-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsvm.py
68 lines (51 loc) · 1.9 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
class SVM:
def __init__(self, learning_rate = 0.001, lambda_param=0.01, n_iters=1000):
self.lr = learning_rate
self.lambda_param = lambda_param
self.n_iters = n_iters
self.w = None
self.b = None
def fit(self, X, y):
y_ = np.where(y<=0,-1,1)
n_samples, n_features = X.shape
self.w = np.zeros(n_features)
self.b = 0
for _ in range(self.n_iters):
for idx, x_i in enumerate(X):
condition = y_[idx] * (np.dot(x_i, self.w) - self.b) >=1
if condition:
self.w -= self.lr * (2*self.lambda_param * self.w)
else:
self.w -= self.lr * (2 * self.lambda_param * self.w - np.dot(x_i, y_[idx]))
self.b -= self.lr * y_[idx]
def predict(self, X):
linear_output = np.dot(X, self.w) - self.b
return(np.sign(linear_output))
X, y = datasets.make_blobs(n_samples=50, n_features=3, centers=3, cluster_std=1.05, random_state=40)
y = np.where(y == 0, -1, 1)
clf = SVM()
clf.fit(X, y)
predictions = clf.predict(X)
print(clf.w, clf.b)
def visualize_svm():
def get_hyperplane_value(x, w, b, offset):
return (-w[0] * x + b + offset) / w[1]
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
plt.scatter(X[:,0], X[:,1], marker='o',c=y)
x0_1 = np.amin(X[:,0])
x0_2 = np.amax(X[:,0])
x1_1 = get_hyperplane_value(x0_1, clf.w, clf.b, 0)
x1_2 = get_hyperplane_value(x0_2, clf.w, clf.b, 0)
x1_1_m = get_hyperplane_value(x0_1, clf.w, clf.b, -1)
x1_2_m = get_hyperplane_value(x0_2, clf.w, clf.b, -1)
x1_1_p = get_hyperplane_value(x0_1, clf.w, clf.b, 1)
x1_2_p = get_hyperplane_value(x0_2, clf.w, clf.b, 1)
ax.plot([x0_1, x0_2],[x1_1, x1_2], 'y--')
ax.plot([x0_1, x0_2],[x1_1_m, x1_2_m], 'k')
ax.plot([x0_1, x0_2],[x1_1_p, x1_2_p], 'k')
x1_min = np.amin(X[:,1])
x1_max = np.amax(X[:,1])
ax.set_ylim([x1_min-3,x1_max+3])
plt.show()
visualize_svm()