-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathunitary.py
130 lines (103 loc) · 3.97 KB
/
unitary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# TODO: Set up per-atom type dataloader
# Build model checkpoint retriever function
import numpy as np
import pandas as pd
import torch
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import torchvision
import matplotlib.pyplot as plt
import time
import os
import copy
from torch.utils.data import DataLoader
from ANI1_dataset_master.readers import pyanitools as pya
from __future__ import print_function, division
from torch.optim import lr_scheduler
from torchvision import datasets, models, transforms
plt.ion() # interactive mode
"""IMPORT DATA"""
# dataloader =
"""FEEDFORWARD NN MODEL"""
class Regression(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(288, 144)
self.fc2 = nn.Linear(144, 72)
self.fc3 = nn.Linear(72, 18)
self.fc4 = nn.Linear(18, 1)
self.dropout = nn.Dropout(p=0.30)
def forward(self, x):
x = self.dropout(F.relu(self.fc1(x)))
x = self.dropout(F.relu(self.fc2(x)))
x = self.dropout(F.relu(self.fc3(x)))
# x = F.CELU(self.fc1(x))
# x = F.CELU(self.fc2(x))
# x = F.CELU(self.fc3(x))
x = F.CELU(self.fc4(x))
return x
# Construct the data loader class
def train(model, criterion, optimizer, scheduler, num_epochs):
prior = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print("Epoch {}/{}".format(epoch, num_epochs - 1))
print("-" * 10)
# Epoch set to either train or validation
for phase in ["train", "val"]:
if phase == "train":
scheduler.step()
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloader[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward fuction only tracks progress model in train mode
with torch.set_grad_enabled(phase == "train"):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == "train":
loss.backward()
optimizer.step()
# Track statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print("{} Loss: {:.4f} Acc: {:.4f}".format(
phase, epoch_loss, epoch_acc))
if phase == "train" and epoch_acc > best_acc:
torch.save({
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": loss,
"acc": epoch_acc,
}, r"C:\Users\Flawnson\env\Models\weights-improvement-{epoch:02d}-{loss:.4f}.pt")
# Deep copy the model
if phase == "val" and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print("\n")
time_elapsed = time.time() - prior
print("Training complete in {:.0f}m {:.0f}s".format(
time_elapsed // 60, time_elapsed % 60))
print("Best val Acc: {:4f}".format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
regressor = Regression().to(device)
# num_epochs =
# criterion =