-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathring.go
494 lines (387 loc) · 9.98 KB
/
ring.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/*
Copyright 2012 Dmitry Kolesnikov, All Rights Reserved
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package ring
import (
"fmt"
"hash"
"strings"
)
/*
Ring is consistent hashing data type.
*/
type Ring struct {
// configuration
m uint64 // hash space 2^m - 1
q uint64 // number of shards on the ring
t uint64 // number of tokens to be claimed by node
hasher func() hash.Hash // hashing algorithms
// internal state
arc uint64
hashes Hashes
nodes map[string]bool
}
// New creates instances of the ring
func New(opts ...Option) *Ring {
ring := &Ring{}
M64_Q8_T8(ring)
for _, opt := range opts {
opt(ring)
}
//
ring.arc = ring.segment()
//
ring.empty()
return ring
}
func (ring *Ring) empty() {
ring.nodes = map[string]bool{}
ring.hashes = make(Hashes, ring.q)
for i, addr := range ring.addresses() {
ring.hashes[i] = Hash{hash: addr, rank: -1}
}
}
//------------------------------------------------------------------------------
//
// Ring algebra
//
//------------------------------------------------------------------------------
// calculate highest address of the ring
func (ring *Ring) highest() uint64 {
return uint64(1<<ring.m - 1)
}
// calculate cardinality of rings shard
func (ring *Ring) segment() uint64 {
return ring.highest()/ring.q + 1
}
// calculate entire address space for the ring
func (ring *Ring) addresses() []uint64 {
seq := make([]uint64, ring.q)
for i := uint64(0); i < ring.q; i++ {
seq[i] = ring.addressShard(i + 1)
}
return seq
}
// calculate address on the ring for shard
func (ring *Ring) addressShard(shard uint64) uint64 {
return (shard * ring.arc) - 1
}
// calculate address on the ring for hash
func (ring *Ring) addressHash(hash []byte) (int, uint64) {
addr := uint64(hash[0])
for i := uint64(1); i < uint64(ring.m/8); i++ {
addr = addr | uint64(hash[i])<<(8*i)
}
shard := (addr / ring.arc) % ring.q
return int(shard), addr
}
// calculate address on the ring for key
// it returns shard id and address of the key
func (ring *Ring) address(key string) (int, uint64) {
return ring.addressHash(ring.hash(key, nil))
}
// hash the key value
func (ring *Ring) hash(key string, hash []byte) []byte {
// TODO: hashing w/o memory allocation
h := ring.hasher()
h.Write([]byte(key))
if hash != nil {
h.Write(hash)
}
return h.Sum(nil)
}
//------------------------------------------------------------------------------
//
// Ring interface
//
//------------------------------------------------------------------------------
/*
Join node to the ring. Node claims Q/N shards from the ring.
*/
func (ring *Ring) Join(node string) *Ring {
if _, exists := ring.nodes[node]; exists {
ring.nodes[node] = true
return ring
}
var hash []byte
for rank := 0; rank < int(ring.t); rank++ {
hash = ring.hash(node, hash)
shard, addr := ring.addressHash(hash)
main := ring.hashes[shard]
switch {
// shard is not allocated to any one
case main.addr == 0:
ring.hashes.update(shard, addr, rank, node)
// this is a master shard of key (key is shard owner), claim it unconditionally
case main.rank != 0 && rank == 0:
ring.hashes.update(shard, addr, rank, node)
// Key collides with allocated shard, bigger address wins
case main.rank == rank && main.addr < addr:
ring.hashes.update(shard, addr, rank, node)
// Key collides with allocated shard, smaller hash wins
case main.rank > rank:
ring.hashes.update(shard, addr, rank, node)
}
}
ring.repair()
ring.nodes[node] = true
return ring
}
// repair unallocated shards
func (ring *Ring) repair() {
if ring.hashes[0].rank == -1 {
for i := ring.q - 1; i > 0; i-- {
if ring.hashes[i].rank != -1 {
ring.hashes.updateNode(0, ring.hashes[i])
break
}
}
}
for i := 1; i < int(ring.q); i++ {
if ring.hashes[i].rank == -1 {
ring.hashes.updateNode(i, ring.hashes[i-1])
}
}
}
/*
Leave node from the ring
*/
func (ring *Ring) Leave(node string) *Ring {
if _, exists := ring.nodes[node]; !exists {
return ring
}
nodes := ring.nodes
delete(nodes, node)
ring.empty()
for node := range nodes {
ring.Join(node)
}
return ring
}
/*
Handoff node's responsibility.
*/
func (ring *Ring) Handoff(node string) *Ring {
ring.nodes[node] = false
return ring
}
/*
SuccessorOf return N distinct nodes to route key.
The list of nodes is split to primary and handoff replicas.
For each node it returns the address of shard hit by the key,
the node identity, the rank of node identity and its address on the ring.
*/
func (ring *Ring) SuccessorOf(n uint64, key string) (Primary, Handoff) {
shard, _ := ring.address(key)
coord := ring.hashes[shard]
last, head := ring.distinctNodes(n, shard)
primary := ring.primaryNodes(n, coord, head)
if len(primary) == int(n) {
return Primary(primary), nil
}
hn := int(n) - len(primary)
handoff := make(Hashes, 0, n)
for i := 1; i < int(ring.q); i++ {
hash := ring.hashes[(last+i)%int(ring.q)]
if ring.nodes[hash.node] && !handoff.contains(hash.node) && !primary.contains(hash.node) {
handoff = append(handoff, Hash{
hash: coord.hash,
addr: hash.addr,
rank: hash.rank,
node: hash.node,
})
}
if len(handoff) == hn {
break
}
}
return Primary(primary), Handoff(handoff)
}
// returns N distinct nodes and position on the ring
func (ring *Ring) distinctNodes(n uint64, fromShard int) (int, Hashes) {
last := 0
head := make(Hashes, 0, n)
for i := 0; i < int(ring.q); i++ {
last = (fromShard + i) % int(ring.q)
hash := ring.hashes[last]
if !head.contains(hash.node) {
head = append(head, hash)
}
if len(head) == int(n) {
break
}
}
return last, head
}
// build list of primary nodes from list of candidates
func (ring *Ring) primaryNodes(n uint64, coord Hash, hashes Hashes) Hashes {
primary := make(Hashes, 0, n)
for _, hash := range hashes {
if ring.nodes[hash.node] {
primary = append(primary, Hash{
hash: coord.hash,
addr: hash.addr,
rank: hash.rank,
node: hash.node,
})
}
}
return primary
}
/*
Address calculates address of key on the ring
*/
func (ring *Ring) Address(key string) uint64 {
_, addr := ring.addressHash(ring.hash(key, nil))
return addr
}
/*
Lookup the address position on the ring
*/
func (ring *Ring) Lookup(addr uint64) Node {
shard := (addr / ring.arc) % ring.q
hash := ring.hashes[shard]
return hash
}
/*
lookup the key position on the ring
*/
func (ring *Ring) LookupKey(key string) Node {
shard, _ := ring.address(key)
hash := ring.hashes[shard]
return hash
}
/*
Before returns list of N predecessors shards for the address.
*/
func (ring *Ring) Before(n uint64, addr uint64) []Node {
shard := (addr / ring.arc) % ring.q
return ring.predecessor(min(n, ring.q), int(shard))
}
/*
BeforeKey returns list of N predecessors shards for the key.
*/
func (ring *Ring) BeforeKey(n uint64, key string) []Node {
shard, _ := ring.address(key)
return ring.predecessor(min(n, ring.q), shard)
}
func (ring *Ring) predecessor(n uint64, shard int) []Node {
q := int(ring.q)
seq := make([]Node, 0, n)
for i := 0; i < int(ring.q); i++ {
seq = append(seq, ring.hashes[(q+shard-i)%q])
if len(seq) == int(n) {
break
}
}
return seq
}
/*
After returns list of N successors shards for the address.
*/
func (ring *Ring) After(n uint64, addr uint64) []Node {
shard := (addr / ring.arc) % ring.q
return ring.successor(min(n, ring.q), int(shard))
}
/*
AfterKey returns list of N successors shards for the key.
*/
func (ring *Ring) AfterKey(n uint64, key string) []Node {
shard, _ := ring.address(key)
return ring.successor(min(n, ring.q), shard)
}
func (ring *Ring) successor(n uint64, shard int) []Node {
seq := make([]Node, 0, n)
for i := 0; i < int(ring.q); i++ {
seq = append(seq, ring.hashes[(shard+i)%int(ring.q)])
if len(seq) == int(n) {
break
}
}
return seq
}
/*
Size of ring, number of members joined the ring
*/
func (ring *Ring) Size() int {
return len(ring.nodes)
}
/*
Has return true if key exists in the ring
*/
func (ring *Ring) Has(node string) bool {
_, exists := ring.nodes[node]
return exists
}
/*
Members return list of nodes registered at ring
*/
func (ring *Ring) Members() []string {
nodes := make([]string, 0, len(ring.nodes))
for node := range ring.nodes {
nodes = append(nodes, node)
}
return nodes
}
/*
Nodes return list of nodes and its shards
*/
func (ring *Ring) Nodes() map[string][]Node {
nodes := map[string][]Node{}
for node := range ring.nodes {
nodes[node] = []Node{}
}
for _, hash := range ring.hashes {
nodes[hash.node] = append(nodes[hash.node], hash)
}
return nodes
}
/*
Shards returns ring topology and its allocation
*/
func (ring *Ring) Shards() []Node {
hashes := make([]Node, len(ring.hashes))
for i, hash := range ring.hashes {
hashes[i] = hash
}
return hashes
}
/*
Debug represents ring to string snapshot
*/
func (ring *Ring) Debug() string {
buf := strings.Builder{}
buf.WriteString(fmt.Sprintf("ring: m=%d, q=%d, t=%d\n", ring.m, ring.q, ring.t))
buf.WriteString(fmt.Sprintf("| [0, %16x]\n", ring.highest()))
buf.WriteString("| [ ")
for node := range ring.nodes {
buf.WriteString(node)
buf.WriteString(" ")
}
buf.WriteString("]\n| \n")
for i := uint64(0); i < uint64(ring.q); i++ {
hash := ring.hashes[i]
buf.WriteString(fmt.Sprintf("| %5d", i))
buf.WriteString(fmt.Sprintf(": %x", hash.hash))
buf.WriteString(fmt.Sprintf(" ⇒ %5d %x", hash.rank, hash.addr))
buf.WriteString(fmt.Sprintf(" [%s]", hash.node))
buf.WriteString("\n")
}
return buf.String()
}
//
func min(a, b uint64) uint64 {
if a < b {
return a
}
return b
}