diff --git a/docs/user_guide/data_types_and_io/structureddataset.md b/docs/user_guide/data_types_and_io/structureddataset.md index 03ebfb5275..1ba165717f 100644 --- a/docs/user_guide/data_types_and_io/structureddataset.md +++ b/docs/user_guide/data_types_and_io/structureddataset.md @@ -237,7 +237,7 @@ You can now use `numpy.ndarray` to deserialize the parquet file to NumPy and ser ```{rli} https://raw.githubusercontent.com/flyteorg/flytesnacks/master/examples/data_types_and_io/data_types_and_io/structured_dataset.py :caption: data_types_and_io/structured_dataset.py -:lines: 134-147 +:lines: 134-149 ``` :::{note} @@ -248,7 +248,20 @@ You can run the code locally as follows: ```{rli} https://raw.githubusercontent.com/flyteorg/flytesnacks/master/examples/data_types_and_io/data_types_and_io/structured_dataset.py :caption: data_types_and_io/structured_dataset.py -:lines: 151-155 +:lines: 153-157 +``` + +### The nested typed columns + +Like most storage formats (e.g. Avro, Parquet, and BigQuery), StructuredDataset support nested field structures. + +:::{note} +Nested field StructuredDataset should be run when flytekit version > 1.11.0. +::: + +```{rli} https://raw.githubusercontent.com/flyteorg/flytesnacks/master/examples/data_types_and_io/data_types_and_io/structured_dataset.py +:caption: data_types_and_io/structured_dataset.py +:lines: 159-270 ``` [flytesnacks]: https://github.com/flyteorg/flytesnacks/tree/master/examples/data_types_and_io/