-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlegendre.c
139 lines (121 loc) · 2.88 KB
/
legendre.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*
* legendre.c -- Produce the coefficients of Legendre polynomials.
*
* Copyright (C) 2003-2010 Farooq Mela. All rights reserved.
*
* Legendre polynomials are orthogonal w.r.t the L^2 inner product on [-1,1].
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdarg.h>
#include <assert.h>
#include <float.h>
#include "weecrypt.h"
#include "twiddle.h"
void legendre(int N);
int
main(int argc, char **argv)
{
int N;
if (argc == 1) {
printf("This program will compute the first N Legendre polynomials.\n"
"Please enter how many polynomials to compute: ");
fflush(stdout);
if (!fscanf(stdin, "%d", &N) || N<=1) {
fprintf(stderr, "Invalid value for N\n");
exit(1);
}
} else {
N = atoi(argv[1]);
if (N <= 1) {
fprintf(stderr, "Invalid value for N\n");
exit(1);
}
}
legendre(N);
return 0;
}
void legendre(int N)
{
mpq_poly *p = MALLOC(sizeof(*p) * N);
for (int j=0; j<N; j++)
mpq_poly_init(&p[j]);
mpq_poly_t tmp, tmp2;
mpq_poly_init(tmp);
mpq_poly_init(tmp2);
/* P0(x) = 1 */
mpq_set_u32(p[0].c[0], 1);
/* P1(x) = x */
mpq_poly_set_degree(&p[1], 1);
mpq_set_u32(p[1].c[1], 1);
/* P(x) = (2k-1) k-1
k ------xP(x) + ---P(x)
k k-1 k k-2 */
mpq_t q;
mpq_init(q);
for (int k=2; k<N; k++) {
mpq_set_u32_u32(q, 2*k-1, k);
mpq_poly_mul(&p[1], &p[k-1], tmp);
mpq_poly_mulq(tmp, q);
mpq_set_s32_s32(q, k-1, -k);
mpq_poly_set(&p[k-2], tmp2);
mpq_poly_mulq(tmp2, q);
mpq_poly_add(tmp, tmp2, &p[k]);
}
for (int k=0; k<N; k++) {
mpq_poly_print(&p[k], 'x', "P%d(x)=", k);
printf("\n");
}
/* Check for orthogonality on [-1,1] */
printf("Verifying orthogonality... ");
fflush(stdout);
mpq_t r, r1;
mpq_init(r);
mpq_init(r1);
for (int j=0; j<N; j++) {
twiddle();
for (int k=j; k<N; k++) {
mpq_poly_mul(&p[j], &p[k], tmp);
mpq_poly_int(tmp, tmp2);
mpq_set_s32(q, -1);
mpq_poly_eval(tmp2, q, r);
mpq_set_u32(q, 1);
mpq_poly_eval(tmp2, q, r1);
mpq_sub(r1, r, r1);
#if 0
mpq_poly_print(tmp2, 'x', "∫p%d(x)p%d(x)dx) = ", j, k);
printf("\n");
printf("∫p%d(x)p%d(x)dx)|x=-1,1 = ", j, k);
mpq_print_dec(r1);
printf("\n");
#endif
/* ∫p_j(x)p_k(x)dx = 2/(2k+1)d_jk where d_jk is Kronecker delta */
if (j == k && !(j == 0 && k == 0)) {
mpq_set_u32_u32(r, 2, 2*k + 1);
} else {
mpq_zero(r);
}
if (!mpq_cmp_eq(r1, r)) {
printf("Polynomials %d and %d not orthogonal!\n", j, k);
printf("Expected: ");
mpq_print_dec(r);
printf("\n");
printf(" Actual: ");
mpq_print_dec(r1);
printf("\n");
exit(1);
}
}
}
printf("\n");
for (int j=0; j<N; j++)
mpq_poly_free(&p[j]);
FREE(p);
mpq_poly_free(tmp);
mpq_poly_free(tmp2);
mpq_free(q);
mpq_free(r);
mpq_free(r1);
}