g\\x06\\x9c\\xcf\\x84\\x87Yj[\\xb0s\\x881\\x9c|E\\xd0\\x0e\\xc8\\x01\\xc8\\xa9Bd:zKi\\xf9Q\\x1e\\x17\\x187\\x18\\x0f\\xc50\\x89\\xb8\\xfcL\\x90\\x17\\x8c\\x0f\\x8c_\\xe9I\\x00\\xea\\xd6\\xe8\\xc96\\x90\\xb7U3\\xbc\\x1d\\xf4\\xed\\x8d\\x19\\xde\\xa1B\\x86w\\xac\\xeb\\xcb\\xf2;\\x1b-\\xd9\\t\\xee\\xe7\\xa8\\xad\\xad\\xb0\\xfc\\xce\\x85\\xc1<\\x18\\xcc\\xa7\\x86\\x84\\xf9\\xf2\\xbb\\x00\\xfcB\\xf0\\x8b\\xa8\\x1c\\x9b.\\xbf;\\x03\\x0f\\x02\\xdfE\\x89\\xccb\\xa8K\\x10\\x99\\xa5\\x90\\x97Y\\xe7x\\xd7:\\xcb\\xe5\\xb7\\x1b\\xce\\x97\\xc3\\xc3\\n\\xb5-\\xc6\\xe5w7P\\xbb\\x83\\xda\\x83\\x1a\\t\\xba\\xe5w%\\xa0=\\x01\\xedEC\\xda\\xf2\\xbb7\\xa0}\\x00\\x85\\x94\\xce\\xec\\x0b\\xb5\\x07\\x9d\\xd9\\x0frXMs\\x04z\\x14\\xd50\\xd6\\xc7jH\\xca\\x91\\\\\\r\\x19\\x98\\xc7\\xfb[\\r\\xe3\\xe6\\xd50\\xa1U\\xc3\\xa4V\\rY\\xa9\\x1a\\xb6(\\xd50\\x85j\\x986\\xaf\\x86\\x99\\n\\xe33+\\x17\\xb6\\x1c\\x1a\\x9dG<\\n\\x909\\xeb\\xe4\\xf2\\xb2Q\\x11`\\tF\\x02\\xe4\\xb2\\x1a\\xc4\\xfd\\xa1\\xaf2\\xce\\x95\\xd5\\x15\\xda\\xb2\\xc60W|\\xbep.\\xe7\\x8e\\xc6s.\\xfdP>\\x00\\xe9<\\x10\\xee\\xd7\\xd2\\xd5\\xb0T\\x08$\\xdd\\x1eG,\\xa7\\xdf\\x93\\x1c\\x04\\xfe`\\xf0\\x87\\xd0S%\\x1eu\\n\\x1c\\x13-S\\x17\\xe4\\x0f\\x05\\x7f\\x18\\xf8\\xc3\\xa9\\xa9\\x92(e\\xfd%\\xc6\\xc5\\x15X\\x1d~\\x04\\xf0u\\xc0\\xd7+\\xa3\\xab\\x17\\xea\\x91\\x08\\xcc\\x06\\xc8GYGs\\xa3a\\xaa\\x04\\xca\\xd1dX\\x1a\\xbaG\\xc3\\xf91\\xf0\\xb0\\xc90U|\\xde\\x98|u\\xf1XP\\xc7\\x81:\\x9e\\x9a\\x05N\\xbb;%?\\xc8q\\x02\\xa0\\x13\\x01\\x9dD\\x15\\xc4\\xac\\xd3.W\\xdf\\x93\\xc1\\x9c\\x02\\xe6T\\xa5/\\xa7A=\\x1d}9\\x03\\xf2\\x99j\\x92\\xcf\\x82~\\xb61\\xc9\\xe7TH\\xf2\\xb9Zo\\xf1e\\xd9\\xef)x\\x03\\x99T,\\xa6_\\x92\\xceCC\\xce\\x87\\xf7\\x0b\\xe8\\x1c\\x173\\xaeR\\x81\\x8b\\x96\\x92\\xfa5\\xe9B\\xf0\\x17\\x81\\xbf\\xd8P?\\xcb)?\\x9f*\\xa7\\xb2\\x9c\\xfe\\xde\\xd7%0\\xb8\\x14\\x06\\x97QI\\xce\\xb0\\xb1\\xac=Q\\xca%\\xf4\\x97r.\\x07~\\x05\\xf0+\\x95\\xc0\\\\\\x05\\xf5j\\x04\\xe6\\x1a\\xc8\\xd7Z\\'\\xf9:\\xad\\xdb$1^\\x87\\xcf)_\\xf6\\xbd\\x1e\\xbeo\\x80\\x83\\x1b\\r9v\\x0b\\xbc|\\xef\\xe3&P7\\x83\\xba\\x85\\xa6\\x9c\\xbc\\xaf,\\x8f\\x84[A\\xdd\\x06\\xeav*\\xc9<\\xef\\x92\\xc7\\xd4\\x1d`\\xee\\x04s\\x97\\xd2\\x97\\xbb\\xa1\\xde\\x83\\xbe\\xdc\\x0b\\xf9>5\\xc9\\xf7C\\x7f\\x00\\xe5\\xf0\\xc1>\\x96\\xc3\\x94V\\x0e\\x1f\\x82\\xf9\\xc3\\xfd-\\x87\\x0f\\x9b\\x97\\xc3G\\xb4r\\xf8\\xa8V\\x0e\\x1f\\x93\\xcaa\\xabR\\x0e\\x1fG9|\\xc2\\xbc\\x1c>Yat>E\\x8fN\\x7f\\x81\\xcd\\x08\\xe1R\\xcc\\xeb\\xd5\\x8f\\xb6\\xa7\\x11\\xc1g\\xd0\\xafg\\xe9\\xd1\\xc9\\xe4\\xa2\\xb1x\\x8au:\\xf5\\xab\\xe9s\\xe0\\x9f\\x07\\xff\\x02=:]\\xeeX:\\xces\\xceBD\\x7f)\\xf0E\\x18\\xbc\\x04\\x83\\x97\\xa9\\xd1\\x19\\x17|\\x9c\\'\\x93\\x8c\\xba\\xf5\\xfb\\xbdW\\x80\\xbf\\n\\xfc5%\\xa3\\xafC}\\x03\\x19}\\x13\\xf2[\\xd6\\xa3\\xf3mztF\\xc3eV\\xbe\\x96\\xf7\\x0e|\\xbf\\x0b\\x07\\xefQ\\xb5e\\x06\\xebu\\xc9_\\xb5\\xde\\x07\\xf4\\x01\\xa0\\x0f\\xe9\\xc1\\xe9f\\\\\\t\\x99\\xfa\\x08\\xd4\\xc7\\xa0>\\xa1\\x06g:\\xc2\\xa6$\\xe6S0\\x9f\\x81\\xf9\\\\\\xe9\\xca\\x17P\\xbfDW\\xbe\\x82\\xfc\\xb5:8\\xbf\\x81\\xfe\\xad\\xb1\\x02}W!\\xc7\\xdfk\\x9d%!\\r3\\xbeb6\\x1e\\x8b0\\x0e]H\\x7f@;~\\x84\\xf3\\x9f\\xa8\\x0c\\x849\\xce\\x95\\xb2\\xbb\\x98\\x88\\x1e\\xff\\x19\\xf8/\\xc0\\x7f\\xa5G\\x843\\x9f\\xca\\xba\\xc2\\xd1\\xac\\x9f\\xd3\\xf1\\xbf\\x81\\xff\\x1d\\xfc\\x1f4\\xefr\\xfa}\\x11>\\x1d\\x89\\xeb\\xef\\xe2\\xfe\\t\\xfe/\\xf0\\x7f+a\\xf9\\x07\\xea\\xbf\\x08\\xcb\\x80z\"\\x0f\\xac\\xb7\\xccpU\\xbd\\xdail\\x82\\xc3>y3]]O\\\\\\xd7\\xc0\\xbe\\xb6\\x9e\\xda(\\x17\\xdd\\xf2\\x83(u`\\xea\\xc14\\xd4S\\x83\\xc0U\\x88\\xcb\\x8e\\x1a\\x01\\xd9\\x005\\xd1\\x90\\xdb[\\x94\\xf7~\\xcd\\x80Z\\x00\\xb5\\xd6\\xcb\\x1di\\x83\\xda^\\x8fob\\x90;\\xeb\\x95\\xfc\\x0e\\x82>\\xb8\\xde\\x90\\xdf!\\xf5\\xd6\\xf9\\x1dZOo#\\x9c\\x99\\x12Wv\\xb9\\xc5\\x89\\xac\\xbf\\xfd8\\x0c-\\x19\\x0e\\xf7#\\xea\\xa9\\x14\\xc4y\\xd6^\\x10\\xbc\\xac?\\xa2\\xffI\\x19\\xf8Q\\xe0G\\xd7S#\"\\x99\\x0b\\xb3\\xa9R\\x91\\xdaA\\x8f\\x01>\\x16\\xf88\\n\\x8f\\x04\\x121\\'\\x9b\\x8b\\xc7\\n\\xfa_\\x94\\x01\\x9f\\x00|\\xa2\\x12\\x97IP\\'#.S O\\xb5N\\xf0\\xb4zz\\x17\\xe1\\xca\\xa4\\x1dr\\xfa\\xba\\xe0|:5\\xc3~\\xe8\\x81z\\xb2Vl]\\xdf\\xb7\\xe5\\xe5qmy\\xd9\\x06\\xe6\\xdb\\xd6\\xf7sy\\x81\\xc1\\xe6\\xcb\\xcbv\\xf5\\xea\\xf2\\xb2}\\xbd\\xba\\xbc\\xecP\\x8f\\xe5\\xa5MY^v\\xac\\'\\xcb\\xcb\\xecz\\xd3\\xe5e\\xa7\\nCsN\\xbd\\xb4q\\x9e\\x8bF\\xcfC<\\xe6C^`\\x9d\\xd9\\x85\\xb2\\xd1\"\\x80;\\xc3(\\x08y\\x175\\x88\\x8b\\xa1/1N\\x93\\xa5\\x15\\xda\\xb2\\xcc0M\\xcc\\xd7\\xba]\\x91\\xcen\\xb8_N\\x8dc\\xd3\\xa5n\\x05\\xf0\\xdd\\x80\\xefN\\xcd*\\xf3\\x95n\\x0f\\xf0+\\xc1\\xefi\\x98\\x85fK\\xdd^\\xe0\\xf7\\x06\\xbf\\x8f2\\xbaBP\\xf7E`z \\xefg\\x1d\\xcd\\xb0a\\x9e\\xe8\\xd6\\xba\\x08\\x9cG\\xe1!F\\rom\\xa9c\\xc0\\xc4\\xc1$\\xa8\\xb9\\xa4[\\xe9\\x92\\x80X@)\\xc3\\x84S\\x97\\xba4\\xa0\\x0c\\xa0\\xac\\xd2\\x95\\x1c\\xd4<\\xbaR\\x80\\xcc\\xa99\\xe6\\xa1\\x17\\x8d9.U\\xc8\\xb1`\\xc8\\xb1\\x87/\\xf8\\x92Q&R\\xa4v\\xb7e\\xb4d\\x7f\\xb8_E\\xe5\\xd8\\x15(\\'\\xf8@\\xb4\\xe0\\xd7\\x7f\\xa1Z\\r|\\r\\xf0\\x03\\xa8\\x9c9}\\xe5\\x88\\x9d-\\x14\\xdd.\\xfdE\\xe4\\x03\\xc1\\xaf\\x05\\x7f\\x10\\x9d\\xe3H<\\xe2\\xf2g]\\t\\xaf\\xfe\\x0b\\xde\\xc1\\xe0\\x0f\\x01\\x7f\\xa8\\x12\\x98\\xc3\\xa0\\x1e\\x8e\\xc0\\x1c\\x01y\\x9du\\x8e\\xd7\\x1br\\xec\\xf7\\t>y\\x1f\\xdd\\x0b\\xe7G\\xc2\\xc3\\x06*\\xc7\\xceL@\\xbe\\xf4p\\x14\\x98\\x8d`\\x8e\\xa6\\xd2\\xe7\\xf2z9\\xb9\\x16\\x1e\\x03h\\x13\\xa0c\\xe9\\x1c3Q\\x9f\\xf2\\x832@\\xc7\\x03:A\\xe9\\xca\\x89POBWN\\x86|\\x8a\\x9a\\xe3S\\xa1\\x9f\\x86bxz\\x1f\\x8b!\\xa9Fr1<\\x03\\xe6g\\xf6\\xb7\\x18\\x9ei^\\x0c\\xcf\\xd2\\x8a\\xe1\\xd9Z1\\xa8\\xf7\\xa37\\x0f@~P\\x1d\\xa1\\x0fA\\x7f\\xd8X\\x85\\x1e\\xa9\\x90\\xe8G\\xeb\\xa5\\x05\\xec1\\x98>\\x0e\\xb7O@~\\xd2:HO\\xc9FO\\x03|\\x06F\\xcfB~Nm\\xcb\\xf3\\xd0_0\\xb6\\xe5\\xc5\\nmy\\x89\\x1et\\xe6O\\xea\\xbe\\x8c\\xa0\\xbc\\x02\\xef\\xaf\\x1a\\xc6\\x90\\xe9\\xa3\\xba\\xaf\\xc1\\xe0u\\x18\\xbca00}V\\xf7M\\x18\\xbc\\x05\\x83\\xb7\\xa9\\x92k\\xfa\\xa8\\xee;\\xc0\\xdf\\x05\\xfe\\x9e\\x92\\xa5\\xf7\\xa1~\\x80\\xc8|\\x08\\xf9#\\xebp~\\xac\\xf5\\x1b7\\xeb\\xb5\\'u?\\x81\\xefO\\xe1\\xe03\\xc3\\x90\\xd3\\x1e\\xd5\\xfd\\x1c\\xd4\\x17\\xa0\\xbe\\xa4)\\xdd\\xb3\\xba_\\x81\\xfa\\x1a\\xd47TQ\\xd4=\\xaa\\xfb-\\xa0\\xef\\x00}\\xaft\\xe6\\x07\\xa8?\\xa23?A\\xfeYM\\xf3/\\xd0\\x7fEQ\\xfc\\x8dx\\xfd\\xafwa\\x9c\\xabU\\xc4\\xdfa\\xfb\\x079\\xd0\\x9fwa\\xc0`\\xf3wa\\xfcI\\x0eK\\xef\\xc2\\xf8\\x8b\\x88\\xd2\\xbb0\\xfe\\x96*b\\x87R\\x11\\xffAE\\xfc\\xb7\\xdet{8\\xa0\\xc1zp\\x0el\\x90\\xc6|U\\x03itu\\x03\\tF\\r\\xe4\\xda\\x06\\xcb\\xcc\\xd6\\xc9F\\xf5\\x00\\x1b`\\xd4\\x08\\xd9\\xd6\\xa0D\\xb0\\tzs\\x83\\xa1--\\x15\\xda\\xd2\\xda\\xd0\\x97\\xadC[\\x03\\xc9e;\\xdcw4\\xfc\\xe7\\xd6\\xa1\\x13\\xf8 \\xe0\\x83U\\xdcz\\xeb0\\x04\\xfcP\\xf0\\xc3(\\xde|\\xeb0\\x1c\\xfc\\x08\\xf0#\\x1b\\xe4\\xa15\\n\\xeah\\x04f\\x0c\\xe4\\xb1\\xd6\\xd1\\x1c\\xd7`\\xb9u\\x18\\x0f\\xe7\\x13\\xe0a\\xa2\\xda\\x18z\\xeb0\\t\\xccd0ST\\xc6\\xb0u\\x98\\nh\\x1a\\xa0.\\n\\xd2m\\x1d\\xa6\\x03\\xda\\x02\\xd0\\x96JW\\xb6\\x82:\\x03]\\x99\\ty\\x96\\x9ac;t\\x871\\xc7\\xce\\n9v5P\\xc5\\xd0Y*0Q!\\xee\\x08P\\xbfvt\\xa3!\\x1ex\\xf7\\x1ar\\x10\\x8b\\x16\\xd3a\\x8f\\x9f\\xd3_\\x0b\\xf1\\x81\\xf7\\x83\\x0f\\xd0|\\x91\\t\\xc4\\x03vo\\x86z\\x0exk\\xf0\\xdb\\x80\\xdf\\x96\\x1aBn\\xa6\\x98-\\x96c\\xbc\\xa0\\x7f.j;\\xe0\\xdb\\x03\\xdfA\\x89\\xcb\\x8ePg#.;A\\x9ec\\x9d\\xe2\\xb9\\rT)t\\xbb\\x1c\\x11\\xb92\\xcd\\x83\\xef\\xf9p\\xb0\\x80NL<\\xc1\\xc9\\x17\\xd2\\x17\\x02Z\\x04hg\\x15\\x92\\xaf\\xc9\\x17\\xb31\\x89\\n\\x82\\xda\\x05\\xd4bj\\xb0x\\xcaa\\xb9\\xf2.\\x01\\xb3\\x14\\xcc2\\xa5+\\xbbB\\xedFW\\x96C^\\xa1\\xa6x7\\xe8\\xbb7\\x90\\xc2\\xb6GC\\xdfv\\x87\\xffh\\xb5p%\\xcc\\xf7l\\xe8\\xe7\\xee\\x10\\x06\\x9b\\xef\\x0e\\xf7jPw\\x87{7\\xa8\\xbb\\xc3}\\x1aP\\x0b;\\x95Z\\x18j \\xb5p\\xdf\\x06\\xd3Z\\xd8Sal\\xee\\'\\x97\\xb50\\x1a\\x1dA<\\xa2\\x90c\\xd6\\xa9ed\\xa38\\xc0\\x04\\x8c\\x92\\x90Y5\\x88)\\xe8i\\xe3<\\xc9ThKV\\x1b1d\\\\\\x9a\\xbe\\x95#\\x87d\\xe6\\xe1\\xbc\\xa0&|\\xa8|\\xab\\xc6\\xe4\\xb5\\x1c\\x1c\\x0cx\\x18\\x14\\xe9yb\\xfa^\\x8e\\x12x\\x01|\\x99\\x9a\\'\\xa6\\xaf\\xe5\\xd8\\x1f\\xf8*\\xe0\\xab\\x95\\xc1\\xb5\\x06\\xea\\x01\\x88\\xcb\\x81\\x90\\xd7Z\\x07\\xf3 \\xad\\xd7d\\xdcjo\\xe58\\x18\\xae\\x0f\\x81\\xfd\\xa1\\x86\\x19\\xa0\\xbd\\x96\\xe30P\\x87\\x83:\\xc2@i\\xef\\xe5X\\x07j=\\xa8^j\\x9eh\\xaf\\xe58\\x12\\xcc\\x060G)]\\xd9\\x08\\xf5ht\\xe5\\x18\\xc8\\x9b\\xd4\\x14\\x1f\\x0b\\xfd8c\\x8a\\x8f\\xaf\\x90\\xe2\\x13\\x1a\\x0c\\xcb\\x9d\\xe9\\xf3S\\'\\xa2%\\'\\xc1\\xfd\\xc9t\\xceL\\x9f\\x9f:\\x05\\xfc\\xa9\\xe0O\\xa3x\\xf3\\xe7\\xa7N\\x07\\x7f\\x06\\xf83\\xa9\\x1c\\x9b>?u\\x16\\xf0\\xb3\\x81\\x9f\\xa3\\x04\\xe6\\\\\\xa8\\xe7!0\\xe7C\\xbe\\xc0:\\xc7\\x176\\x18\\x96;\\xed\\xf9\\xa9\\x8b\\xe0\\xfcbx\\xb8\\xc4\\x90?\\xed\\xf9\\xa9KA]\\x06\\xear\\xaad\\xea\\x9e\\x9f\\xba\\x02\\xd0\\x95\\x80\\xae\\xa2\\x92\\xac=?u5\\x98k\\xc0\\\\\\xab\\xf4\\xe5:\\xa8\\xd7\\xa3/7@\\xbeQM\\xf2M\\xd0oF1\\xbc\\xa5\\x8f\\xc5\\x90T#\\xb9\\x18\\xde\\n\\xf3\\xdb\\xfa[\\x0co3/\\x86\\xb7k\\xc5\\xf0\\x0e\\xad\\x18\\xde)\\x15\\xc3AJ1\\xbc\\x0b\\xc5\\xf0\\xee\\x06\\xd3\\xaf\\xca\\xf7T\\x18\\x9d\\xf7\\xcau\\xed>4\\xfa~\\xc4\\xe3\\x01\\xc8\\x0fZ\\xe7\\xf6!\\xd9\\xe8a\\x80\\x8f\\xc0\\xe8Q\\xc8\\x8f\\xa9A|\\x1c\\xfa\\x13\\xc6\\x99\\xf2d\\x85\\xb6\\xb8\\x91\\xd4\\xb6!\\xc4\\xe9\\x7f}I\\xbeK\\xab\\x85Ca;\\x8cX\\xf5\\xe7K2\\x0c6\\xff\\x92<\\x9c\\x1c\\x96\\xbe$\\x8f \\xa2\\xf4%yd#j\\xe1`\\xa5\\x16\\x8ej$\\xb5pt\\xa3i-\\x1c\\xd3h=.\\xc76Jem\\x1c\\x1a=\\x1e\\xc1\\x98\\x00y\\xa2uZ\\'\\xc9F\\x93\\x01N\\x81\\xd1T\\xc8\\xd3\\xd4\\x08vA\\x9f\\xdehh\\xcb\\x16\\x15\\xda\\xb2\\xa56Zp5\\xc9\\xb4\\x14n\\x85T\\xce\\x80\\xf7\\x99\\x8d\\xfa1lZ\\tg\\x01\\xb7\\x03wP\\xb8i!t\\x02w\\x01w\\xab\\xb8\\xb4\\xef4\\xad\\x84\\x1e\\x18xa\\xe0SF\\x96\\x1fj\\x00q\\xd9\\x1a\\xf26\\xd6\\xc1\\xdc\\x96\\x9e#\\xfaB\\xb8\\x1d\\x9co\\x0f\\x0f;PC[\\xab\\x83;\\x82\\x99\\rf\\'\\x95\\xc1\\xeb\\xf9uep\\x0e\\xa8\\xb9\\xa0\\xe6\\xd1\\xb3M\\xab\\x83\\xf3\\x01-\\x00\\xb4P\\xe9\\xcb\"\\xa8;\\xa3/A\\xc8\\xbb\\xa89^\\x0c}\\x891\\xc7K+\\xe4x\\x19\\x9dc\\x8b\\x9f\\x92\\xa1!\\xdd\\xf0\\xbe\\x9cJ\\x9a\\xf9/\\xc9\\x80\\xef\\x06|w\\x15\\x97\\xaa\\xa6\\xe9O\\xc9\\xc0\\xaf\\x04\\xbf\\'\\xcd\\x9b\\xff\\x96\\x0c\\xfc\\xde\\xe0\\xf7Q\\xe2\\x12\\x82\\xba/\\xe2\\xd2\\x03y?\\xeb\\x1c\\x87\\xb5^\\xe3\\xea\\x85\\xee\\xa7d\\xf0\\x1d\\x85\\x83\\x18\\x95b\\xdd/\\xc9\\xc0\\xc4\\xc1$\\xe8\\xe4\\xe9~J\\x06\\x88\\x05\\x94\\xa2!\\xddo\\xc9\\x00e\\x00e\\x95\\x9e\\xe4\\xa0\\xe6\\xd1\\x93\\x02dN\\xcd0\\x0f\\xbd\\x88:X\\xeaK\\x1d$\\x85H\\xae\\x83\\x02l\\xcb\\xfd\\xad\\x83e\\xf3:\\xb8\\xbfV\\x07Wiup\\xb5T\\x07\\x87(up\\r\\xea\\xe0\\x01\\x8d\\xa6_\\x90\\x0f\\xac0.\\xd7\\xca%\\xed 4\\xfa`\\x04\\xe3\\x10\\xc8\\x87Z\\xa7\\xf50\\xd9\\xe8p\\x80G\\xc0h\\x1d\\xe4\\xf5j\\x04{\\xa1\\x1fi\\x9c#\\x1b*\\xb4\\xe5(m\\xb4X\\xbe\\xc4w#2y4\\x9c\\x1fc(T\\xa6oF\\xd8\\x04\\x83cap\\x1c=\\xe8M_\\x8dp<\\xf8\\x13\\xc0\\x9fH\\xcdA\\xd37#\\x9c\\x04\\xfcd\\xe0\\xa7(#\\xebT\\xa8\\xa7!.\\xa7C>\\xc3:\\x98g\\xd2sD\\xf7b\\x84\\xb3\\xe0\\xfbl88\\x87*q\\xfa\\x97\\xf8\\x9e\\x0b\\xea\\x01.&\\xda\\xa8$k;\\xffI\\x80&\\x03\\x9a\\xa2B\\x9b]\\x01\\x99\\nl\\x1a\\xb0.*\\xcf\\xda\\xce\\x7f:\\x98-\\xc0l\\xa9\\xf4f+\\xa83\\xd0\\x9b\\x99\\x90g\\xa9y\\xb6Cw\\xd8Hms\\xda\\xfa\\xb0/|]\\xab\\x85.\\xd8\\xbam\\xfd\\xdc\\x17\\xc2`\\xf3}\\xa1\\xc7\\xa6\\xee\\x0b\\xbd6u_\\xe8\\xb3\\xa1\\x16\\x0eSj\\xa1\\xdfFja\\xc0f\\xba/\\xdc\\xba\\xc2\\xe8\\xdc\\xc6&\\xbfl\\x1f\\x8d\\xde\\x0e\\xc1\\xd8\\x1e\\xf2\\x0e\\xd6\\xa9\\xddQ6\\x9a\\rp\\'\\x18\\xcd\\x81\\x16\\xfaq\\xa8\\x86\\xc7\\xdb\\xfa\\xb69$\\x15I.\\x88\\'\\xc0\\xfcD[?7\\x870\\xd8|sx\\x92M\\xdd\\x1c\\x9elS7\\x87\\xa7H\\x05q\\xb8R\\x10OEA<\\xcdf\\xba9<\\xbd\\xc2\\xf8\\xf0\\x0b\\x80_h\\x18\\xfc\\xa6\\x8b\\xf5E0\\xb8\\x18\\x06\\x97(\\t\\xbd\\x14\\xeaeH\\xe8\\xe5\\x90\\xaf\\xb0\\x1e\\x9dW\\xd2\\xa3S\\xbfV_\\x05\\xe7W\\xc3\\xc35t\\xe1P\\x97\\xeak\\xc1\\\\\\x07\\xe6zj\\x04\\xebW\\xea\\x1b@\\xdd\\x08\\xea&jp\\xea.\\xd2\\xdd\\x0c\\xe8\\x16@\\xb7*}\\xb9\\r\\xea\\xed\\xe8\\xcb\\x1d\\x90\\xefT\\x07\\xe7]\\xd0\\xef6\\xd6\\xa0{*\\xe4\\xf8^\\x9b|\\x83\\x0c\\xa6\\xf7\\xc3\\xed\\x03\\x90\\x1f\\xb4\\x0e\\xd1C\\xb2\\xd1\\xc3\\x00\\x1f\\x81\\xd1\\xa3\\x90\\x1fS\\xdb\\xf28\\xf4\\'\\x8cmy\\xb2B[\\x9e\\xa2\\xc7\\x9b\\xf9\\xfe\\xffi\\x04\\xe5\\x19x\\x7f\\x96\\x1a@\\xa6\\xdb\\xff\\xe7\\x80?\\x0f\\xfc\\x05\\xaa\\x18\\xce0\\xdd\\xff\\xbf\\x08\\xfe%\\xf0/\\xd3\\xbc\\xe9\\x17\\x80W\\xc0\\xbf\\n\\xfe5%G\\xafC}\\x03qy\\x13\\xf2[\\xd6\\xc1|[\\xeb5\\xc9\\xbfn\\xff\\xff\\x0e|\\xbf\\x0b\\x07\\xefQ\\xc3M\\xdb\\xfe\\xbf\\x0f\\xe6\\x030\\x1f\\xd2\\x03I\\xdb\\xff\\x7f\\x04\\xe8c@\\x9f\\xd0\\x90\\xf6\\x05\\xe0S@\\x9f\\x01\\xfa\\\\\\xe9\\xc9\\x17P\\xbfDO\\xbe\\x82\\xfc\\xb5\\x9a\\xe1o\\xa0\\x7f\\x8bR\\xf8\\x9d\\xad\\x0f\\x1b\\xc3S\\xb5:\\xf8=l\\x7f\\xb0\\xf5sc\\x08\\x83\\xcd7\\x86?\\xda\\xd4\\x8d\\xe1O6uc\\xf8\\xb3T\\x07G\\xa8\\x7fz\\ru\\xf0W\\x9b\\xe9\\xc6\\xf0\\xb7\\n\\xe3\\xf2wy\\xb8\\xff\\x81F\\xff\\x89`\\xfc\\x05\\xf9o\\xeb\\xb4\\xfe#\\x1b\\xfd\\x0bp@\\x13\\xde\\x1e\\xd2D\\xe4\\xaa&\\xf5\\xed!\\xd0k\\x9a\\x0cm\\xa9m\\xb2nK]\\x13]\\x93M\\xdf\\x1f^\\xdfDR\\xd9\\x00\\xef\\x8dM\\xd4\\x8an\\xf6\\xfep\\x1b\\xf0&\\xe0\\xcd*n\\xfd\\xfe\\xf0\\x16\\xf0\\xad\\xe0\\xdbh\\xde\\xf4\\xfd\\xe1\\xed\\xe0;\\xc0w6\\xc9#k\\x10\\xd4\\xc1\\x88\\xcb\\x10\\xc8C\\x9b,\\x839\\xac\\x89\\x9a#\\xba\\xf7\\x87\\x0f\\x87\\xef\\x11p0\\xb2I?\\xb4u\\xef\\x0f\\x1f\\x05h4\\xa01\\x14\\xa4{\\x7f\\xf8X@\\xe3\\x00\\x8d\\xa7!\\xed\\xfd\\xe1\\x13\\x00M\\x044I\\xe9\\xcad\\xa8S\\xd0\\x95\\xa9\\x90\\xa7\\xa9)\\xee\\x82>\\xdd\\x98\\xe2-*\\xa4xK\\xad\\xb3\\xd2\\xb60\\xeef\\x1c\\xe9X\\x99\\xcb\\xe9\\x9f\\xfe\\xdb\\n-\\x99\\x01\\xf73\\xa9\\x1c\\x17Xo\\xd2\\x99\\xca$b\\xd4\\xcd1\\xe0v\\xe0\\x0e*g.G\\xc6^\\xc8\\xc7\\xb3.\\x97\\xfeaD\\'x\\x17x7\\x9d\\xe3\\x94=\\xe1H&=\\xb9\\xb4\\xfe\\xab\\x85\\x07\\xbc\\x17\\xbcO\\t\\x8c\\x1fj\\x00\\x81\\xd9\\x1a\\xf26\\xd69\\xde\\xb6\\x89ZwgD\\x8a\\x99\\x88\\xfc\\xfe\\xf0\\xed\\xe0|{x\\xd8\\x81N\\xb2\\xc3\\xa9\\xfc\\x1esG@\\xb3\\x01\\xedDA\\xeep\\xd8.\\xef\\xf7\\xe6\\x00\\x9a\\x0bh\\x1e\\x9d\\xe4<\\xcb\\xc8\\xe5r>\\xa0\\x05\\x80\\x16*}Y\\x04ug\\xf4%\\x08y\\x175\\xc9\\x8b\\xa1/i\"\\x95miS\\xdf6\\x85\\xbfh\\xc5p\\x19\\xccwm\\xea\\xe7\\xa6\\x10\\x06\\x9bo\\n\\xbb\\x9b\\xd4M\\xe1\\xf2&uS\\xb8\\xa2\\t\\xc5p\\xa4R\\x0cwk\"\\xc5p\\xf7&\\xd3M\\xe1\\x1e\\x15F\\'I\\x0e\\x89\\xc7\\x9eh\\xf4^\\x88\\xc7\\xde\\x90\\xf7\\xb1\\xcemH6\\xda\\x17`\\x0f\\x8c\\xf6\\x83\\x1cV\\x83\\x18\\x81\\x1e5\\xce\\x94X\\x85\\xb60t14\\x7f%B\\x1c\\xd9L\\xc0{\\x92\\x1e\\xc9\\xa6\\xafD`\\xc1\\xa7\\xc0\\xa7U\\xbe\\xc2+\\x1120\\xc8\\xc2 G\\xcdD\\xd3W\"\\xe4\\x81\\x17\\x80s\\xca\\xe8\\xe2\\xa1\\x16\\x11\\x98\\x12d\\xc1:\\x9ae\\xba\\x1a\\xea^\\x89\\xb0?|\\xaf\\x82\\x83\\xd5jS\\xa4\\xafO\\xda+\\x11\\xd6\\x80:\\x00\\xd4\\x814\\xa5{%\\xc2ZP\\x07\\x81:X\\xa5\\xc8\\xeeC{%\\xc2!`\\x0e\\x05s\\x98\\xd2\\x97\\xc3\\xa1\\x1e\\x81\\xbe\\xac\\x83\\xbc^Mr/\\xf4#\\x8dI\\xdeP!\\xc9G\\x19\\x92\\x1c\\xf7y\\x93^;\\x93.\\x95t\\xdb\\xfe\\x8dh\\xc8\\xd1\\xf0~\\x0c\\x9dd\\x1f\\xe3\\x0fx\\x1cL*\\xa6\\x7f6{\\x13\\xf8c\\xc1\\x1fG\\xf3\\x99\\x92\\xcf\\x17\\xe6R\\x19\\xea\\xee\\xcc\\xf1\\xe0O\\x00\\x7f\"\\x95\\xe3\\x94\\x10\\xf5\\']\\xb9\\x08\\xf5-\\xe4$\\xe0\\'\\x03?E\\x89\\xcb\\xa9POC\\\\N\\x87|\\x86u\\x8e\\xcf\\xa4\\xab\\xa17\\\\t\\xb9\\xe5\\xef\\x0eg\\xc1\\xf9\\xd9\\xf0p\\x0e]\\xc3\\x02\\xb1\\x8c|\\xf3\\xeb\\\\@\\xe7\\x01:_\\x85\\xa4+\\x86\\x82\\'\\xe7\\x95}]\\x00\\xecB`\\x17QI\\xf6\\'\\xbd\\xf2\\xf3\\x8c\\x17\\x83\\xb9\\x04\\xcc\\xa5Jg.\\x83z9:s\\x05\\xe4+\\xd5$_\\x05\\xfdj\\x94\\xc3k\\x9a\\xfa\\xb01$\\xc5H\\xae\\x85\\xd7\\xc2\\xf6\\xba\\xa6~n\\x0ca\\xb0\\xf9\\xc6\\xf0\\xfa&ucxC\\x93\\xba1\\xbcQ\\xaa\\x85\\xa3\\x94Zx\\x13j\\xe1\\xcdM\\xa6\\x1b\\xc3[*\\x0c\\xcd[\\xe5\\xb2v\\x1b\\x1a};\\x82q\\x07\\xe4;\\xad3{\\x97lt7\\xc0{`t/\\xe4\\xfb\\xd4\\x08\\xde\\x0f\\xfd\\x01\\xe34y\\xb0B[\\x1e\\xd2\\x06\\x8c\\xe5\\xcb\\x19\\x1eF&\\x1f\\x81\\xf3G\\xa9Ql\\xfar\\x86\\xc7\\x80?\\x0e\\xfc\\tz\\x92\\x98\\xbe\\x9c\\xe1I\\xf0O\\x81\\x7f\\x9a\\xe6M_\\xce\\xf0\\x0c\\xf8g\\xc1?\\xa7\\x0c\\xac\\xe7\\xa1\\xbe\\x80\\xb0\\xbc\\x08\\xf9%\\xebX\\xbe\\xacu\\x1aw3\\xd4\\x973\\xbc\\x02\\xd7\\xaf\\xc2\\xfe5j\\\\k/gx\\x1d\\xcc\\x1b`\\xde\\xa4\\xe7\\x91\\xf6r\\x86\\xb7\\x00\\xbd\\r\\xe8\\x1d\\x1a\\xd2^\\xce\\xf0.\\xa0\\xf7\\x00\\xbd\\xaft\\xe4\\x03\\xa8\\x1f\\xa2#\\x1fA\\xfeX\\xcd\\xef\\'\\xd0?5\\xe6\\xf7\\xb3\\n\\xf9\\xfd\\x9c.\\x83\\xe6?:\\xff\\x02\\r\\xf9\\x12\\xde\\xbf\\xa23`\\xfa\\xab\\xf3\\xaf\\xc1\\x7f\\x03\\xfe[\\x95\\xaf\\xf0\\x82\\x95\\xef`\\xf0=\\x0c~\\xa0F\\x90\\xe9\\xaf\\xce\\x7f\\x04\\xfe\\x13\\xf0\\x9f\\x95\\xc0\\xfc\\x02\\xf5W\\x04\\xe67\\xc8\\xbf[g\\xf8\\x8f&j\\xad\\xd3\\xfd\\xe8\\xfcO\\xf8\\xfe\\x0b\\x0e\\xfe\\xa63\\xa3\\xfd\\xea\\xfc\\x1f@\\xff\\x02\\x1a\\xd0L-u\\xba\\x9f\\x9d\\x0fl\\xc6\\xfd\\xb1fBU7\\xebG\\x8b\\xf6\\xab\\xf3\\x1a0\\xb5`\\xea\\x9a\\x95\\xfbcP\\x1b\\x9aq\\x7f\\x0c\\xb2\\xadY\\xbd?\\x06\\xbd\\xb9\\x19\\x7f\\x88\\xba\\xb9o\\x9b\\xc2\\x9b\\xb4B\\xd8\\n\\xf3\\xb6\\xe6~n\\na\\xb0\\xf9\\xa6\\xb0\\xbdY\\xdd\\x14v4\\xab\\x9b\\xc2\\xcef\\x14\\xc2\\xd1\\xea\\xdf\\xa2n\\xc6\\xdf\\xa2n6-\\x84C\\x9a\\xad\\x07\\xe7\\xd0f\\xa9\\xa6\\rC\\xa3\\x87#\\x1e# \\x8fl\\xb6L\\xed(\\xd9h4\\xc010\\x1a\\x0by\\x9c\\x1a\\xc4\\xf1\\xd0\\'4\\x1b\\xda2\\xb1B[&5\\xf7aS8\\x19\\xd9\\x9c\\x02\\xefS\\xd5\\x8c[o\\n\\xa7\\x81\\xef\\x02?]\\xe5+l\\n\\xb7\\x80\\xc1\\x960\\xd8J5\\xb0\\xdc\\x14\\xce\\x00>\\x13\\xf8,et\\xd9\\xa1:\\x10\\x18\\'d\\x97u4\\xdd\\xcd\\xd4D\\xd1m\\n=\\xf0\\xed\\x85\\x03\\x1f=\\x07t\\x9bB?\\xa8\\x00\\xa8\\xadiJ\\xb7)\\xdc\\x06\\xd4\\xb6\\xa0\\xb6\\xa3f\\x8a\\xb6)\\xdc\\x1e\\xcc\\x0e`vT\\xfa2\\x1b\\xeaN\\xe8\\xcb\\x1c\\xc8s\\xd5$\\xcf\\x83>\\xdf\\x98\\xe4\\x05\\x15\\x92\\xbc\\x90Nr$\\x9eH\\x94\\x18\\xa7\\xcb\\x9d\\xd0\\x7fE^\\x84\\x86\\xec\\x0c\\xefA*\\x07\\x0e\\xb7\\'\\x15\\x0e\\xa7\\x13^\\xea\\xee\\x18\\xf0\\xc5\\xc0\\x97\\xd09v1\\xe5\\x08\\xc70\\xf6\\xac[\\xbf>.\\x85\\xc12\\x18\\xecJ\\xf9w\\xa7s1\\x97\\xb3P\\xcc\\xeao\\xe4t\\x03_\\x0e|\\x85\\x12\\x97\\xdd\\xa0\\xee\\x8e\\xb8\\xec\\x01y\\xa5u\\x8e\\xf7\\xa4s\\x9c\\xb0\\xa7\\xd2r\\xf6\\xf6\\x82\\xef\\xbd\\xe1`\\x1f*/N_R\\x1e\\x07!0\\xfb\\x82\\xe91\\xd4B>\\xca*7\\xc7@\\x85AE(O\\x9e\\x82S\\xbe\\xff\\x12\\x05\\x13\\x03\\xc3(=\\x89CM\\xa0\\'I\\xc8\\xac\\x9a\\xe1\\x14\\xf44ja\\xa6\\x8f\\xb5\\x90\\x14#\\xe5OQ\\xc3<\\xd7\\xdfZ\\x983\\xaf\\x85y\\xad\\x16\\x16\\xb4Z\\xc8I\\xb5p\\x8c\\xfa\\xa7\\xa8Q\\x0b\\x8b\\xe6\\xb5\\xb0Tah\\nrY+\\xa3\\xd1\\xfb#\\x1e\\xab \\xaf\\xb6\\xce\\xec\\x1a\\xd9\\xe8\\x00\\x80\\x07\\xc2h-\\xe4\\x83\\xd4 \\x1e\\x0c\\xfd\\x10\\xe349\\xb4B[\\x0e\\xd3\\x06L\\x85KI\\x87#\\x9dG\\xc0\\xfd:j\\x1c\\x9b^JZ\\x0f\\xbc\\x17\\xf8\\x91T\\xed4\\xbf\\x94\\xb4\\x01\\xfcQ\\xe07\\xd2\\xb5\\xd6\\xf4R\\xd2\\xd1\\xe0\\x8f\\x01\\xbfI\\x19]\\xc7B=\\x0e\\x819\\x1e\\xf2\\t\\xd6\\xd1m^\\t\\x9f\\xd1*\\xe1\\xb3Z%|N\\xaa\\x84c\\xd5\\xbfC\\x8dJ\\xf8\\x82y%|\\xb1\\xc2\\xc0|I.j/\\xa3\\xd1\\xaf \\x1e\\xafB~\\xcd:\\xb1\\xaf\\xcbFo\\x00|\\x13FoA~[\\r\\xe2;\\xd0\\xdf5N\\x92\\xf7*\\xb4\\xe5\\xfdfj\\xc3`\\xfe\\xfa\\x92\\x0f\\x90\\xcd\\x0f\\xe1\\xfd#5\\xe5\\x15^_\\xf21\\x0c>\\x81\\xc1\\xa7\\x06\\x03\\xd3\\xd7\\x97|\\x06\\x83\\xcfa\\xf0\\x055\\x0fM__\\xf2%\\xf0\\xaf\\x80\\x7f\\xad\\x0c\\xafo\\xa0~\\x8b\\xc8|\\x07\\xf9{\\xebp\\xfe\\xd0Lm\\x19t\\xaf/\\xf9\\x11\\xbe\\x7f\\x82\\x83\\x9f\\xd5\\xa6H\\xdbB\\xed\\xf5%\\xbf\\x80\\xfa\\x15\\xd4o4\\xa5{}\\xc9\\xef\\xa0\\xfe\\x00\\xf5\\']U\\xb5\\xd7\\x97\\xfc\\x05\\xe8o@\\xff(\\x9d\\xf9\\x17\\xea\\x80\\x16\\xdc\\x1ek!rU\\x8bz{\\x0czM\\x8b!\\xcd\\xb5-\\x15n\\x8f\\xb5P\\xb5\\xd0\\xf4y\\xfa\\xfa\\x16\\xdc\\x1d\\x83\\xf3\\xc6\\x16:i\\xa6\\xcf\\xd3\\xdb`\\xd0\\x04\\x83f\\xd5\\xc0\\xfay\\xfa\\x16\\xf0\\xad\\xe0\\xdbZ\\xf4I6}\\x9e\\xbe\\x1dx\\x07\\xf0\\xce\\x16\\xe5\\xf6\\x18\\xd4\\xc1\\x88\\xcb\\x10\\xc8C[,\\x93<\\xac\\x85J\\xb2\\xeey\\xfa\\xe1\\xf0=\\x02\\x0eF\\xb6\\xd0I\\xd6\\x9e\\xa7\\x1f\\x05j4\\xa81FJ}\\x9e~,\\xa8q\\xa0\\xc6\\xab\\x14\\xfd<\\xfd\\x040\\x13\\xc1LR\\xfa2\\x19\\xea\\x14\\xf4e*\\xe4ij\\x8e\\xbb\\xa0Oo\\xc1\\xdf\\xa1n\\xe9[=|^\\xab\\x87[\\xc2|\\xab\\x96~\\xd6C\\x18\\x98\\xfc\\x1d\\xea\\x16\\xb5\\x1e\\xcelQ\\xeb\\xe1\\xac\\x16\\xd4\\xc3q\\xea\\xdf\\xa1n\\xc1\\xdf\\xa1n1\\xbdu\\xe2\\xac08]-\\xf2\\xdf\\xa1F\\xa3=\\x88\\x87\\x17\\xb2\\xcf:\\xb7~\\xd9(\\x00pk\\x18m\\x03y[5\\x88\\xdbA\\xdf\\xde8Qv\\xa8\\xd0\\x96\\x1d[\\xa8zh\\xfe\\x0e\\xb1\\xd9\\xc8\\xe6N\\xf0>\\xc70SL\\xdf!6\\x17\\x06\\xf3`0\\xdf``\\xfa\\x0e\\xb1\\x050X\\x08\\x83E\\xd4\\xd42\\x7f\\x87\\xd8\\xce\\xe0\\x83\\xe0wQ\\xc6\\xd7b\\xa8K\\x10\\x9a\\xa5\\x90\\x97Y\\xc7sW\\xad\\xe3d\\x80\\xeb\\xdf!\\xd6\\r\\xe7\\xcb\\xe1a\\x85a\\x1ah\\xef\\x10\\xdb\\r\\xd4\\xee\\xa0\\xf6P\\xa9\\xe6\\x01\\x86w\\x88\\xad\\x04\\xb6\\'\\xb0\\xbd\\xa8\\xd9\\xa2\\xbdClo0\\xfb\\x80\\t)\\xbd\\xd9\\x17j\\x0fz\\xb3\\x1f\\xe4\\xb0\\x9a\\xe8\\x08\\xf4\\xa81\\xd1\\xb1\\n\\x89f\\xe8D\\xcf0\\xdd\\x1e\\xc6\\xd1\\x90\\x04\\xbc\\'\\xe9\\ng\\xba?d\\xc1\\xa7\\xc0\\xa7\\xa9\\ng\\xba=\\xcc\\x00\\xcf\\x02\\xcfQ\\xb8\\xe9\\xee0\\x0f\\xbc\\x00\\x9cS\\xc2\\xc2C-\",%\\xc8\\x82u\\x92\\xcbtA\\x9c\\xa1m\\x0f\\xf7\\x87\\xefUp\\xb0Zm\\x8a\\x04\\xa9\\xfb\\xc35\\x80\\x0e\\x00t \\x95;m{\\xb8\\x16\\xccA`\\x0e\\xa6\\x18mwx\\x08\\x98C\\xc1\\x1c\\xa6t\\xe4p\\xa8G\\xa0#\\xeb \\xafW\\xf3\\xdb\\x0b\\xfdHT\\xc3\\r\\xc4\\xe9\\x7f\\xdd9!\\xb5H\\xf9#\\xd4\\xb0\\xddH\\x0e\\xf4\\xe7\\xce\\t\\x0c6\\xbfsr49,\\xdd99\\x86\\x88\\xd2\\x9d\\x93MR)\\x1c\\xaf\\xfe\\x11j\\x94\\xc2\\xe3\\xccK\\xe1\\xf1\\x15F\\xe5\\trU;\\x11\\x8d>\\t\\xc18\\x19\\xf2)\\xd6Y=U6:\\r\\xe0\\xe90:\\x03\\xf2\\x99j\\x04\\xcf\\x82~\\xb6q\\x86\\x9cS\\xa1-\\xe7\\xd23\\xc4\\xfc}]\\xe7!\\x95\\xe7\\xc3\\xfb\\x05\\xf4\\x0c1}a\\xd7\\x85\\xe0/\\x02\\x7f1]\\t\\xcd\\xdf\\xd8u\\t\\x0c.\\x85\\xc1e\\xd4\\x1c1}a\\xd7\\xe5\\xc0\\xaf\\x00~\\xa52\\xb4\\xae\\x82z5\\x02s\\r\\xe4k\\xad\\xa3y\\x1d=Gt\\xef\\xeb\\xba\\x1e\\xbeo\\x80\\x83\\x1b\\xe99\\xa2\\xbd\\xb0\\xeb&@7\\x03\\xba\\x85.\\x96\\xba7v\\xdd\\n\\xea6P\\xb7S\\xb3D{a\\xd7\\x1d`\\xee\\x04s\\x97\\xd2\\x95\\xbb\\xa1\\xde\\x83\\xae\\xdc\\x0b\\xf9>5\\xc7\\xf7C\\x7f\\xc0\\x98\\xe3\\x07+\\xe4\\xf8!:\\xc7\\xae\\x94?\\xcb\\xb8\\xc3\\xf98\\xa3O\\xc1\\xc3h\\xc8#\\xf0\\xfe(\\xbd\\x18y\\x13\\t\\xbb;\\x9bK\\xc5#\\xba\\xc5\\xe81\\xf0\\x8f\\x83\\x7f\\x82\\xce\\xb1\\xc3\\x91*\\xe7\\x1d\\xfe0\\xe3\\xf5\\xebo\\x90\\xc1\\xe0)\\x18\\xdd\\xe8\\xf9\\x19\\xfc/\\xe0\\x7f\\xa5*\\x8aO\\xfc\\xcab\\xcf\\xf8\\xd3Y}E\\xf9\\r\\xf8\\xef\\xc0\\xff0\\x8cf\\xce\\xc9\\xa7\\xa3L\\xaa\\\\\\xb4\\xeb\\xfc\\xff\\t\\x83\\xbf`\\xf0\\xb7\\x92\\xce\\x7f\\xa0\\xfe\\x8bt\\x0eh%\\xf2\\xc0V\\xcb\\xd1Y\\xd5J\\x8dN\\xb7\\xafl\\x0f\\xc8\\x03\\xaa\\xba\\x958\\xaf\\x81\\x87\\xdaV\\xfd\\xe8t\\xa7\\xdceN\\xa6\\xea@\\xd5\\x83j\\xa0(q\\xc6r)\\x99j\\x04e\\x03\\xd5\\xd4J\\r\\xceB4.\\x7f\\xd1m\\x06\\xd4\\x02\\xa8\\xb5Uyo\\x08\\xd4\\xf6V\\xbc7\\x04rg\\xab\\xfa\\xde\\x10\\xe8\\x83[\\ri\\x1e\\xd2Z\\xe16Y\\xab|\\x9b\\x0c\\xa6\\xc3\\xe1v\\x04\\xe4\\x91\\xd6A\\x1a%\\x1b\\x8d\\x068\\x06Fc!\\x8fS\\xdb2\\x1e\\xfa\\x04c[&Vh\\xcb\\xa4Vj\\xc8\\xcd0}7\\xdbd\\x04e\\n\\xbcOm\\xd5\\x0f9\\xf3W\\xb3M\\x03\\xdf\\x05~z\\xab~\\xc8\\x99\\xbe\\x99m\\x0b\\xe0[\\x02\\xdf\\x8ar?\\xc3\\xf4\\xd5l3\\xc0\\xcf\\x04?K\\xc9\\x91\\x1d\\xaa\\x03qqBvY\\x07\\xd3\\xddJ-z3\\xb4w\\xb3y\\xe0\\xdb\\x0b\\x07>j\\x90\\xe8^\\xcd\\xe6\\x07\\x14\\x00\\xb45\\riof\\xdb\\x06\\xd0\\xb6\\x80\\xb6\\xa3\\x87\\x9b\\xf6j\\xb6\\xed\\x01\\xed\\x00hG\\xa5+\\xb3\\xa1\\xee\\x84\\xae\\xcc\\x81\\xb4B\\x92\\x0f3$\\xd9\\xf4\\xd2\\xf0\\xe1h\\xc8\\x11\\xf0\\xbeNml\\x85K\\xc3\\xeba\\xd0\\x0b\\x83#\\r\\x06\\xa6\\x97\\x867\\xc0\\xe0(\\x18l\\xa4\\xd2lzi\\xf8h\\xe0\\xc7\\x00\\xdf\\xa4D\\xe6X\\xa8\\xc7!2\\xc7C>\\xc1:\\xcd\\'\\xd2\\xb5Pwi\\xf8$\\xf8>\\x19\\x0eNQ\\x9bb\\xbc4|*\\xa8\\xd3@\\x9dNS\\xbaK\\xc3g\\x80:\\x13\\xd4Yt\\xc9\\xd4.\\r\\x9f\\r\\xe8\\x1c@\\xe7*\\x9d9\\x0f\\xea\\xf9\\xe8\\xcc\\x05\\x90/T\\xd3|\\x11\\xf4\\x8bQ\\r/\\xe9K5$\\xe5H\\xf9+\\xd4\\xb0\\xbd\\xac\\xbf\\xd5\\xf02\\xf3jx\\xb9V\\r\\xaf\\xd0\\xaa\\xe1\\x95R5\\x9c\\xa4\\xfe\\x15jT\\xc3\\xab\\xcd\\xab\\xe15\\x15\\x06\\xe7\\xb5ra\\xbb\\x0e\\x8d\\xbe\\x1e\\xc1\\xb8\\x01\\xf2\\x8d\\xd6\\x99\\xbdI6\\xba\\x19\\xe0-0\\xba\\x15\\xf2mj\\x04o\\x87~\\x87q\\xa2\\xdcY\\xa1-w\\xd1\\x13\\xc5|\\x97z7Ry\\x0f\\xbc\\xdfKU7\\xf3]\\xea}\\xe0\\xef\\x07\\xff\\x005\\xecMw\\xa9\\x0f\\x02\\x7f\\x08\\xf8\\xc3\\xc6ie\\xb6K}\\x04\\x06\\x8f\\xc2\\xe01eh=\\x0e\\xf5\\t\\x04\\xe6I\\xc8OYG\\xf3i\\xba\\x1c\\xeaw\\xa9\\xcf\\xc0\\xf9\\xb3\\xf0\\xf0\\x1c5\\x05\\xf4\\xbb\\xd4\\xe7A\\xbd\\x00\\xeaE\\x8a\\xd2\\xefR_\\x02\\xf52\\xa8W\\xe8\\xd2\\xaa\\xedR_\\x05\\xf4\\x1a\\xa0\\xd7\\x95\\xde\\xbc\\x01\\xf5M\\xf4\\xe6-\\xc8o\\xabi~\\x07\\xfa\\xbb\\xc64\\xbfW!\\xcd\\xef\\x1b\\xea\\xa1\\xe9\\xebj>@C>\\x84\\xf7\\x8f\\xa8\\xb4\\x99\\xbe\\xad\\xe6c\\xe0\\x9f\\x00\\xff\\x94\\x1a\\x153L_W\\xf3\\x19\\xf8\\xcf\\xc1\\x7fA\\xf3\\xa6\\xef\\xab\\xf9\\x12\\xfcW\\xe0\\xbfV\\xe2\\xf2\\r\\xd4o\\x11\\x97\\xef \\x7fo\\x9d\\xe5\\x1f\\xe8j\\xa8{]\\xcd\\x8f\\xf0\\xfd\\x13\\x1c\\xfcL\\xadS\\xda\\xdbj~\\x01\\xf3+\\x98\\xdf\\x0c\\x15S{]\\xcd\\xef\\xa0\\xfe\\x00\\xf5\\'\\x9db\\xed}5\\x7f\\x01\\xfa\\x1b\\xd0?JW\\xfe\\x85:\\xa0\\r\\xb7\\xc9\\xda\\x88\\\\\\xd5\\xa6\\xde&\\x83^\\xd3\\x86\\xbfA\\xdd\\xd6\\x87Zx\\x95V\\x0b\\xeb`[\\xdf\\xd6\\xcfZ\\x08\\x83\\xcdkaC\\x9bZ\\x0b\\x1b\\xdb\\xd4ZhkC-\\x9c\\xac\\xfe\\x01\\xea6\\xfc\\x01\\xea6\\xd3Z\\xd8\\xd2f=0[\\xdb\\xe8\\xa7Y\\x1c\\xce\\\\@`\\xb3\\x01\\x07\\xf5\\xda\\xf5\\xb66\\x12\\xbfvt\\xac\\xa3\\x8d\\x1a:\\x11\\xd6\\x9f+\\x14\\xe3\\xe9\\xb8\\xfe\\xa2L\\'\\xf8A\\xe0\\x07\\xd3\\xbc\\xd3\\'x=N\\xc6\\x1e\\xa5^\\xad\\x0f~(\\xf8am\\xfa\\x91\\x1f`\\x97\\xe1\\x04\\xfdno8\\xf0\\x11\\xc0G\\xb6)o\\x0f\\x81:\\x1a\\xe9\\x1c\\x03yl\\x9b\\xe5\\xc8\\x1c\\xd7F\\xd5\\x9f\\x19\\x0e&.\\xc8\\x0fk\\x8d\\x87\\xf3\\t\\xf00\\xb1\\x8d\\x1aPL\\xaa\\xa0\\xbcZ\\x1f\\xd0d@Sh\\xc8\\x1dK\\xc9K\\xfeT@\\xd3\\x00u\\xb5\\xe9\\x07y\\xd4\\x15\\x90/\\x8bO\\x07\\xb3\\x05\\x98-\\x95\\xael\\x05u\\x06\\xba2\\x13\\xf2,ud\\xda\\xa1;\\xda\\x0c9vV\\xc8\\xb1\\xabM\\xbeG\\x06S\\x0f\\xdcz!\\xfb\\xac#\\xe4\\x97\\x8d\\x02\\x00\\xb7\\x86\\xd16\\x90\\xb7U\\xdb\\xb2\\x1d\\xf4\\xed\\x8dm\\xd9\\xa1B[v\\xd4\\x02\\x8f\\xdf\\xb3\\x17Sl8\\x9b\\xf1d\\xf4\\xa3a6b\\xb2\\x13\\x9c\\xcfQ\\xe3&\\xbf\\x9d\\x81M\\xc7\\x9cn/\\x13.\\xe8\\xd6\\xa3\\xb90\\x98\\x07\\x83\\xf9\\xf4pK\\x07\\xd2\\xb9H\\xa0\\xcc{\\xf4\\xc3s\\x01\\xf8\\x85\\xe0\\x17Q\\xbc\\xc3\\x15\\x08d\\xe3E\\x8f\\xd7\\xe9\\xd2\\xdf!\\x03\\x1f\\x04\\xbf\\x8b\\x92\\xa4\\xc5P\\x97 0K!/\\xb3\\x8e\\xe6\\xae\\xf4xsf\\x12v\\x87r\\x87\\x0c\\xce\\x97\\xc3\\xc3\\n\\xb51\\xd8\\xd9;\\xd2lI\\xb9h\\xb8\\x1b\\xb0\\xdd\\x81\\xedAc\\xceB\\xb2\\xa8\\xfc\\x9c~%\\xb0=\\x81\\xedE\\x8d\\xb9\\xb8\\xb3,\\x7f\\x99\\xde\\x1b\\xcc>`BJw\\xf6\\x85\\xda\\x83\\xee\\xec\\x079\\xac\\xe69\\x02=\\x8aj\\x18\\xebK5$\\xe5H\\xf9\\x03\\xd4\\xb0\\x8d\\xf7\\xb7\\x1a\\xc6\\xcd\\xabaB\\xab\\x86I\\xad\\x1a\\xb2R5\\x9c\\xa2\\xfe\\x01jT\\xc3\\xb4y5\\xccT\\x18\\x9d\\xd96j\\x996\\x7f\\xce9\\x87\\xf0\\xe5\\xd1\\xaf\\x02=\\xdaL\\x9fs\\xe6\\xc0\\xf3\\xe0\\x8b\\x86\\xe1l\\xfa\\x9cs\\t\\x06\\x02\\x0c\\xcaT54}\\xcey\\x7f\\xe0\\xab\\x80\\xafV\\xd2\\xb9\\x06\\xea\\x01H\\xe7\\x81\\x90\\xd7Z\\x8f\\xce\\x83\\xda\\xa8uZ\\xf7\\x9c\\xf3\\xc1\\xf0}\\x08\\x1c\\x1c\\xaa6\\xc5\\xf8\\x9c\\xf3a\\xa0\\x0e\\x07u\\x04M\\xe9\\x9es^\\x07j=\\xa8^jhj\\xcf9\\x1f\\tf\\x03\\x98\\xa3\\x94\\xbel\\x84z4\\xfar\\x0c\\xe4M\\xea\\xd0<\\x16\\xfaq\\xc6\\x12t|\\x85$\\x9f W\\xb6\\x13az\\x12\\xdc\\x9e\\x0c\\xf9\\x14\\xeb\\x10\\x9d*\\x1b\\x9d\\x06\\xf0t\\x18\\x9d\\x01\\xf9L\\xb5-gA?\\xdb\\xd8\\x96s*\\xb4\\xe5\\\\z\\xc0\\xf9\\x03a\\x8f#g\\x8f\\xa4\"\\x9c\\xae\\xfc\\x9c\\x87\\xa0\\x9c\\x0f\\xef\\x17\\xd0\\x03.\\xe3\\xe5\\xd3\\xe9\\xbc\\x10v\\xe9\\x07\\xc4\\x85\\xe0/\\x02\\x7f\\xb1\\xb1~f\\x1d\\xe9\\x80\\xc7\\xee\\xc8\\xe8\\x7fRr\\t\\x0c.\\x85\\xc1et=\\x8c\\xe6\\x8b\\x85D\\xdc\\xc1\\x15\\xf5\\xf5\\xf6r\\xf0W\\x80\\xbfR\\xc9\\xd2UP\\xafFd\\xae\\x81|\\xadu8\\xaf\\xa3\\xeba$_\\xf0(\\xb7=\\xae\\x87\\xf3\\x1b\\xe0\\xe1F\\xb51XZ\\xf9\\xa4G^Zo\\x02t3\\xa0[\\xe8j\\xe8I\\xb1\\x1e\\xe5[\\xc2\\xad\\xc0n\\x03v;5\\xe4R\\x81\\xa2\\xfc#\\x94;\\xc0\\xdc\\t\\xe6.\\xa53wC\\xbd\\x07\\x9d\\xb9\\x17\\xf2}j\\x9a\\xef\\x87\\xfe\\x00\\xaa\\xe1\\x83}\\xa9\\x86)\\xad\\x1a>\\x04\\xdb\\x87\\xfb[\\r\\x1f6\\xaf\\x86\\x8fh\\xd5\\xf0Q\\xad\\x1a>&U\\xc3\\xa9\\xea\\xdf\\x9fF5|\\xc2\\xbc\\x1a>Yap>%\\x8f\\xf9\\xa7\\xd1\\xe8g\\x10\\x8cg!?g\\x9d\\xd9\\xe7e\\xa3\\x17\\x00\\xbe\\x08\\xa3\\x97 \\xbf\\xacF\\xf0\\x15\\xe8\\xaf\\x1a\\'\\xcak\\x15\\xda\\xf2:=Q\\xcco6\\xbe\\x81T\\xbe\\t\\xefo\\xd1\\xe3\\xd8\\xf4f\\xe3\\xdb\\xe0\\xdf\\x01\\xff\\xaea\\xa2\\x98\\xdel|\\x0f\\x06\\xef\\xc3\\xe0\\x03z&\\x9a\\xdel\\xfc\\x10\\xfcG\\xe0?V\\xc6\\xd6\\'P?Ed>\\x83\\xfc\\xb9u8\\xbf\\xa0\\'\\x8a\\xfef\\xe3\\x97p\\xfe\\x15<|MU]\\xfd\\xcd\\xc6o@}\\x0b\\xea;z\\xa6\\xe8o6~\\x0f\\xec\\x07`?\\xd2\\xb3N\\xbb\\xd9\\xf8\\x13\\xa0\\x9f\\x01\\xfd\\xa2t\\xe7W\\xa8\\xbf\\xa1;\\xbfC\\xfeCM\\xf4\\x9f\\xd0\\xff2&\\xfa\\xef\\n\\x89\\xfe\\xc7\\x90h\\xd3\\x97q\\xfc\\x8b\\x86\\x0ch\\'\\xde\\x07\\xb6\\xebWH\\xd3\\x97qT\\xb5\\x13\\xbc\\x1axM;\\x956\\xd3\\x97q\\xd4\\x82\\xaf\\x03_O\\xf3\\xa6/\\xe3h\\x00\\xdf\\x08\\xde\\xd6.\\xc7\\xa5\\tjs;\\x89K\\x0b\\xe4\\xd6v\\xcb4\\xb7\\xb5\\xd3\\xdf\\x94\\xb5\\x97q\\xb4\\xc3w\\x07\\x1ct\\xb6\\xeb\\x13\\xa3{\\x19\\xc7 @\\x83\\x01\\r\\xa1 \\xdd\\xcb8\\x86\\x02\\x1a\\x06h8\\ri/\\xe3\\x18\\x01h$\\xa0QJWFC\\x1d\\x83\\xae\\x8c\\x85<\\xae]\\xbdM\\x06}B;\\xa9n\\x13\\xdb\\xfbP\\r\\x1f\\xd7\\xaa\\xe1$\\xd8Nn\\xefg5\\x84\\xc1\\xe6\\xd5pJ\\xbbZ\\r\\xa7\\xb6\\xab\\xd5pZ;\\xaa\\xe14\\xa5\\x1av\\xb5\\x93j8\\xbd\\xdd\\xb4\\x1an\\xd1n=0\\xb7l\\xa7\\x07\\xa6\\xe9%\\xed\\xad\\x10\\xbe\\x19\\xe8\\xd7L5\\xc6\\x15.i\\xcf\\x82\\x81\\x1d\\x06\\x0e\\x83\\x81\\xe9%m\\'\\x0c\\\\0p\\xd3C\\xdf\\xec\\x92\\xb6\\x07\\xb8\\x17\\xb8O\\xc9\\xa7\\x1fj\\x00\\xf9\\xdc\\x1a\\xf26\\xd6Cs[zh\\xea.io\\x07\\xdf\\xdb\\xc3\\xc1\\x0ejS\\x8c\\x97\\xb4w\\x045\\x1b\\xd4N4\\xa5\\xbb\\xa4=\\x07\\xd4\\\\P\\xf3\\xe8a\\xae]\\xd2\\x9e\\x0fh\\x01\\xa0\\x85Jg\\x16A\\xdd\\x19\\x9d\\tB\\xdeE\\x1d\\x9c\\x8b\\xa1/i7\\xa4yi\\x854/3\\xa4\\xd9\\xf4\\xf6\\xd4\\xaehH7\\xbc/7\\x14\\x14\\xb3\\xdbS+\\xc0\\xef\\x06~w\\x9a7\\xbd=\\xb5\\x07\\xf8\\x95\\xe0\\xf7\\xa4\\x92lz{j/\\xe0{\\x03\\xdfG\\x89K\\x08\\xea\\xbe\\x88K\\x0f\\xe4\\xfd\\xac\\x93\\x1cn\\xa7\\x96\\x19\\xfd\\xed\\xa9\\x08\\x9cG\\xe1!f(\\x1b\\xea\\xed)\\x06P\\x1cPB\\x856\\xbb=\\x95\\x04\\xc6\\x02K\\xa9\\x18}{*\\r&\\x03&\\xabt&\\x075\\x8f\\xce\\x14 sj\\x92y\\xe8Ec\\x92K\\x15\\x92,\\xd0Iv;\\xdc\\x11>\\x16\\xce{J\\xfa\\xefye4d\\x7fx_e\\x98\\x9a\\xcer\\xdc\\xeeN0\\xf6\\xbc\\xfe\\x99\\xf6\\xd50X\\x03\\x83\\x03\\x0c\\x06%\\xa6\\xe8\\xf0\\xc5\\xa3\\x8c7\\xa138\\x10\\x06kap\\x10\\x95\\xe6\\x9c7\\xee\\x8a\\x0bnWT\\x7f\\xc1\\xf7`\\xe0\\x87\\x00?T\\x89\\xccaP\\x0fGd\\x8e\\x80\\xbc\\xce:\\xcd\\xeb\\rs9\\xc7:Y)\\xea\\xbd\\xf0}$\\x1cl0\\xcc\\xe5X:#O\\xc0\\xa3@m\\x04u\\xb4a.\\xe7\\xc3^\\x99:\\x06\\xd4&P\\xc7RY\\x16\\x9cl\\\\b\\x8e\\x03s<\\x98\\x13\\x94\\xbe\\x9c\\x08\\xf5$\\xf4\\xe5d\\xc8\\xa7\\xa8Y>\\x15\\xfaiXgN\\xef\\xcb:C\\n\\xbd\\xf2\\x97\\xa8a{f\\x7f\\xd7\\x993\\xcd\\xd7\\x99\\xb3\\xb4u\\xe6lm\\x9d9\\x07\\xeb\\x8c@\\xfe\\xac\\xe1\\x80\\x9e\\xacP\\nG2\\x0c\\x7fn;1\\xa3\\x1b\\x96\\x1ca2E\\xfe\\x02Q\\x8f\\x16\\xc3\\tff\\x96-FgF\\xc3\\xd1$\\x13\\x17rQ\\xdb\\x1c\"\\xc5\\x163\\xa5d>\\xb6\\x8c\\x8d\\xa63\\x8c\\x8d\\xbf\\xb0\\x9d8K]\\x80p]\\x04\\x7f\\x17+]L\\xae\\xedC\\xff\\xce7\\xef\\xdf%Z\\xff.\\xd5\\xfaw\\x19\\xfa\\xb7\\xb2\\x9etOn\\xed\\xe5\\xed\\xc4\\x94\\xe4!Y\\x9d\\\\\\x9bl]\\xcf_\\x81V\\\\I\\x1a\\xd6\\x9a\\x1c\\xd0\\xb5\\xd2%\\xd2\\xbb\\x84\\xd7\\xac^\\xc1\\xb3\\xe1\\\\B\\xc8\\x84KLl\\xb9\\xc0\\xc7\\xc3Q\\xa6g\\x7f\\xb6\\x94\\xec\\x89\\x8aG\\x12y~\\xf5L&\\xc3d\\x99\\\\\\xa9\\'\\x9a\\t\\x17\\x8b\\xfcU$\\x0eq\\x11/\\x8a\\xf0\\xcc\\x04\\x93\\xcf2%\\x11*\\xca\\xa6\\xf9H\\x8a\\x89\\x96\\x8a6\\xd9\\xd5\\xb2<\\x9b+\\xd9\\xf8\\xabIc\\xafD4\\xae!-[\\xb2\\xa4\\xc4_\\x8b\\x06]\\xd7\\xbe\\xd9\\xf0HnL\\x1e\\xd5\\xcb_\\x8f\\xd37\\xb4\\xcb\\xd3\\xb4\\x07\\x01\\xef\\xe9\\xe9)\\xa9\\xede\\xf39\\xfeF\\xab\\xac,\\xc9\\xe7\\n$\\x19l.1\\x97\\x8d\\x8aM\\xb8I$\\xa7w\\xf37\\x13\\x87\\xad\\xc4!\\xed\\xe8\\x16\\xd2\\x0e\\xa4mc\\xea\\x164\\xf4V4\\xe0\\xb6~\\xa5\\xed\\x06\\xf3\\xb4\\xdd\\xae\\xa5\\xed\\x0e-mw\"m\\xc9=I6\\x9cr6\\x16K\\xa3s)\\xcf\\x8a\\x11\\x17\\x13\\xc2f\\xd9L\\x98gK\\xabMS\\xc3\\xdfe\\x9e\\x8c\\x8c\\xe8\\xc9\\xd6\\x17w6\\xfen\\xd2\\xe5\\x83\\xd7\\xf3\\xf7 -)\\xa2\\x96\\xf8{\\xd1\\xf5\\xfb\\xda\\xb1+\\xbb\\xbf\\x9d\\xec\\xca\\x1e \\xe5Ij\\xebL\\xb1\\xad\\xfdl\\xe7\\x83\\xe4S6\\x89Cq\\xb8\\xf8\\xbf\\x1a\\x93\\x16\\xcb$\\xcb\\x14g\\x16U_=\\xf2\\xa0\\x12G\\x93\\xd1\\x7f\\xd1\\xc6?D\\x9a\\xb7\\x96\\x7f\\x18e\\xe7\\x11\\xb4\\xf8Q\\xf21cP?\\xe7\\xb39\\xb6\\xc4\\xacX]`\\xf8\\xc7@<\\x0e\\xe2\\t\\x89 \\x95@i;\\xff$\\xce?\\x85\\xf3O\\x93\\xf3\\xbb\\xae\\xe7\\x9f\\x81\\xf6,\\x06\\xc2s\\x08MrS\\x89\\x7f\\x1eG_\\x90\\xe2\\xf2\"\\xe2\\xf2\\x12\\xe2r\\xd2Z\\xfee\"\\x04\\xc5\\xb4\\xbe\\x02a`\\x90\\xfc\\xfaO\\x14\\x83\\xf5\\xc1\\x81\\xeb\\xf9\\xd7\\x88T\\x13\\xacZ\\xcf\\xbf\\x8e\\xb290\\xc4\\xbf!\\x19\\x10\\xeeMr\\xb6\\x96\\x9c}\\x8bHUDz[*\\xaf!\\xfe\\x1dpu\\xe4\\xd8\\xbb\\xe4l5\\xf1\\xf7\\x1e\\x91\\x06\\x92c\\xef\\x83\\xab\\x0e\\xf1\\x1f\\x80\\xab\\'\\xc7>\\x94\\xbc\\x88\\xdcGDj%\\xd2\\xc7\\xe0jB\\xfc\\'\\xe0\\x1a\\x08\\xf7)9\\xdbH\\xa4\\xcf\\x884\\x80H\\x9f\\x83\\xab\\x15\\xbf\\xde\\x82\\xb3\\x91c_\\x92\\xb3M\\xc4\\xcbW\\xd2\\xe7\\x8a\\xd2\\xd7\\xe0\\xeaB\\xfc7\\xe0\\x9a\\t\\xf7-9\\xdbBz\\xf4\\x9d\\xd4\\x02Q\\xfa\\x1e\\\\}\\x88\\xff\\x01\\\\\\x1b\\xe1~\\x94>M\\xf4\\xf2\\x93\\xd4#\\x91\\xfb\\x19\\\\C\\x88\\xff\\x05\\\\;9\\xfb+9\\xdbA,~\\x93\\xe2G\\xbe\\xc7\\x82k\\x0c\\xf1\\x7f\\x80\\xeb$\\xdc\\x9f\\xe4\\xec \\xc2\\xfd%q\\xe2\\xb1\\xbf\\xc1\\xd9\\xc4o\\xad\\xe0\\x06\\x93\\xb3\\xff\\x92\\xb3C\\xc8\\xd9\\x01\\x1d\\x888\\xb9\\xbd\\xd8A\\xb8\\xa6\\x10_\\xd5A\\xb8\\xa1\\xe4X\\xb5tV\\xe4j\\x884\\x8c\\xd8\\xd6\\x82k\\r\\xf1u\\xe0F\\x91\\xb3\\xf5\\x1dh\\xbdx\\xb6\\x81H\\xa3\\x89\\xd4\\x08\\xae-\\xc4\\xdb\\xc0\\x8d!\\\\\\x139;\\x96H\\xcd\\x1d\\x18\\x11\\xe4{\\'\\xb8Q!\\xbe\\x15\\xdc4b\\xdb\\xd6\\x81l\\x89g\\xdb;\\xd0s\\xd1\\xa2\\x03\\xdc\\xe8\\x10\\xdf\\tn\\n9;Hj\\x95(\\r\\x96,D\\xdb!\\xe0\\xc6\\x84\\xf8\\xa1\\xe0F\\x90c\\xc3\\xc8\\xd96\\xc2\\r\\'\\xd28rl\\x04\\xb8\\xb1!~$\\xb8\\x89\\xe4\\xd8(\\x89\\x13?mt\\x07\"D\\xee\\xd3\\x81k\\x0f\\xf1c\\xc1\\x8d#\\xc7\\xc6\\x91\\xb3\\rD\\x1aO\\xa4\\xc1\\xc4b\\x02\\xb8\\x8e\\x10?\\x11\\xdcxrv\\x129;\\x8ax\\x9e,Y\\x88\\xdc\\x14p\\xcd\\xe2\\x17@p\\xc3\\xc9\\xb1i\\xe4l\\'\\xe1\\xba\\x88TGl\\xa7\\x83k\\x11\\xbf\\xf0uH\\xe3^\\xe4\\xb6$gG\\x10i+\"\\x8d$\\xdc\\x0cp\\x83C\\xfcL\\xd9\\x9fxl\\x169\\xdbN\\xfc\\xd9\\x89d#\\xc7\\x1c\\xe0\\x86\\x84x\\'\\xb8\\xb1\\xe4\\xacK:+\\xfas\\x13i\\x129\\xe6\\x017)\\xc4{\\xc1M \\xb6>rv<\\xe1\\xfcR\\\\D.\\x00nh\\x88\\xdf\\x1a\\\\\\x13\\xe1\\xb6\\x91Z%\\x9e\\xdd\\xb6\\x03#Q<\\xb6\\x1d\\xb8a!~{p\\xa3\\x89\\x97\\x1d\\xc8\\xd9\\xc9\\xe4\\xec\\x8e\\x1d\\x98Q\\xa2\\xc5lp\\x93C\\xfcN\\xe0\\x86\\x11n\\x0e9;\\x95Hs\\x894\\x81p\\xf3\\xc0\\r\\x0f\\xf1\\xf3;\\xa4\\xf1,zY@\\xce6\\x13i!\\x91\\xa6\\x10n\\x11\\xb8)!~g\\xf9s\\xc9w/)\\xfb\\xa2\\xbf]\\x884\\x9cp\\x8b\\xc1M\\x0c\\xf1K\\xc0\\r\"g\\x97\\x92\\xb3\\xd3\\x88\\xc52i\\xc4\\x8a\\xd2\\xae\\xe0:C|\\xb7\\x1c\\x17\\x91[\\xde\\x81\\xba!\\x9e]!\\xb5@<\\xb6\\x1b\\xb8q!~\\xf7\\x0ei\\xfe\\x927|H\\xad\\x12\\xcf\\xae$\\xd2\\x18\\xf2\\xb9{\\x82\\x9b\\x10\\xe2\\xf7\\x027\\x89p{K\\xe3@\\x94\\xf6\\x91\"$r!p\\x83B\\xfc\\xbe\\xf2\\xbc\\x14\\x8f\\xf5\\x90\\xb3\\x13\\t\\xb7\\x9f\\xd4\\x02\\xd1s\\x18\\xdc\\x88\\x10\\x1f\\x017\\x95p\\xd1\\x0e\\xd4!\\xf1lL\\xfa\\\\\\xd1\\x82\\x0172\\xc4\\xc7\\xc1\\xb5\\x10.!\\xf5W\\xe4\\x92D\\x1aJ$\\x16\\xdc\\xf8\\x10\\x9f\\x02\\xd7Al\\xd3\\xd2(\\x11\\xcff\\xa4\\xcc\\x88\\xc7\\xb2\\xe0\\xa6\\x86\\xf8\\x9c<\\xeeE\\x7fy\\xa9\\xf5\"W\\x90F\\xac\\xc8q\\xe0\\xa6\\x85x^\\x9eo\\xe2\\xd9\\xa24^D\\xa9$\\xcd\\x14\\x91\\x13\\x08\\'\\xa4\\xbcd{\\xb15\\xf9g\\x1brQ$\\xb5\\xdd@\\xb2\\xca\\x94a;@\\xb9P\\xb2\\x7f\\x079\\xb8\\xaa\\xc3\\xf4B\\xc9\\xea\\x0e\\xeb/Wk:\\xe4\\xf7nt\\x90\\x85\\xec\\xc0\\x0e\\xbcC\\xf9\\np\\x04\\xf4u\\x1d\\x86\\xb6\\xac\\xaf\\xd0\\x96\\xde\\x0e\\xe3\\xe3\\rf\\xcfW\\x1d\\xd9\\x81\\xbbNp\\x7fT\\x07\\xf5\\xc5\\xcd\\xfc\\x01\\xab\\x8d08\\x1a\\x06\\xc7\\xa8\\x06\\xd2u`\\xb3\\'\\xac6\\x81?\\x16\\xfcq\\x14o\\xfe\\x80\\xd5\\xf1\\xe0O\\x00\\x7fb\\x87\\xfc\\xed\\xe8$\\xa8\\'#4\\xa7@>\\xd5:\\x9e\\xa7i\\x1d\\x97\\xae\\xf5\\xea\\x9e\\xb0:\\x1d\\xde\\xcf\\x80\\x8b3\\xd5\\xd6H\\x98\\xee\\x11\\xab\\xb3\\x80\\x9d\\r\\xec\\x1c\\x1a\\xd3?cu.\\xb0\\xf3\\x80\\x9d\\xafb\\xe4\\xdb\\x9e\\xf6\\x88\\xd5\\x05`.\\x04s\\x91\\xd2\\x9f\\x8b\\xa1^\\x82\\xfe\\\\\\n\\xf925\\xd5\\x97C\\xbf\\xc2\\x98\\xea++\\xa4\\xfa*C\\xaa\\xcd\\x9f\\xb1\\xba\\x1a-\\xb9\\x06\\xee\\xaf\\xa53g\\xfa\\x90\\xd5u\\xe0\\xaf\\x07\\x7f\\x83\\xca[\\xfeI\\xb0\\x1b\\x81\\xdf\\x04\\xfcf\\n7}\\xc4\\xea\\x16\\xe0\\xb7\\x02\\xbfM\\x89\\xcb\\xedP\\xef@\\\\\\xee\\x84|\\x97u\\x9e\\xef\\xd6z-\\xbduH{\\xc6\\xea\\x1e8\\xbf\\x17\\x1e\\xeeS\\xdb\"=3\\xaf>du?\\xa0\\x07\\x00=HA\\xbag\\xac\\x1e\\x02\\xf40\\xa0G\\xa8\\x14k\\x8fX=\\n\\xe610\\x8f+]y\\x02\\xea\\x93\\xe8\\xcaS\\x90\\x9fVS\\xfc\\x0c\\xf4g;\\xc8\\xbe\\xf8\\xb9\\x8e>|\\xa1\\'\\x05I\\xfeB\\xff\\xfd\\xf2\\xb0\\x0f\\xa0\\xed[#&\\xdb@\\xde\\xd6:\\xbd\\xdb\\xc9F\\xdb\\x03\\xdc\\x01F;B\\x9e\\xad\\x06r\\'\\xe8s\\x8csen\\x85\\xb6\\xcc\\xeb4\\xec\\x1dL\\x1f/\\x98\\x8f\\x94.\\x80\\xfb\\x85\\x86\\xd9b\\xfa|\\xc1\"\\x18\\xec\\x0c\\x83 5[\\xcc\\x1f/\\xd8\\x05\\xfcb\\xf0K\\xa8\\xd9b\\xfat\\xc1R\\xe0\\xcb\\x80\\xef\\xaa\\x0c\\xb1n\\xa8\\xcb\\x11\\x99\\x15\\x90\\xff\\x0fg\\xe7\\x01\\xd6\\xc4\\xd2=|\\x14\\x04AE \\xa1\\n\"X\\xb0\"\\xd8\\xc0\\x02\\tu\\xc4X\\xb0\\x00v\\xa4\\x84\\x12\\xaaC\\x11\\xbb\\x08\\x8c\\xa2\\xa2`GE\\xb1WD\\x14l\\x08\\x84\\x0ev\\x01E\\xb1w\\xb1\\x8b\\xbd\\xf2\\xed\\x9e\\x85\\x0cx\\xb9\\xef\\xff}\\xbf{\\x9fGfv~s\\xe6\\x9c)g\\xe6$\\x9b]\\x97\\x7f\\xefNW\\x8d\\xe6\\x1e\\xba\\xe9\\xed\\x05n }2\\x88\\x98\"S\\x86s\\xbdM\\xee/\\x98\\n\\xd84\\xc0\\xa67[1Mo/\\x98\\x01\\xd4L\\xa0\\xdc\\x9b\\xad\\x18zw\\xc1,`<\\x80\\xf1l4\\xc7\\x0b\\xb2\\xde`\\x8e\\x18\\xd2>\\xb2\\x81\\xf6\\x85\\xbc\\xdf\\xdf\\x03\\xed\\xff\\x1f\\x06Z\\xf2\\xf7@\\xb7x{A\\x00h\\x12\\x08\\xe2\\x83\\x9a{\\xb9\\x16\\xef/\\x08\\x06>\\x04\\xf8\\xd0f\\xe3\\xd6\\xe2\\xed\\x05\\xb3\\x01\\xc7\\x80\\x875\\xc3[\\xbc\\xbb \\x1c\\xf0\\x08\\xc0#\\x1b\\xfbe\\x0ed\\xa3\\xa0_\\xe6Bz\\xde\\xbf\\x0f\\xf3|j5wH\\xa4\\xb7\\x17,\\x00\\xe1\\x0bA\\xc2\\xa2\\xbf\\x1c\\x1e\\xbd\\xbf`1PK\\x80\\x8an6|\\xf4\\xf6\\x82\\xa5\\xc0\\xc4\\x00\\x13\\xdb\\x8c\\xa1w\\x17\\xc4\\x01C\\x80Y\\xd6h\\xcar\\xc8\\xc6\\x83)+ \\xbdR6\\xc4\\xab \\x9f\\x00Nq\\xf5\\x7f\\xe3\\x14Yw\\xd4\\xe0\\x14\\xd7@\\xdd\\xc4\\xff\\xd5)&\\xb6\\xec\\x14\\x93\\xa8S\\\\K\\x9d\\xe2:\\xce)*Hx\\xf2\\xec\\xa7y\\x12\\xcc\\xfeQ\\x94\\\\c\\xff(5\\xba\\xc8\\xf5\\xe0\"7\\xb4\\xec\"7\\xfe\\x87\\xd9\\xba\\xa9\\xc1\\xdbm\\x06K\\x92\\xa1\\x87\\xb6@z\\xeb\\xbf\\x0f\\xf6\\xb6\\x86J)\\x00n\\x87J; \\x9d*\\xeb\\xd6\\x9d\\x90\\xdf\\xf5\\xf7\\xca\\xd9\\xfd\\x1ft\\xd9\\xf3\\xd7\\xcai\\xf9\\x91\\x1e{a\\x80\\xf7\\x81\\xf8\\xfd\\xcd\\xa6v\\x8bO\\xf48\\x00\\xf8A\\xc0\\x0f5[h-?\\xd0\\xe30\\xf0G\\x80Ok\\xbe0[|\\xa2\\xc7Q\\xe0\\xd3\\x81?\\xd68\\xdf2 {\\x1c:\\xe6\\x04\\xa43\\xff\\xbd7\\xb3\\xfeZ:M\\x1e\\xe9q\\x12\\x84\\x9f\\x02\\t\\xa7\\x9bMx\\xfaD\\x8f3\\xc0\\x9c\\x05&[\\xc6\\xc0;\\xa9\\xe8\\x03=\\xce\\x01\\x94\\x03Pn3\\xa8\\x1f}\\xa2G\\x1e@R\\x80\\xf2\\x1bM)\\x80l!\\x98R\\x04\\xe9b\\xd9\\x18\\x97@\\xbe\\xf4\\xef1.\\xfb\\x0fc\\\\\\xfe\\xb7wlq\\x1b<\\x0f\\x9a\\\\\\x00\\xf1\\x17e\\xea\\xfe\\x87m\\xf0\\x12T\\xb8\\x0c\\x15\\xae4\\x1b\\xb5\\x96\\xb7\\xc1\\xab\\xc0_\\x03\\xbe\\xa2\\xd9$jq\\x1b\\xac\\x04\\xbc\\n\\xf0\\xeb\\x8d=s\\x03\\xb2\\xd5\\xd037!}\\xeb\\xdf\\x07\\xb9F\\xe3\\xdf\\xb7\\xc1\\xdb \\xfd\\x0e\\x88\\xb8+S\\xe6\\x1f\\xdb\\xe0=\\xc0\\xee\\x03\\xf6\\xa0\\x99\\x1fm\\xba\\r>\\x04\\xea\\x11P\\x8f\\x9bM\\x19\\xba\\r>\\x01\\xe6)0\\xcf\\x1a\\xcdy\\x0e\\xd9\\x17`N-\\xa4_\\xca\\x06\\xfa\\x15\\xe4_\\x83\\x8f|\\xf3\\xdf\\xf8\\xc8\\xf5\\xd4G\\xbe\\x85\\xba\\xef\\xfeW\\x1f\\xf9\\xaee\\x1f\\xf9\\x9e\\xfa\\xc8\\x0f\\xd4G\\xd6q>\\xb2\\xadd\\x8d\\x02\\xfby\\xaa\\xe4-\\xfbGE2\\xa6\\r\\xfb\\xe9\\xb4\\xe4\\x08\\xfbGUR\\xae\\xc8~; \\x11*\\xb1\\x1fU\\xc23\\xdbE\\xfa\\xf0\\xb8b\\x91\\x01<\\xabS\\xd4\\x19\\x1eQ\\'R\\x93\\xec`\\x11u\\xc9\\x1f\\xf6O{I;\\xb6^\\x07\\x89\\x84\\xfd\\xc3\\x97tRf?A\\x877\\x87\\x8b\\xba\\xc2o\\xb2DZ\\xf0\\xee\\\\\\x916\\xbc1R\\xd4\\r~\\x9a \\xd2\\x81\\xf7\\xa6\\x89\\xba\\xc3\\xad\\xb9\"c\\xf8%\\xabHC2\\xa3-\\xfb\\x116<\\x00Jd\\x04?\\xf6\\x17\\xf1$\\xe7\\xd8\\x8b\\xba\\xf0n!\\x91\\x1e\\xbcVC\\xd4\\x05\\x1e\\x8a\"\\xea\\x01\\xf7\\xb2\\x89L\\xe0V\\x83\\x08\\t\\xfbe\\xff\\xf2\\x86\\xaf\\xc3%\\xf0\\x1d\\x9f*\\xc1\\x1f\\xa1\\x83?i4~#>\\xe2\\x7f\\xfe^\\xf3\\xaf\\xaf\\xc6?\\xb3\\x1d\\x0b_u\\x7f\\x82\\xd9\\xf0E\\xa3\\xe1\\xab\\xee\\xaf\\xd0\\xd27\\x8d\\x7f\\x8e7\\xfb%\\xa2\\xa4\\x02\\xbe\\x80\\xfc\\x0e\\xd0\\x0f\\x16\\xda\\xd5\\xf8e4W\\xce\\xddF\\xf0\\x13\\xca\\x7f\\xc9\\xe6\\x03k\\xc6\\x7f1\\x1f~\\xb4<\\x1f~\\xd3\\xf9\\xf0\\x87\\xce\\x87z\\x98\\x0f\\xdc,\\xa5\\xb7\\n\\x08\\xff\\xbf\\xbe\\x9c\\xfe\\xabs\\xe4x\\x8d\\x9d\\xc3\\xdd\\x07\\xd0\\x8a\\xd7\\xd09\\xady\\xac]\\xf2\\xbc\\x7fv\\x0e\\xfb\\xcd\\xb3D\\n\\x9d\\xa3\\x00P\\x1b\\xe6_\\xbf8\\xbf\\x95\\xff\\xfd\\x17\\xf2l\\x8d\\x16\\xacW\\xe4\\xc9\\xacW\\xe2\\xc9\\xaco\\xcb\\x83\\xfb(\\xd4\\xe1v\\x031\\x0e\\xf7\\xf7\\xf1\\x17{7\\xdeQ\\xa1\\xcc\\x14z\\xb9\\xbb{F\\xf8\\x07\\x86\\xfb\\x07\\xbb\\xbb\\xab\\x84\\x89\\xc3U\\xb0\\n\\x0f\\xe2y\\x1e\\xf7Un+Qk\\x91\\xbcHA\\xd4F\\xa4(R\\x12\\xb5\\x15)\\x8bTD\\xedD\\xedE\\x1dD\\xaa\\xa2\\x8e\"5\\x91\\xbaHC\\xc4\\x13\\xf1E\\x9a\"-\\x91\\xb6HG\\xa4+\\xd2\\x13u\\x12\\xe9\\x8b\\x0cD\\x9dE\\x86\\xa2.\"#\\x91\\xb1\\xa8\\xab\\xa8\\x9b\\xa8\\xbb\\xa8\\x87\\xc8D\\x1c\\x87\\xdb\\x83\\xd5\\x1dx\\rw\\xa2\\xb8\\xfb\\x042\\xdb.V\\x856;\\xf2\\x1a\\xdd\\t\\x1d\\xa8\\xe1\\r\\x03e/\\x0e\\xf4\\x88\\x08\\xf6\\xf8\\x9f\\xef\\xedP\\xfbk\\x8c\\xd4\\x1b\\xc7H\\x03\\x14\\xe1\\xfds\\x8c\\xfcb\\xfc\\x96.\\xc3|(\\xd6d\\xf54lz\\xaf\\x86\\x9f\\x07\\x0e\\n\\t\\xf6\\xf7r\\xf7\\xf6\\xf7\\xf1\\x11c\\xa6!\\x7f\\x0f\\xa6+\\xb5X9\\r\\xf7ch\\xb3\\x95\\xb4\\xd9J\\xff\\x02\\xeb\\xf0\\x1a\\xd6\\x82_\\x8c\\x84M\\x13\\xac\\x0b\\xad\\xe9\\xb1\\x15;6i-4$p\\xaeoH0\\xee\\xd4D\\xba>\\x0b\\xb1\\xf7\\xc54\\x16\\x1a4\\x91f\\x00\\xd2:\\x834C^\\xc3\\xb6\\xd7(-$44$\\xcc?\\\\\\xec.\\xf6\\xf6\\x15\\xe3.Md\\x1a\\xb1h\\x07\\xf6~\\xbff\\x88q\\x13\\xc9\\xc6 \\xb9+H\\xee\\xc6\\xe2\\xdd\\x9bHn\\xecr\\xec\\xe1\\xed\\x1f\\x11\\xe6\\x1e\\xe2\\xe3\\xee\\x15\\x12\\x1c)\\xc6\\xbe\\xe2`f\\xd2uo\\xd2R\\x8fF\\x13\\xc5\\x11^\\x81\\xfe\\xdeb\\x8f`\\xf7\\xd0@\\x8f`16i\\xd2\\x96\\t\\xb4\\xd5\\x13\\xda\\xea\\xc5k\\xbc\\xb9\\xa5\\xa1-f\\xf4\\x03\\xc5a\\xb8w\\x13\\xa1}\\x1agSCY\\xdf&\\xb2\\xfa\\x82\\xac~ \\xcb\\x94\\xe5xMG\\xd3+\\xc4/$($0\\xc4w.\\xee\\xdfD\\xa0\\x19\\xafa7m\\n\\x987\\x91j\\x0eR\\x07\\x80\\xd4\\x81,\\xac\\xdel\\x8e4V\\x19\\xd4D\\xe6`^\\xc3\\xdeK\\x8b\\x874\\x918\\x04$Z\\x80DK\\x9e\\xdc\\xffp\\x83\\x8ef\\xcb\\xfe`(\\xf5\\x07\\xc3\\xa8?\\x18\\xce\\xf9\\x03Xzb\\x8cC0\\x1e\\xc1\\x16f1\\r\\xf8)\\xb3w\\x80\\xca\\x99\\x9b\\x9a\\xfb\\x05\\x07\\x07\\x0c\\x98\\x1d\\x81\\x07Z\\n\\xfb\\r\\xc2Vj\\xd01(\\xcf\\xf8\\xdb\\xa0\\xe3\\xcd\\r\\xdaG\\r:\\x01\\x1529\\x83\\xb2\\x9a\\x1at\\xb2\\xc1\\xa0S-\\x19t\\x1a\\x0c\\xd2\\x91\\xbc\\x83\\xae?\\xc3-\\xb6\\n\\xe8\\xfa\\xb3\\xdcj\\xd5\\x85\\xd5\\x9a\\xcd\\x83\\x08r\\x1a\\xcc\\xb2s\\xdcrW\\x80\\xb1\\xcb\\xe1\\x1c\\xc1f\\x18\\xe2\\\\nM:\\xc2\\x02\\xcd\\xe3\\x1c\\xcey\\xf0\\x17Rn\\xb9\\x17\\x80\\'\\xc9\\xe7\\x96{\\x01,\\xdd\\x02\\xae\\x1dkh\\xa7\\x90s8\\n\\x80\\x15q\\xf3\\xdc\\x08\\x0e\\xd0\\xc5<\\x88v\\x15`\\xf6\\x94\\xf0 \\x92\\r\\x00\\x8fU\\xca\\xf5\\xfc.\\xe8\\xec2\\xce\\xe1,\\x01\\xb7R\\xce\\x03\\xff\\x97\\x08\\xc6\\x9d\\xe7\\x81\\xfb\\n\\x00u.p\\xf6\\xec\\x05{.\\xf2 \\x82~\\x0ef_\\xe2|L\\x18\\x98p\\x99+i\\x0f\\x02\\xaep\\xf6l\\x06\\x01Wy\\xe0&\\x0b@\\xebklFNr\\x05&B\\x057\\xdc\\n\\x80Ur3\\xfb<\\x08\\xa8\\xe2\\xeaDA\\x9d\\xeb\\x9c=gA\\x83\\x1b\\x9c=\\x89`O5\\xd7\\x89F\\xa0\\xc1M\\x1e8\\xc3\\xfb \\xed\\x16gO\\x00H\\xab\\xe1\\x96S\"t\\xc8mn9-\\x87!\\xb9\\xc3y\\x8e\\x02\\xc8\\xdc\\xe5\\xb0\\x14\\xc0\\xeeq]U\\n]u\\x9f\\x1b\\x92\\xe7\\xd0\\xd7\\x0f\\xb81\\xbd\\x0f\\xfd\\xf6\\x90\\x1b\\x9f\\x14\\x18\\x9fG<\\xf8\\x80\\xe0<\\xe8\\xf6\\x98\\x9b\\xf2\\xca \\xe0\\t\\xd7\\xd7\\xe7\\xa1\\xceSn\\xee,\\x87N|\\xc6\\xcd\\x7f;\\xc0\\x9es\\xbe\\xcb\\x9a\\xfb)(\\x0fv\\x87\\xa10]jy\\xb0Y}\\x05K_r\\xa2M\\xa1\\xce+n\\x1e\\xf4\\x02\\xdd^\\xf3\\xe0#\\x91\\n\\xa8\\xf3\\x86\\x9b\\x14\\xd5 \\xed-\\x0fv.s\\xd0\\xed\\x1d\\xe78z\\x81\\x06\\xef\\xb9\\x0e\\xb1\\x86>\\xf8\\xc0\\x99\\xc0\\x87\\x92:\\xaeG{\\x81q\\x1f\\xb9\\x91\\x8b\\x83\\x91\\xfb\\xc4\\x03Wj\\x04C\\xf2\\x99k\\xf4+4\\xfa\\x85\\x07\\x1f\\x8b,\\x07u\\xbe\\xf2\\xe0\\xe3\\x90\\xcd0-\\xbfq%^P\\xf2\\x9d[\\x0bc\\xa1\\xce\\x0f\\xae\\x0f\\x12\\xc0\\x9e\\x9f\\xdc\\xe4\\x1b\\n\\xc3\\xf8\\x8b\\xeb\\x03>`\\xbfy\\xb0\\x13;B\\'\\xfe\\xe12F\\x90\\xa9\\xe7z\\xa7\\x02zG\\x8e\\x0f\\x96\\xb6\\x07K[\\xf1\\xa1G\\xcd\\xa1\\x0fZ\\xf3a\\xc2.\\x01L\\x9e\\x0f\\x93\\xcf\\x11|\\x8d\\x02\\x1f\\xe6A\\n\\xf4A\\x1b>h=\\x16\\xb4V\\xe4\\x83\\xa5\\x8e`\\xa9\\x12\\x1f\\xfa-\\x0cz\\xa7-\\x1f\\xfc\\x932\\x9fu\\'*\\xfcf\\xfe\\xe9$\\xf5O\\xed\\xa0\\xbc=\\xff/\\xff\\xd4\\x81\\xdf\\xcc?\\x9d\\xa4\\xfeI\\x15*t\\xe4\\x83\\x7fR\\xe37\\xf1O\\xea|\\xce?i\\xf0[\\xf0O<>\\xdcQ)y\\x07v\\xf3\\xf9\\xb0\\x1c\\xcda\\xfek\\xf2\\xa1\\xe7\\xd3\\xa0\\xe7\\xb58\\xeb\\xc2\\xc0:m>,\\xee%`\\x9d\\x0eg\\x90.\\xb4\\xaf\\xd7\\xdc u\\xbe\\xcc\\xa0NP\\xae\\xff\\xb7A\\x06\\xcd\\rR\\xe7\\xcb\\x0c\\xea\\x0c\\x15\\x0c9\\x83\\xba\\xb0\\x06\\x89\\'\\x9b4=bbq \\x9c\\xe1\\xfe%:5\\xe2\\xd3V\\x8c\\xf9\\x8d\\xe1\\xfe\\xffQ\\xa9+\\xbf1rs\\x93\\xb0i\\x82\\xbb\\x81\\x1a\\xdd\\xf9\\x7f\\xc5\\xdc\\xc1^!b\\x1f\\x1f\\x7f/\\xf6\\xe3\\xa50\\xdc\\xa3I[&\\xfc\\x86#Ns\\xa4g\\x13\\xc9=Ar/\\x90\\xdc\\x9b\\xdfxF\\x1f=\\x80U%\\xcc?,\\x9cQe.\\xa4\\xc3\\xb1\\x87?[\\xb9O\\x93\\xca}\\xa0r_\\xa8\\xdc\\x8f\\xad\\xdc\\xab\\xc5N\\xf1\\x0fn\\xd9B\\xd3&\\xaa\\xf6g\\xab\\x1b5\\xeb\\x96\\x7f\\xabf\\xd6D\\x033\\xd0\\xc0\\x1c4\\x18\\xc0o\\xf8h\\xc7O\\xcdO\\xd5\\x8f\\xc7E\\xb7\\x1d \\xba\\x1d\\xfb\\xaf\\x91md\\xe3\\xa7\\xc9~n~\\xae\\xcb\\xf0@\\x904\\x88\\xdfb\\xb8;\\x98/\\x0bw\\x87\\xf0e\\xe1\\xae\\x05;-<\\x17bKv\\xfar\\xbf&\\n\\x13\\xb3?\\xc9\\xc0C\\xf9ll9\\x8c\\xbd\\x0e\\'F\\xee\\x177\\xd8?\\xd87\\xcc44d\\x8e\\x187\\x80\\x10\\xdb\\xa88\\xb3W&6\\xb9\\x80\\x87\\xc3*Q\\xf8\\xd7j\\xec\\xa5\\xa6\\xd5&0y\\xf7\\x10\\xa6\\x9f\\xdc}\\xfc\\xc5\\x81\\xde*x\\x04\\xbfy\\xa3l$\\x1c(\\x8er\\xf7\\x0e\\x89\\xf0\\x0c\\x14\\xab\\xd8qY{\\xc89rU\\xac\\xf80\\x1c\\xd6\\xecp0\\xe6\\xc9\\xcd3\\xc3\\x02\\xf0\\x19\\xcb\\xb0\\x10\\xcc\\xb1\\x013\\xd9\\xe8<,\\xd4\\x033\\x9a\\xd82\\x17\\xe2!\\x1a\\xf4g\\xc5\\x05q\\xf1\\x0c\\x13\\r\\xda1\\x05c#\\x96a{\\xe8S\\x07\\xfe\\xdf\\x1d\\x10878$\\xc8\\xdf#\\xb0I\\xb2\\xf1S\\x1e\\x95 \\x8f\\x00\\xb1;3\\xdc\\x8c]^\\xee\\xb4\\\\\\x05;\\xb2\\x1d/\\x82o:X\\x1d%\\xacrq\\x18\\xb1M\\xc5\\x87\\xe3\\x91\\xd0\\x94\\x13\\x9f\\x1d\\x97Q\\xac\\xa2\\xff\\xad\\xf5\\x0e\\r\\xedb\\x11S\\x0b\\xe5\\xd9\\xbb\\x1f} \\xc7&z}qd\\x13\\x04\\x8f\\x06\\xc9c\\xa0u\\x16\\xc9\\x8du?z\\xfb\\xb9S\\x04\\xb2\\xf6]\\x1d\\x1f\\xf8\\xe6\\xecc\\x82\\xc7\\x022N\\x86\\x08;\\x1c\\xac\\xae>qz\\x1c\\x92\\xaa\\xfd\\xbe\\xbc\\xaf\\xdb\\xeb\\xed\\x04;\\x032\\x9eJ\\xd9\\xb4\\xa5v.?\\xff\\x1c\\xca=\\xe6\\xb52\\x1d-\\xbaE\\xf0\\x04@&\\xca\\x90\\xbc\\x997\\xdc\\x93\\x97\\xe8\\xb6Ayv\\xad\\x15\\x0fK\\x8c\\xe5\\x99\\x88\\x1a\\x10\\x17\\x19b]\\xf4]\\xb2~Q\\xb5\\x15\\xca\\xad\\xf2\\xb1\\xbb6s\\xdfh\\x82]\\x01q\\xa3R\\xaa>\\x91\\xb8\\xe0\\xb7~Hpy\\x8e\\xaeC\\xaa\\xd1K\\x82\\'\\x032\\x85\\xear\\xd9\\xa6\\xe7\\xf4Nk\\xab\\x91\\xf5\\xd3\\xf2;\\xce/=\\x12\\t\\x9e\\n\\xc84*\\xc5\\xbf|_\\x91\\xaa\\xfeN\\x94\\x87\\x06\\xca\\xe5Y\\x8d^C\\xf0t@fP]r\\xf3*n\\x8e\\xb7\\xf2A\\xb9\\xef\\xcd\\xdd\\xd6V\\x1a\\x8deBe@\\xdc\\xa9\\x94\\xab[W\\x04\\xf9\\x8e\\x0bE\\x82\\xd2\\xd2\\x18\\xd5\\xa1\\xe6\\xd6\\x04\\xcf\\x02\\xc4\\x83Jy\\xa6|s\\xda\\x9aE\\xdf\\x90\\xf5\\xbd\\x9b\\x8f\\x17=T\\x9eC\\xb0\\' ^TJ\\xe6\\x86\\xb6\\x17\\xcc-j\\x90\\xb0\\x97\\xd1\\xc4){~N!\\xd8\\x1b\\x101\\xb5\\xa8\\xda\\xc5\\xa2\\xa7\\xde\\x95S\\xc8\\xfaF\\xf7\\xe1;\\xe2c\\xbf\\x11\\xec\\x03\\x88/\\x95r\\xf9\\xc0\\xd4\\xbe=\\xdawC\\x82K\\x92\\xd4W\\xab\\xbb\\x9eb\\x02i@\\xfc\\xa9.5\\x19\\x01S.f\\x0fG\\xb9\\xb7r\\xef\\xee}\\xa3\\x1a\\xcaD\\xd4\\x80\\x04P)\\xf7\\xab\\x03\\xb7t\\xd7\\x9f\\x8c\\x84\\x9d\\xbf\\xb7\\xdf\\xa06\\x88\\xc7\\x84\\xd6\\x80\\x04Q)\\xcf\\xef\\x9a}\\xedr\\x87\\x87\\xackg\\x07m\\x1b\\xaez\\x9e\\x89\\xb1\\x01\\ti\\xa2\\xcb\\x15\\xffR\\x1be[$\\xb8>;\\xd7\\xdf\\xd1\\xfb\\r\\x13l\\x032\\x9b\"\\x9a=\\xebr\\xe2\\xafLD\\x02\\xc5\\r\\x15o\\xfc\\xdf\\xddf\\xa2n@\\xc2\\xe8\\xacS\\xd8\\xd7\\xe5|\\xd2\\xfb\\x02$\\xecb\\x94xsrE\\x1e\\x13~\\x03\\x12A\\xa5(\\xc4\\xb5/\\x1e\\x11\\xfa\\x9e\\x99\\xdes\\x05FS\\xf3j\\x988\\x1c\\x9092Dj7^c\\xa3\\xca\\xa06H\\xda\\xfb\\xf9\\x83\\x05V?1\\x13\\x90\\x032W\\x86\\x08,f\\xe9\\xd6\\xfd\\xbc1\\x0f\\t\\x8c=\\x8f\\xf8\\x17\\xde\\xdc\\xc5D\\xe6\\x80\\xcc\\xa7\\xba\\xe8^\\x19\\x7f\\xe1\\xe6\\x86\\xe3H\\xd8\\xed\\xf4\\x9d$I53\\xbd\\x17\\x00\\xb2\\x90\\xea\"\\x9cvD3\\xcb+\\t\\t\\xc6n\\x91V\\xdeZ\\xca\\xf4\\xcb\"@\\x16S)\\xe3u:\\xda\\x0bN\\x7fER\\xfb\\x11\\xfe\\x9d/z1\\x16-\\x01$\\x9aJ\\xb1\\xeb1\\xe5\\xd5\\x8c\\xa2?Lb\\xe5k\\xcd\\xf2s}\\x08^\\nH\\x0c\\x95b\\xb2o\\xc4\\xd2\\x02\\xc5\\x85H\\xd8{\\xef\\xcd\\xf0G\\xe6\\xc7\\x08\\x8e\\x05$\\x8e\\xce\\x97/\\x91\\xb9f\\x8f\\xb61K\\xcd\\xa1\\xec\\xd9\\x8b\\xa7\\xbf\\xdf\\x12L\\x00YF\\xa5\\x88\\xbf\\x1c7[yp\\x10\\x92\\x8e\\x1a\\xf0g\\x95T\\xb5/\\xc1\\xcb\\x01\\x89\\xa7\\xfd2U\\xf1\\x82\\xcd\\xaa\\xc00$\\x98y%.+\"M\\x97\\x89\\xe8\\x01YI\\xa5,\\xed\\xb5\\xd2\\xf4\\xf4\\xb7\\xf7H\\x9a\\xf8\\xe1DR\\xb9\\xd2\\x1d&\\xb4\\x07$\\x81Z\\x14\\xb1\\xd3\\xd3(r\\x9d\\x0b\\x128\\xfb\\x8f\\xfb\\xa0\\xbd\\xab\\x03\\xc1\\xab\\x01YC\\xa5\\xcc~\\xfb\\xf1B\\x1c\\xef#\\x92N}\\xf9b\\xff\\x8a\\xce*L\\xb0\\x0fH\\x12\\xd5%\\xb2K^v\\x9b\\xf5\\xbdQ\\x1e\\xd1{0\\xe5m\\x9bx\\x82\\xd7\\x02\\xb2\\x8eJIt\\x9e\\xb39\\xf0S>\\x92n\\x88~\\xf5}\\xb4P@\\xf0z@6P)\\xf1c\\xdfM\\xfa\\xa9\\xf1\\x0c\\tR\\xe7=\\x1bl]\\xbf\\x9a\\xe0\\x8d\\x80l\\xa2R\\xe6\\x96\\x92\\x0e\\xb5_\\xebYQ\\xc5\\x1c\\xbd\\xcf\\x02\\x92Mu\\xe1\\xc9}\\x8c\\xc8\\xde=\\x04\\t\\x7fL\\xb4\\xd88K\\x91\\xf1R\\xe7\\x00\\xc9\\xa1\\xba\\xf8\\xdc\\x9c\"\\\\\\xbc^\\x88\\x84C\\xc7,\\x8f;2{\\x1e\\xc1\\xb9\\x80\\xe4\\xd1\\x86\\xbe\\x0b\\xc7\\x8f<\\xb9o\\x03\\x12\\xd6\\xbd\\xc8\\x19u\\xf2P\\x1c\\xc1R@\\xf2)\\xe2c2\\\\2\\xaa\\xb52\\x92\\x86F\\xa2\\xac\\x04\\xff.\\x04\\x17\\x00RHu1\\xb0\\x16\\x94\\x84\\xeen\\x87l\\xd4\\x96\\xab\\xbeh\\xb7\\xdc\\x84\\xe0\"@\\x8a\\xa9.\\xd1~\\x8bL\\xce9\\xd4!\\xa9\\xef\\xf8L\\xf9\\x88\\x01\\x03\\t.\\x01\\xa4\\x94J1\\x12.\\xda\\x17\\xfd0\\x1d\\xe5\\x1b_\\x8ay*Z\\xd8\\x86\\xe02@\\xca\\x99\\x7f\\xc5\\x04\\x9f\\x87\\xcc\\x05\\x96\\xb7h\\xd5pD3\\x8f\\xc4\\x17\\xf9\\xec)\\xe8\\x12\\x14^\\xe6\\xb3an8\\xbe\\x02\\xb9\\xab\\xfc\\xc6O\\xf7\\x1aN\\x93\\x12\\xf6P(\\xa1\\xe7;s|\\x8d\\xcf\\x9d\\xef*\\xf8\\xec\\xf9\\xae\\x92\\xc5$p\\xa8\\x934\\x9e\\xe0\\xaa@\\xd4u\\xb6\\xe2\\xdf\\xe7\\xafk\\xd0\\xf2\\r>w\\xfe\\xaa\\x06\\xf0&\\x1f~$\\x00\\x82\\xb8\\xe5\\xf6I~\\x97\\x10\\xceSu\\xfb\\xee\\t\\xe1\\xa5L\\x7f\\x81\\x17\\x92\\nC*\\xae$)\\xbe\\'\\xf8\\x05 \\xb5tZM\\xe8\\x9b1\\xf0\\xd0\\x97\\xf1H\\x1a)u\\x88W\\xfdfN\\xf0K@^Q)\\x91/<\\xfb\\xcc\\xacuG\\xc2T\\xaf\\xb0\\x15\\xf6(\\x85\\xe0\\xd7\\x80\\xbc\\xa1\\x884\\xe8KD\\x9d\\xe7\\x11$]\\x1fp^S\\xda\\xea\\x17\\xc1o\\x01yG\\x1bJ,\\xe1\\xa5\\xb9\\xcc\\x9c\\x8f\\xa4U\\xf6\\xeb#\\xac\\xa2\\x98\\x15\\xf9\\x1e\\x90\\x0f\\x14)\\xbc\\xdb\\xb7\\xc3\\xc6\\xd2\\xdeH\\xf8\\xb8l\\xc0L\\xb1\\x80\\xf1wu\\x80|\\x94!6\\x1d\\x043\\xf4\\xd2\\xc7~B\\xd2\\xdb\\x19K\\xcd\\xaa\\xaf\\x8d \\xf8\\x13 \\x9f\\xa9\\x94G\\x0e[6\\xf1]\\xbf\\xa3\\xfc\\x1e5\\xa1\\x1ej\\x91\\xde\\x04\\x7f\\x01\\xe4+\\x9d\\xe2\\xfd\\x17k\\x8et\\xdf\\x13\\x82lz\\xe9\\x99\\x8bG\\xb8\\x1d\"\\xf8\\x1b \\xdfiC\\x93MW\\x9c\\xd9\\xfd\\xfa\"\\xb2Q\\x9f\\xb85\\xc2\\xa7\\x9aY\\xfa?\\x00\\xf9I\\x8d\\xfe\\x92t\\xee\\x99FX,\\xca\\x9f\\xcbO\\xb1\\x1c63\\x9a\\xe0_\\x80\\xfc\\xa6\\r\\xad\\xd4\\x9a\\x93\\x96<\\xd6\\x1f\\xd9L\\xdfh\\xad\\xa7\\x94\\x1dI\\xf0\\x1f@\\xeaiC[\\xf8K\\xd3\\xaa\\xf9\\xad\\x90\\xcd\\xb2\\x84\\xca\\xab\\xc5\\xe3\\x98u-\\xa7\\xc9\"\\xad4eRv\\x7f\\x1dx~\\xfd\\xfb+(?\\xdfx\\xdb\\xb8\\x13\\x1bv\\x13\\xdc\\x1a\\x10y\\x8a\\\\Km\\xdfC\\xab\\xe46\\xb2y`\\xfef\\x88\\xdf=_\\x82\\x15\\x00i#Cl\\xd5u[;\\xfc\\xcc\\xf4D\\xf9\\xd5\\xc1e\\xcf\\xbb\\xf4\\\\I\\xb0\" J2\\xa4@\\xeb\\x95\\xbc\\x87U\\x87\\x00T0\\xd4\\xe0\\xbcV\\xec\\xfd\\x0c\\x82\\xdb\\x02\\xa2L\\x11\\xd7\\x1e#?\\xab\\x9c\\xba\\x8alG\\xbf\\xef\\xea\\xa8\\xe81\\x98`\\x15@\\xda\\xd1\\x86\\xe2\\xd4^\\xb6\\xd1\\xdd6\\x05\\xd9:\\x9fp7\\x9c\\xd9\\xa75\\xc1\\xed\\x01\\xe9@\\xa5l\\xab_/\\x9b]1\\x83\\xe0n\\x80t\\xa7\\r\\xad\\xd7\\x18\\xf6\\xac\\xebn7d\\xbfc\\xdc\\xef\\xe0\\xbd}\\x8d\\x08\\xee\\x01\\x88\\tE\\xf2uxY\\xc6\\x95\\x87Q\\xd1I\\xe1\\x98\\xcb\\x1fW2G\\xae\\x9e\\x80\\xf4\\xa2\\r\\xdd\\x92x^\\xb8\\xa6x\\x10\\x15\\xdd(Qz\\x7f\\xbd\\x8eY$\\xbd\\x01\\xe9C\\x91\\x8a\\x03\\x19\\xdd\\x06=\\xb3@\\x0e\\xf2\\x0f\\xaac-\\x13\\x9d\\t\\xee\\x0bH?\\x19\\xe2\\xd0\\xefR\\xe4\\xe2\\xd3a\\xee\\xa8\\xe8\\xed\\xf8S\\xb99Q\\xcc\\x18\\x99\\x02\\xd2\\x9fJ9\\x19d\\xfd\\xae\\x8fe\\n*v^j3\\x8d/`\\xe2\\x123@\\xcceH\\xb1\\xffM-\\xa5\\xe93\\xe6#\\x07\\x8d\\x9b\\xd3r\\xa3w3G\\x8b\\x01\\x80\\x0c\\xa4\\r\\xe1\\xa2\\xda\\x84\\xd0d\\x84\\x1c\\x96\\\\\\xc5\\x9c\\xa7,\\x01\\x19J\\x91\\x17\\xca\\x1b?/\\x0by\\x8c\\x1cjR\\x94\\r%&\\x1d\\t\\x1e\\x06\\xc8p\\xda\\xd0u\\xb7Y\\xd2\\xc7\\x87N\"\\xc7\\xd6V\\x17v\\xb8\\xdedb\\xa4\\x11\\x80X\\xc9\\x10G\\xf5\\xc7If6\\x8f\\xbe \\x87\\xba\\xf3\\x89Y\\x8a\\xdbG\\x12l\\r\\x88\\x80\"j\\x13\\xa2\\x02\\x17\\x1c\\xa8G%\\xbc\\xf2r\\x85\\x03\\x1d\\x99\\xf0R\\x08\\x88\\r\\xd5\\xe5w\\xea\\x9e\\xd9\\xb1\\xcc\\xa1\\xa0D#(\\xc7\\\\\\'\\x9c\\xf1u\\xb6\\x80\\xd8i\\xc2\\x8eo\\x0f\\x19\\x07\\xcdf;~ v\\xd4\\x84\\xcf=\\xa0p\\xa4&\\xb7\\xe3;An\\x14\\x8bn\\xfc\\x0f;\\xfe\\x00,\\xd2\\xe4v\\xfc\\xd1\\x9a\\xec\\x8e?F\\xf3\\x9f;\\xfeX\\x105N\\xb3\\x85\\x1d_\\x04-;kr;\\xfex\\x00\\'h\\xb2;\\xfeDM\\xba\\xe3\\xd7\\x8d\\xe1Ka\\xc7\\xff\\x91(\\x9c\\x05;\\xfe$ ]d\\x86\\x0b\\xf2;\\xf3\\x85\\xeb>\\xbdG\\x82\\xc4wK\\x13\\xebN^\"\\xd8\\x15\\x107\\x8a\\xd4\\x0e\\xdf\\xe6\\xd1[\\xa9\\x16\\t\\xae.\\x91?\\xf5\\xb0\\x94\\t\\x82&\\x032E\\x86\\x085z\\x98\\x8e\\xd0=\\xbb\\x83\\x11\\xe7\\xb0\\xfdY|\\xe7O\\x04O\\x05d\\x1aE\\xf4\\'G-\\xdd\\xb5\\x07#\\xa1^\\xe7O\\xf3\\x0f\\x97$\\x10<\\x1d\\x90\\x19\\x141\\xc8u\\xffs2G\\r\\t\\xcd\\xf7U\\xeb,e\\xce\\xe0?&\\t\\x9cN\\xf7\\x99Jp A\\x14\\xe9\\xa6b>-s\\xe5i$}\\xb5\\xd5\\xb9\\xf3u\\xcd\\x9e\\x04\\x07\\x03\\x12B\\x11\\xab\\x84\\xc0\\x07\\x9b\\xe4\\xa2\\x90\\x8dI\\x95n\\xe1\\xf0qV\\x04\\x87\\x022\\x9b\"N\\xde\\xa3\\xd3#\\xec\\xf5\\x90\\x8d\\xeb\\x8f\\x19>j\\x11i\\x04c@\\xc2\\xe8\\x16\\xea\\xe4\\x9f\\x18\\xfd\\xe1\\xd9\\x0cd3g\\xd9\\xaf\\xe7;+\\x99\\x888\\x1c\\x90\\x08\\x8a,\\x0f\\x08\\x9ed\\xe0j\\x84l\\xd6\\xd8d\\xa4\\t\\x94\\x98u\\x1d\\t\\xc8\\x1c\\x8a\\xa4\\xcd\\x89\\xee\\xee\\xff\\xc1\\x06\\xd9\\xac\\xf3j\\xafh\\xb5p<\\xc1Q\\x80\\xcc\\xa5\\xc8y\\xf3\\r\\x0b\\xdb\\x8e\\x1e\\x8c\\xf2S\\xf6\\xaf\\xedQ\\xe7\\xb5\\x9c\\xe0y\\x80\\xcc\\xa7\\xc8\\x07\\xd3\\xc1\\xfc\\x91\\xe3\\xa7\\xa2\\xfc\\x82\\xf5xI\\x94-\\x13\\xc0/\\x00d!\\xdd\\x1f\\xbb^\\xb8\\xf5\\xfa\\xd5\\x94\\x0cT\\xd0~\\xdf\\x01\\x9b[\\xd74\\x08^\\x04\\xc8b\\x8a\\x8c_y\\xc8\\xd3\\xb9G(*pq(/>}m\\x07\\xc1K\\x00\\x89\\xa6\\xc8\\xc4_\\x95\\x16K\\x95\\x82QA\\xe2\\x91\\x8f\\xd9q\\x15Z\\x04/\\x05$\\x86n\\xe7\\'j\\xb5\\x96\\xae\\xecy\\x1e\\x15\\xe4\\x8d=\\xa8\\xf1\\xd8\\x859\\x8a\\xc6\\x02\\x12G\\x91:C\\x97]O6\\xf7B\\x055+\\x1fUx:0R\\x08 \\xcb\\xe8\\xfeh\\xdcy\\xb6\\xf2\\xdc\\x8d\\xe3\\x98M[-\\xd2\\xfa\\x91\\xe1N\\x82\\x97\\x03\\x12O\\x11\\xfb\\rr\\x9d_\\xc6M@v\\xa2\\xdf{\\x1cg\\xaa3\\xf1\\xe3\\n@V\\xd2\\x9d\\xad\\x93\\xcf\\xa3)5\\x8f:#\\xbb\\x85\\xbf\\xc6\\xba\\x19\\xceev\\x93U\\x80$Pd{\\xb0Y\\xbay\\x99>\\xb2\\xdb-\\xce}\\xbcF\\x7f\"\\xc1\\xab\\x01Y\\xd3d\\x7f\\x8c\\xd5\\x19e\\xec\\xf0\\x04\\xd9\\x9d8-\\x0c6\\xde4\\x86\\xe0D@\\x92(\\xf2\\xfd\\xe6:m\\xfd\\x07\\x11\\xa8\\xf0\\xe9\\xa4\\x84\\xee\\x1d\\xbb\\xf0\\x08^\\x0b\\xc8:\\xba\\xe1\\xf0\\x94N$u\\x90wBE]\\x9e~\\t\\xecw$\\x96\\xe0\\xf5\\x80l\\xa0\\xfb\\xa3\\xe1\\xec\\xbe\\x0e\\x13\\xbfMBENS\\x0b\\xec\\x15}\\x87\\x10\\xbc\\x11\\x90M\\x14\\xf1\\xed\\xa7\\xb6\\xef\\x8a\\xe98T$\\xde\\x18\\xf0X\\xee\\xf8}\\x827\\x03\\x92L\\x91\\xb5\\xa6U\\x97;Uy\\xa1\\xa2\\xd1\\xbb\\xee\\xcb\\x8f>\\xc9\\x9c\\xed\\xb6\\x00\\xb2\\x95\"\\xe9\\x83g\\x8dz\\xef\\x7f\\x19\\xd9\\x1f\\x0cQ\\xffb\\xa2\\xbe\\x86\\xe0m\\x80\\xa4P\\xe4\\x90s\\xddK7\\xbe5\\xb2\\xaf*r\\xbf\\xf5\\xa3$\\x9e\\xe0\\xed\\x80\\xec\\xa0\\x16=\\x17\\xdc\\x11<8|\\x15\\xd9\\xbf;\\x11\\x9b\\x1c\\xd4\\x97Q7\\x15\\x90\\x9dt\\xab\\xd0\\x18\\x7f&X?q0\\xb2\\xdf5X-\\xd4\\xad\\xf2\\x04\\xc1\\xbb\\x00\\xd9M\\x11\\x93\\x9b]\\x0f\\xaf\\xf3~\\x8f\\x8a\\xfb\\x8e\\xffT\\x18\\xfe\\xc7\\x98\\xe0=\\x80\\xec\\xa5;[\\xb7m\\xe36o\\xbe\\x96\\x80\\x8a\\xc7).\\xa8\\xbc\\xa9\\xfb\\x90\\xe0}\\x80\\xec\\xa7\\x88d\\x9d\\xf6\\xfd\\x9a\\x18\\x1e*\\x1e\\xdd\\xee\\x84\\xe8\\xc02f\\x97=\\x00\\xc8A\\x8a\\xach\\xff3|\\xc6u\\x07f\\xaf\\xd6\\xd6\\xf7}\\x11w\\x83\\xe0C\\x80\\x1c\\xa6\\xc8Z\\xeb\\x07\\xd2\\xcf\\xd5\\x05\\xc8!\\xd5\\xbf\\xcf\\xeb\\xf4\\x911\\x04\\x1f\\x01$\\x8d\\xaa{8j\\xed\\xc1\\xc5S\\xda\\xa0\\xe2\\x03k\\x87h\\x1e\\xfe\\xbc\\x94\\xe0\\xa3\\x80\\xa4S\\xa4\\xd47`_\\xdb\\x8fcP\\xf1#^x\\xf5\\xa9\\x1f:\\x04\\x1f\\x03$\\x836\\xf4(EcL\\xdb~+\\x98}\\xbdO\\xf6\\xb5\\x13]\\x18\\xa3\\x8f\\x03r\\x82n\\xc4\\xdd\\xce\\x19+\\xda\\xac\\x0cB\\x8e=\\x0e\\xff1^s{!\\xc1\\x99\\x80dQ\\xc4a\\xac\\xe7\\xd6\\x17\\xfcX\\xe4\\xe8\\xacp\\xb3\\xcf\\x83WL\\xe8}\\x12\\x90S\\x14\\xf1\\x9a\\xf5\\xb2~_\\xedG\\xe48m\\xa9Q\\x86\\xf1Tu\\x82O\\x03rF\\x86\\x948\\xba\\x18\\x9c\\x7f1~\\x12*\\t\\xf4\\xd7\\xb7X\\xe5\\xcb~j\\x01H6E6\\x95\\xf6\\xfa8\\xf1\\xe0\\x00T\\x92\\xec\\xaf&\\xaf\\xf9\\xc8\\x95\\xe0s\\x80\\xe4P\\xe4\\xcamE\\xe5v\\x9f\\xb3\\x90\\xe3\\xd9\\x0f\\xeb\\xac\\x96\\x9f~Cp. y\\x14y\\x9a\\xdb\\xad\\xaf\\xda\\xf5J\\xe4\\xf8\\x84\\xaf\\xea\\xfe\\xf31\\x13\\x97H\\x01\\xc9\\xa7\\xc8\\xd7\\x19>\\x15\\xc95\\xa5\\x08)\\xcc\\xb8}&\\xc6\\xc3\\x87\\xe0\\x02@\\ne\\x08\\xd2;3\\xb2R\\xf2\\xb8\\x1d*\\xd5-\\xbboq\\xddr\\x03\\xc1E\\x80\\x14S\\xc4\\xae_?\\xeb\\x04\\xe7\\xfd\\xa8\\xd4bim;a\\xeb-\\x04\\x97\\x00RJ\\x11\\x07+\\xdbw\\xae\\xfb%\\xa8tVjM\\xc7\\xf4j&\\\\(\\x03\\xa4\\\\\\x86\\x94\\x8a\\xd3\\x0c;w\\xf5]\\x89Pt\\xe5dK\\xfd\\xe7L\\xe8r\\x1e\\x90\\x0b\\x14\\xd9uXaT\\xe7\\xf8N\\x08\\xc5y\\x0e\\xde\\x914\\xda\\x90\\xe0\\x8b\\x80\\\\\\x92!r\\r\\xff!\\x94?\\xfc\\xdb\\xbbX\\x95\\x0f\\x04_\\x06\\xe4\\n\\xd5\\xa58sL\\x8f\\xd2\\xc3]P\\xe9\\xadO\\x01\\xdb%G\\x92\\x08\\xbe\\n\\xc85\\x192R.J\\xb5\\xf2\\x9e\\xe7/Tzc\\xf8\\xc3\\x15\\xb6\\xc3\\xdd\\x08\\xae\\x00\\xa4\\x92\"\\xf2\\xdd5\\xcc\\xdf\\xd9\\xbfEe\\xbcN\\xe5s\\xf8\\xb3\\xa3\\x08\\xae\\x02\\xe4:E\\x0c\\xa3\\x9f[\\xe8\\x88R\\x10\\xfaS\\xb6\\xe0\\xf4ECf\\x18o\\x00R-C\\xcal\\xac\\xfb\\n\\x17\\xcf.E#\\x07\\xb9\\x9c\\xad\\x88\\xfe0\\x9a\\xe0\\x9b\\x80\\xdc\\xa2R\\xc6\\xf7~2OX9\\x1a\\x8d\\x1cs\\xf3\\\\\\x8e\\xbd\\x81\\n\\xc15\\x80\\xdc\\xa6\\xc8\\xe8\\xb6{<\\xa3\\x93;\\xa1\\x91\\x91\\xcbjZ/\\xc9M\\'\\xf8\\x0e w)\\x127E?\\xf4Gb\\x08*[dx\\xc4\\xe1\\xd5\\xc3\\x1f\\x04\\xdf\\x03\\xe4>E\\x8eD?\\x98\\xf9zy\\x1b4r\\xcd\\xcc\\xef6\\x89\\xd9\\xd3\\x08~\\x00\\xc8C\\xaa\\xee\\xb5\\xdcG\\x06\\xf6\\xe7bQY\\x89\\xfb\\x86K:\\x889(=\\x02\\xe41\\x95r[\\xbc\\xd8!5\\xed.\\x1ay\\xeb}\\xc0\\xea;)\\xb3\\x08~\\x02\\xc8S\\x19R\\xde\\xe6\\xa0q\\xde\\xb2\\x82T4\\xf2\\xea\\xa0i\\x8fj\\x9d[\\x11\\xfc\\x0c\\x90\\xe72\\xc4\\xc9`\\xd2\\xa7\\xd9w\\xeb?\\xa3\\xf2\\x9e\\x9e\\xf6q7u\\x98\\x01x\\x01H-\\x95\\xd2\\xf3\\xdc\\x8eV\\xfd{\\xe9\"\\'\\xeb7\\xf9\\xc9\\xb9\\xc7\\xce\\x10\\xfc\\x12\\x90WT\\xcaL\\x83\\xd91}\\xde\\xefG\\xe5\\x03$\\xcf\\xd7}]\\xc8t\\xddk@\\xdeP\\xa4\\xd3*;\\x9dum\\xad\\x90S\\xfc\\xb7m\\xa7^\\xce;@\\xf0[@\\xde\\xfdsJ\\x95\\xaf\\x1a\\xbc{e\\xa1\\xcd(\\x82\\xdf\\x03\\xf2\\x81\\xear|N\\xbaI\\xf9\\xcfq\\xa8<\\xb3\\xf5\\x05\\x9b_\\xe3\\x1e\\x13\\\\\\x07\\xc8G\\x8a\\x14Ve\\xaf\\x0c\\xa9\\x18\\x86\\xca\\xf7\\x9f\\x9a?0\\xe0:\"\\xf8\\x13 \\x9f\\xa9.\\xaf\\xb4\\x0c6\\xban\\xdb\\x8d\\xca+\\xa6\\xaeS\\xf2\\xafg\\xc2\\xcb/\\x80|\\xd5\\x84\\x83\\xfe7\\xc8|\\xd7lz\\xd0\\x1f\\xe0\\x8f\\x7fh\\xb2\\xc7\\xed\\x9fP\\xf8K\\x93;\\xe8\\xff\\x86\\xdc\\x1f\\x16\\xdd\\xf7\\x1f\\x0e\\xfa\\x03q\\xbd&w\\xd0\\x97\\xd3b\\x0f\\xfa\\xad\\xb4\\xfey\\xd0o\\xad\\x05\\x9feh\\xb5p\\xd0\\xaf\\x87\\x96\\x15\\xb4\\xb8\\x83~\\x1b\\x00\\x15\\xb5\\xe0\\xc7\\x1fZM?\\xda\\xdb\\xbd\\xa4\\xe1\\xa3\\xbd;]\\xe0\\xa0\\xdf\\x16He-\\xd9)\\xfeD\\xa5G\\x1b\\x12q\\x06\\t2\\xa2\\xd6\\x17\\x87\\x9a1[\\xa8\\n \\xeddH\\xde\\xc3\\x84E6z\\xbf\\xc2\\xd9\\x8f\\xf6\\xfa\\x06\\xcd\\xb8\\xde\\x9e\\xe0\\xf6\\x80t\\xa0\\xc8\\xe3\\xda\\xee\\x0fK\\xbe.@R\\xd5\\xe9\\xe3&u\\xdf\\xc9\\x9cyU\\x01\\xe9(C\\x84\\xdaor#sn\\\\Cy\\x1fF\\xaa\\xa5\\x95\\x08/\\x12\\xac\\x06\\x88:\\xd5\\xa5~`G\\xafC\\x07>3A\\x81\\xe5\\xd9\\xc9Cms\\x08\\xd6\\x00\\x84G\\xa5\\xd8\\x84g-K\\xe4\\x1fg?\\xda\\x8b\\x1c\\xd8\\xca\\xc3\\x83`> \\x9a2D:{\\xc4\\xde\\x8e\\xab\\xfa\\x11$\\x14.\\xa8^\\xd6\\xe5\\xdd\\x02\\x82\\xb5\\x00\\xd1\\xa6\\xc8\\x04\\xab}\\x05\\xf3\\xd3F3A\\xc1\\xf9P)\\x96g\\xe2G\\x1d@t)\\x12y\\xd4\\xcfd\\x97\\x92\\x07\\x92\\xa6z\\xee\\x18_\\x90\\xcf\\x9c3\\xf5\\x00\\xe9Du\\x91\\xfaM\\xf8\\x1e\\xb8\\xcd\\x18I\\xd7\\xf7=\\x15\\xfb*\\x8eq\\xac\\xfa\\x80\\x18P$Q\\xb3W\\xe4\\xaf\\xe7\\x8b\\x91\\xb0\\xaa\\x9f\\xd7\"\\x935O\\t\\xee\\x0c\\x88!m\\xa8\\xe0\\xd2\\xbb*\\xa7=C\\x91\\xf0\\xf1\\xc5\\xd0\\xba\\xebG#\\t\\xee\\x02\\x88\\x91\\x0c\\xc9\\xef\\x10\\xea8!\\xb5\\xb8\\x1b\\x12\\xde\\xd3\\x18\\xbf\\xef\\xcav\\x11\\xc1\\xc6\\x80t\\xa5R\\x9e\\xbe~\\xdb\\xe7\\xb6\\xaa\\r\\xca7qXc\\xe1\\xf1\\xe0\\x1b\\xc1\\xdd\\x00\\xe9.Cl\\xcc\\x95\\xc5\\xd2\\t&\\xcc\\xe1\\xbaW/\\x05\\xad@u\\xe6h\\xd1\\x03\\x10\\x13\\x8a\\xb8\\xcdoS\\xde\\xfb\\xa2\\'\\x13ZT\\xaf\\xe2-\\x18\\xb7\\x8c\\xe0\\x9e\\x80\\xf4\\xa2\\xba\\x0cn\\xf3\\xe6I\\xce9\\x01\\x13\\x0b\\xac\\x18-\\xf1\\xb1`z\\xb77 }(\\xb2\\xac\\xe3\\xc0\\xd1\\xb5\\xf2E\\xc8fj\\xbf\\xb8\\xcf\\x9f63qu_@\\xfaQ$u\\xc5\\xa7\\xef\\xbb\\x96\\xdeC\\xf9\\xe1Ycj]T6\\x11l\\nH\\x7f\\x8a\\xec?(y\\xdf\\xe9}W&(8x\\xb9n\\x80\\x9c\\x12\\xc1f\\x80\\x98Su\\xdf\\x18y\\x17\\xdc\\xf7\\x8bF\\xf95\\x7f\\xc6\\xcd\\xc8V\\xeb\\x9b\\x1f\\xb3\\x98\\xde\\x1d\\x04\\xc8`\\x19R`a\\xdf\\xc7\\xef\\xd0\\x9a\\xad\\xc8\\xd6<@\\xa4:\\xe9\\x02\\xb3H\\x86\\x00bA\\x91I\\xd5\\x01u\\xba/\\xa63A\\x81\\xee\\xe08~\\x7f\\xc6=[\\x022\\x94\"\\xb3\\x9e(\\xac\\xdcy\\xd9\\x1b\\x15\\xc4\\x9c,\\xdc\\xfb8\\xcf\\x80\\xe0a\\x80\\x0c\\xa7\\xba\\x9c4\\xd8\\xfb\\xd9N+\\x00\\x15\\x1c|\\xe4\\xb2\\xe7|Of\\x8cF\\x00bE\\x91\\x9b=\\xa4\\xca\\xfd\\xc6\\xfdF\\xb6\\x0fu\\xf6\\x86;\\xef\\xab\"\\xd8\\x1a\\x10\\x01m\\xe8\\xe7\\x8b\\x81*r\\xfd\\x0e#;\\xa5\\x8f\\x86IB\\x01\\xb3\\x8e\\x84\\x80\\xd8\\xc8\\x90\\xc2\\x11\\xa6\\xdb\\x9c\\x95W\\x8cA\\x05\\x8f/$\\xd8`\\xcb\\xed\\x04\\xdb\\x02bG\\x11\\x13I\\x90fY\\xfe\\x10T\\x18\\xc0\\xf7\\xdb\\x96.x@\\xb0= \\x0e2\\xc4.\\xe9\\xd9\\x085\\xb4\\xa6\\x10\\x15:\\x9b\\xe9\\xab\\xde\\xad\\xb6&\\xd8\\x11\\x10D\\x91\\x94\\x1c\\x9b?\\xdd\\x1e|Cv\\xe95\\xdd\\xaf?\\x9a\\x95L\\xf0H@\\x9chC\\xe5Q\\x0f\\xc7\\x9f(HCv\\xb7\\x13\\xb6\\xaf+4`\\xa2\\x9bQ\\x80\\x88dHQ;4\\xf8\\xb7\\xc4\\xfa>*\\xfcpos\\xd2\\x92S7\\t\\x1e\\r\\xc8\\x18\\x19b\\xaf\\xfdS\\x7f\\xde\\xa3\\xb6\\t\\xa8\\xc8\\xbc\\xd36\\xb9\\xcf\\x17\\x99-t, \\xe3(\\xe2\\xbc\\xa2\\xb4\\x93\\xf8\\xd7tdW\\xdf\\xfaI\\xf0\\xa69\\xbf\\x08v\\x06de>s,\\x9e\\t\\x88;\\x95\\xa2\\xdc\\xf5S]\\xaf\\x07\\x99\\xa8\\x18\\xdb\\x8e\\x9fsl\\xfbz\\x82g\\x01\\xe2A\\x91\\x98\\xaa/m\\xe2\\x0foG\\xc5\\xc1\\xdd;\\x88v[\\x1e\"\\xd8\\x13\\x10/\\x8a\\x1c\\xacF\\xf6\\xaa\\x0b*\\x91\\xc3\\xd6\\xed\\xf5\\x17\\x0b.\\xf7\"\\xd8\\x1b\\x101\\xd5\\xa5\\xb4\\xd5E\\xe9X\\xaft\\xe4p-N\\xe3S\\xbf\\xddc\\t\\xf6\\x01\\xc4\\x97\"\\xb5\\x1e\\x03\\x1d\\xb4R\\x9cQ\\xf1{\\xd3\\x15\\xbb\\x8d\\xea\\x98\\xe9\\xed\\x07\\x88\\xbf\\x0cql\\x1f\\xb0f\\x8b\\xc8\\xed\\x06*~\\x17\\xe2c\\xb34\\xf79\\xc1\\x12@\\x02\\xa8\\x94O\\x87\\xc3O]\\xba|\\x109v\\xdeY\\x1d\\xbe\\xfd\\x18s\\x12\\n\\x04$H\\x86\\x94\\x18\\xf3\\xddW\\x8c\\xbd\\xbd\\x1b\\x95\\xe8E]\\xb82}\\xbf;\\xc1\\xc1\\x80\\x84\\xd0\\x86\\xba\\x90\\x8c\\xf6\\x0b\\xf3\\x8e\\xa0\\x92v\\xe6\\x07\\xde\\x94Y\\xc9\\x13\\x1c\\n\\xc8l-\\xd8\\xf11d\\xc2\\xb4\\xe4\\x9a\\x7f\\xb4\\x17\\xae\\x05O\\xc7\\x80\\xc2H-n\\xc7\\x9f\\x03\\xb9(\\x16=\\xf9\\x1fv\\xfcAx\\xae\\x16\\xb7\\xe3\\xcf\\x83\\x1d\\x7f~\\x0b;\\xfe\\x02\\x10\\xb5\\xb0\\xa5\\x1d\\x7f.\\xb4\\xbc\\xa8a\\xc7_\\x0c\\xe0\\x12\\xd8\\xf1\\xa3\\xe9\\x8e\\x9f;\\xce\\xed#|\\x99\\x97\\x9bhX\\xc1}\\xb4\\xb7\\x14\\xc8\\x18\\x99\\xe1\\xb9\\xb3\\xb7U\\xffH\\xa9\\xadA\\xb9I]\\x93\\xc8\\xb9\\xbes\\t\\x8e\\x05$\\x8en\\xc4\\xb7\\x86}\\xb3\\x9c\\xd8=\\x1e\\tn+\\xf7Z\\x9fu2\\x88`\\x02\\xc82*e\\xde\\xdd\\xbbu\\x97L{#\\xeb#\\xa4}\\xb6\\xfa\\xd1\\xb5\\x04/\\x07$^\\x86X_~9\\xbe\\xee\\xf0i\\'\\x94\\xa7^yg\\xbe\\xb0=\\x13\\xa8\\xae\\x00d%\\x95R2\\xe6\\x85\\x9c\\xc1\\xd3\\xd6LBi\\xe7\\xcc\\xeb;\\x8f\\x12\\xbc\\n\\x90\\x04\\xaa\\xcb\\x89\\x95\\xc5\\x053\\xaf\\xf6Ay9\\xc9y\\xe5\\xd7\\x0f\\x16\\x10\\xbc\\x1a\\x905\\xb4\\xa13\\xfcq.\\xce}\\x1f!\\xebk\\x17\\xac\\x1e*\\xaa1\\xdby\" I\\x14y\\x97\\x1d\\xf2\\xa4\\xcdO5\\x94{\\xdef\\xfa\\xef5\\x86L\\xf8\\xb2\\x16\\x90u\\x149\\xbeU\\xf5\\x98\\xff\\x99\\xd9(\\xb7\\xccwQ\\xe4\\n\\xa3{\\x04\\xaf\\x07d\\x03\\xd5%i\\xd3~y%\\xd1>$\\x98;\\xf7\\x9a\\xbfP)\\x84\\xe0\\x8d\\x80l\\xa2RN\\x0c\\xda\\x10\\xf4Tk\\x1e\\xb2\\xce\\xae\\xae{>\\xf4\\x0e\\xb3\\n6\\x03\\x92L\\x0f\\x05\\xfdg\\x04z.\\xf0\\x7f\\x81\\xa4\\x03f\\xd6\\xbf)5\\xdaG\\xf0\\x16@\\xb6\\xd2~)\\xcd\\xca\\xfd\\xb6=S\\x15\\xe5\\x1ew\\xd6?\\xff0\\x86Y\\xfa\\xdb\\x00I\\x91!y\\x8e\\xbc\\xf4\\x8b\\x8bu\\x06#A\\xe4\\xd2\\x907C\\x05\\xd3\\t\\xde\\x0e\\xc8\\x0e\\xaa\\xcb\\xf9o\\x81\\xf3\\xaaW\\xbd@\\xb9\\xfb\\x1eU\\xcd\\t,lGp* ;\\xa9\\x94\\xcc\\xa3\\x93J2&\\xdd@y\\x07\\xdc\\xa5\\xad&\\t\\x97\\x13\\xbc\\x0b\\x90\\xddT\\x97\\x8bs\\xa7\\x7fX\\xd1E\\x88\\xacO\\xcd\\xd2\\xbc\\xbd.\\x8b\\t1\\xf7\\x00\\xb2\\x97J\\xf1\\xd8\\xbf-\\xb1,,\\x04\\tL[\\xb7Q2\\x99\\x8e\\t\\xde\\x07\\xc8~*\\xe5\\xf80\\xd17c<\\x06Y\\x1f;2`wT\\xc2i\\x82\\x0f\\x00r\\x90\\xf6\\xee*\\xcb\\xcd\\xe3\\x0f\\x9f\\x1c\\x82\\xf2\\xf6w9\\xefb\\xf64\\x83\\xe0C\\x80\\x1c\\xa6\\x16\\x9d\\xba\\xf3;\\xbd\\xb7\\xdcu\\x94\\x9b\\x93#\\xa7\\xdb\\x0f1\\xc8\\x11@\\xd2\\xa8._\\x8eij\\x95?_\\x8f\\x84\\xeag\\x7f\\xf9\\xef\\xbd\\xc7l\\x15G\\x01I\\xa7R\\xcaS35\\xeeX=E\\xd65\\x92wO\\xc2{3\\xa7\\xd5c\\x80dP]6\\xdf+\\x7f\\xb4c\\xccO$\\xf0HI\\xbb\\xbcj\\x97#\\xc1\\xc7\\x019A-\\xba=\\xe2\\xf5$2\\x92\\xa0\\xdcG\\xd6\\x8b\\xcc]\\xc71\\x01|& YT\\x97\\xfb\\xbdG\\xb9\\xae],By\\xa9js\\x16\\\\\\x19=\\x85\\xe0\\x93\\x80\\x9c\\xa2\\xba\\\\{go\\x1dkn\\x80\\xac\\xbf\\x19~\\xf9\\xa8\\x14\\xc64t\\x1a\\x903T\\x97Y\\xf1\\x0fj\\xe3^\\xadE\\x82\\x95\\xb7\\xcf\\xffN\\x9f\\xc6\\xc4lg\\x01\\xc9\\xa6Rj~\\xba\\x1d9\\x17\\xde\\x83Y\\x8d\\xb1\\xa7\\xc5\\x1a\\x86\\x12\\x82\\xcf\\x01\\x92CuY\\xab\\xb59\\xe9\\xf7h\\xc6\\xa2\\xfd\\xfb\\xdf\\xf7\\x12;\\xfd!8\\x17\\x90j\\xe4\\xe4\\xcf\\x1ea\\x8f\\xf2~\\xd6-q\\xa8\\x0f\\x1eHp\\x01 \\x85T\\x97\\xf5fw-\\x1f\\xd6\\xfa\\xa3\\xdc\\xc7W\\xe7tB5\\x8c.E\\x80\\x14S)93\\'l\\x7f[p\\x10\\t\\x12\\xbfu{\\x97\\x1b\\xc4\\x9c\\x9cK\\x00)\\xa5R^\\x1bE\\xd6\\xeb\\xfb\\xa7#\\xeb\\xf7\\xbd\\x84f\\x9b\\xfa3cT\\x06H9\\xed\\x97;\\xa7R\\x17\\xf6\\xd1\\x1c\\x87\\x04\\xf9\\xd1S\\\\{\\n\\x99)u\\x1e\\x90\\x0b\\xb4!\\x05\\xd7\\x8cU\\xabG\\xa5\\xa1\\xdc7\\xf2qSf\\x8d\\x8a\\'\\xf8\" \\x97(\\xb2\\xf3\\xf7\\xfb\\x83\\xa6{\\xf4P\\xde\\xa9\\xc5\\xabULF\\xc7\\x11|\\x19\\x90+T\\x97\\xef\\x13JT\\x16\\xba1s\\xb7j\\xd7\\x90\\x97\\x9dC\\xaf\\x12|\\x15\\x90kT\\xca\\x91\\xb2\\xabk\\xc9&\\'F\\x97Yf\\xfa\\xbf\\r\\x18]*\\x00\\xa9\\xa4\\xbd\\xfb\\xd1y\\xcex\\xdfP\\x8c\\xac\\x9f\\xec\\xe7{\\x08L\\'\\x11\\\\\\x05\\xc8u\\x19\"\\xd5iS\\xf2n\\xb1Io$\\xf88\\xe0\\xd6\\xc0=\\xb7\\x8d\\x08\\xbe\\x01H5\\xd5\\xe5\\xe5\\x9c\\'C\\xfa\\xdb\\xcfd\\x1c\\xd9\\xaa\\xa9y\\xa7\\x863\\xfdr\\x13\\x90[\\xb4_\\xd2^_4M\\xb5\\xfb\\x8e\\x04\\x85u\\xcb\\xcf\\xc7\\xcf\\xefGp\\r \\xb7\\xa9\\xbam\\xb6\\xd4L}\\xb1\\xff\\x18\\xca\\xad\\xcb\\x0e\\xdb\\x7f-\\x9cq\\xaaw\\x00\\xb9KuQN\\xb5\\x1b\\x96z\\xa2\\x1d\\x92\\xeafY\\xfb\\xf2\\xe7\\xac$\\xf8\\x1e \\xf7\\xa9.O\\xd6\\xd5<\\xe8\\xaat\\x03\\t\\xba&.\\x1e\\x1b\\x1a\\xedL\\xf0\\x03@\\x1e\\xd2\\x86.\\xb9\\x1c8\\xab\\x9eZ\\x83\\x04eG\\xdbWw\\xca\\xeaB\\xf0#@\\x1eS\\xa4K\\xb7\\x98\\x9c\\xf2\\x8d\\xcbP^\\xf7.!\\xeb~\\xdd\\xdaA\\xf0\\x13@\\x9eR\\x8f\\xa9\\x1c\\xf0Nk\\xdd\\xaeZ$\\x95\\xdf\\x94\\xec\\xdf\\xda\\xde\\x93\\xe0g\\x80<\\xa7F\\xf7M\\xb5\\xbe\\xe1\\xe9\\x10\\x87\\xac?\\xbe}\\xf3*\\'\\xf0\\x02\\xc1/\\x00\\xa9\\xa5\\r\\xfdV\\xd3\\x86\\xee\\xefK/\\xb0\\x1f5\\x8e\\x11\\xb7kr\\x88\"\\xb6%\\xf8\\x0b _)\\xa2\\xbd\\xe5\\x94\\xd5\\xb1\\x9c\\xd7H\\xd0\\xfdjT\\xe1\\xe6\\xc7=\\t\\xfe\\x06\\xc8w:\\xd2\\xed\\x16\\xb4\\xbf\\xdc\\x7f\\xe9n\\x94\\xf7\\xfa\\xf0K\\xf3\\xb3;\\x16\\x12\\xfc\\x03\\x90\\x9fT\\xddn\\x0b\\xae\\xa9/t\\x1d\\xc0t\\xd0\\x84\\xb9k4\\xfa{\\x11\\xfc\\x0b\\x90\\xdft\\x8c,B_\\x87\\xcf\\x0c\\nE\\xc2a\\xde\\x0f\\xd5\\x8b\\xce\\xcc\"\\xf8\\x0f \\xf5T\\x17\\x8b\\xf4\\x89J\\xaf\\xcb& A\\xbf\\xb6v\\x17\\xa5\\xdan\\x04\\xcbi\\xb3H+m\\x19\\xf2(\\xca\\xbd\\xdc\\xdd\"\\x01I\\x15\\xe5\\x07\\x9c\\xc6\\x9d\\x15\\tn\\r\\x88\\xbc\\x0c\\xc9s\\x9cb\\xa23\\xb86\\x1d\\xe5\\xe9Z\\x89\\x0bV\\x1c\\x8d%X\\x01\\x9062Djx\\xa5\\xd6\\xfc\\xa1\\x8a9\\x12\\xf6\\xbcP=\\xf7K\\xd6u\\x82\\x15\\x01Q\\xa2\\r\\t{o;m$\\xd9\\xc9L\\xbf?\\x0b\\x16\\x16\\x88.\\x13\\xdc\\x16\\x10e\\xdaP\\xa5\\xed\\xa2\\x10\\r\\x8d\\xad(\\xaf\\xc0\\xf5\\xa2Mm\\x06\\x13\\xbc\\xab\\x00\\xd2\\x8eJ\\xd1\\xce\\x17\\xabdN\\x9d\\xcf\\xf4\\x8b\\xc5\\xa3\\x1d#\\xb4K\\x08n\\x0fH\\x07\\x19\"\\xec\\x99\\xd6\\x7f\\x95X~:\\x12\\xf2\\xf5\\xf5\\xcb\\x8d.\\'\\x11\\xac\\nHG*\\xc5\\xec\\xc7\\x81\\xf7\\xef\\xed\\xca\\x91`L\\xff?\\xca\\xeb\\xbd\\x98S\\x90\\x1a \\xea\\xd4\"\\xdb\\x9e\\x1d\\xcb7D\\x1dE\\x82\\x17\\x99\\x0f\\x94\\xa7}a\\xc6H\\x03\\x10\\x1eUw\\xcas\\x9d\\xfc\\xa8\\x80\\xf5(O\\x14\\xe10\\xe1\\x8d\\x0fs8\\xe1\\x03\\xa2I\\xa5t\\\\}\\xdb\\xd0\\xe1\\x88>\\x12\\x0e88p\\xa2t\\x163\\xa5\\xb4\\x00\\xd1\\xa6\\xbax+?*\\xd7\\xfa\\xfe\\x03\\xe5Y\\x07\\x9a\\x9e[z\\xb4\\x98`\\x1d@t\\xa9E\\x1a\\xbc\\xc5\\x8ec\\x9e\\x0eG\\xd2\\xe1\\x8b\\x1e\\xac\\x0cS\\x9fC\\xb0\\x1e \\x9d\\xa8.\\xd3\\xe6\\xfd\\xf9\\x85C\\r\\x90\\xc0-\\xe2\\x8d\\x8d$\\xe6\\x03\\xc1\\xfa\\x80\\x18P]\\xb4\\x8dw\\'\\xda\\x9e\\xeb\\x8c\\xf2nY}\\xcd*\\xbe=\\x95\\xe0\\xce\\x80\\x18R]P\\xc6\"\\xabS\\x8b\\x19q\\xcew*\\xce\\xd4~\\xb9Fp\\x17@\\x8c\\xa8.\\xda\\xc2\\xf4va\\xee\\xa3\\x91\\xe0\\xed\\xe966\\xdf\\xf3\\x19]\\x8c\\x01\\xe9Ju\\x19v\\xe8\\xe4CQ\\xda\\x07$\\xb0\\xdf3G\\xfbJ\\x06s\\xb6\\xef\\x06Hw\\xaa\\x8b\\xf9\\x19\\xb7\\xc0AW\\x0c\\x90p\\x94\\x8a\\xffIW?&\\xa6\\xee\\x01\\x88\\t\\x95bS\\x99\\xe8\\x95\\x9a\\xb4\\x14\\t\\x04\\xfe\\x1f\\x0e\\xbc\\x8fg\\x0e\\xd6=\\x01\\xe9Eu\\xe9;\\x00\\x97\\'\\xb7\\xff\\x8e\\xa4\\x06\\x16?n\\xef)\\xab$\\xb87 }\\xa8\\x14{S\\xcd\\x13\\xef\\xbf\\xf7Ey\\xb3\\xd7\\x89\\x16N\\x98\\xce }\\x01\\xe9Gu\\xf1Q\\xe9\\xba\\xb2s\\x90\\x0e#%,{\\xb7_\\xd2 \\x82M\\x01\\xe9O\\xfbe\\xd1\\x1a\\xdc]\\xdcI\\x03\\t\\x16\\x84\\\\\\xa8\\x9a\\xfc\\xfd5\\xc1f\\x80\\x98S]:?^\\xa4Z_}\\x1d\\t\\xfb\\x1c\\x8d~\\xbau3\\xb3\\x8e\\x06\\x002\\x90\\xea\\x92p\\xa0\\xc6m\\x93\\xc1u\\x947\\xf6\\xd6\\x8aI\\xf1\\xaf\\x19\\xe71\\x08\\x90\\xc1T\\x17\\xcb\\xdc\\x1b\\x0b\\xcd\\xa6\\x0eA\\xd2Yem>\\xfdI\\xd9D\\xf0\\x10@,\\xa8.\\xcb\\x87$t\\xde\\xe7\\xb4\\x06\\xe5E\\xfb\\x9a\\x96g\\xfer%\\xd8\\x12\\x90\\xa1T\\x97a\\xf9y\\xf73>X!\\xa1\\xd3\\x9ej\\x87\\xeb\\x9e\\xcc\\x89l\\x18 \\xc3\\xa9.\\xfev\\xe7b33\\xa6!A\\x8c\\xd4W\\xe5]\\xbc1\\xc1#\\x00\\xb1\\xa2\\xbat\\x19;h\\xd2\\x9a\\xc0\\xf9H\\xd8\\xdaAm|\\xe2\\xb1\\xdb\\x04[\\x03\"\\xa0R\\xfak\\xfcr\\xc8\\xb9Q\\x8c\\xf2$[p\\xbd .\\x99`! 6T\\x17\\x97ag\\x88\\xef\\x16\\xf6\\x1e\\xfa\\xaf\\x01C\\xebW\\x08\\x08\\xb6\\x05\\xc4\\x8eJ\\t\\x9eh8\\xca\\xac~,\\xca\\x9b\\xb1\\xc1E\\xfe\\xfb\\x9ez\\x82\\xed\\x01q\\xa0\\xba\\x0c\\x1f3m]\\xaf\\xe3\\x7f\\x90t\\x94\\xee\\'\\xaf\\x9dY\\xd1\\x04;\\x02\\x82h\\xbf\\x90\\x95G.>~\\x94\\xcf\\x0cV\\x96\\x86\\xb4\\x84\\x8d\\xb2F\\x02\\xe2Du\\x19>E\\xbf\\xfd\\x97\\xf4\\xb1H\\xe8\\xf1\\xdcp\\xb1G\\x07s\\x82G\\x01\"\\xa2\\xbalW\\xeb]\\x96\\xf3\\xa6\\x17\\xca#\\xfas\\xab\\xcd;\\x98\\x12<\\x1a\\x901TJ\\xc4\\x96\\xbc\\x97\\xfc\\x1d\\xc9H\\xea\\xba&9\\xa3\\xee\\x98\\x12\\xc1c\\x01\\x19Gu\\xd9\\x17\\xbc#\\xd6i\\x81\\x00\\xe5\\xad\\xb4RY\\xd0\\xef\\xf1R\\x82\\x9d\\x01\\x19O-\\x1a/\\xb5\\x98\\xf1\\x8b\\xfd\\x00W[\\xe9^ZJ\\xd6f\\x82\\'\\x002\\x91\\xea\\xb2\\xa2*\\xf5\\x87\\xe5\\xfe\\xf5\\xcc\\x01r\\xd2i\\xe3\\xac\\x82S\\x04O\\x02\\xc4\\x85\\xea\"Z\\xa0\\xeb\\xea[\\xe3\\x8c\\x84nR\\x7f\\xd3\\x98\\xd7\\xc3\\x08v\\x05\\xc4\\x8dJ\\xd9k\\xe1\\xee\\xe4\\x9f\\xc8\\xac\\x80\\xf5\\xbd\\xb3\\x9eX.U!x2 S\\xa8.}mO\\x04;\\x99\\xde@\\xc2\\x11\\xab\"\\x0e\\xb8\\xcdgV\\xc0T@\\xa6Q\\x8b\\xb6~_\\xee\\xebek\\x8c\\xf22z\\xc5\\x9bL\\xb9\\xebA\\xf0t@fP]\\xe6?M\\x9d\\xf2x\\xcd\\x14$\\x9d;\\xad\\xa7\\x9c\\xf0\\xd3`\\x82g\\x02\\xe2N\\xa5\\x9c\\x16=\\xd8\\xf3F9\\x0e\\t\\xceU\\x0f\\xfa}\\xbdl\\x08\\xc1\\xb3\\x00\\xf1\\xa0\\xba\\xcc\\x89\\xdf\\xc0\\x13l\\xd6F\\xc2%\\xbf\\\\\\x8b\\xe6\\xaea\\x021O@\\xbc\\xa8E\\x17\\x1eENN*b\\x02\\xd4d\\x81jl\\xae\\xb5\\r\\xc1\\xde\\x80\\x88\\xa9.Kv\\xb6\\t\\xd8\\xf1#\\x1f\\t\\xa3\\x9ez\\xdcl\\xfd\\xa5\\x9a`\\x1f@|\\xa9.e\\xb6\\xcf\\x95G\\xc4O@y%\\x06\\x1b/\\xac\\x99\\xb3\\x82`?@\\xfc\\xa9.\\xb1\\xaf\\x85c,\\xc6T0J\\x8d1Y7eh\\n\\xc1\\x12@\\x02\\xa8\\x94\\x83\\xfd\\xaf\\'\\xf78W\\x8a\\x04\\x95\\x87\\\\\\x16\\xbf\\xb4\\xedLp AT\\x8a\\xdb\\xaa\\xacN\\x86\\xa2\\x0eH\\xe8\\xdbq\\x9d\\xf9^}\\xc6c\\x06\\x03\\x12B-\\xaaz\\x17\\x1a:\\xb0r\\x11\\xa3\\x8b\\x89\\xc7\\x08+\\xf7\\xa1\\x04\\x87\\x022\\x9bJ\\x19s\\xe3G\\xe6\\x1a\\xdd\\x19Hhs\\xab\\xd5\\xd3\\x1b\\x12&\\x9a\\xc0\\x80\\x84Q]*2z\\xce\\x8d\\xfd\\xfd\\x0e\\xe5]\\x9d4o\\xff\\xd3\\xc5L\\x80\\x1a\\x0eH\\x04\\xed\\x97\\xe8\\x83\\xc7\\x9e\\xbe\\xd7\\xed\\x86\\x84\\x8b\\xb7\\xd4\\xbb]j\\xcf\\xcc\\x97H@\\xe6P)\\x97|^~\\x1b\\xb9\\t!\\xc1C\\xc1\\xef\\xaa\\xcc>\\x13\\x08\\x8e\\x02dn\\x931274\\x1d\\xb4?\\x03I\\x17\\xc5\\x8c\\x89\\x97\\x163c4\\x0f\\x90\\xf9\\xd4\\xa2\\xdac\\xa9\\xcfc^T\\xa1\\xbc\\xdc$\\xa3\\xb1\\xcf\\xf62#\\xbd\\x00\\x90\\x85T\\xca\\x86\\xb69\\xf3\\x0eT?F\\xc2\\xdd\\x87\\xde\\x0e\\x88\\xb7e\\x0e\\xf9\\x8b\\x00YLuyb%\\xbd`\\xd6\\xbf\\x869(\\x1d\\xed\\xe6\\xe2\\xb0^\\x9f\\xe0%\\x80DS\\x8b\\x16\\x1f2q^\\xf8q\\x19\\x92\\xce6(\\x88\\xb8\\xb69\\x86\\xe0\\xa5\\x80\\xc4P)5\\x97E\\xe9\\x15\\xceo\\x91\\xe0\\xc7\\xc2J\\xc5\\xfa\\xca\\xb5\\x04\\xc7\\x02\\x12GuI\\x15\\x87\\xce\\x96\\xbb\\xf9\\x16I\\xa3\\x1d{\\xed\\xb4\\x93\\x7fA0\\x01d\\x19\\xb5\\xe8\\xbb\\xcb\\xc9\\xb8\\x8d#}Q\\xde\\xfb\\xce\\x8f%\\x1bF\\'\\x10\\xbc\\x1c\\x90\\xf8&\\x9e!4\\xa6\\xcb)\\xdev$\\x9c@\\x12wk\\xd7\\xa8\\x11\\xbc\\x02\\x90\\x95T\\x97\\xcf\\xbd;\\xf8\\xeaw\\x8aGy\\xafNNJ\\xb4\\xdd\\xcb8\\xf8U\\x80$P]\\\\\\xefM_\\x90\\x92\\x19\\x8c\\x84\\x89\\xf5\\xaf\\x87\\xc5\\x8eg\\x1c\\xfcj@\\xd6P)\\x1f\\xd7\\n\\xce\\xcf\\x9e\\xf0\\x1c\\t\\xfeXL\\xdf\\xd5\\xfb\\xc7\\x08\\x82\\x13\\x01I\\xa2Rf\\xfc\\xba\\xafd\\xa2|\\x15I\\x0fO\\xfe\\xaeo\\xf3\\xcb\\x9b\\xe0\\xb5\\x80\\xackr81PY;g|=\\x12|\\x18}\\xf5\\x8b\\xe5\\xe3\\x19\\x04\\xaf\\x07d\\x03E\\xf6Ns^\\x1f;D\\x19\\t\\x03\\'\\xceKy\\xd4\\x9f93l\\x04d\\x135\\xbaU\\xab\\xb3\\xeaf\\x93\\xe71a\\x8b\\xbc\\xe1\\xea\\xfd\\xee\\'\\x08\\xde\\x0cH2E\\x8e\\x7f\\x18\\xb0\\xec\\xcc\\xb8\\x02$\\xf5Z3\\xf0\\xe1\\x1b\\xa1?\\xc1[\\x00\\xd9J\\x11\\x9503\\xd7\\x97\\xf3~#a\\xa7QI\\xbb~\\xc6\\x13\\x82\\xb7\\x01\\x92B\\x11\\xb7`\\x03a\\xc9Uf\\xd6\\xa59\\x07\\xce\\xfe\\xf6\\x88qA\\xdb\\x01\\xd9A\\xd5U\\xcf\\xee?\\xb8_\\x9bJ\\x94\\xf7\\x12\\xdb\\x85\\xec\\xa9\\xea@p* ;)2)v\\xdf\\xe7\\xe4\\xb4}H\\xb8\\xf5\\xca\\xb3\\xbbO\\r\\x19d\\x17 \\xbb\\x9b\\x8ct\\xb5\\xcb\\xdb}9w\\x91\\x94\\xf7M\\xe9\\xca\\xf2E\\xfb\\t\\xde\\x03\\xc8^*e\\xed\\x94\\x92\\x80\\xfa\\xdbuHhr\\x92\\x87N\\xb7\\x8a\"x\\x1f \\xfb\\xa9\\xba\\xdd#MG\\xdep\\x14#a\\xbb\\x13\\xe9b\\x97~w\\x08>\\x00\\xc8A\\x8al[\\x113SX\\xf3\\x10\\t\\x97i\\xd4\\x90%\\xaa\\xa9\\x04\\x1f\\x02\\xe40m\\xc8<\\xe3k\\x01OR\\x84\\x84\\x86C\\xe5\\x86~\\x1c\\xf6\\x9b\\xe0#\\x80\\xa4Q\\xe4X\\xa5\\x8f\\xdd\\x93\\x99UHZ\\x1e[\\xa7{q\\xfb\\x18\\x82\\x8f\\x02\\x92N\\x1b\\xea}\\x8b\\x9f\\xdb\\xb1V\\x1dI\\x87-\\x1eng\\x9a\\xc3l6\\xc7\\x00\\xc9\\xa0\\xc8\\x911\\xf7\\xc6V\\xb4+G\\xc2\\xe2\\xb1\\xfe\\xad\\xbcELC\\xc7\\x019\\xd1\\xc4\\xa2\\x19\\xf3\\xca\\xfb\\x99>EBab\\xb5\\x04K\\x99e\\x9f\\tH\\x16E.L\\xbc\\xb1,\\xb3\\xf09\\x92\\xe6F\\x18l\\\\^\\xcdl6\\'\\x019E\\xd5\\xb59\\x93\\x13Yx8\\x98\\t8F\\x1akfF.\\'\\xf84 g(R<\\xb8^z\\xcfH\\x80\\x84gK\\xfd\\xcc\\xb2fX\\x11|\\x16\\x90l\\xda\\x90Yr\\xf7\\x99\\xed5R\\x90\\x14\\xadz1\\xd9\\xbe\\x88\\xf1\\x0c\\xe7\\x00\\xc9\\xa1\\xc8\\xce\\x1e\\x9f\\x93\\x8a\\x8c/ \\xe1.\\x95\\xe8\\xe073\\xbf\\x13\\x9c\\x0bH\\x1eE\\x1cU\\xe4\\xb7]\\xd9\\xcd,X\\xc7\\xb6\\x0e\\xf9\\x1f\\xbd\\x18D\\nH>E\\x8e\\xd5\\'\\xcfR\\x0b0ft\\x19\\x8f\\xac\\x96\\xa7\\x05\\x10\\\\\\x00H!Uw\\xf4\\x0f\\x9bx\\x9b\\x9c\\'LD6\\xf4\\xc8\\x95H\\xff\\x8d\\x04\\x17\\x01RL\\xa5\\x948^\\x1c\\x1dx\\xd0\\x00I\\xa5\\x0f\\xeb\\xfa\\xaa\\x1dxCp\\t \\xa5TJ\\xfb\\x88C\\xeb\\xa3\\x02\\x8b\\x91t\\xe4\\xfcyo\\xca\\xad\\xb4\\t.\\x03\\xa4\\x9c\"\\x95\\xc3\\xd7\\xd8\\xfb\\xf44C\\xc2r\\xeb.\\x96\\x97M|\\x08>\\x0f\\xc8\\x05\\xda\\x10\\x12i\\xf7\\xb7=4\\x899\\xbd=\\xb9\\xf6&g\\x0f\\x13\\xe6^\\x04\\xe4\\x12En\\xad\\x1a\\x90\\xf4!\\x9f\\x89\\x1bo\\x07\\xf8\\xb9\\xdf\\tc\\x06\\xe02 WhC\\x83[o\\xd0\\xd84\\xae\\x929@\\xae\\x98\\xd1y]:\\xe3T\\xaf\\x02r\\x8d\"\\xd2\\xa1\\xa7\\xeb\\x12\\xd4\\xa7!\\xe9E=\\x95+g\\x87\\x04\\x11\\\\\\x01H%Ez.I+\\r%\\x1eH\\xea\\xf81\\xe9D\\x90\\xdc#\\x82\\xab\\x00\\xb9N\\x91\\xcb\\xd3\\xe6\\x9a&&oA\\xc2\\x8a\\x8b\\xc7:\\x9c]\\xfd\\x8d\\xe0\\x1b\\x80TSu\\'\\xa3^\\x87\\x16~f\\xa6\\xb7YI\\xbb\\xa7/n2\\x03p\\x13\\x90[M\\xbc\\x94\\xd5\\xb8^\\xdd\\xc8P$\\xdc\\xfb\\x96\\x1f9i\\x8d<\\xc15\\x80\\xdc\\xa6\\x88W\\xb6\\xa1w\\xd7\\xbd\\x17\\x91\\x10g\\xf7\\x96\\xa8f|%\\xf8\\x0e wiC\\x8f\\x8a<\\xdb\\x0e\\x9a\\xd8\\x03\\t\\xab\\x86\\xee4\\xfd5\\xc1\\x9e\\xe0{\\x80\\xdc\\xa7R|\\x93\\xda\\x8d\\xeb\\xae\\xc7cN\\x06\\x81\\x1a\\x9b\\x04\\xc9\\xb5\\x04?\\x00\\xe4!E\\xea,\\xb5\\xa5Kw\\xe6!\\xe9\\xe3\\xc0#y]\\xe6\\xfd$\\xf8\\x11 \\x8fiC+zX\\xc4\\xad[\\xe2\\x89\\x84\\x0b\\x05\\xde\\x85\\xba\\xbe\\xed\\x08~\\x02\\xc8S*\\xe5F\\xfc\\xb1s\\xed\\x0bf!\\xe1\\xc7]\\xc76\\x06n\\xe8K\\xf03@\\x9eSdeb\\xb0\\xfe\\x93\\x19\\xccd\\xf0\\xb2j7\\xeb\\x86\\x8d3\\xc1/\\x00\\xa9\\xa5\\r=\\xe4\\xc9M\\x95\\xd3\\xb4C\\xd2\\x9f\\x99S\\xbb\\x81\\xde\\x04\\x12\\xfc\\x16\\x90wT\\x8a\\xf8\\xcf\\xa5\\x1f3\\xbe\\x1cER\\x92\\xd9\\xdb\\xefj\\xbf\\x83\\x04\\xbf\\x07\\xe4\\x03E\\xaa\\x9eL\\xd4\\xdc\\x91\\xb2\\x1c\\t\\x0f\\xbd{\\xb0L\\xee\\xb5\\x94\\xe0:@>R$\\xb4~\\xdd\\xb5I\\xd2\\x8fH\\xb8\\xa6\\xfej\\x98\\x82\\xd7Y\\x82?\\x01\\xf2\\x99\\xearzq\\xd8\\xfc\\x9d*B$\\xac\\xb5:\\x96\\xb23OH\\xf0\\x17@\\xbeRd\\xea\\xfd\\x08\\xcd\\xaa\\x0f\\x8c\\xf7&\\xe7\\xde\\x9bn\\x8a\\x9aF\\xf07@\\xbe\\xd3\\x86\\xaaK\\xd4\\xbc~\\xd9D!\\xe9\\xc7\\xc8\\xd9iXp\\x9a\\xe0\\x1f\\x80\\xfc\\xa4R\\x96\\xde>\\x9e\\xbc,\\x9c9\\x86n\\x10~\\x12\\x9f\\x8f`\\xe6\\xee/@~\\xcb\\x90\\xfc\\x0e\\x0b_\\x19\\x05\\x87_C\\xd2\\x127\\xad\\x81g\\xdf\\x8e\"\\xf8\\x0f \\xf5\\xb4\\xa1\\xa5\\xcf\\x06k\\xfbe\\x96 \\xe9\\x0e\\xb7\\xb3<\\x9f%\\xcc\\x9a\\x96\\xd3\\x81\\xcf_t\\x1a\\x11\\x1b\\x95\\x05\\xe2\\xb8>\\xe9\\x13\\x91\\xf0\\xe9\\xa8\\xado\\xd6\\xcdd\\x02\\xb1\\xd6\\x80\\xc8\\xeb\\xd0\\xe9\\x1d8\\xd4\\xfd\\xde.\\x05$\\xdc\\x92.\\xd8\\xf9c\\xa2\\x1d\\xc1\\n\\x80\\xb4\\xa1\\xc8k\\xeb]\\x96=\\xe4\\x92Q~\\xc7Y>O3\\xb6\\xb5\\'X\\x11\\x10%\\x19\"\\xcc\\xee\\xef\\xfc\\xc1\\xe0\\xd4^$=~uz\\xbe\\xc1\\xa6\\xdd\\x04\\xb7\\x05D\\x99\"7\\x96\\x95\\xba\\r\\xbeJ\\x90M\\xebQ\\x97\\x06\\x1e\\xd6\\xc9!X\\x05\\x90v\\xb4\\xa1\\xacc\\x93{\\xef\\xecd\\xc7l\\x13/\\x8eT$\\x071\\xf1t{@:4\\xd1\\xc5\\xb2\\xf7\\xa8wi\"$,+\\xe4\\x97\\xe5>\\xe9G\\xb0* \\x1d)\\xb2\\xe6j\\xca\\x9c;\\xf6\\xcc~Thg\\xac\\x9a\\xfb\\x95\\x89\\xb2\\xd4\\x00Q\\xa7\\xfd\\xa2%\\xa70\\xefk\\x90\\x11\\x92\\xfe\\xa90_\\xb0k\\xd0\\x06\\x825\\x00\\xe15\\x91\\x92\\x1d\\x98\\xacW\\xf8\\x02\\t\\xf7_9\\x92\\x1c>\\x9e\\x19i> \\x9a2$_\\xfe\\xe9\\x16\\x83y\\xfa\\xfdQ\\xbe\\xcae\\xc3K\\x13\\xf5\\x98\\xa8\\\\\\x0b\\x10mjt\\xc1\\x9e\\xe7\\xfdl\\xde\\xd7#i\\xc6\\xf0\\xe4\\x97\\x19\\x99\\xd6\\x04\\xeb\\x00\\xa2Ku\\xe9p\\xae\\xe7\\xc6}k\\xfd\\x90\\x8d\\xb1\\xeb\\x91\\xf5_\\x7f\\x84\\x11\\xac\\x07H\\'\\xaaKa\\xf4\\xfbS=F\\xa60\\xdb\\xc4*C-\\xd1\\xa2\\x8f\\x04\\xeb\\x03b@\\xa5\\xf0\\n\\x05\\x16cC\\xfcP~;\\x03\\xc7\\xf7\\xbf?\\xd7\\x11\\xdc\\x19\\x10C\\xaa\\xcb\\xf9-O\\xe7N\\xa9\\xbc\\xcb,\\x92u\\xc7&\\xbd\\xf6\\xc2\\x04w\\x01\\xc4\\x88Z\\xc4\\xe7W\\x9c\\x8d\\x96\\xfb\\xc0\\xcc\\x97\\x9d|\\x8b\\xc9_\\x19_g\\x0cHW\\xaaK\\x8dGT\\xb9B\\xb9\\x18I\\xcf\\x99\\x1f\\xc9\\x1c\\xf8\\x93}V\\n \\xdd\\xa9.\\x8a\\xd7\\xf2\\x03\\x17\\xde\\xbc\\xcf\\xf8\\x97\\x98\\xc1\\x8b[\\xf5cb\\x92\\x1e\\x80\\x98P]n\\x95(\\xe33_\\x87\"\\xe9\\xb2\\x84)\\xbd\\x94\\x9e1\\xe1\\x7fO@zQ)m\\xf6M\\x9b\\x95xd+3X~\\x1eU\\x85\\x93&\\x13\\xdc\\x1b\\x90>T\\x97k\\xed\\x0e\\xde\\t\\x19]\\xce$\\xda\\xb8\\x87\\xb6\\xbf\\xc3x\\xef\\xbe\\x80\\xf4\\xa3R\\xba\\xd8_\\xac\\x99x\\xab\\x06\\xe5w\\xb3OqRn\\xc5l\\x9f\\xa6\\x80\\xf4\\xa7\\xba\\xbc\\xe8e:\\xab]\\xc21\\xc6\\xe8\\xd8\\xa0\\x94^k\\x99\\xa3\\x9f\\x19 \\xe6\\xb4_\\x06|\\xbe\\xf4\\xeb\\xf5\\xf5?\\xc8\\xc6\\xbch\\xebo\\xc3\\x0e7\\x08\\x1e\\x00\\xc8@\\xaa\\xcb\\xe7\\xe4Q\\xbc\\x031\\xbd\\x19\\xef:\\xb0n\\x89Yx)\\xc1\\x83\\x00\\x19Lu1U=zb\\xde\\x04Ed\\xa3\\x9f\\xa9\\xfa1\\xa9\\xcc\\x8f\\xe0!\\x80XP]\\xde\\xf4+8sZ\\x919X\\xef\\x14\\xf5\\x19\\x14b\\xc5\\xec$\\x96\\x80\\x0c\\xa5\\xba\\x98\\xa5\\x1f\\xea\\x1e\\xaa7\\x19\\xe5\\x9b&_\\xf7:\\xd8\\xc5\\x9d\\xe0a\\x80\\x0c\\xa7\\xbaT\\xfc\\xb2\\x995\\xa7\\xd4\\x1fI\\x1f\\x1e\\x8b\\xcd\\xeex|+\\xc1#\\x00\\xb1\\xa2R\\x8c\\xee\\x1b\\x87\\x1f\\xf3\\xb6`:h@\\xe4\\xa4\\xc3en\\x04[\\x03\"\\xa0\\xba\\xdc\\x93\\xf7\\xd6\\xbe\\xe4\\xa1\\x8e\\x84\\xefS\\xf2\\xe5\\x9c\\xe2\\x98)%\\x04\\xc4\\xa6\\xc9H\\xf3;\\xbd\\x1c\\xb7\\xf0\\x07\\xb2\\xd1\\x1dy\\xad\\xda\\xec\\xb02\\xc1\\xb6\\x80\\xd8Q]\\xaa\\x0c\\x02K|_vA\\xd2\\xe7\\xc5]\\x9f\\x9crbN\\xaa\\xf6\\x808\\xd0\\x86.\\x91\\xda\\x99\\xf3\\x9fU\\xa3|\\xf5\\x8c\\xca\\x9ev&LC\\x8e\\x80 *\\xe5\\xee\\xcb\\xc7\\xc5\\x8e\\xd7& \\xe1\\xd7>\\xde\\x97\\x93b\\xaf\\x11<\\x12\\x10\\xa7&\\xfd\\xb2\\xc8\\xbf\\xee\\x90e\\x0f\\x94\\xdf\\xd5\\xfc\\xd7\\xd1*\\x93\\x0c\\x82G\\x01\"\\xa2\\r\\x1d\\xab|;\\xb5[\\xb6\\x07\\xcao#?\\xfb\\x8ej\\x88%\\xc1\\xa3\\x01\\x19C\\xa5\\x18\\xcf\\xdc\\xb3\\xf6\\x91<3\\xd2\\xc2\\xd6\\xe2\\x81w\\xf0X\\x82\\xc7\\x022\\xae\\x89#\\x1b\\xdc~e\\xbc\\xa9+\\x12\\xfe\\xfe\\x1c\\xd6\\xae\\xaf\\xcd;\\x82\\x9d\\x01\\x19O\\xfbE\\xf3Aw\\xe3\\x99c\\xff\\xa0\\xfc!6\\x9d\\xfc\\x86\\xc93\\x13s\\x02 \\x13)\\xd2\\xea\\xed\\x84\\x95F\\x83o1{\\xba\\xee\\x85L\\x11~F\\xf0$@\\\\\\xa8.\\x82\\xbc\\xd5\\xd7\\xcb\\x06&>\\x12\\tk\\xf6\\xdd\\xd5\\xe1\\xbbg\\x13<\\x0b\\x10\\x0f\\xaa\\xee\\xc0\\x1a\\x95\\x81\\x97\\xa3UP\\xbe%\\xff\\xe1\\x94\\xe1\\xe2\\x93\\x04{\\x02\\xe2\\xd5d\\xcbR8\\x15h\\x11\\xb3\\x01Io\\x8dp\\xea\\xb6\\xd9\\xda\\x85`o@\\xc4\\x141q\\xbaw\\xf0\\xa2\\xe7sd3\\xa2W\\x8c\\x8eC\\xb7\\xd6\\x04\\xfb\\x00\\xe2K\\x1b\\x92\\x9b\\xf1\\xa5\\xf7\\x90\\x8c\\x8dH\\xf8I\\xcd\\xc7\\xf5\\xc5j\\xe6\\x88\\xe3\\x07\\x88?\\x9524<=\\xba\\xb6\\xf7\\x05F\\xa9\\xb8\\x80[\\xa5\\xd9\\xc7\\x08\\x96\\x00\\x12@-\\xfa\\xd9aD\\x86\\xbb\\xc5`d\\xa3\\xb0o\\xea\\x93\\xbd\\x17\\xfe\\x10\\x1c\\x08H\\x10\\x95bV\\xbe*pM\\xd1\\x11\\x94\\xef\\xf8\\xcamG\\xa1\\xcf\\'\\x82\\x83\\x01\\t\\xa1\\xba\\xe8I\\x07=N\\x8d\\xd5F\\xf9\\x8abE\\xf5\\xd2\\xb9y\\x04\\x87\\x022\\x9bJ\\x19\\xb4\\xe1\\xd3\\xcevJ\\xa1\\xc8F\\xfdxR\\xd6\\xa5\\xde\\xc5\\x04c@\\xc2(\\xa2\\xfcC\\xe7\\xc8\\x9b\\xf6\\xb3\\x91\\xf4wHJ\\xe8\\xb3wL<\\x1d\\x0eH\\x04E\\x9c\\xe7.\\x1b\\x10\\xda\\xfa\\x05\\xb2\\x99\\x9c\\xf8]\\xf9\\x9cIW\\x82#\\x01\\x99\\xd3d\\xd6\\xed?\\\\%\\xd0-B\\xd2\\xefW5\\xae\\x11\\xfe\\x1a\\x82\\xa3\\x00\\x99K\\x91\\x81\\xf3\\x8d\\xeb\\x02v-E6\\xf2\\xc7N\\x84\\xbf\\xdd\\xcc44\\x0f\\x90\\xf9\\x14\\x91wpiw?\\xa9\\n\\xd9\\xf0O<\\x1f<\\xbc\\xea\\x07\\xc1\\x0b\\x00YH\\x8d\\x9e\\xaaT\\xba4\\xe7\\xa7\\x13\\xb2\\x19\\xf5}\\xf8cCy&\\xb6_\\x04\\xc8b\\x8ah\\x14:\\xe4VF%\"a\\xa5BX\\xefk\\x8e_\\x08^\\x02H\\xb4\\x0e\\xdc\\xb2\\xb3\\x1421,/\\xbbe\\xc7\\xd2\\x0c\\xc7\\xea\\xb07\\xce\\xc4A!\\xd1\\xe1n\\xd9Y\\x06\\xb9\\xe5,\\n\\x8f\\x12\\xfb\\x97[v\\x06\\xe3x\\x1d\\xee\\x96\\x9d\\x15:\\xec-;+u\\xfey\\xcb\\xce*\\x10\\x95\\xc0\\x8a\\xfa\\xfb\\x96\\x9dxhy\\xb5\\x0ew\\xcb\\xce\\x1a\\x00\\x13u\\xe0\\xf5.:M\\x7f\\x8d\\xa79\\xab\\xe1\\xd7x\\xb6\\xa9p\\xcb\\xceZ \\xd7\\xc9\\x0c\\xcf\\xcb7\\xc8\\x8e{+\\x0cCy\\x89\\xaf\\x0b\\xcdxm\\x86\\x10\\xbc\\x1e\\x90\\r2DP;\\\\Q1\\xf9\\xc1`\\xf6\\xd7x:\\x9a\\xad\\xb4\\xd8[S\\x00\\xd9D]\\xa2F\\xf7\\xf3\\x85\\x87\\xddC\\x18qc\\x82Rm\\xbc\\x99\\xf3\\xf7f@\\x92\\xe9\\xfc\\xd5w\\xbd\\xd7v\\xf8#&\\xe8\\xd0\\xeb\\xf2\\xde\\xec\\x12\\x89%x\\x0b [\\xa9\\x14\\x83\\xb3\\xb3\\x92\\x9f\\xc4f!\\xa9\\xf9\\xc1\\x8a\\x07w\\x06$\\x11\\xbc\\r\\x90\\x14\\x8a\\xb8\\x98\\xed\\xb2\\xdays\\x1cs\\x9c\\xdf\\xcb;\\xe9\\xfe\\x9e\\x99\\x9c\\xdb\\x01\\xd9A\\x1b\\x8aT\\x10n\\xb0\\xf3a\\x16\\xed\\xecx\\xc9\\x8b\\x8b\\x9f\\xf6\\x11\\x9c\\n\\xc8N*%\\xe1\\xf2\\x1a\\xbd\\xfb\\xdb\\x9f!\\xe1(\\x89v\\x98Jo&\\x16\\xd8\\x05\\xc8n*\\xe5\\xc8\\xa0\\xda\\xb4!\\xde\\x81Hx0z\\xf3\\xe5\\x80([\\x82\\xf7\\x00\\xb2\\x97J\\xc9\\x9a\\xc7\\xeb\\xd2wk\\x00\\x13\\xdb\\xfdh\\xe5<\\xec0\\x13\\x97\\xec\\x03d?E\\xce\\xf6~\\xa8\\x91 f\\xa2\\x9bg\\x1f~\\x8d\\xdf2\\xb0;\\xc1\\x07\\x009H\\x1b\\xaa\\xdf\\xee:\\xdf\\xf7\\xdd9$\\xfd\\xb2\\xa2\\xcel\\x92&\\xd3u\\x87\\x009L\\'g\\x17\\xb9\\x8d\\xdd\\xbdN\\x85\"\\xe9\\x15\\xf5\\xb93\\xcfw`\\xe6\\xe3\\x11@\\xd2\\xe8*\\xe8\\x910<\\xa2\\xb7J\\x0e\\xb21P\\xb6\\xb6\\xb3S\\\\G\\xf0Q@\\xd2iC_;m\\x0b\\xdb\\xfa|\\x13\\xb2\\x19\"Y\\xe0s \\xec0\\xc1\\xc7\\x00\\xc9\\xa0Rb.fk\\x9d\\x9bf\\x8d\\xf2g\\xa5\\x95\\'\\xf4X\\xcf\\x84.\\xc7\\x019Au\\xc9\\xf6\\xbau\\xd1\\xbe\\xfa<\\xca\\x97\\xba\\xf4\\x9d\\xf14\\xeb\\x08\\xc1\\x99\\x80dQ\\xa4\\xe6\\x82\\xf7\\xd4\\xeb\\xb7\\xd4\\x90m\\xab\\xec\\xcb\\x07\\xfdN11\\xf5I@N\\xc9\\x10\\xdb!\\xc22\\xa2\\xd4n\\x0f*0\\xed\\xb4\\xc3\\xf8\\xcf\\xb7Y\\x04\\x9f\\x06\\xe4\\x8c\\x0c)\\x98\\xfdx\\xf9\\xe6\\x9bF\\x91\\xa8\\xc0n\\xcf@\\x91\\xce\\xb8\\xd9\\x04\\x9f\\x05$\\x9bJI\\xb9Y\\xd5C>\\xea\\x02\\xb2M\\x8d)\\x9dP\\xa2\\xefO\\xf09@r\\xa8\\x94\\x8d\\xe3w\\xc7\\x8e\\x9eh\\x89\\nn-\\xb7\\x1b\\xee^6\\x94\\xe0\\\\@\\xf2(R\\xbfN~X\\xe8\\xb9td\\xa7\\xb8\\xdb\\xea\\xfa\\xbc\\xdd\\xcf\\t\\x96\\x02\\x92/C\\xec\\x86\\x9dP\\xb8\\xf5\\xfb\\xdb&Thdv\\xb0\\xebz!\\xb3\\'\\x15\\x00R(C\\n\\xfd\\x17\\x14\\xda\\x18_;\\x84\\n\\xc7\\xcf\\xd5\\xd7\\xd9\\xa2\\xbb\\x99\\xe0\"@\\x8a\\xa9\\x94Um\\x9f]\\xfc\\xb0\\xc0\\x05\\xd9\\xad\\xef{]\\xdf\\xaf=\\xb3\\x02J\\x00)\\xa5\\x88\\xf8Z\\x87\\xe9)\\x8b\\xacPa\\xb1\\xdd\\xb0B\\xc5\\x0b5\\x04\\x97\\x01RN\\x1bz\\xb2r\\xed\\xce\\x933J\\x90\\xddk35\\xe5\\xbc\\x80\\xd7\\x04\\x9f\\x07\\xe4\\x82\\x0c\\xb1\\xd7\\xdd\\xa8R\\xa24\\xa7?*jU5\\xa0\\xbbt\\xf7Z\\x82/\\x02rI\\x86\\x14\\xd9\\xd9\\x0e\\x10\\x89\\x96g\\xa2\\xa2n\\x8b\\x0b\\x97}\\xbf\\xc0\\xac\\x80\\xcb\\x80\\\\\\xa1R<\\x83\\xa7\\xff>tm\\x08\\xb2\\xf7\\xde\\xdc\\xc3[\\xefQ\\x10\\xc1W\\x01\\xb9F\\xa5\\xf8^\\xb9\\xda\\x13\\x93\\xa7\\xa8()M8\\xcd\\xecg[\\x82+\\x00\\xa9\\xa4\\xc8\\x8e-\\xfe\\x1f\\xa7+\\xb8#\\xfbL\\xc3\\x0e5\\x86\\xc6L\\x18U\\x05\\xc8u\\xdaP\\xc5\\xb2\\xbd\\xc5\\xcf\\xee\\x9cAE\\x97k\\x0e\\xd7\\x0e\\x9f\\xe9H\\xf0\\r@\\xaa\\xa9\\x94\\xaf\\xd9;nL.SC\\xf65^DK\\xc3\\x80Y\\x017\\x01\\xb9%C\\x1c\\xb4\\x9d\\x82\\xda\\xbe)\\xfd\\x81\\x8aV\\xdc\\xcc\\x93\\xf4\\x10?%\\xb8\\x06\\x90\\xdb2\\xa4\\xd8\\xc2\\xa5\\xccqpr%*\\xfa\\xc8\\xbb\\x9c\\xe5]\\xa9B\\xf0\\x1d@\\xeeR)3c\\xdfg\\xb6\\x8e\\r@\\x0e\\xdd\\xd33\\x97\\xb4\\x99\\xeaC\\xf0=@\\xeeS)q\\xb3\\x9c\\xcb\\x8d;Y\\xa2\\xe2\\xe0\\x84\\xa5\\xfa\\x8b5\\x99h\\xf8\\x01 \\x0f\\xa9\\x94\\xfd\\x93\\x0b\\xed\\xdd\\x13\\x1d\\x91\\xc3\\x9e\\xf3\\x9b,\\xa7\\xb4b\\x8c~\\x04\\xc8c*%\\xc7\\xa7\\xc6\\xf2\\xf8\\x81\\x04T|M\\xfe\\xa2\\xcb\\x90n:\\x04?\\x01\\xe4)E\\xb2\\xd3\\xce;,M\\x98\\x8c\\x1c\\xea\\xcc\\x7fWt\\x9b\\xc3D\\xe6\\xcf\\x00y.C\\x1c\\xe5\\xa7\\xcc\\x04\\xa9\\xaf\\x01yC\\x91\\x11\\xa3G\\x8drz\\xf4\\x009z\\xaf3\\xd4\\x9a7\\xcc\\x80\\xe0\\xb7\\x80\\xbc\\xa3\\r\\xe9\\x9aL\\\\[U>\\r\\x95$\\x04w\\x1ap\\xa1W$\\xc1\\xef\\x01\\xf9@\\x91\\xdd\\xcfn\\xef]\\x92M\\x90\\xe3\\xaeU&!zm\\x98\\xd8\\xb1\\x0e\\x90\\x8f\\xb4\\xa1\\xca9\\xe7Wt3x\\x85\\x1c\\xb3\\xef\\xdf\\xc8\\xca\\x8egN\\x88\\x9f\\x00\\xf9L\\xa5\\xbc\\x9d8Ru\\xc3\\x05S&av\\xaf\\xb3k\\xf8x\\x82\\xbf\\x00\\xf2\\x95J)\\x17\\x17\\xe7\\x96\\r5G\\x8e_\\xa7\\r\\x1dj:GH\\xf07@\\xbe\\xcb\\x10d\\xfe\\xf1R\\xf0\\xfco\\x03\\x10\\x1a\\x9c,\\x1c\\xfd\\xb8\\x9e\\t\\xde\\x7f\\x00\\xf2S\\x86\\x94:\\x8cQ\\xb7\\x9d\\xeb\\x95\\x88J}Fl\\x8e\\xbeP\\xf8\\x8d\\xe0_\\x80\\xfc\\xa6HP\\xb7\\xfb\\xaag\\xe3\\xe5\\x11\\x8a\\t\\xbb)\\x08KYO\\xf0\\x1f@\\xeaiC\\x19}\\xb5\\xbfLY\\xa8\\x84J\\xe7\\x96E\\xc7\\xd4\\xaeV#XN\\x17>\\x1a\\xd1\\x95I\\xa9\\x99\\xea\\xad\\x9a\\xb0\\xe6\\x02*\\xbd\\xa4\\xe7\\x1b\\xb7y\\xe3+\\x82[\\x03\"/C\\xd0\\x9f\\x02\\xcfv\\x0f\\xccw \\xf4U\\xe7\\x84`\\x7f\\xdaR\\x82\\x15\\x00i#C\\xca\\xb4\\xe6\\xfc\\x99o\\x19y\\x11\\x95\\x19\\xdc9h\\xa2\\xe5\\xf4\\x81`E@\\x94d\\xc8Huc\\xb7\\xa7\\xbbn\\xf9\\xa1\\x91\\x03\\x17\\xb9\\x8e\\xdf\\xa5\\xa3Ap[@\\x94)\\xe2\\xb0c\\x1d\\x19~r\\x1b*s\\xf5\\xc8\\xeb\\x9e\\xef\\xabG\\xb0\\n \\xedhC\\x91\\xf7\\x9f\\xbf\\xfa\\x9cs\\x0c\\x8d\\x9c\\xaf^\\x1e\\xaax\\x8e\\t\\x98\\xdb\\x03\\xd2\\x81J\\t\\xd8\\xdc\\xba\\x8f\\xa6k1*;\\xd4\\xfa\\xe4Js#f\\x0fP\\x05\\xa4#E\\x92r,\\xcb\\xbb\\xf7(C#/i\\x8f\\xda0\\xee \\x13\\x99\\xab\\x01\\xa2N\\x1b\\xba\\xad\\x9c\\x903e\\xf3mT\\xf6,)\\x9f\\'^\\xc2x)\\r@x2D\\xf63\\xae\\x91u\\xbf\\x9el\\xd4\\x8dboM\\x01DS\\x868\\xc9\\x8d\\xd8\\x1c\\xd6ax5\\x1ay\\xf5\\xeb\\x1d\\xd5\\r\\x83.\\x11\\xac\\x05\\x88\\xb6\\x0c)\\xb7m+\\xb5\\xec\\x12\\x10\\x8f\\x9c\\x86>\\x8eh7\\xec\\xf8B\\x82u\\x00\\xd1\\xa5R\\\\\\xec\\xf4\\xa2\\x9c\\xbd\\xf4Q\\xf9,\\xf7\\xe2\\xd8\\xa9\\x03J\\x08\\xd6\\x03\\xa4\\x13\\x95\\x827u\\x10\\xed\\xb0\\xfe\\x86\\x9cV/\\x12\\x9d\\xab9\\xb0\\x9f`}@\\x0c(\"\\x99ue\\x93\\xbaO\\x18*_\\xfe\\xcc\\xf4C\\xd9Kc\\x82;\\x03bH\\x1b:\\xc6\\x1fc\\x9e\\xe1w\\x089%\\x1f\\xbe\\xec\\x14\\xe6\\xcc\\x1ch\\xbb\\x00bD\\xa5<=\\xf0.zW\\x92\\x1frz8\\x7f\\xea^\\xdb!\\xccd0\\x06\\xa4\\xab\\x0c\\x19\\xa51?\\xa1Pz\\x15\\xa3\\xf2\\x0f\\x99\\xa8\\xe6\\xc2g\\x1b\\x82\\xbb\\x01\\xd2]\\x86\\x9c\\x1f8\\xf0c\\xabmN\\x0b\\xd0(\\xad\\x04\\x0b^\\xb7\\xa3L\\x00\\xd4\\x03\\x10\\x13*e\\xb2\\x92O\\x8f\\xa5\\x1b\\x16\\xca\\xba\\x99\\xe0\\x9e\\x80\\xf4\\xa2Rf\\xbf\\xdb\\xb5\\xab\\x9f\\xcey4\\xca1\\xc0W\\x7f\\x85\\x06\\xb3\\x07\\xf4\\x06\\xa4\\x0f\\x95\\xb2\\xe1\\x80\\x9b\\xdb\\xc4\\x03AM\\xa4\\xf4\\x05\\xa4\\x1f\\x95\\x92\\xa6\\xf6D\\xc5n\\xf7K4j[\\x9e\\xd1\\xbb\\x97\\xb9L\\x00d\\nH\\x7f*\\xa5\\x88\\xf7B\\xfe\\xcb \\x13t>\\xfdM\\xd7\\t\\x93\\xdah\\x13l\\x06\\x889\\x95ri\\xf9\\xe7a>\\x16\\xc5h\\xd4\\r\\xc3\\xfb\\x1d\\xb2\\x97\\xed x\\x00 \\x03)r*\\xa3\\xe2\\x86\\x1fo\":_\\x91\\xa5\\x99\\xa0\\xc3~E:\\x08\\x90\\xc1\\xbap\\xd0\\x1f\\x02\\x19\\x0b]\\xb9\\xe6\\xbf\\xc6\\xb3\\xd4e\\x8f\\xdbC\\xa1p\\x98.w\\xd0\\x1f\\x0e\\xb9\\x11\\xcc\\xbf\\x11\\xdc\\x9b \\xb08\\xcc\\xdf;B\\x8c\\xadt\\x9b?\\xf2\\x14\\x8b=\\x02\\x1b\\x9f>:\\x81I\\xff\\xf5\\xe8Qk\\x06G\\xd6\\xc7U;F^0[\\x17\\x87\\x05 V\\xc8\\xfc\\xdb\\xf0~\\x89\\x10\\xaf\\xb9^\\x81bl\\xc3\\\\a\\xdfZ4\\x98\\xb98\\x91}\\xe4\\xaa\\xbf\\x97\\xbfG\\xa0\\x9d\\xec%2\\x08\\x87D\\x84\\xfe\\xc7\\xf7\\x15\\xd9\\xea\\xb6\\xf8>\\x15\\xfa\\x1e\\x1a\\x95\\x96\\xe4\\xda\\xb1uU\\xb0\\x1d\\xdb<\\xe3\\xbb\\xecu\\x1b^r\\xe4\\x00z:\\xea\\xc2\\x03\\x9eQ\\x83r&\\xff\\xbdrx\\xe4\\xff\\x97: I\\x05;\\xb1\\rN$x\\x14\\xa8#a\\xb3\\xe1X\\x04*\\x8d\\xe6T\\x1a\\xa3\\xcb\\x86Ucu\\x1b_\\xbd\\xc1\\x8e\\xa4{\\x00\\x1e\\xd78\\xb4\\x92\\xe9\\xad\\xe0\\x81&Pg\\xbc\\xae\\xec\\xa5\\x10M\\x9f\\x98\\x89X\\xc2v\\xcdd\\x056\\xd6\\x13\\xe3\\x10\\xec\\xda\\xbc\\x9a+Ts\\x83j\\x93\\xd9\\x0b\\xff\\xdbS\\x8b9!\\xac\\xa5\\xcb\\xf0\\x14\\x102\\x95\\xbd\\xf0\\xcfg\\x17Oc/s\\xcf.\\x9e\\xce&\\xb9g\\x17\\xcf\\xd0\\xe5\\x9e]l\\x19\\x8e\\x04v\\x8e.\\xf7\\xf2\\xbd(\\xc8\\xcd\\x85I3\\xafq\\x05\\xce\\x87\\x8b\\x0b\\xb8\\xe9\\xbe\\xb0a\\x05v\\xffo\\x87\\x0c/\\xfa\\x9f\\x07\\xa9a\\xed-\\x86A\\x92\\x80n\\xcc\\xe1k\\t\\xa8\\x11\\r\\xba-\\xe5\\x96\\xe3bX\\x8e1P\\x10\\xcb\\xe9\\x17\\x07\\xf6\\x92\\xc6\\xe5(\\x81u\\xc8.;\\xc9\\x84\\xbf\\xdc\\xa5\\x7f0\\xa3\\xa0\\x18s\\x8f\\xb9v\\xe22\\xec#\\xaeU\\xf02]xH\\xf5r\\xdd\\xc6Wh\\xc1\\x93\\xa2=\\xc2Cp\\x18\\x8eo\\\\m\\xf0\\xa2\\xa0\\x15\\xba\\x8do\\xc4j|\\xac8^\\xc9\\xb6\\xc5=q~\\x15\\x8c@\\x02\\xa8\\xb7Z\\xb7\\xf1\\xc5h\\x7f=\\xc6zM\\xe3\\xdahx\\x1c5Nll\\x81\\xb9\\x10\\x86\\x93d\\xeb\\x99\\xb5L\\x92\\x04\\xe6\\xaf\\x05\\x91\\xeb\\xd8\\x0b\\xb2\\x17pq\\xe5\\xdc;\\xb8\\xd6C\\xf9\\x06]\\xd9{\\xc7\\xfc\\x98\\xd9\\xe8\\xde\\xf0\\x80j\\xbc\\xb1\\xb9\\xc8\\x8d r\\x13T\\xd9L\\xab4\\xbcw\\xca\\xcf#\\x98\\xb13\\x99\\x05\\x1b\\x1e\\xa5\\xbeE\\xb7\\xe1\\xf5Y\\re[\\x9b\\x8b\\xdb\\n\\xe2\\xb6\\x81\\xb8\\x14\\xdd\\x867\\x7fr\\np\\x8b\\x0boo^a;T\\xd8\\x01\\x15R\\x1b\\xfb3\\x8c\\x9b\\x14\\x8c\\xab\\xd8\\xd9\\x9c\\xde\\t\\xf4.\\xa0w7\\xfaA\\xc9\\\\\\x98\\xbf\\x92\\x052\\x0f\\xa7 a\\x17\\xaed9\\x8c\\xc0\\x1e\\x98\\x13{\\xd9\\x0b\\x8d\\xd3~\\x1f\\x08\\xd8\\xcf^\\x82\\xd7\\x93\\xb1\\xe0\\x7f\\xe1\\x0eA\\x85XXd\\x07@\\xc2\\xc1\\x96\\xdd\\xe1!\\xea\\x0e\\x0fSwx\\xa4\\xc1\\x1d\\xa6\\xe96>\\xe3\\x9c\\x1b\\x19|T65\\x1b\\xfc\\x8f),!O\\x8f0\\x7fv\\x9ez\\x8b\\xa3\\xc4\\xde\\xb2g\\x97\\xbbG\\x04\\x87\\xfa{\\x05\\x04\\x8aeWp:8\\xa9\\x06\\x07\\x15\\x12\\xe4\\xe9\\x1f\\xec\\x11n\\xea\\x83\\xc5\\xe2\\x86.g\\x1fF\\x0e\\x17\\x19\\xc7\\xe5\\x11\\xe8\\xc8\\x14p\\xfeM\\x05\\x1fk\\xec\\xa5\\xc6\\xeaa\\xe2\\xf00S\\xce\\xdb\\xb8\\x8be\\x8e\\xc9\\x9d}I\\x94#\\\\\\xa5\\xdej\"\\xfb\\xe2\\xa8\\x0c\\xd6\\x16\\x91\\x82\\x88\\x19\\x94\\xe3\\xba\\xec\\xdbWD\\xad\\x08>\\xc1\\xa6\\xb4\\xd9T&\\x9b2fSYlJ\\x9d\\xe5N\\xb2)}6u\\x8aMucKO\\xb3\\xa96l\\xea\\x0c\\x9bj\\xcb\\x96\\x9eeS<6\\x95\\xcd\\xa6:\\xb3\\xa9slJN\\xd4\\x9a\\xe0\\x1c6\\xa5\\xc2^\\xcbeS\\xed\\xd8kyl\\xca\\x88MI\\xd9T\\x076\\x95\\xcf\\xa6t\\xd8T\\x01\\x9b\\xd2dk\\x14\\xb2)-\\xb6\\xb5\"Ng\\xe6Z1\\xa73\\x93*aS\\x86li)\\x9b\\x92g\\xaf\\x95\\xb1)U6U\\xcei\\xca\\xbe\\x05\\x86MubS\\x17\\xd8\\x942[\\xe3\"\\x9b\\xea\\xc2\\xb6v\\x89\\xd3\\x94\\xb9v\\x99M\\xe9\\xb2\\xdc\\x156\\xd5\\x8a-\\xbd\\xca\\xa6\\xf4\\xd8\\xd2kl\\xaa5\\x9b\\xaa\\xe0tfR\\x95lJ\\x8d\\xadQ\\xc5\\xa6\\x14\\xd9k\\xd7\\xd9\\x94\\x12{\\xed\\x06\\x9b\\xea\\xc8^\\xabfS\\x1a\\xec\\xb5\\x9b\\x9cm\\x8c\\xe4[l\\x8a\\xcf^\\xab\\xe1\\xb4g\\xae\\xdd\\xe6\\xb4gRw\\xd8\\x94\\x02[\\xf7.\\xa73\\xfb&\\x17nd\\x98k\\xf7\\xd9\\x94\\x01\\xcb=\\xe0\\xec`\\xae=\\xe4\\xec`\\xdf\\xde\\xc2\\x8d\\x0cs\\xed1\\xd7\\xe3\\xec{[8\\x8b\\x98kO\\xb9\\xd1b\\x1f\\xc7\\xc1Y\\xc4\\xbe\\xae\\x85\\x1b#\\xe6\\xda\\x0b\\xae\\x0f\\x18\\xc9\\xb5\\xdc\\x18\\xb1oi\\xe1\\xacd\\xae\\xbd\\xe2,b\\xdf\\xcf\\xc2\\xd9\\xcb\\xbe\\x9cE\\x97\\xf5\\xedoa\\x01\\xbf\\x83\\x05\\xfc\\x1e\\xd6\\xdd\\x07Xwu\\xe0\\x06>\\xc2\\xf5O\\xb0\\x9c\\xd8\\xddM\\xb6\\xe7|\\xd6\\xe5\\xf6X\\t\\xbb\\xc2\\x99M\\x94u)n\\xcc\\x92\\xb2eW\\x14\\xfe\\x02\\x82\\xbe\\x82\\xa0o\\x1c\\xc0\\xbe\\xfc\\x90\\x9b\\xdf\\xf6\\xfe\\xcc\\x9a\\nc<\\xb3G \\xfe\\x0e\\xe0\\x0f\\x00\\x7f6\\xba\\xbdP,\\xf6\\xf1\\x8f\\xc2\\xbf\\xd8\\xb70\\xf5\\x0b\\xf6\\x19\\x12\\x16\\x1c\\xe1/\\t\\x81>\\x9f\\xdd`\\x08\\x86zaM\\x0c\\t\\xa7\\x86D\\xb4hH$\\x0b\\xe4\\xfe\\xa5\\xec\\x1c\\x90\\x13\\xc5\\xf5\\xf9\\\\\\xc8\\xcck\\xael8Uv>\\x94/\\xe0\\x94]\\xf8\\xf7\\xaal\\xa2k\\x04\\xe8\\xba\\xa8A\\xd7\\xc5PmI\\x13]\\xa3\\xa9\\xaeK[\\xd45\\x06\\xae\\xe6\\xfd\\xa5l,\\x08\\x8aki\\xa2\\x13(Z\\xc6\\xa9\\xb6\\x1c2\\xf1\\xcd\\xed\\x88\\xa6v\\xac\\x80\\xf2\\x95\\x1c\\xbc\\xaa\\x05\\xefb\\xd1hI\\x00;y\\x12\\x1a\\xecX\\r\\xd5\\xd64\\xb1#\\x91\\xda\\x91\\xd4\\xa2\\x1dkY \\xff/]\\xd7\\x81\\x9c\\xf5\\\\\\x9fo\\x80\\xcc\\xc6\\xe6\\xba&R]7A\\xf9fN\\xd7\\xe4\\xbfu\\xfd\\x87s\\xd9\\xd2\\xa0\\xebV\\xa8\\xb6\\xad\\x89\\xae)T\\xd7\\xed-\\xea\\xba\\x03\\xae\\x16\\xfe\\xa5l*\\x08\\xda\\xd9\\xac\\xcf\\x1b\\x1d\\xfb.=\\x96\\xd8\\r\\xc4\\x1eN\\xc3\\xbd\\x90\\xd9\\xd7\\xdc\\x9c\\x14j\\xce~(?\\xc0\\xc1\\x07\\xff6\\xe7\\x1f.\\xe6P\\x839\\x87\\xa1\\xda\\x91&\\xe6\\xa4Qs\\x8e\\xb6hN:\\\\-\\xfb\\xcb\\x9cc (\\x83\\xad\\xfc\\xe8os\\x8e\\x839\\'\\x80\\xc8\\xe44\\xcc\\x82\\xcc\\xc9\\xe6\\xe6\\xa4QsNA\\xf9i\\x0e>\\xf3\\x8f\\xe5+1\\r\\xc1\\xc1\\x12\\xb1g\\xe4P\\x0f\\xee\\x8cp\\xb6\\xc1\\x9el\\xa8w\\x8e\\xad\\xc7\\xcc\\x81\\x9c\\xff7\\x90F\\xa0\\x01\\xfb@\\xb4\\x1e\\x00\\x94b\\x8d\\x1b'" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dumps(f)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SageMath 10.2", + "language": "sage", + "name": "sagemath" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/benchmark/geometry/harmonic_differentials.py b/benchmark/geometry/harmonic_differentials.py new file mode 100644 index 000000000..0f09270f9 --- /dev/null +++ b/benchmark/geometry/harmonic_differentials.py @@ -0,0 +1,44 @@ +# ******************************************************************** +# This file is part of sage-flatsurf. +# +# Copyright (C) 2022 Julian Rüth +# +# sage-flatsurf is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 2 of the License, or +# (at your option) any later version. +# +# sage-flatsurf is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with sage-flatsurf. If not, see . +# ******************************************************************** +import flatsurf + + +def time_harmonic_differential(surface): + if surface == "TORUS": + surface = flatsurf.translation_surfaces.torus((1, 0), (0, 1)) + elif surface == "3413": + E = flatsurf.EquiangularPolygons(3, 4, 13) + P = E.an_element() + surface = flatsurf.similarity_surfaces.billiard(P).minimal_cover(cover_type="translation") + else: + raise NotImplementedError + + surface = surface.delaunay_triangulation() + surface.set_immutable() + V = flatsurf.ApproximateWeightedVoronoiCellDecomposition(surface) + Ω = flatsurf.HarmonicDifferentials(surface, cell_decomposition=V, error=1e-1) + a = flatsurf.SimplicialHomology(surface).gens()[0] + H = flatsurf.SimplicialCohomology(surface) + Ω(H({a: 1}), check=False) + + +time_harmonic_differential.params = ([ + "TORUS", + "3413", +]) diff --git a/doc/examples/harmonic.md b/doc/examples/harmonic.md new file mode 100644 index 000000000..3257c078b --- /dev/null +++ b/doc/examples/harmonic.md @@ -0,0 +1,213 @@ +--- +jupyter: + jupytext: + formats: ipynb,md + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.15.2 + kernelspec: + display_name: SageMath 10.0 + language: sage + name: sagemath +--- + +```sage +import jurigged +watcher = jurigged.watch("/") +``` + +# Harmonic Differentials + + +First, some differentials on a square torus. + +```sage +from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialHomology, SimplicialCohomology +T = translation_surfaces.torus((1, 0), (0, 1)) +T.set_immutable() +T.plot() +``` + +We create differentials with prescribed values on generators of homology. The differential is, modulo some numerical noise, a constant: + +```sage +H = SimplicialHomology(T, generators="voronoi") +a, b = H.gens() +``` + +```sage +H = SimplicialCohomology(T, homology=H) +f = H({a: 1}) +``` + +```sage +Omega = HarmonicDifferentials(T) +omega = Omega(f, check=False) +omega +``` + +The power series is developed around the centers of the circumcircle of the triangulation. In this example the centers for the triangles are the same, so the coefficients are (essentially) forced to be identical. + +We can recover the series for each triangle of the triangulation: + +```sage +omega.series((0, 0, 0)) +``` + +We can ask the differential how well it solves the constraints that were used to created it: + +```sage +omega.error(verbose=True) +``` + +If we create the differential with much more precision, we see some numerical noise here: + + +Omega(f, prec=40).error(verbose=True) + + +We can also use other strategies to determine the differential. The supported strategies are `L2` (the default), `midpoint_derivatives` (forcing derivatives up to some point to match at the midpoints of the triangulation edges,) `area_upper_bound` (minimize an approximation of the area,) `area` (minimize the area). + + +Omega(f, prec=2, algorithm=["midpoint_derivatives"]) + + +These strategies can also be mixed and weighted differently (in the case of `midpoint_derivatives`, this controls up to which derivative we force derivatives to match). + +There are checks for obvious errors in the computation, e.g., when the error in the L2 norm gets too big: + + +Omega(f, prec=10, algorithm={"midpoint_derivatives": 1, "area_upper_bound": 0, "L2": 0}) + + +These checks can be disabled though: + + +Omega(f, prec=10, algorithm={"midpoint_derivatives": 1, "area_upper_bound": 10, "L2": 0}, check=False) + + +There are some other basic operations supported. We can, e.g., ask for the roots of a differential (TODO: This does not include roots at the vertices of the triangulation yet): + + +omega.roots() + + +At the vertices we can ask for the coefficients of the power series developed around that vertex: + + +vertex = T.angles(return_adjacent_edges=True)[0][1] + + +omega.cauchy_residue(vertex, 0) + + +omega.cauchy_residue(vertex, -1) + + +## A Less Trivial Example, the Regular Octagon + +```sage +from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialHomology, SimplicialCohomology, TranslationSurface +S = translation_surfaces.regular_octagon() + +scale = QQ(1.163592571218269375302518142809178538757590879116270587397 / ((1 + N(sqrt(2)))/2)) +S = S.apply_matrix(diagonal_matrix([scale, scale]), in_place=False) +S.set_immutable() + +H = SimplicialHomology(S) +HS = SimplicialCohomology(S, homology=H) +a, b, c, d = HS.homology().gens() + +f = { + d: 0, + a: -0.681616747143081, + b: 0.963951648150378, + c: -0.681616747143081, + # d: 0, + # a: 0, + # b: 0, + # c: 1, +} +print(f) +f = HS(f) +f._values = {key: RealField(54)(value) for (key, value) in f._values.items()} + +Omega = HarmonicDifferentials(S, safety=0, singularities=True) +``` + +```sage +omega = Omega(HS(f), prec=1, check=False) +``` + +```sage +omega.error(verbose=True) +``` + +### An Explicit Series for the Octagon +We can provide the series for the Voronoi cells explicitly if we don't want to solve for a cohomology class. + +```sage +R. = CC[[]] +g = z^2 - 1/9*z^10 + 20/1377*z^18 - 14/6885*z^26 + 2044/6952473*z^34 - 111097/2565462537*z^42 + 8696012/1346867831925*z^50 - 2280754492/2349206872443585*z^58 + 34168376548/232571480371914915*z^66 - 2763445569452/123694803060662746935*z^74 + 7004995526095472/2053952204822304912855675*z^82 - 14607657277648911658/27968667173065325998355726475*z^90 + 10660547148775042643276/132935075073579494470184767935675*z^98 - 189105079944810799209446/15323954201974951314611024961352125*z^106 + 24675503706685130357836249576/12969388796560574910247622987375471478225*z^114 - 138813856361363171256790974712/472456306160420943159020551682963603849625*z^122 + 8515550127000678327485867400511972/187411605246184977627604477338839587557049996875*z^130 - 292800693221811784752576932847145484/41616386420434783123506637506735392496901998230625*z^138 + 30963549253021138880538640101351481688176/28390074570224302525109375507532283730499089662958915625*z^146 - 36020358488773571462277872410430104390630648/212840389052971596030744988179969531127551675203202990440625*z^154 + 453139926061937342027516817932071772361772528/17240071513290699278490344042577532021331685691459442225690625*z^162 - 5014462600952091882849137614914665637056475540101/1227382262715140919847436486476960852927250317538181475769150203125*z^170 + 9594241269477405989159896686794374689928944823966796/15097154913964959587538767361286015972894377155810978752111111226578125*z^178 - 1820328744753839611731898871542196402156942434561204/18402283448005525879430371347615793124659751004392974100439703294734375*z^186 + 33670176456354085949161900587241365212195404701144601240948/2185433534122000072786745199037542430844264689160778051725687007560924654015625*z^194 - 15835872634965199596531265929250989173688088636235198216703992836/6595671187483208049671488811873288619424453495857565571778899274123984019688966484375*z^202 + 108421903986886708407874668043870417101299640039950432243358112975216/289622517513575148669124745218167976567547177456601561822383246026058262288562207295390625*z^210 - 368202460718312684774941064368799545749957319706349329491449076/6305081498700273910162773562910483678810111431206599832132635437769311464799268203125*z^218 + 240630831856396117641913218661475828355147320180181842463820897571669128/26402772025497398793649333885156720212662474399983949858283305368681785649570364889791457421875*z^226 - 41870166663303656573218101662319255073091200973629322014829957564895317635468/29424981921424088859215075182188197718886161062876306954437329124357035129642273579702224464586015625*z^234 + 937765512902034084131605732619655913216116025871870121839997804190194552413036336/4219395282622607221967145705749876611899681065611148035731540809787177052415053819961400477099311710546875*z^242 - 26405743186077768693140319680978447702882814520376175604462906522999941029716669040656/760397953040062570740301644432449502416287034474885654989916910712188783606341727335243665812291318008583984375*z^250 + 86209460067894093393920899885287826273385097786867716597338605229992767872461962611065541652/15883131716550454193549502088815216762696525992326858344022691313130299204708101377195391272258383641267428687787109375*z^258 - 28912287178478410081030732235530280527024287223571467196199307063822569942100361812752124738852/34069317532000724245163681980508639955984048253541111147928672866664491794098877454084114278994232910518634535303349609375*z^266 + 460122975284448967014028734913314631889499406700001605999578639302804621234760083979707404379317264/3466761810881224314564870462622707413915289030238925211200957954415040511572008259529459106915154490581468241782359408732421875*z^274 - 10002427708205627249814340430752846190525592938366587747298960558862287895331602127994541889817895592/481727506577945950084316340657847640098448678982101201050946300368991068888220268590659455021342071795633691399317963993642578125*z^282 + 406998719502379880148131425664788393790693751731457212865154940665494299620584545629348629946361792938074896/125261823552326479890139216512381391107769446227846936445339683238368884221004374467736735602513275070063343908074929697389923080517578125*z^290 - 187565264444082429140047720616949267735942314222932844440655942605055420420425807152664853394856881005090792917996/368805856796279097745643114365230979734505203585835932467897433497128090760441915456993022352420665020631088188998072394445263249521678818359375*z^298 + 26549047342887753058537861734525678437596461368159089680751508122925341455808990663901680528306391270589567186833392/333434022348999602461856433851111099405423113605558031672112725102630805692054077201799600663165773966379652003598711814796194819681190531689453125*z^306 - 2088759429347861924785264928767495165699507169896039864776747849534058004145318444807924838031400420204464893054864/167519821822210073146967999671585512221344196723177630679568672483344208959250282767517295357256640853092826769063237236005150848411256238232421875*z^314 + 119743685111588777122142901623282439933905292297264383780557377973069570019953567918025338717356250471946777962192144/61313118817954867889687391092266020807970468874638714427061283365581976763896940095223868457389962212572462514558256407384204797841957321146044921875*z^322 - 2543132910903208818682292315505499408882791542092317991395356762704047618112263842822071338420754690128567172150884314649904/8311964049543461732768630040383583284150608117387079203933921422040629597268082102576400663569326902321100491568197955371837727130167329795838104413818359375*z^330 + 196640085235981805363701193696334825438948399151223909507885094214164319489419838499686375745010726282532218950468426939249952448/4101621024254621213610032473488588427071205977005090159693305234563676168283398951784432255408496092371470037560107365948882011026222631454933380473306042724609375*z^338 - 496047986318793746606687803773660916815414932494424846435802449411006238295595977242775875140354826821500866761480167178713047819285014/66019934002042814076918685685188255148855328607026574510742862960545770861583518248460376864558222204080631641299704208647795833516730023033863533167781988751833251953125*z^346 + 480968021288855790130530712961736225335450420187280492322969452120270796473295160817832978125572470571453324327451900125726015873911435115644/408374158141782069567655683629328489625607348882867112798566757243148170611057380564523227880571765871783032612424635047391770215921922048348703914169762457481126048113037109375*z^354 - 18805641534118505500668368819010662786664118682516235511351340914040825061828237660644956146361690115108710296670831892487180792237553088878274/101846719989315868888329074065578132659924821790073287087510687424541183868329090680350051173072266224836438737790957059346771703849978251508503684967942406291584128153026123046875*z^362 + 11358661628891554804033034461062168174884068641840004287280894555241379565180946152153155975359761947354294960363198951788074850663995282770815784616/392312648778364823115023598338940376802836474211966191201507380363145819390148842338892273968213811847673938490022126473990230482284781575006492617963349437553525437388303248741455078125*z^370 - 215167942383483876106784261085615392891541884394251204274336312689183392624199924777705369182591412518260167320365960119844101558220037355649254793688/47387238365597224686788376746729903408553142542971705726708391470179981868441662798303040460897405167916404675505304224095135734570714406033678976748730892588702151516113471361138916015625*z^378 + 3665151341239850954953621368385698347820062660491983315312830444805261305443435229814078083294742024655395347957755406115713371559967938770219693658540588/5146235860642948755898799719165349537129098759727287637418328733510980577073584410025403154422511702233733887604231613619722473414481672682024446998382656192482057999976262946176855072021484375*z^386 - 203113828143005688364165276923022186311970518687013254684661588299656227840254573071900270536167418641365550561873813746844638594202027859727196978678951544316/1817980076085374036706840384949674847475209388184519942740164819787197256194175267995353980586170285195814325878237843019674279096723638200990326604668213209857341986277713182581915978231463623046875*z^394 + 2725047240338338971865173425673569106180800429651893689614595605258691515133155380893904675366748906897287601634009871271334212070123029432437381056372188699604451856/155459018766727260495343741012909848426442889115715011677340109114147909924508874000483945488024079356737231266365508499244930700257339744190456329854875187688419513184568665800904237733026510537750244140625*z^402 - 2719970523025317650873526077945647784936095327498858127848615809738758351026204202953537524329823170897802839810689166555970697396253755811978436990116364030069023580840400264/988874312800214643361440797083081808855931870811867372243526029125440000233062457310718859961175592378467448639198174019296863425644453633032738929101382619424086848099867333630169433707642777480841818423614501953125*z^410 + 1939128939974432306644350857331145650002651646395114920460524764159142521113905292966179925611601080422754157241822742500667040555820159339961390873333830595645327936055350450672/4492246314040468091324481428401107377634476026436550955647501568893830454263572600198153989816448225929282907998045378209873606870458278850241933241592494681801435419248702626018342978514143372879998564038188446044921875*z^418 - 212362485436646331288393023222771185225664788904250794090354416963731677973482224594158215416460620633937687399963877772827886076907769999723005572035231342485409206218949307527746/3134452524285709027018109321937673768603308299984492339877341891394656754873247717028371292125223957201976024652042761422372798552085147424133093968955114833197605955441718387242139422206104763307862734325327201995849609375*z^426 + 4355299201146129109201611955275230480210501138022661935322103652953632661022948827220141971119229506883684913653467210436443619269731397993012345255654055349783586895883016088371812424/409522656174161944519497756925028423619441994078431787110303940023015294056476133001386399130918030204981897992629462025501188896048005106791911947605290450298240623690684835030927749376357378804370635010479719349225006103515625*z^434 - 1015680250109545046653406562418792256026479782725911560835850949063340895764151257185700806814147365295029391753546635377561186250426668763216717485688204696059745752731675347409919222310984/608336486725625562858989969463720447632937835037646615821252965913568689969131996622500464021798722754805894884397235361255429577734702482021928984192864042237679586958167436687237460360343229994180077783462382059728714391632080078125*z^442 + 1696834966016019547178523780140114333988681249511446065842478179178764663786327250518351713201726592424040454059528132936612512358878856913148091114927580136282751898525257776185385884091399224/6473006186816109705818724364723597493217114184421732773180408518871274135464744185008451756951949373965774712700549742616572603319606745945464637196330750293690509638163253267370658739086895926750794993927350954005898591782132720947265625*z^450 - 218965572174369107254003321304962287012465721291038050268607828228179016597758549923792145287230694347666158398378334631331104560195546740613163483490360590029634690610259197934499160337649489407206584/5319565010603431177525975147101064934243774658829359407181193747708105199932470597437173752223519076588973316320111548017848406819553452818440978869054060855466741105910316091274023324647132653037738769076482203372906515232328234500005340576171875*z^458 + 50376944918356268475603454033681314045012486881886490066310097598408438175068884951106514364167411565301848987041709770384720781615852831432743922852296690421790388654223163002728890199832864181379471264/7793308482041166495107814576123528650994095458052376719449412708714229134481889492933060565466420475122752455623109174326915528275764152309230237905598967757665774808956035274157300993164888984170233536115377290467427850473312434179069467926025390625*z^466 - 9238023690613409114156501748441676019964242600053413567053766299917041942137728208509773311861885430210494778502029639976847820392540505645312075553692614799743633567083837063120155996205715201443854232/9099473375955379772346663608294061272473078510898885790952485843489847031799018203573652807880888212990215820024193500741788862201408287747523644832771125580071549233532945629060493203365866960191109314007031775513643372644232604282082341156005859375*z^474 + 59299629317753172919073643470841601137511633945919991865705227689122314554533495197523845549261349956235026077025812629844855717922207698305365179087238619767759818492132020814029401201048917367128435188961392/371873410652359679499860201011728171107388971525048532478185036645259585310573761360911524150032790110993619291025229706077611960180718305143503619476636432477992543667600170466551885525544820435632174223380921613186984054791124272943321233368656158447265625*z^482 - 9652636453831276744993409255650578919412693673483950389576037238330784744041009833354250628868158326569936351822829621727547160606084232589027129025945371179744699410822292430309935967509563769082060665778645948584/385349881398699070922842586515152520563542236270634651268313642573505092648732783592951427601738146650988733128535224247903541061462933685457356481265223955852671072277557949306178771336253811727547047876046288110269200714073993850179768845398706087520599365234375*z^490 + 3471272390988151543117055842745269054219326939458614271473997686077467843166448036766531999268980330642515777959748641846184404505413055502007716252668003989950505350798589173519846988070760880977370135122902478003666534368/882115727151069980214981816896470167790916766309041344289277206142568280147631326127911731821282321969721094043141395742938779743018241414235679537976100215558558812461637327491630685290837770035687981037854970106608371992158224106461553831907617703714909959243011474609375*z^498 - 38092219630315912752043377929003636546870942720734533523041794598766770964450378338998721682473292020401956163841260126483599470599872296762838886987497467814520281946887032722301328018754893449344159768178070872773330656/61611733596880469841798878997239022708436168255893183853320721233649302487495203445328161563229813883152432532348300131048992811255697621594036101087919087508746424785456136675239617616700347134174519070440606032776706928116843739974498544787736382732928149509429931640625*z^506 + 1952869066964938503601901652419136921565884527143018515479364203797658084720767317423660379849205820285280876123962536711398395255526920708595811768965089535835299301802237537890709681330677241201482304113270669765346533606984693332/20102700888618959968715971051072638159414162625967887612522675751213980133592357003110658874020605673859261178474084315688042041275515965359554368180511763833261245142519053667622113232154288373994562348888088944542976165148663540033940962821085025680240831461019516542873382568359375*z^514 - 1984272309211199467463695549498467035794206437397205577026937356733711365718389620402394142082824888530403959376777725299510481505457760144110925952705355900146109654467723226692389723293523615952391174383581248077243525084456896481468/129987521844796867223717918502218224361079280016461516128720714229126043429603754577633005786337257324301556238933341637059945712008288726014750887826392126736147567982092074554688285922027112891595970407906255993688143462841765071284715917253632697379385129372888637556528415679931640625*z^522 + 4232822519152817397794757225388867263497679422635964387955175449706625471036813393788168281847809864947279652667929701602143141746968356773077271857155577945523018304850766668268487578579460306719599516259393888375992439674857487112222416/1764475355988992130969077044948177401187998530450172400057805784150888771505510965351224221156179007240288928327132312446459564703903605861540109900714668754348680038945578380035719644722755282513219674019790658915131374922277088968138371033465226917372619216152450794394604798793792724609375*z^530 - 14194192077498382610974041153571526600459511981937346408450460208280866209072872668453222019801179777613545070636845077948859565200482879017253774979502550983574903898292687374332065840737065104603703435120941437633008377628392342744555503604312/37648564019590807713809319259133843429851769648048951693769196951357176240827094535070053789996253646385134383419481998720826753501345157699942092058077831031156147043178026519982355306834872487980457443387656546348667282970463825275852050439054940152110843996950782268463640905565968227386474609375*z^538 + 2120611737358444066931181747268893104964556293302951388433109668469603480305426733633625049782413968171120082895381034971825331954383351403769934515279019033730988989851726872431532664531377339907608068313526994690614318713331247270992736961525887952/35786491802725649242205377671795523993809437335625157102804426101698859127286898584219644503790368938471631058223290442920199050207263127120474014040000920193186922169891470871164278527601924371216646320655953792489162332453411980058220438870479056902409650991860120806948033964657295036627674102783203125*z^546 - 224745320378791467163577626628649450214274206384080961095767154403345777014976507428481717347941481367308702124710268499322904003887666381453605590197438005712529697131543094540107467161103047497953053609692323898883631635597588447197203344215294013908/24128915693581872403894817398976167311964182556458911852227609087204319467620229995964546650165532978381276579829846356015715684566355536550405002606138454031982444485647625246170646477570468615095280237818098703461746901062917077511939383661972374480848403536497586477205880451570619987058717250823974609375*z^554 + 138219962757611313080547498644406012868347220580697478341621846592457585782319315048811755115625719056213895483608811199193149074798461400575088214753257096136581603482160640355280530213592233880276115258279256883060409020273624901690980612908787255875292176/94401076989689055063719139483510594873138125159135257750916765371241952925297085887701841625881575099898706383692837178960713462817080446044952167211159660431928932455201800050983928964927031302360015877070730097771710491083217446125843702881905224941015502605262306922720630061148185524429004199585437774658203125*z^562 - 36406948983933313899993807017529564824135080284928550365531535770025719850912200497549875029126581976651273957842536717291312786834502613835031855968825163523377091469836986329678424660062028433466246157187701234779251020883088920832819104067111246611114745872/158168570525239018776338412401164954128261761447642177626659103775411550837281622436950998385660347263431652828158065051477087878652804402295385521818448676831176950225045759362576693722083486300242617500551952322853454736384435494226767137545513925425794157259439497683595202970810401081938769369087292194366455078125*z^570 + 389518328751160733124726007522030187365875744936234815952072158973427655503093969489910231674359160390975025597030346184495386750846723435443801701578446088108257590854727580849408539532524748252750825877227781087664658382223710502438279775270267206116318347470248986896/10763785728271454332682547426842847600485637705119388720015574782180981017038886578860669470642679106397189043526794878030027523599505266663002387368977574146161586099906517788487716296716686380798417074834186870441389465895777579338243306434624512751590016680543758772785306649724663531860286523064416001029641191959381103515625*z^578 - 38813058221053317164890619698486017091246775086702727821639911388543644337577245295132885047880371997276954181603519344614395392599160237119761237741391445648856971897280424411480539389627213443585402777675972310259302106755341148232362507077823768732624406592528425349995075824/6821636087737857598866555126157497977314959910296011034194726715501687225958484692235180530117272945426365629603700064469576223034402346480636249207465014905009051389727810383363963668393379644419071473157105286794915389948957365860185382348111955131012232129175037555540933914156885604030837462366917678969964890081211588382720947265625*z^586 + 18175875299714629491695114289470767820941990389862672463651318579770468326400197986632372817789028559956989237825481205532072644691255813977880998711806347720516144319294124885448182626368745210892272218815180874211822869503063862910874529042601915732311364001819569761456869385408/20316673633989540497979260249808005755618246818823321041831336133947369769582143619833852080007158598862188577220676853686121947736374159361811341463043458789741663775557975220125001629633526430410586288732236217250574700736890348498920202589031508124686294918167081116272536721177991732889956972201739330646738943674135765919208526611328125*z^594 - 45408321446820008449568942429958445845535205166957338140155795011866034906138607423012743530886565823564779950138646439182780153018645502246933695913016032899531193749680980546555166245628482918258207814367867747343592090491122481936356670168855511549531977329245445562034266934000536/322784797696187172067237239909060901012795593387910565083382762756821004804505968627984697023759666538214682896534392390364163064628343567056835428763504215300511665590117921855529048020281652393967043236328271125770165350068721648083143567951884442658966313077257162792396483234878234444279542464689858808113697755710811790090334415435791015625*z^602 + 10431114289639736386921234028792936660297466115048429194410579706854168390578437833092405699090814930874236038706384501897469557141064076870287432719114345288814676012383426345685809379788263732646631256494388377848513992862215886387409950197401442135989089331403901518818075749241681552/471523284185280493230026115884311274911839296867102479076289013552679334560033941824098315626919867695392413335528913137602390056907353848240452881336732985414597914091236780521132089234322859714224794665323681008263227517707290426314770999811373600848047442486893965234574149124406735274395571001235149837841511968017525028626828587055206298828125*z^610 - 6333457768095006778675858634554569805391006851402831655845433541492496770031742393143957753356742476655764389346710499712448374101152499297186194487422107242955776384773209451619948890471684501124312040420993629855883913121025501613925214143846217742625753725474738264629246859255527419427528/1820468882493149139938714974560844547814144748577019632215483769069302040169067678076480424587822610923212811246224376721554770852074514403971818922318686212048760990641242313736277983458770171665307695126543841932892643062385845789475383071272781265571495435839965641806541285294295648313515521965140415382038120443072784129474200253215358257293701171875*z^618 + 2284468815414964090097562325394733262266133494883932992832270219990047047085598435641442530937897236191954358819137564957124262639554895535025436087478332813310221386563783942852450123224623176618591609810056358189741016887559857515437995403191734691857027621320688210184667353049659706849376524963104/4175161909362345963167855831485724777141849730019797841551939416667169290108073967531123324263611932422444546642154488518157782023092124687036411854140730055755814959869811548682154397316516023513898317902843805968518831161141519967164512287933526268129059089098011037422340058344215223009991656046013981978976400556460296324994959776226450027073919773101806640625*z^626 - 44077872997201869788766284407575857395455558328834839198954511384910851831975198775813080537347458206457291016552741503089132582433269441534671735579600970458729473335267716447635893890981057716380445411870863545569740883643794119403298220288014332679203957446313023765065470973125593723633032226897818592/512189657295789535970001981269843881325787272370070708131520788715411659531724017196467566253368299254696353737144958740760413172795635632832066638771455715881866902528013079659202763552562529790976881708058525034710435020225500418579893410727160508353239575378734143220200535593399940168839930402107183644863721528823989435787286688532490247651303937733173370361328125*z^634 + 9802989243791401579588278129913285250112663178684412494076682878097174523412887456847192172314047265799719312342304018255245304835194996672628577470908031116406134357672498939303084816657818940704535855280601899993356133136981244445496737283752839484204962914359111681979726532425160748629316781271664059642256/724215410052039745959503212213265980862751420584129911406126079102142038641079903211885985785532086527930357101258530018167466669719339035908050497875838121659892800092431801714240117056088037833044727812052370708261241698055943781366440724480887217157644388085399677980605131029550105177366729467190692380993741485339898694649827855025992170980505236714741885662078857421875*z^642 - 522491410137391418803179310045788944779010547356739560934502407901771969378399791772498060313160131965909258298131895216805456378454738987797695340644809570216992521604364953884479115837273575587681816070126252411562219870898802314864458328824925338487773721741118636118984639450841876963109675498135178448012407415824/245394595386369644271696609005970285011546485200884102497353460730392015863856372845979359724519885457825240461153367466778293533560087885750373375701064391262916675955016919083485829335518564857967263686131707209627331701376808895423111145941550199004390478470331611667019639591867920204401778855526366204936779991683608077278613060589046328392261459059949296040289103984832763671875*z^650 + 1140806753412610863901487368960354894126963613800368416493134670781013734601255125390533689690046884054876833569181124107332318276060591374355920263060628866739860894201985322282445237501186653065246217000507713101854065721597675697499633889865726666911066713957100096438710853072860179245909773553068901944880682118848/3406062533048102595084787699488903273573220000220353734471731409780050652872498624031286131048637841887528120435378565783455888877037660040427284015371144685472528929068975726570703312011486571295800461788245018751573061338234060251165727977003515934786077602494461418058266928362386688687655135754081419597841317515779864221095178512448287569769335918946262739202125370502471923828125*z^658 - 5702603499778717982195087358925065865164040219813751820943475967958772977017332167941734061465646093509309681559147088132434621615037334912173123454362040399441344493417626930254165262720519807644243539207501600047687615578844482864606591507298496756686469272419596024842029127239879007203701164391876801973889362144/108229842409420650152441053446574470352571335263584077096511835637894920506399605401100249286735109339112252092498733615056988226380682372665583814965262063376985371109768681831380332297906334542586224794304218762389103537634272203015541004954095007169301667841750020347849601061578680149192071715110136346647267047313130124332411977028583230023158842681408765926028788089752197265625*z^666 + 1143920836051891506978423935104851496503140007699763904201585710886767409095134657060305713569398870333234081983659576327220558025730515088739559955748577306919663061015044622222676152880077559331889106333644970389469022175094648495251229105389193839230256195425261126577107519681618840735854850803263463532621195834724293184/138001011010693500284285128198387246033009570836011379085658696885189997199673345339863497609839130889032245936709896828937735739576586387110755778373635738286266672685826635010146712245126236941854661138306488544617684711189861252723524346307067020945308745067383497455593766284241990625339663654452233121886354450981256036759863936554612565240059252041963605115777556360553205013275146484375*z^674 - 5595091237406518367826371973525905324127140609303657778754134861465385945276824254627713871372621715866919874515574540194487313480900109347296342435948003518173955338586862788661079766455185200163261245343923003890744688793660349202169802451698727605260276447155930428230702034747507885618092157569582534265251915230523516946834999/4290279061880610440262326457737136994158718169714077149193495085083501405592461359812438351664357358012736444190364182910704779051901190649682646711313844808971354304446664224815893809245349499701508674279281411812126703304065633672665819148209468451817489846954665492086086003933636563894214952982086432194005472970532590700285268848820130474246237171722003576294863072271785418413579463958740234375*z^682 + 5614911904735188021014641395170195181774522757061699740870928011632719412968152665889223753433141229404786188104445116237785734645367094763482800247198317248122680097454979466232862827047337032307897015569095284146287014797678278327468289025787497843970496889112993088219539059784969803339541260209448550349690470906880765055973279816347013428/27364876097607748536360055172052863122972576314754134456229812076214492300101951064217446515548775005926312954021875728440134607591837137978071412727495471824952715541376745180909080414316420502824750014437544152671686455203836478565053375102812689674156020732177247271795612517569966054432240795696240562322694948152931049764903154144553911345250786085720740530493714074009163805708552318709962069988250732421875*z^690 - 1068437834990191797211439771458690787654943066132564107423388593285121641890207709920065299678853654014197388986523669599304312211454749785572110292759144393073396830328623225216582516346005496888270850973895979949191453917805421902841372049650834828574479390862964427104499158641957881230360420036774000149800089670959844693936521372067474348/33094248652456797102098829013743514627030455219289123856550917901309718565363319650247935606716303376166524226061157980432805936653864346739240788902945651582403775706777775693048517724890477311397658924342917769367551404182314677084746447275871216951220497021967972264502386219918333730374676404743111055995809795597327255672881720830689548075719718742187431144743988507086848766764940947612799704074859619140625*z^698 + 5071886940497923536981939909259345754577360310923849732855012012334594782516218331933111415421941966414623646403158213274394478874504920793940610929211308847852943540481944710130872322204707005587414884407845862237458498298441684064139269519734630867966160880276076451990594335051590613308436096266415482975231165903386311249941511218098446156376532444/998404567055872048063648899680912217764431924736768272559070637281064767794034411420187766544647043860320409849965427705410566302196445780194518400050036253935528799084820968301799547863565014739329644994640998673924601001665239158349908590250370750345463728453252888568471305825495709451825475492513012027812822206482029652087230492998838468911378337300106501215259800130317270111912795302335252711399905383586883544921875*z^706 - 27325448455327129673461985314497421149474511962572851283473010924522500328559994859711612855466666159556029055802907287170282594566856901549843210559173667508946839935438680360552639782232084452746186192158086249176504833699227577323517826176004157150288600909429967672089137139991993155370217907321151880578471804946534926924290174718202898462786044892/34183729997289101684657136882605749775776599259718467525198168642809259647987667941112853705743408011016961356688334733211590249259899046628835144519727222523782895536805558082104012876719868891396618571388432229176520188303467212253815964676450825141265569820180214380335629768340964392104195290309457975801444909403549203860039942031397648516463161743955570568755310854638708108234437480685363265889487244188785552978515625*z^714 + 162992192153624047428931709401786345022271064372801282402626443378345835324570070687185356482524521829553321940630317003483840459775982077904248294562235682445636176954052079881767250693117184049164644628321201616727822642545688158907993241099980362576804252731719865354876371537216551980554521170301151784591397711034899434853708102398531992677976128010608/1295734285547243399356928773535170945250811994939628511542636582405684986956972553307882719716203880657597920225271328062385328398196473362465996153020260369763990655322614679102152608092066630328388826948478523646935997737642924680480894141060868526979671424033931026086622046368964255282709522479180004572753769290941532572314814002700127867016536145904635902408670057945080230842626352705378694593541013990975916385650634765625*z^722 - 5470066142359267187940733605664460325374682791514760831680474381359758822468389166026920233422335931454832775601145562899181290886595126535944799483699393045046297665626145061593966864047076709310028069690294786645339349366928646398523517586604397657423858570152574121906902762935469068101356103808920642059402350527190677357731810393346483473699407857027241660852/276325502031086882594190411112337900762973683215772358188246587620436915790871486980713459299827218479538785417024636207184566304228462446203343324192784527339078954481676100334233311273147229827716694872640142934507820403448092816690587504233392017780785145757869627750211813071447971670115500981963181644219802727987215439202434859659008800237475806685128761036203705598355756030475556091473562971596216676105263603664934635162353515625*z^730 + 275075442409445376263921171296070594796103872378871855902623516975683652404361383789629497645907209067083878359686622095283729025087658243553638934171357526505231189624068386456943421812944199198718054753634719959792474136762776276704361807858603977409387678009128985083542284918076910646361949642856432207601475120149948328852128444707682809544110195342924280487346504/88296213440184269785441895420513543108778298337604922302325190230115008593777985693156637237720911455074277813067942194361713003629133151489017832602795198965131046060397352020927591607878068742159730215158971117782504346477503897502465899629840639542787426788181748538738578260740099094385337756796615881874243282145074614035953375368249628570442299533798090911263545438744707880686805290630231230529925777379826812885402105748653411865234375*z^738 - 129456497689850077612339740942939156553059830972524183665072876965273817023921761892810147640056319233611703583418589154429913801911541671662946103353080378177574681769760298477719997882191855501255695580690828569986292166746254003766445910031217442744611928301515138488038005094432610315778976497019801406152624243184306356198755965911447519634068462166310014141391932/264033471183117610617483634005651878303489584617293169596541428412087253301006809518277111352506841760331072879270965157473887553225131821038588434054363367365464508195134938851926333258424733405731880909736874892158336241887935383572749118747828546816809859766112492603734005210687705524372620168629105603183269863073043942698310940871158090277230605143439811804867986965737806858712359646315582493231133983206019646279592253267765045166015625*z^746 + 155200961690731900153214055713130828453526630880670039350052523558144405415098628322245586952472440210904895628345152309403301551834600573156535825387813596743795665795436537393619532201063369775604173940322380488504216670763530610517848738364398736130445069648170609182033426001796323759331917884762685527826396397255138037558300977266082657143400797494207878292967827856/2011211660347701596925713402620366620907957308512008913915825781437184251167559537014701066804223740328143578702704979569245487352492798241796619989256200886068682160581904412433649157995014979629976345615293440541382524932815064737392195618318381514935595071060995536717330335430655349467827379569871267205102505211520958648302355018103946235836298392492781000022652760827721555588642339804405615103552165867425718866818700243718922138214111328125*z^754 - 680857066317421985016326359570906763067539323840670261832268133402291440997383900702068971797447124468001372193375548597140322729674041031297516552445983199189008379782718932851174327770988935937386826186808422782943100311132628748448732763892438542668332671679137792614366368746130550751618507370507765422074655526308986233120271246939468493203909258262612961119167189523984336/56057183629743158144257630224532479034901898829559458653400278131638082899618382263280988105968569970555367471591117887506373831597573420144077714449721177178571721896155890177066074104442305444820074226847931484723822489235810722829195714306285988375795117884054053329508568730040105280105753754375358640177541541910080621510821958603730794251163953067008805949045682249868517670628645799058338510630718696258946049892681006912827572785317897796630859375*z^762 + 7750058381013557722248770183009401926443887083742596092223058181846957838703144241498088283425767172647263825735980888076165949551791256760608557886338277525040272221521727426610711198539548617093038846798326890026921969833828298327442930654430169535922644402183187131151801193493883433872694706094156614992285441888597389206256197420958099336018186973319263476650888602778187102676868/4053930615846763871908499336428949116304108345886005870883271709176134423814109018742948638737780339249000835467474392467841609062391210625306974017949034010078735620485442727099595000693940605295650586093937478281573906472845315788325803848074541804741824541884493272140180493437701137654246360090889543130901282404559306165393609275294574780077091663387493066350780958786383398797990713465798876101400547088394024513448047964650024034608197398483753204345703125*z^770 - 174724720842993182580456361952574488844254609266145923882067687365633731298708563119363239907930205391985187107256598863329348062459111694386077493656676761084352934516917736472946966608837201435608057857961865315137564104729780639758140758262305274406307556904250422277795220014659975227349358370095617027511739573084462426241564060671550431487993651037662533810423249473655096293927372244524/580638849950743311804047395386986440139776702342726848028762235922963931202600334245091955342153490063656914571384097382784156613136964186504632990955629512224865300457203685834698519196677148799475091542755015583131734969772957191188946965748693540054745725896188973227638965628936397152352538975548139912174491662800297980097891796963740323033895456458334290238632251999673952604408079850454380270657349021372140478409107188038800669855079108873042277991771697998046875*z^778 + 9017968844029096356493162691498460296202723419273865136521657682453085168401884521032846935520636089758086381346815442424465524523128662029021925533844828540294451679041015413294487464151656629425264131583142828181551848182453186199505459407197374673557047108854266901115604674133846360241624292390951186986163955199855403681669117897155614683447995085519468535923033024315749138341913021508938701104/190381861777576997779073730510383059065424745576659230883847236770226280989740140929629550698635797303617177938480799697009973899461627169217048081498121718966922351575945615920549164333016982527732316810928146958385792485662248313500898047540402916172847196767902345743379247445540532552710363114979183073360650470126806746338654358842577341491843909762242494378398292964703218459308422571937428214848121846436083876107602356915567252989985630124190298754251562058925628662109375*z^786 + O(z^794) +``` + +```sage +omega_exact = Omega({ + S(0, S.polygon(0).circumscribing_circle().center()): g.change_ring(RR).add_bigoh(3), + next(iter(S.vertices())): g.change_ring(RR).add_bigoh(9) * 1000 + z**3}) +``` + +```sage +omega_exact +``` + +```sage +omega_exact.error(verbose=True) +``` + +```sage +omega.plot(versus=omega_exact) +``` + +We integrate to find the cohomology class this corresponds to. + +```sage +{gen: omega_exact.integrate(gen).real() for gen in HS.homology().gens()} +``` + +```sage +Δ = vector(list(Δ)) +``` + +```sage +Δ = RealField(54)(Δ[0]) + I*RealField(54)(Δ[1]) +``` + +```sage +Δ +``` + +```sage +exact_sample = omega_exact.evaluate(0, edge=None, pos=None, Δ=Δ) +exact_sample +``` + +Measuring the quality of the computed ω. + +```sage +point = S.point(0, vector(Δ) + S.polygon(0).circumscribing_circle().center() ) +``` + +```sage +from flatsurf.geometry.cone_surface import ConeSurface +singularities = [edges[0] for (angle, edges) in ConeSurface(S).angles(return_adjacent_edges=True) if angle > 1] +S.plot() + point.plot(color="black", size=50) + sum([S.point(label, S.polygon(label).vertex(edge)).plot(color="red", size=25) for (label, edge) in singularities]) +``` + +```sage +approximate_sample = omega_exact.evaluate(0, edge=None, pos=None, Δ=Δ) + +print("|", exact_sample,"-",approximate_sample,"| = ", (exact_sample-approximate_sample).abs()) +``` diff --git a/doc/geometry.rst b/doc/geometry.rst index aac9d393f..051ad3909 100644 --- a/doc/geometry.rst +++ b/doc/geometry.rst @@ -19,6 +19,7 @@ The flatsurf.geometry Package geometry/interval_exchange_transformation geometry/l_infinity_delaunay_cells geometry/lazy + geometry/lazy geometry/mappings geometry/mega_wollmilchsau geometry/minimal_cover diff --git a/doc/news/deformation.rst b/doc/news/deformation.rst new file mode 100644 index 000000000..570a9e7b5 --- /dev/null +++ b/doc/news/deformation.rst @@ -0,0 +1,59 @@ +**Added:** + +* Added ``bidict`` (providing dict encoding a bijection) as a dependency. + +* Added ``apply_matrix`` to all oriented similarity surfaces. (We apply the matrix to all polygons and keep the gluings intact. Probably not the most meaningful operation for non-dilation surfaces but it can be useful while building surfaces.) + +* Added ``homology`` and ``cohomology`` methods to surfaces. + +**Changed:** + +* Changed return type of ``flow_to_exit()``. It now returns just the point where the flow exits a polygon and not a description of the point anymore. **This is a breaking change.** + +* Changed ``billiard()`` to not triangulate non-convex polygons before creating the billiard. To restore the old behavior call ``triangulate()`` explicitly on the returned surface. Since surfaces built from non-convex polygons are quite limited, this might be a breaking change for some. + +* Changed ``standardize_polygons(in_place=False)`` to return (a morphism to) an immutable surface. Before, no morphism was returned and the surface was mutable. + +* Changed ``relabel()`` to accept a dict or a callable as the parameter ``relabeling`` (before this parameter had to be a dict and was called ``relabeling_map``.) Also, this method now returns a morphism and not a tuple containing a success flag. + +* Changed ``squared_length_bound`` parameter of ``saddle_connections``. The parameter is now optional. If no parameter is given, all saddle connections are enumerated (by length.) + +* Renamed module ``flatsurf.geometry.delaunay`` to ``flatsurf.geometry.lazy``. + +* Changed ``triangulate()`` to return a morphism to a triangulated surface (instead of just the triangulated surface.) + +**Deprecated:** + +* Deprecated ``polygon_double()`` since it is now identical with ``billiard()``. + +* Deprecated ``triangulation_mapping()`` since ``triangulate()`` now returns a morphism. + +* Deprecated ``canonicalize_mapping()`` (and moved it to the correct category) since ``canonicalize()`` now returns a morphism. + +**Removed:** + +* Removed ``flatsurf.geometry.mapping`` module. It has been replaced by ``flatsurf.geometry.morphism`` that can handle more general situations. + +* Removed the ``mapping`` keyword from ``apply_matrix()`` of dilation surfaces. The method now always returns a morphism. + +* Removed the previously deprecated ``rational`` keyword from ``billiard()``. + +* Removed ability to ``apply_matrix(in_place=True)`` with matrix with negative determinant. If you rely on this feature for some reason, you can use ``MutableOrientedSimilaritySurface.from_surface(apply_matrix(in_place=False))`` instead. + +* Removed the ``sc_list`` and ``check`` parameters of ``saddle_connections()``. + +**Fixed:** + +* Fixed ``flow_to_exit()`` to also work for polygons that are not strictly convex. (#258) + +* Fixed ``saddle_connections()`` to not throw a name error anymore in some edge cases. (#255) + +* Fixed ``saddle_connections()`` for surfaces built from polygons that are not strictly convex, for surfaces that contain self-glued edges, and for surfaces that contain unglued edges. + +* Fixed creating surface points at vertices of disconnected surfaces. + +* Fixed absolute position of polygon after ``subdivide_edges()``. + +**Performance:** + +* diff --git a/environment.yml b/environment.yml index 0e4edbfff..858b393c8 100644 --- a/environment.yml +++ b/environment.yml @@ -23,6 +23,8 @@ dependencies: - pytest-repeat - sagelib>=8.8 # sagelib<9.2 does not explicitly install libiconv which is needed in lots of places. + # doctests call functionality in SageMath that relies on sympy being present + - sympy - libiconv - ruff=0.0.292 - scipy diff --git a/flatsurf.yml b/flatsurf.yml index 18e32f7be..0f71c319e 100644 --- a/flatsurf.yml +++ b/flatsurf.yml @@ -15,8 +15,8 @@ dependencies: - maxima - gap-defaults - ipywidgets - - notebook - matplotlib-base + - notebook>=7 - more-itertools - pip - pyintervalxt>=3,<4 diff --git a/flatsurf/__init__.py b/flatsurf/__init__.py index 887547ada..757c26ed3 100644 --- a/flatsurf/__init__.py +++ b/flatsurf/__init__.py @@ -3,6 +3,10 @@ """ from flatsurf.version import version as __version__ +from flatsurf.geometry.homology import SimplicialHomology +from flatsurf.geometry.cohomology import SimplicialCohomology +from flatsurf.geometry.harmonic_differentials import HarmonicDifferentials + from flatsurf.geometry.polygon import ( Polygon, polygons, @@ -19,12 +23,16 @@ translation_surfaces, ) +from flatsurf.geometry.saddle_connection import SaddleConnection + from flatsurf.geometry.surface import MutableOrientedSimilaritySurface from flatsurf.geometry.gl2r_orbit_closure import GL2ROrbitClosure from flatsurf.geometry.hyperbolic import HyperbolicPlane +from flatsurf.geometry.euclidean import EuclideanPlane + from flatsurf.geometry.homology import SimplicialHomology from flatsurf.geometry.cohomology import SimplicialCohomology @@ -41,3 +49,8 @@ HalfTranslationSurface, TranslationSurface, ) + +from flatsurf.geometry.voronoi import ( + VoronoiCellDecomposition, + ApproximateWeightedVoronoiCellDecomposition, +) diff --git a/flatsurf/features.py b/flatsurf/features.py index 93b295652..fed9496bf 100644 --- a/flatsurf/features.py +++ b/flatsurf/features.py @@ -77,9 +77,19 @@ def unwrap_intrusive_ptr(K): "pyexactreal", url="https://github.com/flatsurf/exact-real/#install-with-conda" ) -pyflatsurf_feature = PythonModule( - "pyflatsurf", url="https://github.com/flatsurf/flatsurf/#install-with-conda" -) + +class PyflatsurfModule(PythonModule): + def __init__(self): + super().__init__( + "pyflatsurf", url="https://github.com/flatsurf/flatsurf/#install-with-conda" + ) + + def is_saddle_connection_enumeration_functional(self): + # TODO: Check whether version is >=3.14.1 + return False + + +pyflatsurf_feature = PyflatsurfModule() gmpxxyy_feature = PythonModule( "gmpxxyy", url="https://github.com/flatsurf/flatsurf/#install-with-conda" diff --git a/flatsurf/geometry/categories/cone_surfaces.py b/flatsurf/geometry/categories/cone_surfaces.py index 8084f7272..c9c138015 100644 --- a/flatsurf/geometry/categories/cone_surfaces.py +++ b/flatsurf/geometry/categories/cone_surfaces.py @@ -59,6 +59,8 @@ # along with sage-flatsurf. If not, see . # #################################################################### +from sage.misc.cachefunc import cached_in_parent_method, cached_method + from flatsurf.geometry.categories.surface_category import ( SurfaceCategory, SurfaceCategoryWithAxiom, @@ -319,6 +321,133 @@ class WithoutBoundary(SurfaceCategoryWithAxiom): True """ + class ElementMethods: + # TODO: Only cache for vertices in parent, everything else, cache only in the point. + @cached_in_parent_method + def radius_of_convergence(self): + r""" + Return the distance of this point to the closest + (other) singularity. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.regular_octagon() + sage: S(0, S.polygon(0).centroid()).radius_of_convergence() + √1/2*a + 1 + sage: next(iter(S.vertices())).radius_of_convergence() + 1 + sage: S(0, (1/2, 1/2)).radius_of_convergence() + √1/2 + sage: S(0, (1/2, 0)).radius_of_convergence() + 1/2 + sage: S(0, (1/4, 0)).radius_of_convergence() + 1/4 + + """ + # TODO: Require immutable for caching. + + surface = self.parent() + + norm = surface.euclidean_plane().norm() + + if all(vertex.angle() == 1 for vertex in surface.vertices()): + return norm.infinite() + + erase_marked_points = surface.erase_marked_points() + center = erase_marked_points(self) + + if not center.is_vertex(): + insert_marked_points = ( + center.surface().insert_marked_points(center) + ) + center = insert_marked_points(center) + + surface = center.parent() + + for connection in surface.saddle_connections( + initial_vertex=center + ): + end = surface(*connection.end()) + if end.angle() != 1: + return norm.from_vector(connection.holonomy()) + + assert False + + class ParentMethods: + r""" + Provides methods available to all oriented cone surfaces + without boundary. + + If you want to add functionality for such surfaces you most + likely want to put it here. + """ + + def angles(self, numerical=False, return_adjacent_edges=False): + r""" + Return the set of angles around the vertices of the surface. + + EXAMPLES:: + + sage: from flatsurf import polygons, similarity_surfaces + sage: T = polygons.triangle(3, 4, 5) + sage: S = similarity_surfaces.billiard(T) + sage: S.angles() + [1/3, 1/4, 5/12] + sage: S.angles(numerical=True) # abs tol 1e-14 + [0.333333333333333, 0.250000000000000, 0.416666666666667] + + sage: S.angles(return_adjacent_edges=True) + [(1/3, [(0, 1), (1, 2)]), (1/4, [(0, 0), (1, 0)]), (5/12, [(1, 1), (0, 2)])] + + """ + if not numerical and any( + not p.is_rational() for p in self.polygons() + ): + raise NotImplementedError( + "cannot compute exact angles in this surface built from non-rational polygons yet" + ) + + edges = list(self.edges()) + edges = set(edges) + angles = [] + + if return_adjacent_edges: + while edges: + p, e = edges.pop() + adjacent_edges = [(p, e)] + angle = self.polygon(p).angle(e, numerical=numerical) + pp, ee = self.opposite_edge( + p, (e - 1) % len(self.polygon(p).vertices()) + ) + while pp != p or ee != e: + edges.remove((pp, ee)) + adjacent_edges.append((pp, ee)) + angle += self.polygon(pp).angle( + ee, numerical=numerical + ) + pp, ee = self.opposite_edge( + pp, (ee - 1) % len(self.polygon(pp).vertices()) + ) + angles.append((angle, adjacent_edges)) + else: + while edges: + p, e = edges.pop() + angle = self.polygon(p).angle(e, numerical=numerical) + pp, ee = self.opposite_edge( + p, (e - 1) % len(self.polygon(p).vertices()) + ) + while pp != p or ee != e: + edges.remove((pp, ee)) + angle += self.polygon(pp).angle( + ee, numerical=numerical + ) + pp, ee = self.opposite_edge( + pp, (ee - 1) % len(self.polygon(pp).vertices()) + ) + angles.append(angle) + + return angles class Connected(SurfaceCategoryWithAxiom): r""" @@ -345,6 +474,190 @@ class ParentMethods: most likely want to put it here. """ + @cached_method(key=lambda self, distances: None) + def distance_matrix_vertices(self, distance=lambda v, w: None): + vertices = list(self.vertices()) + + A = [ + [ + 0.0 if n == m else (distance(v, w) or float("inf")) + for n, w in enumerate(vertices) + ] + for m, v in enumerate(vertices) + ] + + done = [[a != float("inf") for a in row] for row in A] + + def floyd(): + for k in range(len(vertices)): + for i in range(len(vertices)): + for j in range(len(vertices)): + A[i][j] = min(A[i][j], A[i][k] + A[k][j]) + + for label in self.labels(): + polygon = self.polygon(label) + for e, edge in enumerate(polygon.edges()): + start = self(label, e) + start = vertices.index(start) + + end = self(label, (e + 1) % len(polygon.vertices())) + end = vertices.index(end) + + from sage.all import RDF + + A[start][end] = A[end][start] = min( + A[start][end], edge.change_ring(RDF).norm() + ) + + floyd() + + todo = list(range(len(vertices))) + + while todo: + v = max( + todo, + key=lambda v: ( + len([not d for d in done[v]]), + -max(A[v]), + ), + ) + + todo.remove(v) + + if all( + d or i not in todo for (i, d) in enumerate(done[v]) + ): + continue + + vertex = vertices[v] + + for connection in self.saddle_connections( + initial_vertex=vertex, + squared_length_bound=max(A[v]) ** 2, + ): + # TODO: Strangely, all this trickery is needed here since otherwise the symbolic machinery is confused. + from sage.all import RDF + + length = float( + abs( + connection.holonomy() + .change_ring(RDF) + .norm() + ) + ) + + if length >= max(A[v]): + break + + w = vertices.index(self(*connection.end())) + + if length < A[v][w]: + assert length < A[w][v] + A[v][w] = A[w][v] = length + + floyd() + + from sage.all import matrix + + return matrix(A) + + def distance_matrix_points( + self, points, distance=lambda v, w: None + ): + insertion = self.insert_marked_points( + *[p for p in points if not p.is_vertex()] + ) + + V = list(insertion.codomain().vertices()) + + inserted_points = [insertion(p) for p in points] + + def inserted_distance(v, w): + if v in inserted_points and w in inserted_points: + return distance( + points[inserted_points.index(v)], + points[inserted_points.index(w)], + ) + + return None + + D = insertion.codomain().distance_matrix_vertices( + distance=inserted_distance + ) + + index = { + p: V.index(q) for p, q in zip(points, inserted_points) + } + + from sage.all import matrix + + return matrix( + [ + [D[index[p]][index[q]] for q in points] + for p in points + ] + ) + + def cluster_points(self, points): + points = tuple(points) + D = self.distance_matrix_points(points) + + nclusters = len(points) + for radius in sorted(set(D.list())): + from sage.all import matrix + + adjacency = matrix( + [ + [ + d <= radius and i != j + for j, d in enumerate(row) + ] + for i, row in enumerate(D.rows()) + ] + ) + # print(radius) + # print(adjacency) + + clusters = [] + ids = list(range(len(points))) + while adjacency: + from sage.all import Graph + + G = Graph(adjacency) + + import sage.graphs.cliquer + + clique = sage.graphs.cliquer.max_clique(G) + adjacency = matrix( + [ + [ + a + for j, a in enumerate(row) + if j not in clique + ] + for i, row in enumerate(adjacency.rows()) + if i not in clique + ] + ) + # print(adjacency) + + clique = [ids[c] for c in clique] + # print("clique", clique) + clusters.append(clique) + + ids = [id for id in ids if id not in clique] + + for p in range(len(points)): + if not any(p in cluster for cluster in clusters): + clusters.append([p]) + # print(clusters) + if len(clusters) < nclusters: + nclusters = len(clusters) + # TODO: Actually it's not a ball of that radius. + print( + f"Identifying roots contained in a {radius:.3} ball, there are {nclusters} roots of orders {tuple(len(cluster) for cluster in clusters)}" + ) + def _test_genus(self, **options): r""" Verify that the genus is compatible with the angles of the @@ -378,6 +691,27 @@ def _test_genus(self, **options): tester.assertAlmostEqual( self.genus(), - sum(a - 1 for a in self.angles(numerical=True)) / 2.0 - + 1, + float( + sum(a - 1 for a in self.angles(numerical=True)) + / 2.0 + + 1 + ), ) + + class ElementMethods: + def distance(self, other): + raise NotImplementedError + + def closest(self, points): + return next(iter(self.nclosest()))[1] + + def nclosest(self, points, distance=None): + distances = self.parent().distance_matrix_points( + [self] + list(points), distance=distance + )[0][1:] + distances = [ + (distance, i) for (i, distance) in enumerate(distances) + ] + + for (distance, i) in sorted(distances): + yield distance, points[i] diff --git a/flatsurf/geometry/categories/euclidean_polygonal_surfaces.py b/flatsurf/geometry/categories/euclidean_polygonal_surfaces.py index 78dfc2cf0..744314159 100644 --- a/flatsurf/geometry/categories/euclidean_polygonal_surfaces.py +++ b/flatsurf/geometry/categories/euclidean_polygonal_surfaces.py @@ -44,6 +44,7 @@ # #################################################################### from flatsurf.geometry.categories.surface_category import SurfaceCategory +from sage.misc.cachefunc import cached_method class EuclideanPolygonalSurfaces(SurfaceCategory): @@ -85,6 +86,12 @@ class ParentMethods: want to put it here. """ + @cached_method + def euclidean_plane(self): + from flatsurf.geometry.euclidean import EuclideanPlane + + return EuclideanPlane(self.base_ring()) + def graphical_surface(self, *args, **kwargs): r""" Return a graphical representation of this surface. @@ -143,6 +150,7 @@ def plot(self, **kwargs): "adjacencies", "polygon_labels", "edge_labels", + "zero_flags", "default_position_function", ] if key in kwargs diff --git a/flatsurf/geometry/categories/euclidean_polygons.py b/flatsurf/geometry/categories/euclidean_polygons.py index 32da380ba..1d9c9282d 100644 --- a/flatsurf/geometry/categories/euclidean_polygons.py +++ b/flatsurf/geometry/categories/euclidean_polygons.py @@ -340,6 +340,7 @@ def edges(self): """ return [self.edge(i) for i in range(len(self.vertices()))] + @cached_method def edge(self, i): r""" Return the vector going from vertex ``i`` to the following vertex @@ -757,7 +758,8 @@ def centroid(self): for i in range(nvertices) ] ), - ) + ), + immutable=True, ) def get_point_position(self, point, translation=None): @@ -832,7 +834,7 @@ def get_point_position(self, point, translation=None): # Determine whether the point is on an edge of the polygon. for i, (v, e) in enumerate(zip(self.vertices(), self.edges())): - if ccw(e, point - v) == 0: + if not ccw(e, point - v): # The point lies on the line through this edge. if 0 < e.dot_product(point - v) < e.dot_product(e): return PolygonPosition(PolygonPosition.EDGE_INTERIOR, edge=i) @@ -1215,6 +1217,9 @@ def triangulation(self): sage: P = Polygon(vertices=[(0,0), (1,0), (1,1), (0,1), (0,2), (-1,2), (-1,1), (-2,1), ....: (-2,0), (-1,0), (-1,-1), (0,-1)]) sage: P.triangulation() + doctest:warning + ... + UserWarning: triangulation() has been deprecated and will be removed in a future version of sage-flatsurf. Use triangulate() instead. [(0, 2), (2, 8), (3, 5), (6, 8), (8, 3), (3, 6), (9, 11), (0, 9), (2, 9)] TESTS:: @@ -1309,6 +1314,12 @@ def triangulation(self): [(0, 4), (1, 3), (4, 1)] """ + import warnings + + warnings.warn( + "triangulation() has been deprecated and will be removed in a future version of sage-flatsurf. Use triangulate() instead." + ) + vertices = self.vertices() n = len(vertices) @@ -1387,6 +1398,76 @@ def triangulation(self): assert False + def flow_to_exit(self, point, direction): + r""" + Flow a point in the direction of holonomy until the point + hits the boundary of the polygon and return the point on + the boundary where the trajectory exits. + + INPUT: + + - ``point`` -- a point in the closure of the polygon (as a vector) + + - ``holonomy`` -- direction of motion (a vector of non-zero length) + + TESTS:: + + sage: from flatsurf import Polygon + sage: P = Polygon(vertices=[(1, 0), (1, -2), (3/2, -5/2), (2, -2), (2, 0), (2, 1), (2, 3), (3/2, 7/2), (1, 3), (1, 1)]) + sage: P.flow_to_exit(vector((2, 1)), vector((0, 1))) + (2, 3) + sage: P.flow_to_exit(vector((1, 3)), vector((0, -1))) + (1, 1) + + """ + if not direction: + raise ValueError("direction must be non-zero") + + vertices = self.vertices() + + first_intersection = None + + for v in range(len(vertices)): + segment = vertices[v], vertices[(v + 1) % len(vertices)] + + from flatsurf.geometry.euclidean import ray_segment_intersection + + intersection = ray_segment_intersection(point, direction, segment) + + if intersection is None: + continue + + if isinstance(intersection, tuple): + if intersection[0] != point: + # The flow overlaps with this edge but it hits + # a vertex before it gets here. + continue + + intersection = intersection[1] + assert intersection != point + + if intersection == point: + continue + + from flatsurf.geometry.euclidean import time_on_ray + + if ( + first_intersection is None + or time_on_ray(point, direction, first_intersection)[0] + > time_on_ray(point, direction, intersection)[0] + ): + first_intersection = intersection + + if first_intersection is not None: + return first_intersection + + if self.get_point_position(point).is_outside(): + raise ValueError("Cannot flow from point outside of polygon") + + raise ValueError( + "Cannot flow from point on boundary if direction points out of the polygon" + ) + def triangulate(self): r""" Return a triangulation of this polygon. @@ -1749,97 +1830,29 @@ def contains_point(self, point, translation=None): r""" Return whether the point is within the polygon (after the polygon is possibly translated) """ + # TODO: Deprecate translation. return self.get_point_position( point, translation=translation ).is_inside() - def flow_to_exit(self, point, direction): + def distance(self, point): r""" - Flow a point in the direction of holonomy until the point leaves the - polygon. Note that ValueErrors may be thrown if the point is not in the - polygon, or if it is on the boundary and the holonomy does not point - into the polygon. - - INPUT: - - - ``point`` -- a point in the closure of the polygon (as a vector) - - - ``holonomy`` -- direction of motion (a vector of non-zero length) - - OUTPUT: - - - The point in the boundary of the polygon where the trajectory exits - - - a PolygonPosition object representing the combinatorial position of the stopping point + Return the distance of the boundary of this polygon to + ``point``. """ - from flatsurf.geometry.polygon import PolygonPosition - - V = self.base_ring().fraction_field() ** 2 - if direction == V.zero(): - raise ValueError("Zero vector provided as direction.") - v0 = self.vertex(0) - for i in range(len(self.vertices())): - e = self.edge(i) - from sage.all import matrix - - m = matrix([[e[0], -direction[0]], [e[1], -direction[1]]]) - try: - ret = m.inverse() * (point - v0) - s = ret[0] - t = ret[1] - # What if the matrix is non-invertible? + return min(segment.distance(point) for segment in self.segments()) - # Answer: You'll get a ZeroDivisionError which means that the edge is parallel - # to the direction. + def segments(self): + E = self.euclidean_plane() + V = self.vertices() + return [ + E(start).segment(end) for (start, end) in zip(V, V[1:] + V[:1]) + ] - # s is location it intersects on edge, t is the portion of the direction to reach this intersection - if t > 0 and 0 <= s and s <= 1: - # The ray passes through edge i. - if s == 1: - # exits through vertex i+1 - v0 = v0 + e - return v0, PolygonPosition( - PolygonPosition.VERTEX, - vertex=(i + 1) % len(self.vertices()), - ) - if s == 0: - # exits through vertex i - return v0, PolygonPosition( - PolygonPosition.VERTEX, vertex=i - ) - # exits through vertex i - # exits through interior of edge i - prod = t * direction - return point + prod, PolygonPosition( - PolygonPosition.EDGE_INTERIOR, edge=i - ) - except ZeroDivisionError: - # Here we know the edge and the direction are parallel - if ccw(e, point - v0) == 0: - # In this case point lies on the edge. - # We need to work out which direction to move in. - from flatsurf.geometry.euclidean import is_parallel + def euclidean_plane(self): + from flatsurf import EuclideanPlane - if (point - v0).is_zero() or is_parallel(e, point - v0): - # exits through vertex i+1 - return self.vertex(i + 1), PolygonPosition( - PolygonPosition.VERTEX, - vertex=(i + 1) % len(self.vertices()), - ) - else: - # exits through vertex i - return v0, PolygonPosition( - PolygonPosition.VERTEX, vertex=i - ) - pass - v0 = v0 + e - # Our loop has terminated. This can mean one of several errors... - pos = self.get_point_position(point) - if pos.is_outside(): - raise ValueError("Started with point outside polygon") - raise ValueError( - "Point on boundary of polygon and direction not pointed into the polygon." - ) + return EuclideanPlane(self.base_ring()) def flow_map(self, direction): r""" @@ -1963,6 +1976,7 @@ def flow(self, point, holonomy, translation=None): sage: s.flow(p, w) ((1, 1/2), (3/2, 0), point positioned on interior of edge 1 of polygon) """ + # TODO: Deprecate translation. from flatsurf.geometry.polygon import PolygonPosition V = self.base_ring().fraction_field() ** 2 @@ -2059,22 +2073,26 @@ def circumscribed_circle(self): sage: from flatsurf import Polygon sage: P = Polygon(vertices=[(0,0),(1,0),(2,1),(-1,1)]) sage: P.circumscribed_circle() - Circle((1/2, 3/2), 5/2) + { (x - 1/2)² + (y - 3/2)² = 5/2 } + """ from flatsurf.geometry.circle import circle_from_three_points circle = circle_from_three_points( self.vertex(0), self.vertex(1), self.vertex(2), self.base_ring() ) - for i in range(3, len(self.vertices())): - if not circle.point_position(self.vertex(i)) == 0: - raise ValueError( - "Vertex " + str(i) + " is not on the circle." - ) + # TODO: Temporarily disabled because it fails over inexact rings. + # for i in range(3, len(self.vertices())): + # if not circle.point_position(self.vertex(i)) == 0: + # raise ValueError( + # "Vertex " + str(i) + " is not on the circle." + # ) return circle - def subdivide(self): + def subdivide(self, center=None): r""" + # TODO: If no point given, takes the centroid. + Return a list of triangles that partition this polygon. For each edge of the polygon one triangle is created that joins this @@ -2117,7 +2135,7 @@ def subdivide(self): """ vertices = self.vertices() - center = self.centroid() + center = center or self.centroid() from flatsurf import Polygon return [ @@ -2153,13 +2171,22 @@ def subdivide_edges(self, parts=2): Polygon(vertices=[(0, 0), (1/3, 0), (2/3, 0), (1, 0), (5/6, 1/6*a), (2/3, 1/3*a), (1/2, 1/2*a), (1/3, 1/3*a), (1/6, 1/6*a)]) """ - if parts < 1: - raise ValueError("parts must be a positive integer") + from collections.abc import Iterable + + if not isinstance(parts, Iterable): + parts = [ + [1 / parts for k in range(parts)] for e in self.edges() + ] - steps = [e / parts for e in self.edges()] from flatsurf import Polygon - return Polygon(edges=[e for e in steps for p in range(parts)]) + return Polygon( + edges=[ + e * part + for (e, parts) in zip(self.edges(), parts) + for part in parts + ] + ).translate(self.vertex(0)) def j_invariant(self): r""" diff --git a/flatsurf/geometry/categories/euclidean_polygons_with_angles.py b/flatsurf/geometry/categories/euclidean_polygons_with_angles.py index ec8890779..050bc876b 100644 --- a/flatsurf/geometry/categories/euclidean_polygons_with_angles.py +++ b/flatsurf/geometry/categories/euclidean_polygons_with_angles.py @@ -481,12 +481,6 @@ def __slopes(self): False ), "EuclideanPolygonsWithAngles should be a supercategory of this category" - # TODO: rather than lengths, it would be more convenient to have access - # to the tangent space (that is the space of possible holonomies). However, - # since it is not defined over the real numbers, there are several possible ways - # to handle the data. - # TODO: here we ignored the direction SO(2) which provides additional symmetry - # in the tangent space @cached_method def lengths_polytope(self): r""" @@ -496,6 +490,18 @@ def lengths_polytope(self): equiangular polygons. Be careful that even though the lengths are admissible, they may not define a polygon without intersection. + .. TODO:: + + Rather than lengths, it would be more convenient to have access + to the tangent space (that is the space of possible + holonomies). However, since it is not defined over the real + numbers, there are several possible ways to handle the data. + + .. TODO:: + + Here we ignored the direction SO(2) which provides additional + symmetry in the tangent space + EXAMPLES:: sage: from flatsurf import EuclideanPolygonsWithAngles diff --git a/flatsurf/geometry/categories/half_translation_surfaces.py b/flatsurf/geometry/categories/half_translation_surfaces.py index 13f814589..0aab89c36 100644 --- a/flatsurf/geometry/categories/half_translation_surfaces.py +++ b/flatsurf/geometry/categories/half_translation_surfaces.py @@ -55,6 +55,7 @@ ) from sage.misc.lazy_import import LazyImport from sage.all import QQ, AA +from sage.misc.cachefunc import cached_method class HalfTranslationSurfaces(SurfaceCategory): @@ -193,7 +194,7 @@ def stratum(self): Q_0(0, -1^4) """ - angles = self.angles() + angles = list(self.angles()) for a, b in self.gluings(): if a == b: @@ -456,4 +457,5 @@ def normalized_coordinates(self): S.glue((relabelling[p1], e1), (relabelling[p2], e2)) S._refine_category_(self.category()) + S.set_immutable() return S, M diff --git a/flatsurf/geometry/categories/polygonal_surfaces.py b/flatsurf/geometry/categories/polygonal_surfaces.py index d6534bb2f..1584b4ae0 100644 --- a/flatsurf/geometry/categories/polygonal_surfaces.py +++ b/flatsurf/geometry/categories/polygonal_surfaces.py @@ -1270,6 +1270,10 @@ def is_with_boundary(self): False """ + if "WithoutBoundary" in self.category().axioms(): + return False + if "WithBoundary" in self.category().axioms(): + return True for label in self.labels(): for edge in range(len(self.polygon(label).vertices())): cross = self.opposite_edge(label, edge) @@ -1320,6 +1324,45 @@ def _test_labels(self, **options): tester.assertEqual(len(list(self.labels())), len(self.labels())) + def some_elements(self): + r""" + Return some points in this surface. + + EXAMPLES:: + + sage: from flatsurf import Polygon, similarity_surfaces + sage: P = Polygon(vertices=[(0,0), (2,0), (1,4), (0,5)]) + sage: S = similarity_surfaces.self_glued_polygon(P) + sage: list(S.some_elements()) + [Vertex 0 of polygon 0, + Point (3/4, 9/4) of polygon 0, + Point (2/3, 0) of polygon 0, + Point (4/3, 8/3) of polygon 0, + Point (1/3, 14/3) of polygon 0, + Point (0, 10/3) of polygon 0] + + """ + for vertex in self.vertices(): + yield vertex + + from sage.categories.all import Fields + + if self.base_ring() in Fields(): + for label in self.labels(): + polygon = self.polygon(label) + vertices = polygon.vertices() + + yield self(label, sum(vertices) / len(vertices)) + for vertex in range(len(vertices)): + yield self( + label, + ( + polygon.vertex(vertex) + + 2 * polygon.vertex(vertex + 1) + ) + / 3, + ) + class InfiniteType(SurfaceCategoryWithAxiom): r""" The axiom satisfied by surfaces built from infinitely many polygons. diff --git a/flatsurf/geometry/categories/similarity_surfaces.py b/flatsurf/geometry/categories/similarity_surfaces.py index 930c3aa08..852af8ede 100644 --- a/flatsurf/geometry/categories/similarity_surfaces.py +++ b/flatsurf/geometry/categories/similarity_surfaces.py @@ -120,7 +120,6 @@ SurfaceCategoryWithAxiom, ) from flatsurf.cache import cached_surface_method - from sage.categories.category_with_axiom import all_axioms from sage.all import QQ, AA @@ -394,14 +393,16 @@ def is_rational_surface(self): def _mul_(self, matrix, switch_sides=True): r""" + Apply the 2×2 ``matrix`` to the polygons of this surface. + EXAMPLES:: sage: from flatsurf import translation_surfaces sage: s = translation_surfaces.infinite_staircase() sage: s The infinite staircase - sage: m=Matrix([[1,2],[0,1]]) - sage: s2=m*s + sage: m = matrix([[1,2],[0,1]]) + sage: s2 = m * s sage: TestSuite(s2).run() sage: s2.polygon(0) Polygon(vertices=[(0, 0), (1, 0), (3, 1), (2, 1)]) @@ -420,16 +421,42 @@ def _mul_(self, matrix, switch_sides=True): if not switch_sides: raise NotImplementedError - from sage.structure.element import is_Matrix + return self.apply_matrix(matrix).codomain() - if not is_Matrix(matrix): - raise NotImplementedError("only implemented for matrices") - if not matrix.dimensions != (2, 2): - raise NotImplementedError("only implemented for 2x2 matrices") + def harmonic_differentials( + self, error, cell_decomposition, check=True, category=None + ): + if self.is_mutable(): + raise ValueError( + "surface must be immutable to compute harmonic differentials" + ) + from sage.all import RR from flatsurf.geometry.lazy import GL2RImageSurface - return GL2RImageSurface(self, matrix) + coefficients = RR + + if category is None: + from sage.categories.all import Modules + + category = Modules(coefficients) + + return self._harmonic_differentials( + error=error, + cell_decomposition=cell_decomposition, + check=check, + category=category, + ) + + @cached_surface_method + def _harmonic_differentials(self, error, cell_decomposition, check, category): + from flatsurf.geometry.harmonic_differentials import ( + HarmonicDifferentialSpace, + ) + + return HarmonicDifferentialSpace( + self, error, cell_decomposition, check, category + ) def apply_matrix(self, m, in_place=None): r""" @@ -1388,6 +1415,7 @@ def underlying_surface(self): return self + @cached_surface_method def edge_transformation(self, p, e): r""" Return the similarity bringing the provided edge to the opposite edge. @@ -1488,8 +1516,8 @@ def set_vertex_zero(self, label, v, in_place=False): def relabel(self, relabeling=None, in_place=False): r""" - Return a surface whose polygons have been relabeled according - to ``relabeling``. + Return a morphism to a surface whose polygons have been + relabeled according to ``relabeling``. INPUT: @@ -1499,16 +1527,16 @@ def relabel(self, relabeling=None, in_place=False): non-negative integers. - ``in_place`` -- a boolean (default: ``False``); whether to - modify this surface or return a relabeled copy instead. + mutate this surface or return a morphism to an independent copy. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.veech_double_n_gon(5) - sage: SS = S.relabel({0: 1, 1: 2}) + sage: relabeling = S.relabel({0: 1, 1: 2}) + sage: SS = relabeling.codomain() sage: SS Translation Surface in H_2(2) built from 2 regular pentagons - sage: SS.root() 1 @@ -1519,7 +1547,7 @@ def relabel(self, relabeling=None, in_place=False): The relabeling can also be a callable:: - sage: SSS = SS.relabel(lambda label: label -1) + sage: SSS = SS.relabel(lambda label: label -1).codomain() sage: SSS == S True @@ -1544,7 +1572,7 @@ def relabel(self, relabeling=None, in_place=False): For infinite surfaces, we only support relabeling to the non-negative integers: - sage: S.relabel().labels() + sage: S.relabel().codomain().labels() (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, …) """ @@ -1576,11 +1604,11 @@ def relabel(self, relabeling=None, in_place=False): MutableOrientedSimilaritySurface, ) - S = MutableOrientedSimilaritySurface.from_surface(self) - S = S.relabel(relabeling=relabeling, in_place=True) - S.set_immutable() + s = MutableOrientedSimilaritySurface.from_surface(self) + morphism = s.relabel(relabeling=relabeling, in_place=True) + s.set_immutable() - return S + return morphism.change(domain=self, codomain=s, check=False) def copy( self, @@ -1666,7 +1694,7 @@ def copy( message += " Use relabel({old: new for (new, old) in enumerate(surface.labels())}) for integer labels." if not self.is_finite_type(): - message += " However, there is no immediate replacement for lazy copying of infinite surfaces. Have a look at the implementation of flatsurf.geometry.delaunay.LazyMutableSurface and adapt it to your needs." + message += " However, there is no immediate replacement for lazy copying of infinite surfaces. Have a look at the implementation of flatsurf.geometry.lazy.LazyMutableSurface and adapt it to your needs." if new_field is not None: message += " Use change_ring() to change the field over which the surface is defined." @@ -2041,19 +2069,21 @@ def random_flip(self, repeat=1, in_place=False): EXAMPLES:: sage: from flatsurf import translation_surfaces - sage: ss = translation_surfaces.ward(3).triangulate() - sage: ss.random_flip(15) # random - Translation Surface in H_1(0^3) built from 6 triangles + sage: ss = translation_surfaces.ward(3).triangulate().codomain() + sage: ss.random_flip(15) + Translation Surface in H_1(0^3) built from ... """ if not self.is_triangulated(): raise ValueError("random_flip only works for triangulated surfaces") + if not in_place: from flatsurf.geometry.surface import ( MutableOrientedSimilaritySurface, ) self = MutableOrientedSimilaritySurface.from_surface(self) + labels = list(self.labels()) i = 0 from sage.misc.prandom import choice @@ -2434,17 +2464,34 @@ def tangent_vector(self, lab, p, v, ring=None): def triangulation_mapping(self): r""" - Return a ``SurfaceMapping`` triangulating the surface - or ``None`` if the surface is already triangulated. + Return a morphism triangulating the surface or + ``None`` if the surface is already triangulated. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.mcmullen_L(1, 1, 1, 1) + sage: S.triangulation_mapping() + doctest:warning + ... + UserWarning: triangulation_mapping() has been deprecated and will be removed in a future version of sage-flatsurf; use triangulate() instead + Triangulation morphism: + From: Translation Surface in H_2(2) built from 3 squares + To: Triangulation of Translation Surface in H_2(2) built from 3 squares + """ - from flatsurf.geometry.mappings import triangulation_mapping + import warnings - return triangulation_mapping(self) + warnings.warn( + "triangulation_mapping() has been deprecated and will be removed in a future version of sage-flatsurf; use triangulate() instead" + ) + return self.triangulate() + + # TODO: Rename to triangulation() def triangulate(self, in_place=False, label=None, relabel=None): r""" - Return a triangulated version of this surface. (This may be mutable - or not depending on the input.) + Return a morphism to a triangulated version of this surface. INPUT: @@ -2620,6 +2667,7 @@ def is_delaunay_triangulated(self, limit=None): return True + # TODO: Should we rename this to is_delaunay? And remove is_delaunay_triangulated? def is_delaunay_decomposed(self, limit=None): r""" Return if the decomposition of the surface into polygons is Delaunay. @@ -2667,6 +2715,17 @@ def is_delaunay_decomposed(self, limit=None): return True + # TODO: In the long run, what should the naming strategy be? + # Should it say delaunay_triangulation() or delaunay_triangulate()? + # The latter sounds like an in-place operation. So maybe + # delaunay_triangulation() is better. + # Should there be any in-place operations at all? For anything that + # is linear-time or slower, it makes not a lot of sense really. If + # we want speed, we should call out to libflatsurf. + # TODO: Maybe the codomain should be a + # MutableOrientedSimilaritySurface that is immutable when + # this is finite type. (Here and for all the other functions + # returning a lazy surface at the moment.) def delaunay_triangulation( self, triangulated=None, @@ -2854,7 +2913,7 @@ def delaunay_decomposition( sage: p = Polygon(edges=[(4,0),(-2,1),(-2,-1)]) sage: s0 = similarity_surfaces.self_glued_polygon(p) - sage: s = s0.delaunay_decomposition() + sage: s = s0.delaunay_decomposition().codomain() sage: TestSuite(s).run() sage: m = matrix([[2,1],[1,1]]) @@ -2918,6 +2977,302 @@ def delaunay_decomposition( return self.delaunay_decompose().codomain() + def _saddle_connections_unbounded( + self, initial_label, initial_vertex, algorithm + ): + r""" + Enumerate all saddle connections in this surface ordered by length. + + This is a helper method for :meth:`saddle_connections`. + """ + + def squared_length(v): + return v[0] ** 2 + v[1] ** 2 + + # Enumerate all saddle connections by length + connections = set() + shortest_edge = min( + squared_length(self.polygon(label).edge(edge)) + for (label, edge) in self.edges() + ) + + length_bound = shortest_edge + while True: + more_connections = [ + connection + for connection in self.saddle_connections( + squared_length_bound=length_bound, + initial_label=initial_label, + initial_vertex=initial_vertex, + algorithm=algorithm, + ) + if connection not in connections + ] + for connection in sorted( + more_connections, + key=lambda connection: squared_length(connection.holonomy()), + ): + connections.add(connection) + yield connection + + length_bound *= 2 + + def _saddle_connections_generic_cone_bounded( + self, squared_length_bound, source, incoming_edge, similarity, cone + ): + r""" + Enumerate the saddle connections of length at most square root + of ``squared_length_bound`` and which are strictly inside the + ``cone``. + + This is a helper method for :meth:`saddle_connections`. + + ALGORITHM: + + We check for each vertex of the polygon if it is contained in + the cone. If it is, it leads to a saddle connection (unless + it's hidden or too far away.) + + Then we recursively propagate the cone across each edge it hits + into the neighboring polygons. + + INPUT: + + - ``squared_length_bound`` -- a number, the square of the + length up to which saddle connections should be considered; + the length of saddle connections is determined using their + holonomy vector written in their source polygon. + + - ``source`` -- a pair of a polygon label and a vertex + index; the vertex where all saddle connections enumerated by + this method start. + + - ``incoming_edge`` -- a pair of a polygon label and an edge + index; the ``cone`` is crossing over this ``incoming_edge`` + (after transforming that polygon with the inverse of the + ``similarity``.) + + - ``similarity`` -- a similarity of the plane; describes a + translation, rotation, and dilation of the ``incoming_edge`` + polygon to position it relative to the ``cone`` + + - ``cone`` -- an open cone in the plane which bounds the + holonomy of the saddle connections. + + """ + assert not cone.is_empty() + + label = incoming_edge[0] + polygon = similarity(self.polygon(label)) + + incoming_edge_segment = ( + polygon.vertex(incoming_edge[1]), + polygon.vertex(incoming_edge[1] + 1), + ) + origin = (polygon.base_ring() ** 2).zero() + + from flatsurf.geometry.cone import Cones + + if polygon.vertex(incoming_edge[1]): + incoming_edge_cone = Cones(self.base_ring())( + polygon.vertex(incoming_edge[1] + 1), + polygon.vertex(incoming_edge[1]), + ) + else: + incoming_edge_cone = Cones(self.base_ring())( + polygon.vertex(incoming_edge[1] + 1), + polygon.vertex(incoming_edge[1] - 1), + ) + + if not cone.is_subset(incoming_edge_cone): + raise ValueError( + "cone must be contained in the cone formed by the incoming edge" + ) + + from flatsurf import EuclideanPlane + + bounding_circle = EuclideanPlane(self.base_ring()).circle( + (0, 0), + radius_squared=squared_length_bound, + ) + + # Each vertex that is contained in the cone's interior yields a + # saddle connection (if it is "behind" the incoming edge and + # not hidden by some other edge; these conditions are only + # possible for polygons that are not strictly convex.) + for v, vertex in enumerate(polygon.vertices()): + if cone.contains_point(vertex): + if v == incoming_edge[1]: + continue + + from flatsurf.geometry.euclidean import ( + time_on_ray, + ray_segment_intersection, + ) + + vertex_time_on_ray = time_on_ray( + origin, + vertex, + ray_segment_intersection( + origin, vertex, incoming_edge_segment + ), + ) + if vertex_time_on_ray[0] > vertex_time_on_ray[1]: + assert not polygon.is_convex() + # The cone hits the vertex before entering the polygon. + continue + + exit = polygon.flow_to_exit(vertex, -vertex) + + # TODO: This is probably very inefficient. It would be enough to check if this point is on the incoming_edge. + exit = polygon.get_point_position(exit) + + if exit.is_vertex() and exit.get_vertex() != incoming_edge[1]: + # Another vertex hides this vertex. + continue + + if ( + exit.is_in_edge_interior() + and exit.get_edge() != incoming_edge[1] + ): + # Another edge hides this vertex. + continue + + # The vertex is not hidden by some other vertex or + # edge. This is a saddle connection. + holonomy = vertex + if bounding_circle.point_position(holonomy) >= 0: + # The saddle connection is within the squared_length_bound. + from flatsurf.geometry.saddle_connection import ( + SaddleConnection, + ) + + yield SaddleConnection( + surface=self, + start=source, + end=(label, v), + holonomy=vertex, + end_holonomy=~similarity.derivative() * vertex, + ) + + # We need to propagate the cone across edges to neighboring + # polygons. For this, we split the cone into smaller subcones, + # such that each subcone contains no vertex in its interior. + cone_space = cone.parent() + ray_space = cone_space.rays() + vertex_directions = ( + [cone.start()] + + cone.sorted_rays( + [ + ray_space(vertex) + for v, vertex in enumerate(polygon.vertices()) + if v != incoming_edge[1] + and cone.contains_point(vertex) + and ray_space(vertex) not in [cone.start(), cone.end()] + ] + ) + + [cone.end()] + ) + + subcones = [ + cone_space(v, w) + for (v, w) in zip(vertex_directions, vertex_directions[1:]) + ] + # Now we propagate each subcone across the first edge it hits + # after crossing over the incoming edge. + for subcone in subcones: + ray = subcone.a_ray() + from flatsurf.geometry.euclidean import ray_segment_intersection + + start = ray_segment_intersection( + origin, ray.vector(), incoming_edge_segment + ) + exit = polygon.flow_to_exit(start, ray.vector()) + exit = polygon.get_point_position(exit) + assert exit.is_in_edge_interior() + outgoing_edge = exit.get_edge() + if ( + bounding_circle.line_segment_position( + polygon.vertex(outgoing_edge), + polygon.vertex(outgoing_edge + 1), + ) + != 1 + ): + # No part of the edge is inside the + # squared_length_bound, search ends here. + continue + + opposite_edge = self.opposite_edge(label, outgoing_edge) + if opposite_edge is None: + # Unglued edge. Search ends here. + continue + + # Recurse + yield from self._saddle_connections_generic_cone_bounded( + squared_length_bound, + source, + opposite_edge, + similarity * self.edge_transformation(*opposite_edge), + subcone, + ) + + def _saddle_connections_generic_from_vertex_bounded( + self, squared_length_bound, source + ): + r""" + Enumerate all the saddle connections up to length + ``squared_length_bound`` which start at ``source``. + + This is a helper method for :meth:`saddle_connections`. + + ALGORITHM: + + We consider saddle connections that come from the edges + adjacent to the vertex of ``source`` and then use + :meth:`_saddle_connections_generic_cone_bounded` to enumerate the + saddle connections in the open cone formed by these edges. + + INPUT: + + - ``squared_length_bound`` -- a number, the square of the + length up to which saddle connections should be considered; + the length of saddle connections is determined using their + holonomy vector written in their source polygon. + + - ``source`` -- a pair consisting of a polygon label and a vertex + index. The saddle connection starts at that vertex and is + contained in the closed cone that is formed by the two edges + adjacent to the vertex. + + """ + polygon = self.polygon(source[0]) + + from flatsurf.geometry.saddle_connection import SaddleConnection + + for connection in [ + SaddleConnection.from_half_edge(self, source[0], source[1]), + -SaddleConnection.from_half_edge( + self, source[0], (source[1] - 1) % len(polygon.edges()) + ), + ]: + if connection.length_squared() <= squared_length_bound: + yield connection + + from flatsurf.geometry.similarity import SimilarityGroup + + G = SimilarityGroup(self.base_ring()) + similarity = G.translation(*-polygon.vertex(source[1])) + + from flatsurf.geometry.cone import Cones + + cone = Cones(polygon.base_ring())( + polygon.edge(source[1]), -polygon.edge(source[1] - 1) + ) + + yield from self._saddle_connections_generic_cone_bounded( + squared_length_bound, source, source, similarity, cone + ) + def delaunay_decompose(self, codomain=None): r""" Return a Delaunay decomposition of this surface, i.e., a @@ -3040,172 +3395,234 @@ def delaunay_decompose(self, codomain=None): def saddle_connections( self, - squared_length_bound, + squared_length_bound=None, initial_label=None, initial_vertex=None, - sc_list=None, - check=False, + algorithm=None, ): r""" - Returns a list of saddle connections on the surface whose length squared is less than or equal to squared_length_bound. - The length of a saddle connection is measured using holonomy from polygon in which the trajectory starts. + Return the saddle connections on this surface whose length + squared is at most ``squared_length_bound`` (ordered by + length.) - If initial_label and initial_vertex are not provided, we return all saddle connections satisfying the bound condition. + The length of a saddle connection is measured using holonomy + from the polygon in which the trajectory starts. - If initial_label and initial_vertex are provided, it only provides saddle connections emanating from the corresponding - vertex of a polygon. If only initial_label is provided, the added saddle connections will only emanate from the - corresponding polygon. + If no ``squared_length_bound`` is given, all saddle connections + are enumerated (ordered by length.) - If sc_list is provided the found saddle connections are appended to this list and the resulting list is returned. + If ``initial_label`` and ``initial_vertex`` are provided, only + saddle connections are returned which emanate from the + corresponding vertex of a polygon (and only pointing into the + polygon or along the edges adjacent to that vertex.) - If check==True it uses the checks in the SaddleConnection class to sanity check our results. + If only ``initial_label`` is provided, the saddle connections + will only emanate from vertices of the corresponding polygon. + + If only ``initial_vertex`` is provided, the saddle connections + will only emanate from that vertex. + + EXAMPLES: + + Return the connections of length up to square root of 5:: - EXAMPLES:: sage: from flatsurf import translation_surfaces - sage: s = translation_surfaces.square_torus() - sage: sc_list = s.saddle_connections(13, check=True) - sage: len(sc_list) - 32 + sage: S = translation_surfaces.square_torus() + sage: connections = S.saddle_connections(5) + sage: list(connections) + [Saddle connection (0, -1) from vertex 3 of polygon 0 to vertex 1 of polygon 0, + Saddle connection (1, 0) from vertex 0 of polygon 0 to vertex 2 of polygon 0, + Saddle connection (0, 1) from vertex 1 of polygon 0 to vertex 3 of polygon 0, + Saddle connection (-1, 0) from vertex 2 of polygon 0 to vertex 0 of polygon 0, + Saddle connection (1, 1) from vertex 0 of polygon 0 to vertex 2 of polygon 0, + Saddle connection (1, -1) from vertex 3 of polygon 0 to vertex 1 of polygon 0, + Saddle connection (-1, 1) from vertex 1 of polygon 0 to vertex 3 of polygon 0, + Saddle connection (-1, -1) from vertex 2 of polygon 0 to vertex 0 of polygon 0, + Saddle connection (-1, 2) from vertex 1 of polygon 0 to vertex 3 of polygon 0, + Saddle connection (2, 1) from vertex 0 of polygon 0 to vertex 2 of polygon 0, + Saddle connection (1, -2) from vertex 3 of polygon 0 to vertex 1 of polygon 0, + Saddle connection (-2, 1) from vertex 1 of polygon 0 to vertex 3 of polygon 0, + Saddle connection (-2, -1) from vertex 2 of polygon 0 to vertex 0 of polygon 0, + Saddle connection (-1, -2) from vertex 2 of polygon 0 to vertex 0 of polygon 0, + Saddle connection (2, -1) from vertex 3 of polygon 0 to vertex 1 of polygon 0, + Saddle connection (1, 2) from vertex 0 of polygon 0 to vertex 2 of polygon 0] + + We get the same result if we take the first 16 saddle + connections without a length bound:: + + sage: from itertools import islice + sage: set(connections) == set(islice(S.saddle_connections(), 16)) + True + + While enumerating saddle connections without a bound is not + asymptotically slower than enumerating with a bound, in the + current implementation it is quite a bit slower in practice in + particular if the bound is small. + + TESTS: + + Verify that saddle connections are enumerated correctly when + there are unglued edges:: + + sage: from flatsurf import Polygon, MutableOrientedSimilaritySurface + sage: S = MutableOrientedSimilaritySurface(QQ) + sage: S.add_polygon(Polygon(vertices=[(0, 0), (1, 0), (0, 1)])) + 0 + sage: S.set_immutable() + sage: len(list(S.saddle_connections(10))) + 6 + + Verify that saddle connections are enumerated correctly when + there are self-glued edges:: + + sage: from flatsurf import Polygon, MutableOrientedSimilaritySurface + sage: S = MutableOrientedSimilaritySurface(QQ) + sage: S.add_polygon(Polygon(vertices=[(0, 0), (1, 0), (0, 1)])) + 0 + sage: S.glue((0, 0), (0, 0)) + sage: S.glue((0, 1), (0, 1)) + sage: S.glue((0, 2), (0, 2)) + sage: S.set_immutable() + + sage: from itertools import islice + sage: list(islice(S.saddle_connections(), 8)) + [Saddle connection (0, -1) from vertex 2 of polygon 0 to vertex 2 of polygon 0, + Saddle connection (1, 0) from vertex 0 of polygon 0 to vertex 0 of polygon 0, + Saddle connection (1, 1) from vertex 0 of polygon 0 to vertex 0 of polygon 0, + Saddle connection (-1, 1) from vertex 1 of polygon 0 to vertex 1 of polygon 0, + Saddle connection (2, 1) from vertex 0 of polygon 0 to vertex 0 of polygon 0, + Saddle connection (1, -2) from vertex 2 of polygon 0 to vertex 2 of polygon 0, + Saddle connection (-2, 1) from vertex 1 of polygon 0 to vertex 1 of polygon 0, + Saddle connection (1, 2) from vertex 0 of polygon 0 to vertex 0 of polygon 0] + + sage: len(list(S.saddle_connections(1))) + 2 + + sage: len(list(S.saddle_connections(1, initial_label=0, initial_vertex=1))) + 1 + + We can also enumerate saddle connections on surfaces that are + built from non-convex polygons such as this L shaped polygon:: + + sage: from flatsurf import MutableOrientedSimilaritySurface, Polygon + sage: L = MutableOrientedSimilaritySurface(QQ) + sage: L.add_polygon(Polygon(vertices=[(0, 0), (3, 0), (7, 0), (7, 2), (3, 2), (3, 3), (0, 3), (0, 2)])) + 0 + sage: L.glue((0, 0), (0, 5)) + sage: L.glue((0, 1), (0, 3)) + sage: L.glue((0, 2), (0, 7)) + sage: L.glue((0, 4), (0, 6)) + sage: L.set_immutable() + + sage: connections = L.saddle_connections(128) + sage: len(connections) + 164 + + Note that on translation surfaces, enumerating saddle + connections with the (default) ``"pyflatsurf"`` algorithm is + usually much faster than the ``"generic"`` algorithm:: + + sage: connections = L.saddle_connections(128) + sage: len(connections) + 164 + + sage: connections = L.saddle_connections(128, algorithm="generic") + sage: len(connections) + 164 + """ - if squared_length_bound <= 0: - raise ValueError + # TODO: Add benchmarks of the generic "cone" algorithm against + # the pyflatsurf algorithm. Also benchmark how much slower this + # is now since we are supporting much more complicated + # geometries. - if sc_list is None: - sc_list = [] - if initial_label is None: - if not self.is_finite_type(): - raise NotImplementedError - if initial_vertex is not None: - raise ValueError( - "when initial_label is not provided, then initial_vertex must not be provided either" - ) - for label in self.labels(): - self.saddle_connections( - squared_length_bound, initial_label=label, sc_list=sc_list - ) - return sc_list - if initial_vertex is None: - for vertex in range(len(self.polygon(initial_label).vertices())): - self.saddle_connections( - squared_length_bound, - initial_label=initial_label, - initial_vertex=vertex, - sc_list=sc_list, - ) - return sc_list + if squared_length_bound is not None and squared_length_bound < 0: + raise ValueError("length bound must be non-negative") - # Now we have a specified initial_label and initial_vertex - from flatsurf.geometry.similarity import SimilarityGroup + if algorithm is None: + algorithm = "generic" - SG = SimilarityGroup(self.base_ring()) - start_data = (initial_label, initial_vertex) - from flatsurf.geometry.circle import Circle + if algorithm == "generic": + return self._saddle_connections_generic( + squared_length_bound, initial_label, initial_vertex + ) - circle = Circle( - (0, 0), - squared_length_bound, - base_ring=self.base_ring(), - ) - p = self.polygon(initial_label) - v = p.vertex(initial_vertex) - last_sim = SG(-v[0], -v[1]) - - # First check the edge eminating rightward from the start_vertex. - e = p.edge(initial_vertex) - if e[0] ** 2 + e[1] ** 2 <= squared_length_bound: - from flatsurf.geometry.surface_objects import SaddleConnection - - sc_list.append(SaddleConnection(self, start_data, e)) - - # Represents the bounds of the beam of trajectories we are sending out. - wedge = ( - last_sim(p.vertex((initial_vertex + 1) % len(p.vertices()))), - last_sim( - p.vertex( - (initial_vertex + len(p.vertices()) - 1) % len(p.vertices()) - ) - ), + raise NotImplementedError( + "cannot enumerate saddle connections with this algorithm yet" ) - # This will collect the data we need for a depth first search. - chain = [ - ( - last_sim, - initial_label, - wedge, - [ - (initial_vertex + len(p.vertices()) - i) % len(p.vertices()) - for i in range(2, len(p.vertices())) - ], + def _saddle_connections_generic( + self, squared_length_bound, initial_label, initial_vertex + ): + if squared_length_bound is None: + # Enumerate all (usually infinitely many) saddle connections. + return self._saddle_connections_unbounded( + initial_label=initial_label, + initial_vertex=initial_vertex, + algorithm="generic", ) - ] - while len(chain) > 0: - # Should verts really be edges? - sim, label, wedge, verts = chain[-1] - if len(verts) == 0: - chain.pop() - continue - vert = verts.pop() - p = self.polygon(label) - # First check the vertex - vert_position = sim(p.vertex(vert)) - from flatsurf.geometry.euclidean import ccw + connections = [] - if ( - ccw(wedge[0], vert_position) > 0 - and ccw(vert_position, wedge[1]) > 0 - and vert_position[0] ** 2 + vert_position[1] ** 2 - <= squared_length_bound - ): - sc_list.append( - SaddleConnection( - self, - start_data, - vert_position, - end_data=(label, vert), - end_direction=~sim.derivative() * -vert_position, - holonomy=vert_position, - end_holonomy=~sim.derivative() * -vert_position, - check=check, - ) + if initial_label is None and initial_vertex is None: + if not self.is_finite_type(): + raise NotImplementedError( + "cannot enumerate saddle connections on surfaces that are built from inifinitely many polygons yet" ) - # Now check if we should develop across the edge - vert_position2 = sim(p.vertex((vert + 1) % len(p.vertices()))) - if ( - ccw(vert_position, vert_position2) > 0 - and ccw(wedge[0], vert_position2) > 0 - and ccw(vert_position, wedge[1]) > 0 - and circle.line_segment_position(vert_position, vert_position2) - == 1 - ): - if ccw(wedge[0], vert_position) > 0: - # First in new_wedge should be vert_position - if ccw(vert_position2, wedge[1]) > 0: - new_wedge = (vert_position, vert_position2) - else: - new_wedge = (vert_position, wedge[1]) - else: - if ccw(vert_position2, wedge[1]) > 0: - new_wedge = (wedge[0], vert_position2) - else: - new_wedge = wedge - new_label, new_edge = self.opposite_edge(label, vert) - new_sim = sim * ~self.edge_transformation(label, vert) - p = self.polygon(new_label) - chain.append( - ( - new_sim, - new_label, - new_wedge, - [ - (new_edge + len(p.vertices()) - i) - % len(p.vertices()) - for i in range(1, len(p.vertices())) - ], + + initial = [ + (label, range(len(self.polygon(label).vertices()))) + for label in self.labels() + ] + elif initial_label is None: + representatives = [ + ( + label, + self.polygon(label) + .get_point_position(coordinates) + .get_vertex(), + ) + for (label, coordinates) in initial_vertex.representatives() + ] + labels = {label for (label, _) in representatives} + initial = [ + ( + label, + [ + vertex + for (lbl, vertex) in representatives + if lbl == label + ], + ) + for label in labels + ] + elif initial_vertex is None: + initial = [ + ( + initial_label, + range(len(self.polygon(initial_label).vertices())), + ) + ] + for label, vertices in initial: + for vertex in vertices: + connections.extend( + self._saddle_connections_generic_from_vertex_bounded( + squared_length_bound=squared_length_bound, + source=(label, vertex), ) ) - return sc_list + + # The connections might contain duplicates because each glued + # edge can show up in two different polygons. Note that we + # cannot just change _saddle_connections_from_vertex_bounded() + # to only consider the edge clockwise from the vertex since we + # would then miss saddle connections in surfaces with + # self-glued and unglued edges. + connections = set(connections) + + return sorted( + connections, key=lambda connection: connection.length_squared() + ) def ramified_cover(self, d, data): r""" @@ -3276,6 +3693,7 @@ def ramified_cover(self, d, data): def subdivide(self): r""" + # TODO: Returns a morphism actually. Return a copy of this surface whose polygons have been partitioned into smaller triangles with :meth:`~.euclidean_polygons.EuclideanPolygons.Simple.Convex.ParentMethods.subdivide`. @@ -3292,7 +3710,7 @@ def subdivide(self): Subdivision of this surface yields a surface with three triangles:: - sage: T = S.subdivide() + sage: T = S.subdivide().codomain() sage: T.labels() (('Δ', 0), ('Δ', 1), ('Δ', 2)) @@ -3316,7 +3734,7 @@ def subdivide(self): sage: S.glue(("Δ", 0), ("□", 2)) sage: S.glue(("□", 1), ("□", 3)) - sage: T = S.subdivide() + sage: T = S.subdivide().codomain() sage: T.labels() (('Δ', 0), ('□', 2), ('Δ', 1), ('Δ', 2), ('□', 3), ('□', 1), ('□', 0)) @@ -3341,35 +3759,237 @@ def subdivide(self): ((('□', 3), 2), (('□', 2), 1))] """ - labels = list(self.labels()) - polygons = [self.polygon(label) for label in labels] + return self.insert_marked_points( + *[ + self(label, self.polygon(label).centroid()) + for label in self.labels() + ] + ) + + def insert_marked_points(self, *points): + if self.is_mutable(): + from flatsurf import MutableOrientedSimilaritySurface + + copy = MutableOrientedSimilaritySurface.from_surface(self) + copy.set_immutable() + + codomain = copy.insert_marked_points(*points).codomain() + + # Since the domain is mutable, the morphism is not + # functional but only has a .codomain(). + from flatsurf.geometry.morphism import SurfaceMorphism + + return SurfaceMorphism._create_morphism(None, codomain) + + from flatsurf.geometry.morphism import IdentityMorphism + + morphism = IdentityMorphism._create_morphism(self) + + for p in points: + if p.is_vertex(): + raise ValueError("cannot insert marked points at vertices") + + edge_points = [p for p in points if p.is_in_edge_interior()] + face_points = [p for p in points if p not in edge_points] + + assert len(edge_points) + len(face_points) == len(points) - subdivisions = [p.subdivide() for p in polygons] + if edge_points: + insert_morphism = morphism.codomain()._insert_marked_points_edges( + *edge_points + ) + morphism = insert_morphism * morphism + face_points = [insert_morphism(point) for point in face_points] + self = insert_morphism.codomain() + if face_points: + insert_morphism = morphism.codomain()._insert_marked_points_faces( + *face_points + ) + morphism = insert_morphism * morphism + + return morphism + + def _insert_marked_points_edges(self, *points): + assert ( + points + ), "_insert_marked_points_edges must be called with some points to insert" + + from flatsurf.geometry.euclidean import time_on_ray + + points = { + label: { + # TODO: Sort vertices along edge + edge: sorted( + [ + coordinates + for point in points + for (lbl, coordinates) in point.representatives() + if lbl == label + and self.polygon(label) + .get_point_position(coordinates) + .get_edge() + == edge + ], + key=lambda coordinates: time_on_ray( + self.polygon(label).vertex(edge), + self.polygon(label).edge(edge), + coordinates, + ), + ) + for edge in range(len(self.polygon(label).edges())) + } + for label in self.labels() + } + + from flatsurf import MutableOrientedSimilaritySurface + + surface = MutableOrientedSimilaritySurface(self.base_ring()) + + # Add polygons to surface with marked point + for label in self.labels(): + vertices = [] + for v, vertex in enumerate(self.polygon(label).vertices()): + vertices.append(vertex) + vertices.extend(points[label][v]) + + from flatsurf import Polygon + + surface.add_polygon(Polygon(vertices=vertices), label=label) + + # TODO: Make static on InsertMarkedPointsOnEdgeMorphism + def edgenum(label, edge, section): + edgenum = 0 + for e in range(edge): + edgenum += len(points[label][e]) + 1 + + edgenum += section + + return edgenum + + # Glue polygons in surface. + for label in self.labels(): + for edge in range(len(self.polygon(label).edges())): + opposite = self.opposite_edge(label, edge) + if opposite is None: + continue + + opposite_label, opposite_edge = opposite + for e in range(len(points[label][edge]) + 1): + surface.glue( + (label, edgenum(label, edge, e)), + ( + opposite_label, + edgenum(opposite_label, opposite_edge + 1, -1 - e), + ), + ) + + surface.set_immutable() + + from flatsurf.geometry.morphism import InsertMarkedPointsOnEdgeMorphism + + return InsertMarkedPointsOnEdgeMorphism._create_morphism( + self, surface, points + ) + + def _insert_marked_points_faces(self, *points): + # Recursively insert points by only inserting at most one point + # in each face at a time. + first_point = {} + more_points = {} + + for point in points: + label, coordinates = point.representative() + if label not in first_point: + first_point[label] = point.coordinates(label)[0] + else: + more_points[label] = more_points.get(label, []) + [point] + + assert ( + first_point + ), "_insert_marked_points_faces must be called with some points to insert" + + def is_subdivided(label): + return label in first_point + + subdivisions = { + label: self.polygon(label).subdivide(first_point[label]) + if is_subdivided(label) + else [self.polygon(label)] + for label in self.labels() + } from flatsurf.geometry.surface import MutableOrientedSimilaritySurface surface = MutableOrientedSimilaritySurface(self.base()) # Add subdivided polygons - for s, subdivision in enumerate(subdivisions): - label = labels[s] - for p, polygon in enumerate(subdivision): - surface.add_polygon(polygon, label=(label, p)) - - surface.set_roots((label, 0) for label in self.roots()) - - # Add gluings between subdivided polygons - for s, subdivision in enumerate(subdivisions): - label = labels[s] - for p in range(len(subdivision)): - surface.glue( - ((label, p), 1), ((label, (p + 1) % len(subdivision)), 2) - ) + for label in self.labels(): + if is_subdivided(label): + for p, polygon in enumerate(subdivisions[label]): + surface.add_polygon(polygon, label=(label, p)) + else: + surface.add_polygon(self.polygon(label), label=label) + + surface.set_roots( + (label, 0) if is_subdivided(label) else label + for label in self.roots() + ) + + # Establish gluings + for label in self.labels(): + for e in range(len(self.polygon(label).vertices())): + # Reestablish the original gluings + opposite = self.opposite_edge(label, e) - # Add gluing from original surface - opposite = self.opposite_edge(label, p) if opposite is not None: - surface.glue(((label, p), 0), (opposite, 0)) + opposite_label, opposite_edge = opposite + surface.glue( + ( + (label, e) if is_subdivided(label) else label, + 0 if is_subdivided(label) else e, + ), + ( + (opposite_label, opposite_edge) + if is_subdivided(opposite_label) + else opposite_label, + 0 + if is_subdivided(opposite_label) + else opposite_edge, + ), + ) + + # Glue subdivided polygons internally + if is_subdivided(label): + surface.glue( + ((label, e), 1), + ( + ( + label, + (e + 1) % len(self.polygon(label).vertices()), + ), + 2, + ), + ) + + surface.set_immutable() + + from flatsurf.geometry.morphism import InsertMarkedPointsInFaceMorphism + + insert_first_point = InsertMarkedPointsInFaceMorphism._create_morphism( + self, surface, subdivisions + ) + + if more_points: + from itertools import chain + + more_points = list(chain.from_iterable(more_points.values())) + more_points = [insert_first_point(p) for p in more_points] + return ( + insert_first_point.codomain().insert_marked_points(more_points) + * insert_first_point + ) + + return insert_first_point surface.set_immutable() @@ -3377,6 +3997,7 @@ def subdivide(self): def subdivide_edges(self, parts=2): r""" + # TODO: Returns a morphism actually. Return a copy of this surface whose edges have been split into ``parts`` equal pieces each. @@ -3398,7 +4019,7 @@ def subdivide_edges(self, parts=2): Subdividing this triangle yields a triangle with marked points along the edges:: - sage: T = S.subdivide_edges() + sage: T = S.subdivide_edges().codomain() If we add another polygon to the original surface and glue them, we can see how existing gluings are preserved when subdividing:: @@ -3424,7 +4045,17 @@ def subdivide_edges(self, parts=2): labels = list(self.labels()) polygons = [self.polygon(label) for label in labels] - subdivideds = [p.subdivide_edges(parts=parts) for p in polygons] + from collections.abc import Iterable + + if not isinstance(parts, Iterable): + parts = tuple(1 / parts for k in range(parts)) + if sum(parts) != 1: + raise ValueError + + subdivideds = [ + p.subdivide_edges(parts=[parts for _ in p.edges()]) + for p in polygons + ] from flatsurf.geometry.surface import MutableOrientedSimilaritySurface @@ -3441,12 +4072,12 @@ def subdivide_edges(self, parts=2): for e in range(len(polygon.vertices())): opposite = self.opposite_edge(label, e) if opposite is not None: - for p in range(parts): + for p in range(len(parts)): surface.glue( - (label, e * parts + p), + (label, e * len(parts) + p), ( opposite[0], - opposite[1] * parts + (parts - p - 1), + opposite[1] * len(parts) + (len(parts) - p - 1), ), ) @@ -3787,11 +4418,12 @@ def reposition_polygons(self, in_place=False, relabel=None): def standardize_polygons(self, in_place=False): r""" - Return a surface with each polygon replaced with a new - polygon which differs by translation and reindexing. The - new polygon will have the property that vertex zero is the - origin, and all vertices lie either in the upper half - plane, or on the x-axis with non-negative x-coordinate. + Return a morphism to a surface with each polygon replaced + with a new polygon which differs by translation and + reindexing. The new polygon will have the property that + vertex zero is the origin, and each vertex lies in the + upper half plane or on the x-axis with non-negative + x-coordinate. EXAMPLES:: @@ -3801,7 +4433,7 @@ def standardize_polygons(self, in_place=False): Polygon(vertices=[(0, 0), (-1, 0), (-1, -1), (0, -1)]) sage: [s.opposite_edge(0,i) for i in range(4)] [(1, 0), (1, 1), (1, 2), (1, 3)] - sage: ss=s.standardize_polygons() + sage: ss = s.standardize_polygons().codomain() sage: ss.polygon(1) Polygon(vertices=[(0, 0), (1, 0), (1, 1), (0, 1)]) sage: [ss.opposite_edge(0,i) for i in range(4)] @@ -3821,9 +4453,9 @@ def standardize_polygons(self, in_place=False): S = MutableOrientedSimilaritySurface.from_surface( self, category=self.category() ) - S.standardize_polygons(in_place=True) + morphism = S.standardize_polygons(in_place=True) S.set_immutable() - return S + return morphism.change(domain=self, codomain=S) def fundamental_group(self, base_label=None): r""" diff --git a/flatsurf/geometry/categories/translation_surfaces.py b/flatsurf/geometry/categories/translation_surfaces.py index a9c7a0967..e4fc69a26 100644 --- a/flatsurf/geometry/categories/translation_surfaces.py +++ b/flatsurf/geometry/categories/translation_surfaces.py @@ -263,16 +263,6 @@ def edge_matrix(self, p, e=None): return identity_matrix(self.base_ring(), 2) - def canonicalize_mapping(self): - r""" - Return a SurfaceMapping canonicalizing this translation surface. - """ - from flatsurf.geometry.mappings import ( - canonicalize_translation_surface_mapping, - ) - - return canonicalize_translation_surface_mapping(self) - def _test_translation_surface(self, **options): r""" Verify that this is a translation surface. @@ -323,6 +313,110 @@ class ParentMethods: want to put it here. """ + # TODO: Make sure this is cached for immutable surfaces. + def pyflatsurf(self): + r""" + Return an isomorphism to a surface backed by libflatsurf. + + EXAMPLES:: + + sage: from flatsurf import Polygon, MutableOrientedSimilaritySurface + + sage: S = MutableOrientedSimilaritySurface(QQ) + sage: S.add_polygon(Polygon(vertices=[(0, 0), (1, 0), (1, 1)]), label=0) + 0 + sage: S.add_polygon(Polygon(vertices=[(0, 0), (1, 1), (0, 1)]), label=1) + 1 + + sage: S.glue((0, 0), (1, 1)) + sage: S.glue((0, 1), (1, 2)) + sage: S.glue((0, 2), (1, 0)) + + sage: S.set_immutable() + + sage: S.pyflatsurf().codomain() # optional: pyflatsurf + FlatTriangulationCombinatorial(vertices = (1, -3, 2, -1, 3, -2), faces = (1, 2, 3)(-1, -2, -3)) with vectors {1: (1, 0), 2: (0, 1), 3: (-1, -1)} + + """ + from flatsurf.geometry.pyflatsurf.surface import Surface_pyflatsurf + + return Surface_pyflatsurf._from_flatsurf(self) + + def saddle_connections( + self, + squared_length_bound=None, + initial_label=None, + initial_vertex=None, + algorithm=None, + ): + if squared_length_bound is not None and squared_length_bound < 0: + raise ValueError("length bound must be non-negative") + + if algorithm is None: + from flatsurf.features import pyflatsurf_feature + + if ( + pyflatsurf_feature.is_present() + and pyflatsurf_feature.is_saddle_connection_enumeration_functional() + ): + algorithm = "pyflatsurf" + else: + algorithm = "generic" + + if algorithm == "pyflatsurf": + from flatsurf.features import pyflatsurf_feature + + if ( + not flatsurf_feature.is_saddle_connection_enumeration_functional() + ): + import warnings + + warnings.warn( + "enumerating saddle connections is broken in your version of pyflatsurf, namely saddle connections are enumerated in the wrong order and consequently some might be missing when enumerating with a length bound; upgrade to pyflatsurf >=3.14.1 to resolve this warning." + ) + return self._saddle_connections_pyflatsurf( + squared_length_bound, initial_label, initial_vertex + ) + + from flatsurf.geometry.categories.similarity_surfaces import ( + SimilaritySurfaces, + ) + + return SimilaritySurfaces.Oriented.ParentMethods.saddle_connections( + self, squared_length_bound, initial_label, initial_vertex + ) + + def _saddle_connections_pyflatsurf( + self, squared_length_bound, initial_label, initial_vertex + ): + pyflatsurf_conversion = self.pyflatsurf() + + connections = ( + pyflatsurf_conversion.codomain()._flat_triangulation.connections() + ) + connections = connections.byLength() + + if initial_label is not None: + raise NotImplementedError + if initial_vertex is not None: + raise NotImplementedError + + for connection in connections: + from flatsurf.geometry.pyflatsurf.saddle_connection import ( + SaddleConnection_pyflatsurf, + ) + + connection = SaddleConnection_pyflatsurf( + connection, pyflatsurf_conversion.codomain() + ) + connection = pyflatsurf_conversion.section()(connection) + if squared_length_bound is not None: + holonomy = connection.holonomy() + # TODO: Use dot_product everywhere. + if holonomy.dot_product(holonomy) > squared_length_bound: + break + yield connection + @cached_surface_method def pyflatsurf(self): r""" @@ -395,6 +489,42 @@ def stratum(self): return Stratum([ZZ(a - 1) for a in self.angles()], 1) + def canonicalize_mapping(self): + r""" + Return a SurfaceMapping canonicalizing this translation surface. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: s = translation_surfaces.octagon_and_squares() + sage: s.canonicalize_mapping() + doctest:warning + ... + UserWarning: canonicalize_mapping() has been deprecated and will be removed in a future version of sage-flatsurf; use canonicalize() instead + Composite morphism: + From: Translation Surface in H_3(4) built from 2 squares and a regular octagon + To: Translation Surface in H_3(4) built from 2 squares and a regular octagon + Defn: Delaunay Decomposition morphism: + From: Translation Surface in H_3(4) built from 2 squares and a regular octagon + To: Translation Surface in H_3(4) built from 2 squares and a regular octagon + then + Polygon Standardization morphism: + From: Translation Surface in H_3(4) built from 2 squares and a regular octagon + To: Translation Surface in H_3(4) built from 2 squares and a regular octagon + then + Relabeling morphism: + From: Translation Surface in H_3(4) built from 2 squares and a regular octagon + To: Translation Surface in H_3(4) built from 2 squares and a regular octagon + + """ + import warnings + + warnings.warn( + "canonicalize_mapping() has been deprecated and will be removed in a future version of sage-flatsurf; use canonicalize() instead" + ) + + return self.canonicalize() + def canonicalize(self, in_place=None): r""" Return a canonical version of this translation surface. @@ -411,10 +541,10 @@ def canonicalize(self, in_place=None): sage: s in TranslationSurfaces() True sage: a = s.base_ring().gen() - sage: mat = Matrix([[1,2+a],[0,1]]) - sage: s1 = s.canonicalize() + sage: mat = matrix([[1, 2 + a], [0, 1]]) + sage: s1 = s.canonicalize().codomain() sage: s1.set_immutable() - sage: s2 = (mat*s).canonicalize() + sage: s2 = (mat * s).canonicalize().codomain() sage: s2.set_immutable() sage: s1.cmp(s2) == 0 True @@ -434,31 +564,71 @@ def canonicalize(self, in_place=None): "the in_place keyword of canonicalize() has been deprecated and will be removed in a future version of sage-flatsurf" ) - s = self.delaunay_decompose().codomain().standardize_polygons() + delaunay_decomposition = self.delaunay_decompose() - from flatsurf.geometry.surface import ( - MutableOrientedSimilaritySurface, + standardization = ( + delaunay_decomposition.codomain().standardize_polygons() ) - s = MutableOrientedSimilaritySurface.from_surface(s) - from flatsurf.geometry.surface import ( MutableOrientedSimilaritySurface, ) - ss = MutableOrientedSimilaritySurface.from_surface(s) + s = MutableOrientedSimilaritySurface.from_surface( + standardization.codomain() + ) + + ss = MutableOrientedSimilaritySurface.from_surface( + standardization.codomain() + ) for label in ss.labels(): ss.set_roots([label]) if ss.cmp(s) > 0: s.set_roots([label]) - # We have chosen the root label such that this surface is minimal. - # Now we relabel all the polygons so that they are natural - # numbers in the order of the walk on the surface. - labels = {label: i for (i, label) in enumerate(s.labels())} - s.relabel(labels, in_place=True) + # We have determined the root label such that this surface + # is minimal. Now we relabel all the polygons so that they + # are natural numbers in the order of the walk on the + # surface. + relabeling = s.relabel( + {label: i for (i, label) in enumerate(s.labels())}, + in_place=True, + ) s.set_immutable() + + return ( + relabeling.change(domain=standardization.codomain(), codomain=s) + * standardization + * delaunay_decomposition + ) + + def flow_decomposition(self, direction): + raise NotImplementedError # TODO: Essentially invoke on pyflatsurf(). + + def flow_decompositions(self, algorithm="bfs", **kwargs): + for slope in self._flow_decompositions_slopes( + algorithm=algorithm, **kwargs + ): + yield self.flow_decomposition(slope) + + def _flow_decompositions_slopes(self, algorithm, **kwargs): + if algorithm == "bfs": + return ( + self.pyflatsurf() + .codomain() + ._flow_decompositions_slopes_bfs(**kwargs) + ) + if algorithm == "dfs": + return ( + self.pyflatsurf() + .codomain() + ._flow_decompositions_slopes_dfs(**kwargs) + ) + + raise NotImplementedError( + "unsupported algorithm to produce slopes for flow decompositions" + ) return s def j_invariant(self): @@ -488,10 +658,17 @@ def j_invariant(self): Jxy += xy return (Jxx, Jyy, Jxy) + @cached_surface_method def erase_marked_points(self): r""" - Return an isometric or similar surface with a minimal number of regular - vertices of angle 2π. + Return an isomorphism to a surface with a minimal regular vertices + of angle 2π. + + ALGORITHM: + + We use the erasure of marked points implemented in pyflatsurf. For + this we triangulate, then we Delaunay triangulate, then erase + marked points with pyflatsurf, and then Delaunay triangulate again. EXAMPLES:: @@ -501,14 +678,14 @@ def erase_marked_points(self): sage: S = flatsurf.translation_surfaces.origami(G('(1,2,3,4)'), G('(1,4,2,3)')) sage: S.stratum() H_2(2, 0) - sage: S.erase_marked_points().stratum() # optional: pyflatsurf # long time (1s) # random output due to matplotlib warnings with some combinations of setuptools and matplotlib + sage: S.erase_marked_points().codomain().stratum() # optional: pyflatsurf # long time (1s) H_2(2) sage: for (a,b,c) in [(1,4,11), (1,4,15), (3,4,13)]: # long time (10s), optional: pyflatsurf ....: T = flatsurf.polygons.triangle(a,b,c) ....: S = flatsurf.similarity_surfaces.billiard(T) ....: S = S.minimal_cover("translation") - ....: print(S.erase_marked_points().stratum()) + ....: print(S.erase_marked_points().codomain().stratum()) H_6(10) H_6(2^5) H_8(12, 2) @@ -517,9 +694,24 @@ def erase_marked_points(self): function:: sage: O = flatsurf.translation_surfaces.regular_octagon() - sage: O.erase_marked_points() is O + sage: O.erase_marked_points().codomain() is O True + This method produces a morphism from the surface with marked points + to the surface without marked points:: + + sage: G = SymmetricGroup(4) + sage: S = flatsurf.translation_surfaces.origami(G('(1,2,3,4)'), G('(1,4,2,3)')) + sage: erasure = S.erase_marked_points() # optional: pyflatsurf # long time (1s) + sage: marked_point = S(1, 1); marked_point # optional: pyflatsurf # long time (from above) + Vertex 0 of polygon 2 + sage: erasure(marked_point) # optional: pyflatsurf # long time (from above) + Point (-1, 0) of polygon (-3, -7, -2) + sage: unmarked_point = S(1, 0); unmarked_point # optional: pyflatsurf # long time (from above) + Vertex 0 of polygon 1 + sage: erasure(unmarked_point) # optional: pyflatsurf # long time (from above) + Vertex 0 of polygon (-3, -7, -2) + TESTS: Verify that https://github.com/flatsurf/flatsurf/issues/263 has been resolved:: @@ -528,7 +720,7 @@ def erase_marked_points(self): sage: P = Polygon(angles=(10, 8, 3, 1, 1, 1), lengths=(1, 1, 2, 4)) sage: B = similarity_surfaces.billiard(P) sage: S = B.minimal_cover(cover_type="translation") - sage: S = S.erase_marked_points() # long time (3s), optional: pyflatsurf + sage: S = S.erase_marked_points().codomain() # long time (3s), optional: pyflatsurf :: @@ -536,103 +728,319 @@ def erase_marked_points(self): sage: P = Polygon(angles=(10, 7, 2, 2, 2, 1), lengths=(1, 1, 2, 3)) sage: B = similarity_surfaces.billiard(P) sage: S_mp = B.minimal_cover(cover_type="translation") - sage: S = S_mp.erase_marked_points() # long time (3s), optional: pyflatsurf + sage: S = S_mp.erase_marked_points().codomain() # long time (3s), optional: pyflatsurf """ if all(a != 1 for a in self.angles()): # no 2π angle - return self - from flatsurf.geometry.pyflatsurf.conversion import ( - from_pyflatsurf, - to_pyflatsurf, - ) + from flatsurf.geometry.morphism import IdentityMorphism - S = to_pyflatsurf(self) - S.delaunay() - S = S.eliminateMarkedPoints().surface() - S.delaunay() - return from_pyflatsurf(S) + return IdentityMorphism._create_morphism(self) - def rel_deformation(self, deformation, local=None, limit=None): - r""" - Return a deformed surface obtained by shifting the vertices - by ``deformation``. + # Triangulate the surface: to_pyflatsurf maps self to a + # triangulated libflatsurf surface (later called delaunay0_domain.) + to_pyflatsurf = self.pyflatsurf() - INPUT: + # Delaunay triangulate: delaunay0 maps delaunay0_domain to delaunay0_codomain. + # Since the flips of delaunay() are performed in-place, we create + # the mapping using the Tracked[Deformation] feature of pyflatsurf. + delaunay0_codomain = ( + to_pyflatsurf.codomain().flat_triangulation().clone() + ) - - ``deformation`` -- a dict which maps the vertices of this - surfaces to vectors. The rel deformation will move each - vertex by that amount (relative to the others); any - vertex not present in the dict will be treated as a - deformation by the zero vector. + from pyflatsurf import flatsurf + delaunay0 = flatsurf.Tracked( + delaunay0_codomain.combinatorial(), + flatsurf.Deformation[type(delaunay0_codomain)]( + delaunay0_codomain.clone() + ), + ) - EXAMPLES:: + delaunay0_codomain.delaunay() - sage: from flatsurf import translation_surfaces - sage: S = translation_surfaces.arnoux_yoccoz(4) - sage: S1 = S.rel_deformation({S(0, 0): (1, 0)}).canonicalize() # optional: pyflatsurf + # Erase marked points: elimination maps delaunay0_codomain to a + # surface without marked points, later called delaunay1_domain. + elimination = delaunay0_codomain.eliminateMarkedPoints() - sage: a = S.base_ring().gen() - sage: S2 = S.rel_deformation({S(0, 0): (a, 0)}).canonicalize() # optional: pyflatsurf + # Delaunay triangulate again: delaunay1 maps delaunay1_domain to delaunay1_codomain. + # Again, we use a Tracked[Deformation] to create this mapping. + delaunay1_codomain = elimination.codomain().clone() - sage: M = matrix([[a, 0], [0, ~a]]) - sage: S2.cmp((M*S1).canonicalize()) # optional: pyflatsurf - 0 + delaunay1 = flatsurf.Tracked( + delaunay1_codomain.combinatorial(), + flatsurf.Deformation[type(delaunay1_codomain)]( + delaunay1_codomain.clone() + ), + ) - """ - if local is not None: - import warnings + delaunay1_codomain.delaunay() - warnings.warn( - "the local keyword has been removed from rel_deformation() without a replacement; do not use it anymore" - ) + # Bring the surface back into sage-flatsurf: from_pyflatsurf maps a + # sage-flatsurf surface to delaunay1_codomain. + from flatsurf.geometry.pyflatsurf.surface import Surface_pyflatsurf - if limit is not None: - import warnings + codomain_pyflatsurf = Surface_pyflatsurf(delaunay1_codomain) - warnings.warn( - "the limit keyword has been removed from rel_deformation() without a replacement; do not use it anymore" - ) + from flatsurf.geometry.pyflatsurf.morphism import ( + Morphism_from_Deformation, + ) - if not self.is_triangulated(): - raise NotImplementedError( - "only triangulated surfaces can be rel-deformed" - ) + pyflatsurf_morphism = Morphism_from_Deformation._create_morphism( + to_pyflatsurf.codomain(), + codomain_pyflatsurf, + delaunay1.value() * elimination * delaunay0.value(), + ) from flatsurf.geometry.pyflatsurf.conversion import ( FlatTriangulationConversion, ) - conversion = FlatTriangulationConversion.to_pyflatsurf(self) + from_pyflatsurf = FlatTriangulationConversion.from_pyflatsurf( + delaunay1_codomain + ) - from sage.all import vector + from flatsurf.geometry.pyflatsurf.morphism import ( + Morphism_from_pyflatsurf, + ) - deformation = { - vertex: vector( - self.base_ring(), deformation.get(vertex, (0, 0)) - ) - for vertex in self.vertices() - } - - # pylint: disable=not-callable - deformation = { - edge: deformation[self(*self.opposite_edge(*edge))] - - deformation[self(*edge)] - for edge in self.edges() - } - # pylint: enable=not-callable - - vector_space_conversion = conversion.vector_space_conversion() - deformation = [ - vector_space_conversion( - deformation[conversion.section(edge.positive())] - ) - for edge in conversion.codomain().edges() - ] + from_pyflatsurf = Morphism_from_pyflatsurf._create_morphism( + codomain_pyflatsurf, from_pyflatsurf.domain(), from_pyflatsurf + ) + + return from_pyflatsurf * pyflatsurf_morphism * to_pyflatsurf + + def rel_deformation(self, deformation, local=False, limit=100): + r""" + Perform a rel deformation of the surface and return the result. + + This algorithm currently assumes that all polygons affected by this deformation are + triangles. That should be fixable in the future. + + INPUT: + + - ``deformation`` (dictionary) - A dictionary mapping singularities of + the surface to deformation vectors (in some 2-dimensional vector + space). The rel deformation being done will move the singularities + (relative to each other) linearly to the provided vector for each + vertex. If a singularity is not included in the dictionary then the + vector will be treated as zero. + + - ``local`` - (boolean) - If true, the algorithm attempts to deform all + the triangles making up the surface without destroying any of them. + So, the area of the triangle must be positive along the full interval + of time of the deformation. If false, then the deformation must have + a particular form: all vectors for the deformation must be parallel. + In this case we achieve the deformation with the help of the SL(2,R) + action and Delaunay triangulations. - deformed = (conversion.codomain() + deformation).codomain() + - ``limit`` (integer) - Restricts the length of the size of SL(2,R) + deformations considered. The algorithm should be roughly worst time + linear in limit. - return FlatTriangulationConversion.from_pyflatsurf( - deformed - ).domain() + .. TODO:: + + - Support arbitrary rel deformations. + - Remove the requirement that triangles be used. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: s = translation_surfaces.arnoux_yoccoz(4) + sage: field = s.base_ring() + sage: a = field.gen() + sage: V = VectorSpace(field,2) + sage: deformation1 = {s.singularity(0,0):V((1,0))} + doctest:warning + ... + UserWarning: Singularity() is deprecated and will be removed in a future version of sage-flatsurf. Use surface.point() instead. + sage: s1 = s.rel_deformation(deformation1).canonicalize().codomain() # long time (.8s) + sage: deformation2 = {s.singularity(0,0):V((a,0))} # long time (see above) + sage: s2 = s.rel_deformation(deformation2).canonicalize().codomain() # long time (.6s) + sage: m = Matrix([[a,0],[0,~a]]) + sage: s2.cmp((m*s1).canonicalize().codomain()) # long time (see above) + 0 + + """ + s = self + # Find a common field + field = s.base_ring() + for singularity, v in deformation.items(): + if v.parent().base_field() != field: + from sage.structure.element import get_coercion_model + + cm = get_coercion_model() + field = cm.common_parent(field, v.parent().base_field()) + from sage.modules.free_module import VectorSpace + + vector_space = VectorSpace(field, 2) + + from collections import defaultdict + + vertex_deformation = defaultdict( + vector_space.zero + ) # dictionary associating the vertices. + deformed_labels = set() # list of polygon labels being deformed. + + for singularity, vect in deformation.items(): + for label, coordinates in singularity.representatives(): + v = ( + self.polygon(label) + .get_point_position(coordinates) + .get_vertex() + ) + vertex_deformation[(label, v)] = vect + deformed_labels.add(label) + assert len(s.polygon(label).vertices()) == 3 + + from flatsurf.geometry.euclidean import ccw + + if local: + from flatsurf.geometry.surface import ( + MutableOrientedSimilaritySurface, + ) + + ss = MutableOrientedSimilaritySurface.from_surface(s) + ss.set_immutable() + ss = MutableOrientedSimilaritySurface.from_surface( + ss.change_ring(field) + ) + us = ss + + for label in deformed_labels: + polygon = s.polygon(label) + a0 = vector_space(polygon.vertex(1)) + b0 = vector_space(polygon.vertex(2)) + v0 = vector_space(vertex_deformation[(label, 0)]) + v1 = vector_space(vertex_deformation[(label, 1)]) + v2 = vector_space(vertex_deformation[(label, 2)]) + a1 = v1 - v0 + b1 = v2 - v0 + # We deform by changing the triangle so that its vertices 1 and 2 have the form + # a0+t*a1 and b0+t*b1 + # respectively. We are deforming from t=0 to t=1. + # We worry that the triangle degenerates along the way. + # The area of the deforming triangle has the form + # A0 + A1*t + A2*t^2. + A0 = ccw(a0, b0) + A1 = ccw(a0, b1) + ccw(a1, b0) + A2 = ccw(a1, b1) + if A2: + # Critical point of area function + c = A1 / (-2 * A2) + if field.zero() < c and c < 1: + if A0 + A1 * c + A2 * c**2 <= 0: + raise ValueError( + "Triangle with label %r degenerates at critical point before endpoint" + % label + ) + if A0 + A1 + A2 <= field.zero(): + raise ValueError( + "Triangle with label %r degenerates at or before endpoint" + % label + ) + # Triangle does not degenerate. + from flatsurf import Polygon + + us.replace_polygon( + label, + Polygon( + vertices=[vector_space.zero(), a0 + a1, b0 + b1], + base_ring=field, + ), + ) + ss.set_immutable() + return ss + + else: # Non local deformation + # We can only do this deformation if all the rel vector are parallel. + # Check for this. + nonzero = None + for singularity, vect in deformation.items(): + vvect = vector_space(vect) + if vvect != vector_space.zero(): + if nonzero is None: + nonzero = vvect + else: + assert ( + ccw(nonzero, vvect) == 0 + ), "In non-local deformation all deformation vectos must be parallel" + assert nonzero is not None, "Deformation appears to be trivial." + from sage.matrix.constructor import Matrix + + m = Matrix( + [[nonzero[0], -nonzero[1]], [nonzero[1], nonzero[0]]] + ) + mi = ~m + g = Matrix([[1, 0], [0, 2]], ring=field) + prod = m * g * mi + ss = None + k = 0 + while True: + if ss is None: + from flatsurf.geometry.surface import ( + MutableOrientedSimilaritySurface, + ) + + ss = MutableOrientedSimilaritySurface.from_surface( + s.change_ring(field), + category=TranslationSurfaces(), + ) + else: + # In place matrix deformation + ss.apply_matrix(prod, in_place=True) + ss.delaunay_triangulation(direction=nonzero, in_place=True) + deformation2 = {} + for singularity, vect in deformation.items(): + found_start = None + for label, coordinates in singularity.representatives(): + v = ( + s.polygon(label) + .get_point_position(coordinates) + .get_vertex() + ) + if ( + ccw(s.polygon(label).edge(v), nonzero) >= 0 + and ccw( + nonzero, -s.polygon(label).edge((v + 2) % 3) + ) + > 0 + ): + found_start = (label, v) + found = None + for vv in range(3): + if ( + ccw(ss.polygon(label).edge(vv), nonzero) + >= 0 + and ccw( + nonzero, + -ss.polygon(label).edge( + (vv + 2) % 3 + ), + ) + > 0 + ): + found = vv + deformation2[ + ss.point( + label, + ss.polygon(label).vertex(vv), + ) + ] = vect + break + assert found is not None + break + assert found_start is not None + + try: + sss = ss.rel_deformation(deformation2, local=True) + except ValueError: + k += 1 + if limit is not None and k >= limit: + raise Exception("exceeded limit iterations") + continue + + sss = sss.apply_matrix( + mi * g ** (-k) * m, in_place=False + ).codomain() + return sss.delaunay_triangulation(direction=nonzero) diff --git a/flatsurf/geometry/chamanara.py b/flatsurf/geometry/chamanara.py index 99cd0773b..dcc904f77 100644 --- a/flatsurf/geometry/chamanara.py +++ b/flatsurf/geometry/chamanara.py @@ -43,10 +43,11 @@ # along with sage-flatsurf. If not, see . # ******************************************************************** -from flatsurf.geometry.surface import OrientedSimilaritySurface +from flatsurf.geometry.surface import OrientedSimilaritySurface, Labels from flatsurf.geometry.minimal_cover import MinimalTranslationCover from flatsurf.geometry.lazy import LazyRelabeledSurface from sage.rings.integer_ring import ZZ +from flatsurf.geometry.surface import Labels def ChamanaraPolygon(alpha): @@ -316,6 +317,41 @@ def graphical_surface(self, **kwds): label = self.opposite_edge(label, 3)[0] return super().graphical_surface(adjacencies=adjacencies, **kwds) + def labels(self): + r""" + Return the polygon labels of this surface. + + EXAMPLES:: + + sage: from flatsurf.geometry.chamanara import chamanara_surface + sage: S = chamanara_surface(1/2) + sage: S.labels() + ((0, 1, 0), (1, -1, 0), (-1, 1/2, 0), (2, -1/2, 0), (-2, 1/4, 0), (3, -1/4, 0), (-3, 1/8, 0), (4, -1/8, 0), (-4, 1/16, 0), (5, -1/16, 0), (-5, 1/32, 0), (6, -1/32, 0), (-6, 1/64, 0), (7, -1/64, 0), (-7, 1/128, 0), (8, -1/128, 0), …) + + """ + return LazyLabels(self, finite=False) + + +class LazyLabels(Labels): + def __contains__(self, label): + if not isinstance(label, tuple): + return False + if len(label) != 3: + return False + + from sage.all import ZZ + + if label[0] not in ZZ: + return False + + if label[2] != 0: + return False + + if label[0] >= 1: + return label[1] == -self._surface._alpha ** (label[0] - 1) + + return label[1] == self._surface._alpha ** (-label[0]) + def chamanara_surface(alpha, n=None): r""" diff --git a/flatsurf/geometry/circle.py b/flatsurf/geometry/circle.py index e2db00f39..2984ef6f7 100644 --- a/flatsurf/geometry/circle.py +++ b/flatsurf/geometry/circle.py @@ -1,3 +1,4 @@ +# TODO: Delete this file. r""" This class contains methods useful for working with circles. @@ -25,9 +26,9 @@ # **************************************************************************** from sage.modules.free_module import VectorSpace -from sage.modules.free_module_element import vector +# TODO: This shoul be a method of EuclideanPlane. def circle_from_three_points(p, q, r, base_ring=None): r""" Construct a circle from three points on the circle. @@ -47,233 +48,9 @@ def circle_from_three_points(p, q, r, base_ring=None): if center_3[2].is_zero(): raise ValueError("The three points lie on a line.") center = V2((center_3[0] / center_3[2], center_3[1] / center_3[2])) - return Circle(center, (p[0] - center[0]) ** 2 + (p[1] - center[1]) ** 2) + from flatsurf import EuclideanPlane -class Circle: - def __init__(self, center, radius_squared, base_ring=None): - r""" - Construct a circle from a Vector representing the center, and the - radius squared. - """ - if base_ring is None: - self._base_ring = radius_squared.parent() - else: - self._base_ring = base_ring - - # for calculations: - self._V2 = VectorSpace(self._base_ring, 2) - self._V3 = VectorSpace(self._base_ring, 3) - - self._center = self._V2(center) - self._center.set_immutable() - self._radius_squared = self._base_ring(radius_squared) - - def center(self): - r""" - Return the center of the circle as a vector. - """ - return self._center - - def radius_squared(self): - r""" - Return the square of the radius of the circle. - """ - return self._radius_squared - - def point_position(self, point): - r""" - Return 1 if point lies in the circle, 0 if the point lies on the circle, - and -1 if the point lies outide the circle. - """ - value = ( - (point[0] - self._center[0]) ** 2 - + (point[1] - self._center[1]) ** 2 - - self._radius_squared - ) - if value > self._base_ring.zero(): - return -1 - if value < self._base_ring.zero(): - return 1 - return 0 - - def closest_point_on_line(self, point, direction_vector): - r""" - Consider the line through the provided point in the given direction. - Return the closest point on this line to the center of the circle. - """ - cc = self._V3((self._center[0], self._center[1], self._base_ring.one())) - # point at infinite orthogonal to direction_vector: - dd = self._V3( - (direction_vector[1], -direction_vector[0], self._base_ring.zero()) - ) - l1 = cc.cross_product(dd) - - pp = self._V3((point[0], point[1], self._base_ring.one())) - # direction_vector pushed to infinity - ee = self._V3( - (direction_vector[0], direction_vector[1], self._base_ring.zero()) - ) - l2 = pp.cross_product(ee) - - # This is the point we want to return - rr = l1.cross_product(l2) - try: - return self._V2((rr[0] / rr[2], rr[1] / rr[2])) - except ZeroDivisionError: - raise ValueError( - "Division by zero error. Perhaps direction is zero. " - + "point=" - + str(point) - + " direction=" - + str(direction_vector) - + " circle=" - + str(self) - ) - - def line_position(self, point, direction_vector): - r""" - Consider the line through the provided point in the given direction. - We return 1 if the line passes through the circle, 0 if it is tangent - to the circle and -1 if the line does not intersect the circle. - """ - return self.point_position(self.closest_point_on_line(point, direction_vector)) - - def line_segment_position(self, p, q): - r""" - Consider the open line segment pq.We return 1 if the line segment - enters the interior of the circle, zero if it touches the circle - tangentially (at a point in the interior of the segment) and - and -1 if it does not touch the circle or its interior. - """ - if self.point_position(p) == 1: - return 1 - if self.point_position(q) == 1: - return 1 - r = self.closest_point_on_line(p, q - p) - pos = self.point_position(r) - if pos == -1: - return -1 - # This checks if r lies in the interior of pq - if p[0] == q[0]: - if (p[1] < r[1] and r[1] < q[1]) or (p[1] > r[1] and r[1] > q[1]): - return pos - elif (p[0] < r[0] and r[0] < q[0]) or (p[0] > r[0] and r[0] > q[0]): - return pos - # It does not lie in the interior. - return -1 - - def tangent_vector(self, point): - r""" - Return a vector based at the provided point (which must lie on the circle) - which is tangent to the circle and points in the counter-clockwise - direction. - - EXAMPLES:: - - sage: from flatsurf.geometry.circle import Circle - sage: c=Circle(vector((0,0)), 2, base_ring=QQ) - sage: c.tangent_vector(vector((1,1))) - (-1, 1) - """ - if not self.point_position(point) == 0: - raise ValueError("point not on circle.") - return vector((self._center[1] - point[1], point[0] - self._center[0])) - - def other_intersection(self, p, v): - r""" - Consider a point p on the circle and a vector v. Let L be the line - through p in direction v. Then L intersects the circle at another - point q. This method returns q. - - Note that if p and v are both in the field of the circle, - then so is q. - - EXAMPLES:: - - sage: from flatsurf.geometry.circle import Circle - sage: c=Circle(vector((0,0)), 25, base_ring=QQ) - sage: c.other_intersection(vector((3,4)),vector((1,2))) - (-7/5, -24/5) - """ - pp = self._V3((p[0], p[1], self._base_ring.one())) - vv = self._V3((v[0], v[1], self._base_ring.zero())) - L = pp.cross_product(vv) - cc = self._V3((self._center[0], self._center[1], self._base_ring.one())) - vvperp = self._V3((-v[1], v[0], self._base_ring.zero())) - # line perpendicular to L through center: - Lperp = cc.cross_product(vvperp) - # intersection of L and Lperp: - rr = L.cross_product(Lperp) - r = self._V2((rr[0] / rr[2], rr[1] / rr[2])) - return self._V2((2 * r[0] - p[0], 2 * r[1] - p[1])) - - def __rmul__(self, similarity): - r""" - Apply a similarity to the circle. - - EXAMPLES:: - - sage: from flatsurf import translation_surfaces - sage: s = translation_surfaces.square_torus() - sage: c = s.polygon(0).circumscribed_circle() - sage: c - Circle((1/2, 1/2), 1/2) - sage: s.edge_transformation(0,2) - (x, y) |-> (x, y - 1) - sage: s.edge_transformation(0,2) * c - Circle((1/2, -1/2), 1/2) - """ - from .similarity import SimilarityGroup - - SG = SimilarityGroup(self._base_ring) - s = SG(similarity) - return Circle( - s(self._center), s.det() * self._radius_squared, base_ring=self._base_ring - ) - - def __str__(self): - return ( - "circle with center " - + str(self._center) - + " and radius squared " - + str(self._radius_squared) - ) - - def __repr__(self): - return "Circle(" + repr(self._center) + ", " + repr(self._radius_squared) + ")" - - def __hash__(self): - r""" - Return a hash value for this circle that is compatible with - :meth:`__eq__`. - - EXAMPLES:: - - sage: from flatsurf import translation_surfaces - sage: S = translation_surfaces.square_torus().triangulate().codomain().relabel() - sage: hash(S.polygon(0).circumscribed_circle()) == hash(S.polygon(1).circumscribed_circle()) - True - - """ - return hash((self._center, self._radius_squared)) - - def __eq__(self, other): - r""" - Return whether this circle is indistinguishable from ``other``. - - EXAMPLES:: - - sage: from flatsurf import translation_surfaces - sage: S = translation_surfaces.square_torus().triangulate().codomain().relabel() - sage: S.polygon(0).circumscribed_circle() == S.polygon(1).circumscribed_circle() - True - - """ - if not isinstance(other, Circle): - return False - - return ( - self._center == other._center - and self._radius_squared == other._radius_squared - ) + return EuclideanPlane(base_ring).circle( + center, radius_squared=(p[0] - center[0]) ** 2 + (p[1] - center[1]) ** 2 + ) diff --git a/flatsurf/geometry/cone.py b/flatsurf/geometry/cone.py new file mode 100644 index 000000000..5464ee7e7 --- /dev/null +++ b/flatsurf/geometry/cone.py @@ -0,0 +1,177 @@ +from sage.all import UniqueRepresentation, Parent +from sage.structure.element import Element +from sage.misc.cachefunc import cached_method + + +class Cone(Element): + # This is an open cone. + def __init__(self, parent, start, end): + super().__init__(parent) + self._start = parent.rays()(start) + self._end = parent.rays()(end) + + @cached_method + def is_empty(self): + return self._start == self._end + + def is_convex(self): + from flatsurf.geometry.euclidean import ccw + + return ccw(self._start.vector(), self._end.vector()) >= 0 + + # TODO: Rename to contains_cone() [arguments are reversed!] + def is_subset(self, other): + r""" + Return whether this cone is contained in ``other``. + """ + if not isinstance(other, Cone): + raise NotImplementedError + + if other.parent() is not self.parent(): + raise NotImplementedError + + if self.is_empty(): + return True + + if other.is_empty(): + return False + + from flatsurf.geometry.euclidean import ccw + + start_ccw = ccw(self._start.vector(), other._start.vector()) + end_ccw = ccw(self._end.vector(), other._end.vector()) + + # Check whether the interior of this cone is contained in other. + if not self.is_convex(): + if other.is_convex(): + return False + + # This non-convex cone C is contained in the other non-convex cone D, + # iff for the complements we have D^c ⊆ C^c. + return other.complement().is_subset(self.complement()) + + if other.is_convex(): + if start_ccw > 0: + return False + if end_ccw < 0: + return False + + return True + + raise NotImplementedError + + def complement(self): + r""" + Return the maximal cone contained in the complement of this cone, i.e., + the complement of this cone with the boundaries (except for the origin) + missing. + + """ + if self.is_empty(): + raise NotImplementedError + + return self.parent()(self._end, self._start) + + def contains_ray(self, ray): + if ray.parent() is not self.parent().rays(): + raise NotImplementedError + + if self.is_empty(): + return False + + from flatsurf.geometry.euclidean import ccw + + ccw_from_start = ccw(self._start.vector(), ray.vector()) + ccw_to_end = ccw(ray.vector(), self._end.vector()) + + if self.is_convex(): + if ccw_from_start <= 0: + return False + + if ccw_to_end <= 0: + return False + + return True + + return ( + not self.complement().contains_ray(ray) + and ray != self._start + and ray != self._end + ) + + def sorted_rays(self, rays): + class Key: + def __init__(self, cone, ray): + self._cone = cone + self._ray = ray + + def __lt__(self, rhs): + # TODO: Make sure all code paths are tested. + from flatsurf.geometry.euclidean import ccw + + if not self._cone.is_convex(): + start_to_self = ccw(self._cone._start.vector(), self._ray.vector()) + start_to_rhs = ccw(self._cone._start.vector(), rhs._ray.vector()) + if start_to_self > 0 and start_to_rhs > 0: + return ccw(self._ray.vector(), rhs._ray.vector()) > 0 + + end_to_self = ccw(self._cone._end.vector(), self._ray.vector()) + end_to_rhs = ccw(self._cone._end.vector(), rhs._ray.vector()) + if end_to_self < 0 and end_to_rhs < 0: + return ccw(self._ray.vector(), rhs._ray.vector()) > 0 + + if start_to_self > 0 and end_to_rhs < 0: + return True + if end_to_self < 0 and start_to_rhs > 0: + return False + + raise NotImplementedError + return ccw(self._ray.vector(), rhs._ray.vector()) > 0 + + rays = sorted(rays, key=lambda ray: Key(self, ray)) + + from itertools import groupby + + return [ray for ray, _ in groupby(rays)] + + def a_ray(self): + if self.is_empty(): + raise TypeError + + if self.is_convex(): + return self.parent().rays()((self._start.vector() + self._end.vector()) / 2) + + raise NotImplementedError + + def start(self): + return self._start + + def end(self): + return self._end + + def contains_point(self, p): + if self.is_empty(): + return False + if p.is_zero(): + return True + return self.contains_ray(self.parent().rays()(p)) + + def _repr_(self): + if self.is_empty(): + return "Empty cone" + return f"Open cone between {self._start} and {self._end}" + + +class Cones(UniqueRepresentation, Parent): + Element = Cone + + def __init__(self, base_ring, category=None): + from sage.categories.all import Sets + + super().__init__(base_ring, category=category or Sets()) + + @cached_method + def rays(self): + from flatsurf.geometry.ray import Rays + + return Rays(self.base_ring()) diff --git a/flatsurf/geometry/euclidean.py b/flatsurf/geometry/euclidean.py index 8de66d96b..2f6ed0c8b 100644 --- a/flatsurf/geometry/euclidean.py +++ b/flatsurf/geometry/euclidean.py @@ -1,16 +1,44 @@ +# TODO: Benchmark how constructions here compare to constructions before we introduced the EuclideanPlane. + + r""" -A loose collection of tools for Euclidean geometry in the plane. +Two dimensional Euclidean geometry. + +EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane(QQ) + sage: E.circle((0, 0), radius=1) + { x² + y² = 1 } + +.. NOTE:: + + Most functionality in this module is also implemented in + SageMath in the context of linear programming/polyhedra/convex + geometry. However, that implementation is much more general + (higher dimensions) and therefore quite inefficient in two + dimensions. + +.. NOTE:: + + Explicitly creating Python objects for everything in the Euclidean plane + comes with a certain overhead. In practice, this overhead is negligible in + comparison to the cost of performing computations with these objects. + However, most classes here expose their core algorithms as static methods + so they can be called with the bare coordinates instead of on explicit + objects to gain a tiny bit of a speedup where this makes a difference. -.. SEEALSO:: +.. SEEALSO - :mod:`flatsurf.geometry.circle` for everything specific to circles in the plane + :mod:`flatsurf.geometry.hyperbolic` for the geometry in the hyperbolic plane. """ ###################################################################### # This file is part of sage-flatsurf. # -# Copyright (C) 2016-2020 Vincent Delecroix -# 2020-2023 Julian Rüth +# Copyright (C) 2013-2020 Vincent Delecroix +# 2013-2019 W. Patrick Hooper +# 2020-2024 Julian Rüth # # sage-flatsurf is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by @@ -25,702 +53,4261 @@ # You should have received a copy of the GNU General Public License # along with sage-flatsurf. If not, see . ###################################################################### +from sage.structure.sage_object import SageObject +from sage.structure.parent import Parent +from sage.structure.element import Element +from sage.structure.unique_representation import UniqueRepresentation +from sage.misc.cachefunc import cached_method +from flatsurf.geometry.geometry import Geometry, ExactGeometry, EpsilonGeometry -def is_cosine_sine_of_rational(cos, sin, scaled=False): - r""" - Check whether the given pair is a cosine and sine of a same rational angle. - - INPUT: - - ``cos`` -- a number +class EuclideanPlane(Parent, UniqueRepresentation): + r""" + The Euclidean plane. - - ``sin`` -- a number + All objects in the plane must be specified over the given base ring. - - ``scaled`` -- a boolean (default: ``False``); whether to allow ``cos`` - and ``sin`` to be scaled by the same positive algebraic number + The implemented objects of the plane are mostly convex (points, circles, + segments, rays, convex polygons.) But some are also non-convex such as + non-convex polygons. EXAMPLES:: - sage: from flatsurf.geometry.euclidean import is_cosine_sine_of_rational + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane(QQ) - sage: c = s = AA(sqrt(2))/2 - sage: is_cosine_sine_of_rational(c, s) - True + TESTS:: - sage: c = AA(sqrt(3))/2 - sage: s = AA(1/2) - sage: is_cosine_sine_of_rational(c, s) + sage: isinstance(E, EuclideanPlane) True - sage: c = AA(sqrt(5)/2) - sage: s = (1 - c**2).sqrt() - sage: c**2 + s**2 - 1.000000000000000? - sage: is_cosine_sine_of_rational(c, s) - False + sage: TestSuite(E).run() - sage: c = (AA(sqrt(5)) + 1)/4 - sage: s = (1 - c**2).sqrt() - sage: is_cosine_sine_of_rational(c, s) - True + """ - sage: K. = NumberField(x**2 - 2, embedding=1.414) - sage: is_cosine_sine_of_rational(K.zero(), -K.one()) - True + @staticmethod + def __classcall__(cls, base_ring=None, geometry=None, category=None): + r""" + Create the Euclidean plane with normalized arguments to make it a + unique SageMath parent. - TESTS:: + TESTS:: - sage: from pyexactreal import ExactReals # optional: pyexactreal # random output due to matplotlib warnings with some combinations of setuptools and matplotlib - sage: R = ExactReals() # optional: pyexactreal - sage: is_cosine_sine_of_rational(R.one(), R.zero()) # optional: pyexactreal - True + sage: from flatsurf import EuclideanPlane + sage: from flatsurf.geometry.euclidean import EuclideanExactGeometry - """ - from sage.all import AA + sage: EuclideanPlane() is EuclideanPlane(QQ) + True - # We cannot check in AA due to https://github.com/flatsurf/exact-real/issues/172 - # We just trust that non-algebraic elements won't allow conversion to AA. - # if cos not in AA: - # return False - # if sin not in AA: - # return False + sage: EuclideanPlane() is EuclideanPlane(QQ, EuclideanExactGeometry(QQ)) + True - if not scaled: - if cos**2 + sin**2 != 1: - return False + """ + from sage.all import QQ - try: - cos = AA(cos) - except ValueError: - # This is a replacement for the "in AA" checked disabled above. - return False + base_ring = base_ring or QQ - cos = cos.as_number_field_element(embedded=True) - # We need an explicit conversion to the number field due to https://github.com/sagemath/sage/issues/35613 - cos = cos[0](cos[1]) + if geometry is None: + if not base_ring.is_exact(): + raise ValueError("geometry must be specified over inexact rings") - try: - sin = AA(sin) - except ValueError: - # This is a replacement for the "in AA" checked disabled above. - return False - sin = sin.as_number_field_element(embedded=True) - # We need an explicit conversion to the number field due to https://github.com/sagemath/sage/issues/35613 - sin = sin[0](sin[1]) + geometry = EuclideanExactGeometry(base_ring) - from sage.all import ComplexBallField + from sage.categories.all import Sets - CBF = ComplexBallField(53) + category = category or Sets() - x = CBF(cos) + CBF.gen(0) * CBF(sin) - xN = x + return super().__classcall__( + cls, base_ring=base_ring, geometry=geometry, category=category + ) - # Suppose that (cos, sin) are indeed sine and cosine of a rational angle. - # Then x = cos + I*sin generates a cyclotomic field C and for some N we - # have x^N = ±1. Since C is contained in the compositum of K=Q(cos) and - # L=Q(i*sin) and Q(cos) and Q(sin) are both contained in C, the degree of C - # is bounded from above by twice (accounting for the imaginary unit) the - # degrees of K and L. The degree of C is the totient of N which is bounded - # from below by n / (e^γ loglog n + 3 / loglog n) [cf. wikipedia]. - degree_bound = 2 * cos.minpoly().degree() * sin.minpoly().degree() + def __init__(self, base_ring, geometry, category): + r""" + Create the Euclidean plane over ``base_ring``. - from itertools import count + TESTS:: - for n in count(2): - xN *= x + sage: from flatsurf import EuclideanPlane - c = xN.real() - s = xN.imag() + sage: TestSuite(EuclideanPlane(QQ)).run() + sage: TestSuite(EuclideanPlane(AA)).run() - if xN.real().contains_zero() or xN.imag().contains_zero(): - c, s = cos, sin - for i in range(n - 1): - c, s = c * cos - s * sin, s * cos + c * sin + """ + from sage.all import RR - if c == 0 or s == 0: - return True + if geometry.base_ring() is not base_ring: + raise ValueError( + f"geometry base ring must be base ring of Euclidean plane but {geometry.base_ring()} is not {base_ring}" + ) - CBF = ComplexBallField(CBF.precision() * 2) - x = CBF(cos) + CBF.gen(0) * CBF(sin) - xN = x**n + if not RR.has_coerce_map_from(geometry.base_ring()): + # We should check that the coercion is an embedding but this is not possible currently. + raise ValueError("base ring must embed into the reals") - from math import log + super().__init__(category=category) + self._base_ring = geometry.base_ring() + self.geometry = geometry - if n / (2.0 * log(log(n)) + 3 / log(log(n))) > 2 * degree_bound: - return False + def change_ring(self, ring, geometry=None): + r""" + Return the Euclidean plane over a different base ``ring``. + INPUT: -def acos(cos_angle, numerical=False): - r""" - Return the arccosine of ``cos_angle`` as a multiple of 2π, i.e., as a value - between 0 and 1/2. + - ``ring`` -- a ring or ``None``; if ``None``, uses the current + :meth:`~EuclideanPlane.base_ring`. - INPUT: + - ``geometry`` -- a geometry or ``None``; if ``None``; trues to convert + the existing geometry to ``ring``. - - ``cos_angle`` -- a floating point number, the cosine of an angle + EXAMPLES:: - - ``numerical`` -- a boolean (default: ``False``); whether to return a - numerical approximation of the arccosine or try to reconstruct an exact - rational value for the arccosine (in radians.) + sage: from flatsurf import EuclideanPlane - EXAMPLES:: + sage: EuclideanPlane(QQ).change_ring(AA) is EuclideanPlane(AA) + True - sage: from flatsurf.geometry.euclidean import acos + """ + if ring is None and geometry is None: + return self - sage: acos(1) - 0 - sage: acos(.5) - 1/6 - sage: acos(0) - 1/4 - sage: acos(-.5) - 1/3 - sage: acos(-1) - 1/2 + if ring is None: + ring = self.base_ring() - sage: acos(.25) - Traceback (most recent call last): - ... - NotImplementedError: cannot recover a rational angle from these numerical results - sage: acos(.25, numerical=True) - 0.2097846883724169 + if geometry is None: + geometry = self.geometry.change_ring(ring) - """ - import math + return EuclideanPlane(ring, geometry) - angle = math.acos(cos_angle) / (2 * math.pi) + def _an_element_(self): + r""" + Return a typical point of the Euclidean plane. - assert 0 <= angle <= 0.5 + EXAMPLES:: - if numerical: - return angle + sage: from flatsurf import EuclideanPlane - # fast and dirty way using floating point approximation - from sage.all import RR + sage: E = EuclideanPlane() + sage: E.an_element() + (0, 0) - angle_rat = RR(angle).nearby_rational(0.00000001) - if angle_rat.denominator() > 256: - raise NotImplementedError( - "cannot recover a rational angle from these numerical results" - ) - return angle_rat + """ + return self.point(0, 0) + def some_subsets(self): + # TODO + raise NotImplementedError -def angle(u, v, numerical=False): - r""" - Return the angle between the vectors ``u`` and ``v`` divided by `2 \pi`. + def some_elements(self): + r""" + Return some representative elements, i.e., points in the plane for + testing. - INPUT: + EXAMPLES:: - - ``u``, ``v`` - vectors + sage: from flatsurf import EuclideanPlane - - ``numerical`` - boolean (default: ``False``), whether to return floating - point numbers + sage: EuclideanPlane().some_elements() + [(0, 0), (1, 0), (0, 1), ...] - EXAMPLES:: + """ + from sage.all import QQ - sage: from flatsurf.geometry.euclidean import angle + return [ + self((0, 0)), + self((1, 0)), + self((0, 1)), + self((-QQ(1) / 2, QQ(1) / 2)), + ] - As the implementation is dirty, we at least check that it works for all - denominator up to 20:: + def _test_some_subsets(self, tester=None, **options): + r""" + Run test suite on some representative subsets of the Euclidean plane. - sage: u = vector((AA(1),AA(0))) - sage: for n in xsrange(1,20): # long time (1.5s) - ....: for k in xsrange(1,n): - ....: v = vector((AA(cos(2*k*pi/n)), AA(sin(2*k*pi/n)))) - ....: assert angle(u,v) == k/n + EXAMPLES:: - The numerical version (working over floating point numbers):: + sage: from flatsurf import EuclideanPlane + sage: EuclideanPlane()._test_some_subsets() - sage: import math - sage: u = (1, 0) - sage: for n in xsrange(1,20): - ....: for k in xsrange(1,n): - ....: a = 2 * k * math.pi / n - ....: v = (math.cos(a), math.sin(a)) - ....: assert abs(angle(u,v,numerical=True) * 2 * math.pi - a) < 1.e-10 + """ + is_sub_testsuite = tester is not None + tester = self._tester(tester=tester, **options) - If the angle is not rational, then the method returns an element in the real - lazy field:: + for x in self.some_elements(): + tester.info(f"\n Running the test suite of {x}") - sage: v = vector((AA(sqrt(2)), AA(sqrt(3)))) - sage: a = angle(u, v) - Traceback (most recent call last): - ... - NotImplementedError: cannot recover a rational angle from these numerical results - sage: a = angle(u, v, numerical=True) - sage: a # abs tol 1e-14 - 0.14102355421224375 - sage: exp(2*pi.n()*CC(0,1)*a) - 0.632455532033676 + 0.774596669241483*I - sage: v / v.norm() - (0.6324555320336758?, 0.774596669241484?) + from sage.all import TestSuite - """ - import math + TestSuite(x).run( + verbose=tester._verbose, + prefix=tester._prefix + " ", + raise_on_failure=is_sub_testsuite, + ) + tester.info(tester._prefix + " ", newline=False) - u0 = float(u[0]) - u1 = float(u[1]) - v0 = float(v[0]) - v1 = float(v[1]) + def random_element(self, kind=None): + # TODO + raise NotImplementedError - cos_uv = (u0 * v0 + u1 * v1) / math.sqrt((u0 * u0 + u1 * u1) * (v0 * v0 + v1 * v1)) - if cos_uv < -1.0: - assert cos_uv > -1.0000001 - cos_uv = -1.0 - elif cos_uv > 1.0: - assert cos_uv < 1.0000001 - cos_uv = 1.0 + def __call__(self, x): + r""" + Return ``x`` as an element of the Euclidean plane. - angle = acos(cos_uv, numerical=numerical) - return 1 - angle if u0 * v1 - u1 * v0 < 0 else angle + EXAMPLES:: - # a neater way is provided below by working only with number fields - # but this method is slower... - # sqnorm_u = u[0]*u[0] + u[1]*u[1] - # sqnorm_v = v[0]*v[0] + v[1]*v[1] - # - # if sqnorm_u != sqnorm_v: - # # we need to take a square root in order that u and v have the - # # same norm - # u = (1 / AA(sqnorm_u)).sqrt() * u.change_ring(AA) - # v = (1 / AA(sqnorm_v)).sqrt() * v.change_ring(AA) - # sqnorm_u = AA.one() - # sqnorm_v = AA.one() - # - # cos_uv = (u[0]*v[0] + u[1]*v[1]) / sqnorm_u - # sin_uv = (u[0]*v[1] - u[1]*v[0]) / sqnorm_u + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() -def ccw(v, w): - r""" - Return a positive number if the turn from ``v`` to ``w`` is - counterclockwise, a negative number if it is clockwise, and zero if the two - vectors are collinear. + sage: E((1, 0)) + (1, 0) - .. NOTE:: + We need to override this method. The normal code path in SageMath + requires the argument to be an Element but facade sets are not + elements:: - This function is sometimes also referred to as the wedge product or - simply the determinant. We chose the more customary name ``ccw`` from - computational geometry here. + sage: c = E.circle((0, 0), radius=1) + sage: Parent.__call__(E, c) + Traceback (most recent call last): + ... + TypeError: Cannot convert EuclideanCircle_with_category_with_category to sage.structure.element.Element - EXAMPLES:: + sage: E(c) + { x² + y² = 1 } - sage: from flatsurf.geometry.euclidean import ccw - sage: ccw((1, 0), (0, 1)) - 1 - sage: ccw((1, 0), (-1, 0)) - 0 - sage: ccw((1, 0), (0, -1)) - -1 - sage: ccw((1, 0), (1, 0)) - 0 + """ + if isinstance(x, EuclideanFacade): + return self._element_constructor_(x) - """ - return v[0] * w[1] - v[1] * w[0] + return super().__call__(x) + def _element_constructor_(self, x): + r""" + Return ``x`` as an element of the plane. -def is_parallel(v, w): - r""" - Return whether the vectors ``v`` and ``w`` are parallel (but not - anti-parallel.) + EXAMPLES:: - EXAMPLES:: + sage: from flatsurf import EuclideanPlane - sage: from flatsurf.geometry.euclidean import is_parallel - sage: is_parallel((0, 1), (0, 1)) - True - sage: is_parallel((0, 1), (0, 2)) - True - sage: is_parallel((0, 1), (0, -2)) - False - sage: is_parallel((0, 1), (0, 0)) - False - sage: is_parallel((0, 1), (1, 0)) - False + sage: E = EuclideanPlane() - TESTS:: + sage: E(E.an_element()) in E + True - sage: V = QQ**2 + Coordinates can be converted to points:: - sage: is_parallel(V((0,1)), V((0,2))) - True - sage: is_parallel(V((1,-1)), V((2,-2))) - True - sage: is_parallel(V((4,-2)), V((2,-1))) - True - sage: is_parallel(V((1,2)), V((2,4))) - True - sage: is_parallel(V((0,2)), V((0,1))) - True + sage: E((1, 2)) + (1, 2) - sage: is_parallel(V((1,1)), V((1,2))) - False - sage: is_parallel(V((1,2)), V((2,1))) - False - sage: is_parallel(V((1,2)), V((1,-2))) - False - sage: is_parallel(V((1,2)), V((-1,-2))) - False - sage: is_parallel(V((2,-1)), V((-2,1))) - False + Elements can be converted between planes with compatible base rings:: - """ - if ccw(v, w) != 0: + sage: EuclideanPlane(AA)(E((0, 0))) + (0, 0) + + TESTS:: + + sage: E(0) + Traceback (most recent call last): + ... + NotImplementedError: cannot convert this element in Integer Ring to Euclidean Plane over Rational Field + + """ + from sage.all import parent + + parent = parent(x) + + if parent is self: + return x + + if parent is self.vector_space(): + x = tuple(x) + + if isinstance(x, EuclideanSet): + return x.change(ring=self.base_ring(), geometry=self.geometry) + + if isinstance(x, tuple): + if len(x) == 2: + return self.point(*x) + + raise ValueError("coordinate tuple must have length 2") + + raise NotImplementedError(f"cannot convert this element in {parent} to {self}") + + def base_ring(self): + r""" + Return the base ring over which objects in the plane are defined. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + + sage: EuclideanPlane().base_ring() + Rational Field + + """ + return self._base_ring + + def is_exact(self): + r""" + Return whether subsets have exact coordinates. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: E.is_exact() + True + + sage: from flatsurf.geometry.euclidean import EuclideanEpsilonGeometry + sage: E = EuclideanPlane(RR, geometry=EuclideanEpsilonGeometry(RR, 1e-6)) + sage: E.is_exact() + False + + """ + return self.base_ring().is_exact() + + @cached_method + def vector_space(self): + r""" + Return the two dimensional standard vector space describing vectors in + this Euclidean plane. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: E.vector_space() + Vector space of dimension 2 over Rational Field + + """ + return self.base_ring() ** 2 + + def point(self, x, y): + r""" + Return the point in the Euclidean plane with coordinates ``x`` and + ``y``. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: E.point(1, 2) + (1, 2) + + :: + + sage: E.point(sqrt(2), sqrt(3)) + Traceback (most recent call last): + ... + TypeError: unable to convert sqrt(2) to a rational + + """ + x = self._base_ring(x) + y = self._base_ring(y) + + point = self.__make_element_class__(EuclideanPoint)(self, x, y) + + return point + + def circle(self, center, *, radius=None, radius_squared=None, check=True): + r""" + Return the circle around ``center`` with ``radius`` or + ``radius_squared``. + + INPUT: + + - ``center`` -- a point in the Euclidean plane + + - ``radius`` or ``radius_squared`` -- exactly one of the parameters + must be specified. + + - ``check`` -- whether to verify that the arguments define a circrle in the Euclidean plane (default: ``True``) + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: E.circle((0, 0), radius=2) + { x² + y² = 4 } + sage: E.circle((0, 0), radius_squared=4) + { x² + y² = 4 } + + A circle with radius zero is a point:: + + sage: E.circle((0, 0), radius=0) + (0, 0) + + We can explicity create a circle with radius zero by setting ``check`` + to ``False``:: + + sage: E.circle((0, 0), radius=0, check=False) + { x² + y² = 0 } + + """ + # TODO: Allow radius to be an EuclideanDistance (and convert to one.) + if (radius is None) == (radius_squared is None): + raise ValueError( + "exactly one of radius or radius_squared must be specified" + ) + + if radius is not None: + if radius < 0: + raise ValueError("radius must not be negative") + radius_squared = radius**2 + + center = self(center) + radius_squared = self.base_ring()(radius_squared) + + circle = self.__make_element_class__(EuclideanCircle)( + self, center, radius_squared + ) + if check: + circle = circle._normalize() + circle._check() + + return circle + + def segment( + self, + line, + start=None, + end=None, + oriented=None, + check=True, + assume_normalized=False, + ): + r""" + Return the segment on the `line`` bounded by ``start`` and ``end``. + + INPUT: + + - ``line`` -- a line in the plane + + - ``start`` -- ``None`` or a :meth:`point` on the line, e.g., obtained + as the :meth:`EuclideanLine.intersection` of ``line`` with another + line. If ``None``, a ray is returned, unbounded on one side. + + - ``end`` -- ``None`` or a :meth:`point` on the line, e.g., obtained + as the :meth:`EuclideanLine.intersection` of ``line`` with another + line. If ``None``, a ray is returned, unbounded on one side. If + ``start`` is also ``None``, the ``line`` is returned. + + - ``oriented`` -- whether to produce an oriented segment or an + unoriented segment. The default (``None``) is to produce an oriented + segment iff ``line`` is oriented or both ``start`` and ``end`` + are provided so the orientation can be deduced from their order. + + - ``check`` -- boolean (default: ``True``), whether validation is + performed on the arguments. + + - ``assume_normalized`` -- boolean (default: ``False``), if not set, + the returned segment is normalized, i.e., if it is actually a point, + a :class:`EuclideanPoint` is returned. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: line = E.line((0, 0), (1, 1)) + sage: E.segment(line, (0, 0), (1, 1)) + (0, 0) → (1, 1) + + sage: E.segment(line, (0, 0), (1, 1), oriented=False) + (0, 0) — (1, 1) + + A segment that consists only of a single point gets returned as a + point:: + + sage: E.segment(line, (0, 0), (0, 0)) + (0, 0) + + To explicitly obtain a non-normalized segment in such cases, we can set + ``assume_normalized=True``:: + + sage: E.segment(line, (0, 0), (0, 0), assume_normalized=True) + (0, 0) → (0, 0) + + A segment with a single endpoint is a ray:: + + sage: E.segment(line, start=(0, 0)) + Ray from (0, 0) in direction (1, 1) + sage: E.segment(line, end=(0, 0)) + Ray from (0, 0) in direction (-1, -1) + + A segment without endpoints is a line:: + + sage: E.segment(line) + {-x + y = 0} + + .. SEEALSO:: + + :meth:`EuclideanPoint.segment` to create a segment from its two + endpoints (without specifying a line.) + + """ + line = self(line) + + if not isinstance(line, EuclideanLine): + raise TypeError("line must be a line") + + if start is not None: + start = self(start) + if not isinstance(start, EuclideanPoint): + raise TypeError("start must be a point") + + if end is not None: + end = self(end) + if not isinstance(end, EuclideanPoint): + raise TypeError("end must be a point") + + if oriented is None: + oriented = line.is_oriented() or (start is not None and end is not None) + + if not line.is_oriented(): + line = line.change(oriented=True) + + if start is None and end is None: + # any orientation of the line will do + pass + elif start is None or end is None or start == end: + raise ValueError( + "cannot deduce segment from single endpoint on an unoriented line" + ) + elif line.parametrize(start, check=False) > line.parametrize( + end, check=False + ): + line = -line + + segment = self.__make_element_class__( + EuclideanOrientedSegment if oriented else EuclideanUnorientedSegment + )(self, line, start, end) + + if check: + segment._check(require_normalized=False) + + if not assume_normalized: + segment = segment._normalize() + + if check: + segment._check(require_normalized=True) + + return segment + + def line(self, a, b, c=None, oriented=True, check=True): + r""" + Return a line in the Euclidean plane. + + If only ``a`` and ``b`` are given, return the line going through the + points ``a`` and then ``b``. + + If ``c`` is specified, return the line given by the equation + + .. MATH:: + + a + bx + cy = 0 + + oriented such that the half plane + + .. MATH:: + + a + bx + cy \ge 0 + + is to its left. + + INPUT: + + - ``a`` -- a point or an element of the :meth:`base_ring` + + - ``b`` -- a point or an element of the :meth:`base_ring` + + - ``c`` -- ``None`` or an element of the :meth:`base_ring` (default: ``None``) + + - ``oriented`` -- whether the returned line is oriented (default: ``True``) + + - ``check`` -- whether to verify that the arguments actually define a + line (default: ``True``) + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + sage: E.line((0, 0), (1, 1)) + {-x + y = 0} + + sage: E.line(0, -1, 1) + {-x + y = 0} + + """ + if c is None: + a = self(a) + b = self(b) + + if a == b: + raise ValueError("points specifying a line must be distinct") + + ax, ay = a + bx, by = b + + C = bx - ax + B = ay - by + A = -(B * ax + C * ay) + + return self.line(A, B, C, oriented=oriented, check=check) + + a = self.base_ring()(a) + b = self.base_ring()(b) + c = self.base_ring()(c) + + line = self.__make_element_class__( + EuclideanOrientedLine if oriented else EuclideanUnorientedLine + )(self, a, b, c) + + if check: + line = line._normalize() + line._check() + + return line + + geodesic = line + + def ray(self, base, direction, check=True): + r""" + Return a ray from ``base`` in ``direction``. + + INPUT: + + - ``base`` -- a point in the Euclidean plane + + - ``direction`` -- a vector in the two dimensional space over the + :meth:`base_ring`, see :meth:`vector_space` + + - ``check`` -- a boolean (default: ``True``); whether to validate the + parameters + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + sage: ray = E.ray((0, 0), (1, 1)) + + The base point is contained in the ray:: + + sage: E.point(0, 0) in ray + True + + The direction must be non-zero:: + + sage: E.ray((0, 0), (0, 0)) + + """ + base = self(base) + direction = self.vector_space()(direction) + + if not isinstance(base, EuclideanPoint): + raise TypeError("base must be a point") + + ray = self.__make_element_class__(EuclideanRay)(self, base, direction) + + if check: + ray = ray._normalize() + ray._check() + + return ray + + @cached_method + def norm(self): + r""" + Return the Euclidean norm on this plane. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + sage: norm = E.norm() + sage: norm(2) + 2 + sage: norm.from_square(2) + sqrt(2) + sage: norm.from_vector((1, 1)) + sqrt(2) + + """ + return EuclideanDistances(self) + + def polygon(self): + # TODO + raise NotImplementedError + + def empty_set(self): + # TODO + raise NotImplementedError + + def _repr_(self): + r""" + Return a printable representation of this Euclidean plane. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: EuclideanPlane(AA) + Euclidean Plane over Algebraic Real Field + + """ + return f"Euclidean Plane over {repr(self.base_ring())}" + + +class EuclideanGeometry(Geometry): + r""" + Predicates and primitive geometric constructions over a base ``ring``. + + This class and its subclasses implement the core underlying Euclidean + geometry that depends on the base ring. For example, when deciding whether + two points in the plane are equal, we cannot just compare their coordinates + if the base ring is inexact. Therefore, that predicate is implemented in + this "geometry" class and is implemented differently by + :class:`EuclideanExactGeometry` for exact and + :class:`EuclideanEpsilonGeometry` for inexact rings. + + INPUT: + + - ``ring`` -- a ring, the ring in which coordinates in the Euclidean plane + will be represented + + .. NOTE:: + + Abstract methods are not marked with `@abstractmethod` since we cannot + use the ABCMeta metaclass to enforce their implementation; otherwise, + our subclasses could not use the unique representation metaclasses. + + EXAMPLES: + + The specific Euclidean geometry implementation is picked automatically, + depending on whether the base ring is exact or not:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: E.geometry + Exact geometry over Rational Field + sage: E((0, 0)) == E((1/1024, 0)) + False + + However, we can explicitly use a different or custom geometry:: + + sage: from flatsurf.geometry.euclidean import EuclideanEpsilonGeometry + sage: E = EuclideanPlane(QQ, EuclideanEpsilonGeometry(QQ, 1/1024)) + sage: E.geometry + Epsilon geometry with ϵ=1/1024 over Rational Field + sage: E((0, 0)) == E((1/2048, 0)) + True + + .. SEEALSO:: + + :class:`EuclideanExactGeometry`, :class:`EuclideanEpsilonGeometry` + """ + + def _equal_vector(self, v, w): + r""" + Return whether the vectors ``v`` and ``w`` should be considered equal. + + .. NOTE:: + + This predicate should not be used directly in geometric + constructions since it does not specify the context in which this + question is asked. This makes it very difficult to override a + specific aspect in a custom geometry. + + INPUT: + + - ``v`` -- a vector over the :meth:`base_ring` + + - ``w`` -- a vector over the :meth:`base_ring` + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import EuclideanExactGeometry + sage: G = EuclideanExactGeometry(QQ) + sage: G._equal_vector((0, 0), (0, 0)) + True + sage: G._equal_vector((0, 0), (0, 1/1024)) + False + + """ + if len(v) != len(w): + raise TypeError("v and w must be vectors in the same vector space") + + return all(self._equal(vv, ww) for (vv, ww) in zip(v, w)) + + def _equal_point(self, p, q): + r""" + Return whether the points ``p`` and ``q`` should be considered equal. + + .. NOTE:: + + This predicate should not be used directly in geometric + constructions since it does not specify the context in which this + question is asked. This makes it very difficult to override a + specific aspect in a custom geometry. + + INPUT: + + - ``p`` -- a point in the Euclidean plane + + - ``q`` -- a point in the Euclidean plane + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import EuclideanExactGeometry + sage: G = EuclideanExactGeometry(QQ) + sage: G._equal_point((0, 0), (0, 0)) + True + sage: G._equal_point((0, 0), (0, 1/1024)) + False + + """ + return self._equal_vector(tuple(p), tuple(q)) + + +class EuclideanExactGeometry(UniqueRepresentation, EuclideanGeometry, ExactGeometry): + r""" + Predicates and primitive geometric constructions over an exact base ring. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: E.geometry + Exact geometry over Rational Field + + TESTS:: + + sage: from flatsurf.geometry.euclidean import EuclideanExactGeometry + sage: isinstance(E.geometry, EuclideanExactGeometry) + True + + .. SEEALSO:: + + :class:`EuclideanEpsilonGeometry` for an implementation over inexact rings + + """ + + def change_ring(self, ring): + r""" + Return this geometry with the :meth:`~EuclideanGeometry.base_ring` + changed to ``ring``. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: E.geometry.change_ring(QQ) == E.geometry + True + sage: E.geometry.change_ring(AA) + Exact geometry over Algebraic Real Field + + """ + if not ring.is_exact(): + raise ValueError("cannot change_ring() to an inexact ring") + + return EuclideanExactGeometry(ring) + + +class EuclideanEpsilonGeometry( + UniqueRepresentation, EuclideanGeometry, EpsilonGeometry +): + r""" + Predicates and primitive geometric constructions over an inexact base ring. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: from flatsurf.geometry.euclidean import EuclideanEpsilonGeometry + sage: E = EuclideanPlane(RR, geometry=EuclideanEpsilonGeometry(RR, 1e-6)) + sage: E.geometry + Epsilon geometry with ϵ=1.00000000000000e-6 over Real Field with 53 bits of precision + + TESTS:: + + sage: from flatsurf.geometry.euclidean import EuclideanEpsilonGeometry + sage: isinstance(E.geometry, EuclideanEpsilonGeometry) + True + + .. SEEALSO:: + + :class:`EuclideanExactGeometry` for an implementation over exact rings + + """ + + def _equal_vector(self, v, w): + r""" + Return whether the vectors ``v`` and ``w`` should be considered equal. + + Implements :meth:`EuclideanGeometry._equal_vector` by comparing the + Euclidean distance of the points to this geometry's epsilon. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import EuclideanEpsilonGeometry + sage: G = EuclideanEpsilonGeometry(RR, 1e-3) + + sage: G._equal_point((0, 0), (0, 0)) + True + sage: G._equal_point((0, 0), (0, 1/1024)) + True + + sage: G._equal_vector((0, 0), (0, 0)) + True + sage: G._equal_vector((0, 0), (0, 1/1024)) + True + + """ + if len(v) != len(w): + raise TypeError("vectors must have same length") + + return sum((vv - ww) ** 2 for (vv, ww) in zip(v, w)) < self._epsilon**2 + + def change_ring(self, ring): + r""" + Return this geometry with the :meth:`~EuclideanGeometry.base_ring` + changed to ``ring``. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import EuclideanEpsilonGeometry + sage: G = EuclideanEpsilonGeometry(RR, 1e-3) + sage: G.change_ring(QQ) + Traceback (most recent call last): + ... + ValueError: cannot change_ring() to an exact ring + sage: G.change_ring(RDF) + Epsilon geometry with ϵ=0.001 over Real Double Field + + """ + if ring.is_exact(): + raise ValueError("cannot change_ring() to an exact ring") + + return EuclideanEpsilonGeometry(ring, self._epsilon) + + +class EuclideanSet(SageObject): + r""" + Base class for subsets of :class:`EuclideanPlane`. + + .. NOTE:: + + Concrete subclasses should apply the following rules. + + There should only be a single type to describe a certain subset: + normally, a certain subset, say a point, should only be described by a + single class, namely :class:`Point`. Of course, one could + describe a point as a polygon delimited by some edges that all + intersect in that single point, such objects should be avoided. Namely, + the methods that create a subset, say :meth:`EuclideanPlane.polygon` + take care of this by calling a sets + :meth:`EuclideanSet._normalize` to rewrite a set in its most natural + representation. To get the denormalized representation, we can always + set `check=False` when creating the object. For this to work, the + `__init__` should not take care of any such normalization and accept + any input that can possibly be made sense of. + + Comparison with ``==`` should mean "is essentially indistinguishable + from": Implementing == to mean anything else would get us into trouble + in the long run. In particular we cannot implement <= to mean "is + subset of" since then an oriented and an unoriented geodesic would be + `==`. So, objects of a different type should almost never be equal. A + notable exception are objects that are indistinguishable to the end + user but use different implementations. + + TESTS:: + + sage: from flatsurf import EuclideanPlane + sage: from flatsurf.geometry.euclidean import EuclideanSet + sage: E = EuclideanPlane() + + sage: isinstance(E((0, 0)), EuclideanSet) + True + + """ + + def _check(self, require_normalized=True): + r""" + Validate this convex set. + + Subclasses run specific checks here that can be disabled when creating + objects with ``check=False``. + + INPUT: + + - ``require_normalized`` -- a boolean (default: ``True``); whether to + include checks that assume that normalization has already happened + + EXAMPLES: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: P = E.point(0, 0) + sage: P._check() + + """ + pass + + def _normalize(self): + r""" + Return this set possibly rewritten in a simpler form. + + This method is only relevant for sets created with ``check=False``. + Such sets might have been created in a non-canonical way, e.g., when + creating a :class:`OrientedSegment` whose start and end point is + identical. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: segment = E.segment((0, 0), (0, 0), check=False, assume_normalized=True) + sage: segment + {-x - 1 = 0} ∩ {x - 1 ≥ 0} ∩ {x - 1 ≤ 0} + sage: segment._normalize() + (0, 0) + + """ + return self + + def _test_normalize(self, **options): + r""" + Verify that normalization is idempotent. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: segment = E.segment((0, 0), (1, 0)) + sage: segment._test_normalize() + + """ + tester = self._tester(**options) + + normalization = self._normalize() + + tester.assertEqual(normalization, normalization._normalize()) + + def __contains__(self, point): + r""" + Return whether this set contains the point ``point``. + + INPUT: + + - ``point`` -- a point in the Euclidean plane + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: c = E.circle((0, 0), radius=1) + sage: E((0, 0)) in c + True + + """ + raise NotImplementedError( + "this subset of the Euclidean plane cannot decide whether it contains a given point yet" + ) + + # TODO: Add a _test_contains test. + + # TODO: Add is_bounded() and a test method. + + def change(self, *, ring=None, geometry=None, oriented=None): + r""" + Return a modified copy of this set. + + INPUT: + + - ``ring`` -- a ring (default: ``None`` to keep the current + :meth:`~EuclideanPlane.base_ring`); the ring over which the new set + will be defined. + + - ``geometry`` -- a :class:`EuclideanGeometry` (default: ``None`` to + keep the current geometry); the geometry that will be used for the + new set. + + - ``oriented`` -- a boolean (default: ``None`` to keep the current + orientedness) whether the new set will be explicitly oriented. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + sage: segment = E.segment((0, 0), (1, 1)) + + We can change the base ring over which this set is defined:: + + sage: segment.change(ring=AA) + {(x^2 + y^2) - x = 0} + + We can drop the explicit orientation of a set:: + + sage: unoriented = segment.change(oriented=False) + sage: unoriented.is_oriented() + False + + We can also take an unoriented set and pick an orientation:: + + sage: oriented = unoriented.change(oriented=True) + sage: oriented.is_oriented() + True + + .. SEEALSO:: + + :meth:`is_oriented` to determine whether a set is oriented. + + """ + raise NotImplementedError(f"this {type(self)} does not implement change()") + + def change_ring(self, ring): + r""" + Return this set as an element of the Euclidean plane over ``ring``. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + sage: p = E((0, 0)) + sage: p.change_ring(AA) + + """ + return self.change(ring=ring) + + # TODO: Add change_ring, change and test methods. + + # TODO: Add plot and test_plot() + + # TODO: Add apply_similarity() and a test method. + + # TODO: Add _acted_upon and a test method + + # TODO: Add is_subset() and a test method. + + # TODO: Add _an_element_ and some_elements() + + # TODO: Add is_empty() and __bool__ + + # TODO: Add is_point() + + def is_oriented(self): + r""" + Return whether this is a set with an explicit orientation. + + Some sets come in two flavors. There are oriented segments and + unoriented segments. + + This method answers whether a set is in the oriented kind if there is a + choice. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + Segments are normally oriented:: + + sage: s = E.segment((0, 0), (1, 0)) + sage: s.is_oriented() + + We can explicitly ask for an unoriented segment:: + + sage: u = s.unoriented() + sage: u.is_oriented() + False + + Points are not oriented, there is no choice of orientation:: + + sage: p = E((0, 0)) + sage: p.is_oriented() + False + + """ + return isinstance(self, EuclideanOrientedSet) + + # TODO: Add __hash__ and test method + + # TODO: Add random_set for testing. + + +class EuclideanOrientedSet(EuclideanSet): + r""" + Base class for sets that have an explicit orientation. + + .. SEEALSO:: + + :meth:`EuclideanSet.is_oriented` + + """ + + +class EuclideanFacade(EuclideanSet, Parent): + r""" + A subset of the Euclidean plane that is itself a parent. + + This is the base class for all Euclidean sets that are not points. + This class solves the problem that we want sets to be "elements" of the + Euclidean plane but at the same time, we want these sets to live as parents + in the category framework of SageMath; so they have a Parent with Euclidean + points as their Element class. + + SageMath provides the (not very frequently used and somewhat flaky) facade + mechanism for such parents. Such sets being a facade, their points can be + both their elements and the elements of the Euclidean plane. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: c = E.circle((0, 0), radius=1) + sage: p = C.center() + sage: p in c + True + sage: p.parent() is E + True + sage: q = c.an_element() + sage: q + I + sage: q.parent() is E + True + + TESTS:: + + sage: from flatsurf.geometry.euclidean import EuclideanFacade + sage: isinstance(v, EuclideanFacade) + True + + """ + + def __init__(self, parent, category=None): + Parent.__init__(self, facade=parent, category=category) + + def parent(self): + r""" + Return the Euclidean plane this is a subset of. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: c = E.circle((0, 0), radius=1) + sage: c.parent() + Euclidean Plane over Rational Field + + """ + return self.facade_for()[0] + + def _element_constructor_(self, x): + r""" + Return ``x`` as a point of this set. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: c = E.circle((0, 0), radius=1) + sage: c((1, 0)) + (1, 0) + sage: v((0, 0)) + Traceback (most recent call last): + ... + ValueError: point not contained in this set + + """ + x = self.parent()(x) + + if isinstance(x, EuclideanPoint): + if not self.__contains__(x): + raise ValueError("point not contained in this set") + + return x + + def base_ring(self): + r""" + Return the ring over which points of this set are defined. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: c = E.circle((0, 0), radius=1) + sage: c.base_ring() + Rational Field + + """ + return self.parent().base_ring() + + +class EuclideanCircle(EuclideanFacade): + r""" + A circle in the Euclidean plane. + + INPUT: + + - ``parent`` -- the :class:`EuclideanPlane` containing this circle + + - ``center`` -- the :class:`EuclideanPoint`` at the center of this circle + + - ``radius_squared`` -- the square of the radius of this circle + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: c = EuclideanPlane().circle((0, 0), radius=1) + + TESTS:: + + sage: from flatsurf.geometry.euclidean import EuclideanCircle + sage: isinstance(c, EuclideanCircle) + True + sage: TestSuite(c).run() + + .. SEEALSO:: + + :meth:`EuclideanPlane.circle` for a method to create circles + + """ + + def __init__(self, parent, center, radius_squared): + super().__init__(parent) + + self._center = center + self._radius_squared = radius_squared + + def __eq__(self, other): + if not isinstance(other, EuclideanCircle): + return False + + if self.parent() is not other.parent(): + return False + + return self._center == other._center and self._radius_squared == other._radius_squared + + def __hash__(self): + return hash((self._center, self._radius_squared)) + + def _repr_(self): + r""" + Return a printable representation of this circle. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: c = EuclideanPlane().circle((0, 0), radius=1) + sage: c + + """ + x, y = self._center + + x = f"(x - {x})" if x else "x" + y = f"(y - {y})" if y else "y" + + return f"{{ {x}² + {y}² = {self._radius_squared} }}" + + def change(self, *, ring=None, geometry=None, oriented=None): + r""" + Return a modified copy of this circle. + + INPUT: + + - ``ring`` -- a ring (default: ``None`` to keep the current + :meth:`~EuclideanPlane.base_ring`); the ring over which the new + circle will be defined. + + - ``geometry`` -- a :class:`EuclideanGeometry` (default: ``None`` to + keep the current geometry); the geometry that will be used for the + new circle. + + - ``oriented`` -- a boolean (default: ``None`` to keep the current + orientedness); must be ``None`` or ``False`` since circles cannot + have an explicit orientation. See :meth:`~EuclideanSet.is_oriented`. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + sage: c = E.circle((0, 0), radius=1) + + We change the base ring over which this circle is defined:: + + sage: c.change(ring=AA) + + We cannot change the orientation of a circle:: + + sage: c.change(oriented=True) + + sage: c.change(oriented=False) + + """ + if ring is not None or geometry is not None: + self = ( + self.parent() + .change_ring(ring, geometry=geometry) + .circle(self._center, radius_squared=self._radius_squared, check=False) + ) + + if oriented is None: + oriented = self.is_oriented() + + if oriented != self.is_oriented(): + raise NotImplementedError("circles cannot have an explicit orientation") + + return self + + def _normalize(self): + r""" + Return this set possibly rewritten in a simpler form. + + This implements :meth:`EuclideanSet._normalize`. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: circle = E.circle((0, 0), radius=0, check=False) + sage: circle + sage: circle._normalize() + (0, 0) + + """ + if self.parent().geometry._zero(self._radius_squared): + return self._center + + return self + + def center(self): + r""" + Return the point at the center of the circle. + """ + return self._center + + def radius_squared(self): + r""" + Return the square of the radius of the circle. + """ + return self._radius_squared + + def point_position(self, point): + r""" + Return 1 if point lies in the circle, 0 if the point lies on the circle, + and -1 if the point lies outide the circle. + """ + # TODO: Deprecate? + value = ( + (point[0] - self._center[0]) ** 2 + + (point[1] - self._center[1]) ** 2 + - self._radius_squared + ) + + if value > 0: + return -1 + if value < 0: + return 1 + return 0 + + def closest_point_on_line(self, point, direction_vector): + r""" + Consider the line through the provided point in the given direction. + Return the closest point on this line to the center of the circle. + """ + # TODO: Rewrite or deprecate and generalize + V3 = self.parent().base_ring() ** 3 + V2 = self.parent().base_ring() ** 2 + + cc = V3((self._center[0], self._center[1], 1)) + # point at infinite orthogonal to direction_vector: + dd = V3((direction_vector[1], -direction_vector[0], 0)) + l1 = cc.cross_product(dd) + + pp = V3((point[0], point[1], 1)) + # direction_vector pushed to infinity + ee = V3((direction_vector[0], direction_vector[1], 0)) + l2 = pp.cross_product(ee) + + # This is the point we want to return + rr = l1.cross_product(l2) + try: + return V2((rr[0] / rr[2], rr[1] / rr[2])) + except ZeroDivisionError: + raise ValueError( + "Division by zero error. Perhaps direction is zero. " + + "point=" + + str(point) + + " direction=" + + str(direction_vector) + + " circle=" + + str(self) + ) + + # TODO: Not used anywhere. + ## def line_position(self, point, direction_vector): + ## r""" + ## Consider the line through the provided point in the given direction. + ## We return 1 if the line passes through the circle, 0 if it is tangent + ## to the circle and -1 if the line does not intersect the circle. + ## """ + ## return self.point_position(self.closest_point_on_line(point, direction_vector)) + + # TODO: Create Segment class. + def line_segment_position(self, p, q): + r""" + Consider the open line segment pq.We return 1 if the line segment + enters the interior of the circle, zero if it touches the circle + tangentially (at a point in the interior of the segment) and + and -1 if it does not touch the circle or its interior. + """ + if self.point_position(p) == 1: + return 1 + if self.point_position(q) == 1: + return 1 + r = self.closest_point_on_line(p, q - p) + pos = self.point_position(r) + if pos == -1: + return -1 + # This checks if r lies in the interior of pq + if p[0] == q[0]: + if (p[1] < r[1] and r[1] < q[1]) or (p[1] > r[1] and r[1] > q[1]): + return pos + elif (p[0] < r[0] and r[0] < q[0]) or (p[0] > r[0] and r[0] > q[0]): + return pos + # It does not lie in the interior. + return -1 + + # TODO: Not used anywhere. + ## def tangent_vector(self, point): + ## r""" + ## Return a vector based at the provided point (which must lie on the circle) + ## which is tangent to the circle and points in the counter-clockwise + ## direction. + + ## EXAMPLES:: + + ## sage: from flatsurf.geometry.circle import Circle + ## sage: c=Circle(vector((0,0)), 2, base_ring=QQ) + ## sage: c.tangent_vector(vector((1,1))) + ## (-1, 1) + ## """ + ## if not self.point_position(point) == 0: + ## raise ValueError("point not on circle.") + ## return vector((self._center[1] - point[1], point[0] - self._center[0])) + + # TODO: Not used anywhere. + ## def other_intersection(self, p, v): + ## r""" + ## Consider a point p on the circle and a vector v. Let L be the line + ## through p in direction v. Then L intersects the circle at another + ## point q. This method returns q. + + ## Note that if p and v are both in the field of the circle, + ## then so is q. + + ## EXAMPLES:: + + ## sage: from flatsurf.geometry.circle import Circle + ## sage: c=Circle(vector((0,0)), 25, base_ring=QQ) + ## sage: c.other_intersection(vector((3,4)),vector((1,2))) + ## (-7/5, -24/5) + ## """ + ## pp = self._V3((p[0], p[1], self._base_ring.one())) + ## vv = self._V3((v[0], v[1], self._base_ring.zero())) + ## L = pp.cross_product(vv) + ## cc = self._V3((self._center[0], self._center[1], self._base_ring.one())) + ## vvperp = self._V3((-v[1], v[0], self._base_ring.zero())) + ## # line perpendicular to L through center: + ## Lperp = cc.cross_product(vvperp) + ## # intersection of L and Lperp: + ## rr = L.cross_product(Lperp) + ## r = self._V2((rr[0] / rr[2], rr[1] / rr[2])) + ## return self._V2((2 * r[0] - p[0], 2 * r[1] - p[1])) + + def __rmul__(self, similarity): + r""" + Apply a similarity to the circle. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: s = translation_surfaces.square_torus() + sage: c = s.polygon(0).circumscribing_circle() + sage: c + Circle((1/2, 1/2), 1/2) + sage: s.edge_transformation(0,2) + (x, y) |-> (x, y - 1) + sage: s.edge_transformation(0,2) * c + Circle((1/2, -1/2), 1/2) + """ + # TODO: Implement this properly for this parent + from .similarity import SimilarityGroup + + SG = SimilarityGroup(self.parent().base_ring()) + s = SG(similarity) + return self.parent().circle( + s(self._center), radius_squared=s.det() * self._radius_squared + ) + + ## def __str__(self): + ## return ( + ## "circle with center " + ## + str(self._center) + ## + " and radius squared " + ## + str(self._radius_squared) + ## ) + + +class EuclideanPoint(EuclideanSet, Element): + r""" + A point in the :class:`EuclideanPlane`. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + sage: p = E.point(0, 0) + + TESTS:: + + sage: from flatsurf.geometry.euclidean import EuclideanPoint + sage: isinstance(p, EuclideanPoint) + True + + sage: TestSuite(p).run() + + .. SEEALSO:: + + :meth:`EuclideanPlane.point` for ways to create points + + """ + + def __init__(self, parent, x, y): + super().__init__(parent) + + self._x = x + self._y = y + + def __iter__(self): + r""" + Return an iterator over the coordinates of this point. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + sage: p = E.point(1, 2) + sage: list(p) + [1, 2] + + """ + yield self._x + yield self._y + + def vector(self): + return self.parent().vector_space()((self._x, self._y)) + + def translate(self, v): + return self.parent().point(*(self.vector() + v)) + + def _richcmp_(self, other, op): + r""" + Return how this point compares to ``other`` with respect to the ``op`` + operator. + + This is only implemented for the operators ``==`` and ``!=``. It + returns whether two points are the same. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + sage: E((0, 0)) = E((0, 0)) + True + + .. SEEALSO:: + + :meth:`EuclideanSet.__contains__` to check for containment of a + point in a set + + """ + from sage.structure.richcmp import op_EQ, op_NE + + if op == op_NE: + return not self._richcmp_(other, op_EQ) + + if op == op_EQ: + if not isinstance(other, EuclideanPoint): + return False + + return self.parent().geometry._equal_point(self, other) + + return super()._richcmp_(other, op) + + def _repr_(self): + r""" + Return a printable representation of this point. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + sage: p = E.point(0, 0) + sage: p + (0, 0) + + """ + return repr(tuple(self)) + + def __getitem__(self, i): + r""" + Return the ``i``-th coordinate of this point. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + sage: p = E.point(1, 2) + sage: p[0] + 1 + sage: p[1] + 2 + sage: p[2] + + """ + if i == 0: + return self._x + if i == 1: + return self._y + + raise NotImplementedError + + def change(self, *, ring=None, geometry=None, oriented=None): + r""" + Return a modified copy of this point. + + INPUT: + + - ``ring`` -- a ring (default: ``None`` to keep the current + :meth:`~EuclideanPlane.base_ring`); the ring over which the new + point will be defined. + + - ``geometry`` -- a :class:`EuclideanGeometry` (default: ``None`` to + keep the current geometry); the geometry that will be used for the + new point. + + - ``oriented`` -- a boolean (default: ``None`` to keep the current + orientedness); must be ``None`` or ``False`` since points cannot + have an explicit orientation. See :meth:`~EuclideanSet.is_oriented`. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + + sage: p = E((0, 0)) + + We change the base ring over which this point is defined:: + + sage: p.change_ring(ring=AA) + + We cannot change the orientation of a point: + + sage: p.change(oriented=True) + + sage: p.change(oriented=False) + + """ + if ring is not None or geometry is not None: + self = ( + self.parent() + .change_ring(ring, geometry=geometry) + .point(self._x, self._y) + ) + + if oriented is None: + oriented = self.is_oriented() + + if oriented != self.is_oriented(): + raise NotImplementedError("points cannot have an explicit orientation") + + return self + + def segment(self, end): + end = self.parent()(end) + + line = self.parent().line(self, end) + + return self.parent().segment(line, start=self, end=end) + + def __hash__(self): + return hash((self._x, self._y)) + + +class EuclideanLine(EuclideanFacade): + r""" + A line in the Euclidean plane. + + This is a common base class for oriented and unoriented lines, see + :class:`EuclideanOrientedLine` and :class:`EuclideanUnorientedLine`. + + Internally, we represent a line by its equation, i.e., the ``a``, + ``b``, ``c`` such that points on the line satisfy + + .. MATH:: + + a + bx + cy = 0 + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: line = E.line((0, 0), (1, 1)) + + TESTS:: + + sage: from flatsurf.geometry.euclidean import EuclideanLine + sage: isinstance(line, EuclideanLine) + True + sage: TestSuite(line).run() + + .. SEEALSO:: + + :meth:`EuclideanPlane.line` + + """ + + def __init__(self, parent, a, b, c): + super().__init__(parent) + + if not isinstance(a, Element) or a.parent() is not parent.base_ring(): + raise TypeError("a must be an element of the base ring") + if not isinstance(b, Element) or b.parent() is not parent.base_ring(): + raise TypeError("b must be an element of the base ring") + if not isinstance(c, Element) or c.parent() is not parent.base_ring(): + raise TypeError("c must be an element of the base ring") + + self._a = a + self._b = b + self._c = c + + def change(self, *, ring=None, geometry=None, oriented=None): + r""" + Return a modified copy of this line. + + INPUT: + + - ``ring`` -- a ring (default: ``None`` to keep the current + :meth:`~EuclideanPlane.base_ring`); the ring over which the new line + will be defined. + + - ``geometry`` -- a :class:`EuclideanGeometry` (default: ``None`` to + keep the current geometry); the geometry that will be used for the + new line. + + - ``oriented`` -- a boolean (default: ``None`` to keep the current + orientedness); whether the new line should be oriented. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane(AA) + + The base ring over which this line is defined can be changed:: + + sage: E.line((0, 0), (1, 1)).change_ring(QQ) + + But we cannot change the base ring if the line's equation cannot be + expressed in the smaller ring:: + + sage: E.line((0, 0), (1, AA(2).sqrt())).change_ring(QQ) + Traceback (most recent call last): + ... + ValueError: Cannot coerce irrational Algebraic Real ... to Rational + + We can forget the orientation of a line:: + + sage: line = E.line((0, 0), (1, 1)) + sage: line.is_oriented() + True + sage: line = line.change(oriented=False) + sage: line.is_oriented() + False + + We can (somewhat randomly) pick the orientation of a line:: + + sage: line = line.change(oriented=True) + sage: line.is_oriented() + True + + """ + if ring is not None or geometry is not None: + self = ( + self.parent() + .change_ring(ring, geometry=geometry) + .line( + self._a, + self._b, + self._c, + check=False, + oriented=self.is_oriented(), + ) + ) + + if oriented is None: + oriented = self.is_oriented() + + if oriented != self.is_oriented(): + self = self.parent().line( + self._a, self._b, self._c, check=False, oriented=oriented + ) + + return self + + def _repr_(self): + r""" + Return a printable representation of this line. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane(AA) + sage: E.line((0, 0), (1, 1)) + sage: E.line((0, 1), (1, 1)) + sage: E.line((1, 0), (1, 1)) + + """ + a, b, c = self.equation(normalization=["gcd", None]) + + from sage.all import PolynomialRing + + R = PolynomialRing(self.parent().base_ring(), names=["x", "y"]) + polynomial_part = R({(1, 0): b, (0, 1): c}) + if self.parent().geometry._sgn(a) != 0: + return f"{{{repr(a)} + {repr(polynomial_part)} = 0}}" + else: + return f"{{{repr(polynomial_part)} = 0}}" + + def equation(self, normalization=None): + r""" + Return an equation for this line as a triple ``a``, ``b``, ``c`` such + that the line is given by the points satisfying + + .. MATH:: + + a + bx + cy = 0 + + INPUT: + + - ``normalization`` -- how to normalize the coefficients; the default + ``None`` is not to normalize at all. Other options are ``gcd``, to + divide the coefficients by their greatest common divisor, ``one``, to + normalize the first non-zero coefficient to ±1. This can also be a + list of such values which are then tried in order and exceptions are + silently ignored unless they happen at the last option. + + If this line :meth;`is_oriented`, then the sign of the coefficients + is chosen to encode the orientation of this line. The sign is such + that the half plane obtained by replacing ``=`` with ``≥`` in the + equation is on the left of the line. + + Note that the output might not uniquely describe the line. The + coefficients are only unique up to scaling. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane(AA) + sage: E.line((0, 0), (1, 1)).equation() + (0, -1, 1) + sage: E.line((0, 1), (1, 1)).equation() + (-1, 0, 1) + sage: E.line((1, 0), (1, 1)).equation() + (1, -1, 0) + + Some normalizations might not be possible over some base rings:: + + sage; E = EuclideanPlane(ZZ) + sage: line = E.line((1, 3), (6, 8)) + sage: line + {-2 + -x + y = 0} + sage: line.equation() + (-10, -5, 5) + sage: line.equation(normalization="one") + Traceback (most recent call last): + ... + TypeError: no conversion of this rational to integer + sage: line.equation(normalization="gcd") + (-2, -1, 1) + + In such cases, we can also use a list of normalizations to select the + best one possible:: + + sage: line.equation(normalization=["one", "gcd", None]) + (-2, -1, 1) + + .. SEEALSO:: + + :meth:`HyperbolicGeodesic.equation` which does essentially the same + for geodesics in the hyperbolic plane + + """ + normalization = normalization or [None] + + if isinstance(normalization, str): + normalization = [normalization] + + from collections.abc import Sequence + + if not isinstance(normalization, Sequence): + normalization = [normalization] + + normalization = list(normalization) + normalization.reverse() + + a, b, c = self._a, self._b, self._c + + sgn = self.parent().geometry._sgn + sgn = ( + -1 + if ( + sgn(a) < 0 + or (sgn(a) == 0 and b < 0) + or (sgn(a) == 0 and sgn(b) == 0 and sgn(c) < 0) + ) + else 1 + ) + + while normalization: + strategy = normalization.pop() + + from flatsurf.geometry.hyperbolic import HyperbolicGeodesic + + try: + a, b, c = HyperbolicGeodesic._normalize_coefficients( + a, b, c, strategy=strategy + ) + break + except Exception: + if not normalization: + raise + + if not self.is_oriented(): + a *= sgn + b *= sgn + c *= sgn + + return a, b, c + + def _an_element_(self): + if self._b: + return self.parent().point(-self._a / self._b, 0) + + assert self._c + return self.parent().point(-self._a / self._c, 0) + + def projection(self, point): + # Move the line to the origin, i.e., instead of a + bx + cy = 0, + # consider bx + cy = 0. + # Let v be a vector parallel to this line. + shift = self.an_element() + + point = point.translate(-shift.vector()) + + (x, y) = point + v = (self._c, -self._b) + vv = ~(v[0] ** 2 + v[1] ** 2) + + p = (v[0] ** 2 * x + v[0] * v[1] * y, v[0] * v[1] * x + v[1] * v[1] * y) + p = (p[0] * vv, p[1] * vv) + + assert p[0] * self._b + p[1] * self._c == 0 + + return self.parent().point(*p).translate(shift.vector()) + + def contains_point(self, point): + x, y = point.vector() + return self._a + self._b * x + self._c * y == 0 + + +class EuclideanOrientedLine(EuclideanLine, EuclideanOrientedSet): + r""" + A line in the Euclidean plane with an explicit orientation. + + Internally, we represent a line by its equation, i.e., the ``a``, + ``b``, ``c`` such that points on the line satisfy + + .. MATH:: + + a + bx + cy = 0 + + The orientation of that line is such that + + .. MATH:: + + a + bx + cy \ge 0 + + is to its left. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: line = E.line((0, 0), (1, 1)) + + TESTS:: + + sage: from flatsurf.geometry.euclidean import EuclideanOrientedLine + sage: isinstance(line, EuclideanOrientedLine) + True + sage: TestSuite(line).run() + + """ + + def direction(self): + r""" + Return a vector pointing in the direction of this oriented line. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: line = E.line((0, 0), (1, 1)) + sage: line.direction() + (1, 1) + + """ + return self.parent().vector_space()((self._c, -self._b)) + + def __neg__(self): + r""" + Return this line with reversed orientation. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: line = E.line((0, 0), (1, 1)) + sage: -line + + """ + return self.parent().line(-self._a, -self._b, -self._c, check=False) + + +class EuclideanUnorientedLine(EuclideanLine): + pass + + +class EuclideanSegment(EuclideanFacade): + r""" + A line segment in the Euclidean plane. + + This is a common base class for oriented and unoriented segments, see + :class:`EuclideanOrientedSegment` and :class:`EuclideanUnorientedSegment`. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: start = E((0, 0)) + sage: end = E((1, 1)) + sage: segment = start.segment(end) + + TESTS:: + + sage: from flatsurf.geometry.euclidean import EuclideanSegment + sage: isinstance(segment, EuclideanSegment) + True + sage: TestSuite(segment).run() + + .. SEEALSO:: + + :meth:`EuclideanPlane.segment` + :meth:`EuclideanPoint.segment` + + """ + + def __init__(self, parent, line, start, end): + super().__init__(parent) + + if not isinstance(line, EuclideanLine): + raise TypeError("line must be a Euclidean line") + if start is not None and not isinstance(start, EuclideanPoint): + raise TypeError("start must be a Euclidean point") + if end is not None and not isinstance(end, EuclideanPoint): + raise TypeError("end must be a Euclidean point") + + self._line = line + self._start = start + self._end = end + + def _normalize(self): + r""" + Return a normalized version of this segment. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: line = E.line((0, 0), (1, 1)) + + A segment with two identical endpoints, is a point:: + + sage: segment = E.segment(line, start=(0, 0), end=(0, 0), assume_normalized=True, check=False) + sage: segment + sage: segment._normalize() + + A segment with a single endpoint is a ray:: + + sage: segment = E.segment(line, start=(0, 0), end=None, assume_normalized=True, check=False) + sage: segment + sage: segment._normalize() + + A segment without endpoints is a line:: + + sage: segment = E.segment(line, start=None, end=None, assume_normalized=True, check=False) + sage: segment + sage: segment._normalize() + + """ + line = self._line + start = self._start + end = self._end + + if start is None and end is None: + return self._line.change(oriented=self.is_oriented()) + + if start == end: + return start + + if start is None: + start, end = end, start + line = -line + + if end is None: + return self.parent().ray(start, line.direction()) + + return self + + def distance(self, point): + point = self.parent()(point) + + # To compute the distance from the point to the segment, we compute the + # distance from the point to the line containing the segment. + # If the closest point on the line is on the segment, that's the + # distance to the segment. If not, the minimum distance is at one of + # the endpoints of the segment. + norm = self.parent().norm() + p = self._line.projection(point) + if self.contains_point(p): + return norm.from_vector(point.vector() - p.vector()) + return min( + norm.from_vector(point.vector() - self._start.vector()), + norm.from_vector(point.vector() - self._end.vector()), + ) + + def contains_point(self, point): + if not self._line.contains_point(point): + return False + + return bool( + time_on_segment((self._start.vector(), self._end.vector()), point.vector()) + ) + + +class EuclideanOrientedSegment(EuclideanSegment, EuclideanOrientedSet): + r""" + An oriented line segment in the Euclidean plane going from a ``start`` + point to an ``end`` point. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: start = E((0, 0)) + sage: end = E((1, 0)) + sage: segment = start.segment(end) + + TESTS:: + + sage: from flatsurf.geometry.euclidean import EuclideanOrientedSegment + sage: isinstance(segment, EuclideanOrientedSegment) + True + sage: TestSuite(segment).run() + + """ + + def _repr_(self): + r""" + Return a printable representation of this segment. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: start = E((0, 0)) + sage: end = E((1, 0)) + sage: segment = start.segment(end) + sage: segment + (0, 0) → (1, 0) + + """ + return f"{self._start!r} → {self._end!r}" + + +class EuclideanUnorientedSegment(EuclideanSegment): + r""" + An unoriented line segment in the Euclidean plane connecting ``start`` and + ``end``. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: start = E((0, 0)) + sage: end = E((1, 0)) + sage: segment = start.segment(end) + sage: segment = segment.unoriented() + + TESTS:: + + sage: from flatsurf.geometry.euclidean import EuclideanUnorientedSegment + sage: isinstance(segment, EuclideanUnorientedSegment) + True + sage: TestSuite(segment).run() + + """ + + def _repr_(self): + r""" + Return a printable representation of this segment. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: start = E((0, 0)) + sage: end = E((1, 0)) + sage: segment = start.segment(end).unoriented() + sage: segment + (0, 0) — (1, 0) + + """ + return f"{self._start!r} — {self._end!r}" + + +class EuclideanRay(EuclideanFacade): + r""" + A ray emanating from a base point in the Euclidean plane. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: ray = E.ray((0, 0), (1, 1)) + + TESTS:: + + sage: from flatsurf.geometry.euclidean import EuclideanRay + sage: isinstance(ray, EuclideanRay) + True + sage: TestSuite(ray).run() + + """ + + def __init__(self, parent, base, direction): + super().__init__(parent) + + self._base = base + self._direction = direction + + def _repr_(self): + r""" + Return a printable representation of this ray. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: E.ray((0, 0), (1, 1)) + + """ + return f"Ray from {self._base!r} in direction {self._direction!r}" + + +### TODO: PRE-EUCLIDEAN-PLANE CODE HERE + + +def is_cosine_sine_of_rational(cos, sin, scaled=False): + r""" + Check whether the given pair is a cosine and sine of a same rational angle. + + INPUT: + + - ``cos`` -- a number + + - ``sin`` -- a number + + - ``scaled`` -- a boolean (default: ``False``); whether to allow ``cos`` + and ``sin`` to be scaled by the same positive algebraic number + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import is_cosine_sine_of_rational + + sage: c = s = AA(sqrt(2))/2 + sage: is_cosine_sine_of_rational(c, s) + True + + sage: c = AA(sqrt(3))/2 + sage: s = AA(1/2) + sage: is_cosine_sine_of_rational(c, s) + True + + sage: c = AA(sqrt(5)/2) + sage: s = (1 - c**2).sqrt() + sage: c**2 + s**2 + 1.000000000000000? + sage: is_cosine_sine_of_rational(c, s) + False + + sage: c = (AA(sqrt(5)) + 1)/4 + sage: s = (1 - c**2).sqrt() + sage: is_cosine_sine_of_rational(c, s) + True + + sage: K. = NumberField(x**2 - 2, embedding=1.414) + sage: is_cosine_sine_of_rational(K.zero(), -K.one()) + True + + TESTS:: + + sage: from pyexactreal import ExactReals # optional: pyexactreal # random output due to matplotlib warnings with some combinations of setuptools and matplotlib + sage: R = ExactReals() # optional: pyexactreal + sage: is_cosine_sine_of_rational(R.one(), R.zero()) # optional: pyexactreal + True + + """ + from sage.all import AA + + # We cannot check in AA due to https://github.com/flatsurf/exact-real/issues/172 + # We just trust that non-algebraic elements won't allow conversion to AA. + # if cos not in AA: + # return False + # if sin not in AA: + # return False + + if not scaled: + if cos**2 + sin**2 != 1: + return False + + try: + cos = AA(cos) + except ValueError: + # This is a replacement for the "in AA" checked disabled above. + return False + + cos = cos.as_number_field_element(embedded=True) + # We need an explicit conversion to the number field due to https://github.com/sagemath/sage/issues/35613 + cos = cos[0](cos[1]) + + try: + sin = AA(sin) + except ValueError: + # This is a replacement for the "in AA" checked disabled above. + return False + sin = sin.as_number_field_element(embedded=True) + # We need an explicit conversion to the number field due to https://github.com/sagemath/sage/issues/35613 + sin = sin[0](sin[1]) + + from sage.all import ComplexBallField + + CBF = ComplexBallField(53) + + x = CBF(cos) + CBF.gen(0) * CBF(sin) + xN = x + + # Suppose that (cos, sin) are indeed sine and cosine of a rational angle. + # Then x = cos + I*sin generates a cyclotomic field C and for some N we + # have x^N = ±1. Since C is contained in the compositum of K=Q(cos) and + # L=Q(i*sin) and Q(cos) and Q(sin) are both contained in C, the degree of C + # is bounded from above by twice (accounting for the imaginary unit) the + # degrees of K and L. The degree of C is the totient of N which is bounded + # from below by n / (e^γ loglog n + 3 / loglog n) [cf. wikipedia]. + degree_bound = 2 * cos.minpoly().degree() * sin.minpoly().degree() + + from itertools import count + + for n in count(2): + xN *= x + + c = xN.real() + s = xN.imag() + + if xN.real().contains_zero() or xN.imag().contains_zero(): + c, s = cos, sin + for i in range(n - 1): + c, s = c * cos - s * sin, s * cos + c * sin + + if c == 0 or s == 0: + return True + + CBF = ComplexBallField(CBF.precision() * 2) + x = CBF(cos) + CBF.gen(0) * CBF(sin) + xN = x**n + + from math import log + + if n / (2.0 * log(log(n)) + 3 / log(log(n))) > 2 * degree_bound: + return False + + +def acos(cos_angle, numerical=False): + r""" + Return the arccosine of ``cos_angle`` as a multiple of 2π, i.e., as a value + between 0 and 1/2. + + INPUT: + + - ``cos_angle`` -- a floating point number, the cosine of an angle + + - ``numerical`` -- a boolean (default: ``False``); whether to return a + numerical approximation of the arccosine or try to reconstruct an exact + rational value for the arccosine (in radians.) + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import acos + + sage: acos(1) + 0 + sage: acos(.5) + 1/6 + sage: acos(0) + 1/4 + sage: acos(-.5) + 1/3 + sage: acos(-1) + 1/2 + + sage: acos(.25) + Traceback (most recent call last): + ... + NotImplementedError: cannot recover a rational angle from these numerical results + sage: acos(.25, numerical=True) + 0.2097846883724169 + + """ + import math + + angle = math.acos(cos_angle) / (2 * math.pi) + + assert 0 <= angle <= 0.5 + + if numerical: + return angle + + # fast and dirty way using floating point approximation + from sage.all import RR + + angle_rat = RR(angle).nearby_rational(0.00000001) + if angle_rat.denominator() > 256: + raise NotImplementedError( + "cannot recover a rational angle from these numerical results" + ) + return angle_rat + + +def angle(u, v, numerical=False): + r""" + Return the angle between the vectors ``u`` and ``v`` divided by `2 \pi`. + + INPUT: + + - ``u``, ``v`` - vectors in the plane + + - ``numerical`` - boolean (default: ``False``), whether to return floating + point numbers + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import angle + + As the implementation is dirty, we at least check that it works for all + denominator up to 20:: + + sage: u = vector((AA(1),AA(0))) + sage: for n in xsrange(1,20): # long time (1.5s) + ....: for k in xsrange(1,n): + ....: v = vector((AA(cos(2*k*pi/n)), AA(sin(2*k*pi/n)))) + ....: assert angle(u,v) == k/n + + The numerical version (working over floating point numbers):: + + sage: import math + sage: u = (1, 0) + sage: for n in xsrange(1,20): + ....: for k in xsrange(1,n): + ....: a = 2 * k * math.pi / n + ....: v = (math.cos(a), math.sin(a)) + ....: assert abs(angle(u,v,numerical=True) * 2 * math.pi - a) < 1.e-10 + + If the angle is not rational, then the method returns an element in the real + lazy field:: + + sage: v = vector((AA(sqrt(2)), AA(sqrt(3)))) + sage: a = angle(u, v) + Traceback (most recent call last): + ... + NotImplementedError: cannot recover a rational angle from these numerical results + sage: a = angle(u, v, numerical=True) + sage: a # abs tol 1e-14 + 0.14102355421224375 + sage: exp(2*pi.n()*CC(0,1)*a) + 0.632455532033676 + 0.774596669241483*I + sage: v / v.norm() + (0.6324555320336758?, 0.774596669241484?) + + """ + import math + + u0 = float(u[0]) + u1 = float(u[1]) + v0 = float(v[0]) + v1 = float(v[1]) + + cos_uv = (u0 * v0 + u1 * v1) / math.sqrt((u0 * u0 + u1 * u1) * (v0 * v0 + v1 * v1)) + if cos_uv < -1.0: + assert cos_uv > -1.0000001 + cos_uv = -1.0 + elif cos_uv > 1.0: + assert cos_uv < 1.0000001 + cos_uv = 1.0 + + angle = acos(cos_uv, numerical=numerical) + return 1 - angle if u0 * v1 - u1 * v0 < 0 else angle + + +def ccw(v, w): + r""" + Return a positive number if the turn from ``v`` to ``w`` is + counterclockwise, a negative number if it is clockwise, and zero if the two + vectors are collinear. + + .. NOTE:: + + This function is sometimes also referred to as the wedge product or + simply the determinant. We chose the more customary name ``ccw`` from + computational geometry here. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import ccw + sage: ccw((1, 0), (0, 1)) + 1 + sage: ccw((1, 0), (-1, 0)) + 0 + sage: ccw((1, 0), (0, -1)) + -1 + sage: ccw((1, 0), (1, 0)) + 0 + + """ + return v[0] * w[1] - v[1] * w[0] + + +def is_parallel(v, w): + r""" + Return whether the vectors ``v`` and ``w`` are parallel (but not + anti-parallel.) + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import is_parallel + sage: is_parallel((0, 1), (0, 1)) + True + sage: is_parallel((0, 1), (0, 2)) + True + sage: is_parallel((0, 1), (0, -2)) + False + sage: is_parallel((0, 1), (0, 0)) + False + sage: is_parallel((0, 1), (1, 0)) + False + + TESTS:: + + sage: V = QQ**2 + + sage: is_parallel(V((0,1)), V((0,2))) + True + sage: is_parallel(V((1,-1)), V((2,-2))) + True + sage: is_parallel(V((4,-2)), V((2,-1))) + True + sage: is_parallel(V((1,2)), V((2,4))) + True + sage: is_parallel(V((0,2)), V((0,1))) + True + + sage: is_parallel(V((1,1)), V((1,2))) + False + sage: is_parallel(V((1,2)), V((2,1))) + False + sage: is_parallel(V((1,2)), V((1,-2))) + False + sage: is_parallel(V((1,2)), V((-1,-2))) + False + sage: is_parallel(V((2,-1)), V((-2,1))) + False + + """ + if ccw(v, w) != 0: # vectors are not collinear return False - return v[0] * w[0] + v[1] * w[1] > 0 + return v[0] * w[0] + v[1] * w[1] > 0 + + +def is_anti_parallel(v, w): + r""" + Return whether the vectors ``v`` and ``w`` are anti-parallel, i.e., whether + ``v`` and ``-w`` are parallel. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import is_anti_parallel + sage: V = QQ**2 + + sage: is_anti_parallel(V((0,1)), V((0,-2))) + True + sage: is_anti_parallel(V((1,-1)), V((-2,2))) + True + sage: is_anti_parallel(V((4,-2)), V((-2,1))) + True + sage: is_anti_parallel(V((-1,-2)), V((2,4))) + True + + sage: is_anti_parallel(V((1,1)), V((1,2))) + False + sage: is_anti_parallel(V((1,2)), V((2,1))) + False + sage: is_anti_parallel(V((0,2)), V((0,1))) + False + sage: is_anti_parallel(V((1,2)), V((1,-2))) + False + sage: is_anti_parallel(V((1,2)), V((-1,2))) + False + sage: is_anti_parallel(V((2,-1)), V((-2,-1))) + False + + """ + return is_parallel(v, -w) + + +def line_intersection(l, m): + r""" + Return the point of intersection between the lines ``l`` and ``m``. If the + lines do not have a single point of intersection, returns None. + + INPUT: + + - ``l`` -- a line in the plane given by two points (as vectors) in the plane + + - ``m`` -- a line in the plane given by two points (as vectors) in the plane + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import line_intersection + sage: line_intersection((vector((-1, 0)), vector((1, 0))), (vector((0, -1)), vector((0, 1)))) + (0, 0) + + Parallel lines have no single point of intersection:: + + sage: line_intersection((vector((-1, 0)), vector((1, 0))), (vector((-1, 1)), vector((1, 1)))) + + Identical lines have no single point of intersection:: + + sage: line_intersection((vector((-1, 0)), vector((1, 0))), (vector((-2, 0)), vector((2, 0)))) + + """ + Δl = l[1] - l[0] + Δm = m[1] - m[0] + + # We solve the linear system determining the time when l[0] + t * Δl hits + # m, i.e., l[0] + t Δl == m[0] + s Δm. + a, b, c, d = Δl[0], -Δm[0], Δl[1], -Δm[1] + rhs = m[0] - l[0] + + det = a * d - b * c + if det == 0: + # The lines are parallel + return None + + # Solve the linear system. We only need t (and not s.) + t = (d * rhs[0] - b * rhs[1]) / det + + return l[0] + t * Δl + + +def time_on_ray(p, direction, q): + if direction[0]: + dim = 0 + else: + dim = 1 + + delta = q[dim] - p[dim] + length = direction[dim] + if length < 0: + delta *= -1 + length *= -1 + + return delta, length + + +def time_on_segment(segment, p): + if p == segment[0]: + return 0 + if not is_parallel(p - segment[0], segment[1] - segment[0]): + return None + + delta, length = time_on_ray(segment[0], segment[1] - segment[0], p) + if delta > length: + return None + if delta < 0: + return None + + return delta / length + + +def ray_segment_intersection(p, direction, segment): + r""" + Return the intersection of the ray from ``p`` in ``direction`` with + ``segment``. + + If the segment and the ray intersect in a point, return that point as a + vector. + + If the segment and the ray overlap in a segment, return the end points of + that segment (in order.) + + If the segment and the ray do not intersect, return ``None``. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import ray_segment_intersection + sage: V = QQ**2 + + sage: ray_segment_intersection(V((0, 0)), V((1, 0)), (V((1, -1)), V((1, 1)))) + (1, 0) + sage: ray_segment_intersection(V((0, 0)), V((1, 0)), (V((0, 0)), V((1, 0)))) + ((0, 0), (1, 0)) + sage: ray_segment_intersection(V((0, 0)), V((1, 0)), (V((1, 0)), V((2, 0)))) + ((1, 0), (2, 0)) + sage: ray_segment_intersection(V((0, 0)), V((1, 0)), (V((-1, 0)), V((1, 0)))) + ((0, 0), (1, 0)) + sage: ray_segment_intersection(V((0, 0)), V((1, 0)), (V((-1, -1)), V((-1, 1)))) + + TESTS:: + + sage: ray_segment_intersection(V((0, 0)), V((5, 1)), (V((3, 2)), V((3, 3)))) + + """ + intersection = line_intersection((p, p + direction), segment) + + if intersection is None: + # ray and segment are parallel. + if ccw(direction, segment[0] - p) != 0: + # ray and segment are not on the same line + return None + + t0, length = time_on_ray(p, direction, segment[0]) + t1, _ = time_on_ray(p, direction, segment[1]) + + if t1 < t0: + t0, t1 = t1, t0 + + if t1 < 0: + return None + + if t1 == 0: + return p + + t0 /= length + t1 /= length + + if t0 < 0: + return (p, p + t1 * direction) + + return (p + t0 * direction, p + t1 * direction) + + if time_on_ray(p, direction, intersection)[0] < 0: + return None + + if ccw(segment[0] - p, direction) * ccw(segment[1] - p, direction) > 0: + return None + + return intersection + + +def is_box_intersecting(b, c): + r""" + Return whether the (bounding) boxes ``b`` and ``c`` intersect. + + INPUT: + + - ``b`` -- a pair of corners + - ``c`` -- a pair of corners + + OUTPUT: + + - ``0`` -- do not intersect + - ``1`` -- intersect in a point + - ``2`` -- intersect in a segment + - ``3`` -- intersection has interior points + + """ + + def normalize(b): + x_inverted = b[0][0] > b[1][0] + y_inverted = b[0][1] > b[1][1] + + return ( + (b[1][0] if x_inverted else b[0][0], b[1][1] if y_inverted else b[0][1]), + (b[0][0] if x_inverted else b[1][0], b[0][1] if y_inverted else b[1][1]), + ) + + b = normalize(b) + c = normalize(c) + + if b[0][0] > c[1][0]: + return 0 + if c[0][0] > b[1][0]: + return 0 + if b[0][1] > c[1][1]: + return 0 + if c[0][1] > b[1][1]: + return 0 + + # TODO: This is not the full algorithm yet. + return 3 + + +def is_segment_intersecting(s, t): + r""" + Return whether the segments ``s`` and ``t`` intersect. + + INPUT: + + - ``s`` -- a segment given as a pair of endpoints (given as vectors in the plane.) + + - ``t`` -- a segment given as a pair of endpoints (given as vectors in the plane.) + + OUTPUT: + + - ``0`` - do not intersect + - ``1`` - exactly one endpoint in common + - ``2`` - non-trivial intersection + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import is_segment_intersecting + sage: is_segment_intersecting((vector((0, 0)), vector((1, 0))), (vector((0, 1)), vector((0, 3)))) + 0 + sage: is_segment_intersecting((vector((0, 0)), vector((1, 0))), (vector((0, 0)), vector((0, 3)))) + 1 + sage: is_segment_intersecting((vector((0, 0)), vector((1, 0))), (vector((0, -1)), vector((0, 3)))) + 2 + sage: is_segment_intersecting((vector((-1, -1)), vector((1, 1))), (vector((0, 0)), vector((2, 2)))) + 2 + sage: is_segment_intersecting((vector((-1, -1)), vector((1, 1))), (vector((1, 1)), vector((2, 2)))) + 1 + + """ + if not is_box_intersecting(s, t): + return 0 + + Δs = s[1] - s[0] + turn_from_s = ccw(Δs, t[0] - s[0]) * ccw(Δs, t[1] - s[0]) + if turn_from_s > 0: + # Both endpoints of t are on the same side of s + return 0 + + Δt = t[1] - t[0] + turn_from_t = ccw(Δt, s[0] - t[0]) * ccw(Δt, s[1] - t[0]) + if turn_from_t > 0: + # Both endpoints of s are on the same side of t + return 0 + + if ccw(Δs, Δt) == 0: + # Segments are parallel + if is_anti_parallel(Δs, Δt): + # Ensure segments are oriented the same way. + t = (t[1], t[0]) + Δt = -Δt + + time_to_t0, length = time_on_ray(s[0], Δs, t[0]) + time_to_t1, _ = time_on_ray(s[0], Δs, t[1]) + + if time_to_t0 < 0 and time_to_t1 < 0: + # Both endpoints of t are earlier than s + return 0 + + if time_to_t0 > length and time_to_t1 > length: + # Both endpoints of t are later than s + return 0 + + if time_to_t0 == length: + return 1 + + if time_to_t1 == 0: + return 1 + + return 2 + + if turn_from_t == 0 and turn_from_s == 0: + return 1 + + return 2 + + +def is_between(begin, end, v): + r""" + Check whether the vector ``v`` is strictly in the sector formed by the vectors + ``begin`` and ``end`` (in counter-clockwise order). + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import is_between + sage: is_between((1, 0), (1, 1), (2, 1)) + True + + sage: from itertools import product + sage: vecs = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)] + sage: for (i, vi), (j, vj), (k, vk) in product(enumerate(vecs), repeat=3): + ....: assert is_between(vi, vj, vk) == ((i == j and i != k) or i < k < j or k < j < i or j < i < k), ((i, vi), (j, vj), (k, vk)) + """ + if begin[0] * end[1] > end[0] * begin[1]: + # positive determinant + # [ begin[0] end[0] ]^-1 = [ end[1] -end[0] ] + # [ begin[1] end[1] ] [-begin[1] begin[0] ] + # v[0] * end[1] - end[0] * v[1] > 0 + # - v[0] * begin[1] + begin[0] * v[1] > 0 + return end[1] * v[0] > end[0] * v[1] and begin[0] * v[1] > begin[1] * v[0] + elif begin[0] * end[1] == end[0] * begin[1]: + # aligned vector + if begin[0] * end[0] >= 0 and begin[1] * end[1] >= 0: + return ( + v[0] * begin[1] != v[1] * begin[0] + or v[0] * begin[0] < 0 + or v[1] * begin[1] < 0 + ) + else: + return begin[0] * v[1] > begin[1] * v[0] + else: + # negative determinant + # [ end[0] begin[0] ]^-1 = [ begin[1] -begin[0] ] + # [ end[1] begin[1] ] [-end[1] end[0] ] + # v[0] * begin[1] - begin[0] * v[1] > 0 + # - v[0] * end[1] + end[0] * v[1] > 0 + return begin[1] * v[0] < begin[0] * v[1] or end[0] * v[1] < end[1] * v[0] + + +def solve(x, u, y, v): + r""" + Return (a,b) so that: x + au = y + bv + + INPUT: + + - ``x``, ``u``, ``y``, ``v`` -- two dimensional vectors + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import solve + sage: K. = NumberField(x^2 - 2, embedding=AA(2).sqrt()) + sage: V = VectorSpace(K,2) + sage: x = V((1,-sqrt2)) + sage: y = V((1,1)) + sage: a = V((0,1)) + sage: b = V((-sqrt2, sqrt2+1)) + sage: u = V((0,1)) + sage: v = V((-sqrt2, sqrt2+1)) + sage: a, b = solve(x,u,y,v) + sage: x + a*u == y + b*v + True + + sage: u = V((1,1)) + sage: v = V((1,sqrt2)) + sage: a, b = solve(x,u,y,v) + sage: x + a*u == y + b*v + True + + """ + d = -u[0] * v[1] + u[1] * v[0] + if d.is_zero(): + raise ValueError("parallel vectors") + a = v[1] * (x[0] - y[0]) + v[0] * (y[1] - x[1]) + b = u[1] * (x[0] - y[0]) + u[0] * (y[1] - x[1]) + return (a / d, b / d) + + +def projectivization(x, y, signed=True, denominator=None): + r""" + Return a simplified version of the projective coordinate [x: y]. + + If ``signed`` (the default), the second coordinate is made non-negative; + otherwise the coordinates keep their signs. + + If ``denominator`` is ``False``, returns [x/y: 1] up to sign. Otherwise, + the returned coordinates have no denominator and no non-unit gcd. + + TESTS:: + + sage: from flatsurf.geometry.euclidean import projectivization + + sage: projectivization(2/3, -3/5, signed=True, denominator=True) + (10, -9) + sage: projectivization(2/3, -3/5, signed=False, denominator=True) + (-10, 9) + sage: projectivization(2/3, -3/5, signed=True, denominator=False) + (10/9, -1) + sage: projectivization(2/3, -3/5, signed=False, denominator=False) + (-10/9, 1) + + sage: projectivization(-1/2, 0, signed=True, denominator=True) + (-1, 0) + sage: projectivization(-1/2, 0, signed=False, denominator=True) + (1, 0) + sage: projectivization(-1/2, 0, signed=True, denominator=False) + (-1, 0) + sage: projectivization(-1/2, 0, signed=False, denominator=False) + (1, 0) + + """ + from sage.all import Sequence + + parent = Sequence([x, y]).universe() + if y: + z = x / y + if denominator is True or (denominator is None and hasattr(z, "denominator")): + d = parent(z.denominator()) + else: + d = parent(1) + if signed and y < 0: + d *= -1 + return (z * d, d) + elif signed and x < 0: + return (parent(-1), parent(0)) + else: + return (parent(1), parent(0)) + + +def slope(a, rotate=1): + r""" + Return either ``1`` (positive slope) or ``-1`` (negative slope). + + If ``rotate`` is set to 1 then consider the edge as if it was rotated counterclockwise + infinitesimally. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import slope + sage: slope((1, 1)) + 1 + sage: slope((-1, 1)) + -1 + sage: slope((-1, -1)) + 1 + sage: slope((1, -1)) + -1 + + sage: slope((1, 0)) + 1 + sage: slope((0, 1)) + -1 + sage: slope((-1, 0)) + 1 + sage: slope((0, -1)) + -1 + + sage: slope((1, 0), rotate=-1) + -1 + sage: slope((0, 1), rotate=-1) + 1 + sage: slope((-1, 0), rotate=-1) + -1 + sage: slope((0, -1), rotate=-1) + 1 + + sage: slope((1, 0), rotate=0) + 0 + sage: slope((0, 1), rotate=0) + 0 + sage: slope((-1, 0), rotate=0) + 0 + sage: slope((0, -1), rotate=0) + 0 + + sage: slope((0, 0)) + Traceback (most recent call last): + ... + ValueError: zero vector + """ + x, y = a + if not x and not y: + raise ValueError("zero vector") + if (x > 0 and y > 0) or (x < 0 and y < 0): + return 1 + elif (x > 0 and y < 0) or (x < 0 and y > 0): + return -1 + if rotate == 0: + return 0 + if rotate == 1: + return 1 if x else -1 + if rotate == -1: + return 1 if y else -1 + raise ValueError("invalid argument rotate={}".format(rotate)) + + +class OrientedSegment: + r""" + A segment in the Euclidean plane with an explicit orientation. + + .. NOTE:: + + SageMath provides polyhedra that implement more functionality than this + object. However, these polyhedra are notoriously slow for computations + in the Euclidean plane since they were (apparently) never optimized for + computations in low dimensions. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S + OrientedSegment((0, 0), (1, 1)) + + """ + + def __init__(self, a, b): + # TODO: Force a common base ring. + from sage.all import vector + + self._a = vector(a, immutable=True) + self._b = vector(b, immutable=True) + + def __hash__(self): + r""" + Return a hash value for this segment that is compatible with equality. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: hash(S) == hash(S) + True + + """ + return hash((self._a, self._b)) + + def __eq__(self, other): + r""" + Return whether this segment is indistinguishable from ``other``. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S == S + True + + """ + if not isinstance(other, OrientedSegment): + return False + return self._a == other._a and self._b == other._b + + def __ne__(self, other): + return not (self == other) + + def __repr__(self): + return f"OrientedSegment({self._a}, {self._b})" + + def as_polyhedron(self): + r""" + Return this segment as a SageMath polyhedron. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S.as_polyhedron() + A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices + + """ + from sage.all import Polyhedron + + return Polyhedron(vertices=[self._a, self._b]) + + def _parametrize(self, w): + r""" + Return a t such that `w = a + t (b-a)`. + + Return ``None`` if no such ``t`` exists. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S._parametrize((0, 0)) + 0 + sage: S._parametrize((1, 1)) + 1 + sage: S._parametrize((0, 1)) + + """ + from sage.all import vector + + w = vector(w) + + v = self._b - self._a + wa = w - self._a + if v[0]: + t = wa[0] / v[0] + else: + t = wa[1] / v[1] + + if self._a + t * v != w: + return None + + return t + + def is_subset(self, other): + r""" + Return whether this segment is a subset of ``other``. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S.is_subset(S) + True + + """ + if isinstance(other, OrientedSegment): + s = other._parametrize(self._a) + if s is None: + return False + + t = other._parametrize(self._b) + if t is None: + return False + + return 0 <= s <= 1 and 0 <= t <= 1 + else: + raise NotImplementedError + + def contains_point(self, point): + r""" + Return whether this segment contains ``point``. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S.contains_point((0, 0)) + True + sage: S.contains_point((-1, -1)) + False + sage: S.contains_point((-1, 0)) + False + + """ + t = self._parametrize(point) + if t is None: + return False + return 0 <= t <= 1 + + def left_half_space(self): + r""" + Return the half space to the left of the line extending this segment. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S.left_half_space() + {-x + y ≥ 0} + + """ + v = self._b - self._a + + return HalfSpace(v[1] * self._a[0] - v[0] * self._a[1], -v[1], v[0]) + + def translate(self, delta): + r""" + Return this segment translated by the vector ``delta``. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S.translate((1, 2)) + OrientedSegment((1, 2), (2, 3)) + + """ + from sage.all import vector + + delta = vector(delta) + + return OrientedSegment(self._a + delta, self._b + delta) + + def plot(self, **kwargs): + r""" + Return a graphical representation of this segment. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S.plot() + Graphics object consisting of 2 graphics primitives + + """ + return self.as_polyhedron().plot(**kwargs) + + def __neg__(self): + r""" + Return this segment with the endpoints swapped. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: -S + OrientedSegment((1, 1), (0, 0)) + + """ + return OrientedSegment(self._b, self._a) + + def intersection(self, other): + r""" + Return the intersection of this segment and ``other``. + + Return ``None`` if the objects do not intersect. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S.intersection(S) == S + True + + sage: T = OrientedSegment((0, 0), (2, 1)) + sage: S.intersection(T) + (0, 0) + + """ + # TODO: Test that everything can intersect with everything else and that the orientation of self is preserved in the intersection. + # TODO: Deprecate intersection functions (and everything else) defined at the top of this file. + if isinstance(other, OrientedSegment): + # TODO: Rewrite using line intersection. + intersecting = is_segment_intersecting( + (self._a, self._b), (other._a, other._b) + ) + if not intersecting: + return None + + intersection = line_intersection((self._a, self._b), (other._a, other._b)) + if intersection is not None: + return intersection + + s = self._parametrize(other._a) + t = self._parametrize(other._b) + + if t < s: + s, t = t, s + + if s < 0: + s = 0 + + if t > 1: + t = 1 + + assert 0 <= s < t <= 1 + + v = self._b - self._a + return OrientedSegment(self._a + s * v, self._a + t * v) + else: + raise NotImplementedError("cannot intersect a segment with this object yet") + + def start(self): + r""" + Return the starting endpoint of this segment. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S.start() + (0, 0) + + """ + return self._a + + def end(self): + r""" + Return the final endpoint of this segment. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S.end() + (1, 1) + + """ + return self._b + + def line(self): + r""" + Return a line containing this segment. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S.line() + {-x + y = 0} + + """ + return Ray(self.start(), self.end() - self.start()).line() + + def midpoint(self): + r""" + Return the barycenter of this segment. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: S = OrientedSegment((0, 0), (1, 1)) + sage: S.midpoint() + (1/2, 1/2) + + """ + from sage.all import vector + + return vector((self.start() + self.end()) / 2, immutable=True) + + +class HalfSpace: + r""" + The half plane in the Euclidean plane given by `bx + cy + a ≥ 0`. + + .. NOTE:: + + SageMath provides polyhedra that implement more functionality than this + object. However, these polyhedra are notoriously slow for computations + in the Euclidean plane since they were (apparently) never optimized for + computations in low dimensions. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import HalfSpace + sage: H = HalfSpace(1, 2, 3) + sage: H + {2 * x + 3 * y ≥ -1} + + """ + + def __init__(self, a, b, c): + # TODO: Force a common base ring. + if not b and not c: + raise ValueError("b and c must not both be zero") + + self._a = a + self._b = b + self._c = c + + def __hash__(self): + r""" + Return a hash value for this half space that is compatible with equality. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import HalfSpace + sage: H = HalfSpace(0, 1, 2) + sage: hash(H) == hash(H) + True + sage: H = HalfSpace(1, 0, 2) + sage: hash(H) == hash(H) + True + sage: H = HalfSpace(1, 2, 0) + sage: hash(H) == hash(H) + True + + """ + if self._a: + return hash((self._b / self._a, self._c / self._a)) + return hash((self._a / self._b, self._c / self._b)) + + def __eq__(self, other): + r""" + Return whether this half space is indistinguishable from ``other``. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import HalfSpace + sage: H = HalfSpace(0, 1, 2) + sage: H == H + True + + sage: G = HalfSpace(0, 2, 3) + sage: H == G + False + + sage: G = HalfSpace(0, 2, 4) + sage: H == G + True + + """ + if not isinstance(other, HalfSpace): + return False + + return ( + self._a * other._c == other._a * self._c + and self._b * other._c == other._b * self._c + ) + + def __ne__(self, other): + return not (self == other) + + def __repr__(self): + def render_term(coefficient, variable): + if not coefficient: + return "" + if coefficient == 1: + return variable + if coefficient == -1: + return f"-{variable}" + coefficient = repr(coefficient) + if "+" in coefficient or "-" in coefficient: + coefficient = f"({coefficient})" + return f"{coefficient} * {variable}" + + lhs = [render_term(self._b, "x"), render_term(self._c, "y")] + lhs = [term for term in lhs if term] + + lhs = (" + " if self._c >= 0 else " - ").join(lhs) + + return f"{{{lhs} ≥ {-self._a}}}" + + def as_polyhedron(self): + r""" + Return this half space as a SageMath polyhedron. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import HalfSpace + sage: H = HalfSpace(0, 1, 2) + sage: H.as_polyhedron() + A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex, 1 ray, 1 line + + """ + from sage.all import Polyhedron + + return Polyhedron(ieqs=[(self._a, self._b, self._c)]) + + @staticmethod + def compact_intersection(*half_spaces): + r""" + Return the intersection of the ``half_spaces`` as the set of segments + on the boundary of the intersection (in no particular order but + oriented such that the intersection is on the left of each segment.) + + Return ``None`` if the intersection is empty. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import HalfSpace + sage: HalfSpace.compact_intersection( + ....: HalfSpace(1, 1, 0), + ....: HalfSpace(1, -1, 0), + ....: HalfSpace(1, 0, 1), + ....: HalfSpace(1, 0, -1)) + [OrientedSegment((-1, -1), (1, -1)), + OrientedSegment((-1, 1), (-1, -1)), + OrientedSegment((1, 1), (-1, 1)), + OrientedSegment((1, -1), (1, 1))] + + """ + from sage.all import Polyhedron + + intersection = Polyhedron(ieqs=[(h._a, h._b, h._c) for h in half_spaces]) + + if intersection.is_empty(): + return None + + if not intersection.is_compact(): + raise ValueError("half_spaces must have a bounded intersection") + + interior_point = intersection.interior().an_element() + + segments = [segment.as_polyhedron() for segment in intersection.faces(1)] + + segments = [ + OrientedSegment(*[vertex.vector() for vertex in segment.vertices()]) + for segment in segments + ] + + # Orient segments such that the interior is on the left hand side. + segments = [ + segment + if segment.left_half_space().contains_point(interior_point) + else -segment + for segment in segments + ] + + return segments + + def contains_point(self, point): + r""" + Return whether the ``point`` is in this set. + EXAMPLES:: -def is_anti_parallel(v, w): + sage: from flatsurf.geometry.euclidean import HalfSpace + sage: H = HalfSpace(0, 1, 2) + sage: H.contains_point((0, 0)) + True + + """ + return point[0] * self._b + point[1] * self._c + self._a >= 0 + + +class OrientedLine: r""" - Return whether the vectors ``v`` and ``w`` are anti-parallel, i.e., whether - ``v`` and ``-w`` are parallel. + The line in the Euclidean plane satisfying `bx + cy + a = 0` oriented such + that `bx + cy + a ≥ 0` is to the left of the line. - EXAMPLES:: + .. NOTE:: - sage: from flatsurf.geometry.euclidean import is_anti_parallel - sage: V = QQ**2 + SageMath provides polyhedra that implement more functionality than this + object. However, these polyhedra are notoriously slow for computations + in the Euclidean plane since they were (apparently) never optimized for + computations in low dimensions. - sage: is_anti_parallel(V((0,1)), V((0,-2))) - True - sage: is_anti_parallel(V((1,-1)), V((-2,2))) - True - sage: is_anti_parallel(V((4,-2)), V((-2,1))) - True - sage: is_anti_parallel(V((-1,-2)), V((2,4))) - True + EXAMPLES:: - sage: is_anti_parallel(V((1,1)), V((1,2))) - False - sage: is_anti_parallel(V((1,2)), V((2,1))) - False - sage: is_anti_parallel(V((0,2)), V((0,1))) - False - sage: is_anti_parallel(V((1,2)), V((1,-2))) - False - sage: is_anti_parallel(V((1,2)), V((-1,2))) - False - sage: is_anti_parallel(V((2,-1)), V((-2,-1))) - False + sage: from flatsurf.geometry.euclidean import OrientedLine + sage: L = OrientedLine(1, 2, 3) + sage: L + {2 * x + 3 * y = -1} """ - return is_parallel(v, -w) + def __init__(self, a, b, c): + self._half_space = HalfSpace(a, b, c) -def line_intersection(p1, p2, q1, q2): - r""" - Return the point of intersection between the line joining p1 to p2 - and the line joining q1 to q2. If the lines do not have a single point of - intersection, we return None. Here p1, p2, q1 and q2 should be vectors in - the plane. - """ - if ccw(p2 - p1, q2 - q1) == 0: - return None + def __repr__(self): + return repr(self._half_space).replace("≥", "=") + + def __hash__(self): + return hash(self._half_space) + + def __eq__(self, other): + if not isinstance(other, OrientedLine): + return False + return self._half_space == other._half_space + + def __ne__(self, other): + return not (self == other) + + def as_polyhedron(self): + r""" + Return this line as a SageMath polyhedron. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedLine + sage: L = OrientedLine(1, 2, 3) + sage: L.as_polyhedron() + A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line + + """ + return self._half_space.as_polyhedron().faces(1)[0].as_polyhedron() + + def __neg__(self): + return OrientedLine( + -self._half_space._a, -self._half_space._b, -self._half_space._c + ) + + def intersection(self, other): + r""" + Return the intersection of this line with the object ``other``. + + Return ``None`` if they do not intersect. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedLine + sage: L = OrientedLine(1, 2, 3) + sage: M = OrientedLine(1, 2, 4) + sage: L.intersection(M) + (-1/2, 0) + + """ + if isinstance(other, OrientedLine): + if self == other: + return self + if self == -other: + return self + return line_intersection(self._points(), other._points()) + if isinstance(other, OrientedSegment): + intersection = self.intersection(other.line()) + if intersection is None: + return None + if intersection == self: + return other + if other.contains_point(intersection): + return intersection + return None + raise NotImplementedError("cannot intersect a line with this object yet") + + def contains_point(self, point): + r""" + Return whether ``point`` is on this line. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import OrientedLine + sage: L = OrientedLine(1, 2, 3) + sage: L.contains_point((-1/2, 0)) + True + + """ + return ( + self._half_space._a + + point[0] * self._half_space._b + + point[1] * self._half_space._c + == 0 + ) - # Since the wedge product is non-zero, the following is invertible: - from sage.all import matrix + def _points(self): + r""" + Return a pair of points on this line. - m = matrix([[p2[0] - p1[0], q1[0] - q2[0]], [p2[1] - p1[1], q1[1] - q2[1]]]) - return p1 + (m.inverse() * (q1 - p1))[0] * (p2 - p1) + EXAMPLES:: + sage: from flatsurf.geometry.euclidean import OrientedLine + sage: L = OrientedLine(1, 2, 3) + sage: L._points() + ((0, -1/3), (1, -1)) -def is_segment_intersecting(e1, e2): + """ + a, b, c = self._half_space._a, self._half_space._b, self._half_space._c + + from sage.all import vector + + if not c: + assert b + return vector((-a / b, 0)), vector((-a / b, 1)) + + return vector((0, -a / c)), vector((1, (-a - b) / c)) + + +# TODO: There is also another Ray from the origin in ray.py +class Ray: r""" - Return whether the segments ``e1`` and ``e2`` intersect. + The infinite ray in the Euclidean plane from a finite point towards a direction. - OUTPUT: + .. NOTE:: - - ``0`` - do not intersect - - ``1`` - one endpoint in common - - ``2`` - non-trivial intersection + SageMath provides polyhedra that implement more functionality than this + object. However, these polyhedra are notoriously slow for computations + in the Euclidean plane since they were (apparently) never optimized for + computations in low dimensions. EXAMPLES:: - sage: from flatsurf.geometry.euclidean import is_segment_intersecting - sage: is_segment_intersecting(((0,0),(1,0)),((0,1),(0,3))) - 0 - sage: is_segment_intersecting(((0,0),(1,0)),((0,0),(0,3))) - 1 - sage: is_segment_intersecting(((0,0),(1,0)),((0,-1),(0,3))) - 2 - sage: is_segment_intersecting(((-1,-1),(1,1)),((0,0),(2,2))) - 2 - sage: is_segment_intersecting(((-1,-1),(1,1)),((1,1),(2,2))) - 1 + sage: from flatsurf.geometry.euclidean import Ray + sage: R = Ray((0, 0), (-1, 0)) + sage: R + (0, 0) + λ (-1, 0) """ - if e1[0] == e1[1] or e2[0] == e2[1]: - raise ValueError("degenerate segments") - elts = [e[i][j] for e in (e1, e2) for i in (0, 1) for j in (0, 1)] + def __init__(self, point, direction): + from sage.all import vector + + self._point = vector(point, immutable=True) + self._direction = vector(direction, immutable=True) + + def _normalized_direction(self): + r""" + Return the direction of this ray, normalized up to scaling. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import Ray + sage: R = Ray((0, 0), (-2, 0)) + sage: R._normalized_direction() + (-1, 0) + sage: R = Ray((0, 0), (2, 0)) + sage: R._normalized_direction() + (1, 0) + sage: R = Ray((0, 0), (-2, 3)) + sage: R._normalized_direction() + (-2/3, 1) + sage: R = Ray((0, 0), (2, -3)) + sage: R._normalized_direction() + (2/3, -1) + + """ + from sage.all import vector, sgn + + if not self._direction[1]: + return vector((sgn(self._direction[0]), 0), immutable=True) + + return vector( + ( + sgn(self._direction[0]) * abs(self._direction[0] / self._direction[1]), + sgn(self._direction[1]), + ), + immutable=True, + ) - from sage.structure.element import get_coercion_model + def __repr__(self): + return f"{self._point} + λ {self._normalized_direction()}" - cm = get_coercion_model() + def __hash__(self): + return hash((self._point, self._normalized_direction())) - base_ring = cm.common_parent(*elts) - if isinstance(base_ring, type): - from sage.structure.coerce import py_scalar_parent + def __eq__(self, other): + r""" + Return whether this ray is indistinguishable from ``other``. + """ + if not isinstance(other, Ray): + return False + return ( + self._point == other._point + and self._normalized_direction() == other._normalized_direction() + ) - base_ring = py_scalar_parent(base_ring) + def __ne__(self, other): + return not (self == other) - from sage.all import matrix + def as_polyhedron(self): + r""" + Return a representation of this ray as a SageMath polyhedron. - m = matrix(base_ring, 3) - xs1, ys1 = map(base_ring, e1[0]) - xt1, yt1 = map(base_ring, e1[1]) - xs2, ys2 = map(base_ring, e2[0]) - xt2, yt2 = map(base_ring, e2[1]) + EXAMPLES:: - m[0] = [xs1, ys1, 1] - m[1] = [xt1, yt1, 1] - m[2] = [xs2, ys2, 1] - s0 = m.det() - m[2] = [xt2, yt2, 1] - s1 = m.det() - if (s0 > 0 and s1 > 0) or (s0 < 0 and s1 < 0): - # e2 stands on one side of the line generated by e1 - return 0 + sage: from flatsurf.geometry.euclidean import Ray + sage: R = Ray((0, 0), (-2, 0)) + sage: R.as_polyhedron() + A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and 1 ray - m[0] = [xs2, ys2, 1] - m[1] = [xt2, yt2, 1] - m[2] = [xs1, ys1, 1] - s2 = m.det() - m[2] = [xt1, yt1, 1] - s3 = m.det() - if (s2 > 0 and s3 > 0) or (s2 < 0 and s3 < 0): - # e1 stands on one side of the line generated by e2 - return 0 + """ + from sage.all import Polyhedron - if s0 == 0 and s1 == 0: - assert s2 == 0 and s3 == 0 - if xt1 < xs1 or (xt1 == xs1 and yt1 < ys1): - xs1, xt1 = xt1, xs1 - ys1, yt1 = yt1, ys1 - if xt2 < xs2 or (xt2 == xs2 and yt2 < ys2): - xs2, xt2 = xt2, xs2 - ys2, yt2 = yt2, ys2 + return Polyhedron(vertices=[self._point], rays=[self._direction]) - if xs1 == xt1 == xs2 == xt2: - xs1, xt1, xs2, xt2 = ys1, yt1, ys2, yt2 + def contains_point(self, point): + r""" + Return whether the Euclidean ``point`` is contained in this ray. - assert xs1 < xt1 and xs2 < xt2, (xs1, xt1, xs2, xt2) + EXAMPLES:: - if (xs2 > xt1) or (xt2 < xs1): - return 0 # no intersection - elif (xs2 == xt1) or (xt2 == xs1): - return 1 # one endpoint in common - else: - assert ( - xs1 <= xs2 < xt1 - or xs1 < xt2 <= xt1 - or (xs2 < xs1 and xt2 > xt1) - or (xs2 > xs1 and xt2 < xt1) - ), (xs1, xt1, xs2, xt2) - return 2 # one dimensional - - elif s0 == 0 or s1 == 0: - # treat alignment here - if s2 == 0 or s3 == 0: - return 1 # one endpoint in common - else: - return 2 # intersection in the middle + sage: from flatsurf.geometry.euclidean import Ray + sage: R = Ray((0, 0), (-2, 0)) + sage: R.contains_point((0, 0)) + True + sage: R.contains_point((-2, 0)) + True + sage: R.contains_point((2, 0)) + False - return 2 # middle intersection + """ + t = OrientedSegment(self._point, self._point + self._direction)._parametrize( + point + ) + if t is None: + return False + return t >= 0 + + def intersection(self, other): + r""" + Return the intersection of this ray with the object ``other``. + + Return ``None`` if the objects do not intersect. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import Ray, OrientedSegment + sage: R = Ray((0, 0), (-2, 0)) + sage: R.intersection(OrientedSegment((1, 0), (-2, 0))) + OrientedSegment((0, 0), (-2, 0)) + sage: R.intersection(OrientedSegment((-1, 0), (-2, 1))) + (-1, 0) + sage: R.intersection(OrientedSegment((-1, 1), (-2, -1))) + (-3/2, 0) + + """ + if isinstance(other, OrientedSegment): + line_intersection = self.line().intersection(other) + if line_intersection is None: + return None + if isinstance(line_intersection, OrientedSegment): + s = self._parametrize(line_intersection.start()) + t = self._parametrize(line_intersection.end()) + if s > t: + s, t = t, s + if t < 0: + return None + s = max(s, 0) + if s == t: + from sage.all import vector + + return vector(self._point + s * self._direction) + return OrientedSegment( + self._point + s * self._direction, self._point + t * self._direction + ) + if self.contains_point(line_intersection): + return line_intersection + return None + + raise NotImplementedError("cannot intersect a ray with this object yet") + + def _parametrize(self, point): + return OrientedSegment(self._point, self._point + self._direction)._parametrize( + point + ) + def line(self): + r""" + Return the oriented line containing this ray. -def is_between(e0, e1, f): - r""" - Check whether the vector ``f`` is strictly in the sector formed by the vectors - ``e0`` and ``e1`` (in counter-clockwise order). + EXAMPLES:: - EXAMPLES:: + sage: from flatsurf.geometry.euclidean import Ray, OrientedSegment + sage: R = Ray((0, 0), (-2, 0)) + sage: R.line() + {(-2) * y = 0} - sage: from flatsurf.geometry.euclidean import is_between - sage: is_between((1, 0), (1, 1), (2, 1)) - True + """ + b = -self._direction[1] + c = self._direction[0] + a = -(b * self._point[0] + c * self._point[1]) + return OrientedLine(a, b, c) - sage: from itertools import product - sage: vecs = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)] - sage: for (i, vi), (j, vj), (k, vk) in product(enumerate(vecs), repeat=3): - ....: assert is_between(vi, vj, vk) == ((i == j and i != k) or i < k < j or k < j < i or j < i < k), ((i, vi), (j, vj), (k, vk)) - """ - if e0[0] * e1[1] > e1[0] * e0[1]: - # positive determinant - # [ e0[0] e1[0] ]^-1 = [ e1[1] -e1[0] ] - # [ e0[1] e1[1] ] [-e0[1] e0[0] ] - # f[0] * e1[1] - e1[0] * f[1] > 0 - # - f[0] * e0[1] + e0[0] * f[1] > 0 - return e1[1] * f[0] > e1[0] * f[1] and e0[0] * f[1] > e0[1] * f[0] - elif e0[0] * e1[1] == e1[0] * e0[1]: - # aligned vector - if e0[0] * e1[0] >= 0 and e0[1] * e1[1] >= 0: - return f[0] * e0[1] != f[1] * e0[0] or f[0] * e0[0] < 0 or f[1] * e0[1] < 0 - else: - return e0[0] * f[1] > e0[1] * f[0] - else: - # negative determinant - # [ e1[0] e0[0] ]^-1 = [ e0[1] -e0[0] ] - # [ e1[1] e0[1] ] [-e1[1] e1[0] ] - # f[0] * e0[1] - e0[0] * f[1] > 0 - # - f[0] * e1[1] + e1[0] * f[1] > 0 - return e0[1] * f[0] < e0[0] * f[1] or e1[0] * f[1] < e1[1] * f[0] +class EuclideanDistance_base(Element): + def _acted_upon_(self, other, self_on_left): + return self.scale(other) -def solve(x, u, y, v): - r""" - Return (a,b) so that: x + au = y + bv + def scale(self, scalar): + scalar = self.parent().base_ring()(scalar) - INPUT: + if scalar < 0: + raise ValueError("cannot scale a distance by a negative scalar") - - ``x``, ``u``, ``y``, ``v`` -- two dimensional vectors + return self._scale(scalar) - EXAMPLES:: + def _richcmp_(self, other, op): + from sage.structure.richcmp import op_EQ, op_NE, op_LE, op_LT, op_GE, op_GT - sage: from flatsurf.geometry.euclidean import solve - sage: K. = NumberField(x^2 - 2, embedding=AA(2).sqrt()) - sage: V = VectorSpace(K,2) - sage: x = V((1,-sqrt2)) - sage: y = V((1,1)) - sage: a = V((0,1)) - sage: b = V((-sqrt2, sqrt2+1)) - sage: u = V((0,1)) - sage: v = V((-sqrt2, sqrt2+1)) - sage: a, b = solve(x,u,y,v) - sage: x + a*u == y + b*v - True + if op == op_LT: + return self <= other and not (self >= other) + if op == op_LE: + return self._le_(other) + if op == op_EQ: + return self._eq_(other) + if op == op_NE: + return not self == other + if op == op_GT: + return self >= other and not (self <= other) + if op == op_GE: + return self._ge_(other) - sage: u = V((1,1)) - sage: v = V((1,sqrt2)) - sage: a, b = solve(x,u,y,v) - sage: x + a*u == y + b*v - True + raise NotImplementedError("Operator not implemented for this distance") - """ - d = -u[0] * v[1] + u[1] * v[0] - if d.is_zero(): - raise ValueError("parallel vectors") - a = v[1] * (x[0] - y[0]) + v[0] * (y[1] - x[1]) - b = u[1] * (x[0] - y[0]) + u[0] * (y[1] - x[1]) - return (a / d, b / d) + def _le_(self, other): + if self.is_finite() and not other.is_finite(): + return True + return self.norm_squared() <= other.norm_squared() -def projectivization(x, y, signed=True, denominator=None): - r""" - Return a simplified version of the projective coordinate [x: y]. + def _ge_(self, other): + if self.is_finite() and not other.is_finite(): + return False - If ``signed`` (the default), the second coordinate is made non-negative; - otherwise the coordinates keep their signs. + return self.norm_squared() >= other.norm_squared() - If ``denominator`` is ``False``, returns [x/y: 1] up to sign. Otherwise, - the returned coordinates have no denominator and no non-unit gcd. + def _eq_(self, other): + return self.norm_squared() == other.norm_squared() - TESTS:: + def _div_(self, other): + return self.parent().from_quotient(self, other) - sage: from flatsurf.geometry.euclidean import projectivization + def __float__(self): + from math import sqrt - sage: projectivization(2/3, -3/5, signed=True, denominator=True) - (10, -9) - sage: projectivization(2/3, -3/5, signed=False, denominator=True) - (-10, 9) - sage: projectivization(2/3, -3/5, signed=True, denominator=False) - (10/9, -1) - sage: projectivization(2/3, -3/5, signed=False, denominator=False) - (-10/9, 1) + f = float(self.norm_squared()) + if f < 0: + print("Bug https://github.com/sagemath/sage/issues/37983.") + return float(0) + return sqrt(f) - sage: projectivization(-1/2, 0, signed=True, denominator=True) - (-1, 0) - sage: projectivization(-1/2, 0, signed=False, denominator=True) - (1, 0) - sage: projectivization(-1/2, 0, signed=True, denominator=False) - (-1, 0) - sage: projectivization(-1/2, 0, signed=False, denominator=False) - (1, 0) - """ - from sage.all import Sequence +class EuclideanDistance_squared(EuclideanDistance_base): + def __init__(self, parent, norm_squared): + super().__init__(parent) - parent = Sequence([x, y]).universe() - if y: - z = x / y - if denominator is True or (denominator is None and hasattr(z, "denominator")): - d = parent(z.denominator()) + self._norm_squared = parent.base_ring()(norm_squared) + + def norm_squared(self): + return self._norm_squared + + def norm(self): + from sage.all import AA + + return AA(self._norm_squared).sqrt() + + def _scale(self, scalar): + return self.parent().from_norm_squared(scalar**2 * self._norm_squared) + + def is_finite(self): + return True + + def _add_(self, other): + return self.parent().from_sum(self, other) + + def _repr_(self): + return f"√{self.norm_squared()}" + + +# TODO: This is probably nonsense. +class EuclideanDistance_sum(EuclideanDistance_base): + def __init__(self, parent, distances): + super().__init__(parent) + + self._distances = distances + + def _add_(self, other): + distances = list(self._distances) + + if isinstance(other, EuclideanDistance_sum): + distances.extend(other._distances) else: - d = parent(1) - if signed and y < 0: - d *= -1 - return (z * d, d) - elif signed and x < 0: - return (parent(-1), parent(0)) - else: - return (parent(1), parent(0)) + distances.append(other) + if any(not d.is_finite() for d in distances): + return self.parent().infinite() -def slope(a, rotate=1): - r""" - Return either ``1`` (positive slope) or ``-1`` (negative slope). + return self.parent().from_sum(*distances) - If ``rotate`` is set to 1 then consider the edge as if it was rotated counterclockwise - infinitesimally. + def is_finite(self): + return True - EXAMPLES:: + def norm_squared(self): + return sum(d.norm() for d in self._distances) ** 2 - sage: from flatsurf.geometry.euclidean import slope - sage: slope((1, 1)) - 1 - sage: slope((-1, 1)) - -1 - sage: slope((-1, -1)) - 1 - sage: slope((1, -1)) - -1 - sage: slope((1, 0)) - 1 - sage: slope((0, 1)) - -1 - sage: slope((-1, 0)) - 1 - sage: slope((0, -1)) - -1 +# TODO: This is probably nonsense. +class EuclideanDistance_quotient(EuclideanDistance_base): + def __init__(self, parent, dividend, divisor): + super().__init__(parent) - sage: slope((1, 0), rotate=-1) - -1 - sage: slope((0, 1), rotate=-1) - 1 - sage: slope((-1, 0), rotate=-1) - -1 - sage: slope((0, -1), rotate=-1) - 1 + if not divisor.is_finite(): + raise TypeError - sage: slope((1, 0), rotate=0) - 0 - sage: slope((0, 1), rotate=0) - 0 - sage: slope((-1, 0), rotate=0) - 0 - sage: slope((0, -1), rotate=0) - 0 + self._dividend = dividend + self._divisor = divisor - sage: slope((0, 0)) - Traceback (most recent call last): - ... - ValueError: zero vector - """ - x, y = a - if not x and not y: - raise ValueError("zero vector") - if (x > 0 and y > 0) or (x < 0 and y < 0): - return 1 - elif (x > 0 and y < 0) or (x < 0 and y > 0): - return -1 - if rotate == 0: - return 0 - if rotate == 1: - return 1 if x else -1 - if rotate == -1: - return 1 if y else -1 - raise ValueError("invalid argument rotate={}".format(rotate)) + def is_finite(self): + return self._dividend.is_finite() + + def norm_squared(self): + return self._dividend.norm_squared() / self._divisor.norm_squared() + + +class EuclideanDistance_infinite(EuclideanDistance_base): + def _scale(self, scalar): + if scalar == 0: + raise NotImplementedError + + return self + + def norm_squared(self): + from sage.all import oo + + return oo + + def is_finite(self): + return False + + def _repr_(self): + return "∞" + + +class EuclideanDistances(Parent): + def __init__(self, euclidean_plane, category=None): + # TODO: Pick a better category. + from sage.categories.all import Sets + + super().__init__(euclidean_plane.base_ring(), category=category or Sets()) + self._euclidean_plane = euclidean_plane + + def _repr_(self): + return f"Euclidean Norm on {self._euclidean_plane}" + + # TODO: We should probably also abstract away the concept of angles. + + @cached_method + def infinite(self): + r""" + Return an infinite distance. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: E.norm().infinite() + oo + + """ + return self.__make_element_class__(EuclideanDistance_infinite)(self) + + def zero(self): + return self.from_norm_squared(0) + + def from_norm_squared(self, x): + return self.__make_element_class__(EuclideanDistance_squared)(self, x) + + def from_vector(self, v): + return self.from_norm_squared(v[0] ** 2 + v[1] ** 2) + + def from_sum(self, *distances): + return self.__make_element_class__(EuclideanDistance_sum)(self, distances) + + def from_quotient(self, dividend, divisor): + return self.__make_element_class__(EuclideanDistance_quotient)( + self, dividend, divisor + ) + + def _element_constructor_(self, x): + from sage.all import vector + + x = vector(x) + + return self.from_norm_squared(x.dot_product(x)) diff --git a/flatsurf/geometry/flow_decomposition.py b/flatsurf/geometry/flow_decomposition.py new file mode 100644 index 000000000..83ec865cc --- /dev/null +++ b/flatsurf/geometry/flow_decomposition.py @@ -0,0 +1,17 @@ +from sage.all import SageObject + + +class FlowDecomposition_base(SageObject): + def __init__(self, surface): + self._surface = surface + + def surface(self): + return self._surface + + +class FlowComponent_base(SageObject): + def __init__(self, flow_decomposition): + self._flow_decomposition = flow_decomposition + + def flow_decomposition(self): + return self._flow_decomposition diff --git a/flatsurf/geometry/geometry.py b/flatsurf/geometry/geometry.py new file mode 100644 index 000000000..40ccada31 --- /dev/null +++ b/flatsurf/geometry/geometry.py @@ -0,0 +1,438 @@ +# TODO: Document module. + + +class Geometry: + r""" + Predicates and primitive geometric constructions over a base ``ring``. + + This is an abstract base class to collect shared functionality for concrete + geometries such as the :class:`EuclideanGeometry` and the + :class:`HyperbolicGeometry`. + + INPUT: + + - ``ring`` -- a ring, the ring in which object in this geometry will be + represented + + TESTS:: + + sage: from flatsurf.geometry.euclidean import EuclideanExactGeometry, Geometry + sage: geometry = EuclideanExactGeometry(QQ) + sage: isinstance(geometry, Geometry) + True + + """ + + def __init__(self, ring): + r""" + TESTS:: + + sage: from flatsurf import EuclideanPlane + sage: from flatsurf.geometry.euclidean import EuclideanGeometry + sage: E = EuclideanPlane() + sage: isinstance(E.geometry, EuclideanGeometry) + True + + """ + self._ring = ring + + def base_ring(self): + r""" + Return the ring over which this geometry is implemented. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: E.geometry.base_ring() + Rational Field + + """ + return self._ring + + def change_ring(self, ring): + r""" + Return this geometry with the :meth:`base_ring` changed to ``ring``. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: E.geometry + Exact geometry over Rational Field + sage: E.geometry.change_ring(AA) + Exact geometry over Algebraic Real Field + + :: + + sage: from flatsurf import HyperbolicPlane + sage: H = HyperbolicPlane() + sage: H.geometry + Exact geometry over Rational Field + sage: H.geometry.change_ring(AA) + Exact geometry over Algebraic Real Field + + """ + raise NotImplementedError("this geometry does not implement change_ring()") + + def _zero(self, x): + r""" + Return whether ``x`` should be considered zero in the + :meth:`base_ring`. + + .. NOTE:: + + This predicate should not be used directly in geometric + constructions since it does not specify the context in which this + question is asked. This makes it very difficult to override a + specific aspect in a custom geometry. Also, this predicate lacks + the context of other elements; a proper predicate should also take + other elements into account to decide this question relative to the + other values. + + INPUT: + + - ``x`` -- an element of the :meth:`base_ring` + + EXAMPLES:: + + sage: from flatsurf import HyperbolicPlane + sage: H = HyperbolicPlane(RR) + sage: H.geometry._zero(1) + False + sage: H.geometry._zero(1e-9) + True + + """ + return self._cmp(x, 0) == 0 + + def _cmp(self, x, y): + r""" + Return how ``x`` compares to ``y``. + + .. NOTE:: + + This predicate should not be used directly in geometric + constructions since it does not specify the context in which this + question is asked. This makes it very difficult to override a + specific aspect in a custom geometry. + + INPUT: + + - ``x`` -- an element of the :meth:`base_ring` + + - ``y`` -- an element of the :meth:`base_ring` + + EXAMPLES:: + + sage: from flatsurf import HyperbolicPlane + sage: H = HyperbolicPlane() + sage: H.geometry._cmp(0, 0) + 0 + sage: H.geometry._cmp(0, 1) + -1 + sage: H.geometry._cmp(1, 0) + 1 + + :: + + sage: H = HyperbolicPlane(RR) + sage: H.geometry._cmp(0, 0) + 0 + sage: H.geometry._cmp(0, 1) + -1 + sage: H.geometry._cmp(1, 0) + 1 + sage: H.geometry._cmp(1e-10, 0) + 0 + + """ + if self._equal(x, y): + return 0 + if x < y: + return -1 + + assert ( + x > y + ), "Geometry over this ring must override _cmp since not (x == y) and not (x < y) does not imply x > y" + return 1 + + def _sgn(self, x): + r""" + Return the sign of ``x``. + + .. NOTE:: + + This predicate should not be used directly in geometric + constructions since it does not specify the context in which this + question is asked. This makes it very difficult to override a + specific aspect in a custom geometry. Also, this predicate lacks + the context of other elements; a proper predicate should also take + other elements into account to decide this question relative to the + other values. + + INPUT: + + - ``x`` -- an element of the :meth:`base_ring`. + + EXAMPLES:: + + sage: from flatsurf import HyperbolicPlane + sage: H = HyperbolicPlane(RR) + sage: H.geometry._sgn(1) + 1 + sage: H.geometry._sgn(-1) + -1 + sage: H.geometry._sgn(1e-10) + 0 + + """ + return self._cmp(x, 0) + + def _equal(self, x, y): + r""" + Return whether ``x`` and ``y`` should be considered equal in the :meth:`base_ring`. + + .. NOTE:: + + This predicate should not be used directly in geometric + constructions since it does not specify the context in which this + question is asked. This makes it very difficult to override a + specific aspect in a custom geometry. + + INPUT: + + - ``x`` -- an element of the :meth:`base_ring` + + - ``y`` -- an element of the :meth:`base_ring` + + EXAMPLES:: + + sage: from flatsurf import HyperbolicPlane + sage: H = HyperbolicPlane(RR) + sage: H.geometry._equal(0, 1) + False + sage: H.geometry._equal(0, 1e-10) + True + + """ + raise NotImplementedError("this geometry does not implement _equal()") + + def _determinant(self, a, b, c, d): + r""" + Return the determinant of the 2×2 matrix ``[[a, b], [c, d]]`` or + ``None`` if the matrix is singular. + + .. NOTE:: + + This predicate should not be used directly in geometric + constructions since it does not specify the context in which this + question is asked. This makes it very difficult to override a + specific aspect in a custom geometry. + + INPUT: + + - ``a`` -- an element of the :meth:`base_ring` + + - ``b`` -- an element of the :meth:`base_ring` + + - ``c`` -- an element of the :meth:`base_ring` + + - ``d`` -- an element of the :meth:`base_ring` + + EXAMPLES: + + sage: from flatsurf import HyperbolicPlane + sage: H = HyperbolicPlane() + + sage: H.geometry._determinant(1, 2, 3, 4) + -2 + sage: H.geometry._determinant(0, 10^-10, 1, 1) + -1/10000000000 + + """ + det = a * d - b * c + if self._zero(det): + return None + return det + + +class ExactGeometry(Geometry): + r""" + Shared base class for predicates and geometric constructions over exact rings. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import EuclideanExactGeometry + sage: geometry = EuclideanExactGeometry(QQ) + + TESTS:: + + sage: from flatsurf.geometry.geometry import ExactGeometry + sage: isinstance(geometry, ExactGeometry) + True + + """ + + def _equal(self, x, y): + r""" + Return whether the numbers ``x`` and ``y`` should be considered equal + in exact geometry. + + .. NOTE:: + + This predicate should not be used directly in geometric + constructions since it does not specify the context in which this + question is asked. This makes it very difficult to override a + specific aspect in a custom geometry. + + EXAMPLES:: + + sage: from flatsurf import HyperbolicPlane + sage: H = HyperbolicPlane() + sage: H.geometry._equal(0, 1) + False + sage: H.geometry._equal(0, 1/2**64) + False + sage: H.geometry._equal(0, 0) + True + + """ + return x == y + + def __repr__(self): + r""" + Return a printable representation of this geometry. + + EXAMPLES:: + + sage: from flatsurf import EuclideanPlane + sage: E = EuclideanPlane() + sage: E.geometry + Exact geometry over Rational Field + + :: + + sage: from flatsurf import HyperbolicPlane + sage: H = HyperbolicPlane() + sage: H.geometry + Exact geometry over Rational Field + + """ + return f"Exact geometry over {self._ring}" + + +class EpsilonGeometry(Geometry): + r""" + Shared base class for predicates and primitive geometric constructions over + an inexact base ring. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import EuclideanEpsilonGeometry + sage: geometry = EuclideanEpsilonGeometry(RR, 1e-6) + + TESTS:: + + sage: from flatsurf.geometry.geometry import EpsilonGeometry + sage: isinstance(geometry, EpsilonGeometry) + True + + """ + + def __init__(self, ring, epsilon): + r""" + TESTS:: + + sage: from flatsurf import EuclideanPlane + sage: from flatsurf.geometry.euclidean import EuclideanEpsilonGeometry + sage: E = EuclideanPlane(RR, EuclideanEpsilonGeometry(RR, 1e-6)) + sage: isinstance(E.geometry, EuclideanEpsilonGeometry) + True + + """ + super().__init__(ring) + self._epsilon = ring(epsilon) + + def _equal(self, x, y): + r""" + Return whether ``x`` and ``y`` should be considered equal numbers with + respect to an ε error. + + .. NOTE:: + + This method has not been tested much. Since this underlies much of + the inexact geometry, we should probably do something better here, + see e.g., https://floating-point-gui.de/errors/comparison/ + + EXAMPLES:: + + sage: from flatsurf import HyperbolicPlane + sage: H = HyperbolicPlane(RR) + + sage: H.geometry._equal(1, 2) + False + sage: H.geometry._equal(1, 1 + 1e-32) + True + sage: H.geometry._equal(1e-32, 1e-32 + 1e-33) + False + sage: H.geometry._equal(1e-32, 1e-32 + 1e-64) + True + + """ + if x == 0 or y == 0: + return abs(x - y) < self._epsilon + + return abs(x - y) <= (abs(x) + abs(y)) * self._epsilon + + def _determinant(self, a, b, c, d): + r""" + Return the determinant of the 2×2 matrix ``[[a, b], [c, d]]`` or + ``None`` if the matrix is singular. + + INPUT: + + - ``a`` -- an element of the :meth:`~HyperbolicGeometry.base_ring` + + - ``b`` -- an element of the :meth:`~HyperbolicGeometry.base_ring` + + - ``c`` -- an element of the :meth:`~HyperbolicGeometry.base_ring` + + - ``d`` -- an element of the :meth:`~HyperbolicGeometry.base_ring` + + EXAMPLES: + + sage: from flatsurf import HyperbolicPlane + sage: H = HyperbolicPlane(RR) + + sage: H.geometry._determinant(1, 2, 3, 4) + -2 + sage: H.geometry._determinant(1e-10, 0, 0, 1e-10) + 1.00000000000000e-20 + + Unfortunately, we are not implementing any actual rank detecting + algorithm (QR decomposition or such) here. So, we do not detect that + this matrik is singular:: + + sage: H.geometry._determinant(1e-127, 1e-128, 1, 1) + 9.00000000000000e-128 + + """ + det = a * d - b * c + if det == 0: + # Note that we should instead numerically detect the rank here. + return None + return det + + def __repr__(self): + r""" + Return a printable representation of this geometry. + + EXAMPLES:: + + sage: from flatsurf.geometry.euclidean import EuclideanEpsilonGeometry + sage: EuclideanEpsilonGeometry(RR, 1e-6) + Epsilon geometry with ϵ=1.00000000000000e-6 over Real Field with 53 bits of precision + + """ + return f"Epsilon geometry with ϵ={self._epsilon} over {self._ring}" diff --git a/flatsurf/geometry/gl2r_orbit_closure.py b/flatsurf/geometry/gl2r_orbit_closure.py index 5665359fe..9a7bf7de2 100644 --- a/flatsurf/geometry/gl2r_orbit_closure.py +++ b/flatsurf/geometry/gl2r_orbit_closure.py @@ -13,21 +13,23 @@ Let us first construct a Veech surface in the stratum H(2):: - sage: from flatsurf import translation_surfaces - sage: from flatsurf import GL2ROrbitClosure + sage: from flatsurf import translation_surfaces, GL2ROrbitClosure sage: x = polygen(QQ) sage: K. = NumberField(x^3 - 2, embedding=AA(2)**(1/3)) sage: S = translation_surfaces.mcmullen_L(1,1,1,a) sage: O = GL2ROrbitClosure(S) # optional: pyflatsurf # random output due to matplotlib warnings with some combinations of setuptools and matplotlib - sage: O.decomposition((1,2)).cylinders() # optional: pyflatsurf + sage: O.decomposition((1,2)).cylinders() # optional: pyflatsurf # TODO: Make this code not produce a warning. + doctest:warning + ... + UserWarning: orbit_closure.decomposition() has been deprecated and will be removed in a future version of sage-flatsurf; use surface.flow_decomposition(direction).decompose(limit) instead. [Cylinder with perimeter [...]] The following is also a Veech surface. However the flow decomposition in directions with long cylinders might not discover them if a limit is set:: - sage: S = translation_surfaces.mcmullen_genus2_prototype(4,2,1,1,1/4) + sage: S = translation_surfaces.mcmullen_genus2_prototype(4, 2, 1, 1, 1/4) sage: l = S.base_ring().gen() sage: O = GL2ROrbitClosure(S) # optional: pyflatsurf sage: dec = O.decomposition((8*l - 25, 16), 9) # optional: pyflatsurf @@ -47,7 +49,10 @@ sage: S = translation_surfaces.veech_double_n_gon(5) sage: O = GL2ROrbitClosure(S) # optional: pyflatsurf - sage: all(d.parabolic() for d in O.decompositions_depth_first(3)) # optional: pyflatsurf + sage: all(d.is_parabolic() for d in O.decompositions_depth_first(3)) # optional: pyflatsurf + doctest:warning + ... + UserWarning: orbit_closure.decompositions() has been deprecated and will be removed in a future version of sage-flatsurf; use surface.flow_decompositions() instead. True For surfaces in rank one loci, even though they are completely periodic, @@ -55,15 +60,15 @@ sage: S = translation_surfaces.mcmullen_genus2_prototype(4,2,1,1,1/4) sage: O = GL2ROrbitClosure(S) # optional: pyflatsurf - sage: all((d.hasCylinder() == False) or d.parabolic() for d in O.decompositions(6)) # optional: pyflatsurf + sage: all((d.has_cylinder() is False) or (d.is_parabolic() is True) for d in O.decompositions(6)) # optional: pyflatsurf False - sage: all((d.completelyPeriodic() == True) or (d.hasCylinder() == False) for d in O.decompositions(6)) # optional: pyflatsurf + sage: all((d.is_completely_periodic() is True) or (d.has_cylinder() is False) for d in O.decompositions(6)) # optional: pyflatsurf True """ # **************************************************************************** # This file is part of sage-flatsurf. # -# Copyright (C) 2019-2022 Julian Rüth +# Copyright (C) 2019-2024 Julian Rüth # 2020 Vincent Delecroix # # sage-flatsurf is free software: you can redistribute it and/or modify @@ -82,6 +87,8 @@ from sage.all import FreeModule, matrix, identity_matrix, ZZ, QQ, Unknown, vector, prod +from sage.misc.cachefunc import cached_method + class GL2ROrbitClosure: r""" @@ -116,6 +123,9 @@ class GL2ROrbitClosure: sage: for decomposition in O.decompositions(1): # long time, optional: pyflatsurf, optional: pyexactreal ....: O.update_tangent_space_from_flow_decomposition(decomposition) ....: if O.dimension() == bound: break + doctest:warning + ... + UserWarning: orbit_closure.decompositions() has been deprecated and will be removed in a future version of sage-flatsurf; use surface.flow_decompositions() instead. sage: O # long time, optional: pyflatsurf, optional: pyexactreal GL(2,R)-orbit closure of dimension at least 8 in H_7(4^3, 0) (ambient dimension 17) @@ -150,22 +160,28 @@ class GL2ROrbitClosure: """ def __init__(self, surface): + if surface.__class__.__name__.startswith("FlatTriangulation<"): + import warnings + + warnings.warn( + "Creating a GL2ROrbitClosure from a FlatTriangulation has been deprecated and will be removed from a future version of sage-flatsurf; create GL2ROrbitClosure from a sage-flatsurf surface directly instead" + ) + + from flatsurf.geometry.pyflatsurf.surface import Surface_pyflatsurf + + surface = Surface_pyflatsurf(surface) + from flatsurf.geometry.categories import TranslationSurfaces - from flatsurf.geometry.surface import Surface_base - if isinstance(surface, Surface_base): - if surface not in TranslationSurfaces(): - raise NotImplementedError( - "cannot compute orbit closure of a non-translation surface" - ) + if surface not in TranslationSurfaces(): + raise NotImplementedError("surface must be a translation surface") base_ring = surface.base_ring() self._surface = surface.pyflatsurf().codomain().flat_triangulation() else: from flatsurf.geometry.pyflatsurf.conversion import sage_ring - base_ring = sage_ring(surface) - self._surface = surface + self._surface = surface # A model of the vector space R² in libflatsurf, e.g., to represent the # vector associated to a saddle connection. @@ -180,14 +196,14 @@ def __init__(self, surface): # edges that form a basis of H_1(S, Sigma; Z) # It comes together with a projection matrix t, m = self._spanning_tree() - assert set(t.keys()) == {f[2] for f in self._surface.faces()} + assert set(t.keys()) == {f[2] for f in self._flat_triangulation().faces()} self.spanning_set = [] v = set(t.values()) - for e in self._surface.edges(): + for e in self._flat_triangulation().edges(): if e.positive() not in v and e.negative() not in v: self.spanning_set.append(e) self.d = len(self.spanning_set) - assert 3 * self.d - 3 == self._surface.size() + assert 3 * self.d - 3 == self._flat_triangulation().size() assert m.rank() == self.d m = m.transpose() # projection matrix from Z^E to H_1(S, Sigma; Z) in the basis @@ -199,7 +215,7 @@ def __init__(self, surface): self.V = FreeModule(self.V2.base_ring(), self.d) self.H = matrix(self.V2.base_ring(), self.d, 2) for i in range(self.d): - s = self._surface.fromHalfEdge(self.spanning_set[i].positive()) + s = self._flat_triangulation().fromHalfEdge(self.spanning_set[i].positive()) self.H[i] = self.V2._isomorphic_vector_space(self.V2(s)) self.Hdual = self.Omega * self.H @@ -219,6 +235,119 @@ def __init__(self, surface): self.update_tangent_space_from_vector(self.H.transpose()[0]) self.update_tangent_space_from_vector(self.H.transpose()[1]) + def _lift_to_simplicial_cohomology(self, v): + r""" + Convert an element from cohomology given by its values on all edges, + e.g., the output of :meth:`lift`, to the corresponding simplicial + cohomology class. + + EXAMPLES:: + + sage: from flatsurf import polygons, translation_surfaces, similarity_surfaces + sage: from flatsurf import GL2ROrbitClosure # optional: pyflatsurf + + sage: T = polygons.triangle(3,4,13) + sage: S = similarity_surfaces.billiard(T) + sage: S = S.minimal_cover("translation").erase_marked_points().codomain() # long time (3s, #122), optional: pyflatsurf + sage: O = GL2ROrbitClosure(S) # long time (above), optional: pyflatsurf + sage: for d in O.decompositions(4, 20): # long time (2s, #124), optional: pyflatsurf + ....: O.update_tangent_space_from_flow_decomposition(d) + ....: if O.dimension() == 4: + ....: break + + sage: d1, d2, d3, d4 = [O.lift(b) for b in O.tangent_space_basis()] # long time (above), optional: pyflatsurf + sage: O._lift_to_simplicial_cohomology(d3) + + """ + H = self._surface.cohomology() + + values = {} + + # TODO: Implement this in a more natural way without reaching + # into the internals of homology. + for homology_gen in H.homology().gens(): + chain = homology_gen._chain + value = H._coefficients.zero() + for ((label, edge), coefficient) in chain.monomial_coefficients().items(): + to_pyflatsurf = self._surface.pyflatsurf() + half_edge = to_pyflatsurf._pyflatsurf_conversion((label, edge)) + if half_edge.id() < 0: + value -= coefficient * v[-(half_edge.id() - 1)] + else: + value += coefficient * v[half_edge.id() - 1] + + values[homology_gen] = value + + return H(values) + + def deform(self): + # TODO: Move this to deformation branch. + tangents = self.tangent_space_basis() + + if len(tangents) > 2: + # Ignore trivial deformations if we already discovered something in + # the tangent space. + tangents = tangents[2:] + + # TODO: Currently, there's only a single tangent used here. + tangents = [sum(self.lift(v) for v in tangents)] + + def upper_bound(v): + try: + length = sum(abs(x.parent().number_field(x)) for x in v) / len(v) + except TypeError: + length = sum(abs(x.parent().number_field()(x)) for x in v) / len(v) + + n = 1 + while n < length: + n *= 2 + return n + + tangents.sort(key=upper_bound) + + scale = 2 + while True: + eligibles = False + + for tangent in tangents: + import cppyy + + # What is a good vector to use to deform? See flatsurvey #3. + n = upper_bound(tangent) * scale + # n = upper_bound(tangent) // 4 + + # What is a good bound here? See flatsurvey #3. + # if n > 1e20: + # print("Cannot deform. Deformation would lead to too much coefficient blowup.") + # continue + + eligibles = True + + deformation = [self.V2(x / n, x / (2 * n)).vector for x in tangent] + try: + # Valid deformations that require lots of flips take forever. It's crucial to pick n such that no/very few flips are sufficient. See #3. + deformed = self._flat_triangulation() + deformation + + surface = deformed.surface() + from flatsurf.geometry.pyflatsurf_conversion import ( + from_pyflatsurf, + ) + + return from_pyflatsurf(surface) + except cppyy.gbl.std.invalid_argument: + continue + + scale *= 2 + + if not eligibles: + raise Exception( + "Cannot deform. No tangent vector can be used to deform." + ) + + @cached_method + def _flat_triangulation(self): + return self._surface.pyflatsurf().codomain().flat_triangulation() + def dimension(self): r""" Return the current complex dimension of the GL(2,R)-orbit closure. @@ -269,7 +398,7 @@ def ambient_stratum(self): """ from surface_dynamics import Stratum - surface = self._surface + surface = self._flat_triangulation() angles = [surface.angle(v) for v in surface.vertices()] return Stratum([a - 1 for a in angles], 1) @@ -336,10 +465,9 @@ def _half_edge_to_face(self, h): r""" Return a canonical half-edge encoding the face bounded by ``h``. """ - surface = self._surface h1 = h - h2 = surface.nextInFace(h1) - h3 = surface.nextInFace(h2) + h2 = self._flat_triangulation().nextInFace(h1) + h3 = self._flat_triangulation().nextInFace(h2) return min([h1, h2, h3], key=lambda x: x.index()) def __repr__(self): @@ -360,9 +488,9 @@ def holonomy(self, v): sage: K. = NumberField(x^3 - 2, embedding=AA(2)**(1/3)) sage: S = translation_surfaces.mcmullen_L(1,1,1,a) sage: O = GL2ROrbitClosure(S) # optional: pyflatsurf - sage: edges = O._surface.edges() # optional: pyflatsurf + sage: edges = O._flat_triangulation().edges() # optional: pyflatsurf sage: F = FreeModule(ZZ, len(edges)) # optional: pyflatsurf - sage: all(O.V2(O.holonomy(O.proj * F.gen(i))).vector == O.V2(O._surface.fromHalfEdge(e.positive())).vector for i, e in enumerate(edges)) # optional: pyflatsurf + sage: all(O.V2(O.holonomy(O.proj * F.gen(i))).vector == O.V2(O._flat_triangulation().fromHalfEdge(e.positive())).vector for i, e in enumerate(edges)) # optional: pyflatsurf True """ return self.V(v) * self.H @@ -399,9 +527,12 @@ def lift(self, v): This can be used to deform the surface:: + sage: from flatsurf import polygons, translation_surfaces, similarity_surfaces + sage: from flatsurf import GL2ROrbitClosure # optional: pyflatsurf + sage: T = polygons.triangle(3,4,13) sage: S = similarity_surfaces.billiard(T) - sage: S = S.minimal_cover("translation").erase_marked_points() # long time (3s, #122), optional: pyflatsurf + sage: S = S.minimal_cover("translation").erase_marked_points().codomain() # long time (3s, #122), optional: pyflatsurf sage: O = GL2ROrbitClosure(S) # long time (above), optional: pyflatsurf sage: for d in O.decompositions(4, 20): # long time (2s, #124), optional: pyflatsurf ....: O.update_tangent_space_from_flow_decomposition(d) @@ -411,9 +542,12 @@ def lift(self, v): sage: dreal = d1/132 + d2/227 + d3/1280 - d4/13201 # long time (above), optional: pyflatsurf sage: dimag = d1/141 - d2/233 + d4/1230 + d4/14250 # long time (above), optional: pyflatsurf sage: d = [O.V2((x,y)).vector for x,y in zip(dreal,dimag)] # long time (above), optional: pyflatsurf - sage: S2 = O._surface + d # long time (6s), optional: pyflatsurf + sage: S2 = O._flat_triangulation() + d # long time (6s), optional: pyflatsurf # TODO: Support this directly on a surface, i.e., fix the deprecation warning. sage: O2 = GL2ROrbitClosure(S2.surface()) # long time (above), optional: pyflatsurf + doctest:warning + ... + UserWarning: Creating a GL2ROrbitClosure from a FlatTriangulation has been deprecated and will be removed from a future version of sage-flatsurf; create GL2ROrbitClosure from a sage-flatsurf surface directly instead sage: for d in O2.decompositions(1, 20): # long time (25s, #124), optional: pyflatsurf ....: O2.update_tangent_space_from_flow_decomposition(d) @@ -421,7 +555,7 @@ def lift(self, v): # given the values on the spanning edges we reconstruct the unique vector that # vanishes on the boundary bdry = self.boundaries() - n = self._surface.edges().size() + n = self._flat_triangulation().edges().size() k = len(self.spanning_set) assert k + len(bdry) == n + 1 A = matrix(QQ, n + 1, n) @@ -441,7 +575,7 @@ def lift(self, v): return A.solve_right(u) def absolute_homology(self): - vert_index = {v: i for i, v in enumerate(self._surface.vertices())} + vert_index = {v: i for i, v in enumerate(self._flat_triangulation().vertices())} m = len(vert_index) if m == 1: return self.V @@ -456,12 +590,12 @@ def absolute_homology(self): r = [0] * m i = vert_index[ pyflatsurf.flatsurf.Vertex.target( - e.positive(), self._surface.combinatorial() + e.positive(), self._flat_triangulation().combinatorial() ) ] j = vert_index[ pyflatsurf.flatsurf.Vertex.source( - e.positive(), self._surface.combinatorial() + e.positive(), self._flat_triangulation().combinatorial() ) ] if i != j: @@ -506,13 +640,14 @@ def _spanning_tree(self, root=None): r""" Return a pair ``(tree, proj)`` where - - ``tree`` is a tree encoded in a dictionary. Its keys are the faces + - ``tree`` is a spanning tree of the dual graph of the triangulation + encoded as a dictionary. Its keys are faces of the triangulation (coded by their minimal adjacent half-edge) and the corresponding value is the half-edge to cross to go toward the root face. - - ``proj`` a projection matrix : for a vector ``v``, the vector - ``v * proj`` is cohomologous to ``v`` and only takes values on the - spanning set. + - ``proj`` a projection matrix : for a vector ``v``, the vector ``v * + proj`` is cohomologous to ``v`` and only takes values on the spanning + set, i.e., on the triangulation edges not crossed by the ``tree``. EXAMPLES: @@ -524,7 +659,7 @@ def _spanning_tree(self, root=None): sage: S = similarity_surfaces.billiard(T) sage: S = S.minimal_cover("translation") sage: O = GL2ROrbitClosure(S) # optional: pyflatsurf - sage: num_edges = O._surface.edges().size() # optional: pyflatsurf + sage: num_edges = O._flat_triangulation().edges().size() # optional: pyflatsurf sage: V = VectorSpace(QQ, num_edges) # optional: pyflatsurf sage: tree, proj = O._spanning_tree() # optional: pyflatsurf @@ -537,7 +672,7 @@ def _spanning_tree(self, root=None): takes values only on the chosen spanning set of edges:: sage: values = tree.values() # optional: pyflatsurf - sage: indices = set(e.index() for e in O._surface.edges() if e.positive() not in values and e.negative() not in values) # optional: pyflatsurf + sage: indices = set(e.index() for e in O._flat_triangulation().edges() if e.positive() not in values and e.negative() not in values) # optional: pyflatsurf sage: B = V.subspace(O.boundaries()) # optional: pyflatsurf sage: for e in range(num_edges): # optional: pyflatsurf ....: v = V.gen(e) @@ -548,7 +683,7 @@ def _spanning_tree(self, root=None): ....: assert (proj * v).is_zero() """ if root is None: - root = next(iter(self._surface.edges())).positive() + root = next(iter(self._flat_triangulation().edges())).positive() root = self._half_edge_to_face(root) t = {root: None} # face -> half edge to take to go to the root @@ -564,16 +699,16 @@ def _spanning_tree(self, root=None): todo.append(g) edges.append(f1) - f = self._surface.nextInFace(f) + f = self._flat_triangulation().nextInFace(f) # gauss reduction - n = self._surface.size() + n = self._flat_triangulation().size() proj = identity_matrix(ZZ, n) edges.reverse() for f1 in edges: - f2 = self._surface.nextInFace(f1) - f3 = self._surface.nextInFace(f2) - assert self._surface.nextInFace(f3) == f1 + f2 = self._flat_triangulation().nextInFace(f1) + f3 = self._flat_triangulation().nextInFace(f2) + assert self._flat_triangulation().nextInFace(f3) == f1 i1 = f1.index() s1 = -1 if i1 % 2 else 1 @@ -605,9 +740,9 @@ def _intersection_matrix(self, t, spanning_set): while h not in contour_inv: contour_inv[h] = len(contour) contour.append(h) - h = self._surface.nextAtVertex(-h) + h = self._flat_triangulation().nextAtVertex(-h) while h not in all_edges: - h = self._surface.nextAtVertex(h) + h = self._flat_triangulation().nextAtVertex(h) assert len(contour) == len(all_edges) @@ -680,10 +815,10 @@ def boundaries(self): ....: for b in O.boundaries(): ....: assert (O.proj * b).is_zero() """ - n = self._surface.size() + n = self._flat_triangulation().size() V = FreeModule(ZZ, n) B = [] - for f1, f2, f3 in self._surface.faces(): + for f1, f2, f3 in self._flat_triangulation().faces(): i1 = f1.index() s1 = -1 if i1 % 2 else 1 i2 = f2.index() @@ -703,45 +838,43 @@ def boundaries(self): return B def decomposition(self, v, limit=-1): - v = self.V2(v) - - from flatsurf.features import pyflatsurf_feature + import warnings - pyflatsurf_feature.require() - import pyflatsurf + warnings.warn( + "orbit_closure.decomposition() has been deprecated and will be removed in a future version of sage-flatsurf; use surface.flow_decomposition(direction).decompose(limit) instead." + ) - decomposition = pyflatsurf.flatsurf.makeFlowDecomposition( - self._surface, v.vector + decomposition = ( + self._surface.pyflatsurf().codomain().flow_decomposition(direction=v) ) + decomposition.decompose(limit=limit) - if limit != 0: - decomposition.decompose(int(limit)) - return decomposition + return decomposition._flow_decomposition def decompositions(self, bound, limit=-1, bfs=False): - limit = int(limit) + import warnings - connections = self._surface.connections().bound(int(bound)) - if bfs: - connections = connections.byLength() - - slopes = None - - from flatsurf.features import cppyy_feature + warnings.warn( + "orbit_closure.decompositions() has been deprecated and will be removed in a future version of sage-flatsurf; use surface.flow_decompositions() instead." + ) - cppyy_feature.require() - import cppyy + if bfs: + algorithm = "bfs" + else: + algorithm = "dfs" + + decompositions = ( + self._surface.pyflatsurf() + .codomain() + .flow_decompositions( + algorithm=algorithm, + bound=bound, + ) + ) - for connection in connections: - direction = connection.vector() - if slopes is None: - slopes = cppyy.gbl.std.set[ - type(direction), type(direction).CompareSlope - ]() - if slopes.find(direction) != slopes.end(): - continue - slopes.insert(direction) - yield self.decomposition(direction, limit) + for decomposition in decompositions: + decomposition.decompose(limit=limit) + yield decomposition def decompositions_depth_first(self, bound, limit=-1): return self.decompositions(bound, bfs=False, limit=limit) @@ -790,17 +923,15 @@ def is_teichmueller_curve(self, bound, limit=-1): # square tiled return True - nv = len(self._surface.vertices()) - ne = len(self._surface.edges()) - nf = len(self._surface.faces()) + nv = len(self._flat_triangulation().vertices()) + ne = len(self._flat_triangulation().edges()) + nf = len(self._flat_triangulation().faces()) genus = (ne - nv - nf) // 2 + 1 if k.degree() > genus or not k.is_totally_real(): return False for decomposition in self.decompositions_depth_first(bound, limit): - if ( - decomposition.parabolic() == False - ): # noqa, we are comparing to a boost tribool so this cannot be replaced by "is False" + if decomposition.is_parabolic() is False: return False return Unknown @@ -834,12 +965,10 @@ def cylinder_circumference(self, component, A, sc_index, proj): (0, 0, 1, 0) """ - if ( - component.cylinder() != True - ): # noqa, we are comparing to a boost tribool so this cannot be replaced by "is not True" + if component.is_cylinder() is not True: raise ValueError - perimeters = list(component.perimeter()) + perimeters = list(component._flow_component().perimeter()) per = perimeters[0] assert not per.vertical() sc = per.saddleConnection() @@ -854,7 +983,7 @@ def cylinder_circumference(self, component, A, sc_index, proj): # check hol = self.holonomy_dual(circumference) - holbis = component.circumferenceHolonomy() + holbis = component._flow_component().circumferenceHolonomy() holbis = self.V2._isomorphic_vector_space(self.V2(holbis)) assert hol == holbis, (hol, holbis) @@ -889,21 +1018,19 @@ def eliminate_denominators(fractions): vcyls = [] kz = self.flow_decomposition_kontsevich_zorich_cocycle(decomposition) for component in decomposition.components(): - if ( - component.cylinder() == False - ): # noqa, we are comparing to a boost tribool so this cannot be replaced by "is False" + if component.is_cylinder() is False: continue - elif ( - component.cylinder() == True - ): # noqa, we are comparing to a boost tribool so this cannot be replaced with "is True" + elif component.is_cylinder() is True: vcyls.append(self.cylinder_circumference(component, *kz)) width = self.V2._isomorphic_vector_space.base_ring()( - self.V2.base_ring()(component.width()) + self.V2.base_ring()(component._flow_component().width()) ) height = self.V2._isomorphic_vector_space.base_ring()( self.V2.base_ring()( - component.vertical().project(component.circumferenceHolonomy()) + component._flow_component() + .vertical() + .project(component._flow_component().circumferenceHolonomy()) ) ) module_fractions.append((width, height)) @@ -1013,7 +1140,7 @@ def _flow_decomposition_spanning_tree(self, decomposition, sc_index, sc_comp): assert n % 2 == 0 n //= 2 - for p in components[0].perimeter(): + for p in components[0]._flow_component().perimeter(): break t = {0: None} # face -> half edge to take to go to the root todo = [0] @@ -1021,7 +1148,7 @@ def _flow_decomposition_spanning_tree(self, decomposition, sc_index, sc_comp): while todo: i = todo.pop() c = components[i] - for sc in c.perimeter(): + for sc in c._flow_component().perimeter(): sc1 = -sc.saddleConnection() j = sc_comp[sc1] if j not in t: @@ -1042,7 +1169,7 @@ def _flow_decomposition_spanning_tree(self, decomposition, sc_index, sc_comp): s1 = 1 comp = components[sc_comp[sc1]] proj[i1] = 0 - for p in comp.perimeter(): + for p in comp._flow_component().perimeter(): sc = p.saddleConnection() if sc == sc1: continue @@ -1116,7 +1243,7 @@ def flow_decomposition_kontsevich_zorich_cocycle(self, decomposition): components = list(decomposition.components()) n_components = len(components) for i, comp in enumerate(components): - for p in comp.perimeter(): + for p in comp._flow_component().perimeter(): sc = p.saddleConnection() sc_comp[sc] = i if sc not in sc_index: @@ -1138,7 +1265,7 @@ def flow_decomposition_kontsevich_zorich_cocycle(self, decomposition): for i, sc in enumerate(spanning_set): sc = sc_pos[sc] c = sc.chain() - for edge in self._surface.edges(): + for edge in self._flat_triangulation().edges(): A[i] += ZZ(str(c[edge])) * self.proj.column(edge.index()) assert A.det().is_unit() return A, sc_index, proj diff --git a/flatsurf/geometry/harmonic_differentials.py b/flatsurf/geometry/harmonic_differentials.py new file mode 100644 index 000000000..68125eea9 --- /dev/null +++ b/flatsurf/geometry/harmonic_differentials.py @@ -0,0 +1,3660 @@ +r""" +TODO: Document this module. +TODO: Rename this module? +TODO: Consider using a different basis than 1,z,z^2,..., see https://sagemath.zulipchat.com/#narrow/stream/271193-flatsurf/topic/numerical.20stability + +EXAMPLES: + +We compute harmonic differentials on the square torus:: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialCohomology + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: H = SimplicialCohomology(T) + sage: a, b = H.homology().gens() + +First, the harmonic differentials that sends the horizontal `b` to 1 and the +vertical to zero (note that `a` is a diagonal):: + + sage: f = H({b: 1, a: -1}) + sage: Ω = HarmonicDifferentials(T) + sage: ω = Ω(f) + sage: ω + (1.0 + O(z0),) + +The harmonic differential that integrates as 1 on the vertical and 0 on the horizontal:: + + sage: g = H({a: -1, b: 0}) + sage: Ω(g) + (-1.0*I + O(z0),) + +A less trivial example, the regular octagon:: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialCohomology + sage: S = translation_surfaces.regular_octagon().subdivide().codomain().delaunay_triangulate().codomain() + + sage: H = SimplicialCohomology(S) + sage: a, b, c, d = H.homology().gens() + + sage: # on the untriangulated surface f = H({ a: sqrt(2) + 1, b: 0, c: -sqrt(2) - 1, d: -sqrt(2) - 2}) + sage: f = H({a: -sqrt(2), b: 0, c: -sqrt(2) - 1, d: sqrt(2) + 1}) + + sage: Omega = HarmonicDifferentials(S, error=1e-1) + sage: omega = Omega(f, check=False) + sage: omega.simplify(zero_threshold=1e-1) # abs-tol 1e-4 # TODO: Why so much tolerance? + (1.3138012886047363*z0^2 + O(z0^5), -2.090515375137329 + (-3.2217148449767996)*z1^8 + (-2.515996975688303)*z1^16 + (-1.5095460414886475)*z1^24 + O(z1^25)) + +The same computation, but we use a cell decomposition that is better adapted to +computing harmonic differentials:: + + sage: from flatsurf.geometry.voronoi import ApproximateWeightedVoronoiCellDecomposition + sage: Omega = HarmonicDifferentials(S, error=1e-1, cell_decomposition=ApproximateWeightedVoronoiCellDecomposition(S)) + sage: omega = Omega(f, check=False) + sage: omega.simplify(zero_threshold=1e-1) # abs-tol 1e-1 # TODO: Why so much tolerance? + (1.333134175150692*z0^2 + O(z0^7), -2.090317964553833 + (-3.174059553834174)*z1^8 + O(z1^16)) + +The same computation on a triangulation of the octagon:: + + sage: from flatsurf import HarmonicDifferentials, SimplicialCohomology, Polygon, translation_surfaces + sage: S = translation_surfaces.regular_octagon() + sage: S = S.subdivide().codomain() + + sage: H = SimplicialCohomology(S) + sage: a, b, c, d = H.homology().gens() + + sage: f = H({a: -sqrt(2), b: 0, c: -sqrt(2) - 1, d: sqrt(2) + 1}) + + sage: from flatsurf.geometry.voronoi import ApproximateWeightedVoronoiCellDecomposition + sage: Omega = HarmonicDifferentials(S, error=1e-1, cell_decomposition=ApproximateWeightedVoronoiCellDecomposition(S)) + sage: omega = Omega(f, check=False) + sage: omega.simplify(zero_threshold=1e-1) # abs-tol 1e-4 # TODO: Why so much tolerance? + (1.333134175150692*z0^2 + O(z0^7), -2.090317964553833 + (-3.174059553834174)*z1^8 + O(z1^16)) + +The same surface but built as the unfolding of a right triangle. ``z2`` is the +variable at the center of the octagon and ``z3`` is at the singularity. Note +that another variable was chosen for ``z3`` than before, i.e., the output at +``z3`` is rotated:: + + sage: from flatsurf import similarity_surfaces, HarmonicDifferentials, SimplicialCohomology, Polygon + sage: S = similarity_surfaces.billiard(Polygon(angles=[3/8, 1/2, 1/8], lengths=[1/2])).minimal_cover('translation') + + sage: H = SimplicialCohomology(S) + sage: a, b, c, d = H.homology().gens() + + sage: f = H({a: 0, b: sqrt(2) + 2, c: -1, d: -sqrt(2) - 1}) + + sage: from flatsurf.geometry.voronoi import ApproximateWeightedVoronoiCellDecomposition + sage: Omega = HarmonicDifferentials(S, error=1e-1, cell_decomposition=ApproximateWeightedVoronoiCellDecomposition(S)) + sage: omega = Omega(f, check=False) # random output due to L2 warnings + sage: omega.simplify(zero_threshold=1e-1) # abs-tol 1e-4 + (-1.4140331745147705 + (-5.2445968837090415)*z0^2 + (-14.135336687223573)*z0^4 + O(z0^5), 1.4160147905349731 + (-5.2437846751533215)*z1^2 + 14.13073027542154*z1^4 + O(z1^5), 1.3111448734204234*z2^2 + O(z2^7), 1.0453932285308838 + 1.8112497329711914*I + (-3.169093677628632)*z3^8 + (1.1057225941067088 - 1.9148742552824405*I)*z3^16 + O(z3^17), -1.4146366119384766*I + (-5.244161580049933)*z4^2 + 14.133169154040427*I*z4^4 + O(z4^5), 1.4153552055358887*I + (-5.244222128460129)*z5^2 + (-14.13234219652197*I)*z5^4 + O(z5^5)) + +A deformed L:: + + sage: ### Does not work yet. + sage: ### from flatsurf import translation_surfaces, HarmonicDifferentials, ApproximateWeightedVoronoiCellDecomposition, GL2ROrbitClosure + sage: ### L = translation_surfaces.mcmullen_genus2_prototype(1, 1, 0, -1) + sage: ### L = GL2ROrbitClosure(L).deform() + sage: ### L = L.delaunay_triangulate().codomain() + sage: ### L = L.subdivide_edges(4).codomain() + sage: ### L = L.subdivide().codomain() + sage: ### # L = L.relabel({label: l for (l, label) in enumerate(L.labels())}).codomain() + sage: ### # L = L.insert_marked_points(*[L(label, L.polygon(label).centroid()) for label in [3]]).codomain() + sage: ### L = L.delaunay_triangulate().codomain() + sage: ### L = L.relabel({label: l for (l, label) in enumerate(L.labels())}).codomain() + sage: ### L.plot(edge_labels=False) + sage: ### V = ApproximateWeightedVoronoiCellDecomposition(L) + sage: ### Omega = HarmonicDifferentials(L, error=1e-3, cell_decomposition=V, check=False) + sage: ### Omega.error_plot(cutoff=.5) + + sage: ### L = L.delaunay_triangulate().codomain() + sage: ### L = L.relabel({label: l for (l, label) in enumerate(L.labels())}).codomain() + sage: ### L = L.insert_marked_points(*[L(label, L.polygon(label).centroid()) for label in [8, 12]]).codomain() + sage: ### L = L.delaunay_triangulate().codomain() + sage: ### L = L.relabel({label: l for (l, label) in enumerate(L.labels())}).codomain() + sage: ### L = L.insert_marked_points(*[L(label, L.polygon(label).centroid()) for label in [1, 16]]).codomain() + sage: ### L = L.delaunay_triangulate().codomain() + sage: ### L = L.relabel({label: l for (l, label) in enumerate(L.labels())}).codomain() + sage: ### V = ApproximateWeightedVoronoiCellDecomposition(L) + sage: ### V.plot() + + sage: ### Omega = HarmonicDifferentials(L, error=1e-3, cell_decomposition=V) + +Much more complicated, the unfolding of the (3, 4, 13) triangle:: + + sage: from flatsurf import similarity_surfaces, Polygon + + sage: S = similarity_surfaces.billiard(Polygon(angles=[3, 4, 13])).minimal_cover("translation") + sage: S = S.erase_marked_points().codomain().delaunay_triangulate().codomain() + sage: S = S.relabel().codomain() + +If we develop power series at the vertices, not all of the surface is covered +by their disks of convergence:: + + sage: from flatsurf import HarmonicDifferentials, ApproximateWeightedVoronoiCellDecomposition + sage: V = ApproximateWeightedVoronoiCellDecomposition(S) + sage: Omega = HarmonicDifferentials(S, error=1e-1, cell_decomposition=V) + Traceback (most recent call last): + ... + ValueError: cell decomposition is such that cells contain points outside of their center's radius of convergence + +We add marked points in the centers of some polygons:: + + sage: Omega = HarmonicDifferentials(S, error=1e-1, cell_decomposition=V, check=False) + sage: # Omega.error_plot() + sage: S = S.insert_marked_points(*[S(label, S.polygon(label).centroid()) for label in (2, 18, 26, 31)]).codomain() + sage: S = S.delaunay_triangulate().codomain() + sage: S = S.relabel().codomain() + + sage: V = ApproximateWeightedVoronoiCellDecomposition(S) + sage: Omega = HarmonicDifferentials(S, error=1e-1, cell_decomposition=V) + +Given a vector from the tangent space, we can determine the corresponding differential:: + + sage: from flatsurf import GL2ROrbitClosure + sage: O = GL2ROrbitClosure(S) + sage: for d in O.decompositions(4, 20): # random output due to deprecation warnings + ....: O.update_tangent_space_from_flow_decomposition(d) + ....: if O.dimension() == 7: break + + sage: f = O._lift_to_simplicial_cohomology(O.lift(O.tangent_space_basis()[-1])) + sage: f = f.parent()({k: v / max(f._values.values()) for (k, v) in f._values.items()}) + sage: f = Omega(f, check=False) # long time + +We can determine the roots of this differential:: + + sage: # TODO + +There are precision problems in the above, so we add more centers at which we +develop power series:: + + sage: # TODO + +""" +###################################################################### +# This file is part of sage-flatsurf. +# +# Copyright (C) 2022-2024 Julian Rüth +# +# sage-flatsurf is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 2 of the License, or +# (at your option) any later version. +# +# sage-flatsurf is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with sage-flatsurf. If not, see . +###################################################################### +from sage.structure.parent import Parent +from sage.structure.element import Element +from sage.misc.cachefunc import cached_method, cached_function +from sage.categories.all import SetsWithPartialMaps +from scipy.integrate import quad + +import warnings + +with warnings.catch_warnings(): + warnings.filterwarnings("ignore", category=DeprecationWarning) + import cppyy + +complex = None + +DEFAULT_BOUNDARY_ERROR = 1e-2 + + +def _cppyy(): + global complex + if complex is None: + cppyy.include("complex") + complex = cppyy.gbl.std.complex["double"] + return cppyy + + +def Ccpp(x): + _cppyy() + return complex(float(x.real()), float(x.imag())) + + +@cached_function +def zeta(d, n): + from sage.all import CDF + + zeta = CDF.zeta(d) + return zeta**n / d + + +def integral2arb(part, α, κ, d, ζd, n, β, λ, dd, ζdd, m, a, b, C, R): + r""" + Return the real/imaginary part of + + \int_γ ζ_{d+1}^{κ (n+1)}/(d+1) (z-α)^\frac{n-d}{d+1} \overline{ζ_{dd+1}^{λ (m+1)}/(dd+1) (z-β)^\frac{m-dd}{dd+1}} dz + + where γ(t) = (1-t)a + tb. + """ + if not hasattr(_cppyy().gbl, "integral2arb"): + _cppyy().cppdef( + r""" + #include + #include + + const int ARB_PREC=32; + + struct Arb { + Arb() { + arb_init(value); + } + + Arb(double d) { + arb_init(value); + arb_set_d(value, d); + } + + ~Arb() { + arb_clear(value); + } + + operator const arb_t&() const { + return value; + } + + operator arb_t&() { + return value; + } + + operator double() { + return arf_get_d(arb_midref(value), ARF_RND_NEAR); + } + + arb_t value; + }; + + struct Mag { + Mag(double d) { + mag_init(value); + mag_set_d(value, d); + } + + ~Mag() { + mag_clear(value); + } + + operator const mag_t&() const { + return value; + } + + mag_t value; + }; + + struct Acb { + Acb() { + acb_init(value); + } + + Acb(const acb_t v) { + acb_init(value); + acb_set(value, v); + } + + Acb(double re, double im) { + acb_init(value); + acb_set_d_d(value, re, im); + } + + Arb real() { + Arb real; + acb_get_real(real, value); + return real; + } + + Arb imag() { + Arb imag; + acb_get_imag(imag, value); + return imag; + } + + ~Acb() { + acb_clear(value); + } + + operator const acb_t&() const { + return value; + } + + operator acb_t&() { + return value; + } + + acb_t value; + }; + + struct Args { + Args(double Re_alpha, double Im_alpha, int kappa, int d, double Re_zeta_d, double Im_zeta_d, int n, double Re_beta, double Im_beta, int lambda, int dd, double Re_zeta_dd, double Im_zeta_dd, int m, double Re_a, double Im_a, double Re_b, double Im_b) : + alpha(Re_alpha, Im_alpha), + beta(Re_beta, Im_beta), + d(d), + dd(dd), + n(n), + m(m) { + + Acb zeta_d_power(Re_zeta_d, Im_zeta_d); + acb_pow_si(zeta_d_power, zeta_d_power, kappa * (n + 1), ARB_PREC); + acb_div_si(zeta_d_power, zeta_d_power, d + 1, ARB_PREC); + + Acb zeta_dd_power(Re_zeta_dd, Im_zeta_dd); + acb_pow_si(zeta_dd_power, zeta_dd_power, lambda * (m + 1), ARB_PREC); + acb_div_si(zeta_dd_power, zeta_dd_power, dd + 1, ARB_PREC); + acb_conj(zeta_dd_power, zeta_dd_power); + + acb_sub(ba, Acb(Re_b, Im_b), Acb(Re_a, Im_a), ARB_PREC); + + acb_abs(ba_, ba, ARB_PREC); + + Acb ba__; + acb_set_round_arb(ba__, ba_, ARB_PREC); + + acb_mul(constant, ba__, zeta_d_power, ARB_PREC); + acb_mul(constant, constant, zeta_dd_power, ARB_PREC); + } + + Acb alpha, beta; + Acb ba; + Arb ba_; + int d, dd; + int n, m; + Acb constant; + }; + + double integral2arb(std::string part, double Re_alpha, double Im_alpha, int kappa, int d, double Re_zeta_d, double Im_zeta_d, int n, double Re_beta, double Im_beta, int lambda, int dd, double Re_zeta_dd, double Im_zeta_dd, int m, double Re_a, double Im_a, double Re_b, double Im_b) { + double res_d; + + Acb res; + + Args args(Re_alpha, Im_alpha, kappa, d, Re_zeta_d, Im_zeta_d, n, Re_beta, Im_beta, lambda, dd, Re_zeta_dd, Im_zeta_dd, m, Re_a, Im_a, Re_b, Im_b); + + const auto func = [](acb_ptr out, const acb_t z, void * param, slong order, slong prec) -> int { + const Args* args = (const Args*)param; + + if (order > 1) { + // TODO: When order == 1 we need to verify that we are holomorphic somewhere. But where exactly? + throw std::logic_error("derivatives of function not implemented/function not holomorphic"); + } + + Acb za(z); + acb_sub(za, za, args->alpha, ARB_PREC); + acb_pow_arb(za, za, Arb(1 / (double)(args->d + 1)), ARB_PREC); + acb_pow_si(za, za, args->n - args->d, ARB_PREC); + + Acb zb(z); + acb_sub(zb, zb, args->beta, ARB_PREC); + acb_pow_arb(zb, zb, Arb(1 / (double)(args->dd + 1)), ARB_PREC); + acb_pow_si(zb, zb, args->m - args->dd, ARB_PREC); + acb_conj(zb, zb); + + acb_mul(out, za, zb, ARB_PREC); + + return 0; + }; + + if (acb_calc_integrate(res, func, &args, Acb(Re_a, Im_a), Acb(Re_b, Im_b), ARB_PREC /* rel_goal */, Mag(1e-64) /* abs_tol */, nullptr /* options */, ARB_PREC) != ARB_CALC_SUCCESS) { + throw std::logic_error("acb_calc_integrate() did not converge"); + } + + acb_mul(res, res, args.constant, ARB_PREC); + acb_div(res, res, args.ba, ARB_PREC); + + if (part == "Re") { + return res.real(); + } else if (part == "Im") { + return res.imag(); + } else { + throw std::logic_error("unknown part"); + } + } + """ + ) + + _cppyy().load_library("arb") + + return R( + _cppyy().gbl.integral2arb( + part, + float(α.real()), + float(α.imag()), + int(κ), + int(d), + float(ζd.real()), + float(ζd.imag()), + int(n), + float(β.real()), + float(β.imag()), + int(λ), + int(dd), + float(ζdd.real()), + float(ζdd.imag()), + m, + float(a.real()), + float(a.imag()), + float(b.real()), + float(b.imag()), + ) + ) + + +def integral2cpp(part, α, κ, d, n, β, λ, dd, m, a, b, C, R): + r""" + Return the real/imaginary part of + + \int_γ ζ_{d+1}^{κ (n+1)}/(d+1) (z-α)^\frac{n-d}{d+1} \overline{ζ_{dd+1}^{λ (m+1)}/(dd+1) (z-β)^\frac{m-dd}{dd+1}} dz + + where γ(t) = (1-t)a + tb. + """ + # Since γ(t) = (1 - t)a + tb, we have |·γ(t)| = |b - a| + constant = ( + zeta(d + 1, κ * (n + 1)) * zeta(dd + 1, λ * (m + 1)).conjugate() * abs(b - a) + ) + + constant = Ccpp(constant) + + α = Ccpp(α) + β = Ccpp(β) + a = Ccpp(a) + b = Ccpp(b) + + n = int(n) + m = int(m) + d = int(d) + dd = int(dd) + + if not hasattr(_cppyy().gbl, "value"): + _cppyy().cppdef( + r""" + #include + + using complex = std::complex; + + complex pow(complex z, double e) { + if (e == 0) return 1; + if (e == 1) return z; + return std::pow(z, e); + } + + complex value(double t, complex constant, complex a, complex alpha, int d, int n, complex b, complex beta, int dd, int m) { + complex z = (1 - t) * a + t * b; + + complex za = pow(pow(z - alpha, 1 / (double)(d + 1)), n - d); + complex zb = std::conj(pow(pow(z - beta, 1 / (double)(dd + 1)), m - dd)); + + return constant * za * zb; + } + """ + ) + + def pow(z, e): + z = complex(z) + e = complex(e) + + if e == 0: + return complex(1) + + if e == 1: + return z + + return _cppyy().gbl.std.pow(z, e) + + def value(t): + value = _cppyy().gbl.value(t, constant, a, α, d, n, b, β, dd, m) + + if part == "Re": + return value.real + if part == "Im": + return value.imag + + raise NotImplementedError + + integral, error = quad(value, 0, 1) + + return R(integral) + + +def integral2(part, α, κ, d, ζd, n, β, λ, dd, ζdd, m, a, b, C, R): + r""" + Return the real/imaginary part of + + \int_γ ζ_{d+1}^{κ (n+1)}/(d+1) (z-α)^\frac{n-d}{d+1} \overline{ζ_{dd+1}^{λ (m+1)}/(dd+1) (z-β)^\frac{m-dd}{dd+1}} dz + + where γ(t) = (1-t)a + tb. + """ + # Since γ(t) = (1 - t)a + tb, we have |·γ(t)| = |b - a| + constant = ( + ζd ** (κ * (n + 1)) + / (d + 1) + * (ζdd ** (λ * (m + 1)) / (dd + 1)).conjugate() + * abs(b - a) + ) + + def value(t): + z = (1 - t) * a + t * b + + if d == 0: + za = (z - α) ** n + else: + za = (z - α).nth_root(d + 1) ** (n - d) + + if dd == 0: + zb = ((z - β) ** m).conjugate() + else: + zb = ((z - β).nth_root(dd + 1) ** (m - dd)).conjugate() + + value = constant * za * zb + + if part == "Re": + return float(value.real()) + if part == "Im": + return float(value.imag()) + + raise NotImplementedError + + integral, error = quad(value, 0, 1) + + return R(integral) + + +@cached_function +def Cab(C, a): + return C(*a) + + +def define_solve(): + if not hasattr(_cppyy().gbl, "solve"): + import os.path + + _cppyy().include( + os.path.join(os.path.dirname(__file__), "..", "..", "mpreal-support.h") + ) + _cppyy().cppdef( + r""" + #include + #include + #include + #include + #include + #include + + using namespace mpfr; + using namespace Eigen; + using std::vector; + typedef SparseMatrix MatrixXmp; + typedef Matrix VectorXmp; + + VectorXmp solve(vector> _A, vector _b) + { + // set precision to ? bits (double has only 53 bits) + mpreal::set_default_prec(256); + // Declare matrix and vector types with multi-precision scalar type + + const int ROWS = _A.size(); + const int COLS = _A[0].size(); + MatrixXmp A = MatrixXmp(ROWS, COLS); + VectorXmp b = VectorXmp(ROWS); + + for (int y = 0; y < ROWS; y++) { + for (int x = 0; x < COLS; x++) { + if (_A[y][x] != 0) { + A.insert(y, x) = _A[y][x]; + } + b[y] = _b[y]; + } + } + + A.makeCompressed(); + + SparseQR> QRd; + QRd.compute(A); + + assert(QRd.info() == Success); + + VectorXmp x = QRd.solve(b); + + assert(QRd.info() == Success); + + return x; + } + """ + ) + + return _cppyy().gbl.solve + + +# TODO: This works around a problem when pyflatsurf is loaded. If pyflatsurf is loaded first, there are C++ errors. +define_solve() + + +class HarmonicDifferential(Element): + def __init__(self, parent, series, residue=None, cocycle=None): + super().__init__(parent) + if series is None: + raise ValueError # why would we want series to be None again? + self._series = series + self._residue = residue + self._cocycle = cocycle + + def _add_(self, other): + r""" + Return the sum of this harmonic differential and ``other`` by summing + their underlying power series. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialHomology, SimplicialCohomology + sage: T = translation_surfaces.square_torus().delaunay_triangulate().codomain() + sage: T.set_immutable() + + sage: H = SimplicialHomology(T) + sage: a, b = H.gens() + sage: H = SimplicialCohomology(T) + sage: f = H({a: 1}) + + sage: Ω = HarmonicDifferentials(T, error=1e-3) + + sage: ω = Ω(f) + Ω(f) + Ω(H({a: -2})) + sage: ω # random output due to numerical noise + ((-2.00000000007046e-82*I) + (-9.99999999996877e-83*I)*z0 + (2.00000000003978e-81 + 3.99999999998751e-82*I)*z0^2 + (3.99999999995683e-81)*z0^3 + (-1.00000000001253e-79*I)*z0^4 + O(z0^5), (3.99999999996833e-83*I) + (-4.00000000006421e-83)*z1 + 0.000000000000000*z1^2 + (-1.99999999997841e-81*I)*z1^3 + (9.99999999983070e-81*I)*z1^4 + O(z1^5)) + sage: ω.simplify() + (O(z0^5), O(z1^5)) + + """ + return self.parent()( + { + triangle: self._series[triangle] + other._series[triangle] + for triangle in self._series + } + ) + + def _sub_(self, other): + return self.parent()( + { + triangle: self._series[triangle] - other._series[triangle] + for triangle in self._series + } + ) + + # TODO: Can we increase the default precision? Somehow, we do not get much more precision easily in the octagon. Why? + def error(self, kind=None, verbose=False, abs_tol=1e-4, rel_tol=1e-4): + r""" + Return whether this differential is likely inaccurate. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialHomology, SimplicialCohomology + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: H = SimplicialHomology(T) + sage: a, b = H.gens() + sage: H = SimplicialCohomology(T) + sage: f = H({a: 1}) + + sage: Ω = HarmonicDifferentials(T, error=1e-3) + sage: η = Ω(f) + sage: η.error() + False + + """ + error = False + + def errors(expected, actual): + abs_error = float(abs(expected - actual)) + rel_error = 0 + if abs(expected) > 1e-12: + rel_error = abs_error / float(abs(expected)) + + return abs_error, rel_error + + if kind is None or "residue" in kind: + if self._residue is not None: + report = f"Harmonic differential created by solving Ax=b with |Ax-b| = {self._residue}." + if verbose: + print(report) + if self._residue > abs_tol: + error = report + if not verbose: + return error + + if kind is None or "cohomology" in kind: + if self._cocycle is not None: + for gen in self._cocycle.parent().homology().gens(): + expected = self._cocycle(gen) + actual = self.integrate(gen).real + if callable(actual): + actual = actual() + + abs_error, rel_error = errors(expected, actual) + + report = f"Integrating along cycle gives {actual} whereas the cocycle gave {expected}, i.e., an absolute error of {abs_error} and a relative error of {rel_error}." + if verbose: + print(report) + + if abs_error > abs_tol or rel_error > rel_tol: + error = report + if not verbose: + return error + + if kind is None or "L2" in kind: + C = self.parent()._constraints() + consistency = self.parent()._L2_consistency_constraints() + + abs_error = self._evaluate(consistency) + + report = f"L2 norm of differential is {abs_error}." + if verbose: + print(report) + + if abs_error > abs_tol: + error = report + if not verbose: + return error + + ## expected_cost = abs(abs_error / len(consistencies)) + + ## g = self.parent().surface().graphical_surface(polygon_labels=False, edge_labels=False) + ## plot = g.plot() + ## for (polygon_cell, segment, opposite_polygon_cell), cost in consistencies.items(): + ## cost = abs(self._evaluate(cost)) + ## relative_cost = cost / expected_cost + ## if relative_cost < 1: + ## continue + + ## from sage.all import line2d + ## polygon = g.graphical_polygon(polygon_cell.label()) + ## plot += line2d([polygon.transform(segment[0]), polygon.transform(segment[1])], color="red", thickness=int(relative_cost)) + ## plot.show() + + return error + + def _error_l2(self): + C = self.parent()._constraints() + consistency = self.parent()._L2_consistency_constraints() + + abs_error = self._evaluate(consistency) + return abs_error + + def cohomology(self): + H = self.parent().cohomology() + return H({gen: self.integrate(gen).real() for gen in H.homology().gens()}) + + def _evaluate(self, expression): + r""" + Evaluate an expression by plugging in the coefficients of the power + series defining this differential. + + This might not correspond to evaluating the actual power series somewhere. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialHomology, SimplicialCohomology + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: H = SimplicialHomology(T) + sage: a, b = H.gens() + sage: H = SimplicialCohomology(T) + sage: f = H({b: 1}) + + sage: Ω = HarmonicDifferentials(T) + sage: η = Ω(f) + + Compute the constant coefficients:: + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints + sage: C = PowerSeriesConstraints(Ω) + sage: R = C.symbolic_ring() + sage: gen = C._gen("Re", T(0, (1/2, 1/2)), 0) + sage: η._evaluate(gen) + 1.00000000000000 + + """ + coefficients = {} + + for variable in expression.variables(): + center = self.parent()._gen_center(variable) + degree = self.parent()._gen_degree(variable) + + try: + coefficient = self._series[center][degree] + except (IndexError, KeyError): + import warnings + + warnings.warn( + f"expected a {degree}th coefficient of the power series around {center} but none found" + ) + coefficients[variable] = 0 + continue + + if self.parent()._gen_is_real(variable): + coefficients[variable] = coefficient.real() + elif self.parent()._gen_is_imag(variable): + coefficients[variable] = coefficient.imag() + else: + raise NotImplementedError + + value = expression(coefficients) + + from flatsurf.geometry.power_series import PowerSeriesCoefficientExpression + + if isinstance(value, PowerSeriesCoefficientExpression): + assert value.total_degree() <= 0 + value = value.constant_coefficient() + + return value + + @cached_method + def precision(self): + # TODO: This is the number of coefficients of the power series but we use it as bit precision? + # TODO: There should not be a single global precision. Instead each + # cell has its own precision. Also these precisions are not comparable, + # since depending on the degree of the root, we need to scale things. + precisions = set( + series.precision_absolute() for series in self._series.values() + ) + # assert len(precisions) == 1 + return min(precisions) + + def integrate(self, cycle, numerical=False): + # TODO: Generalize to more than just cycles. + r""" + Return the integral of this differential along the homology class + ``cycle``. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialHomology, SimplicialCohomology + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: H = SimplicialHomology(T) + sage: a, b = H.gens() + sage: H = SimplicialCohomology(T) + + Construct a differential form such that integrating it along `a` yields real part + 1, and along `b` real part 0:: + + sage: f = H({a: 1}) + + sage: Ω = HarmonicDifferentials(T) + sage: η = Ω(f) + + sage: η.integrate(a).real() # tol 1e-6 + 1 + + sage: η.integrate(b).real() # tol 1e-6 + 0 + + """ + if numerical: + raise NotImplementedError + + C = self.parent()._constraints() + return self._evaluate(C.integrate(cycle)) + + def _repr_(self): + def sparse_parent(series): + return type(series.parent())( + series.parent().base_ring(), + series.parent().variable_name(), + sparse=True, + ) + + return repr(tuple(sparse_parent(s)(s) for s in self._series.values())) + + def _series(self, label, coordinates): + r""" + Return a series `f(z) = Σ_{n ≥ 0} a_n (z-α)^\frac{n-d}{d+1}` such that + `f(z)dz` describes the differential near ``coordinates`` with a flat + coordinate ``z``. + + The series is returned as a triple ``(d, α, a_n)`` where ``a_n`` is the + sequence of coefficients. + """ + raise NotImplementedError + + def rational_map(self, other=None): + r""" + Return the map to `\mathbb{P}^1` given by the quotient of this + differential and ``other``. + + INPUT: + + - ``other`` -- another differential of ``None`` (default: ``None``); if + ``None``, the quotient with `dz` is returned. + """ + if other is None: + other = self.parent().dz() + + return RationalMap(self, other) + + def roots(self): + return self.rational_map().roots() + + def simplify(self, zero_threshold=1e-6): + def simplify(series): + def simplify(coefficient): + if coefficient.real().abs() < zero_threshold: + coefficient = coefficient.parent()( + coefficient.imag() * coefficient.parent()("I") + ) + if coefficient.imag().abs() < zero_threshold: + coefficient = coefficient.parent()(coefficient.real()) + + return coefficient + + coefficients = { + exponent: simplify(coefficient) + for (exponent, coefficient) in zip( + series.exponents(), series.coefficients() + ) + } + coefficients = { + exponent: coefficient + for (exponent, coefficient) in coefficients.items() + if coefficient + } + + return series.parent()(coefficients, prec=series.prec()) + + return type(self)( + self.parent(), + {center: simplify(series) for (center, series) in self._series.items()}, + residue=self._residue, + cocycle=self._cocycle, + ) + + +class RationalMap: + r""" + A map from a translation surface to `\mathbb{P}^1` given by the quotient of + two differentials. + """ + + def __init__(self, numerator, denominator): + if numerator.parent() != denominator.parent(): + raise ValueError( + "numerator and denominator must be from the same space of differentials" + ) + + self._numerator = numerator + self._denominator = denominator + + def __repr__(self): + return f"({self._numerator})/({self._denominator})" + + def __invert__(self): + return RationalMap(self._denominator, self._numerator) + + def __call__(self, point): + # TODO: This should return a projective value. + differentials = self._numerator.parent() + cell = differentials._cells.cell(point) + + complex = cell.complex_from_point(point) + + center = cell.center() + numerator = self._numerator._series[center].polynomial() + denominator = self._denominator._series[center].polynomial() + + while True: + n = numerator(complex) + d = denominator(complex) + + if d == 0 and n == 0: + numerator = (numerator(numerator.parent().gen() + complex) >> 1)( + numerator.parent().gen() - complex + ) + denominator = (denominator(denominator.parent().gen() + complex) >> 1)( + denominator.parent().gen() - complex + ) + continue + + return (n, d) + + def derivative(self): + Omega = self._numerator.parent() + + n = self._numerator._series + d = self._denominator._series + + keys = n.keys() + + return RationalMap( + Omega( + { + key: d[key] * n[key].derivative() - n[key] * d[key].derivative() + for key in keys + } + ), + Omega({key: d[key] * d[key] for key in keys}), + ) + + # TODO: Passing the boundary_error into every method is silly. There should + # be a global geometry that takes care of that. + def roots(self, boundary_error=DEFAULT_BOUNDARY_ERROR): + # TODO: Add optional parameter to control grouping of roots. + return self.preimages(0, boundary_error=boundary_error) + + def ramification_points(self, boundary_error=DEFAULT_BOUNDARY_ERROR): + # Return triples (ramification point, ramification index, branch point) + + # TODO: Add optional parameter to control grouping of points. + # TODO: This is missing points over infinity. + return self.derivative().roots(boundary_error=boundary_error) + + def branch_points(self, boundary_error=DEFAULT_BOUNDARY_ERROR): + # TODO: Use the precision of the differential to determine which branch + # points should be identified. + raise NotImplementedError + + def degree(self, boundary_error=DEFAULT_BOUNDARY_ERROR): + degrees = {} + for (p, e, q) in self.ramification_points(boundary_error=boundary_error): + if q not in degrees: + degrees[q] = 0 + degrees[q] += e + + assert len(set(degrees.values())) == 1 + + return next(iter(degrees.values())) + + def _preimages_rational_roots(self, n, d, p, q): + r""" + Return the solutions of `n/d = p/q` where `n/d` is a meromorphic + function and `p/q` is a point on the projective line. + """ + # TODO: Use the precision of the differential to determine which roots + # should be identified. + + if q == 0: + return self._preimages_rational_roots(d, n, q, p) + + n = n.polynomial() + d = d.polynomial() + + roots = [] + + f = n * q - d * p + + def is_zero(x): + return abs(x) < 1e-8 + + for (root, multiplicity) in f.roots(): + if is_zero(d(root)): + if not is_zero(n(root)): + # print(f"{n(root)} is not zero") + pass + + def mult(f, x): + mult = 0 + while is_zero(f(x)): + assert f != 0 + f //= f.parent().gen() - x + mult += 1 + return mult + + root_multiplicity = min(mult(n, root), mult(d, root)) + + if is_zero((f // (f.parent().gen() - root) ** root_multiplicity)(root)): + multiplicity = 1 + else: + # print("no solution here") + # print((f // (f.parent().gen() - root)**root_multiplicity)(root)) + multiplicity = 0 + + # if multiplicity != 1: + # print(f"{multiplicity=}") + + roots.extend([root] * multiplicity) + + return roots + + def preimages(self, p, q=1, boundary_error=DEFAULT_BOUNDARY_ERROR): + # For each cell contains a list of points that satisfy that + # numerator/denominator = p/q. Some points may be repeated if they are + # close to the boundary of a cell. + preimages = {} + + differentials = self._numerator.parent() + + surface = differentials.surface() + cells = differentials._cells + + for center in surface.vertices(): + cell = cells.cell_at_center(center) + + numerator = self._numerator._series[center] + denominator = self._denominator._series[center] + + complex_solutions = [ + complex_solution + for complex_solution in self._preimages_rational_roots( + numerator, denominator, p, q + ) + if cell.point_from_complex( + complex_solution, boundary_error=boundary_error + ) + is not None + ] + + preimages[center] = complex_solutions + + return self._preimages_merge_repetitions( + preimages, boundary_error=boundary_error + ) + + def _preimages_normalize_opposite(self, complex, candidates, boundary_error): + candidate = min(candidates, key=lambda c: abs(c - complex)) + + # TODO: Compare to boundary_error to check plausibility + + return candidate + + def _preimages_merge_repetitions(self, preimages, boundary_error): + differentials = self._numerator.parent() + + surface = differentials.surface() + cells = differentials._cells + + identified_points = [] + + for center, complexes in preimages.items(): + for complex in complexes: + cell = cells.cell_at_center(center) + # For each preimage we determine which other centers should see that + # preimage. + # (Any preimage that is close to a boundary, should be seen by the + # center on the other side of the boundary.) + for ( + opposite_center, + opposite_complex, + ) in cell.opposite_representations(complex, boundary_error): + # Find the representation of that point as seen from the + # other side and group this pair of points. + if not preimages[opposite_center]: + # print("no opposite for this point") + assert ( + cell.point_from_complex( + complex, boundary_error=boundary_error / 2 + ) + is None + ) + continue + + opposite_complex = self._preimages_normalize_opposite( + opposite_complex, + preimages[opposite_center], + boundary_error=boundary_error, + ) + # print(f"Identifying {(center, complex)} and {(opposite_center, opposite_complex)}") + identified_points.append( + ((center, complex), (opposite_center, opposite_complex)) + ) + + # Throw away any points that are too far across the boundary. + points_without_noise = [] + + for center, complexes in preimages.items(): + for complex in complexes: + cell = cells.cell_at_center(center) + + if ( + cell.point_from_complex(complex, boundary_error=boundary_error / 2) + is not None + ): + points_without_noise.append((center, complex)) + + points_without_noise.sort(key=lambda p: abs(p[1])) + + # Pick one representative of each group of points. + points_without_repetitions = [] + + for p in points_without_noise: + # This could easily be done sub-cubic but it's likely not a bottleneck ever. + # TODO: Instead of picking any representative we should probably + # pick the one that has likely the best precision (or average all + # the representatives.) + for x, y in identified_points: + if x == p and y in points_without_repetitions: + # print("!", p) + break + if y == p and x in points_without_repetitions: + # print("!", p) + break + else: + # print(p) + points_without_repetitions.append(p) + + # Turn the complex solutions into actual points of the surface. + points = [] + + for (center, complex) in points_without_repetitions: + cell = cells.cell_at_center(center) + point = cell.point_from_complex(complex, boundary_error=boundary_error) + assert point is not None + points.append(point) + + return points + + def monodromy(self, base_point=None, steps=None, branch_points=None): + r""" + Return the monodromy group of this rational map. + + INPUT: + + - ``base_point`` -- a point on the projective line + + - ``steps`` -- an integer (default: ``None``); the number of steps to + use initially when walking from the ``base_point`` to the branch + point and around the branch point. If ``None``, a default is chosen + automatically. + + - ``branch_points`` -- all branch points of this map as points on the + projective line + + TODO: Add a check that verifies that Riemann Hurwitz and prod() == one + checks out. Show these things in the examples. + + """ + if branch_points is None: + branch_points = self.branch_points() + + if base_point is None: + raise NotImplementedError( + "cannot select a monodromy base_point automatically yet" + ) + + finite_branch_points = [p for p in branch_points if p[1] != 0] + infinite_branch_points = [p for p in branch_points if p[1] == 0] + + # Sort branch points counterclockwise around the base point + from sage.all import atan2 + + branch_points = ( + sorted( + finite_branch_points, + key=lambda p: atan2( + *list((p[0] / p[1]) - (base_point[0] / base_point[1]))[::-1] + ), + ) + + infinite_branch_points + ) + + from sage.all import parallel + + @parallel + def monodromy_generator(branch_point): + return self.monodromy_generator( + base_point=base_point, + branch_point=branch_point, + steps=steps, + branch_points=branch_points, + ) + + permutations = {} + for ((branch_point,), kwargs), generator in monodromy_generator( + [(branch_point,) for branch_point in branch_points] + ): + permutations[branch_point] = generator + + generators = [permutations[branch_point] for branch_point in branch_points] + + domain = list(generators[0].keys()) + + from sage.all import Permutation, PermutationGroup + + return PermutationGroup( + [ + Permutation([domain.index(gen[x]) + 1 for x in domain]).cycle_string() + for gen in generators + ], + canonicalize=False, + ) + + def monodromy_generator( + self, base_point, branch_point, steps=None, branch_points=None + ): + r""" + Return the permutation of preimages of ``base_point`` corresponding to + a loop around ``branch_point``. + + INPUT: + + - ``base_point`` -- a point on the projective line + + - ``branch_point`` -- a point on the projective line + + - ``steps`` -- an integer (default: ``None``); the number of steps to + use initially when walking from the ``base_point`` to the + ``branch_point`` and around the ``branch_point``. If ``None``, a + default is chosen automatically. + + OUTPUT: A bidict encoding a bijection on the preimages of ``base_point``. + """ + if branch_points is None: + branch_points = self.branch_points() + + loop, paths = self._monodromy_loop( + base_point=base_point, + branch_point=branch_point, + branch_points=branch_points, + steps=steps, + ) + + from bidict import bidict + + return bidict({path[0]: path[-1] for path in paths}) + + def _monodromy_loop(self, base_point, branch_point, branch_points, steps=None): + r""" + Return a loop in `\mathbb{P}^1` and paths in the surface formed by the + preimages of that loop. + + The loop starts and ends at ``base_point`` and walks around + ``branch_point`` (counterclockwise) without walking around any of the + other ``branch_points``. + + INPUT: + + - ``base_point`` -- a point on the projective line + + - ``branch_point`` -- a point on the projective line + + - ``branch_points`` -- points on the projective line; all the branch + point of this rational function + + - ``steps`` -- an integer (default: ``None``); the number of steps to + use initially when walking from the ``base_point`` to the + ``branch_point`` and around the ``branch_point``. If ``None``, a + default is chosen automatically. + + OUTPUT: A tuple (loop, paths) where loop is a sequence of points in the + projective line and paths is a list of paths formed by points in the + surface. + """ + if steps is None: + steps = 8 + + finite_branch_points = [p[0] / p[1] for p in branch_points if p[1] != 0] + + is_finite = branch_point[1] != 0 + + if is_finite: + center = branch_point[0] / branch_point[1] + + if center not in finite_branch_points: + raise ValueError("branch_point must be one of branch_points") + + radius = ( + min( + abs(center - other) + for other in finite_branch_points + if other != center + ) + / 2 + ) + else: + center = sum(finite_branch_points) / len(finite_branch_points) + radius = max(abs(center - other) for other in finite_branch_points) * 3 / 2 + + base_point = base_point[0] / base_point[1] + + # First, we move from the base point to the closest point on the circle + # with "radius" around the center. + center_to_base_point = base_point - center + center_to_base_point /= center_to_base_point.abs() + circle_base_point = center + radius * center_to_base_point + + loop = [base_point] + paths = [[p] for p in self.preimages(base_point)] + + degree = len(paths) + + def align_preimages(preimages): + previous = [path[-1] for path in paths] + + aligned_preimages = [None] * len(preimages) + + erasure = self.surface().erase_marked_points() + previous = [erasure(p) for p in previous] + + distances = erasure.codomain().distance_matrix_points(previous) + + insertion = erasure.codomain().insert_marked_points(*previous) + previous = [insertion(p) for p in previous] + + def distance(v, w): + if v in previous and w in previous: + return distances[previous.index(v)][previous.index(w)] + + return None + + for preimage in preimages: + nclosest = iter( + insertion(erasure(preimage)).nclosest(previous, distance=distance) + ) + closest_distance, closest_point = next(nclosest) + second_closest_distance, second_closest_point = next(nclosest) + + # TODO: Make 2 configurable. + if second_closest_distance < 2 * closest_distance: + print( + f"Not sure which path preimage continues. Best options were too close at {closest_distance} and {second_closest_distance}" + ) + return None + + aligned_preimages[previous.index(closest_point)] = preimage + + if None in aligned_preimages: + print("Several points continue the same path. Need to refine.") + return None + + return aligned_preimages + + def walk(step): + while True: + refinements = [] + while True: + next = step(len(refinements)) + + if next is None: + return + + if next in refinements: + refinements.append(None) + continue + + refinements.append(next) + + print(f"Walking to {next}") + + preimages = self.preimages(next) + preimages = align_preimages(preimages) + + if preimages is None: + print("refining path") + continue + + loop.append(next) + for path, preimage in zip(paths, preimages): + path.append(preimage) + + break + + def segment(destination): + total = destination - loop[0] + + def step(refinements): + if loop[-1] == destination: + return None + + remaining = (destination - loop[-1]).abs() + delta = total / (steps * (refinements + 1)) + + if delta.abs() >= remaining: + return destination + + return loop[-1] + delta + + walk(step) + + def circle(center, radius): + angle = 0 + angle_delta = 0 + + start = loop[-1] + + def step(refinements): + nonlocal angle_delta, angle + if refinements == 0: + angle += angle_delta + + if angle >= 1: + return None + + from sage.all import QQ + + angle_delta = QQ((1, steps * (refinements + 1))) + + from sage.all import CDF + + rotation = CDF.zeta(steps * (refinements + 1)) + + if angle + angle_delta >= 1: + return start + + return (loop[-1] - center) * rotation + center + + walk(step) + + segment(circle_base_point) + + initial_loop = loop[:] + initial_paths = [path[:] for path in paths] + + circle(center, radius) + + # No need to do the walk to the starting point again, it's just the + # reverse of the initial segment. + # segment(base_point) + + loop.extend(initial_loop[::-1][1:]) + + for initial_path in initial_paths: + for path in paths: + if initial_path[-1] == path[-1]: + path.extend(initial_path[::-1][1:]) + break + else: + assert ( + False + ), f"no path in {paths} can be continued with reversed {initial_path}" + + return loop, paths + + def surface(self): + return self._numerator.parent().surface() + + def monodromy_plots(self, base_point, steps=10, branch_points=None): + if base_point[1] == 0: + raise NotImplementedError + + base_point = base_point[0] / base_point[1] + + if branch_points is None: + branch_points = self.branch_points() + + finite_branch_points = [p[0] / p[1] for p in branch_points if p[1] != 0] + + infinite_branch_point = any(p[1] == 0 for p in branch_points) + + finite_radii = { + p: min(abs(p - other) for other in finite_branch_points if other != p) / 2 + for p in finite_branch_points + } + + if infinite_branch_point: + infinite_center = sum(finite_branch_points) / len(finite_branch_points) + infinite_radius = ( + max(abs(infinite_center - other) for other in finite_branch_points) + * 3 + / 2 + ) + + S = self._numerator.parent().surface() + GS = S.graphical_surface(edge_labels=False, polygon_labels=False) + + from sage.all import oo + + from sage.all import point2d, Graphics + + P1 = Graphics() + for branch_point in finite_branch_points + ( + [oo] if infinite_branch_point else [] + ): + if branch_point == oo: + radius = infinite_radius + else: + radius = finite_radii[branch_point] + + center = branch_point + if branch_point == oo: + center = infinite_center + + def plot(x, color="blue"): + return point2d([x]) + + def move(P, Q): + delta = (Q - P) / steps + return sum(plot(P + delta * step) for step in range(steps)) + + def cycle(center, start, ccw=True): + from sage.all import CDF + + rotation = CDF.zeta(steps) + if not ccw: + rotation = rotation.conjugate() + + start = min( + range(steps), + key=lambda step: ( + start - (center + rotation**step * radius) + ).abs(), + ) + + return sum( + plot(center + rotation ** (start + step) * radius) + for step in range(steps) + ) + + start = ( + center - (center - base_point) / (center - base_point).abs() * radius + ) + + P1 += move(base_point, start) + P1 += cycle(center, start) + P1 += move(start, base_point) + + P1 += point2d(finite_branch_points, color="red") + + P1 += plot(base_point, color="green") + + def monodromy_plot(branch_point, all_ramification_points=None): + print(f"Creating animation around {branch_point}") + + if all_ramification_points is None: + if branch_point == oo: + ramification_points = self.preimages(1, 0) + else: + ramification_points = self.preimages(branch_point, 1) + else: + # TODO: Only consider the ramification points over this branch point. + ramification_points = all_ramification_points + + ramification_points = sum( + p.plot(GS, color="red") for p in ramification_points + ) + + if branch_point == oo: + radius = infinite_radius + else: + radius = finite_radii[branch_point] + + center = branch_point + if branch_point == oo: + center = infinite_center + + def plot(x, color="orange"): + G = GS.plot() + try: + G += ramification_points + sum( + p.plot(GS, color=color) for p in self.preimages(x) + ) + except Exception: + print("frame missed") + + return G.inset( + P1 + point2d([x], color=color), pos=(0.8, 0.8, 0.2, 0.2), fontsize=5 + ) + + def move(P, Q): + delta = (Q - P) / steps + return [plot(P + delta * step) for step in range(steps)] + + def cycle(center, start, ccw=True): + from sage.all import CDF + + rotation = CDF.zeta(steps) + if not ccw: + rotation = rotation.conjugate() + + start = min( + range(steps), + key=lambda step: ( + start - (center + rotation**step * radius) + ).abs(), + ) + + return [ + plot(center + rotation ** (start + step) * radius) + for step in range(steps) + ] + + start = ( + center - (center - base_point) / (center - base_point).abs() * radius + ) + + frames = [plot(base_point, color="green")] + print(f"moving from {base_point} to {start}") + frames.extend(move(base_point, start)) + print(f"walking around {center}") + frames.extend(cycle(center, start)) + print(f"moving back to {base_point} from {start}") + frames.extend(move(start, base_point)) + + from sage.all import animate + + return animate(frames, dpi=512) + + for p in finite_branch_points: + yield monodromy_plot(p) + if infinite_branch_point: + yield monodromy_plot(oo) + + +# TODO: Make these unique for each surface (without using UniqueRepresentation because equal surfaces can be distinct.) +class HarmonicDifferentialSpace(Parent): + r""" + The space of harmonic differentials on this surface. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialCohomology + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: Ω = HarmonicDifferentials(T); Ω + Ω(Translation Surface in H_1(0) built from a square) + + :: + + sage: H = SimplicialCohomology(T) + sage: Ω(H()) + (O(z0^5), O(z1^5)) + + :: + + sage: a, b = H.homology().gens() + sage: f = H({b: 1}) + sage: η = Ω(f) + sage: η.integrate(a).real() # tol 1e-6 + 0 + sage: η.integrate(b).real() # tol 1e-6 + 1 + + """ + Element = HarmonicDifferential + + def __init__( + self, surface, error=None, cell_decomposition=None, check=True, category=None + ): + # TODO: Just order labels by their order in surface.labels() instead. + try: + sorted(surface.labels()) + except Exception: + raise NotImplementedError( + "labels on the surface must be sortable so we use label order to make a choice of n-th roots" + ) + + if cell_decomposition is None: + if surface.genus() == 1: + from flatsurf.geometry.voronoi import VoronoiCellDecomposition + + cell_decomposition = VoronoiCellDecomposition(surface) + else: + from flatsurf.geometry.voronoi import VoronoiCellDecomposition + + cell_decomposition = VoronoiCellDecomposition(surface) + + if error is None: + error = 1e-3 + + # TODO: Add defaults for error and cell_decomposition. + + Parent.__init__(self, category=category or SetsWithPartialMaps()) + + self._surface = surface + self._error = error + self._cells = cell_decomposition + self._centers = list(self._cells.centers()) + + if check: + if any( + self._relative_radius_of_convergence(cell) >= 1 for cell in self._cells + ): + raise ValueError( + "cell decomposition is such that cells contain points outside of their center's radius of convergence" + ) + + [self.ncoefficients(v) for v in surface.vertices()] + + def change(self, surface=None): + if surface is not None: + self = HarmonicDifferentials( + surface=surface, + error=self._error, + cell_decomposition=self._cells.change(surface=surface), + ) + + return self + + # TODO: This does not cache :( + @cached_method + def ncoefficients(self, center): + r""" + Return the number of coefficients we need to use for the power series + at ``center`` to obtain the prescribed error in the differentials. + + .. NOTE:: + + We need to clarify the notion of "error" here. + + Let η be the differential we are trying to compute and let η' be an + approximation to that differential (given by a truncated power + series at each vertex of the surface.) + + Away from its poles on the flat z-chart, we can write `η = f(z)dz` + and `η' = f'(z)dz`.. We want to bound the absolute error of `f'(z)` + at the place where it's approximating `f(z)` worst, namely far away + from the centers of the cells. + + We are determining the number of power series coefficients needed + to bound this error for each approximation of the differential at + each center of a cell. + + Note that this is a strange notion. Absolute error is not a + terribly meaningful notion in the first place but relative errors + are very hard to argue with when there are zeros. A good notion of + error would actually have been the error in the rational function + induced by η (as a distance on the unit sphere representing the + projective line.) But again, it is very hard to control the + estimates there. + + ALGORITHM: + + The tool we are using here is a standard approximation for the error + term when approximating an analytic function with a polynomial, see + https://en.wikipedia.org/wiki/Taylor's_theorem#Taylor's_theorem_in_complex_analysis + + Namely, let `f(y) = \sum a_n y^n` be an analytic function on an open + disk of radius `R`. Let `P_k(y)=a_0 + \cdots + a_k y^k` be the + truncation of this power series and `R_k(y) = f(y) - P_k(y)`. We want + to estimate `|R_k(y)|` for all `|y| self._error: + k += 1 + + # print( + # f"{k} coefficients at {center} with degree {center.angle()} for an error of {self._ncoefficients_epsilon_z(center, k)}" + # ) + return k + + def _ncoefficients_epsilon_z(self, center, k): + d = center.angle() + cell = self._cells.cell_at_center(center) + rcelly = float(cell.radius()) ** (1 / d) + + # TODO: Numerically optimize this pair of values. + ry = float(center.radius_of_convergence()) ** (1 / d) + mr = 1 / d + + return rcelly ** (2 - d) / (ry - rcelly) / d * (rcelly / ry) ** k * mr + + def dz(self): + return self( + { + v: v.angle() + * self._constraints().power_series_ring(v).gen() ** (v.angle() - 1) + for v in self.surface().vertices() + } + ) + + # TODO: We should maybe test against thi path: + # fdz = HH({gamma: RDF(sum(c * S.polygon(label).edge(edge)[0] for (label, edge), c in gamma._chain.monomial_coefficients().items())) for gamma in H.gens()}) + # return self(self.fdz(), check=False) + + def surface(self): + return self._surface + + @cached_method + def _relative_radius_of_convergence(self, cell): + r""" + Return the :meth:`Cell.radius` of the ``cell`` divided by the radius of + convergence at the center point of that cell as a floating point number. + """ + R = float(cell.center().radius_of_convergence()) + r = float(cell.radius()) + + return r / R + + @cached_method + def _relative_inradius_of_convergence(self, cell): + R = float(cell.center().radius_of_convergence()) + r = float(cell.inradius()) + + return r / R + + def error_plot( + self, graphical_surface=None, cutoff=1.0, plot_points=20, regions=True + ): + if graphical_surface is None: + graphical_surface = self.surface().graphical_surface( + polygon_labels=False, edge_labels=False + ) + + plot = graphical_surface.plot(fill=False) + + from sage.all import var + + x, y = var("x,y") + + # TODO: Would be better to use a global region plot over the entire surface. + for label in self.surface().labels(): + from sage.all import RDF + + polygon = self.surface().polygon(label).change_ring(RDF) + + graphical_polygon = graphical_surface.graphical_polygon(label) + + for polygon_cell in self._cells.polygon_cells(label): + radius_of_convergence = float( + polygon_cell.cell().center().radius_of_convergence() + ) + + def is_visible(x, y): + from sage.all import vector + + xy = vector((x, y)) + + xy_polygon = graphical_polygon.transform_back(xy) + if polygon.get_point_position(xy_polygon).is_outside(): + return False + + error = ( + xy_polygon - polygon_cell.center() + ).norm() / radius_of_convergence + if error < cutoff: + return False + + return polygon_cell.contains_point(xy_polygon) + + from sage.all import region_plot + + if regions: + plot += region_plot( + is_visible, + (x, graphical_polygon.xmin(), graphical_polygon.xmax()), + (y, graphical_polygon.ymin(), graphical_polygon.ymax()), + plot_points=plot_points, + incol="orange", + outcol=None, + bordercol="lightgrey", + alpha=0.2, + ) + + for corner in polygon_cell.corners(): + xy = graphical_polygon.transform(corner) + if is_visible(*xy): + from sage.all import point2d + + plot += point2d([xy], color="red") + + return plot + self._cells.plot(graphical_surface) + + # def error_location(self, cell=None): + # if cell is None: + # cell = self.error_cell() + + # return cell.furthest_point() + + # def error_cell(self): + # return max(self._voronoi_diagram().cells(), key=lambda cell: self.error(cell=cell)) + + def _repr_(self): + return f"Ω({self._surface})" + + # TODO: Move to some class that is shared between harmonic differentials + # and constraints that abstracts away details of the symbolic ring. + def _gen_center(self, gen): + assert self._gen_is_real(gen) or self._gen_is_imag(gen) + + gen, degree = gen.describe() + + return self._centers[int(gen.split(",")[0][4:])] + + # TODO: Move to some class that is shared between harmonic differentials + # and constraints that abstracts away details of the symbolic ring. + def _gen_is_lagrange(self, gen): + gen, degree = gen.describe() + + return gen == "λ?" + + # TODO: Move to some class that is shared between harmonic differentials + # and constraints that abstracts away details of the symbolic ring. + def _gen_is_real(self, gen): + gen, degree = gen.describe() + + return gen.startswith("Re(a") + + # TODO: Move to some class that is shared between harmonic differentials + # and constraints that abstracts away details of the symbolic ring. + def _gen_is_imag(self, gen): + gen, degree = gen.describe() + + return gen.startswith("Im(a") + + # TODO: Move to some class that is shared between harmonic differentials + # and constraints that abstracts away details of the symbolic ring. + def _gen_degree(self, gen): + gen, degree = gen.describe() + return degree + + @cached_method(key=lambda self, check: None, do_pickle=True) + def basis(self, check=True): + return [self(gen, check=check) for gen in self.cohomology().gens()] + + def cohomology(self): + from flatsurf.geometry.cohomology import SimplicialCohomology + + return SimplicialCohomology(self._surface) + + @cached_method(key=lambda self, check: None, do_pickle=True) + def period_matrix(self, check=True): + from flatsurf.geometry.homology import SimplicialHomology + + symplectic_basis = SimplicialHomology(self._surface).symplectic_basis() + symplectic_basis = symplectic_basis[: len(symplectic_basis) // 2] + + from sage.all import matrix + + return matrix( + [ + [ + differential.integrate(path) + for differential in self.basis(check=check) + ] + for path in symplectic_basis + ] + ) + + def _element_constructor_(self, x, *args, **kwargs): + if not x: + return self.element_class(self, None, *args, **kwargs) + + if isinstance(x, dict): + return self.element_class(self, x, *args, **kwargs) + + return self._element_from_cohomology(x, *args, **kwargs) + + def _constraints(self): + return PowerSeriesConstraints(self) + + # TODO: The caching is a huge spaghetti mess. + @cached_method + def _L2_consistency_constraints(self): + return self._constraints()._L2_consistencies() + + def _element_from_cohomology(self, cocycle, /, algorithm=["L2"], check=True): + # TODO: In practice we could speed things up a lot with some smarter + # caching. A lot of the quantities used in the computations only depend + # on the surface & precision. When computing things for many cocycles + # we do not need to recompute them. (But currently, we probably do + # because they live in the constraints instance.) + + # We develop a consistent system of power series at each vertex of the Voronoi diagram + # to describe a differential. + + # Let η be the differential we are looking for. To describe η we will use ω, the differential + # corresponding to the flat structure given by our triangulation on this Riemann surface. + # Then f:=η/ω is a meromorphic function which we can develop locally into a Laurent series. + # Away from the vertices of the triangulation, ω has no zeros, so f has no poles there and is + # thus given by a power series. + + # At each vertex of the Voronoi diagram, write f=Σ a_k z^k + O(z^prec). Our task is now to determine + # the a_k. + + constraints = self._constraints() + + # We use a variety of constraints. Which ones to use exactly is + # determined by the "algorithm" parameter. If algorithm is a dict, it + # can be used to configure aspects of the constraints. + def get_parameter(alg, default): + nonlocal algorithm + assert alg in algorithm + if isinstance(algorithm, dict): + return algorithm.pop(alg) + algorithm = [a for a in algorithm if a != alg] + return default + + # (1) The radius of convergence of the power series is the distance from the vertex of the Voronoi + # cell to the closest vertex of the triangulation (since we use a Delaunay triangulation, all vertices + # are at the same distance in fact.) So the radii of convergence of two neigbhouring cells overlap + # and the power series must coincide there. Note that this constraint is unrelated to the cohomology + # class Φ. + if "midpoint_derivatives" in algorithm: + derivatives = get_parameter("midpoint_derivatives", self.prec // 3) + constraints.require_midpoint_derivatives(derivatives) + + # (1') TODO: Describe L2 optimization. + if "L2" in algorithm: + print("Adding L2 conditions") + weight = get_parameter("L2", 1) + constraints.optimize(weight * self._L2_consistency_constraints()) + + if "squares" in algorithm: + weight = get_parameter("squares", 1) + constraints.optimize(weight * constraints._squares()) + + # (2) We have that for any cycle γ, Re(∫fω) = Re(∫η) = Φ(γ). We can turn this into constraints + # on the coefficients as we integrate numerically following the path γ as it intersects the radii of + # convergence. + print("Adding cohomology constraints") + constraints.require_cohomology(cocycle) + + if "force_singularities" in algorithm: + singularities = get_parameter( + "force_singularities", + { + vertex: vertex.angle() - 1 + for vertex in self.surface().singularities() + }, + ) + for vertex in self.surface().singularities(): + for degree in range(singularities.get(vertex, 0)): + constraints.add_constraint(constraints._gen("Re", vertex, degree)) + constraints.add_constraint(constraints._gen("Im", vertex, degree)) + + # (3) Since the area ∫ η \wedge \overline{η} must be finite [TODO: + # REFERENCE?] we optimize for a proxy of this quantity to be minimal. + if "area_upper_bound" in algorithm: + weight = get_parameter("area_upper_bound", 1) + constraints.optimize(weight * constraints._area_upper_bound()) + + # (3') We can also optimize for the exact quantity to be minimal but + # this is much slower. + if "area" in algorithm: + weight = get_parameter("area", 1) + constraints.optimize(weight * constraints._area()) + + if "tykhonov" in algorithm: + # TODO: Should we still try to do something like this? (Whatever + # the idea was here?) + pass + + if algorithm: + raise ValueError(f"unsupported algorithm {algorithm}") + + solution, residue = constraints.solve() + η = self.element_class(self, solution, residue=residue, cocycle=cocycle) + + if check: + if report := η.error(): + raise ValueError(report) + + return η + + +class PowerSeriesConstraints: + r""" + A collection of (linear) constraints on the coefficients of power series + developed at the vertices of the Voronoi cells of a Delaunay triangulation. + + This is used to create harmonic differentials from cohomology classes. + """ + + def __init__(self, differentials): + self._differentials = differentials + self._constraints = [] + self._cost = self.symbolic_ring().zero() + + def __repr__(self): + return repr(self._constraints) + + @cached_method + def symbolic_ring(self, base_ring=None): + r""" + Return the polynomial ring in the coefficients of the power series of + the triangles. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: Ω = HarmonicDifferentials(T) + + sage: C = PowerSeriesConstraints(Ω) + sage: C.symbolic_ring() + Ring of Power Series Coefficients in Re(a0,0),…,Re(a1,0),…,Im(a0,0),…,Im(a1,0),…,λ0,… over Complex Field with 54 bits of precision + + """ + # TODO: What's the correct precision here? + + gens = ( + [f"Re(a{n},?)" for n in range(len(self._differentials._centers))] + + [f"Im(a{n},?)" for n in range(len(self._differentials._centers))] + + ["λ?"] + ) + + from sage.all import ComplexField + from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + + return PowerSeriesCoefficientExpressionRing( + base_ring or self.complex_field(), tuple(gens) + ) + + @cached_method + def complex_field(self): + # TODO: Make this configurable. + from sage.all import CDF + + return CDF + + @cached_method + def real_field(self): + # TODO: Make this configurable. + from sage.all import RDF + + return RDF + + # TODO: Move to Harmonic Differentials; or maybe some other shared class + # that abstracts away details of the symbolic ring. + @cached_method + def lagrange(self, k): + return self.symbolic_ring().gen(("λ?", k)) + + def add_constraint(self, expression, rank_check=True): + total_degree = expression.total_degree() + + if total_degree == -1: + return + + if total_degree == 0: + raise ValueError(f"cannot solve for constraint {expression} == 0") + + if total_degree > 1: + raise NotImplementedError("can only encode linear constraints") + + if expression.parent().base_ring() is self.real_field(): + # TODO: Should we scale? + # self._constraints.append(expression / expression.norm(1)) + # TODO: This is a very expensive hack to detect dependent conditions. + if rank_check: + rank = self.matrix(nowarn=True)[0].rank() + self._constraints.append(expression) + if rank_check: + if self.matrix(nowarn=True)[0].rank() == rank: + self._constraints.pop() + elif expression.parent().base_ring() is self.complex_field(): + self.add_constraint(expression.real(), rank_check=rank_check) + self.add_constraint(expression.imag(), rank_check=rank_check) + else: + raise NotImplementedError("cannot handle expressions over this base ring") + + def integrate(self, cycle): + r""" + Return the linear combination of the power series coefficients that + describe the integral of a differential along the homology class + ``cycle``. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, SimplicialHomology + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: H = SimplicialHomology(T) + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints, HarmonicDifferentials + sage: Ω = HarmonicDifferentials(T, centers="vertices", ncoefficients=3) + sage: C = PowerSeriesConstraints(Ω) + + sage: C.integrate(H()) + 0 + + Integrating the power series developed around the vertex along the path + that loops horizontally from the center of the square to itself, we get + `a_0 - i/2 a_1 - a_2/6`:: # TODO: This is not true anymore. + + sage: a, b = H.gens() + sage: C.integrate(b) # TODO: There are many correct answers here. Test for something meaningful. + Re(a0,0) ... + + :: # TODO: Explain what's the expected output here + + sage: C.integrate(-a) # TODO: There are many correct answers here. Test for something meaningful. + (-1.00000000000000*I)*Re(a0,0) ... + + The same integrals but developing the power series at the vertex and at the center of the square:: + + sage: Ω = HarmonicDifferentials(T) + sage: C = PowerSeriesConstraints(Ω) + + sage: C.integrate(a) # not tested # TODO: Check these values + 0.828427124746190*Re(a0,0) + 0.171572875253810*Re(a1,0) + 0.828427124746190*I*Im(a0,0) + 0.171572875253810*I*Im(a1,0) + (-1.38777878078145e-17 - 8.54260702578763e-18*I)*Re(a0,1) + (-3.03576608295941e-18 + 0.0857864376269050*I)*Re(a1,1) + (8.54260702578763e-18 - 1.38777878078145e-17*I)*Im(a0,1) + (-0.0857864376269050 - 3.03576608295941e-18*I)*Im(a1,1) + (0.0473785412436502 + 4.71795158413990e-18*I)*Re(a0,2) + (-0.0424723326565069 - 3.03576608295941e-18*I)*Re(a1,2) + (-4.71795158413990e-18 + 0.0473785412436502*I)*Im(a0,2) + (3.03576608295941e-18 - 0.0424723326565069*I)*Im(a1,2) + (-1.73472347597681e-18 - 2.19851947436667e-18*I)*Re(a0,3) + (2.16840434497101e-18 - 0.0208152801713079*I)*Re(a1,3) + (2.19851947436667e-18 - 1.73472347597681e-18*I)*Im(a0,3) + (0.0208152801713079 + 2.16840434497101e-18*I)*Im(a1,3) + (0.00487732352790257 + 9.71367022318980e-19*I)*Re(a0,4) + (0.0100938339276945 + 1.51788304147971e-18*I)*Re(a1,4) + (-9.71367022318980e-19 + 0.00487732352790257*I)*Im(a0,4) + (-1.51788304147971e-18 + 0.0100938339276945*I)*Im(a1,4) + sage: C.integrate(b) # not tested # TODO: Check these values + (-0.828427124746190*I)*Re(a0,0) + (-0.171572875253810*I)*Re(a1,0) + 0.828427124746190*Im(a0,0) + 0.171572875253810*Im(a1,0) + (-1.38777878078145e-17 + 8.54260702578763e-18*I)*Re(a0,1) + (-3.03576608295941e-18 - 0.0857864376269050*I)*Re(a1,1) + (-8.54260702578763e-18 - 1.38777878078145e-17*I)*Im(a0,1) + (0.0857864376269050 - 3.03576608295941e-18*I)*Im(a1,1) + (7.70371977754894e-34 + 0.0473785412436502*I)*Re(a0,2) + (-2.60208521396521e-18 - 0.0424723326565069*I)*Re(a1,2) + (-0.0473785412436502 + 7.70371977754894e-34*I)*Im(a0,2) + (0.0424723326565069 - 2.60208521396521e-18*I)*Im(a1,2) + (1.73472347597681e-18 - 2.19851947436667e-18*I)*Re(a0,3) + (-2.16840434497101e-18 - 0.0208152801713079*I)*Re(a1,3) + (2.19851947436667e-18 + 1.73472347597681e-18*I)*Im(a0,3) + (0.0208152801713079 - 2.16840434497101e-18*I)*Im(a1,3) + (-9.62964972193618e-35 - 0.00487732352790257*I)*Re(a0,4) + (-1.08420217248550e-18 - 0.0100938339276945*I)*Re(a1,4) + (0.00487732352790257 - 9.62964972193618e-35*I)*Im(a0,4) + (0.0100938339276945 - 1.08420217248550e-18*I)*Im(a1,4) + + :: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialHomology + sage: S = translation_surfaces.regular_octagon() + + sage: H = SimplicialHomology(S) + sage: Ω = HarmonicDifferentials(S) + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints + sage: C = PowerSeriesConstraints(Ω) + + sage: C.integrate(H()) + 0 + + sage: a, b, c, d = H.gens() + + sage: C.integrate(a) # not tested # TODO: Check these values + (1.13290899470104 - 1.13290899470104*I)*Re(a0,0) + (1.13290899470104 + 1.13290899470104*I)*Im(a0,0) + (0.275277280554704 + 0.275277280554704*I)*Re(a1,0) + (-0.275277280554704 + 0.275277280554704*I)*Im(a1,0) + (0.327551243899061 + 6.93889390390723e-18*I)*Re(a1,1) + (-6.93889390390723e-18 + 0.327551243899061*I)*Im(a1,1) + (0.191399262161835 - 0.191399262161835*I)*Re(a1,2) + (0.191399262161835 + 0.191399262161835*I)*Im(a1,2) + + sage: C.integrate(b) # not tested # TODO: Check these values + 1.60217526524068*Re(a0,0) + 1.60217526524068*I*Im(a0,0) + (-0.389300863573646 + 1.38777878078145e-17*I)*Re(a1,0) + (-1.38777878078145e-17 - 0.389300863573646*I)*Im(a1,0) + (-1.04083408558608e-17 - 0.327551243899061*I)*Re(a1,1) + (0.327551243899061 - 1.04083408558608e-17*I)*Im(a1,1) + 0.270679432377470*Re(a1,2) + 0.270679432377470*I*Im(a1,2) + + sage: C.integrate(c) # not tested # TODO: Check these values + 1.60217526524068*Re(a0,0) + 1.60217526524068*I*Im(a0,0) + (-0.389300863573646 + 1.38777878078145e-17*I)*Re(a1,0) + (-1.38777878078145e-17 - 0.389300863573646*I)*Im(a1,0) + (-1.04083408558608e-17 - 0.327551243899061*I)*Re(a1,1) + (0.327551243899061 - 1.04083408558608e-17*I)*Im(a1,1) + 0.270679432377470*Re(a1,2) + 0.270679432377470*I*Im(a1,2) + + sage: C.integrate(d) # not tested # TODO: Check these values + (-1.60217526524068*I)*Re(a0,0) + 1.60217526524068*Im(a0,0) + (5.55111512312578e-17 - 0.389300863573646*I)*Re(a1,0) + (0.389300863573646 + 5.55111512312578e-17*I)*Im(a1,0) + (-2.77555756156289e-17 + 0.327551243899061*I)*Re(a1,1) + (-0.327551243899061 - 2.77555756156289e-17*I)*Im(a1,1) + (-0.270679432377470*I)*Re(a1,2) + 0.270679432377470*Im(a1,2) + + """ + return sum( + ( + multiplicity * sgn * self._integrate_path(path) + for ( + label, + edge, + ), multiplicity in cycle._chain.monomial_coefficients().items() + for (sgn, path) in self._integrate_path_along_edge(label, edge) + ), + start=self.symbolic_ring().zero(), + ) + + def _integrate_path_along_edge(self, label, edge): + r""" + Return the path along the ``edge`` of the polygon with ``label`` as a + sequence of :class:`Path` that we can integrate along. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, SimplicialHomology + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: H = SimplicialHomology(T) + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints, HarmonicDifferentials + sage: Ω = HarmonicDifferentials(T) + sage: C = PowerSeriesConstraints(Ω) + sage: C._integrate_path_along_edge(0, 1) + [(1, Path (0, 1) from (1, 0) in polygon 0 to (1, 1) in polygon 0)] + + :: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials + sage: S = translation_surfaces.regular_octagon() + sage: Ω = HarmonicDifferentials(S) + sage: PowerSeriesConstraints(Ω)._integrate_path_along_edge(0, 0) + [(1, Path (1, 0) from (0, 0) in polygon 0 to (1, 0) in polygon 0)] + + """ + surface = self._differentials.surface() + polygon = surface.polygon(label) + + from flatsurf.geometry.voronoi import SurfaceLineSegment + + return [ + ( + 1, + SurfaceLineSegment( + self._differentials.surface(), + label, + polygon.vertex(edge), + polygon.edge(edge), + ), + ) + ] + + def _integrate_path(self, segment): + r""" + Return the linear combination of the power series coefficients that + describe the integral along the ``segment``. + + This is a helper method for :meth:`integrate`. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialHomology + sage: S = translation_surfaces.regular_octagon() + + sage: Ω = HarmonicDifferentials(S) + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints + sage: C = PowerSeriesConstraints(Ω) + + sage: from flatsurf.geometry.harmonic_differentials import GeodesicPath + sage: path = GeodesicPath.along_edge(S, 0, 0) + + sage: C._integrate_path(path) # not tested # TODO: Check this value + (-5.55111512312578e-17 - 0.389300863573646*I)*Re(a0,0) + (-1.60217526524068*I)*Re(a1,0) + (0.389300863573646 - 5.55111512312578e-17*I)*Im(a0,0) + 1.60217526524068*Im(a1,0) + (-2.08166817117217e-17 - 0.327551243899060*I)*Re(a0,1) + (1.66533453693773e-16 + 3.19522800018857e-17*I)*Re(a1,1) + (0.327551243899060 - 2.08166817117217e-17*I)*Im(a0,1) + (-3.19522800018857e-17 + 1.66533453693773e-16*I)*Im(a1,1) + (-0.270679432377470*I)*Re(a0,2) + (-1.23259516440783e-32 + 0.342727396656658*I)*Re(a1,2) + 0.270679432377470*Im(a0,2) + (-0.342727396656658 - 1.23259516440783e-32*I)*Im(a1,2) + (1.38777878078145e-17 - 0.219471472765136*I)*Re(a0,3) + (-1.24900090270330e-16 - 3.07576511193400e-17*I)*Re(a1,3) + (0.219471472765136 + 1.38777878078145e-17*I)*Im(a0,3) + (3.07576511193400e-17 - 1.24900090270330e-16*I)*Im(a1,3) + (2.42861286636753e-17 - 0.174329399573979*I)*Re(a0,4) + (1.69481835106077e-32 - 0.131965414609324*I)*Re(a1,4) + (0.174329399573979 + 2.42861286636753e-17*I)*Im(a0,4) + (0.131965414609324 + 1.69481835106077e-32*I)*Im(a1,4) + (3.12250225675825e-17 - 0.135339716188735*I)*Re(a0,5) + (0.135339716188735 + 3.12250225675825e-17*I)*Im(a0,5) + (2.77555756156289e-17 - 0.102340546397005*I)*Re(a0,6) + (0.102340546397005 + 2.77555756156289e-17*I)*Im(a0,6) + (3.46944695195361e-17 - 0.0749845895064374*I)*Re(a0,7) + (0.0749845895064374 + 3.46944695195361e-17*I)*Im(a0,7) + (3.12250225675825e-17 - 0.0527958835241931*I)*Re(a0,8) + (0.0527958835241931 + 3.12250225675825e-17*I)*Im(a0,8) + (2.77555756156289e-17 - 0.0352191503025193*I)*Re(a0,9) + (0.0352191503025193 + 2.77555756156289e-17*I)*Im(a0,9) + (2.08166817117217e-17 - 0.0216611462547145*I)*Re(a0,10) + (0.0216611462547145 + 2.08166817117217e-17*I)*Im(a0,10) + (2.08166817117217e-17 - 0.0115239671919220*I)*Re(a0,11) + (0.0115239671919220 + 2.08166817117217e-17*I)*Im(a0,11) + (1.73472347597681e-17 - 0.00423065874117904*I)*Re(a0,12) + (0.00423065874117904 + 1.73472347597681e-17*I)*Im(a0,12) + (1.04083408558608e-17 + 0.000756226861613830*I)*Re(a0,13) + (-0.000756226861613830 + 1.04083408558608e-17*I)*Im(a0,13) + (8.67361737988404e-18 + 0.00392229868304028*I)*Re(a0,14) + (-0.00392229868304028 + 8.67361737988404e-18*I)*Im(a0,14) + + """ + return sum( + self._integrate_path_polygon_cell(polygon_cell, segment) + for ( + segment, + polygon_cell, + ) in self._differentials._cells.split_segment_at_polygon_cells(segment) + ) + + def _integrate_path_polygon_cell(self, polygon_cell, segment): + r""" + Return a symbolic expression describing the integral along the + ``segment`` in the Voronoi cell ``polygon_cell``. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialHomology + sage: S = translation_surfaces.regular_octagon() + + sage: Ω = HarmonicDifferentials(S) + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints + sage: C = PowerSeriesConstraints(Ω) + + sage: from flatsurf.geometry.euclidean import OrientedSegment + + sage: V = Ω._voronoi_diagram() + sage: C._integrate_path_cell(V.polygon_cell(0, (0, 0)), OrientedSegment((0, 0), (1/2, 0))) # TODO: Check this value + 0.793700525984099*Re(a0,0) + 0.793700525984099*I*Im(a0,0) + 0.314980262473718*Re(a0,1) + 0.314980262473718*I*Im(a0,1) + 0.166666666666667*Re(a0,2) + 0.166666666666667*I*Im(a0,2) + 0.0992125657480124*Re(a0,3) + 0.0992125657480124*I*Im(a0,3) + 0.0629960524947437*Re(a0,4) + 0.0629960524947437*I*Im(a0,4) + 0.0416666666666667*Re(a0,5) + 0.0416666666666667*I*Im(a0,5) + 0.0283464473520960*Re(a0,6) + 0.0283464473520960*I*Im(a0,6) + 0.0196862663993065*Re(a0,7) + 0.0196862663993065*I*Im(a0,7) + 0.0138888888888889*Re(a0,8) + 0.0138888888888889*I*Im(a0,8) + 0.00992125657430033*Re(a0,9) + 0.00992125657430033*I*Im(a0,9) + 0.00715864232879659*Re(a0,10) + 0.00715864232879659*I*Im(a0,10) + 0.00520833333333333*Re(a0,11) + 0.00520833333333333*I*Im(a0,11) + 0.00381586791339311*Re(a0,12) + 0.00381586791339311*I*Im(a0,12) + 0.00281232377208854*Re(a0,13) + 0.00281232377208854*I*Im(a0,13) + 0.00208333333333333*Re(a0,14) + 0.00208333333333333*I*Im(a0,14) + + """ + integrator = self.CellIntegrator(self, polygon_cell) + ncoefficients = self._differentials.ncoefficients(polygon_cell.cell().center()) + return sum( + integrator.a(n) * integrator.integral(n, segment) + for n in range(ncoefficients) + ) + + @cached_method + def _L2_consistencies(self): + cells = self._differentials._cells + + from sage.all import parallel + + @parallel + def L2_cost(polygon_cell, boundary_segment, opposite_polygon_cell): + from flatsurf.geometry.euclidean import OrientedSegment + + boundary_segment = OrientedSegment(*boundary_segment) + + boundary_segments = polygon_cell.split_segment_with_constant_root_branches( + boundary_segment + ) + boundary_segments = sum( + ( + opposite_polygon_cell.split_segment_with_constant_root_branches( + segment + ) + for segment in boundary_segments + ), + start=[], + ) + + ret = sum( + self._L2_consistency_voronoi_boundary( + polygon_cell, segment, opposite_polygon_cell + ) + for segment in boundary_segments + ) + + if not ret: + return {} + + return ret._coefficients + + # Get one copy of each cell boundary (with a random orientation.) + cell_boundaries = { + frozenset([boundary, -boundary]): boundary + for cell in cells + for boundary in cell.boundary() + }.values() + + polygon_cell_boundaries = sum( + (boundary.polygon_cell_boundaries() for boundary in cell_boundaries), + start=[], + ) + + return sum( + self.symbolic_ring()(cost) + for ((args, kwargs), cost) in L2_cost(polygon_cell_boundaries) + ) + + # TODO: Move to HarmonicDifferentials + def _gen(self, kind, center, n): + return self.symbolic_ring(self.real_field()).gen( + (f"{kind}(a{self._differentials._centers.index(center)},?)", n) + ) + + class CellIntegrator: + def __init__(self, constraints, polygon_cell): + self._constraints = constraints + self._polygon_cell = polygon_cell + + @cached_method + def a(self, n): + return self.Re_a( + n + ) + self._constraints.complex_field().gen() * self._constraints.symbolic_ring( + self._constraints.complex_field() + )( + self.Im_a(n) + ) + + @cached_method + def Re_a(self, n): + return self._constraints._gen("Re", self._polygon_cell.cell().center(), n) + + @cached_method + def Im_a(self, n): + return self._constraints._gen("Im", self._polygon_cell.cell().center(), n) + + def integral(self, n, segment): + r""" + Return the sum of + + \int_γ ζ_{d+1}^{κ (n+1)}/(d+1) (z-α)^\frac{n-d}{d+1} + + where `d` is the order of the singularity at the center of the + Voronoi cell containing ``segment``, γ are segments that partition + ``segment`` such that the `d+1`st root of `z-α` can be taken + consistently on the smaller segment and it is precisely the main + branch of the root up to `ζ^κ` where `ζ` is a `d+1`st root of + unity, `α` is the center of the Voronoi cell containing the + segment, + """ + sum = self._constraints.complex_field().zero() + + C = self._constraints.complex_field() + + d = self._polygon_cell.cell().center().angle() - 1 + α = C(*self._polygon_cell.center()) + + for γ in self._polygon_cell.split_segment_with_constant_root_branches( + segment + ): + a = C(*γ.start()) + b = C(*γ.end()) + + constant = zeta( + d + 1, self._polygon_cell.root_branch_for_segment(γ) * (n + 1) + ) * (C(b) - C(a)) + + def value(part, t): + z = self._constraints.complex_field()(*((1 - t) * a + t * b)) + + value = constant * (z - α).nth_root(d + 1) ** (n - d) + + if part == "Re": + return float(value.real()) + if part == "Im": + return float(value.imag()) + + raise NotImplementedError + + real, error = quad(lambda t: value("Re", t), 0, 1) + imag, error = quad(lambda t: value("Im", t), 0, 1) + + sum += C(real, imag) + + return sum + + def mixed_integral(self, part, α, κ, d, n, β, λ, dd, m, γ): + # TODO: In the actual computation we are throwing an absolute value + # in somewhere, i.e., we are not using γ.(t) but |γ.(t)|. + # That's fine but the documentation is wrong here and some other places. + # TODO: It's weird that this one does not split for inuform roots but integral() does. + r""" + Return the real/imaginary part of + + \int_γ ζ_{d+1}^{κ (n+1)}/(d+1) (z-α)^\frac{n-d}{d+1} \overline{ζ_{dd+1}^{λ (m+1)}/(dd+1) (z-β)^\frac{m-dd}{dd+1}} dz + """ + R = self._constraints.real_field() + C = self._constraints.complex_field() + a = Cab(C, γ.start()) + b = Cab(C, γ.end()) + α = Cab(C, α) + β = Cab(C, β) + + return integral2cpp(part, α, κ, d, n, β, λ, dd, m, a=a, b=b, C=C, R=R) + + def _L2_consistency_voronoi_boundary( + self, polygon_cell, boundary_segment, opposite_polygon_cell + ): + r""" + ALGORITHM: + + Two cells meet at the ``boundary_segment``. The harmonic differential + can on these cells abstractly be described as a power series around + the center of the cell + + g(y) = Σ_{n ≥ 0} a_n y^n + + This is, however, not the representation on any of the charts in which + the translation surface is given. + + To describe this power series on such a chart, let `z` denote the + variable on that chart, we are going to have to takes `d+1`-st roots + of `y`. Note that ``boundary_segment`` is assumed to be such that this + is consistently possible, namely ``boundary_segment`` does not cross + the horizontal line on which the singularity lives in the `z`-chart. + + Therefore, we write with the center y=0 being z=α + + y(z) = ζ_{d+1}^κ (z-α)^{1/(d+1)} + + where the last part denotes the principal `d+1`-st root of `z`. + + Hence, we can rewrite `g(y)dy` on the `z`-chart: + + g(y)dy = g(y(z)) dy/dz dz + = Σ_{n ≥ 0} a_n ζ_{d+1}^{κ n} (z-α)^{n/(d+1)} ζ_{d+1}^κ 1/(d+1) (z-α)^{-d/(d+1)}dz + = Σ_{n ≥ 0} a_n ζ_{d+1}^{κ (n+1)}/(d+1) (z-α)^\frac{n-d}{d+1} dz + =: Σ_{n ≥ 0} a_n f_n(z) dz + =: f(z) dz + + Note that the formulas above also hold when the center is not an actual + singularity, i.e., d = 0. + + Now, we want to describe the error between two such series when + integrating along the ``boundary_segment``, namely, for two such + differentials `f(z)dz` and `g(z)dz` we compute the L2 norm of `f-g` or + rather the square thereof `\int_γ (f-g)\overline{(f-g)} dz` where γ is + the ``boundary_segment``. + + TODO: This is not actually the integral but a norm, we get |·γ| in the + integration and not just the signed derivative. + + As discussed above, we have + + f = Σ_{n ≥ 0} a_n f_n(z), + + g = Σ_{m ≥ 0} b_m g_m(z). + + The `a_n` and `b_n` are symbolic variables since we are going to + optimize for these later. If we evaluate that L2 norm squared we get a + polynomial of homogeneous degree two in these variables. + + Namely, + + (f-g)\overline{(f-g)} = f\overline{f} - 2 \Re f\overline{g} + g\overline{g}. + + Note that all terms are real. + + The first term is going to yield polynomials in `a_n a_m`, the second + term mixed polynomials `a_n b_m`, and the last term polynomials in `b_n + b_m`. + + In fact, our symbolic variables are going to be `\Re a_n`, `\Im a_n`, + `\Re b_m`, `\Im b_m`. + + Working through the first of the three components of the L2 norm + expression, we have + + \int_γ f\overline{f} + = Σ_{n,m ≥ 0} a_n \overline{a_m} \int_γ f_n(z)\overline{f_m(z)} + =: Σ_{n,m ≥ 0} a_n \overline{a_m} (f_{\Re, n, m} + i f_{\Im, n, m}) + + We can simplify things a bit since we know that the result is real; + inside the series we have therefore + + \Re (a_n \overline{a_m} (f_{\Re, n, m} + i f_{\Im, n, m})) + = (\Re a_n \Re a_m + \Im a_n \Im a_m - i \Re a_n \Im a_m + i \Im a_n \Re a_m) (f_{\Re, n, m} + i f_{\Im, n, m}) + = \Re a_n \Re a_m f_{\Re, n, m} + \Im a_n \Im a_m f_{\Re, n, m} + \Re a_n \Im a_m f_{\Im, n, m} - \Im a_n \Re a_m f_{\Im, n, m}. + + We get essentially the same terms for `g\overline{g}`. + + Finally, we need to compute the middle term: + + - \int_γ 2 \Re f\overline{g} + = - 2 \Re \int_γ f\overline{g} + = - 2 \Re Σ_{n,m ≥ 0} a_n \overline{b_m} \int_γ f_n{z)\overline{g_m(z)} + =: - 2 \Re Σ_{n,m ≥ 0} a_n \overline{b_m} ((f,g)_{\Re, n, m} + i (f,g)_{\Im, n, m}) + + Again we can simplify and get inside the series + + \Re (a_n \overline{b_m} ((f,g)_{\Re, n, m} + i (f,g)_{\Im, n, m})) + = \Re a_n \Re b_m (f,g)_{\Re, n, m} + \Im a_n \Im b_m (f,g)_{\Re, n, m} + \Re a_n \Im b_m (f,g)_{\Im, n, m} - \Im a_n \Re b_m (f,g)_{\Im, n, m} + q + The integrals `f_{\Re, n, m}`, `f_{\Im, n, m}`, `(f,g)_{\Re, n, m}`, + and `(f,g)_{\Im, n, m}` are currently all computed numerically. We know + of but have not implemented a better approach, yet. + + TESTS:: + + sage: from flatsurf import translation_surfaces, HarmonicDifferentials, SimplicialHomology + sage: S = translation_surfaces.regular_octagon() + sage: H = SimplicialHomology(S) + sage: Ω = HarmonicDifferentials(S) + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints + sage: C = PowerSeriesConstraints(Ω) + sage: V = Ω._voronoi_diagram() + + sage: cells, segment = next(iter(V.boundaries().items())) + sage: cell, opposite_cell = list(cells) + + sage: E = C._L2_consistency_voronoi_boundary(cell, segment, opposite_cell) + sage: F = C._L2_consistency_voronoi_boundary(opposite_cell, -segment, cell) + sage: (E - F).map_coefficients(lambda c: c if abs(c) > 1e-15 else 0) + 0 + + """ + # TODO: Do not ignore boundaries that are aligned with edges! + if polygon_cell.label() != opposite_polygon_cell.label(): + print("Ignoring L2 condition on edge of polygon") + return 0 + + assert polygon_cell.label() == opposite_polygon_cell.label() + assert polygon_cell.contains_segment(boundary_segment) + assert opposite_polygon_cell.contains_segment(boundary_segment) + + return ( + self._L2_consistency_voronoi_boundary_f_overline_f( + polygon_cell, boundary_segment + ) + - 2 + * self._L2_consistency_voronoi_boundary_Re_f_overline_g( + polygon_cell, boundary_segment, opposite_polygon_cell + ) + + self._L2_consistency_voronoi_boundary_g_overline_g( + opposite_polygon_cell, boundary_segment + ) + ) + + def _L2_consistency_voronoi_boundary_f_overline_f(self, cell, boundary_segment): + r""" + Return the value of `\int_γ f\overline{f}. + """ + center = self._differentials.surface()(cell.label(), cell.center()) + + cell_integrator = self.CellIntegrator(self, cell) + + κ = cell.root_branch_for_segment(boundary_segment) + α = cell.center() + d = center.angle() - 1 + + # Cast to a builtin int to speed up some operations later. + d = int(d) + + def f_(part, n, m): + return cell_integrator.mixed_integral( + part, α, κ, d, n, α, κ, d, m, boundary_segment + ) + + return self.symbolic_ring().sum( + [ + ( + cell_integrator.Re_a(n) * cell_integrator.Re_a(m) + + cell_integrator.Im_a(n) * cell_integrator.Im_a(m) + ) + * f_("Re", n, m) + + ( + cell_integrator.Re_a(n) * cell_integrator.Im_a(m) + - cell_integrator.Im_a(n) * cell_integrator.Re_a(m) + ) + * f_("Im", n, m) + for n in range(self._differentials.ncoefficients(center)) + for m in range(self._differentials.ncoefficients(center)) + ] + ) + + def _L2_consistency_voronoi_boundary_Re_f_overline_g( + self, cell, boundary_segment, opposite_cell + ): + r""" + Return the real part of `\int_γ f\overline{g}. + """ + center = self._differentials.surface()(cell.label(), cell.center()) + opposite_center = self._differentials.surface()( + opposite_cell.label(), opposite_cell.center() + ) + + cell_integrator = self.CellIntegrator(self, cell) + opposite_cell_integrator = self.CellIntegrator(self, opposite_cell) + + κ = cell.root_branch_for_segment(boundary_segment) + λ = opposite_cell.root_branch_for_segment(boundary_segment) + α = cell.center() + β = opposite_cell.center() + d = center.angle() - 1 + dd = opposite_center.angle() - 1 + + # Cast to a builtin int to speed up some operations later. + d = int(d) + dd = int(dd) + + def fg_(part, n, m): + return cell_integrator.mixed_integral( + part, α, κ, d, n, β, λ, dd, m, boundary_segment + ) + + return self.symbolic_ring().sum( + [ + ( + cell_integrator.Re_a(n) * opposite_cell_integrator.Re_a(m) + + cell_integrator.Im_a(n) * opposite_cell_integrator.Im_a(m) + ) + * fg_("Re", n, m) + + ( + cell_integrator.Re_a(n) * opposite_cell_integrator.Im_a(m) + - cell_integrator.Im_a(n) * opposite_cell_integrator.Re_a(m) + ) + * fg_("Im", n, m) + for n in range(self._differentials.ncoefficients(center)) + for m in range(self._differentials.ncoefficients(opposite_center)) + ] + ) + + def _L2_consistency_voronoi_boundary_g_overline_g( + self, opposite_cell, boundary_segment + ): + r""" + Return the value of `\int_γ g\overline{g}. + """ + opposite_center = self._differentials.surface()( + opposite_cell.label(), opposite_cell.center() + ) + + opposite_cell_integrator = self.CellIntegrator(self, opposite_cell) + + λ = opposite_cell.root_branch_for_segment(boundary_segment) + β = opposite_cell.center() + dd = opposite_center.angle() - 1 + + # Cast to a builtin int to speed up some operations later. + dd = int(dd) + + def g_(part, n, m): + return opposite_cell_integrator.mixed_integral( + part, β, λ, dd, n, β, λ, dd, m, boundary_segment + ) + + return self.symbolic_ring().sum( + [ + ( + opposite_cell_integrator.Re_a(n) * opposite_cell_integrator.Re_a(m) + + opposite_cell_integrator.Im_a(n) + * opposite_cell_integrator.Im_a(m) + ) + * g_("Re", n, m) + + ( + opposite_cell_integrator.Re_a(n) * opposite_cell_integrator.Im_a(m) + - opposite_cell_integrator.Im_a(n) + * opposite_cell_integrator.Re_a(m) + ) + * g_("Im", n, m) + for n in range(self._differentials.ncoefficients(opposite_center)) + for m in range(self._differentials.ncoefficients(opposite_center)) + ] + ) + + @cached_method + def _elementary_line_integrals(self, label, n, m): + r""" + Return the integrals f(z)dx and f(z)dy where f(z) = z^n\overline{z}^m + along the boundary of the polygon ``label``. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, SimplicialCohomology, HarmonicDifferentials + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints, HarmonicDifferentials + sage: Ω = HarmonicDifferentials(T) + sage: C = PowerSeriesConstraints(Ω) + + sage: C._elementary_line_integrals(0, 0, 0) # tol 1e-9 + (0.0000000000000000, 0.0000000000000000) + sage: C._elementary_line_integrals(0, 1, 0) # tol 1e-9 + (0 - 1.0*I, 1.0 + 0.0*I) + sage: C._elementary_line_integrals(0, 0, 1) # tol 1e-9 + (0.0 + 1.0*I, 1.0 - 0.0*I) + sage: C._elementary_line_integrals(0, 1, 1) # tol 1e-9 + (0, 0) + + """ + ix = self.complex_field().zero() + iy = self.complex_field().zero() + + polygon = self._differentials.surface().polygon(label) + center = polygon.circumscribed_circle().center() + + for v, e in zip(polygon.vertices(), polygon.edges()): + Δx, Δy = e + x0, y0 = -center + v + + def f(x, y): + from sage.all import I + + return self.complex_field()((x + I * y) ** n * (x - I * y) ** m) + + def fx(t): + if abs(Δx) < 1e-6: + return self.complex_field().zero() + return f(x0 + t, y0 + t * Δy / Δx) + + def fy(t): + if abs(Δy) < 1e-6: + return self.complex_field().zero() + return f(x0 + t * Δx / Δy, y0 + t) + + def integrate(value, t0, t1): + from sage.all import numerical_integral + + # TODO: Should we do something about the error that is stored in [1]? + return numerical_integral(value, t0, t1)[0] + + C = self.complex_field() + ix += C( + integrate(lambda t: fx(t).real(), 0, Δx), + integrate(lambda t: fx(t).imag(), 0, Δx), + ) + iy += C( + integrate(lambda t: fy(t).real(), 0, Δy), + integrate(lambda t: fy(t).imag(), 0, Δy), + ) + + return ix, iy + + @cached_method + def _elementary_area_integral(self, label, n, m): + r""" + Return the integral of z^n\overline{z}^m on the polygon with ``label``. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, SimplicialCohomology, HarmonicDifferentials + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints, HarmonicDifferentials + sage: Ω = HarmonicDifferentials(T) + sage: C = PowerSeriesConstraints(Ω) + sage: C._elementary_area_integral(0, 0, 0) # tol 1e-9 + 1.0 + 0.0*I + + sage: C._elementary_area_integral(0, 1, 0) # tol 1e-6 + 0.0 + + """ + C = self.complex_field() + # Write f(n, m) for z^n\overline{z}^m. + # Then 1/(2m + 1) [d/dx f(n, m+1) - d/dy -i f(n, m+1)] = f(n, m). + + # So we can use Green's theorem to compute this integral by integrating + # on the boundary of the triangle: + # -i/(2m + 1) f(n, m + 1) dx + 1/(2m + 1) f(n, m + 1) dy + + ix, iy = self._elementary_line_integrals(label, n, m + 1) + + from sage.all import I + + return -I / (C(2) * (m + 1)) * ix + C(1) / (2 * (m + 1)) * iy + + def optimize(self, f): + r""" + Add constraints that optimize the symbolic expression ``f``. + + EXAMPLES: + + TODO: All these examples are a bit pointless:: + + sage: from flatsurf import translation_surfaces, SimplicialCohomology + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints, HarmonicDifferentials + sage: Ω = HarmonicDifferentials(T) + sage: C = PowerSeriesConstraints(Ω) + sage: R = C.symbolic_ring() + + We optimize a function in two variables. Since there are no + constraints, we do not get any Lagrange multipliers in this + optimization but just for roots of the derivative:: + + sage: f = 10*R.gen(0)^2 + 16*R.gen(2)^2 + sage: C.optimize(f) + sage: C._optimize_cost() + sage: C + [20.0000000000000*Re(a0,0), 32.0000000000000*Im(a0,0)] + + """ + if f: + self._cost += f + + def variables(self): + terms = list(self._constraints) + if self._cost is not None: + terms.append(self._cost) + + return set( + variable for constraint in terms for variable in constraint.variables() + ) + + def _optimize_cost(self): + # We use Lagrange multipliers to rewrite this expression. + # If we let + # L(Re(a), Im(a), λ) = f(Re(a), Im(a)) + Σ λ_i g_i(Re(a), Im(a)) + # and denote by g_i=0 all the affine linear conditions collected so + # far, then we get two constraints for each a_k, one real, one + # imaginary, namely that the partial derivative wrt Re(a_k) and Im(a_k) + # vanishes. Note that we have one Lagrange multiplier for each affine + # linear constraint collected so far. + + # TODO: We add lots of lagrange coefficients even if our rank is very + # small. We should probably determine the rank here and reduce the + # system first. + lagranges = len(self._constraints) + + g = self._constraints + + # We form the partial derivative with respect to the variables Re(a_k) + # and Im(a_k). + for variable in self.variables(): + if variable.describe()[0] == "λ?": + continue + + L = self._cost.derivative(variable) + + for i in range(lagranges): + L += g[i][variable] * self.lagrange(i) + + self.add_constraint(L, rank_check=False) + + # We form the partial derivatives with respect to the λ_i. This yields + # the condition -g_i=0 which is already recorded in the linear system. + + # Prevent us from calling this method again. + self._cost = None + + def require_cohomology(self, cocycle): + r""" " + Create a constraint by integrating numerically following the paths that + form a basis of homology. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, SimplicialCohomology + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: H = SimplicialCohomology(T) + sage: a, b = H.homology().gens() + + Integrating along the (negative horizontal) cycle `b`, produces + something with `-Re(a_0)` in the real part. + Integration along the diagonal `a`, produces essentially `Re(a_0) - + Im(a_0)`. Note that the two variables ``a0`` and ``a1`` are the same + because the centers of the Voronoi cells for the two triangles are + identical:: + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints, HarmonicDifferentials + sage: Ω = HarmonicDifferentials(T) + sage: C = PowerSeriesConstraints(Ω) + sage: C.require_cohomology(H({b: 1})) + sage: C # tol 1e-9 # not tested # TODO: Check this value + [0.828427124746190*Re(a0,0) + 0.171572875253810*Re(a1,0) - 1.38777878078145e-17*Re(a0,1) - 3.03576608295941e-18*Re(a1,1) + 8.54260702578763e-18*Im(a0,1) + 0.0857864376269050*Im(a1,1) + 0.0473785412436502*Re(a0,2) - 0.0424723326565069*Re(a1,2) - 4.71795158413990e-18*Im(a0,2) - 3.03576608295941e-18*Im(a1,2) - 1.73472347597681e-18*Re(a0,3) + 2.16840434497101e-18*Re(a1,3) + 2.19851947436667e-18*Im(a0,3) - 0.0208152801713079*Im(a1,3) + 0.00487732352790257*Re(a0,4) + 0.0100938339276945*Re(a1,4) - 9.71367022318980e-19*Im(a0,4) + 1.51788304147971e-18*Im(a1,4), 0.828427124746190*Im(a0,0) + 0.171572875253810*Im(a1,0) - 1.38777878078145e-17*Re(a0,1) - 3.03576608295941e-18*Re(a1,1) - 8.54260702578763e-18*Im(a0,1) + 0.0857864376269050*Im(a1,1) + 7.70371977754894e-34*Re(a0,2) - 2.60208521396521e-18*Re(a1,2) - 0.0473785412436502*Im(a0,2) + 0.0424723326565069*Im(a1,2) + 1.73472347597681e-18*Re(a0,3) - 2.16840434497101e-18*Re(a1,3) + 2.19851947436667e-18*Im(a0,3) + 0.0208152801713079*Im(a1,3) - 9.62964972193618e-35*Re(a0,4) - 1.08420217248550e-18*Re(a1,4) + 0.00487732352790257*Im(a0,4) + 0.0100938339276945*Im(a1,4) - 1.00000000000000] + + + If we increase precision, we see additional higher imaginary parts. + These depend on the choice of base point of the integration and will be + found to be zero by other constraints, not true anymore TODO:: + + sage: C = PowerSeriesConstraints(Ω) + sage: C.require_cohomology(H({b: 1})) + sage: C # not tested # TODO: check this value + [0.828427124746190*Re(a0,0) + 0.171572875253810*Re(a1,0) - 1.38777878078145e-17*Re(a0,1) - 3.03576608295941e-18*Re(a1,1) + 8.54260702578763e-18*Im(a0,1) + 0.0857864376269050*Im(a1,1) + 0.0473785412436502*Re(a0,2) - 0.0424723326565069*Re(a1,2) - 4.71795158413990e-18*Im(a0,2) - 3.03576608295941e-18*Im(a1,2) - 1.73472347597681e-18*Re(a0,3) + 2.16840434497101e-18*Re(a1,3) + 2.19851947436667e-18*Im(a0,3) - 0.0208152801713079*Im(a1,3) + 0.00487732352790257*Re(a0,4) + 0.0100938339276945*Re(a1,4) - 9.71367022318980e-19*Im(a0,4) + 1.51788304147971e-18*Im(a1,4), 0.828427124746190*Im(a0,0) + 0.171572875253810*Im(a1,0) - 1.38777878078145e-17*Re(a0,1) - 3.03576608295941e-18*Re(a1,1) - 8.54260702578763e-18*Im(a0,1) + 0.0857864376269050*Im(a1,1) + 7.70371977754894e-34*Re(a0,2) - 2.60208521396521e-18*Re(a1,2) - 0.0473785412436502*Im(a0,2) + 0.0424723326565069*Im(a1,2) + 1.73472347597681e-18*Re(a0,3) - 2.16840434497101e-18*Re(a1,3) + 2.19851947436667e-18*Im(a0,3) + 0.0208152801713079*Im(a1,3) - 9.62964972193618e-35*Re(a0,4) - 1.08420217248550e-18*Re(a1,4) + 0.00487732352790257*Im(a0,4) + 0.0100938339276945*Im(a1,4) - 1.00000000000000] + + """ + from sage.all import parallel + + @parallel + def create_constraint(cycle): + return self.integrate(cycle).real() - self.real_field()( + cocycle(cycle).real() + ) + + for (args, kwargs), constraint in create_constraint( + (cycle,) for cycle in cocycle.parent().homology().gens() + ): + self.add_constraint(constraint, rank_check=False) + + def lagrange_variables(self): + return set( + variable for variable in self.variables() if variable.describe()[0] == "λ?" + ) + + def matrix(self, nowarn=False): + r""" + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, SimplicialCohomology + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: H = SimplicialCohomology(T) + sage: a, b = H.homology().gens() + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints, HarmonicDifferentials + sage: Ω = HarmonicDifferentials(T) + sage: C = PowerSeriesConstraints(Ω) + sage: C.require_cohomology(H({a: 1})) + sage: C.optimize(C._L2_consistency()) + sage: C._optimize_cost() + sage: C.matrix() # not tested # TODO: Check this matrix. + (22 x 22 dense matrix over Real Field with 54 bits of precision, + (1.00000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000), + {Im(a0,4): 0, + Re(a0,2): 1, + Im(a1,1): 2, + Re(a1,3): 3, + Re(a1,1): 4, + Im(a0,1): 5, + Im(a0,3): 6, + Im(a1,3): 7, + Re(a0,1): 8, + Im(a1,2): 9, + Im(a0,0): 10, + Re(a0,3): 11, + Im(a1,0): 12, + Im(a0,2): 13, + Im(a1,4): 14, + Re(a1,2): 15, + Re(a1,4): 16, + Re(a0,0): 17, + Re(a0,4): 18, + Re(a1,0): 19}, + set()) + + """ + lagranges = {} + + non_lagranges = set() + for row, constraint in enumerate(self._constraints): + assert constraint.total_degree() <= 1 + for variable in constraint.variables(): + gen, degree = variable.describe() + if gen != "λ?": + non_lagranges.add(variable) + + non_lagranges = {variable: i for (i, variable) in enumerate(non_lagranges)} + + # TODO: Can we make this warning work again? + # if len(set(self.symbolic_ring()._regular_gens(self._prec))) != len(non_lagranges): + # if not nowarn: + # from warnings import warn + # warn(f"Some power series coefficients are not constrained for this harmonic differential. They will be chosen to be 0 by the solver.") + + from sage.all import matrix, vector + + A = matrix( + self.real_field(), + len(self._constraints), + len(non_lagranges) + len(self.lagrange_variables()), + ) + b = vector(self.real_field(), len(self._constraints)) + + for row, constraint in enumerate(self._constraints): + b[row] -= constraint.constant_coefficient() + + for variable in constraint.variables(): + if variable.describe()[0] == "λ?": + if variable not in lagranges: + lagranges[variable] = len(non_lagranges) + len(lagranges) + column = lagranges[variable] + else: + column = non_lagranges[variable] + + A[row, column] += constraint[variable] + + return A, b, non_lagranges, set() + + @cached_method + def power_series_ring(self, *args): + r""" + Return the power series ring to write down the series describing a + harmonic differential in a Voronoi cell. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints, HarmonicDifferentials + sage: Ω = HarmonicDifferentials(T) + sage: Ω = PowerSeriesConstraints(Ω) + sage: Ω.power_series_ring(T(0, (1/2, 1/2))) + Power Series Ring in z0 over Complex Field with 54 bits of precision + sage: Ω.power_series_ring(T(0, 0)) + Power Series Ring in z1 over Complex Field with 54 bits of precision + + """ + from sage.all import PowerSeriesRing + + if len(args) != 1: + raise NotImplementedError + + point = args[0] + return PowerSeriesRing( + self.complex_field(), f"z{self._differentials._centers.index(point)}" + ) + + def solve(self, algorithm="eigen+mpfr"): + r""" + Return a solution for the system of constraints with minimal error. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: T = translation_surfaces.square_torus() + sage: T.set_immutable() + + sage: from flatsurf.geometry.harmonic_differentials import PowerSeriesConstraints, HarmonicDifferentials + sage: Ω = HarmonicDifferentials(T) + sage: C = PowerSeriesConstraints(Ω) + sage: R = C.symbolic_ring() + sage: C.add_constraint(R.gen(0) - R.gen(5)) + sage: C.add_constraint(R.gen(0) - 1) + sage: C.solve() + ({Point (1/2, 1/2) of polygon 0: 1.00000000000000 + 1.00000000000000*z0 + O(z0^2)}, + 0.000000000000000) + + """ + print("Creating Lagrange symbols") + self._optimize_cost() + + print("Denormalizing system") + self._denormalize() + + print("Constructing linear system") + A, b, decode, _ = self.matrix() + + rows, columns = A.dimensions() + # TODO + print(f"Solving {rows}×{columns} system") + rank = A.rank() + + print("Computing condition") + from sage.all import RDF, oo + + condition = A.change_ring(RDF).condition() + print(f"{condition=}") + + if rank < columns: + # TODO: Warn? + print(f"system underdetermined: {rows}×{columns} matrix of rank {rank}") + + print("Solving system") + if algorithm == "arb": + from sage.all import ComplexBallField + + C = ComplexBallField(self.complex_field().prec()) + CA = A.change_ring(C) + Cb = b.change_ring(C) + + solution = CA.solve_right(Cb) + + solution = solution.change_ring(self.real_field()) + elif algorithm == "scipy": + CA = A.change_ring(RDF) + Cb = b.change_ring(RDF) + solution = CA.solve_right(Cb) + elif algorithm == "eigen+mpfr": + _cppyy().load_library("mpfr") + + solution = define_solve()(A, b) + + from sage.all import vector + + solution = vector([self.real_field()(entry) for entry in solution]) + else: + raise NotImplementedError + + print("Interpreting solution") + residue = (A * solution - b).norm() + + lagranges = len(self.lagrange_variables()) + + if lagranges: + solution = solution[:-lagranges] + + series = {point: {} for point in self._differentials._centers} + + for variable, column in decode.items(): + value = solution[column] + + gen, degree = variable.describe() + + # TODO: Use generic functionality to parse variable name. + if gen.startswith("Re(a"): + part = 0 + elif gen.startswith("Im(a"): + part = 1 + else: + assert False + + center = self._differentials._centers[int(gen.split(",")[0][4:])] + + if degree not in series[center]: + series[center][degree] = [None, None] + + series[center][degree][part] = self._normalize( + value, center=center, degree=degree, part=part + ) + + print("Building series") + series = { + point: sum( + ( + self.complex_field()(*entry) + * self.power_series_ring(point).gen() ** k + for (k, entry) in series[point].items() + ), + start=self.power_series_ring(point).zero(), + ).add_bigoh(max(series[point]) + 1) + for point in series + if series[point] + } + + return series, residue + + def _denormalize(self): + # TODO: Maybe call this one balance and the other one unbalance. + # Rewrite a * x_n as (a * r^-n) * (r^n * x_n) where r is the relative + # radius of convergence at the center of x (0 < r < 1.) + # The solution of the optimization problem (r^n * x_n) is then a much + # smaller number for large n which should help keep the condition of + # the problem in check. + def mul(scalar, expression): + # TODO: Why is there no scalar multiplication on power series expressions? + return expression.map_coefficients(lambda c: scalar * c) + + def center(v): + return Ω._gen_center(v) + + Ω = self._differentials + self._constraints = [ + sum( + mul( + Ω._relative_inradius_of_convergence( + Ω._cells.cell_at_center(center(v)) + ) + ** -(v.describe()[1] / center(v).angle()) + * constraint[v] + if not Ω._gen_is_lagrange(v) + else constraint[v], + v, + ) + for v in constraint.variables() + ) + + constraint.constant_coefficient() + for constraint in self._constraints + ] + + def _normalize(self, x, center, degree, part): + # Undo the effect of _denormalize on x, i.e., return r^n * x. + Ω = self._differentials + r = Ω._relative_inradius_of_convergence(Ω._cells.cell_at_center(center)) + return x * r ** -(degree / center.angle()) + + +class Path: + pass + + +class GeodesicPath(Path): + def __init__(self, surface, start, end, holonomy): + if holonomy.is_mutable(): + raise TypeError("holonomy must be immutable") + if start[1].is_mutable(): + raise TypeError("start point must be immutable") + if end[1].is_mutable(): + raise TypeError("end point must be immutable") + + self._surface = surface + self._start = start + self._end = end + self._holonomy = holonomy + + @staticmethod + def across_edge(surface, label, edge): + r""" + Return the :class:`GeodesicPath` that crosses from the center of the + polygon ``label`` to the center of the polygon across the ``edge`` in + a straight line. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.regular_octagon() + + sage: from flatsurf.geometry.harmonic_differentials import GeodesicPath + sage: GeodesicPath.across_edge(S, 0, 0) + Path (0, -a - 1) from (1/2, 1/2*a + 1/2) in polygon 0 to (1/2, 1/2*a + 1/2) in polygon 0 + + """ + polygon = surface.polygon(label) + + if not polygon.is_convex(): + raise NotImplementedError + + opposite_label, opposite_edge = surface.opposite_edge(label, edge) + opposite_polygon = surface.polygon(opposite_label) + + holonomy = ( + polygon.vertex(edge) + - polygon.centroid() + + opposite_polygon.centroid() + - opposite_polygon.vertex(opposite_edge + 1) + ) + # TODO: edge() should be immutable. + holonomy.set_immutable() + + return GeodesicPath( + surface, + (label, polygon.centroid()), + (opposite_label, opposite_polygon.centroid()), + holonomy, + ) + + @staticmethod + def along_edge(surface, label, edge): + r""" + Return the :class:`GeodesicPath` along the ``edge`` of the polygon with + ``label``. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.regular_octagon() + + sage: from flatsurf.geometry.harmonic_differentials import GeodesicPath + sage: GeodesicPath.along_edge(S, 0, 0) + Path (1, 0) from (0, 0) in polygon 0 to (1, 0) in polygon 0 + + """ + polygon = surface.polygon(label) + holonomy = polygon.edge(edge) + # TODO: edge() should be immutable. + holonomy.set_immutable() + + return GeodesicPath( + surface, + (label, polygon.vertex(edge)), + (label, polygon.vertex(edge + 1)), + holonomy, + ) + + def split(self): + r""" + Return the path as a sequence of segments in polygons. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.regular_octagon() + + sage: from flatsurf.geometry.harmonic_differentials import GeodesicPath + sage: path = GeodesicPath.across_edge(S, 0, 0) + sage: path.split() + [(0, OrientedSegment((1/2, 1/2*a + 1/2), (1/2, 0))), + (0, OrientedSegment((1/2, a + 1), (1/2, 1/2*a + 1/2)))] + + """ + polygon = self._surface.polygon(self._start[0]) + if not polygon.is_convex(): + raise NotImplementedError + + from flatsurf.geometry.euclidean import OrientedSegment + + # TODO: This only works for convex polygons. + if ( + self._end[0] == self._start[0] + and polygon.get_point_position(self._start[1] + self._holonomy).is_inside() + ): + return [ + ( + self._start[0], + OrientedSegment(self._start[1], self._start[1] + self._holonomy), + ) + ] + + path = OrientedSegment(self._start[1], self._start[1] + self._holonomy) + for v in range(len(polygon.vertices())): + edge = OrientedSegment(polygon.vertex(v), polygon.vertex(v + 1)) + intersection = edge.intersection(path) + + if intersection is None: + continue + + if intersection == self._start[1]: + continue + + assert ( + self._surface(self._start[0], intersection).angle() == 1 + ), "path crosses over a singularity" + + segment = OrientedSegment(self._start[1], intersection) + + prefix = [(self._start[0], segment)] + + holonomy = self._holonomy - (intersection - self._start[1]) + holonomy.set_immutable() + + if not holonomy: + return prefix + + from flatsurf.geometry.euclidean import is_parallel + + assert is_parallel(holonomy, self._holonomy) + + opposite_label, opposite_edge = self._surface.opposite_edge( + self._start[0], v + ) + + new_start = self._surface.polygon(opposite_label).vertex( + opposite_edge + 1 + ) + (intersection - polygon.vertex(v)) + new_start.set_immutable() + + return ( + prefix + + GeodesicPath( + self._surface, (opposite_label, new_start), self._end, holonomy + ).split() + ) + + assert False + + def __neg__(self): + holonomy = -self._holonomy + holonomy.set_immutable() + return GeodesicPath(self._surface, self._end, self._start, holonomy) + + def __repr__(self): + return f"Path {self._holonomy} from {self._start[1]} in polygon {self._start[0]} to {self._end[1]} in polygon {self._end[0]}" + + def __eq__(self, other): + if not isinstance(other, GeodesicPath): + return False + if self._start == other._start and self._holonomy == other._holonomy: + assert self._end == other._end + return True + + return False + + def __ne__(self, other): + return not (self == other) + + def __hash__(self): + return hash((self._start, self._holonomy)) + + +def HarmonicDifferentials( + surface, error=None, cell_decomposition=None, check=True, category=None +): + return surface.harmonic_differentials(error, cell_decomposition, check, category) diff --git a/flatsurf/geometry/homology.py b/flatsurf/geometry/homology.py index 58d0fb0de..4ff771006 100644 --- a/flatsurf/geometry/homology.py +++ b/flatsurf/geometry/homology.py @@ -426,6 +426,39 @@ def surface(self): """ return self.parent().surface() + def path(self): + edges = [] + + for (label, edge), multiplicity in dict(self._chain).items(): + from sage.all import ZZ + + if multiplicity not in ZZ: + raise NotImplementedError("cannot lift this homology class to a path") + + if multiplicity < 0: + multiplicity *= -1 + label, edge = self.surface().opposite_edge(label, edge) + + edges.extend([(label, edge)] * multiplicity) + + connected_edges = [edges.pop()] + while edges: + for edge in edges: + if self.surface()( + connected_edges[-1][0], connected_edges[-1][1] + 1 + ) == self.surface()(*edge): + edges.remove(edge) + connected_edges.append(edge) + break + else: + assert False, "path not connected" + + assert self.surface()( + connected_edges[-1][0], connected_edges[-1][1] + 1 + ) == self.surface()(*connected_edges[0]), "path not looping" + + return connected_edges + def __bool__(self): r""" Return whether this class is non-trivial. @@ -757,6 +790,61 @@ def to_C0(point): return self.change(k=self._k - 1).chain_module().zero() + def _boundary_segment(self, gen): + if self._generators == "edge": + C0 = self.chain_module(dimension=0) + label, edge = gen + opposite_label, opposite_edge = self._surface.opposite_edge(label, edge) + return C0( + self._surface.point( + opposite_label, + self._surface.polygon(opposite_label).vertex(opposite_edge), + ) + ) - C0( + self._surface.point(label, self._surface.polygon(label).vertex(edge)) + ) + + if self._generators == "voronoi": + C0 = self.chain_module(dimension=0) + label, edge = gen + opposite_label, opposite_edge = self._surface.opposite_edge(label, edge) + + return C0(opposite_label) - C0(label) + + raise NotImplementedError + + def _boundary_polygon(self, gen): + if self._generators == "edge": + C1 = self.chain_module(dimension=1) + boundary = C1.zero() + face = gen + for edge in range(len(self._surface.polygon(face).vertices())): + if (face, edge) in C1.indices(): + boundary += C1((face, edge)) + else: + boundary -= C1(self._surface.opposite_edge(face, edge)) + return boundary + + if self._generators == "voronoi": + C1 = self.chain_module(dimension=1) + boundary = C1.zero() + label, vertex = gen + # The counterclockwise walk around "vertex" is a boundary. + while True: + edge = (vertex - 1) % len(self._surface.polygon(label).vertices()) + opposite_label, opposite_edge = self._surface.opposite_edge(label, edge) + if (label, edge) in C1.indices(): + boundary += C1((label, edge)) + else: + boundary -= C1((opposite_label, opposite_edge)) + + if (opposite_label, opposite_edge) == gen: + return boundary + + label, vertex = opposite_label, opposite_edge + + raise NotImplementedError + @cached_method def _chain_complex(self): r""" diff --git a/flatsurf/geometry/hyperbolic.py b/flatsurf/geometry/hyperbolic.py index da8e2c0ab..d3d11450d 100644 --- a/flatsurf/geometry/hyperbolic.py +++ b/flatsurf/geometry/hyperbolic.py @@ -224,6 +224,9 @@ from sage.misc.cachefunc import cached_method +from flatsurf.geometry.geometry import Geometry, ExactGeometry, EpsilonGeometry + + class HyperbolicPlane(Parent, UniqueRepresentation): r""" The hyperbolic plane. @@ -1667,7 +1670,8 @@ def segment( .. SEEALSO:: - :meth:`HyperbolicPoint.segment` + :meth:`HyperbolicPoint.segment` to create a segment from its two + endpoints (without specifying a geodesic.) """ geodesic = self(geodesic) @@ -3432,7 +3436,7 @@ def _repr_(self): return f"Hyperbolic Plane over {repr(self.base_ring())}" -class HyperbolicGeometry: +class HyperbolicGeometry(Geometry): r""" Predicates and primitive geometric constructions over a base ``ring``. @@ -3476,236 +3480,20 @@ class HyperbolicGeometry: sage: H(0) == H(1/2048) True + TESTS:: + + sage: from flatsurf import HyperbolicPlane + sage: from flatsurf.geometry.hyperbolic import HyperbolicGeometry + sage: H = HyperbolicPlane() + sage: isinstance(H.geometry, HyperbolicGeometry) + True + .. SEEALSO:: :class:`HyperbolicExactGeometry`, :class:`HyperbolicEpsilonGeometry` """ - def __init__(self, ring): - r""" - TESTS:: - - sage: from flatsurf import HyperbolicPlane - sage: from flatsurf.geometry.hyperbolic import HyperbolicGeometry - sage: H = HyperbolicPlane() - sage: isinstance(H.geometry, HyperbolicGeometry) - True - - """ - self._ring = ring - - def base_ring(self): - r""" - Return the ring over which this geometry is implemented. - - EXAMPLES:: - - sage: from flatsurf import HyperbolicPlane - sage: H = HyperbolicPlane() - sage: H.geometry.base_ring() - Rational Field - - """ - return self._ring - - def _zero(self, x): - r""" - Return whether ``x`` should be considered zero in the - :meth:`base_ring`. - - .. NOTE:: - - This predicate should not be used directly in geometric - constructions since it does not specify the context in which this - question is asked. This makes it very difficult to override a - specific aspect in a custom geometry. Also, this predicate lacks - the context of other elements; a proper predicate should also take - other elements into account to decide this question relative to the - other values. - - INPUT: - - - ``x`` -- an element of the :meth:`base_ring` - - EXAMPLES:: - - sage: from flatsurf import HyperbolicPlane - sage: H = HyperbolicPlane(RR) - sage: H.geometry._zero(1) - False - sage: H.geometry._zero(1e-9) - True - - """ - return self._cmp(x, 0) == 0 - - def _cmp(self, x, y): - r""" - Return how ``x`` compares to ``y``. - - .. NOTE:: - - This predicate should not be used directly in geometric - constructions since it does not specify the context in which this - question is asked. This makes it very difficult to override a - specific aspect in a custom geometry. - - INPUT: - - - ``x`` -- an element of the :meth:`base_ring` - - - ``y`` -- an element of the :meth:`base_ring` - - EXAMPLES:: - - sage: from flatsurf import HyperbolicPlane - sage: H = HyperbolicPlane() - sage: H.geometry._cmp(0, 0) - 0 - sage: H.geometry._cmp(0, 1) - -1 - sage: H.geometry._cmp(1, 0) - 1 - - :: - - sage: H = HyperbolicPlane(RR) - sage: H.geometry._cmp(0, 0) - 0 - sage: H.geometry._cmp(0, 1) - -1 - sage: H.geometry._cmp(1, 0) - 1 - sage: H.geometry._cmp(1e-10, 0) - 0 - - """ - if self._equal(x, y): - return 0 - if x < y: - return -1 - - assert ( - x > y - ), "Geometry over this ring must override _cmp since not (x == y) and not (x < y) does not imply x > y" - return 1 - - def _sgn(self, x): - r""" - Return the sign of ``x``. - - .. NOTE:: - - This predicate should not be used directly in geometric - constructions since it does not specify the context in which this - question is asked. This makes it very difficult to override a - specific aspect in a custom geometry. Also, this predicate lacks - the context of other elements; a proper predicate should also take - other elements into account to decide this question relative to the - other values. - - INPUT: - - - ``x`` -- an element of the :meth:`base_ring`. - - EXAMPLES:: - - sage: from flatsurf import HyperbolicPlane - sage: H = HyperbolicPlane(RR) - sage: H.geometry._sgn(1) - 1 - sage: H.geometry._sgn(-1) - -1 - sage: H.geometry._sgn(1e-10) - 0 - - """ - return self._cmp(x, 0) - - def _equal(self, x, y): - r""" - Return whether ``x`` and ``y`` should be considered equal in the :meth:`base_ring`. - - .. NOTE:: - - This predicate should not be used directly in geometric - constructions since it does not specify the context in which this - question is asked. This makes it very difficult to override a - specific aspect in a custom geometry. - - INPUT: - - - ``x`` -- an element of the :meth:`base_ring` - - - ``y`` -- an element of the :meth:`base_ring` - - EXAMPLES:: - - sage: from flatsurf import HyperbolicPlane - sage: H = HyperbolicPlane(RR) - sage: H.geometry._equal(0, 1) - False - sage: H.geometry._equal(0, 1e-10) - True - - """ - raise NotImplementedError("this geometry does not implement _equal()") - - def _determinant(self, a, b, c, d): - r""" - Return the determinant of the 2×2 matrix ``[[a, b], [c, d]]`` or - ``None`` if the matrix is singular. - - .. NOTE:: - - This predicate should not be used directly in geometric - constructions since it does not specify the context in which this - question is asked. This makes it very difficult to override a - specific aspect in a custom geometry. - - INPUT: - - - ``a`` -- an element of the :meth:`base_ring` - - - ``b`` -- an element of the :meth:`base_ring` - - - ``c`` -- an element of the :meth:`base_ring` - - - ``d`` -- an element of the :meth:`base_ring` - - EXAMPLES: - - sage: from flatsurf import HyperbolicPlane - sage: H = HyperbolicPlane() - - sage: H.geometry._determinant(1, 2, 3, 4) - -2 - sage: H.geometry._determinant(0, 10^-10, 1, 1) - -1/10000000000 - - """ - det = a * d - b * c - if self._zero(det): - return None - return det - - def change_ring(self, ring): - r""" - Return this geometry with the :meth:`base_ring` changed to ``ring``. - - EXAMPLES:: - - sage: from flatsurf import HyperbolicPlane - sage: H = HyperbolicPlane() - sage: H.geometry - Exact geometry over Rational Field - sage: H.geometry.change_ring(AA) - Exact geometry over Algebraic Real Field - - """ - raise NotImplementedError("this geometry does not implement change_ring()") - def projective(self, p, q, point): r""" Return the ideal point with projective coordinates ``[p: q]`` in the @@ -3880,6 +3668,7 @@ def intersection(self, f, g): (0, 0) """ + # TODO: Use Euclidean geometry? (fa, fb, fc) = f (ga, gb, gc) = g det = self._determinant(fb, fc, gb, gc) @@ -3893,7 +3682,7 @@ def intersection(self, f, g): return (x, y) -class HyperbolicExactGeometry(UniqueRepresentation, HyperbolicGeometry): +class HyperbolicExactGeometry(UniqueRepresentation, HyperbolicGeometry, ExactGeometry): r""" Predicates and primitive geometric constructions over an exact base ring. @@ -3916,32 +3705,6 @@ class HyperbolicExactGeometry(UniqueRepresentation, HyperbolicGeometry): """ - def _equal(self, x, y): - r""" - Return whether the numbers ``x`` and ``y`` should be considered equal - in exact geometry. - - .. NOTE:: - - This predicate should not be used directly in geometric - constructions since it does not specify the context in which this - question is asked. This makes it very difficult to override a - specific aspect in a custom geometry. - - EXAMPLES:: - - sage: from flatsurf import HyperbolicPlane - sage: H = HyperbolicPlane() - sage: H.geometry._equal(0, 1) - False - sage: H.geometry._equal(0, 1/2**64) - False - sage: H.geometry._equal(0, 0) - True - - """ - return x == y - def change_ring(self, ring): r""" Return this geometry with the :meth:`~HyperbolicGeometry.base_ring` @@ -3975,22 +3738,10 @@ def change_ring(self, ring): return HyperbolicExactGeometry(ring) - def __repr__(self): - r""" - Return a printable representation of this geometry. - - EXAMPLES:: - sage: from flatsurf import HyperbolicPlane - sage: H = HyperbolicPlane() - sage: H.geometry - Exact geometry over Rational Field - - """ - return f"Exact geometry over {self._ring}" - - -class HyperbolicEpsilonGeometry(UniqueRepresentation, HyperbolicGeometry): +class HyperbolicEpsilonGeometry( + UniqueRepresentation, HyperbolicGeometry, EpsilonGeometry +): r""" Predicates and primitive geometric constructions over a base ``ring`` with "precision" ``epsilon``. @@ -4033,90 +3784,6 @@ class HyperbolicEpsilonGeometry(UniqueRepresentation, HyperbolicGeometry): """ - def __init__(self, ring, epsilon): - r""" - TESTS:: - - sage: from flatsurf import HyperbolicPlane - sage: from flatsurf.geometry.hyperbolic import HyperbolicEpsilonGeometry - sage: H = HyperbolicPlane(RR) - sage: isinstance(H.geometry, HyperbolicEpsilonGeometry) - True - - """ - super().__init__(ring) - self._epsilon = ring(epsilon) - - def _equal(self, x, y): - r""" - Return whether ``x`` and ``y`` should be considered equal numbers with - respect to an ε error. - - .. NOTE:: - - This method has not been tested much. Since this underlies much of - the inexact geometry, we should probably do something better here, - see e.g., https://floating-point-gui.de/errors/comparison/ - - EXAMPLES:: - - sage: from flatsurf import HyperbolicPlane - sage: H = HyperbolicPlane(RR) - - sage: H.geometry._equal(1, 2) - False - sage: H.geometry._equal(1, 1 + 1e-32) - True - sage: H.geometry._equal(1e-32, 1e-32 + 1e-33) - False - sage: H.geometry._equal(1e-32, 1e-32 + 1e-64) - True - - """ - if x == 0 or y == 0: - return abs(x - y) < self._epsilon - - return abs(x - y) <= (abs(x) + abs(y)) * self._epsilon - - def _determinant(self, a, b, c, d): - r""" - Return the determinant of the 2×2 matrix ``[[a, b], [c, d]]`` or - ``None`` if the matrix is singular. - - INPUT: - - - ``a`` -- an element of the :meth:`~HyperbolicGeometry.base_ring` - - - ``b`` -- an element of the :meth:`~HyperbolicGeometry.base_ring` - - - ``c`` -- an element of the :meth:`~HyperbolicGeometry.base_ring` - - - ``d`` -- an element of the :meth:`~HyperbolicGeometry.base_ring` - - EXAMPLES: - - sage: from flatsurf import HyperbolicPlane - sage: H = HyperbolicPlane(RR) - - sage: H.geometry._determinant(1, 2, 3, 4) - -2 - sage: H.geometry._determinant(1e-10, 0, 0, 1e-10) - 1.00000000000000e-20 - - Unfortunately, we are not implementing any actual rank detecting - algorithm (QR decomposition or such) here. So, we do not detect that - this matrik is singular:: - - sage: H.geometry._determinant(1e-127, 1e-128, 1, 1) - 9.00000000000000e-128 - - """ - det = a * d - b * c - if det == 0: - # Note that we should instead numerically detect the rank here. - return None - return det - def projective(self, p, q, point): r""" Return the ideal point with projective coordinates ``[p: q]`` in the @@ -4196,20 +3863,6 @@ def change_ring(self, ring): return HyperbolicEpsilonGeometry(ring, self._epsilon) - def __repr__(self): - r""" - Return a printable representation of this geometry. - - EXAMPLES:: - - sage: from flatsurf import HyperbolicPlane - sage: H = HyperbolicPlane(RR) - sage: H.geometry - Epsilon geometry with ϵ=1.00000000000000e-6 over Real Field with 53 bits of precision - - """ - return f"Epsilon geometry with ϵ={self._epsilon} over {self._ring}" - class HyperbolicConvexSet(SageObject): r""" @@ -4796,7 +4449,7 @@ def _test_change_ring(self, **options): tester = self._tester(**options) tester.assertEqual(self, self.change_ring(self.parent().base_ring())) - def change(self, ring=None, geometry=None, oriented=None): + def change(self, *, ring=None, geometry=None, oriented=None): r""" Return a modified copy of this set. @@ -4833,13 +4486,13 @@ def change(self, ring=None, geometry=None, oriented=None): We can also take an unoriented set and pick an orientation:: - sage: oriented = geodesic.change(oriented=True) + sage: oriented = unoriented.change(oriented=True) sage: oriented.is_oriented() True .. SEEALSO:: - :meth:`is_oriented` for oriented an unoriented sets. + :meth:`is_oriented` to determine whether a set is oriented. """ raise NotImplementedError(f"this {type(self)} does not implement change()") @@ -5900,7 +5553,7 @@ class HyperbolicConvexFacade(HyperbolicConvexSet, Parent): This is the base class for all hyperbolic convex sets that are not points. This class solves the problem that we want convex sets to be "elements" of the hyperbolic plane but at the same time, we want these sets to live as - parents in the category framework of SageMath; so they have be a Parent + parents in the category framework of SageMath; so they have a Parent with hyperbolic points as their Element class. SageMath provides the (not very frequently used and somewhat flaky) facade @@ -6371,7 +6024,7 @@ def plot(self, model="half_plane", **kwds): .plot(model=model, **kwds) ) - def change(self, ring=None, geometry=None, oriented=None): + def change(self, *, ring=None, geometry=None, oriented=None): r""" Return a modified copy of this half space. @@ -6910,7 +6563,7 @@ def equation(self, model, normalization=None): If this geodesic :meth;`is_oriented`, then the sign of the coefficients is chosen to encode the orientation of this geodesic. The sign is such that the half plane obtained by replacing ``=`` with ``≥`` in above - equationsis on the left of the geodesic. + equations is on the left of the geodesic. Note that the output might not uniquely describe the geodesic since the coefficients are only unique up to scaling. @@ -9667,7 +9320,7 @@ def _repr_(self): PowerSeriesRing(self.parent().base_ring(), names="I")(list(coordinates)) ) - def change(self, ring=None, geometry=None, oriented=None): + def change(self, *, ring=None, geometry=None, oriented=None): r""" Return a modified copy of this point. @@ -10123,7 +9776,7 @@ def _repr_(self): return repr(self.change_ring(RR)) - def change(self, ring=None, geometry=None, oriented=None): + def change(self, *, ring=None, geometry=None, oriented=None): r""" Return a modified copy of this point. @@ -11898,7 +11551,7 @@ def plot(self, model="half_plane", **kwds): return self._enhance_plot(plot, model=model) - def change(self, ring=None, geometry=None, oriented=None): + def change(self, *, ring=None, geometry=None, oriented=None): r""" Return a modified copy of this polygon. @@ -12740,7 +12393,7 @@ def __eq__(self, other): self.geodesic() == other.geodesic() and self.vertices() == other.vertices() ) - def change(self, ring=None, geometry=None, oriented=None): + def change(self, *, ring=None, geometry=None, oriented=None): r""" Return a modified copy of this segment. @@ -13535,7 +13188,7 @@ def half_spaces(self): ] ) - def change(self, ring=None, geometry=None, oriented=None): + def change(self, *, ring=None, geometry=None, oriented=None): r""" Return a copy of the empty set. @@ -14490,6 +14143,7 @@ def convex_hull(vertices): vertices = [vertex.coordinates(model="klein") for vertex in vertices] reference = min(vertices) + # TODO: Move to euclidean. class Slope: def __init__(self, xy): self.dx = xy[0] - reference[0] diff --git a/flatsurf/geometry/lazy.py b/flatsurf/geometry/lazy.py index 6bbe04c72..48ba81d42 100644 --- a/flatsurf/geometry/lazy.py +++ b/flatsurf/geometry/lazy.py @@ -1184,6 +1184,53 @@ def __init__(self, similarity_surface, direction=None, relabel=None, category=No category=category or self._surface.category(), ) + def _image_edge(self, label, edge): + r""" + Return the saddle connection in this surface that is identical to the + one given by the oriented ``edge`` in the polygon with ``label`` in the + original reference surface. + """ + # Ensure that polygon with label is final in self._surface. + self.polygon(label) + + from flatsurf.geometry.saddle_connection import SaddleConnection + + saddle_connection = SaddleConnection.from_half_edge( + self._reference, label, edge + ) + + for flip in self._flips: + saddle_connection = flip(saddle_connection) + + return SaddleConnection( + self, + start=saddle_connection.start(), + end=saddle_connection.end(), + holonomy=saddle_connection.holonomy(), + end_holonomy=saddle_connection.end_holonomy(), + check=False, + ) + + def _preimage_edge(self, label, edge): + # Ensure that polygon with label is final in self._surface. + self.polygon(label) + + from flatsurf.geometry.saddle_connection import SaddleConnection + + saddle_connection = SaddleConnection.from_half_edge(self._surface, label, edge) + + for flip in self._flips[::-1]: + saddle_connection = flip.section()(saddle_connection) + + return SaddleConnection( + self._reference, + start=saddle_connection.start(), + end=saddle_connection.end(), + holonomy=saddle_connection.holonomy(), + end_holonomy=saddle_connection.end_holonomy(), + check=False, + ) + def is_mutable(self): r""" Return whether this surface is mutable, i.e., return ``False``. diff --git a/flatsurf/geometry/mappings.py b/flatsurf/geometry/mappings.py deleted file mode 100644 index 134dc6293..000000000 --- a/flatsurf/geometry/mappings.py +++ /dev/null @@ -1,944 +0,0 @@ -r"""Mappings between translation surfaces.""" -# ********************************************************************* -# This file is part of sage-flatsurf. -# -# Copyright (C) 2016-2022 W. Patrick Hooper -# 2016-2022 Vincent Delecroix -# 2023 Julian Rüth -# -# sage-flatsurf is free software: you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation, either version 2 of the License, or -# (at your option) any later version. -# -# sage-flatsurf is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with sage-flatsurf. If not, see . -# ********************************************************************* - - -class SurfaceMapping: - r"""Abstract class for any mapping between surfaces.""" - - def __init__(self, domain, codomain): - self._domain = domain - self._codomain = codomain - - def domain(self): - r""" - Return the domain of the mapping. - """ - return self._domain - - def codomain(self): - r""" - Return the range of the mapping. - """ - return self._codomain - - def push_vector_forward(self, tangent_vector): - r"""Applies the mapping to the provided vector.""" - raise NotImplementedError - - def pull_vector_back(self, tangent_vector): - r"""Applies the inverse of the mapping to the provided vector.""" - raise NotImplementedError - - def __mul__(self, other): - # Compose SurfaceMappings - return SurfaceMappingComposition(other, self) - - def __rmul__(self, other): - return SurfaceMappingComposition(self, other) - - -class SurfaceMappingComposition(SurfaceMapping): - r""" - Composition of two mappings between surfaces. - """ - - def __init__(self, mapping1, mapping2): - r""" - Represent the mapping of mapping1 followed by mapping2. - """ - if mapping1.codomain() != mapping2.domain(): - raise ValueError( - "Codomain of mapping1 must be equal to the domain of mapping2" - ) - self._m1 = mapping1 - self._m2 = mapping2 - SurfaceMapping.__init__(self, self._m1.domain(), self._m2.codomain()) - - def push_vector_forward(self, tangent_vector): - r"""Applies the mapping to the provided vector.""" - return self._m2.push_vector_forward( - self._m1.push_vector_forward(tangent_vector) - ) - - def pull_vector_back(self, tangent_vector): - r"""Applies the inverse of the mapping to the provided vector.""" - return self._m1.pull_vector_back(self._m2.pull_vector_back(tangent_vector)) - - def factors(self): - r""" - Return the two factors of this surface mapping as a pair (f,g), - where the original map is f o g. - """ - return self._m2, self._m1 - - -class IdentityMapping(SurfaceMapping): - r""" - Construct an identity map between two "equal" surfaces. - """ - - def __init__(self, domain, codomain): - SurfaceMapping.__init__(self, domain, codomain) - - def push_vector_forward(self, tangent_vector): - r"""Applies the mapping to the provided vector.""" - ring = tangent_vector.bundle().base_ring() - return self._codomain.tangent_vector( - tangent_vector.polygon_label(), - tangent_vector.point(), - tangent_vector.vector(), - ring=ring, - ) - - def pull_vector_back(self, tangent_vector): - r"""Applies the pullback mapping to the provided vector.""" - ring = tangent_vector.bundle().base_ring() - return self._domain.tangent_vector( - tangent_vector.polygon_label(), - tangent_vector.point(), - tangent_vector.vector(), - ring=ring, - ) - - -class SimilarityJoinPolygonsMapping(SurfaceMapping): - r""" - Return a SurfaceMapping joining two polygons together along the edge provided to the constructor. - - EXAMPLES:: - - sage: from flatsurf import MutableOrientedSimilaritySurface, Polygon - sage: s = MutableOrientedSimilaritySurface(QQ) - sage: s.add_polygon(Polygon(edges=[(1,0),(0,1),(-1,-1)])) - 0 - sage: s.add_polygon(Polygon(edges=[(-1,0),(0,-1),(1,1)])) - 1 - sage: s.glue((0, 0), (1, 0)) - sage: s.glue((0, 1), (1, 1)) - sage: s.glue((0, 2), (1, 2)) - sage: s.set_immutable() - - sage: from flatsurf.geometry.mappings import SimilarityJoinPolygonsMapping - sage: m=SimilarityJoinPolygonsMapping(s, 0, 2) - sage: s2=m.codomain() - sage: s2.labels() - (0,) - sage: s2.polygons() - (Polygon(vertices=[(0, 0), (1, 0), (1, 1), (0, 1)]),) - sage: s2.gluings() - (((0, 0), (0, 2)), ((0, 1), (0, 3)), ((0, 2), (0, 0)), ((0, 3), (0, 1))) - - """ - - def __init__(self, s, p1, e1): - r""" - Join polygon with label p1 of s to polygon sharing edge e1. - """ - if s.is_mutable(): - raise ValueError( - "Can only construct SimilarityJoinPolygonsMapping for immutable surfaces." - ) - - from flatsurf.geometry.surface import MutableOrientedSimilaritySurface - - ss2 = MutableOrientedSimilaritySurface.from_surface(s) - s2 = ss2 - - poly1 = s.polygon(p1) - p2, e2 = s.opposite_edge(p1, e1) - poly2 = s.polygon(p2) - t = s.edge_transformation(p2, e2) - dt = t.derivative() - vs = [] # actually stores new edges... - edge_map = {} # Store the pairs for the old edges. - for i in range(e1): - edge_map[len(vs)] = (p1, i) - vs.append(poly1.edge(i)) - ne = len(poly2.vertices()) - for i in range(1, ne): - ee = (e2 + i) % ne - edge_map[len(vs)] = (p2, ee) - vs.append(dt * poly2.edge(ee)) - for i in range(e1 + 1, len(poly1.vertices())): - edge_map[len(vs)] = (p1, i) - vs.append(poly1.edge(i)) - - inv_edge_map = {} - for key, value in edge_map.items(): - inv_edge_map[value] = (p1, key) - - if p2 in s.roots(): - # The polygon with the base label is being removed. - s2.set_roots(tuple(p1 if label == p2 else label for label in s.roots())) - - s2.remove_polygon(p1) - from flatsurf import Polygon - - s2.add_polygon(Polygon(edges=vs, base_ring=s.base_ring()), label=p1) - - for i in range(len(vs)): - p3, e3 = edge_map[i] - p4, e4 = s.opposite_edge(p3, e3) - if p4 == p1 or p4 == p2: - pp, ee = inv_edge_map[(p4, e4)] - s2.glue((p1, i), (pp, ee)) - else: - s2.glue((p1, i), (p4, e4)) - - s2.remove_polygon(p2) - s2.set_immutable() - - self._saved_label = p1 - self._removed_label = p2 - self._remove_map = t - self._remove_map_derivative = dt - self._glued_edge = e1 - SurfaceMapping.__init__(self, s, ss2) - - def removed_label(self): - r""" - Return the label that was removed in the joining process. - """ - return self._removed_label - - def glued_vertices(self): - r""" - Return the vertices of the newly glued polygon which bound the diagonal formed by the glue. - """ - return ( - self._glued_edge, - self._glued_edge - + len(self._domain.polygon(self._removed_label).vertices()), - ) - - def push_vector_forward(self, tangent_vector): - r"""Applies the mapping to the provided vector.""" - ring = tangent_vector.bundle().base_ring() - if tangent_vector.polygon_label() == self._removed_label: - return self._codomain.tangent_vector( - self._saved_label, - self._remove_map(tangent_vector.point()), - self._remove_map_derivative * tangent_vector.vector(), - ring=ring, - ) - else: - return self._codomain.tangent_vector( - tangent_vector.polygon_label(), - tangent_vector.point(), - tangent_vector.vector(), - ring=ring, - ) - - def pull_vector_back(self, tangent_vector): - r""" - Applies the inverse of the mapping to the provided vector. - """ - ring = tangent_vector.bundle().base_ring() - if tangent_vector.polygon_label() == self._saved_label: - p = tangent_vector.point() - v = self._domain.polygon(self._saved_label).vertex(self._glued_edge) - e = self._domain.polygon(self._saved_label).edge(self._glued_edge) - from flatsurf.geometry.euclidean import ccw - - wp = ccw(p - v, e) - if wp > 0: - # in polygon with the removed label - return self.domain().tangent_vector( - self._removed_label, - (~self._remove_map)(tangent_vector.point()), - (~self._remove_map_derivative) * tangent_vector.vector(), - ring=ring, - ) - if wp < 0: - # in polygon with the removed label - return self.domain().tangent_vector( - self._saved_label, - tangent_vector.point(), - tangent_vector.vector(), - ring=ring, - ) - # Otherwise wp==0 - w = tangent_vector.vector() - wp = ccw(w, e) - if wp > 0: - # in polygon with the removed label - return self.domain().tangent_vector( - self._removed_label, - (~self._remove_map)(tangent_vector.point()), - (~self._remove_map_derivative) * tangent_vector.vector(), - ring=ring, - ) - return self.domain().tangent_vector( - self._saved_label, - tangent_vector.point(), - tangent_vector.vector(), - ring=ring, - ) - else: - return self._domain.tangent_vector( - tangent_vector.polygon_label(), - tangent_vector.point(), - tangent_vector.vector(), - ring=ring, - ) - - -class SplitPolygonsMapping(SurfaceMapping): - r""" - Class for cutting a polygon along a diagonal. - - EXAMPLES:: - - sage: from flatsurf import translation_surfaces - sage: s=translation_surfaces.veech_2n_gon(4) - sage: from flatsurf.geometry.mappings import SplitPolygonsMapping - sage: m = SplitPolygonsMapping(s,0,0,2) - sage: s2=m.codomain() - sage: TestSuite(s2).run() - sage: s2.labels() - (0, 1) - sage: s2.polygons() - (Polygon(vertices=[(0, 0), (1/2*a + 1, 1/2*a), (1/2*a + 1, 1/2*a + 1), (1, a + 1), (0, a + 1), (-1/2*a, 1/2*a + 1), (-1/2*a, 1/2*a)]), Polygon(vertices=[(0, 0), (-1/2*a - 1, -1/2*a), (-1/2*a, -1/2*a)])) - sage: s2.gluings() - (((0, 0), (1, 0)), ((0, 1), (0, 5)), ((0, 2), (0, 6)), ((0, 3), (1, 1)), ((0, 4), (1, 2)), ((0, 5), (0, 1)), ((0, 6), (0, 2)), ((1, 0), (0, 0)), ((1, 1), (0, 3)), ((1, 2), (0, 4))) - - """ - - def __init__(self, s, p, v1, v2, new_label=None): - r""" - Split the polygon with label p of surface s along the diagonal joining vertex v1 to vertex v2. - - Warning: We do not ensure that new_label is not already in the list of labels unless it is None (as by default). - """ - if s.is_mutable(): - raise ValueError("The surface should be immutable.") - - poly = s.polygon(p) - ne = len(poly.vertices()) - if v1 < 0 or v2 < 0 or v1 >= ne or v2 >= ne: - raise ValueError("Provided vertices out of bounds.") - if abs(v1 - v2) <= 1 or abs(v1 - v2) >= ne - 1: - raise ValueError("Provided diagonal is not a diagonal.") - if v2 < v1: - temp = v1 - v1 = v2 - v2 = temp - - newedges1 = [poly.vertex(v2) - poly.vertex(v1)] - for i in range(v2, v1 + ne): - newedges1.append(poly.edge(i)) - - from flatsurf import Polygon - - newpoly1 = Polygon(edges=newedges1, base_ring=s.base_ring()) - - newedges2 = [poly.vertex(v1) - poly.vertex(v2)] - for i in range(v1, v2): - newedges2.append(poly.edge(i)) - newpoly2 = Polygon(edges=newedges2, base_ring=s.base_ring()) - - from flatsurf.geometry.surface import MutableOrientedSimilaritySurface - - ss2 = MutableOrientedSimilaritySurface.from_surface(s) - s2 = ss2 - s2.remove_polygon(p) - s2.add_polygon(newpoly1, label=p) - new_label = s2.add_polygon(newpoly2, label=new_label) - - old_to_new_labels = {} - for i in range(ne): - if i < v1: - old_to_new_labels[i] = (p, i + ne - v2 + 1) - elif i < v2: - old_to_new_labels[i] = (new_label, i - v1 + 1) - else: # i>=v2 - old_to_new_labels[i] = (p, i - v2 + 1) - new_to_old_labels = {} - for i, pair in old_to_new_labels.items(): - new_to_old_labels[pair] = i - - # This glues the split polygons together. - s2.glue((p, 0), (new_label, 0)) - for e in range(ne): - ll, ee = old_to_new_labels[e] - lll, eee = s.opposite_edge(p, e) - if lll == p: - gl, ge = old_to_new_labels[eee] - s2.glue((ll, ee), (gl, ge)) - else: - s2.glue((ll, ee), (lll, eee)) - - s2.set_immutable() - - self._p = p - self._v1 = v1 - self._v2 = v2 - self._new_label = new_label - from flatsurf.geometry.similarity import SimilarityGroup - - TG = SimilarityGroup(s.base_ring()) - self._tp = TG(-s.polygon(p).vertex(v1)) - self._tnew_label = TG(-s.polygon(p).vertex(v2)) - SurfaceMapping.__init__(self, s, ss2) - - def push_vector_forward(self, tangent_vector): - r"""Applies the mapping to the provided vector.""" - ring = tangent_vector.bundle().base_ring() - if tangent_vector.polygon_label() == self._p: - point = tangent_vector.point() - vertex1 = self._domain.polygon(self._p).vertex(self._v1) - vertex2 = self._domain.polygon(self._p).vertex(self._v2) - - from flatsurf.geometry.euclidean import ccw - - wp = ccw(vertex2 - vertex1, point - vertex1) - - if wp > 0: - # in new polygon 1 - return self.codomain().tangent_vector( - self._p, - self._tp(tangent_vector.point()), - tangent_vector.vector(), - ring=ring, - ) - if wp < 0: - # in new polygon 2 - return self.codomain().tangent_vector( - self._new_label, - self._tnew_label(tangent_vector.point()), - tangent_vector.vector(), - ring=ring, - ) - - # Otherwise wp==0 - w = tangent_vector.vector() - wp = ccw(vertex2 - vertex1, w) - if wp > 0: - # in new polygon 1 - return self.codomain().tangent_vector( - self._p, - self._tp(tangent_vector.point()), - tangent_vector.vector(), - ring=ring, - ) - # in new polygon 2 - return self.codomain().tangent_vector( - self._new_label, - self._tnew_label(tangent_vector.point()), - tangent_vector.vector(), - ring=ring, - ) - else: - # Not in a polygon that was changed. Just copy the data. - return self._codomain.tangent_vector( - tangent_vector.polygon_label(), - tangent_vector.point(), - tangent_vector.vector(), - ring=ring, - ) - - def pull_vector_back(self, tangent_vector): - r"""Applies the pullback mapping to the provided vector.""" - ring = tangent_vector.bundle().base_ring() - if tangent_vector.polygon_label() == self._p: - return self._domain.tangent_vector( - self._p, - (~self._tp)(tangent_vector.point()), - tangent_vector.vector(), - ring=ring, - ) - elif tangent_vector.polygon_label() == self._new_label: - return self._domain.tangent_vector( - self._p, - (~self._tnew_label)(tangent_vector.point()), - tangent_vector.vector(), - ring=ring, - ) - else: - # Not in a polygon that was changed. Just copy the data. - return self._domain.tangent_vector( - tangent_vector.polygon_label(), - tangent_vector.point(), - tangent_vector.vector(), - ring=ring, - ) - - -def subdivide_a_polygon(s): - r""" - Return a SurfaceMapping which cuts one polygon along a diagonal or None if the surface is triangulated. - """ - from flatsurf.geometry.euclidean import ccw - - for label, poly in zip(s.labels(), s.polygons()): - n = len(poly.vertices()) - if n > 3: - for i in range(n): - e1 = poly.edge(i) - e2 = poly.edge((i + 1) % n) - if ccw(e1, e2) != 0: - return SplitPolygonsMapping(s, label, i, (i + 2) % n) - raise ValueError( - "Unable to triangulate polygon with label " - + str(label) - + ": " - + str(poly) - ) - return None - - -def triangulation_mapping(s): - r""" - Return a SurfaceMapping triangulating ``s``. - - EXAMPLES:: - - sage: from flatsurf import translation_surfaces - sage: s=translation_surfaces.veech_2n_gon(4) - sage: from flatsurf.geometry.mappings import triangulation_mapping - sage: m=triangulation_mapping(s) - sage: s2=m.codomain() - sage: TestSuite(s2).run() - sage: s2.polygons() - (Polygon(vertices=[(0, 0), (-1/2*a, 1/2*a + 1), (-1/2*a, 1/2*a)]), - Polygon(vertices=[(0, 0), (1/2*a, -1/2*a - 1), (1/2*a, 1/2*a)]), - Polygon(vertices=[(0, 0), (-1/2*a - 1, -1/2*a - 1), (0, -1)]), - Polygon(vertices=[(0, 0), (-1, -a - 1), (1/2*a, -1/2*a)]), - Polygon(vertices=[(0, 0), (0, -a - 1), (1, 0)]), - Polygon(vertices=[(0, 0), (-1/2*a - 1, -1/2*a), (-1/2*a, -1/2*a)])) - - """ - if not s.is_finite_type(): - raise NotImplementedError - - m = subdivide_a_polygon(s) - if m is None: - return None - s1 = m.codomain() - while True: - m2 = subdivide_a_polygon(s1) - if m2 is None: - return m - s1 = m2.codomain() - m = SurfaceMappingComposition(m, m2) - return m - - -def flip_edge_mapping(s, p1, e1): - r""" - Return a mapping whose domain is s which flips the provided edge. - """ - m1 = SimilarityJoinPolygonsMapping(s, p1, e1) - v1, v2 = m1.glued_vertices() - removed_label = m1.removed_label() - m2 = SplitPolygonsMapping( - m1.codomain(), p1, (v1 + 1) % 4, (v1 + 3) % 4, new_label=removed_label - ) - return SurfaceMappingComposition(m1, m2) - - -def one_delaunay_flip_mapping(s): - r""" - Returns one delaunay flip, or none if no flips are needed. - """ - for p, poly in zip(s.labels(), s.polygons()): - for e in range(len(poly.vertices())): - if s._delaunay_edge_needs_flip(p, e): - return flip_edge_mapping(s, p, e) - return None - - -def delaunay_triangulation_mapping(s): - r""" - Returns a mapping to a Delaunay triangulation or None if the surface already is Delaunay triangulated. - """ - if not s.is_finite_type(): - raise NotImplementedError - - m = triangulation_mapping(s) - if m is None: - s1 = s - else: - s1 = m.codomain() - m1 = one_delaunay_flip_mapping(s1) - if m1 is None: - return m - if m is None: - m = m1 - else: - m = SurfaceMappingComposition(m, m1) - s1 = m1.codomain() - while True: - m1 = one_delaunay_flip_mapping(s1) - if m1 is None: - return m - s1 = m1.codomain() - m = SurfaceMappingComposition(m, m1) - - -def delaunay_decomposition_mapping(s): - r""" - Returns a mapping to a Delaunay decomposition or possibly None if the surface already is Delaunay. - """ - m = delaunay_triangulation_mapping(s) - if m is None: - s1 = s - else: - s1 = m.codomain() - - joins = set() - edge_vectors = [] - - for p, poly in zip(s1.labels(), s1.polygons()): - for e in range(len(poly.vertices())): - pp, ee = s1.opposite_edge(p, e) - if (pp, ee) in joins: - continue - if s1._delaunay_edge_needs_join(p, e): - joins.add((p, e)) - edge_vectors.append(s1.tangent_vector(p, poly.vertex(e), poly.edge(e))) - - if len(edge_vectors) > 0: - ev = edge_vectors.pop() - p, e = ev.edge_pointing_along() - m1 = SimilarityJoinPolygonsMapping(s1, p, e) - s2 = m1.codomain() - while len(edge_vectors) > 0: - ev = edge_vectors.pop() - ev2 = m1.push_vector_forward(ev) - p, e = ev2.edge_pointing_along() - mtemp = SimilarityJoinPolygonsMapping(s2, p, e) - m1 = SurfaceMappingComposition(m1, mtemp) - s2 = m1.codomain() - if m is None: - return m1 - else: - return SurfaceMappingComposition(m, m1) - return m - - -def canonical_first_vertex(polygon): - r""" - Return the index of the vertex with smallest y-coordinate. - If two vertices have the same y-coordinate, then the one with least x-coordinate is returned. - """ - best = 0 - best_pt = polygon.vertex(best) - for v in range(1, len(polygon.vertices())): - pt = polygon.vertex(v) - if pt[1] < best_pt[1]: - best = v - best_pt = pt - if best == 0: - if pt[1] == best_pt[1]: - return v - return best - - -class CanonicalizePolygonsMapping(SurfaceMapping): - r""" - This is a mapping to a surface with the polygon vertices canonically determined. - A canonical labeling is when the canonocal_first_vertex is the zero vertex. - """ - - def __init__(self, s): - r""" - Split the polygon with label p of surface s along the diagonal joining vertex v1 to vertex v2. - """ - if not s.is_finite_type(): - raise ValueError("Currently only works with finite surfaces.") - ring = s.base_ring() - from flatsurf.geometry.similarity import SimilarityGroup - - T = SimilarityGroup(ring) - cv = {} # dictionary for canonical vertices - translations = {} # translations bringing the canonical vertex to the origin. - from flatsurf.geometry.surface import MutableOrientedSimilaritySurface - - s2 = MutableOrientedSimilaritySurface(ring) - for label, polygon in zip(s.labels(), s.polygons()): - cv[label] = cvcur = canonical_first_vertex(polygon) - newedges = [] - for i in range(len(polygon.vertices())): - newedges.append(polygon.edge((i + cvcur) % len(polygon.vertices()))) - - from flatsurf import Polygon - - s2.add_polygon(Polygon(edges=newedges, base_ring=ring), label=label) - translations[label] = T(-polygon.vertex(cvcur)) - for l1, polygon in zip(s.labels(), s.polygons()): - for e1 in range(len(polygon.vertices())): - l2, e2 = s.opposite_edge(l1, e1) - ee1 = (e1 - cv[l1] + len(polygon.vertices())) % len(polygon.vertices()) - polygon2 = s.polygon(l2) - ee2 = (e2 - cv[l2] + len(polygon2.vertices())) % len( - polygon2.vertices() - ) - # newgluing.append( ( (l1,ee1),(l2,ee2) ) ) - s2.glue((l1, ee1), (l2, ee2)) - s2.set_roots(s.roots()) - s2.set_immutable() - ss2 = s2 - - self._cv = cv - self._translations = translations - - SurfaceMapping.__init__(self, s, ss2) - - def push_vector_forward(self, tangent_vector): - r"""Applies the mapping to the provided vector.""" - ring = tangent_vector.bundle().base_ring() - label = tangent_vector.polygon_label() - return self.codomain().tangent_vector( - label, - self._translations[label](tangent_vector.point()), - tangent_vector.vector(), - ring=ring, - ) - - def pull_vector_back(self, tangent_vector): - r"""Applies the pullback mapping to the provided vector.""" - ring = tangent_vector.bundle().base_ring() - label = tangent_vector.polygon_label() - return self.domain().tangent_vector( - label, - (~self._translations[label])(tangent_vector.point()), - tangent_vector.vector(), - ring=ring, - ) - - -class ReindexMapping(SurfaceMapping): - r""" - Apply a dictionary to relabel the polygons. - """ - - def __init__(self, s, relabler, new_base_label=None): - r""" - The parameters should be a surface and a dictionary which takes as input a label and produces a new label. - """ - if not s.is_finite_type(): - raise ValueError("Currently only works with finite surfaces." "") - f = {} # map for labels going forward. - b = {} # map for labels going backward. - for label in s.labels(): - if label in relabler: - l2 = relabler[label] - f[label] = l2 - if l2 in b: - raise ValueError( - "Provided dictionary has two keys mapping to the same value. Or you are mapping to a label you didn't change." - ) - b[l2] = label - else: - # If no key then don't change the label - f[label] = label - if label in b: - raise ValueError( - "Provided dictionary has two keys mapping to the same value. Or you are mapping to a label you didn't change." - ) - b[label] = label - - self._f = f - self._b = b - - if new_base_label is None: - if s.root() in f: - new_base_label = f[s.root()] - else: - new_base_label = s.root() - from flatsurf.geometry.surface import MutableOrientedSimilaritySurface - - s2 = MutableOrientedSimilaritySurface.from_surface(s) - s2.relabel(relabler, in_place=True) - s2.set_roots([new_base_label]) - s2.set_immutable() - - SurfaceMapping.__init__(self, s, s2) - - def push_vector_forward(self, tangent_vector): - r"""Applies the mapping to the provided vector.""" - # There is no change- we just move it to the new surface. - ring = tangent_vector.bundle().base_ring() - return self.codomain().tangent_vector( - self._f[tangent_vector.polygon_label()], - tangent_vector.point(), - tangent_vector.vector(), - ring=ring, - ) - - def pull_vector_back(self, tangent_vector): - r"""Applies the pullback mapping to the provided vector.""" - ring = tangent_vector.bundle().base_ring() - return self.domain().tangent_vector( - self._b[tangent_vector.polygon_label()], - tangent_vector.point(), - tangent_vector.vector(), - ring=ring, - ) - - -def my_sgn(val): - if val > 0: - return 1 - elif val < 0: - return -1 - else: - return 0 - - -def polygon_compare(poly1, poly2): - r""" - Compare two polygons first by area, then by number of sides, - then by lexicographical ordering on edge vectors.""" - # This should not be used is broken!! - # from sage.functions.generalized import sgn - res = my_sgn(-poly1.area() + poly2.area()) - if res != 0: - return res - res = my_sgn(len(poly1.vertices()) - len(poly2.vertices())) - if res != 0: - return res - ne = len(poly1.vertices()) - for i in range(0, ne - 1): - edge_diff = poly1.edge(i) - poly2.edge(i) - res = my_sgn(edge_diff[0]) - if res != 0: - return res - res = my_sgn(edge_diff[1]) - if res != 0: - return res - return 0 - - -def canonicalize_translation_surface_mapping(s): - r""" - Return the translation surface in a canonical form. - - EXAMPLES:: - - sage: from flatsurf import translation_surfaces - sage: s = translation_surfaces.octagon_and_squares().canonicalize() - - sage: TestSuite(s).run() - - sage: a = s.base_ring().gen() # a is the square root of 2. - - sage: from flatsurf.geometry.mappings import GL2RMapping - sage: from flatsurf.geometry.mappings import canonicalize_translation_surface_mapping - sage: mat=Matrix([[1,2+a],[0,1]]) - sage: from flatsurf.geometry.mappings import GL2RMapping - sage: m1=GL2RMapping(s, mat) - sage: m2=canonicalize_translation_surface_mapping(m1.codomain()) - sage: m=m2*m1 - sage: m.domain().cmp(m.codomain()) - 0 - sage: TestSuite(m.codomain()).run() - sage: s=m.domain() - sage: v=s.tangent_vector(0,(0,0),(1,1)) - sage: w=m.push_vector_forward(v) - sage: print(w) - SimilaritySurfaceTangentVector in polygon 0 based at (0, 0) with vector (a + 3, 1) - """ - from flatsurf.geometry.categories import TranslationSurfaces - - if not s.is_finite_type(): - raise NotImplementedError - if s not in TranslationSurfaces(): - raise ValueError("Only defined for TranslationSurfaces") - m1 = delaunay_decomposition_mapping(s) - if m1 is None: - s2 = s - else: - s2 = m1.codomain() - m2 = CanonicalizePolygonsMapping(s2) - if m1 is None: - m = m2 - else: - m = SurfaceMappingComposition(m1, m2) - s2 = m.codomain() - - # This is essentially copy & paste from canonicalize() from TranslationSurfaces() - from flatsurf.geometry.surface import MutableOrientedSimilaritySurface - - s2copy = MutableOrientedSimilaritySurface.from_surface(s2) - ss = MutableOrientedSimilaritySurface.from_surface(s2) - labels = set(s2.labels()) - for label in labels: - ss.set_roots([label]) - if ss.cmp(s2copy) > 0: - s2copy.set_roots([label]) - - s2copy.set_immutable() - - # We now have the base_label correct. - # We will use the label walk to generate the canonical labeling of polygons. - labels = {label: i for (i, label) in enumerate(s2copy.labels())} - - m3 = ReindexMapping(s2, labels, 0) - return SurfaceMappingComposition(m, m3) - - -class GL2RMapping(SurfaceMapping): - r""" - This class pushes a surface forward under a matrix. - - Note that for matrices of negative determinant we need to relabel edges (because - edges must have a counterclockwise cyclic order). For each n-gon in the surface, - we relabel edges according to the involution `e \mapsto n-1-e`. - - EXAMPLE:: - - sage: from flatsurf import translation_surfaces - sage: s=translation_surfaces.veech_2n_gon(4) - sage: from flatsurf.geometry.mappings import GL2RMapping - sage: mat=Matrix([[2,1],[1,1]]) - sage: m=GL2RMapping(s,mat) - sage: TestSuite(m.codomain()).run() - """ - - def __init__(self, s, m, category=None): - r""" - Hit the surface s with the 2x2 matrix m which should have positive determinant. - """ - from flatsurf.geometry.lazy import GL2RImageSurface - - codomain = GL2RImageSurface(s, m, category=category or s.category()) - self._m = m - self._im = ~m - SurfaceMapping.__init__(self, s, codomain) - - def push_vector_forward(self, tangent_vector): - r"""Applies the mapping to the provided vector.""" - return self.codomain().tangent_vector( - tangent_vector.polygon_label(), - self._m * tangent_vector.point(), - self._m * tangent_vector.vector(), - ) - - def pull_vector_back(self, tangent_vector): - r"""Applies the inverse of the mapping to the provided vector.""" - return self.domain().tangent_vector( - tangent_vector.polygon_label(), - self._im * tangent_vector.point(), - self._im * tangent_vector.vector(), - ) diff --git a/flatsurf/geometry/morphism.py b/flatsurf/geometry/morphism.py index 4317b9977..9e98bed58 100644 --- a/flatsurf/geometry/morphism.py +++ b/flatsurf/geometry/morphism.py @@ -36,8 +36,7 @@ sage: morphism = S.subdivide_edges(3) sage: morphism = morphism.codomain().triangulate() * morphism sage: T = morphism.codomain() - - sage: morphism + sage: morphism # TODO: Get rid of the identity in the sequence below. Composite morphism: From: Translation Surface in H_2(2) built from a regular octagon To: Triangulation of Translation Surface in H_2(2, 0^8) built from a regular octagon with 16 marked vertices @@ -1517,6 +1516,15 @@ def _section_homology_edge(self, label, edge, codomain): "not a single edge maps to this edge, cannot implement preimage of this edge yet" ) + def _image_line_segment(self, s): + raise NotImplementedError(f"a {type(self).__name__} cannot compute the image of a line segment yet") + + def _section_line_segment(self, t): + raise NotImplementedError(f"a {type(self).__name__} cannot compute a preimage of a line segment yet") + + def _test_section_line_segment(self, **options): + raise NotImplementedError + def _composition(self, other): r""" Return the composition of this morphism and ``other``. @@ -1557,6 +1565,252 @@ def _composition(self, other): return CompositionMorphism._create_morphism(self, other) + def push_vector_forward(self, tangent_vector): + import warnings + + warnings.warn( + "push_vector_forward() has been deprecated and will be removed in a future version of sage-flatsurf; call the morphism with the tangent vector instead, i.e., instead of morphism.push_vector_forward(t) use morphism(t)" + ) + + return self(tangent_vector) + + def pull_vector_back(self, tangent_vector): + import warnings + + warnings.warn( + "pull_vector_back() has been deprecated and will be removed in a future version of sage-flatsurf; call a section of morphism with the tangent vector instead, i.e., instead of morphism.pull_vector_back(t) use morphism.section()(t)" + ) + + return self.section()(tangent_vector) + + def _image_saddle_connection(self, c): + r""" + Return the image of saddle connection ``c`` under this morphism. + + This is a helper method for :meth:`__call__`. + + Subclasses should implement this method if the morphism is meaningful + on the level of saddle connections. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.square_torus() + sage: morphism = S.apply_matrix(matrix([[2, 0], [0, 1]]), in_place=False) + + The image of a saddle connection:: + + sage: from flatsurf.geometry.saddle_connection import SaddleConnection + sage: c = SaddleConnection.from_vertex(S, 0, 0, (1, 1)) + sage: c + Saddle connection (1, 1) from vertex 0 of polygon 0 to vertex 2 of polygon 0 + + sage: morphism(c) + Saddle connection (2, 1) from vertex 0 of polygon 0 to vertex 2 of polygon 0 + + Not all morphisms are meaningful on the level of saddle connections:: + + sage: morphism = S.subdivide() + sage: morphism(c) + Traceback (most recent call last): + ... + NotImplementedError: a InsertMarkedPointsInFaceMorphism_with_category cannot compute the image of a saddle connection yet + + """ + raise NotImplementedError( + f"a {type(self).__name__} cannot compute the image of a saddle connection yet" + ) + + def _section_saddle_connection(self, t): + r""" + Return a preimage of a saddle connection ``t`` under this morphism. + + This is a helper method for :meth:`__call__` of the :meth:`section`. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.square_torus() + sage: morphism = S.apply_matrix(matrix([[2, 0], [0, 1]]), in_place=False) + sage: T = morphism.codomain() + + sage: from flatsurf.geometry.saddle_connection import SaddleConnection + sage: t = SaddleConnection.from_vertex(T, 0, 0, (2, 1)); t + Saddle connection (2, 1) from vertex 0 of polygon 0 to vertex 2 of polygon 0 + sage: (morphism * morphism.section())(t) + Saddle connection (2, 1) from vertex 0 of polygon 0 to vertex 2 of polygon 0 + + """ + raise NotImplementedError( + f"a {type(self).__name__} cannot compute a preimage of a saddle connection yet" + ) + + def _test_section_saddle_connection(self, **options): + r""" + Verify that :meth:`_section_saddle_connection` actually produces a + section. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.square_torus() + sage: morphism = S.apply_matrix(matrix([[2, 0], [0, 1]]), in_place=False) + sage: morphism._test_section_saddle_connection() + + """ + tester = self._tester(**options) + + section = self.section() + identity = self * section + + from itertools import islice + + for q in tester.some_elements(islice(self.codomain().saddle_connections(), 16)): + tester.assertEqual(identity(q), q) + + def _image_tangent_vector(self, t): + r""" + Return the image of the tangent vector ``v`` under this morphism. + + This is a helper method for :meth:`__call__`. + + Subclasses should implement this method if the morphism is meaningful + on the level of tangent vectors. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.square_torus() + sage: morphism = S.apply_matrix(matrix([[2, 0], [0, 1]]), in_place=False) + + The image of a tangent vector:: + + sage: t = S.tangent_vector(0, (0, 0), (1, 1)) + sage: morphism(t) + SimilaritySurfaceTangentVector in polygon 0 based at (0, 0) with vector (2, 1) + + Not all morphisms are meaningful on the level of tangent vectors:: + + # TODO: Add an example of such a morphism + + """ + raise NotImplementedError( + f"a {type(self).__name__} cannot compute the image of a tangent vector yet" + ) + + def _section_tangent_vector(self, q): + r""" + Return a preimage of the tangent vector ``q`` under this morphism. + + This is a helper method for :meth:`__call__` of the :meth:`section`. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.square_torus() + sage: morphism = S.apply_matrix(matrix([[2, 0], [0, 1]]), in_place=False) + sage: T = morphism.codomain() + + sage: q = T.tangent_vector(0, (0, 0), (2, 1)); q + SimilaritySurfaceTangentVector in polygon 0 based at (0, 0) with vector (2, 1) + sage: (morphism * morphism.section())(q) + SimilaritySurfaceTangentVector in polygon 0 based at (0, 0) with vector (2, 1) + + """ + raise NotImplementedError( + f"a {type(self).__name__} cannot compute a preimage of a tangent vector yet" + ) + + def _test_section_tangent_vector(self, **options): + r""" + Verify that :meth:`_section_tangent_vector` actually produces a + section. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.square_torus() + sage: morphism = S.apply_matrix(matrix([[2, 0], [0, 1]]), in_place=False) + sage: morphism._test_section_tangent_vector() + + """ + tester = self._tester(**options) + + section = self.section() + identity = self * section + + for q in tester.some_elements(self.codomain().tangent_bundle().some_elements()): + tester.assertEqual(identity(q), q) + + def change(self, domain=None, codomain=None, check=True): + r""" + Return a copy of this morphism with the domain or codomain replaced + with ``domain`` and ``codomain``, respectively. + + For this to work, the ``domain`` must be trivially a replacement for + the original domain and the ``codomain`` must be trivially a + replacement for the original codomain. This method is sometimes useful + to implement new morphisms. It should not be necessary to call this + method otherwise. This method is usually used when the domain or + codomain was originally mutable or to replace the domain or codomain + with another indistinguishable domain or codomain. + + INPUT: + + - ``domain`` -- a surface (default: ``None``); if set, the surfaces + replaces the domain of this morphism + + - ``codomain`` -- a surface (default: ``None``); if set, the surfaces + replaces the codomain of this morphism + + - ``check`` -- a boolean (default: ``True``); whether to check + compatibility of the ``domain`` and ``codomain`` with the data + defining the original morphism. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, MutableOrientedSimilaritySurface + sage: S = translation_surfaces.square_torus() + sage: S = MutableOrientedSimilaritySurface.from_surface(S) + sage: morphism = S.apply_matrix(matrix([[2, 0], [0, 1]]), in_place=False) + sage: morphism.domain() + Unknown Surface + + sage: S.set_immutable() + sage: morphism = morphism.change(domain=S) + sage: morphism.domain() + Translation Surface in H_1(0) built from a square + + :: + + sage: from flatsurf import translation_surfaces, MutableOrientedSimilaritySurface + sage: S = translation_surfaces.square_torus() + sage: S = MutableOrientedSimilaritySurface.from_surface(S) + sage: morphism = S.apply_matrix(matrix([[2, 0], [0, 1]]), in_place=True) + sage: morphism.domain() + Unknown Surface + sage: morphism.codomain() + Unknown Surface + + sage: S.set_immutable() + sage: morphism = morphism.change(codomain=S) + sage: morphism.domain() + Unknown Surface + sage: morphism.codomain() + Translation Surface in H_1(0) built from a rectangle + + """ + if domain is not None: + raise NotImplementedError( + f"a {type(self).__name__} cannot swap out its domain yet" + ) + if codomain is not None: + raise NotImplementedError( + f"a {type(self).__name__} cannot swap out its codomain yet" + ) + + return self + def __eq__(self, other): r""" Return whether this morphism is indistinguishable from ``other``. @@ -1767,6 +2021,9 @@ def _section_homology_edge(self, label, edge, codomain): """ return self._morphism._image_homology_edge(label, edge, codomain=codomain) + def _image_line_segment(self, x): return self._morphism._section_line_segment(x) + def _section_line_segment(self, y): return self._morphism._image_line_segment(y) + def __eq__(self, other): r""" Return whether this section is indistinguishable from ``other``. @@ -1837,6 +2094,9 @@ def _repr_defn(self): return f"Section of {self._morphism}" +# TODO: The whole composite setup is not great yet. The special handling of +# contravariant induced maps in call is a hack. +# TODO: We should reverse the order of _morphisms. class CompositionMorphism(SurfaceMorphism): r""" The formal composition of two morphisms between surfaces. @@ -2025,6 +2285,16 @@ def _image_homology_edge(self, label, edge, codomain): self.domain().homology()((label, edge)), codomain=codomain ) + def _image_line_segment(self, x): + for morphism in self._morphisms: + x = morphism._image_line_segment(x) + return x + + def _section_line_segment(self, y): + for morphism in self._morphisms[::-1]: + y = morphism._section_line_segment(y) + return y + def _repr_type(self): r""" Helper method for :meth:`__repr__`. @@ -2542,6 +2812,12 @@ def _section_point(self, q): """ return self._factorization()._section_point(q) + def _image_line_segment(self, x): + return self._factorization()._image_line_segment(x) + + def _section_line_segment(self, y): + return self._factorization()._section_line_segment(y) + def _factorization(self): r""" Return the morphism underlying this morphism. @@ -2870,7 +3146,27 @@ def __hash__(self): return hash((self.__factorization, self._name)) -class TriangulationMorphism_base(SurfaceMorphism): +class RepolygonizationMorphism(SurfaceMorphism): + def _image_line_segment(self, s): + raise NotImplementedError + + def _section_line_segment(self, t): + from flatsurf.geometry.voronoi import SurfaceLineSegment + + if not self.domain().is_translation_surface(): + raise NotImplementedError + + if t.start().angle() != 1: + raise NotImplementedError + + start = self.section()(t.start()) + + assert start.angle() == 1, "preimage of a regular point must be regular" + + return SurfaceLineSegment(self.domain(), *start.representative(), t.holonomy()) + + +class TriangulationMorphism_base(RepolygonizationMorphism): r""" Abstract base class for morphisms from a surface to its triangulation. @@ -2951,6 +3247,53 @@ def _section_edge(self, label, edge): assert False, "triangle must come from a polygon before triangulation" + def _image_saddle_connection(self, connection): + (label, edge) = connection.start() + + label, edge = self._image_edge(label, edge) + + from flatsurf.geometry.euclidean import ccw + + while ( + ccw( + connection.direction().vector(), + -self.codomain() + .polygon(label) + .edges()[(edge - 1) % len(self.codomain().polygon(label).edges())], + ) + <= 0 + ): + (label, edge) = self.codomain().opposite_edge( + label, (edge - 1) % len(self.codomain().polygon(label).edges()) + ) + + # TODO: This is extremely slow. + from flatsurf.geometry.saddle_connection import SaddleConnection + + return SaddleConnection.from_vertex( + self.codomain(), label, edge, connection.direction().vector() + ) + + def _section_saddle_connection(self, connection): + (label, edge) = connection.start() + + domain_label = self.codomain()._reference_label(label) + triangulation = self.codomain()._triangulation(domain_label)[1].inverse + + while (label, edge) not in triangulation: + label, edge = self.codomain().opposite_edge(label, edge) + edge = (edge + 1) % len(self.codomain().polygon(label).edges()) + + # TODO: This is extremely slow. + from flatsurf.geometry.saddle_connection import SaddleConnection + + return SaddleConnection.from_vertex( + self.domain(), + domain_label, + triangulation[(label, edge)], + connection.direction(), + ) + def _image_homology_edge(self, label, edge, codomain): r""" Implements :class:`SurfaceMorphism._image_homology_edge`. @@ -3224,7 +3567,7 @@ def __hash__(self): return hash(self.parent()) -class DelaunayTriangulationMorphism(SurfaceMorphism): +class DelaunayTriangulationMorphism(RepolygonizationMorphism): r""" A morphism from a triangulated surface to its Delaunay triangulation. @@ -3869,6 +4212,36 @@ def __init__(self, parent, m): self._matrix = matrix(self.domain().base_ring(), m, immutable=True) + def change(self, domain=None, codomain=None, check=True): + return type(self)._create_morphism( + domain=domain or self.domain(), + codomain=codomain or self.codomain(), + m=self._matrix, + category=self.category_for(), + ) + + def _image_tangent_vector(self, t): + return self.codomain().tangent_vector( + t.polygon_label(), self._matrix * t.point(), self._matrix * t.vector() + ) + + def _image_saddle_connection(self, connection): + if self._matrix.det() <= 0: + raise NotImplementedError( + "cannot compute the image of a saddle connection for this matrix yet" + ) + + from flatsurf.geometry.saddle_connection import SaddleConnection + + return SaddleConnection( + surface=self.codomain(), + start=connection.start(), + end=connection.end(), + holonomy=self._matrix * connection.holonomy(), + end_holonomy=self._matrix * connection.end_holonomy(), + check=False, + ) + def section(self): r""" Return an inverse of this morphism. @@ -4129,3 +4502,289 @@ def __hash__(self): """ return hash(self._parts) + + def _image_saddle_connection(self, c): + start = c.start() + end = c.end() + + from flatsurf.geometry.saddle_connection import SaddleConnection + + return SaddleConnection( + surface=self.codomain(), + start=(start[0], start[1] * self._parts), + end=(end[0], end[1] * self._parts), + holonomy=c.holonomy(), + end_holonomy=c.end_holonomy(), + check=False, + ) + + def _section_saddle_connection(self, c): + start = c.start() + if start[1] % self._parts != 0: + # TODO: This is not true. Straight line trajectories are built of such segments. + raise NotImplementedError( + "cannot represent segments not starting at a vertex yet" + ) + + end = c.end() + if end[1] % self._parts != 0: + # TODO: This is not true. Straight line trajectories are built of such segments. + raise NotImplementedError( + "cannot represent segments not terminating at a vertex yet" + ) + + from flatsurf.geometry.saddle_connection import SaddleConnection + + return SaddleConnection( + surface=self.domain(), + start=(start[0], start[1] // self._parts), + end=(end[0], end[1] // self._parts), + holonomy=c.holonomy(), + end_holonomy=c.end_holonomy(), + check=False, + ) + + def _image_tangent_vector(self, t): + return self.codomain().tangent_vector(t.polygon_label(), t.point(), t.vector()) + + def _section_tangent_vector(self, t): + return self.domain().tangent_vector(t.polygon_label(), t.point(), t.vector()) + + +# TODO: Can we use some generic machinery from RepolygonizationMorphism here? +class InsertMarkedPointsInFaceMorphism(RepolygonizationMorphism): + def __init__(self, parent, subdivisions, category=None): + self._subdivisions = subdivisions + + super().__init__(parent, category=category) + + # TODO: docstring + def _image_point(self, p): + # TODO: docstring + from flatsurf.geometry.pyflatsurf_conversion import FlatTriangulationConversion + + to_pyflatsurf = FlatTriangulationConversion.to_pyflatsurf( + domain=self.codomain() + ) + + label = next(iter(p.labels())) + coordinates = next(iter(p.coordinates(label))) - self.domain().polygon( + label + ).vertex(0) + + coordinates = next(iter(p.coordinates(label))) + coordinates -= self.domain().polygon(label).vertex(0) + + if len(self._subdivisions[label]) == 1: + # No point was inserted into this polygon. + coordinates += self.codomain().polygon(label).vertex(0) + return self.codomain()(label, coordinates) + + # We take the translation of the point from a nearby vertex and then + # translate from the image of that vertex by the same amount. + # Since that translation is currently only implemented in libflatsurf, + # we leave the heavy lifting to libflatsurf here. + from flatsurf.geometry.pyflatsurf_conversion import VectorSpaceConversion + + to_pyflatsurf_vector = VectorSpaceConversion.to_pyflatsurf(coordinates.parent()) + + def ccw(v, w): + r""" + Return whether v->w describe a non-clockwise turn. + """ + return v[0] * w[1] >= w[0] * v[1] + + initial_edge = ((label, 0), 0) + mid_edge = ( + ( + label, + len(self.codomain().polygons()) // len(self.domain().polygons()) - 1, + ), + 1, + ) + + face = ( + mid_edge + if ccw(self.codomain().polygon(mid_edge[0]).edge(mid_edge[1]), coordinates) + else initial_edge + ) + face = to_pyflatsurf(face) + coordinates = to_pyflatsurf_vector(coordinates) + + import pyflatsurf + + p = pyflatsurf.flatsurf.Point[type(to_pyflatsurf.codomain())]( + to_pyflatsurf.codomain(), face, coordinates + ) + + return to_pyflatsurf.section(p) + + def _image_homology_edge(self, label, edge): + return [(1, (label, edge), 0)] + + def __eq__(self, other): + if not isinstance(other, InsertMarkedPointsInFaceMorphism): + return False + + return ( + self.domain() == other.domain() + and self.codomain() == other.codomain() + and self._subdivisions == other._subdivisions + ) + + def _repr_type(self): + return "Marked-Point-Insertion" + + +# TODO: Can we use some generic machinery from RepolygonizationMorphism here? +class InsertMarkedPointsOnEdgeMorphism(RepolygonizationMorphism): + def __init__(self, parent, points, category=None): + super().__init__(parent, category=category) + self._points = points + + def _image_point(self, p): + return self.codomain()(*p.representative()) + + def _repr_type(self): + return "InsertMarkedPoint" + +class PolygonStandardizationMorphism(SurfaceMorphism): + def __init__(self, parent, vertex_zero, category=None): + super().__init__(parent, category=category) + self._vertex_zero = vertex_zero + + def change(self, domain=None, codomain=None, check=True): + # TODO: Check compatibility + return type(self)._create_morphism( + domain=domain or self.domain(), + codomain=codomain or self.codomain(), + vertex_zero=self._vertex_zero, + category=self.category_for(), + ) + + def __eq__(self, other): + if not isinstance(other, PolygonStandardizationMorphism): + return False + + return ( + self.parent() == other.parent() and self._vertex_zero == other._vertex_zero + ) + + def _repr_type(self): + return "Polygon Standardization" + + +# TODO: Can we use some generic machinery from RepolygonizationMorphism here? +class RelabelingMorphism(RepolygonizationMorphism): + def __init__(self, parent, relabeling, category=None): + super().__init__(parent, category=category) + # TODO: Compactify relabeling and make it frozen and hashable. + self._relabeling = relabeling + + def change(self, domain=None, codomain=None, check=True): + # TODO: Check compatibility + return type(self)._create_morphism( + domain=domain or self.domain(), + codomain=codomain or self.codomain(), + relabeling=self._relabeling, + category=self.category_for(), + ) + + def __eq__(self, other): + if not isinstance(other, RelabelingMorphism): + return False + + return self.parent() == other.parent() and self._relabeling == other._relabeling + + def _repr_type(self): + return "Relabeling" + + +class PolygonIsometryMorphism(SurfaceMorphism): + r""" + A morphism that maps each polygon to an isometric polygon. + + The morphism is encoded as the mapping on polygon labels and an isometry + for each polygon. + + # TODO: Currently, there is no isometry, so we encode things very explicitly. + + EXAMPLES: + + A rotation of a regular octagon:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.regular_octagon() + + sage: from flatsurf.geometry.morphism import PolygonIsometryMorphism + sage: f = PolygonIsometryMorphism._create_morphism(S, S, {0: (0, 1)}) + sage: f + Polygon Isometry endomorphism of Translation Surface in H_2(2) built from a regular octagon + + The morphism can be applied to homology classes:: + + sage: from flatsurf import SimplicialHomology + sage: H = SimplicialHomology(S) + sage: a, b, c, d = H.gens() + sage: a, b, c, d + (B[(0, 1)], B[(0, 2)], B[(0, 3)], B[(0, 0)]) + sage: f(a), f(b), f(c), f(d) + (B[(0, 2)], B[(0, 3)], -B[(0, 0)], B[(0, 1)]) + + A rotation of a triangle unfolding:: + + sage: from flatsurf import similarity_surfaces, Polygon + sage: S = similarity_surfaces.billiard(Polygon(angles=[3, 4, 13])).minimal_cover("translation") + sage: # TODO: complete example + + """ + + def __init__(self, parent, polygon_mapping, category=None): + super().__init__(parent, category=category) + self._polygon_mapping = polygon_mapping + + for source_label in self.domain().labels(): + target_label, shift = self._polygon_mapping[source_label] + + source_polygon = self.domain().polygon(source_label) + target_polygon = self.codomain().polygon(target_label) + + if len(source_polygon.vertices()) != len(target_polygon.vertices()): + raise ValueError("isomorphism must map n-gons to n-gons") + + for source_edge in range(len(source_polygon.vertices())): + ( + source_opposite_label, + source_opposite_edge, + ) = self.domain().opposite_edge(source_label, source_edge) + + target_edge = (source_edge + shift) % len(target_polygon.vertices()) + + ( + target_opposite_label, + target_opposite_edge, + ) = self.codomain().opposite_edge(target_label, target_edge) + + source_opposite_label_image, other_shift = self._polygon_mapping[ + source_opposite_label + ] + if target_opposite_label != source_opposite_label_image: + raise ValueError( + "gluings are not compatible with the provided isometries" + ) + + if target_opposite_edge != (source_opposite_edge + other_shift) % len( + self.codomain().polygon(target_opposite_label).vertices() + ): + raise ValueError( + "gluings are not compatible with the provided isometries" + ) + + def _repr_type(self): + return "Polygon Isometry" + + def _image_homology_edge(self, label, edge): + label, shift = self._polygon_mapping[label] + return [ + (1, label, (edge + shift) % len(self.codomain().polygon(label).vertices())) + ] diff --git a/flatsurf/geometry/polygon.py b/flatsurf/geometry/polygon.py index 410df56be..719bfe7b2 100644 --- a/flatsurf/geometry/polygon.py +++ b/flatsurf/geometry/polygon.py @@ -38,6 +38,8 @@ # along with sage-flatsurf. If not, see . # **************************************************************************** +# TODO: Could it make sense to make all vertex and edge indexes live in Z/nZ so we do not need this % len(...) all the time? + from sage.all import ( cached_method, Parent, @@ -88,6 +90,18 @@ def __init__(self, parent, xy): super().__init__(parent) + def coordinates(self, edge=None): + if edge is None: + return self._xy + + polygon = self.parent() + + from sage.all import matrix + + return matrix([polygon.edge(edge), -polygon.edge(edge - 1)]).solve_left( + self._xy - polygon.vertex(edge) + ) + def position(self): r""" Describe the position of this point in the polygon. diff --git a/flatsurf/geometry/power_series.py b/flatsurf/geometry/power_series.py new file mode 100644 index 000000000..f3d628946 --- /dev/null +++ b/flatsurf/geometry/power_series.py @@ -0,0 +1,1046 @@ +r""" +Utilities to deal with power series and Laurent series defined on surfaces. +""" +###################################################################### +# This file is part of sage-flatsurf. +# +# Copyright (C) 2022-2023 Julian Rüth +# +# sage-flatsurf is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 2 of the License, or +# (at your option) any later version. +# +# sage-flatsurf is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with sage-flatsurf. If not, see . +###################################################################### +from sage.rings.ring import CommutativeRing +from sage.structure.element import CommutativeRingElement +from sage.structure.unique_representation import UniqueRepresentation +from sage.misc.cachefunc import cached_method + + +class PowerSeriesCoefficientExpression(CommutativeRingElement): + r""" + An expression in the (symbolic) coefficients of a multivariate power + series. + + Consider a multivariate power series, for example, in two variables + + .. MATH:: + + \sum a_i b_j x^i y^j + + This element is an expression in the coefficients of such a series, for + example + + .. MATH:: + + a_0^2 + 2 a_1 b_1 + b_1^2 + + In principle, this is just a multivariate polynomial in all the `a_i` and + `b_j`. However, for our use case, see :module:`harmonic_differentials`, + these expressions are of low degree (at most 2) but with lots of variables. + Multivariate polynomial rings in SageMath are bad at handling such + extremely sparse scenarios since some operations are implemented linearly + in the number of generators of the ring. + + Therefore, we roll our own "sparse multivariate polynomial ring" here that + is asymptotically fast for the operations we care about (and slow for other + operations such as multiplication of expressions.) + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing # random output due to deprecation warnings from cppyy + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("a_?", "b_?")) + sage: a0 = R.gen(("a_?", 0)) + sage: b0 = R.gen(("b_?", 0)) + sage: a1 = R.gen(("a_?", 1)) + sage: b1 = R.gen(("b_?", 1)) + + sage: a0^2 + b0^2 + 2 * a1 * b1 + a_0^2 + b_0^2 + 2*a_1*b_1 + + """ + + def __init__(self, parent, coefficients): + super().__init__(parent) + + # Zero coefficients must be removed. Otherwise, degree computations break. + assert all(v for v in coefficients.values()) + + self._coefficients = coefficients + + def _richcmp_(self, other, op): + r""" + Compare this expression to ``other``. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("a_?", "b_?")) + sage: a0 = R.gen(("a_?", 0)) + sage: b0 = R.gen(("b_?", 0)) + + sage: a0 == b0 + False + + sage: a0^2 == a0 + False + + sage: a0 == a0 + True + + """ + from sage.structure.richcmp import op_EQ, op_NE + + if op == op_NE: + return not (self == other) + + if op == op_EQ: + return self._coefficients == other._coefficients + + raise NotImplementedError + + def __bool__(self): + # Implemented directly for performance. + return bool(self._coefficients) + + def is_one(self): + for key, value in self._coefficients.items(): + if key == () and value.is_one(): + continue + return False + + return True + + def _repr_(self): + r""" + Return a printable representation of this expression. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: re = R.gen(("Re(a0,?)", 0)) + sage: im = R.gen(("Im(a0,?)", 0)) + + sage: re + Re(a0,0) + sage: im + Im(a0,0) + sage: re + im + Re(a0,0) + Im(a0,0) + sage: re + im + 1 + Re(a0,0) + Im(a0,0) + 1 + + """ + + def variable_name(variable): + gen, degree = variable.describe() + + return gen.replace("?", str(degree)) + + variables = list(self.variables()) + + def key(variable): + return next(iter(next(iter(variable._coefficients.keys())))) + + variables.sort(key=key) + + variable_names = tuple(variable_name(variable) for variable in variables) + + def encode_variable_name(variable): + return ( + variable.replace("(", "__open__") + .replace(")", "__close__") + .replace(",", "__comma__") + ) + + variable_names = [encode_variable_name(name) for name in variable_names] + + def decode_variable_name(variable): + return ( + variable.replace("__comma__", ",") + .replace("__close__", ")") + .replace("__open__", "(") + ) + + from sage.all import PolynomialRing + + R = PolynomialRing(self.base_ring(), variable_names) + + def monomial(gens): + monomial = R.one() + for gen in gens: + gen = self.parent().gen(gen) + monomial *= R(variable_names[variables.index(gen)]) + return monomial + + f = sum( + coefficient * monomial(gens) + for (gens, coefficient) in self._coefficients.items() + ) + + return decode_variable_name(repr(f)) + + def degree(self, gen): + r""" + Return the total degree of this expression in the variable ``gen``. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: a = R.gen(("Re(a0,?)", 0)) + sage: b = R.gen(("Im(a0,?)", 0)) + + sage: a.degree(a) + 1 + sage: (a + b).degree(a) + 1 + sage: (a * b + a).degree(a) + 1 + sage: R.one().degree(a) + 0 + sage: R.zero().degree(a) + -1 + + """ + if not gen.is_variable(): + raise ValueError(f"gen must be a variable not {gen}") + + variable = next(iter(next(iter(gen._coefficients)))) + + return max( + [monomial.count(variable) for monomial in self._coefficients], default=-1 + ) + + def is_monomial(self): + r""" + Return whether this expression is a non-constant monomial without a + leading coefficient. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: a = R.gen(("Re(a0,?)", 0)) + sage: b = R.gen(("Im(a0,?)", 0)) + + sage: a.is_monomial() + True + sage: (2*a).is_monomial() + False + sage: (a + b).is_monomial() + False + sage: R.one().is_monomial() + False + sage: R.zero().is_monomial() + False + sage: (a * a).is_monomial() + True + + """ + if len(self._coefficients) != 1: + return False + + ((key, value),) = self._coefficients.items() + + return bool(key) and value.is_one() + + def is_constant(self): + r""" + Return whether this expression is a constant from the base ring. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: a = R.gen(("Re(a0,?)", 0)) + sage: b = R.gen(("Im(a0,?)", 0)) + + sage: a.is_constant() + False + sage: (a + b).is_constant() + False + sage: R.one().is_constant() + True + sage: R.zero().is_constant() + True + sage: (a * a).is_constant() + False + + """ + coefficients = len(self._coefficients) + + if coefficients == 0: + return True + + if coefficients > 1: + return False + + monomial = next(iter(self._coefficients.keys())) + + return not monomial + + def norm(self, p=2): + r""" + Return the p-norm of the coefficient vector. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: a = R.gen(("Re(a0,?)", 0)) + sage: b = R.gen(("Im(a0,?)", 0)) + + sage: x = a + 1 + + sage: x.norm(1) + 2 + + sage: x.norm(oo) + 1 + + """ + from sage.all import vector + + return vector(self._coefficients.values()).norm(p) + + def _neg_(self): + r""" + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: a = R.gen(("Re(a0,?)", 0)) + sage: b = R.gen(("Im(a0,?)", 0)) + + sage: -a + -Re(a0,0) + sage: -(a + b) + -Re(a0,0) - Im(a0,0) + sage: -(a * a) + -Re(a0,0)^2 + sage: -R.one() + -1 + sage: -R.zero() + 0 + + """ + parent = self.parent() + return type(self)( + parent, + {key: -coefficient for (key, coefficient) in self._coefficients.items()}, + ) + + def _add_(self, other): + r""" + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: a = R.gen(("Re(a0,?)", 0)) + sage: b = R.gen(("Im(a0,?)", 0)) + + sage: a + 1 + Re(a0,0) + 1 + sage: a + (-a) + 0 + sage: a + b + Re(a0,0) + Im(a0,0) + sage: a * a + b * b + Re(a0,0)^2 + Im(a0,0)^2 + + """ + return self.parent().sum([self, other]) + + def _sub_(self, other): + r""" + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: a = R.gen(("Re(a0,?)", 0)) + sage: b = R.gen(("Im(a0,?)", 0)) + + sage: a - 1 + Re(a0,0) - 1 + sage: a - a + 0 + sage: a * a - b * b + Re(a0,0)^2 - Im(a0,0)^2 + + """ + return self._add_(-other) + + def _mul_(self, other): + r""" + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: a = R.gen(("Re(a0,?)", 0)) + sage: b = R.gen(("Im(a0,?)", 0)) + + sage: a * a + Re(a0,0)^2 + sage: a * b + Re(a0,0)*Im(a0,0) + sage: a * R.one() + Re(a0,0) + sage: a * R.zero() + 0 + sage: (a + b) * (a - b) + Re(a0,0)^2 - Im(a0,0)^2 + + """ + parent = self.parent() + + if other.is_zero() or self.is_zero(): + return parent.zero() + + if other.is_one(): + return self + + if self.is_one(): + return other + + coefficients = {} + + for self_monomial, self_coefficient in self._coefficients.items(): + assert self_coefficient + for other_monomial, other_coefficient in other._coefficients.items(): + assert other_coefficient + + monomial = tuple(sorted(self_monomial + other_monomial)) + coefficient = self_coefficient * other_coefficient + + if monomial not in coefficients: + coefficients[monomial] = coefficient + else: + coefficients[monomial] += coefficient + if not coefficients[monomial]: + del coefficients[monomial] + + return type(self)(self.parent(), coefficients) + + def _rmul_(self, right): + r""" + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: a = R.gen(("Re(a0,?)", 0)) + sage: b = R.gen(("Im(a0,?)", 0)) + + sage: a * 0 + 0 + sage: a * 1 + Re(a0,0) + sage: a * 2 + 2*Re(a0,0) + + """ + return self._lmul_(right) + + def _lmul_(self, left): + r""" + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: a = R.gen(("Re(a0,?)", 0)) + sage: b = R.gen(("Im(a0,?)", 0)) + + sage: 0 * a + 0 + sage: 1 * a + Re(a0,0) + sage: 2 * a + 2*Re(a0,0) + + """ + return type(self)( + self.parent(), + { + key: coefficient + for (key, value) in self._coefficients.items() + if (coefficient := left * value) + }, + ) + + def constant_coefficient(self): + r""" + Return the constant coefficient of this expression. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: a = R.gen(("Re(a0,?)", 0)) + sage: b = R.gen(("Im(a0,?)", 0)) + + sage: a.constant_coefficient() + 0 + sage: (a + b).constant_coefficient() + 0 + sage: R.one().constant_coefficient() + 1 + sage: R.zero().constant_coefficient() + 0 + + """ + return self._coefficients.get((), self.parent().base_ring().zero()) + + def variables(self): + r""" + Return the variables that appear in this expression. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: re = R.gen(("Re(a0,?)", 0)) + sage: im = R.gen(("Im(a0,?)", 0)) + + sage: R.zero().variables() + set() + sage: R.one().variables() + set() + sage: (re^2 * im + 1).variables() + {Im(a0,0), Re(a0,0)} + sage: (re + 1).variables() + {Re(a0,0)} + + """ + return set( + self.parent().gen(gen) + for monomial in self._coefficients.keys() + for gen in monomial + ) + + def is_variable(self): + r""" + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: re = R.gen(("Re(a0,?)", 0)) + sage: im = R.gen(("Im(a0,?)", 0)) + + sage: re.is_variable() + True + sage: R.zero().is_variable() + False + sage: R.one().is_variable() + False + sage: (re + 1).is_variable() + False + sage: (re * im).is_variable() + False + + """ + if not self.is_monomial(): + return False + + monomial = next(iter(self._coefficients.keys())) + + if len(monomial) != 1: + return False + + return True + + def describe(self): + r""" + Return a tuple describing the nature of this variable. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + sage: re = R.gen(("Re(a0,?)", 0)) + sage: im = R.gen(("Im(a0,?)", 0)) + + sage: re.describe() + ('Re(a0,?)', 0) + sage: im.describe() + ('Im(a0,?)', 0) + sage: (re + im).describe() + Traceback (most recent call last): + ... + ValueError: element must be a variable + + """ + if not self.is_variable(): + raise ValueError("element must be a variable") + + variable = next(iter(next(iter(self._coefficients.keys())))) + + gens = self.parent()._gens + + gen = gens[variable % len(gens)] + degree = variable // len(gens) + + return gen, degree + + def real(self): + r""" + Return the real part of this expression. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(CC, gens=("Re(a0,?)", "Im(a0,?)")) + sage: re = R.gen(("Re(a0,?)", 0)) + sage: im = R.gen(("Im(a0,?)", 0)) + + sage: x = (re + I*im)**2 + sage: x + Re(a0,0)^2 + 2.00000000000000*I*Re(a0,0)*Im(a0,0) - Im(a0,0)^2 + sage: x.real() + Re(a0,0)^2 - Im(a0,0)^2 + + """ + return self.map_coefficients( + lambda c: c.real(), self.parent().change_ring(self.parent().real_field()) + ) + + def imag(self): + r""" + Return the imaginary part of this expression. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(CC, gens=("Re(a0,?)", "Im(a0,?)")) + sage: re = R.gen(("Re(a0,?)", 0)) + sage: im = R.gen(("Im(a0,?)", 0)) + + sage: x = (re + I*im)**2 + sage: x + Re(a0,0)^2 + 2.00000000000000*I*Re(a0,0)*Im(a0,0) - Im(a0,0)^2 + sage: x.imag() + 2.00000000000000*Re(a0,0)*Im(a0,0) + + """ + return self.map_coefficients( + lambda c: c.imag(), self.parent().change_ring(self.parent().real_field()) + ) + + def __getitem__(self, gen): + r""" + Return the coefficient of the monomial ``gen``. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(CC, gens=("Re(a0,?)", "Im(a0,?)")) + sage: re = R.gen(("Re(a0,?)", 0)) + sage: im = R.gen(("Im(a0,?)", 0)) + + sage: re[re] + 1.00000000000000 + sage: re[im] + 0.000000000000000 + sage: (re + im)[re] + 1.00000000000000 + sage: (re * im)[re] + 0.000000000000000 + sage: (re * im)[re * im] + 1.00000000000000 + + """ + if not gen.is_monomial(): + raise ValueError("gen must be a monomial") + + return self._coefficients.get( + next(iter(gen._coefficients.keys())), self.parent().base_ring().zero() + ) + + def __hash__(self): + return hash(tuple(sorted(self._coefficients.items()))) + + def total_degree(self): + r""" + Return the total degree of this expression in its symbolic variables. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(CC, gens=("Re(a0,?)", "Im(a0,?)")) + sage: re = R.gen(("Re(a0,?)", 0)) + sage: im = R.gen(("Im(a0,?)", 0)) + + sage: R.zero().total_degree() + -1 + sage: R.one().total_degree() + 0 + sage: re.total_degree() + 1 + sage: (re * re + im).total_degree() + 2 + + """ + degrees = [len(monomial) for monomial in self._coefficients] + return max(degrees, default=-1) + + def derivative(self, gen): + r""" + Return the derivative of this expression with respect to the variable + ``gen``. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(CC, gens=("Re(a0,?)", "Im(a0,?)")) + sage: re = R.gen(("Re(a0,?)", 0)) + sage: im = R.gen(("Im(a0,?)", 0)) + + sage: R.zero().derivative(re) + 0 + sage: R.one().derivative(re) + 0 + sage: re.derivative(re) + 1.00000000000000 + sage: re.derivative(im) + 0 + sage: x = (re + im) * (re - im) + sage: x.derivative(re) + 2.00000000000000*Re(a0,0) + sage: x.derivative(im) + -2.00000000000000*Im(a0,0) + + """ + if not gen.is_variable(): + raise ValueError("gen must be a variable") + + gen = next(iter(gen._coefficients.keys()))[0] + + derivative = self.parent().zero() + + for monomial, coefficient in self._coefficients.items(): + assert coefficient + + exponent = monomial.count(gen) + + if not exponent: + continue + + monomial = list(monomial) + monomial.remove(gen) + monomial = tuple(monomial) + + derivative += self.parent()({monomial: exponent * coefficient}) + + return derivative + + def map_coefficients(self, f, ring=None): + r""" + Return the image of this expression by applying ``f`` to each non-zero + coefficient of the expression. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(CC, gens=("Re(a0,?)", "Im(a0,?)")) + sage: re = R.gen(("Re(a0,?)", 0)) + sage: im = R.gen(("Im(a0,?)", 0)) + + sage: re.map_coefficients(lambda c: 2*c) + 2.00000000000000*Re(a0,0) + + """ + if ring is None: + ring = self.parent() + + return ring( + { + key: image + for key, value in self._coefficients.items() + if (image := f(value)) + } + ) + + def __call__(self, values): + r""" + Return the value of this symbolic expression at ``values``. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(CC, gens=("Re(a0,?)", "Im(a0,?)")) + sage: re = R.gen(("Re(a0,?)", 0)) + sage: im = R.gen(("Im(a0,?)", 0)) + + sage: re({re: 1}) + 1.00000000000000 + sage: re({re: 2, im: 1}) + 2.00000000000000 + sage: (2 * re * im)({re: 3, im: 5}) + 30.0000000000000 + + """ + + def evaluate(monomial): + product = self.parent().base_ring().one() + + for variable in monomial: + product *= values[self.parent().gen(variable)] + + return product + + return sum( + [ + coefficient * evaluate(monomial) + for (monomial, coefficient) in self._coefficients.items() + ] + ) + + +class PowerSeriesCoefficientExpressionRing(UniqueRepresentation, CommutativeRing): + r""" + The ring of expressions in the symbolic coefficients of a multivariate + power series. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(CC, gens=("Re(a0,?)", "Im(a0,?)")) + sage: R + Ring of Power Series Coefficients in Re(a0,0),…,Im(a0,0),… over Complex Field with 53 bits of precision + + TESTS:: + + sage: R.has_coerce_map_from(CC) + True + sage: TestSuite(R).run() + + """ + + def __init__(self, base_ring, gens, category=None): + self._gens = gens + + from sage.categories.all import CommutativeRings + + CommutativeRing.__init__( + self, base_ring, category=category or CommutativeRings(), normalize=False + ) + self.register_coercion(base_ring) + + Element = PowerSeriesCoefficientExpression + + def _repr_(self): + return f"Ring of Power Series Coefficients in {','.join(gen.replace('?', '0') + ',…' for gen in self._gens)} over {self.base_ring()}" + + def change_ring(self, ring): + r""" + Return this ring with the ring of constants replaced by ``ring``. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(CC, gens=("Re(a0,?)", "Im(a0,?)")) + sage: R.change_ring(RR) + Ring of Power Series Coefficients in Re(a0,0),…,Im(a0,0),… over Real Field with 53 bits of precision + + """ + return PowerSeriesCoefficientExpressionRing( + ring, self._gens, category=self.category() + ) + + def sum(self, summands): + r""" + Return the sum of ``summands``. + + This is an optimized version of the builtin `sum` that creates fewer + temporary objects. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(CC, gens=("Re(a0,?)", "Im(a0,?)")) + + sage: R.sum([R.gen(0), R.gen(1)]) + Re(a0,0) + Im(a0,0) + + """ + # TODO: Add a benchmark to show that this is actually way faster when + # there are lots of generators. + + summands = list(summands) + + if len(summands) == 0: + return self.zero() + + if len(summands) == 1: + return summands.pop() + + coefficients = dict(summands.pop()._coefficients) + + while summands: + summand = summands.pop() + for monomial, coefficient in summand._coefficients.items(): + assert coefficient + if monomial not in coefficients: + coefficients[monomial] = coefficient + else: + coefficients[monomial] += coefficient + + if not coefficients[monomial]: + del coefficients[monomial] + + return self(coefficients) + + def real_field(self): + r""" + Return a real base field corresponding to the complex base field of + this ring. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(CC, gens=("Re(a0,?)", "Im(a0,?)")) + + sage: R.real_field() + Real Field with 53 bits of precision + + When the base ring is not complex, this method is not functional:: + + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("Re(a0,?)", "Im(a0,?)")) + + sage: R.real_field() + Traceback (most recent call last): + ... + AttributeError: 'RationalField_with_category' object has no attribute 'prec' + + """ + # TODO: This should depend on the base ring. + from sage.all import RDF + + return RDF + + def is_exact(self): + r""" + Return whether this ring is implementing exact arithmetic. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("a", "b")) + sage: R.is_exact() + True + + """ + return self.base_ring().is_exact() + + def _coerce_map_from_(self, other): + if isinstance(other, PowerSeriesCoefficientExpressionRing): + return self.base_ring().has_coerce_map_from(other.base_ring()) + + def _element_constructor_(self, x): + r""" + Return an element of this ring built from ``x``. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("a?", "b?")) + sage: R(1) + 1 + sage: R({(1,): 3}) + 3*b0 + + """ + if isinstance(x, PowerSeriesCoefficientExpression): + return x.map_coefficients(self.base_ring(), ring=self) + + if isinstance(x, dict): + return self.element_class( + self, + { + tuple(sorted(monomial)): self.base_ring()(coefficient) + for (monomial, coefficient) in x.items() + if coefficient + }, + ) + + from sage.all import parent + + if parent(x) is self.base_ring(): + if not x: + return self.element_class(self, {}) + return self.element_class(self, {(): x}) + + raise TypeError(f"cannot create a symbolic expression from this {type(x)}") + + @cached_method + def gen(self, gen): + r""" + Return the generator identified by ``gen``. + + INPUT: + + - ``gen`` -- a tuple (name, degree) or an integer. + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("a?", "b?")) + sage: R.gen(("a?", 0)) + a0 + + SageMath wants us to also order the generators and return them when + calling ``gen`` with an integer argument:: + + sage: R.gen(0) + a0 + sage: R.gen(1) + b0 + sage: R.gen(2) + a1 + sage: R.gen(3) + b1 + + """ + if isinstance(gen, tuple): + if len(gen) == 2: + name, degree = gen + if name not in self._gens: + raise ValueError(f"name must be one of {self._gens} not {name}") + gen = degree * len(self._gens) + self._gens.index(name) + + from sage.all import parent, ZZ + + if parent(gen) == ZZ: + gen = int(gen) + + if isinstance(gen, int): + return self.element_class(self, {(gen,): self.base().one()}) + + raise TypeError("gen must be an integer or a tuple (name, degree)") + + def ngens(self): + r""" + Return the number of generators of this ring. + + Since there are infinitely many generators, this method is not + implemented (SageMath does not accept us returning +infinity here.) + + EXAMPLES:: + + sage: from flatsurf.geometry.power_series import PowerSeriesCoefficientExpressionRing + sage: R = PowerSeriesCoefficientExpressionRing(QQ, gens=("a?", "b?")) + sage: R.ngens() + Traceback (most recent call last): + ... + NotImplementedError + + """ + raise NotImplementedError diff --git a/flatsurf/geometry/pyflatsurf/conversion.py b/flatsurf/geometry/pyflatsurf/conversion.py index 7a1fb54ca..a65d52214 100644 --- a/flatsurf/geometry/pyflatsurf/conversion.py +++ b/flatsurf/geometry/pyflatsurf/conversion.py @@ -2146,6 +2146,71 @@ def _preimage_half_edge(self, half_edge): """ return self._half_edge_to_label[half_edge.id()] + def _image_saddle_connection(self, saddle_connection): + r""" + Return the image of the ``saddle_connection``. + + This is a helper method for :meth:`__call__`. + + INPUT: + + - ``saddle_connection`` -- a saddle connection defined in the :meth:`domain`. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: from flatsurf.geometry.pyflatsurf_conversion import FlatTriangulationConversion + sage: from flatsurf.geometry.surface_objects import SurfacePoint + sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() + sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) + + sage: conversion._image_saddle_connection(next(iter(S.saddle_connections(1)))) + 5 + + """ + import pyflatsurf + + return pyflatsurf.flatsurf.SaddleConnection[type(self.codomain())].inSector( + self.codomain(), + self._image_half_edge(*saddle_connection.start()), + self.vector_space_conversion()(saddle_connection.holonomy()), + ) + + def _preimage_saddle_connection(self, saddle_connection): + r""" + Return the preimage of the ``saddle_connection`` in the domain of this + conversion. + + This is a helper method for :meth:`section`. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: from flatsurf.geometry.pyflatsurf_conversion import FlatTriangulationConversion + sage: from flatsurf.geometry.surface_objects import SurfacePoint + sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() + sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) + + sage: connection = next(iter(conversion.codomain().connections())) + sage: connection + 1 + + sage: preimage = conversion._preimage_saddle_connection(connection) + sage: preimage + Saddle connection (1, 0) from vertex 0 of polygon (0, 0) to vertex 0 of polygon (1, 0) + + sage: conversion(preimage) + 1 + + """ + from flatsurf.geometry.saddle_connection import SaddleConnection + + # TODO: Speed this up! + return SaddleConnection.from_vertex( + self.domain(), + *self._preimage_half_edge(saddle_connection.source()), + self.vector_space_conversion().section(saddle_connection.vector()), + ) def __eq__(self, other): r""" Return whether this conversion is indistinguishable from ``other``. diff --git a/flatsurf/geometry/pyflatsurf/flow_decomposition.py b/flatsurf/geometry/pyflatsurf/flow_decomposition.py new file mode 100644 index 000000000..e01a9b235 --- /dev/null +++ b/flatsurf/geometry/pyflatsurf/flow_decomposition.py @@ -0,0 +1,73 @@ +from flatsurf.geometry.flow_decomposition import ( + FlowDecomposition_base, + FlowComponent_base, +) + + +def tribool_to_bool_or_none(tribool): + if tribool: + return True + + import cppyy + + if cppyy.gbl.boost.logic.indeterminate(tribool): + return None + + return False + + +class FlowDecomposition_pyflatsurf(FlowDecomposition_base): + def __init__(self, flow_decomposition, surface): + super().__init__(surface) + + self._flow_decomposition = flow_decomposition + self._components = None + + def decompose(self, limit=-1): + if limit != 0: + self.invalidate_components() + self._flow_decomposition.decompose(int(limit)) + + def is_parabolic(self): + return tribool_to_bool_or_none(self._flow_decomposition.parabolic()) + + def invalidate_components(self): + for component in self._components or []: + component._invalidate() + + self._components = None + + def components(self): + if self._components is None: + self._components = [ + FlowComponent_pyflatsurf(component, self) + for component in self._flow_decomposition.components() + ] + + return self._components + + def has_cylinder(self): + return tribool_to_bool_or_none(self._flow_decomposition.hasCylinder()) + + def is_completely_periodic(self): + return tribool_to_bool_or_none(self._flow_decomposition.completelyPeriodic()) + + +class FlowComponent_pyflatsurf(FlowComponent_base): + def __init__(self, flow_component, flow_decomposition): + super().__init__(flow_decomposition) + + self.__flow_component = flow_component + + def _invalidate(self): + self.__flow_component = None + + def _flow_component(self): + if self.__flow_component is None: + raise NotImplementedError( + "component of flow decomposition has been modified externally since it was created" + ) + return self.__flow_component + + def is_cylinder(self): + return tribool_to_bool_or_none(self._flow_component().cylinder()) diff --git a/flatsurf/geometry/pyflatsurf/morphism.py b/flatsurf/geometry/pyflatsurf/morphism.py index 694c9e7c5..18c4f8a59 100644 --- a/flatsurf/geometry/pyflatsurf/morphism.py +++ b/flatsurf/geometry/pyflatsurf/morphism.py @@ -146,6 +146,15 @@ def _repr_type(self): """ return "pyflatsurf conversion" + def _image_saddle_connection(self, connection): + from flatsurf.geometry.pyflatsurf.saddle_connection import ( + SaddleConnection_pyflatsurf, + ) + + return SaddleConnection_pyflatsurf( + self._pyflatsurf_conversion(connection), self.codomain() + ) + def _test_section_point(self, **options): r""" Do not verify that :meth:`_section_point` has been implemented diff --git a/flatsurf/geometry/pyflatsurf/saddle_connection.py b/flatsurf/geometry/pyflatsurf/saddle_connection.py new file mode 100644 index 000000000..87a9659f0 --- /dev/null +++ b/flatsurf/geometry/pyflatsurf/saddle_connection.py @@ -0,0 +1,12 @@ +from flatsurf.geometry.saddle_connection import SaddleConnection_base + + +class SaddleConnection_pyflatsurf(SaddleConnection_base): + def __init__(self, connection, surface): + super().__init__(surface) + + self._connection = connection + self._surface = surface + + def surface(self): + return self._surface diff --git a/flatsurf/geometry/pyflatsurf/surface.py b/flatsurf/geometry/pyflatsurf/surface.py index cdb78ab29..bf1869706 100644 --- a/flatsurf/geometry/pyflatsurf/surface.py +++ b/flatsurf/geometry/pyflatsurf/surface.py @@ -403,6 +403,48 @@ def opposite_edge(self, label, edge): return opposite_label, opposite_label.index(opposite_half_edge.id()) + def flow_decomposition(self, direction): + direction = self._vector_space_conversion.domain()(direction) + direction = self._vector_space_conversion(direction) + + import pyflatsurf + + decomposition = pyflatsurf.flatsurf.makeFlowDecomposition( + self._flat_triangulation, + direction, + ) + + from flatsurf.geometry.pyflatsurf.flow_decomposition import ( + FlowDecomposition_pyflatsurf, + ) + + return FlowDecomposition_pyflatsurf(decomposition, surface=self) + + def _flow_decompositions_slopes_bfs(self, bound): + return self._flow_decompositions_slopes_from_connections( + self._flat_triangulation.connections().bound(int(bound)).byLength() + ) + + def _flow_decompositions_slopes_dfs(self, bound): + return self._flow_decompositions_slopes_from_connections( + self._flat_triangulation.connections().bound(int(bound)) + ) + + def _flow_decompositions_slopes_from_connections(self, connections): + import cppyy + + slopes = cppyy.gbl.std.set[ + self._vector_space_conversion.codomain(), + self._vector_space_conversion.codomain().CompareSlope, + ]() + + for connection in connections: + slope = connection.vector() + if slopes.find(slope) != slopes.end(): + continue + slopes.insert(slope) + yield self._vector_space_conversion.section(slope) + def __eq__(self, other): r""" Return whether this surface is indistinguishable from ``other``. diff --git a/flatsurf/geometry/pyflatsurf/surface_point.py b/flatsurf/geometry/pyflatsurf/surface_point.py new file mode 100644 index 000000000..15cf3414f --- /dev/null +++ b/flatsurf/geometry/pyflatsurf/surface_point.py @@ -0,0 +1,8 @@ +from flatsurf.geometry.surface_objects import SurfacePoint_base + + +class SurfacePoint_pyflatsurf(SurfacePoint_base): + def __init__(self, point, surface): + self._point = point + + super().__init__(surface) diff --git a/flatsurf/geometry/ray.py b/flatsurf/geometry/ray.py new file mode 100644 index 000000000..c75a2e72e --- /dev/null +++ b/flatsurf/geometry/ray.py @@ -0,0 +1,188 @@ +r""" +Geometry with rays in the Euclidean plane. + +EXAMPLES:: + + sage: from flatsurf.geometry.ray import Rays + sage: R = Rays(QQ) + sage: R((1, 0)) + Ray towards (1, 0) + + sage: R((1, 0)) == R((2, 0)) + True + + sage: R((1, 0)) == R((-2, 0)) + False + +""" +###################################################################### +# This file is part of sage-flatsurf. +# +# Copyright (C) 2024 Julian Rüth +# +# sage-flatsurf is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 2 of the License, or +# (at your option) any later version. +# +# sage-flatsurf is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with sage-flatsurf. If not, see . +###################################################################### +from sage.structure.parent import Parent +from sage.structure.element import Element +from sage.structure.unique_representation import UniqueRepresentation +from sage.misc.cachefunc import cached_method + + +class Ray(Element): + r""" + A ray in the Euclidean plane. + + EXAMPLES:: + + sage: from flatsurf.geometry.ray import Rays + sage: R = Rays(QQ) + sage: r = R((1, 0)); r + Ray towards (1, 0) + + sage: R((0, 0)) + Traceback (most recent call last): + ... + ValueError: direction must not be the zero vector + + TESTS:: + + sage: from flatsurf.geometry.ray import Ray + sage: isinstance(r, Ray) + True + sage: TestSuite(r).run() + + """ + + def __init__(self, parent, direction): + super().__init__(parent) + + direction = parent.ambient_space()(direction) + direction.set_immutable() + + if direction.is_zero(): + raise ValueError("direction must not be the zero vector") + + self._direction = direction + + def vector(self): + r""" + Return a vector in this ray. + + EXAMPLES:: + + sage: from flatsurf.geometry.ray import Rays + sage: R = Rays(QQ) + sage: r = R((1, 0)); r + Ray towards (1, 0) + sage: r.vector() + (1, 0) + + """ + return self._direction + + def _neg_(self): + return self.parent()(-self._direction) + + def _repr_(self): + return f"Ray towards {self._direction}" + + def _richcmp_(self, other, op): + r""" + Return how this ray compares to ``other``. + + EXAMPLES:: + + sage: from flatsurf.geometry.ray import Rays + sage: R = Rays(QQ) + + sage: R((0, 1)) == R((0, 2)) + True + sage: R((1, 0)) == R((2, 0)) + True + sage: R((1, 1)) == R((2, 2)) + True + sage: R((1, 1)) == R((2, 1)) + False + sage: R((0, 1)) == R((0, -2)) + False + sage: R((1, 1)) == R((-2, -2)) + False + + """ + from sage.structure.richcmp import op_EQ, op_NE + + if op == op_NE: + return not self._richcmp_(other, op_EQ) + + if op == op_EQ: + from sage.all import sgn + + return ( + self._direction[0] * other._direction[1] + == other._direction[0] * self._direction[1] + and sgn(self._direction[0]) == sgn(other._direction[0]) + and sgn(self._direction[1]) == sgn(other._direction[1]) + ) + + +class Rays(UniqueRepresentation, Parent): + r""" + The space of rays from the origin in the Euclidean plane. + + EXAMPLES:: + + sage: from flatsurf.geometry.ray import Rays + sage: R = Rays(QQ) + sage: R + Rays in Vector space of dimension 2 over Rational Field + + TESTS:: + + sage: isinstance(R, Rays) + True + sage: TestSuite(R).run() + + """ + Element = Ray + + def __init__(self, base_ring, category=None): + from sage.categories.all import Sets, Rings + + if base_ring not in Rings(): + raise TypeError("base ring must be a ring") + + super().__init__(base=base_ring, category=category or Sets()) + + def _an_element_(self): + return self((1, 0)) + + def some_element(self): + return [self(v) for v in self.ambient_space().some_elements() if v] + + @cached_method + def ambient_space(self): + r""" + Return the ambient Euclidean space containing these rays. + + EXAMPLES:: + + sage: from flatsurf.geometry.ray import Rays + sage: Rays(QQ).ambient_space() + Vector space of dimension 2 over Rational Field + + """ + return self.base_ring() ** 2 + + def _repr_(self): + return f"Rays in {self.ambient_space()}" diff --git a/flatsurf/geometry/saddle_connection.py b/flatsurf/geometry/saddle_connection.py new file mode 100644 index 000000000..4ffd7e80d --- /dev/null +++ b/flatsurf/geometry/saddle_connection.py @@ -0,0 +1,756 @@ +from sage.all import SageObject +from sage.misc.cachefunc import cached_method + + +# TODO: SaddleConnection should be an element in the space of SaddleConnections or the space of Paths rather? + + +class SaddleConnection_base(SageObject): + def __init__(self, surface): + self._surface = surface + + +class SaddleConnection(SaddleConnection_base): + r""" + Represents a saddle connection on a SimilaritySurface. + + TESTS:: + + sage: from flatsurf.geometry.saddle_connection import SaddleConnection + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.cathedral(1, 2) + sage: SaddleConnection.from_vertex(S, 1, 8, (0, -1)) + Saddle connection (0, -2) from vertex 8 of polygon 1 to vertex 5 of polygon 1 + + """ + + # TODO: The constructor should not do so much work. Missing parameters + # should be filled in by calling a static factory method. + # TODO: direction and end_direction should not be part of the data. It's + # just the tangent vector given by the holonomy. + # TODO: start and end should probably be just a tangent vector? And the + # naming of start() and end() should also reflect that? Then start() and + # end() could actually just return the surface points instead of returning + # a tuple. + def __init__( + self, + surface, + start, + direction=None, + end=None, + end_direction=None, + holonomy=None, + end_holonomy=None, + check=True, + limit=None, + start_data=None, + end_data=None, + ): + r""" + TODO: Cleanup documentation. + + Construct a saddle connection on a SimilaritySurface. + + The only necessary parameters are the surface, start_data, and direction + (to start). If there is missing data that can not be inferred from the surface + type, then a straight-line trajectory will be computed to confirm that this is + indeed a saddle connection. The trajectory will pass through at most limit + polygons before we give up. + + Details of the parameters are provided below. + + Parameters + ---------- + surface : a SimilaritySurface + which will contain the saddle connection being constructed. + start : a pair + consisting of the label of the polygon where the saddle connection starts + and the starting vertex. + direction : 2-dimensional vector with entries in the base_ring of the surface + representing the direction the saddle connection is moving in (in the + coordinates of the initial polygon). + end : a pair + consisting of the label of the polygon where the saddle connection terminates + and the terminating vertex. + end_direction : 2-dimensional vector with entries in the base_ring of the surface + representing the direction to move backward from the end point (in the + coordinates of the terminal polygon). If the surface is a DilationSurface + or better this will be the negation of the direction vector. If the surface + is a HalfDilation surface or better, then this will be either the direction + vector or its negation. In either case the value can be inferred from the + end. + holonomy : 2-dimensional vector with entries in the base_ring of the surface + the holonomy of the saddle connection measured from the start. To compute this + you develop the saddle connection into the plane starting from the starting + polygon. + end_holonomy : 2-dimensional vector with entries in the base_ring of the surface + the holonomy of the saddle connection measured from the end (with the opposite + orientation). To compute this you develop the saddle connection into the plane + starting from the terminating polygon. For a translation surface, this will be + the negation of holonomy, and for a HalfTranslation surface it will be either + equal to holonomy or equal to its negation. In both these cases the end_holonomy + can be inferred and does not need to be passed to the constructor. + check : boolean + If all data above is provided or can be inferred, then when check=False this + geometric data is not verified. With check=True the data is always verified + by straight-line flow. Erroroneous data will result in a ValueError being thrown. + Defaults to true. + limit : + The combinatorial limit (in terms of number of polygons crossed) to flow forward + to check the saddle connection geometry. + + TESTS: + + Arguments are validated. If the direction points out of the polygon, no saddle connection can be created:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.cathedral(1, 2) + sage: from flatsurf.geometry.saddle_connection import SaddleConnection + sage: SaddleConnection(S, (1, 5), (1, 1)) + Traceback (most recent call last): + ... + ValueError: Singular point with vector pointing away from polygon + + """ + from flatsurf.geometry.categories import SimilaritySurfaces + + if surface not in SimilaritySurfaces(): + raise TypeError("surface must be a similarity surface") + + if start_data is not None: + import warnings + + warnings.warn( + "start_data has been deprecated as a keyword argument for SaddleConnection() and will be removed in a future version of sage-flatsurf; use start instead" + ) + start = start_data + del start_data + + if start is None: + raise ValueError("start must be specified to create a SaddleConnection") + + if end_data is not None: + import warnings + + warnings.warn( + "end_data has been deprecated as a keyword argument for SaddleConnection() and will be removed in a future version of sage-flatsurf; use end instead" + ) + end = end_data + del end_data + + if direction is not None: + import warnings + + if holonomy is None: + warnings.warn( + "direction has been deprecated as a keyword argument for SaddleConnection() and will be removed in a future of sage-flatsurf; if you want to create a SaddleConnection without specifying the holonomy, use SaddleConnection.from_vertex() instead." + ) + c = SaddleConnection.from_vertex( + surface, *start, direction, limit=limit + ) + start = c._start + holonomy = c._holonomy + end = c._end + end_holonomy = c._end_holonomy + else: + warnings.warn( + "direction has been deprecated as a keyword argument for SaddleConnection() and will be removed in a future of sage-flatsurf; there is no need to pass this argument anymore when the holonomy is specified." + ) + del direction + + if holonomy is None: + raise ValueError("holonomy must be specified to create a SaddleConnection") + + if end is None or end_holonomy is None: + import warnings + + warnings.warn( + "end and end_holonomy must be provided as a keyword argument for SaddleConnection() in future versions of sage-flatsurf; use SaddleConnection.from_vertex() instead to create a SaddleConnection without specifying these." + ) + c = SaddleConnection.from_vertex(surface, *start, holonomy, limit=limit) + start = c._start + holonomy = c._holonomy + end = c._end + end_holonomy = c._end_holonomy + + if end_direction is not None: + import warnings + + warnings.warn( + "end_direction has been deprecated as a keyword argument for SaddleConnection() and will be removed in a future version of sage-flatsurf; the end direction is deduced from the end holonomy automatically" + ) + del end_direction + + if limit is not None: + import warnings + + warnings.warn( + "limit has been deprecated as a keyword argument for SaddleConnection() and will be removed in a future version of sage-flatsurf; use SaddleConnection.from_vertex() to search with a limit instead" + ) + del limit + + super().__init__(surface) + + V = self._surface.base_ring() ** 2 + + self._start = tuple(start) + self._holonomy = V(holonomy) + self._start, self._holonomy = self._normalize(self._start, self._holonomy) + self._holonomy.set_immutable() + + self._end = tuple(end) + self._end_holonomy = V(end_holonomy) + self._end, self._end_holonomy = self._normalize(self._end, self._end_holonomy) + self._end_holonomy.set_immutable() + + def surface(self): + return self._surface + + def _normalize(self, start, holonomy): + r""" + Normalize the ``start`` and ``holonomy`` data describing this saddle + connection. + + When the saddle connection is parallel to a polygon's edge, there can + be two different descriptions of the same saddle connection. + + EXAMPLES:: + + sage: from flatsurf import MutableOrientedSimilaritySurface, Polygon + sage: S = MutableOrientedSimilaritySurface(QQ) + sage: S.add_polygon(Polygon(vertices=((0, 0), (1, 0), (1, 1)))) + 0 + + sage: S.glue((0, 0), (0, 0)) + sage: S.glue((0, 1), (0, 1)) + sage: S.glue((0, 2), (0, 2)) + + sage: S.set_immutable() + + sage: from flatsurf import SaddleConnection + sage: SaddleConnection.from_vertex(surface=S, label=0, vertex=0, direction=(1, 0)) + Saddle connection (1, 0) from vertex 0 of polygon 0 to vertex 0 of polygon 0 + sage: SaddleConnection.from_vertex(surface=S, label=0, vertex=0, direction=(1, 1)) + Saddle connection (-1, -1) from vertex 2 of polygon 0 to vertex 2 of polygon 0 + + :: + + sage: S = MutableOrientedSimilaritySurface(QQ) + sage: S.add_polygon(Polygon(vertices=((0, 0), (1, 0), (1, 1)))) + 0 + + sage: S.set_immutable() + + sage: from flatsurf import SaddleConnection + sage: SaddleConnection(surface=S, start=(0, 0), direction=(1, 0)) + Saddle connection (1, 0) from vertex 0 of polygon 0 to vertex 1 of polygon 0 + sage: SaddleConnection(surface=S, start=(0, 0), direction=(1, 1)) + Saddle connection (1, 1) from vertex 0 of polygon 0 to vertex 2 of polygon 0 + + """ + label = start[0] + polygon = self._surface.polygon(label) + previous_edge = (start[1] - 1) % len(polygon.vertices()) + if holonomy == -polygon.edge(previous_edge): + opposite_edge = self._surface.opposite_edge(label, previous_edge) + if opposite_edge is not None: + return ( + opposite_edge, + self._surface.edge_transformation(label, previous_edge).derivative() + * holonomy, + ) + + return start, holonomy + + def __neg__(self): + return SaddleConnection( + surface=self._surface, + start=self._end, + end=self._start, + holonomy=self._end_holonomy, + end_holonomy=self._holonomy, + check=False, + ) + + @classmethod + def from_half_edge(self, surface, label, edge): + r""" + Return a saddle connection along the ``edge`` in the polygon ``label`` + of ``surface``. + + INPUT: + + - ``surface`` -- a similarity surface + + - ``label`` -- a polygon label in ``surface`` + + - ``edge`` -- the index of an edge in the polygon with ``label`` + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, SaddleConnection + sage: S = translation_surfaces.square_torus() + + sage: SaddleConnection.from_half_edge(S, 0, 0) + Saddle connection (1, 0) from vertex 0 of polygon 0 to vertex 2 of polygon 0 + + Saddle connections in a surface with boundary:: + + sage: from flatsurf import MutableOrientedSimilaritySurface, Polygon + sage: S = MutableOrientedSimilaritySurface(QQ) + sage: S.add_polygon(Polygon(vertices=((0, 0), (1, 0), (1, 1)))) + 0 + sage: S.set_immutable() + + sage: c = SaddleConnection.from_half_edge(S, 0, 0); c + Saddle connection (1, 0) from vertex 0 of polygon 0 to vertex 1 of polygon 0 + sage: -c + Saddle connection (-1, 0) from vertex 1 of polygon 0 to vertex 0 of polygon 0 + + sage: c == -c + False + + Saddle connections in a surface with self-glued edges:: + + sage: from flatsurf import MutableOrientedSimilaritySurface, Polygon + sage: S = MutableOrientedSimilaritySurface(QQ) + sage: S.add_polygon(Polygon(vertices=((0, 0), (1, 0), (1, 1)))) + 0 + sage: S.glue((0, 0), (0, 0)) + sage: S.glue((0, 1), (0, 1)) + sage: S.glue((0, 2), (0, 2)) + + sage: c = SaddleConnection.from_half_edge(S, 0, 0); c + Saddle connection (1, 0) from vertex 0 of polygon 0 to vertex 0 of polygon 0 + sage: -c + Saddle connection (1, 0) from vertex 0 of polygon 0 to vertex 0 of polygon 0 + + sage: c == -c + True + + """ + polygon = surface.polygon(label) + holonomy = polygon.edge(edge) + + return SaddleConnection( + surface=surface, + start=(label, edge), + end=(label, (edge + 1) % len(polygon.vertices())), + holonomy=holonomy, + end_holonomy=-holonomy, + check=False, + ) + + @classmethod + def from_vertex(cls, surface, label, vertex, direction, limit=None): + r""" + Return the saddle connection emanating from the ``vertex`` of the + polygon with ``label`` following the ray ``direction``. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, SaddleConnection + sage: S = translation_surfaces.square_torus() + + sage: SaddleConnection.from_vertex(S, 0, 0, (1, 0)) + Saddle connection (1, 0) from vertex 0 of polygon 0 to vertex 2 of polygon 0 + sage: SaddleConnection.from_vertex(S, 0, 0, (2, 1)) + Saddle connection (2, 1) from vertex 0 of polygon 0 to vertex 2 of polygon 0 + sage: SaddleConnection.from_vertex(S, 0, 0, (0, 1)) + Saddle connection (0, 1) from vertex 1 of polygon 0 to vertex 3 of polygon 0 + + TESTS:: + + sage: from flatsurf.geometry.saddle_connection import SaddleConnection + sage: from flatsurf import translation_surfaces + + sage: S = translation_surfaces.cathedral(1, 2) + sage: SaddleConnection.from_vertex(S, 1, 8, (0, -1)) + Saddle connection (0, -2) from vertex 8 of polygon 1 to vertex 5 of polygon 1 + + """ + from flatsurf.geometry.ray import Rays + + R = Rays(surface.base_ring()) + direction = R(direction) + + tangent_vector = surface.tangent_vector( + label, surface.polygon(label).vertex(vertex), direction.vector() + ) + trajectory = tangent_vector.straight_line_trajectory() + + if limit is None: + from sage.all import infinity + + limit = infinity + + trajectory.flow(steps=limit) + + if not trajectory.is_saddle_connection(): + raise ValueError( + "no saddle connection in this direction within the specified limit" + ) + + end_tangent_vector = trajectory.terminal_tangent_vector() + + assert ( + not trajectory.segments()[0].is_edge() or len(trajectory.segments()) == 1 + ), "when the saddle connection is an edge it must not consist of more than that edge" + + if trajectory.segments()[0].is_edge(): + # When the saddle connection is just an edge, the similarity + # computation below can be wrong when that edge is glued to the + # same polygon. Namely, the similarity is missing the final factor + # that comes from that gluing. E.g., in the Cathedral test case + # above, the vertical saddle connection connecting the vertices of + # polygon 1 at (1, 3) and (2, 1) by going in direction (0, -1) is + # misinterpreted as the connection going in direction (1, -2). + return SaddleConnection.from_half_edge( + surface, label, trajectory.segments()[0].edge() + ) + + from flatsurf.geometry.similarity import SimilarityGroup + + one = SimilarityGroup(surface.base_ring()).one() + segments = list(trajectory.segments())[1:] + + from sage.all import prod + + similarity = prod( + [ + surface.edge_transformation( + segment.start().polygon_label(), + segment.start().position().get_edge(), + ) + for segment in segments + ], + one, + ) + + holonomy = ( + similarity(trajectory.segments()[-1].end().point()) + - trajectory.initial_tangent_vector().point() + ) + end_holonomy = (~similarity.derivative()) * holonomy + + return SaddleConnection( + surface=surface, + start=(label, vertex), + holonomy=holonomy, + end=(end_tangent_vector.polygon_label(), end_tangent_vector.vertex()), + end_holonomy=end_holonomy, + ) + + @cached_method + def direction(self): + r""" + Return a ray parallel to the :meth:`holonomy`. + """ + from flatsurf.geometry.ray import Rays + + return Rays(self._holonomy.base_ring())(self._holonomy) + + @cached_method + def end_direction(self): + r""" + Return a ray parallel to the :meth:`end_holonomy`. + """ + from flatsurf.geometry.ray import Rays + + return Rays(self._holonomy.base_ring())(self._end_holonomy) + + def start_data(self): + r""" + Return the pair (l, v) representing the label and vertex of the corresponding polygon + where the saddle connection originates. + """ + import warnings + + warnings.warn( + "start_data() has been deprecated and will be removed from a future version of sage-flatsurf; use start() instead." + ) + + return self.start() + + def start(self): + # TODO: Document that surface()(*start()) produces the actual vertex. + return self._start + + def end_data(self): + r""" + Return the pair (l, v) representing the label and vertex of the corresponding polygon + where the saddle connection terminates. + """ + import warnings + + warnings.warn( + "end_data() has been deprecated and will be removed from a future version of sage-flatsurf; use end() instead." + ) + + return self.end() + + def end(self): + # TODO: Document that surface()(*end()) produces the actual vertex. + return self._end + + def holonomy(self): + r""" + Return the holonomy vector of the saddle connection (measured from the start). + + In a SimilaritySurface this notion corresponds to developing the saddle connection into the plane + using the initial chart coming from the initial polygon. + """ + return self._holonomy + + def length(self): + r""" + In a cone surface, return the length of this saddle connection. Since + this may not lie in the field of definition of the surface, it is + returned as an element of the Algebraic Real Field. + """ + from flatsurf.geometry.categories import ConeSurfaces + + if self._surface not in ConeSurfaces(): + raise NotImplementedError( + "length of a saddle connection only makes sense for cone surfaces" + ) + + from sage.all import vector, AA + + return vector(AA, self._holonomy).norm() + + def length_squared(self): + holonomy = self.holonomy() + return holonomy[0] ** 2 + holonomy[1] ** 2 + + def end_holonomy(self): + r""" + Return the holonomy vector of the saddle connection (measured from the end). + + In a SimilaritySurface this notion corresponds to developing the saddle connection into the plane + using the initial chart coming from the initial polygon. + """ + return self._end_holonomy + + def start_tangent_vector(self): + r""" + Return a tangent vector to the saddle connection based at its + :meth:`start`. + """ + return self._surface.tangent_vector( + self._start[0], + self._surface.polygon(self._start[0]).vertex(self._start[1]), + self.direction().vector(), + ) + + @cached_method(key=lambda self, limit, cache: None) + def trajectory(self, limit=1000, cache=None): + r""" + Return a straight line trajectory representing this saddle connection. + Fails if the trajectory passes through more than limit polygons. + """ + if cache is not None: + import warnings + + warnings.warn( + "The cache keyword argument of trajectory() is ignored. Trajectories are always cached." + ) + + v = self.start_tangent_vector() + traj = v.straight_line_trajectory() + traj.flow(limit) + if not traj.is_saddle_connection(): + raise ValueError( + "Did not obtain saddle connection by flowing forward. Limit=" + + str(limit) + ) + + return traj + + def plot(self, *args, **options): + r""" + Equivalent to ``.trajectory().plot(*args, **options)`` + """ + return self.trajectory().plot(*args, **options) + + def end_tangent_vector(self): + r""" + Return a tangent vector to the saddle connection based at its + :meth:`end`. + """ + return self._surface.tangent_vector( + self._end[0], + self._surface.polygon(self._end[0]).vertex(self._end[1]), + self._end_direction.vector(), + ) + + def invert(self): + r""" + Return this saddle connection but with opposite orientation. + """ + return SaddleConnection( + self._surface, + self._end, + self._end_direction, + self._start, + self._direction, + self._end_holonomy, + self._holonomy, + check=False, + ) + + def intersections(self, traj, count_singularities=False, include_segments=False): + r""" + See documentation of :meth:`~.straight_line_trajectory.AbstractStraightLineTrajectory.intersections` + """ + return self.trajectory().intersections( + traj, count_singularities, include_segments + ) + + def intersects(self, traj, count_singularities=False): + r""" + See documentation of :meth:`~.straight_line_trajectory.AbstractStraightLineTrajectory.intersects` + """ + return self.trajectory().intersects( + traj, count_singularities=count_singularities + ) + + def __eq__(self, other): + r""" + Return whether this saddle connection is indistinguishable from + ``other``. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.square_torus() + sage: connections = S.saddle_connections(13) # random output due to deprecation warning from cppyy + + sage: connections[0] == connections[0] + True + sage: connections[0] == connections[1] + False + + + TESTS: + + Verify that saddle connections can be compared to arbitrary objects (so + they can be put into dicts with other objects):: + + sage: connections[0] == 42 + False + + :: + + sage: len(connections) + 32 + sage: len(set(connections)) + 32 + + """ + if self is other: + return True + + if not isinstance(other, SaddleConnection): + return False + + if self._surface != other._surface: + return False + + if self._start != other._start: + return False + + if self._holonomy != other._holonomy: + return False + + return True + + def __hash__(self): + return hash((self._start, self._holonomy)) + + def _test_geometry(self, **options): + # Test that this saddle connection actually exists on the surface. + SaddleConnection( + self._surface, + self._start, + self._direction, + self._end, + self._end_direction, + self._holonomy, + self._end_holonomy, + check=True, + ) + + def __repr__(self): + return f"Saddle connection {self.holonomy()} from vertex {self.start()[1]} of polygon {self.start()[0]} to vertex {self.end()[1]} of polygon {self.end()[0]}" + + def _test_inverse(self, **options): + # Test that inverting works properly. + SaddleConnection( + self._surface, + self._end, + self._end_direction, + self._start, + self._direction, + self._end_holonomy, + self._holonomy, + check=True, + ) + + def is_closed(self): + return self.surface()(*self.start()) == self.surface()(*self.end()) + + def homology(self): + r""" + Return a homology class (generated by edges) that is homologous to this saddle connection. + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.square_torus() + sage: connections = list(S.saddle_connections(13)) + sage: connections[-1].homology() + -2*B[(0, 0)] - 3*B[(0, 1)] + + :: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.cathedral(1, 2) + sage: connections = [connection for connection in S.saddle_connections(13) if connection.is_closed()] + sage: connections[-1].homology() + -B[(1, 1)] - 2*B[(1, 2)] - B[(1, 6)] - B[(3, 1)] + B[(3, 7)] + + """ + to_pyflatsurf = self._surface.pyflatsurf() + + connection = to_pyflatsurf(self) + + # TODO: We should probably make pyflatsurf chains and saddle + # connections proper objects in sage-flatsurf so that they can be + # mapped through to_pyflatsurf.section() + chain = connection._connection.chain() + + chain = { + e.positive().id(): chain[e] + for e in to_pyflatsurf.codomain()._flat_triangulation.edges() + } + + from sage.all import ZZ + + chain = { + ( + [label for label in to_pyflatsurf.codomain().labels() if e in label][0], + [label for label in to_pyflatsurf.codomain().labels() if e in label][ + 0 + ].index(e), + ): ZZ(multiplicity) + for (e, multiplicity) in chain.items() + } + + from flatsurf.geometry.homology import SimplicialHomology + + homology = SimplicialHomology(to_pyflatsurf.codomain()) + + chain = sum(multiplicity * homology(e) for (e, multiplicity) in chain.items()) + + return to_pyflatsurf.section()(chain) diff --git a/flatsurf/geometry/similarity.py b/flatsurf/geometry/similarity.py index b4ff0987a..c1c07484d 100644 --- a/flatsurf/geometry/similarity.py +++ b/flatsurf/geometry/similarity.py @@ -250,7 +250,7 @@ def __hash__(self): + 67 * hash(self._sign) ) - def __call__(self, w, ring=None): + def __call__(self, w, ring=None, V=None): r""" Return the image of ``w`` under the similarity. Here ``w`` may be a convex polygon or a vector (or something that can be indexed in the @@ -280,58 +280,42 @@ def __call__(self, w, ring=None): Category of convex simple euclidean polygons over Algebraic Real Field """ - if ring is not None and ring not in Rings(): - raise TypeError("ring must be a ring") + if ring is not None: + if ring not in Rings(): + raise TypeError("ring must be a ring") + if V is not None: + if V.base_ring() is not ring: + raise ValueError("ring and base ring of V must be identical") + else: + V = ring**2 from flatsurf.geometry.polygon import EuclideanPolygon - if isinstance(w, EuclideanPolygon) and w.is_convex(): - if ring is None: + if isinstance(w, EuclideanPolygon): + if V is None: ring = self.parent().base_ring() + V = ring**2 + + if not self._sign.is_one(): + raise TypeError("similarity must be orientation preserving.") from flatsurf import Polygon - try: - return Polygon(vertices=[self(v) for v in w.vertices()], base_ring=ring) - except ValueError: - if not self._sign.is_one(): - raise ValueError("Similarity must be orientation preserving.") - - # Not sure why this would happen: - raise - - if ring is None: - if self._sign.is_one(): - return vector( - [ - self._a * w[0] - self._b * w[1] + self._s, - self._b * w[0] + self._a * w[1] + self._t, - ] - ) - else: - return vector( - [ - self._a * w[0] + self._b * w[1] + self._s, - self._b * w[0] - self._a * w[1] + self._t, - ] - ) - else: - if self._sign.is_one(): - return vector( - ring, - [ - self._a * w[0] - self._b * w[1] + self._s, - self._b * w[0] + self._a * w[1] + self._t, - ], - ) - else: - return vector( - ring, - [ - self._a * w[0] + self._b * w[1] + self._s, - self._b * w[0] - self._a * w[1] + self._t, - ], - ) + return Polygon( + vertices=[self(v, V=V) for v in w.vertices()], + base_ring=ring, + check=False, + ) + + v = ( + self._a * w[0] - self._sign * self._b * w[1] + self._s, + self._b * w[0] + self._sign * self._a * w[1] + self._t, + ) + + if V is None: + return vector(v) + + return V(v) def _repr_(self): r""" @@ -372,7 +356,7 @@ def __eq__(self, other): """ if other is None: return False - if type(other) == int: + if type(other) is int: return False if self.parent() != other.parent(): return False @@ -473,8 +457,15 @@ def _vector_space(self): return VectorSpace(self._ring, 2) + def translation(self, x, y): + return self(x, y) + def _element_constructor_(self, *args, **kwds): r""" + .. TODO:: + + This should also support 2×2 and 3×3 matrix inputs. + TESTS:: sage: from flatsurf.geometry.similarity import SimilarityGroup @@ -498,8 +489,6 @@ def _element_constructor_(self, *args, **kwds): b = s = t = self._ring.zero() sign = ZZ_1 - # TODO: 2x2 and 3x3 matrix input - if isinstance(x, (tuple, list)): if len(x) == 2: s, t = map(self._ring, x) @@ -617,6 +606,7 @@ def base_ring(self): return self._ring +# TODO: Make this a static method of SimilarityGroup def similarity_from_vectors(u, v, matrix_space=None): r""" Return the unique similarity matrix that maps ``u`` to ``v``. diff --git a/flatsurf/geometry/similarity_surface_generators.py b/flatsurf/geometry/similarity_surface_generators.py index 45870919a..0c016797f 100644 --- a/flatsurf/geometry/similarity_surface_generators.py +++ b/flatsurf/geometry/similarity_surface_generators.py @@ -712,7 +712,7 @@ def self_glued_polygon(P): return s @staticmethod - def billiard(P, rational=None): + def billiard(P): r""" Return the ConeSurface associated to the billiard in the polygon ``P``. @@ -720,18 +720,12 @@ def billiard(P, rational=None): - ``P`` -- a polygon - - ``rational`` -- a boolean or ``None`` (default: ``None``) -- whether - to assume that all the angles of ``P`` are a rational multiple of π. - EXAMPLES:: sage: from flatsurf import Polygon, similarity_surfaces sage: P = Polygon(vertices=[(0,0), (1,0), (0,1)]) - sage: Q = similarity_surfaces.billiard(P, rational=True) - doctest:warning - ... - UserWarning: the rational keyword argument of billiard() has been deprecated and will be removed in a future version of sage-flatsurf; rationality checking is now faster so this is not needed anymore + sage: Q = similarity_surfaces.billiard(P) sage: Q Genus 0 Rational Cone Surface built from 2 isosceles triangles sage: from flatsurf.geometry.categories import ConeSurfaces @@ -757,13 +751,12 @@ def billiard(P, rational=None): A quadrilateral from Eskin-McMullen-Mukamel-Wright:: - sage: from flatsurf import Polygon sage: P = Polygon(angles=(1, 1, 1, 7)) sage: S = similarity_surfaces.billiard(P) sage: TestSuite(S).run() sage: S = S.minimal_cover(cover_type="translation") sage: TestSuite(S).run() - sage: S = S.erase_marked_points() # optional: pyflatsurf + sage: S = S.erase_marked_points().codomain() # optional: pyflatsurf sage: TestSuite(S).run() sage: S, _ = S.normalized_coordinates() sage: TestSuite(S).run() @@ -785,144 +778,7 @@ def billiard(P, rational=None): True """ - if not isinstance(P, EuclideanPolygon): - raise TypeError("invalid input") - - if rational is not None: - import warnings - - warnings.warn( - "the rational keyword argument of billiard() has been deprecated and will be removed in a future version of sage-flatsurf; rationality checking is now faster so this is not needed anymore" - ) - - from flatsurf.geometry.categories import ConeSurfaces - - category = ConeSurfaces() - if P.is_rational(): - category = category.Rational() - - V = P.base_ring() ** 2 - - if not P.is_convex(): - # triangulate non-convex ones - base_ring = P.base_ring() - comb_edges = P.triangulation() - vertices = P.vertices() - comb_triangles = SimilaritySurfaceGenerators._billiard_build_faces( - len(vertices), comb_edges - ) - triangles = [] - internal_edges = [] # list (p1, e1, p2, e2) - external_edges = [] # list (p1, e1) - edge_to_lab = {} - for num, (i, j, k) in enumerate(comb_triangles): - triangles.append( - Polygon( - vertices=[vertices[i], vertices[j], vertices[k]], - base_ring=base_ring, - ) - ) - edge_to_lab[(i, j)] = (num, 0) - edge_to_lab[(j, k)] = (num, 1) - edge_to_lab[(k, i)] = (num, 2) - for num, (i, j, k) in enumerate(comb_triangles): - if (j, i) in edge_to_lab: - num2, e2 = edge_to_lab[j, i] - internal_edges.append((num, 0, num2, e2)) - else: - external_edges.append((num, 0)) - if (k, j) in edge_to_lab: - num2, e2 = edge_to_lab[k, j] - internal_edges.append((num, 1, num2, e2)) - else: - external_edges.append((num, 1)) - if (i, k) in edge_to_lab: - num2, e2 = edge_to_lab[i, k] - internal_edges.append((num, 2, num2, e2)) - else: - external_edges.append((num, 1)) - P = triangles - else: - internal_edges = [] - external_edges = [(0, i) for i in range(len(P.vertices()))] - base_ring = P.base_ring() - P = [P] - - surface = MutableOrientedSimilaritySurface(base_ring, category=category) - - m = len(P) - - for p in P: - surface.add_polygon(p) - for p in P: - surface.add_polygon( - Polygon(edges=[V((-x, y)) for x, y in reversed(p.edges())]) - ) - for p1, e1, p2, e2 in internal_edges: - surface.glue((p1, e1), (p2, e2)) - ne1 = len(surface.polygon(p1).vertices()) - ne2 = len(surface.polygon(p2).vertices()) - surface.glue((m + p1, ne1 - e1 - 1), (m + p2, ne2 - e2 - 1)) - for p, e in external_edges: - ne = len(surface.polygon(p).vertices()) - surface.glue((p, e), (m + p, ne - e - 1)) - - surface.set_immutable() - - return surface - - @staticmethod - def _billiard_build_faces(n, edges): - r""" - Given a combinatorial list of pairs ``edges`` forming a cell-decomposition - of a polygon (with vertices labeled from ``0`` to ``n-1``) return the list - of cells. - - This is a helper method for :meth:`billiard`. - - EXAMPLES:: - - sage: from flatsurf.geometry.similarity_surface_generators import SimilaritySurfaceGenerators - sage: SimilaritySurfaceGenerators._billiard_build_faces(4, [(0,2)]) - [[0, 1, 2], [2, 3, 0]] - sage: SimilaritySurfaceGenerators._billiard_build_faces(4, [(1,3)]) - [[1, 2, 3], [3, 0, 1]] - sage: SimilaritySurfaceGenerators._billiard_build_faces(5, [(0,2), (0,3)]) - [[0, 1, 2], [3, 4, 0], [0, 2, 3]] - sage: SimilaritySurfaceGenerators._billiard_build_faces(5, [(0,2)]) - [[0, 1, 2], [2, 3, 4, 0]] - sage: SimilaritySurfaceGenerators._billiard_build_faces(5, [(1,4)]) - [[1, 2, 3, 4], [4, 0, 1]] - sage: SimilaritySurfaceGenerators._billiard_build_faces(5, [(1,3),(3,0)]) - [[1, 2, 3], [3, 4, 0], [0, 1, 3]] - """ - polygons = [list(range(n))] - for u, v in edges: - j = None - for i, p in enumerate(polygons): - if u in p and v in p: - if j is not None: - raise RuntimeError - j = i - if j is None: - raise RuntimeError - p = polygons[j] - i0 = p.index(u) - i1 = p.index(v) - if i0 > i1: - i0, i1 = i1, i0 - polygons[j] = p[i0 : i1 + 1] - polygons.append(p[i1:] + p[: i0 + 1]) - return polygons - - @staticmethod - def polygon_double(P): - r""" - Return the ConeSurface associated to the billiard in the polygon ``P``. - Differs from billiard(P) only in the graphical display. Here, we display - the polygons separately. - """ - from sage.matrix.constructor import matrix + from sage.all import matrix n = len(P.vertices()) r = matrix(2, [-1, 0, 0, 1]) @@ -936,6 +792,16 @@ def polygon_double(P): surface.set_immutable() return surface + @staticmethod + def polygon_double(P): + import warnings + + warnings.warn( + "polygon_double() has been deprecated and will be removed from a future version of sage-flatsurf. Use billiard() instead." + ) + + return SimilaritySurfaceGenerators.billiard(P) + @staticmethod def right_angle_triangle(w, h): r""" @@ -1084,13 +950,16 @@ def genus_two_square(a, b, c, d): class HalfTranslationSurfaceGenerators: - # TODO: ideally, we should be able to construct a non-convex polygon and make the construction - # below as a special case of billiard unfolding. @staticmethod def step_billiard(w, h): r""" Return a (finite) step billiard associated to the given widths ``w`` and heights ``h``. + .. TODO:: + + Ideally, we should be able to construct a non-convex polygon and + make this construction a special case of billiard unfolding. + EXAMPLES:: sage: from flatsurf import half_translation_surfaces @@ -1955,7 +1824,7 @@ def arnoux_yoccoz(genus): sage: TestSuite(s).run() sage: s.is_delaunay_decomposed() True - sage: s = s.canonicalize() + sage: s = s.canonicalize().codomain() sage: s Translation Surface in H_4(3^2) built from 16 triangles sage: field=s.base_ring() @@ -1963,7 +1832,7 @@ def arnoux_yoccoz(genus): sage: from sage.matrix.constructor import Matrix sage: m = Matrix([[a,0],[0,~a]]) sage: ss = m*s - sage: ss = ss.canonicalize() + sage: ss = ss.canonicalize().codomain() sage: s.cmp(ss) == 0 True diff --git a/flatsurf/geometry/straight_line_trajectory.py b/flatsurf/geometry/straight_line_trajectory.py index bee1d4d55..23a9aaf90 100644 --- a/flatsurf/geometry/straight_line_trajectory.py +++ b/flatsurf/geometry/straight_line_trajectory.py @@ -25,21 +25,6 @@ # You should have received a copy of the GNU General Public License # along with sage-flatsurf. If not, see . # ********************************************************************* -from collections import deque - -from flatsurf.geometry.euclidean import line_intersection -from flatsurf.geometry.surface_objects import SaddleConnection - -# Vincent question: -# using deque has the disadvantage of losing the initial points -# ideally doig -# my_line[i] -# we should always access to the same element - -# I wanted to be able to flow backward thus inserting at the beginning of a list. -# Perhaps it would be better to model this on a deque-like class that is indexed by -# all integers rather than just the non-negative ones? Do you know of such -# a class? Alternately, we could store an offset. def get_linearity_coeff(u, v): @@ -481,6 +466,8 @@ def intersections(self, traj, count_singularities=False, include_segments=False) Point (0, 1/2) of polygon 0 2 2 """ + from flatsurf.geometry.saddle_connection import SaddleConnection + # Partition the segments making up the trajectories by label. if isinstance(traj, SaddleConnection): traj = traj.trajectory() @@ -506,11 +493,17 @@ def intersections(self, traj, count_singularities=False, include_segments=False) seg_list_2 = lab_to_seg2[label] for seg1 in seg_list_1: for seg2 in seg_list_2: + from flatsurf.geometry.euclidean import line_intersection + x = line_intersection( - seg1.start().point(), - seg1.start().point() + seg1.start().vector(), - seg2.start().point(), - seg2.start().point() + seg2.start().vector(), + ( + seg1.start().point(), + seg1.start().point() + seg1.start().vector(), + ), + ( + seg2.start().point(), + seg2.start().point() + seg2.start().vector(), + ), ) if x is not None: pos = ( @@ -561,6 +554,8 @@ class StraightLineTrajectory(AbstractStraightLineTrajectory): """ def __init__(self, tangent_vector): + from collections import deque + self._segments = deque() seg = SegmentInPolygon(tangent_vector) self._segments.append(seg) @@ -756,6 +751,8 @@ def __init__(self, tangent_vector): ) x *= T.length_bot(i) + from collections import deque + self._points = deque() # we store triples (lab, edge, rel_pos) self._points.append((p, i, x)) diff --git a/flatsurf/geometry/surface.py b/flatsurf/geometry/surface.py index 0b65cf223..7e23d9f81 100644 --- a/flatsurf/geometry/surface.py +++ b/flatsurf/geometry/surface.py @@ -436,7 +436,12 @@ def set_immutable(self): 'area', 'canonicalize', 'canonicalize_mapping', + 'cluster_points', + 'distance_matrix_points', + 'distance_matrix_vertices', 'erase_marked_points', + 'flow_decomposition', + 'flow_decompositions', 'holonomy_field', 'is_veering_triangulated', 'j_invariant', @@ -445,6 +450,7 @@ def set_immutable(self): 'normalized_coordinates', 'pyflatsurf', 'rel_deformation', + 'singularities', 'stratum', 'veech_group', 'veering_triangulation'} @@ -488,6 +494,9 @@ def is_mutable(self): """ return self._mutable + def __hash__(self): + return super().__hash__() + def __eq__(self, other): r""" Return whether this surface is indistinguishable from ``other``. @@ -1103,13 +1112,14 @@ def to_new(lbl, edge): def standardize_polygons(self, in_place=False): r""" - Replace each polygon with a new polygon which differs by - translation and reindexing. The new polygon will have the property - that vertex zero is the origin, and all vertices lie either in the - upper half plane, or on the x-axis with non-negative x-coordinate. + Return a morphism to a surface with each polygon replaced with a new + polygon which differs by translation and reindexing. The new polygon + will have the property that vertex zero is the origin, and each vertex + lies in the upper half plane or on the x-axis with non-negative + x-coordinate. - This is done to the current surface if in_place=True. A mutable - copy is created and returned if in_place=False (as default). + This is done to the current surface if in_place=True, otherwise an + immutable copy is created and returned. This overrides :meth:`flatsurf.geometry.categories.similarity_surfaces.SimilaritySurfaces.FiniteType.Oriented.ParentMethods.standardize_polygons` @@ -1127,32 +1137,27 @@ def standardize_polygons(self, in_place=False): sage: s.set_root(0) sage: s.set_immutable() - sage: s.standardize_polygons().polygon(0) + sage: s.standardize_polygons().codomain().polygon(0) Polygon(vertices=[(0, 0), (1, 0), (1, 1), (0, 1)]) """ if not in_place: S = MutableOrientedSimilaritySurface.from_surface(self) - S.standardize_polygons(in_place=True) - return S - - cv = {} # dictionary for non-zero canonical vertices - for label, polygon in zip(self.labels(), self.polygons()): - best = 0 - best_pt = polygon.vertex(best) - for v in range(1, len(polygon.vertices())): - pt = polygon.vertex(v) - if (pt[1] < best_pt[1]) or (pt[1] == best_pt[1] and pt[0] < best_pt[0]): - best = v - best_pt = pt - # We replace the polygon if the best vertex is not the zero vertex, or - # if the coordinates of the best vertex differs from the origin. - if not (best == 0 and best_pt.is_zero()): - cv[label] = best - for label, v in cv.items(): - self.set_vertex_zero(label, v, in_place=True) + morphism = S.standardize_polygons(in_place=True) + S.set_immutable() + return morphism.change(domain=self, codomain=S) + + vertex_zero = {} + for label in self.labels(): + vertices = self.polygon(label).vertices() + vertex_zero[label] = min( + range(len(vertices)), key=lambda v: (vertices[v][1], vertices[v][0]) + ) + self.set_vertex_zero(label, vertex_zero[label], in_place=True) - return self + from flatsurf.geometry.morphism import PolygonStandardizationMorphism + + return PolygonStandardizationMorphism._create_morphism(None, self, vertex_zero) class MutableOrientedSimilaritySurface( @@ -1625,6 +1630,67 @@ def replace_polygon(self, label, polygon): self._polygons[label] = polygon + def apply_matrix(self, m, in_place=None): + r""" + Apply the 2×2 matrix ``m`` to the polygons of this surface. + + INPUT: + + - ``m`` -- a 2×2 matrix + + - ``in_place`` -- a boolean (default: ``True``); whether to modify + this surface itself or return a modified copy of this surface + instead. + + EXAMPLES:: + + sage: from flatsurf import Polygon, MutableOrientedSimilaritySurface + sage: S = MutableOrientedSimilaritySurface(QQ) + sage: S.add_polygon(Polygon(vertices=[(0, 0), (1, 0), (1, 1), (0, 1)])) + 0 + sage: S.glue((0, 0), (0, 2)) + sage: S.glue((0, 1), (0, 3)) + + sage: deformation = S.apply_matrix(matrix([[1, 2], [3, 4]]), in_place=True) + Traceback (most recent call last): + ... + NotImplementedError: apply_matrix(in_place=True) not supported with negative determinant yet + + sage: deformation = S.apply_matrix(matrix([[1, 2], [3, 4]]), in_place=False) + sage: S.polygon(0) + Polygon(vertices=[(0, 0), (1, 0), (1, 1), (0, 1)]) + + sage: deformation.codomain().polygon(0) + Polygon(vertices=[(0, 0), (2, 4), (3, 7), (1, 3)]) + + """ + if in_place is None: + import warnings + + warnings.warn( + "The defaults for apply_matrix() are going to change in a future version of sage-flatsurf; previously, apply_matrix() was performed in_place=True. In a future version of sage-flatsurf the default is going to change to in_place=False. In the meantime, please pass in_place=True/False explicitly." + ) + + in_place = True + + if not in_place: + return super().apply_matrix(m, in_place=in_place) + + if not m.det(): + raise ValueError("matrix must not be degenerate") + + if m.det() < 0: + raise NotImplementedError( + "apply_matrix(in_place=True) not supported with negative determinant yet" + ) + + for label in self.labels(): + self.replace_polygon(label, m * self.polygon(label)) + + from flatsurf.geometry.morphism import GL2RMorphism + + return GL2RMorphism._create_morphism(None, self, m) + def opposite_edge(self, label, edge=None): r""" Return the edge that ``edge`` of ``label`` is glued to or ``None`` if this edge is unglued. @@ -1713,14 +1779,6 @@ def set_vertex_zero(self, label, v, in_place=False): return self def relabel(self, relabeling=None, in_place=False): - r""" - Overrides - :meth:`flatsurf.geometry.categories.similarity_surfaces.SimilaritySurfaces.Oriented.ParentMethods.relabel` - to allow relabeling in-place. - """ - if not in_place: - return super().relabel(relabeling=relabeling, in_place=in_place) - if relabeling is None: relabeling = {label: l for (l, label) in enumerate(self.labels())} @@ -2059,6 +2117,7 @@ def _triangulate(surface, label): return triangulation, edge_to_edge + # TODO: Deprecate? def delaunay_single_flip(self): r""" Perform a single in place flip of a triangulated mutable surface @@ -2167,6 +2226,9 @@ def cmp(self, s2, limit=None): count += 1 return 0 + def __hash__(self): + return super().__hash__() + def __eq__(self, other): r""" Return whether this surface is indistinguishable from ``other``. @@ -2437,6 +2499,10 @@ def __getitem__(self, root): (0, 1) """ + # TODO: This is very inefficient (and wont work on infinite surfaces?) But otherwise, any label is in surface.roots(). + if root not in list(self): + raise KeyError + return self._surface.component(root) def __iter__(self): @@ -2910,6 +2976,13 @@ class LabelsFromView(Labels, LabeledView): """ + def __eq__(self, other): + if isinstance(other, LabelsFromView): + if self._view == other._view: + return True + + return super().__eq__(other) + class Polygons(LabeledCollection): r""" diff --git a/flatsurf/geometry/surface_legacy.py b/flatsurf/geometry/surface_legacy.py index 56ebd235f..c9611e418 100644 --- a/flatsurf/geometry/surface_legacy.py +++ b/flatsurf/geometry/surface_legacy.py @@ -939,7 +939,7 @@ class Surface_list(Surface): ... UserWarning: copy() has been deprecated and will be removed from a future version of sage-flatsurf; for surfaces of finite type use MutableOrientedSimilaritySurface.from_surface() instead. Use relabel({old: new for (new, old) in enumerate(surface.labels())}) for integer labels. However, there is no immediate replacement for lazy copying of infinite surfaces. - Have a look at the implementation of flatsurf.geometry.delaunay.LazyMutableSurface and adapt it to your needs. + Have a look at the implementation of flatsurf.geometry.lazy.LazyMutableSurface and adapt it to your needs. sage: # Explore the surface a bit sage: ts.polygon(0) Polygon(vertices=[(0, 0), (4, 0), (0, 3)]) @@ -1101,7 +1101,7 @@ def _validate_init_parameters(cls, base_ring, surface, copy, mutable, finite): if surface is None: if copy is not None: - raise ValueError("Cannot copy when surface was provided.") + raise ValueError("Cannot copy when no surface was provided.") if mutable is None: mutable = True diff --git a/flatsurf/geometry/surface_objects.py b/flatsurf/geometry/surface_objects.py index 581e5d6b0..6d74d688d 100644 --- a/flatsurf/geometry/surface_objects.py +++ b/flatsurf/geometry/surface_objects.py @@ -74,7 +74,11 @@ def Singularity(similarity_surface, label, v, limit=None): ) -class SurfacePoint(Element): +class SurfacePoint_base(Element): + pass + + +class SurfacePoint(SurfacePoint_base): r""" A point on ``surface``. @@ -126,6 +130,15 @@ class SurfacePoint(Element): TESTS: + Test that points can be created on disconnected surfaces:: + + sage: from flatsurf import MutableOrientedSimilaritySurface, polygons + sage: S = MutableOrientedSimilaritySurface(QQ) + sage: S.add_polygon(polygons.square()) + 0 + sage: S(0, 0) + Vertex 0 of polygon 0 + Verify that #275 has been resolved, i.e., points on the boundary can be created:: @@ -294,6 +307,11 @@ def is_vertex(self): position = self.surface().polygon(label).get_point_position(coordinates) return position.is_vertex() + def is_in_edge_interior(self): + label, coordinates = self.representative() + position = self.surface().polygon(label).get_point_position(coordinates) + return position.is_in_edge_interior() + def one_vertex(self): r""" Return a pair (l, v) from the equivalence class of this singularity. @@ -565,6 +583,7 @@ def __repr__(self): Point (1/2, 1/2) of polygon 0 """ + # TODO: Why is this a dunder method? def render(label, coordinates): if self.is_vertex(): @@ -612,7 +631,7 @@ def __eq__(self, other): return True if not isinstance(other, SurfacePoint): return False - if not self._surface == other._surface: + if self._surface != other._surface: return False return self._representatives == other._representatives @@ -674,476 +693,6 @@ def __ne__(self, other): return not (self == other) -class SaddleConnection(SageObject): - r""" - Represents a saddle connection on a SimilaritySurface. - """ - - def __init__( - self, - surface, - start_data, - direction, - end_data=None, - end_direction=None, - holonomy=None, - end_holonomy=None, - check=True, - limit=1000, - ): - r""" - Construct a saddle connection on a SimilaritySurface. - - The only necessary parameters are the surface, start_data, and direction - (to start). If there is missing data that can not be inferred from the surface - type, then a straight-line trajectory will be computed to confirm that this is - indeed a saddle connection. The trajectory will pass through at most limit - polygons before we give up. - - Details of the parameters are provided below. - - Parameters - ---------- - surface : a SimilaritySurface - which will contain the saddle connection being constructed. - start_data : a pair - consisting of the label of the polygon where the saddle connection starts - and the starting vertex. - direction : 2-dimensional vector with entries in the base_ring of the surface - representing the direction the saddle connection is moving in (in the - coordinates of the initial polygon). - end_data : a pair - consisting of the label of the polygon where the saddle connection terminates - and the terminating vertex. - end_direction : 2-dimensional vector with entries in the base_ring of the surface - representing the direction to move backward from the end point (in the - coordinates of the terminal polygon). If the surface is a DilationSurface - or better this will be the negation of the direction vector. If the surface - is a HalfDilation surface or better, then this will be either the direction - vector or its negation. In either case the value can be inferred from the - end_data. - holonomy : 2-dimensional vector with entries in the base_ring of the surface - the holonomy of the saddle connection measured from the start. To compute this - you develop the saddle connection into the plane starting from the starting - polygon. - end_holonomy : 2-dimensional vector with entries in the base_ring of the surface - the holonomy of the saddle connection measured from the end (with the opposite - orientation). To compute this you develop the saddle connection into the plane - starting from the terminating polygon. For a translation surface, this will be - the negation of holonomy, and for a HalfTranslation surface it will be either - equal to holonomy or equal to its negation. In both these cases the end_holonomy - can be inferred and does not need to be passed to the constructor. - check : boolean - If all data above is provided or can be inferred, then when check=False this - geometric data is not verified. With check=True the data is always verified - by straight-line flow. Erroroneous data will result in a ValueError being thrown. - Defaults to true. - limit : - The combinatorial limit (in terms of number of polygons crossed) to flow forward - to check the saddle connection geometry. - """ - from flatsurf.geometry.categories import SimilaritySurfaces - - if surface not in SimilaritySurfaces(): - raise TypeError - - self._surface = surface - - # Sanitize the direction vector: - V = self._surface.base_ring().fraction_field() ** 2 - self._direction = V(direction) - if self._direction == V.zero(): - raise ValueError("Direction must be nonzero.") - # To canonicalize the direction vector we ensure its endpoint lies in the boundary of the unit square. - xabs = self._direction[0].abs() - yabs = self._direction[1].abs() - if xabs > yabs: - self._direction = self._direction / xabs - else: - self._direction = self._direction / yabs - - # Fix end_direction if not standard. - if end_direction is not None: - xabs = end_direction[0].abs() - yabs = end_direction[1].abs() - if xabs > yabs: - end_direction = end_direction / xabs - else: - end_direction = end_direction / yabs - - self._surfacetart_data = tuple(start_data) - - if end_direction is None: - from flatsurf.geometry.categories import DilationSurfaces - - # Attempt to infer the end_direction. - if self._surface in DilationSurfaces().Positive(): - end_direction = -self._direction - elif self._surface in DilationSurfaces() and end_data is not None: - p = self._surface.polygon(end_data[0]) - from flatsurf.geometry.euclidean import ccw - - if ( - ccw(p.edge(end_data[1]), self._direction) >= 0 - and ccw( - p.edge( - (len(p.vertices()) + end_data[1] - 1) % len(p.vertices()) - ), - self._direction, - ) - > 0 - ): - end_direction = self._direction - else: - end_direction = -self._direction - - if end_holonomy is None and holonomy is not None: - # Attempt to infer the end_holonomy: - from flatsurf.geometry.categories import ( - HalfTranslationSurfaces, - TranslationSurfaces, - ) - - if self._surface in TranslationSurfaces(): - end_holonomy = -holonomy - if self._surface in HalfTranslationSurfaces(): - if direction == end_direction: - end_holonomy = holonomy - else: - end_holonomy = -holonomy - - if ( - end_data is None - or end_direction is None - or holonomy is None - or end_holonomy is None - or check - ): - v = self.start_tangent_vector() - traj = v.straight_line_trajectory() - traj.flow(limit) - if not traj.is_saddle_connection(): - raise ValueError( - "Did not obtain saddle connection by flowing forward. Limit=" - + str(limit) - ) - tv = traj.terminal_tangent_vector() - self._end_data = (tv.polygon_label(), tv.vertex()) - if end_data is not None: - if end_data != self._end_data: - raise ValueError( - "Provided or inferred end_data=" - + str(end_data) - + " does not match actual end_data=" - + str(self._end_data) - ) - self._end_direction = tv.vector() - # Canonicalize again. - xabs = self._end_direction[0].abs() - yabs = self._end_direction[1].abs() - if xabs > yabs: - self._end_direction = self._end_direction / xabs - else: - self._end_direction = self._end_direction / yabs - if end_direction is not None: - if end_direction != self._end_direction: - raise ValueError( - "Provided or inferred end_direction=" - + str(end_direction) - + " does not match actual end_direction=" - + str(self._end_direction) - ) - - if traj.segments()[0].is_edge(): - # Special case (The below method causes error if the trajectory is just an edge.) - self._holonomy = self._surface.polygon(start_data[0]).edge( - start_data[1] - ) - self._end_holonomy = self._surface.polygon(self._end_data[0]).edge( - self._end_data[1] - ) - else: - from .similarity import SimilarityGroup - - sim = SimilarityGroup(self._surface.base_ring()).one() - itersegs = iter(traj.segments()) - next(itersegs) - for seg in itersegs: - sim = sim * self._surface.edge_transformation( - seg.start().polygon_label(), seg.start().position().get_edge() - ) - self._holonomy = ( - sim(traj.segments()[-1].end().point()) - - traj.initial_tangent_vector().point() - ) - self._end_holonomy = -((~sim.derivative()) * self._holonomy) - - if holonomy is not None: - if holonomy != self._holonomy: - print("Combinatorial length: " + str(traj.combinatorial_length())) - print("Start: " + str(traj.initial_tangent_vector().point())) - print("End: " + str(traj.terminal_tangent_vector().point())) - print("Start data:" + str(start_data)) - print("End data:" + str(end_data)) - raise ValueError( - "Provided holonomy " - + str(holonomy) - + " does not match computed holonomy of " - + str(self._holonomy) - ) - if end_holonomy is not None: - if end_holonomy != self._end_holonomy: - raise ValueError( - "Provided or inferred end_holonomy " - + str(end_holonomy) - + " does not match computed end_holonomy of " - + str(self._end_holonomy) - ) - else: - self._end_data = tuple(end_data) - self._end_direction = end_direction - self._holonomy = holonomy - self._end_holonomy = end_holonomy - - # Make vectors immutable - self._direction.set_immutable() - self._end_direction.set_immutable() - self._holonomy.set_immutable() - self._end_holonomy.set_immutable() - - def surface(self): - return self._surface - - def direction(self): - r""" - Returns a vector parallel to the saddle connection pointing from the start point. - - The will be normalized so that its $l_\infty$ norm is 1. - """ - return self._direction - - def end_direction(self): - r""" - Returns a vector parallel to the saddle connection pointing from the end point. - - The will be normalized so that its `l_\infty` norm is 1. - """ - return self._end_direction - - def start_data(self): - r""" - Return the pair (l, v) representing the label and vertex of the corresponding polygon - where the saddle connection originates. - """ - return self._surfacetart_data - - def end_data(self): - r""" - Return the pair (l, v) representing the label and vertex of the corresponding polygon - where the saddle connection terminates. - """ - return self._end_data - - def holonomy(self): - r""" - Return the holonomy vector of the saddle connection (measured from the start). - - In a SimilaritySurface this notion corresponds to developing the saddle connection into the plane - using the initial chart coming from the initial polygon. - """ - return self._holonomy - - def length(self): - r""" - In a cone surface, return the length of this saddle connection. Since - this may not lie in the field of definition of the surface, it is - returned as an element of the Algebraic Real Field. - """ - from flatsurf.geometry.categories import ConeSurfaces - - if self._surface not in ConeSurfaces(): - raise NotImplementedError( - "length of a saddle connection only makes sense for cone surfaces" - ) - - return vector(AA, self._holonomy).norm() - - def end_holonomy(self): - r""" - Return the holonomy vector of the saddle connection (measured from the end). - - In a SimilaritySurface this notion corresponds to developing the saddle connection into the plane - using the initial chart coming from the initial polygon. - """ - return self._end_holonomy - - def start_tangent_vector(self): - r""" - Return a tangent vector to the saddle connection based at its start. - """ - return self._surface.tangent_vector( - self._surfacetart_data[0], - self._surface.polygon(self._surfacetart_data[0]).vertex( - self._surfacetart_data[1] - ), - self._direction, - ) - - @cached_method(key=lambda self, limit, cache: None) - def trajectory(self, limit=1000, cache=None): - r""" - Return a straight line trajectory representing this saddle connection. - Fails if the trajectory passes through more than limit polygons. - """ - if cache is not None: - import warnings - - warnings.warn( - "The cache keyword argument of trajectory() is ignored. Trajectories are always cached." - ) - - v = self.start_tangent_vector() - traj = v.straight_line_trajectory() - traj.flow(limit) - if not traj.is_saddle_connection(): - raise ValueError( - "Did not obtain saddle connection by flowing forward. Limit=" - + str(limit) - ) - - return traj - - def plot(self, *args, **options): - r""" - Equivalent to ``.trajectory().plot(*args, **options)`` - """ - return self.trajectory().plot(*args, **options) - - def end_tangent_vector(self): - r""" - Return a tangent vector to the saddle connection based at its start. - """ - return self._surface.tangent_vector( - self._end_data[0], - self._surface.polygon(self._end_data[0]).vertex(self._end_data[1]), - self._end_direction, - ) - - def invert(self): - r""" - Return this saddle connection but with opposite orientation. - """ - return SaddleConnection( - self._surface, - self._end_data, - self._end_direction, - self._surfacetart_data, - self._direction, - self._end_holonomy, - self._holonomy, - check=False, - ) - - def intersections(self, traj, count_singularities=False, include_segments=False): - r""" - See documentation of :meth:`~.straight_line_trajectory.AbstractStraightLineTrajectory.intersections` - """ - return self.trajectory().intersections( - traj, count_singularities, include_segments - ) - - def intersects(self, traj, count_singularities=False): - r""" - See documentation of :meth:`~.straight_line_trajectory.AbstractStraightLineTrajectory.intersects` - """ - return self.trajectory().intersects( - traj, count_singularities=count_singularities - ) - - def __eq__(self, other): - r""" - Return whether this saddle connection is indistinguishable from - ``other``. - - EXAMPLES:: - - sage: from flatsurf import translation_surfaces - sage: S = translation_surfaces.square_torus() - sage: connections = S.saddle_connections(13) - - sage: connections[0] == connections[0] - True - sage: connections[0] == connections[1] - False - - - TESTS: - - Verify that saddle connections can be compared to arbitrary objects (so - they can be put into dicts with other objects):: - - sage: connections[0] == 42 - False - - :: - - sage: len(connections) - 32 - sage: len(set(connections)) - 32 - - """ - if self is other: - return True - if not isinstance(other, SaddleConnection): - return False - if not self._surface == other._surface: - return False - if not self._direction == other._direction: - return False - if not self._surfacetart_data == other._surfacetart_data: - return False - # Initial data should determine the saddle connection: - return True - - def __ne__(self, other): - return not self == other - - def __hash__(self): - return 41 * hash(self._direction) - 97 * hash(self._surfacetart_data) - - def _test_geometry(self, **options): - # Test that this saddle connection actually exists on the surface. - SaddleConnection( - self._surface, - self._surfacetart_data, - self._direction, - self._end_data, - self._end_direction, - self._holonomy, - self._end_holonomy, - check=True, - ) - - def __repr__(self): - return "Saddle connection in direction {} with start data {} and end data {}".format( - self._direction, self._surfacetart_data, self._end_data - ) - - def _test_inverse(self, **options): - # Test that inverting works properly. - SaddleConnection( - self._surface, - self._end_data, - self._end_direction, - self._surfacetart_data, - self._direction, - self._end_holonomy, - self._holonomy, - check=True, - ) - - class Cylinder(SageObject): r""" Represents a cylinder in a SimilaritySurface. A cylinder for these purposes is a @@ -1238,7 +787,7 @@ def __init__(self, s, label0, edges): raise ValueError("Combinatorial data does not represent a cylinder") # Extract the saddle connections on the right side: - from flatsurf.geometry.surface_objects import SaddleConnection + from flatsurf.geometry.saddle_connection import SaddleConnection sc_set_right = set() vertices = [] @@ -1254,9 +803,10 @@ def __init__(self, s, label0, edges): li = (li[0], SG(-v) * li[1]) lio = ss.opposite_edge(li, edges[i]) lj = labels[j] - sc = SaddleConnection( + sc = SaddleConnection.from_vertex( s, - (lio[0][0], (lio[1] + 1) % len(ss.polygon(lio[0]).vertices())), + lio[0][0], + (lio[1] + 1) % len(ss.polygon(lio[0]).vertices()), (~lio[0][1])(vert_j) - (~lio[0][1])(vert_i), ) sc_set_right.add(sc) @@ -1268,9 +818,10 @@ def __init__(self, s, label0, edges): li = (li[0], SG(-v) * li[1]) lio = ss.opposite_edge(li, edges[i]) lj = labels[j] - sc = SaddleConnection( + sc = SaddleConnection.from_vertex( s, - (lio[0][0], (lio[1] + 1) % len(ss.polygon(lio[0]).vertices())), + lio[0][0], + (lio[1] + 1) % len(ss.polygon(lio[0]).vertices()), (~lio[0][1])(vert_j) - (~lio[0][1])(vert_i), limit=j - i, ) @@ -1293,9 +844,10 @@ def __init__(self, s, label0, edges): li = (li[0], SG(-v) * li[1]) lio = ss.opposite_edge(li, edges[i]) lj = labels[j] - sc = SaddleConnection( + sc = SaddleConnection.from_vertex( s, - (lj[0], (edges[j] + 1) % len(ss.polygon(lj).vertices())), + lj[0], + (edges[j] + 1) % len(ss.polygon(lj).vertices()), (~lj[1])(vert_i) - (~lj[1])(vert_j), ) sc_set_left.add(sc) @@ -1306,9 +858,10 @@ def __init__(self, s, label0, edges): li = labels[i] lio = ss.opposite_edge(li, edges[i]) lj = labels[j] - sc = SaddleConnection( + sc = SaddleConnection.from_vertex( s, - (lj[0], (edges[j] + 1) % len(ss.polygon(lj).vertices())), + lj[0], + (edges[j] + 1) % len(ss.polygon(lj).vertices()), (~lj[1])(vert_i) - (~lj[1])(vert_j), ) sc_set_left.add(sc) diff --git a/flatsurf/geometry/tangent_bundle.py b/flatsurf/geometry/tangent_bundle.py index aed1f381d..3c59d740d 100644 --- a/flatsurf/geometry/tangent_bundle.py +++ b/flatsurf/geometry/tangent_bundle.py @@ -80,6 +80,17 @@ class SimilaritySurfaceTangentVector: sage: s.tangent_vector(0, (1, 1), (0, -1)) SimilaritySurfaceTangentVector in polygon 0 based at (0, 1) with vector (0, -1) + TESTS: + + We verify that the saddle connections in a cathedral can be computed. This + failed at some point:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.cathedral(1, 2) + sage: connections = S.saddle_connections(2) # random output due to cppyy deprecation warnings + sage: len(connections) + 40 + """ def __init__(self, tangent_bundle, polygon_label, point, vector): @@ -118,18 +129,24 @@ def __init__(self, tangent_bundle, polygon_label, point, vector): self._position = pos elif pos.is_vertex(): v = pos.get_vertex() - p = self.surface().polygon(polygon_label) # subsequent edge: edge1 = p.edge(v) # prior edge: - edge0 = p.edge((v - 1) % len(p.vertices())) + edge0 = p.edge(v - 1) wp1 = ccw(edge1, vector) wp0 = ccw(edge0, vector) if wp1 < 0 or wp0 < 0: raise ValueError( "Singular point with vector pointing away from polygon" ) - if wp0 == 0: + + if ( + is_anti_parallel(edge0, vector) + and self.surface().opposite_edge( + polygon_label, (v - 1) % len(p.vertices()) + ) + is not None + ): # vector points backward along edge 0 label2, e2 = self.surface().opposite_edge( polygon_label, (v - 1) % len(p.vertices()) @@ -146,7 +163,7 @@ def __init__(self, tangent_bundle, polygon_label, point, vector): self.surface().polygon(label2).get_point_position(point2) ) else: - # vector points along edge1 in that directior or points into polygons interior + # vector points along edge1 or points into polygons interior self._polygon_label = polygon_label self._point = point self._vector = vector @@ -337,12 +354,10 @@ def forward_to_polygon_boundary(self): SimilaritySurfaceTangentVector in polygon 1 based at (2/3, 2) with vector (4, -3) """ p = self.polygon() - point2, pos2 = p.flow_to_exit(self.point(), self.vector()) - # diff=point2-point - new_vector = SimilaritySurfaceTangentVector( + point2 = p.flow_to_exit(self.point(), self.vector()) + return SimilaritySurfaceTangentVector( self.bundle(), self.polygon_label(), point2, -self.vector() ) - return new_vector def straight_line_trajectory(self): r""" @@ -581,6 +596,48 @@ def __init__(self, similarity_surface, ring=None): self._V = VectorSpace(self._base_ring, 2) + def some_elements(self): + r""" + Return some typical tangent vectors (for testing). + + EXAMPLES:: + + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.square_torus() + sage: T = S.tangent_bundle() + sage: list(T.some_elements()) + [SimilaritySurfaceTangentVector in polygon 0 based at (0, 1) with vector (1/2, -1/2), + SimilaritySurfaceTangentVector in polygon 0 based at (1, 1) with vector (-1/2, -1/2), + SimilaritySurfaceTangentVector in polygon 0 based at (1, 0) with vector (-1/2, 1/2), + SimilaritySurfaceTangentVector in polygon 0 based at (0, 0) with vector (1/2, 1/2), + SimilaritySurfaceTangentVector in polygon 0 based at (1/2, 1/2) with vector (1, 2), + SimilaritySurfaceTangentVector in polygon 0 based at (2/3, 0) with vector (1, 0), + SimilaritySurfaceTangentVector in polygon 0 based at (2/3, 1) with vector (-1, 0), + SimilaritySurfaceTangentVector in polygon 0 based at (1, 2/3) with vector (0, 1), + SimilaritySurfaceTangentVector in polygon 0 based at (0, 2/3) with vector (0, -1), + SimilaritySurfaceTangentVector in polygon 0 based at (1/3, 0) with vector (1, 0), + SimilaritySurfaceTangentVector in polygon 0 based at (1/3, 1) with vector (-1, 0), + SimilaritySurfaceTangentVector in polygon 0 based at (1, 1/3) with vector (0, 1), + SimilaritySurfaceTangentVector in polygon 0 based at (0, 1/3) with vector (0, -1)] + + """ + S = self.surface() + for point in S.some_elements(): + for label, coordinates in point.representatives(): + polygon = S.polygon(label) + polygon_point = polygon(coordinates) + position = polygon_point.position() + if position.is_in_interior(): + yield self(label, coordinates, (1, 2)) + elif position.is_in_edge_interior(): + edge = polygon.edge(position.get_edge()) + yield self(label, coordinates, edge) + else: + assert position.is_vertex() + vertex = position.get_vertex() + bisector = (polygon.edge(vertex) - polygon.edge(vertex - 1)) / 2 + yield self(label, coordinates, bisector) + def __call__(self, polygon_label, point, vector): r""" Construct a tangent vector from a polygon label, a point in the polygon and a vector. The point and the vector should have coordinates diff --git a/flatsurf/geometry/voronoi.py b/flatsurf/geometry/voronoi.py new file mode 100644 index 000000000..7502ad567 --- /dev/null +++ b/flatsurf/geometry/voronoi.py @@ -0,0 +1,2121 @@ +# TODO: Change the inheritance structure so it's clear which implementations +# use the fact that the cells are convex, which use the fact that the cells are +# given additionally by line segments (so given by their corners.) + + +from sage.misc.cachefunc import cached_method + + +class CellDecomposition: + Cell = None + + def __init__(self, surface): + self._surface = surface + + def surface(self): + return self._surface + + @cached_method + def centers(self): + r""" + Return the center points of this cell decomposition. + """ + return frozenset(self._surface.vertices()) + + def cell(self, point): + r""" + Return a cell containing ``point``. + """ + return next(iter(self.cells(point))) + + @cached_method + def cell_at_center(self, center): + r""" + Return the cell centered at ``center``. + """ + if self.Cell is None: + raise NotImplementedError("this decomposition does not implement cells yet") + + return self.Cell(self, center) + + def cells(self, point=None): + r""" + Return the cells containing ``point``. + """ + if point is None: + yield from self + return + + for cell in self: + if cell.contains_point(point): + yield cell + + @cached_method + def polygon_cells(self, label): + return tuple( + polygon_cell + for cell in self + for polygon_cell in cell.polygon_cells() + if polygon_cell.label() == label + ) + + def split_segment_at_cells(self, segment): + r""" + Return the ``segment`` split into shorter segments that each lie in a + single cell. + + Returns a sequence of pairs, consisting of subsegment and a cell that + contains the segment. + """ + raise NotImplementedError( + "this decomposition does not implement splitting of segments yet" + ) + + def split_segment_at_polygon_cells(self, segment): + r""" + Return the ``segment`` split into shorter segments that each lie in a + single polygon cell. + + Returns a sequence of pairs, consisting of subsegment and a cell that + contains the segment. + """ + from flatsurf.geometry.euclidean import OrientedSegment + + return [ + (OrientedSegment(*s), polygon_cell) + for (label, subsegment, _) in segment.split() + for (s, polygon_cell) in self._split_segment_at_polygon_cells( + label, subsegment + ) + ] + + def _split_segment_at_polygon_cells(self, label, segment): + start, end = segment + + if start == end: + return [] + + for start_cell in self.polygon_cells(label=label): + if not start_cell.contains_point(start): + continue + + polygon = start_cell.polygon() + + try: + exit = polygon.flow_to_exit(start, end - start) + except ValueError: + continue + + return [((start, exit), start_cell)] + self._split_segment_at_polygon_cells( + label, (exit, end) + ) + + assert False + + def __iter__(self): + r""" + Return an iterator over the cells of this decomposition. + """ + for center in self.centers(): + yield self.cell_at_center(center) + + @cached_method + def _neg_boundary_segment(self, boundary_segment): + r""" + Return the boundary segment that has the same segment as + ``boundary_segment`` but with the opposite orientation. + """ + search = -boundary_segment.segment() + + for cell in self: + for boundary in cell.boundary(): + if boundary.segment() == search: + return boundary + + assert False, "boundary segment has no negative in this decomposition" + + def __repr__(self): + raise NotImplementedError("this cell decomposition cannot print itself yet") + + def plot(self, graphical_surface=None): + r""" + Return a graphical representation of this cell decomposition. + + EXAMPLES:: + + sage: from flatsurf.geometry.voronoi import VoronoiDiagram + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.regular_octagon() + sage: center = S(0, S.polygon(0).centroid()) + sage: S = S.insert_marked_points(center).codomain() + sage: V = VoronoiDiagram(S, S.vertices()) + sage: V.plot() + Graphics object consisting of 73 graphics primitives + + The underlying surface is not plotted automatically when it is provided + as a keyword argument:: + + sage: V.plot(graphical_surface=S.graphical_surface()) + Graphics object consisting of 48 graphics primitives + + """ + plot_surface = graphical_surface is None + + if graphical_surface is None: + graphical_surface = self._surface.graphical_surface( + edge_labels=False, polygon_labels=False + ) + + plot = [] + if plot_surface: + plot.append(graphical_surface.plot()) + + for cell in self: + plot.append(cell.plot(graphical_surface)) + + return sum(plot) + + def _test_boundary_consistency(self): + # TODO: Use SageMath test framework. + segments = [boundary.segment() for cell in self for boundary in cell.boundary()] + + for cell in self: + for boundary in cell.boundary(): + assert ( + -boundary.segment() in segments + ), f"{boundary} has no negative {-boundary.segment()}" + + +class Cell: + BoundarySegment = None + PolygonCell = None + + def __init__(self, decomposition, center): + self._decomposition = decomposition + self._center = center + + def surface(self): + return self._decomposition.surface() + + def decomposition(self): + return self._decomposition + + def center(self): + r""" + Return the point of the surface that should be considered as the center + of this cell. + """ + return self._center + + def polygon_cell(self, label, coordinates): + r""" + Return a restriction of this cell to the polygon with ``label`` that + contains ``coordinates``. + """ + for polygon_cell in self.polygon_cells(label=label): + if polygon_cell.contains_point(coordinates): + return polygon_cell + + assert not self.contains_point(self.surface()(label, coordinates)) + return None + + def polygon_cells(self, label=None, branch=None): + r""" + Return restrictions of this cell to all polygons of the surface. + + If ``label`` is given, return only the restrictions to that polygon. + """ + if label is None: + return sum( + [ + self.polygon_cells(label=label, branch=branch) + for label in self.surface().labels() + ], + start=(), + ) + + return self._polygon_cells(label=label, branch=branch) + + def _polygon_cells(self, label, branch): + r""" + Return the restrictions of this cell to its connected components in the + polygon with ``label``. + + Note that a cell can be separated by a boundary from itself so a single + cell can induce several polygon cells in a polygon even if these + polygon cells touch at their boundaries. + """ + raise NotImplementedError( + "this cell decomposition cannot restrict cells to polygons yet" + ) + + @cached_method + def boundary(self): + r""" + Return the boundary of this cell in a counterclockwise walk. + + This method is only available if the boundary is connected, i.e. the + cell is simply connected. + """ + raise NotImplementedError( + "this cell decomposition cannot compute boundaries of cells yet" + ) + + def radius(self): + r""" + Return the distance from the center to the furthest point in this cell. + """ + return max(boundary.radius() for boundary in self.boundary()) + + def inradius(self): + r""" + Return the distance from the center to the closest boundary point of this cell. + """ + return min(boundary.inradius() for boundary in self.boundary()) + + def complex_from_point(self, p): + r""" + .. NOTE:: + + See :meth:`point_from_complex` for a description of the coordinate + system change involved. + """ + for label, coordinates in p.representatives(): + polygon_cell = self.polygon_cell(label, coordinates) + if polygon_cell is not None: + break + else: + raise ValueError("point not in cell") + + return polygon_cell.complex_from_point(coordinates) + + def polygon_point_from_complex(self, y, boundary_error=0): + # TODO: This is very slow because we have to lift complex coordinates + # to the base ring (i.e., the rationals.) There's not much we can do + # about this without supporting floating point surfaces? + + from math import pi + + d = self._center.angle() - 1 + + arg = y.arg() * (d + 1) + + if arg < 0: + arg += 2 * pi * (d + 1) + + branch = 0 + # TODO: We could use > pi or >= pi here. This has to be compatible with + # root_branch() and polygon_cells(). + while arg >= pi: + arg -= 2 * pi + branch += 1 + + if branch > d: + branch -= d + 1 + + from sage.all import vector + + xy = vector(list(y ** (d + 1))) + + xy_lift = xy.change_ring(self.surface().base_ring()) + + # TODO: This is all not too robust since we are feeding + # floating point numbers into exact polygons here. As a + # result roots could show up twice or never. + for polygon_cell in self.polygon_cells(branch=branch): + polygon = polygon_cell._polygon() + polygon_complex = polygon_cell._polygon_complex() + center = polygon_cell.center() + vertex = polygon.get_point_position(center).get_vertex() + + if abs(xy) < 1e-24: + # print("identifying root with vertex") + return polygon_cell.label(), center + + from flatsurf.geometry.euclidean import ccw + + if ( + ccw(polygon_complex.edge(vertex), xy) >= 0 + and ccw(-polygon_complex.edge(vertex - 1), xy) < 0 + ): + p = center + xy_lift + + from flatsurf.geometry.euclidean import OrientedSegment + + if polygon_cell.root_branch(p) == branch: + if polygon.get_point_position(p).is_outside(): + return None + + if not polygon_cell.contains_point( + p, boundary_error=boundary_error + ): + return None + + # print(f"Point at distance {xy.norm():.5} of {self.center()} (angle {2*self.center().angle()}π)") + + return polygon_cell.label(), p + + assert False + + def point_from_complex(self, y, boundary_error=0): + r""" + Return the point of this cell which is given by the local coordinate y. + + Return ``None`` if there is no such point, i.e., the coordinate + describes a point outside of the cell. + + .. NOTE:: + + Points of the surface are usually given by their flat coordinate `z` in + one of the polygons that forms the surface. However, at a singularity + of degree d, we can perform a change of coordinates and write + + y(z) = ζ_{d+1}^κ (z-α)^{1/(d+1)} + + where z=α and y=0 are coordinates for the singularity and the last + exponent denotes the principal `d+1`-st root of `z`, see also + :meth:`root_branch` for the choice of root. + + Here, we take a `y` coordinate and transform it back to the + corresponding `z` coordinate. We have + + z(y) = y^{d+1} + α. + + """ + p = self.polygon_point_from_complex(y=y, boundary_error=boundary_error) + + if p is None: + return None + + return self.surface()(*p) + + def __eq__(self, other): + if not isinstance(other, Cell): + return False + return ( + self._decomposition == other._decomposition + and self._center == other._center + ) + + def __hash__(self): + return hash(self._center) + + def __repr__(self): + return f"Cell at {self.center()}" + + def plot(self, graphical_surface=None): + r""" + Return a graphical representation of this cell. + + EXAMPLES:: + + sage: from flatsurf.geometry.voronoi import VoronoiDiagram + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.regular_octagon() + sage: V = VoronoiDiagram(S, S.vertices()) + sage: cell = V.cell(S(0, 0)) + sage: cell.plot() + Graphics object consisting of 34 graphics primitives + + """ + plot_surface = graphical_surface is None + + if graphical_surface is None: + graphical_surface = self.surface().graphical_surface( + edge_labels=False, polygon_labels=False + ) + + plot = [] + if plot_surface: + plot.append(graphical_surface.plot()) + + for boundary in self.boundary(): + plot.append(boundary.plot(graphical_surface=graphical_surface)) + + return sum(plot) + + def contains_point(self, point, boundary_error=0): + for label, coordinates in point.representatives(): + for polygon_cell in self.polygon_cells(label=label): + if polygon_cell.contains_point( + coordinates, boundary_error=boundary_error + ): + return True + + return False + + +class LineSegmentCell(Cell): + r""" + A cell whose boundary is given by line segments. + """ + + @cached_method + def corners(self): + return [segment.segment().start() for segment in self.boundary()] + + @cached_method + def _polygon_cells(self, label, branch): + surface = self.surface() + polygon = surface.polygon(label) + + if branch is not None: + return tuple( + polygon_cell + for polygon_cell in self._polygon_cells(label=label, branch=None) + if branch in polygon_cell.root_branches() + ) + + cell_boundary = self.boundary() + + # TODO: Very slow, so disabled. + # if any( + # cell_boundary[b].segment().start() != cell_boundary[b - 1].segment().end() + # for b in range(len(cell_boundary)) + # ): + # raise NotImplementedError("boundary of cell must be connected") + + from collections import namedtuple + + PolygonCellBoundary = namedtuple( + "PolygonCellBoundary", ("cell_boundary", "label", "segment", "center") + ) + + # Filter out the bits of the boundary that lie in the polygon with label. + polygon_cells_boundary = [] + + for boundary in cell_boundary: + for lbl, subsegment, start_segment in boundary.segment().split(label=label): + assert lbl == label + center = ( + subsegment[0] - start_segment - boundary._center_to_start.holonomy() + ) + center.set_immutable() + polygon_cells_boundary.append( + PolygonCellBoundary(boundary, label, subsegment, center) + ) + + polygon_cells = [] + + if not polygon_cells_boundary: + # TODO: Here we use the assumption that entire polygons cannot be contained in a cell. + return () + + unused_polygon_cells_boundaries = set(polygon_cells_boundary) + + from collections import defaultdict + + polygon_cells_boundary_from = defaultdict(lambda: []) + for boundary in polygon_cells_boundary: + start, end = boundary.segment + polygon_cells_boundary_from[start].append(boundary) + + while unused_polygon_cells_boundaries: + # Build a new polygon cell starting from a random boundary segment. + polygon_cell = [unused_polygon_cells_boundaries.pop()] + center = polygon_cell[0].center + + # Walk the boundary of the polygon cell until it closed up. + while True: + # Find the first segment at the end point of the previous + # segment that is at a clockwise turn but still within the polygon. + start, end = polygon_cell[-1].segment + + strictly_clockwise_from = start - end + + end_position = polygon.get_point_position(end) + if end_position.is_vertex(): + counterclockwise_from = polygon.edge(end_position.get_vertex()) + elif end_position.is_in_edge_interior(): + counterclockwise_from = polygon.edge(end_position.get_edge()) + else: + counterclockwise_from = start - end + + # Find candidate next boundaries that are starting at the end + # point of the previous boundary and in the correct sector. + from flatsurf.geometry.euclidean import is_between, is_parallel + + polygon_cells_boundary_from_in_sector = [ + boundary + for boundary in polygon_cells_boundary_from[end] + if ( + not is_parallel(counterclockwise_from, strictly_clockwise_from) + and is_parallel( + boundary.segment[1] - boundary.segment[0], + counterclockwise_from, + ) + ) + or is_between( + counterclockwise_from, + strictly_clockwise_from, + boundary.segment[1] - boundary.segment[0], + ) + ] + + # Pick the first such boundary turning clockwise from the + # previous boundary. + def angle_key(boundary): + class AngleKey: + def __init__(self, vector, sector): + self._vector = vector + self._sector = sector + assert is_parallel( + self._sector[0], self._vector + ) or is_between(*self._sector, self._vector) + + def __gt__(self, other): + from flatsurf.geometry.euclidean import is_parallel + + assert not is_parallel( + self._vector, other._vector + ), "cell must not have equally oriented parallel boundaries" + + if is_parallel(self._sector[0], self._vector): + return False + if is_parallel(self._sector[0], other._vector): + return True + return is_between( + self._sector[0], self._vector, other._vector + ) + + return AngleKey( + boundary.segment[1] - boundary.segment[0], + (counterclockwise_from, strictly_clockwise_from), + ) + + next_polygon_cell_boundary = max( + polygon_cells_boundary_from_in_sector, key=angle_key, default=None + ) + + if next_polygon_cell_boundary is None: + assert len(polygon_cells_boundary_from_in_sector) == 0 + + # This boundary touches the polygon edges but no explicit + # boundary starts at the point where it touches. + if end_position.is_vertex(): + edge = end_position.get_vertex() + + else: + # Part of a polygon edge needs to be added to the boundary + # of this cell. + # Walk the polygon edges until we find a starting point of + # a boundary segment (or hit a vertex.) + assert ( + end_position.is_in_edge_interior() + ), "boundary segments ends in interior of polygon but no other segment continues here" + edge = end_position.get_edge() + + from flatsurf.geometry.euclidean import time_on_ray + + polygon_cells_boundary_on_edge = [ + boundary + for boundary in polygon_cells_boundary + if polygon.get_point_position( + boundary.segment[0] + ).is_in_edge_interior() + and polygon.get_point_position(boundary.segment[0]).get_edge() + == edge + and time_on_ray(end, polygon.edge(edge), boundary.segment[0])[0] + > 0 + ] + + next_end = min( + ( + ( + time_on_ray( + end, polygon.edge(edge), boundary.segment[0] + )[0], + boundary.segment[0], + ) + for boundary in polygon_cells_boundary_on_edge + ), + default=(None, None), + )[1] + if next_end is None: + # No segment starts on this edge. Go to the vertex. + next_end = polygon.vertex(edge + 1) + + next_polygon_cell_boundary = PolygonCellBoundary( + None, label, (end, next_end), center + ) + else: + if next_polygon_cell_boundary == polygon_cell[0]: + break + assert ( + next_polygon_cell_boundary in unused_polygon_cells_boundaries + ), f"boundary segment present in multiple polygon cells" + unused_polygon_cells_boundaries.remove(next_polygon_cell_boundary) + + assert ( + next_polygon_cell_boundary not in polygon_cell + ), "boundary segment must not repeat in polygon cell boundary" + + assert ( + next_polygon_cell_boundary.center == center + ), f"segments in cell boundary refer to inconsistent cell centers, ({next_polygon_cell_boundary.center} != {center})" + + polygon_cell.append(next_polygon_cell_boundary) + + # Build an actual polygon cell from the boundary segments + assert center is not None + polygon_cells.append( + self.PolygonCell( + cell=self, + label=label, + center=center, + boundary=tuple([boundary.segment for boundary in polygon_cell]), + ) + ) + + return tuple(polygon_cells) + + def opposite_representations(self, complex, boundary_error): + from flatsurf.geometry.euclidean import EuclideanPlane + + E = EuclideanPlane(self.surface().base_ring()) + + point = self.point_from_complex(complex, boundary_error=boundary_error) + assert point is not None + + representations = set() + + for boundary in self.boundary(): + for ( + polygon_cell, + subsegment, + opposite_polygon_cell, + ) in boundary.polygon_cell_boundaries(): + subsegment = E(subsegment[0]).segment(subsegment[1]) + for (label, coordinates) in point.representatives(): + if label == polygon_cell.label(): + from math import sqrt + + close_to_boundary = float(subsegment.distance(coordinates)) < ( + boundary_error / 2 + ) * sqrt( + float(self.surface().polygon(polygon_cell.label()).area()) + ) + if close_to_boundary: + representations.add( + ( + opposite_polygon_cell.cell().center(), + opposite_polygon_cell.complex_from_point( + coordinates + ), + ) + ) + break + + return representations + + +class BoundarySegment: + def __init__(self, cell, segment): + self._cell = cell + self._segment = segment + + def surface(self): + return self._cell.surface() + + def cell(self): + return self._cell + + def __bool__(self): + return bool(self._holonomy()) + + def __neg__(self): + return self.cell().decomposition()._neg_boundary_segment(self) + + def segment(self): + return self._segment + + def polygon_cell_boundaries(self): + r""" + Return this segment split into subsegments that each live entirely + within a polygon. + + Returns the subsegments as triples (polygon cell, subsegment in polygon + cell, opposite polygon cell). + """ + raise NotImplementedError( + "this cell decomposition cannot restrict its boundaries to polygons yet" + ) + + def plot(self, graphical_surface=None): + return self.segment().plot(graphical_surface=graphical_surface) + + def __eq__(self, other): + if not isinstance(other, BoundarySegment): + return False + + return self.cell() == other.cell() and self.segment() == other.segment() + + def __hash__(self): + return hash(self.segment()) + + def __repr__(self): + return f"Boundary at {self.segment()}" + + +class LineBoundarySegment(BoundarySegment): + r""" + A segment on the boundary of a cell that is a line segment. + + This segment and the segments connecting the end points of the segment to + the center of the cell form a triangle in the plane. + + INPUT: + + - ``center_to_start`` -- a segment from the center of the Voronoi cell to + the start of ``segment`` + + """ + + def __init__(self, cell, segment, center_to_start): + super().__init__(cell, segment) + + self._center_to_start = center_to_start + + @cached_method + def polygon_cell_boundaries(self): + boundaries = [] + for (label, subsegment, start_holonomy) in self.segment().split(): + polygon = self.surface().polygon(label) + for polygon_cell in self._cell.polygon_cells(label): + if subsegment in polygon_cell.boundary(): + midpoint = (subsegment[0] + subsegment[1]) / 2 + midpoint_position = polygon.get_point_position(midpoint) + assert midpoint_position.is_inside() + assert not midpoint_position.is_vertex() + + opposite_label = None + if not midpoint_position.is_in_edge_interior(): + opposite_label = label + else: + edge = midpoint_position.get_edge() + opposite_label, opposite_edge = self.surface().opposite_edge( + label, edge + ) + opposite_polygon = self.surface().polygon(opposite_label) + midpoint += opposite_polygon.vertex( + opposite_edge + 1 + ) - polygon.vertex(edge) + + opposite_polygon_cell = [ + opposite_polygon_cell + for opposite_polygon_cell in (-self)._cell.polygon_cells( + opposite_label + ) + if opposite_polygon_cell.contains_point(midpoint) + and opposite_polygon_cell != polygon_cell + ] + + assert ( + opposite_polygon_cell + ), "no polygon cell on the other side of this boundary" + assert ( + len(opposite_polygon_cell) == 1 + ), "more than one polygon cell on the other side of this boundary" + opposite_polygon_cell = opposite_polygon_cell[0] + + boundaries.append((polygon_cell, subsegment, opposite_polygon_cell)) + break + else: + assert ( + False + ), "subsegment of boundary must also be a boundary on the level of polygons" + + return boundaries + + def radius(self): + norm = self.surface().euclidean_plane().norm() + return max( + [ + norm.from_vector(self._center_to_start.holonomy()), + norm.from_vector( + self._center_to_start.holonomy() + self._segment.holonomy() + ), + ] + ) + + def inradius(self): + from flatsurf.geometry.euclidean import EuclideanPlane + + E = EuclideanPlane(self.surface().base_ring()) + center = E.point(0, 0) + P = self._center_to_start.holonomy() + Q = P + self._segment.holonomy() + line = E.line(P, Q) + segment = E.segment(line, start=P, end=Q) + return segment.distance(center) + + +class PolygonCell: + r""" + A :class:`Cell` restricted to a polygon of the surface. + + INPUT: + + - ``cell`` -- the :class:`Cell` which this polygon cell is a restriction of + + - ``label`` -- the polygon to which this was restricted + + """ + + def __init__(self, cell, label): + self._cell = cell + self._label = label + + def label(self): + return self._label + + def _polygon(self): + return self.cell().surface().polygon(self._label) + + @cached_method + def _polygon_complex(self): + from sage.all import CDF + + return self._polygon().change_ring(CDF) + + def surface(self): + return self.cell().surface() + + def cell(self): + return self._cell + + def contains_point(self, point, boundary_error=0): + raise NotImplementedError + + def contains_segment(self, segment): + raise NotImplementedError + + def boundary(self): + raise NotImplementedError( + "this cell decomposition does not know how to compute the boundary segments of a polygon cell yet" + ) + + def __eq__(self, other): + raise NotImplementedError + + def __hash__(self): + raise NotImplementedError + + def corners(self): + raise NotImplementedError + + def complex_from_point(self, coordinates): + k = self.root_branch(coordinates) + d = self.cell()._center.angle() - 1 + + from sage.all import CDF + + zeta = CDF.zeta(d + 1) ** k + z = CDF(*(coordinates - self.center())) + + return zeta * z.nth_root(d + 1) + + +class PolygonCellWithCenter(PolygonCell): + r""" + A :class:`Cell` restricted to a polygon of the surface. + + INPUT: + + - ``cell`` -- the :class:`Cell` which this polygon cell is a restriction of + + - ``label`` -- the polygon to which this was restricted + + - ``center`` -- the position of the center of this cell; if outside of the + polygon, then a segment from any interior point of the polygon to this point is + assumed to correspond to an actual line segment in the surface connecting + that point to the center. + + """ + + def __init__(self, cell, label, center): + super().__init__(cell, label) + + if center is None: + raise ValueError + + self._center = center + + def center(self): + r""" + Return the point (not necessarily of the polygon) that should be + considered the center of this cell. + """ + return self._center + + def split_segment_with_constant_root_branches(self, segment): + r""" + Return the ``segment`` split into smaller segments such that these + segments do not cross the horizontal line left of the center of the + cell (if that center is an actual singularity and not just a marked + point.) + + On such a shorter segment, we can then develop an n-th root + consistently where n-1 is the order of the singularity. + + EXAMPLES:: + + sage: from flatsurf.geometry.voronoi import VoronoiDiagram + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.regular_octagon() + sage: V = VoronoiDiagram(S, S.vertices()) + sage: cell = V.polygon_cell(0, (1, 0)) + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: cell.split_segment_uniform_root_branch(OrientedSegment((0, -1), (0, 1))) + [OrientedSegment((0, -1), (0, 0)), OrientedSegment((0, 0), (0, 1))] + + """ + from flatsurf.geometry.euclidean import OrientedSegment + + d = self.cell().center().angle() + + assert d >= 1 + if d == 1: + return [segment] + + if ( + segment.contains_point(self.center()) + and segment.start() != self.center() + and segment.end() != self.center() + ): + return [ + OrientedSegment(segment.start(), self.center()), + OrientedSegment(self.center(), segment.end()), + ] + + from flatsurf.geometry.euclidean import Ray + + ray = Ray(self.center(), (-1, 0)) + + if ray.contains_point(segment.start()) or ray.contains_point(segment.end()): + return [segment] + + intersection = ray.intersection(segment) + + if intersection is None: + return [segment] + + return [ + OrientedSegment(segment.start(), intersection), + OrientedSegment(intersection, segment.end()), + ] + + @cached_method + def _root_branch_primitive(self): + S = self.surface() + + center = self.cell().center() + + angle = center.angle() + + assert angle > 1 + + # Choose a horizontal ray to the right, that defines where the + # principal root is being used. We use the "smallest" vertex in the + # "smallest" polygon containing such a ray. + from flatsurf.geometry.euclidean import ccw + + primitive_label, primitive_vertex = min( + (label, vertex) + for (label, _) in center.representatives() + for vertex in range(len(S.polygon(label).vertices())) + if S(label, vertex) == center + and ccw((1, 0), S.polygon(label).edge(vertex)) <= 0 + and ccw((1, 0), -S.polygon(label).edge(vertex - 1)) >= 0 + ) + + return primitive_label, primitive_vertex + + def root_branch(self, point): + angle = self.cell().center().angle() + + assert angle >= 1 + if angle == 1: + return 0 + + # Choose a horizontal ray to the right, that defines where the + # principal root is being used. We use the "smallest" vertex in the + # "smallest" polygon containing such a ray. + primitive_label, primitive_vertex = self._root_branch_primitive() + + branch = 0 + label = primitive_label + vertex = primitive_vertex + + from flatsurf.geometry.euclidean import ccw + + # Walk around the vertex to determine the branch of the root. + while True: + polygon = self.surface().polygon(label) + if label == self.label() and polygon.vertex(vertex) == self.center(): + low = ( + ccw((-1, 0), polygon.edge(vertex)) <= 0 + and ccw((-1, 0), point - polygon.vertex(vertex)) > 0 + ) + if low: + return (branch + 1) % angle + return branch + + if ( + ccw((-1, 0), polygon.edge(vertex)) <= 0 + and ccw((-1, 0), -polygon.edge(vertex - 1)) > 0 + ): + branch += 1 + branch %= angle + + label, vertex = self.surface().opposite_edge( + label, (vertex - 1) % len(polygon.vertices()) + ) + + @cached_method + def root_branches(self): + root_branches = [] + + polygon = self.surface().polygon(self.label()) + center = self.center() + vertex = polygon.get_point_position(center).get_vertex() + + root_branches.append(self.root_branch(center + polygon.edge(vertex))) + root_branches.append(self.root_branch(center - polygon.edge(vertex - 1))) + + return frozenset(root_branches) + + def root_branch_for_segment(self, segment): + r""" + Return which branch can be taken consistently along the ``segment`` + when developing an n-th root at the center of this Voronoi cell. + + EXAMPLES:: + + sage: from flatsurf.geometry.voronoi import VoronoiDiagram + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.regular_octagon() + sage: V = VoronoiDiagram(S, S.vertices()) + sage: cell = V.polygon_cell(0, (0, 0)) + + sage: from flatsurf.geometry.euclidean import OrientedSegment + sage: cell.root_branch_for_segment(OrientedSegment((0, -1), (0, 1))) + Traceback (most recent call last): + ... + ValueError: segment does not permit a consistent choice of root + + sage: cell.root_branch_for_segment(OrientedSegment((0, 0), (0, 1/2))) + 0 + + sage: cell = V.polygon_cell(0, (1, 0)) + sage: cell.root_branch_for_segment(OrientedSegment((0, 0), (0, 1/2))) + 1 + + sage: a = S.base_ring().gen() + sage: cell = V.polygon_cell(0, (1 + a/2, a/2)) + sage: cell.root_branch_for_segment(OrientedSegment((1, 1/2 + a/2), (1 + a/2, 1/2 + a/2))) + 2 + + """ + if self.split_segment_with_constant_root_branches(segment) != [segment]: + raise ValueError("segment does not permit a consistent choice of root") + + return self.root_branch(segment.midpoint()) + + def __repr__(self): + return f"{self.cell()} restricted to polygon {self.label()} at {self._center}" + + +class LineSegmentPolygonCell(PolygonCellWithCenter): + r""" + A :class:`Cell` restricted to a polygon of the surface. + + INPUT: + + - ``cell`` -- the :class:`Cell` which this polygon cell is a restriction of + + - ``label`` -- the polygon to which this was restricted + + - ``center`` -- the position of the center of this cell; if outside of the + polygon, then a segment from any interior point of the polygon to this point is + assumed to correspond to an actual line segment in the surface connecting + that point to the center. + + - ``boundary`` -- segments that are restrictions of the boundary of the + cell to this polygon, in counterclockwise order around the ``center``. + """ + + def __init__(self, cell, label, center, boundary): + super().__init__(cell, label, center) + + self._boundary = boundary + + def boundary(self): + return self._boundary + + def contains_point(self, point, boundary_error=0): + if boundary_error < 0: + raise NotImplementedError + + P = self.polygon() + if P.contains_point(point): + return True + + if boundary_error != 0: + from math import sqrt + + if float(P.distance(point)) <= boundary_error * sqrt( + float(self.surface().polygon(self.label()).area()) + ): + # print(f"Point {point} is not in {P} but at distance {float(P.distance(point))}") + return True + + return False + + def polygon(self): + r""" + Return a polygon (subset of :meth:`polygon`) that describes this cell. + """ + from flatsurf import Polygon + + return Polygon(vertices=[segment[0] for segment in self._boundary]) + + def __eq__(self, other): + if not isinstance(other, PolygonCell): + return False + + return ( + self.cell() == other.cell() + and self.label() == other.label() + and self.center() == other.center() + ) + + def __hash__(self): + return hash((self.label(), self.center())) + + def plot(self, graphical_polygon=None): + r""" + Return a graphical representation of this cell. + + EXAMPLES:: + + sage: from flatsurf.geometry.voronoi import VoronoiDiagram + sage: from flatsurf import translation_surfaces + sage: S = translation_surfaces.regular_octagon() + sage: V = VoronoiDiagram(S, S.vertices()) + sage: cell = V.polygon_cell(0, (0, 0)) + sage: cell.plot() + Graphics object consisting of 3 graphics primitives + + """ + plot_polygon = graphical_polygon is None + + if graphical_polygon is None: + graphical_polygon = ( + self.surface().graphical_surface().graphical_polygon(self.label()) + ) + + shift = graphical_polygon.transformed_vertex(0) - self.surface().polygon( + self.label() + ).vertex(0) + + from flatsurf.geometry.euclidean import OrientedSegment + + plot = sum( + OrientedSegment(*segment).translate(shift).plot(point=False) + for segment in self.boundary() + ) + + if plot_polygon: + pass # plot = graphical_polygon.plot_polygon() + plot + + return plot + + def corners(self): + return tuple(segment[0] for segment in self._boundary) + + +class ConvexLineSegmentPolygonCell(LineSegmentPolygonCell): + def contains_segment(self, segment): + return self.contains_point(segment.start()) and self.contains_point( + segment.end() + ) + + +class VoronoiCellBoundarySegment(LineBoundarySegment): + pass + + +class VoronoiPolygonCell(ConvexLineSegmentPolygonCell): + pass + + +class VoronoiCell(LineSegmentCell): + BoundarySegment = VoronoiCellBoundarySegment + PolygonCell = VoronoiPolygonCell + + @cached_method + def boundary(self): + surface = self.surface() + + (label, coordinates) = self.center().representative() + vertex = surface.polygon(label).get_point_position(coordinates).get_vertex() + + boundary = [] + + initial_label, initial_vertex = label, vertex + while True: + polygon = surface.polygon(label) + + center = polygon.circumscribing_circle().center().vector() + + next_label, next_vertex = surface.opposite_edge( + label, (vertex - 1) % len(polygon.vertices()) + ) + next_polygon = surface.polygon(next_label) + + next_center = next_polygon.circumscribing_circle().center().vector() + + # Bring next_center into the coordinate system of polygon + next_center += polygon.vertex(vertex) - next_polygon.vertex(next_vertex) + + holonomy = next_center - center + + if not holonomy: + # Ambiguous Delaunay triangulation. The two circumscribing circles coincide. + pass + else: + # Construct the start point of the boundary segment and a segment from the center to that start point. + start_label, start_edge = (label, vertex) + start_holonomy = center - polygon.vertex(start_edge) + + from flatsurf.geometry.euclidean import ccw + + if ccw(-polygon.edge(start_edge - 1), start_holonomy) > 0: + start_label, start_edge = surface.opposite_edge( + start_label, (start_edge - 1) % len(polygon.vertices()) + ) + polygon = surface.polygon(start_label) + elif ccw(polygon.edge(start_edge), start_holonomy) < 0: + start_label, start_edge = surface.opposite_edge( + start_label, start_edge + ) + polygon = surface.polygon(start_label) + start_edge = (start_edge + 1) % len(polygon.vertices()) + + assert ( + ccw(-polygon.edge(start_edge - 1), start_holonomy) < 0 + and ccw(polygon.edge(start_edge), start_holonomy) >= 0 + ), "center of Voronoi cell must be within a neighboring triangle" + + start_segment = SurfaceLineSegment( + surface, start_label, polygon.vertex(start_edge), start_holonomy + ) + + assert ( + not start_segment.end().is_vertex() + ), "boundary of a Voronoi cell cannot go through a vertex" + + segment = SurfaceLineSegment( + surface, *start_segment.end().representative(), holonomy + ) + + boundary.append( + VoronoiCellBoundarySegment(self, segment, start_segment) + ) + + label, vertex = next_label, next_vertex + + if (label, vertex) == (initial_label, initial_vertex): + break + + label, vertex = next_label, next_vertex + + return tuple(boundary) + + +class VoronoiCellDecomposition_delaunay(CellDecomposition): + r""" + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, VoronoiCellDecomposition + + sage: S = translation_surfaces.regular_octagon().subdivide().codomain().delaunay_triangulate().codomain() + sage: V = VoronoiCellDecomposition(S) + + sage: V.plot() + + :: + + sage: from flatsurf import Polygon, similarity_surfaces, VoronoiCellDecomposition + + sage: S = similarity_surfaces.billiard(Polygon(angles=[3, 4, 13])).minimal_cover("translation").erase_marked_points().codomain().delaunay_triangulate().codomain() + sage: V = VoronoiCellDecomposition(S) + + sage: V.plot() + + """ + Cell = VoronoiCell + + def __init__(self, surface): + if not surface.is_delaunay_triangulated(): + raise NotImplementedError("surface must be Delaunay triangulated") + if not surface.is_translation_surface(): + raise NotImplementedError("surface must be a translation surface") + + super().__init__(surface) + + def __repr__(self): + return f"Voronoi cell decomposition of {self.surface()}" + + def change(self, surface=None): + if surface is not None: + self = VoronoiCellDecomposition(surface) + + return self + + +class ApproximateWeightedCellBoundarySegment(LineBoundarySegment): + pass + + +class ApproximateWeightedVoronoiPolygonCell(ConvexLineSegmentPolygonCell): + pass + + +class ApproximateWeightedVoronoiCell(LineSegmentCell): + BoundarySegment = ApproximateWeightedCellBoundarySegment + PolygonCell = ApproximateWeightedVoronoiPolygonCell + + @cached_method + def boundary(self): + surface = self.surface() + + (label, coordinates) = self.center().representative() + vertex = surface.polygon(label).get_point_position(coordinates).get_vertex() + + boundary = [] + + initial_label, initial_vertex = label, vertex + + while True: + polygon = surface.polygon(label) + + corners = self.decomposition()._split_polygon_at_vertex(label, vertex) + + assert ( + len(corners) > 1 + ), "cannot create segments in this polygon from a single corner" + + next_label, next_vertex = surface.opposite_edge( + label, (vertex - 1) % len(polygon.vertices()) + ) + + for corner, next_corner in zip(corners, corners[1:]): + segment = SurfaceLineSegment( + surface, label, corner, next_corner - corner + ) + + start_segment_holonomy = corner - polygon.vertex(vertex) + from flatsurf.geometry.euclidean import is_anti_parallel + + if is_anti_parallel(polygon.edge(vertex - 1), start_segment_holonomy): + start_segment = SurfaceLineSegment( + surface, + next_label, + surface.polygon(next_label).vertex(next_vertex), + start_segment_holonomy, + ) + else: + start_segment = SurfaceLineSegment( + surface, label, polygon.vertex(vertex), start_segment_holonomy + ) + boundary.append( + ApproximateWeightedCellBoundarySegment(self, segment, start_segment) + ) + + # TODO: Why is this needed? + if len(boundary) > 1: + if boundary[-1] == boundary[-2]: + boundary.pop() + + ## Now taken care of by split_polygon_at_vertex() + ## corners_next_polygon = self.decomposition()._split_polygon_at_vertex(next_label, next_vertex) + ## if surface(label, corners[-1]) != surface(next_label, corners_next_polygon[0]): + ## # The split of the polygons along the edge is not compatible, + ## # add a short segment along that edge to connect the last + ## # corner of this polygon to the first corner of the next + ## # polygon. + ## next_polygon = surface.polygon(next_label) + ## corner_next_polygon = corners_next_polygon[0] + (polygon.vertex(vertex) - next_polygon.vertex(next_vertex)) + + ## segment = SurfaceLineSegment(surface, label, corners[-1], corner_next_polygon - corners[-1]) + ## start_segment = SurfaceLineSegment(surface, next_label, next_polygon.vertex(next_vertex), corners[-1] - polygon.vertex(vertex)) + + ## boundary.append(ApproximateWeightedCellBoundarySegment(self, segment, start_segment)) + + label, vertex = next_label, next_vertex + + if (label, vertex) == (initial_label, initial_vertex): + break + + # TODO: Why is this needed? + if len(boundary) > 1: + if boundary[-1] == boundary[0]: + boundary.pop() + + return tuple(boundary) + + +class ApproximateWeightedVoronoiCellDecomposition_delaunay(CellDecomposition): + r""" + EXAMPLES:: + + sage: from flatsurf import translation_surfaces, ApproximateWeightedVoronoiCellDecomposition + + sage: S = translation_surfaces.regular_octagon().subdivide().codomain().delaunay_triangulate().codomain() + sage: V = ApproximateWeightedVoronoiCellDecomposition(S) + + sage: V.plot() + + :: + + sage: from flatsurf import Polygon, similarity_surfaces, ApproximateWeightedVoronoiCellDecomposition + + sage: S = similarity_surfaces.billiard(Polygon(angles=[3, 4, 13])).minimal_cover("translation").erase_marked_points().codomain().delaunay_triangulate().codomain() + sage: V = ApproximateWeightedVoronoiCellDecomposition(S) + + sage: V.plot() + + """ + Cell = ApproximateWeightedVoronoiCell + + def __init__(self, surface): + if not surface.is_delaunay_triangulated(): + raise NotImplementedError("surface must be triangulated") + if not surface.is_translation_surface(): + raise NotImplementedError("surface must be a translation surface") + + super().__init__(surface) + + def __repr__(self): + return f"Approximate weighted Voronoi cell decomposition of {self.surface()}" + + def change(self, surface=None): + if surface is not None: + self = ApproximateWeightedVoronoiCellDecomposition(surface) + + return self + + def _exactify(self, x): + R = self.surface().base_ring() + return R(round(float(x), 3)) + + @cached_method + def _split_polygon_at_vertex(self, label, vertex): + # Return a refined version of _split_polygon(label)[vertex] that adds points for the split polygon that happened across any edges (so each segment has a negative.) + surface = self.surface() + polygon = surface.polygon(label) + + split = [polygon.vertex(vertex)] + + split.extend(self._split_polygon(label)[vertex]) + + # previous_label, previous_vertex = surface.opposite_edge(label, vertex) + # previous_polygon = surface.polygon(previous_label) + # previous_vertex = (previous_vertex + 1) % len(previous_polygon.vertices()) + # previous_corner = self._split_polygon(previous_label)[previous_vertex][-1] + # previous_corner += (polygon.vertex(vertex) - previous_polygon.vertex(previous_vertex)) + + # assert polygon.get_point_position(previous_corner).is_in_edge_interior() and polygon.get_point_position(previous_corner).get_edge() == vertex + + # if split[1] != previous_corner: + # split = split[:1] + [previous_corner] + split[1:] + + next_label, next_vertex = surface.opposite_edge( + label, (vertex - 1) % len(polygon.vertices()) + ) + next_polygon = surface.polygon(next_label) + next_corner = self._split_polygon(next_label)[next_vertex][0] + next_corner += polygon.vertex(vertex) - next_polygon.vertex(next_vertex) + + assert polygon.get_point_position( + next_corner + ).is_in_edge_interior() and polygon.get_point_position( + next_corner + ).get_edge() == ( + vertex - 1 + ) % len( + polygon.vertices() + ) + + if split[-1] != next_corner: + split.append(next_corner) + + refined_split = [] + for corner, next_corner in zip(split, split[1:] + split[:1]): + assert corner != next_corner + midpoint = (corner + next_corner) / 2 + midpoint_position = polygon.get_point_position(midpoint) + if midpoint_position.is_in_edge_interior(): + edge = midpoint_position.get_edge() + + opposite_label, opposite_edge = surface.opposite_edge(label, edge) + opposite_polygon = surface.polygon(opposite_label) + + edge_points = self._split_polygon_edge(opposite_label, opposite_edge) + edge_points = [ + p + + ( + polygon.vertex(edge) + - opposite_polygon.vertex(opposite_edge + 1) + ) + for p in edge_points + ] + + assert all( + polygon.get_point_position(p).get_edge() == edge + for p in edge_points + ) + + from flatsurf.geometry.euclidean import time_on_segment + + edge_points = [ + p + for p in edge_points + if time_on_segment((corner, next_corner), p) not in [0, 1, None] + ] + for p in sorted( + edge_points, key=lambda p: time_on_segment((corner, next_corner), p) + ): + assert p not in refined_split + assert p != next_corner + refined_split.append(p) + + assert next_corner not in refined_split + refined_split.append(next_corner) + + return tuple(refined_split[:-1]) + + @cached_method + def _split_polygon_edge(self, label, edge): + polygon = self.surface().polygon(label) + + points = [] + + for split in self._split_polygon(label): + for point in split: + position = polygon.get_point_position(point) + if not position.is_in_edge_interior(): + continue + if position.get_edge() != edge: + continue + if point not in points: + points.append(point) + + return tuple(points) + + @cached_method + def _split_polygon(self, label): + surface = self.surface() + polygon = surface.polygon(label) + nvertices = len(polygon.vertices()) + assert nvertices == 3 + + vertices = [surface(label, v) for v in range(nvertices)] + + # TODO: If I remember correctly, the algorithm is such that + # essentially, the points on the boundary have distances from their + # respective centers according to the weights, i.e., if two vertices + # v0, v1 have weights w0, w1, then the distances will be such that + # d0/w0 == d1/w1. (So, large weight implies large distance.) + + weights = [float(v.radius_of_convergence()) for v in vertices] + + splits = [ + self._split_segment( + (polygon.vertex(v), polygon.vertex(v + 1)), + polygon.vertex(v + 2), + weights[v:] + weights[:v], + ) + for v in range(nvertices) + ] + + lens = [len(split) for split in splits] + + if lens == [1, 1, 1]: + # The edges are far away from the opposite corners. + # A---+---C + # | /| / + # | / | / + # |/C |/ + # +---+ + # | / + # | / + # |/ + # B + # We give each small triangle in this picture to its vertex and + # split the central triangle C between the three vertices. (So each + # cell will be a quadrilateral.) + center = sum( + splits[v][0] + * self._exactify( + (weights[v] + weights[(v + 1) % nvertices]) / (2 * sum(weights)) + ) + for v in range(nvertices) + ) + + return [ + [splits[0][0], center, splits[2][0]], + [splits[1][0], center, splits[0][0]], + [splits[2][0], center, splits[1][0]], + ] + if lens == [2, 1, 1]: + return [ + [splits[0][0], splits[2][0]], + [splits[1][0], splits[0][1]], + [splits[2][0], splits[0][0], splits[0][1], splits[1][0]], + ] + if lens == [1, 1, 2]: + return [ + [splits[0][0], splits[2][1]], + [splits[1][0], splits[2][0], splits[2][1], splits[0][0]], + [splits[2][0], splits[1][0]], + ] + if lens == [1, 2, 1]: + return [ + [splits[0][0], splits[1][0], splits[1][1], splits[2][0]], + [splits[1][0], splits[0][0]], + [splits[2][0], splits[1][1]], + ] + + raise NotImplementedError(f"non-trivial split for {label} with {lens}") + + def _split_segment(self, AB, C, weights): + A, B = AB + wA, wB, wC = weights + + def circle_of_apollonius(P, Q, w, v): + if w == v: + raise NotImplementedError("circle of Apollonius is a line") + + # The foci of the circle. + C = (w * Q + v * P) / (w + v) + D = (v * P - w * Q) / (v - w) + + center = (C + D) / 2 + + radius = (D - C).norm() / 2 + + return center, radius + + def circle_segment_intersection(center, radius, segment): + # Shift the center to the origin. + segment = segment[0] - center, segment[1] - center + + # Let P(t) be the point on the segment at time t in [0, 1]. + # We solve the quadratic equation for |P(t)| = radius^2. + + a = (segment[1][0] - segment[0][0]) ** 2 + ( + segment[1][1] - segment[0][1] + ) ** 2 + b = 2 * ( + segment[0][0] * segment[1][0] + + segment[0][1] * segment[1][1] + - segment[0][0] ** 2 + - segment[0][1] ** 2 + ) + c = segment[0][0] ** 2 + segment[0][1] ** 2 - radius**2 + + from math import sqrt + + for t in [ + (-b + sqrt(float(b**2 - 4 * a * c))) / (2 * a), + (-b - sqrt(float(b**2 - 4 * a * c))) / (2 * a), + ]: + if 0 <= t <= 1: + return self._exactify(t) + + assert ( + False + ), f"intersection point must be on segment but time {t} is not in the unit interval, i.e., segment {segment} does not intersect circle at origin with radius {radius}" + + A_equal_B = A + (B - A) * self._exactify(wA / (wA + wB)) + if ((A - A_equal_B) / wA).norm() > ((C - A_equal_B) / wC).norm(): + # C is closer to A on the segment AB than B. + # Construct the circle of Apollonius with foci A and C. + if wA == wC: + # Circle of Apollonius is a line. + AC = C - A + midpoint = (C + A) / 2 + from sage.all import vector + + orthogonal_ray = (midpoint, vector((AC[1], -AC[0]))) + + from flatsurf.geometry.euclidean import ray_segment_intersection + + A_equal_C = ray_segment_intersection(*orthogonal_ray, (A, B)) + assert A_equal_C is not None + else: + center, radius = circle_of_apollonius(A, C, wA, wC) + t = circle_segment_intersection(center, radius, (A, B)) + A_equal_C = (1 - t) * A + t * B + if wB == wC: + # Circle of Apollonius is a line. + BC = C - B + midpoint = (C + B) / 2 + from sage.all import vector + + orthogonal_ray = (midpoint, vector((-BC[1], BC[0]))) + + from flatsurf.geometry.euclidean import ray_segment_intersection + + B_equal_C = ray_segment_intersection(*orthogonal_ray, (B, A)) + assert B_equal_C is not None + else: + center, radius = circle_of_apollonius(B, C, wB, wC) + t = circle_segment_intersection(center, radius, (B, A)) + B_equal_C = (1 - t) * B + t * A + + return [A_equal_C, B_equal_C] + + return [A_equal_B] + + +class MappedBoundarySegment(BoundarySegment): + def __init__(self, cell, boundary): + super().__init__( + cell, cell._decomposition._isomorphism.section()._image_line_segment(boundary.segment()) + ) + self._codomain_boundary = boundary + + def radius(self): + return self._codomain_boundary.radius() + + @cached_method + def polygon_cell_boundaries(self): + polygon_cell_boundaries = [] + + for ( + polygon_cell, + subsegment, + opposite_polygon_cell, + ) in self._codomain_boundary.polygon_cell_boundaries(): + raise NotImplementedError # TODO: This seems to be quite complicated to compute. + + return tuple(polygon_cell_boundaries) + + +class MappedPolygonCell(PolygonCell): + pass + + +class MappedCell(Cell): + def __init__(self, decomposition, center): + super().__init__(decomposition, center) + self._codomain_cell = decomposition._codomain_decomposition.cell( + decomposition._isomorphism(center) + ) + + @cached_method + def boundary(self): + return tuple( + MappedBoundarySegment(self, boundary) + for boundary in self._codomain_cell.boundary() + ) + + +class MappedCellDecomposition(CellDecomposition): + Cell = MappedCell + + def __init__(self, codomain_decomposition, isomorphism): + super().__init__(isomorphism.domain()) + + self._codomain_decomposition = codomain_decomposition + self._isomorphism = isomorphism + + def __repr__(self): + return f"{self._codomain_decomposition} pulled back to {self.surface()}" + + +# TODO: Move to surface objects. +class SurfaceLineSegment: + # TODO: Use tangent vectors instead of start (and end.) + def __init__(self, surface, label, start, holonomy): + if not holonomy: + raise ValueError + + polygon = surface.polygon(label) + + position = polygon.get_point_position(start) + if position.is_outside(): + raise ValueError( + f"start point of segment must be in the polygon but {start} is not in {polygon}" + ) + if position.is_in_edge_interior(): + edge = position.get_edge() + from flatsurf.geometry.euclidean import ccw, is_anti_parallel + + if ccw(polygon.edge(edge), holonomy) < 0 or ( + ccw(polygon.edge(edge), holonomy) == 0 + and is_anti_parallel(polygon.edge(edge), holonomy) + ): + start -= polygon.vertex(edge) + label, edge = surface.opposite_edge(label, edge) + polygon = surface.polygon(label) + start += polygon.vertex(edge + 1) + if position.is_vertex(): + vertex = position.get_vertex() + from flatsurf.geometry.euclidean import ccw + + if ( + ccw(polygon.edge(vertex), holonomy) >= 0 + and ccw(-polygon.edge(vertex - 1), holonomy) < 0 + ): + # holonomy points into the polygon + pass + else: + if surface(label, vertex).angle() != 1: + raise ValueError( + "holonomy must point into the polygon at a singular point" + ) + raise NotImplementedError( + "cannot handle holonomy vector points out of the polygon at a marked point yet" + ) + + self._surface = surface + self._label = label + self._start = start + self._holonomy = holonomy + + # TODO: Instead, copy if mutable. + self._start.set_immutable() + self._holonomy.set_immutable() + + @staticmethod + def from_linear_combination(saddle_connections, coordinates): + if len(saddle_connections) != len(coordinates): + raise ValueError + + if len(saddle_connections) != 2: + raise NotImplementedError + + surface = saddle_connections[0].surface() + + if not surface.is_translation_surface(): + raise NotImplementedError + + if surface(*saddle_connections[0].start()) != surface( + *saddle_connections[1].start() + ): + raise ValueError + + holonomy = sum( + [ + coefficient * connection.holonomy() + for (coefficient, connection) in zip(coordinates, saddle_connections) + ] + ) + + label, edge = saddle_connections[0].start() + polygon = surface.polygon(label) + + # TODO: We must factor this rotation algorithm out somehow. It's used in so many places by now. + from flatsurf.geometry.euclidean import ccw + + while ccw(holonomy, -polygon.edge(edge - 1)) <= 0: + label, edge = surface.opposite_edge( + label, (edge - 1) % len(polygon.edges()) + ) + polygon = surface.polygon(label) + + return SurfaceLineSegment(surface, label, polygon.vertex(edge), holonomy) + + def surface(self): + return self._surface + + # TODO: Could speed this up further by doing this upon construction; the expensive get_point_position() is already done there. + @cached_method + def start(self): + return self._surface(*self.start_representative()) + + def start_representative(self): + return self._label, self._start + + def start_tangent_vector(self): + return self._surface.tangent_vector(self._label, self._start, self._holonomy) + + def end_tangent_vector(self): + raise NotImplementedError + + def an_inner_point(self): + segment = self.split()[0] + return self.surface()(segment[0], (segment[1][0] + segment[1][1]) / 2) + + def end(self): + return self._surface(*self.end_representative()) + + def end_representative(self): + end = self.split()[-1] + return end[0], end[1][1] + + def _flow_to_exit(self): + r""" + Split this segment into a segment that lies entirely in its source + polygon, and a rest segment. + + If this segment lies entirely in its source segment, returns ``None`` + as the rest. + + The initial part is returned as a segment label and a Euclidean segment + in the corresponding polygon. + """ + # TDOO: This generic flowing foo should probably be implemented in a better place. + surface = self.surface() + polygon = surface.polygon(self._label) + + end = self._start + self._holonomy + end.set_immutable() + + if polygon.get_point_position(end).is_outside(): + exit = polygon.flow_to_exit(self._start, self._holonomy) + exit.set_immutable() + + Δ = exit - self._start + + rest = SurfaceLineSegment(surface, self._label, exit, self._holonomy - Δ) + + return (self._label, (self._start, exit)), rest + + return (self._label, (self._start, end)), None + + def __bool__(self): + return bool(self._holonomy) + + def holonomy(self, start=None): + if start is None: + start = self._label, self._start + + if start == (self._label, self._start): + return self._holonomy + + # TODO: This is only correct for translation surfaces. (And even there + # it's a bit unclear what this means if start has nothing to do with + # the representative chosen in _start.) + return self._holonomy + + def __repr__(self): + return f"{self.start()}→{self.end()}" + + def __neg__(self): + return SurfaceLineSegment( + self._surface, *self.end_representative(), -self._holonomy + ) + + def split(self, label=None): + r""" + Return this segment split into subsegments that live entirely in + polygons of the surface. + + The subsegments are returned as triples (polygon label, segment in the + euclidean plane, holonomy from the start point of the segment to the + start point of the subsegment). + + If ``label`` is set, only return the subsegments that are in the + polygon with ``label``. + """ + surface = self.surface() + + segments = [] + + holonomy = self.surface().euclidean_plane().vector_space()((0, 0)) + + while True: + if self is None: + break + + (lbl, segment), self = self._flow_to_exit() + + if label is None or label == lbl: + holonomy.set_immutable() + segments.append((lbl, segment, holonomy)) + + # TODO: This assumes that this is a translation surface. + holonomy += segment[1] - segment[0] + + return segments + + def __eq__(self, other): + if self.start() != other.start(): + return False + + start = self.start_representative() + + return self.holonomy(start) == other.holonomy(start) + + def __hash__(self): + return hash((self.start(), self._holonomy)) + + def plot(self, graphical_surface=None): + plot_surface = graphical_surface is None + + if graphical_surface is None: + graphical_surface = self.surface().graphical_surface( + edge_labels=False, polygon_labels=False + ) + + plot = [] + if plot_surface: + plot.append(graphical_surface.plot()) + + subsegments = self.split() + for s, (label, subsegment, _) in enumerate(subsegments): + polygon = self.surface().polygon(label) + + graphical_polygon = graphical_surface.graphical_polygon(label) + + # TODO: This should be implemented in graphical polygon probably. + # TODO: This assumes that the surface is a translation surface. + vertex = graphical_polygon.transformed_vertex(0) + graphical_subsegment = [ + vertex + (subsegment[0] - polygon.vertex(0)), + vertex + (subsegment[1] - polygon.vertex(0)), + ] + + if s == len(subsegments) - 1: + from sage.all import arrow2d + + plot.append( + arrow2d( + *graphical_subsegment, arrowsize=1.5, width=0.4, color="green" + ) + ) + else: + from sage.all import line2d + + plot.append(line2d(graphical_subsegment)) + + return sum(plot) + + +def VoronoiCellDecomposition(surface): + if surface.is_delaunay_triangulated(): + return VoronoiCellDecomposition_delaunay(surface) + + delaunay_triangulation = surface.delaunay_triangulate() + return MappedCellDecomposition( + VoronoiCellDecomposition(delaunay_triangulation.codomain()), + delaunay_triangulation, + ) + + +def ApproximateWeightedVoronoiCellDecomposition(surface): + if surface.is_delaunay_triangulated(): + return ApproximateWeightedVoronoiCellDecomposition_delaunay(surface) + + delaunay_triangulation = surface.delaunay_triangulate() + return MappedCellDecomposition( + ApproximateWeightedVoronoiCellDecomposition(delaunay_triangulation.codomain()), + delaunay_triangulation, + ) diff --git a/flatsurf/graphical/polygon.py b/flatsurf/graphical/polygon.py index a54af7e8e..4825ea617 100644 --- a/flatsurf/graphical/polygon.py +++ b/flatsurf/graphical/polygon.py @@ -24,6 +24,7 @@ from sage.plot.text import text from sage.plot.line import line2d from sage.plot.point import point2d +from sage.misc.cachefunc import cached_method from flatsurf.geometry.similarity import SimilarityGroup @@ -77,7 +78,7 @@ def __repr__(self): sage: gs.graphical_polygon(0) GraphicalPolygon with vertices [(0.0, 0.0), (2.0, -2.0), (2.0, 0.0)] """ - return "GraphicalPolygon with vertices {}".format(self._v) + return "GraphicalPolygon with vertices {}".format(list(self._v())) def base_polygon(self): r""" @@ -89,8 +90,13 @@ def transformed_vertex(self, e): r""" Return the graphical coordinates of the vertex in double precision. """ + # TODO: Where would the double precision come from that the docstring talks about? return self._transformation(self._p.vertex(e)) + @cached_method + def _v(self): + return tuple(V(self._transformation(v)) for v in self._p.vertices()) + def xmin(self): r""" Return the minimal x-coordinate of a vertex. @@ -99,7 +105,7 @@ def xmin(self): to fit with Sage conventions this should be xmin """ - return min([v[0] for v in self._v]) + return min([v[0] for v in self._v()]) def ymin(self): r""" @@ -109,7 +115,7 @@ def ymin(self): to fit with Sage conventions this should be ymin """ - return min([v[1] for v in self._v]) + return min([v[1] for v in self._v()]) def xmax(self): r""" @@ -119,7 +125,7 @@ def xmax(self): to fit with Sage conventions this should be xmax """ - return max([v[0] for v in self._v]) + return max([v[0] for v in self._v()]) def ymax(self): r""" @@ -129,7 +135,7 @@ def ymax(self): To fit with Sage conventions this should be ymax """ - return max([v[1] for v in self._v]) + return max([v[1] for v in self._v()]) def bounding_box(self): r""" @@ -186,8 +192,7 @@ def set_transformation(self, transformation=None): self._transformation = SimilarityGroup(self._p.base_ring()).one() else: self._transformation = transformation - # recompute the location of vertices: - self._v = [V(self._transformation(v)) for v in self._p.vertices()] + self._v.clear_cache() def plot_polygon(self, **options): r""" @@ -198,7 +203,7 @@ def plot_polygon(self, **options): """ if "axes" not in options: options["axes"] = False - return polygon2d(self._v, **options) + return polygon2d(self._v(), **options) def plot_label(self, label, **options): r""" @@ -214,7 +219,7 @@ def plot_label(self, label, **options): if "position" in options: return text(str(label), options.pop("position"), **options) else: - return text(str(label), sum(self._v) / len(self._v), **options) + return text(str(label), sum(self._v()) / len(self._v()), **options) def plot_edge(self, e, **options): r""" @@ -224,7 +229,7 @@ def plot_edge(self, e, **options): Options are processed as in sage.plot.line.line2d. """ return line2d( - [self._v[e], self._v[(e + 1) % len(self.base_polygon().vertices())]], + [self._v()[e], self._v()[(e + 1) % len(self.base_polygon().vertices())]], **options ) @@ -245,7 +250,7 @@ def plot_edge_label(self, i, label, **options): Other options are processed as in sage.plot.text.text. """ - e = self._v[(i + 1) % len(self.base_polygon().vertices())] - self._v[i] + e = self._v()[(i + 1) % len(self.base_polygon().vertices())] - self._v()[i] if "position" in options: if options["position"] not in ["inside", "outside", "edge"]: @@ -321,7 +326,7 @@ def plot_edge_label(self, i, label, **options): # Now push_off stores the amount it should be pushed into the polygon no = V((-e[1], e[0])) - return text(label, self._v[i] + t * e + push_off * no, **options) + return text(label, self._v()[i] + t * e + push_off * no, **options) def plot_zero_flag(self, **options): r""" @@ -339,7 +344,10 @@ def plot_zero_flag(self, **options): t = 0.5 return line2d( - [self._v[0], self._v[0] + t * (sum(self._v) / len(self._v) - self._v[0])], + [ + self._v()[0], + self._v()[0] + t * (sum(self._v()) / len(self._v()) - self._v()[0]), + ], **options ) diff --git a/flatsurf/graphical/surface.py b/flatsurf/graphical/surface.py index e8a23fd07..ebca09f52 100644 --- a/flatsurf/graphical/surface.py +++ b/flatsurf/graphical/surface.py @@ -1,3 +1,8 @@ +# TODO: It is annoying that the zero flag is not normally shown when plotting. +# Whenever polygon labels are shown, the default should be to show the zero +# flag. Also, there should be an option to enable it with a zero_flags=True or +# something like that. Finally, it would be nice to not show edge gluings if +# there is only one possible translation gluing. r""" .. jupyter-execute:: :hide-code: @@ -35,6 +40,8 @@ # along with sage-flatsurf. If not, see . # **************************************************************************** +from sage.misc.cachefunc import cached_function + from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ from sage.modules.free_module_element import vector @@ -134,18 +141,10 @@ class works. (Apologies!) - ``'letter'`` -- add matching letters to glued edges in an arbitrary way - - ``adjacencies`` -- a list of pairs ``(p,e)`` to be used to set - adjacencies of polygons. - - ``default_position_function`` -- a function mapping polygon labels to similarities describing the position of the corresponding polygon. - If adjacencies is not defined and the surface is finite, make_all_visible() - is called to make all polygons visible. - - EXAMPLES: - - .. jupyter-execute:: + EXAMPLES:: sage: from flatsurf import similarity_surfaces sage: from flatsurf.graphical.surface import GraphicalSurface @@ -180,9 +179,11 @@ def __init__( self, surface, adjacencies=None, + polygon_transformations=None, polygon_labels=True, edge_labels="gluings", default_position_function=None, + zero_flags=None, ): self._ss = surface self._default_position_function = default_position_function @@ -193,9 +194,14 @@ def __init__( self._visible = set(self._ss.roots()) - if adjacencies is None: - if self._ss.is_finite_type(): - self.make_all_visible() + if adjacencies is not None: + # TODO: This is not implemented anymore. We should just revamp this whole interface. + for root in surface.roots(): + self.make_visible(root) + else: + if polygon_transformations is None: + if self._ss.is_finite_type(): + self.layout() self._edge_labels = None self.will_plot_polygons = True @@ -275,17 +281,19 @@ def __init__( r"""Options passed to :meth:`.polygon.GraphicalPolygon.plot_zero_flag` when plotting a zero_flag.""" self.process_options( - adjacencies=adjacencies, + polygon_transformations=polygon_transformations, polygon_labels=polygon_labels, edge_labels=edge_labels, + zero_flags=zero_flags, ) def process_options( self, - adjacencies=None, + polygon_transformations=None, polygon_labels=None, edge_labels=None, default_position_function=None, + zero_flags=None, ): r""" Process the options listed as if the graphical_surface was first @@ -306,9 +314,13 @@ def process_options( ... ValueError: invalid value for edge_labels (='hey') """ - if adjacencies is not None: - for p, e in adjacencies: - self.make_adjacent(p, e) + for label, transformation in (polygon_transformations or {}).items(): + from flatsurf.graphical.polygon import GraphicalPolygon + + self._polygons[label] = GraphicalPolygon( + self._ss.polygon(label), transformation=transformation + ) + self.make_visible(label) if polygon_labels is not None: if not isinstance(polygon_labels, bool): @@ -330,6 +342,12 @@ def process_options( "invalid value for edge_labels (={!r})".format(edge_labels) ) + if zero_flags is not None: + if not isinstance(zero_flags, bool): + raise ValueError("zero_flags must be True, False or None") + + self.will_plot_zero_flags = zero_flags + if default_position_function is not None: self._default_position_function = default_position_function @@ -361,6 +379,10 @@ def copy(self): """ gs = GraphicalSurface( self.get_surface(), + polygon_transformations={ + label: polygon.transformation() + for (label, polygon) in self._polygons.items() + }, default_position_function=self._default_position_function, ) @@ -518,6 +540,131 @@ def make_all_visible(self, adjacent=None, limit=None): if i >= limit: return + def layout(self): + surface = self._ss + + self.make_all_visible() + + for label in surface.labels(): + if label not in surface.roots(): + self.hide(label) + + @cached_function + def polygon_after_glue(label, edge): + assert not self.is_visible(label) + opposite_label, opposite_edge = surface.opposite_edge(label, edge) + assert self.is_visible(opposite_label) + self.make_adjacent(opposite_label, opposite_edge, visible=False) + assert self.is_adjacent(label, edge) + return self.graphical_polygon(label).copy() + + @cached_function + def transformed_vertex_after_glue(label, edge, vertex): + return polygon_after_glue(label, edge).transformed_vertex(vertex) + + @cached_function + def transformed_vertex(label, vertex): + assert self.is_visible(label) + return self.graphical_polygon(label).transformed_vertex(vertex) + + while True: + invisible_labels = [ + label for label in surface.labels() if not self.is_visible(label) + ] + if not invisible_labels: + break + + def edge_score(label, edge): + polygon = surface.polygon(label) + + opposite_edge = surface.opposite_edge(label, edge) + if opposite_edge is None: + return -1e9 + opposite_label, opposite_edge = opposite_edge + + if not self.is_visible(opposite_label): + return -1e9 + + score = 0 + + adjacents = [] + + for e in range(len(polygon.vertices())): + opposite_edge = surface.opposite_edge(label, e) + if opposite_edge is None: + continue + opposite_label, opposite_edge = opposite_edge + + if not self.is_visible(opposite_label): + continue + + if transformed_vertex_after_glue( + label, edge, e + ) == transformed_vertex( + opposite_label, opposite_edge + 1 + ) and transformed_vertex_after_glue( + label, edge, e + 1 + ) == transformed_vertex( + opposite_label, opposite_edge + ): + adjacents.append(opposite_label) + + score += len(adjacents) + + assert score >= 1 + + for visible in self.visible(): + if visible in adjacents: + continue + + visible_polygon = surface.polygon(visible) + + intersections = 0 + for e in range(len(polygon.vertices())): + for f in range(len(visible_polygon.vertices())): + from flatsurf.geometry.euclidean import ( + is_segment_intersecting, + ) + + intersection = is_segment_intersecting( + ( + transformed_vertex_after_glue(label, edge, e), + transformed_vertex_after_glue(label, edge, e + 1), + ), + ( + transformed_vertex(visible, f), + transformed_vertex(visible, f + 1), + ), + ) + if intersection == 2: + intersections += 1 + + score -= intersections * 100 + + return score + + def label_score(label): + assert not self.is_visible(label) + + polygon = surface.polygon(label) + + return max( + edge_score(label, edge) for edge in range(len(polygon.vertices())) + ) + + label = max(invisible_labels, key=label_score) + polygon = surface.polygon(label) + + edge = max( + range(len(polygon.vertices())), key=lambda edge: edge_score(label, edge) + ) + self.make_adjacent(*surface.opposite_edge(label, edge)) + assert self.is_adjacent(label, edge) + assert ( + polygon_after_glue(label, edge).transformation() + == self.graphical_polygon(label).transformation() + ) + def get_surface(self): r""" Return the underlying similarity surface. @@ -676,6 +823,7 @@ def is_adjacent(self, p, e): return False pp, ee = opposite_edge if not self.is_visible(pp): + # TODO: Why does this only check visibility on pp? (and not also on p.) return False g = self.graphical_polygon(p) gg = self.graphical_polygon(pp) @@ -742,10 +890,10 @@ def to_surface( sage: from flatsurf import similarity_surfaces sage: s = similarity_surfaces.example() sage: gs = s.graphical_surface() - sage: gs.to_surface((1,-2)) + sage: gs.to_surface((1,1/2)) Point (1, 1/2) of polygon 1 - sage: gs.to_surface((1,-2), v=(1,0)) - SimilaritySurfaceTangentVector in polygon 1 based at (1, 1/2) with vector (1, -1/2) + sage: gs.to_surface((1,1/2), v=(1,0)) + SimilaritySurfaceTangentVector in polygon 1 based at (1, 1/2) with vector (1, 0) sage: from flatsurf import translation_surfaces sage: s = translation_surfaces.infinite_staircase() diff --git a/mpreal-support.h b/mpreal-support.h new file mode 100644 index 000000000..b82e41128 --- /dev/null +++ b/mpreal-support.h @@ -0,0 +1,213 @@ +// This file is part of a joint effort between Eigen, a lightweight C++ template library +// for linear algebra, and MPFR C++, a C++ interface to MPFR library (http://www.holoborodko.com/pavel/) +// +// Copyright (C) 2010-2012 Pavel Holoborodko +// Copyright (C) 2010 Konstantin Holoborodko +// Copyright (C) 2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MPREALSUPPORT_MODULE_H +#define EIGEN_MPREALSUPPORT_MODULE_H + +#include +#include "mpreal.h" + +namespace Eigen { + +/** + * \defgroup MPRealSupport_Module MPFRC++ Support module + * \code + * #include + * \endcode + * + * This module provides support for multi precision floating point numbers + * via the MPFR C++ + * library which itself is built upon MPFR/GMP. + * + * \warning MPFR C++ is licensed under the GPL. + * + * You can find a copy of MPFR C++ that is known to be compatible in the unsupported/test/mpreal folder. + * + * Here is an example: + * +\code +#include +#include +#include +using namespace mpfr; +using namespace Eigen; +int main() +{ + // set precision to 256 bits (double has only 53 bits) + mpreal::set_default_prec(256); + // Declare matrix and vector types with multi-precision scalar type + typedef Matrix MatrixXmp; + typedef Matrix VectorXmp; + + MatrixXmp A = MatrixXmp::Random(100,100); + VectorXmp b = VectorXmp::Random(100); + + // Solve Ax=b using LU + VectorXmp x = A.lu().solve(b); + std::cout << "relative error: " << (A*x - b).norm() / b.norm() << std::endl; + return 0; +} +\endcode + * + */ + + template<> struct NumTraits + : GenericNumTraits + { + enum { + IsInteger = 0, + IsSigned = 1, + IsComplex = 0, + RequireInitialization = 1, + ReadCost = HugeCost, + AddCost = HugeCost, + MulCost = HugeCost + }; + + typedef mpfr::mpreal Real; + typedef mpfr::mpreal NonInteger; + + static inline Real highest (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::maxval(Precision); } + static inline Real lowest (long Precision = mpfr::mpreal::get_default_prec()) { return -mpfr::maxval(Precision); } + + // Constants + static inline Real Pi (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_pi(Precision); } + static inline Real Euler (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_euler(Precision); } + static inline Real Log2 (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_log2(Precision); } + static inline Real Catalan (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_catalan(Precision); } + + static inline Real epsilon (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::machine_epsilon(Precision); } + static inline Real epsilon (const Real& x) { return mpfr::machine_epsilon(x); } + +#ifdef MPREAL_HAVE_DYNAMIC_STD_NUMERIC_LIMITS + static inline int digits10 (long Precision = mpfr::mpreal::get_default_prec()) { return std::numeric_limits::digits10(Precision); } + static inline int digits10 (const Real& x) { return std::numeric_limits::digits10(x); } + + static inline int digits () { return std::numeric_limits::digits(); } + static inline int digits (const Real& x) { return std::numeric_limits::digits(x); } +#endif + + static inline Real dummy_precision() + { + mpfr_prec_t weak_prec = ((mpfr::mpreal::get_default_prec()-1) * 90) / 100; + return mpfr::machine_epsilon(weak_prec); + } + }; + + namespace internal { + + template<> inline mpfr::mpreal random() + { + return mpfr::random(); + } + + template<> inline mpfr::mpreal random(const mpfr::mpreal& a, const mpfr::mpreal& b) + { + return a + (b-a) * random(); + } + + inline bool isMuchSmallerThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps) + { + return mpfr::abs(a) <= mpfr::abs(b) * eps; + } + + inline bool isApprox(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps) + { + return mpfr::isEqualFuzzy(a,b,eps); + } + + inline bool isApproxOrLessThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps) + { + return a <= b || mpfr::isEqualFuzzy(a,b,eps); + } + + template<> inline long double cast(const mpfr::mpreal& x) + { return x.toLDouble(); } + + template<> inline double cast(const mpfr::mpreal& x) + { return x.toDouble(); } + + template<> inline long cast(const mpfr::mpreal& x) + { return x.toLong(); } + + template<> inline int cast(const mpfr::mpreal& x) + { return int(x.toLong()); } + + // Specialize GEBP kernel and traits for mpreal (no need for peeling, nor complicated stuff) + // This also permits to directly call mpfr's routines and avoid many temporaries produced by mpreal + template<> + class gebp_traits + { + public: + typedef mpfr::mpreal ResScalar; + enum { + Vectorizable = false, + LhsPacketSize = 1, + RhsPacketSize = 1, + ResPacketSize = 1, + NumberOfRegisters = 1, + nr = 1, + mr = 1, + LhsProgress = 1, + RhsProgress = 1 + }; + typedef ResScalar LhsPacket; + typedef ResScalar RhsPacket; + typedef ResScalar ResPacket; + typedef LhsPacket LhsPacket4Packing; + + }; + + + + template + struct gebp_kernel + { + typedef mpfr::mpreal mpreal; + + EIGEN_DONT_INLINE + void operator()(const DataMapper& res, const mpreal* blockA, const mpreal* blockB, + Index rows, Index depth, Index cols, const mpreal& alpha, + Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0) + { + if(rows==0 || cols==0 || depth==0) + return; + + mpreal acc1(0,mpfr_get_prec(blockA[0].mpfr_srcptr())), + tmp (0,mpfr_get_prec(blockA[0].mpfr_srcptr())); + + if(strideA==-1) strideA = depth; + if(strideB==-1) strideB = depth; + + for(Index i=0; i. +*/ + +#ifndef __MPREAL_H__ +#define __MPREAL_H__ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +// Options +#define MPREAL_HAVE_MSVC_DEBUGVIEW // Enable Debugger Visualizer for "Debug" builds in MSVC. +#define MPREAL_HAVE_DYNAMIC_STD_NUMERIC_LIMITS // Enable extended std::numeric_limits specialization. + // Meaning that "digits", "round_style" and similar members are defined as functions, not constants. + // See std::numeric_limits at the end of the file for more information. + +// Library version +#define MPREAL_VERSION_MAJOR 3 +#define MPREAL_VERSION_MINOR 6 +#define MPREAL_VERSION_PATCHLEVEL 9 +#define MPREAL_VERSION_STRING "3.6.9" + +// Detect compiler using signatures from http://predef.sourceforge.net/ +#if defined(__GNUC__) && defined(__INTEL_COMPILER) + #define MPREAL_ISINF(x) isinf(x) // Intel ICC compiler on Linux + +#elif defined(_MSC_VER) // Microsoft Visual C++ + #define MPREAL_ISINF(x) (!_finite(x)) + +#else + #define MPREAL_ISINF(x) std::isinf(x) // GNU C/C++ (and/or other compilers), just hope for C99 conformance +#endif + +// A Clang feature extension to determine compiler features. +#ifndef __has_feature + #define __has_feature(x) 0 +#endif + +// Detect support for r-value references (move semantic). +// Move semantic should be enabled with great care in multi-threading environments, +// especially if MPFR uses custom memory allocators. +// Everything should be thread-safe and support passing ownership over thread boundary. +#if (__has_feature(cxx_rvalue_references) || \ + defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L || \ + (defined(_MSC_VER) && _MSC_VER >= 1600) && !defined(MPREAL_DISABLE_MOVE_SEMANTIC)) + + #define MPREAL_HAVE_MOVE_SUPPORT + + // Use fields in mpfr_t structure to check if it was initialized / set dummy initialization + #define mpfr_is_initialized(x) (0 != (x)->_mpfr_d) + #define mpfr_set_uninitialized(x) ((x)->_mpfr_d = 0 ) +#endif + +// Detect support for explicit converters. +#if (__has_feature(cxx_explicit_conversions) || \ + (defined(__GXX_EXPERIMENTAL_CXX0X__) && __GNUC_MINOR >= 5) || __cplusplus >= 201103L || \ + (defined(_MSC_VER) && _MSC_VER >= 1800) || \ + (defined(__INTEL_COMPILER) && __INTEL_COMPILER >= 1300)) + + #define MPREAL_HAVE_EXPLICIT_CONVERTERS +#endif + +#define MPFR_USE_INTMAX_T // Enable 64-bit integer types - should be defined before mpfr.h + +#if defined(MPREAL_HAVE_MSVC_DEBUGVIEW) && defined(_MSC_VER) && defined(_DEBUG) + #define MPREAL_MSVC_DEBUGVIEW_CODE DebugView = toString(); + #define MPREAL_MSVC_DEBUGVIEW_DATA std::string DebugView; +#else + #define MPREAL_MSVC_DEBUGVIEW_CODE + #define MPREAL_MSVC_DEBUGVIEW_DATA +#endif + +#define MPFR_USE_NO_MACRO +#include + +#if (MPFR_VERSION < MPFR_VERSION_NUM(3,0,0)) + #include // Needed for random() +#endif + +// Less important options +#define MPREAL_DOUBLE_BITS_OVERFLOW -1 // Triggers overflow exception during conversion to double if mpreal + // cannot fit in MPREAL_DOUBLE_BITS_OVERFLOW bits + // = -1 disables overflow checks (default) + +// Fast replacement for mpfr_set_zero(x, +1): +// (a) uses low-level data members, might not be forward compatible +// (b) sign is not set, add (x)->_mpfr_sign = 1; +#define mpfr_set_zero_fast(x) ((x)->_mpfr_exp = __MPFR_EXP_ZERO) + +#if defined(__GNUC__) + #define MPREAL_PERMISSIVE_EXPR __extension__ +#else + #define MPREAL_PERMISSIVE_EXPR +#endif + +namespace mpfr { + +class mpreal { +private: + mpfr_t mp; + +public: + + // Get default rounding mode & precision + inline static mp_rnd_t get_default_rnd() { return (mp_rnd_t)(mpfr_get_default_rounding_mode()); } + inline static mp_prec_t get_default_prec() { return (mpfr_get_default_prec)(); } + + // Constructors && type conversions + mpreal(); + mpreal(const mpreal& u); + mpreal(const mpf_t u); + mpreal(const mpz_t u, mp_prec_t prec = mpreal::get_default_prec(), mp_rnd_t mode = mpreal::get_default_rnd()); + mpreal(const mpq_t u, mp_prec_t prec = mpreal::get_default_prec(), mp_rnd_t mode = mpreal::get_default_rnd()); + mpreal(const double u, mp_prec_t prec = mpreal::get_default_prec(), mp_rnd_t mode = mpreal::get_default_rnd()); + mpreal(const long double u, mp_prec_t prec = mpreal::get_default_prec(), mp_rnd_t mode = mpreal::get_default_rnd()); + mpreal(const unsigned long long int u, mp_prec_t prec = mpreal::get_default_prec(), mp_rnd_t mode = mpreal::get_default_rnd()); + mpreal(const long long int u, mp_prec_t prec = mpreal::get_default_prec(), mp_rnd_t mode = mpreal::get_default_rnd()); + mpreal(const unsigned long int u, mp_prec_t prec = mpreal::get_default_prec(), mp_rnd_t mode = mpreal::get_default_rnd()); + mpreal(const unsigned int u, mp_prec_t prec = mpreal::get_default_prec(), mp_rnd_t mode = mpreal::get_default_rnd()); + mpreal(const long int u, mp_prec_t prec = mpreal::get_default_prec(), mp_rnd_t mode = mpreal::get_default_rnd()); + mpreal(const int u, mp_prec_t prec = mpreal::get_default_prec(), mp_rnd_t mode = mpreal::get_default_rnd()); + + // Construct mpreal from mpfr_t structure. + // shared = true allows to avoid deep copy, so that mpreal and 'u' share the same data & pointers. + mpreal(const mpfr_t u, bool shared = false); + + mpreal(const char* s, mp_prec_t prec = mpreal::get_default_prec(), int base = 10, mp_rnd_t mode = mpreal::get_default_rnd()); + mpreal(const std::string& s, mp_prec_t prec = mpreal::get_default_prec(), int base = 10, mp_rnd_t mode = mpreal::get_default_rnd()); + + ~mpreal(); + +#ifdef MPREAL_HAVE_MOVE_SUPPORT + mpreal& operator=(mpreal&& v); + mpreal(mpreal&& u); +#endif + + // Operations + // = + // +, -, *, /, ++, --, <<, >> + // *=, +=, -=, /=, + // <, >, ==, <=, >= + + // = + mpreal& operator=(const mpreal& v); + mpreal& operator=(const mpf_t v); + mpreal& operator=(const mpz_t v); + mpreal& operator=(const mpq_t v); + mpreal& operator=(const long double v); + mpreal& operator=(const double v); + mpreal& operator=(const unsigned long int v); + mpreal& operator=(const unsigned long long int v); + mpreal& operator=(const long long int v); + mpreal& operator=(const unsigned int v); + mpreal& operator=(const long int v); + mpreal& operator=(const int v); + mpreal& operator=(const char* s); + mpreal& operator=(const std::string& s); + template mpreal& operator= (const std::complex& z); + + // + + mpreal& operator+=(const mpreal& v); + mpreal& operator+=(const mpf_t v); + mpreal& operator+=(const mpz_t v); + mpreal& operator+=(const mpq_t v); + mpreal& operator+=(const long double u); + mpreal& operator+=(const double u); + mpreal& operator+=(const unsigned long int u); + mpreal& operator+=(const unsigned int u); + mpreal& operator+=(const long int u); + mpreal& operator+=(const int u); + + mpreal& operator+=(const long long int u); + mpreal& operator+=(const unsigned long long int u); + mpreal& operator-=(const long long int u); + mpreal& operator-=(const unsigned long long int u); + mpreal& operator*=(const long long int u); + mpreal& operator*=(const unsigned long long int u); + mpreal& operator/=(const long long int u); + mpreal& operator/=(const unsigned long long int u); + + const mpreal operator+() const; + mpreal& operator++ (); + const mpreal operator++ (int); + + // - + mpreal& operator-=(const mpreal& v); + mpreal& operator-=(const mpz_t v); + mpreal& operator-=(const mpq_t v); + mpreal& operator-=(const long double u); + mpreal& operator-=(const double u); + mpreal& operator-=(const unsigned long int u); + mpreal& operator-=(const unsigned int u); + mpreal& operator-=(const long int u); + mpreal& operator-=(const int u); + const mpreal operator-() const; + friend const mpreal operator-(const unsigned long int b, const mpreal& a); + friend const mpreal operator-(const unsigned int b, const mpreal& a); + friend const mpreal operator-(const long int b, const mpreal& a); + friend const mpreal operator-(const int b, const mpreal& a); + friend const mpreal operator-(const double b, const mpreal& a); + mpreal& operator-- (); + const mpreal operator-- (int); + + // * + mpreal& operator*=(const mpreal& v); + mpreal& operator*=(const mpz_t v); + mpreal& operator*=(const mpq_t v); + mpreal& operator*=(const long double v); + mpreal& operator*=(const double v); + mpreal& operator*=(const unsigned long int v); + mpreal& operator*=(const unsigned int v); + mpreal& operator*=(const long int v); + mpreal& operator*=(const int v); + + // / + mpreal& operator/=(const mpreal& v); + mpreal& operator/=(const mpz_t v); + mpreal& operator/=(const mpq_t v); + mpreal& operator/=(const long double v); + mpreal& operator/=(const double v); + mpreal& operator/=(const unsigned long int v); + mpreal& operator/=(const unsigned int v); + mpreal& operator/=(const long int v); + mpreal& operator/=(const int v); + friend const mpreal operator/(const unsigned long int b, const mpreal& a); + friend const mpreal operator/(const unsigned int b, const mpreal& a); + friend const mpreal operator/(const long int b, const mpreal& a); + friend const mpreal operator/(const int b, const mpreal& a); + friend const mpreal operator/(const double b, const mpreal& a); + + //<<= Fast Multiplication by 2^u + mpreal& operator<<=(const unsigned long int u); + mpreal& operator<<=(const unsigned int u); + mpreal& operator<<=(const long int u); + mpreal& operator<<=(const int u); + + //>>= Fast Division by 2^u + mpreal& operator>>=(const unsigned long int u); + mpreal& operator>>=(const unsigned int u); + mpreal& operator>>=(const long int u); + mpreal& operator>>=(const int u); + + // Type Conversion operators + bool toBool ( ) const; + long toLong (mp_rnd_t mode = GMP_RNDZ) const; + unsigned long toULong (mp_rnd_t mode = GMP_RNDZ) const; + long long toLLong (mp_rnd_t mode = GMP_RNDZ) const; + unsigned long long toULLong (mp_rnd_t mode = GMP_RNDZ) const; + float toFloat (mp_rnd_t mode = GMP_RNDN) const; + double toDouble (mp_rnd_t mode = GMP_RNDN) const; + long double toLDouble (mp_rnd_t mode = GMP_RNDN) const; + +#if defined (MPREAL_HAVE_EXPLICIT_CONVERTERS) + explicit operator bool () const { return toBool(); } + explicit operator signed char () const { return (signed char)toLong(); } + explicit operator unsigned char () const { return (unsigned char)toULong(); } + explicit operator short () const { return (short)toLong(); } + explicit operator unsigned short () const { return (unsigned short)toULong();} + explicit operator int () const { return (int)toLong(); } + explicit operator unsigned int () const { return (unsigned int)toULong(); } + explicit operator long () const { return toLong(); } + explicit operator unsigned long () const { return toULong(); } + explicit operator long long () const { return toLLong(); } + explicit operator unsigned long long () const { return toULLong(); } + explicit operator float () const { return toFloat(); } + explicit operator double () const { return toDouble(); } + explicit operator long double () const { return toLDouble(); } +#endif + + // Get raw pointers so that mpreal can be directly used in raw mpfr_* functions + ::mpfr_ptr mpfr_ptr(); + ::mpfr_srcptr mpfr_ptr() const; + ::mpfr_srcptr mpfr_srcptr() const; + + // Convert mpreal to string with n significant digits in base b + // n = -1 -> convert with the maximum available digits + std::string toString(int n = -1, int b = 10, mp_rnd_t mode = mpreal::get_default_rnd()) const; + +#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0)) + std::string toString(const std::string& format) const; +#endif + + std::ostream& output(std::ostream& os) const; + + // Math Functions + friend const mpreal sqr (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal sqrt(const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal sqrt(const unsigned long int v, mp_rnd_t rnd_mode); + friend const mpreal cbrt(const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal root(const mpreal& v, unsigned long int k, mp_rnd_t rnd_mode); + friend const mpreal pow (const mpreal& a, const mpreal& b, mp_rnd_t rnd_mode); + friend const mpreal pow (const mpreal& a, const mpz_t b, mp_rnd_t rnd_mode); + friend const mpreal pow (const mpreal& a, const unsigned long int b, mp_rnd_t rnd_mode); + friend const mpreal pow (const mpreal& a, const long int b, mp_rnd_t rnd_mode); + friend const mpreal pow (const unsigned long int a, const mpreal& b, mp_rnd_t rnd_mode); + friend const mpreal pow (const unsigned long int a, const unsigned long int b, mp_rnd_t rnd_mode); + friend const mpreal fabs(const mpreal& v, mp_rnd_t rnd_mode); + + friend const mpreal abs(const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal dim(const mpreal& a, const mpreal& b, mp_rnd_t rnd_mode); + friend inline const mpreal mul_2ui(const mpreal& v, unsigned long int k, mp_rnd_t rnd_mode); + friend inline const mpreal mul_2si(const mpreal& v, long int k, mp_rnd_t rnd_mode); + friend inline const mpreal div_2ui(const mpreal& v, unsigned long int k, mp_rnd_t rnd_mode); + friend inline const mpreal div_2si(const mpreal& v, long int k, mp_rnd_t rnd_mode); + friend int cmpabs(const mpreal& a,const mpreal& b); + + friend const mpreal log (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal log2 (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal logb (const mpreal& v, mp_rnd_t rnd_mode); + friend mp_exp_t ilogb(const mpreal& v); + friend const mpreal log10(const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal exp (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal exp2 (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal exp10(const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal log1p(const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal expm1(const mpreal& v, mp_rnd_t rnd_mode); + + friend const mpreal nextpow2(const mpreal& v, mp_rnd_t rnd_mode); + + friend const mpreal cos(const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal sin(const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal tan(const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal sec(const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal csc(const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal cot(const mpreal& v, mp_rnd_t rnd_mode); + friend int sin_cos(mpreal& s, mpreal& c, const mpreal& v, mp_rnd_t rnd_mode); + + friend const mpreal acos (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal asin (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal atan (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal atan2 (const mpreal& y, const mpreal& x, mp_rnd_t rnd_mode); + friend const mpreal acot (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal asec (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal acsc (const mpreal& v, mp_rnd_t rnd_mode); + + friend const mpreal cosh (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal sinh (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal tanh (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal sech (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal csch (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal coth (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal acosh (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal asinh (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal atanh (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal acoth (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal asech (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal acsch (const mpreal& v, mp_rnd_t rnd_mode); + + friend const mpreal hypot (const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode); + + friend const mpreal fac_ui (unsigned long int v, mp_prec_t prec, mp_rnd_t rnd_mode); + friend const mpreal eint (const mpreal& v, mp_rnd_t rnd_mode); + + friend const mpreal gamma (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal tgamma (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal lngamma (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal lgamma (const mpreal& v, int *signp, mp_rnd_t rnd_mode); + friend const mpreal zeta (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal erf (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal erfc (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal besselj0 (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal besselj1 (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal besseljn (long n, const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal bessely0 (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal bessely1 (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal besselyn (long n, const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal fma (const mpreal& v1, const mpreal& v2, const mpreal& v3, mp_rnd_t rnd_mode); + friend const mpreal fms (const mpreal& v1, const mpreal& v2, const mpreal& v3, mp_rnd_t rnd_mode); + friend const mpreal agm (const mpreal& v1, const mpreal& v2, mp_rnd_t rnd_mode); + friend const mpreal sum (const mpreal tab[], const unsigned long int n, int& status, mp_rnd_t rnd_mode); + friend int sgn (const mpreal& v); + +// MPFR 2.4.0 Specifics +#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0)) + friend int sinh_cosh (mpreal& s, mpreal& c, const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal li2 (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal fmod (const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode); + friend const mpreal rec_sqrt (const mpreal& v, mp_rnd_t rnd_mode); + + // MATLAB's semantic equivalents + friend const mpreal rem (const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode); // Remainder after division + friend const mpreal mod (const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode); // Modulus after division +#endif + +#if (MPFR_VERSION >= MPFR_VERSION_NUM(3,0,0)) + friend const mpreal digamma (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal ai (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal urandom (gmp_randstate_t& state, mp_rnd_t rnd_mode); // use gmp_randinit_default() to init state, gmp_randclear() to clear +#endif + +#if (MPFR_VERSION >= MPFR_VERSION_NUM(3,1,0)) + friend const mpreal grandom (gmp_randstate_t& state, mp_rnd_t rnd_mode); // use gmp_randinit_default() to init state, gmp_randclear() to clear + friend const mpreal grandom (unsigned int seed); +#endif + + // Uniformly distributed random number generation in [0,1] using + // Mersenne-Twister algorithm by default. + // Use parameter to setup seed, e.g.: random((unsigned)time(NULL)) + // Check urandom() for more precise control. + friend const mpreal random(unsigned int seed); + + // Splits mpreal value into fractional and integer parts. + // Returns fractional part and stores integer part in n. + friend const mpreal modf(const mpreal& v, mpreal& n); + + // Constants + // don't forget to call mpfr_free_cache() for every thread where you are using const-functions + friend const mpreal const_log2 (mp_prec_t prec, mp_rnd_t rnd_mode); + friend const mpreal const_pi (mp_prec_t prec, mp_rnd_t rnd_mode); + friend const mpreal const_euler (mp_prec_t prec, mp_rnd_t rnd_mode); + friend const mpreal const_catalan (mp_prec_t prec, mp_rnd_t rnd_mode); + + // returns +inf iff sign>=0 otherwise -inf + friend const mpreal const_infinity(int sign, mp_prec_t prec); + + // Output/ Input + friend std::ostream& operator<<(std::ostream& os, const mpreal& v); + friend std::istream& operator>>(std::istream& is, mpreal& v); + + // Integer Related Functions + friend const mpreal rint (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal ceil (const mpreal& v); + friend const mpreal floor(const mpreal& v); + friend const mpreal round(const mpreal& v); + friend long lround(const mpreal& v); + friend long long llround(const mpreal& v); + friend const mpreal trunc(const mpreal& v); + friend const mpreal rint_ceil (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal rint_floor (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal rint_round (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal rint_trunc (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal frac (const mpreal& v, mp_rnd_t rnd_mode); + friend const mpreal remainder (const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode); + friend const mpreal remquo (const mpreal& x, const mpreal& y, int* q, mp_rnd_t rnd_mode); + + // Miscellaneous Functions + friend const mpreal nexttoward (const mpreal& x, const mpreal& y); + friend const mpreal nextabove (const mpreal& x); + friend const mpreal nextbelow (const mpreal& x); + + // use gmp_randinit_default() to init state, gmp_randclear() to clear + friend const mpreal urandomb (gmp_randstate_t& state); + +// MPFR < 2.4.2 Specifics +#if (MPFR_VERSION <= MPFR_VERSION_NUM(2,4,2)) + friend const mpreal random2 (mp_size_t size, mp_exp_t exp); +#endif + + // Instance Checkers + friend bool isnan (const mpreal& v); + friend bool isinf (const mpreal& v); + friend bool isfinite (const mpreal& v); + + friend bool isnum (const mpreal& v); + friend bool iszero (const mpreal& v); + friend bool isint (const mpreal& v); + +#if (MPFR_VERSION >= MPFR_VERSION_NUM(3,0,0)) + friend bool isregular(const mpreal& v); +#endif + + // Set/Get instance properties + inline mp_prec_t get_prec() const; + inline void set_prec(mp_prec_t prec, mp_rnd_t rnd_mode = get_default_rnd()); // Change precision with rounding mode + + // Aliases for get_prec(), set_prec() - needed for compatibility with std::complex interface + inline mpreal& setPrecision(int Precision, mp_rnd_t RoundingMode = get_default_rnd()); + inline int getPrecision() const; + + // Set mpreal to +/- inf, NaN, +/-0 + mpreal& setInf (int Sign = +1); + mpreal& setNan (); + mpreal& setZero (int Sign = +1); + mpreal& setSign (int Sign, mp_rnd_t RoundingMode = get_default_rnd()); + + //Exponent + mp_exp_t get_exp() const; + int set_exp(mp_exp_t e); + int check_range (int t, mp_rnd_t rnd_mode = get_default_rnd()); + int subnormalize (int t, mp_rnd_t rnd_mode = get_default_rnd()); + + // Inexact conversion from float + inline bool fits_in_bits(double x, int n); + + // Set/Get global properties + static void set_default_prec(mp_prec_t prec); + static void set_default_rnd(mp_rnd_t rnd_mode); + + static mp_exp_t get_emin (void); + static mp_exp_t get_emax (void); + static mp_exp_t get_emin_min (void); + static mp_exp_t get_emin_max (void); + static mp_exp_t get_emax_min (void); + static mp_exp_t get_emax_max (void); + static int set_emin (mp_exp_t exp); + static int set_emax (mp_exp_t exp); + + // Efficient swapping of two mpreal values - needed for std algorithms + friend void swap(mpreal& x, mpreal& y); + + friend const mpreal fmax(const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode); + friend const mpreal fmin(const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode); + +private: + // Human friendly Debug Preview in Visual Studio. + // Put one of these lines: + // + // mpfr::mpreal= ; Show value only + // mpfr::mpreal=, bits ; Show value & precision + // + // at the beginning of + // [Visual Studio Installation Folder]\Common7\Packages\Debugger\autoexp.dat + MPREAL_MSVC_DEBUGVIEW_DATA + + // "Smart" resources deallocation. Checks if instance initialized before deletion. + void clear(::mpfr_ptr); +}; + +////////////////////////////////////////////////////////////////////////// +// Exceptions +class conversion_overflow : public std::exception { +public: + std::string why() { return "inexact conversion from floating point"; } +}; + +////////////////////////////////////////////////////////////////////////// +// Constructors & converters +// Default constructor: creates mp number and initializes it to 0. +inline mpreal::mpreal() +{ + mpfr_init2(mpfr_ptr(), mpreal::get_default_prec()); + mpfr_set_zero_fast(mpfr_ptr()); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const mpreal& u) +{ + mpfr_init2(mpfr_ptr(),mpfr_get_prec(u.mpfr_srcptr())); + mpfr_set (mpfr_ptr(),u.mpfr_srcptr(),mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +#ifdef MPREAL_HAVE_MOVE_SUPPORT +inline mpreal::mpreal(mpreal&& other) +{ + mpfr_set_uninitialized(mpfr_ptr()); // make sure "other" holds null-pointer (in uninitialized state) + mpfr_swap(mpfr_ptr(), other.mpfr_ptr()); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal& mpreal::operator=(mpreal&& other) +{ + if (this != &other) + { + mpfr_swap(mpfr_ptr(), other.mpfr_ptr()); // destructor for "other" will be called just afterwards + MPREAL_MSVC_DEBUGVIEW_CODE; + } + return *this; +} +#endif + +inline mpreal::mpreal(const mpfr_t u, bool shared) +{ + if(shared) + { + std::memcpy(mpfr_ptr(), u, sizeof(mpfr_t)); + } + else + { + mpfr_init2(mpfr_ptr(), mpfr_get_prec(u)); + mpfr_set (mpfr_ptr(), u, mpreal::get_default_rnd()); + } + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const mpf_t u) +{ + mpfr_init2(mpfr_ptr(),(mp_prec_t) mpf_get_prec(u)); // (gmp: mp_bitcnt_t) unsigned long -> long (mpfr: mp_prec_t) + mpfr_set_f(mpfr_ptr(),u,mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const mpz_t u, mp_prec_t prec, mp_rnd_t mode) +{ + mpfr_init2(mpfr_ptr(), prec); + mpfr_set_z(mpfr_ptr(), u, mode); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const mpq_t u, mp_prec_t prec, mp_rnd_t mode) +{ + mpfr_init2(mpfr_ptr(), prec); + mpfr_set_q(mpfr_ptr(), u, mode); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const double u, mp_prec_t prec, mp_rnd_t mode) +{ + mpfr_init2(mpfr_ptr(), prec); + +#if (MPREAL_DOUBLE_BITS_OVERFLOW > -1) + if(fits_in_bits(u, MPREAL_DOUBLE_BITS_OVERFLOW)) + { + mpfr_set_d(mpfr_ptr(), u, mode); + }else + throw conversion_overflow(); +#else + mpfr_set_d(mpfr_ptr(), u, mode); +#endif + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const long double u, mp_prec_t prec, mp_rnd_t mode) +{ + mpfr_init2 (mpfr_ptr(), prec); + mpfr_set_ld(mpfr_ptr(), u, mode); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const unsigned long long int u, mp_prec_t prec, mp_rnd_t mode) +{ + mpfr_init2 (mpfr_ptr(), prec); + mpfr_set_uj(mpfr_ptr(), u, mode); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const long long int u, mp_prec_t prec, mp_rnd_t mode) +{ + mpfr_init2 (mpfr_ptr(), prec); + mpfr_set_sj(mpfr_ptr(), u, mode); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const unsigned long int u, mp_prec_t prec, mp_rnd_t mode) +{ + mpfr_init2 (mpfr_ptr(), prec); + mpfr_set_ui(mpfr_ptr(), u, mode); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const unsigned int u, mp_prec_t prec, mp_rnd_t mode) +{ + mpfr_init2 (mpfr_ptr(), prec); + mpfr_set_ui(mpfr_ptr(), u, mode); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const long int u, mp_prec_t prec, mp_rnd_t mode) +{ + mpfr_init2 (mpfr_ptr(), prec); + mpfr_set_si(mpfr_ptr(), u, mode); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const int u, mp_prec_t prec, mp_rnd_t mode) +{ + mpfr_init2 (mpfr_ptr(), prec); + mpfr_set_si(mpfr_ptr(), u, mode); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const char* s, mp_prec_t prec, int base, mp_rnd_t mode) +{ + mpfr_init2 (mpfr_ptr(), prec); + mpfr_set_str(mpfr_ptr(), s, base, mode); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mpreal::mpreal(const std::string& s, mp_prec_t prec, int base, mp_rnd_t mode) +{ + mpfr_init2 (mpfr_ptr(), prec); + mpfr_set_str(mpfr_ptr(), s.c_str(), base, mode); + + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline void mpreal::clear(::mpfr_ptr x) +{ +#ifdef MPREAL_HAVE_MOVE_SUPPORT + if(mpfr_is_initialized(x)) +#endif + mpfr_clear(x); +} + +inline mpreal::~mpreal() +{ + clear(mpfr_ptr()); +} + +// internal namespace needed for template magic +namespace internal{ + + // Use SFINAE to restrict arithmetic operations instantiation only for numeric types + // This is needed for smooth integration with libraries based on expression templates, like Eigen. + // TODO: Do the same for boolean operators. + template struct result_type {}; + + template <> struct result_type {typedef mpreal type;}; + template <> struct result_type {typedef mpreal type;}; + template <> struct result_type {typedef mpreal type;}; + template <> struct result_type {typedef mpreal type;}; + template <> struct result_type {typedef mpreal type;}; + template <> struct result_type {typedef mpreal type;}; + template <> struct result_type {typedef mpreal type;}; + template <> struct result_type {typedef mpreal type;}; + template <> struct result_type {typedef mpreal type;}; + template <> struct result_type {typedef mpreal type;}; + template <> struct result_type {typedef mpreal type;}; +} + +// + Addition +template +inline const typename internal::result_type::type + operator+(const mpreal& lhs, const Rhs& rhs){ return mpreal(lhs) += rhs; } + +template +inline const typename internal::result_type::type + operator+(const Lhs& lhs, const mpreal& rhs){ return mpreal(rhs) += lhs; } + +// - Subtraction +template +inline const typename internal::result_type::type + operator-(const mpreal& lhs, const Rhs& rhs){ return mpreal(lhs) -= rhs; } + +template +inline const typename internal::result_type::type + operator-(const Lhs& lhs, const mpreal& rhs){ return mpreal(lhs) -= rhs; } + +// * Multiplication +template +inline const typename internal::result_type::type + operator*(const mpreal& lhs, const Rhs& rhs){ return mpreal(lhs) *= rhs; } + +template +inline const typename internal::result_type::type + operator*(const Lhs& lhs, const mpreal& rhs){ return mpreal(rhs) *= lhs; } + +// / Division +template +inline const typename internal::result_type::type + operator/(const mpreal& lhs, const Rhs& rhs){ return mpreal(lhs) /= rhs; } + +template +inline const typename internal::result_type::type + operator/(const Lhs& lhs, const mpreal& rhs){ return mpreal(lhs) /= rhs; } + +////////////////////////////////////////////////////////////////////////// +// sqrt +const mpreal sqrt(const unsigned int v, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal sqrt(const long int v, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal sqrt(const int v, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal sqrt(const long double v, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal sqrt(const double v, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); + +// abs +inline const mpreal abs(const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()); + +////////////////////////////////////////////////////////////////////////// +// pow +const mpreal pow(const mpreal& a, const unsigned int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const mpreal& a, const int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const mpreal& a, const long double b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const mpreal& a, const double b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); + +const mpreal pow(const unsigned int a, const mpreal& b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const long int a, const mpreal& b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const int a, const mpreal& b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const long double a, const mpreal& b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const double a, const mpreal& b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); + +const mpreal pow(const unsigned long int a, const unsigned int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const unsigned long int a, const long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const unsigned long int a, const int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const unsigned long int a, const long double b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const unsigned long int a, const double b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); + +const mpreal pow(const unsigned int a, const unsigned long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const unsigned int a, const unsigned int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const unsigned int a, const long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const unsigned int a, const int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const unsigned int a, const long double b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const unsigned int a, const double b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); + +const mpreal pow(const long int a, const unsigned long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const long int a, const unsigned int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const long int a, const long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const long int a, const int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const long int a, const long double b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const long int a, const double b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); + +const mpreal pow(const int a, const unsigned long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const int a, const unsigned int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const int a, const long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const int a, const int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const int a, const long double b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const int a, const double b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); + +const mpreal pow(const long double a, const long double b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const long double a, const unsigned long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const long double a, const unsigned int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const long double a, const long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const long double a, const int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); + +const mpreal pow(const double a, const double b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const double a, const unsigned long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const double a, const unsigned int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const double a, const long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +const mpreal pow(const double a, const int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); + +inline const mpreal mul_2ui(const mpreal& v, unsigned long int k, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +inline const mpreal mul_2si(const mpreal& v, long int k, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +inline const mpreal div_2ui(const mpreal& v, unsigned long int k, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); +inline const mpreal div_2si(const mpreal& v, long int k, mp_rnd_t rnd_mode = mpreal::get_default_rnd()); + +////////////////////////////////////////////////////////////////////////// +// Estimate machine epsilon for the given precision +// Returns smallest eps such that 1.0 + eps != 1.0 +inline mpreal machine_epsilon(mp_prec_t prec = mpreal::get_default_prec()); + +// Returns smallest eps such that x + eps != x (relative machine epsilon) +inline mpreal machine_epsilon(const mpreal& x); + +// Gives max & min values for the required precision, +// minval is 'safe' meaning 1 / minval does not overflow +// maxval is 'safe' meaning 1 / maxval does not underflow +inline mpreal minval(mp_prec_t prec = mpreal::get_default_prec()); +inline mpreal maxval(mp_prec_t prec = mpreal::get_default_prec()); + +// 'Dirty' equality check 1: |a-b| < min{|a|,|b|} * eps +inline bool isEqualFuzzy(const mpreal& a, const mpreal& b, const mpreal& eps); + +// 'Dirty' equality check 2: |a-b| < min{|a|,|b|} * eps( min{|a|,|b|} ) +inline bool isEqualFuzzy(const mpreal& a, const mpreal& b); + +// 'Bitwise' equality check +// maxUlps - a and b can be apart by maxUlps binary numbers. +inline bool isEqualUlps(const mpreal& a, const mpreal& b, int maxUlps); + +////////////////////////////////////////////////////////////////////////// +// Convert precision in 'bits' to decimal digits and vice versa. +// bits = ceil(digits*log[2](10)) +// digits = floor(bits*log[10](2)) + +inline mp_prec_t digits2bits(int d); +inline int bits2digits(mp_prec_t b); + +////////////////////////////////////////////////////////////////////////// +// min, max +const mpreal (max)(const mpreal& x, const mpreal& y); +const mpreal (min)(const mpreal& x, const mpreal& y); + +////////////////////////////////////////////////////////////////////////// +// Implementation +////////////////////////////////////////////////////////////////////////// + +////////////////////////////////////////////////////////////////////////// +// Operators - Assignment +inline mpreal& mpreal::operator=(const mpreal& v) +{ + if (this != &v) + { + mp_prec_t tp = mpfr_get_prec( mpfr_srcptr()); + mp_prec_t vp = mpfr_get_prec(v.mpfr_srcptr()); + + if(tp != vp){ + clear(mpfr_ptr()); + mpfr_init2(mpfr_ptr(), vp); + } + + mpfr_set(mpfr_ptr(), v.mpfr_srcptr(), mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; + } + return *this; +} + +inline mpreal& mpreal::operator=(const mpf_t v) +{ + mpfr_set_f(mpfr_ptr(), v, mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator=(const mpz_t v) +{ + mpfr_set_z(mpfr_ptr(), v, mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator=(const mpq_t v) +{ + mpfr_set_q(mpfr_ptr(), v, mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator=(const long double v) +{ + mpfr_set_ld(mpfr_ptr(), v, mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator=(const double v) +{ +#if (MPREAL_DOUBLE_BITS_OVERFLOW > -1) + if(fits_in_bits(v, MPREAL_DOUBLE_BITS_OVERFLOW)) + { + mpfr_set_d(mpfr_ptr(),v,mpreal::get_default_rnd()); + }else + throw conversion_overflow(); +#else + mpfr_set_d(mpfr_ptr(),v,mpreal::get_default_rnd()); +#endif + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator=(const unsigned long int v) +{ + mpfr_set_ui(mpfr_ptr(), v, mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator=(const unsigned int v) +{ + mpfr_set_ui(mpfr_ptr(), v, mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator=(const unsigned long long int v) +{ + mpfr_set_uj(mpfr_ptr(), v, mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator=(const long long int v) +{ + mpfr_set_sj(mpfr_ptr(), v, mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator=(const long int v) +{ + mpfr_set_si(mpfr_ptr(), v, mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator=(const int v) +{ + mpfr_set_si(mpfr_ptr(), v, mpreal::get_default_rnd()); + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator=(const char* s) +{ + // Use other converters for more precise control on base & precision & rounding: + // + // mpreal(const char* s, mp_prec_t prec, int base, mp_rnd_t mode) + // mpreal(const std::string& s,mp_prec_t prec, int base, mp_rnd_t mode) + // + // Here we assume base = 10 and we use precision of target variable. + + mpfr_t t; + + mpfr_init2(t, mpfr_get_prec(mpfr_srcptr())); + + if(0 == mpfr_set_str(t, s, 10, mpreal::get_default_rnd())) + { + mpfr_set(mpfr_ptr(), t, mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + } + + clear(t); + return *this; +} + +inline mpreal& mpreal::operator=(const std::string& s) +{ + // Use other converters for more precise control on base & precision & rounding: + // + // mpreal(const char* s, mp_prec_t prec, int base, mp_rnd_t mode) + // mpreal(const std::string& s,mp_prec_t prec, int base, mp_rnd_t mode) + // + // Here we assume base = 10 and we use precision of target variable. + + mpfr_t t; + + mpfr_init2(t, mpfr_get_prec(mpfr_srcptr())); + + if(0 == mpfr_set_str(t, s.c_str(), 10, mpreal::get_default_rnd())) + { + mpfr_set(mpfr_ptr(), t, mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + } + + clear(t); + return *this; +} + +template +inline mpreal& mpreal::operator= (const std::complex& z) +{ + return *this = z.real(); +} + +////////////////////////////////////////////////////////////////////////// +// + Addition +inline mpreal& mpreal::operator+=(const mpreal& v) +{ + mpfr_add(mpfr_ptr(), mpfr_srcptr(), v.mpfr_srcptr(), mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator+=(const mpf_t u) +{ + *this += mpreal(u); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator+=(const mpz_t u) +{ + mpfr_add_z(mpfr_ptr(),mpfr_srcptr(),u,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator+=(const mpq_t u) +{ + mpfr_add_q(mpfr_ptr(),mpfr_srcptr(),u,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator+= (const long double u) +{ + *this += mpreal(u); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator+= (const double u) +{ +#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0)) + mpfr_add_d(mpfr_ptr(),mpfr_srcptr(),u,mpreal::get_default_rnd()); +#else + *this += mpreal(u); +#endif + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator+=(const unsigned long int u) +{ + mpfr_add_ui(mpfr_ptr(),mpfr_srcptr(),u,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator+=(const unsigned int u) +{ + mpfr_add_ui(mpfr_ptr(),mpfr_srcptr(),u,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator+=(const long int u) +{ + mpfr_add_si(mpfr_ptr(),mpfr_srcptr(),u,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator+=(const int u) +{ + mpfr_add_si(mpfr_ptr(),mpfr_srcptr(),u,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator+=(const long long int u) { *this += mpreal(u); MPREAL_MSVC_DEBUGVIEW_CODE; return *this; } +inline mpreal& mpreal::operator+=(const unsigned long long int u){ *this += mpreal(u); MPREAL_MSVC_DEBUGVIEW_CODE; return *this; } +inline mpreal& mpreal::operator-=(const long long int u) { *this -= mpreal(u); MPREAL_MSVC_DEBUGVIEW_CODE; return *this; } +inline mpreal& mpreal::operator-=(const unsigned long long int u){ *this -= mpreal(u); MPREAL_MSVC_DEBUGVIEW_CODE; return *this; } +inline mpreal& mpreal::operator*=(const long long int u) { *this *= mpreal(u); MPREAL_MSVC_DEBUGVIEW_CODE; return *this; } +inline mpreal& mpreal::operator*=(const unsigned long long int u){ *this *= mpreal(u); MPREAL_MSVC_DEBUGVIEW_CODE; return *this; } +inline mpreal& mpreal::operator/=(const long long int u) { *this /= mpreal(u); MPREAL_MSVC_DEBUGVIEW_CODE; return *this; } +inline mpreal& mpreal::operator/=(const unsigned long long int u){ *this /= mpreal(u); MPREAL_MSVC_DEBUGVIEW_CODE; return *this; } + +inline const mpreal mpreal::operator+()const { return mpreal(*this); } + +inline const mpreal operator+(const mpreal& a, const mpreal& b) +{ + mpreal c(0, (std::max)(mpfr_get_prec(a.mpfr_ptr()), mpfr_get_prec(b.mpfr_ptr()))); + mpfr_add(c.mpfr_ptr(), a.mpfr_srcptr(), b.mpfr_srcptr(), mpreal::get_default_rnd()); + return c; +} + +inline mpreal& mpreal::operator++() +{ + return *this += 1; +} + +inline const mpreal mpreal::operator++ (int) +{ + mpreal x(*this); + *this += 1; + return x; +} + +inline mpreal& mpreal::operator--() +{ + return *this -= 1; +} + +inline const mpreal mpreal::operator-- (int) +{ + mpreal x(*this); + *this -= 1; + return x; +} + +////////////////////////////////////////////////////////////////////////// +// - Subtraction +inline mpreal& mpreal::operator-=(const mpreal& v) +{ + mpfr_sub(mpfr_ptr(),mpfr_srcptr(),v.mpfr_srcptr(),mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator-=(const mpz_t v) +{ + mpfr_sub_z(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator-=(const mpq_t v) +{ + mpfr_sub_q(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator-=(const long double v) +{ + *this -= mpreal(v); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator-=(const double v) +{ +#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0)) + mpfr_sub_d(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); +#else + *this -= mpreal(v); +#endif + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator-=(const unsigned long int v) +{ + mpfr_sub_ui(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator-=(const unsigned int v) +{ + mpfr_sub_ui(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator-=(const long int v) +{ + mpfr_sub_si(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator-=(const int v) +{ + mpfr_sub_si(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline const mpreal mpreal::operator-()const +{ + mpreal u(*this); + mpfr_neg(u.mpfr_ptr(),u.mpfr_srcptr(),mpreal::get_default_rnd()); + return u; +} + +inline const mpreal operator-(const mpreal& a, const mpreal& b) +{ + mpreal c(0, (std::max)(mpfr_get_prec(a.mpfr_ptr()), mpfr_get_prec(b.mpfr_ptr()))); + mpfr_sub(c.mpfr_ptr(), a.mpfr_srcptr(), b.mpfr_srcptr(), mpreal::get_default_rnd()); + return c; +} + +inline const mpreal operator-(const double b, const mpreal& a) +{ +#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0)) + mpreal x(0, mpfr_get_prec(a.mpfr_ptr())); + mpfr_d_sub(x.mpfr_ptr(), b, a.mpfr_srcptr(), mpreal::get_default_rnd()); + return x; +#else + mpreal x(b, mpfr_get_prec(a.mpfr_ptr())); + x -= a; + return x; +#endif +} + +inline const mpreal operator-(const unsigned long int b, const mpreal& a) +{ + mpreal x(0, mpfr_get_prec(a.mpfr_ptr())); + mpfr_ui_sub(x.mpfr_ptr(), b, a.mpfr_srcptr(), mpreal::get_default_rnd()); + return x; +} + +inline const mpreal operator-(const unsigned int b, const mpreal& a) +{ + mpreal x(0, mpfr_get_prec(a.mpfr_ptr())); + mpfr_ui_sub(x.mpfr_ptr(), b, a.mpfr_srcptr(), mpreal::get_default_rnd()); + return x; +} + +inline const mpreal operator-(const long int b, const mpreal& a) +{ + mpreal x(0, mpfr_get_prec(a.mpfr_ptr())); + mpfr_si_sub(x.mpfr_ptr(), b, a.mpfr_srcptr(), mpreal::get_default_rnd()); + return x; +} + +inline const mpreal operator-(const int b, const mpreal& a) +{ + mpreal x(0, mpfr_get_prec(a.mpfr_ptr())); + mpfr_si_sub(x.mpfr_ptr(), b, a.mpfr_srcptr(), mpreal::get_default_rnd()); + return x; +} + +////////////////////////////////////////////////////////////////////////// +// * Multiplication +inline mpreal& mpreal::operator*= (const mpreal& v) +{ + mpfr_mul(mpfr_ptr(),mpfr_srcptr(),v.mpfr_srcptr(),mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator*=(const mpz_t v) +{ + mpfr_mul_z(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator*=(const mpq_t v) +{ + mpfr_mul_q(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator*=(const long double v) +{ + *this *= mpreal(v); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator*=(const double v) +{ +#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0)) + mpfr_mul_d(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); +#else + *this *= mpreal(v); +#endif + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator*=(const unsigned long int v) +{ + mpfr_mul_ui(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator*=(const unsigned int v) +{ + mpfr_mul_ui(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator*=(const long int v) +{ + mpfr_mul_si(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator*=(const int v) +{ + mpfr_mul_si(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline const mpreal operator*(const mpreal& a, const mpreal& b) +{ + mpreal c(0, (std::max)(mpfr_get_prec(a.mpfr_ptr()), mpfr_get_prec(b.mpfr_ptr()))); + mpfr_mul(c.mpfr_ptr(), a.mpfr_srcptr(), b.mpfr_srcptr(), mpreal::get_default_rnd()); + return c; +} + +////////////////////////////////////////////////////////////////////////// +// / Division +inline mpreal& mpreal::operator/=(const mpreal& v) +{ + mpfr_div(mpfr_ptr(),mpfr_srcptr(),v.mpfr_srcptr(),mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator/=(const mpz_t v) +{ + mpfr_div_z(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator/=(const mpq_t v) +{ + mpfr_div_q(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator/=(const long double v) +{ + *this /= mpreal(v); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator/=(const double v) +{ +#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0)) + mpfr_div_d(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); +#else + *this /= mpreal(v); +#endif + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator/=(const unsigned long int v) +{ + mpfr_div_ui(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator/=(const unsigned int v) +{ + mpfr_div_ui(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator/=(const long int v) +{ + mpfr_div_si(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator/=(const int v) +{ + mpfr_div_si(mpfr_ptr(),mpfr_srcptr(),v,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline const mpreal operator/(const mpreal& a, const mpreal& b) +{ + mpreal c(0, (std::max)(mpfr_get_prec(a.mpfr_srcptr()), mpfr_get_prec(b.mpfr_srcptr()))); + mpfr_div(c.mpfr_ptr(), a.mpfr_srcptr(), b.mpfr_srcptr(), mpreal::get_default_rnd()); + return c; +} + +inline const mpreal operator/(const unsigned long int b, const mpreal& a) +{ + mpreal x(0, mpfr_get_prec(a.mpfr_srcptr())); + mpfr_ui_div(x.mpfr_ptr(), b, a.mpfr_srcptr(), mpreal::get_default_rnd()); + return x; +} + +inline const mpreal operator/(const unsigned int b, const mpreal& a) +{ + mpreal x(0, mpfr_get_prec(a.mpfr_srcptr())); + mpfr_ui_div(x.mpfr_ptr(), b, a.mpfr_srcptr(), mpreal::get_default_rnd()); + return x; +} + +inline const mpreal operator/(const long int b, const mpreal& a) +{ + mpreal x(0, mpfr_get_prec(a.mpfr_srcptr())); + mpfr_si_div(x.mpfr_ptr(), b, a.mpfr_srcptr(), mpreal::get_default_rnd()); + return x; +} + +inline const mpreal operator/(const int b, const mpreal& a) +{ + mpreal x(0, mpfr_get_prec(a.mpfr_srcptr())); + mpfr_si_div(x.mpfr_ptr(), b, a.mpfr_srcptr(), mpreal::get_default_rnd()); + return x; +} + +inline const mpreal operator/(const double b, const mpreal& a) +{ +#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0)) + mpreal x(0, mpfr_get_prec(a.mpfr_srcptr())); + mpfr_d_div(x.mpfr_ptr(), b, a.mpfr_srcptr(), mpreal::get_default_rnd()); + return x; +#else + mpreal x(b, mpfr_get_prec(a.mpfr_ptr())); + x /= a; + return x; +#endif +} + +////////////////////////////////////////////////////////////////////////// +// Shifts operators - Multiplication/Division by power of 2 +inline mpreal& mpreal::operator<<=(const unsigned long int u) +{ + mpfr_mul_2ui(mpfr_ptr(),mpfr_srcptr(),u,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator<<=(const unsigned int u) +{ + mpfr_mul_2ui(mpfr_ptr(),mpfr_srcptr(),static_cast(u),mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator<<=(const long int u) +{ + mpfr_mul_2si(mpfr_ptr(),mpfr_srcptr(),u,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator<<=(const int u) +{ + mpfr_mul_2si(mpfr_ptr(),mpfr_srcptr(),static_cast(u),mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator>>=(const unsigned long int u) +{ + mpfr_div_2ui(mpfr_ptr(),mpfr_srcptr(),u,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator>>=(const unsigned int u) +{ + mpfr_div_2ui(mpfr_ptr(),mpfr_srcptr(),static_cast(u),mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator>>=(const long int u) +{ + mpfr_div_2si(mpfr_ptr(),mpfr_srcptr(),u,mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::operator>>=(const int u) +{ + mpfr_div_2si(mpfr_ptr(),mpfr_srcptr(),static_cast(u),mpreal::get_default_rnd()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline const mpreal operator<<(const mpreal& v, const unsigned long int k) +{ + return mul_2ui(v,k); +} + +inline const mpreal operator<<(const mpreal& v, const unsigned int k) +{ + return mul_2ui(v,static_cast(k)); +} + +inline const mpreal operator<<(const mpreal& v, const long int k) +{ + return mul_2si(v,k); +} + +inline const mpreal operator<<(const mpreal& v, const int k) +{ + return mul_2si(v,static_cast(k)); +} + +inline const mpreal operator>>(const mpreal& v, const unsigned long int k) +{ + return div_2ui(v,k); +} + +inline const mpreal operator>>(const mpreal& v, const long int k) +{ + return div_2si(v,k); +} + +inline const mpreal operator>>(const mpreal& v, const unsigned int k) +{ + return div_2ui(v,static_cast(k)); +} + +inline const mpreal operator>>(const mpreal& v, const int k) +{ + return div_2si(v,static_cast(k)); +} + +// mul_2ui +inline const mpreal mul_2ui(const mpreal& v, unsigned long int k, mp_rnd_t rnd_mode) +{ + mpreal x(v); + mpfr_mul_2ui(x.mpfr_ptr(),v.mpfr_srcptr(),k,rnd_mode); + return x; +} + +// mul_2si +inline const mpreal mul_2si(const mpreal& v, long int k, mp_rnd_t rnd_mode) +{ + mpreal x(v); + mpfr_mul_2si(x.mpfr_ptr(),v.mpfr_srcptr(),k,rnd_mode); + return x; +} + +inline const mpreal div_2ui(const mpreal& v, unsigned long int k, mp_rnd_t rnd_mode) +{ + mpreal x(v); + mpfr_div_2ui(x.mpfr_ptr(),v.mpfr_srcptr(),k,rnd_mode); + return x; +} + +inline const mpreal div_2si(const mpreal& v, long int k, mp_rnd_t rnd_mode) +{ + mpreal x(v); + mpfr_div_2si(x.mpfr_ptr(),v.mpfr_srcptr(),k,rnd_mode); + return x; +} + +////////////////////////////////////////////////////////////////////////// +//Relational operators + +// WARNING: +// +// Please note that following checks for double-NaN are guaranteed to work only in IEEE math mode: +// +// isnan(b) = (b != b) +// isnan(b) = !(b == b) (we use in code below) +// +// Be cautions if you use compiler options which break strict IEEE compliance (e.g. -ffast-math in GCC). +// Use std::isnan instead (C++11). + +inline bool operator > (const mpreal& a, const mpreal& b ){ return (mpfr_greater_p(a.mpfr_srcptr(),b.mpfr_srcptr()) != 0 ); } +inline bool operator > (const mpreal& a, const unsigned long int b ){ return !isnan(a) && (mpfr_cmp_ui(a.mpfr_srcptr(),b) > 0 ); } +inline bool operator > (const mpreal& a, const unsigned int b ){ return !isnan(a) && (mpfr_cmp_ui(a.mpfr_srcptr(),b) > 0 ); } +inline bool operator > (const mpreal& a, const long int b ){ return !isnan(a) && (mpfr_cmp_si(a.mpfr_srcptr(),b) > 0 ); } +inline bool operator > (const mpreal& a, const int b ){ return !isnan(a) && (mpfr_cmp_si(a.mpfr_srcptr(),b) > 0 ); } +inline bool operator > (const mpreal& a, const long double b ){ return !isnan(a) && (b == b) && (mpfr_cmp_ld(a.mpfr_srcptr(),b) > 0 ); } +inline bool operator > (const mpreal& a, const double b ){ return !isnan(a) && (b == b) && (mpfr_cmp_d (a.mpfr_srcptr(),b) > 0 ); } + +inline bool operator >= (const mpreal& a, const mpreal& b ){ return (mpfr_greaterequal_p(a.mpfr_srcptr(),b.mpfr_srcptr()) != 0 ); } +inline bool operator >= (const mpreal& a, const unsigned long int b ){ return !isnan(a) && (mpfr_cmp_ui(a.mpfr_srcptr(),b) >= 0 ); } +inline bool operator >= (const mpreal& a, const unsigned int b ){ return !isnan(a) && (mpfr_cmp_ui(a.mpfr_srcptr(),b) >= 0 ); } +inline bool operator >= (const mpreal& a, const long int b ){ return !isnan(a) && (mpfr_cmp_si(a.mpfr_srcptr(),b) >= 0 ); } +inline bool operator >= (const mpreal& a, const int b ){ return !isnan(a) && (mpfr_cmp_si(a.mpfr_srcptr(),b) >= 0 ); } +inline bool operator >= (const mpreal& a, const long double b ){ return !isnan(a) && (b == b) && (mpfr_cmp_ld(a.mpfr_srcptr(),b) >= 0 ); } +inline bool operator >= (const mpreal& a, const double b ){ return !isnan(a) && (b == b) && (mpfr_cmp_d (a.mpfr_srcptr(),b) >= 0 ); } + +inline bool operator < (const mpreal& a, const mpreal& b ){ return (mpfr_less_p(a.mpfr_srcptr(),b.mpfr_srcptr()) != 0 ); } +inline bool operator < (const mpreal& a, const unsigned long int b ){ return !isnan(a) && (mpfr_cmp_ui(a.mpfr_srcptr(),b) < 0 ); } +inline bool operator < (const mpreal& a, const unsigned int b ){ return !isnan(a) && (mpfr_cmp_ui(a.mpfr_srcptr(),b) < 0 ); } +inline bool operator < (const mpreal& a, const long int b ){ return !isnan(a) && (mpfr_cmp_si(a.mpfr_srcptr(),b) < 0 ); } +inline bool operator < (const mpreal& a, const int b ){ return !isnan(a) && (mpfr_cmp_si(a.mpfr_srcptr(),b) < 0 ); } +inline bool operator < (const mpreal& a, const long double b ){ return !isnan(a) && (b == b) && (mpfr_cmp_ld(a.mpfr_srcptr(),b) < 0 ); } +inline bool operator < (const mpreal& a, const double b ){ return !isnan(a) && (b == b) && (mpfr_cmp_d (a.mpfr_srcptr(),b) < 0 ); } + +inline bool operator <= (const mpreal& a, const mpreal& b ){ return (mpfr_lessequal_p(a.mpfr_srcptr(),b.mpfr_srcptr()) != 0 ); } +inline bool operator <= (const mpreal& a, const unsigned long int b ){ return !isnan(a) && (mpfr_cmp_ui(a.mpfr_srcptr(),b) <= 0 ); } +inline bool operator <= (const mpreal& a, const unsigned int b ){ return !isnan(a) && (mpfr_cmp_ui(a.mpfr_srcptr(),b) <= 0 ); } +inline bool operator <= (const mpreal& a, const long int b ){ return !isnan(a) && (mpfr_cmp_si(a.mpfr_srcptr(),b) <= 0 ); } +inline bool operator <= (const mpreal& a, const int b ){ return !isnan(a) && (mpfr_cmp_si(a.mpfr_srcptr(),b) <= 0 ); } +inline bool operator <= (const mpreal& a, const long double b ){ return !isnan(a) && (b == b) && (mpfr_cmp_ld(a.mpfr_srcptr(),b) <= 0 ); } +inline bool operator <= (const mpreal& a, const double b ){ return !isnan(a) && (b == b) && (mpfr_cmp_d (a.mpfr_srcptr(),b) <= 0 ); } + +inline bool operator == (const mpreal& a, const mpreal& b ){ return (mpfr_equal_p(a.mpfr_srcptr(),b.mpfr_srcptr()) != 0 ); } +inline bool operator == (const mpreal& a, const unsigned long int b ){ return !isnan(a) && (mpfr_cmp_ui(a.mpfr_srcptr(),b) == 0 ); } +inline bool operator == (const mpreal& a, const unsigned int b ){ return !isnan(a) && (mpfr_cmp_ui(a.mpfr_srcptr(),b) == 0 ); } +inline bool operator == (const mpreal& a, const long int b ){ return !isnan(a) && (mpfr_cmp_si(a.mpfr_srcptr(),b) == 0 ); } +inline bool operator == (const mpreal& a, const int b ){ return !isnan(a) && (mpfr_cmp_si(a.mpfr_srcptr(),b) == 0 ); } +inline bool operator == (const mpreal& a, const long double b ){ return !isnan(a) && (b == b) && (mpfr_cmp_ld(a.mpfr_srcptr(),b) == 0 ); } +inline bool operator == (const mpreal& a, const double b ){ return !isnan(a) && (b == b) && (mpfr_cmp_d (a.mpfr_srcptr(),b) == 0 ); } + +inline bool operator != (const mpreal& a, const mpreal& b ){ return !(a == b); } +inline bool operator != (const mpreal& a, const unsigned long int b ){ return !(a == b); } +inline bool operator != (const mpreal& a, const unsigned int b ){ return !(a == b); } +inline bool operator != (const mpreal& a, const long int b ){ return !(a == b); } +inline bool operator != (const mpreal& a, const int b ){ return !(a == b); } +inline bool operator != (const mpreal& a, const long double b ){ return !(a == b); } +inline bool operator != (const mpreal& a, const double b ){ return !(a == b); } + +inline bool isnan (const mpreal& op){ return (mpfr_nan_p (op.mpfr_srcptr()) != 0 ); } +inline bool isinf (const mpreal& op){ return (mpfr_inf_p (op.mpfr_srcptr()) != 0 ); } +inline bool isfinite (const mpreal& op){ return (mpfr_number_p (op.mpfr_srcptr()) != 0 ); } +inline bool iszero (const mpreal& op){ return (mpfr_zero_p (op.mpfr_srcptr()) != 0 ); } +inline bool isint (const mpreal& op){ return (mpfr_integer_p(op.mpfr_srcptr()) != 0 ); } + +#if (MPFR_VERSION >= MPFR_VERSION_NUM(3,0,0)) +inline bool isregular(const mpreal& op){ return (mpfr_regular_p(op.mpfr_srcptr()));} +#endif + +////////////////////////////////////////////////////////////////////////// +// Type Converters +inline bool mpreal::toBool ( ) const { return mpfr_zero_p (mpfr_srcptr()) == 0; } +inline long mpreal::toLong (mp_rnd_t mode) const { return mpfr_get_si (mpfr_srcptr(), mode); } +inline unsigned long mpreal::toULong (mp_rnd_t mode) const { return mpfr_get_ui (mpfr_srcptr(), mode); } +inline float mpreal::toFloat (mp_rnd_t mode) const { return mpfr_get_flt(mpfr_srcptr(), mode); } +inline double mpreal::toDouble (mp_rnd_t mode) const { return mpfr_get_d (mpfr_srcptr(), mode); } +inline long double mpreal::toLDouble(mp_rnd_t mode) const { return mpfr_get_ld (mpfr_srcptr(), mode); } +inline long long mpreal::toLLong (mp_rnd_t mode) const { return mpfr_get_sj (mpfr_srcptr(), mode); } +inline unsigned long long mpreal::toULLong (mp_rnd_t mode) const { return mpfr_get_uj (mpfr_srcptr(), mode); } + +inline ::mpfr_ptr mpreal::mpfr_ptr() { return mp; } +inline ::mpfr_srcptr mpreal::mpfr_ptr() const { return mp; } +inline ::mpfr_srcptr mpreal::mpfr_srcptr() const { return mp; } + +template +inline std::string toString(T t, std::ios_base & (*f)(std::ios_base&)) +{ + std::ostringstream oss; + oss << f << t; + return oss.str(); +} + +#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0)) + +inline std::string mpreal::toString(const std::string& format) const +{ + char *s = NULL; + std::string out; + + if( !format.empty() ) + { + if(!(mpfr_asprintf(&s, format.c_str(), mpfr_srcptr()) < 0)) + { + out = std::string(s); + + mpfr_free_str(s); + } + } + + return out; +} + +#endif + +inline std::string mpreal::toString(int n, int b, mp_rnd_t mode) const +{ + // TODO: Add extended format specification (f, e, rounding mode) as it done in output operator + (void)b; + (void)mode; + +#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0)) + + std::ostringstream format; + + int digits = (n >= 0) ? n : 2 + bits2digits(mpfr_get_prec(mpfr_srcptr())); + + format << "%." << digits << "RNg"; + + return toString(format.str()); + +#else + + char *s, *ns = NULL; + size_t slen, nslen; + mp_exp_t exp; + std::string out; + + if(mpfr_inf_p(mp)) + { + if(mpfr_sgn(mp)>0) return "+Inf"; + else return "-Inf"; + } + + if(mpfr_zero_p(mp)) return "0"; + if(mpfr_nan_p(mp)) return "NaN"; + + s = mpfr_get_str(NULL, &exp, b, 0, mp, mode); + ns = mpfr_get_str(NULL, &exp, b, (std::max)(0,n), mp, mode); + + if(s!=NULL && ns!=NULL) + { + slen = strlen(s); + nslen = strlen(ns); + if(nslen<=slen) + { + mpfr_free_str(s); + s = ns; + slen = nslen; + } + else { + mpfr_free_str(ns); + } + + // Make human eye-friendly formatting if possible + if (exp>0 && static_cast(exp)s+exp) ptr--; + + if(ptr==s+exp) out = std::string(s,exp+1); + else out = std::string(s,exp+1)+'.'+std::string(s+exp+1,ptr-(s+exp+1)+1); + + //out = string(s,exp+1)+'.'+string(s+exp+1); + } + else + { + // Remove zeros starting from right end + char* ptr = s+slen-1; + while (*ptr=='0' && ptr>s+exp-1) ptr--; + + if(ptr==s+exp-1) out = std::string(s,exp); + else out = std::string(s,exp)+'.'+std::string(s+exp,ptr-(s+exp)+1); + + //out = string(s,exp)+'.'+string(s+exp); + } + + }else{ // exp<0 || exp>slen + if(s[0]=='-') + { + // Remove zeros starting from right end + char* ptr = s+slen-1; + while (*ptr=='0' && ptr>s+1) ptr--; + + if(ptr==s+1) out = std::string(s,2); + else out = std::string(s,2)+'.'+std::string(s+2,ptr-(s+2)+1); + + //out = string(s,2)+'.'+string(s+2); + } + else + { + // Remove zeros starting from right end + char* ptr = s+slen-1; + while (*ptr=='0' && ptr>s) ptr--; + + if(ptr==s) out = std::string(s,1); + else out = std::string(s,1)+'.'+std::string(s+1,ptr-(s+1)+1); + + //out = string(s,1)+'.'+string(s+1); + } + + // Make final string + if(--exp) + { + if(exp>0) out += "e+"+mpfr::toString(exp,std::dec); + else out += "e"+mpfr::toString(exp,std::dec); + } + } + + mpfr_free_str(s); + return out; + }else{ + return "conversion error!"; + } +#endif +} + + +////////////////////////////////////////////////////////////////////////// +// I/O +inline std::ostream& mpreal::output(std::ostream& os) const +{ + std::ostringstream format; + const std::ios::fmtflags flags = os.flags(); + + format << ((flags & std::ios::showpos) ? "%+" : "%"); + if (os.precision() >= 0) + format << '.' << os.precision() << "R*" + << ((flags & std::ios::floatfield) == std::ios::fixed ? 'f' : + (flags & std::ios::floatfield) == std::ios::scientific ? 'e' : + 'g'); + else + format << "R*e"; + + char *s = NULL; + if(!(mpfr_asprintf(&s, format.str().c_str(), + mpfr::mpreal::get_default_rnd(), + mpfr_srcptr()) + < 0)) + { + os << std::string(s); + mpfr_free_str(s); + } + return os; +} + +inline std::ostream& operator<<(std::ostream& os, const mpreal& v) +{ + return v.output(os); +} + +inline std::istream& operator>>(std::istream &is, mpreal& v) +{ + // TODO: use cout::hexfloat and other flags to setup base + std::string tmp; + is >> tmp; + mpfr_set_str(v.mpfr_ptr(), tmp.c_str(), 10, mpreal::get_default_rnd()); + return is; +} + +////////////////////////////////////////////////////////////////////////// +// Bits - decimal digits relation +// bits = ceil(digits*log[2](10)) +// digits = floor(bits*log[10](2)) + +inline mp_prec_t digits2bits(int d) +{ + const double LOG2_10 = 3.3219280948873624; + + return mp_prec_t(std::ceil( d * LOG2_10 )); +} + +inline int bits2digits(mp_prec_t b) +{ + const double LOG10_2 = 0.30102999566398119; + + return int(std::floor( b * LOG10_2 )); +} + +////////////////////////////////////////////////////////////////////////// +// Set/Get number properties +inline mpreal& mpreal::setSign(int sign, mp_rnd_t RoundingMode) +{ + mpfr_setsign(mpfr_ptr(), mpfr_srcptr(), sign < 0, RoundingMode); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline int mpreal::getPrecision() const +{ + return int(mpfr_get_prec(mpfr_srcptr())); +} + +inline mpreal& mpreal::setPrecision(int Precision, mp_rnd_t RoundingMode) +{ + mpfr_prec_round(mpfr_ptr(), Precision, RoundingMode); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::setInf(int sign) +{ + mpfr_set_inf(mpfr_ptr(), sign); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::setNan() +{ + mpfr_set_nan(mpfr_ptr()); + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mpreal& mpreal::setZero(int sign) +{ +#if (MPFR_VERSION >= MPFR_VERSION_NUM(3,0,0)) + mpfr_set_zero(mpfr_ptr(), sign); +#else + mpfr_set_si(mpfr_ptr(), 0, (mpfr_get_default_rounding_mode)()); + setSign(sign); +#endif + + MPREAL_MSVC_DEBUGVIEW_CODE; + return *this; +} + +inline mp_prec_t mpreal::get_prec() const +{ + return mpfr_get_prec(mpfr_srcptr()); +} + +inline void mpreal::set_prec(mp_prec_t prec, mp_rnd_t rnd_mode) +{ + mpfr_prec_round(mpfr_ptr(),prec,rnd_mode); + MPREAL_MSVC_DEBUGVIEW_CODE; +} + +inline mp_exp_t mpreal::get_exp () const +{ + return mpfr_get_exp(mpfr_srcptr()); +} + +inline int mpreal::set_exp (mp_exp_t e) +{ + int x = mpfr_set_exp(mpfr_ptr(), e); + MPREAL_MSVC_DEBUGVIEW_CODE; + return x; +} + +inline mpreal& negate(mpreal& x) // -x in place +{ + mpfr_neg(x.mpfr_ptr(),x.mpfr_srcptr(),mpreal::get_default_rnd()); + return x; +} + +inline const mpreal frexp(const mpreal& x, mp_exp_t* exp, mp_rnd_t mode = mpreal::get_default_rnd()) +{ + mpreal y(x); +#if (MPFR_VERSION >= MPFR_VERSION_NUM(3,1,0)) + mpfr_frexp(exp,y.mpfr_ptr(),x.mpfr_srcptr(),mode); +#else + *exp = mpfr_get_exp(y.mpfr_srcptr()); + mpfr_set_exp(y.mpfr_ptr(),0); +#endif + return y; +} + +inline const mpreal frexp(const mpreal& x, int* exp, mp_rnd_t mode = mpreal::get_default_rnd()) +{ + mp_exp_t expl; + mpreal y = frexp(x, &expl, mode); + *exp = int(expl); + return y; +} + +inline const mpreal ldexp(const mpreal& v, mp_exp_t exp) +{ + mpreal x(v); + + // rounding is not important since we are just increasing the exponent (= exact operation) + mpfr_mul_2si(x.mpfr_ptr(), x.mpfr_srcptr(), exp, mpreal::get_default_rnd()); + return x; +} + +inline const mpreal scalbn(const mpreal& v, mp_exp_t exp) +{ + return ldexp(v, exp); +} + +inline mpreal machine_epsilon(mp_prec_t prec) +{ + /* the smallest eps such that 1 + eps != 1 */ + return machine_epsilon(mpreal(1, prec)); +} + +inline mpreal machine_epsilon(const mpreal& x) +{ + /* the smallest eps such that x + eps != x */ + if( x < 0) + { + return nextabove(-x) + x; + }else{ + return nextabove( x) - x; + } +} + +// minval is 'safe' meaning 1 / minval does not overflow +inline mpreal minval(mp_prec_t prec) +{ + /* min = 1/2 * 2^emin = 2^(emin - 1) */ + return mpreal(1, prec) << mpreal::get_emin()-1; +} + +// maxval is 'safe' meaning 1 / maxval does not underflow +inline mpreal maxval(mp_prec_t prec) +{ + /* max = (1 - eps) * 2^emax, eps is machine epsilon */ + return (mpreal(1, prec) - machine_epsilon(prec)) << mpreal::get_emax(); +} + +inline bool isEqualUlps(const mpreal& a, const mpreal& b, int maxUlps) +{ + return abs(a - b) <= machine_epsilon((max)(abs(a), abs(b))) * maxUlps; +} + +inline bool isEqualFuzzy(const mpreal& a, const mpreal& b, const mpreal& eps) +{ + return abs(a - b) <= eps; +} + +inline bool isEqualFuzzy(const mpreal& a, const mpreal& b) +{ + return isEqualFuzzy(a, b, machine_epsilon((max)(1, (min)(abs(a), abs(b))))); +} + +////////////////////////////////////////////////////////////////////////// +// C++11 sign functions. +inline mpreal copysign(const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal rop(0, mpfr_get_prec(x.mpfr_ptr())); + mpfr_setsign(rop.mpfr_ptr(), x.mpfr_srcptr(), mpfr_signbit(y.mpfr_srcptr()), rnd_mode); + return rop; +} + +inline bool signbit(const mpreal& x) +{ + return mpfr_signbit(x.mpfr_srcptr()); +} + +inline mpreal& setsignbit(mpreal& x, bool minus, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpfr_setsign(x.mpfr_ptr(), x.mpfr_srcptr(), minus, rnd_mode); + return x; +} + +inline const mpreal modf(const mpreal& v, mpreal& n) +{ + mpreal f(v); + + // rounding is not important since we are using the same number + mpfr_frac (f.mpfr_ptr(),f.mpfr_srcptr(),mpreal::get_default_rnd()); + mpfr_trunc(n.mpfr_ptr(),v.mpfr_srcptr()); + return f; +} + +inline int mpreal::check_range (int t, mp_rnd_t rnd_mode) +{ + return mpfr_check_range(mpfr_ptr(),t,rnd_mode); +} + +inline int mpreal::subnormalize (int t,mp_rnd_t rnd_mode) +{ + int r = mpfr_subnormalize(mpfr_ptr(),t,rnd_mode); + MPREAL_MSVC_DEBUGVIEW_CODE; + return r; +} + +inline mp_exp_t mpreal::get_emin (void) +{ + return mpfr_get_emin(); +} + +inline int mpreal::set_emin (mp_exp_t exp) +{ + return mpfr_set_emin(exp); +} + +inline mp_exp_t mpreal::get_emax (void) +{ + return mpfr_get_emax(); +} + +inline int mpreal::set_emax (mp_exp_t exp) +{ + return mpfr_set_emax(exp); +} + +inline mp_exp_t mpreal::get_emin_min (void) +{ + return mpfr_get_emin_min(); +} + +inline mp_exp_t mpreal::get_emin_max (void) +{ + return mpfr_get_emin_max(); +} + +inline mp_exp_t mpreal::get_emax_min (void) +{ + return mpfr_get_emax_min(); +} + +inline mp_exp_t mpreal::get_emax_max (void) +{ + return mpfr_get_emax_max(); +} + +////////////////////////////////////////////////////////////////////////// +// Mathematical Functions +////////////////////////////////////////////////////////////////////////// + +// Unary function template with single 'mpreal' argument +#define MPREAL_UNARY_MATH_FUNCTION_BODY(f) \ + mpreal y(0, mpfr_get_prec(x.mpfr_srcptr())); \ + mpfr_##f(y.mpfr_ptr(), x.mpfr_srcptr(), r); \ + return y; + +// Binary function template with 'mpreal' and 'unsigned long' arguments +#define MPREAL_BINARY_MATH_FUNCTION_UI_BODY(f, u) \ + mpreal y(0, mpfr_get_prec(x.mpfr_srcptr())); \ + mpfr_##f(y.mpfr_ptr(), x.mpfr_srcptr(), u, r); \ + return y; + +inline const mpreal sqr (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) +{ MPREAL_UNARY_MATH_FUNCTION_BODY(sqr ); } + +inline const mpreal sqrt (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) +{ MPREAL_UNARY_MATH_FUNCTION_BODY(sqrt); } + +inline const mpreal sqrt(const unsigned long int x, mp_rnd_t r) +{ + mpreal y; + mpfr_sqrt_ui(y.mpfr_ptr(), x, r); + return y; +} + +inline const mpreal sqrt(const unsigned int v, mp_rnd_t rnd_mode) +{ + return sqrt(static_cast(v),rnd_mode); +} + +inline const mpreal sqrt(const long int v, mp_rnd_t rnd_mode) +{ + if (v>=0) return sqrt(static_cast(v),rnd_mode); + else return mpreal().setNan(); // NaN +} + +inline const mpreal sqrt(const int v, mp_rnd_t rnd_mode) +{ + if (v>=0) return sqrt(static_cast(v),rnd_mode); + else return mpreal().setNan(); // NaN +} + +inline const mpreal root(const mpreal& x, unsigned long int k, mp_rnd_t r = mpreal::get_default_rnd()) +{ + mpreal y(0, mpfr_get_prec(x.mpfr_srcptr())); +#if (MPFR_VERSION >= MPFR_VERSION_NUM(4,0,0)) + mpfr_rootn_ui(y.mpfr_ptr(), x.mpfr_srcptr(), k, r); +#else + mpfr_root(y.mpfr_ptr(), x.mpfr_srcptr(), k, r); +#endif + return y; +} + +inline const mpreal dim(const mpreal& a, const mpreal& b, mp_rnd_t r = mpreal::get_default_rnd()) +{ + mpreal y(0, mpfr_get_prec(a.mpfr_srcptr())); + mpfr_dim(y.mpfr_ptr(), a.mpfr_srcptr(), b.mpfr_srcptr(), r); + return y; +} + +inline int cmpabs(const mpreal& a,const mpreal& b) +{ + return mpfr_cmpabs(a.mpfr_ptr(), b.mpfr_srcptr()); +} + +inline int sin_cos(mpreal& s, mpreal& c, const mpreal& v, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + return mpfr_sin_cos(s.mpfr_ptr(), c.mpfr_ptr(), v.mpfr_srcptr(), rnd_mode); +} + +inline const mpreal sqrt (const long double v, mp_rnd_t rnd_mode) { return sqrt(mpreal(v),rnd_mode); } +inline const mpreal sqrt (const double v, mp_rnd_t rnd_mode) { return sqrt(mpreal(v),rnd_mode); } + +inline const mpreal cbrt (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(cbrt ); } +inline const mpreal fabs (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(abs ); } +inline const mpreal abs (const mpreal& x, mp_rnd_t r) { MPREAL_UNARY_MATH_FUNCTION_BODY(abs ); } +inline const mpreal log (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(log ); } +inline const mpreal log2 (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(log2 ); } +inline const mpreal log10 (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(log10); } +inline const mpreal exp (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(exp ); } +inline const mpreal exp2 (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(exp2 ); } +inline const mpreal exp10 (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(exp10); } +inline const mpreal cos (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(cos ); } +inline const mpreal sin (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(sin ); } +inline const mpreal tan (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(tan ); } +inline const mpreal sec (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(sec ); } +inline const mpreal csc (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(csc ); } +inline const mpreal cot (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(cot ); } +inline const mpreal acos (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(acos ); } +inline const mpreal asin (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(asin ); } +inline const mpreal atan (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(atan ); } + +inline const mpreal logb (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { return log2 (abs(x),r); } +inline mp_exp_t ilogb (const mpreal& x) { return x.get_exp(); } + +inline const mpreal acot (const mpreal& v, mp_rnd_t r = mpreal::get_default_rnd()) { return atan (1/v, r); } +inline const mpreal asec (const mpreal& v, mp_rnd_t r = mpreal::get_default_rnd()) { return acos (1/v, r); } +inline const mpreal acsc (const mpreal& v, mp_rnd_t r = mpreal::get_default_rnd()) { return asin (1/v, r); } +inline const mpreal acoth (const mpreal& v, mp_rnd_t r = mpreal::get_default_rnd()) { return atanh(1/v, r); } +inline const mpreal asech (const mpreal& v, mp_rnd_t r = mpreal::get_default_rnd()) { return acosh(1/v, r); } +inline const mpreal acsch (const mpreal& v, mp_rnd_t r = mpreal::get_default_rnd()) { return asinh(1/v, r); } + +inline const mpreal cosh (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(cosh ); } +inline const mpreal sinh (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(sinh ); } +inline const mpreal tanh (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(tanh ); } +inline const mpreal sech (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(sech ); } +inline const mpreal csch (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(csch ); } +inline const mpreal coth (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(coth ); } +inline const mpreal acosh (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(acosh); } +inline const mpreal asinh (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(asinh); } +inline const mpreal atanh (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(atanh); } + +inline const mpreal log1p (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(log1p ); } +inline const mpreal expm1 (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(expm1 ); } +inline const mpreal eint (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(eint ); } +inline const mpreal gamma (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(gamma ); } +inline const mpreal tgamma (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(gamma ); } +inline const mpreal lngamma (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(lngamma); } +inline const mpreal zeta (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(zeta ); } +inline const mpreal erf (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(erf ); } +inline const mpreal erfc (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(erfc ); } +inline const mpreal besselj0(const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(j0 ); } +inline const mpreal besselj1(const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(j1 ); } +inline const mpreal bessely0(const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(y0 ); } +inline const mpreal bessely1(const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(y1 ); } + +#if (MPFR_VERSION >= MPFR_VERSION_NUM(4,0,0)) +inline const mpreal gammainc (const mpreal& a, const mpreal& x, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + /* + The non-normalized (upper) incomplete gamma function of a and x: + gammainc(a,x) := Gamma(a,x) = int(t^(a-1) * exp(-t), t=x..infinity) + */ + mpreal y(0,(std::max)(a.getPrecision(), x.getPrecision())); + mpfr_gamma_inc(y.mpfr_ptr(), a.mpfr_srcptr(), x.mpfr_srcptr(), rnd_mode); + return y; +} + +inline const mpreal beta (const mpreal& z, const mpreal& w, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + /* + Beta function, uses formula (6.2.2) from Abramowitz & Stegun: + beta(z,w) = gamma(z)*gamma(w)/gamma(z+w) + */ + mpreal y(0,(std::max)(z.getPrecision(), w.getPrecision())); + mpfr_beta(y.mpfr_ptr(), z.mpfr_srcptr(), w.mpfr_srcptr(), rnd_mode); + return y; +} + +inline const mpreal log_ui (unsigned long int n, mp_prec_t prec = mpreal::get_default_prec(), mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + /* Computes natural logarithm of an unsigned long */ + mpreal y(0, prec); + mpfr_log_ui(y.mpfr_ptr(),n,rnd_mode); + return y; +} +#endif + +#if (MPFR_VERSION >= MPFR_VERSION_NUM(4,2,0)) + +/* f(x,u) = f(2*pi*x/u) */ +inline const mpreal cosu (const mpreal& x, unsigned long u, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_BINARY_MATH_FUNCTION_UI_BODY(cosu, u); } +inline const mpreal sinu (const mpreal& x, unsigned long u, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_BINARY_MATH_FUNCTION_UI_BODY(sinu, u); } +inline const mpreal tanu (const mpreal& x, unsigned long u, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_BINARY_MATH_FUNCTION_UI_BODY(tanu, u); } +inline const mpreal acosu (const mpreal& x, unsigned long u, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_BINARY_MATH_FUNCTION_UI_BODY(acosu, u); } +inline const mpreal asinu (const mpreal& x, unsigned long u, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_BINARY_MATH_FUNCTION_UI_BODY(asinu, u); } +inline const mpreal atanu (const mpreal& x, unsigned long u, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_BINARY_MATH_FUNCTION_UI_BODY(atanu, u); } + +/* f(x) = f(pi*x) */ +inline const mpreal cospi (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(cospi ); } +inline const mpreal sinpi (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(sinpi ); } +inline const mpreal tanpi (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(tanpi ); } +inline const mpreal acospi (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(acospi); } +inline const mpreal asinpi (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(asinpi); } +inline const mpreal atanpi (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(atanpi); } + +inline const mpreal log2p1 (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(log2p1 ); } /* log2 (1+x) */ +inline const mpreal log10p1(const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(log10p1); } /* log10(1+x) */ +inline const mpreal exp2m1 (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(exp2m1 ); } /* 2^x-1 */ +inline const mpreal exp10m1(const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(exp10m1); } /* 10^x-1 */ + +inline const mpreal atan2u(const mpreal& y, const mpreal& x, unsigned long u, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + /* + atan2u(y,x,u) = atan(|y/x|)*u/(2*pi) for x > 0 + atan2u(y,x,u) = 1-atan(|y/x|)*u/(2*pi) for x < 0 + */ + mpreal a(0, (std::max)(y.getPrecision(), x.getPrecision())); + mpfr_atan2u(a.mpfr_ptr(), y.mpfr_srcptr(), x.mpfr_srcptr(), u, rnd_mode); + return a; +} + +inline const mpreal atan2pi(const mpreal& y, const mpreal& x, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + /* atan2pi(x) = atan2u(u=2) */ + mpreal a(0, (std::max)(y.getPrecision(), x.getPrecision())); + mpfr_atan2pi(a.mpfr_ptr(), y.mpfr_srcptr(), x.mpfr_srcptr(), rnd_mode); + return a; +} + +inline const mpreal powr(const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + /* powr(x,y) = exp(y*log(x)) */ + mpreal a(0, (std::max)(x.getPrecision(), y.getPrecision())); + mpfr_powr(a.mpfr_ptr(), x.mpfr_srcptr(), y.mpfr_srcptr(), rnd_mode); + return a; +} + +inline const mpreal compound(const mpreal& x, long n, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + /* compound(x,n) = (1+x)^n */ + mpreal y(0, x.getPrecision()); + mpfr_compound_si(y.mpfr_ptr(),x.mpfr_srcptr(),n,rnd_mode); + return y; +} + +inline const mpreal fmod(const mpreal& x, unsigned long u, mp_rnd_t r = mpreal::get_default_rnd()) +{ + /* x modulo a machine integer u */ + MPREAL_BINARY_MATH_FUNCTION_UI_BODY(fmod_ui, u); +} +#endif + +inline const mpreal nextpow2(const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) +{ + mpreal y(0, x.getPrecision()); + + if(!iszero(x)) + y = ceil(log2(abs(x,r),r)); + + return y; +} + +inline const mpreal atan2 (const mpreal& y, const mpreal& x, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal a(0,(std::max)(y.getPrecision(), x.getPrecision())); + mpfr_atan2(a.mpfr_ptr(), y.mpfr_srcptr(), x.mpfr_srcptr(), rnd_mode); + return a; +} + +inline const mpreal hypot (const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal a(0,(std::max)(y.getPrecision(), x.getPrecision())); + mpfr_hypot(a.mpfr_ptr(), x.mpfr_srcptr(), y.mpfr_srcptr(), rnd_mode); + return a; +} + +inline const mpreal hypot(const mpreal& a, const mpreal& b, const mpreal& c) +{ + if(isnan(a) || isnan(b) || isnan(c)) return mpreal().setNan(); + else + { + mpreal absa = abs(a), absb = abs(b), absc = abs(c); + mpreal w = (std::max)(absa, (std::max)(absb, absc)); + mpreal r; + + if (!iszero(w)) + { + mpreal iw = 1/w; + r = w * sqrt(sqr(absa*iw) + sqr(absb*iw) + sqr(absc*iw)); + } + + return r; + } +} + +inline const mpreal hypot(const mpreal& a, const mpreal& b, const mpreal& c, const mpreal& d) +{ + if(isnan(a) || isnan(b) || isnan(c) || isnan(d)) return mpreal().setNan(); + else + { + mpreal absa = abs(a), absb = abs(b), absc = abs(c), absd = abs(d); + mpreal w = (std::max)(absa, (std::max)(absb, (std::max)(absc, absd))); + mpreal r; + + if (!iszero(w)) + { + mpreal iw = 1/w; + r = w * sqrt(sqr(absa*iw) + sqr(absb*iw) + sqr(absc*iw) + sqr(absd*iw)); + } + + return r; + } +} + +inline const mpreal remainder (const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal a(0,(std::max)(y.getPrecision(), x.getPrecision())); + mpfr_remainder(a.mpfr_ptr(), x.mpfr_srcptr(), y.mpfr_srcptr(), rnd_mode); + return a; +} + +inline const mpreal remquo (const mpreal& x, const mpreal& y, int* q, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + long lq; + mpreal a(0,(std::max)(y.getPrecision(), x.getPrecision())); + mpfr_remquo(a.mpfr_ptr(), &lq, x.mpfr_srcptr(), y.mpfr_srcptr(), rnd_mode); + if (q) *q = int(lq); + return a; +} + +inline const mpreal fac_ui (unsigned long int v, mp_prec_t prec = mpreal::get_default_prec(), + mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal x(0, prec); + mpfr_fac_ui(x.mpfr_ptr(),v,rnd_mode); + return x; +} + + +inline const mpreal lgamma (const mpreal& v, int *signp = 0, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal x(v); + int tsignp; + + if(signp) mpfr_lgamma(x.mpfr_ptr(), signp,v.mpfr_srcptr(),rnd_mode); + else mpfr_lgamma(x.mpfr_ptr(),&tsignp,v.mpfr_srcptr(),rnd_mode); + + return x; +} + + +inline const mpreal besseljn (long n, const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) +{ + mpreal y(0, x.getPrecision()); + mpfr_jn(y.mpfr_ptr(), n, x.mpfr_srcptr(), r); + return y; +} + +inline const mpreal besselyn (long n, const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) +{ + mpreal y(0, x.getPrecision()); + mpfr_yn(y.mpfr_ptr(), n, x.mpfr_srcptr(), r); + return y; +} + +inline const mpreal fma (const mpreal& v1, const mpreal& v2, const mpreal& v3, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal a; + mp_prec_t p1, p2, p3; + + p1 = v1.get_prec(); + p2 = v2.get_prec(); + p3 = v3.get_prec(); + + a.set_prec(p3>p2?(p3>p1?p3:p1):(p2>p1?p2:p1)); + + mpfr_fma(a.mp,v1.mp,v2.mp,v3.mp,rnd_mode); + return a; +} + +inline const mpreal fms (const mpreal& v1, const mpreal& v2, const mpreal& v3, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal a; + mp_prec_t p1, p2, p3; + + p1 = v1.get_prec(); + p2 = v2.get_prec(); + p3 = v3.get_prec(); + + a.set_prec(p3>p2?(p3>p1?p3:p1):(p2>p1?p2:p1)); + + mpfr_fms(a.mp,v1.mp,v2.mp,v3.mp,rnd_mode); + return a; +} + +inline const mpreal agm (const mpreal& v1, const mpreal& v2, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal a; + mp_prec_t p1, p2; + + p1 = v1.get_prec(); + p2 = v2.get_prec(); + + a.set_prec(p1>p2?p1:p2); + + mpfr_agm(a.mp, v1.mp, v2.mp, rnd_mode); + + return a; +} + +inline const mpreal sum (const mpreal tab[], const unsigned long int n, int& status, mp_rnd_t mode = mpreal::get_default_rnd()) +{ + mpfr_srcptr *p = new mpfr_srcptr[n]; + + for (unsigned long int i = 0; i < n; i++) + p[i] = tab[i].mpfr_srcptr(); + + mpreal x; + status = mpfr_sum(x.mpfr_ptr(), (mpfr_ptr*)p, n, mode); + + delete [] p; + return x; +} + +////////////////////////////////////////////////////////////////////////// +// MPFR 2.4.0 Specifics +#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0)) + +inline int sinh_cosh(mpreal& s, mpreal& c, const mpreal& v, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + return mpfr_sinh_cosh(s.mp,c.mp,v.mp,rnd_mode); +} + +inline const mpreal li2 (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) +{ + MPREAL_UNARY_MATH_FUNCTION_BODY(li2); +} + +inline const mpreal rem (const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + /* R = rem(X,Y) if Y != 0, returns X - n * Y where n = trunc(X/Y). */ + return fmod(x, y, rnd_mode); +} + +inline const mpreal mod (const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + (void)rnd_mode; + + /* + + m = mod(x,y) if y != 0, returns x - n*y where n = floor(x/y) + + The following are true by convention: + - mod(x,0) is x + - mod(x,x) is 0 + - mod(x,y) for x != y and y != 0 has the same sign as y. + + */ + + if(iszero(y)) return x; + if(x == y) return 0; + + mpreal m = x - floor(x / y) * y; + + return copysign(abs(m),y); // make sure result has the same sign as Y +} + +inline const mpreal fmod (const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal a; + mp_prec_t yp, xp; + + yp = y.get_prec(); + xp = x.get_prec(); + + a.set_prec(yp>xp?yp:xp); + + mpfr_fmod(a.mp, x.mp, y.mp, rnd_mode); + + return a; +} + +inline const mpreal rec_sqrt(const mpreal& v, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal x(v); + mpfr_rec_sqrt(x.mp,v.mp,rnd_mode); + return x; +} +#endif // MPFR 2.4.0 Specifics + +////////////////////////////////////////////////////////////////////////// +// MPFR 3.0.0 Specifics +#if (MPFR_VERSION >= MPFR_VERSION_NUM(3,0,0)) +inline const mpreal digamma (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(digamma); } +inline const mpreal ai (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(ai); } +#endif // MPFR 3.0.0 Specifics + +////////////////////////////////////////////////////////////////////////// +// Constants +inline const mpreal const_log2 (mp_prec_t p = mpreal::get_default_prec(), mp_rnd_t r = mpreal::get_default_rnd()) +{ + mpreal x(0, p); + mpfr_const_log2(x.mpfr_ptr(), r); + return x; +} + +inline const mpreal const_pi (mp_prec_t p = mpreal::get_default_prec(), mp_rnd_t r = mpreal::get_default_rnd()) +{ + mpreal x(0, p); + mpfr_const_pi(x.mpfr_ptr(), r); + return x; +} + +inline const mpreal const_euler (mp_prec_t p = mpreal::get_default_prec(), mp_rnd_t r = mpreal::get_default_rnd()) +{ + mpreal x(0, p); + mpfr_const_euler(x.mpfr_ptr(), r); + return x; +} + +inline const mpreal const_catalan (mp_prec_t p = mpreal::get_default_prec(), mp_rnd_t r = mpreal::get_default_rnd()) +{ + mpreal x(0, p); + mpfr_const_catalan(x.mpfr_ptr(), r); + return x; +} + +inline const mpreal const_infinity (int sign = 1, mp_prec_t p = mpreal::get_default_prec()) +{ + mpreal x(0, p); + mpfr_set_inf(x.mpfr_ptr(), sign); + return x; +} + +////////////////////////////////////////////////////////////////////////// +// Integer Related Functions +inline const mpreal ceil(const mpreal& v) +{ + mpreal x(v); + mpfr_ceil(x.mp,v.mp); + return x; +} + +inline const mpreal floor(const mpreal& v) +{ + mpreal x(v); + mpfr_floor(x.mp,v.mp); + return x; +} + +inline const mpreal round(const mpreal& v) +{ + mpreal x(v); + mpfr_round(x.mp,v.mp); + return x; +} + +inline long lround(const mpreal& v) +{ + long r = std::numeric_limits::min(); + mpreal x = round(v); + if (abs(x) < -mpreal(r)) // Assume mpreal(LONG_MIN) is exact + r = x.toLong(); + return r; +} + +inline long long llround(const mpreal& v) +{ + long long r = std::numeric_limits::min(); + mpreal x = round(v); + if (abs(x) < -mpreal(r)) // Assume mpreal(LLONG_MIN) is exact + r = x.toLLong(); + return r; +} + +inline const mpreal trunc(const mpreal& v) +{ + mpreal x(v); + mpfr_trunc(x.mp,v.mp); + return x; +} + +inline const mpreal rint (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(rint ); } +inline const mpreal rint_ceil (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(rint_ceil ); } +inline const mpreal rint_floor (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(rint_floor); } +inline const mpreal rint_round (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(rint_round); } +inline const mpreal rint_trunc (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(rint_trunc); } +inline const mpreal frac (const mpreal& x, mp_rnd_t r = mpreal::get_default_rnd()) { MPREAL_UNARY_MATH_FUNCTION_BODY(frac ); } + +////////////////////////////////////////////////////////////////////////// +// Miscellaneous Functions +inline int sgn(const mpreal& op) +{ + // Please note, this is classic signum function which ignores sign of zero. + // Use signbit if you need sign of zero. + return mpfr_sgn(op.mpfr_srcptr()); +} + +////////////////////////////////////////////////////////////////////////// +// Miscellaneous Functions +inline void swap (mpreal& a, mpreal& b) { mpfr_swap(a.mpfr_ptr(),b.mpfr_ptr()); } +inline const mpreal (max)(const mpreal& x, const mpreal& y){ return (x= MPFR_VERSION_NUM(3,0,0)) +inline const mpreal urandom (gmp_randstate_t& state, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal x; + mpfr_urandom(x.mpfr_ptr(), state, rnd_mode); + return x; +} +#endif + +#if (MPFR_VERSION <= MPFR_VERSION_NUM(2,4,2)) +inline const mpreal random2 (mp_size_t size, mp_exp_t exp) +{ + mpreal x; + mpfr_random2(x.mpfr_ptr(),size,exp); + return x; +} +#endif + +// Uniformly distributed random number generation +// a = random(seed); <- initialization & first random number generation +// a = random(); <- next random numbers generation +// seed != 0 +inline const mpreal random(unsigned int seed = 0) +{ +#if (MPFR_VERSION >= MPFR_VERSION_NUM(3,0,0)) + static gmp_randstate_t state; + static bool initialize = true; + + if(initialize) + { + gmp_randinit_default(state); + gmp_randseed_ui(state,0); + initialize = false; + } + + if(seed != 0) gmp_randseed_ui(state,seed); + + return mpfr::urandom(state); +#else + if(seed != 0) std::srand(seed); + return mpfr::mpreal(std::rand()/(double)RAND_MAX); +#endif +} + +#if (MPFR_VERSION >= MPFR_VERSION_NUM(3,1,0)) +inline const mpreal grandom (gmp_randstate_t& state, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal x; +#if (MPFR_VERSION >= MPFR_VERSION_NUM(4,0,0)) + mpfr_nrandom(x.mpfr_ptr(), state, rnd_mode); +#else + mpfr_grandom(x.mpfr_ptr(), NULL, state, rnd_mode); +#endif + return x; +} + +inline const mpreal grandom(unsigned int seed = 0) +{ + static gmp_randstate_t state; + static bool initialize = true; + + if(initialize) + { + gmp_randinit_default(state); + gmp_randseed_ui(state,0); + initialize = false; + } + + if(seed != 0) gmp_randseed_ui(state,seed); + + return mpfr::grandom(state); +} +#endif + +////////////////////////////////////////////////////////////////////////// +// Set/Get global properties +inline void mpreal::set_default_prec(mp_prec_t prec) +{ + mpfr_set_default_prec(prec); +} + +inline void mpreal::set_default_rnd(mp_rnd_t rnd_mode) +{ + mpfr_set_default_rounding_mode(rnd_mode); +} + +inline bool mpreal::fits_in_bits(double x, int n) +{ + int i; + double t; + return MPREAL_ISINF(x) || (std::modf ( std::ldexp ( std::frexp ( x, &i ), n ), &t ) == 0.0); +} + +inline const mpreal pow(const mpreal& a, const mpreal& b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal x(a); + mpfr_pow(x.mp,x.mp,b.mp,rnd_mode); + return x; +} + +inline const mpreal pow(const mpreal& a, const mpz_t b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal x(a); + mpfr_pow_z(x.mp,x.mp,b,rnd_mode); + return x; +} + +inline const mpreal pow(const mpreal& a, const long long b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + (void)rnd_mode; + return pow(a,mpreal(b)); +} + +inline const mpreal pow(const mpreal& a, const unsigned long long b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + (void)rnd_mode; + return pow(a,mpreal(b)); +} + +inline const mpreal pow(const mpreal& a, const unsigned long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal x(a); + mpfr_pow_ui(x.mp,x.mp,b,rnd_mode); + return x; +} + +inline const mpreal pow(const mpreal& a, const unsigned int b, mp_rnd_t rnd_mode) +{ + return pow(a,static_cast(b),rnd_mode); +} + +inline const mpreal pow(const mpreal& a, const long int b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal x(a); + mpfr_pow_si(x.mp,x.mp,b,rnd_mode); + return x; +} + +inline const mpreal pow(const mpreal& a, const int b, mp_rnd_t rnd_mode) +{ + return pow(a,static_cast(b),rnd_mode); +} + +inline const mpreal pow(const mpreal& a, const long double b, mp_rnd_t rnd_mode) +{ + return pow(a,mpreal(b),rnd_mode); +} + +inline const mpreal pow(const mpreal& a, const double b, mp_rnd_t rnd_mode) +{ + return pow(a,mpreal(b),rnd_mode); +} + +inline const mpreal pow(const unsigned long int a, const mpreal& b, mp_rnd_t rnd_mode = mpreal::get_default_rnd()) +{ + mpreal x(a); + mpfr_ui_pow(x.mp,a,b.mp,rnd_mode); + return x; +} + +inline const mpreal pow(const unsigned int a, const mpreal& b, mp_rnd_t rnd_mode) +{ + return pow(static_cast(a),b,rnd_mode); +} + +inline const mpreal pow(const long int a, const mpreal& b, mp_rnd_t rnd_mode) +{ + if (a>=0) return pow(static_cast(a),b,rnd_mode); + else return pow(mpreal(a),b,rnd_mode); +} + +inline const mpreal pow(const int a, const mpreal& b, mp_rnd_t rnd_mode) +{ + if (a>=0) return pow(static_cast(a),b,rnd_mode); + else return pow(mpreal(a),b,rnd_mode); +} + +inline const mpreal pow(const long double a, const mpreal& b, mp_rnd_t rnd_mode) +{ + return pow(mpreal(a),b,rnd_mode); +} + +inline const mpreal pow(const double a, const mpreal& b, mp_rnd_t rnd_mode) +{ + return pow(mpreal(a),b,rnd_mode); +} + +// pow unsigned long int +inline const mpreal pow(const unsigned long int a, const unsigned long int b, mp_rnd_t rnd_mode) +{ + mpreal x(a); + mpfr_ui_pow_ui(x.mp,a,b,rnd_mode); + return x; +} + +inline const mpreal pow(const unsigned long int a, const unsigned int b, mp_rnd_t rnd_mode) +{ + return pow(a,static_cast(b),rnd_mode); //mpfr_ui_pow_ui +} + +inline const mpreal pow(const unsigned long int a, const long int b, mp_rnd_t rnd_mode) +{ + if(b>0) return pow(a,static_cast(b),rnd_mode); //mpfr_ui_pow_ui + else return pow(a,mpreal(b),rnd_mode); //mpfr_ui_pow +} + +inline const mpreal pow(const unsigned long int a, const int b, mp_rnd_t rnd_mode) +{ + if(b>0) return pow(a,static_cast(b),rnd_mode); //mpfr_ui_pow_ui + else return pow(a,mpreal(b),rnd_mode); //mpfr_ui_pow +} + +inline const mpreal pow(const unsigned long int a, const long double b, mp_rnd_t rnd_mode) +{ + return pow(a,mpreal(b),rnd_mode); //mpfr_ui_pow +} + +inline const mpreal pow(const unsigned long int a, const double b, mp_rnd_t rnd_mode) +{ + return pow(a,mpreal(b),rnd_mode); //mpfr_ui_pow +} + +// pow unsigned int +inline const mpreal pow(const unsigned int a, const unsigned long int b, mp_rnd_t rnd_mode) +{ + return pow(static_cast(a),b,rnd_mode); //mpfr_ui_pow_ui +} + +inline const mpreal pow(const unsigned int a, const unsigned int b, mp_rnd_t rnd_mode) +{ + return pow(static_cast(a),static_cast(b),rnd_mode); //mpfr_ui_pow_ui +} + +inline const mpreal pow(const unsigned int a, const long int b, mp_rnd_t rnd_mode) +{ + if(b>0) return pow(static_cast(a),static_cast(b),rnd_mode); //mpfr_ui_pow_ui + else return pow(static_cast(a),mpreal(b),rnd_mode); //mpfr_ui_pow +} + +inline const mpreal pow(const unsigned int a, const int b, mp_rnd_t rnd_mode) +{ + if(b>0) return pow(static_cast(a),static_cast(b),rnd_mode); //mpfr_ui_pow_ui + else return pow(static_cast(a),mpreal(b),rnd_mode); //mpfr_ui_pow +} + +inline const mpreal pow(const unsigned int a, const long double b, mp_rnd_t rnd_mode) +{ + return pow(static_cast(a),mpreal(b),rnd_mode); //mpfr_ui_pow +} + +inline const mpreal pow(const unsigned int a, const double b, mp_rnd_t rnd_mode) +{ + return pow(static_cast(a),mpreal(b),rnd_mode); //mpfr_ui_pow +} + +// pow long int +inline const mpreal pow(const long int a, const unsigned long int b, mp_rnd_t rnd_mode) +{ + if (a>0) return pow(static_cast(a),b,rnd_mode); //mpfr_ui_pow_ui + else return pow(mpreal(a),b,rnd_mode); //mpfr_pow_ui +} + +inline const mpreal pow(const long int a, const unsigned int b, mp_rnd_t rnd_mode) +{ + if (a>0) return pow(static_cast(a),static_cast(b),rnd_mode); //mpfr_ui_pow_ui + else return pow(mpreal(a),static_cast(b),rnd_mode); //mpfr_pow_ui +} + +inline const mpreal pow(const long int a, const long int b, mp_rnd_t rnd_mode) +{ + if (a>0) + { + if(b>0) return pow(static_cast(a),static_cast(b),rnd_mode); //mpfr_ui_pow_ui + else return pow(static_cast(a),mpreal(b),rnd_mode); //mpfr_ui_pow + }else{ + return pow(mpreal(a),b,rnd_mode); // mpfr_pow_si + } +} + +inline const mpreal pow(const long int a, const int b, mp_rnd_t rnd_mode) +{ + if (a>0) + { + if(b>0) return pow(static_cast(a),static_cast(b),rnd_mode); //mpfr_ui_pow_ui + else return pow(static_cast(a),mpreal(b),rnd_mode); //mpfr_ui_pow + }else{ + return pow(mpreal(a),static_cast(b),rnd_mode); // mpfr_pow_si + } +} + +inline const mpreal pow(const long int a, const long double b, mp_rnd_t rnd_mode) +{ + if (a>=0) return pow(static_cast(a),mpreal(b),rnd_mode); //mpfr_ui_pow + else return pow(mpreal(a),mpreal(b),rnd_mode); //mpfr_pow +} + +inline const mpreal pow(const long int a, const double b, mp_rnd_t rnd_mode) +{ + if (a>=0) return pow(static_cast(a),mpreal(b),rnd_mode); //mpfr_ui_pow + else return pow(mpreal(a),mpreal(b),rnd_mode); //mpfr_pow +} + +// pow int +inline const mpreal pow(const int a, const unsigned long int b, mp_rnd_t rnd_mode) +{ + if (a>0) return pow(static_cast(a),b,rnd_mode); //mpfr_ui_pow_ui + else return pow(mpreal(a),b,rnd_mode); //mpfr_pow_ui +} + +inline const mpreal pow(const int a, const unsigned int b, mp_rnd_t rnd_mode) +{ + if (a>0) return pow(static_cast(a),static_cast(b),rnd_mode); //mpfr_ui_pow_ui + else return pow(mpreal(a),static_cast(b),rnd_mode); //mpfr_pow_ui +} + +inline const mpreal pow(const int a, const long int b, mp_rnd_t rnd_mode) +{ + if (a>0) + { + if(b>0) return pow(static_cast(a),static_cast(b),rnd_mode); //mpfr_ui_pow_ui + else return pow(static_cast(a),mpreal(b),rnd_mode); //mpfr_ui_pow + }else{ + return pow(mpreal(a),b,rnd_mode); // mpfr_pow_si + } +} + +inline const mpreal pow(const int a, const int b, mp_rnd_t rnd_mode) +{ + if (a>0) + { + if(b>0) return pow(static_cast(a),static_cast(b),rnd_mode); //mpfr_ui_pow_ui + else return pow(static_cast(a),mpreal(b),rnd_mode); //mpfr_ui_pow + }else{ + return pow(mpreal(a),static_cast(b),rnd_mode); // mpfr_pow_si + } +} + +inline const mpreal pow(const int a, const long double b, mp_rnd_t rnd_mode) +{ + if (a>=0) return pow(static_cast(a),mpreal(b),rnd_mode); //mpfr_ui_pow + else return pow(mpreal(a),mpreal(b),rnd_mode); //mpfr_pow +} + +inline const mpreal pow(const int a, const double b, mp_rnd_t rnd_mode) +{ + if (a>=0) return pow(static_cast(a),mpreal(b),rnd_mode); //mpfr_ui_pow + else return pow(mpreal(a),mpreal(b),rnd_mode); //mpfr_pow +} + +// pow long double +inline const mpreal pow(const long double a, const long double b, mp_rnd_t rnd_mode) +{ + return pow(mpreal(a),mpreal(b),rnd_mode); +} + +inline const mpreal pow(const long double a, const unsigned long int b, mp_rnd_t rnd_mode) +{ + return pow(mpreal(a),b,rnd_mode); //mpfr_pow_ui +} + +inline const mpreal pow(const long double a, const unsigned int b, mp_rnd_t rnd_mode) +{ + return pow(mpreal(a),static_cast(b),rnd_mode); //mpfr_pow_ui +} + +inline const mpreal pow(const long double a, const long int b, mp_rnd_t rnd_mode) +{ + return pow(mpreal(a),b,rnd_mode); // mpfr_pow_si +} + +inline const mpreal pow(const long double a, const int b, mp_rnd_t rnd_mode) +{ + return pow(mpreal(a),static_cast(b),rnd_mode); // mpfr_pow_si +} + +inline const mpreal pow(const double a, const double b, mp_rnd_t rnd_mode) +{ + return pow(mpreal(a),mpreal(b),rnd_mode); +} + +inline const mpreal pow(const double a, const unsigned long int b, mp_rnd_t rnd_mode) +{ + return pow(mpreal(a),b,rnd_mode); // mpfr_pow_ui +} + +inline const mpreal pow(const double a, const unsigned int b, mp_rnd_t rnd_mode) +{ + return pow(mpreal(a),static_cast(b),rnd_mode); // mpfr_pow_ui +} + +inline const mpreal pow(const double a, const long int b, mp_rnd_t rnd_mode) +{ + return pow(mpreal(a),b,rnd_mode); // mpfr_pow_si +} + +inline const mpreal pow(const double a, const int b, mp_rnd_t rnd_mode) +{ + return pow(mpreal(a),static_cast(b),rnd_mode); // mpfr_pow_si +} +} // End of mpfr namespace + +// Explicit specialization of std::swap for mpreal numbers +// Thus standard algorithms will use efficient version of swap (due to Koenig lookup) +// Non-throwing swap C++ idiom: http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Non-throwing_swap +namespace std +{ + + template <> + inline void swap(mpfr::mpreal& x, mpfr::mpreal& y) + { + return mpfr::swap(x, y); + } + + template<> + class numeric_limits + { + public: + static const bool is_specialized = true; + static const bool is_signed = true; + static const bool is_integer = false; + static const bool is_exact = false; + static const int radix = 2; + + static const bool has_infinity = true; + static const bool has_quiet_NaN = true; + static const bool has_signaling_NaN = true; + + static const bool is_iec559 = true; // = IEEE 754 + static const bool is_bounded = true; + static const bool is_modulo = false; + static const bool traps = true; + static const bool tinyness_before = true; + + static const float_denorm_style has_denorm = denorm_absent; + + inline static mpfr::mpreal (min) (mp_prec_t precision = mpfr::mpreal::get_default_prec()) { return mpfr::minval(precision); } + inline static mpfr::mpreal (max) (mp_prec_t precision = mpfr::mpreal::get_default_prec()) { return mpfr::maxval(precision); } + inline static mpfr::mpreal lowest (mp_prec_t precision = mpfr::mpreal::get_default_prec()) { return -mpfr::maxval(precision); } + + // Returns smallest eps such that 1 + eps != 1 (classic machine epsilon) + inline static mpfr::mpreal epsilon(mp_prec_t precision = mpfr::mpreal::get_default_prec()) { return mpfr::machine_epsilon(precision); } + + // Returns smallest eps such that x + eps != x (relative machine epsilon) + inline static mpfr::mpreal epsilon(const mpfr::mpreal& x) { return mpfr::machine_epsilon(x); } + + inline static mpfr::mpreal round_error(mp_prec_t precision = mpfr::mpreal::get_default_prec()) + { + mp_rnd_t r = mpfr::mpreal::get_default_rnd(); + + if(r == GMP_RNDN) return mpfr::mpreal(0.5, precision); + else return mpfr::mpreal(1.0, precision); + } + + inline static const mpfr::mpreal infinity() { return mpfr::const_infinity(); } + inline static const mpfr::mpreal quiet_NaN() { return mpfr::mpreal().setNan(); } + inline static const mpfr::mpreal signaling_NaN() { return mpfr::mpreal().setNan(); } + inline static const mpfr::mpreal denorm_min() { return (min)(); } + + // Please note, exponent range is not fixed in MPFR + static const int min_exponent = MPFR_EMIN_DEFAULT; + static const int max_exponent = MPFR_EMAX_DEFAULT; + MPREAL_PERMISSIVE_EXPR static const int min_exponent10 = (int) (MPFR_EMIN_DEFAULT * 0.3010299956639811); + MPREAL_PERMISSIVE_EXPR static const int max_exponent10 = (int) (MPFR_EMAX_DEFAULT * 0.3010299956639811); + +#ifdef MPREAL_HAVE_DYNAMIC_STD_NUMERIC_LIMITS + + // Following members should be constant according to standard, but they can be variable in MPFR + // So we define them as functions here. + // + // This is preferable way for std::numeric_limits specialization. + // But it is incompatible with standard std::numeric_limits and might not work with other libraries, e.g. boost. + // See below for compatible implementation. + inline static float_round_style round_style() + { + mp_rnd_t r = mpfr::mpreal::get_default_rnd(); + + switch (r) + { + case GMP_RNDN: return round_to_nearest; + case GMP_RNDZ: return round_toward_zero; + case GMP_RNDU: return round_toward_infinity; + case GMP_RNDD: return round_toward_neg_infinity; + default: return round_indeterminate; + } + } + + inline static int digits() { return int(mpfr::mpreal::get_default_prec()); } + inline static int digits(const mpfr::mpreal& x) { return x.getPrecision(); } + + inline static int digits10(mp_prec_t precision = mpfr::mpreal::get_default_prec()) + { + return mpfr::bits2digits(precision); + } + + inline static int digits10(const mpfr::mpreal& x) + { + return mpfr::bits2digits(x.getPrecision()); + } + + inline static int max_digits10(mp_prec_t precision = mpfr::mpreal::get_default_prec()) + { + return digits10(precision); + } +#else + // Digits and round_style are NOT constants when it comes to mpreal. + // If possible, please use functions digits() and round_style() defined above. + // + // These (default) values are preserved for compatibility with existing libraries, e.g. boost. + // Change them accordingly to your application. + // + // For example, if you use 256 bits of precision uniformly in your program, then: + // digits = 256 + // digits10 = 77 + // max_digits10 = 78 + // + // Approximate formula for decimal digits is: digits10 = floor(log10(2) * digits). See bits2digits() for more details. + + static const std::float_round_style round_style = round_to_nearest; + static const int digits = 53; + static const int digits10 = 15; + static const int max_digits10 = 16; +#endif + }; + +} + +#endif /* __MPREAL_H__ */ diff --git a/test/geometry/gl2r_orbit_closure/test_rank2_quadrilaterals.py b/test/geometry/gl2r_orbit_closure/test_rank2_quadrilaterals.py index 57351fced..f996ef9b4 100644 --- a/test/geometry/gl2r_orbit_closure/test_rank2_quadrilaterals.py +++ b/test/geometry/gl2r_orbit_closure/test_rank2_quadrilaterals.py @@ -34,8 +34,6 @@ from flatsurf import EuclideanPolygonsWithAngles, similarity_surfaces, GL2ROrbitClosure -# TODO: the test for field of definition with is_isomorphic() does not check -# for embeddings... though for quadratic fields it does not matter much. @pytest.mark.parametrize( "a,b,c,d,l1,l2,veech,discriminant", [ @@ -51,11 +49,18 @@ ], ) def test_rank2_quadrilateral(a, b, c, d, l1, l2, veech, discriminant): + """ + .. TODO:: + + The test for field of definition with is_isomorphic() does not check + for embeddings. Though for quadratic fields it does not matter much. + + """ E = EuclideanPolygonsWithAngles(a, b, c, d) P = E([l1, l2], normalized=True) - B = similarity_surfaces.billiard(P, rational=True) + B = similarity_surfaces.billiard(P) S = B.minimal_cover(cover_type="translation") - S = S.erase_marked_points() + S = S.erase_marked_points().codomain() S, _ = S.normalized_coordinates() orbit_closure = GL2ROrbitClosure(S) assert orbit_closure.ambient_stratum() == E.billiard_unfolding_stratum( diff --git a/test/geometry/test_euclidean.py b/test/geometry/test_euclidean.py index f52505af4..9366a1be7 100644 --- a/test/geometry/test_euclidean.py +++ b/test/geometry/test_euclidean.py @@ -22,7 +22,7 @@ import pytest -from sage.all import QQ, randint +from sage.all import QQ, randint, vector @pytest.mark.repeat(1024) @@ -60,10 +60,10 @@ def test_segment_intersect(): from flatsurf.geometry.euclidean import is_segment_intersecting while True: - us = (randint(-4, 4), randint(-4, 4)) - ut = (randint(-4, 4), randint(-4, 4)) - vs = (randint(-4, 4), randint(-4, 4)) - vt = (randint(-4, 4), randint(-4, 4)) + us = vector((randint(-4, 4), randint(-4, 4))) + ut = vector((randint(-4, 4), randint(-4, 4))) + vs = vector((randint(-4, 4), randint(-4, 4))) + vt = vector((randint(-4, 4), randint(-4, 4))) if us != ut and vs != vt: break diff --git a/test/geometry/test_saddle_connection.py b/test/geometry/test_saddle_connection.py new file mode 100644 index 000000000..fc82cc576 --- /dev/null +++ b/test/geometry/test_saddle_connection.py @@ -0,0 +1,53 @@ +r""" +Tests that saddle connections are enumerated correctly. +""" +# **************************************************************************** +# This file is part of sage-flatsurf. +# +# Copyright (C) 2024 Julian Rüth +# +# sage-flatsurf is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 2 of the License, or +# (at your option) any later version. +# +# sage-flatsurf is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with sage-flatsurf. If not, see . +# **************************************************************************** + +import pytest + + +def test_L(): + r""" + Test that saddle connections in an L are counted the same no matter how the + L is represented. + """ + from flatsurf import translation_surfaces + + L_from_rectangles = translation_surfaces.mcmullen_L(1, 2, 3, 4) + connections_from_rectangles = L_from_rectangles.saddle_connections(128) + assert len(connections_from_rectangles) == 164 + + L_from_triangles = L_from_rectangles.triangulate().codomain() + connections_from_triangles = L_from_triangles.saddle_connections(128) + assert len(connections_from_triangles) == 164 + + from sage.all import QQ + from flatsurf import MutableOrientedSimilaritySurface, Polygon + L = MutableOrientedSimilaritySurface(QQ) + L.add_polygon(Polygon(vertices=[(0, 0), (3, 0), (7, 0), (7, 2), (3, 2), (3, 3), (0, 3), (0, 2)])) + L.glue((0, 0), (0, 5)) + L.glue((0, 1), (0, 3)) + L.glue((0, 2), (0, 7)) + L.glue((0, 4), (0, 6)) + L.set_immutable() + + connections = L.saddle_connections(128) + + assert len(connections) == 164