-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodel.py
58 lines (50 loc) · 2.52 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch.nn as nn
from torch.autograd import Variable
class RNNModel(nn.Module):
"""Container module with an encoder, a recurrent module, and a decoder."""
def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False):
super(RNNModel, self).__init__()
self.drop = nn.Dropout(dropout)
self.encoder = nn.Embedding(ntoken, ninp) # Token2Embeddings
if rnn_type in ['LSTM', 'GRU']:
self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout)
else:
try:
nonlinearity = {'RNN_TANH': 'tanh', 'RNN_RELU': 'relu'}[rnn_type]
except KeyError:
raise ValueError( """An invalid option for `--model` was supplied,
options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']""")
self.rnn = nn.RNN(ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout)
self.decoder = nn.Linear(nhid, ntoken)
# Optionally tie weights as in:
# "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016)
# https://arxiv.org/abs/1608.05859
# and
# "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016)
# https://arxiv.org/abs/1611.01462
if tie_weights:
if nhid != ninp:
raise ValueError('When using the tied flag, nhid must be equal to emsize')
self.decoder.weight = self.encoder.weight
self.init_weights()
self.rnn_type = rnn_type
self.nhid = nhid
self.nlayers = nlayers
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.fill_(0)
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, input, hidden):
emb = self.drop(self.encoder(input))
output, hidden = self.rnn(emb, hidden)
output = self.drop(output)
decoded = self.decoder(output.view(output.size(0)*output.size(1), output.size(2)))
return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden
def init_hidden(self, bsz):
weight = next(self.parameters()).data
if self.rnn_type == 'LSTM':
return (Variable(weight.new(self.nlayers, bsz, self.nhid).zero_()),
Variable(weight.new(self.nlayers, bsz, self.nhid).zero_()))
else:
return Variable(weight.new(self.nlayers, bsz, self.nhid).zero_())