-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathexample.cpp
173 lines (149 loc) · 5.63 KB
/
example.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include <iostream>
#include <chrono>
#include "tbb/tbb.h"
using namespace std;
#include "OptimisticLockCoupling/Tree.h"
#include "ROWEX/Tree.h"
#include "ART/Tree.h"
void loadKey(TID tid, Key &key) {
// Store the key of the tuple into the key vector
// Implementation is database specific
key.setKeyLen(sizeof(tid));
reinterpret_cast<uint64_t *>(&key[0])[0] = __builtin_bswap64(tid);
}
void singlethreaded(char **argv) {
std::cout << "single threaded:" << std::endl;
uint64_t n = std::atoll(argv[1]);
uint64_t *keys = new uint64_t[n];
// Generate keys
for (uint64_t i = 0; i < n; i++)
// dense, sorted
keys[i] = i + 1;
if (atoi(argv[2]) == 1)
// dense, random
std::random_shuffle(keys, keys + n);
if (atoi(argv[2]) == 2)
// "pseudo-sparse" (the most-significant leaf bit gets lost)
for (uint64_t i = 0; i < n; i++)
keys[i] = (static_cast<uint64_t>(rand()) << 32) | static_cast<uint64_t>(rand());
printf("operation,n,ops/s\n");
ART_unsynchronized::Tree tree(loadKey);
// Build tree
{
auto starttime = std::chrono::system_clock::now();
for (uint64_t i = 0; i != n; i++) {
Key key;
loadKey(keys[i], key);
tree.insert(key, keys[i]);
}
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::system_clock::now() - starttime);
printf("insert,%ld,%f\n", n, (n * 1.0) / duration.count());
}
{
// Lookup
auto starttime = std::chrono::system_clock::now();
for (uint64_t i = 0; i != n; i++) {
Key key;
loadKey(keys[i], key);
auto val = tree.lookup(key);
if (val != keys[i]) {
std::cout << "wrong key read: " << val << " expected:" << keys[i] << std::endl;
throw;
}
}
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::system_clock::now() - starttime);
printf("lookup,%ld,%f\n", n, (n * 1.0) / duration.count());
}
{
auto starttime = std::chrono::system_clock::now();
for (uint64_t i = 0; i != n; i++) {
Key key;
loadKey(keys[i], key);
tree.remove(key, keys[i]);
}
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::system_clock::now() - starttime);
printf("remove,%ld,%f\n", n, (n * 1.0) / duration.count());
}
delete[] keys;
std::cout << std::endl;
}
void multithreaded(char **argv) {
std::cout << "multi threaded:" << std::endl;
uint64_t n = std::atoll(argv[1]);
uint64_t *keys = new uint64_t[n];
// Generate keys
for (uint64_t i = 0; i < n; i++)
// dense, sorted
keys[i] = i + 1;
if (atoi(argv[2]) == 1)
// dense, random
std::random_shuffle(keys, keys + n);
if (atoi(argv[2]) == 2)
// "pseudo-sparse" (the most-significant leaf bit gets lost)
for (uint64_t i = 0; i < n; i++)
keys[i] = (static_cast<uint64_t>(rand()) << 32) | static_cast<uint64_t>(rand());
printf("operation,n,ops/s\n");
ART_OLC::Tree tree(loadKey);
//ART_ROWEX::Tree tree(loadKey);
// Build tree
{
auto starttime = std::chrono::system_clock::now();
tbb::parallel_for(tbb::blocked_range<uint64_t>(0, n), [&](const tbb::blocked_range<uint64_t> &range) {
auto t = tree.getThreadInfo();
for (uint64_t i = range.begin(); i != range.end(); i++) {
Key key;
loadKey(keys[i], key);
tree.insert(key, keys[i], t);
}
});
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::system_clock::now() - starttime);
printf("insert,%ld,%f\n", n, (n * 1.0) / duration.count());
}
{
// Lookup
auto starttime = std::chrono::system_clock::now();
tbb::parallel_for(tbb::blocked_range<uint64_t>(0, n), [&](const tbb::blocked_range<uint64_t> &range) {
auto t = tree.getThreadInfo();
for (uint64_t i = range.begin(); i != range.end(); i++) {
Key key;
loadKey(keys[i], key);
auto val = tree.lookup(key, t);
if (val != keys[i]) {
std::cout << "wrong key read: " << val << " expected:" << keys[i] << std::endl;
throw;
}
}
});
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::system_clock::now() - starttime);
printf("lookup,%ld,%f\n", n, (n * 1.0) / duration.count());
}
{
auto starttime = std::chrono::system_clock::now();
tbb::parallel_for(tbb::blocked_range<uint64_t>(0, n), [&](const tbb::blocked_range<uint64_t> &range) {
auto t = tree.getThreadInfo();
for (uint64_t i = range.begin(); i != range.end(); i++) {
Key key;
loadKey(keys[i], key);
tree.remove(key, keys[i], t);
}
});
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::system_clock::now() - starttime);
printf("remove,%ld,%f\n", n, (n * 1.0) / duration.count());
}
delete[] keys;
}
int main(int argc, char **argv) {
if (argc != 3) {
printf("usage: %s n 0|1|2\nn: number of keys\n0: sorted keys\n1: dense keys\n2: sparse keys\n", argv[0]);
return 1;
}
singlethreaded(argv);
multithreaded(argv);
return 0;
}