-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsupport.py
205 lines (169 loc) · 6.63 KB
/
support.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import requests
import os
import numpy as np
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.inception_resnet_v2 import preprocess_input
from keras.layers.core import RepeatVector
from keras.preprocessing import image
from keras.preprocessing.image import img_to_array, load_img
from keras.models import Model
from keras.layers import (
Conv2D,
UpSampling2D,
Input,
Reshape,
concatenate,
)
from skimage.color import rgb2lab, lab2rgb, rgb2gray, gray2rgb
from skimage.transform import resize
from skimage.io import imsave
import matplotlib.pyplot as plt
import tensorflow as tf
# Create embedding
def create_inception_embedding(inception, grayscaled_rgb):
grayscaled_rgb_resized = []
for i in grayscaled_rgb:
i = resize(i, (299, 299, 3), mode='constant', anti_aliasing=True)
grayscaled_rgb_resized.append(i)
grayscaled_rgb_resized = np.array(grayscaled_rgb_resized)
grayscaled_rgb_resized = preprocess_input(grayscaled_rgb_resized)
with inception.graph.as_default():
embed = inception.predict(grayscaled_rgb_resized)
return embed
def show_img(im, figsize=None, ax=None):
if not ax:
fig, ax = plt.subplots(figsize=figsize)
ax.imshow(im)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
return ax
def read_img(img_id, data_dir, train_or_test, size):
"""Read and resize image.
# Arguments
img_id: string
train_or_test: string 'train' or 'test'.
size: resize the original image.
# Returns
Image as numpy array.
"""
img = image.load_img(os.path.join(data_dir, train_or_test, '%s.jpg' % img_id), target_size=size)
img = image.img_to_array(img)
return img
def color_result(PATH, START, END, RESULT, model, inception):
# Make predictions on validation images
color_me = []
i = 0
# Take file in range [START, END] inside the PATH folder
for filename in os.listdir(PATH):
if i > START and i < END:
color_me.append(img_to_array(load_img(os.path.join(PATH, filename))))
i += 1
#################
# Preprocessing #
#################
# From RGB to B&W and embedding
color_me = np.array(color_me, dtype=float)
color_me_embed = create_inception_embedding(inception, gray2rgb(rgb2gray(1.0/255*color_me)))
color_me = rgb2lab(1.0/255*color_me)[:, :, :, 0]
color_me = color_me.reshape(color_me.shape+(1,))
# Test model
output = model.predict([color_me, color_me_embed])
# Rescale the output from [-1,1] to [-128, 128]
output = output * 128
# Create the result directory if not extists
if not os.path.exists('result'):
os.makedirs('result')
# Output colorizations
for i in range(len(output)):
cur = np.zeros((256, 256, 3))
# LAB representation
cur[:, :, 0] = color_me[i][:, :, 0]
cur[:, :, 1:] = output[i]
# Save images as RGB
imsave("result/img_"+str(i)+".png", lab2rgb(cur))
def prediction_from_url(url, model, inception):
test_image_path = '/tmp/test.jpg'
# Download the image
response = requests.get(url)
if response.status_code == 200:
with open(test_image_path, 'wb') as f:
f.write(response.content)
color_me = []
color_me.append(read_img('test', '/', 'tmp', (256, 256)))
#################
# Preprocessing #
#################
# From RGB to B&W and embedding
color_me = np.array(color_me, dtype=float)
color_me_embed = create_inception_embedding(inception, gray2rgb(rgb2gray(1.0/255*color_me)))
color_me = rgb2lab(1.0/255*color_me)[:, :, :, 0]
color_me = color_me.reshape(color_me.shape+(1,))
# Test model
output = model.predict([color_me, color_me_embed])
# Rescale the output from [-1,1] to [-128, 128]
output = output * 128
# Output colorizations
for i in range(len(output)):
cur = np.zeros((256, 256, 3))
# LAB representation
cur[:, :, 0] = color_me[i][:, :, 0]
cur[:, :, 1:] = output[i]
# B&W
fig = plt.figure(figsize=(9, 9))
ax1 = fig.add_subplot(1, 3, 1)
ax1.axis('off')
ax1.set_title('B&W')
ax1.imshow(rgb2gray(read_img('test', '/', 'tmp', (256, 256))/255), cmap='gray')
# Prediction
ax2 = fig.add_subplot(1, 3, 2)
ax2.axis('off')
ax2.set_title('Prediction')
ax2.imshow(lab2rgb(cur))
# Original
ax3 = fig.add_subplot(1, 3, 3)
ax3.axis('off')
ax3.set_title('Original')
ax3.imshow(read_img('test', '/', 'tmp', (256, 256))/255)
def load_pretrained_model(inception_wpath, colornet_wpath):
'''Load Emil's pretrained model'''
print('Loading pretrained model... (it could take a while)')
# Load weights of InceptionResNet model for embedding extraction
inception = InceptionResNetV2(weights=None, include_top=True)
inception.load_weights(inception_wpath)
inception.graph = tf.get_default_graph()
# The Model
def conv_stack(data, filters, s):
"""Utility for building conv layer"""
output = Conv2D(filters, (3, 3), strides=s, activation='relu', padding='same')(data)
return output
embed_input = Input(shape=(1000,))
# Encoder
encoder_input = Input(shape=(256, 256, 1,))
encoder_output = conv_stack(encoder_input, 64, 2)
encoder_output = conv_stack(encoder_output, 128, 1)
encoder_output = conv_stack(encoder_output, 128, 2)
encoder_output = conv_stack(encoder_output, 256, 1)
encoder_output = conv_stack(encoder_output, 256, 2)
encoder_output = conv_stack(encoder_output, 512, 1)
encoder_output = conv_stack(encoder_output, 512, 1)
encoder_output = conv_stack(encoder_output, 256, 1)
# Fusion
# y_mid: (None, 256, 28, 28)
fusion_output = RepeatVector(32 * 32)(embed_input)
fusion_output = Reshape(([32, 32, 1000]))(fusion_output)
fusion_output = concatenate([encoder_output, fusion_output], axis=3)
fusion_output = Conv2D(256, (1, 1), activation='relu')(fusion_output)
# Decoder
decoder_output = conv_stack(fusion_output, 128, 1)
decoder_output = UpSampling2D((2, 2))(decoder_output)
decoder_output = conv_stack(decoder_output, 64, 1)
decoder_output = UpSampling2D((2, 2))(decoder_output)
decoder_output = conv_stack(decoder_output, 32, 1)
decoder_output = conv_stack(decoder_output, 16, 1)
decoder_output = Conv2D(2, (2, 2), activation='tanh', padding='same')(decoder_output)
decoder_output = UpSampling2D((2, 2))(decoder_output)
model = Model(inputs=[encoder_input, embed_input], outputs=decoder_output)
# Load colornet weights
model.load_weights(colornet_wpath)
print('Model loaded!')
return(model, inception)